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ABSTRACT 

 
The objective was to investigate the effects of progesterone (P4) on luteinizing hormone 

(LH) release, follicle development, and oocyte competence in cattle. We tested the 

general hypotheses that: 1) The suppressive effect of P4 on gonadotrophin releasing 

hormone (GnRH)-mediated LH release can be overcome by increasing GnRH dose or 

pre-treatment with estradiol (E2); and 2) a shorter period of P4 exposure during the 

growing phase of the ovulatory follicle improves oocyte competence and fertility after 

fixed-time artificial insemination or superstimulation in cattle.  

In the first experiment, heifers (n=22) were treated with 100 or 200 µg of GnRH or 

pretreated with E2 prior to administration of GnRH during high or low circulating P4 

concentrations to characterize LH release (Chapter 2). Increasing the dose of GnRH did 

not alter LH secretion; however, E2 pretreatment overcame the suppressive effect of high 

P4 on LH secretion. Cattle with lower (n=11) P4 concentrations had higher circulating LH 

concentrations than those with higher P4 concentrations (n=11), and tended to have 

higher ovulation rates.  
Two experiments were conducted to determine the effect of the duration of P4 exposure 

during the ovulatory wave on fertility followed fixed-time artificial insemination or 

superstimulation. In the first experiment (Chapter 3), the dominant follicle was allowed to 

grow for 3 days (n=181) or 6 days (n=184). Six days of growth resulted in a larger 

dominant follicle, but in both groups, ovulatory follicles had similar capacities to ovulate 

and establish pregnancy. In the second experiment (Chapter 4), multiple follicles were 

allowed to grow for 3 or 6 days by 8 or 14 injections of FSH (at 12-hour intervals). There 

was no difference between groups for ovulation rate or total ova/embryo recovery rate. 

Although the 3-day group had higher embryo quality at slaughter (4 days after 

insemination), further development (7, 9, and 10 days after insemination) did not differ 

among groups. The effect of FSH starvation following 4 days of FSH treatment (Chapter 

4) resulted in loss of ovulatory capability. Overall, a shorter duration of P4 exposure 

during ovulatory follicle growth did not improve fertility after fixed-time AI or oocyte 

competence after superstimulation.  
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

1.1 Reproductive life in cattle 

 

The reproductive life of the heifer starts with the onset of puberty, which includes first 

ovulation and corpus luteum (CL) formation. The onset of puberty involves the ability of the 

hypothalamus to produce gonadotrophin releasing hormone (GnRH) in sufficient quantities to 

promote a luteinizing hormone (LH) peak and ovulation; it depends on factors such as breed or 

genotype, body weight and nutrition, social environment, and season [1]. Ovarian activity 

decreases with age (senescence) [2]; 55% of cows are considered infertile by 13 years of age 

[2].  

During their reproductive life, females have many estrous cycles. An estrous cycle is 

defined as a series of changes which occur in most female mammals during the interval from 

one estrus to the next estrus [1]. In cattle, the duration of the estrous cycles averages 21 days 

[1, 3]. Each estrous cycle can be divided into four periods: proestrus, estrus, metestrus, and 

diestrus [1, 3]. Proestrus is the period that precedes estrus and is characterized by regression of 

the CL from the previous estrous cycle to the onset of estrus (average duration, 2 days) [1, 3]. 

Estrus is the period that the female is receptive to mating. Estrous behavior can last up to 20 

hours; ovulation occurs approximately 28 hours after the onset of estrus, and is followed by 

development of a CL at the site where ovulation occurred [1, 3]. Metestrus starts immediately 

after cessation of estrus and is characterized by early development of the CL (average, 3 days) 

[1, 3]. Diestrus is the period when the CL is fully developed and active [3]; it can last up to 15 

days in the absence of pregnancy, or the CL can be maintained until parturition if the animal 

becomes pregnant [1]. With the advent of ultrasonography, it has become possible to readily 

detect the day of ovulation [4, 5]. Therefore, in the past 20 years, the emphasis is slowly 

shifting to define the reproductive cycle as an interovulatory interval (from one ovulation to the 

next), rather than based on behavior (from one estrus to the next). 
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There are 2 basic phases of the ovarian cycle that are based on the structures in the 

ovary: follicular and luteal phases [1, 3].  The follicular phase (development of the 

preovulatory follicle) is the period from luteolysis to ovulation, whereas the luteal phase is the 

period when the CL is active [1, 3]. 

 

1.2 Ovarian follicular development 

 

Folliculogenesis is the process of ovarian follicular development, with the growth of 

small follicles into large preovulatory follicles [6]. Ovarian follicles can be classified as 

primordial, primary, secondary, tertiary, or preovulatory [6, 7].  Primordial follicles contain an 

immature oocyte, surrounded by flat squamous (pre-granulosa) cells [6, 7]. The change in the 

shape of granulosa cells, from flat to cuboidal, characterizes the emergence of  primary follicles 

[6, 7]. The follicles and oocytes continue growing, and the number of layers of granulosa cells 

surrounding the follicle increase [7]; secondary follicles have up to 6 layers of granulosa cells. 

The zona pellucida, a capsule of glycoproteins, is formed around the oocyte [7]. Also in 

secondary follicles, theca cells start to form and surround the basal lamina in the follicle [7]. 

With formation of a fluid-filled antrum, the follicle is designated as a tertiary follicle [7], also 

known as a vesicular, antral, or Graafian follicle. Tertiary follicles can be classified by their 

developmental stage into early or late tertiary, and preovulatory [7]; they can reach ≥15 mm in 

diameter and become the ovulatory follicle. 

 

1.2.1 Follicular dynamics and wave theory 

 

In the mid-1980’s, researchers started using real-time, transrectal ultrasonography to 

monitor ovarian follicular dynamics in domestic livestock, especially cattle and horses [4, 5, 8]. 

With this technology, changes in ovarian biology could be sequentially monitored, with 

essentially no interference with function [9]. This provided considerable impetus for research 

in ovarian function and follicular dynamics; consequently, there were many discoveries in a 

short interval.   
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Monitoring ovaries with real-time ultrasonography confirmed that follicles develop in a 

wave-like pattern [4, 10, 11], with each wave characterized by periods of emergence, growth, 

dominance, and ultimately atresia or ovulation [3, 12]. Emergence of the first wave usually 

occurs on Days 0 or 1 of the reproductive cycle (Day 0 = ovulation), when up to 24 follicles 

(follicle cohort), approximately 4 to 5 mm in diameter, are detected [3, 12]. In the growth 

phase, follicles from the cohort continued growing for more than 2 or 3 days [3, 12]. Usually, a 

single follicle is selected which continue to grow (dominant follicle), whereas the remaining 

follicles (subordinate follicles) stop growing. Selection occurs when the dominant follicle is 

approximately 8.5 mm in diameter [13]. The dominant follicle grows to a diameter of 

approximately 12-20 mm (dominant phase) [3], followed by either atresia or ovulation. During 

mid-cycle, the CL is still active, so the dominant follicle undergoes atresia and a new follicular 

wave emerges. However, if the CL regresses, the dominant follicle continues to grow and 

ovulates, and the cells surrounding the follicular wall (thecal and granulosa cells) luteinize and 

become the CL [3].  

In cattle, the estrous cycle is usually composed of 2 or 3 follicular waves [3, 5, 12, 14, 

15]. Although the preponderance and repeatability of 2 or 3 wave cycles is still not clear [6], 

the number of waves does not appear to not be related to factors such as breed, age, or season 

[6]. Females with 3 waves have a longer interovulatory interval than females with 2 follicular 

waves [6]. In that regard, the interovulatory interval is approximately 18-20 days in animals 

with 2 waves, and 22-24  days in animals with 3 waves [1]. In the first wave, follicles emerge 

(Day 0), grow for 1-2 days, one follicle becomes dominant (at approximately Day 3), it grows 

until approximately Day 6, reaches a plateau (no change in diameter), and ultimately undergoes 

regression (starting at approximately Day 12) [3]. A second wave emerges at Day 10 in 2-wave 

cycles, and at Days 8 or 9 in 3-wave cycles; it becomes the ovulatory wave in 2-wave cycles 

[3]. In 3-wave cycles, a third wave emerges at approximately Day 16 or 17 (its dominant 

follicle becomes the ovulatory follicle), with the dominant follicle of Wave 2 become atretic 

shortly after emergence of the third wave [3]. Ovulatory follicles grow longer in 2-wave versus 

3-wave cycles, and they have a larger diameter at ovulation [5]. Moreover, prior to luteolysis, 

ovulatory follicles grow under a high-progesterone environment for 6 versus 3 days in 2- and 

3-wave cycles, respectively [5].  
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There are contradictory reports regarding the effect of the duration of the ovulatory 

wave on oocyte competence and fertility. Some reports suggested that with prolonged periods 

of follicular dominance, fertility decreases gradually until Day 9 of dominance; thereafter, any 

further prolongation of dominance results in very rapid declines in fertility [16]. In that regard, 

prolonged follicular dominance could result in an aged oocyte and decreased fertility [16]. 

Conversely, other studies failed to detect a difference in pregnancy rates between cattle with 2 

or 3 waves [17]. Therefore, it remains unclear whether length of progesterone exposure during 

dominant follicle development affects fertility.   

 

1.2.2 Hormonal influences during the estrous cycle 

 

The advent of radioimmunoassays in the late 1960’s provided a method to measure 

hormone concentrations and study their effects on follicular dynamics during the estrous cycle 

[18]. Reproductive hormones are produced and secreted by the hypothalamus, pituitary, 

ovaries, and uterus [1]. The hypothalamus produces and secretes gonadotrophin-releasing 

hormone (GnRH), a neurohormone which acts on the anterior pituitary, releasing follicle 

stimulating hormone (FSH) and luteinizing hormone (LH) [3]. In the ovaries, estradiol is 

produced by the dominant follicle, whereas progesterone is produced by the CL [3]. The main 

hormone produced and released by the uterus  is prostaglandin (PGF2α) [3].  

Understanding the pattern of reproductive hormones and the effect of those hormones 

on the reproductive process is of great interest to many researchers. The effects of the main 

reproductive hormones are reviewed in the following sections.  

 

1.2.2.1 Effect of follicle stimulating hormone 

  

In mammals, FSH is produced and released by the gonadotropes in the anterior pituitary 

gland [19]. It is a glycoprotein and contains 2 polypeptide subunits, alpha (α) and beta (β) [19]. 

The α subunit is species-specific and similar to other glycoproteins such as LH and TSH [19]. 

However, the β subunit is hormone-specific [19]. The primary action of FSH in the female is to 

promote follicular development; its receptors are present exclusively on granulosa cells [20]. 
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An increase in peripheral FSH concentrations consistently precedes emergence of a new 

wave of ovarian follicular development [21]; furthermore, the growing cohort is dependent on 

FSH [20]. Differential growth of a dominant follicle normally occurs when the largest follicle 

reaches 8.5 mm in diameter [22, 23]. The production of inhibin and estradiol by the future 

dominant follicle suppress FSH concentrations [20]; when FSH reaches a nadir, subordinate 

follicles stop growing and become atretic. However, the dominant follicle acquires LH 

receptors on its granulosa cells, and therefore is no longer dependent on FSH [20]. It is clear 

that the dominant follicle suppresses FSH, since its removal results in increased FSH and 

emergence of a new follicular wave 1.5 days later [24, 25]. 

Maintenance of high concentrations of FSH prevents dominant follicle selection, 

therefore a prolonged effect of FSH may result in superstimulation and a superovulatory 

response [26]. Since FSH has a short half life (approximately 5 hours), multiple doses are 

required in superstimulation programs [26]. 

 

1.2.2.2 Effect of luteinizing hormone 

 

Similar to FSH, LH is a glycoprotein which is released in response to GnRH [22]. The 

episodic LH release from the pituitary is essential for ovarian function [27]. The role of LH in 

follicular selection is not completely clear; however, several studies suggest that LH is 

involved with follicular deviation, or selection [22, 28, 29]. From the cohort of follicles that 

emerges and constitutes a wave, it appears that the first follicle to acquire LH receptors will 

become the dominant follicle [30]. Receptors for LH can be first detected on granulosa cells 

from 2 to 4 days after wave emergence, which is the expected time of follicular selection [31]. 

In addition, increased concentrations of LH at the time of deviation was reported in heifers [22, 

31]. The acquisition of LH receptors on granulosa cells appears to be related to increased 

concentrations of estradiol and high molecular weight inhibin in follicular fluid of the dominant 

follicle [30]. In that regard, the dominant follicle uses mechanisms to prevent competition with 

other follicles.  

It is well known that LH is associated with final growth and maturation of the dominant 

follicle [32]. The pre-ovulatory surge of this hormone is required for ovulation [3]. In mid-
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cycle, P4 is still high, suppressing LH pulses and preventing ovulation [3]. As a consequence, a 

new follicular wave begins [3]. At the end of the cycle, when P4 is low, LH can reach a pre-

ovulatory peak, which is characterized by high frequency, but low amplitude pulses and 

consequently the dominant follicle ovulates [3].  When LH concentrations are maintained high 

under a subluteal P4 environment, the dominance of the follicle is prolonged and an oversized 

persistent follicle may be formed [33]. 

 

1.2.2.3 Effect of progesterone 

 

Progesterone is a steroid hormone derived from cholesterol [1]. The CL is the principal 

source of progesterone and its main function is maintenance of pregnancy [12]. During the 

estrous cycle, blood P4 concentrations influence several other hormones. On Day 5 (Day 0 = 

ovulation), plasma concentrations of P4 increase (due to release from the  CL) [12]. Blood P4 

concentrations remain high during much of the estrous cycle. Luteolysis usually occurs on 

Days 16 to 18 of estrous cycle, depending on the number of waves [12], and then P4 decreases. 

Luteolysis occurs as a consequence of prostaglandin (PGF2α) release from the endometrium 

[12]. The CL and the dominant follicle stimulate oxytocin-receptor expression in the 

endometrium [34]. Oxytocin activates phospholipase activation and prostaglandin synthesis in 

the endometrium [34]. PGF2α reaches the ipsilateral ovary by a countercurrent exchange 

mechanism from the utero-ovarian vein to the ovarian artery [34]. PGF2α activates apoptosis 

and luteolysis occurs [34]. A clear understanding of the effects of P4 and PGF2α on the estrous 

cycle is crucial for estrous synchronization.  

Progesterone exerts a negative feedback on the hypothalamic-pituitary axis, suppressing 

GnRH, LH, and FSH [12]. Progesterone has differential effects on LH and FSH. An increase in 

FSH is enable in the presence of elevated P4 to initiate a new follicular wave [12]; however, LH 

pulsatility does not reach a peak under a high P4 environment [12], suppressing ovulation of the 

dominant follicle.    
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1.2.2.4 Effect of estradiol 

 

Estradiol-17β (E2-17β) is also a steroid hormone, derived from cholesterol, and 

synthesized by theca and granulosa cells of the follicles [1]. Theca cells provide an androgen 

precursor which passes into granulosa cells and is subsequently aromatized to estradiol [1].  

