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ABSTRACT 

Meso 1,9-diketones (six to seven stereocenters) are readily obtained by stepwise or 

simultaneous two-directional aldol reactions of tetrahydro-4H-thiopyran-4-one with a 

thiopyran-derived aldehyde.  Enantioselective enolizations of these diketones with the 

lithium amide from (R,R)-bis(1-phenylethyl)amine I occur with simultaneous kinetic 

resolution to give the mono-TMS enol ethers in >90% yields based on recovered starting 

material (BORSM) and >90% ee. The developed methodology was applied in synthetic 

studies towards the asymmetric synthesis of denticulatin A.   
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CHAPTER 1 
1.  INTRODUCTION 

1.1.  Marine polypropionate natural products 

Polyketide-derived natural products represent a large class of biologically active 

compounds that have found many applications.1, 2  They are synthesized by bacteria, 

fungi and plants by polyketide synthase (PKS) enzymes through decarboxylative 

condensation of simple coenzyme A activated esters (Scheme 1.1.).  The polyketides  

O

SCoA

O

SCoAHO

O

S-ACP

O O

+ polyketides
PKSPKS

ACP = acyl carrier protien

1 2 3

 

Scheme 1.1. 

possess very diverse structures which can be divided into subgroups:  fatty acids, 

polypropionates and aromatic polyketides.  Polypropionates can be further classified into 

three groups:  polyether antibiotics, macrolides and spiroketals (Figure 1.1.).  Some of the  

polyketides

fatty acids aromatic polyketides

polypropionates

macrolides

polyether antibioticsspiroketals

 

Figure 1.1.  Classification of polyketides. 
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most biologically active compounds are the polypropionates and as a result, their study 

has been a very active area of research.  While investigations of terrestrial derived 

polypropionates have received much attention, the understanding of marine 

polypropionates and their biosynthetic processes is in its infancy.3  Indeed, some very 

interesting compounds possess numerous biological activities.  For example, (−)-

discodermolide,4 isolated from the sponge Discodermia dissoluta is found to be a potent 

microtubule-stabilizing agent.  The mode of action, similar to that of taxol, arrests cells at 

the G2/M phase of the cell cycle.  This antimitotic action is also shared with other marine 

polypropionate compounds such as peloruside A5 and dictyostatin6 (Figure 1.2.).   

OH OH

OO

HO

OH

dictyostatin 5

O

HO O

OMe

OH

O

HO

MeO
OH

OMe
HO

peloruside A 6

O

O
OAcPhOCO

AcO

HO

OPh

O

OH

PhCON
OH

H

Taxol (paclitaxel) 7

H

O

OH

OHOO

NH2

OHHO

O

(–)-discodermolide 4

 

Figure 1.2.  Biologically active natural products. 

The most important source of marine polypropionate compounds are the Mollusca.3  

While a few isolated compounds have no apparent biological activities, many are 

important for therapies against respiratory infections, Legionnaires disease and for 
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infections in patients sensitive to penicillin antibiotics.  They show cytotoxic antibiotic, 

antifungal and antiviral properties.  The structural diversity of compounds isolated from 

Mollusca presents some intriguing questions with respect to their biosynthetic pathways 

(Figure 1.3.).  By what means are these complex molecules assembled?  Are they  

O
OO

OHO O

OH

O

caloudrin B 8 O
O

O

RO O

O

auripyrone A 11 R =

auripyrone B 12 R =

O

O

denticulatin A (10-S)-9
denticulatin B (10-R)-10

O

O O

OH

OH H

10

 

Figure 1.3.  Mollusca polypropionate natural products. 

synthesized by the same PKS system as for terrestrial organisms?  In fact, it has been 

noted that some marine polypropionates are artifacts of isolation and the actual 'active' 

compound may be some other precursor.3  The pharmaceutical potential of Mollusca 

polypropionates are unlikely to be realized until a more complete understanding of their 

chemical properties and biosynthetic pathway emerges.   

1.2.  The denticulatins 

1.2.1.  Isolation, structure determination and biosynthesis 

In 1983, Faulkner and co-workers isolated two polypropionate metabolites from an 

air-breathing marine mollusk Siphonaria denticulata that displayed ichthyotoxic activity 
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towards goldfish.7  Perhaps one of the simplest marine polypropionates, the structural 

OOHOHOO
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Scheme 1.2. 

elucidation of denticulatin A 9 and denticulatin B 10 (Figure 1.3. and Scheme 1.2.)  were 

determined by a combination of NMR and X-ray analysis.  The denticulatins exist 

predominantly as hemiketals formed by addition of C5-OH onto C9-carbonyl to give a 

pyran ring with all carbon substituents in equatorial positions and hydroxyl groups in 

axial positions.  The events leading to the formation of the hemiketal is an interesting 

issue.  Perhaps a C9 monoketone undergoes cyclization followed by oxidation at C3 and 

C11.  There are three modes of cyclization available for triketone 13 (Scheme 1.2.).  If the 

cyclization were to be driven solely by steric contributions, compound 15 would be 

formed as all carbon substituents are equatorial.  However, because of hydrogen-bonding 

between the axial hydroxyl groups, the thermodynamically favored cyclization mode is 

C5-OH onto C9-carbonyl.   
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The denticulatins were the first marine polypropionates for which investigations 

confirmed the operation of a polypropionate biosynthesis rather than an acetate-

methionine route (Scheme 1.3.).3, 8  This was accomplished by feeding and injection  

denticulatin A (10-S )-9
denticulatin B (10-R)-10

O

O O
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7SCoA
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+
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16

1

 

Scheme 1.3. 

experiments using 14C labeled propionate and acetate.  From theses studies, the first three 

cycles of a biosynthetic pathway to denticulatin A have been proposed (Scheme 1.4.).3   
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Scheme 1.4. 
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Despite these impressive results, further insights will only be available if additional 

material is available.  As for many natural products, quantities obtained from natural 

sources are typically small (i.e. 0.12 mg/animal for denticulatin A)7 and chemical 

synthesis plays a major role in both biosynthetic studies and also for the application of 

such materials for medicinal and/or agrochemical uses. 

1.2.2.  Synthetic studies and total syntheses 

As part of a study to derivatize denticulatin A, Davies-Coleman and co-workers 

subjected the metabolite to the Sharpless AD-mix dihydroxylation reagent and rather than 

the expected diol, they obtained funiculatin A (Scheme 1.5.).9, 10  This observation was  

denticulatin A (10-S)-9

O

O O

OH

OH H

10
7 O

10
OO

H

funiculatin A (10-S)-25  

Scheme 1.5. 

speculated to have resulted from the presence of K2CO3 in the reaction mixture.  In fact, 

subjection of denticulatin A to K2CO3 alone furnished several polypropionate products.  

The susceptibility of denticulatin A and other marine polypropionates to skeletal 

rearrangements under mild conditions suggest that the isolated compounds may represent 

non-enzymatic cyclization products (i.e. kinetic or thermodynamic) of unstable acyclic 

natural products.   

In order to further investigate the chemical properties of the denticulatins and other 

marine polypropionates, total synthesis plays a significant role because of the limited bio-

availability of such materials.  There have been four total syntheses of the denticulatins,11 

the first being denticulatin B by Ziegler and co-workers in 199012.  Since then, there have 
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been three other elegant syntheses by the Hoffmann,13, 14 Paterson,15, 16 and Oppolzer17, 18 

groups. 

1.2.2.1.  Ziegler's synthesis 

The basic strategy employed by Ziegler and co-workers involved the preparation of 

p-methoxyacetophenylidene protected triketone 26i that, after mild deprotection, 

spontaneously cyclized to the denticulatins.12  The triketone 26 was prepared from an 

aldol reaction of ketone 27 and keto aldehyde 28 followed by oxidation (Scheme 1.6.).   

OOO

denticulatin A (10-S )-9
denticulatin B (10-R)-10

7
10

O

O O

OH

OH H

10
7 intramolecular

ketalization

26

aldol

O
10

27 28

+

alklyation

N
10

N

OMe
29

OO

7 8 9

OH 6
+

30 31

OO

OMe

OO

7

OO

OMe

3-methyl-γ-butyrolactone route
to polypropionates

Enders' RAMP hydrazone alkylation

 

Scheme 1.6. 

Access to keto aldehyde 28 was achieved by two enolate Ireland-Claisen protocols using 

both enantiomers of (E)-allylic alcohol 30 and (S)-3-methyl-γ-butyrolactone 31.  This 

method was described earlier by Ziegler and co-workers as a general approach for the 

                                                 
i An acetonide protecting group proved to be resistant to hydrolytic conditions. 
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asymmetric synthesis of polypropionates.19, 20  The synthesis of keto aldehyde 28 began 

with an Ireland-Claisen rearrangement of the diethyl orthoester 35ii (Scheme 1.7.) and 

(R)-allylic alcohol 30iii to give lactone 36 which was subjected to a Criegee oxidation 

sequence to provide acetonide 37 in 81% yield over 5 steps (Scheme 1.7.).  Acetonide 37  

(S)

OEtO

8

OH 6
+

33 35

O
O

36

OO

37

8 8
5 steps

81% yield

6

4 steps
62% yield

OO
8 6

CN

38

OO
8 6

39

O O

2 steps
74% yield

O 6 (S)
O

OMe

OH

8
32 34

2 steps
37% yield

90% ee

4 steps
15% yield

97% ee

H

EtO

83% yield

 

Scheme 1.7. 

was subjected to ozonolysis, LAH reduction, tosylation, and cyanide substitution to 

provide cyano acetonide 38 in 62% yield over 4 steps.  Cyano acetonide 38 was then 

carefully hydrolyzed and esterified with (S)-allylic alcohol 30iii to give ester 39 in 74% 

overall 2 steps.  Enol silylation of ester 39 by treatment with LDA/TBSCl gave (E)-O-

silylketene acetonide that underwent an Ireland-Claisen rearrangement to give, after 

dilute acid hydrolysis, hydroxy lactone 41 in 84% yield over 2 steps (Scheme 1.8.).   

39

OO
O

TBS
O

O
OH O

41

8 6 8 6
OO

8 6

40

TBS
O O

2 steps
84% yield  

Scheme 1.8. 

                                                 
ii Prepared from commercially available (S)-3-hydroxy-2-methylpropionate in 3 steps in 19% yield and 
97% ee. 
iii Prepared from commercially available crotonaldehyde via Grignard addition of diisopropylmagnesium 
chloride and subsequent kinetic resolution by Sharpless epoxidation. 
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Protection of hydroxy lactone 41 as the TBDPS ether was followed by the Criegee 

sequenceiv to give diol 42 in 73% yield over 5 steps (Scheme 1.9.).  Protection of diol 42  

OH
TBDPS
O OH

41

42
5 steps

73% yield

7

OO

OMe

TBDPS
O

94% yield

43

2 steps
75% yield

7

7

OO

OMe

TBDPS
O

44

O

7

OO

OMe

O

45

O

3 steps
68% yield

 

Scheme 1.9. 

using the dimethyl ketal of p- methoxyacetophenone gave 43 as single diastereomer in 

94% yield.  Ozonolysis of 43 followed by a reductive work-up and Swern oxidation gave 

aldehyde 44 that reacted with ethylmagnesium bromide, followed by hydrolysis of the 

TBDPS protecting group and a double Swern oxidation to give the desired keto aldehyde 

45 in 68% yield over 3 steps.  Ziegler and co-workers elegantly applied their 3-methyl-γ-

butyrolactone strategy for the preparation of keto aldehyde 45.  Despite the rather lengthy 

synthesis, the approach provided keto aldehyde 45 in 1% yield over a total of 29 steps.  

This was truly an amazing accomplishment, reflecting an average yield per step of 86%.  

                                                 
iv DIBAL-H replaced LAH in the Criegee sequence. 
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The other component required for the aldol reaction was ketone 27.  This was easily 

prepared by alkylation of the RAMPv hydrazone of 3-pentanone with allylic bromide 47vi 

to provide ketone 27 in 56% yield and 89% ee over 2 steps (Scheme 1.10.).  With  

N
10

N

OMe

51

Br

47

N
10

N

OMe

O
10

27

+
97% yield 56% yield

89% ee29

N
OMeNH2

O

OH

O
+

46

50 49

3 steps

85% yield
N
H OH

O

(R)-proline 48
6 steps

58% yield

 

Scheme 1.10. 

ketone 27 and keto aldehyde 45 available, Ziegler and co-workers generated the lithium 

enolate of ketone 27 using LDA and subsequently added keto aldehyde 45 which gave a 

mixture of three of the four possible aldol products in a ratio of 1.0:3.6:2.1 with a 

combined yield of 86% (Scheme 1.11.).  Swern oxidation of this mixture gave a 2.7:1.0 

mixture of triketone (10-S)-53 and triketone (10-R)-54, respectively, in a combined yield 

of 81%.  Careful fractionation of these triketones gave enriched samples that were 

separately subjected to mild deprotection using 5% oxalic acid in aqueous THF.  

Denticulatin A 9 and denticulatin B 10 were isolated as a mixture that reflected the 

starting ratios of triketones (Scheme 1.11. and Table 1.1.).  The data in Table 1.1.  

                                                 
v Prepared from commercially available (R)-proline in 6 steps in 58% yield.  RAMP is also commercially 
available, albeit ca. $20,000/mol. 
vi Yield for the preparation of allylic bromide 47 is not reported, however the cited procedure for (E)-2-
methyl-2-butenyl bromide from tiglic acid occurs in 3 steps in 50% yield. 
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OOHO

7
10
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OO

OMe

O
10

27 45

+

OO

7

OO

OMe

OOO

7
10

OO

OMe

denticulatin A (10-S)-9
denticulatin B (10-R)-10

O

O O

OH

OH H

10
7 intramolecular

ketalization

(10-S)-53
(10-R)-54

Li-enolate

86% yield

81% yield

 

Scheme 1.11. 

Table 1.1.  Deprotection of triketones. 
enriched triketones 
(10-S)-53:(10-R)-53 

denticulatins 
(10-S)-9:(10-R)-10 (% yield) 

recovered triketones 
(10-S)-53:(10-R)-54 (% yield) 

4.6:1.0 6.0:1.0 (33) 2.9:1.0 (54) 
1.0:4.7 1.0:8.0 (45) 1.0:1.5 (40) 

 

indicated that the triketones do not completely isomerize prior to hydrolysis and 

cyclization.  These results were obtained when the deprotection was allowed to progress 

to only ca. 50% conversion.  Further conversion lead to significant amounts of 

dehydration products.  To summarize, Ziegler and co-workers synthesized enriched 

samples of denticulatin A and denticulatin B in 0.3% and 0.4% yield, respectively over a 

longest linear sequence of 32 steps starting from (S)-3-hydroxy-2-methylpropionate.  A 

remarkable synthesis, this reflects an average yield per step of 83%. 
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1.2.2.2.  Hoffmann's synthesis 

In 1991, Hoffmann and co-workers published the second total synthesis of the 

denticulatins.13, 14  Similar to Ziegler's synthesis, Hoffman and co-workers prepared a 

protected triketone from an aldol reaction of ketone 27 with aldehyde 56 followed by 

deprotection and oxidation (Scheme 1.12.).  A significant improvement was achieved as 

aldehyde 56 was obtained in 8% yield over 12 steps (Zeigler and co-workers prepared 

keto aldehyde 45 in 1% yield over 29 steps) by a route involving three crotylboration 

reactions (Scheme 1.12. and Scheme 1.13.).  The synthesis of aldehyde 56 began with the  

OOO

denticulatin A (10-S)-9
denticulatin B (10-R)-10

7
10

O

O O

OH

OH H

10
7 intramolecular

ketalization

55

aldol

O
10

27 56

+

OO

OMe

OTBSO

7

OO

OMe

crotylboration route
to polypropionates

Ireland-Claisen rearrangement
O

+crotylboronates
O

O

57 58

11

 

Scheme 1.12. 
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BO
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98.5% ee

2 steps
86% yield

TBS
OOH

67

2 steps
83% yield

TBS
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O

OMe

95% yield
95% dePh

Ph
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OH

OHChx
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ClCl
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Oi-Pri-PrO

Oi-Pr
B

i-PrO

Oi-Pr

63

62

2 steps
46% yield

+

60

84% yield

2 steps
62% yield

 

Scheme 1.13. 

addition of 61 to propionaldehyde 58 to give alcohol 64 in 79% yield and 98.5% ee.  TBS 

protection of 64 followed by ozonolysis provided aldehyde 65 that was used in a second 

crotylboration reaction using 66vii to give 67 in 95% yield and 95% de.  Sequential 

protection and ozonolysis of 67 furnished aldehyde 68 in 83% yield.  Chain extension of 

68 to aldehyde 56 required an alternative approach as the high 1,3-anti 

diastereoselectivity found for aldehyde 68 had to be reversed to give the desired 1,3-syn 

relative configuration.  To this end, Hoffmann and co-workers developed α-substituted 

crotylboronate 69viii for the crotylboration of aldehyde 68 to give a 3:1 mixture of  

                                                 
vii Prepared from commercially available pinacol and triisopropoxyborane in 4 steps in 38% yield. 
viii Prepared from commercially available pinacol and (S)-butyn-2-ol in 4 steps in 48% yield. 
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TBS
OO

69
O

OMe

OMe

BO

O

TBS
OOOH

OMe

OMe

TBS
OOOH

OMe

MeO

68 70 71

+
85% yield

75% de major minor

2 steps
87%

TBS
OOO

OMe

O

56  

Scheme 1.14. 

homoallylic alcohols 70 and 71 in a combined yield of 85% (Scheme 1.14.).  DDQ 

oxidation of the desired 70 followed by ozonolysis furnished aldehyde 56 in 8% yield 

over a total of 12 steps.  The remaining fragment required for the final aldol coupling, 

ketone 27, was prepared from racemic alcohol 72ix by an Ireland-Claisen rearrangement  

O

O

57

OH

O O

73 27
2 steps

53% yield

OH

72
2 steps

40% yield
98% ee  

Scheme 1.15. 

                                                 
ix Prepared by kinetic resolution of commercially available (±)-2-methyl-1-penten-3-ol via Sharpless 
epoxidation. 
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via the (E)-enolate of ester 57 to provide acid 73 that was directly converted into the 

desired ketone 27 in 53% yield over 2 steps (Scheme 1.15.).  The boron-mediated aldol 

reaction of ketone 27 with aldehyde 56 furnished two adducts 74 and 75 in 88% 

combined yield in 75% de (Scheme 1.16.).  As is clearly evident from the structures,  

OTBSOHO

7
10

74

O

10

27 56

+

OO

OMe

OTBSO

7

OO

OMe

OTBSOHO

7
10

75

OO

OMe

+

B-enolate

major minor

88% yield
75%de

 

Scheme 1.16. 

the two diastereomers arise from the two different enantiomers of ketone 27.  Hoffmann 

and co-workers speculated that compounds 74 and 75 likely resulted from the reduced 

enantiopurity of ketone 27.  It has been noted that ketone 27 has a high propensity to 

racemize upon storage or distillation.  Removal of the TBS protecting group in 74 proved 

to be very troublesome and the diol 76 was obtained in variable yields (20-85%) even 

after considerable experimentation.  The variability was suggested to be a result of the 

high lability of the p-methoxybenzylidene acetal.  Collins oxidation of diol 76 provided 
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the desired triketones (10-S)-77 and (10-R)-78 as a 1:1 mixture with a combined yield of 

61% (Scheme 1.17.).  Despite the hardship Hoffmann et al. had in preparing the desired  

OOO

7
10

OO

OMe

(10-S)-77
(10-R)-78

OHOHO

7
10

OO

OMe

76

74

20-85% yields 61% yield
 

Scheme 1.17. 

triketones, further difficulties were faced as deprotection could not be achieved under 

numerous conditions without obtaining mainly elimination products.  Instead of changing 

the p-methoxybenzylidene acetal protecting group, Hoffmann and co-workers questioned 

if it were possible to synthesize hemiketal 79 resulting from the C7-OH addition onto C3-

carbonyl of diol 80 and whether this compound will spontaneously isomerize to the 

denticulatins (Scheme 1.18.).  Aldehyde 82 was prepared from 81 in 88% yield over 3 

steps (Scheme 1.19.).  Addition of (E)-crotylboronate 69 to aldehyde 82 gave, after 

cyclization, 83 and 84 as a 4:1 mixture, respectively in 75% yield.  Ozonolysis of 83 

furnished second generation aldehyde 85 (Scheme 1.20.) in 85% yield which was used in  
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Scheme 1.18. 
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Scheme 1.19. 

a boron-mediated aldol reaction with ketone 27 to provide two aldol adducts 86 and 87 in 

89% combined yield and 78% de (Scheme 1.20.).  Dess-Martin oxidation of 86 furnished 

diketone 88 in 85% yield.  At this stage, only the deprotection of the p-methoxybenzyl 

ether protecting group was required to facilitate isomerization to the denticulatins.  

Again, attempted deprotection of 88 under numerous conditions failed or resulted in 

decomposition.  After considerable experimentation, deprotection of 88 was achieved by 

using lithium in ammonia on the corresponding dianion preformed using LDA.   
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Scheme 1.20. 

This process furnished a 1.5:1.0 mixture of denticulatin A and denticulatin B, 

respectively in 58% combined yield.  To summarize, Hoffmann and co-workers 

synthesized denticulatin A and denticulatin B as a mixture in 2% overall yield over a 

longest linear sequence of 17 steps starting from trans-stilbene (average yield per step of 

80%). 
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1.2.2.3.  Paterson's synthesis 

In 1992, Paterson and Perkins presented an alternative route for the synthesis of 

denticulatin B by exploiting boron- and titanium-mediated aldol couplings (Scheme 

1.21.).15, 16  As with the previous syntheses, a protected triketone 89 was prepared.  In this  
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Scheme 1.21. 

case, a di-tert-butylsilylene protected triketone was prepared with the expectation that 

deprotection could be effected under mild HF⋅pyridine deprotection.  The synthesis began 

with a boron-mediated aldol reaction of ketone 97x with aldehyde 96 followed by in situ 

                                                 
x Prepared from commercially available (R)-methyl 3-hydroxy-2-methylpropionate in 3 steps in 59% yield 
and 97% ee. 
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LiBH4 reduction to furnish the diol 98 in 81% yield (Scheme 1.22.).xi  Sequential 

protection and hydroboration of 98 provided 99 in 77% yield in 2 steps (Scheme 1.22.).   

98

7
10

OHOHO OBn

96

+

97

O OBn

7
6 3

81% yield
7

OO OBnOH

99

Si
t-Bu t -Bu

2 steps
77% yield

B-enolate

 

Scheme 1.22. 

Conversion of 99 to required ketol 101 was achieved by debenzylation, oxidation, and 

ethylmagnesium bromide addition in 70% yield over 3 steps (Scheme 1.23.).  With ketol  

7

OO OBnOH

100

Si
t-Bu t -Bu

3 steps
70% yield 101

OHO

7
10

OO
Si

t-But-Bu

 

Scheme 1.23. 

101 available, aldehyde 90 was prepared from alcohol 102ix by an Ireland-Claisen 

rearrangement of the (Z)-O-silylketene of ester ent-57 followed by LAH reduction and 

subsequent PCC oxidation of the resulting alcohol to give aldehyde 90 in 42% yield and 

80% ee over 3 steps (Scheme 1.24.).  The titanium-mediated aldol reaction of ketone 101   

OH
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2 steps

30% yield
98% ee

O
11

73

O

O

ent-57

11

OH

O
11

90
72% yield
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Scheme 1.24. 

                                                 
xi A one-pot procedure. 
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with aldehyde 90 provided two aldol adducts, 103 and 104 in 90% yield and 83% de 

(Scheme 1.25.).  The minor aldol adduct 104 results from reaction of the minor  
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Scheme 1.25. 

enantiomer of aldehyde 90 (80% ee).  Double Swern oxidation of 103 and subsequent 

silyl deprotection using buffered HF⋅pyridine afforded pure denticulatin B in 54% yield.  

Paterson and Perkins were also able to equilibrate triketone 89 using SiO2 or Et3N (i.e. 

C10 epimerization).  Silyl deprotection of the resulting mixture of C-10 epimers using 

buffered HF⋅pyridine provided a 1:2 mixture of denticulatin A and denticulatin B, 

respectively with a combined yield of 78%.  To summarize, Paterson and Perkins 

achieved the first stereoselective synthesis of denticulatin B in 10% yield over a longest 
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linear sequence of 12 steps starting from (R)-methyl 3-hydroxy-2-methylpropionate.  A 

synthesis that reflects an average yield per step of 82%.   

1.2.2.4.  Oppolzer's synthesis 

The first stereoselective synthesis of denticulatin A was achieved by Oppolzer and 

co-workers in 1995.17, 18  Denticulatin B was also prepared from a common intermediate 

en route to denticulatin A (Scheme 1.26.).  As seen in the stereoselective synthesis of  
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denticulatin B by Paterson and Perkins, Oppolzer et al. selected the di-tert-butylsilylene 

triketones 89 and 106 for the synthesis of the denticulatins (Scheme 1.26.).  Triketones 89 

and 106 were envisioned to arise via titanium-mediated aldol couplings (after oxidation) 

of ketol 114 with aldehyde 90 and ketone 27 with aldehyde 107.  The required aldol 

components were prepared from meso dialdehyde 109xii and chiral N-propionylsultam 

108xiii.  Boron-mediated aldol reaction of chiral N-propionylsultam 108 with meso  
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Scheme 1.27. 

dialdehyde 109 provided aldol adduct 110 as a cyclized lactol in 75% yield.  

Simultaneous silyl deprotection and ethanedithiol trapping was achieved in the presence 

of ZnI2 to give a diol that was subsequently protected to give di-tert-butylsilylene 

dithiolane 111 in 92% yield over 2 steps (Scheme 1.27.).  Removal of the chiral auxiliary 
                                                 
xii Prepared from commercially available 2,4-dimethyl-1,4-pentadiene-3-ol in 3 steps in 63% yield. 
xiii Prepared from commercially available (−)-camphorsulfonic acid in 5 steps in 67% yield. 
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was best performed using the ate-complex derived from AlMe3 and lithium 

benzylthiolate which furnished benzyl thioester 112 in 93% yield.  Ethylmagnesium 

bromide addition to 112 followed by dithiolane deprotection using buffered mercury 

perchlorate provided the desired aldehyde 107 in 72% yield over 2 steps.  Access to 

ketone 27 commenced with alkylation of chiral N-propionylsultam 108 with allylic 

bromide 47vi via the sodium enolate to give 115 in 69% yield (Scheme 1.28.).  Removal 

of the chiral auxiliary and ethylmagnesium bromide addition to resulting benzyl thioester  

47 108
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+
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N
O2S
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69% yield

116

SBn

O

27

O

69% yield

99% yield
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Scheme 1.28. 

116 provided ketone 27 in 99% yield and 99.9% ee.  Titanium-mediated aldol reaction of 

ketone 27 with aldehyde 107 provided aldol adducts 117 and 118 in 61% combined yield 

and 90% de (Scheme 1.29.).  Minor aldol adduct 118 was oxidized using Dess-Martin 

periodinanexiv to give triketone 89 that was reported by Paterson and Perkins in their 

synthesis of denticulatin B.  Swern oxidation of the major aldol adduct 117 furnished 

triketone 106 that was deprotected using buffered HF⋅pyridine to give denticulatin A and 

denticulatin B as a 20:1 mixture respectively, in 89% yield (Scheme 1.29.).  This  

                                                 
xiv Swern oxidation was unsuccessful.  
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Scheme 1.29 

represents the first stereoselective synthesis of denticulatin A that was accomplished in 

14 steps and 14% overall yield (average yield per step of 87%). 

Oppolzer and co-workers also applied their methodology for the synthesis of 

denticulatin B via aldol coupling of ketol 114 and aldehyde 90 that was similarly 

achieved by Paterson and Perkins (Scheme 1.21. and Scheme 1.26.).  Preparation of 

aldehyde 90 was achieved by reduction of 115 with lithium triethylborohydride followed 

by oxidation of 120 with PCC to give the desired aldehyde in 82% yield over 2 steps and 
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>99.9% ee (Scheme 1.30.).  Access to the desired ketol was obtained by a sequence of 

reactions that first involved dithiolane deprotection of 111 using buffered mercury  

115

120

OH

90

O

88% yield
>99.9% ee

93% yield

 

Scheme 1.30. 

perchlorate which provided aldehyde 121 in 92% yield.  Ethylmagnesium bromide 

addition to aldehyde 121 provided a 2:1 mixture of alcohols 122 in 95% yield (Scheme 

1.31.).  Lithium triethylborohydride reduction of this mixture followed by Dess-Martin  
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Scheme 1.31. 

oxidation furnished keto aldehyde ent-107 in 74% yield over 2 steps.  Ethylmagnesium 

bromide addition to aldehyde ent-107 provided ketols (3-S)-123 (60% yield) and (3-R)-

124 (21% yield).  Titanium-mediated aldol coupling of aldehyde 90 and ketol (3-S)-123 

provided aldol adduct 125 in 89% yield.  Similarly, titanium-mediated aldol coupling of 

aldehyde 90 and ketol (3-R)-124 provided aldol adduct 126 in 71% yield (Scheme 1.33.).  
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Swern oxidation of 125 or 126 furnished desired triketone 89 in quantitative yield that 

was deprotected using buffered HF⋅pyridine to give pure denticulatin B in 78% yield 

(Scheme 1.32.).  To summarize, Oppolzer and co-workers achieved an improved  
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Scheme 1.32. 

stereoselective synthesis of denticulatin B in 12% yield over a total of 16 steps (average 

yield per step of 87%). 

1.2.3.  Comparative analysis of syntheses 

All total syntheses of the denticulatins exploited aldol related chemistry to effect 

fragment coupling.  All routes rely on acyclic precursor A (Scheme 1.33.) as the 

penultimate intermediate.  This precursor was assembled by substrate-controlled aldol 

reactions of 27 and B for denticulatin A or C and 90 for denticulatin B  
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(Scheme 1.33. and Table 1.2.).  Each research group applied their own methodologies for 

the synthesis of the required aldol coupling partners.  Ziegler and co-workers used 

enolate Ireland-Claisen protocols involving both enantiomers of 30 and (S)-3-methyl-γ-

butyrolactone 35 to arrive at B.  Hoffmann and co-workers implemented several 

crotylboration maneuvers to prepare an equivalent of aldehyde B.  Paterson and Perkins 

synthesized ketol C from a boron-mediated aldol reaction of ketone 95 and aldehyde 94.  

Lastly, Oppolzer applied an enantiotopic group selective aldolization route for the 

preparation of both B and C.  While the syntheses overlap to some extent, the route of 



 

 29

Oppolzer and co-workers' is noteworthy in that it was adaptable for the synthesis of 

denticulatin A or denticulatin B.   

Table 1.2.  Total syntheses of the denticulatins. 
 denticulatin % yielda number 

of stepsb 
longest linear 

sequence 
average yield 

per stepc 
 A:B B     

Ziegler 6:1 - 0.3 46 32d 83 
Ziegler 1:8 - 0.4 46 32d 83 

Hoffmann 1.5:1 - 2 26 17e 80 
Paterson - pure 10 17 12f 82 
Oppolzer 20:1 - 14 23 14g 87 
Oppolzer - pure 12h 21 16g 87 

a Yields calculated based on commercially available starting materials over the longest linear sequence. 
b Total number of synthetic manipulations including preparation of starting materials and reagents.   
c Calculated based on the longest linear sequence.  d Based on (S)-3-hydroxy-2-methylpropionate.  e Based 
on trans-stilbene.  f Based on (R)-methyl 3-hydroxy-2-methylpropionate.  g Based on (−)-camphorsulfonic 
acid.  h 18% yield when combined with material deriving from (3-R)-124. 
 

