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Abstract

Recent  advances  in  quantum  computational  science  promise  substantial 

improvements  in the speed with which certain  classes of problems can be computed. 

Various algorithms that utilize the distinctively non-classical characteristics of quantum 

mechanics have been formulated to take advantage of this promising new approach to 

computation.  One such algorithm was formulated by David Deutsch and Richard Jozsa. 

By measuring  the  output  of  a  quantum network that  implements  this  algorithm,  it  is 

possible to determine with N – 1 measurements certain global properties of a function 

f(x), where N is the number of network inputs.  Classically,  it may not be possible to 

determine  these  same properties  without  evaluating  f(x)  a  number  of  times  that  rises 

exponentially as N increases.  Hitherto, the potential power of this algorithm has been 

explored in the context of qubits, the quantum computational analogue of classical bits. 

However, just as one can conceive of classical computation in the context of non-binary 

logic, such as ternary or quaternary logic, so also can one conceive of corresponding 

higher-order quantum computational equivalents. 

This  thesis  investigates  the  behaviour  of  the  Deutsch-Jozsa  algorithm  in  the 

context  of  these  higher-order  quantum  computational  forms  of  logic  and  explores 

potential applications for this algorithm.  An important conclusion reached is that, not 

only can the Deutsch-Jozsa algorithm’s known computational advantages be formulated 

in more general terms, but also a new algorithmic property is revealed with potential 

practical applications.
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Chapter 1 – Introduction

1.1 Background

Quantum computation provides an entirely new paradigm by which to view the 

process of computation.  From its inception, theoretical computational science has been 

formulated in terms of the Turing machine.  Hitherto, all proposed modes of computation 

have been shown to be reducible to the Turing model.  Quantum computing, in contrast, 

presents  the  opportunity  to  contemplate  a  non-Turing  mode  of  computation  and  an 

associated extension in the range of computational applications. 

The discipline of computer science, following a lengthy period characterized by 

ad hoc experiments and proposals, was placed on a systematic theoretical footing through 

the work of Alan Turing and Alonzo Church.  Turing envisioned an idealized computing 

machine comprised of a symbolic alphabet { }Naaa ,...,, 10 , a moveable tape consisting of 

a finite number of non-blank cells each containing one symbol from the alphabetic set, a 

read/write head, and an internal machine state [1].  The operational details of this Turing 

machine are not of concern here, except to note that its features of a symbolic instruction 

set,  a  stored  program,  and  automated  function  evaluation  are  standard  in  today’s 

computing  technology.   Despite  the  vast  diversity  of  ways in  which  this  technology 

manifests, from embedded microcontrollers to supercomputers, the underlying principles 

can always be related to the Turing machine.  Already by 1936, this observation was 

generalized in the Church-Turing thesis.  In its modern form1, the thesis states that 

1 Church and Turing did not envision that probabilistic algorithms could solve certain classes of problems 
more efficiently than any known deterministic algorithms.  The recognition of this fact led to a 
generalization of the original Church-Turing thesis.

1



A probabilistic Turing machine can simulate any model of computation with at  

most a polynomial increase in the number of elementary operations required. [2]

In other words, the thesis claims that if an algorithm can be implemented on any 

computational platform, the same set of solutions produced can be obtained by way of a 

corresponding  algorithm  implemented  on  a  Turing  machine  without  substantial 

degradation  in  computational  complexity.   Computational  complexity  describes  the 

relationship between the size of the input to an algorithm and the number of elementary 

operations that must be performed to obtain the desired solution.  For example, if the 

number of operations increases according to some polynomial function of the input size, 

the computational complexity of the algorithm is denoted by O(xk), where x is the input 

size and k is the highest order exponent in the polynomial.  Multiplying constants and 

lower order polynomial terms have a less significant effect2 and hence are not included in 

this description.  If the computational complexity of a given algorithm is of polynomial 

order or less, for example O(log x), then that program is said to be efficient.  One can also 

consider algorithms in which the number of required operations grows exponentially with 

respect to input size.  These superpolynomial algorithms, described as inefficient, when 

computed  on  a  Turing  machine  are  only  able  to  reach  a  desired  solution  within  a 

reasonable amount  of time for small  input sizes.   For larger  input sizes,  the required 

processing  time  on  any  Turing  machine  rapidly  becomes  impracticably  long. 

Unfortunately,  many problems with  practical  application  have a  large  input  size  and 
2 Clearly a term like 10,000x2

 cannot be considered insignificant compared to x3 unless one is employing 
extraordinarily large input sizes.  In practice, however, nearly all multiplying constants encountered do not 
diverge from unity by more than one or two orders of magnitude and as such, do not substantially influence 
this rough, but insightful, means of quantifying computational complexity.
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cannot be related to any known efficient algorithm.  Given current computing technology, 

such problems cannot be computed within any realistic timeframe3.

At no time has the Church-Turing thesis been established by means of rigorous 

proof.   Nevertheless,  the  failure  over  the  course  of  several  decades  to  provide  a 

counterexample that could not be ultimately demonstrated to be fundamentally equivalent 

to a Turing machine gave this thesis a wide acceptance amongst computational science 

researchers.  The recent development of quantum computation, however, provides a long 

sought after exception to the Church-Turing thesis.

1.2 The Emergence of the Quantum Computational Paradigm

The foundations for the discipline of quantum mechanics were laid in the 1920s 

and 1930s.  Until the 1970s however, the major applicative concern of this subject was 

the description of systems over which little control over individual constituents could be 

exercised.   Superconductors  for  example,  while  admitting  of  a  quantum  mechanical 

description in excellent agreement with experiment, are generally manipulated as a bulk 

sample  composed of  a  huge  number  of  individual  atoms.   Even particle  accelerators 

exercise only a restricted degree of control over the individual particles involved.

Since then, breakthroughs in experimental techniques have provided the means to 

exercise very precise control over individual systems.  For example, experiments have 

demonstrated that atoms trapped in a superconducting cavity [3] or ions in a linear radio-

3 This statement remains true despite the success of the empirical Moore’s Law in describing the fact that 
the peak fabricable number of transistors per integrated circuit doubles every 18 – 24 months without a 
corresponding increase in unit cost.  The increased number of floating-point operations per second this 
enables only reduces by a constant factor the overall computational time required for a Turing machine to 
achieve a solution to a particular problem.  But the inherent mode of computation involved remains Turing, 
and as such, an inefficient algorithm remains inefficient.
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frequency trap  [4]  can be manipulated  by photons  to  achieve  the  fine  manipulations 

necessary to construct quantum computational hardware.

Concurrent  with these experimental  developments,  several  researchers  laid the 

theoretical  groundwork for quantum computation.  This process was slow at first, but 

gained impetus as the importance of potential quantum computational applications was 

realized.

Paul Benioff was the first to discuss the possibility of computation with quantum 

mechanical  hardware [5].   Envisioning a  grid of spin-1/2 particles,  he described how 

these could be made to simulate classical logical gates, and more generally, realize the 

function of  a  Turing machine.   Relative  to later  developments  in  the  field,  the mere 

simulation  of  a  Turing  machine  is  a  rather  restricted  goal.   However,  prior  to  the 

publication of Benioff’s paper, some uncertainty existed as to whether the Heisenberg 

uncertainty principle would induce fluctuations that would make any computer based on 

quantum mechanical principles even less capable than a Turing machine.  Benioff’s work 

not  only  definitively  dispelled  this  concern,  but  also  inspired  others  to  think  about 

quantum mechanics computationally.

The next step was taken by Richard Feynman, a key figure in the development of 

quantum electrodynamics.  He noted that certain aspects of the dynamical evolution of 

quantum  mechanical  systems  could  not  be  simulated  on  a  Turing  machine  without 

exponentially slower performance [6].  From this observation, he logically surmised that 

a simulation of a quantum mechanical system on a machine operating under inherently 

quantum mechanical principles would not run appreciably slower than the actual system 

being simulated.   Feynman’s  goal  was  merely the  abstract  description of  a  universal 
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quantum simulator; however, it was later shown that this is fundamentally equivalent to 

the universal quantum computer4 described by David Deutsch in 1985.

Deutsch’s  contribution  originated  from  his  consideration  of  the  intimate 

connection between the process of computation and the physical basis upon which this 

process is implemented.  Given that quantum mechanics is more general than classical 

mechanics, Deutsch reasoned by analogy that quantum computation may be more general 

– and hence may involve greater capabilities – than the classical Turing computational 

model.  As will be described in detail in the next chapter,  he noted that the uniquely 

quantum mechanical properties of superposition and entanglement provide computational 

resources  not  accessible  within  the  Turing  machine  paradigm.   These  properties, 

combined  with  the  ability  to  simulate  a  Turing  machine  on  a  quantum  computer, 

suggested  to  him  that  quantum  computation  is  a  superset  of  classical  computation. 

Deutsch laid out these considerations in his description of a universal quantum computer 

[7].  Among its capabilities,  such a computer is capable of fully realizing Feymann’s 

universal quantum simulator.