Estradiol is known as the female hormone, since it promotes the development of secondary sex 

characteristics in females and is also responsible for estrous behavior [1].  

During the estrous cycle, estradiol can exert either a positive or negative feedback on 

the hypothalamic-pituitary axis, affecting gonadotrophin release [1]. Estradiol has been 

implicated in follicle deviation [22, 35, 36]. The concentration of estradiol in follicular fluid 

increases when the follicle diameter is 8-9 mm [35]. Blood estradiol concentrations also 

increase at follicular deviation [35]. Some studies suggested that synthesis of estradiol by the 

dominant follicle is associated with acquisition of LH receptors by granulosa cells at follicular 

deviation [35]. Thus, estradiol appears to be a facilitator for a transition in the responsiveness 

of FSH to LH by the dominant follicle [35]. Moreover, estradiol suppresses FSH release, 

preventing further development of subordinate follicles, ultimately resulting in their atresia, 

and selection of the dominant follicle [22, 35]. 

A pre-ovulatory peak of LH is induced by low progesterone and high estradiol 

concentrations [37]. After luteolysis, the dominant follicle produces high concentrations of 

estradiol, which induces high frequency and low amplitude LH pulses [37].     

 

1.2.3 Manipulation of follicular development and ovulation in cattle 

 

Since reproduction is critical to cattle production, there has been substantial 

investigation of reproductive technologies for cattle. An important aspect of reproductive 

technologies is the ability to pharmacologically control follicular development and ovulation 

[3]; this requires knowledge of ovarian function, hormone pathways, and also the effects of 

exogenous hormones on female physiology [3]. Over the past several years, there have been 

many studies and reports regarding the use of hormones to manipulate ovarian function. 

Treatments to induce emergence of a new follicular wave are based on the removal of a 
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negative effect of the dominant follicle on FSH. Furthermore, to induce ovulation, treatments 

have to promote luteolysis and induce an LH peak. Although much progress has been made, a 

major limitation of controlling ovarian function is the variability in treatment response, 

especially the lack of a highly synchronous ovulation [38].  

 

1.2.3.1 Follicular wave synchronization 

 

The ability to reliably induce emergence of a new wave, regardless of the stage of the 

cycle (even in the absence of cyclicity), was an important step in synchronization programs.  

As the dominant follicle is known to suppress the release of FSH, elimination of a dominant 

follicle will create a rise in FSH, followed by emergence of a new cohort of follicles. Dominant 

follicles can be eliminated by cautery [39] or by transvaginal, ultrasound-guided follicle 

ablation [25]. After the dominant follicle is removed, FSH is expected to rise 12 hours later, 

and a new follicular wave emerges 1.5 to 2 days after removal of the dominant follicle [20, 40].  

Exogenous steroid hormones can also induce follicular wave emergence [41-43]. 

Administration of exogenous estradiol suppresses FSH and causes follicular atresia [41, 43] .  

However, under a low progesterone environment, estradiol will induce a pre-ovulatory LH 

surge, delaying emergence of a new wave [43]. Treatment with estradiol in a high-progestin 

environment (due to exogenous or endogenous progestins, or both) suppressed both LH and 

FSH, with a subsequent rise in FSH and synchronous emergence of a new follicular wave 

approximately 4 days later [44].  

Treatments with GnRH have also been used to synchronize wave emergence. A single 

dose of GnRH will increase LH and FSH; the magnitude is dependent on the stage of the 

estrous cycle [45] and the dose injected [46]. In that regard, treatment with GnRH induced 

ovulation and a emergence of a new follicular wave when a follicle ≥10 mm in diameter was 

present in the ovary [41]. However, the probability of GnRH causing ovulation, followed by 

wave emergence, was  85% in cows, but only 56% in heifers [47]. When ovulation occurred, 

the interval from treatment to wave emergence averaged 2 days [41]. 
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1.2.3.2 Synchronization of estrus and ovulation 

 

The general objective of synchronization protocols is to have a fertile estrus or 

ovulation in a short, predictable interval [48]. Researchers have developed several protocols to 

synchronize estrus; all are based on either extending or shortening the lifespan of the CL [3, 

48].  

Endogenous PGF2α is responsible for luteolysis; exogenous PGF2α (and its analogs) is 

commonly included in estrus synchronization protocols to ensure that luteolysis occurs [48]. 

When it is administrated during mid-cycle (5-16 days after ovulation), PGF2α will efficiently 

induce luteolysis [48]. However, PGF2α has an effect exclusively on the CL [3], making its 

efficacy dependent on the stage of the estrus cycle [48]. If PGF2α is given when a responsive 

CL is not present (Day -3 to +4 of ovulation), it will not synchronize estrus. A common 

solution to enhance the efficacy of PGF2α is the use of double injections 11-14 days apart, with 

the ischiorectal fossa as an ideal site of injection [49, 50]. In the majority of cattle that undergo 

luteolysis in response to PGF2α treatment, ovulation occurs 3 to 5 days after injection [3]. To 

increase pregnancy rates after AI, estrus detection should be included in the protocol [3]; in the 

absence of synchronization of ovarian follicular development, timed-AI will result in low to 

modest pregnancy rates. 

Protocols using GnRH are also common for estrus synchronization. Ovsynch and 

Cosynch programs are based on 2 injections of GnRH, 9 days apart, with a single injection of 

PGF2α on Day 7 [51]. The difference between those two programs is that AI is either performed 

approximately 16 hours after the second GnRH (Ovsynch) or concurrent with the second 

GnRH (Cosynch). Ovulation is expected approximately 28 hours after the second injection of 

GnRH [52]. When compared with a protocol using only PGF2α, GnRH-based protocols appear 

to have more synchronous ovulation [51] and improved pregnancy rates to timed-AI in cows 

[53]. The effect of 3 commercial gonadorelin products (gonadorelin diacetate tetrahydrate 

(Cystorelin® and Fertagyl®) and gonadorelin hydrochloride (Factrel®)) on LH release and 

ovulation was recently reported [54]. In that study, Cystorelin seemed to induce a higher LH 

peak concentration; however there was no difference in ovulatory response [54].    
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Progestins (progesterone and its analogs) can also be used to synchronize estrus. The 

use of oral progestins, eg. melengestrol acetate (MGA), for estrus synchronization, started 

approximately 4 decades ago [3, 55]. The minimal amount to suppress estrus and ovulation is 

approximately 0.5 mg per day; most MGA-based synchronization protocols use 0.5-1.0 mg per 

day [55]. Although MGA suppresses estrus, it suppresses development of subordinate follicles, 

but enhances development of a dominant follicle, that will ovulate following MGA withdrawal 

[3, 56]. Furthermore, prolonged treatment with MGA (in the absence of a CL) results in a 

persistent dominant follicle [3, 56]. The interval from withdrawal of MGA to ovulation can 

vary from 3 to 7 days [3]. Many studies were conducted to test fertility after various MGA-

based protocols. However, in the absence of exogenous PGF2α, MGA was fed for prolonged 

intervals, resulting in persistent follicles and poor fertility [57, 58].  

A subcutaneous implant containing a synthetic progestin, norgestomet, was also 

intensively tested after the mid 1970’s [3]. It was demonstrated that a short interval  (5 days) of 

norgestomet exposure resulted in higher pregnancy rates compared with treatment for longer 

intervals [59]. However, fertility remained compromised when norgestomet programs were 

compared with controls. Subsequently, the combination of an implant containing 6 mg of 

norgestomet (removed after 9 days), and a single injection of 3 mg of norgestomet plus 5 mg of 

estradiol valerate at implant insertion, (Synchro-Mate-B) resulted in more efficient estrus 

synchronization and higher pregnancy rates [43]. It is noteworthy that the estradiol was 

originally included to induce luteolysis [43], but years later, it was shown that it also 

synchronized ovarian follicular development [43]. 

Progesterone-releasing silicone intravaginal devices were developed in the mid 1960’s 

and so far are the most useful for commercial application [3]. Several devices were developed 

and tested. The CIDR-B is the most common intravaginal progesterone device in North 

America [3]. The CIDR-B contains 1.94 g of progesterone and is extensively used in various 

protocols for estrus synchronization, fixed-time AI, fixed-time embryo transfer, and 

superstimulation programs [3]. The use of those devices for 7 days, with an injection of PGF2α 

at device removal, results in pregnancy rates that do not differ from non-treated animals [60]. 

However the effect of duration of P4 exposure through the use of CIDR-B was not fully clear. 

Prolonged CIDR-B use could result in an aged oocyte and poor fertility [33].  When subluteal 
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(1-2 ng/ml) progesterone concentrations are maintained for a prolonged interval, ovarian 

follicular dynamics are altered, resulting in development of a large, persistent follicle [61], that 

has poor fertility [61]. Therefore, estrus synchronization programs must minimize the 

development of persistent follicles [62]. 

To synchronize an LH surge and thereby induce a synchronous ovulation, an additional 

dose of GnRH (100 µg), porcine LH (pLH, 10-12.5 mg), or estradiol (0.5-1.0 mg) can be given 

at the end of a synchronization protocol [63]. In that regard, all three hormones will induce a 

pre-ovulatory LH peak, that is followed by ovulation, when blood P4 concentrations are low 

[3]. It is noteworthy that highly synchronous ovulation increases pregnancy rates, particularly 

to timed-AI [3]. 

In cattle with low peripheral P4 concentrations, treatment with 100 µg of GnRH will 

induce an LH peak and ovulation [48, 51, 64]. Moreover, lower doses (50 µg) of GnRH after 

PGF2α injection were equally efficient in inducing ovulation in Ovsynch programs [65]. 

However, it is unknown if a higher dose of GnRH could reliably induce ovulation under a high 

P4 environment. 

 

1.2.3.3 Fixed-time AI 

 

Fixed-time AI programs use protocols to synchronize estrus and ovulation, permitting 

AI at a predetermined time. Highly synchronous and predictable ovulation has many 

advantages for cattle breeding programs. First of all, it facilitates planning AI  and increases 

pregnancy rates [3, 66]. In traditional AI programs, estrus detection is required, which requires 

considerable time and experienced staff. With fixed-time AI, there is no need for detecting 

estrus [66], and more cattle can be inseminated at a specific time [66]. Consequently, the 

introduction of fixed-time AI programs has greatly increased the utilization of AI in the cattle 

industry [3, 67]. The biggest challenge of fixed-time AI is to maintain acceptable pregnancy 

rates [3]. Several protocols have been developed. The inclusion of a CIDR-B in Ovsynch or 

Cosynch programs is common in  fixed-time AI programs [68]. Other protocols involve 

synchronization of follicular wave emergence with ultrasound-guided follicular ablation or a 

combination of estradiol and progesterone, with a CIDR-B for 5-9 days, PGF2α at CIDR 
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removal, and 24-56 hours later, treatment with pLH, GnRH, or estradiol, to induce ovulation, 

followed by timed-AI [3, 26]. Other types of progestins or progesterone devices have also been 

used.   

Although estradiol is highly efficacious for synchronizing wave emergence and 

ovulation, it is noteworthy that the use of exogenous estradiol in the commercial cattle industry 

is forbidden in the European Union, New Zealand and United States [69, 70], due to concerns 

regarding residues in milk and meat, and their potential to impact human health [69, 70]. 

Therefore, protocols which do not involve the use of estradiol for synchronization are heavily 

favored. 

 

1.2.3.4 Superstimulation and superovulation 

 

Superstimulation is based on the principle that subordinate follicles that would 

otherwise undergo atresia can be ‘rescued’, with continued development and ovulation [26]. 

The main objective is prevent atresia of many follicles and ultimately have many ovulate, to 

maximize fertilized ova and transferable embryos [26].  

One of the major limitations of superovulation is the extreme variability in the response 

to superstimulatory treatments [15, 26]. In one study, 30% of 2048 cows produced 70% of the 

total embryos collected, whereas 24% of cows failed to produce an embryo [71]. Overall, the 

mean number of transferable embryos per donor is approximately 6 [71]. Heritability of the 

response to superstimulation treatments is low [72];  the variability in response has been 

attributed to environmental factors related to reproductive, sanitary or nutritional conditions, 

and the type and duration of gonadotrophin used [26, 72].  

Gonadotrophin treatments provide FSH activity, resulting in superstimulation [26]. 

Historically, equine chorionic gonadotrophin (eCG) was commonly used in superstimulation 

protocols, whereas more recently, purified porcine pituitary extract (pFSH) is more widely used 

[26].  

It is well known that eCG has primarily FSH activity in cattle, with varying degrees of 

LH activity. A single injection of the recommended dose (2500 IU) can remain in circulation 

for up to 10 days and cause excessive superstimulation [26], resulting in few embryos of low 
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quality [73]. However, the use of pFSH increased rates of ovulation and transferable embryos 

when compared with eCG treatments [74]. When purified pFSH which has low LH activity is 

used, the superstimulatory response is increased [75-77]. In that regard, the maximum 

acceptable LH contamination is 20% [77]. 

Since FSH has a half life of approximately 5 hours, multiple injections need to be given 

[26]. Usually twice daily injections (12-hours intervals) given IM for 4-5 days [78] induces an 

optimal stimulatory response [26].   

The major determinants of superstimulatory response are the number of follicles 

available at the beginning of a wave [9] and the timing of the onset of treatments in relation to 

wave emergence [79].  When gonadotrophin treatments are initiated before follicular selection, 

the superstimulatory and superovulatory response is greater [80]. Therefore, synchronization of 

wave emergence, followed by initiation of superstimulation treatment at expected wave 

emergence, is a very popular means of superovulation. One protocol used in superstimulation 

programs is follicular ablation and insertion of a CIDR-B, followed by the initiation of pFSH 

treatment 1 day later and continued for 4 days, with PGF2α injection and CIDR removal on the 

last day of FSH treatment [81].  

The interval from the end of FSH treatment to ovulation or collection of oocytes 

influences oocyte competence [82]. In one study, blastocyst rates were increased when follicle 

stimulation included 48 hours of FSH starvation [83]. However, Barros et al. [84] reported that 

FSH starvation  at the end of superstimulation treatment had no advantage over conventional 

protocols for in vitro embryo production. Therefore, studies regarding a short period of FSH 

starvation are contradictory and further investigation is required. 

 

1.3 Oocyte competence 

 

Oocyte competence is defined as the ability of oocytes to be fertilized, develop into a 

blastocyst, and result in successful pregnancy [26, 85, 86]. In most in vitro embryo production 

programs, oocyte competence is assessed by visual evaluation of oocyte quality. Although 

evaluation of oocyte quality is subjective, oocytes evaluated as Grade 1 are likely to be 

competent. Oocytes acquire competence during folliculogenesis and oocyte development [86]. 
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However, the two major factors that influence oocyte competence are the origin of the follicle 

and hormonal influences [86]. It has also been suggested that follicular size and health may 

influence oocyte competence [86]. Moreover, appropriate communication between the oocyte 

and the surrounding cummulus complex within the follicle is required for competent oocytes 

[86]. It is known that the hormonal environment also plays a role in oocyte competence.   