1.3.  Total synthesis of polypropionate natural products 

Polypropionate natural products are characterized by structure with alternating 

methyl groups and oxygen functionalities (alcohol, ketone and/or carboxyl) along a 

contiguous carbon chain (Figure 1.4.).  Among the approximately 5000-10,000 known 

R R R

OH

O

n

R = O, H/OH, H/H

n = 0, 1, 2,...integer

* * *

* = stereogenic center
 

Figure 1.4.  Generalized structure of polypropionate natural products. 

polypropionates, only 1% of them possess biological activity.  Despite this rather low 

value, it surprisingly represents five times the average for natural products.21  The 

considerable interest in polypropionate natural products is due to their biological 

applications and stereochemical complexity.22-26  For more than three decades, synthetic 

chemists have made significant contributions to the development and advancement of 

asymmetric synthetic methodologies.21, 27, 28  The inherent challenge for the synthesis of 
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polypropionates derives from the long sequence of stereocenters.  For example, a 

dipropionate can have up to four different stereoisomers, a tripropionate (16), a 

tetrapropionate (64), a pentapropionate (256), a hexapropionate (1024) and a 

heptapropionate (4096) (Figure 1.5.).  In some cases, the relative and/or absolute  
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OH OH

OH
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Figure 1.5.  Possible stereoisomers for polypropionates. 

configurations of isolated polypropionates are not known and to resolve this problem, the 

synthesis of all stereoisomers is required.29, 30  In 1987, Hoffmann introduced the term 

'stereotriad' for the analysis of sequences possessing three consecutive stereocenters 

(Figure 1.6.).28  Coupling of chiral (non-racemic) stereotriad fragments allows the  

OH OH OH OH

syn,syn anti,syn syn,anti anti,anti
A B C D  

Figure 1.6.  Stereotriads A-D. 

construction of more elaborate polypropionate structures.31-36  However, this union is 

complicated by double stereodifferentation and introduces a major obstacle to be 

overcome in any total synthesis.28, 37-45  As a result, numerous reactions have been 
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developed for the synthesis of polypropionate structures.  For example, aldol,31, 46-63 

crotylation,42, 45, 64-69 Diels-Alder,70-76 Wittig,77 Tischtschenko,78 alkylation,79-84 

propargylation-reductive coupling,85, 86 acetalization,87 hydroformylation,88 formate 

reduction,89 allyltitanation58, 78, 90, 91 and allenylstannylation92 reactions have found 

numerous applications in polypropionate syntheses.  Other approaches involving 

cyclopropane,93 oxabicylic,70, 94-96 1,3-polyol,97, 98 acyl halide99 and γ-lactone19, 20, 100 

intermediates have also proved to be very convenient methods for the synthesis of 

polypropionate compounds.  Despite the plethora of approaches available, the 

asymmetric synthesis of polypropionate compounds continues to be a synthetic challenge 

because very few methods can be generally applied for the preparation of the numerous 

polypropionate motifs found in various natural products (Figure 1.6.).xv   

In Nature, polypropionates are assembled by polyketide synthase (PKS) enzymes 

through an iterative decarboxylative condensation of methylmalonyl CoA to a growing 

polyketide chain generating (up to) two stereocenters per iteration.  The first PKS 

elucidated was for the erythromycin antibiotics (Figure 1.7.) isolated from Streptomyces 
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O

OO

OH
R OH

O

O
H

H

MeO

HO
NMe2

OH

erythromycin A, R = OH 128
erythromycin B, R = H 129

 

Figure 1.7.  Streptomyces erythreus macrolides. 

                                                 
xv Considering both enantiomeric series of stereotriads A-D, there are 8 possible stereoisomers. 
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erythreus.26  In fact, the intermediate 6-deoxyerythronolide B 127,101 isolated from 

blocked mutants of Streptomyces erythreus proved to be instrumental for this objective.  

The erythromycin polyketide synthase consists of 7 enzymes and is a so-called type Ixvi 

polyketide synthase.102  In an iterative fashion, 6-deoxyerythronolide B 127, is 

biosynthesized from one molecule of propionyl CoA 1 and six molecules of 

methylmalonyl CoA 2 (Scheme 1.34.).  The PKS possesses six modules that consist of 

several enzymes (AT, KS and ACP) along with additional enzymes involved with 

functional group manipulations.  The first step of chain elongation involves 

decarboxylative condensation of ACP bound methyl malonic acid 139 with KS bound 

propionate 138 (Scheme 1.35.).  Subsequent acyl transfer of the newly formed ACP 

bound polypropionate and preparation of the second ACP bound methyl malonic acid 139  

                                                 
xvi There are three types of PKS:  Type I, consist of multifunctional enzymes that are organized into 
modules which are responsible for the catalysis of one cycle of polyketide chain elongation.  Type II, 
consist of dissociable multienzyme complexes.  Type III, consists of dissociable homodimeric enzymes. 
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AT = acyltransf erase
ACP = acyl carrier protein
KS = ketosynthase
KR = ketoreductase
ER = enoyl reductase
DH = dehydratase
TE = thioesterase
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Scheme 1.35. 

sets the stage for a second iteration in as few as two steps.  Reiteration of this process 

with the growing KS bound polypropionates and intervening functional group 

manipulations produces 6-deoxyerythronolide B in only 6 carbon-carbon bond forming 

reactions.   

Polypropionate natural products and their related compounds have benefited 

humans on several different levels and their significance cannot be overstated.  

Convenient, flexible and efficient methods are still required for the synthesis of 

polypropionate compounds.  Despite the numerous synthetic approaches for 

polypropionate synthesis, very few have been applied in an iterativexvii fashion that 

attempts to mimic the elegant approach displayed in Nature.   

                                                 
xvii Defined in this context where a particular reaction or sequence of reactions were iterated 3 or more 
times. 
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1.3.1.  Iterative strategies for polypropionate synthesis 

Many of the iterative strategies developed to date involve the reaction of chiral 

(non-racemic) or achiral aldehydes with chiral (non-racemic) or achiral reagents 

generating (up to) two new stereocenters for each step.  For an iterative strategy, the 

aldehyde must be prepared from the product resulting from the chain elongating step 

(Scheme 1.36.).  There are two major obstacles for an iterative strategy:  1) the number of 

reagent
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or
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R

OR O
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repeat
+
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re-introduction
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FG = f unctional group

R CHO
R

OH
FG

(steps)

 

Scheme 1.36. 

synthetic manipulations required for aldehyde re-introductionxviii and 2) the enantio- and 

diastereoselectivities of the chain elongation steps.  In Nature, as few as two steps are 

performed for each iteration and the enantio- and diastereoselectivities are controlled by 

enzymes (Scheme 1.34. and Scheme 1.35.).  As was discussed earlier (Figure 1.5.) the 

number of possible stereoisomers increases exponentially with the number of stereogenic 

centers.  Often, the major challenge faced by synthetic chemists involves establishing the 

desired configurations of the polypropionate compound.  Over the past 15 years, several 

iterative strategies have emerged and have found various applications for the synthesis of 

polypropionate compounds.  The following examples are presented to provide a 

representation of iterative approaches.  All of the examples have shown the capacity to 

control the stereochemical outcome of different reactions by exploiting substrate- and/or 

reagent-control.   

                                                 
xviii That is, the efficiency of preparing the required aldehyde for the next iteration. 
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In 1990, Danishefsky and Myles disclosed a Lewis acid catalyzed diene aldehyde 

cyclocondensation (LACDAC) reaction that was applied in an iterative fashion for the 

synthesis of racemic 6-deoxyerythronolide B (Scheme 1.37.).75  The strategy exploited  
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Scheme 1.37. 

substrate-controlled Diels-Alder reactions of diene 144 with various aldehydes in the 

presence of different Lewis acids (e.g. ZnCl2 or BF3⋅OEt2) to produce dihydropyrones.  

Processing the dihydropyrones into their corresponding aldehydes (6 steps) permitted 

iteration of the sequence.  Although the approach was iterative, a major limitation was the 

6 steps (ca. 35-41% yields) required before the next iteration.   

In a related synthesis, Hoffmann and co-workers presented an impressive 

asymmetric synthesis of (9-S)-dihydroerythronolide A 160 (Scheme 1.38.).64  The 

strategy employed four reagent-controlled crotylboration reactions utilizing chiral (non-

racemic) crotylboronates and chiral (non-racemic) aldehydes where, after the first 

iteration, only 2 steps were required to prepare for iterative chain elongation.   
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Scheme 1.38. 
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A more general approach was developed by Hanessian and co-workers that utilized 

Wittig methodology.  The basis of the approach involved substrate-controlled methyl 

cuprate additions to protected chiral (non-racemic) γ-alkoxy-α,β-unsaturated esters 

followed by a Davis α-hydroxylation to complete the installation of a propionate 

fragment (Scheme 1.39.).77  Iteration was achieved by a three step sequence that provided  
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Scheme 1.39. 

the next aldehyde to be used for chain elongation.  Unlike the previous examples, this 

approach sequentially installed the desired stereocenters after chain elongation.  As a 

result of the inherent stereochemical outcome of the conjugate addition and subsequent 

hydroxylation and in combination with an optional Mitsunobu inversion, stereotriads B-D 

(Figure 1.6.) can be obtained by this method.  Although stereotriad A (Figure 1.6.) is not 

accessible by this approach, it could be obtained by an oxidation-reduction sequence.   
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In 1999, Paterson and Scott reported a boron-mediated aldol reaction strategy for 

the synthesis of polypropionate compounds.  The strategy exploited substrate-controlled 

aldol reactions of preformed chiral (non-racemic) (E)-enol borinate 167 (or ent-167) with 

various aldehydes (Scheme 1.40.).46, 63  The sequence was made iterable by a 4 step 

protocol that provided the desired aldehydes for subsequent iterations.  Similarly, during 

the synthesis of oleandolide, Paterson and co-workers also demonstrated reagent-

controlled boron-mediated aldol reactions of chiral (non-racemic) (Z)-enol borinates 170 

and 173 derived from (S)-ketone 95 and (−)-Ipc2BOTf/i-Pr2EtN or (+)-Ipc2BOTf/i-

Pr2EtN with aldehydes 171 or 173, respectively (Scheme 1.41.)103.  By application of the 

appropriate reaction conditions, Paterson and co-workers demonstrated that a diverse 

library of polypropionate compounds could be accessed with different relative and/or 

absolute configurations.   
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Scheme 1.41. 

Guindon and co-workers also exploited an aldol-type process that permitted access 

to all stereotriads A-D (Figure 1.6.).53, 55, 104  The basis of the methodology involved 

Lewis acid-mediated (AlMe3, Bu2BOTf, BF3⋅OEt2 or (i-PrO)TiCl3) substrate-controlled 

Mukaiyama aldol reactions105 of different chiral (non-racemic) aldehydes with 

tetrasubstituted enoxysilane 177 in tandem with a Lewis acid-mediated (Bu2BOTf or 

AlMe3) stereoselective hydrogen transfer using Bu3SnH.  Subjecting the resulting β-

hydroxy ester 179 to a 3 step sequence allowed the strategy to be reiterated (Scheme 

1.42. and Table 1.3.). 
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Scheme 1.42. 
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Table 1.3.  Diastereoselective Mukaiyama aldol and stereoselective hydrogen 
transfer processes. 

aldehyde Lewis 
acid 

% de (% yield) Lewis 
acid 

% de (% yield) 

OBn OBn O

180  

(i-PrO)TiCl3

177  

OBn OBn OH

Br
OMe

O

181, >95% (77)

Bu2BOTf

Bu3SnH

OBn OBn OH

OMe

O

183, >95% (89)  

   
AlMe3

Bu3SnH

OBn OBn OH

OMe

O

184, >95% (83)  

 
BF3·OEt2

177  

OBn OBn OH

Br
OMe

O

182, >95% (89)

AlMe3
Bu3SnH

OBn OBn OH

OMe

O

185, >95% (81)  

   
Bu2BOTf
Bu3SnH

OBn OBn OH

OMe

O

186, >95% (90)  
 

Similarly, by application of titanium-mediated aldol reactions, Crimmins and Slade 

reported a thiazolidinethione chiral auxiliary approach that was used for the formal 

synthesis of 6-deoxyerythronolide B (Scheme 1.43.).54  The sequence was iterated five 

times during a 23 step synthesis.  This was an excellent example where a chiral auxiliary 

was used for an iterative approach to a polypropionate natural product.   
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Scheme 1.43. 
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Lastly, Nelson and co-workers reported an asymmetric catalytic approach 

employing a [2+2] cycloaddition reaction of ketene 191 (derived from propionyl 

chloride) with achiral aldehyde 190 in the presence of 10 mol % of chiral (non-racemic) 

192 for the total synthesis of (−)-pironetin (Scheme 1.44.).99  Nelson and co-workers also  
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Scheme 1.44. 

demonstrated that the same approach could be applied to chiral (non-racemic) aldehydes 

(Table 1.4.).  In these cases, the authors suggested that the diastereoselectivities of the 

reactions were enhanced by double stereodifferentiation.xix  By employing either 

diastereomer of quinine derived catalysts (196 and 197, β-lactones (199-205) were 

selectively obtained in good yields and in high diastereomeric excess.   

 
 
 
 
 
 
 
 

                                                 
xix Although Nelson and co-workers referred to this as double stereodifferentiation, these were actually 
diastereoselective reactions since catalyst 196 and 197 are diastereomers (not enantiomers). 
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Table 1.4.  Acyl halide-aldehyde cyclocondensation of chiral (non-racemic) 
aldehydes. 

catalyst aldehyde β-lactone % de (% yield) 

196 

TMS
O PhO

198  

TMS
O PhO

O

199  

≥95 (83) 

197 

TMS
O PhO

200  

TMS
O PhO

O

201  

≥91 (81) 

196 

TMS
O PhO

202  

TMS
O PhO

O

203  

≥95 (81) 

197 

TMS
O

TMS
OO

204

Ph

 

TMS
O

TMS
OO Ph

205

O

 

≥95 (83) 
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Overcoming the challenges inherent to the synthesis of polypropionate compounds 

during the last three decades has greatly contributed to the development of 'asymmetric 

synthesis' (i.e. acyclic control).  Although the aforementioned approaches presented very 

interesting and unique features that were exploited for the synthesis of various 

polypropionate compounds, many strategies required access to expensivexx chiral (non-

racemic) starting materials and/or reagents.  As a result, there is a continuous demand for 

                                                 
xx Either in terms of cost and/or effort required for preparation. 
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effective protocols that are both highly efficient and cost-effective with controllable 

access to chiral (non-racemic) polypropionate compounds.   

1.3.2.  Thiopyran route to polypropionates 

Among all the strategies used for the synthesis of polypropionate compounds, the 

aldol reaction has found numerous applications and has been successfully applied for the 

total syntheses of many polypropionate natural products.105-110  While the occurrence of 

acylic aldol reactions are frequently encountered, cyclic variants are less common.  In 

particular, thiopyran-derived compounds are useful templates to facilitate access to 

polypropionate synthetic targets.111-115  An attractive strategy for polypropionate 

synthesis involves aldol reactions of tetrahydro-4H-thiopyran-4-one derivatives followed 

by desulfurization.112, 116   

During the last decade, extensive exploration of this approach was conducted by 

Ward and co-workers.116-124  Efforts to effect rapid access to stereochemically diverse 

tetrapropionate and hexapropionate synthonsxxi via iterative two-directional and 

simultaneous aldol reactions of tetrahydro-4H-thiopyran-4-one derivatives with 1,4-

dioxa-8-thispiro[4.5]-decane-6-carboxaldehyde 207 or meso/dl 1,4-dioxa-8-

thiaspiro[4.5]decane-6-10-dicarboxaldehyde 208, respectively were investigated (Scheme 

1.45.).  The challenge of selectively preparing hexapropionate 214 is revealed when 

considering the 512 possible diastereomers (i.e. 1024 possible stereoisomers).   

                                                 
xxi Defined as a structural unit within a molecule which is related to a possible synthetic operation. 
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Scheme 1.45. 

Disconnection of the carboxyl group of hexapropionate 214, functional group 

manipulations and adjustments of oxidation states provides bisaldol adducts 212 and 213, 

where the number of possible diastereomers is reduced (by design) to only 20.  For 

example, bisaldol adduct 211a was obtained by simultaneous two-directional boron-

mediated aldol coupling of thiopyranone 206 and meso dialdehyde 215 (Scheme 1.46.).  

Moreover, 11 of the 20 possible bisaldol adducts were obtained by iterative two-

directional aldol couplings of thiopyranone 206 (or silyl enol ether 218) and aldehyde 

207 (Schemes 1.47-1.51).   
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Scheme 1.51. 

Perhaps the most impressive (or unique) result was the aldol coupling of (±)-209as 

with (±)-207 that provided meso bisaldol adduct 212a in 82% yield (Scheme 1.48.).  A 

remarkable outcome considering that such a union could produce eight diastereoisomers 

(four each from the like and unlike combinations of the reactant enantiomers where the 
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like combination refers to the same absolute configurations at C-6′ of (±)-209as and C-6 

of (±)-207, while unlike refers to the opposite absolute configurations at C-6′ of (±)-

209as and C-6 of (±)-207).xxii  The aldol couplings of (±)-209 or (±)-210 with (±)-207 

offers the opportunity to exploit double stereodifferentation (DS)37-45, 125, 126 and Ward et 

al. elegantly demonstrated that reactions of β-hydroxy ketones (e.g. (±)-207) with (±)-

209 occurred with high DS and high MKExxiii, while reactions of β-alkoxy ketones (e.g. 

(±)-207) with (±)-210 occurred with low DS and low MKE.  For example, reaction of 

(±)-209as and (±)-207 gave meso bisaldol adduct 212a in 82% yield (Scheme 1.48.) 

which resulted from a combination of reactants where the absolute configurations at C-6′ 

of (±)-209as and C-6 of (±)-207 are unlike.  This aldol coupling occurred with high DS 

and MKE and the unlike reaction is remarkably diastereoselective.  Alternatively, 

reaction of (±)-210as and (±)-207 furnished two bisaldol adducts (±)-213a and (±)-213b 

in 34% and 32% yield, respectively (Scheme 1.48.).  Examination of bisaldol adducts 

(±)-213a and (±)-213b reveal that (±)-213a resulted from a like reaction while (±)-213b 

resulted from an unlike reaction.  This aldol coupling occurred with low DS and MKE 

(ca. 1.1); however, both the like and unlike reactions are remarkably diastereoselective 

(only one product from each like and unlike reactions).  Despite the low DS and MKE, 

such a result offered the opportunity to exploit double stereodifferentation for the 

synthesis of bisaldol adducts (−)-213a and (−)-213b by employing chiral (non-racemic) 

starting materials.  Indeed, Ward and co-workers were successful in selectively 

                                                 
xxii The combination of reactant enantiomers that leads to product 212 (or 213) is conveniently 
characterized by comparing the configurations at C-6′ and C-6′′ of bisaldol adduct 212 (or 213). 
xxiii Mutual kinetic enantioselection (or resolution) is the reaction between two chiral racemic compounds 
that produce chiral racemic product(s) and can be evaluated by the sum of the products resulting from a like 
combination of starting materials divided by the sum of the products resulting from an unlike combination 
of starting materials. 
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synthesizing bisaldol adducts (−)-213a and (−)-213b by reaction of (−)-209as with (S)-

207 and (R)-207 in 70% and 55% yield, respectively.  The diastereoselectivities for the 

aldol couplings of 209 and 210 were rationalized by cyclic titanium-enolates 219 and 220  
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Scheme 1.52. 

(Scheme 1.52.) and considering three stereocontrol elements; the enolate and aldehyde 

diastereoface selectivities and the aldol relative topicity.122  Aldol couplings of β-hydroxy 

ketones (209) occurred with substantial MKE and gave a major (or sole) product that 

resulted from: 1) Felkin diastereoface addition of 207 to give 1′′,6′′-syn relative 

configuration; 2) addition of enolate 219 to give 3,5-cis relative configuration; and 3) 

5,1′′-anti aldol relative topicity.  Aldol couplings of β-alkoxy ketones (210) occurred 

with low MKE that gave two products from reactions that have the same diastereoface 
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selectivity of enolate 220 (3,5-trans) and aldehyde 207 (1′′,6′′-syn) but differ in the aldol 

relative topicity (5,1′′-anti vs. 5,1′′-syn).  The effects of DS and MKE were attenuated 

using β-alkoxy ketones (210) and provided access to different bisaldol adducts.  By 

extension to the other diastereomers of 209 and 210 (Schemes 1.48-1.51.), Ward and co-

workers demonstrated that 11 of the 20 possible bisaldol diastereomers can be produced 

in 2-3 steps which should serve as a source of stereochemically diverse hexapropionate 

synthons for polypropionate synthesis. 

1.4.  Conclusions 

The development of methodologies for the total synthesis of polypropionate natural 

products embodies a very active area of research.  Many different strategies have been 

developed; however, new methodologies applying more efficient and cost effective 

strategies are required.  In particular, general methods that provide controlled access to 

any given stereoisomer.  Equally important is the development of protecting group 

chemistry that enables efficient functional group manipulations of substrates that are 

compatible with other functional groups and/or reagents. 

 

1.5.  Objectives of this thesis 

An advantage of the thiopyran template (i.e. thiopyran route to polypropionates) is 

the possibility of desymmetrization of meso (and chiral) diastereomers of bisaldol 

adducts 221 by extension of the well-established enantioselective enolization of six-

membered cyclic ketones (Scheme 1.53.).127, 128  Enantiotopic group selective processes  



 

 52

S S S

OH O OH

S S S

O O O

S S S

O O OO
OO OO

+ +

OO

+ +

207 207206 206 206208

desulfurize
reduce

11 of the 20 possible
diastereomers can be
obtained selectively

221

OH OH OH

O

OH OH OH
512 possible

diastereomers

214
a hexapropionate

a hexapropionate synthon

S S S

OH O OH

desymmetrize
carboxylate

O O O OTMS
chiral lithium

amide

TMSCl

222

thiopyran route to
polypropionates

aldol aldol

steps

 

Scheme 1.53. 

where the two enantiotopic groups can sequentially react are very powerful methods to 

obtain highly enantiomerically enriched products in good to excellent yields.129  The 

requirements of this approach are:  1) ease of access to Cs (or Ci) symmetric starting 

materials, 2) a group selective reaction with at least modest group selectivity (E >6:1) and 

3) ease of recycling bis-reacted material.  Ketone enolization is an ideal reaction for these 

processes because it is both synthetically useful and easily reversible.  Reversibility of 

enantiotopic group selective processes are especially important to improve the efficiency 

and efficacy of processes with modest enantioselectivities.  Enantiotopic group selective 

enolization of meso diketones was unknown until this work; however, examples of 

kinetic resolution and enantioselective desymmetrization of chiral and achiral Cs (or Ci) 

symmetric ketones by enolborination127 or by enolization with chiral lithium amides130-137 

are known (Scheme 1.54.).  Kinetic resolution and enantioselective desymmetrization are  
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Scheme 1.54. 

equivalent to an enantiotopic group selective reaction; groups on enantiomeric substrates 

are enantiotopic by external comparison, while groups on Cs (or Ci) symmetric substrates 

are enantiotopic by internal comparison.138  The requirement to apply an enantioselective 

enolborination or enolization demands access to suitably protected meso diketones.  Ward 

and co-workers established a synthetic route to a meso 1,9-diketone 233 (Scheme 1.55.) 

however, they were unable to effect enantioselective enolborination; unreacted 233 was 

recovered after treatment with (−)-Ipc2BCl and sparteine.121  Alternatively,  
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enantioselective enolization of meso 233 could be achieved by reaction with chiral 

lithium amide (CLA) 230 and TMSCl.  . The research objectives in this thesis were:   
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Scheme 1.56. 

 
1) establishment of an efficient process (i.e. including recycling) for the enantioselective 

enolization of meso 1,9-diktone 233, 2) determination of the absolute configuration of the 

resulting mono-silyl enol ether, 3) desulfurization of a hexapropionate synthon and 4) 

application of the developed methodology (i.e. thiopyran route to polypropionates) for 

the asymmetric synthesis of (−)-denticulatin A (Scheme 1.56.) 
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CHAPTER 2 
2.  RESULTS AND DISCUSSION 

2.1.  Enantioselective desymmetrization 

During the last several decades, there has been increasing interest in the preparation 

of enantiomerically pure compounds because of their biological and agricultural roles.  

There are three fundamentally different approaches for the preparation of 

enantiomerically pure compounds:  1) the use of enantiopure starting materials provided 

by Nature (i.e. the chiral pool), 2) separation of enantiomers by chemical or physical 

means (i.e. resolution) and 3) preparation from achiral starting materials using chiral 

reagents or chiral catalysts (i.e. 'asymmetric synthesis').139  The asymmetric synthesis of 

enantiomerically pure compounds from Cs (or Ci) symmetric or meso starting materials 

(i.e. enantioselective desymmetrization) is proving to be a powerful synthetic tool.140  In 

order to effect such transformations, chiral reagents or chiral catalysts are required to 

differentiate enantiotopic faces or groups present in the reactant.141  While many of the 

methods developed involve enantiotopic face selective reactions, non-enzymatic142 

examples involving group selective reactions are less common.   

2.1.1.  Sequential enantiotopic group selective desymmetrization 

Enantiotopic group selective reactions can be classified into two types:  1) external 

group selective processes (i.e. kinetic resolution) and 2) internal group selective 

processes (i.e. enantiotopic group selective desymmetrization).143  An interesting feature 

of processes where the enantiotopic groups can react sequentially is the coupling of an 

enantiotopic group selective desymmetrization (i.e. 'asymmetric synthesis') with a kinetic 
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resolution to produce products with enhanced levels of enantiopurity (Scheme 2.1.).121, 

129, 144-146  One of the earliest examples of a sequential enantiotopic group (SEG)  
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Scheme 2.1. 

selective desymmetrization was reported by Sugimoto and co-workers where they 

demonstrated oxidation of achiral aromatic sulfides with NaIO4 and H2O2 in the presence 

of bovine serum albumin (Scheme 2.2.).147  More recently, Nelson and co-workers  
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Scheme 2.2. 

achieved a catalytic desymmetrization of Ci symmetric bis-epoxide 242 by enantiogroup 

selective epoxide hydrolysis using Jacobsen's chiral salen catalyst 241 during their work 



 

 57

towards the synthesis of an advanced intermediate for the total synthesis of 

hemibrevetoxin B (Scheme 2.3.).148, 149  Other examples involving catalytic benzoylation  
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Scheme 2.3. 

and silylation of cyclic meso diols have also recently appeared (Scheme 2.4.).150, 151   
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Scheme 2.4. 

While these recent examples illustrated the benefits of coupling an enantiotopic group 

selective desymmetrization with a kinetic resolution, convenient and cost effective 
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methods for the preparation of stereochemically complex and multifunctional substrates 

are still unknown.   

The requirements for any successful SEG selective desymmetrization necessitate 

the ease of access to Cs (or Ci) symmetric starting materials and a group selective reaction 

with at least a modest group selectivity (s >6:1).  Furthermore, a group selective reaction 

where the bis-reacted material can be easily recycled is especially important for those 

reactions that proceed with modest selectivity.  The benefits of SEG selective 

desymmetrizations are readily illustrated using the well-known theoretical framework for 

such processes.  Figure 2.1. illustrates the calculated129 results for a hypothetical process 

(Scheme 2.1.) where the enantiotopic group selectivity (s = k1/k2) is 6.  The yield of 

products (P+Q) rises and then decreases as the yield of B increases. However, the 

enantiopurity of the intermediate product (P+Q) continuously increases with conversion 

to reach any arbitrarily high ratio of P/Q.  In this case, the maximum yield of 

desymmetrized product (P+Q) is 66% with 87% ee (P/Q = 14).  In principle, higher levels 

of enantiopurities can be reached with an appropriate sacrifice in yield.  For this example, 

the same reaction at higher conversion provides 50% yield of desymmetrized product that 

is 97% ee.  The exploitation of the ee enhancement feature of SEG selective 

desymmetrizations can be successfully achieved with reactions possessing only modest 

group selectivity; provided the bis-reacted material can be efficiently recycled.   
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Figure 2.1.  Calculated mole fractions of products and ee produced in a hypothetical 
reaction with an enantiotopic group selectivity (s = k1/k2) of 6. 

(i.e., assuming k1 = k4; k2 = k3). 

2.1.2.  Chiral lithium amides 

In 1980, Whitesell and Felman reported the first example of an enantioselective 

deprotonation of a cyclic meso epoxide to give allylic alcohol 252 using chiral lithium 

amides (CLA) (Scheme 2.5.).152  The preferred mechanism involves an initial 

coordination of the CLA followed by a syn β-elimination of the enantiotopic pseudo-axial 

protons (i.e. external comparison) of the two enantiomeric conformers 252 and ent-252.  

Since this initial report, the enantioselective deprotonation of achiral Cs symmetric 

substrates has resulted in the development of methodologies for the synthesis of a wide 

range of natural products and other optically active materials.128  For example, the 

enantioselective enolization of achiral Cs symmetric cyclic ketones has developed into a  

0.0             0.5                                     0.9            0.95                                 0.99

[B]
[A]0

[P]–[Q]
[P]+[Q]

ee =

[P]+[Q]
[A]0



 

 60

 

OH

251 253

(S)

HO

(R)

OH

CLA CLA

252 ent-252

pseudo-axialpseudo-axial

44-76% yields
3-31% ee

N
R*

R*

O H

N
R*
R*Li Li

 

Scheme 2.5. 

very powerful strategy for several applications to natural product synthesis.137, 153-157  For 

conformationally locked cyclohexanones, there is a stereoelectronic preference for the 

removal of the axial protons (Scheme 2.6.).128  The effect of adding lithium chloride was  
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Scheme 2.6. 

shown to enhance the levels of enantioselectivities and is believed to occur through 

reaction of a different  aggregated form of the chiral lithium amides (Figure 2.2.).  In 

general, optimal levels of enantioselectivities were observed via internal quench 

conditions (lithium chloride pre-mixed with chiral lithium amide during addition to a 
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solution of ketone and TMSCl)158-161 where the mixed dimer 256 is implicated for the 

more enantioselective processes.   
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Figure 2.2.  Aggregate solution structures of chiral lithium amides. 

While chiral lithium amides were successfully used for the enantioselective 

enolizations of various achiral Cs symmetric ketones,128 kinetic resolution of chiral 

ketones are much less frequent.  Koga and co-workers demonstrated kinetic resolution of 

2-substituted cyclohexanones and established protocols to provide enantioenriched 

ketones in good yields and enantiopurities (Scheme 2.7.).135  Although enantioselective  
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Scheme 2.7. 

enolization of achiral Cs symmetric and racemic ketones is well-established, there are no 

examples of enantioselective enolization of achiral meso diketones, where two 
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independently activated enantiotopic axial hydrogens can react sequentially and thereby 

exploit the ee enhancement feature of a SEG selective enolization.   

2.1.3.  Model study 

With the requisite access to a meso 1,9-diketone 233 established (Scheme 1.55., 

Section 1.4.), the synthetic potential of a sequential enantiotopic group selective 

enolization using a chiral lithium amide can be investigated (Scheme 2.8.).  While there 

are more than twenty chiral lithium amides available,128 chiral lithium amide 230 (or ent-

230) was chosen because the precursor amine  is commercially available and has been 

successfully used in numerous enantioselective enolizations of Cs symmetric ketones. 
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2.1.3.1.  Synthesis of meso 1,9-diketone 233 

While the established procedure for the preparation of meso 212a was sufficient to 

carry out this study, several key improvements were accomplished during the course of 

this work.  For example, meso bisaldol adduct 212a was previously prepared by aldol 

coupling of (±)-207 with the lithium enolate of 206 generated by reaction of 218 with 

methyllithium, followed by a second aldol coupling of the resulting aldol adduct (±)-

209as with (±)-207 (Scheme 2.9.).  The two-step sequence provided meso bisaldol adduct 

212a in 42% yield; an impressive result considering that six stereocenters are formed in  

S S S

OH O HOOO OO

meso 212a
S

OOO

S

OTMS

S S

OH OOO

+

i) MeLi
ii) (±)-207

70% yield

(±)-207 (±)-209as218

i) TiCl4
ii) i-Pr2EtN
ii) (±)-207
60% yield

 

Scheme 2.9. 

only two reactions.  The required aldehyde (±)-207 was prepared following a modifiedxxiv 

Swern oxidation162, 163 of alcohol (±)-263 (Scheme 2.10.);118 however, the yield often 

varied  (ca. 10-80%) and was especially problematic on larger scales (i.e. 5-20 g).  The 

addition of dimethyl sulfide was believed to reduce chlorination (i.e. via chloride 

exchange) of cyclic sulfide (±)-264 or Swern activated (±)-266 and attenuate the 

formation of decomposition productsxxv (Scheme 2.10.).  While this method was 

amenable up to ca. 1 g scale, yields at higher scales varied and could be extremely poor 

at 10 g of (±)-263 (i.e. <30% yield of aldehyde (±)-207 with no recovered  

                                                 
xxiv Addition of 1.0-2.0 equiv of dimethyl sulfide with (±)-263 during addition to Swern reagent. 
xxv The significant challenge to optimize this reaction was the absence of any appreciable amounts of 
decomposition product(s) in the crude material after work-up.  This implies that they are water-soluble or 
volatile materials and as a result the only measurement for optimization was the crude mass recovery. 
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Scheme 2.10. 

starting material).  After considerable experimentation,xxvi it was discovered that 

replacing dimethyl sulfide with 1 equiv of i-Pr2EtN during the addition of the aldehyde to 

the Swern reagent consistently provided a 85-89% yield of aldehyde (±)-207, 

accompanied with 3-5% yield of recovered alcohol (±)-263 on 1-25 g scales  This result 

suggests that the decomposition products result from the presence of HCl during the 

Swern activation of alcohol (±)-263 (Scheme 2.11.).  Surprisingly, the presence of i-

Pr2EtN does not destroy the Swern reagent.  This implies that the rate of Swern activation 

of alcohol (±)-263 is faster than destruction of Swern reagent.  Thus, this example 

represents a very mild procedure for oxidation of sensitive compounds.  It would be 

interesting to see whether this modification would benefit other difficult oxidations.164   

 

                                                 
xxvi Reaction optimizations were performed on ca. 1 g of (±)-263. 
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Scheme 2.11. 