Despite the groundbreaking nature of this work, no applications of recognizable 

practical interest presenting a great improvement over their classical counterparts were 

immediately forthcoming.  Deutsch supplemented his description of a universal quantum 

computer  with  a  relatively  simple  example  consisting  of  a  way to  determine  in  one 

function  evaluation  what  would  take  a  Turing  machine  two  function  evaluations  to 

accomplish.  A classical computer must evaluate both possible input combinations of a 

4 A “universal computer” is a machine capable of computing all problems that are computable.  A Turing 
machine is a universal computer, despite the fact that it cannot compute all computable problems 
efficiently.  What is fundamental to the definition of “universal” is that a solution can be computed given 
an arbitrarily large timeframe and other resources such as memory.
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single bit binary function in order to determine if the function is constant or balanced5.  A 

quantum computer on the other hand can make this determination with a single function 

evaluation.   This  increased  efficiency  becomes  even  more  pronounced  when  a 

generalization is made to a binary function with a multiple bit domain.  If we know in 

advance that the function is either constant or balanced, a maximum of 1
2

+N
 function 

evaluations must be made classically in order to make this determination, where N is 

number of possible input combinations.  A more generalized version of this algorithm, 

first described by Richard Jozsa in collaboration with David Deutsch [8] and known as 

the  Deutsch-Jozsa  algorithm,  can  make  this  determination  within  O(log N)  steps. 

Therefore,  a  substantive  difference  in  computational  complexity  exists  between  the 

classical and quantum versions of this algorithm.

A major breakthrough came in 1994 with Peter Shor’s publication of an algorithm 

for a  quantum computer  capable of efficiently  reducing large numbers to  their  prime 

factors [9].  The longstanding failure to provide an efficient classical algorithm capable of 

performing  this  task  provided  cryptographers  a  seemingly  good  reason  to  use  the 

difficulty  of  factoring  large  numbers  as  a  basis  for  a  popular  cryptosystem  used  to 

guarantee  the  privacy  of  sensitive  communication  channels.   Another  important 

development emerged with Lov Grover’s publication of a quantum algorithm capable of 

searching for a specified element within an unstructured search space with a quadratic 

decrease in computational complexity over the fastest known classical algorithm [10]. 

The  quantum  algorithm  for  random  walk  graph  traversal  [11]  likewise  provides  an 

improvement in computational complexity over its fastest classical counterpart.
5 A balanced function’s range consists of two values, both of which appear with equal frequency.
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1.3 The Current Status of the Discipline

Despite  the  promise  held  by  Shor’s  factoring  algorithm  and  others,  certain 

difficulties still overshadow the entire field of quantum computation.  For example, the 

development of new quantum algorithms capable of solving problems of practical interest 

is  non-intuitive  and hence  difficult  for  the  human accustomed to  classical  modes  of 

thinking.  Indeed, the range of possible quantum algorithms capable of improving the 

computational complexity of a given problem with respect to the fastest known classical 

algorithm is still undefined.  In consequence, one cannot determine if the rarity of known 

quantum algorithms is simply due to their non-intuitive nature or the potential ontological 

reality that few such algorithms are possible.  Given that no known automated procedure 

exists to generate quantum algorithms, only human creativity will in time tell us whether 

a large set of as yet unknown such algorithms in fact exists.

Moreover,  attempts  at  practical  realizations  of  quantum  computing  hardware 

quickly  run  into  the  problem  of  decoherence.   Throughout  the  entire  process  of 

performing such a computation, the system must be guarded against being influenced by 

unwanted interactions with its surroundings lest the quantum states involved collapse or 

become entangled with external  entities  thereby destroying  the meaningfulness  of the 

results obtained.  Currently, the engineering challenges associated with creating quantum 

networks satisfying this criterion prevent quantum computers containing more than a few 

gates from being built.  For example, the capability of a very simple quantum computer to 

factor  the number 15 using Shor’s  algorithm has been demonstrated [12].   However, 

successful  techniques  to  overcome  decoherence  must  first  be  established  before  the 
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ability  to  efficiently  factor  numbers  large  enough  to  threaten  the  security  of  some 

currently popular cryptosystems could emerge.

Nevertheless, the enticing possibilities that practical quantum computation offers 

are sufficient reason to investigate the potentialities of this nascent discipline and seek 

solutions  to  the  variety  of  challenges  that  researchers  must  face.   The  potential  for 

efficient computation of classically inefficient algorithms would not only be beneficial to 

the  advancement  of  theoretical  computer  science,  but  may  also  produce  economic 

benefits.  For example, Lov Grover’s quantum search algorithm could be implemented as 

a means to achieve substantial reductions in the time required to query a database.  More 

generally, some portion of the global economic successes and productivity increases over 

the past few decades can arguably be attributed to the dramatic increase in the power and 

speed of computation coupled with a corresponding reduction in its cost as described by 

“Moore’s Law”.  

However,  as  the  size  of  integrated  circuit  components  continues  to  decrease, 

eventually  quantum  effects  will  become  unavoidable.   To  avoid  these  non-classical 

effects,  such as electron tunneling, one must either ensure that all  circuit components 

remain above a  certain  minimum size or  develop new computational  technology that 

employs these effects as a crucial aspect of its functionality6.  Although the designers of 

classical integrated circuits can continue to achieve refinements for some time, only the 

second approach promises substantial improvements over current computing technology. 

6 Certain non-classical computational platforms which merely emulate a Turing machine have been 
proposed and investigated to varying degrees.  For example, single electron transistor and “quantum dot” 
technology offer the potential to construct nanoscale components which replicate the functionality of their 
classical counterparts.  Despite quantum effects being vital to their intended operation, they do not provide 
any new computational resources.   These technologies will not be considered further in this thesis.
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Correspondingly,  it  is  this  approach  which  offers  the  greatest  promise  for  spin-off 

economic benefits in the long term.

In light of this motivation to investigate the promise of quantum computation, I 

believe that it is worthwhile to study the behavior of quantum algorithms in the context of 

higher-order quantum logic.  Just as it is possible to study non-binary modes of classical 

computation that employ, for example, ternary or quaternary logic, so also is it possible to 

study quantum computation in the context of equivalent higher-order forms of quantum 

logic.   In  particular,  this  thesis  will  develop  a  generalization  of  the  Deutsch-Jozsa 

algorithm in the context of arbitrary order quantum logic and investigate its properties 

towards the goal of determining those behavioral characteristics  that may yield future 

practical application.
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Chapter 2 – Quantum Computation and the Deutsch-Jozsa 
Algorithm

2.1 Introduction to Quantum Information Theory

Within the context of computation, the basic classical unit of information is the 

bit.   Regardless  of  whether  a  bit  is  physically  realized  by  voltage  levels  across  a 

transistor, the on and off states of a vacuum tube or by some other means, only two bit 

states are possible.  Moreover, every bit intrinsically constitutes a complete state in and of 

itself.  Bits may be stored in a memory unit or register for future use or to make a datum 

available for logical or arithmetical manipulation.  Clearly, a N bit register can only hold 

one quantity generated from the combination of the individual states of all N bits at any 

one time.  For example, a byte is uniquely represented by the sequence of the eight bit 

states of which it consists.

Quantum computation, on the other hand, offers the two additional properties of 

superposition and  entanglement that  are  unavailable  within  the  classical  paradigm. 

Together,  these  two  computational  resources  provide  the  potential  for  a  quantum 

computer to outperform any Turing machine in certain circumstances.  To illustrate the 

differences between classical and quantum computation, it is first necessary to define the 

basic unit of quantum information, the qubit. 

Like  the  bit,  the  qubit  is  an  abstract  information  unit  that  has  no  ontological 

connection  to  any  one  method  of  physical  realization7.   The  qubit  exists  in  a  two 

7 To clarify, all information, whether classical or quantum, must possess some physical representation. 
However, the precise means by which this information is represented does not affect its “message”.  Hence 
the qubit, as an abstract unit of quantum information, can be physically realized by several different means, 
yet each method gives the qubit the same ability to express the same range of information.
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dimensional complex linear vector space8 and may be defined by the selection of two 

orthogonal states, denoted 0  and 1 , which together form the computational basis.  If 

an arbitrary qubit ψ  is expanded across this basis, the result may be written as 







=+=

β
α

βαψ 10 ,                 (2.1)

where  .122 =+ βα  The  quantities  2α  and  2β  give  the  probabilities  that  a 

measurement of ψ  will yield 0  or 1  respectively.  In certain instances, it may prove 

convenient to parameterize ψ  by introducing θ  and δ  to give

















=+=

2
sin

2
cos

1
2

sin0
2

cos θ

θ
θθψ

δ

δ

i

i

e
e ,     (2.2)

where πθ ≤≤0   and πδ 20 <≤ .  As no physical significance is attached to the overall 

phase of ψ , one variable has been eliminated from this expression by requiring the 0  

coefficient  to  be real.   One can now introduce  P,  termed the polarization  vector9,  to 

elucidate further upon the physical meaning of the qubit.  This vector is defined by the 

expectation values of the Pauli matrices xσ , yσ  and zσ  taken with respect to ψ .  For 

example, 

8 For the purposes of quantum computation, the vector spaces in which all quantum information units exist 
are always dimensionally finite, not nondenumerably infinite Hilbert spaces, as are those required to 
describe the position or momentum of a free particle.

9 The use of the term “polarization” here does not necessarily imply any physical actualization of this 
system in the context of polarized photons.  Historically speaking, however, this discussion was first 
formulated in that context, hence the name.
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 Likewise, 

δθ sinsin=yP ,     (2.4)

θcos=zP .      (2.5)

These three components are easily recognized as the parameterization of a unit sphere in 

spherical coordinates, where θ  is the polar angle between P and the z axis and δ  is the 

azimuthal angle measured from the x axis.  Therefore, the state of an arbitrary qubit can 

be conceptualized as a point on the surface of a unit sphere, which is given the special 

designation Bloch sphere in the context of quantum computation.  Consider the special 

case  0=δ  and  0=θ .  In this scenario,  1;0 === zyx PPP , corresponding to the state 

0 .  Likewise, 0=δ  and πθ =  yields 1;0 −=== zyx PPP , corresponding to the state 

1 .  These two states are analogous to the only two possible states a classical bit may 

assume.  In contrast, a qubit may exist in any one of the infinite states that correspond to 

points on the surface of the Bloch sphere10.  These states, with the exception of the two 

special cases already noted, are known as superpositions.