 

1.3.1 Oocyte development 

 

Oogenes is the process of oocyte formation and development; it can be divided in two 

phases: oocytogenesis, which is the development of primordial germ cells (PGC) into primary 

oocytes; and ootidogenesis, which is the development of primary oocytes into mature oocytes.  

In cattle, during the embryonic stage, PGCs migrate from the endoderm of the yolk sack 

to gonadal ridges at approximately Day 40 of gestation [87, 88]. The factors that attract PGCs 

to gonadal ridges are not clear [87, 88]. From the start of migration, PGCs undergo mitosis; 

PGCs that arrive early also mature early. On Day 80, the most mature oogonia start to undergo 

meiosis; they enlarge and are termed primary oocytes [87]. Primary oocytes do not progress 

beyond the pachytene stage of prophase I (first meiotic arrest) [87, 88]. A layer of epithelial 

cells surrounds primary oocytes and form primordial follicles [87]. Primordial follicles form 

the follicular reserve, which are capable of developing into all other stages of follicular growth 

[88]. Females are born with a reserve of approximately 133,000 primordial follicles [89]. 

The activation of primordial follicles has not been well characterized. The development 

of greater communication, through gap junction formation, between granulosa cells and oocyte 

is critical for the activation of primordial follicles [87, 90]. Nutrients, hormones and growth 

factors may also have a role in initiating growth of primordial follicles [87, 90]. Furthermore, 

germ cells may secrete substances that inhibit development of some primordial follicles, 

thereby preventing the reserve to grow simultaneously [87].  

After primordial follicle activation, follicles continue developing and oocytes increase 

in volume [32, 91]. When the follicular antrum is formed, oocytes are meiotically competent 

[32, 91]. The preovulatory LH surge overcomes the first meiosis arrest; however, meiosis is 
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again stopped at metaphase II (second meiosis arrest) until fertilization, when meiosis is finally 

completed [32, 91]. 

Oocyte nuclear maturation occurs in response to a pre-ovulatory LH peak [32, 91]. 

Furthermore, LH also plays a key role in the expansion of cumulus cells, which is crucial for 

fertility [32, 91]. The mechanism by which LH induces oocyte nuclear maturation is unclear. 

However two hypotheses have been proposed [92]. The first one is that granulosa cells produce 

meiosis-inhibiting substances and that the LH peak interferes with communication between 

oocyte and granulosa cells. The second hypothesis is that the LH peak induces a maturation 

signal on the granulosa cells, which transport this signal to the oocyte, inducing it to mature 

(reviewed by Buccione et al. [92]).  

The competence of an oocyte to undergo fertilization and pre-implantation is termed 

cytoplasmic maturation [92]. Although granulosa cells are suspected to have a role [92], the 

mechanisms regulating cytoplasmic maturation are not well characterized. 

 

1.3.2 Influence of progesterone on oocyte competence 

 

The effect of progesterone on female endocrinology and ovarian function in cattle has 

been intensively studied. However, there is a paucity of data regarding the effect of 

progesterone on the oocyte microenvironment. In most studies regarding the effect of 

progesterone on the oocyte, the outcomes were reproductive responses, including rates of 

blastocyst formation or pregnancy.  

It is known that a high preovulatory LH peak is crucial for oocyte maturation [92]; this 

is believed to disrupt the gap junction between the oocyte and granulosa cells [92]. Granulosa 

cells are suspected to produce substances, e.g. cAMP, which arrest meiosis [92]. However, 

with reduced communication between the oocyte and granulosa cells, less of the meiosis 

inhibitor substances are carried to the oocyte, and meiosis is reactivated [92]. 

Moderate concentrations of progesterone at the end of the growing phase of the 

dominant follicle increase LH pulse frequencies [92], resulting in a prolonged growth and 

maintenance of the dominant follicle [20], termed a persistent  follicle [20]. It has been 

suggested that oocytes from persistent follicles undergo premature activation (resumption of 
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meiosis), which leads to abnormal development, early embryonic mortality, and ultimately 

poor fertility [93]. 
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1.4 General objectives and general hypotheses  

 

The overall goals of the research conducted for this thesis were to improve estrus 

synchronization in cattle and to improve reproductive performance after fixed-time AI or 

superstimulation. The general hypothesis was that different concentration of progesterone and 

different duration of progesterone exposure during the growing phase of ovulatory wave affects 

GnRH-mediated LH release, oocyte quality and fertility in cattle.  

 

Specific Objectives and Specific Hypotheses 

 

Objective 1: (Chapter 2): To determine if higher doses of GnRH can overcome the 

suppressive effect of progesterone on LH release, and to determine the effect of exogenous 

estradiol on LH release (and ovulation) in response to GnRH treatment in cattle with elevated 

P4 concentrations.  

 

Hypothesis 1: (Chapter 2): The suppressive effects of P4 on GnRH-induced LH 

release can be overcome by increasing the dose of GnRH, or by pretreatment with estradiol 

 

Objective 2: (Chapter 3): To determine the effect of the duration of P4 exposure 

during the growing phase of the ovulatory follicle on pregnancy rate. 

 

Hypothesis 2: (Chapter 3): A short interval of P4 exposure during the growing and 

early-static phases of the dominant follicle (analogous to the ovulatory wave of 3-wave cycles) 

is associated with higher fertility than a long interval (analogous to the ovulatory wave of 2-

wave cycles). 

 

Objective 3: (Chapter 4): To determine the effects of the duration of P4 exposure 

during the growing phase of pre-ovulatory follicles on oocyte competence after 

superstimulatory treatment.  
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Hypotheses 3: (Chapter 4): 1) A short interval of P4 exposure during follicular growth 

under ovarian superstimulation improves oocyte competence; and 2) FSH starvation at the end 

of superstimulatory treatment does not affect oocyte competence. 

 

 



 19

CHAPTER 2 

 

EFFECT OF PROGESTERONE AND ESTRADIOL ON GNRH-MEDIATED LH 

SECRETION IN HEIFERS 

 

 

2.1 Abstract 

 

High circulating progesterone (P4) concentrations during the ovulatory wave in cattle can 

decrease circulating estradiol (E2) concentrations, luteinizing hormone (LH) pulsatility, diameter 

of ovulatory follicles, and ovulation rates. However, it is unknown whether increasing the dose 

of GnRH or pretreatment with E2 can overcome the suppressive effects of elevated P4 

concentrations on LH release and ovulation in response to GnRH treatment. We hypothesized 

that increased doses of GnRH and exogenous E2 would enhance LH release, particularly in 

heifers with high plasma P4 concentrations. Two experiments were conducted using 22 crossbred 

postpubertal heifers. In Experiment 1, all heifers had the two largest follicles ablated on Day 5 

after ovulation; they received a once-used P4-releasing device (CIDR) and were monitored 

ultrasonographically for follicle wave emergence. They were randomly assigned to receive two 

injections of prostaglandin F2α (PGF), 12 hours apart (Low- P4), or no treatment (High- P4) 

starting at the time of follicle ablation. Six days after follicle wave emergence, half of the heifers 

in each group received either 100 or 200 µg of GnRH, and blood samples were collected every 

hour for 3 hours; there was an effect of time (P<0.0001) but no effect of treatment on LH release. 

Heifers were handled similarly in Experiment 2, except that when a 5.5-day dominant follicle 

was expected, half the heifers in each group received 0.25 mg estradiol benzoate IM, and 8 hours 

later, all heifers received 100 µg GnRH. Blood samples were collected every hour for 4 hours 

(for LH concentrations) and ultrasonography was used to detect ovulation. The two groups that 

received E2 (low- and high- P4) and the low P4 without E2 had higher peak plasma LH 

concentrations (P<0.04) compared to the group with high P4 without E2 (12.6±1.8, 10.4±1.8, 

8.7±1.3, and 3.9±1.2 ng/mL, respectively; mean±SEM). High plasma P4 concentrations tended to 

reduce ovulation rates (P=0.09). For both experiments combined, heifers with low circulating 
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concentrations of P4 had higher LH concentrations (P=0.039) following GnRH treatment. In 

conclusion, the hypothesis that higher doses of GnRH will be more efficacious in inducing LH 

release was not supported. However, the hypothesis that exogenous estradiol will increase LH 

release following treatment with GnRH was supported. Moreover, high concentrations of P4 

decreased LH secretion and tended to decrease ovulation rates.    

 

2.2 Introduction 

 

Gonadotrophin-releasing hormone (GnRH) is a neurohormone synthesized and released 

by the hypothalamus, which acts on the anterior pituitary to induce FSH and LH release [19, 94-

96]. In clinical veterinary practice, GnRH is commonly used in estrus synchronization protocols 

(e.g. Ovsynch and Cosynch); 2 injections of GnRH are given 9 days apart, and prostaglandin F2α 

is given 2 days before the second GnRH [51, 97]. The first GnRH treatment is intended to induce 

ovulation, and synchronize emergence of a new ovarian follicular wave [98]. However, only 2 of 

3 (approximately 66%) of cattle ovulated in  response to  a single GnRH treatment  [99]); this has 

been attributed to the diameter of the viable dominant follicle and blood progesterone 

concentration at the time of treatment [98]. Follicles achieve ovulatory capability at 10 mm in 

Bos taurus cattle [99], and there is an inverse relationship between  circulating  P4 concentrations 

and the probability of  ovulation [37]. 

The secretion of LH during the estrous cycle in cattle is mediated by peripheral P4 

concentrations [12, 100]. Elevated P4 concentrations suppress pre-ovulatory LH pulses [12, 100]; 

following luteolysis, P4 is low during the final stages of follicle development, enabling ovulation 

to occur [37]. However, the effects of high circulating concentrations of P4 on LH pulsatility and 

ovulation in response to exogenous GnRH have not been well characterized. In that regard, it is 

unknown whether a high dose of exogenous GnRH can overcome the suppressive effect of 

elevated P4 concentrations on LH release. A high pre-ovulatory peak is important in increasing 

diameter of the ovulatory follicle, inducing granulosa cell proliferation before ovulation, and 

inducing ovulation [99]. The number of granulosa cells and their associated LH receptors are 

directly associated with the amount of P4 that will be produced by the CL after luteinization [99]. 
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Consequently, a lower P4 concentration near the time of ovulation may result in a CL that 

produces more P4, which may enhance pregnancy rates [101]. 

Estradiol benzoate is a useful tool in estrus synchronization protocols in cattle [37, 102]. 

Estradiol can be used to suppress peripheral FSH concentrations, followed by an FSH surge, 

resulting in emergence of a new follicular wave. Similarly, in vivo, E2 is involved with the 

suppression of FSH during follicular selection [37, 102]. Steroid hormones regulate 

gonadotrophin release by both positive or negative feedbacks on the hypothalamus and/or 

anterior pituitary [103]. Progesterone suppresses LH release, whereas E2 has a positive effect on 

LH surges [103]. In that regard, E2 is often given when P4 concentrations are subluteal to induce 

an LH surge and synchronize ovulation. Administration of E2 24 hours after PGF administration 

and progesterone device removal improved synchrony of both estrus and ovulation [48, 104]. 

However, the effects of exogenous E2 on LH pulses in cattle with high P4 concentrations have 

apparently not been reported. 

The objectives of the present study were to determine, in cattle with elevated blood 

progesterone concentrations, whether LH release and ovulation in response to GnRH treatment is 

enhanced by: 1) an increased dose of exogenous GnRH; and 2) by pretreatment with estradiol. 

We hypothesized that higher doses of GnRH and exogenous E2 will enhance LH release and 

ovulatory response to exogenous GnRH in cattle with high blood P4 concentrations. 

 

2.3 Materials and methods 

2.3.1 Cattle 

Crossbred, postpubertal, nulliparous heifers (n=22) were used in Experiments 1 and 2, 

which were conducted from October to December, 2006. These heifers were housed in open-air 

corrals at the University of Saskatchewan Goodale Research Farm (52° North and 106° West). 

All procedures were performed in accordance with the Canadian Council on Animal Care and 

were approved by University of Saskatchewan Protocol Review Committee. 
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2.3.2 Experiment 1 

Heifers at random stages of the estrous cycle were given two doses of a prostaglandin F2α 

analog im (500 µg of cloprostenol; Estrumate, Schering-Plough Animal Health, Pointe-Claire, 

QC, Canada), 13 days apart, to synchronize estrus and ovulation. To detect ovulation, heifers 

were examined by transrectal ultrasonography, once daily for 4 days, with a 7.5 MHz linear-

array transducer (Aloka SSD-900; Tokyo, Japan). Five days after ovulation, the two largest 

follicles were ablated by transvaginal ultrasound-guided follicle puncture, to induce emergence 

of a new follicular wave (1.5 days later [25]). Concurrently, all heifers received a once-used (7 

days) CIDR (Pfizer Canada Inc., Montreal, QC, Canada) and were randomly assigned to receive 

two injections of PGF2α im (Lutalyse®; Pfizer Canada Inc.; Montreal, QC, Canada), 12 hours 

apart (Low- P4 group; n=11), or no treatment (High- P4 group; n=11). It was expected that the 

Low- P4 and High- P4 groups would have sub-physiological (i.e. <2.5 ng/ml; [21]) and high-

physiological plasma P4 concentrations, respectively, during dominant follicle development. Six 

days after follicle wave emergence, heifers received either 100 µg GnRH (Cystorelin, Merial 

Canada Inc., Victoriaville, QC, Canada; n=6 from Low- P4 and n=6 from High- P4 group), or 200 

µg of GnRH (n=5 from Low- P4 and n=5 from High- P4 group).  

Blood samples were collected by coccygeal venipuncture into 10 ml heparinized, vacuum 

tubes (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ, USA) at CIDR insertion and 

at 0, 1, 2, and 3 hours after GnRH treatment. Samples were centrifuged at 1500 x g for 15 

minutes, and plasma was separated and stored at -20 °C until assayed for P4, E2, and LH. 

 

2.3.3 Experiment 2 

 

Similar to Experiment 1, heifers were given two doses of PGF2α im (Lutalyse; Pfizer 

Canada Inc.), 13 days apart, to synchronize estrus and ovulation. Ovulations were detected using 

daily transrectal ultrasonography for 4 days, starting 1 day after the second PGF2α injection. 

Follicular ablations were performed 5 days after ovulation (as in Experiment 1). Heifers received 
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a once-used CIDR (Pfizer Canada Inc.) and were randomly assigned to receive two injections of, 

PGF2α at 12-hour intervals (Low- P4) or no treatment (High- P4). On Day 5.5-day (wave 

emergence = Day 0), half the heifers in each group received 0.25 mg im estradiol benzoate (0.2 

ml of 2.5 mg/mL of estradiol benzoate; Sigma Chemical Co., St. Louis, MO, USA), prepared in 

canola oil), and 8 hours later, all heifers received 100 µg GnRH. Transrectal ultrasonography was 

performed daily with a 7.5 MHz linear-array transducer (Aloka SSD-900) until ovulation and 

emergence of the new follicular wave (after ovulation) was determined. Blood samples were 

collected, processed, and subsequently assayed, as described in Experiment 1. 