 

With access to a scaleable and convenient method for the preparation of aldehyde 

(±)-207, the first aldol reaction was investigated.  Ward and co-workers recently 

demonstrated the enantioselective synthesis of chiral (non-racemic) aldol adduct (−)-

209as by (S)-proline (or 217) catalyzed direct aldol reaction of ketone 206 with aldehyde 

(±)-207 that occurred with dynamic kinetic resolution (Scheme 2.12).111, 120  Similarly,  
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Scheme 2.12. 

the synthesis of (±)-209as can be prepared from 206 and (±)-207 using rac-proline.xxvii  

Interestingly, the synthesis of aldol adduct (±)-209as can be prepared via proline 

                                                 
xxvii Investigations done concurrently and in collaboration with Dr. Vishal Jheengut. 
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catalyzed aldol reaction under solvent-free conditions facilitated by sonication and/or 

acid additives.  Solvent-free aldol reactions of 206 and (±)-207 were investigated by 

varying the amount of added water, time, temperature and under sonication with rac-

proline (Table 2.1.).  While aldol reactions of 206 and (±)-207 at room temperature or 38 

°C did not provide any significant amounts of aldol adducts (entries 1 and 2), under 

sonication aldol adducts were observed (entries 5 and 8).  The presence of water has been 

reported165, 166 to have a beneficial affect for enantio- and diastereoselectivities for proline 

catalyzed reactions; however, excess water appears to completely inhibit the reaction at 

22 °C and 38 °C under sonication (entries 6 and 7).  In light of these results, the amount 

of water was reduced to 2 equiv which resulted in high conversion and high 

diastereoselectivity of aldol adduct (±)-209as (entry 8).   

Table 2.1.  Rac-proline catalyzed aldol reaction of 206 with (±)-207. 
entrya 206 

(equiv) 
H2O 

(equiv) 
sonication 
time (d) 

total 
time (d) 

temp 
(°C) 

conversionb 
(%) 

dec 

(%) 
1 1.5 5 0 2 22 0  
2 1.5 5 0 1 38 5 >95 
4 1.5 5 2 4 22 0 0 
5 1.5 5 1 2 38 42 90 
6 1.5 10 2 4 22 0  
7 1.5 10 1 1 38 0  
8 1.5 2 3 3 38 94 93 

a Reactions with (±)-207 (ca. 0.5 mmol) and (S)-proline (0.5 equiv).  b Conversion with respect to (±)-207.  
c Calculated from the ratio of 209as:209ss by 1H NMR analysis of crude reaction mixture.   

 

Interestingly , aldol reaction of 206 with (±)-207 using (S)-proline (Table 2.2.) according 

to the optimized conditions for rac-proline (entry 8, Table 2.1.) furnished nearly racemic 

aldol adduct (±)-209as.  At this point, it was decided that further optimizations would be  
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Table 2.2.  (S)-proline catalyzed aldol reaction of 206 with (±)-207. 
entrya 206 

(equiv) 
H2O 

(equiv) 
sonication 
time (d) 

total 
time (d)

temp 
(°C) 

conversionb 
(%) 

dec eed 

(%) 
1 1.5 0 0 7 22 0   
2 1.5 0 2 2 22 0   
4 1.5 0 3 3 38 86 86 13 
5 3 0 3 3 38 96 83 6 
6 6 0 3 3 38 96 92  
7 1.5 1 3 3 38 92 93 11 
8 1.5 2 3 3 38 90 88 13 
9 3 2 3 3 38 93 89  
10 6 2 3 3 38 88 92  
11 1.5 4 3 3 38 75 90 17 
12 3 4 3 3 38 78 88  
13 6 4 3 3 38 83 90  
14 1.5 8 3 3 38 44 >95  
15 1.5 2 1 1 38 34 >95  
16 1.5 2 1 2 22 42 >95  
17 1.5 2 1 4 22 65 >95  

a Reactions with (±)-207 (ca. 0.5 mmol) and (S)-proline (0.5 equiv).  b Conversion with respect to (±)-207.  
c Calculated from the ratio of 209as:209ss by 1H NMR analysis of crude reaction mixture.  d ee was 
calculated assuming a linear correlation of optical purity and enantiomeric excess; [α]D (max) for (−)-209as 
= −47 at ambient temperature (ca. 23 °C), c = 1.0, CHCl3. 

 

conducted using (S)-proline as this would offer a more economicalxxviii approach for the 

preparation of aldol adduct (±)-209.  Additional optimizations involving varying the 

amount of ketone, water, time and temperature under sonication gave results essentially 

identical to those obtained with rac-proline (entry 7, Table 2.2. vs. entry 8, Table 2.1.).  

The low enantiopurity along with the high diastereoselectivity was intriguing and 

prompted a time-course study to investigate any conversion dependency of the 

enantioselectivity (Table 2.3.).  Indeed, higher enantiopurities of (−)-209as were higher at 

low conversion which suggests a possible kinetic resolution mechanism.167-169  The 

presence of water clearly enhances the enantiopurity of the aldol adduct, while the 

diastereoselectivities obtained with 1-4 equiv of water were quite similar.   

                                                 
xxviii (S)-proline is ca. 40× cheaper than its racemate.  
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Table 2.3.  Time course study of (S)-proline catalyzed aldol reaction of 206 with (±)-
207. 

entrya H2O 
(equiv) 

sonication 
time (d) 

total 
time (d) 

temp 
(°C) 

conversionb 
(%) 

dec  
(%) 

eed 
(%) 

1 0 0.5 0.5 38 43 87 21 
2 0 2 2 38 86 86 13 
3 1 0.5 0.5 38 27 >95 55 
4 1 1.5 1.5 38 50 >95 47 
5 1 3 3 38 92 93 11 
6 2 0.5 0.5 38 23 >95 64 
7 2 3 3 38 90 88 13 
8 4 0.5 0.5 38 13 >95 77 
9 4 2 2 38 57 92 43 
10 4 3 3 38 75 90 17 

a Reactions with (±)-207 (ca. 0.5 mmol), 206 (1.5 equiv) and (S)-proline (0.5 equiv).  b Conversion with 
respect to 207.  c Calculated from the ratio of 209as:209ss by 1H NMR analysis of crude reaction mixture.  
d ee was calculated assuming a linear correlation of optical purity and enantiomeric excess; [α]D (max) for 
(−)-209as = −47 at ambient temperature (ca. 23 °C), c = 1.0, CHCl3. 
 

This result suggests that aldehyde (±)-207 does not readily isomerize under solvent free 

conditions compared to the aldol reaction.  Addition of bases to the reaction mixture 

dramatically reduced the diastereoselectivities with no effect on enantiopurities (entries 1 

and 2, Table 2.4.).  For example, the addition of imidazole resulted in an equilibrium ratio 

for 209as:209ss of 1:1.5, with both aldol adducts in low enantiopurity (entry 2).  

However, the addition acetic acid facilitated the aldol reaction without the requirement of 

sonication at room temperature or 38 °C (entry 4).  Adapting the reaction conditions in 

entry 4 (Table 2.4.), nearly racemic 209as (<20% ee) was obtained in 90% yield on gram 

scale.  This procedure has several advantages over the previously reported lithium-

enolate procedure.118  It is simple and cost effective and the requirements of low 

temperatures and inert atmosphere are avoided.  Lastly, the aldol adduct (±)-209as can be 

obtained by simple trituration of the crude reaction mixture allowing the procedure to be 

easily performed on multigram scales.   



 

 69

Table 2.4.  (S)-proline catalyzed aldol reaction of 206 with (±)-207 with acid or base 
additives.a 

entrya additive 
(equiv) 

sonication 
time (d) 

total 
time 
(d) 

temp 
(°C) 

conversionb 
(%) 

dec 
(%) 

[α]D
d 

1 Bu3N (1.0) 3 3 38 79 69 −7 
2 imidazole (1.0) 3 3 38 83e  −7f 
3 AcOH (0.3)  2 22 56 >95 −12 
4 AcOH (0.3)  2 38 98 >95 −9 

a Reactions with (±)-207 (ca. 0.5 mmol), 206 (1.5 equiv), water (2.0 equiv) and (S)-proline (0.5 equiv).  b 
Conversion with respect to (±)-207.  c Calculated from the ratio of 209as:209ss by 1H NMR analysis of 
crude reaction mixture.  d At ambient temperature (ca. 23 °C); c = 1.0, CHCl3; [α]D (max) for (−)-209as = 
−47.  e Equilibrium ratio for 209as:209ss (1:1.5).  f [α]D +8 for (+)-209ss; [α]D for ent-209ss of 90% ee:  
[α]D −48, c = 1.3, CHCl3).119 

 

The second aldol coupling of (±)-209as with (±)-207 was accomplished according 

to the reported titanium-enolate method using i-Pr2EtN/TiCl4.117  While this procedure 

furnished meso bisaldol adduct 212a (Scheme 2.9.) in 40-60% yields, further 

improvements were attained using i-Pr2EtN/(i-OPr)TiCl3
170 that provided yields of 78-

85% on multigram scales (Scheme 2.13.).  As noted earlier (Section 1.3.2.), this is an  
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Scheme 2.13. 
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impressive (perhaps unique) result whereby the coupling of two racemic reactants 

furnished a meso product.  Finally, the synthesis of the desired meso diketone for the 

SEG enolization study was achieved by a reduction, protection and deprotection sequence 

on meso bisaldol adduct 212a that furnished meso 1,9-diketone 233 (Scheme 2.13.).  This 

synthetic route provided the rapid assembly of stereochemically complex hexapropionate 

synthons (i.e. meso bisaldol adduct 212a and meso 1,9-diketone 233; 6-7 stereocenters) 

on multigram scale and should be applicable to a number of synthetic endeavors. 

 
2.1.3.2.  Sequential enantiotopic group selective enolization of meso 1,9-diketone 233 

Enantioselective enolization of meso 1,9-diketone 233 was successfully achieved 

by deprotonation with 230 (Scheme 2.14.).121  The yield and ee of 261 are dependent on  

S S S

O
Me
O

Me
O

Me
OO

S S S

TMS
O

Me
O

Me
O

Me
OO

S S S

TMS
O

Me
O

Me
O

Me
O

TMS
O

233

262

261

230 (0.5-2 equiv)
TMSCl (10 equiv)

+
Ph N

Li
Ph

230

–100 °C
THF

10% HF(aq)
>95% yield

 

Scheme 2.14. 

the reaction enantioselectivity and conversion.129  The reaction of 233 with 230 was 

analyzed at various conversions by rapid cannulation of a THF solution of 230 (0.5-2 

equiv) at −78 °C to a THF solution of 230 (0.2-0.3 mmol) and TMSCl (10 equiv) at −100 
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°C (Table 2.5.).  Under these optimized conditions,xxix 261 was obtained in 78% yield 

with >98% ee.  Using similar conditions, reactions using 230 were more selective than 

those using 230⋅LiCl159, 161, 171 (entries 2 and 6).  The expected feature of ee enhancement 

with increased conversion is evident (entries 1-3; 4, 6 and 8).  At low conversions, the er 

of 261 should approximate the enantiotopic group selectivity for the reaction.129  

Reactions using small amounts of 230 or 230⋅LiCl (entries 1 and 4) performed poorly,  

 

Table 2.5.  Enantioselective enolization of 233 with 230/TMSCl. 
isolated yields (%) entrya 230 

(# equiv) 
1H NMR ratiob 
233:261:262 233 261 (%ee)c 262 

1 0.5d 71:26:3 70 22 (86) 3 
2 1.0d 16:69:12 20 61 (90) 12 
3 1.4d 2:74:24  73 (92)  
4 0.5 86:14:0 78 15 (81)  
5 1.2 52:46:10    
6 1.3 26:67:8 25 61 (94) 8 
7 1.4 14:76:9    
8 1.5 4:80:15  78 (98)  
9 1.7 0:62:38  58 (>98) 34 

a A THF solution of 230 or 230⋅LiCl was rapidly cannulated (ca. 30 sec) to a THF solution of 233 (0.2-1.5 
mmol) and TMSCl (10 equiv) at −100 °C.  b Crude products after work-up.  c Determined by 1H NMR in 
the presence of (+)-Eu(hfc)3/CF3CO2Ag.  d Using 230⋅LiCl. 

 

giving 261 in low ee accompanied by an amount of 262 that far exceeded expectations.  

That is, the product distributions in entries 1 and 4 are similar to a nonselective reaction 

(e.g. using LDA as base).  By contrast, a reaction with an enantiotopic group selectivity 

of 9:1 would not be expected to give 3% of the bis-product until ca. 50% conversion.129  

                                                 
xxix Reactions conducted at −78 °C were very capricious and much less enantioselective.  Slow addition of 
230 was less enantioselective.  External quench (i.e. addition of TMSCl after addition of 230) gave 
considerably lower conversions. 
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In order to establish the reaction selectivity,xxx the experimental data was compared to 

those calculated for an idealized group selective process at various enantiotopic group 

selectivities (s) and mole fractions (χ) according to the equations 2.1.-2.4.129   

χ261 = χ233
1/s + 1 − χ233 

 
(eq 2.1.) 

χent-261 = χ233
s/s + 1 − χ233 

 (eq 2.2.) 

χ262 = 1 − χ233 − χ261 − χent-261 
 (eq 2.3.) 

ee = (χ261 − χent-261)/(χ261 + χent-261) 
 (eq 2.4.) 

The observed product distributions (261 and 262) and ee of 261 formed in the reaction of 

233 with 230 correspond closely with those predicted from a model reaction with an 

enantioselectivity of ca. 17:1 (Figure 2.4.).  Although an enantioselectivity of 17:1 is  

 

 

                                                 
xxx Assuming the enantiotopic carbonyl groups underwent enolization independently (i.e. Scheme 2.8., s = 
k1/k2; k1 = k4, k2 = k3). 



 

 73

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0100.1001.000

conversion with respect to #

m
ol

e 
fra

ct
io

n 
or

 e
e

 

Figure 2.4.  Calculated and observed mole fractions of 261 ( ) and 262 ( ) and ee of 
261 ( ) produced in the reaction of 233 with 230/TMSCl as a function of 
conversion of 233. 

(i.e., assuming s = 19 (---), s = 17 (⎯) and s = 15 (− −)). 

lower than that observed for deprotonation of Cs symmetric cyclohexanones under similar 

conditions,128 261 is easily obtained with greater enantiopurity because of the ee 

enhancement feature of SEG desymmetrizing reactions.  The lower selectivity may result 

because the initial coordination of lithium amide to ketone is an enantioselective step for 

meso 1,9-diketone 233 (kon) (Scheme 2.15.) but not for Cs symmetrical ketone 268 

(Scheme 2.16.).xxxi  If the enantioselectivity for the coordination step is lower than that 

for the deprotonation step (as expected), then dissociation (koff) of the complex must be 

much faster than deprotonation to prevent attenuation of the overall enantioselectivity.   

                                                 
xxxi The only enantioselective step for Cs symmetrical ketones is the deprotonation of the axial α-hydrogen. 

0.0             0.5                                     0.9            0.95                                 0.99

conversion with respect to 233
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Scheme 2.16. 

Reactions of 233 with 230 under the optimized conditions gave the corresponding mono-

silyl enol ether 261 in good yields and with excellent enantiopurities.  This process is 

extremely efficient (>90% yield based on recovered diketone 233) as bis-silyl enol ether 

262 is easily recycled to diketone 233 on treatment with HF(aq) (>95% yield) (Scheme 

2.14.). 
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2.1.3.4.  Determination of absolute configuration 

The absolute configuration of 261 was determined by 1H NMR analysis of the (R)- 

and (S)-O-acetylmandelate esters 272 and 273 of the derived alcohol 271 (Scheme 2.17  
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271 R = H, 82% yield
272 R = (R)-OAM, 64% yield
273 R = (S)-OAM, 44% yield  

Scheme 2.17. 

 
Table 2.6.  1H NMR chemical shifts for 272 and 273.a 
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272 

proton δ for 273 δ for 272 Δδ (273−272) 
HC-5'' (α) 1.77 1.89 −0.12 
HC-5'' (β) 2.03 2.36 −0.33 
HC-4'' 5.08 4.97 +0.11 
HC-3'' 2.23 2.13 +0.10 
HC-1'' 2.90 2.16 +0.74 
HC-5 1.77 1.44 +0.33 
HC-4 3.96 3.71 +0.25 
HC-3 1.77 1.61 +0.16 
HC-3' 2.71 2.68 +0.03 
HC-1' 4.00 3.95 +0.05 
H3COC-1'' 3.41 2.94 +0.47 
H3COC-4 3.45 3.32 +0.13 
H3COC-1' 3.31 3.29 +0.02 

a In cases where assignment of δH was difficult because of overlapping signals in the 1H NMR, HSQC cross 
peaks were used to assign the δH value. 
 

and Table 2.6.).172  The 3'',4''-cis relative configurations for 271, 272 and 273 were 

assigned based on the appearance of HC-4'' as a broad singlet (all J's <3 Hz) in the 1H 
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NMR spectra.  The NMR assignments for 272 and 273 (Table 2.6.) were based on 

chemical shifts and multiplicity were confirmed by 1D and/or 2D heteronuclear 

correlation experiments (i.e. gsCOSY, gsHSQC and/or gsHMBC).  Accordingly, the 

signs of the observed Δδ's indicated that the absolute configuration at C-4'' was (R) when 

using chiral lithium amide 230 (Figure 2.5.).172  The formation of 261 involves  
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Figure 2.5. Model for establishing the absolute configuration of 261. 

 
preferential abstraction of the axial pro-(S)-hydrogen from the α-methylene group from 

233 as expected considering the known173 enantioselectivity for deprotonation of Cs 

symmetrical cyclohexanones with 230 (Scheme 2.18.).   
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Scheme 2.18. 

2.1.3.5.  Desulfurization of hexapropionate synthon 271 

With access to an enantiomerically enriched hexapropionate synthon (i.e. ketol 

271), demonstration of the thiopyran route to polypropionates was accomplished by 

desulfurization of ketol 271 using Raney Ni (Scheme 2.19.).  Oxidation of acyclic ketol 

278 gave meso 279, indicating that desulfurization had occurred without loss of 

stereochemical integrity.   
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Scheme 2.19. 
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In summary, enantiotopic group selective enolization of meso 1,9-diketone 233 

occurs with simultaneous kinetic resolution to give mono-silyl enol ether 261 with 

enhanced enantiopurity and in excellent overall yield.  The thiopyran route to 

polypropionates can be applied for the asymmetric synthesis of stereochemically complex 

natural products.  For example, by strategically synthesizing a suitably protected meso 

1,9-diketone from readily available meso bisaldol adduct 212a, application of a SEG 

selective enolization followed by desulfurization permits access to enantioenriched 

hexapropionate synthons that could be used for the synthesis 6-deoxyerythronolide B  
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Scheme 2.20. 

(Scheme 2.20.)31, 54, 174.  In fact, meso 1,9-diketone 281 was prepared and desymmetrized 

as above to obtain 282, an intermediate towards 6-deoxyerythronolide B (Scheme 
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2.21.).xxxii  Extending the same principle to 1,9-diketones derived from chiral (non-

racemic) bisaldol 212e permits an opportunity for application of a sequential  

S

MOM
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S S
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O

4 steps
40% yield

O O

S

MOM
O

S S

MOM
OO OTMS
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69% yield

(>90% BORSM)
96% ee

meso 212a

230
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6-deoxyerythronolide B 127  

Scheme 2.21. 

diastereoselective group selective enolization that would allow access to additional 

polypropionate natural products (Scheme 2.22.).  Indeed, demonstration of this approach 

was established by the reaction of 1,9-diketone 287 with 230 and TMSCl (Scheme 

2.23.).xxxiii  The thiopyran route to polypropionates offers the opportunity to access tetra- 

and hexapropionate synthons for the asymmetric synthesis of various targets.  Enantio- 

and/or diastereoselective enolization of meso 1,9-diketones provides access to 

enantioenriched materials that can accommodate many synthetic endeavors.   

                                                 
xxxii Work done by Dr. Mohammed A. Rasheed. 
xxxiii Work done by Mr. Garrison Beye. 
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2.2.  Synthetic studies towards the asymmetric synthesis of (−)-denticulatin A 

The denticulatins (Section 1.2.1.) represent an ideal polypropionate natural product 

that could be synthesized via the thiopyran route (Scheme 2.24.).  The previous syntheses 

involved fragment coupling of chiral (non-racemic) fragments where an aldol reaction 

found several successful applications.  While Ziegler and Hoffman had problematic 

OOO
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Si

t-But-Bu

denticulatin A (10-S)-9
denticulatin B (10-R)-10

O

O O

OH

OH H

10
7 intramolecular

ketalization

290
 

Scheme 2.24. 

deprotection of hydroxyl protecting groups towards the end of their syntheses, Paterson 

and Oppolzer were successful with the deprotection and subsequent cyclization of di-tert-

butylsilylene triketone 290 for their syntheses of the denticulatins.  As a result, triketone 

290 emerges as an ideal target for application of the thiopyran route and it was decided to 

evoke the recently developed sequential enantiotopic group selective enolization to gain 

access to a hexapropionate synthon that would demonstrate the thiopyran route as a 

viable approach. 

2.2.1.  Synthetic plan 

It was envisioned that triketone 290 could be prepared via an alkylation-

desulfurization-oxidation strategy employing a suitably protected ketone 292 (Scheme 

2.25.).  The required 10,12-trans relative configuration would be controlled by the 

corresponding fixed trans enolate of ketone 292, while access to ketone 292 would result 

from an enantioselective enolization of meso 1,9-diketone 294 using ent-230.  The 

required relative configuration at C-7 would be controlled by a stereoselective reduction 
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of readily available meso bisaldol 212a.  While there is some flexibility for hydroxyl 

protecting groups, this approach demands access to a substrate where the cyclic di-tert-

butylsilylene protecting group can be installed at C5-OH and C7-OH.  The required diol 

could be obtained from the protected meso trihydroxydiketone 294 with orthogonal R1 

and R2 protecting groups.  After a desymmetrization and alkylation followed by a 

reduction and R1 deprotection sequence, a 5,9,11-triol would result that allows isolation 

of the C5-OH group; for example, acetonide formation on the 9,11-diol.  Subsequent 

removal of the R2 protecting group at C-7 would reveal a 5,7-diol and allow installation 

of the desired silylene protecting group. 
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Scheme 2.25. 

2.2.1.1.  Synthesis of meso 1,9-diketones 

Two conceptually different approaches were attempted for the synthesis of meso 

1,9-diketone 294.  The first approach involved the initial reduction of meso 212a using 

Et2BOMe/NaBH4 that gave the desired all syn triol in 70% yield as a single diastereomer 
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(Scheme 2.26.).  The relative configuration of 297 was unambiguously established by X-

ray crystallography (Figure 2.6.).xxxiv  The next step involved exposure of syn triol 297 to  
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70% yield
7
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Scheme 2.26. 

 

Figure 2.6. ORTEP diagram of syn triol 297. 

 
FeCl3⋅SiO2

175, 176 in acetone at room temperature for 2 hours that furnished acetonide 298 

in 74% yield (Scheme 2.27.).  Ketal deprotection of 298 using identical conditions but  

                                                 
xxxiv The numbering system according to the denticulatins (Scheme 2.24.) will be used in this section. 
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Scheme 2.27. 

under reflux for 1 hour provided 299 in >95% yield.  This transformation was simplified 

as 299 can be obtained in a one-pot sequence from syn triol 297 in 70% yield (Scheme 

2.27.).  At this stage, it was necessary to establish conditions that would remove the 

acetonide of 299.  Successful deprotection of the acetonide in 299 would enable the 

differentiation of the C5-OH/C9-OH from the C7-OH by internal acetal formation 

(Scheme 2.28.).111  However, attempted deprotection of acetonide 299 under various  
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Scheme 2.28. 

conditions (e.g. H+/THF(aq) or H+/MeOH) failed to yield the desired product and this 

approach was eventually abandoned.  Alternatively, regioselective protection of syn triol 

297 by reaction with MOMCl and i-Pr2EtN in the presence of n-Bu4NI for 2 days 

provided meso bis-MOM alcohol 303 in 70% yield; however, allowing the reaction to 
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extend to 3 days furnished 302xxxv in 74 % yield (Scheme 2.29.).  Subsequent benzylation 

of meso bis-MOM alcohol 303 using KH/BnBr gave 304 in 93% yield.   
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Scheme 2.29. 

The next step required ketal deprotection of 304 to provide a protected meso 1,9-diketone 

for the enantioselective enolization.  This was accomplished by subjection of 304 to 

FeCl3⋅6H2O175 in 20% acetone in dichloromethane for 4 hours that resulted in a mixture 

of MOM protected and hydroxy diketones that upon re-installation of the MOM groups 
                                                 
xxxv Attempts to recycle tris-MOM 302 failed to provide syn triol 297. 
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provided 306 in 54 % yield (Scheme 2.29.).  Alternatively, reaction of 304 with 

FeCl3⋅SiO2
176 in acetone at reflux furnished diol diketone 307 in 55% yield that upon 

MOM protection provided the desired meso bis-MOM diketone 306 in 60% yield.  

Interestingly, this reaction also produced the methylidene acetal 305 in 45% yield.  

Although 305 was an unexpected product for this reaction, there is an example where the 

formation of a methylidene acetal resulted from the deprotection of a MOM protected 

substrate using similar conditions.175  Presumably, 305 resulted from the cyclization of a 

free hydroxyl onto the oxonium ion intermediate resulting from hydrolysis of the second 

MOM group (Scheme 2.30.). Although both 305 and 306 could potentially be used for  
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Scheme 2.30. 

the enantioselective enolization, they were insufficiently soluble in numerous organic 

solvents, including THF.  The low solubility likely contributes to the poor yields for the 

preparation of meso 1,9-diketone 306 (Scheme 2.29.).  As an alternative, exposure of diol 

diketone 307 to TESOTf and 2,6-lutidine provided meso bis-silyl 1,9-diketone 308 in 
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83% yield (Scheme 2.29.) that proved to be soluble in THF and represents a suitably 

protected substrate for subjection to an enantioselective enolization.  In light of this 

result, access to diol diketone 307 was slightly modified as syn triol 297 was allowed to 

react with TMSCl and i-Pr2EtN for 2 days that furnished meso bis-silyl alcohol 312 in 

85% and meso mono-silyl diol 311 in 15% (Scheme 2.31.).  Fortunately, recycling of 297  
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was efficiently achieved by treatment of 311 with HF(aq) that gave syn triol 297 in near 

quantitative yield.  Benzylation of 312 using KH/BnBr furnished 314 in 81% yield and 

bis-benzylated 313 in 15% yield; the latter was recycled to syn triol 297 under Birch 

conditions (e.g. Li/NH3) in quantitative yield.  This protocol for the synthesis of 314 is 
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very efficient as both by-products resulting from silylation and benzylation (i.e. 311 and 

313) are quantitatively converted back to starting syn triol 297.  The overall yield of 314 

is 94% based on recovered starting syn triol 297 over a total of four steps (average yield 

per step >98%).  A one-pot silyl and ketal deprotection of 314 using FeCl3⋅6H2O 

provided diol diketone 307 in 93% yield that was converted to the bis-TES ether 308 by 

treatment with 2,6-lutidine and TESOTf (Scheme 2.29.).xxxvi   

2.2.1.2.  Sequential enantiotopic group selective enolization of meso 1,9-diketone 308 

Enantioselective enolization of meso 1,9-diketone 308 was successfully achieved 

by deprotonation with ent-230 (Scheme 2.32.).  Again, the yield and ee of 315xxxvii were  
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dependent on the reaction enantioselectivity and conversion.129  Modelling of the product 

distributions and ee's of 315 at various conversions in the reaction of 308 with ent-230  in 

the presence of TMSCl suggests a reaction enantioselectivity of ca. 8:1 using conditions 

                                                 
xxxvi In principle, with access to diol diketone 307 many different protecting groups could have been used.  
The triethylsilyl protecting group was chosen with the expectation of higher solubility in organic solvents.  
In fact, the initial trimethylsilyl protecting group was chosen by design as its hydrolysis during ketal 
deprotection of 314 was anticipated. 
xxxvii The absolute configuration of 315 is based on analogy as determined for 261 with 230.  
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identical to those that gave a 17:1 enantioselectivity with meso 1,9-diketone 233 (Table 

2.7. and Figure 2.7.).  While this lower enantioselectivity is intriguing,xxxviii it again  

Table 2.7.  Enantioselective enolization of 308 with ent-230/TMSCl. 
isolated yields (%) entrya 308 

(# equiv) 
1H NMR ratiob 
308:315:316 308 315 (%ee)c 316 

1 1.5 71:26:3    
2 1.7 43:49:8    
3 1.7 26:56:18    
4 1.1 18:61:21 23 59 (92) 14 
5 1.4 16:62:22 24 59 (92) 19 
6 1.5 9:66:23 9 66 (93) 17 
7 1.3 6:44:50 11 44 (94) 35 
8d 1.4 20:59:21    
9e 1.5 18:64:18 29 52 (82) 20 
10f 1.4 7:48:45    

a A THF solution of ent-230 or ent-230⋅LiCl was rapidly cannulated (ca. 30 sec) to a THF solution of 308 
(0.2-1.5 mmol) and TMSCl (10 equiv) at −100 °C.  b Crude products after work-up.  c Determined by 1H 
NMR analysis of the corresponding Mosher's esters of ketol 323.  d Slow addition of ent-230 (ca. 5 min).  e 
Using ent-230⋅LiCl.  f External quench (i.e. addition of ent-230 followed by TMSCl). 
 

highlights the benefits of the ee enhancement feature of the SEG desymmetrizing 

reaction.  Efforts to increase the enantioselectivity (entries 8 and 10) by either slow 

addition of ent-230 or by external quench gave no substantial improvements.  Under 

similar conditions, reactions using ent-230 were more selective than those using ent-

230⋅LiCl (entry 9 vs. entry 6).  As was seen for meso 1,9-diketone 233 (Section 2.1.3.2.), 

unexpectedly large amounts of bis-product 316 were also observed at low conversions 

(entries 1 and 2).  Although the enantioselectivity of the enolization of 308 is somewhat 

lower than that observed from the meso 1,9-diketone 233, mono-silyl enol ether 315 was 

obtained with satisfactory yield and ee.  This process is very efficient (>90% yield based 

                                                 
xxxviii The exact role of the triethylsilyl group is unclear; however, it is likely that the lack of coordination 
sites is important (i.e. MOM vs. TES). 
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on recovered diketone 308) as bis-silyl enol ether 316 can be easily recycled to diketone 

308 by treatment with 10% sat. aqueous NaHCO3 in 50% methanol in THF.   
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Figure 2.7.  Calculated and observed mole fractions of 315 ( ) and 316 ( ) and ee of 
316 ( ) produced in the reaction of 308 with 230/TMSCl as a function of 
conversion of 308. 

(i.e., assuming s = 8 (⎯) and s = 5 (---)). 

2.2.1.3.  Alkylation and desulfurization 

With access to the protected desymmetrized hexapropionate synthon 315, 

establishing reaction conditions for addition of the 2-methyl-2-pentyl group and for 

desulfurization were required (Scheme 2.25.).  To ascertain the viability of these 

processes, model substrates 210sa and 317sa were chosen for study (Scheme 2.33.).xxxix  

In both cases, C-alkylation of the Li-enolates derived by treatment with t-BuLi at −78 °C 

followed by addition of (2E)-1-bromo-2-methyl-2-pentene and HMPA occurred to give 
                                                 
xxxix 209sa aldol adduct was chosen since it has the identical stereochemical array as compared to 315.   

0.0             0.5                                     0.9            0.95                                 0.99
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ca. 20:1 mixtures of diastereomeric C-alkylated products.  These alkylations of 210sa and 

317sa were very efficient as the yields based on recovered starting materials were >95% 

in both cases.  Equally important, the double bonds in 318sa and 319sa survived the  
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Scheme 2.33. 

subsequent Raney Ni desulfurizations to give the desired 320sa and 321sa, respectively, 

in good overall yields (Scheme 2.33.)..  Analysis of the proton coupling constants 

observed in the NMR spectra of 318sa and 319sa (i.e. JHC-1'-HC-3, JHeqC-2-HC-3 and JHaxC-2-HC-

3) and observations of positive NOE's between H2CC-5 and HC-3 reveal that, in each 

case, the major diastereomer has the desired 3,5-trans relative configuration (Figure 2.8.).   
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Figure 2.8.  Structure determination of 318sa and 319sa. 
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Processing of silyl enol ether 315 required several synthetic manipulations to arrive  

at a suitably protected substrate for C-alkylation (Scheme 2.34.).  Reduction of 315 using  
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Scheme 2.34. 

Zn(BH4)2 gave an 8:1  mixture of diastereomeric alcohols that upon fractionation 

provided 322 in 77% yield.  The 3,4-trans relative configuration for 322 was assigned 

based on the appearance of HC-3 as a  ddd (i.e. J = 4, 10, 10 Hz ) in the 1H NMR spectra 

(Figure 2.9.).  Hydrolysis of silyl enol ether in 322 gave ketol 323 in near quantitative 
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yield that was subsequently protected as the MOM ether to give 324 in 91% yield.  

Subjecting ketone 324 to the C-alkylation conditions that were developed using model  
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Figure 2.9.  Structure determination of 322. 

substrates 210sa and 317sa (Scheme 2.33.) resulted in very low conversions (ca. 5-10%); 

however, with efficient recovery of ketone 324.  Fortunately, by using excess t-BuLi (i.e. 

10 equiv) a 3:1 mixture of diastereomeric C-alkylated products 325 and 326xl was 

obtained.  Fractionation of this crude mixture gave 325 and 326 in 48% and 16% yields, 

respectively, along with 25% of recovered ketone 324 (86% yield based on recovered 

ketone 324).  Efforts to improve the diastereoselectivity of the alkyation by employing 

either LDA or NaHMDS resulted in low conversion, isomerization and/or elimination 

products.  While the yield of this reaction was only modest, it was thought sufficient to 

move forward.   