10 It should be emphasized, however, that the measurement of a qubit will yield only 0  or 1  according 

to their associated probability distributions relative to the axis of measurement.  The parameters θ  and δ
can only be precisely determined by conducting an identical measurement procedure on an ensemble of 
infinitely many identically prepared systems.
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All  of  the  possible  qubit  states  discussed thus far  are  known as  pure  states11. 

Although a measurement of an arbitrary qubit ψ  will yield 0  with probability 
2

cos2 θ
 

and 1  with probability 
2

sin 2 θ
, one can always rotate the entire axis of measurement to 

obtain either outcome with certainty.  In contrast, a measurement of a mixed state cannot 

obtain any single outcome with certainty regardless of the orientation of the measurement 

apparatus.  As its name implies, a mixed state is a combination of at least two differently 

prepared pure states.  Even if the measurement apparatus should happen to be aligned 

with  one  of  the  pure  states  of  which  a  mixed  state  is  composed,  the  probability  of 

obtaining that pure state as a measurement outcome is equal to the fractional proportion 

of that state within the mixed state.

A storage unit containing N qubits is called a quantum register of size N.  If the 

state of each qubit in this register is in a superposition, the register encompasses a total of 

2N states.  For example, given two qubits in the state 

( )10
2

1 + ,     (2.6) 

a quantum register that contains those two qubits encompasses the four states described 

by the superposition 

( ) ( ) ( )

( ) .11100100
2
1

11011000
2
110

2
110

2
1

+++=

⊗+⊗+⊗+⊗=+⊗+
      (2.7) 

11 A pure state is usually defined as an ensemble of identically prepared systems.  However, in light of the 
precise control over individual systems that the physical realization of quantum computation necessitates, 
this definition will be extended to include the states of singly prepared systems, such as a single atom in a 
linear ion trap.
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Should such a register serve as an input source to some quantum logic gate, its operation 

is  simultaneously  performed  upon  all  states.   Classically,  this  effect  could  only  be 

accomplished  through  the  execution  of  2N separate  operations.   Hence,  quantum 

algorithms  that  make  advantageous  use  of  this  property  can  transform  an  O(2N) 

algorithm  into  an  O(N)  one12.   Some  classically  inefficient  problems  may  become 

practicably solvable using a quantum computational approach.

If each qubit in a quantum register of size N exists in vector space Vi,  where 

Ni ≤≤1 ,  then  the  entire  system  held  by  that  register  exists  in  vector  space 

NVVVV ⊗⊗⊗= 21 .  Assuming that each qubit in the register constitutes a complete 

state in and of itself,  a property shared by all  classical bits, then the register may be 

represented as 

NN ψψψψψψψψψ ...... 321321 =⊗⊗⊗⊗= ,     (2.8)

where each element { }1,0∈iψ  and }{ 1,0∈iψ .  As natural as this representation may 

seem however, it is not the most general expression of an arbitrary N qubit register.  That 

expression is given by 

∑ ⊗⊗⊗=
N

kji
ijk kjic

,...,,
... ψ ,     (2.9)

where cijk ∈ R and ∑ =
N

kji
ijkc

,...,,

2

... 1.

To take an example, assume that 

12 The notation O(x) refers to the computational complexity of a particular problem.  O(N) refers to the 
computational time required by the algorithm increasingly linearly with the size N of the input.  O(kN), 
where k is some constant, refers to the computational time increasing exponentially with the size of the 
input.
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( )1001
2

1 +=ψ .   (2.10)

Unlike an expression such as 

( ) ( ) 110
2

11101
2

1 ⊗+=+=φ ,   (2.11)

(2.10) cannot be written as a tensor product.  In this instance, the two qubits constituting 

ψ  do not form a product of two self-contained states, but a single joint state, termed an 

entangled state.  This entangled state exists in vector space V, which cannot be reduced to 

a product of vector subspaces.

In general,  entanglement  is  a  characteristic  associated with any state  ψ  that 

cannot  be  reduced  to  a  simple  tensor  product.   This  uniquely  quantum  mechanical 

property,  while offering potential resources unavailable within the classical computing 

paradigm,  is  also partly  responsible  for  the non-intuitive  nature  of  the  subject.   In  a 

seminal  paper13 describing  how  the  fundamental  principles  of  quantum  mechanics 

necessitate  the  existence  of  entangled  states,  Albert  Einstein  and his  two co-authors, 

Boris  Podolsky  and  Nathan  Rosen,  argued  that  this  fact  exposes  a  fundamental 

incompleteness14 in  the  formulation  of  quantum  mechanics  itself.   They  based  their 

argument on the supposition that the reality of entanglement would violate the intuitive 

notion of locality15.  As they demonstrated in their paper, a measurement conducted upon 
13 Henceforth “EPR” will denote all references to this paper and the argument it sets forth.

14 Contrary to a common misconception, nowhere does EPR challenge the correctness of quantum 
mechanics.  A theory may be correct in the sense that its predictions exhibit no contradiction with the 
results of appropriate measurements, but is incomplete in that it fails to describe all the elements of reality 
present within the system being studied.  For example, statistical thermodynamics is a correct theory, but is 
incomplete because it is ignorant of the states of the individual atoms or molecules present within the 
system of interest.

15 Locality refers to the property that all interactions occurring within a system propagate via forces or 
signals that travel at luminal or sub-luminal speeds.  David Bohm and others have constructed nonlocal 
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one  member  of  a  widely  separated  pair  of  entangled  particles  would,  under  the 

assumption of locality, lead to a contradiction.  However, Niels Bohr and others have 

responded by questioning their assumption of locality.

2.2 Introduction to Quantum Computational Theory

As carriers of information, qubits, like classical bits, must be manipulated in order 

to obtain useful computational results.  To accomplish this goal, various quantum logic 

gates have been developed which may be linked to form a topological network.  Each 

gate performs a specified unitary operation on a set of input qubits within a fixed period 

of time [13], a transformation that may be denoted as 

ψψ U=' ,   (2.12)

where  U is  some unitary  operator16.   From this  relationship,  it  follows  that  quantum 

computation  must  be  reversible,  a  constraint  which  restricts  the  range  of  possible 

quantum computational gates.  For example, a classical two input AND logic gate maps 

three  of  its  four  possible  input  state  combinations  to  the  logical  output  0.   This 

irretrievable loss of information about the gate’s input state means that a classical AND 

gate has no direct quantum computational equivalent17.

The simplest class of quantum gates act on a single qubit.  Quantum gates in this 

category may be conceptually visualized as rotating a qubit relative to the Bloch sphere. 

Of these gates, the simplest is the no-op (no operation), equivalent in function to an ideal 

interpretations of quantum theory which explicitly deny this presupposition.
 
16 Any function U that satisfies the property IUU t =− 1 , where Ut is the Hermitian conjugate of U, is 
unitary. 

17 Despite the lack of any direct quantum computational analogue, the logical AND function can be realized 
as a subset of the quantum Toffoli gate’s functionality.
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wire18.  It is represented by the identity matrix.  The single qubit NOT gate, equivalent to 

the Pauli matrix 







=

01
10

xσ ,   (2.13) 

interchanges the qubit’s 0  and 1  components.  Unlike these gates, the Hadamard gate 

lacks any classical  analogue as its  function is  to convert  a  qubit  into a superposition 

according to the rule

( )( )xxx x −+−→ 11
2

1
,   (2.14)

which may be represented in matrix form (within the basis }{ 1,0 ) as 







−

=
11

11
2

1H .   (2.15)

The phase-shift  gate provides another useful  single qubit network building block.  Its 

most general form is represented as







2

1

0
0

2
1

φ

φ

i

i

e
e

,   (2.16)

where 1φ  and 2φ  are phase-shift angles.  As an example, if 
21
πφ =  and 02 =φ , the matrix 

becomes







10
0

2
1 i

.   (2.17)

18 A “wire” refers to any process by which qubits are transferred unchanged from one stage of the network 
to another. Included here are teleportation of the qubit’s state or some form of intermediary storage and 
transport mechanism, which may involve a significant time delay.
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This operation, also known as the S gate, applies a phase shift of i to any input 0 , but 

leaves 1  unaffected.  Likewise, one can define a T gate as follows:







−

−
i0

01
2

1
.   (2.18)

Another commonly encountered gate is the rotation gate.  It takes the general form







− θθ

θθ
cossin
sincos

,              (2.19)

where θ  is the rotation angle.  One particularly useful special case is the L gate, obtained 

by taking 
4
πθ −= , is represented by the matrix






 −
11
11

2
1

.   (2.20)

Its counterpart, the R gate, is obtained by taking 
4
πθ = , leading to 







− 11

11
2

1
.   (2.21)

Just  as  a  special  quantum  gate,  like  the  Hadamard  gate,  is  required  to  take 

advantage of the potential to create superpositions, one needs another uniquely quantum 

gate to generate entangled states.  Clearly such a gate must receive at least two qubits as 

input.   Although  many such  “entangling  gates”  are  conceivable,  the  controlled  NOT 

(CNOT) gate is most commonly encountered.  One of its inputs serves as a ‘trigger’ such 

that the state of the other input qubit is flipped if the trigger assumes a certain value, 
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typically 1 .  Otherwise no operation is performed.  The two input CNOT gate triggered 

on the first qubit may be represented as

baaba ⊕→ ,, ,   (2.22)

where ba ⊕  is the exclusive-or (XOR) operation.  In matrix form, this becomes



















0100
1000
0010
0001

.   (2.23)

See Figure 2.1 for the standard symbols used to represent these gates schematically in 

quantum network layouts.