 

 

2.3.4 Experiments 1 and 2 combined 

 

Data from both experiments were combined to evaluate LH concentrations following 

treatment with 100 µg of GnRH in heifers with low versus high plasma P4 concentrations. The 

analysis included heifers which received 100 µg of GnRH (Low- P4 and High- P4 groups in 

Experiment 1) and those which did not receive estradiol (Low- P4 and High- P4 in Experiment 

2).  

 

2.3.5 Radioimmunoassays 

 

Plasma LH concentrations were measured in duplicate using a double-antibody 

radioimmunoassay (NIDDK-bLH4) [105]. The range of the standard curve was 0.06 to 8.0 

ng/ml. For the low and high reference sera (means, 0.55 and 1.44 ng/ml, respectively), 

intra-assay coefficients of variation were 9.7 and 6.6%, and inter-assay coefficients of 

variation were 8.8 and 6.9%.   

Plasma P4 concentrations were measured in a single assay (for both Experiments 1 

and 2) using commercial solid-phase kits (Coat-A-Count; Diagnostic Products Corporation, 

Los Angeles, CA, USA). The range of the standard curve was 0.1 to 40.0 ng/ml. The intra-
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assay coefficients of variation were 4.1 and 1.8% for low and high reference sera (means, 

1.77 and 16.51 ng/ml). 

Estradiol was determined using a modified commercial RIA human kit (DPC Coat-

a-Count; Diagnostic Products Corporation). Samples from both experiments were measured 

in the same assay. Intra-assay coefficients of variation were 10.1 and 3.3% for the low and 

high reference sera (means, 18.51 and 53.37 ng/ml). 

 

2.3.6 Statistical analyses 

 

For both experiments, statistical analyses were performed using the Statistical Analysis 

System software package (SAS Learning Edition 4.1, 2006; SAS Institute Inc., Cary, NC, USA). 

Time-series hormone data were analyzed by repeated measures, using a MIXED procedure. The 

main effects for Experiment 1 were progesterone (low vs high), GnRH dose (low vs high), time, 

and their interactions. For Experiment 2, main effects were P4 (low vs high), estradiol (yes vs 

no), time, and their interactions.  

Plasma concentrations of P4 and E2 at CIDR insertion and at GnRH treatment were 

analyzed by one-way ANOVA, where the main variable was low vs high P4. Follicle diameter at 

GnRH treatment, in Experiments 1 and 2, and prior to ovulation (only in Experiment 2) were 

analyzed by two-way factorial ANOVA. The main effects were P4 concentrations and GnRH 

dose (Experiment 1) and estradiol (Experiment 2) and their interactions.   

For Experiment 2, ovulation rates were analyzed by Fisher’s Exact test.  

Data from Experiments 1 and 2 were also combined and analyzed to determine the 

effect of P4 concentration on LH profile. Heifers with low vs high P4 given 100 µg of GnRH 

(Experiment 1) and those with high and low P4 that were not given exogenous E2 

(Experiment 2), were analyzed to determine the effects of P4 on plasma LH concentrations; a 

repeated-measures procedure (MIXED model) was used. 

All values are expressed as mean ± SEM. If there were significant main effects or 

interactions (P ≤ 0.05), Tukey’s post-hoc test for multiple comparisons were used to locate 

differences. 
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2.4 Results   

 

2.4.1 Experiment 1 

Plasma P4 concentrations were not significantly different between groups at CIDR 

insertion (Table 2.1); however, at GnRH treatment, plasma P4 concentrations were lower in the 

Low-P4 group than in the High-P4 group (P<0.01). Furthermore, the Low-P4 group was 

characterized by higher plasma E2 concentrations (P=0.002) and a greater diameter of the largest 

follicle at GnRH treatment (P<0.01).  

For plasma LH concentrations, there was only an effect of time (P<0.0001; Figure 2.1). In 

that regard, LH concentrations peaked 2 hours after GnRH treatment; concentrations at that time 

were significantly different from those at 0 and 3 hours (with no other significant differences).   

 

Table 2.1 Mean (±SEM) plasma concentrations of progesterone (P4) and estradiol (E2) 

and diameter of the largest follicle in heifers with low (Low- P4) or high (High- P4) plasma P4 

concentrations and treated with 100 or 200 µg of GnRH. 

  Low- P4 High- P4 P value 

P4 at CIDR insertion (ng/ml) 3.2 ± 0.3 3.0 ± 0.2 0.14 

P4 at GnRH treatment (ng/ml) 2.4 ± 0.3 6.0 ± 0.3 0.01 

E2 at GnRH treatment (pg/ml) 19.9 ± 0.4 12.5 ± 0.4 0.002 

Diameter of largest follicle at GnRH 

treatment (mm) 11.7 ± 0.9 8.2 ± 0.5 0.01 
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Figure 2.1 Mean (±SEM) plasma concentrations of luteinizing hormone (LH) in 

heifers with low (Low- P4) or high (High- P4) plasma progesterone concentrations and treated 

with 100 or 200 µg GnRH. 

 

2.4.2 Experiment 2 

Plasma P4 concentrations did not differ significantly at the time of CIDR insertion (Table 

2.2). However, at GnRH treatment, plasma P4 concentrations were significantly lower and 

plasma E2 concentrations were significantly higher in the Low- P4 group than in the High- P4 

group. There was an effect of progesterone (P<0.05), but no effect of E2 (P>0.21), nor an 

interaction (P>0.36) on the diameter of the dominant follicle at GnRH treatment, or at the last 

examination prior to ovulation.  
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Table 2.2 Mean (±SEM) plasma concentrations of progesterone (P4) and estradiol (E2), 

diameter of the largest follicle, and ovulatory response in heifers with low (Low- P4) or high 

(High- P4) plasma P4 concentrations and treated with 100 or 200 µg of GnRH. 

End point Low- P4 High- P4 P value 

P4 at CIDR insertion (ng/ml) 5.2 ± 0.6  4.3 ± 0.5  0.21 

P4 at GnRH treatment (ng/ml) 1.8 ± 0.2  8.7 ± 0.8  0.01 

Estradiol at GnRH treatment (pg/ml) 17.8 ± 0.8  9.5 ± 0.9  0.05 

Diameter of largest follicle at GnRH treatment (mm) 13.6 ± 0.6  11.1 ± 0.6  0.027 

Diameter of largest follicle prior to ovulation (mm) 14.0 ± 0.5  11.2 ± 0.4  0.002 

Number of heifers ovulating 11 of 11 7 of 11 0.09 

Interval from GnRH treatment to ovulation (days) 1.0 ± 0.2 1.6 ± 0.3 0.13 

  

There were significant effects of progesterone, estradiol treatment, time, and interactions 

on plasma LH concentrations after GnRH treatment (Figure 2.2). Plasma LH concentrations were 

higher in the Low- P4 than in the High- P4 group, and overall, LH concentrations were higher at 1 

and 2 hours after GnRH, then at 0, 3, or 4 hours. Both E2-treated groups (High- P4 and Low- P4) 

had higher LH concentrations than the High- P4 and no E2 group 2 hours after GnRH treatment, 

whereas the Low- P4 and no E2 groups did not differ from other groups.  

All heifers (11/11) ovulated in the Low- P4 group, whereas only 7/11 heifers in the High- 

P4 group ovulated (P=0.09). Regardless of progesterone concentrations, E2 did not have a 

significant affect on ovulation rates (9 of 12 and 9 of 10 heifers with or without E2 ovulated, 

P=0.6). 
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Figure 2.2 Mean (±SEM) plasma concentrations of luteinizing hormone (LH) in heifers 

with low (Low- P4) or high (High- P4) circulating progesterone concentrations and treated with or 

without estradiol benzoate 8 hours before receiving 100 µg GnRH. 

 

2.4.3 Experiments 1 and 2 combined 

When LH data following GnRH treatment were combined for the two experiments, there 

was an effect of time (P<0.0001) and an interaction between time and progesterone 

concentrations (P<0.01; Figure 2.3). Heifers with low progesterone concentration responded to 

GnRH with a higher LH surge than those with high progesterone concentrations (Figure 2.3). 
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Figure 2.3 Mean (±SEM) plasma concentrations of luteinizing hormone (LH) in heifers 

with low (Low- P4) or high (High- P4) circulating progesterone concentrations and treated with 

100 µg GnRH (data combined for Experiments 1 and 2). 

 

2.5 Discussion 

 

The hypothesis that higher doses of GnRH will be more efficacious in inducing LH 

release was not supported. However, the hypothesis that exogenous E2 will increase LH release 

following the administration of GnRH was supported. Moreover, high concentrations of P4 

suppressed LH release following the administration of GnRH, and tended to decrease ovulation, 

whereas heifers in the High- P4 groups had lower plasma E2 concentrations prior to ovulation in 

both experiments. As expected, plasma P4 concentrations did not differ between groups prior to 

CIDR treatment in both experiments, but circulating P4 concentrations were significantly lower 
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in the Low- P4 group at the time of GnRH treatment. A new follicular wave emerged 

approximately 1 day after follicular ablation in both the high and low P4 groups, consistent with a 

previous report that this procedure increased plasma FSH concentrations and resulted in wave 

emergence approximately 1.5 days after follicle ablation [35]. Therefore, treatments to induce 

different P4 environments and to synchronize emergence of follicular waves were highly 

successful.    

In the present study, high plasma P4 concentrations resulted in a smaller dominant follicle 

at GnRH treatment and prior to ovulation, decreased serum E2 concentrations, and tended to 

reduce ovulation rates. Similarly, elevated P4 concentrations 3 days prior to ovulation resulted in 

a smaller diameter follicle, reduced E2 concentrations, and decreased fertility in other studies [31, 

99]. The effect of P4 on follicle diameter was likely due to suppression of LH secretion; once a 

dominant follicle emerges, its continued growth is largely dependent on LH secretion [6, 12, 35]. 

The suppression of plasma E2 concentrations by P4 has been previously reported and was 

probably associated with a suppression in gonadotrophin secretion [6, 106]. 

Although there was no significant effect of P4 concentration on the LH profile in response 

to GnRH treatment in Experiment 1, there was an effect of P4 on LH release in Experiment 2. 

Unfortunately, prior to Experiment 1, the heifers were not accustomed to frequent handling, 

examinations, and blood collection procedures. Despite efforts to minimize stress, the subjective 

impression was that the heifers were very anxious; high blood cortisol concentrations could have 

suppressed LH release [107, 108].  In contrast, when Experiment 2 was conducted, the heifers 

were much more accustomed to handling, and subjectively appeared to be much less stressed; in 

that experiment, there was a significant effect of P4 on LH release in response to GnRH. 

Unfortunately, stress and elevated cortisol concentrations may have masked an effect of dose of 

GnRH on LH release in Experiment 1. Therefore, the hypothesis that higher doses of GnRH will 

be more efficacious in inducing LH release was not rigorously tested, and should be re-

examined, ideally with cattle that are well accustomed to  handling, examinations, etc. 

Exogenous estradiol benzoate given 8 hours prior to GnRH mimicked the natural increase 

in E2 that occurs prior to the onset of estrus [109], and enhanced LH release in heifers with both 

low and high P4 concentrations. In particular, E2 treatment of heifers with high P4 significantly 
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increased LH release. However, despite higher LH concentrations, ovulation rate was not 

increased.  

When LH data in the two experiments were combined, the effects of P4 concentrations on 

LH release and ovulation rates were more obvious. Lower concentrations of progesterone during 

growth of the ovulatory follicle increased LH pulse frequency, follicle size and ovulation rates 

[6]. Follicles acquire LH receptors at deviation (at 8.5 mm of diameter) [29, 31], and LH 

secretion drives dominant follicle growth. However, when the dominant follicle developed in a 

high P4 environment, the pre-ovulatory follicle diameter was smaller and required a higher LH 

peak to ovulate [52]. Other studies have demonstrated the suppressive effect of P4 on pituitary 

LH release and ovulation [21, 52]. However, based on the current data, we inferred that a small 

dose of estradiol benzoate 8 hours prior to treatment with GnRH will increase LH release, 

although it may not improve ovulation rates.  

In conclusion, increasing the dose of GnRH from 100 to 200 µg did not overcome the 

suppressive effect of progesterone on LH release. However, this should be reconfirmed, since 

stress may have confounded the results. Although increased plasma P4 concentrations during the 

growth of the dominant follicle suppressed the release of LH and tended to decrease ovulation 

rates, the administration of estradiol benzoate prior to the administration of GnRH promoted LH 

release in heifers with elevated plasma P4 concentrations. Therefore, to maximize the LH 

response, GnRH treatment should be given when P4 concentrations are low, or alternatively, 

following pretreatment with estradiol benzoate. However, estradiol treatment is unlikely to 

increase ovulation rate. 
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CHAPTER 3 

 

DURATION OF PROGESTERONE EXPOSURE DURING DEVELOPMENT OF 

THE OVULATORY FOLLICLE DOES NOT AFFECT PREGNANCY RATE IN 

CATTLE 

 

3.1 Abstract  

 

The objective was to determine the effect of length of P4 exposure on the ovulatory 

wave on fertility (pregnancy rate) in beef cattle.  We tested the hypothesis that short-

duration progesterone exposure during the growing and early-static phase of the ovulatory 

follicle is associated with higher fertility than a longer duration of progesterone exposure. 

Three to 5 days after ovulation, beef heifers (n=172) and suckled beef cows (n=193) 

received an intravaginal progesterone-releasing device (CIDR) and 2.5 mg estradiol-17β + 

50 mg progesterone im to induce a new follicular wave. Cattle were allocated to two 

groups, analogous to the ovulatory wave of 3- and 2-wave estrous cycles (short and long 

progesterone exposure groups, for 3 and 6 days after wave emergence, respectively), after 

which prostaglandin F2α was administered and CIDR were removed. Forty-eight hours 

later, all cattle were given 12.5 mg pLH, and artificially inseminated concurrently with 

frozen-thawed semen. Diameter of the two largest follicles and the CL were measured by 

transrectal ultrasonography at the time of CIDR removal, insemination, and 36 hours after 

insemination. Ultrasonographic pregnancy diagnosis was done 38 and 65 days after AI. 

There was no difference in pregnancy rates following short- versus long-duration 

progesterone exposure in heifers (53 vs 47%, P=0.44) or cows (63 vs 58%, P=0.51). 

However, the diameter of the ovulatory follicle at CIDR removal and AI was smaller in 

short- than in long-duration groups (P<0.02), and larger in cows than in heifers (P<0.006). 

In conclusion, although long-duration progesterone exposure during growth of the 

ovulatory follicle resulted in a larger diameter on the last examination before ovulation, 

fertility was not significantly different than in the short-progesterone exposure group. 
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3.2 Introduction  

 

Progesterone suppresses the growth of the dominant follicle [12, 110]. In that 

regard, high circulating progesterone concentrations  suppress LH pulse frequencies [111]. 