Reduction of 325 using NaBH3CN furnished alcohol 327 as the only diastereomer 

in 79% yield (Scheme 2.35).  Interestingly, the TES group in a 1,3-relationship to the 

alcohol in 327 was selectively deprotected by brief exposure to TBAF to give diol 328 in 

95% yield.  Acetylation of diol 328 using Ac2O and DMAP furnished diacetate 329a in 

88% yield.  Considering all four possible diastereomers of 329 that could result from C-

alkylation and reduction, only one diastereomer matches the expected and observed 

vicinal H-H coupling constants for diacetate 329a, which confirms the 10,12-trans 
                                                 
xl The major diastereomer 325 was assumed to be 10,12-trans but was later verified by analysis of the 
vicinal proton coupling constants of diacetate 329a (Figure 2.10.). 
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relative configuration resulting from C-alkylation and the 10,11-trans relative 

configuration from the reduction of 325 (Figure 2.10.).  Desulfurization of diacetate 329a 

using Raney Ni provided partly desulfurized 330, which after re-subjection to Raney Ni  
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Scheme 2.35. 

resulted in a mixture of compounds where the double bond was reduced and/or the benzyl 

protecting group was lost.  As a result, this was not a viable approach to the denticulatins.  

The alternative approach of desulfurization before C-alkylation introduces the challenge 

of controlling the stereoselectivity of the desired C-alkylation.  During the syntheses of 

(−)-discodermolide 4 (or ent-4), several researchers177-184 proposed a chelation controlled 

alkylation (as opposed to an A-strain controlled alkylation) of chiral (Z)-O-enolates as a 

method for introducing the 16,18-cis relative configuration (Figure 2.11.).  However, the 



 

 96

major products from alkylation of (Z)-O-enolates formed using lithium or sodium 

hexamethyldisilazide bases had trans relative configuration. (Scheme 2.36.).  After 

extensive experimentation, only Myles and co-workers were able to effect a chelation-

controlled alkylation of 344 that provided a 6:1 diastereomeric mixture of 346.   
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Figure 2.10.  Structure determination of 329a. 
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Figure 2.11. Syntheses of (−)-discodermolide 4. 
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Scheme 2.36. 

These findings suggest that the desired 10,12-trans relative configuration could be 

obtained by C-alkylation of the acylic version of ketone 324 with allyl bromide 47.  

Desulfurization of ketone 324 furnished the desired 347 in 70% yield (Scheme 2.37.).  C-

alkylation of ketone 347 was achieved by exposure of 347 to excess NaHMDS (10 equiv) 



 

 99

followed by addition of allyl bromide 47 and TMEDA at −78 °C to give 349 in 65% yield 

(>90% based on recovered ketone 347) with a dr of 4.6:1 (Scheme 2.37.).  To verify that 

the presence of excess NaHMDS does not erode the dr during the reaction, C-alkylated 

349 (dr 4.6:1) was subjected to identical reaction conditions.  C-alkylated 349 with the 

same originating diastereomeric ratio of 4.6:1 was recovered quantitatively.   

S S S

OBn
TES
O

TES
OO

MOM
O

7
10

OBn
TES
O

TES
OO

MOM
O

7
10

70% yield

324 347

Raney Ni

i) NaHMDS
ii)

Br

47
iii) TMEDA

65% yield
(>90% BORSM)

dr 4.6:1

OBn
TES
O

TES
OO

MOM
O

7
10

349  

Scheme 2.37. 

At this stage, the relative configuration at C-10 and C-12 in 349 was unknown, 

although the literature precedent (Scheme 2.36.)177-184 supported the desired 10,12-trans 

relative configuration.  It was decided to advance towards triketone 106 with an enriched 

mixture of C-alkylated 349 with the anticipation that isolation of the major diastereomer 

and determination of the relative configuration could be achieved at a later stage in the 

synthesis.   

2.2.1.4.  Synthesis towards triketone 106 

The initial step toward triketone 106 involved silyl deprotection of C-alkylated 349 

(dr 4.6:1) by treatment with 0.1% HF to furnish diol 350 (4.6:1) in 93% yield (Scheme 

2.38.).  Subsequent reduction of 350 (dr 4.6:1) using Et2BOMe/NaBH4 resulted in a 

diastereomeric mixture of triols 351 (dr 6:1:1) in 93% yield.  Acetonide protection of the 
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1,3-diol in 351 (dr 6:1:1) by reaction with 2,2-dimethoxypropane and PTSA provided 

alcohol 352 (dr 6:1:1) in 93% yield.  Analysis of the 13C NMR spectrum of 352 (dr 6:1:1) 

revealed the diagnostic acetonide methyl chemical shifts for a 1,3-syn acetonide (i.e. 30.8 

ppm and 20.3 ppm) for the major dastereomer.185  Hydrogenolysis of 352 (dr 6:1:1) by 

treatment with Li/NH3 furnished diol 353 (dr 6:1:1) in 91% yield that was protected with 

the required di-tert-butylsilylene group by treatment with 2,6-lutidine and t-Bu2Si(OTf)2 

for 7 h that gave partially protected 354 (dr 6:1:1) in 77% yield.  Interestingly, partially 

protected 354 (dr 6:1:1) cyclized on brief treatment with aqueous TFA in THF (15 min) 

to give 355 (dr 6:1:1) in 75% yield.  The structures of 354 and 355 were comfirmed by 

extensive spectroscopic studies.  Of particular note was an XH type IR frequency (3492 

cm-1) for 354 suggesting the presence of hydroxyl group(s).  Indeed, this was further 

supported by deutrium chemical exchange which also assisted in establishing the location 

of the silyl group via HSQC and HMBC 1H-13C NMR correlation experiments (i.e. 

correlation of HOC-5/C-5).  Cyclized 355 did not posses any XH type IR frequencies and 

was also supported by the presence of a HRMS ([M+H]+) molecular ion.   
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Scheme 2.38. 

The next step required the removal of the acetonide and MOM protecting groups.  

Unfortunately, this transformation could not be effected under various conditions (e.g. 

TFA(aq)/THF, TiCl4/PhSH, TiCl4/1,3-propanedithiol, FeCl3⋅6H2O).  Attempted 

deprotection of 355 (dr 6:1:1) using TiCl4/PhSH, TiCl4/1,3-propanedithiol or FeCl3⋅6H2O 

resulted with the loss of the double bond while aqueous TFA in THF resulted with ca. 
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1.5:1 mixture of compounds that did not possess the expected chemicals shifts for the 

proposed triol 356.  In light of these results, 355 did not offer any obvious solution to 

access the desired triol 356.  While this concluded the synthetic studies, the strategy to 

assemble complex polypropionate structures by implementation of the thiopyran route 

was clearly demonstrated.   

At this point it was decided to focus on establishing the 10,12 relative configuration 

for the C-alkylation of 347 using allylic bromide 47.  Conformational analysisxli of 

representative structures 358 and 359 for 355 revealed one dominantxlii conformer for 

each diastereomer (Figure 2.12.).  After extensive NOE studies, only one correlation was  
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Figure 2.12.  Attempted determination of the relative configuration of C-alkylation 
products. 

clearly identified between the acetonide methyls and the H3CC-12 (Figure 2.12.).  

Unfortunately, there was no obvious NOE between either the H3CC-10 and HC-12 or 

HC-10 and H2C-13.  Literature examples177-184 suggest that under the reaction conditions 

used for the C-alkylation of 347, a 10,12-trans products would result; however, these 
                                                 
xli Performed using the Sparton '02 for Windows softeware package by Wavefunction, Inc. implementing 
the MMFF94s force field and default settings. 
xlii i.e. >95% population. 



 

 103

findings are suggestive for a 10,12-cis C-alkylation.  One plausible rationale is that the 

use of excess NaHMDS promotes a chelation controlled mechanism rather than an A-

strain controlled mechanism (Figure 2.11.).  Ultimately, there is insufficient data to 

conclusively confirm the relative configuration and it is cautioned to form any 

conclusions. 

2.3.  Conclusions 

Until this work, there have been no reports of a sequential enantiotopic group 

selective enolization of meso diketones.  One of the significant challenges for this 

investigation was providing rapid access to the required starting materials.  The thiopyran 

route to polypropionates provided a strategy that involved two aldol couplings of racemic 

substrates and allowed access to meso bisaldol adduct 212a which was used for the 

establishment of a method for desymmetrization of meso diketones (Scheme 2.39.).  

Processing of 212a gave a suitably protected meso diketone 233 which was 

desymmetrized using 230 to give access to enantioenriched (−)-261 with high yields 

(>90% BORSM) and ee's (>95%).  Reduction and desulfurization of (−)-261 gave 

hexapropionate synthon (−)-278 which established the thiopyran route to polypropionates 

and concluded the SEG selective enolization model study.   

Application of the thiopyran route to polypropionates was realized by extension of 

the developed methodology for synthetic studies toward denticulatin A (Scheme 2.40.).  

During this work, several interesting features were elucidated.  Processing of meso bis-

aldol adduct 212a to diol diketone 307 provided a rapid and diverse approach to various 

protected diketones.  Enantioselective enolization of bis-TES diketone 308 using ent-230 

furnished mono-silyl enol ether 315 that was processed to ketone 347.  C-alkylation of 
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347 gave 349 in good yield (65%; >90% BORSM) and was derivatized to fully protected 

355 over 7 steps in 27% yield.   

S

OHOO

(±)-263

S S S

OH O HOOO OO

meso 212a
S S

OH OOO

(±)-209as

i) (i-OPr)TiCl3
ii) i-Pr2EtN
ii) (±)-207

78-85% yields

meso 233
S S S

O
Me
O

Me
O

Me
OO

S S

O O
OO

(±)-207 206

+

(S)-proline
AcOH >90% yield

a hexapropionate synthon

S S S

Me
O

Me
O

Me
OO OTMS

230 TMSCl

(–)-261
S S S

Me
O

Me
O

Me
O

TMS
O

TMS
O

262

+

(–)-278

Me
O

Me
O

Me
OOH O

>85%
yield

>90% yield (BORSM)
>95% ee

>95% yield

2 steps
49% yield

3 steps
62% yieldthiopyran route to

polypropionate

 

Scheme 2.39. 
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CHAPTER 3 
3.  EXPERIMENTAL 

3.1.  General methods 

All solvents were distilled prior to use. Et3N, i-Pr2EtN, i-Pr2NH and TiCl4 were 

distilled from CaH2 (Et3N and i-Pr2EtN were then stored over KOH).  TMEDA was 

distilled over KOH and then stored over KOH.  TMSCl was distilled from Bu3N or CaH2.  

n-BuLi, t-BuLi and NaHMDS were routinely titrated186-188 using BHT with fluorene as 

the indicator.xliii  Anhydrous solvents were distilled under argon atmosphere as follows:  

THF and ether from benzophenone sodium ketyl; CH2Cl2 and toluene from CaH2; MeOH 

from Mg(OMe)2.  All experiments involving air- and/or moisture-sensitive compounds 

were conducted in an oven or flamed dried round-bottom flask capped with a rubber 

septum, and attached via a needle and connecting tubing to an argon manifold equipped 

with mercury bubbler (ca. 5 mm positive pressure of argon).  Low temperature baths 

were ice/water (0 °C), CO2(s)/acetonitrile (−30 - −50 °C), CO2(s)/acetone (−78 °C) and 

liquid nitrogen/ether (−100 °C).  Reaction temperatures refer to that of the bath unless 

otherwise noted. 

PTLC was carried out on glass plates (20×20 cm) precoated (0.25 mm) with silica 

gel 60 F254.  Materials were detected by visualization under an ultraviolet lamp (254 nm) 

and/or by treating a 1 cm vertical strip removed from the plate with a solution of 

phosphomolybdic acid (5%) containing a trace of ceric sulfate in aqueous sulfuric acid 

                                                 
xliii BHT (ca. 100 mg, 0.45 mmol) and fluorene (ca. 10 mg) were dissolved in THF (2 mL) and cooled to 0 
°C under Ar.  The organolithium or sodium hexamethyldisilazide was then added dropwise via syringe 
until an orange end-point persisted.   
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(5% v/v), followed by charring on a hot plate.  Concentration refers to removal of 

volatiles at water aspirator pressure on a rotary evaporator.  Unless otherwise noted, all 

reported compounds were homogeneous by TLC and by NMR. 

FCC was performed according to Still et al.189 with Merck Silica Gel 60 (40-63 

μm). All mixed solvent eluents are reported as v/v solutions. 

3.2.  Spectral data 

HRMS and LRMS were obtained on an API QSTAR® Pulsar Hybrid LC/MS/MS 

system and/or a VG 70E double focusing high resolution spectrometer; only partial data 

are reported.  EI ionization was accomplished at 70 eV and CI at 50 eV with ammonia as 

the reagent gas; only partial data are reported.  IR spectra were recorded on a Bio-Rad 

Fourier transform interferometer using a diffuse reflectance cell (DRIFT);190 only 

diagnostic and/or intense peaks are reported.  Specific rotations ( D][α ) measurements 

were determined on a DigiPol 781-T6U automatic polarimeter and reported as the 

average of 5 measurements with an acceptable STD (i.e. < 0.003° for α < 20°).  NMR 

spectra were obtained on an Avance NMR spectrometer equipped with a 5 mm TXI 

(inverse triple resonance), BBI (inverse broadband) and/or BBO (observe broadband) 

probe.  Spectra were measured in CDCl3 or C6D6 solutions at 500 MHz for 1H and 125 

MHz for 13C.  Signals due to the solvent (13C NMR) or residual protonated solvent (1H 

NMR) served as the internal standard:  CDCl3 (7.26 δH, 77.23 δC); C6D6 (7.16 δH, 128.39 

δC).  The 1H NMR chemical shifts and coupling constants were determined assuming 

first-order behavior.  Multiplicity is indicated by one or more of the following: s (singlet), 

d (doublet), t (triplet), q (quartet), m (multiplet), br (broad), ap (apparent); the list of 

couplings constants (J) corresponds to the order of the multiplicity assignment.  
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Couplings constants (J) are reported to the nearest 0.5 Hz.  The 1H NMR assignments191-

193 were made on the basis of chemical shift and multiplicity and were confirmed, where 

necessary, by homonuclear decoupling,194 gCOSY,191, 193, 195 and/or gNOESY191, 193, 196-199 

experiments.  The 13C NMR assignments191-193 were made on the basis of chemical shift 

and multiplicity (i.e., s = C, d = CH, t = CH2, q = CH3) as determined by 13C-DEPT-

135191, 193, 200 and/or J-modulation193, 201 and/or gHSQC191, 193, 202 experiments and were 

confirmed, where necessary, by gHMBC.191, 203 

3.3.  Materials 

The preparations of the following compounds were described previously:  206118, 

124, 218118, 124, 263118, 210sa118, W-2 Raney Ni,204 DMP,205 MOMCl,206-210 (E)-1-bromo-

2-methylpent-2-ene 4718, 211 and both (R)- and (S)-O-acetylmandelic acid212, 213.  (+)-

(R,R)-bis(1-phenylethyl)amine 230 and ent-230 and their corresponding hydrochloride 

salts are commercially available.  Both 230⋅HCl and ent-230⋅HCl were also prepared 

according to the published procedures.214, 215  The D][α  value reported for ent-230⋅HCl 

varies widely (−71.8, c 4, EtOH;215 −84.1, c 3, EtOH214) and appears to be sensitive to 

solvent, concentration and temperature.  Samples of ent-230⋅HCl were routinely obtained 

with 25-24
D][α  −68 to −70 (c 3.0-4.0, EtOH).  These samples were determined to be >99% 

ee by 1H NMR in the presence of (+)-(R)-TFAE as a chiral solvating agent.  All other 

reagents were commercially available and unless otherwise noted, were used as received. 
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3.4.  Experimental procedures and spectral data 

S

OOO

9

10 6

23

 

207 

1,4-Dioxa-8-thiaspiro[4.5]decane-6-carbaldehyde 

 

DMSO (20.9 mL, 23.0 g, 0.29 mol) was added dropwise via syringe to a stirred 

solution of oxalyl chloride (12.8 mL, 19.0 g, 0.15 mol) in CH2Cl2 (560 mL) at −78 °C 

under argon.  After 10 min at −78 °C, a solution of 263 (26.54 g, 0.14 mol) and i-Pr2EtN 

(24.4 mL, 18.1 g, 0.14 mol) in CH2Cl2 (ca. 1 M, 140 mL) was added dropwise over 10 

min via syringe to the reaction mixture.  After 5 min, i-Pr2EtN (53.7 mL, 39.8 g, 0.31 

mol) was added and the reaction mixture was allowed to warm to ca. 0 °C over 30 min.  

The mixture was transferred to a separatory funnel containing ice-cold aqueous 1 N HCl 

and was extracted with CH2Cl2 (3×).  The combined organic layers were washed with sat. 

aqueous NaHCO3, dried over Na2SO4 and concentrated to give crude 207 (24.8 g).  

Fractionation of the residue by FCC (10-50% ethyl acetate in hexane) gave recovered 263 

(0.86 g, 3%) and aldehyde 207 (22.2 g, 85%). 

 

Spectral data for 207 were in accord with that previously reported.118 
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209as 

(R)-3-((S)-Hydroxy((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)dihydro-
2H-thiopyran-4(3H)-one 

 

A mixture of ketone 206 (4.33 g, 37.2 mmol), aldehyde 207 (3.84 g, 20.4 mmol), 

(S)-proline (1.22 g, 10.6 mmol) and acetic acid (0.36 mL, 6.38 mmol) was stirred at 38 

oC.  After 2 days, the brownish solid reaction mixture was dissolved in dichloromethane, 

passed through a pad of silica, concentrated and triturated with 5% ethyl acetate in 

hexanes to give aldol adduct 209as as a white solid (4.66 g, 75%) ( 25
D][α  −9; c 1.0, 

CHCl3).  

 

Spectral data for 209as were in accord with that previously reported.118 
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212a 

(3R,5S)-3-((S)-Hydroxy((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)-5-
((R)-hydroxy((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)dihydro-2H-

thiopyran-4(3H)-one 
 

(i-PrO)TiCl3 (ca. 0.5 M solution in CH2Cl2, 21.5 mL, 10.7 mmol)216 was added 

dropwise via syringe to a stirred solution of the ketone 209as (2.97 g, 9.76 mmol) in 

CH2Cl2  (100 mL) at –78 °C under argon.  After 5 min, i-Pr2EtN (1.79 mL, 1.32 g, 10.2 

mmol) was added dropwise via syringe to the reaction mixture at –78 °C.  After 1 h, 207 

(3.67 g, 19.5 mmol) was added and the mixture was stirred at –78 °C for 2 h and then i-

Pr2EtN (2.55 mL, 1.89 g, 14.6 mmol) was added dropwise via syringe to the reaction 

mixture at –78 °C and the mixture was stirred for an additional 2 h.  The reaction was 

quenched by addition of saturated aqueous NH4Cl and quickly worked up by dilution 

with water and extraction with CH2Cl2.  The combined organic layers were dried over 

Na2SO4 and concentrated.  Fractionation of the residue by FCC gave recovered 207 (2.03 

g, 55%) and meso bisaldol adduct 212a (3.96 g, 82%) as a white solid (mp 166-167 °C). 

 

Spectral data for 212a were in accord with that previously reported.117, 122 
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231 

(3S,4s,5R)-3-((S)-Hydroxy((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)-5-((R)-
hydroxy((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)tetrahydro-2H-thiopyran-

4-ol 
 

DIBAL-H (1.5 M in toluene; 7.0 mL, 10.6 mmol) was added dropwise via syringe 

to a solution of bisaldol 212a (1.04 g, 2.11 mmol) in THF (30 mL) at −78 °C under Ar.  

After 3 h, excess DIBAL-H was quenched by dropwise addition of methanol (ca. 1 mL) 

and the resulting mixture was warmed to room temperature over 15-30 min.  A sat. 

aqueous solution of sodium potassium tartrate (30 mL) was slowly added (caution:  

exothermic) to the well-stirred solution.  After 30 min, the mixture was diluted with water 

and extracted with CH2Cl2 (3×).  The combined organic layers were dried over Na2SO4 

and concentrated to give crude triol 231 (1.04 g) which was an 8:1 mixture of 

diastereomers by 1H NMR.  Fractionation of the crude by FCC (75-100% ethyl acetate in 

hexane) gave the titled triol 231 (890 mg, 86%) as a white solid (mp 109-110 °C). 

 

IR (DRIFT) νmax:  3438, 2901, 1415, 1254, 1049 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 4.69 (1H, br s, HC-4), 4.13 (2H, dd, J = 2, 7.5 Hz, HC-

1', HC-1''), 4.10-3.92 (8H, m, H2C-2', H2C-3', H2C-2'', H2C-3''), 3.50 (1H, s, HOC-4), 

3.40-3.16 (2H, br s, HOC-1', HOC-1''), 3.08-2.94 (4H, m, HC-2, HC-6, HC-7', HC-7''), 

2.85-2.71 (4H, m, HC-7', HC-7'', HC-9', HC-9''), 2.61 (2H, dddd, J = 1, 3.5, 5, 13 Hz, 
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HC-9', HC-9''), 2.18-2.09 (4H, m, HC-2, HC-6, HC-10', HC-10''), 2.07 (2H, ddd, J = 3, 3, 

10.5 Hz, HC-6', HC-6''), 1.87 (2H, dddd, J = 2, 3.5, 7.5, 12 Hz, HC-3, HC-5), 1.75 (2H, 

ddd, J = 3.5, 11.5, 14.5 Hz, HC-10', HC-10''). 

 

13C NMR (125 MHz, CDCl3):  δ 110.2 (s ×2, C-5', C-5''), 70.6 (d ×2, C-1', C-1''), 64.8 (t 

×2, C-2', C-2'' or C-3', C-3''), 64.7 (d, C-4), 64.5 (t ×2, C-2', C-2'' or C-3', C-3''), 47.2 (d 

×2, C-6', C-6''), 46.2 (d ×2, C-3, C-5), 36.0 (t ×2, C-10', C-10''), 26.8 (t ×2, C-7', C-7'' or 

C-9', C-9''), 26.7 (t ×2, C-7', C-7'' or C-9', C-9''), 24.9 (t ×2, C-2, C-6). 

 

LRMS (EI), m/z (relative intensity):  494 ([M]+, 85), 414 (72), 317 (80), 255 (96), 226 

(60). 

 

HRMS m/z calcd. for C21H34O7S3:  494.1467; found:  494.1469. 

 

Anal. Calcd. for C21H34O7S3:  C, 50.99; H, 6.93. Found:  C, 50.12; H, 7.01. 
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232 

(3S,4s,5R)-4-Methoxy-3-((S)-hydroxy((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-
yl)methyl)-5-((R)-hydroxy((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-

yl)methyl)tetrahydro-2H-thiopyran 
 

A solution of the triol 231 (913 mg, 1.85 mmol) in THF (5 mL, plus a 5 mL wash) 

was added dropwise via syringe to a stirred suspension of oil free KH (prepared by 

washing 2 g of a 30% w/v suspension in oil with hexane under Ar; ca. 15 mmol) in THF 

(150 mL) at 0 °C under Ar. The resulting mixture was warmed to room temperature over 

1 h and iodomethane (2.3 mL, 37 mmol) was added.  After 8 h, the mixture was cooled to 

0 °C and methanol (0.75 mL) was added dropwise via syringe (caution:  H2 evolution).  

The mixture was diluted with H2O and extracted with CH2Cl2 (3×) and the combined 

organic layers were dried over Na2SO4, concentrated and fractionated by FCC (50% ethyl 

acetate in hexane) to give the titled 232 (897 mg, 91%). 

 

IR (DRIFT) νmax:  2917, 2827, 1446, 1314, 1260, 1087 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 4.17 (1H, br s, HC-4), 4.09-3.92 (8H, m, H2C-2', H2C-3', 

H2C-2'', H2C-3''), 3.46 (3H, s, H3COC-4), 3.38 (6H, s, H3COC-1', H3COC-1''), 3.23 (2H, 

dd, J = 2, 9 Hz, HC-1', HC-1''), 2.92-2.79 (6H, m, HC-2, HC-6, HC-7', HC-7'', HC-9', 

HC-9''), 2.63 (2H, ddd, J = 3, 3, 14 Hz, HC-7', HC-7''), 2.51 (2H, dddd, J = 3.5, 3.5, 6, 

13.5 Hz, HC-9', HC-9''), 2.26 (2H, dd, J = 2, 13.5 Hz, HC-2, HC-6), 2.21 (2H, ddd, J = 3, 
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3, 11.5 Hz, HC-6', HC-6''), 2.12 (2H, ddd, J = 3.5, 3.5, 13.5 Hz, HC-10', HC-10''), 1.75-

1.66 (4H, m, HC-3, HC-5, HC-10', HC-10''). 

 

13C NMR (125 MHz, CDCl3): 108.7 (s ×2, C-5', C-5''), 78.3 (d ×2, C-1', C-1''), 74.6 (d, 

C-4), 64.8 (t ×2, C-2', C-2'' or C-3', C-3''), 64.7 (t ×2, C-2', C-2'' or C-3', C-3''), 60.4 (q, 

CH3OC-4), 59.1 (q ×2, CH3OC-1', CH3OC-1''), 50.5 (d ×2, C-3, C-3 or C-6', C-6''), 50.4 

(d ×2, C-3, C-3 or C-6', C-6''), 36.6 (t ×2, C-10', C-10''), 27.6 (t ×2), 26.8 (t ×2), 25.1 (t 

×2). 

 

LRMS (EI), m/z (relative intensity):  536 ([M]+, 8), 504 (3), 472 (4), 345 (18), 203 (50), 

132 (24), 99 (100), 71 (87). 

 

HRMS m/z calcd. for C24H40O7S3:  536.1936; found:  536.1924. 

 

Anal. Calcd. for C24H40O7S3:  C, 53.70; H, 7.51. Found:  C, 53.61; H, 7.21. 
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233 

(3R,3'S)-3,3'-((1S,1'R)-((3R,4s,5S)-4-Methoxytetrahydro-2H-thiopyran-3,5-
diyl)bis(methoxymethylene))bis(dihydro-2H-thiopyran-4(3H)-one) 

 

Amberlyst® 15 (1.6 g) was added to a well-stirred solution of bis-ketal 232 (779 

mg, 1.41 mmol) in acetone (60 mL) and the resulting suspension was heated under 

refluxed for 4 h.  After cooling to room temperature, CH2Cl2 (15 mL) and solid NaHCO3 

(excess) were added.  The mixture was filtered and the combined filtrate and washings 

were concentrated and fractionated by FCC (5-25% ethyl acetate in hexane) to give the 

titled diketone 233 (530 mg, 81%) as a white solid (mp 214-215 °C).  

 

From bis-silyl enol ether 262 

 

10% vol aqueous HF (0.5 mL) was added dropwise to a stirred solution of bis-silyl 

enol ether 262 (54 mg, 0.091 mmol) in THF (5 mL) at room temperature.  After 30 min, 

sat. aqueous NaHCO3 was slowly added (caution:  effervescence) and the resulting 

mixture was diluted with EtOAc and washed sequentially with sat. aqueous NaHCO3 

(3×), brine, dried over Na2SO4 and concentrated to give crude diketone 233.  

Recrystallization of the crude from ethyl acetate gave the titled diketone 233 (39 mg, 

95%).  

 

IR (DRIFT) νmax:  2922, 2838, 1702, 1432, 1331, 1218 cm-1. 
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1H NMR (500 MHz, CDCl3):  δ 4.07 (1H, br s, HC-4), 4.01 (1H, dd, J = 1.5, 9 Hz, HC-

1', HC-1''), 3.48 (3H, s, CH3OC-4), 3.30 (6H, s, CH3OC-1', CH3OC-1''), 3.04-2.76 (12H, 

m), 2.75-2.62 (4H, m, HC-5', HC-5'', HC-3', HC-3''), 1.98 (2H, dd, J = 2, 13 Hz, HC-2, 

HC-6), 1.73 (2H, br ddd, J = 2, 9, 13 Hz, HC-3, HC-5). 

 

13C NMR (125 MHz, CDCl3):  δ 208.6 (s ×2, C-4', C-4''), 77.1 (d ×2, C-1',C-1''), 74.0 (d, 

C-4), 61.5 (q, CH3OC-4), 59.3 (q ×2, CH3OC-1', CH3OC-1''), 54.7 (d ×2, C-3', C-3''), 

48.0 (d ×2, C-3, C-5), 43.9 (t ×2, C-5', C-5''), 29.1 (t ×2, C-2', C-2'' or C-6', C-6''), 28.7 (t 

×2, C-2', C-2'' or C-6', C-6''), 24.5 (t ×2, C-2, C-6). 

 

LRMS (EI), m/z (relative intensity):  448 ([M]+, 7), 301 (11), 197 (9), 159 (14). 

 

HRMS m/z calcd. for C20H32O5S3:  448.1412; found:  448.1399. 

 

Anal. Calcd. for C20H32O5S3:  C, 53.54; H, 7.19. Found:  C, 53.95; H, 6.75. 
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(−)-261 

(R)-3-((S)-Methoxy((3S,4R,5R)-4-methoxy-5-((R)-methoxy((S)-4-(trimethylsilyloxy)-
3,6-dihydro-2H-thiopyran-3-yl)methyl)tetrahydro-2H-thiopyran-3-

yl)methyl)dihydro-2H-thiopyran-4(3H)-one 
 

A solution of n-BuLi in hexanes (2.1 M; 0.16 mL, 0.33 mmol) was added dropwise 

via syringe to a solution of (R,R)-bis(1-phenylethyl)amine (0.075 mL, 74 mg, 0.33 mmol) 

in THF (6 mL) at −78 °C under Ar.  After stirring for 30 min at −78 °C the resulting pink 

solution was quickly transferred via cannula (ca. 15-30 sec.) into a well-stirred solution 

of diketone 233 (92 mg, 0.205 mmol) and TMSCl (0.22 mL, 223 mg, 2.05 mmol) in THF 

(10 mL) at −100 °C under Ar.  After 15 min, the reaction was quenched by addition of 

acetone (0.5 mL) followed by Et3N (0.5 mL) and sat. aqueous NaHCO3.  The resulting 

cold mixture was diluted with ethyl acetate and washed sequentially with 1% w/v 

aqueous citric acid (4×), sat. aqueous NaHCO3, brine, dried over Na2SO4, concentrated 

and fractionated by FCC (10-20% ethyl acetate in hexane) to give the bis-silyl enol ether 

262 (13 mg, 11%), recovered diketone 233 (15 mg, 16%) and the titled mono-silyl enol 

ether (−)-261 (75 mg, 71%) ( 25
D][α  −1.0; c 5.9, C6H6; >96% ee by 1H NMR as shown in 

Appendix A).  
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IR (DRIFT) νmax:  2928, 2832, 1702, 1666, 1420, 1187 cm-1. 

 

1H NMR  (500 MHz, CDCl3):  δ 5.14 (1H, ddd, J = 2, 2, 6.5 Hz, HC-5'), 4.10 (1H, br s, 

HC-4), 4.01 (1H, dd, J = 2, 9 Hz, HC-1''), 3.84 (1H, dd, J = 1, 10 Hz, HC-1'), 3.51 (3H, s, 

H3COC-4), 3.44 (3H, s, H3COC-1'), 3.38 (1H, ddd, J = 3, 3, 16.5 Hz, HC-6'), 3.31 (3H, s, 

H3COC-1''), 3.06-2.64 (11H, m), 2.60 (1H, ddd, J = 1.5, 5.5, 14 Hz, HC-2'), 2.36 (1H, br 

s, HC-3'), 2.05 (1H, dd, J = 2.5, 16.5 Hz, HC-2, HC-6), 1.99 (1H, dd, J = 2.5, 13 Hz, HC-

2, HC-6), 1.74 (2H, m, HC-3, HC-5), 0.21 (9H, s, (H3C)3SiOC-4'). 

 

13C NMR (125 MHz, CDCl3):  δ 208.8 (s, C-4''), 152.8 (s, C-4'), 104.1 (d, C-5'), 78.1 (d, 

C-1'), 77.3 (d, C-1''), 74.3 (d, C-4), 61.1 (q, CH3OC-4), 59.3 (q, CH3OC-1''), 58.9 (q, 

CH3OC-1'), 54.7 (d, C-3''), 47.7 (d, C-3 or C-5), 47.5 (d, C-3 or C-5), 43.9 (t, C-5''), 42.0 

(d, C-3'), 29.1 (t, C-2'' or C-6''), 28.8 (t, C-2'' or C-6''), 25.4 (t, C-2' or C-6'), 25.4 (t, C-2' 

or C-6'), 24.5 (t, C-2 or C-6), 24.3 (t, C-2 or C-6), 0.5 (q, (CH3)3SiOC-4'). 

 

LRMS (CI, NH3), m/z (relative intensity):  538 ([M+18]+, 13), 521 ([M+7]+, 20), 489 

(68), 464 (32), 457 (42), 447 (39), 415 (49), 333 (41), 301 (60), 227 (100). 

 

HRMS m/z calcd. for C23H40O5S3Si:  520.1807 (527.1967 for M+Li); found:  527.1956 

(FAB, LiBr/NBA). 