Figure 2.1:  Schematic representations of some common quantum gates.

For more comprehensive and in-depth coverage of these and other issues related 

to quantum information and computation, various texts are available focusing on both 

theoretical and experimental aspects.  Nielsen and Chuang [14] is quite comprehensive 

and is widely considered a standard introduction to the discipline.  Other texts include 

Berman, Doolen, Mainieri and Tsifrinovich [15] as well as Lo, Popescu and Spiller [16] 

and Benenti, Casati and Strini [17].  
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2.3     Generalization to Higher-Order Logic

As the discipline of classical computation science matured, widespread agreement 

was  achieved  to  standardize  the  representation  of  data  in  binary  form.   Given  the 

inherently dual state  nature of vacuum tubes and transistors,  this choice  was perhaps 

inevitable in retrospect. However, considerable experimentation with tri-state logic and 

other alternative means of representing data occurred throughout the nascent stage of the 

discipline.   While  these  efforts  largely  remain  a  historical  footnote  in  the  history of 

classical computational science, they may offer a useful lesson for the future development 

of  quantum computational  hardware.   As noted in  the  previous  chapter,  a  variety  of 

physical realizations of quantum computational technology have been proposed, not all of 

which intrinsically favour the quantum computational equivalent of binary logic.  For 

example, an atom capable of being reliably energized to each of two excited states on 

demand offers, along with its ground state, the physical basis for representing a tri-state 

quantum bit, known as a qutrit19.  As no wide agreement yet exists on what physical basis 

would most practicably and economically serve as a platform for quantum computation, it 

is worthwhile to investigate how quantum computation in general, and specific quantum 

algorithms in particular, behave in the context of higher-order quantum logic.

The basic quantum unit of information, or qudit, of an arbitrary logical order M 

exists in a vector space consisting of M orthogonal elements20, denoted collectively as 

{ }1,,2,1,0 −M .  Any number of these elements may exist in a superposition: 

19 A four-state quantum bit is referred to as a ququad.  A five-state quantum bit is a ququint, a six-state 
quantum bit is a qusext, a seven-state quantum bit is a qusept, and an eight-state quantum bit is a quoct.  A 
generalized quantum bit is referred to as a qudit when no specific logical state is implied.

20 Although one could mathematically describe a generalized higher dimensional analogue to the Bloch 
sphere described above, little conceptual advantage could be gained from such an exercise. 
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

















=+++




γ
β
α

γβα 210 ,   (2.24)

where  1222 =+++ γβα .  A register can be used to store an arbitrary number of 

qudits.  The description of such a register is identical to the special qubit case, except that 

now  each  element  { }1,,2,1,0 −∈ Mxi  ,  where  }{ 1,,2,1,0 −∈ Mxi  .   If  a 

register holds N qudits of logical type M, then that register can contain up to MN
  unique 

states.  For example, a register containing N qutrits holds up to 3N different states.

The  logical  gates  required  to  manipulate  qubits  may  be  generalized  to 

accommodate higher-order qudits.  For example, the Hadamard gate generalizes to 

























=

−

−−−−−

−−−−−

−−−−−

)1(32

)3)(1()3(3)3(2)3(

)2)(1()2(3)2(2)2(

)1)(1()1(3)1(2)1(

1

1
1
1

11111

1

M

MMMMM

MMMMM

MMMMM

M
H

σσσσ

σσσσ
σσσσ
σσσσ









,   (2.25) 

where  M
i

e
π

σ
2

= and M is  the  logical  order  [18].   Given that  12 =πie ,  (2.25)  may be 

simplified to the symmetric form

























=

−−

−−

−−

−−

)1()2(2

36)3(2)3(

24)2(2)2(

2)1(2)1(

1

1
1
1

11111

1

MM

MM

MM

MM

M
H

σσσσ

σσσσ
σσσσ
σσσσ









.   (2.26)
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The CNOT gate may also be generalized to arbitrary qudits.  In this instance however, the 

generalized CNOT can no longer be said to perform the function of controlled negation. 

Rather, the generalized CNOT becomes a controlled-summation gate, modulo M.

2.4      Deutsch Algorithm

As mentioned in the introductory chapter, one of the earliest proposed quantum 

algorithms  was  the  Deutsch  algorithm  for  determining  in  one  evaluation  whether  a 

function is constant or balanced.  The quantum network that implements21 this algorithm, 

shown in Figure 2.2, takes two inputs, 0  and 1 , respectively.  Each input is separately 

subjected to a Hadamard operation, resulting in the overall system state 

( ) ( )[ ] ( ) ( )[ ]101100
2
11010

2
110 −⊗+−⊗=−⊗+=⊗ HH . (2.27)

Figure 2.2: A schematic diagram of a quantum network that implements Deutsch’s 

algorithm.

Operator Uf  performs the exclusive-OR transformation,

)(,, xfyxyx ⊕→ ,    (2.28)

where  f(x)  is  a  definable  function  with  a  purely  binary  mapping,  { } { }1,01,0: →f . 

Depending upon how f(0) and f(1) are defined, this gives four possible combinations, two 

21 Throughout the remainder of this chapter, the discussion will presuppose quantum binary logic and the 
use of qubits to represent data.
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of which are constant ( ))1()0( ff =  and two of which are balanced ( ))1()0( ff = .  Given 

that ( ) yxfy ==⊕ 0)(  and ( ) yxfy ==⊕ 1)( , four possible outcomes result from 

the operation ( )10 HHU f ⊗ :

(a) 0)1()0( == ff ( ) ( )( )101100
2
1 −⊗+−⊗ ,

(b) 1)1()0( == ff ( ) ( )( )101100
2
1 −⊗+−⊗− ,

(c) 1)1(,0)0( == ff ( ) ( )( )101100
2
1 −⊗−−⊗ ,

(d) 0)1(,1)0( == ff ( ) ( )( )101100
2
1 −⊗−−⊗− .

These four outcomes can be summarized as follows: 

( ) ( )
{ }

∑
=






 −
⊗−=⊗

1,0

)(

2

10
1

2
110

x

xf
f xHHU .   (2.29)

Of these four possible outcomes, (a) differs from (b), as does (c) from (d), only by a 

measurably indistinguishable global phase factor.  Therefore only two unique outcomes 

exist.  Applying the final Hadamard gate to x  yields the final state 

( ) ( ) ( ) ( )[ ] 




 −
⊗−−++−

2

10
101101

2
1 )1()0( ff .   (2.30)

If a measurement is taken at the output corresponding to the x input, four possibilities 

must again be considered:

(a) 00)1()0( ⇒== ff ,

(b) 01)1()0( −⇒== ff ,
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(c) 11)1(,0)0( ⇒== ff ,

(d) 10)1(,1)0( −⇒== ff .

A single measurement, therefore, will yield 0  if function f(x) is constant and 1  if it is 

balanced.  

2.5      Deutsch-Jozsa Algorithm

Following  the  publication  of  Deutsch’s  description  of  the  aforementioned 

algorithm, Richard Jozsa explained how it could be generalized to an arbitrary number N 

of qubits [8].  His proposed generalization is schematically outlined in Figure 2.3 [19].

Figure 2.3: A schematic diagram of a quantum network that implements the Deutsch-

Jozsa algorithm.  The N – 1 inputs collectively denoted x  are all set to 0  and the final 

input y  is set to 1 .  The final state ψ  represents the state of a subset of the system 

immediately prior to its being measured.

24



As before,  a Hadamard operation acts  upon each input  prior  to the evaluation of the 

function.  The overall action of N simultaneous Hadamard operations shall be denoted as 

HHHH N ⊗⊗⊗=⊗  .   (2.31)

These operations, applied to the input state 10 1 ⊗−⊗ N , yield the state

∑
−

=
−

−






 −
⊗

12

0
1

1

2

10

2

1 N

x
N

x .   (2.32)

Operator Uf  produces the same exclusive-OR transformation 

)(,, xfyxyx ⊕→ ,   (2.33)

encountered previously, except that f(x) now maps 

{ } { }1,01,0: →Nf .   (2.34)

Application of Uf  yields 

( ) ( )∑
−

=
−

⊗
−






 −
⊗−=⊗

12

0

)(

1

1

2

10
1

2

110
N

x

xf

N

NN
f xHU .   (2.35)

The final set of Hadamard operations yields

( )
∑ ∑

−

=

−

=
−

+⋅− −






 −
⊗

−12

0

12

0
1

)(1 1

2

10
2

1N N

z x
N

xfzx z
.    (2.36)

Assuming that one knows in advance that function f(x) is either constant or balanced, a 

single sequence of measurements to determine ψ  will again yield this information.
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Chapter 3 – Deutsch’s Algorithm and the Deutsch-Jozsa 
Algorithm Generalized to Arbitrary Qudits

3.1 Motivation

As  an  emerging  discipline,  quantum  computing  offers  the  investigator  many 

exciting prospects for further development.  If one attempts to glean from the history of 

classical  computational  science  possible  historical  parallels  relevant  to  the  future 

direction that quantum computing may take, two points become evident.  Not only were 

several decades, the attention of many participants and a considerable process of trial and 

error  required  for  the  discipline  to  attain  a  solid  theoretical  foundation,  but  also  the 

sundry breakthroughs and advances that ultimately shaped the field could not have been 

predicted by the early investigators.   Given the lack of predictability inherent  in  any 

nascent  discipline,  it  is  worthwhile  to  investigate  many different  avenues of  possible 

future development with the intention of giving others the data they will need to give 

greater fixity to their thinking regarding which approaches will most satisfactorily reach 

the desired goals.