However, maintenance of prolonged low progesterone concentrations results in prolonged 

growth and maintenance of the dominant follicle in cattle [101, 110] and sheep [112]. 

Follicles develop in a wave-like pattern [12, 112, 113], with most cattle having 

either 2 or 3 follicular waves during each estrous cycle [112]. However, the preponderance 

and repeatability of 2- or 3-wave cycles remain unclear [6]. The duration of exposure of 

ovulatory follicles to high-progesterone concentrations is substantially different between 2- 

and 3-wave cycles. The duration of the ovulatory wave in 2-wave cycles is approximately 9 

days, whereas in 3-wave cycles, the ovulatory wave lasts only 6 days [12]. Although 

progesterone concentrations are consistently elevated when the ovulatory wave emerges, 

the dominant follicle grows in a high-progesterone environment for approximately 6 days 

in 2-wave cycles, but only 3 days in 3-wave cycles. Thereafter, progesterone concentrations 

are low (for both 2- and 3-wave cycles) for approximately 3 days following luteolysis, 

culminating in ovulation of the dominant follicle [12, 114]. Hence, the interval from wave 

emergence to ovulation and the duration of growth in a high-progesterone milieu are longer 

in 2-wave than 3-wave cycles [115]. It has been suggested that follicles which grow for a 

longer interval in a high-progesterone environment (analogous to 2-wave cycles) may 

produce an aged oocyte [115]. Although fertility was higher in 3-wave than in 2-wave 

cycles in one report [115], others have failed to detect a difference [116], suggesting that 

further study is required. 

The objective was to determine the effect of the duration of progesterone exposure, 

during the growing phase of the ovulatory follicle on pregnancy rate. We hypothesized that 

a short period of progesterone exposure during the growing and early-static phase of the 

dominant follicle (analogous to the ovulatory wave of 3-wave cycles) is associated with 

higher fertility than a long period of progesterone exposure (analogous to the ovulatory 

wave of 2-wave cycles). 
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3.3 Materials and methods 

 

3.3.1 Cattle and treatments 

 

The experiment was conducted between May and September 2006 in pubertal cross-

bred beef heifers (n=172) and suckled, post-partum beef cows (n=193), maintained in 

outdoor corrals at three locations: University of Saskatchewan Goodale Research Farm, 

University of Alberta Research Farm, and Brandon Research Centre. 

All procedures were performed in accordance with the guidelines of the Canadian 

Council on Animal Care and were approved by the University of Saskatchewan Protocol 

Review Committee or the University of Alberta Animal Welfare Committee.  

Animals at random stages of the estrous cycle were given a prostaglandin F2α 

analog, 500 µg of cloprostenol im (Estrumate®, Schering-Plough Animal Health, Pointe-

Claire, QC, Canada), on two occasions, 11 days apart, to synchronize estrus and ovulation 

(ovulation = Day 0). Eight days after the second cloprostenol treatment (Days 3 to 5), all 

cattle received an intravaginal, progesterone-releasing device (CIDR , Pfizer Canada Inc., 

Montreal, QC, Canada) and they were injected im with 1 ml of canola oil containing 2.5 mg 

estradiol-17β + 50 mg progesterone (E2+ P4; Sigma Chemical Co., St. Louis, MO, USA); a 

new ovarian follicular wave was expected to emerge 4 days later [44, 102]. The CIDR and 

functional CL were expected to raise plasma progesterone concentrations to mid-luteal 

values, analogous to the time of emergence of the ovulatory wave in both 2- and 3-wave 

cycles. 

Heifers and cows were randomly allocated into two groups. The short duration of 

progesterone exposure (short progesterone) group was given 25 mg of prostaglandin F2α im 

(PGF2α; Lutalyse, Pfizer Canada Inc.) 3 days after expected emergence of the new 

follicular wave (i.e., 7 days after E2+P4).  The long duration exposure of progesterone (long 

progesterone) group was given PGF2α 6 days after expected emergence of the new 

follicular wave (i.e., 10 days after E2+P4 injection). The CIDR devices were removed at the 

time of PGF2α injection. Forty-eight hours later, all cattle received 12.5 mg porcine 
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luteinizing hormone im (Lutropin-V; Bioniche Animal Health, Belleville, ON, Canada) and 

were concurrently inseminated with frozen-thawed semen. 

 

3.3.2 Ultrasonographic examination 

 

Transrectal ultrasonography was performed using a B-mode ultrasound scanner 

with a 7.5 MHz linear-array transducer (Aloka SSD-900; Tokyo, Japan); diameter of the 

two largest follicles and all visible corpora lutea were measured at CIDR removal at all 

three locations. Follicle and CL diameter were also measured at the time of AI and 36 hours 

after AI to confirm ovulation in a subset of animals at the University of Saskatchewan 

Goodale Research Farm (n=37 heifers; n=57 cows). Ultrasonographic pregnancy diagnosis 

was performed at all three locations 38 days after AI. An additional ultrasonographic 

examination was conducted in cows and heifers from the University of Saskatchewan 

Goodale Research Farm at 65 days after AI to determine pregnancy loss. 

 

3.3.3 Blood sampling and radioimmunoassay  

 

Blood samples were collected from the coccygeal vessels into 10 ml heparinized 

tubes (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ, USA) at CIDR removal 

and at AI to determine plasma concentrations of LH and progesterone. Blood samples were 

centrifuged (1500 x g for 15 minutes), and plasma was stored at -20 °C until analyzed.  

Plasma LH concentrations were measured  in duplicate samples in a single assay, 

using a validated, double-antibody radioimmunoassay [105]. The range of the standard 

curve was 0.06 to 8.0 ng/ml and the intra-assay coefficients of variation were 6% for the 

low-reference serum (1.02 ng/ml) and 7% for the high-reference serum (2.18 ng/ml).  

Plasma progesterone concentrations were measured in a single assay using 

commercial radioimmunoassay kits (Coat-A-Count; Diagnostic Products Corporation, Los 

Angeles, CA, USA). The range of the standard curve was 0.1 to 40 ng/ml. The intra-assay 

coefficients of variation were 6% for low-reference serum (1.84 ng/ml), 6% for medium-

reference serum (3.5 ng/ml), and 6% for high-reference serum (17.06 ng/ml). 
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3.3.4 Statistical analyses 

 

Statistical analyses were performed using the Statistical Analysis System software 

package (SAS Version 9.0; SAS Institute Inc., Cary, NC, USA). The effect of treatment 

(long and short progesterone) and parity was compared for diameters of the largest follicle 

and CL and for plasma concentrations of LH and progesterone, by 2-way ANOVA using 

Proc MIXED. Normality of residuals was tested with a Shapiro-Wilk test (P>0.05 was 

considered a normal distribution). Values are expressed as mean ± SEM.  

Pregnancy data were analyzed by 2-way factorial with randomized complete block 

design (Fixed factors: length of progesterone exposure, parity, length progesterone 

exposure*parity interaction; Random factor: location). Data collected at one location 

(follicle diameter at AI) were analyzed by 2x2 factorial design (length of progesterone 

exposure, parity and length of progesterone exposure *parity interaction). Tukey’s post-hoc 

test for multiple comparisons was used if main effects or their interaction were significant 

(P ≤ 0.05). 

Dominant follicle growth during the pre-ovulatory period was determined by the 

difference in diameter of dominant follicle between CIDR removal and AI, and was also 

analyzed by 2-way ANOVA.  

For plasma LH data, concentrations 3 times higher than the standard deviation of 

the mean LH concentration at the time of AI (i.e., cattle with an endogenous LH peak) were 

excluded from the analysis. 

Animals which had CL <15 mm in diameter and plasma progesterone <1.5 ng/ml at 

CIDR removal were considered outliers; two analyses of pregnancy rates were performed 

(excluding and including this group of cattle).  

All dichotomous variables (pregnancy rates at 38 days post-AI; pregnancy loss; 

diameter CL < 15 mm, and progesterone concentrations <1.5 ng/ml; ovulation rate; and 

detection of early ovulation) were analyzed using logistic regression with the Gen Mod 

procedure.  
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3.4 Results 

 

3.4.1 Dominant follicle size and growth 

 

The diameter of the ovulatory follicle at CIDR removal and AI were larger in long-

progesterone than in short-progesterone cows (Figure 3.1), but did not differ in heifers 

(Figure 3.1). The diameter of the ovulatory follicle at CIDR removal and AI were larger in 

long-progesterone cows than long-progesterone heifers (Figure 3.1). Dominant follicle 

growth during the pre-ovulatory period did not differ between progesterone treatment 

groups (P=0.61), but was higher in cows than heifers (P=0.0005).  
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Figure 3.1 Mean (+ SEM) follicle diameter at CIDR removal and AI in cows and 

heifers exposed to long- or short-duration progesterone environments during development 

of the ovulatory wave. a,b- Values without a common superscript were different (P<0.05).  

 

3.4.2 Diameter of CL and plasma progesterone concentration 

 

Diameter of the CL at CIDR removal was greater in cows in the short progesterone 

group than in cows and heifers in the long progesterone groups, but not in heifers in the 

short progesterone group (Figure 3.2). There was no difference in CL diameter at CIDR 

removal between heifers in the short and long progesterone groups (Figure 3.2).  
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Figure 3.2 Mean (+ SEM) diameter of the CL at CIDR removal and at AI in heifers 

and/or cows exposed to long- or short-duration progesterone environments during 
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development of the ovulatory wave. a,b- Values without a common superscript were 

different (P<0.05).  

 

Plasma progesterone concentrations at CIDR removal were not different between 

groups (4.8 ± 0.8 in short progesterone heifers, 4.9 ± 0.8 in long progesterone heifers, 4.3 ± 

0.6 in short progesterone cows and 3.2 ± 0.6 in long progesterone cows; P=0.3, 0.3 and 0.2 

for group, location, and their interaction, respectively). However, progesterone 

concentrations at CIDR removal were higher in heifers (4.9 ± 0.7 ng/mL) than in cows (3.8 

± 0.6 ng/mL; P=0.02). Progesterone concentrations at AI were less than <0.5 ng/mL in all 

groups, and did not differ (0.4 ± 0.2 ng/mL in short progesterone heifers, 0.3 ± 0.2 ng/mL 

in long progesterone heifers, 0.4 ± 0.1 ng/mL in short progesterone cows and 0.3 ± 0.1 

ng/mL in long progesterone cows, P=0.29, 0.64, 0.7, and 0.3 for group, parity, interaction, 

and location).  

A greater proportion of cows in the long progesterone group had a CL <15 mm in 

diameter and plasma progesterone concentrations <1.5 ng/mL at CIDR removal (21.4%; 

21/98) than cows in the short progesterone group (8.4%; 8/95), heifers in the long 

progesterone group(3.5%; 3/86), and heifers in the short progesterone group (1.2%; 1/86; 

P=0.005, 0.0006, and 0.9 for group, parity, and their interaction, respectively).  

 

3.4.3 Plasma LH concentrations and ovulation rates 

 

Plasma LH concentrations at CIDR removal did not differ by group, parity or 

interaction. However, LH concentrations at AI were higher in heifers in the long 

progesterone group than in the other groups (Figure 3.3).   
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Figure 3.3 Mean (+ SEM) plasma concentrations of LH at CIDR removal and at AI 

in heifers and cows exposed to long- or short-duration progesterone environments during 

development of the ovulatory wave. a,b- Values without a common superscript were 

different (P<0.05)   

 

There were no significant differences between groups, parity or interaction, for the 

proportion of cattle that ovulated by 36 hours after pLH treatment (P=0.89, 0.23 and 0.6, 

respectively). Ovulation rates were 87% (41/47) in the long progesterone group (3 cows 

and 4 heifers did not ovulate by  36 hours after AI), Ovulation rates were 88.9% (16/18) in 

long progesterone heifers, 84% (16/19) in short progesterone heifers, 89.6% (26/29) in long 

progesterone cows and 89.3% (25/28) in short progesterone cows. For early ovulations (i.e., 

ovulations between CIDR removal and AI, P=0.32, 0.19, 0.9, respectively), there were no 

difference due to group, parity, or their interaction. One cow ovulated before AI in the short 

progesterone group and 3 heifers ovulated before AI in the long progesterone group. 
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3.4.4 Pregnancy rates 

 

There were no differences in pregnancy rates between treatment groups (P=0.32, 

Table 3.1), parities (P=0.6, Table 3.1), or interactions (P=0.9). Location did not affect 

pregnancy rates at 38 days (P=0.6), and there was no difference in pregnancy loss between 

groups, parities or interactions (P=0.7; 0.85, 0.8) at the University of Saskatchewan 

Research farm. The overall incidence of pregnancy loss was 7.4% (1/19 in short 

progesterone heifers, 1/19 in long progesterone heifers, 3/28 in short progesterone cows, 

and 1/29 in long progesterone cows). 

When pregnancy rates at 38 days were analyzed, excluding cattle with <1.5 ng/ml 

of progesterone and CL diameter <15 mm at CIDR removal, there were no differences due 

to group (P=0.5), parity (P=0.3), interaction (P=0.3), or location (P=0.9). 

 

Table 3.1 Pregnancy rates in cows and heifers exposed to a short or long 

progesterone environment during development of the ovulatory wave. 

Pregnancy rate Short progesterone Long progesterone 

Cows 59/94 (63%) 58/99 (58%) 

Heifers 45/85 (53%) 41/87 (47%) 

Total 104/179 (58%) 99/186 (53%) 

 

3.5 Discussion 

 

The duration of progesterone exposure during ovulatory wave development did not 

significantly affect pregnancy rates. In that regard, the dominant follicle of both short 

progesterone (analogous to the ovulatory wave of 3-wave cycles) and long progesterone 

groups (analogous to the ovulatory wave of 2-wave cycles) ovulated, resulting in 

acceptable pregnancy rates after fixed-time AI, with a low incidence of  subsequent 

pregnancy loss. Therefore, the hypothesis that short-duration progesterone exposure during 
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the growing and early-static phase of the ovulatory follicle is associated with higher fertility 

than long-duration exposure was not supported.    

Although diameter of the ovulatory follicle at CIDR removal and AI were larger in 

cows in the long progesterone groups, pregnancy rates did not differ between groups, or 

between parities. Thus, follicles from heifers and from short progesterone cows were 

smaller, but they had the same potential for ovulation, fertilization, and maintenance of 

pregnancy. Cows have been reported to have larger ovulatory follicles than heifers [117, 

118], and cattle from the long progesterone group had a follicular growing phase 3 days 

longer than those in the Short progesterone groups. Ovulatory follicles <11 mm in diameter 

at AI have had reduced pregnancy rates when ovulation was induced with GnRH [99]. In 

that regard, larger follicles contained more granulosa cells, which after luteinization 

resulted in a larger CL that produced more progesterone [99, 119]. However, in the present 

study, it was noteworthy that preovulatory follicles from all cattle in all groups exceeded 11 

mm at AI; this may account for our inability to detect an effect of follicle diameter at AI on 

pregnancy rates.  