 

Anal. Calcd. for C23H40O5S3Si:  C, 53.04; H, 7.74. Found:  C, 53.42; H, 7.65. 
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262 

((S)-3-((R)-Methoxy((3R,4s,5S)-4-methoxy-5-((S)-methoxy((R)-4-(trimethylsilyloxy)-
3,6-dihydro-2H-thiopyran-3-yl)methyl)tetrahydro-2H-thiopyran-3-yl)methyl)-3,6-

dihydro-2H-thiopyran-4-yloxy)trimethylsilane 
 

IR (DRIFT) νmax:  2922, 2839, 1660, 1420, 1241, 1086 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 5.15 (2H, ddd, J = 2, 6.5, 6.5 Hz, HC-5, HC-5''), 4.13 

(1H, br s, HC-4), 3.84 (2H, dd, J = 1, 10 Hz, HC-1', HC-1''), 3.55 (3H, s, H3COC-4), 3.44 

(6H, s, H3COC-4', H3COC-4''), 3.39 (2H, ddd, J = 3, 3, 16.5 Hz, HC-6', HC-6''), 3.00 

(2H, dd, J = 10, 14 Hz, HC-2', HC-2''), 2.91 (2H, ddd, J = 1.5, 6.5, 16.5 Hz, HC-6', HC-

6''), 2.76 (2H, dd, J = 12.5, 12.5 Hz, HC-2, HC-6), 2.61 (2H, ddd, J = 1.5, 5.5, 14 Hz, 

HC-2', HC-2''), 2.37 (2H, br s, HC-3', HC-3''), 2.06 (2H, dd, J = 3, 12.5 Hz, HC-2, HC-6), 

1.75 (2H, br ddd, J = 3, 10, 12.5 Hz, HC-3, HC-5), 0.22 (18H, s, (H3C)3SiOC-4', 

(H3C)3SiOC-4''). 

 

13C NMR (125 MHz, CDCl3): δ  152.9 (s ×2, C-4, C-4''), 104.1 (s ×2, C-5', C-5''), 78.3 (d 

×2, C-1', C-1''), 74.5 (d, C-4), 61.5 (q, CH3OC-4), 59.0 (q ×2, CH3OC-1', CH3OC-1''), 

47.3 (d ×2, C-3, C-5), 42.0 (d ×2, C-3', C-3''), 25.5 (t ×2, C-2', C-2'' or C-6', C-6''), 25.5 (t 

×2, C-2', C-2'' or C-6', C-6''), 24.4 (t ×2, C-2, C-6), 0.5 (q ×6, (CH3)3SiOC-4', 

(CH3)3SiOC-4'' ). 
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LRMS (CI, NH3), m/z (relative intensity):  593 ([M+1]+, 11), 561 (28), 405 (11), 373 

(13), 227 (100), 185 (18), 90 (35), 71 (31). 

 

HRMS m/z calcd. for C26H48O5S3Si2:  592.2202 (599.2363 for M+Li); found:  592.2139 

(FAB, LiBr/NBA). 

 

Anal. Calcd. for C26H48O5S3Si2:  C, 52.66; H, 8.16. Found:  C, 52.90; H, 8.12. 
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(−)-271 

(S)-3-((R)-((3R,4S,5R)-5-((R)-((3S,4R)-4-Hydroxytetrahydro-2H-thiopyran-3-
yl)(methoxy)methyl)-4-methoxytetrahydro-2H-thiopyran-3-

yl)(methoxy)methyl)dihydro-2H-thiopyran-4(3H)-one 
 

L-Selectride® (0.8 M in THF; 0.83 mL, 0.7 mmol) was added dropwise to a stirred 

solution of mono-silyl enol ether (−)-261 (138 mg, 0.265 mmol) in THF (13 mL) at −78 

°C.  After 30 min, the reaction was quenched by dropwise addition of MeOH (0.5 mL) 

and the resulting mixture was warmed to 0 °C over 10 min.  Phosphate buffer (0.1 M in 

water, pH 7; 2.0 mL) and  aqueous H2O2 (30% w/v; 0.5 mL) were added.  After vigorous 

stirring for 10 min, the mixture was diluted with ice-cold aqueous Na2SO3 (2% w/v; 50 

mL) and extracted with CH2Cl2.  The combined organic layers were dried over Na2SO4, 

concentrated and fractionated by FCC (10-50% ethyl acetate in CH2Cl2) to give the titled 

ketol (−)-271 (97mg, 82%) ( 24
D][α  −40; c 0.8, CH2Cl2).  
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IR (DRIFT) νmax:  3430, 2928, 2832, 1696, 1420 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 4.09 (1H, br s, HC-4''), 4.05 (1H, br d, J = 9.5 Hz, HC-

1'), 3.96 (1H, br s, HC-4), 3.53 (3H, s, H3COC-4), 3.49 (3H, s, H3COC-1''), 3.32 (1H, dd, 

J = 3.5, 7.5 Hz, HC-1''), 3.30 (3H, s, H3COC-1'), 3.17 (1H, br dd, J = 13.5, 13.5 Hz, HC-

6''), 3.09 (1H, br dd, J = 13, 13 Hz, HC-2''), 3.04-2.79 (7H, m), 2.75-2.64 (2H, m, HC-3', 

HC-5'), 2.29 (1H, br d, J = 13 Hz, HC-2''), 2.24 (1H, br d, J = 13.5 Hz, HC-6''), 2.20-2.10 

(2H, m, HC-6, HC-5''), 2.08-1.93 (4H, m, HC-2,HC-3'',HC-3,HO-4''), 1.86 (1H, br ddd, J 

= 3.5, 13, 13 Hz, HC-3''), 1.77 (1H, br dd, J = 9.5, 10 Hz, HC-3). 

 

13C NMR (125 MHz, CDCl3):  δ 208.52 (s, C-4'), 87.23 (d, C-1''), 76.86 (d, C-1'), 74.34 

(d, C-4), 69.60 (d, C-4''), 60.55 (q, CH3OC-4), 59.57 (q, CH3OC-1''), 59.24 (q, CH3OC-

1'), 54.74 (d, C-3'), 48.54 (d, C-3), 47.62 (d, C-5), 45.06 (d, C-3''), 43.83 (t, C-5'), 35.39 

(t, C-5''), 29.10 (t, C-2' or C-6'), 28.66 (t, C-2' or C-6'), 24.65 (t, C-2 or C-6), 24.49 (t, C-2 

or C-6), 22.33 (t, C-2'' or C-6''), 22.09 (t, C-2'' or C-6''). 

 

LRMS (EI), m/z (relative intensity):  450 ([M]+, 74), 386 (35), 301 (100), 232 (54), 159 

(63). 

 

HRMS m/z calcd. for C20H34O5S3:  450.1568; found:  450.1571. 
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272 

(R)-((3S,4R)-3-((R)-Methoxy((3R,4S,5R)-4-methoxy-5-((R)-methoxy((S)-4-
oxotetrahydro-2H-thiopyran-3-yl)methyl)tetrahydro-2H-thiopyran-3-
yl)methyl)tetrahydro-2H-thiopyran-4-yl)-2-acetoxy-2-phenylacetate 

 

DCC (11 mg, 0.054 mmol) was added to a stirred solution of ketol (−)-271 (8 mg, 

0.02 mmol), (R)-OAM (10 mg, 0.054 mmol) and DMAP (ca. 1 mg) in CH2Cl2 (2 mL) at 

0 °C under Ar.  After 30 min, the reaction was diluted with ethyl acetate (2 mL) and 

filtered through Celite®.  The combined filtrate and washings were washed sequentially 

with 10% w/v aqueous citric acid (3×), sat. aqueous NaHCO3 and brine (1× 20 mL), 

dried over Na2SO4, concentrated, and fractionated by PTLC (50% ethyl acetate in 

hexane) to give crude 272 that was refractionated by PTLC (1% CH3OH in CH2Cl2) to 

give the titled compound 272 (7 mg, 64%) containing ca. 10% (by 1H NMR) of the 

diastereoisomeric ester from the (S)-acid. 

 

IR (DRIFT) νmax:  2934, 2827, 1738, 1696, 1432 cm-1. 

 

1H NMR (500 MHz, CDCl3): 7.56-7.35 (5H, m, Ph), 5.91 (1H, s, HCPhCO2C-4''), 4.97 

(1H, dd, J = 2, 2.5 Hz, HC-4''), 3.95 (1H, dd, J = 2, 9 Hz, HC-1'), 3.71 (1H, dd, J = 1.5, 

1.5 Hz, HC-4), 3.32 (3H, s, H3COC-4), 3.29 (3H, s, H3COC-1'), 3.03-2.57 (13H, m), 2.94 

(3H, s, H3COC-1''), 2.41-2.30 (2H, m, HC-6'', HC-5''), 2.22 (3H, s, H3CCO2CHPhCO2C-

4''), 2.16 (1H, dd, J = 4, 8 Hz, HC-1''), 2.13 (1H, dddd, J = 2, 4, 8, 9 Hz, HC-3''), 1.94 
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(1H, dd, J = 3, 13 Hz, HC-2), 1.89 (1H, dddd, J = 2.5, 4, 14.5, 14.5 Hz, HC-5''), 1.61 (1H, 

dddd, J = 1.5, 3, 9, 12 Hz, HC-3), 1.49 (1H, dd, J = 10, 12 Hz, HC-6), 1.44 (1H, dddd, J 

= 1.5, 4, 4, 12 Hz, HC-5). 

 

13C NMR (125 MHz, CDCl3): 208.8 (s, C-4'), 170.7 (s, CO2CHPhCO2C-4''), 168.3 (s, 

CO2C-4''), 134.2 (s, Ph), 129.8 (d, Ph), 129.3 (d ×2, Ph), 128.1 (d ×2, Ph), 84.7 (d, C-1''), 

77.2 (d, C-1'), 74.8 (d, CHPhCO2C-4''), 74.1 (d, C-4), 70.7 (d, C-4''), 61.1 (q, CH3OC-1''), 

60.0 (q, CH3OC-1'), 59.6 (q, CH3OC-4), 54.7 (d, C-3'), 48.5 (d, C-3), 47.5 (d, C-5), 45.2 

(d, C-3''), 43.9 (t, C-5'), 32.1 (t, C-5''), 29.1 (t, C-2' or C-6'), 28.9 (t, C-2' or C-6'), 25.6 (t, 

C-6), 24.8 (t, C-2 or C-2''), 24.8 (t, C-2 or C-2''), 22.4 (t, C-6''), 20.9 (q, 

CH3CO2CHPhCO2C-4''). 

 

LRMS (EI), m/z (relative intensity):  626 ([M]+, 3), 562 (3), 479 (3), 407 (2), 337 (33), 

224 (40), 143 (100), 108 (37), 71 (54). 

 

HRMS m/z calcd. for C30H42O8S3:  626.2042; found:  626.2040. 
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273 

(S)-((3S,4R)-3-((R)-Methoxy((3R,4S,5R)-4-methoxy-5-((R)-methoxy((S)-4-
oxotetrahydro-2H-thiopyran-3-yl)methyl)tetrahydro-2H-thiopyran-3-
yl)methyl)tetrahydro-2H-thiopyran-4-yl)-2-acetoxy-2-phenylacetate 

 

DCC (7 mg, 0.03 mmol) was added to a stirred solution of ketol (−)-271 (5 mg, 

0.01 mmol), (S)-OAM (6 mg, 0.03) and DMAP (ca. 0.5 mg) in CH2Cl2 (2 mL) at 0 °C.  

After 30 min, the reaction was diluted with ethyl acetate (2 mL) and filtered through 

Celite®.  The combined filtrate and washings were washed sequentially with 10% w/v 

aqueous citric acid (3×), sat. aqueous NaHCO3 and brine (1× 20 mL), dried over Na2SO4, 

concentrated, and fractionated by PTLC (50% ethyl acetate in hexane) to give crude 273 

that was refractionated by PTLC (1% CH3OH in CH2Cl2) to give the titled compound 273 

(3 mg, 44%) containing ca. 10% (by 1H NMR) of the diastereoisomeric ester from the 

(R)-acid. 

 

IR (DRIFT) νmax:  2928, 1744, 1696, 1432, 1373, 1169 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 7.56-7.36 (5H, m, Ph), 5.95 (1H, s, HCPhCO2C-4''), 5.08 

(1H, br s, HC-4''), 4.00 (1H, dd, J = 1.5, 9 Hz, HC-1'), 3.96 (1H, br s, HC-4), 3.45 (3H, s, 

H3COC-4), 3.41 (3H, s, H3COC-1''), 3.31 (3H, s, H3COC-1'), 3.04-2.80 (9H, m), 2.75-

2.66 (2H, m, HC-3', HC-5'), 2.51 (1H, br d, J = 13.5 Hz, HC-2 or HC-6), 2.26-2.19 (5H, 
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m, H3CCO2CHPhCO2C-4'', HC-3'',HC-2'' or HC-6''), 2.12-1.95 (3H, m), 2.03 (1H, m, 

HC-5''), 1.82-1.72 (3H, m, HC-3, HC-5, HC-5''). 

 

13C NMR (125 MHz, CDCl3):  δ 208.8 (s, C-4'), 170.5 (s, CO2CHPhCO2C-4''), 168.4 (s, 

CO2C-4''), 133.9 (s, Ph), 129.7 (d, Ph), 129.2 (d ×2, Ph), 127.6 (d ×2, Ph), 84.6 (d, C-1''), 

77.1 (d, C-1'), 74.9 (d, CHPhCO2C-4''), 74.0 (d, C-4), 71.6 (d, C-4''), 60.5 (q, CH3OC-4), 

60.3 (q, CH3OC-1''), 59.4 (q, CH3OC-1'), 54.7 (d, C-3'), 48.6 (d, C-3 or C-5), 48.2 (d, C-3 

or C-5), 45.2 (d, C-3''), 43.9 (t, C-5'), 32.1 (t, C-5''), 29.1 (t, C-2' or C-6'), 28.8 (t, C-2' or 

C-6'), 25.1 (t), 24.8 (t), 24.7 (t), 22.3 (t, C-2'' or C-6''), 20.9 (q, CH3CO2CHPhCO2C-4''). 

 

LRMS (EI), m/z (relative intensity):  626 ([M]+, 2), 337 (36), 143 (100), 107 (12), 97 

(15), 71 (39). 

 

HRMS m/z calcd. for C30H42O8S3:  626.2042; found:  626.2046. 
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(−)-278 

(4S,5R,6R,7S,8R,9R,10S,11R)-11-Hydroxy-5,7,9-trimethoxy-4,6,8,10-
tetramethyltridecan-3-one 

 

Sodium acetate buffer (1.0 M in water, pH 5.2; 1.5 mL), sodium hypophosphite 

monohydrate (1 M in water; 1.5 mL) and Raney Ni (W-2) (ca. 1 mL settled volume; 

added as a suspension in ethanol) were sequentially added to a well-stirred solution of a 

ketol (−)-271 (31 mg, 0.069 mmol) in ethanol (2 mL) and THF (2 mL).  The resultant 

mixture was heated under reflux and additional Raney Ni was added every 2 h.  After 8 h, 

the reaction mixture was filtered through a pad of Celite® and the filter cake was rinsed 

sequentially with hot methanol (2× 20 mL), CH2Cl2 (2× 20 mL) and acetone (2× 20 mL).  

The combined filtrate and washings were concentrated and the residue was taken up in 

dichloromethane and washed with water, dried over Na2SO4, concentrated and 

fractionated by FCC (10-20% ethyl acetate in hexane) to give the titled ketol (−)-278 (15 

mg, 60%) ( 27
D][α  –9; c 0.7, CH3OH). 

 

IR (DRIFT) νmax:  3436, 2926, 2835, 1703, 1654, 1354 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 3.65-3.57 (2H, m, HC-5, HC-11), 3.50-3.46 (4H, m, HC-

7, H3COC-7), 3.43 (3H, s, H3COC-9), 3.31 (3H, s, H3COC-5), 3.21 (1H, dd, J = 3, 6.5 

Hz, HC-9), 3.11-2.90 (1H, br s, HOC-11), 2.70-2.41 (3H, m, HC-4, H2C-2), 1.98 (1H, 
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ddq, J = 6.5, 6.5, 7 Hz, HC-8), 1.75-1.65 (2H, m, HC-6, HC-10), 1.60-1.37 (2H, m, H2C-

12), 1.11 (3H, d, J = 7 Hz, H3CC-4), 1.08 (3H, dd, J = 7.5, 7.5 Hz, H3C-1), 0.98 (3H, d, J 

= 7 Hz, H3CC-8), 0.93 (3H, t, J = 7.5 Hz, H3C-13), 0.92 (3H, t, J = 7 Hz, H3CC-6 or 

H3CC-10), 0.89 (3H, t, J = 7 Hz, H3CC-6 or H3CC-10). 

 

13C NMR (125 MHz, CDCl3):  δ 214.4 (s, C-3), 87.2 (d, C-9), 83.9 (d, C-5), 81.1 (d, C-

7), 77.7 (d, C-11), 61.1 (q, H3COC-7), 59.7 (q, H3COC-5), 58.6 (q, H3COC-9), 48.4 (d, 

C-4), 40.3 (d, C-6), 39.9 (d, C-8), 37.9 (d, C-10), 34.5 (t, C-2), 27.7 (t, C-12), 11.6 (q), 

11.0 (q), 10.8 (q), 9.9 (q), 8.2 (q), 7.6 (q). 

 

LRMS (CI, NH3), m/z (relative intensity):  361 ([M+1]+, 77), 329 (73), 297 (50), 239 

(313), 201 (76), 169 (100), 73 (65). 
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279 

(4R,5S,6S,7s,8R,9R,10S)-5,7,9-Trimethoxy-4,6,8,10-tetramethyltridecane-3,11-dione 
 

DMP (55 mg, 0.125 mmol) was added to a stirred solution of ketol (−)-278 (9 mg, 

0.025 mmol) in water-saturated CH2Cl2 (0.5 mL).  After 30 min, the mixture was diluted 

with ether and washed sequentially with a 1:1 mixture of 10% w/v aqueous Na2S2O3 and 

sat. aqueous NaHCO3, respectively, water and brine (20 mL). The aqueous washings 

were extracted with ether and the combined organic layers were dried over Na2SO4, 

concentrated and fractionated by PTLC (20% ethyl acetate in hexane) to give the titled 

diketone 279 (7 mg, 75%). 

 

IR (DRIFT) νmax:  2622, 1714, 1660, 1457, 1373, 1092 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 3.56-3.48 (3H, m, HC-5, HC-7, HC-9), 3.43 (3H, s, 

H3COC-7), 3.32 (6H, s, H3COC-5, H3COC-9), 2.72-2.45 (6H, m, H2C-2, HC-4, HC-10, 

H2C-12), 1.64 (2H, ddq, J = 4, 7, 7 Hz, HC-6, HC-8), 1.11 (6H, d, J = 7 Hz, H3CC-4, 

H3CC-10), 1.07 (6H, dd, J = 7.5, 7.5 Hz, H3C-1, H2C-13), 0.91 (6H, d, J = 7 Hz, H3CC-6, 

H3CC-8). 

 

13C NMR (125 MHz, CDCl3):  δ 214.46 (s ×2, C-3, C-11), 84.05 (d ×2, C-5, C-9), 79.73 

(d, C-7), 60.51 (q, H3COC-7), 59.84 (q ×2, H3COC-5, H3COC-9), 48.43 (d ×2, C-4,  C-
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10), 41.78 (q ×2, C-6, C-8), 34.59 (t ×2, C-2, C-12), 11.65 (q ×2, CH3C-4, CH3C-10), 

10.78 (t ×2, C-1, C-13), 8.11 (q ×2, CH3C-6, CH3C-8). 

 

LRMS (CI, NH3), m/z (relative intensity):  359 ([M+1]+, 8), 327 (40), 295 (38), 201 (39), 

169 (100), 129 (30), 57 (32). 
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297 

(3S,4r,5R)-3-((S)-Hydroxy((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)-5-((R)-
hydroxy((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)tetrahydro-2H-thiopyran-

4-ol 
 

Et2BOMe (1.00 mL, 761 mg, 7.61 mmol) was added to a stirred solution of bisaldol 

212a (3.12 g, 6.33 mmol) in MeOH (20 mL) and THF (80 mL) at −78 °C under argon.  

After 30 min, NaBH4 (1.92 g, 50.6 mmol) was added.  After 30 min, the reaction mixture 

was diluted with 3 M aqueous NaOH (40 mL) and warmed to room temperature over 1 h.  

The mixture was diluted with brine and extracted with CH2Cl2 (3×).  The combined 

organic layers were dried over Na2SO4 and concentrated.  To this residue was added 3 M 

aqueous NaOH (20 mL) and THF (20 mL) and after vigorous stirring for 24 h at room 

temperature, the mixture was diluted with brine and extracted with CH2Cl2 (3×).  The 

combined organic layers were dried over Na2SO4, concentrated, and fractionated by FCC 

(50-100% ethyl acetate in CH2Cl2) to give the titled triol 297 (2.20 g, 70%). 
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From mono-silyl diol 311: 

 

10% vol aqueous HF (1.5 mL) was added dropwise to a stirred solution of mono-

silyl diol 311 (146 mg, 0.258 mmol) in THF (15 mL) at room temperature.  After 30 min, 

sat. aqueous NaHCO3 was slowly added (caution:  effervescence) and the resulting 

mixture was diluted with EtOAc and washed sequentially with sat. aqueous NaHCO3 

(3×), brine, dried over Na2SO4, concentrated and fractionated by FCC (50-100% ethyl 

acetate in CH2Cl2) to give the titled triol 297 (113 mg, 95%). 

 

From mono-silyl bis-benzyl bis-ketal 313: 

 

Anhydrous NH3 (ca. 10 mL) was condensed to a solution of 313 (310 mg, 0.628 

mmol) in THF (10 mL) at −78 °C under Ar.  Lithium (2-3 2 mm3 pieces) were added 

over 5-10 min until a blue color persisted.  After 30 min, methanol (ca. 5 mL) was added 

dropwise followed by sat. aqueous NH4Cl (ca. 5 mL).  The mixture was warmed to room 

temperature over 2 h and diluted with sat. aqueous NaHCO3.  The mixture was extracted 

with CH2Cl2 (3×), dried over Na2SO4, concentrated and fractionated by PTLC (50-100% 

ethyl acetate in CH2Cl2) to give the titled triol 297 (209 mg, >95%). 

 

IR (DRIFT) νmax:  3412, 2906, 1429, 1173, 1042, 912 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 5.61 (1H, s, HOC-4), 4.17 (2H, d, J = 8 Hz, HC-1', HC-

1''), 4.13 (2H, s, HOC-1', HOC-1''), 4.11-3.90 (8H, m, H2C-2', H2C-3', H2C-2'', H2C-3''), 



 

 132

3.74 (1H, dd, J = 9.5, 9.5 Hz, HC-4), 3.07 (2H, dd, J = 12, 14 Hz, HC-7', HC-7''), 2.86 

(2H, ddd, J = 2, 13, 13 Hz, HC-9', HC-9''), 2.66 (2H, br d, J = 14 Hz, HC-7', HC-7''), 2.51 

(4H, m, HC-2, HC-6, HC-9', HC-9''), 2.34 (2H, dd, J = 12, 12 Hz, HC-2, HC-6), 2.14 

(2H, ddd, J = 3, 3, 13 Hz, HC-10', HC-10''), 2.08 (2H, dd, J = 2.5, 12 Hz, HC-6', HC-6''), 

1.98 (2H, dddd, J = 3.5, 9, 9, 11.5 Hz, HC-3, HC-5), 1.74 (2H, ddd, J = 3.5, 13, 13 Hz, 

HC-10', HC-10''). 

 

13C NMR (125 MHz, CDCl3):  δ 110.1 (s ×2, C-5', C-5''), 77.5 (d, C-4), 73.4 (d ×2, C-1', 

C-1''), 65.0 (t ×2, C-2', C-2'' or C-3', C-3''), 64.6 (t ×2, C-2', C-2'' or C-3', C-3''), 48.1 (d 

×2, C-3, C-5), 47.9 (d ×2, C-6', C-6''), 37.1 (t ×2, C-10', C-10''), 29.8 (t ×2, C-2, C-6), 

26.8 (t ×2, C-9', C-9''), 26.4 (t ×2, C-7', C-7''). 

 

LRMS (EI), m/z (relative intensity):  494 ([M]+, 2), 477 (2), 433 (3), 414 (6), 273 (11), 

159 (11), 99 (100). 

 

HRMS m/z calcd. for C21H34O7S3:  494.1467; found:  494.1484. 
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(R)-((4S,4aS,8S,8aS)-2,2-Dimethyl-4-((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-
yl)hexahydrothiopyrano[4,3-d][1,3]dioxin-8-yl)((S)-1,4-dioxa-8-thiaspiro[4.5]decan-

6-yl)methanol 
 

A suspension of FeCl3⋅SiO2
176 (3 mg) and triol 297 (10 mg, 0.02 mmol) in acetone 

(1 mL) was stirred at room temperature for 2 h.  The reaction mixture was filtered 

through SiO2 and was rinsed with ethyl acetate, concentrated and fractionated by PTLC 

(50% ethyl acetate in hexane) to obtain the titled 298 (8 mg, 74%). 

 

IR (DRIFT) νmax:  3498, 2627, 1706, 1431, 1388, 1248, 1043, 888 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 4.10-3.81 (10H, m), 3.69 (1H, dd, J = 10, 10 Hz, HC-4), 

3.26 (1H, m, HOC-1'), 3.03 (2H, ddd, J = 13.5, 13.5, 13.5 Hz), 2.91 (1H, dd, J = 13, 13 

Hz, HC-10' or HC-10''), 2.81 (1H, dd, J = 12, 12 Hz, HC-10' or HC-10''), 2.72-2.54 (5H, 

m), 2.47 (2H, dd, J = 12.5, 12.5 Hz), 2.29 (1H, dd, J = 12.5, 12.5 Hz, HC-3 or HC-5), 

2.16-1.99 (5H, m), 1.84 (1H, dd, J = 10.5, 10.5 Hz, HC-3 or HC-5), 1.74 (2H, dd, J = 

11.5, 11.5 Hz, HC-10', HC-10''), 1.45 (3H, s, H3CCO-1''), 1.34 (3H, s, H3CCO-1''). 

 

13C NMR (125 MHz, CDCl3):  δ 109.6 (s, C-5' or C-5''), 109.1 (s, C-5' or C-5''), 98.3 (s, 

COC-1''), 75.8 (d, C-4), 71.4 (d, C-1' or C-1''), 69.0 (d, C-1' or C-1''), 65.1 (t, C-2' or C-2'' 

or C-3' or C-3''), 65.0 (t ×2, C-2' or C-2'' or C-3' or C-3''), 64.8 (t, C-2' or C-2'' or C-3' or 
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C-3''), 48.3 (d, C-3' or C-5'' or C-6' or C-6''), 48.2 (d, C-3' or C-5'' or C-6' or C-6''), 47.5 

(d, C-3' or C-5'' or C-6' or C-6''), 44.1 (d, C-3 or C-5), 38.5 (t, C-10' or C-10''), 36.8 (t, C-

10' or C-10''), 30.5 (t), 30.2 (q, CH3COC-1''), 28.2 (t), 27.5 (t), 27.0 (t), 26.8 (t ×2), 19.4 

(q, CH3COC-1''). 

 

LRMS (EI), m/z (relative intensity):  534 ([M]+, 11), 414 (11), 199 (11), 159 (28), 99 

(100). 

 

HRMS m/z calcd. for  C24H38O7S3:  534.1780; found:  534.1781. 
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(S)-3-((R)-((4S,4aS,8S,8aS)-2,2-Dimethyl-4-((R)-4-oxotetrahydro-2H-thiopyran-3-
yl)hexahydrothiopyrano[4,3-d][1,3]dioxin-8-yl)(hydroxy)methyl)dihydro-2H-

thiopyran-4(3H)-one 
 

A suspension of FeCl3⋅SiO2
176 (10 mg) and triol 297 (50 mg, 0.10 mmol) in acetone 

(5 mL) was stirred at room temperature for 2 h and then refluxed for 1 h.  The reaction 

mixture was cooled to room temperature, filtered through SiO2, rinsed with ethyl acetate, 

concentrated and fractionated by FCC (20-40% ethyl acetate in hexane) to obtain the 

titled 299 (35 mg, 70%). 

 

IR (DRIFT) νmax:  3484, 2918, 1709, 1417, 1382, 1203, 1066, 900 cm-1. 
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1H NMR (500 MHz, CDCl3):  δ 4.40 (1H, dd, J = 2.5, 2.5 Hz, HC-1''), 4.16 (1H, dd, J = 

6, 6 Hz, HC-1'), 3.77 (1H, dd, J = 9.5, 9.5 Hz, HC-4), 3.46 (1H, d, J = 4 Hz, HOC-1'), 

3.20-2.20 (18H, m), 1.99 (1H, dddd, J = 3.5, 6, 9.5, 13 Hz, HC-3), 1.90 (1H, dddd, J = 

3.5, 10.5, 10.5, 10.5 Hz, HC-5), 1.54 (3H, s, H3CCOC-1''), 1.35 (3H, s, H3CCOC-1''). 

 

13C NMR (125 MHz, CDCl3):  δ 209.5 (s, C-4'), 207.4 (s, C-4''), 99.4 (s, COC-1''), 77.7 

(d, C-4), 73.5 (d, C-1'), 69.7 (d, C-1''), 56.7 (d, C-3'), 53.3 (d, C-3''), 46.5 (d, C-3), 44.2 (t, 

C-5' or C-5''), 43.7 (t, C-5' or C-5''), 43.3 (d, C-5), 30.1 (t), 29.9 (t), 29.9 (q, CH3COC-1''), 

29.6 (t, C-2), 28.4 (t), 28.2 (t, C-6), 27.5 (t), 19.7 (q, CH3COC-1''). 

 

LRMS (EI), m/z (relative intensity):  446 ([M]+, 15), 370 (91), 225 (10), 152 (35), 114 

(32). 

 

HRMS m/z calcd. for C20H30O5S3:  446.1255; found:  446.1260. 
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(3S,4r,5R)-4-Methoxymethoxy-3-((S)-(methoxymethoxy)((R)-1,4-dioxa-8-
thiaspiro[4.5]decan-6-yl)methyl)-5-((R)-(methoxymethoxy)((S)-1,4-dioxa-8-

thiaspiro[4.5]decan-6-yl)methyl)tetrahydro-2H-thiopyran 
 

i-Pr2EtN (0.094 mL, 69 mg, 0.54 mmol) was added to a stirred solution of triol 297 

(20 mg, 0.04 mmol) and n-Bu4NI (44 mg, 0.12 mmol) in CH2Cl2 (0.4 mL) at room 

temperature under Ar.  After 2 min, MOMCl (0.028 mL, 29 mg, 0.361 mmol) was added 

and the reaction was stirred vigorously for 3 d.  The mixture was diluted with 1% w/v 

aqueous citric acid and extracted with CH2Cl2 (3×). The combined organic layers were 

washed with sat. aqueous NaHCO3, dried over Na2SO4 and concentrated.  The residue 

was dissolved with CH2Cl2, filtered through a short silica pad (50% ethyl acetate in 

hexane then 100% ethyl acetate) and concentrated to give the titled 302 (25 mg, 95%). 

 

IR (DRIFT) νmax:  2917, 1412, 1264, 1146, 1022, 923 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 4.77 (2H, s, H2COC-4), 4.64 (4H, ap dd, J = 6.5, 6.5 Hz, 

H2COC-1', H2COC-1''), 4.08 (2H, dd, J = 3, 3 Hz, HC-1', HC-1''), 4.05-3.90 (8H, m, 

H2C-2', H2C-3', H2C-2'', H2C-3''), 3.60 (1H, dd, J = 9, 9 Hz, HC-4), 3.39 (6H, s, H3CO 

×2), 3.38 (3H, s, H3CO), 2.94-2.63 (8H, m), 2.55-2.42 (4H, m, HC-2, HC-6, HC-9', HC-

9''), 2.32-2.20 (4H, m, HC-3, HC-5, HC-6', HC-6''), 2.12 (2H, ddd, J = 3.5, 3.5, 13.5 Hz, 

HC-10', HC-10''), 1.71 (2H, ddd, J = 3.5, 13, 13 Hz, HC-10', HC-10''). 



 

 137

 

13C NMR (125 MHz, CDCl3):  δ 109.2 (s ×2, C5', C5''), 97.0 (t ×2, CH2OC-1'', CH2OC-

1'), 96.8 (t, CH2OC-4), 77.0 (d, C-4), 76.2 (d ×2, C-1', C-1''), 64.7 (t ×2, C-2', C-2'' or C-

3', C-3''), 64.6 (t ×2, C-2', C-2'' or C-3', C-3''), 56.3 (q, CH3O), 56.1 (q ×2, CH3O), 50.3 (d 

×2, C-3, C-5), 48.6 (d ×2, C-6', C-6''), 36.7 (t ×2, C-10', C-10''), 29.1 (t ×2, C-7', C-7''), 

27.7 (t ×2, C-2, C-6), 26.9 (t ×2, C-9', C-9''). 

 

LRMS (EI), m/z (relative intensity):  626 ([M]+, 2), 549 (11), 487 (6), 361 (6), 199 (12), 

159 (15). 

 

HRMS m/z calcd. for C27H46O10S3:  626.2253; found:  626.2258. 
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(3S,4r,5R)-3-((S)-(Methoxymethoxy)((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-
yl)methyl)-5-((R)-(methoxymethoxy)((S)-1,4-dioxa-8-thiaspiro[4.5]decan-6-

yl)methyl)tetrahydro-2H-thiopyran-4-ol 
 

i-Pr2EtN (10.5 mL, 7.79 g, 60.1 mmol) was added to a stirred solution of triol 297 

(2.20 g, 4.45 mmol) and n-Bu4NI (4.9 g, 13 mmol) in CH2Cl2 (75 mL) at room 

temperature under Ar.  After 2 min, MOMCl (3.00 mL, 3.18 g, 40.0 mmol) was added 

and the reaction was stirred vigorously for 2 d.  The mixture was diluted with ethyl 

acetate and washed with 1% w/v aqueous citric acid (3×).  The combined organic layers 
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were washed with sat. aqueous NaHCO3, dried over Na2SO4, concentrated and 

fractionated by MPC (15% acetone in hexane) to give the titled 303 (1.82 g, 70%). 