One  such  promising  avenue  of  future  development  involves  extending  the 

description of already known quantum algorithms to qudits of an arbitrary logical order. 

Given the ubiquitous nature of binary data processing in classical computational science, 

it is not surprising that a strong favoritism exists towards the formulation of quantum 

algorithms  within  the  context  of  binary  quantum logic,  using  qubits  as  the  quantum 

information carriers.  As previously noted however, there presently exists an ambiguity as 

to how quantum computation would be most practically and economically realized.  With 
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certain physical systems being naturally suited to higher-order logic, one cannot discount 

the  possibility  that  higher-order  quantum  logic  will  ultimately  play  a  much  more 

significant role than its classical counterpart does.  With these considerations in mind, it 

is evidently worthwhile to explore how known quantum algorithms would behave in the 

context of higher-order logic.  Moreover, it is possible that the higher-order analogues of 

known quantum algorithms will solve certain classes of problems even more efficiently 

than can their counterparts formulated only in terms of quantum binary logic.

3.2 General Approach

To determine the characteristics of Deutsch’s algorithm and the Deutsch-Jozsa 

algorithm22 in the context of higher-order logic, I chose to implement a quantum network 

level  simulation  of  these  algorithms  using  the  programming  language  GNU  Octave, 

version 2.1.42,  generously provided free of charge by the GNU Foundation from the 

website  www.octave.org.   To  validate  the  results  obtained  thereby,  I  derived  a 

generalized version of Equation 2.35 that holds for arbitrary qudits and wrote a short 

function in Octave to compute it.  Using these two parallel methods, I obtained a set of 

data from which I sought general patterns regarding the behavior of these algorithms in 

the context of higher-order logic, paying special attention to those which may have future 

practical quantum computational applications.

In  the  course  of  this  work,  I  assumed that  all  quantum logic  gates  and other 

network  elements  are  ideal  and  that  the  surrounding  environment  introduces  no 

undesirable interactions with respect to the system of interest.

22 As Deutsch’s algorithm can be viewed as simply a special case of the Deutsch-Jozsa algorithm, only the 
latter term will be used henceforth except when the former is explicitly intended.
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3.3 Quantum Network Simulation of the Generalized Deutsch-Jozsa Algorithm

For arbitrary qudits, the Deutsch-Jozsa algorithm can continue to be represented 

by the same schematic shown in Figure 2.3, except that now the range of possible inputs 

is { }1,,1,0 −M  where M is the logical order.  To simulate this quantum system, I 

chose to represent the entire system as a matrix describing the overall tensor product of 

all elements in the quantum network at a particular stage in the computation.  Beginning 

from a column vector representing the tensor product of all input states, these quantum 

data  are  acted upon by a  series  of  successive  transformations  representing the initial 

series of Hadamard operations, followed by the application of the operator  Uf and the 

final series of Hadamard transformations.  Additional details and a worked out example 

of this process are included in Appendix 1.  Source code for the quantum simulator is 

included in Appendix 3.

3.4 Mathematical Analysis of the Generalized Deutsch-Jozsa Algorithm 

To  complement  the  simulation  of  a  quantum  network  implementing  the 

generalized Deutsch-Jozsa algorithm, it is desirable to derive a mathematical expression 

from which one can obtain identical results for arbitrary qudits.  

To  begin  with,  it  was  necessary  for  me  to  examine  the  behaviour  of  the  N 

simultaneous Hadamard operations  HHHH N ⊗⊗⊗=⊗   in the context of arbitrary 

qudits.  From (2.25), one can see that for qutrits, the action of the Hadamard gate on the 

states 0 , 1  and 2 , respectively, yields

( )210
3

10 ++=H ,     (3.1)
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These transformations can be summarized by the expression
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.     (3.2)

One can easily confirm by using (2.25) that (3.2) generalizes to
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for  higher-order  qudits.   The  overall  action  of  two  Hadamard  gates  applied 

simultaneously (as in Figure 2.2) can be expressed as
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Upon working through the tensor product, this expression can be reduced to

( )
21

1

0,

22

21

22111 zze
M

xHH
M

zz

zxzx
M
i

∑
−

=

+−

=⊗
π

.     (3.5)

In general,
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where

NN zxzxzxzx +++=⋅ 2211 .     (3.7)

To  simplify  the  notation,  I  will  write  zzzz N =21  and  zzzz N =,,, 21   in 

subsequent equations.
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Without in any way diminishing the utility of the Deutsch-Jozsa algorithm23, the 

simplifying assumption that x  shown in Figure 2.3 are set to 0  and 1−= My  will 

be made.  Accordingly, (3.6) becomes
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The effect of the transformation  Uf:  )(,, xfyxyx ⊕→  on (3.6) can now be 

derived.   To  begin  with  an  example,  assume  that  the  function  f(x)  is  defined  as 

1)2(;0)1(;0)0( === fff   for M = 3 and N = 2.  Under these circumstances,
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Equation (3.9) can be simplified to
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Similarly, if 2)2(;0)1(;0)0( === fff , keeping M and N constant, then
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One can compute the effect that Uf has on the other combinations of f(0), f(1) and f(2) to 

arrive at the more general expression

23 This statement will justified in Section 3.5.
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Generalized to arbitrary numbers of qudits, (3.13) can be expressed in the more general 

form

  (3.14)
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No further transformations will be applied to  'y .  Moreover, only the output “lines” 

corresponding to the x  inputs will be measured.  Therefore, 'y  will not be considered 

further in this discussion in order to direct our focus to the final sequence of Hadamard 

transformations leading to ψ , the state upon a measurement will be taken, as depicted 

in Figure 3.1.  From (3.6), these transformations produce the overall effect
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resulting in
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where

111100 −−+++=⋅ NN zxzxzxzx  ,   (3.17)

and M is the logical order and N gives the number of inputs into the circuit implementing 

the Deutsch-Jozsa algorithm.  The state ψ  is directly measured, as shown in Figure 3.1.
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Figure 3.1: A schematic diagram of a quantum network that implements the generalized 

Deutsch-Jozsa algorithm.  The N – 1 inputs collectively denoted x  are all set to 0  and 

the final input y  is set to 1−M .  The final state ψ  represents the state of a subset of 

the system immediately prior to its being measured.  This network implements (3.16).

As a convenient way to compute (3.16) for multiple combinations of M, N and  f(x), I 

wrote a special function, DeutschEquation, the source code for which is in Appendix 3. 

The results  obtained thereby were identical with those computed using the simulation 

method.

3.5 Results

As a first test of both the simulator and the mathematical method, I confirmed that 

these two methods yield the same, well-documented, results for the qubit version of the 
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Deutsch-Jozsa algorithm.  For 0=x  and 1=y , these results are given in Appendix 

2 for both N = 2 and N = 3.  As is well known, if the function f(x) is promised to be either 

constant or balanced, a measurement of ψ  will, with probability one, yield 0  if N = 2, 

00  if N = 3 and so on.  On the other hand, each mapping of f(x) that yields a balanced 

condition will, with certainty, yield a specific measurement outcome other than what is 

obtained in the constant case for the same N.  If the function f(x) is neither constant nor 

balanced,  ψ  becomes a superposition of possible outcomes, hence one cannot obtain 

any particular outcome with certainty. 

I could not locate any discussion of the Deutsch-Jozsa algorithm in the literature 

for M > 2; therefore, I used my simulator and mathematical functions to confirm each 

other’s  output,  coupled  with  extensive  hand  calculations.   The  results  I  obtained  all 

mutually agreed and are presented in Appendix 2 for M = 3 (qutrits), N = 2, 0=x  and 

2=y  in their entirety.  For the same values of M and N, selected results are presented 

for 0=x , 1=y  and 1=x , 2=y .  Likewise, I have presented those results 

for M = 4 (ququads) and 5 (ququints) with N = 2 and 0=x ,  1−= My  that will 

help develop the interpretations to be discussed below.  I also did much experimentation 

with  N > 2  for  these  values  of  M,  but  I  have  not  included  most  of  these  results  in 

Appendix 2.  In the following discussion, it will be assumed that  0=x  for N = 2, 

00=x  for N = 3, etc. and 1−= My .  
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For all values of M and N, if f(x) is constant, 

0
)0(2 f

M
i

e
π

ψ
−

= ,   (3.18)

and a measurement will clearly yield  0 .  In contrast, the balanced case of the qubit 

Deutsch-Jozsa algorithm does not  generalize as easily.   Evidently,  if  M is odd, there 

cannot be a balanced case.  However, for M even, balanced combinations of  f(x) yield 

definite outcomes only in certain instances.  For example, a Deutsch-Jozsa circuit with N 

= 2 and M = 4 yields the definite outcome 2  only in the following four cases:

.1)3(;3)2(;1)1(;3)0(
,3)3(;1)2(;3)1(;1)0(
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====
====

====
====

ffff
ffff
ffff
ffff

  (3.19)

All other balanced combinations of  f(x) yield a superposition of potential measurement 

outcomes.