 The duration of follicle dominance has also been reported to affect fertility [16, 

120]. In beef heifers, 4 days of follicle dominance resulted in the highest pregnancy rates; 

with increasing periods of follicular dominance, fertility decreased gradually until 9 days of 

dominance and thereafter, fertility declined rapidly [16]. In that regard, prolonged follicular 

dominance results in formation of a persistent dominant follicle, with an aged oocyte and 

compromised developmental competence [16]. When LH release was delayed in a 

superstimulation protocol by prolonging high progesterone concentrations to allow smaller 

follicles to fully mature, the number of ova/embryos retrieved was increased, but embryo 

production was either not affected or it was decreased [111]. Conversely, it has been 

suggested that prolonged maintenance of the oocyte in the follicular environment could be 

beneficial to developmental competence, since it could accumulate more maternal mRNA, 

which is important for early embryonic development [111, 121]. However, in the present 

study, shortening or extending the follicular growing phase (and dominance) with 

exogenous progesterone did not significantly affect pregnancy rates. 
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Cows in the Long progesterone group had lower progesterone concentrations and 

smaller CL diameters at CIDR removal, suggesting that some of these cattle were 

undergoing luteolysis. This may have been an effect of postpartum interval, since short 

cycles (approximately 8 days) are observed in suckled beef cows after parturition [97]. To 

avoid the effect of short cycles on results, animals which had progesterone concentrations 

<1.5 ng/mL at time of CIDR removal were removed from analyses of pregnancy rates. 

However, pregnancy rates still did not differ between groups. Animals from all groups 

responded to PGF treatment and progesterone concentrations were baseline at the time of 

AI.    

In the present study, plasma LH concentrations at CIDR removal were not 

significantly affected by group or parity. However, LH concentrations at AI in heifers in the 

long progesterone group were significantly higher than in the other groups, suggesting that 

an LH surge was already occurring at that time. In other studies in heifers [41] and cows 

[37] in which treatments were similar to the short progesterone group in this study, estrous 

behavior was observed 52 hours after CIDR removal . Animals usually initiate estrus 

approximately 2 hours after their LH peak; therefore animals from that study might have an 

LH peak 50 hours after CIDR removal. Similarly, when norgestomet ear implants were left 

in place for 8 days after wave emergence, beef heifers showed estrous behavior 39 hours 

after ear implant removal (an LH peak approximately 37 hours after norgestomet removal) 

[16]. Therefore, a longer duration of progesterone/progestin exposure during growing phase 

of ovulatory follicle can result in a short interval to LH release in heifers. 

Most pregnancy loss occurs in the first 45 days of pregnancy [120]. The incidence 

of pregnancy loss between 38 and 65 days of pregnancy in the current study was 7.4%, 

similar to previous reports [122], with no significant difference between groups or parities.  

In summary, although there were differences in follicular, CL and hormone profiles 

when ovulatory wave was extended by 3 days with exogenous progesterone, there was no 

apparent affect on oocyte competence or pregnancy rates. 



 44

CHAPTER 4 

 

EFFECT OF DURATION OF PROGESTERONE EXPOSURE DURING THE 

GROWING PHASE OF OVULATORY FOLLICLES ON OOCYTE COMPETENCE 

IN SUPERSTIMULATED COWS 

 

4.1 Abstract 

 

 The objective was to determine the effect of duration of progesterone exposure, 

during the growing phase of ovulatory follicles, on oocyte competence in superstimulated 

cows. We tested the hypotheses that oocyte competence in superstimulated cows is 

improved by short-duration progesterone exposure during follicular growth, but is not 

affected by FSH starvation at the end of superstimulatory treatment. Forty cross-bred beef 

cows (weight, 515 to 795 kg) were used. Transvaginal ultrasound-guided ablation of 

follicles ≥5 mm in diameter was done 5 to 8 days after ovulation, and a progesterone-

releasing device (CIDR) was placed intravaginally. Cows were allocated randomly to three 

groups; those in the short P4 and FSH starvation groups received 8 injections of FSH (each 

was equivalent to 25 mg of NIH-FSH-P1) at 12-hour intervals, whereas the long P4 group 

received 14 injections of FSH. In all groups, FSH treatment started on the day of wave 

emergence (Day 0). Cows in the short P4 group were given 25 mg of PGF twice, (12 hours 

apart), on Day 3, whereas cows in the 2 other groups received two injections of PGF on 

Day 6. In all cows, the CIDR were removed at the time of second PGF treatment; 25 mg 

pLH was given im 24 hours after CIDR removal and cows were inseminated 24 and 36 

hours later. Reproductive tracts were collected at slaughter, 4 days after insemination and 

ova/embryos were evaluated and cultured for 10 days to determine developmental 

competence. Data from cows that failed to ovulate (6 of 13 and 1 of 13 in the FSH 

starvation and long P4 groups, respectively), were excluded from the analyses. When 

compared to the short P4 or long P4 groups, the FSH starvation group had fewer CL (i.e. 

ovulations; mean±SEM, 11.6±2.2, 15.4±3.0, and 2.5±1.2, respectively; P=0.001), and 

fewer ova or embryos (5.9±1.3, 6.7±1.5, and 0.9±0.6, respectively; P<0.05) at slaughter. 
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However, the proportion of Grades 1 and 2 embryos 4 days after insemination was higher 

in the short P4 and FSH starvation groups than in the long progesterone group (60 of 69, 9 

of 11, and 31 of 82, respectively; P<0.001), with no significant difference in embryo 

quality between long and short P4 groups 7, 9, and 10 days after AI (there were too few 

embryos in the FSH starvation group to evaluate). In conclusion, the hypothesis that oocyte 

competence in superstimulated cows is improved by short-duration progesterone exposure 

during follicular growth was not supported, whereas the hypothesis that oocyte competence 

is not affected by FSH starvation at the end of superstimulatory treatment was not 

adequately tested. Notwithstanding, FSH starvation substantially reduced the ability of 

superstimulated follicles to ovulate.  

 

4.2 Introduction 

 

Ovarian follicles in cattle develop in a wave-like pattern, with 2 or 3 follicular 

waves in each estrous cycle [12, 123]. The major difference between 2- and 3-wave cycles 

is the length of growing phase of the ovulatory follicle [5]; the duration of the ovulatory 

wave is 3 days longer in 2-wave cycles (6 versus 9 days [5]). Therefore, the ovulatory 

oocyte is 3 days older (relative to wave emergence) in 2-wave cycles [14].  

In cattle with 2 waves, the ovulatory follicle is exposed to high progesterone 

concentrations (from a functional CL) for 3 days longer than the ovulatory follicle in cattle 

with 3 waves [14]. Progesterone suppresses GnRH and LH in a dose-specific manner [12]. 

A pre-ovulatory peak of LH is required for the oocyte to reactivate nuclear maturation and 

achieve developmental competence; however, the  LH peak could be delayed 3 days in 

females with 2-wave cycles (relative to wave emergence) [92].  

Although pregnancy rates in 2- versus 3-wave cycles have been compared [17, 115], 

the results were contradictory, and the effect of number of waves on fertility remains 

unclear. In addition, the effect of the duration of the growing phase of the ovulatory follicle 

in superstimulated cows has not been reported. Jaiswal and co-workers (2006) [2, 6] 

studied oocyte competence after superstimulatory treatment under the influence of various 

progesterone concentrations. However, in both 2- and 3-wave cycles, circulating 
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progesterone concentrations declined and remained subluteal for approximately 3 days 

prior to ovulation [14]. Therefore, the difference between 2- and 3-wave cycles is in the 

duration of progesterone exposure and not in progesterone concentrations [14].  

For many years, gonadotrophin treatments have been used in multiple ovulation and 

embryo transfer programs  [81, 111]; however, a major limitation is the extreme variability 

in the superovulatory response [26, 113]. On average, five to six transferable embryos are 

produced per donor [71, 72]. In one study, 30% of 2048 cows produced 70% of the 

embryos, whereas 24% cows failed to produce any embryos [71]. It has been postulated 

that one of the major determinants of the superstimulatory response is the number of 

follicles available at the beginning of a wave [9], and when FSH treatment is initiated in 

relation to wave emergence [79]. However, in superstimulated cows, it is not known 

whether a shorter duration of progesterone exposure during the growing phase of the 

ovulatory wave will increase the superovulatory response or embryo quality.  

Superstimulatory response may also be affected by treatment protocol, total dose, 

batch, purity (i.e. LH content), and type of gonadotrophin [26]. In one study, increasing the 

interval from the end of gonadotrophin treatments to removal of a progesterone-releasing 

device resulted in a decreased ovulatory response [6]. However, this process, referred to as  

FSH starvation, was done in a prolonged, low-progesterone environment and it is unclear 

whether the loss of the capacity to ovulate was due to a lack of FSH, or to the formation of 

large, persistent follicles.  

The objective of the present study was to determine the effect of duration of 

progesterone exposure, during the growing phase of ovulatory follicles, on oocyte 

competence in superstimulated cows. We tested the hypotheses that oocyte competence in 

superstimulated cows: 1) is improved by short-duration progesterone exposure during 

follicular growth; but 2) is not affected by FSH starvation at the end of a superstimulatory 

treatment protocol.  
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4.3 Materials and methods  

 

4.3.1 Animals and treatments 

  

The experiment was conducted at the University of Saskatchewan Goodale 

Research Farm (52°N and 106°W), during February and March, 2007. Forty cross-bred 

beef cows, weighing 515 to 795 kg, and maintained in outdoor pens, were used. All 

procedures were conducted in accordance with the guidelines of the Canadian Council on 

Animal Care and were approved by University of Saskatchewan Protocol Review 

Committee.  

Cows at random stages of the estrous cycle were given 2 doses of prostaglandin F2α 

im (500 µg of cloprostenol; Estrumate, Schering-Plough Animal Health, Pointe-Claire, PQ, 

Canada), at 14-day intervals, to synchronize estrus and ovulation. Transvaginal ultrasound-

guided ablation of follicles ≥5 mm in diameter was done 5 to 8 days after ovulation, to 

synchronize emergence of a new follicular wave 1 day later [25]. An intravaginal, 

progesterone-releasing device, CIDR-B (Pfizer Canada Inc., QC, Canada) was placed in the 

vagina immediately after follicle ablation. 

The cows were allocated randomly to three groups (Figure 4.1): short P4 (n=14), 

FSH starvation (n=13), and long P4 (n=13). Starting 1 day after follicle ablation, i.e. on the 

expected day of wave emergence (Day 0), cows in the short P4 and FSH starvation groups 

received 8 im injections of FSH (Folltropin-V; Bioniche Animal Health, Belleville ON, 

Canada; each equivalent to 25 mg of NIH-FSH-P1) at 12-hour intervals over 4 days, 

whereas the long P4 group received 14 im injections of FSH, over 7 days. Cows in the short 

P4 group were given 2 im injections of 25 mg of prostaglandin-F2α (Lutalyse®; Pfizer 

Canada Inc.) at 12-hour intervals on Day 3, whereas the FSH starvation and long P4 groups 

received 2 injections of 25 mg im of prostaglandin-F2α on Day 6. In all cows, the CIDR 

were removed at the time of the second PGF2α treatment. Cows were given 25 mg pLH im 

(Lutropin-V, Bioniche Animal Health) 24 hours after CIDR removal, and artificially 

inseminated with frozen-thawed bull semen 24 and 36 hours later. Ovulations were 
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monitored by transrectal ultrasonography, and a third AI was done 48 hours after LH 

treatment if ovulations were not completed at that time. 
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Figure 4.1 Experimental protocols used to test the effect of length of growing phase 

of the ovulatory follicles and FSH starvation on oocyte competence after superstimulatory 

treatment in cows. Five to 8 days after ovulation, follicles ≥5 mm were ablated and a CIDR 

was placed intravaginally. FSH treatment started at wave emergence (Day 0). Short P4 and 

FSH starvation groups received 8 injections of FSH, whereas the long P4 group received 14 

injections of FSH. At Day 3, the short P4 group received PGF, whereas the other groups 

received PGF on Day 6. CIDR were removed at the time of PGF, LH was given 24 hours 
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after CIDR removal, cows were inseminated 24 and 36 hours later, and reproductive tracts 

were collected at slaughter, 4 days after AI. 

  

4.3.2 Ultrasonographic examination 

 

Transrectal ultrasongraphic imaging was performed using a B-mode ultrasound 

scanner with a 7.5 MHz linear-array transducer (Aloka SSD-900; Tokyo, Japan). To 

evaluate the number and size of ovulatory follicles, ultrasonography was done at the time of 

8th FSH injection, and at CIDR removal (for the short P4 group, those events were 

concurrent). Cows were also examined 12 hours after the second AI to detect ovulation; 

those with at least 2 follicles ≥7 mm in diameter were re-inseminated 48 hours after LH 

treatment.  

The differences in number of follicles at CIDR removal and at 12 hours after the 

second AI were used to estimate the number of ovulations that occurred during this 

interval.  

 

4.3.4 Embryo recovery 

 

Cows were transported to an abattoir in Moose Jaw, SK, Canada, (approximately, 

250 km from the location of the experiment) 3 days after the first AI. The cows were killed 

4 days after AI; reproductive tracts were collected after slaughter, placed in polyethylene 

bags, kept at 30 °C, and transported to the laboratory at University of Saskatchewan within 

3 hours after collection. The numbers of corpora lutea and persistent (unovulated) follicles 

were counted to estimate number of ovulations. Oviducts and the uterine horns were 

flushed separately to recover embryos. The oviduct was dissected free from the 

mesosalpinx and separated from the uterus, leaving approximately 1 cm of the tip of the 

uterine horn. An 18 gauge, 1.5 inch blunt needle was attached to the infundibulum with 

tissue forceps and 20 mL of collection medium was injected slowly; the fluid was collected 

from the uterine tip in a Petri dish for direct searching. The collection medium was 

comprised of Delbecco’s phosphate buffer saline (dPBS, Invitrogen Corporation, catalog 
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14190-144, Burlington, ON, Canada) and 2% fetal calf serum. To flush the uterus, the base 

of each uterine horn was incised and a 60 ml catheter-tipped syringe filled with collection 

medium was placed in the incision. A large tissue clamp was placed just behind the syringe, 

preventing medium from flowing into the body of the uterus. Collection medium (60 ml for 

each uterine horn) was passed through the tip of each uterine horn and filtered through a 70 

micron embryo filter (Emcon filters; Veterinary Concepts; Spring Valley, WI, USA). 