 

IR (DRIFT) νmax:  3498, 2916, 1466, 1426, 1260, 1099, 913 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 4.68 (2H, d, J = 7 Hz, H2COC-1', H2COC-1''), 4.56 (2H, 

d, J = 7 Hz, H2COC-1', H2COC-1''), 4.10 (2H, br s, HC-1', HC-1''), 4.09-3.90 (8H, m, 

H2C-2', H2C-3', H2C-2'', H2C-3''), 3.58 (1H, d, J = 3.5 Hz, HOC-4), 3.43-3.30 (7H, m, 

HC-4, H3CO ×2), 2.85-2.76 (4H, m, HC-7', HC-7'', HC-9', HC-9''), 2.69 (2H, br d, J = 

13.5 Hz, HC-2, HC-6), 2.62 (2H, br d, J = 14 Hz, HC-7', HC-7''), 2.53-2.43 (4H, m, HC-

2, HC-6, HC-9', HC-9''), 2.26 (2H, br d, J = 11 Hz, HC-6', HC-6''), 2.15-2.06 (4H, m, 

HC-3, HC-5, HC-10', HC-10''), 1.73 (2H, ddd, J = 3.5, 13.5, 13.5 Hz, HC-10', HC-10''). 

 

13C NMR (125 MHz, CDCl3):  δ 109.6 (s ×2, C-5', C-5''), 96.3 (t ×2, CH2OC-1', CH2OC-

1''), 73.2 (d ×2, C-1', C-1''), 69.7 (d, C-4), 64.9 (t ×2, C-2', C-2'' or C-3', C-3''), 64.7 (t ×2, 

C-2', C-2'' or C-3', C-3''), 56.1 (q ×2, CH3O), 52.5 (d ×2, C-3, C-5), 48.0 (d ×2, C-6', C-

6''), 36.6 (t ×2, C-10',C-10''), 29.1 (t ×2, C-7', C-7''), 28.3 (t ×2, C-2, C-6), 26.8 (t ×2, C-

9', C-9''). 

 

LRMS (EI), m/z (relative intensity):  582 ([M]+, 2), 488 (7), 458 (14), 269 (2), 159 (14), 

133 (27), 131 (65), 99 (100), 67 (10). 

 

HRMS m/z calcd. for C25H42O9S3:  582.1991; found:  582.2013. 
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304 

(3S,4r,5R)-4-(Benzyloxy)-3-((S)-(methoxymethoxy)((R)-1,4-dioxa-8-
thiaspiro[4.5]decan-6-yl)methyl)-5-((R)-(methoxymethoxy)((S)-1,4-dioxa-8-

thiaspiro[4.5]decan-6-yl)methyl)tetrahydro-2H-thiopyran 
 

A solution of alcohol 303 (1.77 g, 3.04 mmol) in THF (10 mL, plus 2× 10 mL 

washings) was added dropwise via syringe to a stirred suspension of 30% w/v KH in oil 

(ca. 30 mmol) in THF (15 mL) at 0 °C under Ar.  The resulting mixture was warmed to 

room temperature over 1 h and benzylbromide (0.80 mL, 1.14 g, 6.7 mmol) was added.  

After 1 h, the mixture was cooled to 0 °C and methanol (2 mL) was added dropwise via 

syringe (caution:  H2 evolution).  The mixture was diluted with H2O and extracted with 

CH2Cl2 (3×) and the combined organic layers were dried over Na2SO4, concentrated and 

fractionated by FCC (5-20% acetone in hexane) to give the titled product 304 (1.90 g, 

93%). 

 

IR (DRIFT) νmax:  2919, 1432, 1336, 1253, 1217, 1145, 1091 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 7.51-7.18 (5H, m, Ph), 4.70 (2H, d, J = 6.5 Hz, H2COC-

1', H2COC-1''), 4.68 (2H, s, H2COC-4), 4.63 (2H, d, J = 6.5 Hz, H2COC-1', H2COC-1''), 

4.15 (2H, s, HC-1', HC-1''), 4.00-3.79 (6H, m, H2C-2', H2C-3', H2C-2'', H2C-3''), 3.68-

3.60 (3H, m, H2C-2', H2C-3', H2C-2'', H2C-3'', HC-4), 3.43 (6H, s, H3CO ×2), 2.87 (2H, 

dd, J = 12.5, 12.5 Hz, HC-7', HC-7''), 2.85-2.75 (4H, m, HC-2, HC-6, HC-9', HC-9''), 
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2.63 (2H, br d, J = 14.5 Hz, HC-7', HC-7''), 2.59 (2H, dd, J = 12.5, 12.5 Hz, HC-2, HC-

6), 2.54-2.45 (4H, m, HC-3, HC-5, HC-9', HC-9''), 2.30 (2H, br d, J = 11 Hz, HC-6', HC-

6''), 2.10 (2H, br d, J = 13 Hz, HC-10', HC-10''), 1.72 (2H, ddd, J = 3, 13, 13 Hz, HC-10', 

HC-10''). 

 

13C NMR (125 MHz, CDCl3):  δ 139.8 (s, Ph), 128.3 (d ×2, Ph), 127.4 (d ×2, Ph), 127.1 

(d, Ph), 109.1 (s ×2, C-5, C-5''), 97.2 (t ×2, CH2OC-1', CH2OC-1''), 75.2 (d, C-4), 74.9 (d 

×2, C-1', C-1''), 66.7 (t, CH2OC-4), 64.59 (t ×2, C-2', C-2'' or C-3', C-3''), 64.58 (t ×2, C-

2', C-2'' or C-3', C-3''), 56.0 (q ×2, CH3O), 49.4 (d ×2, C-3, C-5), 48.2 (d ×2, C-6', C-6''), 

36.7 (t ×2, C-10', C-10''), 29.2 (t ×2, C-7', C-7''), 28.4 (t ×2, C-2, C-6), 26.9 (t ×2, C-9', C-

9''). 

 

LRMS (EI), m/z (relative intensity):  672 ([M]+, 1), 578 (9), 489 (12), 233 (12), 159 (9), 

99 (100). 

 

HRMS m/z calcd. for C32H48O9S3:  672.2460; found:  672.2441. 
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305 

(3R,3'S)-3,3'-((1R,2R,6S,7S,11r)-11-(Benzyloxy)-3,5-dioxa-9-
thiabicyclo[5.3.1]undecane-2,6-diyl)bis(dihydro-2H-thiopyran-4(3H)-one) 

 

A stirred suspension of FeCl3⋅SiO2
176 (1 g) and bis-MOM ketal 304 (100 mg, 0.15 

mmol) in acetone (20 mL) was heated under reflux for 2 h.  The reaction mixture was 

cooled to room temperature and filtered.  The combined filtrate and washings (20% 

methanol in CH2Cl2) were concentrated and the residue was dissolved in CH2Cl2, washed 

with sat. aqueous NaHCO3, dried over Na2SO4, concentrated, and fractionated by FCC 

(5-30% acetone in hexane) to obtain diketone 307 (41 mg, 55%) and the titled diketone 

305 (34 mg, 45%). 

 

IR (DRIFT) νmax:  2916, 1706, 1427, 1274, 1129, 1020, 754 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.30-7.09 (5H, m, Ph), 5.46 (1H, d, J = 8 Hz, H2COC-1', 

H2COC-1''), 5.28 (2H, dd, J = 2, 11 Hz, HC-1', HC-1''), 5.16 (1H, d, J = 8 Hz, H2COC-1', 

H2COC-1''), 4.25 (2H, s, H2COC-4), 4.19 (1H, dd, J = 3.5, 3.5 Hz, HC-4), 3.27 (2H, dd, J 

= 3, 14.5 Hz, HC-2, HC-6), 2.98 (2H, dd, J = 11, 14 Hz, HC-2', HC-2''), 2.51 (2H, ddd, J 

= 2.5, 4.5, 14 Hz, HC-2', HC-2''), 2.45-2.29 (6H, m), 2.22-2.09 (4H, m), 1.95 (2H, br dd, 

J = 2.5, 11 Hz, HC-3, HC-5), 1.53 (2H, d, J = 14 Hz, HC-2, HC-6). 
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13C NMR (125 MHz, C6D6):  δ 205.9 (s ×2, C-4', C-4''), 139.4 (s, Ph), 128.3 (d ×2, Ph), 

127.8 (d ×2, Ph), 127.7 (d, Ph), 100.8 (t, CH2OC-1', CH2OC-1''), 76.4 (d ×2, C-1', C-1''), 

74.3 (d, C-4), 72.1 (t, CH2OC-4), 56.9 (d ×2, C-3', C-3''), 44.3 (d ×2, C-5', C-5''), 37.0 (d 

×2, C-3, C-5), 26.3 (t ×2, C-6', C-6''), 29.0 (t ×2, C-2', C-2''), 25.6 (t ×2, C-2, C-6). 

 

LRMS (EI), m/z (relative intensity):  508 ([M]+, 6), 399 (2), 384 (2), 226 (8), 91 (100), 

67 (31). 

 

HRMS m/z calcd. for C25H32O5S3:  508.1412; found:  508.1411. 
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306 

(3R,3'S)-3,3'-((1S,1'R)-((3R,4r,5S)-4-(Benzyloxy)tetrahydro-2H-thiopyran-3,5-
diyl)bis((methoxymethoxy)methylene))bis(dihydro-2H-thiopyran-4(3H)-one) 

 

FeCl3⋅6H2O (600 mg, 2.22 mmol) was added to a well-stirred solution of bis-MOM 

ketal 304 (100 mg, 0.15 mmol) in 20% acetone in CH2Cl2 (10 mL).  After 4 h, the 

mixture was diluted with ethyl acetate and washed with 1% w/v aqueous citric acid (3×).  

The combined organic layers were washed with sat. aqueous NaHCO3, dried over 

Na2SO4 and concentrated to give crude diketones (87 mg) which was a mixture (ca. 1:1) 

of MOM protected and MOM deprotected diketones by 1H NMR.  The crude was 

subjected to MOM protection by addition of i-Pr2EtN (0.37 mL, 0.27 g, 2.12 mmol) and 

n-Bu4NI (129 mg, 0.35 mmol) in CH2Cl2 (4 mL) at room temperature under Ar.  After 2 



 

 143

min, MOMCl (0.08 mL, 85 mg, 1.1 mmol) was added and the reaction was stirred 

vigorously for 1 d.  The mixture was diluted with ethyl acetate and washed with 1% w/v 

aqueous citric acid (3×).  The combined organic layers were washed with sat. aqueous 

NaHCO3, dried over Na2SO4, concentrated, and recrystallized from benzene to give the 

titled diketone 306 (47 mg, 54%). 

 

IR (DRIFT) νmax:  2910, 1693, 1420, 1103, 1033, 919 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 7.49-7.28 (5H, m, Ph), 4.80 (2H, d, J = 6.5 Hz, H2COC-

1', H2COC-1''), 4.72 (2H, d, J = 6.5 Hz, H2OC-1', H2COC-1''), 4.60 (2H, s, H2COC-4), 

4.51 (2H, dd, J = 2.5, 7.5 Hz, HC-1', HC-1''), 3.43 (6H, s, H3CO ×2), 3.29 (1H, dd, J = 

10, 10 Hz, HC-4), 3.08 (2H, ddd, J = 4, 8, 8 Hz, HC-3', HC-3''), 3.03-2.91 (4H, m, H2C-

2', H2C-2''), 2.89-2.84 (4H, m, H2C-6', H2C-6''), 2.80 (2H, br d, J = 13 Hz, HC-2, HC-6), 

2.78-2.71 (2H, m, HC-5', HC-5''), 2.63 (2H, dd, J = 12, 12 Hz, HC-2, HC-6), 2.59-2.52 

(2H, m, HC-5', HC-5''), 2.41 (2H, dddd, J = 2.5, 2.5, 10.5, 10.5 Hz, HC-3, HC-5). 

 

13C NMR (125 MHz, CDCl3):  δ 209.8 (s ×2, C-5', C-5''), 138.1 (s, Ph), 128.8 (d ×2, Ph), 

128.6 (d ×2, Ph), 128.0 (d, Ph), 95.5 (t ×2, CH2OC-1', CH2OC-1''), 77.1 (d, C-4), 76.5 (d 

×2, C-1', C-1''), 67.9 (t, CH2OC-4), 56.3 (q ×2, CH3O), 55.7 (d ×2, C-3', C-3''), 48.7 (d 

×2, C-3, C-5), 44.3 (d ×2, C-5', C-5''), 33.6 (t ×2, C-2', C-2''), 31.3 (t ×2, C-6', C-6''), 29.6 

(t ×2, C-2, C-6). 
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LRMS (EI), m/z (relative intensity):  584 ([M]+, 10), 553 (48), 490 (92), 353 (76), 351 

(48), 289 (14), 281 (28), 265 (43), 215 (100). 

 

HRMS m/z calcd. for C28H40O7S3:  584.1936; found:  584.1942. 

 

S S S

OBnOH OHO O

2

35

62''6''

5'' 1'

2'

5'

6'

1''

 

307 

(3R,3'S)-3,3'-((1S,1'R)-((3R,4s,5S)-4-(Benzyloxy)tetrahydro-2H-thiopyran-3,5-
diyl)bis(hydroxymethylene))bis(dihydro-2H-thiopyran-4(3H)-one) 

 

FeCl3⋅6H2O (10.30 g, 38.11 mmol) was added to a well-stirred solution of bis-TMS 

ketal 314 (1.72 g, 2.36 mmol) in 20% acetone in CH2Cl2 (170 mL).  After 12 h, the 

mixture was diluted with 1% w/v aqueous citric acid and extracted with CH2Cl2 (4×).  

The combined organic layers were washed with sat. aqueous NaHCO3, dried over 

Na2SO4, concentrated, and fractionated by FCC (30% acetone in hexane) to obtain the 

titled diketone 307 (0.95 g, 81%). 

 

From bis-MOM ketal 304: 

 

A stirred suspension of FeCl3⋅SiO2
176 (1 g) and bis-MOM ketal 304 (100 mg, 0.15 

mmol) in acetone (20 mL) was heated under reflux for 2 h.  The reaction mixture was 

cooled to room temperature and filtered.  The combined filtrate and washings (20% 

methanol in CH2Cl2) were concentrated and the residue was dissolved in CH2Cl2, washed 
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with sat. aqueous NaHCO3, dried over Na2SO4, concentrated and fractionated by FCC (5-

30% acetone in hexane) to obtain diketone 305 (34 mg, 45%) and the titled diketone 307 

(41 mg, 55%). 

 

IR (DRIFT) νmax:  3474, 2916, 1699, 1610, 1458, 1109, 817 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.35-7.06 (5H, m, Ph), 4.87 (2H, d, J = 9.5 Hz, HC-1', 

HC-1''), 4.41 (2H, s, H2COC-4), 4.21 (1H, dd, J = 4, 4 Hz, HC-4), 3.53 (2H, br s, HOC-

1', HOC-1''), 3.01 (2H, dd, J = 3, 14 Hz, HC-2, HC-6), 2.89 (2H, dd, J = 11.5, 13.5 Hz, 

HC-2', HC-2''), 2.61 (2H, ddd, J = 3, 4.5, 11.5 Hz, HC-3', HC-3''), 2.49 (2H, ddd, J = 2.5, 

4.5, 13.5 Hz, HC-2', HC-2''), 2.42 (2H, ddd, J = 4, 11.5, 15 Hz, HC-6', HC-6''), 2.32 (2H, 

ddd, J = 3.5, 3.5, 13 Hz, HC-5', HC-5''), 2.22-2.08 (4H, m, HC-5', HC-5'', HC-6', HC-6''), 

2.05 (2H, dddd, J = 3, 4, 4.5, 9.5 Hz, HC-3, HC-5), 1.86 (2H, dd, J = 4.5, 14 Hz, HC-2, 

HC-6). 

 

13C NMR (125 MHz, C6D6):  δ 210.2 (s ×2, C-3', C-3''), 139.6 (s, Ph), 129.0 (d ×2, Ph), 

128.7 (d ×2, Ph), 128.2 (d, Ph), 74.8 (d, C-4), 71.8 (t, CH2OC-4), 69.3 (d ×2, C-1', C-1''), 

55.7 (d ×2, C-3', C-3''), 44.9 (t ×2, C-5', C-5''), 40.9 (d ×2, C-3, C-5), 30.2 (t ×2, C-6', C-

6''), 29.6 (t ×2, C-2', C-2''), 25.9 (t ×2, C-2, C-2). 

 

HRMS m/z calcd. for C24H32O5S3:  496.1412 (519.1304 for M+Na); found:  519.1328 

(TOF, CH3OH). 

 



 

 146

S S S

OBn
TES
O

TES
OO O

2

35

62''6''

5'' 1'

2'

5'

6'

1''

 

308 

(3R,3'S)-3,3'-((1S,1'R)-((3R,4r,5S)-4-(Benzyloxy)tetrahydro-2H-thiopyran-3,5-
diyl)bis((triethylsilyloxy)methylene))bis(dihydro-2H-thiopyran-4(3H)-one) 

 

2,6-Lutidine (2.21 mL, 2.04 g, 19.1 mmol) was added to a stirred solution of 

diketone 307 (0.95 g, 1.91 mmol) in CH2Cl2 (95 mL) at 0 °C under Ar.  After 2 min, 

TESOTf (2.15 mL, 2.28 g, 9.53 mmol) was added and the reaction was stirred vigorously 

for 15 min.  Methanol (2 mL) was added and the mixture was diluted with ethyl acetate 

and washed with 1% w/v aqueous citric acid (3×).  The combined organic layers were 

washed with sat. aqueous NaHCO3, dried over Na2SO4, concentrated, and fractionated by 

FCC (30% ether in hexane) to give bis-silyl diketone 308 (1.11 g, 83%). 

 

From bis-silyl enol ether 316:  

 

Aqueous sat. NaHCO3 (0.2 mL) was added dropwise to a stirred solution of bis-

silyl enol ether 316 (19 mg, 0.02 mmol) in methanol (1 mL) and THF (1 mL) at room 

temperature.  After 1 h, the reaction was diluted with water and extracted with CH2Cl2 

(3×).  The combined organic extracts were dried over Na2SO4, concentrated and 

fractionated by PTLC (50% ether in hexane) to give the titled bis-silyl diketone 308 (15 

mg, >95%). 
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IR (DRIFT) νmax:  2948, 1703, 1142, 1245, 1084, 763 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.84-7.03 (5H, m, Ph), 4.85 (2H, br s, HC-1', HC-1''), 4.74 

(2H, br s, H2COC-4), 3.52 (1H, dd, J = 10, 10 Hz, HC-4), 3.27 (2H, br s, HC-3', HC-3''), 

3.00 (2H, br d, J = 13 Hz, HC-2', HC-2''), 2.94 (2H, br d, J = 13 Hz, HC-2, HC-6), 2.81 

(2H, dd, J = 13, 13 Hz, HC-2', HC-2''), 2.54 (2H, dd, J = 12.5, 12.5 Hz, HC-2, HC-6), 

2.47-2.35 (4H, m, HC-3, HC-5, HC-6', HC-6''), 2.33 (2H, ddd, J = 4.5, 4.5, 13 Hz, HC-5', 

HC-5''), 2.23 (2H, dddd, J = 2.5, 5, 5, 13 Hz, HC-6', HC-6''), 2.13 (2H, ddd, J = 5, 13, 13 

Hz, HC-5', HC-5''), 0.96 (18H, m, (H3CC)3Si, ×2), 0.62 (12H, m, (H2C)3Si, ×2). 

 

13C NMR (125 MHz, C6D6):  δ 209.1 (s ×2, C-4', C-4''), 138.8 (s, Ph), 129.4 (d ×2, Ph), 

129.2 (d ×2, Ph), 128.7 (d, Ph), 78.6 (d, C-4), 71.7 (t, CH2OC-4), 71.3 (d ×2, C-1', C-1''), 

57.1 (d ×2, C-3', C-3''), 53.4 (d ×2, C-3, C-5), 45.1 (t ×2, C-5', C-5''), 33.9 (t ×2, C-2', C-

2''), 31.2 (t ×2, C-2, C-6), 31.0 (t ×2, C-6', C-6''), 7.7 (t ×6, (CH2)Si), 6.0 (q ×6, 

(CH3C)Si). 

 

LRMS (EI), m/z (relative intensity):  724 ([M]+, 1), 589 (8), 457 (12), 259 (32), 171 (65), 

91 (100). 

 

HRMS m/z calcd. for C36H60O5S3Si2:  724.3141; found:  724.3142. 
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311 

(R)-((3S,4s,5R)-5-((S)-Hydroxy((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)-4-
(trimethylsilyloxy)tetrahydro-2H-thiopyran-3-yl)((S)-1,4-dioxa-8-

thiaspiro[4.5]decan-6-yl)methanol 
 

IR (DRIFT) νmax:  3462, 3341, 2954, 1616, 1420, 1331, 1147, 1052 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 4.90 (2H, d, J = 11 Hz, HC-1', HC-1''), 4.72 (1H, dd, J = 

3, 3 Hz, HC-4), 4.00 (2H, s, HOC-1', HOC-1''), 3.74-3.27 (8H, m, H2C-2', H2C-3', H2C-

2'', H2C-3''), 3.31-3.23 (4H, m, HC-7', HC-7'', HC-2, HC-6), 2.77 (2H, ddd, J = 3, 13, 13 

Hz, HC-9', HC-9''), 2.68 (2H, ddd, J = 3, 3, 14 Hz, HC-7', HC-7''), 2.21 (2H, ddd, J = 3.5, 

6, 13 Hz, HC-9', HC-9''), 2.10-2.01 (4H, m, HC-2, HC-6, HC-6', HC-6''), 1.86-1.77 (4H, 

m, HC-3, HC-5, HC-10', HC-10''), 1.69 (2H, ddd, J = 3.5, 13, 13 Hz, HC-10', HC-10''), 

0.12 (9H, s, (H3C)3Si). 

 

13C NMR (125 MHz, C6D6):  δ 110.8 (s ×2, C-5', C-5''), 67.8 (d ×2, C-1', C-1''), 65.9 (d, 

C-4), 65.5 (t ×2, C-2', C-2'' or C-3', C-3''), 64.9 (t ×2, C-2', C-2'' or C-3', C-3''), 49.6 (d 

×2, C-6', C-6''), 44.6 (d ×2, C-3, C-5), 38.1 (t ×2, C-10', C-10''), 27.2 (t ×2, C-9', C-9''), 

26.5 (t ×2, C-7', C-7''), 25.9 (t ×2, C-2, C-6), 0.3 (q ×3, (CH3)Si). 

 

LRMS (EI), m/z (relative intensity):  566 ([M]+, 4), 476 (11), 373 (1), 287 (2), 199 (4), 

189 (18), 159 (11), 99 (100), 73 (43). 



 

 149

 

HRMS m/z calcd. for C24H42O7S3Si:  566.1862; found:  566.1856. 

 
LRMS (EI), m/z (relative intensity):  341 ([M−29]+, 3), 279 (3), 145 (6), 143 (3), 101 

(100), 69 (10), 57 (11). 

 

HRMS m/z calcd. for C21H38O5:  370.2719 (341.2328 for M−C2H5); found:  341.2316. 
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312 

(3R,4r,5S)-3-((R)-((S)-1,4-Dioxa-8-thiaspiro[4.5]decan-6-
yl)(trimethylsilyloxy)methyl)-5-((S)-((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-

yl)(trimethylsilyloxy)methyl)tetrahydro-2H-thiopyran-4-ol 
 

i-Pr2EtN (6.23 mL, 4.65 g, 36.0 mmol) was added to a stirred solution of triol 297 

(1.78 g, 3.60 mmol) in CH2Cl2 (180 mL) at room temperature under Ar.  After 2 min, 

TMSCl (2.28 mL, 1.95 g, 17.9 mmol) was added and the reaction was stirred vigorously 

for 2 d.  The mixture was diluted with ethyl acetate and washed with 1% w/v aqueous 

citric acid (3×).  The combined organic layers were washed with sat. aqueous NaHCO3, 

dried over Na2SO4, concentrated, and fractionated by FCC (20% ethyl acetate in hexane) 

to give mono-silyl diol 311 (0.32 g, 15%) and the titled bis-TMS alcohol 312 (1.97 g, 

85%). 

 



 

 150

IR (DRIFT) νmax:  3493, 2916, 1724, 1426, 1242, 1039, 887 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 4.33 (2H, dd, J = 3, 3 Hz, HC-1', HC-1''), 3.65 (1H, ddd, J 

= 4, 9.5, 9.5 Hz, HC-4), 3.56 (1H, d, J = 4 Hz, HOC-4), 3.52-3.20 (8H, m, H2C-2', H2C-

3', H2C-2'', H2C-3''), 3.03 (2H, dd, J = 11, 14 Hz, HC-7', HC-7''), 2.84 (2H, ddd, J = 3, 3, 

14 Hz, HC-7', HC-7''), 2.76 (2H, br d, J = 13 Hz, HC-2, HC-6), 2.67 (2H, ddd, J = 3, 13, 

13 Hz, HC-9', HC-9''), 2.53 (2H, ddd, J = 3.5, 3.5, 11 Hz, HC-6', HC-6''), 2.46 (2H, dd, J 

= 12.5, 12.5 Hz, HC-2, HC-6), 2.38 (2H, dddd, J = 2.5, 2.5, 10, 12 Hz, HC-3, HC-5), 

2.22 (2H, ddd, J = 4, 4, 13.5 Hz, HC-9', HC-9''), 1.71 (2H, ddd, J = 4, 4, 13.5 Hz, HC-10', 

HC-10''), 1.57 (2H, ddd, J = 3.5, 13, 13 Hz, HC-10', HC-10''), 0.16 (18H, s, (H3C)3Si ×2). 

 

13C NMR (125 MHz, C6D6):  δ 110.4 (s ×2, C-5', C-5''), 70.3 (d ×2, C-1', C-1''), 70.2 (d, 

C-4), 64.1 (t ×2, C-2', C-2'' or C-3', C-3''), 64.0 (t ×2, C-2', C-2'' or C-3', C-3''), 54.9 (d 

×2, C-3, C-5), 48.3 (d ×2, C-6', C-6''), 36.2 (t ×2, C-10', C-10''), 29.5 (t ×2, C-7', C-7''), 

29.1 (t ×2, C-2, C-6), 26.7 (t ×2, C-9', C-9''), 0.5 (q ×6, (CH3)Si). 

 

LRMS (EI), m/z (relative intensity):  638 ([M]+, 1), 533 (10), 489 (1), 377 (1), 261 (50), 

132 (30), 129 (100), 75 (12). 

 

HRMS m/z calcd. for C27H50O7S3Si2:  638.2257; found:  638.2242. 
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313 

((R)-((3R,4R,5S)-4-(Benzyloxy)-5-((S)-benzyloxy((R)-1,4-dioxa-8-
thiaspiro[4.5]decan-6-yl)methyl)tetrahydro-2H-thiopyran-3-yl)((S)-1,4-dioxa-8-

thiaspiro[4.5]decan-6-yl)methoxy)trimethylsilane 
 

IR (DRIFT) νmax:  2912, 1495, 1305, 1153, 948 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.49-7.00 (10H, m, Ph), 4.97 (2H, ap dd, J = 12.5, 12.5 

Hz, H2COC-4), 4.64 (1H, d, J = 11 Hz, H2COC-1''), 4.50 (1H, d, J = 11 Hz, H2COC-1''), 

4.34 (1H, br s), 4.23 (1H, d, J = 5 Hz, HC-1'), 4.01 (1H, dd, J = 3.5, 3.5 Hz, HC-1''), 3.90 

(1H, dd, J = 8, 8 Hz, HC-4), 3.55-3.25 (7H, m, H2C-2', H2C-3', H2C-2'', H2C-3''), 3.22 

(1H, dd, J = 10.5, 13.5 Hz, HC-6), 2.99 (1H, dd, J = 10, 13.5 Hz), 2.89-2.5 (12H, m), 

2.28 (2H, m, H2C-9' or H2C-9''), 1.79 (1H, ddd, J = 3, 3, 13.5 Hz, H2C-10' or H2C-10''), 

1.74 (1H, ddd, J = 3, 6, 13.5 Hz, H2C-10' or H2C-10''), 1.69-1.58 (1H, m, H2C-10' or 

H2C-10''), 1.52 (1H, ddd, J = 3.5, 11, 13.5 Hz, H2C-10' or H2C-10''), 0.20 (9H, s, 

(H3C)3Si). 

 

13C NMR (125 MHz, C6D6):  δ 140.8 (s, Ph), 139.9 (s, Ph), 128.91 (d, Ph), 128.87 (d, 

Ph), 128.7 (d, Ph), 128.0 (d, Ph), 127.8 (d, Ph), 127.4 (d, Ph), 127.3 (d, Ph), 127.2 (d, Ph), 

110.2 (s, C-5'), 109.9 (s, C-5''), 78.8 (d, C-1''), 77.8 (d, C-4), 74.5 (t, CH2OC-1''), 73.3 (d, 

C-1'), 70.6 (t, CH2OC-4), 65.3 (t, C-2', C-2'' or C-3', C-3''), 64.7 (t, C-2', C-2'' or C-3', C-

3''), 64.5 (t, C-2', C-2'' or C-3', C-3''), 64.3 (t, C-2', C-2'' or C-3', C-3''), 52.7 (d, C-3), 50.5 
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(d, C-5), 50.0 (d, C-6''), 49.2 (d, C-6'), 36.9 (t, C-10' or C-10''), 36.4 (t, C-10' or C-10''), 

30.1 (t ×3), 29.6 (t, C-6), 27.3 (t), 27.1 (t), 1.2 (q ×3, (CH3)Si). 

 

LRMS (EI), m/z (relative intensity):  746 ([M]+, 15), 656 (35), 549 (72), 459 (42), 261 

(36), 99 (100). 

 

HRMS m/z calcd. for C38H54O7S3Si:  746.2801; found:  746.2823. 
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314 

((S)-((3S,4r,5R)-5-((R)-((S)-1,4-Dioxa-8-thiaspiro[4.5]decan-6-
yl)(trimethylsilyloxy)methyl)-4-(benzyloxy)tetrahydro-2H-thiopyran-3-yl)((R)-1,4-

dioxa-8-thiaspiro[4.5]decan-6-yl)methoxy)trimethylsilane 
 

A solution of alcohol 312 (552 mg, 0.864 mmol) in THF (10 mL, plus 2× 5 mL 

washings) was added dropwise via syringe to a stirred suspension of 30% w/v KH in oil 

(ca. 2 mmol) in THF (10 mL) at 0 °C under Ar.  The resulting mixture was warmed to 

room temperature over 1 h and benzylbromide (1.03 mL, 1.47 g, 8.64 mmol) was added.  

After 8-12 h, the mixture was cooled to 0 °C and 2-propanol (2 mL) was added dropwise 

via syringe (caution:  H2 evolution).  The mixture was diluted with aqueous phosphate 

buffer (0.1 M, pH 7; 2.0 mL) and extracted with CH2Cl2 (3×) and the combined organic 

layers were dried over Na2SO4, concentrated and fractionated by FCC (5-10% ethyl 
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acetate in hexane) to give bis-benzyl mono-silyl 313 (97 mg, 15%) and the titled bis-silyl 

314 (512 mg, 81%). 

 

IR (DRIFT) νmax:  2947, 1415, 1254, 1099, 895 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.58-7.09 (5H, m, Ph), 5.11 (2H, s, H2COC-4), 4.17 (2H, 

br d, J = 4.5 Hz, HC-1', HC-1''), 3.79 (1H, dd, J = 8.5, 8.5 Hz, HC-4), 3.55-3.24 (8H, m, 

H2C-2', H2C-3', H2C-2'', H2C-3''), 2.95 (2H, dd, J = 10, 13.5 Hz, HC-7', HC-7''), 2.83 (2H, 

br d, J = 14 Hz, HC-9', HC-9''), 2.80-2.63 (8H, m), 2.58 (2H, ddd, J = 2.5, 10.5, 13 Hz, 

HC-6', HC-6''), 2.33 (2H, br d, J = 14 Hz, HC-9', HC-9''), 1.75 (2H, ddd, J = 3, 6, 13.5 

Hz, HC-10', HC-10''), 1.57 (2H, ddd, J = 3, 10.5, 13.5 Hz, HC-10', HC-10''), 0.20 (18H, s, 

(H3C)3Si ×2). 