For N = 2, a more generally useful result is obtained if f(0) = 0, f(1) = 1, …, f(M – 

1) = M – 1.  In this instance, a measurement of  ψ  will yield  1−M  with certainty. 

This also holds true for any permutation of this mapping of f(x) within the schema

.2)1(;3)2(;0)1(;1)0(

,1)1(;0)2(;3)1(;2)0(
,0)1(;1)2(;2)1(;1)0(
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=−=−==
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MMfMMffMf
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MfMMfff







  (3.20)

For the reverse mapping, i.e. f(0) = M - 1, f(1) = M - 2, …, f(M – 2) = 1, f(M – 1) = 0 and 

its permutations
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the measurement result  1  is yielded with certainty.   Other combinations involving a 

one-to-one mapping of f(x) do not yield any definite outcome with probability one.

For N > 2, the considerations stated above concerning f(x) defined as a constant 

function apply without modification.  The special balanced cases mentioned above also 

generalize.  For example, if M = 4 and
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a  measurement  of  ψ  will  yield  02  with  certainty.   Precisely  the  same  result  is 

obtained for the following three mappings of function f(x), again with M = 4.
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In the above statements, if xN-1 is replaced by xi, where 11 −≤≤ Ni , as the determiner of 

the value of f(x), a definite measurement result will again be obtained, but it may not be 

02 .

One can also generalize the statement  made concerning the special  one-to-one 

mappings of f(x) for N = 2 to arbitrary N.  Given ),( 1321 −Nxxxxf   if as any xi varies 
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consecutively from 0 to M – 1, where { }1,,1,0 −= Ni  , the function itself varies in exact 

correspondence to that xi, then exactly one measurement outcome is guaranteed to occur 

with certainty.  In other words,

10,)( 1321 −≤≤=− Mxxxxxxf iiN  and 11 −≤≤ Ni .   (3.24)

Equation (3.24) can be further generalized according to the permutations described by 

(3.20) and (3.21).

Thus far, I have assumed that  0...0001321 =−Nxxxx   and  1−= My .  If 

these  parameters  are  adjusted,  no  new  potential  computational  resources  are  made 

available.  For yxxxx N ===== − 1321  , the same ψ  is obtained for all mappings of 

f(x) making this an undesirable combination of inputs.  I have included selected results in 

Appendix 2 for M = 3 (qutrits) and N = 2 with the input combinations 0=x ; 1=y  

and 1=x ; 2=y .  To summarize, the set of all outcomes previously obtained with 

certainty remains the same, except that the specific measurement outcome obtained may 

differ.  No mappings of f(x) which did not previously yield a definite outcome do so with 

these  alternative  inputs.   Hence,  the  assumption  that  00001321  =−Nxxxx  and 

1−= My  is justifiable in the sense that keeping these parameters constant will not 

cause the neglect of any potentially important results.
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Chapter 4: Conclusion

The results of my experimentation with the Deutsch-Jozsa algorithm laid out in 

Chapter  3  clearly  yield  promising  results  for  the  future  development  of  quantum 

computational science.  The direct generalization of the behaviour of the constant case in 

the qubit version of this algorithm to higher-order logic certainly bodes well for the utility 

of this algorithm.  Moreover, the ability of the generalized algorithm to yield a definitive, 

measurable result in certain instances (for N = 2) where f(x) is one-to-one implies that, 

for specific problems, one may be able to devise a test that will yield, with a single set of 

measurements, the answer to a question concerning whether f(x) is a one-to-one function 

or not.  Some of the other mappings of  f(x) that yield a single possible measurement 

outcome may have a less obvious practical utilization; however, any classes of problems 

that can be formulated in terms of these mappings of  f(x) will certainly be able to be 

solved much more efficiently given that only N – 1 measurements need be made after a 

single run of the Deutsch-Jozsa algorithm has occurred to arrive at the desired solution. 

Hence, the computational complexity of this algorithm is O(N-1), which is a dramatic 

improvement over the classical computational complexity of O(MN).  Even for relatively 

small values of M and N for which a classical solution can be obtained without a great 

deal of computational resources being required, the quantum approach may be viable if a 

large number of repeated function evaluations are necessary.

The challenge, of course, for anyone who desires to use this approach to compute 

some  problem  of  practical  or  theoretical  interest  is  to  relate  that  problem  to  some 

mapping of f(x) that yields a definite outcome upon measurement.  There is much room 
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for creative flexibility here; however, one especially promising such mapping involves 

the periodic definition of f(x) described by (3.24).  Such a mapping may prove congenial 

to those problems involving the discrete sampling of a periodic function, such as the 

result of a Fourier transform.  To give one simple example using the result described by 

(3.24), suppose that one has an unknown function f(x) within the context of N ququads 

(M = 4).   With  only N – 1 measurements,  one  can determine whether  that  function 

satisfies

30,)( 11121 ≤≤= −−− NNN xxxxxf  .       (4.1)

Hence,  one  can  easily  determine  if  this  function  possesses  this  form  of  periodicity. 

Classically, one may need to evaluate the function using every possible input to make this 

same determination.  Such a procedure would require up to 4N-1 function evaluations.

Clearly the methodologies presented in Chapter 3 do not exhaust the range of 

possible avenues of exploration concerning this topic.  One needs only to think of the 

questions that must be resolved prior to actual experiments implementing the generalized 

Deutsch-Jozsa algorithm can take place and what the results described above may imply 

within the context of other quantum algorithms to obtain a glimpse of the vast array of 

issues that still remain for consideration.

Perhaps  the  most  logical  extension  of  this  work  is  an  examination  of  the 

behaviour  of  the  Deutsch-Jozsa  algorithm  in  the  presence  of  non-ideal  conditions. 

Despite  the  assumptions  of  ideal  operating  conditions  as  explained  in  Chapter  3,  all 

attempts  to  actualize  quantum  computational  hardware  must  confront  the  challenges 

posed  by  non-ideal  hardware  and  the  ever  present  possibility  of  the  surrounding 

environment  introducing  unwanted  perturbations  and  entanglements  into  the  system. 
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This fact has long been recognized and has led to much discussion of quantum error 

correction procedures and fault-tolerant quantum computation.  Prior to any attempt to 

translate the generalized Deutsch-Jozsa algorithm into an experimental reality, it would 

be wise to examine how one could ensure that the quantum network implementing the 

algorithm is robust against some common forms of noise.

Furthermore,  a  fairly  direct  extension  of  this  discussion  of  the  generalized 

Deutsch-Jozsa algorithm concerns the behaviour of related quantum algorithms in the 

context of higher-order logic.  A few such quantum “oracle” algorithms24 are relatively 

similar in structure to the Deutsch-Jozsa algorithm and could be generalized rather easily 

to  higher-order  logic.   Although  less  similar  to  the  Deutsch-Jozsa  algorithm,  Shor’s 

factoring algorithm or Grover’s search algorithm are of great practical importance and as 

such, should be investigated within the context of higher-order logic.

Whether or not the extension of the Deutsch-Josza algorithm to higher-order bit 

states ultimately finds practical application is not the only consideration relevant to the 

ultimate worth of this proposal.  Even if practical quantum computers in the future, like 

their  classical  counterparts,  generally  do  not  use  higher-order  bit  types,  the  very 

investigation of these possibilities will help define the boundaries of the discipline as it 

continues to emerge and help ensure that no potential breakthroughs are overlooked and 

that,  of  all  the possible  avenues  of  future development,  only the most  promising  are 

actually followed.

24 In this context, an “oracle” is a quantum algorithm in which a single measurement or set of measurements 
is made in order to determine the results of a “black-box” operation with the goal of answering a specific 
question.  The Deutsch-Jozsa algorithm is one example.

39



Appendix 1 – Deutsch-Jozsa Quantum Network Simulator

As noted in Chapter 3, I implemented a quantum network level simulation of the 

Deutsch-Jozsa algorithm using the programming language GNU Octave, version 2.1.42. 

As the version I obtained does not come bundled with any function libraries pertaining to 

quantum computation, I had to write some subsidiary functions to support the Deutsch-

Jozsa simulation.

The first such subsidiary function receives the logical order M as input and returns 

a matrix representing the corresponding Hadamard gate (see Equation 2.25).  The second 

subsidiary function receives the logical order M as input and returns the sum, modulo M, 

of its  other two inputs (for M = 2,  this is equivalent to the exclusive-OR operation). 

However,  the  majority  of  the  computation  necessary  to  simulate  the  Deutsch-Jozsa 

algorithm occurs within a single function, called DeutschJozsa.  This function does not 

receive any external inputs; instead, the logical order M, the quantum network inputs and 

the definition of f(x) are all adjustable parameters within the function itself.  A printout of 

the source code of this function has been included in Appendix 3.