Filters were washed with collection medium and sprayed with 20 mL dPBS using a syringe 

and a 25 gauge needle (to wash embryos into two petri dishes) and 0.2 ml fetal calf serum 

was added to each of the two petri dishes. Petri dishes were labeled and ova/embryos were 

searched using a stereo-microscope at 10X magnification. Recovered ova/embryos were 

evaluated for stage and quality at 50X magnification using International Embryo Transfer 

Society (IETS) criteria [124]. All recovered embryo/ova were placed in drops of embryo 

culture medium covered with mineral oil. Embryo culture medium primarily contained 

NaCl, KCl, sodium pyruvate, NaHCO3, BME essential amino acids, MEM nonessential 

amino acids, L-glutamic acid, bovine serum albumin and gentamicine (CR1aa + 5% fetal 

calf serum) [125]. From 1 to 8 embryos were cultured per drop, using 5 µl of medium per 

embryo. The petri dishes with embryo in culture medium were placed in an incubator with 

5% CO2, 5% O2 and 90% N2 at 38.5 0C. Cleavage was evaluated 4 days after AI 

(immediately after recovery from the reproductive tract), and following in vitro culture,  

blastocyst and hatching rates were evaluated 7, 9, and 10 days after the first AI 

(approximately 6, 8, and 9 days after fertilization). 

 

4.3.3 Blood sampling and radioimmunoassays 

 

To estimate progesterone and LH concentrations, blood samples were collected (by 

venipuncture) from the caudal coccygeal vessels into 10 ml heparinized, evacuated tubes 

(Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ, USA), concurrent with the 

first and sixth FSH treatments, first PGF, and pLH treatments. Blood samples were 

centrifuged at 1500 x g for 15 minutes, and plasma was separated and stored at -20 °C until 

assayed.  



 51

Plasma LH concentrations were measured in duplicate using a double-antibody 

radioimmunoassay (NIDDK-bLH4) [105]. The range of the standard curve was 0.06 to 8.0 

ng/ml. Intra-assay coefficients of variation were 3.4 and 5.6% for the low and high 

reference sera (means of 0.94 and 2.08 ng/ml, respectively).  

Progesterone concentrations were measured in a single assay using solid-phase 

commercial kits (Coat-A-Count; Diagnostic Products Corporation, Los Angeles, CA, 

USA). The range of the standard curve was 0.1 to 40.0 ng/ml. The intra-assay coefficients 

of variation were 4.3, 3.3, and 3.4% for low, medium, and high reference sera (means, 1.79, 

3.64, and 16.81 ng/ml, respectively). 

  

4.3.5 Statistical analyses 

 

Statistical analyses were performed using Statistical Analysis System software 

package (SAS Learning Edition 4.1; SAS Institute Inc., Cary, NC, USA). Numerically 

dependent variables (number of follicles at the 8th dose of FSH; number of follicles ≥7 mm 

at the 8th dose of FSH; number of follicles at CIDR removal; number of follicles ≥7 mm at 

CIDR removal; number of follicles 12 hours after second AI; number of follicles ≥7 mm at 

12 hours after second AI; difference between number of follicles ≥7 mm at CIDR removal 

and at 12 hours after AI; and number of CL at slaughter) were analyzed by one-way 

ANOVA, using a general linear model procedure (GLM). Normality of residuals was tested 

basing on Shapiro-Wilk test (P values >0.05 were considered nonsignificant). Numbers of 

CL at time of slaughter were used to determine ovulation rates.  

Progesterone and LH concentration were analyzed by repeated measures (MIXED 

procedures). Tukey’s post-hoc tests for multiple comparisons were performed if main 

effects were significant (P ≤ 0.05). The values are expressed as mean ± SEM. Proportional 

variables (ova/embryo ratio; proportion of total and different grades of morula on Day 4; 

proportion of early blastocyst, blastocyst or expanded blastocyst on Days 9 and 10; 

proportion of transferable embryos (≥ early blastocyst from Grades 1, 2, and 3) were 

compared using Chi-Square or Fisher’s exact test. Cows that failed to ovulate were 

excluded from the analysis. 
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4.4 Results 

 

4.4.1 Follicular dynamics 

 

There were tendencies for differences among groups for the number of follicles 

present at the 8th FSH treatment; however, the only significant difference was more follicles 

≥7 mm in diameter at CIDR removal in the long P4 group compared to the FSH starvation 

group (Table 4.1). More ovulations occurred between CIDR removal and 12 hours after the 

second AI in the long P4 group than in the FSH starvation group (P=0.02), whereas the 

short P4 group did not differ from either (Table 4.1). Several cows in all three groups had at 

least 2 follicles ≥7 mm at 12 hours after second AI and they received a third insemination 

48 hours after pLH administration (9/14, 13/13, and 4/14 in short P4, FSH starvation, and 

long P4 groups, respectively).  
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Table 4.1 The effect of duration of progesterone exposure and FSH starvation on the 

mean (± SEM) number of follicles during superstimulatory treatments in cows. 

 Short P4  

FSH 

starvation Long P4 P value 

No. follicles n = 14 n = 13 n = 13 - 

8th dose of FSH     

  ≥3 mm 18.6 ± 2.5  19.2 ± 1.8  25.4 ± 2.1  0.06 

  ≥7 mm  10.5 ± 2.0 5.7 ± 1.2 9.6 ± 1.5 0.10 

CIDR removal     

  ≥3 mm 18.6 ± 2.5 22.5 ± 2.1 25.3 ± 2.5 0.14 

  ≥7 mm  10.5 ± 2.0a 9.1 ± 1.8a 18.1 ± 2.7b 0.02 

12 hours after second AI     

  ≥3 mm 15.8 ± 4.2 15.8 ± 3.5 13.33 ± 2.3 0.88 

  ≥7 mm  5.4 ± 1.6 9.0 ± 2.1 5.2 ± 1.5 0.20 

Estimated number (%) of  

ovulations between CIDR 

removal and 12 hours after 

second AI  5.1 (71.3%)ab 0.1 (1.1%)a 12.9 (48.6%)b 0.02 
a,b- Within a row, groups without a common superscript differed (P<0.05)  

 

4.4.2 Plasma hormone concentrations  

 

For plasma progesterone concentrations there was only a significant effect of time 

(Figure 4.2); concentrations were very low at the time of pLH treatment. However, for 

plasma LH concentrations, there was an effect of time and a group by time interaction. The 

long P4 group had a significantly higher plasma LH concentration compared to the short P4 

group at the time of pLH treatment (Figure 4.3).  
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Figure 4.2 Mean (+ SEM) plasma progesterone concentrations in cows subjected to 

a short or long progesterone exposure, or FSH starvation, during superstimulatory 

treatment. a,b- Values without a common superscript were different (P<0.05)   
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Figure 4.3 Mean (+ SEM) plasma LH in cows subjected to a short or long 

progesterone exposure, or FSH starvation, during superstimulatory treatment. a,b- Values 

without a common superscript were different (P<0.05)   

 

 

4.4.3 Ovulation and ova/embryo recovery 

 

In the FSH starvation group, 6 of 13, and in the long P4 group, 1 of 13 cows failed 

to ovulate (no follicles disappeared between the CIDR removal and 12 hours after the 

second AI and no new CL detected at slaughter) and were excluded from further analysis. 

Fewer ovulations were detected in the FSH starvation group than either the short P4 or long 

P4 groups (P=0.001; Table 4.2), whereas there was no significant difference between the 

latter two groups.  
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Most of the embryos were recovered from oviduct. Nine ova/embryos were collect 

from the uterus of one cow in the short P4 group, whereas 23 ova/embryos were collected 

from the uteri of three cows in the long P4 group. Total recovery rate varied among groups, 

with the lowest recovery rate in the FSH starvation group (Table 4.2). In the Short P4 and 

FSH starvation groups, the majority of the embryos were Grades 1 or 2, whereas the 

majority of embryos in the Long P4 group were Grades 3 or 4 (Table 4.2). 

 

Table 4.2 Mean (+SEM) numbers of ovulations and ova/embryos recovered at 

slaughter 4 days after insemination in cows subjected to a short or long progesterone 

exposure, or FSH starvation, during superstimulatory treatment. 

 Short P4 FSH starvation Long P4 

P 

value 

No. cows 14 13 13 - 

No. ovulations 11.6 ± 2.2a 2.5 ± 1.2b 15.4 ± 3.0a 0.001 

Total ova/embryos recovered 5.9 ± 1.3a  0.9 ± 0.6b 6.7 ± 1.5a 0.048 

Recovery rate (%) 50.9a 36.0b 43.5a 0.048 

No. uncleaved ova (%) 13/82 (15.9)  1/12 (8.3)  5/87 (5.7) 0.09 

No. cleaved ova (%) 69/82 (84.1)  11/12 (91.7) 82/87 (94.2) 0.09 

Grades 1 or 2 embryos (%) 87.0a 81.8a 37.8b 0.0001 

Grades 3 or 4 embryos (%) 13.0a 18.2a 62.2b 0.0001 

 a,b- Within a row, values without a common superscript differed (P<0.05)  

 

There was no significant difference between Short P4 and Long P4 groups for 

embryo development at 7, 9, or 10 days after insemination (Table 4.3). Results from FSH 

starvation were excluded, due to a paucity of embryos. 
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Table 4.3 Embryo development in culture in cows subjected to a short or long 

progesterone exposure during superstimulatory treatment. 

Interval after AI  Short P4 Long P4 P value 

7 days    

≥ Morulas 17/69 (24.6%) 15/82 (18.3%) 0.39 

Grades 1 or 2 morulas  0/69 (0%)  2/82 (2.4%) 0.19 

Grades 3 or 4 morulas  17/69 (24.6%) 13/82 (15.8%) 0.19 

9 days    

Early blastocyst 10/69 (14.5%) 16/82 (19.5%) 0.41 

Blastocyst  9/69 (13.0%) 15/82 (18.3%) 0.38 

≥ Expanded blastocyst  4/69 (5.8%)  7/82 (8.5%) 0.52 

Transferable embryos   7/69 (10.1%) 14/82 (17.1%) 0.22 

10 days    

≥ Early blastocyst  9/69 (13.0%) 15/82 (18.3%) 0.38 

≥ Blastocyst  9/69 (13.0%) 16/82 (19.5%) 0.29 

≥ Expanded blastocyst  8/69 (11.6%)  9/82 (11.0%) 0.90 

Transferable embryos   7/69 (10.1%) 14/82 (17.1%) 0.22 

 

 

4.5 Discussion 

 

Oocytes in follicles that grew and developed under a prolonged period of 

progesterone exposure during superstimulation did not have compromised competence. In 

that regard, both Short P4 and Long P4 groups (analogous to 3-wave and 2-wave cycles, 

respectively) were similarly capable of producing equal numbers of healthy transferable 

embryos. Therefore, the hypothesis that oocyte competence in superstimulated cows is 

improved by short-duration progesterone exposure during follicular growth was not 

supported. However, FSH starvation led to a substantial reduction in the in the capacity of 
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follicles to ovulate. Therefore, the hypothesis that oocyte competence is not affected by 

FSH starvation at the end of superstimulatory treatment was not adequately tested.  

During the superstimulatory treatment, the long P4 group had more follicles ≥7 mm 

at CIDR removal than the FSH starvation group; this was attributed to the difference in 

total dose of FSH (350 versus 200 mg, respectively). The effect of different total dose of 

FSH  (from 100 to 900 mg) in a superstimulatory treatment has been tested and in many 

reports, increasing the total dose (up to ~400 mg) increased superovulatory response [26, 

78, 126]. Furthermore, the greater number of follicles ≥7 mm at CIDR removal in the long 

P4 group could also be attributed to a longer growing phase; a longer period of follicular 

development (e.g. 2-wave cycle) increased follicle diameter [5, 6, 127]. Most follicles ≥7 

mm in diameter at CIDR removal were expected to ovulate within 48 hours after LH 

administration [3]; this accounted for the need for a third AI in most of the cows (i.e. 3 

inseminations at 24, 36, and 48 hours, respectively, after LH treatment).  

Based on follicle disappearance between CIDR removal and 12 hours after the 

second AI and the number of CL after slaughter, 72 hours of FSH starvation at the end of 

superstimulatory treatment decreased ovulatory response. This was in agreement with 

another study, in which 132 hours of FSH starvation decreased ovulation rates; however the 

FSH starvation was created under a prolonged low progesterone environment, inducing a 

large, persistent ovulatory follicle [2, 6]. It was not clear if the low ovulation rates in that 

study were caused by the development of persistent follicles.  

Follicles in the FSH starvation and long P4 groups were both under prolonged 

progesterone exposure, which could have resulted in an aged oocyte. In addition, the FSH 

starvation group had little FSH available to maintain follicle growth, which resulted in a 

reduced superstimulatory response, as demonstrated by fewer follicles ≥7 mm at CIDR 

removal when compared with long P4 [128]. Follicle growth is dependent on gonadotrophin 

support (initially FSH and then LH); without this support, follicles undergo atresia [128]. 

Therefore, the long P4 group did not have decreased ovulation rates, as FSH stimulation 

was continued. However, the long P4 group had poor embryo quality, perhaps due to 

delayed LH (secondary to prolonged progesterone exposure) and suppressed preovulatory 

maturation (prior to the LH surge). 
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Progesterone concentrations were kept high during superstimulatory treatment to 

mimic mid-luteal progesterone concentration. However, PGF2α treatment and CIDR 

removal resulted in low plasma progesterone concentrations at LH administration; these 

were needed to create a pre-ovulatory endogenous LH peak, since P4 has a suppressive 

effect on pituitary release of LH [12, 20, 22, 80]. In the present study, plasma LH 

concentrations at the time of administration of exogenous LH were highest in the cows in 

the Long P4 group, and tended to be higher in the FSH starvation group than in the Short P4 

group. Since LH is released by the pituitary in pulses [22], multiple samples at frequent 

intervals should be collected to ensure that the frequency and amplitude of LH is accurately 

characterized [22]. In the present study, LH concentrations were determined in only a 

single sample after plasma progesterone concentrations had declined. Therefore, the 

accuracy of determining LH release using a single blood sample is decreased; we may have 

detected only a portion of the LH surge, the peaks of a pulse, or increased basal 

concentrations of LH release in response to the feedback from follicles under prolonged 

development. Consequently, the lower LH concentration in the Short P4 group could be an 

artifact due to a single blood sample, or it could represent a delayed LH surge.  

Reproductive tracts were collected 4 days after the second AI; as expected, most of 

the embryos were retrieved from the oviducts, since bovine embryos enter the uterus 3 to 4 

days after fertilization [129, 130]. Due to so few ovulations in the FSH starvation group, 

the recovery rate was lower than the other two groups, and there were insufficient numbers 

of embryos to adequately measure development competence.  

At slaughter, the long P4 group had proportionally more low-quality embryos than 

the short P4 or FSH starvation groups. Although there were insufficient numbers of 

embryos to adequately measure development competence in the FSH starvation group, 

there was no obvious difference in the developmental competence of embryos recovered 

from cows in the Short or Long P4 groups. Although this could reflect a latent effect, or an 

improvement in the competence of embryos in the Long P4 group, development to 

expanded or hatched blastocyts was quite low in both the Short and Long P4 groups, 

suggesting that effects may be more related to handling during collection (at slaughter), or 

culture conditions.  
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In conclusion, although there were differences in the response to superstimulation 

when the duration of the ovulatory wave was extended 3 days, there was no difference in 

oocyte competence. Long exposure of superstimulated follicles to progesterone (analogous 

to a 2-follicular wave cycle) decreased embryo quality 4 days after AI; however, 

superstimulated follicles exposured to progesterone for short and long intervals were 

similarly capable of producing healthy embryos that developed similarly in culture. 