 

13C NMR (125 MHz, C6D6):  δ 140.7 (s, Ph), 128.9 (d ×2, Ph), 127.5 (d ×2, Ph), 127.2 

(d, Ph), 110.2 (s ×2, C-5', C-5''), 71.5 (d ×3, C-1', C-1'', C-4), 64.4 (t ×2, C-2', C-2'' or C-

3', C-3''), 64.3 (t ×3, C-2', C-2'' or C-3', C-3'', CH2OC-4), 53.3 (d ×2, C-3, C-5), 49.4 (d 

×2, C-6', C-6''), 36.3 (t ×2, C-10', C-10''), 30.1 (t ×4), 27.1 (t ×2, C-9', C-9''), 1.3 (q ×6, 

(CH3)Si) 

 

LRMS (EI), m/z (relative intensity):  728 ([M]+, 1), 548 (7), 261 (72), 99 (100), 73 (71), 

55 (3)  
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HRMS m/z calcd. for C34H56O7S3Si2:  728.2727 (751.2618 for M+Na); found:  728.2733; 

751.2640 (ESI, CH3OH). 
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315 

(S)-3-((R)-((3R,4R,5S)-4-(Benzyloxy)-5-((S)-(triethylsilyloxy)((R)-4-
(trimethylsilyloxy)-3,6-dihydro-2H-thiopyran-3-yl)methyl)tetrahydro-2H-
thiopyran-3-yl)(triethylsilyloxy)methyl)dihydro-2H-thiopyran-4(3H)-one 

 

A solution of n-BuLi in hexanes (2.2 M; 0.086 mL, 0.19 mmol) was added 

dropwise via syringe to a solution of (S,S)-bis(1-phenylethyl)amine (0.044 mL, 43 mg, 

0.19 mmol) in THF (5 mL) at –78 °C under Ar.  After stirring for 30 min at –78 °C the 

resulting pink solution was quickly transferred via cannula (ca. 15-30 sec.) into a well-

stirred solution of diketone 308 (92 mg, 0.127 mmol) and TMSCl (0.16 mL, 138 mg, 

1.27 mmol) in THF (13 mL) at –100 °C under Ar.  After 15 min, the reaction was 

quenched by addition of acetone (0.5 mL) followed by Et3N (0.5 mL) and sat. aqueous 

NaHCO3.  The resulting cold mixture was diluted with ethyl acetate and washed 

sequentially with 1% w/v aqueous citric acid (4×), sat. aqueous NaHCO3 and brine, dried 

over Na2SO4, concentrated, and fractionated by FCC (5-30% ether in hexane) to give the 

bis-silyl enol ether 316 (19 mg, 17%), recovered diketone 308 (8 mg, 8%) and the titled 

mono-silyl enol ether 315 (67 mg, 66%) ( 23
D][α −21; c 4.0, C6H6; >90% ee by 1H NMR 

analysis of Mosher's ester 360 and/or 361). 
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IR (DRIFT) νmax:  2953, 1712, 1660, 1497, 1377, 1156, 1070 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.88-7.09 (5H, m, Ph), 5.30 (1H, br s, HC-1'), 4.95 (1H, 

br d, J = 8 Hz, HC-1''), 4.90 (1H, dd, J = 4, 4 Hz, HC-5''), 4.83 (1H, d, J = 9.5 Hz, 

H2COC-4), 4.48 (1H, d, J = 9.5 Hz, H2COC-4), 3.65 (1H, dd, J = 10, 10 Hz, HC-4), 3.27 

(1H, br dd, J = 12.5, 12.5 Hz), 3.18 (1H, dd, J = 3, 13 Hz), 3.13-2.87 (6H, m), 2.67-2.21 

(10H, m), 1.01 (9H, m, (H3CC)3Si), 0.99 (9H, m, (H3CC)3Si), 0.79 (6H, m, (H2C)3Si), 

0.69 (6H, m, (H2C)3Si), 0.19 (9H, s, (H3C)3SiOC-4''). 

 

13C NMR (125 MHz, C6D6):  δ 207.3 (s, C-4'), 152.1 (s, C-4''), 139.5 (s, Ph), 129.4 (d, 

Ph), 128.9 (d, Ph), 128.7 (d, Ph), 128.4 (d, Ph), 128.2 (d, Ph), 107.1 (d, C-5''), 77.8 (d, C-

4), 74.2 (t, CH2OC-4), 73.5 (d, C-1' or C-1''), 73.4 (d, C-1' or C-1''), 56.3 (d ×3, t), 45.1 

(t), 43.9 (d), 33.1 (t), 30.4 (t), 29.5 (t), 28.9 (t), 25.1 (t), 7.68 (t ×3, (CH2)3Si), 7.62 (t ×3, 

(CH2)Si), 6.2 (q ×3, (CH3C)Si), 5.8 (q ×3, (CH3C)Si), 0.8 (q ×3, (CH3)SiOC-4''). 

 

HRMS m/z calcd. for C39H68O5S3Si3:  796.3537 (819.3428 for M+Na); found:  819.3416 

(ESI, CH3OH). 

 

 

 

 

 

 



 

 156

S S S

OBn
TES
O

TES
O

TMS
O

TMS
O

2

35

62''6''

5'' 1'

2'

5'

6'

1''

 

316 

((S)-((3S,4r,5R)-4-(Benzyloxy)-5-((R)-(triethylsilyloxy)((S)-4-(trimethylsilyloxy)-3,6-
dihydro-2H-thiopyran-3-yl)methyl)tetrahydro-2H-thiopyran-3-yl)((R)-4-
(trimethylsilyloxy)-3,6-dihydro-2H-thiopyran-3-yl)methoxy)triethylsilane 

 

IR (DRIFT) νmax:  2955, 1660, 1458, 1413, 1156, 1095, 873 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.65-7.10 (5H, m, Ph), 5.02 (2H, dd, J = 4.5, 4.5 Hz, HC-

5', HC-5''), 4.94 (4H, m, HC-1', HC-1'', H2COC-4), 3.92 (1H, dd, J = 10, 10 Hz, HC-4), 

3.18 (2H, dd, J = 6.5, 13.5 Hz, HC-2', HC-2''), 3.09-3.03 (4H, m, H2C-2, H2C-6), 3.00 

(2H, dd, J = 3.5, 17 Hz, HC-6', HC-6''), 2.86 (2H, dd, J = 5, 17 Hz, HC-6', HC-6''), 2.75 

(2H, dd, J = 4.5, 13.5 Hz, HC-2', HC-2''), 2.71-2.64 (4H, m, HC-3', HC-3'', HC-3, HC-5), 

1.02 (18H, m, (H3CC)3Si, ×2), 0.72 (12H, m, (H2C)3Si, ×2), 0.11 (18H, s, (H3C)3SiOC-4', 

(H3C)3SiOC-4''). 

 

13C NMR (125 MHz, C6D6):  δ 152.3 (s ×2, C-4', C-4''), 140.1 (s, Ph), 128.8 (d ×2, Ph), 

128.7 (d ×2, Ph), 127.7 (d, Ph), 106.5 (d ×2, C-5', C-5''), 78.0 (d, C-4), 72.5 (d ×2, C-1', 

C-1''), 71.8 (t, CH2OC-4), 54.3 (d ×2, C-3, C-5), 44.6 (d ×2, C-3', C-3''), 29.4 (t ×2, C-2, 

C-6), 28.7 (t ×2, C-2', C-2''), 25.4 (t ×2, C,6', C-6''), 7.7 (q ×6, (CH3C)Si), 6.1 (t ×6, 

(CH2)Si), 0.7 (q ×6, (CH3)SiOC-4''). 
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HRMS m/z calcd. for C42H76O5S3Si4:  868.3932 (891.3824 for M+Na); found:  891.3857 

(ESI, CH3OH). 
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317sa 

(R)-3-((R)-((R)-1,4-Dioxa-8-thiaspiro[4.5]decan-6-
yl)(triethylsilyloxy)methyl)dihydro-2H-thiopyran-4(3H)-one 

 

2,6-Lutidine (0.43 mL, 0.40 g, 3.69 mmol) was added to a stirred solution of ketone 

209sa (255 mg, 0.84 mmol) in CH2Cl2 (20 mL) at 0 °C under Ar.  After 2 min, TESOTf 

(0.42 mL, 0.49 g, 1.84 mmol) was added and the reaction was stirred vigorously for 15 

min.  Methanol (2 mL) was added and the mixture was diluted with ethyl acetate and 

washed with 1% w/v aqueous citric acid (3×).  The combined organic layers were washed 

with sat. aqueous NaHCO3, dried over Na2SO4, concentrated and fractionated by FCC 

(30% ethyl acetate in hexane) to give silyl ketone 317sa (331 mg, 94%). 

 

IR (DRIFT) νmax:  2942, 1715, 1429, 1221, 1072, 745 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 5.43 (1H, dd, J = 2.5, 2.5 Hz, HC-1'), 3.60-3.32 (2H, m, 

H2C-2' or H2C-3'), 3.28 (1H, ddd, J = 2.5, 5, 11.5 Hz, HC-3), 3.20-3.08 (2H, m, H2C-2' or 

H2C-3'), 3.01-2.83 (4H, m, H2C-2, H2C-7), 2.70 (1H, ddd, J = 3.5, 13, 13 Hz, HC-9'), 

2.57 (1H, br dd, J = 10, 11 Hz, HC-6), 2.48-2.41 (2H, m, HC-5, HC-6'), 2.36-2.26 (2H, 
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m, HC-5, HC-6), 2.13 (1H, ddd, J = 3.5, 3.5, 13.5 Hz, HC-9'), 1.69-1.56 (2H, m, H2C-

10'), 1.01 (9H, m, (H3CC)3Si), 0.69 (6H, m, (H2C)3Si). 

 

13C NMR (125 MHz, C6D6):  δ 207.4 (s, C-4), 108.7 (s, C-5'), 65.4 (d, C-1'), 64.5 (t, C-2' 

or C-3'), 64.2 (t, C-2' or C-3'), 56.6 (d, C-3), 54.9 (d, C-6'), 44.8 (t, C-5), 37.8 (t, C-10'), 

32.4 (t, C-2), 30.2 (t, C-6), 27.7 (t, C-7'), 27.4 (t, C-9'), 7.6 (q ×3, (CH3C)Si), 5.7 (t ×3, 

(CH2)Si). 

 

LRMS (EI), m/z (relative intensity):  418 ([M]+, 2), 389 (35), 333 (9), 286 (15), 229 

(100), 171 (64), 99 (98). 

 

HRMS m/z calcd. for C19H34O4S2Si:  418.1668; found:  418.1660. 
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318sa 

(3R,5R)-3-((R)-(Methoxymethoxy)((R)-1,4-dioxa-8-thiaspiro[4.5]decan-6-yl)methyl)-
5-((E)-2-methylpent-2-enyl)dihydro-2H-thiopyran-4(3H)-one 

 

t-BuLi (1.7 M in pentane; 0.19 mL, 0.32 mmol) was added dropwise via syringe to 

a solution of ketone 210sa (100 mg, 0.29 mmol) in THF (6 mL) at −30 °C under Ar.  

After 30 min, allyl bromide (0.10 mL, 140 mg, 0.85 mmol) and HMPA (0.15 mL, 155 

mg, 0.86 mmol) were added sequentially.  After 2 h, the mixture was diluted with sat. 

aqueous NH4Cl and extracted with CH2Cl2 (3×).  The combined organic layers were dried 

over Na2SO4, concentrated and fractionated by FCC (10-50% ethyl acetate in hexane) to 

give recovered 210sa (20 mg, 20%) and the titled C-alkylated 318sa (98 mg, 79%; dr 

20:1). 

 

IR (DRIFT) νmax:  2961, 1701, 1414, 1169, 1103, 1038, 888 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 5.28 (1H, br dd, J = 7, 7 Hz, HC=C), 5.10 (1H, dd, J = 3, 

3 Hz, HC-1'), 4.67 (1H, d, J = 6.5 Hz, H2COC-1'), 4.51 (1H, d, J = 6.5 Hz, H2COC-1'), 

3.59 (1H, m, H2C-2' or H2C-3'), 3.47 (1H, ddd, J = 2.5, 5, 11.5 Hz, HC-3), 3.44-3.37 (2H, 

m, H2C-2' or H2C-3'), 3.18 (1H, m, H2C-2' or H2C-3'), 3.14 (3H, s, H3CO), 3.17 (1H, dd, 

J = 11.5, 13.5 Hz, HC-2), 2.97 (1H, dd, J = 12.5, 12.5 Hz, HC-7'), 2.87-2.70 (5H, m), 

2.68 (1H, ddd, J = 3, 3, 12 Hz, HC-6'), 2.56 (1H, dd, J = 10, 13.5 Hz, H2CC-5), 2.46 (1H, 
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ddd, J = 2, 5, 13 Hz, HC-6), 2.37 (1H, dd, J = 4, 13.5 Hz, H2CC-5), 2.17 (1H, dddd, J = 

2,5, 4, 4, 13.5 Hz, HC-9'), 1.94-1.84 (2H, m, H2CCH=C), 1.72-1.59 (2H, m, HC-10'), 

1.42 (3H, s, H3CC=C), 0.87 (3H, t, J = 7.5 Hz, H3CCCH=C). 

 

13C NMR (125 MHz, C6D6):  δ 211.0 (s, C-4), 131.2 (s, C=CH), 130.6 (d, CH=C), 109.5 

(s, C-5'), 98.1 (t, CH2OC-1'), 73.6 (d, C-1'), 64.7 (t, C-2' or C-3'), 64.3 (t, C-2' or C-3'), 

56.0 (q, CH3O), 53.8 (d, C-3), 52.0 (d, C-6'), 49.0 (d, C-5), 40.8 (t, CH2C-5), 37.9 (t, C-

10'), 32.5 (t, C-6), 31.0 (t, C-2), 29.1 (t, C-7'), 27.4 (t, C-9'), 21.9 (t, CH2CH=C), 15.9 (q, 

CH3C=C), 14.7 (q, CH3CCH=C). 

 

LRMS (EI), m/z (relative intensity):  430 ([M]+, 4), 368 (9), 199 (6), 159 (11) 132 (74). 

 

HRMS m/z calcd. for C21H34O5S2:  430.1848; found:  430.1833. 
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319sa 

(3R,5R)-3-((R)-((R)-1,4-Dioxa-8-thiaspiro[4.5]decan-6-yl)(triethylsilyloxy)methyl)-5-
((E)-2-methylpent-2-enyl)dihydro-2H-thiopyran-4(3H)-one 

 

t-BuLi (1.7 M in pentane; 0.06 mL, 0.10 mmol) was added dropwise via syringe to 

a solution of ketone 317sa (38 mg, 0.09 mmol) in THF (2 mL) at −30 °C under Ar.  After 

30 min, allyl bromide (0.030 mL, 42 mg, 0.26 mmol) and HMPA (0.050 mL, 52 mg, 0.27 

mmol) were added sequentially.  After 2h, the mixture was diluted with sat. aqueous 

NH4Cl and extracted with CH2Cl2 (3×).  The combined organic layers were dried over 

Na2SO4, concentrated and fractionated by FCC (10-50% ethyl acetate in hexane) to give 

recovered 317sa (5 mg, 13%) and the titled C-alkylated 319sa (40 mg, 87%; dr 20:1). 

 

IR (DRIFT) νmax:  2960, 1703, 1417, 1167, 1054, 739 cm-1. 

 

1H NMR (500 MHz, CDCl3):  δ 5.24 (1H, dd, J = 7, 7 Hz, HC=C), 5.05 (1H, dd, J = 2, 2 

Hz, HC-1'), 3.99-3.73 (4H, m, H2C-2', H2C-3'), 3.24 (1H, ddd, J = 1.5, 5, 11.5 Hz, HC-3), 

3.02-2.70 (7H, m), 2.58 (1H, ddd, J = 2, 5, 13 Hz, HC-2), 2.51 (1H, dd, J = 11, 13.5 Hz, 

H2CC-5), 2.44 (1H, dddd, J = 3.5, 3.5, 3.5, 13.5 Hz, HC-10'), 2.21-2.12 (2H, m), 2.05-

1.93 (3H, m), 1.66 (1H, ddd, J = 3.5, 13.5, 13.5 Hz, HC-10'), 1.54 (3H, s, H3CC=C), 

0.95-0.89 (12H, m, (H3CC)3Si, H3CCC=C), 0.58 (6H, m, (H2C)3Si). 
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13C NMR (125 MHz, CDCl3):  δ 212.1 (s, C-4), 130.8 (d, CH=C), 130.3 (s, CCH3CH2C-

5), 108.9 (s, C-5'), 65.4 (d, C-1'), 64.6 (t, C-2' or C-3'), 64.2 (t, C-2' or C-3'), 54.3 (d, C-

6'), 53.2 (d, C-3), 48.5 (d, C-5), 40.2 (t, CH2C-5), 37.4 (t, C-10'), 31.5 (t, C-2), 30.1 (t, C-

6), 27.4 (t, C-7'), 27.0 (t, C-9'), 21.5 (t, CH2CH=C), 15.7 (q, CH3C=C), 14.4 (q, 

CH3CCH=C), 7.1 (q ×3, (CH3C)Si), 5.1 (t ×3, (CH2)Si). 

 

LRMS (EI), m/z (relative intensity):  500 ([M]+, 10), 471 (20), 368 (20), 310 (31), 245 

(57), 171 (50), 98 (100). 

 

HRMS m/z calcd. for C25H44O4S2Si:  500.2450; found:  500.2402. 
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320sa 

(2R,3R,4R,6R,E)-2-(2-Ethyl-1,3-dioxolan-2-yl)-3-(methoxymethoxy)-4,6,8-
trimethylundec-8-en-5-one 

 

Raney Ni (W-2) (ca. 1 mL settled volume; added as a suspension in ethanol) was 

added to a well-stirred solution of a ketone 318sa (35 mg, 0.081 mmol) in methanol (10 

mL).  The resultant mixture was heated under reflux and additional Raney Ni was added 

every 2 h.  After 4 h, the reaction mixture was filtered through a pad of Celite® and the 

filter cake was rinsed sequentially with hot methanol (2× 20 mL), CH2Cl2 (2× 20 mL) 

and acetone (2× 20 mL).  The combined filtrate and washings were concentrated and the 

residue was taken up in dichloromethane and washed with water, dried over Na2SO4, 
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concentrated and fractionated by PTLC (20% ethyl acetate in hexane) to give the titled 

320sa (22 mg, 73%). 

 

IR (DRIFT) νmax:  2955, 1707, 1464, 1324, 1157, 1032, 811 cm-1. 

 

1H NMR (500 MHz, C6D6): δ 5.22 (1H, dd, J = 7, 7 Hz, HC-9), 4.75 (1H, d, J = 6.5 Hz, 

H2COC-3), 4.61 (1H, d, J = 6.5 Hz, H2COC-3), 4.45 (1H, br s, HC-3), 3.56-3.40 (4H, m, 

H2CO ×2), 3.31 (1H, dq, J = 3, 7 Hz, HC-2), 3.22 (3H, s, H3CO), 2.95 (1H, m, HC-6), 

2.55-2.43 (2H, m), 2.01-1.89 (2H, m), 1.78-1.60 (2H, m, H2CC-1), 1.54 (3H, s, 

H3CC=C), 1.31 (3H, d, J = 7 Hz, H3CC-4), 1.78 (3H, d, J = 7 Hz, H3CC-2 or H3CC-6), 

1.56 (3H, d, J = 7 Hz, H3CC-2 or H3CC-6), 1.00 (3H, t, J = 7.5 Hz, H3CCC-1), 0.91 (3H, 

t, J = 7.5 Hz, H3C-11). 

 

13C NMR (125 MHz, C6D6):  δ 215.2 (s, C-5), 129.8 (d, CH=C), 128.7 (s, C-8), 113.4 (s, 

CC-2), 97.5 (t, CH2OC-3), 76.5 (d, C-3), 65.9 (t, CH2O), 65.0 (t, CH2O), 56.0 (q, CH3O), 

47.7 (d), 44.4 (t, C-7), 43.7 (d), 43.0 (d), 29.5 (t, CH2C-1), 22.0 (t, C-10), 16.9 (q), 16.2 

(q), 14.8 (q), 12.9 (q), 10.7 (q), 8.6 (q). 
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321sa 

(2R,3R,4R,6R,E)-2-(2-Ethyl-1,3-dioxolan-2-yl)-4,6,8-trimethyl-3-
(triethylsilyloxy)undec-8-en-5-one 

 

Raney Ni (W-2) (ca. 1 mL settled volume; added as a suspension in ethanol) was 

added to a well-stirred solution of ketone 319sa (15 mg, 0.03 mmol) in methanol (10 

mL).  The resultant mixture was heated under reflux.  After 1 h, the reaction mixture was 

filtered through a pad of Celite® and the filter cake was rinsed sequentially with hot 

methanol (2× 20 mL), CH2Cl2 (2× 20 mL) and acetone (2× 20 mL).  The combined 

filtrate and washings were concentrated and the residue was taken up in dichloromethane 

and washed with water, dried over Na2SO4, concentrated, and fractionated by PTLC 

(20% ether in hexane) to give the titled 321sa (10 mg, 77%). 

 

IR (DRIFT) νmax:  2955, 1706, 1452, 1053, 989, 723 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 5.25 (1H, dd, J = 7, 7 Hz, HC-9), 4.76 (1H, dd, J = 3, 3 

Hz, HC-3), 3.61-3.39 (5H, m), 3.32 (1H, dq, J = 3.5, 7 Hz, HC-4), 2.86 (1H, ddd, J = 6.5, 

6.5, 8 Hz), 2.57 (1H, dd, J = 6.5, 13.5 Hz), 2.33 (1H, dq, J = 3, 7 Hz, HC-2), 2.01-1.91 

(2H, m), 1.72-1.57 (2H, m), 1.54 (3H, s, H3CC-8), 1.28 (3H, d), 1.20 (3H, d), 1.12-1.05 

(12H, m), 0.99-0.91 (6H, m, (H2C)3Si), 0.79 (3H, d), 0.78 (3H, d). 
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13C NMR (125 MHz, C6D6):  δ 215.0 (s, C-5), 132.3 (d, CH=C), 129.3 (s, C=C), 113.1 

(s, C-1), 69.5 (d, C-3), 65.3 (t, CH2O), 64.4 (t, CH2O), 47.0 (d), 46.2 (t, CH2C-6), 43.3 

(d), 42.5 (d), 28.9 (t, CH2C-1), 21.5 (t, C-10), 16.6 (q), 15.6 (q), 14.3 (q), 13.1 (q), 9.6 

(q), 8.2 (q), 7.2 (q ×3, (CH3)Si), 5.5 (t ×3, (CH2)Si). 

 

LRMS (EI), m/z (relative intensity):  411 ([M−29]+, 3), 215 (22), 163 (15), 101 (100). 

 

HRMS m/z calcd. for C25H48O4Si:  440.3322 (411.2931 for M−C2H5; 463.3219 for 

M+Na); found:  411.2932 (EI); 463.3209 (ESI, CH3OH). 
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322 

(3R,4R)-3-((S)-((3R,4S,5S)-4-(Benzyloxy)-5-((S)-(triethylsilyloxy)((R)-4-
(trimethylsilyloxy)-3,6-dihydro-2H-thiopyran-3-yl)methyl)tetrahydro-2H-

thiopyran-3-yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-4-ol 
 

Zn(BH4)2 (0.1 M in ether; 3.5 mL, 0.35 mmol) was added dropwise via syringe to a 

solution of mono-silyl enol ether 315 (187 mg, 0.23 mmol) in THF (24 mL) at room 

temperature under Ar.  After 1 d, excess Zn(BH4)2 was quenched by dropwise addition of 

1% w/v aqueous citric acid  (ca. 2 mL) at 0 °C and the resulting mixture was diluted with 

ethyl acetate, washed sequentially with sat. aqueous NaHCO3 and brine, dried over 

Na2SO4, and concentrated to give crude alcohol 322 (264 mg) that was a 8-10:1 mixture 
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of diastereomers by 1H NMR.  Fractionation of the crude by FCC (5-10% ether in 

hexane) gave the titled alcohol 322 (196 mg, 77%). 

 

IR (DRIFT) νmax:  3433, 2896, 1669, 1257, 1076, 741 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.79-7.06 (5H, m, Ph), 5.11-4.8 (5H, m, HC-1', HC-1'', 

HC-5'', H2COC-4), 3.90 (1H, dd, J = 10, 10 Hz, HC-4), 3.27 (1H, br s, HC-4'), 3.17 (1H, 

dd, J = 2.5, 13 Hz), 3.13-3.00 (4H, m), 2.82-2.55 (6H, m), 2.50 (1H, br dd, J = 10, 10 

Hz), 2.44-2.33 (2H, m), 2.24 (1H, br d, J = 13.5 Hz), 1.95 (1H, m), 1.76 (1H, m), 1.69-

1.50 (2H, m), 1.02 (18H, m, (H3CC)3Si ×2), 0.78-0.59 (12H, m, (H2C)3Si ×2), 0.23 (9H, 

s, (H3C)3SiOC-4''). 

 

13C NMR (125 MHz, C6D6):  δ 151.8 (s, C-4''), 140.3 (s, Ph), 128.8 (d ×2, Ph), 128.71 (d, 

Ph), 128.69 (d, Ph), 128.0 (d, Ph), 106.9 (d, C-5''), 77.4 (d, C-4), 72.8 (d, C-1'), 72.5 (d, 

C-4'), 71.5 (d, C-1''), 68.9 (t, CH2OC-4), 56.3 (d ×2), 48.6 (d), 43.9 (d), 39.5 (t), 30.1 (t), 

29.2 (t), 28.8 (t), 28.4 (t), 28.3 (t), 25.1 (t), 7.7 (q ×6, (CH3C)Si), 6.5 (t ×3, (CH2)Si), 5.9 

(t ×3, (CH2)Si), 0.9 (q ×3, (CH3)SiOC-4''). 

 

LRMS (EI), m/z (relative intensity):  798 ([M]+, 1), 617 (13), 575 (40), 331 (60), 171 

(94), 115 (87). 

 

HRMS m/z calcd. for C39H70O5S3Si3:  798.3693 (821.3585 for M+Na); found:  798.3668 

(EI); 821.3610 (ESI, CH3OH). 
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323 

(R)-3-((S)-((3S,4S,5R)-4-(Benzyloxy)-5-((S)-((3R,4R)-4-hydroxytetrahydro-2H-
thiopyran-3-yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)dihydro-2H-thiopyran-4(3H)-one 
 

Aqueous sat. NaHCO3 (2 mL) was added dropwise to a stirred solution of mono-

silyl enol ether 322 (196 mg, 0.25 mmol) in methanol (10 mL) and THF (10 mL) at room 

temperature.  After 2 h, the reaction was diluted with water and extracted with CH2Cl2 

(3×).  The combined organic extracts were dried over Na2SO4, concentrated and 

fractionated by FCC (30% ether in hexane) to give the titled ketol 323 (172 mg, >95%). 

 

IR (DRIFT) νmax:  3474, 2953, 1708, 1379, 1238, 886 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.74-7.08 (5H, m, Ph), 4.94 (1H, d, J = 10 Hz, H2COC-4), 

4.91 (1H, br s, HC-1'), 4.85 (1H, br s, HC-1''), 4.75 (1H, d, J = 10 Hz, H2COC-4), 3.60 

(1H, dd, J = 10, 10 Hz, HC-4), 3.31 (1H, ddd, J = 4, 10, 10 Hz, HC-4'), 3.05 (1H, m, HC-

3''), 2.99-2.80 (5H, m), 2.77-2.64 (2H, m, H2C-7'), 2.59-2.04 (10H, m), 1.98 (1H, br dd, J 

= 9.5, 9.5 Hz, HC-3'), 1.88 (1H, ddd, J = 4, 4, 13 Hz, HC-5'), 1.62 (1H, ddd, J = 4, 13, 13 

Hz, HC-5'), 1.02-0.94 (18H, m, (H3CC)3Si ×2), 0.69-0.58 (12H, m, (H2C)3Si ×2). 

 

13C NMR (125 MHz, C6D6):  δ 209.7 (s, C-4''), 139.1 (s, Ph), 129.1 (d, Ph), 128.8 (d, 

Ph), 128.6 (d, Ph), 128.4 (d, Ph), 128.2 (d, Ph), 77.7 (d, C-4), 71.6 (d, C-4'), 70.7 (d, C-
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1''), 69.6 (d, C-1'), 69.4 (t, CH2OC-4), 56.5 (d, C-3''), 53.3 (d, C-3 or C-5), 51.9 (d, C-3 or 

C-5), 48.8 (d, C-3'), 44.7 (t, C-5''), 38.9 (t, C-5'), 33.7 (t, C-2''), 31.0 (t, C-6''), 30.5 (t, C-2 

or C-6), 30.3 (t, C-2 or C-6), 29.7 (t, C-2'), 28.1 (t, C-6'), 7.70 (q ×3, (CH3C)3Si), 7.65 (q 

×3, (CH3C)3Si), 6.1 (t ×3, (CH2)3Si), 6.0 (t ×3, (CH2)3Si). 

 

LRMS (EI), m/z (relative intensity):  726 ([M]+, 46), 565 (37), 459 (27), 243 (28), 171 

(100), 91 (61). 

 

HRMS m/z calcd. for C36H62O5S3Si2:  726.3298; found:  726.3304. 
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324 

(R)-3-((S)-((3S,4S,5R)-4-(Benzyloxy)-5-((S)-((3R,4R)-4-
(methoxymethoxy)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-
yl)(triethylsilyloxy)methyl)dihydro-2H-thiopyran-4(3H)-one 

 

i-Pr2EtN (0.85 mL, 0.63 g, 4.9 mmol) was added to a stirred solution of ketol 323 

(178 mg, 0.24 mmol) and n-Bu4NI (90 mg, 0.24 mmol) in CH2Cl2 (12 mL) at room 

temperature under Ar.  After 2 min, MOMCl (0.19 mL, 0.20 g, 2.5 mmol) was added and 

the reaction was stirred vigorously for 4 d.  The mixture was diluted with ethyl acetate 

and washed with 1% w/v aqueous citric acid (3×).  The combined organic layers were 

washed with sat. aqueous NaHCO3, dried over Na2SO4, concentrated and fractionated by 

FCC (30% ether in hexane) to give the titled 324 (172 mg, 91%). 
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IR (DRIFT) νmax:  2940, 1701, 1451, 1235, 1064 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.59-7.02 (5H, m, Ph), 5.02 (1H, d, J = 11 Hz, H2COC-4), 

4.81-4.71 (2H, m, HC-1', HC-1''), 4.74 (1H, d, J = 11 Hz, H2COC-4), 4.35 (1H, d, J = 7 

Hz, H2COC-4'), 4.24 (1H, d, J = 7 Hz, H2COC-4'), 3.52 (1H, dd, J = 9, 9 Hz, HC-4), 3.42 

(1H, dddd, J = 1.5, 3.5, 8.5, 8.5 Hz, HC-4'), 2.92 (3H, s, H3CO), 2.92-2.63 (6H, m), 2.56-

2.01 (13H, m), 1.65 (1H, dddd, J = 3, 9, 9, 13 Hz, HC-5'), 1.00-0.90 (18H, m, (H3CC)3Si 

×2), 0.68-0.54 (12H, m, (H2C)3Si ×2). 

 

13C NMR (125 MHz, C6D6):  δ 208.9 (s, C-4''), 139.7 (s, Ph), 128.4 (d, Ph), 128.2 (d, 

Ph), 128.1 (d, Ph), 127.7 (d, Ph), 127.5 (d, Ph), 96.8 (t, CH2OC-4'), 78.4 (d, C-4), 78.8 (d, 

C-4'), 71.3 (t, CH2OC-4), 70.65 (d, C-1' or C-1''), 70.62 (d, C-1' or C-1''), 57.0, 56.0, 53.8, 

53.0, 46.1, 45.0, 37.0, 33.2, 30.7, 29.1, 27.4, 26.9, 26.8, 7.8 (q ×3, (CH3C)Si), 7.7 (q ×3, 

(CH3C)Si), 6.2 (t ×3, (CH2)Si), 6.1 (t ×3, (CH2)Si). 

 

LRMS (EI), m/z (relative intensity):  770 ([M]+, 1), 609 (6), 243 (22), 171 (35), 91 (100). 

 

HRMS m/z calcd. for C38H66O6S3Si2:  770.3560 (793.3452 for M+Na); found:  770.3560 

(EI); 793.3438 (ESI, CH3OH). 
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325 

(3R,5R)-3-((S)-((3S,4S,5R)-4-(Benzyloxy)-5-((S)-((3R,4R)-4-
(methoxymethoxy)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-yl)(triethylsilyloxy)methyl)-5-
((E)-2-methylpent-2-enyl)dihydro-2H-thiopyran-4(3H)-one 

 

t-BuLi (1.5 M in pentane; 1.2 mL, 1.8 mmol) was added dropwise via syringe to a 

solution of ketone 324 (138 mg, 0.18 mmol) in THF (9 mL) at −50 °C under Ar.  After 2 

min, allyl bromide (0.42 mL, 584 mg, 3.58 mmol) and HMPA (0.62 mL, 640 mg, 3.6 

mmol) were added sequentially.  After 2 h, the mixture was diluted with ethyl acetate and 

washed with aqueous phosphate buffer (0.1 M, pH 7; 3× 40 mL).  The combined organic 

layers were dried over Na2SO4 and concentrated.  The residue was dissolved in CH2Cl2 

and applied to a bed of silica and eluted with 50% CH2Cl2 in hexane followed by ether.  

The ether eluate was were concentrated to give crude C-alkylated products that was a 2:1 

mixture of diastereomers by 1H NMR.  Fractionation of the crude by PTLC (CH2Cl2) 

gave recovered 324 (30 mg, 22%), minor C-alkylated product 326 (25 mg, 16%) and the 

titled C-alkylated product 325 (73 mg, 48%). 