The operation of the Deutsch-Jozsa simulator may be best illustrated through an 

example.  Assume that the logical order M = 3 (qutrits) and that the quantum network is 

fed by two input lines, corresponding to the situation depicted in Figure 3.1.  Assume 

further that the function f(x) is defined by the mapping

1)2(
0)1(
2)0(

=
=
=

f
f
f

.  (A1.1)

The overall input state may be represented by the tensor product
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Each element in this 9 element column matrix can be uniquely identified by an ordered 

pair  yx, .  In this instance  12,0 = ; all other elements are 0.  A Hadamard operation 

acts upon each input as depicted in Figure 3.1, resulting in the overall state
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Here, the Hadamard gate for qutrits (Equation 2.25) has been used and 3
2π

σ
i

e= .  Given 

that  Uf  performs  the  transformation  )(,, xfyxyx ⊕→ ,  the  following  possible 

mappings are realizable given the definition of f(x):
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x y f(x) )(xfy ⊕
0 0 2 2
0 1 2 0
0 2 2 1
1 0 0 0
1 1 0 1
1 2 0 2
2 0 1 1
2 1 1 2
2 2 1 0

Table A1.1:  Tri-state logic table for )(xfy ⊕ .

Therefore the transformation Uf effectively rearranges the state 20 HH ⊗  giving the 

result
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Finally, a single Hadamard operation is applied to 'x , giving the result
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A measurement of ψ  will yield 2  with probability one (the global phase factor 3
2πi

e  

has no effect on the measurement outcome).
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Appendix 2 – Selected Results for the Deutsch-Jozsa Algorithm 
Generalized to Arbitrary Qudits

A tabulation of selected results from the Deutsch-Jozsa algorithm are collated in 

this Appendix for various function mappings and values of the parameters N (number of 

input/output “lines”) and M (logical order).  Each result corresponds to the state ψ  as it 

is defined in Figure 3.1.  For the interpretation of these results, please consult Section 3.5 

in this thesis.

M = 2 (qubits); N = 2
10 == yx

ψ

f(0) f(1)
0 0 0

0 1 1

1 0 1−

1 1 0−
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M = 2 (qubits); N = 3
100 == yx

ψ

f(00) f(01) f(10) f(11)
0 0 0 0 00
0 0 0 1 ( )111001005.0 −++
0 0 1 0 ( )111001005.0 ++−
0 0 1 1 10
0 1 0 0 ( )111001005.0 +−+
0 1 0 1 01
0 1 1 0 11
0 1 1 1 ( )111001005.0 +++−
1 0 0 0 ( )111001005.0 −−−
1 0 0 1 11−
1 0 1 0 01−
1 0 1 1 ( )111001005.0 −+−−
1 1 0 0 10−
1 1 0 1 ( )111001005.0 −−+−
1 1 1 0 ( )111001005.0 +−−−
1 1 1 1 00−
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M = 3 (qutrits); N = 2

20 == yx

ψ
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M = 3 (qutrits); N = 2

21 == yx

ψ
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M = 3 (qutrits); N = 2

10 == yx

ψ
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M = 4 (ququads); N = 2

30 == yx

ψ

f(0) f(1) f(2) f(3)
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M = 5 (ququints) ; N = 2

40 == yx

ψ
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Appendix 3:  Source Code

(1) Hadamard Gate Generation Function

Given input logical_type = M, this function constructs and returns a matrix representing 

the corresponding Hadamard gate for that value of M according to (2.25).

function generalized_Hadamard_gate = Hadamard(logical_type)

  sigma = exp(i*2*pi / logical_type);
  
  generalized_Hadamard_gate = [];
  for i=1:logical_type
    for j=1:logical_type
      if (i == 1)
        generalized_Hadamard_gate(i,j) = 1;
      else
        generalized_Hadamard_gate(i,j) = sigma^((logical_type - i + 1) * 
(j - 1));
      endif
    endfor
  endfor 

endfunction

(2) Generalized XOR Function

Computes )(xfy ⊕  for input values of y and f(x).

## Performs the function y XOR f(x) for some given inputs y, f(x) and 
## specified logical type (e.g. qubits, qutrits, ququads).

function generalized_XOR_output = generalized_XOR(logical_type, y, fx)

  generalized_XOR_output = y + fx;
  if (generalized_XOR_output >= logical_type)
    generalized_XOR_output = generalized_XOR_output - logical_type;
  endif

endfunction
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(3) Deutsch-Jozsa Simulator

This  function  simulates  the  operation  of  a  circuit  implementing  the  Deutsch-Jozsa 

algorithm (Figure 3.1) using the input parameters specified within the function body.

function DeutschJozsa_output = DeutschJozsa

  ## Logical Order M: Set to '2' for qubits, '3' for qutrits, etc.

  logical_type = 3;

  ## Describe the input.  Each successive term to the right describes  
  ## the input along a single 'bit' line, going from top to bottom as 
  ## seen in a schematic in which the input is on the left side and the 
  ## output on the right.  The permissible range of values is {0,1,...M 
  ## - 1}, where M is the logical order.

  circuit_input = [0 0 2];

  ## Describes the mapping of f(x).  In the example presented below, the 
  ## first value in the function matrix corresponds to f(00) = 0.  
  ## Subsequent values are f(01) = 0, f(02) = 0, f(10) = 1,…, f(22) = 2. 

  fx = [0 0 0 1 1 1 2 2 2];

  ## Convert the variable circuit_input into a column matrix.

  if (size(circuit_input)(1) == 1)
    circuit_input = circuit_input';
  endif

  circuit_input_matrix = [];
  for i=1:size(circuit_input)(1)
    circuit_input_column = [];
    for j=1:logical_type
      if (circuit_input(i) == j - 1)
        circuit_input_column = [circuit_input_column;1];
      else
        circuit_input_column = [circuit_input_column;0];
      endif
    endfor
    if (i == 1)
      circuit_input_matrix = circuit_input_column;
    else
      circuit_input_matrix(:,i) = circuit_input_column;
    endif
  endfor

  ## Apply Hadamard gate to each input line and take tensor product of 
  ## resultant.

  if (size(circuit_input)(1) == 1)
    input_to_unitary_function = Hadamard(logical_type) * 
circuit_input_matrix;
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  elseif (size(circuit_input)(1) == 2)
    input_to_unitary_function = tensor_multiply(Hadamard(logical_type) * 
circuit_input_matrix(:,1), Hadamard(logical_type) * 
circuit_input_matrix(:,2));
  elseif (size(circuit_input)(1) > 2)
    input_to_unitary_function = tensor_multiply(Hadamard(logical_type) * 
circuit_input_matrix(:,1), Hadamard(logical_type) * 
circuit_input_matrix(:,2));
    for i=3:size(circuit_input)(1)
      input_to_unitary_function = 
tensor_multiply(input_to_unitary_function, Hadamard(logical_type) * 
circuit_input_matrix(:,i));
    endfor
  endif
  
  for i=1:size(input_to_unitary_function)(1)
    unitary_function_output(i) = 0;
  endfor

  ## Compute the transformation |x, y> --> |x, y XOR f(x)>

  counter = 1;
  left_ket = 0;
  for i=1:size(input_to_unitary_function)(1)
    y_XOR_fx = generalized_XOR(logical_type, counter - 1, fx(left_ket + 
1));
    unitary_function_output(left_ket * logical_type + y_XOR_fx + 1) = 
unitary_function_output(left_ket * logical_type + y_XOR_fx + 1) + 
input_to_unitary_function(i);
    if (counter == logical_type)
      counter = 1;
      left_ket++;
    else
      counter++;
    endif
  endfor

  ## The "transpose" operator ' in GNU Octave actually returns the 
  ## Hermitian adjoint (matrix transpose + complex conjugate).  To get 
  ## around this to perform a simple matrix transpose, I needed to use 
  ## the conj (complex conjugate) function after using GNU Octave's 
  ## "transpose" operator.
 
  unitary_function_output = conj(unitary_function_output');

  ## Apply Hadamard gate to each output line (except |y'>) and take 
  ## tensor product of resultant.

  if (size(circuit_input)(1) == 2)
    Deutsch_output_operator = Hadamard(logical_type);
  elseif (size(circuit_input)(1) == 3)
    Deutsch_output_operator = tensor_multiply(Hadamard(logical_type), 
Hadamard(logical_type));
  elseif (size(circuit_input)(1) > 3)
    Deutsch_output_operator = tensor_multiply(Hadamard(logical_type), 
Hadamard(logical_type));
    for i=4:size(circuit_input)(1)
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      Deutsch_output_operator = tensor_multiply(Deutsch_output_operator, 
Hadamard(logical_type));
    endfor
  endif

  ## Finishes computing the final system matrix representing the whole 
  ## system just before measuring |x'>.

  DeutschJozsa_output = tensor_multiply(Deutsch_output_operator, 
no_op(logical_type)) * unitary_function_output / 
logical_type^(size(circuit_input)(1) - 1);

  ## Determines the outcome probabilities for each |x'> output.

  for i=1:logical_type
    probability_list(i,1) = round(i) - 1;
    probability_list(i,2) = abs(DeutschJozsa_output((i - 1) * 
logical_type + 1)) ^ 2; 
  endfor

endfunction

(4) Deutsch-Jozsa Equation

The following function computes (3.16) for the parameters set within the function body.

function closed_form_output = DeutschEquation

  ## Logical Order M: Set to '2' for qubits, '3' for qutrits, etc.

  logical_type = 4;

  ## Describe the input.  Each successive term to the right describes  
  ## the input along a single 'bit' line, going from top to bottom as 
  ## seen in a schematic in which the input is on the left side and the 
  ## output on the right.  The permissible range of values is {0,1,...M 
  ## - 1}, where M is the logical order.

  circuit_input = [0 3];

  ## Describes the mapping of f(x).  In the example presented below, the 
  ## first value in the function matrix corresponds to f(0) = 0.  
  ## Subsequent values are f(1) = 1, f(2) = 2 and f(3) = 3.  