Although FSH starvation treatment led to a loss of ovulatory capability, the hypothesis that 

FSH starvation at the end of superstimulatory treatment does not affect oocyte competence 

remains untested.  
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CHAPTER 5 

 

GENERAL DISCUSSION 

 

Several experiments were conducted to test the effects of progesterone on GnRH-

mediated LH release, follicle growth, oocyte competence, and fertility. We examined 1) the 

effect of progesterone concentrations on GnRH-mediated LH release (Chapter 2); and 2) 

the effect of duration of progesterone exposure on oocyte competence and fertility 

(Chapters 3 and 4). 

Based on present studies, we reached the following general conclusions: a) 

increased plasma progesterone concentrations during growth of the dominant follicle 

suppress LH release and tend to decrease ovulation rates following the administration of 

GnRH; although increasing the dose of GnRH not result in an increase LH release (and 

ovulation rate), administration of estradiol benzoate prior to GnRH promotes LH release in 

heifers with elevated plasma progesterone concentrations (Chapter 2); b) the dominant 

follicles of both short-progesterone exposure (analogous to the ovulatory wave of 3-wave 

cycles) and long-progesterone exposure (analogous to the ovulatory wave of 2-wave 

cycles) groups are capable of ovulating, achieving, and sustaining pregnancy (Chapter 3); 

c) although prolonged exposure to elevated plasma progesterone concentrations (analogous 

to 2-wave cycles) decreases the quality of early developmental-stage embryos, ovulatory 

follicles analogous to those resulting from both 2- and 3-follicular waves are similarly 

capable of producing healthy, developing embryos after superstimulation treatment 

(Chapter 4); d) a period of FSH starvation at the end of superstimulatory treatment led to a 

loss of ovulatory capability.  

 

 

5.1 Effect of progesterone on follicular dynamics 

 

As mentioned earlier, the bovine estrous cycle is composed of 2 or 3 follicular 

waves [12, 14, 110]. During an ovulatory wave, the dominant follicle grows under a high-
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progesterone environment for 6 or 3 days in 2- and 3-wave cycles, respectively [20, 114]. 

Therefore, high progesterone exposure of developing dominant follicles for two different 

periods of time were tested in Chapters 3 and 4 during ovulatory wave (6 versus 3 days, 

analogous to 2 versus 3 waves cycle).   

Follicle growth deviates (selection) at a largest follicle size of 8.5 mm diameter [35] 

and the dominant follicle acquires ovulatory capability at 10 mm; however it has been 

reported that ovulations from follicles >11 mm results in higher oocyte competence [99]. 

Larger follicles contain more granulosa cells, more LH receptors, and are more likely to 

ovulate [99]. Conversely, smaller follicles have fewer LH receptors and require a higher 

LH peak to ovulate [99]. In addition, it has been suggested that a larger follicle results in a 

larger CL, since more granulose cells are available for luteinization [99]. A larger CL is 

known to produce higher plasma progesterone concentrations, which is important to the 

maintenance of pregnancy [99]. Therefore, a pre-ovulatory follicle has to reach at least 10 

mm in diameter to ovulate; however, follicles larger than 11 mm are more likely to contain 

a competent oocyte and develop into a CL that will produce more progesterone.  

It has been postulated that progesterone affects follicular dynamics and 

consequently reproductive performance [17]. In study 1 (Chapter 2), the effect of different 

concentrations of progesterone on pre-ovulatory follicle diameter was clear; follicles which 

developed under high progesterone concentrations were smaller (~11 mm) and tended to be 

less able to ovulate. When durations of progesterone exposure during follicular 

development were tested (Study 2, Chapter 3), the means of follicular size in all groups 

were  >11 mm and follicle size was larger in cows in the long progesterone group; however 

neither ovulation nor pregnancy rates were affected. Therefore, follicles might have a 

standard size prior to ovulation which will indicate the probability of ovulation, and it must 

be approximately 11 mm. In Study 3 (Chapter 4), there was a difference in number of large 

follicles (categorized as ≥7 mm) at CIDR removal after superstimulation treatment between 

a long and a short exposure to progesterone (long and short FSH). However, the main 

difference between Studies 2 and 3 is that cattle were superstimulated in Study 3 but the 

period of progesterone exposure during follicular growth in both studies was the same (3 vs 

6 days). Therefore, differences in the duration of progesterone exposure during ovulatory 
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follicle development affected follicle dynamics, since long progesterone exposure resulted 

in larger follicles after synchronization for fixed-time AI and superstimulation programs.   

 

5.2 Effect of progesterone on preovulatory LH release 

 

It is well known that progesterone has a suppressive effect on the hypothalamic-

pituitary axis [52, 131, 132]. In that regard, administration of exogenous progesterone to 

ovariectomized cows suppressed LH release [133]. Furthermore, elevated plasma 

progesterone concentrations  suppressed LH pulse frequency [52, 131]. Similarly, in 

Chapter 2, high progesterone concentrations suppressed the release of LH in response to the 

administration of GnRH relative to a low-progesterone environment. However, pre-

treatment with 0.25 mg of estradiol benzoate (8 hours before administration of 100 µg of 

GnRH) overcame the negative effect of progesterone on LH release. In cattle with high 

progesterone concentrations, maximum diameter of the dominant follicle was smaller and 

plasma estradiol concentrations were lower than in cattle with low plasma progesterone 

concentrations [52]. Estradiol increases GnRH receptors in the pituitary, thereby increasing 

the responsiveness to GnRH [31, 35, 131]. Therefore, in cattle with high progesterone 

concentrations, there are several consequences, including smaller follicles, reduced 

synthesis of estradiol, and decreased GnRH-mediated LH release [131] that must be 

considered.   

In Chapters 3 and 4, only a single blood sample for measurement of plasma LH was 

collected; therefore, the LH profile could not be as well defined as in Chapter 2 [22] (LH 

was measured every hour for 3 or 4 hours after GnRH treatment). Although cattle in 

Chapters 3 and 4 were given exogenous pLH prior to AI (to maximize the probability of 

ovulation), the LH measured was endogenous LH, since blood samples were collected just 

before pLH treatment.  

In Chapter 3, heifers that had long progesterone exposure during the ovulatory wave 

had higher peak LH concentrations compared with other groups (long-progesterone cows 

and short-progesterone heifers and cows). Furthermore, in Chapter 4, cows exposed to 

long-duration progesterone (concurrently long-duration FSH) had higher LH compared 
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with other groups. Therefore, cattle with the highest plasma LH concentrations were from 

long-duration progesterone treatments. However, it was noteworthy that measurements 

were not performed at the same time. In Study 2, LH concentrations were higher at the time 

of AI (48 hours after CIDR removal) and in Study 3, LH concentrations were higher at LH 

administration (24 hours after CIDR removal). 

It has been reported that long-duration progestin exposure (ear implant for 8 days 

after wave emergence) resulted in estrus 39 hours after ear implant removal in beef heifers 

[16]. In cattle, the onset of estrus is approximately 2 hours after the LH peak [3]; therefore 

cattle in that study may have had an LH peak 37 hours after implant removal. It has also 

been reported that short progesterone exposure (use of a CIDR for 3 days after wave 

emergence) resulted in estrous behavior 52 hours after CIDR removal in heifers [41] and 

cows [37] (LH peak approximately 50 hours after CIDR removal). However, long-duration 

progesterone exposure during the growing phase of the ovulatory follicle could result in an 

early LH peak, presumably due to higher estradiol concentrations produced by larger  

follicles [2, 3]. Perhaps in a similar pathway, prolonged subluteal progesterone exposure 

results in larger sized, persistent follicles, with high estradiol concentrations, high LH pulse 

frequency, and reduced fertility.  

  

5.3 Effect of progesterone on reproductive performance  

 

It was confirmed in Chapter 2 that plasma progesterone concentrations during the 

ovulatory wave affected pre-ovulatory LH pulses and tended to affect ovulation. This was 

in agreement with other studies in which high progesterone concentrations suppressed LH 

release [132] and decreased ovulation rates [52]. As mentioned, high progesterone 

concentrations resulted in smaller follicles that produced less estradiol [52]. Small follicles 

require a higher pre-ovulatory LH peak [6]; however with less estradiol, the anterior 

pituitary is less sensitive to GnRH [3] and LH is released in low frequency and high 

amplitude, which does not promote ovulation. Preovulatory LH peak is characterized by 

high frequency and low amplitude of pulses [22]. 
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Reproductive performance was also evaluated based on the duration of progesterone 

exposure during the growing phase of the preovulatory follicle. Long and short 

progesterone exposures were tested using fixed-time AI, where pregnancy rates were 

recorded, and superstimulation treatment where superovulatory response, embryo recovery 

rates, and evaluations were recorded.  

Duration of progesterone exposure during the ovulatory wave did not affect 

pregnancy rates or blastocyst rates (Chapters 3 and 4, respectively). Furthermore, ovulation 

rates were not affected by duration of progesterone exposure. Perhaps treatment with 

exogenous pLH induced ovulation, thereby masking the effects of the duration of 

progesterone treatment. However, long-duration progesterone (analogous to 2-wave cycles) 

decreased oocyte quality 4 days after insemination, but did not affect further development.  

The effect of the duration of the growing phase of the ovulatory follicle (i.e. 2- vs 3-

wave cycles) on reproductive performance has been an intriguing topic [6, 15, 20]. Some 

reports suggested that 2-wave cycles were associated with lower fertility; this was 

attributed to an ovulatory follicle that grows 3 days longer relative to the wave emergence, 

perhaps resulting in an aged oocyte [115]. In contrast, other reports detected no differences 

in fertility between the wave patterns [17]. In the present studies, long or short growing 

phases of ovulatory follicle (similar to 2- or 3-wave cycles) under the influence of high 

progesterone concentrations did not affect blastocyst rates (Chapter 4) or pregnancy rates 

(Chapter 3).  

It is well known that prolonged exposure of growing dominant follicles to sub-luteal 

progesterone concentrations results in oversized, estrogen-activated persistent follicles [21], 

with reduced fertility [21]. Furthermore, when oocytes that originated from a persistent 

follicles are fertilized, the incidence of embryonic death is increased [33]. However, 3 and 

6 days of mid-luteal progesterone concentrations were compared in our experimental 

design. Although long-duration exposure to relatively high progesterone concentrations 

compromised embryo quality 4 days after insemination, further development was not 

compromised, while those in persistent follicles resulted in abnormal embryonic 

development [33]. Presumably, progesterone concentrations in the present studies were 

higher than those that produced the changes associated with persistent follicles [2]. 
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A period of 72 hours of FSH starvation at the end of superstimulatory treatment 

decreased ovulatory response (Chapter 4). Follicles subjected to FSH starvation were under 

prolonged midluteal progesterone exposure, which could have resulted in an aged oocyte. 

This was in agreement with another study, in which 132 hours of FSH starvation decreased 

ovulation rates [2]; however, in that study, FSH starvation was created under a prolonged 

subluteal progesterone environment [2]. Exogenous LH was given prior to AI, in both 

studies but anovulation still occurred. Perhaps follicles which were subjected to FSH 

starvation did not acquire sufficient LH receptors on granulosa cells to respond to a 

preovulatory LH peak. Therefore, regardless progesterone concentrations, FSH starvation at 

the end of superstimulatory treatment led to a loss of ovulatory capability, even though 

exogenous LH was given.  

For both timed-AI and superstimulation protocols, it is noteworthy that 

progesterone concentrations are decreased at the end of the protocol, thereby enabling 

plasma LH concentrations to reach a pre-ovulatory peak, optimizing both ovulation and 

reproductive performance. To improve superstimulation protocols, FSH starvation should 

be avoided. Although different durations (3 or 6 days) of progesterone exposure during the 

growing phase of the ovulatory follicle can be used in estrus synchronization and 

superstimulation protocols, exogenous LH should be given prior artificial insemination. If 

progesterone concentrations remain elevated or are unknown, giving estradiol 8 hours 

before administration of GnRH could overcome the negative effect of progesterone on LH 

release in GnRH-based synchronization protocols. 
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CHAPTER 6 

 

GENERAL CONCLUSION 

 

Based on the work conducted in this thesis, we concluded that:  

 

• When systemic progesterone concentrations were high, increasing the dose of 

GnRH (from 100 to 200 µg) does not overcome the suppressive effect of 

progesterone on LH release. However, this should be reconfirmed, since handling 

stress may have confounded the results in this study. Although increased plasma 

progesterone concentrations during the growth of the dominant follicle suppress the 

release of LH and tend to decrease ovulation rates in heifers, the administration of 

estradiol benzoate prior to GnRH promote LH release.  

• To maximize the LH response, GnRH treatment should be given when P4 

concentrations are low, or alternatively, following pretreatment with estradiol 

benzoate. 

• A long duration of the growing phase of the ovulatory follicle (analogous to 2-wave 

cycles) increases follicle size.  

• A long duration of the growing phase of the ovulatory follicle (analogous to 2-wave 

cycles) results in higher LH concentrations, perhaps due to an early LH peak.   

• The duration of the growing phase of the ovulatory follicle (under mid-luteal 

progesterone concentrations) does not affect reproductive performance after fixed-

time AI or superstimulation in cattle.  

• Two-wave reproductive cycle is likely to be as fertile as a 3-wave cycle. 

• A period of FSH starvation during superstimulatory treatment led to a loss of 

ovulatory capability. 
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CHAPTER 7 

 

FUTURE DIRECTIONS 

 

New questions were raised from the results and conclusions presented in this thesis. Further 

research should be conducted to answer the following questions. 

 

• Can a higher dose of GnRH (200 µg) or multiple injections overcome the negative 

effect of high progesterone concentrations on ovulation? 

• Does different duration of progesterone exposure during the growing phase of the 

ovulatory wave (analogous to 2- or 3-wave cycles) affect fertility when no 

exogenous LH is administered? 

•  Does a short progesterone exposure (analogous to the ovulatory wave of a 3-wave 

cycle) affect oocyte competence after superstimulatory treatment when the same 

total dose of FSH as that given to long progesterone is administered? 

• What are the effects of duration of progesterone exposure during the ovulatory 

wave in Bos indicus cattle? 

• Is there any difference between animals which exhibit a 4-wave pattern compared 

with 2- or 3-wave cycles on oocyte competence and fertility?  

• Is the effect on LH by the long progesterone exposure caused by high estradiol 

from larger follicles? 

• Are follicles from the long progesterone exposure groups following the same 

pattern of follicle dynamics, LH release, and fertility as persistent follicles?  
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