  fx = [0 1 2 3];

  ## Convert the variable circuit_input into a column matrix.

  if (size(circuit_input)(1) == 1)
    circuit_input = circuit_input';
  endif

  circuit_input_matrix = [];
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  for i=1:size(circuit_input)(1)
    circuit_input_column = [];
    for j=1:logical_type
      if (circuit_input(i) == j - 1)
        circuit_input_column = [circuit_input_column;1];
      else
        circuit_input_column = [circuit_input_column;0];
      endif
    endfor
    if (i == 1)
      circuit_input_matrix = circuit_input_column;
    else
      circuit_input_matrix(:,i) = circuit_input_column;
    endif
  endfor

## Create two-dimensional array of consecutive integers in binary format 
## from 0 to M^(N-1) where M is the logical order and N is the number of 
## input qubits into the circuit.  These will be used later as inputs to 
## the XOR computation.

for i=1:logical_type^(size(circuit_input)(1) - 1)
  closed_form_output(i) = 0;
  for j=1:size(circuit_input)(1) - 1
    binary_array(i, j) = 0;
  endfor
endfor

for i=1:logical_type^(size(circuit_input)(1) - 1) - 1
  for j=1:size(circuit_input)(1) - 1
    binary_array(i + 1, size(circuit_input)(1) - j) = 
mod(floor(i/logical_type^(j-1)), logical_type);     
  endfor
endfor

## Evaluate closed-form Deutsch-Jozsa expression for the given inputs.

for i=1:size(binary_array)(1)
  for j=1:size(binary_array)(1)
    temp_sum = 0;
    for k=1:size(circuit_input)(1) - 1
      temp_sum = generalized_XOR(logical_type, temp_sum, 
binary_array(i,k) * binary_array(j,k));  
    endfor
    XOR_sum = temp_sum + fx(j);
    closed_form_output(i) = closed_form_output(i) + exp(-1 * sqrt(-1) * 
2 * pi * XOR_sum / logical_type);
  endfor
endfor
closed_form_output = conj(closed_form_output') / 
logical_type^(size(circuit_input)(1) - 1);

endfunction
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Appendix 4:  Experimental Demonstration of Five Photon 
Entanglement

The  generation  of  entangled  pairs  is  an  obvious  requisite  to  any  experiments 

involving manipulations of GHZ states1.   The traditional  approach to generating such 

states  has  involved  the  decay  of  an  unstable  particle  into  identical  fragments  with 

correlated spin directions, a realization of Bohm’s gedankenexperiment [20].  However, it 

has recently been demonstrated [21] that independent sources can generate EPR2 effects. 

Implementations  using  this  approach  possess  the  potential  to  overcome  a  serious 

limitation of the older method, that of its inability to generate a large number of particles 

sharing the same entangled state.

Using  photons  generated  by  independent  sources,  an  experimentally  realized 

generator of EPR states,  as presented in its five photon form in a paper published in 

Nature [22]  by Zhao et  al.,  can  be  suitably  modified  to  generate  arbitrary N-photon 

entanglement.  The five photon case will be described first, followed by its generalization 

and  some  practical  considerations  regarding  actual  implementations  of  this  type  of 

design.

1 A GHZ state, named after Daniel Greenberger, Michael Horne and Anton Zeilinger, is any maximally 
entangled state involving N qubits, where N > 2.  If N = 2, then the four maximally entangled states that 
may be generated are called Bell states.

2 EPR is an acronym referring to Albert Einstein, Boris Podolsky and Nathan Rosen, coauthors of the 
seminal paper “Can the Quantum Mechanical Description of Physical Reality Be Considered Complete” 
which appeared in Phys. Rev. 47 (1935), pages 777-780.  EPR effects refer to non-local (spacelike) 
correlations between separated particles prepared in an entangled state.

57



Figure A4.1:  The apparatus used to achieve five photon entanglement, where Di refers 

to photon detector i, PBSij refers to the polarizing beam splitter that acts upon beams i and 

j, S refers to a monochromatic photon source and EPR refers to a source of photons 

generated in a Bell state.

The detectors are only present for the purpose of verification; clearly they would 

not be present if the photons were to be employed in some way following the generation 

of their entangled state.

The physical basis of the orthogonal polarizations  { }VH ,  will be employed 

throughout.   The  monochromatic  photon  source  S  generates  photons  in  the  state 

( )VH +
2

1
 and the two EPR sources produce entangled photons in the Bell state 

( )1100
2

1 +=Φ + .   (A4.1)

Once  produced,  four  of  the  photons  interact3 with  the  two  polarizing  beam 

splitters.   Horizontally  polarized  photons  pass  through  unimpeded  and  vertically 

polarized photons are reflected.  In order to achieve the desired coincidence, such that 
3 In order to achieve five-fold coincidence, any experimental implementation of this design must ensure that 
close overlap in time occurs in regards to the interactions with both beam splitters and that the wavelengths 
of all photons involved closely match.
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precisely one photon is vectored toward each detector, all five detectors must register 

either  horizontally  or  vertically  polarized photons.   The desired state  to  be produced 

therefore is

( )543215432112345 2
1 VVVVVHHHHH +=Φ .  (A4.2)

The underlying principle behind this approach is one of chain entanglement.   That is, 

photons 1 and 2 are entangled by virtue of a polarizing beam splitter.  But photons 2 and 

3 were already entangled through being generated in the same Bell state.  Hence, photons 

1 and 3 come to share the same state.  This argument can be extended to include photons 

4 and 5, and in fact, any number of photons N that one may wish to entangle through a 

generalization  of  this  approach.   Such  generalization  is  very easy  to  achieve,  as  the 

following diagram demonstrates:

Figure A4.2: An extension of the five-fold entanglement approach to six or seven-fold 

entanglement.  (If only six-fold entanglement is desired, photon 7 may simply be 

ignored.)

In  regards  to  practical  implementations  of  this  approach,  economical 

considerations  certainly  are  a  factor  that  the  experimentalist  should  consider.   One 

potential economization is a reduction of the number of detectors necessary to verify that 
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the  desired  N-fold coincidence  has  indeed  occurred.   The exact  number  of  detectors 

necessary  varies  depending  upon  the  assumed  properties  of  the  detectors  employed. 

Clearly, very basic detectors only capable of distinguishing whether or not they have 

observed one or more photons provide less useful information to the experimenter than 

do detectors distinguishing between whether they have encountered one or two photons, 

the polarization state of the detected photons, or both.
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S EPR1 EPR2 EPR3 EPR4 D1 D2 D3 D4 D5 D6 D7 D8 D9

H H H H H H H H H H H H H H
H H H H V H H H H H H - H+V V
H H H V H H H H H - H+V H+V - H
H H H V V H H H H - H+V V V V
H H V H H H H - H+V H+V - H H H
H H V H V H H - H+V H+V - - H+V V
H H V V H H H - H+V V V H+V - H
H H V V V H H - H+V V V V V V
H V H H H - H+V H+V - H H H H H
H V H H V - H+V H+V - H H - H+V V
H V H V H - H+V H+V - - H+V H+V - H
H V H V  V - H+V H+V - - H+V V V V
H V V H H - H+V V V H+V - H H H
H V V H V - H+V V V H+V - - H+V V
H V V V H - H+V V V V V H+V - H
H V V V  V - H+V V V V V V V V
V H H H H H+V - H H H H H H H
V H H H V H+V - H H H H - H+V V
V H H V H H+V - H H - H+V H+V - H
V H H V V H+V - H H - H+V V V V
V H V H H H+V - - H+V H+V - H H H
V H V H V H+V - - H+V H+V - - H+V V
V H V V H H+V - - H+V V V H+V - H
V H V V V H+V - - H+V V V V V V
V V H H H V V H+V - H H H H H
V V H H V V V H+V - H H - H+V V
V V H V H V V H+V - - H+V H+V - H
V V H V V V V H+V - - H+V V V V
V V V H H V V V V H+V - H H H
V V V H V V V V V H+V - - H+V V
V V V V H V V V V V V H+V - H
V V V V V V V V V V V V V V

Table A4.1:  A tabulation for the nine-fold entanglement generator of the photon number 

and polarization state received by each detector for all possible input combinations.  H 

and V refer to horizontally and vertically polarized photons, respectively.  The “-“ 

represents no photon and H+V represents the vectoring of two orthogonally polarized 

photons toward a single detector.
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It can be inductively demonstrated, as can be directly observed for the particular 

case  of  nine-fold  entanglement  generation  presented  in  Table  1,  that  if  the  detectors 

cannot distinguish anything except whether they have received some input of photons or 

not,  all  detectors  must  be  present  if  N is  even.   Otherwise,  the  final  detector  DN is 

superfluous.   If  the  detectors  can  distinguish  between  horizontally  and  vertically 

polarized photons or if they can enumerate the number of photons that they receive, all 

even numbered detectors are redundant, as is DN for odd N.

A related practical concern is that of production efficiency.  The desired N-fold 

entangled state is only generated when an N-fold coincidence is achieved, the efficiency 

of which, as Table 1 would suggest, becomes rather low as N increases.  In fact, precisely 

two combinations of input produce the desired entanglement state regardless of the value 

N  assumes.   In  general,  the  production  efficiency,  assuming  all  other  experimental 

considerations are ideal,  is given by  




−

22
NFloor , where the floor function rounds to the 

nearest integer less than or equal to its argument.
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