 

IR (DRIFT) νmax:  2958, 1702, 1451, 1241, 1097, 1020, 727 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.66-7.09 (5H, m, Ph), 5.24 (1H, dd, J = 6.5, 6.5 Hz, 

HC=C), 5.11 (1H, d, J = 10.5 Hz, H2COC-4), 4.94-4.68 (2H, m), 4.44 (1H, d, J = 7 Hz, 

H2COC-4'), 4.31 (1H, d, J = 7 Hz, H2COC-4'), 3.61 (1H, dd, J = 9.5, 9.5 Hz), 3.46 (1H, 



 

 171

dd, J = 9.5, 9.5 Hz), 3.40 (1H, br s), 2.98 (3H, s, H3CO), 2.97-2.78 (6H, m), 2.76-2.68 

(2H, m), 2.64-2.40 (5H, m), 2.37-2.16 (7H, m), 1.96 (2H, m, H2CCH=C), 1.72 (1H, m), 

1.41 (3H, s, H3CC=C), 1.07-0.98 (18H, m, (H3CC)3Si ×2), 0.95 (3H, t, J = 7.5 Hz, 

H3CCCH=C), 0.74-0.61 (12H, m, (H2C)3Si ×2). 

 

13C NMR (125 MHz, C6D6):  δ 211.9 (s, C-4''), 139.8 (s, C=CH), 131.3 (s, Ph), 130.4 (d, 

CH=C), 128.9 (d ×2, Ph), 128.7 (d, Ph), 128.1 (d, Ph), 128.0 (d, Ph), 96.9 (t, CH2OC-4'), 

78.4 (d ×3), 71.1 (d, t), 55.5 (q, CH3O), 54.0, 53.7, 50.4, 46.4 (×4), 40.6, 34.4, 33.0, 31.3, 

29.2, 27.0, 22.0 (t, CH2CH=C), 16.0 (q, CH3C=C), 14.9 (q, CH3CCH=C), 7.79 (q ×3, 

(CH3C)Si), 7.77 (q ×3, (CH3C)Si), 6.19 (t ×3, (CH2)Si), 6.17 (t ×3, (CH2)Si). 

 

HRMS m/z calcd. for C44H76O6S3Si2:  852.4343 (875.4234 for M+Na); found:  875.4240 

(ESI, CH3OH). 
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326 

(3R,5S)-3-((S)-((3S,4S,5R)-4-(Benzyloxy)-5-((S)-((3R,4R)-4-
(methoxymethoxy)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-yl)(triethylsilyloxy)methyl)-5-
((E)-2-methylpent-2-enyl)dihydro-2H-thiopyran-4(3H)-one 

 

IR (DRIFT) νmax:  2958, 1702, 1455, 1135, 1101, 739 cm-1. 
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1H NMR (500 MHz, C6D6):  δ 7.63-7.06 (5H, m, Ph), 5.15 (1H, d, J = 10.5 Hz), 5.04 

(1H, dd, J = 6.5, 6.5 Hz, HC=C''), 4.90-4.56 (2H, m), 4.38 (1H, d, J = 6 Hz), 4.25 (1H, d, 

J = 6 Hz), 3.66 (1H, dd, J = 9, 9 Hz), 3.46 (2H, br s), 3.12 (1H, d, J = 13 Hz), 2.98-2.90 

(2H, m), 2.95 (3H, s, H3CO), 2.88-2.06 (16, m), 1.94-1.77 (3H, m), 1.66 (1H, m), 1.31 

(3H, m, H3CC=C), 1.08-0.99 (18H, m, (H3CC)3Si ×2), 0.89 (3H, t, J = 7.5 Hz, 

H3CCCH=C), 0.75-0.57 (12H, m, (H2C)3Si ×2). 

 

13C NMR (125 MHz, C6D6):  δ 211.1 (s, C-4''), 139.8 (s, Ph), 131.7 (s, C=CH), 129.6 (d, 

CH=C), 128.9 (d ×2, Ph), 128.7 (d, Ph), 128.01 (d, Ph), 128.96 (d, Ph), 95.8 (t, CH2OC-

4'), 78.6 (d), 72.1 (d, t), 58.6 (d ×2), 55.4 (q, CH3O), 52.8, 46.2 (×2), 39.4, 37.4, 35.5, 

31.7 (×3), 29.0 (×3), 26.8, 21.9 (t, CH2CH=C), 16.8 (q, CH3C=C), 14.9 (q, CH3CCH=C), 

7.8 (q ×6, (CH3C)Si), 6.2 (t ×3, (CH2)Si), 6.1 (t ×3, (CH2)Si). 

 
LRMS (EI), m/z (relative intensity):  852 ([M]+, 1), 720 (1), 691 (2), 341 (6), 115 (38), 

91 (100), 87 (30). 

 

HRMS m/z calcd. for C44H76O6S3Si2:  852.4343; found:  852.4379. 
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327 

(3S,4S,5R)-3-((R)-((3S,4R,5R)-4-(Benzyloxy)-5-((S)-((3R,4R)-4-
(methoxymethoxy)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-yl)(triethylsilyloxy)methyl)-5-
((E)-2-methylpent-2-enyl)tetrahydro-2H-thiopyran-4-ol 

 

NaBH3CN (70 mg, 1.1 mmol) was added to a solution of ketone 325 (47 mg, 0.055 

mmol) and citric acid (116 mg, 0.55 mmol) in ethanol (3 mL) and THF (3 mL) at 0 °C 

under Ar.  After 4-8 h, excess NaBH3CN was quenched by dropwise addition of sat. 

aqueous NaHCO3 (ca. 2 mL) at 0 °C and the resulting mixture was diluted with water and 

extracted with CH2Cl2 (3×), dried over Na2SO4, concentrated and fractionated by PTLC 

(CH2Cl2 ) to give the titled alcohol 327 (37 mg, 79%). 

 

IR (DRIFT) νmax:  3495, 2952, 1463, 1412, 1073, 728 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.65-6.96 (5H, m, Ph), 5.31 (1H, dd, J = 6.5, 6.5 Hz, 

HC=C), 5.09 (2H, br s), 4.75 (1H, br s), 4.63 (1H, br s), 4.31 (1H, br s), 4.15 (1H, br s), 

3.90 (1H, br s), 3.71 (1H, dd, J = 9, 9 Hz), 3.56 (1H, br s), 2.96 (3H, s, H3CO), 2.91-2.14 

(19H, m), 2.13-1.98 (3H, m), 1.85 (1H, br s), 1.68 (1H, m), 1.60 (3H, s, H3CC=C), 1.16-

0.95 (21H, m), 0.83-0.65 (12H, m, (H2C)3Si ×2). 

 

LRMS (EI), m/z (relative intensity):  854 ([M]+, 8), 693 (25), 571 (11), 325 (52), 243 

(80), 171 (76), 91 (100). 
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HRMS m/z calcd. for C44H78O6S3Si2:  854.4499; found: 854.4499. 
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328 

(3S,4S,5R)-3-((R)-((3R,4R,5R)-4-(Benzyloxy)-5-((S)-((3R,4R)-4-
(methoxymethoxy)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-yl)(hydroxy)methyl)-5-((E)-2-
methylpent-2-enyl)tetrahydro-2H-thiopyran-4-ol 

 

TBAF (55 mg, 0.21 mmol) was added to a solution of alcohol 327 (18 mg, 0.021 

mmol) in CH2Cl2 (2 mL) at room temperature under Ar.  After 15 min, the mixture was 

diluted with ethyl acetate and washed sequentially with 1% w/v aqueous citric acid, sat. 

aqueous NaHCO3 and brine, dried over Na2SO4, concentrated, and fractionated by PTLC 

(50% ethyl acetate in hexane) to give the titled diol 328 (16 mg, >95%). 

 

1H NMR (500 MHz, C6D6):  δ 7.46-6.95 (5H, m, Ph), 5.50 (1H, br s, HOC-1'' or HOC-

4''), 5.36 (1H, dd, J = 6, 6 Hz), 4.84 (1H, d, J = 11 Hz), 4.71 (1H, br s), 6.68 (1H, d, J = 

11 Hz), 4.36 (1H, d, J = 7 Hz), 4.24 (1H, d, J = 7 Hz), 4.17 (1H, br s), 3.82 (1H, br d, J = 

6 Hz), 3.60 (1H, dd, J = 8.5, 8.5 Hz), 3.51 (br s), 3.25 (br s, HOC-1'' or HOC-4''), 2.97 

(3H, s, H3CO), 2.94 (1H, br s), 2.83 (1H, br d, J = 11.5 Hz), 2.78-2.30 (10H, m), 2.29-

1.93 (9H, m), 1.72 (2H, m), 1.56 (3H, s, H3CC=C), 1.04 (9H, m, (H3CC)3Si), 0.95 (3H, t, 

J = 7 Hz, H3CCCH=C), 0.71 (6H, m, (H2C)3Si). 
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329a 

(3S,4S,5R)-3-((S)-Acetoxy((3S,4R,5R)-4-(benzyloxy)-5-((S)-((3R,4R)-4-
(methoxymethoxy)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-yl)methyl)-5-((E)-2-
methylpent-2-enyl)tetrahydro-2H-thiopyran-4-yl acetate 

 

Ac2O (0.020 mL, 22 mg, 0.22 mmol) was added to a solution of diol 328 (16 mg, 

0.02 mmol) and DMAP (50 mg, 0.42 mmol) in CH2Cl2 (2 mL) at room temperature under 

Ar.  After 15 min, the mixture was diluted with ethyl acetate and washed sequentially 

with 1% w/v aqueous citric acid (3×), sat. aqueous NaHCO3 and brine, dried over 

Na2SO4, concentrated, and fractionated by PTLC (5% ether in CH2Cl2) to give 329a (15 

mg, 88%). 

 

1H NMR (500 MHz, C6D6):  δ 7.57-7.07 (5H, m, Ph), 5.79 (1H, dd, J = 3, 8 Hz), 5.28 

(1H, dd, J = 7, 7 Hz), 4.94 (1H, dd, J = 3.5, 8.5 Hz), 4.78 (1H, br s), 4.71 (1H, d, J = 11 

Hz), 4.62 (1H, d, J = 11 Hz), 4.53 (1H, d, J = 6.5 Hz), 4.47 (1H, d, J = 6.5 Hz), 3.54 (1H, 

br d), 3.43 (1H, br dd), 3.07 (3H, s, H3CO), 2.95 (2H, m), 2.87-2.70 (2H, m), 2.68-2.17 

(16H, m), 1.98-1.85 (3H, m), 1.95 (3H, s, H3CCO), 1.84 (3H, s, H3CCO), 1.39 (3H, s, 

H3CC=C), 1.02 (9H, m, (H3CC)3Si), 0.90 (3H, t, J = 7 Hz, H3CCCH=C), 0.68 (6H, m, 

(H2C)3Si). 
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330 

(1R,2S,3S,4R,E)-1-((3S,4R,5R)-4-(Benzyloxy)-5-((5R,6R,7S)-5,9,9-triethyl-6-
methyl-2,4,8-trioxa-9-silaundecan-7-yl)tetrahydro-2H-thiopyran-3-yl)-2,4,6-

trimethylnon-6-ene-1,3-diyl diacetate 
 

Raney Ni (W-2) (ca. 1 mL settled volume; added as a suspension in ethanol) was 

added to a well-stirred solution of 329a (10 mg, 0.01 mmol) in ethanol (10 mL).  The 

resultant mixture was heated under reflux and additional Raney Ni was added every 2 h.  

After 8 h, the reaction mixture was filtered through a pad of Celite® and the filter cake 

was rinsed sequentially with hot methanol (2× 20 mL), CH2Cl2 (2× 20 mL) and acetone 

(2× 20 mL).  The combined filtrate and washings were concentrated and the residue was 

taken up in dichloromethane and washed with water, dried over Na2SO4, concentrated 

and fractionated by PTLC (10% ethyl acetate in hexane) to give 330 (6 mg, 67%). 

 

IR (DRIFT) νmax:  2906, 1729, 1451, 1366, 1246, 1030, 740 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.55-7.03 (5H, m, Ph), 5.63 (1H, br d, J = 9 Hz, HC-9), 

5.29 (1H, dd, J = 7, 7 Hz, HC-15), 5.06 (1H, dd, J = 3, 9 Hz, HC-11), 4.76-4.53 (4H, m), 

4.42 (1H, br s, HC-5), 3.57 (1H, dd, J = 4.5, 10.5 Hz, HC-7), 3.48 (1H, ddd, J = 3, 6, 6 

Hz, HC-3), 3.16-3.13 (1H, m), 3.15 (3H, s, H3CO), 3.03 (1H, dd, J = 2, 13.5 Hz), 2.76 

(1H, dd, J = 12.5, 12.5 Hz), 2.65-2.50 (2H, m), 2.41-2.20 (4H, m), 2.11-1.95 (3H, m), 
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1.93 (3H, s), 1.83-1.79 (1H, m), 1.81 (3H, s), 1.79-1.68 (1H, m), 1.60 (1H, m), 1.55 (3H, 

s, H3CC-14), 1.12-0.88 (24H, m), 0.77-0.63 (6H, (H2C)3Si). 
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347 

(4R,5S,6S,7S,8R,9S,10R,11R)-7-(Benzyloxy)-11-(methoxymethoxy)-4,6,8,10-
tetramethyl-5,9-bis(triethylsilyloxy)tridecan-3-one 

 

Raney Ni (W-2) (ca. 1 mL settled volume; added as a suspension in ethanol) was 

added to a well-stirred solution of a ketone 324 (31 mg, 0.04 mmol) in ethanol (10 mL).  

The resultant mixture was heated under reflux for 1 h.  The reaction solution was filtered 

through a pad of Celite® and the remaining Raney Ni was sequentially extracted with 

refluxing (ca. 10 min) ethanol (1× 10 mL) and 50% acetone in CH2Cl2 (3× 10 mL).  The 

combined filtrate and washings were concentrated and fractionated by PTLC (30% ether 

in hexane) to give the titled ketone 347 (19 mg, 70%) ( 22
D][α  −1.0; c 1, C6H6). 

 

IR (DRIFT) νmax:  2886, 1708, 1378, 1343, 1303, 1214, 970 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ 7.48-7.05 (5H, m, Ph), 4.77 (2H, ap dd, J = 11.5, 11.5 Hz, 

H2COC-7), 4.66 (1H, br dd, J = 4.5, 4.5 Hz, HC-5), 4.61 (1H, d, J = 7 Hz, HCOC-11), 

4.48 (1H, d, J = 7 Hz, HCOC-11), 4.38 (1H, br s, HC-7), 3.51-3.46 (2H, m, HC-9, HC-

11), 3.18 (3H, s, H3CO), 3.08-2.99 (1H, m, HC-4), 2.40-2.32 (1H, m, HC-10), 2.29-2.14 
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(4H, m, H2C-2, HC-6, HC-8), 1.81-1.70 (1H, m, HC-12), 1.63-1.52 (1H, m, HC-12), 

1.26-0.95 (36H, m), 0.82-0.68 (12H, m, (H2C)3Si ×2). 

 

13C NMR (125 MHz, C6D6):  δ 212.8 (s, C-3), 140.2 (s, Ph), 128.8 (d, Ph), 128.7 (d, Ph), 

128.3 (d, Ph), 127.8 (d, Ph), 127.7 (d, Ph), 96.7 (t, CH2O), 84.5 (d, C-9), 82.9 (d, C-11), 

74.5 (t, CH2OC-7), 73.0 (d, C-5), 72.7 (d, C-7), 55.8 (q, CH3O), 49.8 (d, C-4), 43.7 (d, C-

8), 42.5 (d, C-6), 37.9 (d, C-10), 34.8 (t, C-2), 23.6 (t, C-12), 14.6 (q), 13.9 (q), 13.4 (q), 

11.1 (q), 9.4 (q), 8.3 (q), 7.82 (q ×3, (CH3C)Si), 7.77 (q ×3, (CH3C)Si), 6.4 (t ×3, 

(CH2)Si), 6.3 (t ×3, (CH2)Si). 

 

LRMS (CI, NH3), m/z (relative intensity):  698 ([M+18]+, 100), 573 (21), 441 (26), 377 

(28), 132 (54). 

 

HRMS m/z calcd. for C38H72O6Si2:  680.4867 (651.4476 for M−C2H5; 698.5211 for 

M+NH4); found: 651.4475 (EI); 698.5212 (CI, NH3). 
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349 

(8R,9S,10S,11S,12R,13S,14R,15R,E)-11-(benzyloxy)-15-(methoxymethoxy)-
4,6,8,10,12,14-hexamethyl-9,13-bis(triethylsilyloxy)heptadec-3-en-7-one 

 

NaHMDS (1.0 M in THF; 0.51 mL, 0.51 mmol) was added dropwise via syringe to 

a solution of ketone 347 (35 mg, 0.051 mmol) in THF (5 mL) at −78 °C under Ar.  After 
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30 min, TMEDA (0.080 mL, 59 mg, 0.51 mmol) was added and after stirring for 5 min 

allyl bromide 47 (0.12 mL, 20 mg, 1.0 mmol) was added.  After 3 h, the mixture was 

quenched with acetone (0.2 mL) and warmed to 0 °C over 15 min.  Phosphate buffer (0.1 

M, pH 7) was added and the mixture was diluted with ethyl acetate.  The  organic layer 

was washed with phosphate buffer (0.1 M, pH 7; 3×), dried over Na2SO4 and 

concentrated to give starting material and crude alkylated products which were a 4:1 

mixture of diastereomers by 1H NMR.  Fractionation on the crude by PTLC (5% ether in 

hexanes) gave recovered 347 (10 mg, 29%) and C-alkylated products 349 as a mixture of 

diastereomers (25 mg, 65%; dr 4.6:1). 

 

IR (DRIFT) νmax:  2946, 2880, 1708, 1456, 1366, 1229, 721 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 7.49-7.03 (5H, m, Ph), 5.20 (1H, 

dd, J = 7, 7 Hz, HC-15), 4.84-4.67 (3H, m, HC-9, H2COC-7), 4.65 (1H, d, J = 7 Hz, 

HCOC-3), 4.53-4.47 (1H, m, HC-5), 4.51 (1H, d, J = 7 Hz, HCOC-3), 3.52 (1H, dd, J = 

5, 8 Hz, HC-7), 3.51-3.46 (1H, m, HC-3), 3.20-3.16 (1H, m, HC-10), 3.19 (3H, s, H3CO), 

2.93-2.78 (1H, m, HC-12), 2.45 (1H, dd, J = 4.5, 13.5 Hz, HC-13), 2.30 (1H, br dd, J = 7, 

7 Hz, HC-4), 2.28 (2H, m, HC-6, HC-8), 1.99 (1H, dd, J = 10, 13.5 Hz, HC-13), 1.98-

1.91 (2H, m, HC-16), 1.86-1.76 (1H, m, HC-2), 1.65-1.52 (1H, m, HC-2), 1.47 (3H, s, 

H3CC-14), 1.26 (3H, d, J = 7 Hz, H3CC-10), 1.21 (3H, d, J = 7 Hz, H3CC-6 or H3CC-8), 

1.19 (3H, d, J = 7 Hz, H3CC-6 or H3CC-8), 1.15-1.07 (27H, m), 1.05 (3H, d, J = 7 Hz, 

H3CC-12), 1.00 (3H, t, J = 7.5 Hz, H3C-1), 0.92 (3H, t, J = 7.5 Hz, H3C-17), 0.76 (6H, m, 

(H2C)3Si). 
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13C NMR (125 MHz, C6D6):  δ (for major diastereomer) 215.3 (s, C-11), 140.3 (s, Ph), 

132.1 (s, C-14), 129.9 (d, C-15), 128.8 (d, Ph), 128.7 (d ×2, Ph), 127.8 (d, Ph), 127.6 (d, 

Ph), 96.9 (t, CH2O), 83.8 (d, C-7), 83.4 (d, C-3), 73.6 (t, CH2OC-7), 72.1 (d, C-5), 71.6 

(d, C-9), 55.8 (q, CH3O), 48.5 (d, C-10), 44.4 (d, C-6 or C-8), 44.2 (t, C-13), 42.8 (d, C-6 

or C-8), 41.9 (d, C-12), 37.6 (d, C-4), 23.8 (t, C-2), 22.0 (t, C-16), 16.0 (q, C-1), 15.9 (q, 

CH3C-14), 14.8 (q, C-17), 13.9 (q, CH3C-6 or CH3C-8), 13.3 (q, CH3C-6 or CH3C-8), 

12.4 (q, CH3C-10), 10.9 (q, CH3C-12), 9.4 (q, CH3C-4), 7.9 (q ×3, (CH3C)Si), 7.8 (q ×3, 

(CH3C)Si), 6.4 (t ×6, (CH2)Si). 

 

LRMS (EI), m/z (relative intensity): 734 ([M−29]+, 1), 201 (12), 271 (12), 115 (26). 

 

HRMS m/z calcd. for C44H82O6Si2:  762.5650 (733.5259 for M−C2H5); found:  733.5259. 
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350 

(8R,9S,10R,11S,12S,13S,14S,15R,E)-11-(Benzyloxy)-9,13-dihydroxy-15-
(methoxymethoxy)-4,6,8,10,12,14-hexamethylheptadec-3-en-7-one 

 
10% vol aqueous HF (0.01 mL) was added dropwise to a stirred solution of 349 (22 

mg, 0.030 mmol; dr 4.6:1) in acetonitrile (10 mL) at 0 °C.  After 30 min, the reaction was 

diluted with sat. aqueous NaHCO3 and extracted with ethyl acetate (3×).  The combined 
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organic extracts were dried over Na2SO4, concentrated and fractionated by PTLC (50% 

ethyl acetate in hexane) to give the titled diols 350 (14 mg, 93%; dr 4.6:1). 

 

IR (DRIFT) νmax: 3496, 2981, 2868, 1701, 1450, 1307, 954 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 7.35-7.02 (5H, m, Ph), 5.19 (1H, 

dd, J = 7, 7 Hz, HC-15), 4.60 (1H, ap d, J = 6.5 Hz), 4.56 (1H, ap d, J = 6.5 Hz), 4.52-

4.43 (2H, m), 4.23-4.11 (2H, m), 4.03 (1H, dd, J = 5, 5 Hz), 3.92 (1H, d, J = 1.5 Hz), 

3.83 (1H, d, J = 1.5 Hz), 3.66 (1H, q, J = 5.5 Hz), 3.19 (3H, s, H3CO), 2.87 (1H, q, J = 7 

Hz), 2.66 (1H, dq, J = 3, 7 Hz), 2.49 (1H, dd, J = 6.5, 13.5 Hz), 2.31-2.19 (2H, m), 2.05-

1.88 (3H, m), 1.85-1.60 (2H, m), 1.55 (1H, dq, J = 1.5, 7 Hz), 1.48 (3H, s, H3CC-14), 

1.15 (3H, d, J = 7 Hz), 1.01 (3H, d, J = 7 Hz), 0.98 (3H, d, J = 7 Hz), 0.96-0.87 (12H, m). 

 

13C NMR (125 MHz, C6D6):  δ (for major diastereomer) 218.0 (s, C-11), 139.2 (s, Ph), 

132.3 (s, C-14), 129.9 (d, C-15), 129.0 (d, Ph), 128.7 (d ×4, Ph), 97.4 (t, CH2OC-3), 86.4 

(d), 82.8 (d), 73.8 (t, CH2O), 73.2 (d), 72.0 (d), 55.9 (q, CH3O), 48.1 (d), 44.2 (t, C-13), 

42.9 (d), 39.3 (d), 39.0 (d), 37.7 (d), 25.5 (t), 22.0 (t), 17.2 (q), 16.2 (q), 14.82 (q), 14.78 

(q), 14.2 (q), 9.8 (q), 9.4 (q), 8.9 (q). 

 

LRMS (EI), m/z (relative intensity): 534 ([M]+, 13), 326 (58), 286 (1), 275 (100). 

 

HRMS m/z calcd. for C32H54O6:  534.3920; found:534.3943. 
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351 

(3R,4S,5S,6S,7R,8R,9R,10S,11R,E)-7-(benzyloxy)-3-(methoxymethoxy)-
4,6,8,10,12,14-hexamethylheptadec-14-ene-5,9,11-triol 

 

Et2BOMe (0.010 mL, 10 mg, 0.10 mmol) was added to a stirred solution of 350 (14 

mg, 0.03 mmol; dr 4.6:1) in MeOH (1 mL) and THF (4 mL) at −78 °C under argon.  

After 30 min, NaBH4 (11 g, 0.30 mmol) was added.  After 2 h at −78°C, the reaction 

mixture was warmed to 0 °C for 30 min (caution:  effervescence) and then diluted with 3 

M aqueous NaOH (5 mL) and warmed to room temperature over 2 h.  The mixture was 

diluted with brine and extracted with CH2Cl2 (3×).  The combined organic layers were 

dried over Na2SO4, concentrated and fractionated by PTLC (50% ethyl acetate in 

hexanes) to give the titled triols 351 as a mixture of three diastereomers (13 mg, 93%; dr 

6:1:1). 

 

IR (DRIFT) νmax:  3454, 2962, 1450, 1381, 1089, 969 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 7.39-6.95 (5H, m, Ph), 5.38-5.19 

(1H, m, HC-15), 5.07-4.79 (1H, br s), 4.55-4.30 (4H, m), 4.11 (1H, d, J = 10 Hz), 3.95 

(1H, dd, J = 3.5, 6 Hz), 3.90 (1H, br d, J = 9.5 Hz), 3.70 (1H, dd, J = 2.5, 7.5 Hz), 3.60 

(1H, br s), 3.43-3.31 (1H, m), 3.06 (3H, s, H3CO), 2.39-2.18 (2H, m), 2.15-1.90 (5H, m), 

1.79 (1H, dd, J = 10, 13 Hz), 1.75-1.64 (2H, m), 1.58 (3H, s, H3CC-14), 1.56-1.46 (2H, 
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m), 1.24 (3H, d, J = 6.5 Hz), 1.18 (3H, d, J = 7 Hz), 1.03-0.84 (12H, m), 0.78 (3H, t, J = 

7.5 Hz). 

 

13C NMR (125 MHz, C6D6):  δ (for major diastereomer) 138.9 (s, Ph), 133.8 (s, C-14), 

129.8 (d), 128.8 (d), 128.5 (d), 128.4 (d), 128.3 (d), 128.1 (d), 97.3 (t, CH2OC-3), 87.3 

(d), 84.1 (d), 81.7 (d), 80.3 (d), 74.0 (t, CH2OC-7), 71.3 (d), 55.9 (q, CH3OCH2OC-3), 

44.9 (t, C-13), 39.9 (d), 39.1 (d), 37.2 (d), 36.2 (d), 34.5 (d), 25.7 (t), 21.9 (t), 16.4 (q), 

16.1 (q), 15.9 (q), 15.0 (q), 13.3 (q), 10.2 (q), 9.8 (q), 5.9 (q). 

 

LRMS (EI), m/z (relative intensity):  536 ([M]+, 2), 414 (1), 241 (6), 91 (100). 

 

HRMS m/z calcd. for C32H56O6:  536.4077; found:  536.4074. 
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352 

(2S,3S,4S,5S,6S,7R)-3-(Benzyloxy)-7-(methoxymethoxy)-4,6-dimethyl-2-((4S,5S,6R)-
2,2,5-trimethyl-6-((E)-4-methylhept-4-en-2-yl)-1,3-dioxan-4-yl)nonan-5-ol 

 

PTSA (ca. 0.5 mg) was added to a stirred solution of triols 351 (13 mg, 0.024 

mmol; dr 6:1:1) and 2,2-dimethoxypropane (0.2 mL) in CH2Cl2 (4 mL) at room 

temperature under Ar.  After 10 min, the reaction quenched by addition of sat. aqueous 

NaHCO3 (ca. 1 mL).  The mixture was diluted with sat. aqueous NaHCO3 and extracted 
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with CH2Cl2 (3×).  The combined organic layers were dried over Na2SO4, concentrated 

and fractionated by PTLC (20% ethyl acetate in hexanes) to give the titled alcohols 352 

(13 mg, 93%; dr 6:1:1). 

 

IR (DRIFT) νmax:  3504, 2963, 1454, 1200, 1040 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 7.40-6.98 (5H, m, Ph), 5.25 (1H, 

dd, J = 7, 7 Hz, HC-15), 4.89 (1H, d, J = 6.5 Hz, HCOC-3), 4.77 (1H, d, J = 6.5 Hz, 

HCOC-3), 4.55 (1H, d, J = 11 Hz, HCOC-7), 4.46 (1H, d, J = 11 Hz, HCOC-7), 4.20 

(1H, ddd, J = 1.5, 1.5, 9.5 Hz, HC-5), 4.16 (1H, s, HOC-5), 3.96-3.89 (1H, m, HC-3), 

3.87 (1H, dd, J = 2, 10 Hz, HC-9), 3.62 (1H, dd, J = 2, 7.5 Hz, HC-7), 3.32 (3H, s, 

H3CO), 3.27 (1H, dd, J = 2, 9.5 Hz, HC-11), 2.42 (1H, ddd, J = 7, 7, 9 Hz, HC-6), 2.19 

(1H, ddd, J = 2, 7, 9.5 Hz, HC-8), 2.12-1.80 (6H, m), 1.66-1.29 (5H, m), 1.54 (3H, s, 

H3CCOC-9), 1.51 (3H, s, H3CC-14), 1.32 (3H, s, H3CCOC-9), 1.07-0.96 (4H, m), 1.04 

(3H, d, J = 7 Hz), 1.02 (3H, d, J = 7 Hz, H3CC-12), 0.99 (3H, d, J = 7 Hz), 0.93 (3H, d, J 

= 7 Hz, H3CC-8), 0.85 (3H, d, J = 7 Hz, H3CC-6). 

 

13C NMR (125 MHz, C6D6):  δ (for major diastereomer) 139.1 (s, Ph), 133.0 (s, C-14), 

129.24 (d, C-15), 129.23 (d, Ph), 129.1 (d, Ph), 128.7 (d, Ph), 128.6 (d, Ph), 128.4 (s, Ph), 

99.3 (t, COC-9), 97.7 (d, CH2OC-3), 89.0 (d, C-7), 81.3 (d, C-3), 79.5 (t, C-11), 74.85 (d, 

CH2OC-7), 78.81 (d, C-9), 73.1 (q, C-5), 55.9 (t, CH3OCH2OC-3), 42.3 (t, C-13), 39.0 (d, 

C-6), 38.5 (d), 38.1 (d, C-8), 32.9 (d), 31.5 (q), 30.7 (t, CH3COC-9), 25.3 (t, C-2), 22.0 
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(q, C-16), 20.0 (q, CH3COC-9), 16.5 (q), 15.94 (q), 15.86 (q, CH3C=C), 15.0 (q), 13.0 

(q), 9.4 (q), 9.0 (q), 5.3 (q). 

 

LRMS (EI), m/z (relative intensity):  561 ([M−15]+, 1), 91 (100), 181 (20), 69 (26). 

 

HRMS m/z calcd. for C35H60O6:  576.4390 (561.4155 for M−CH3); found:  561.4152. 

 

OHO OHO
MOM
O

7
12

5
10

1

3

 

353 

(2S,3S,4S,5R,6S,7R)-7-(Methoxymethoxy)-4,6-dimethyl-2-((4S,5S,6S)-2,2,5-
trimethyl-6-((R,E)-4-methylhept-4-en-2-yl)-1,3-dioxan-4-yl)nonane-3,5-diol 

 

Anhydrous NH3 (ca. 5 mL) was condensed onto a solution of 352 (13 mg, 0.02 

mmol; dr 6:1:1) in THF (5 mL) at −78 °C under Ar.  Lithium (2-3 2 mm3 pieces) were 

added over 5-10 min until a blue color persisted.  After 30 min, methanol (ca. 0.5 mL) 

was added and the mixture was warmed to room temperature over 2 h and diluted with 

sat. aqueous NH4Cl.  The mixture was extracted with CH2Cl2 (3×), dried over Na2SO4, 

concentrated and fractionated by PTLC (20% ethyl acetate in hexane) to give a mixture 

of three diastereomeric diols 353 (10 mg, 91%; dr 6:1:1). 

 

IR (DRIFT) νmax:  3454, 2962, 1265, 1200, 1178, 1012 cm-1. 
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1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 5.24 (1H, dd, J = 7, 7 Hz, HC-

15), 4.34-4.30 (1H, m), 4.32 (1H, d, J = 6.5 Hz), 4.27 (1H, d, J = 6.5 Hz), 4.19 (1H, d, J 

= 10 Hz), 4.14-3.90 (2H, br s), 3.79 (1H, dd, J = 3, 7.5 Hz), 3.36 (1H, br d, J = 6.5 Hz), 

3.32 (1H, ddd, J = 6, 6, 6 Hz), 3.04 (3H, s, H3CO), 2.44-2.34 (1H, m), 2.34-2.25 (1H, m), 

2.15-1.96 (3H, m), 1.88 (1H, br s), 1.81 (1H, m), 1.66-1.22 (15H, m), 1.14 (3H, d, J = 7 

Hz), 1.07 (3H, d, J = 6.5 Hz), 1.05-1.01 (6H, m), 0.98 (2H, t, J = 7.5 Hz), 0.95 (3H, d, J = 

6.5 Hz), 0.75 (2H, t, J = 7.5 Hz). 

 

13C NMR (125 MHz, C6D6):  δ (for major diastereomer) 133.1 (s, C-14), 129.1 (d, C-15), 

99.0 (s, COC-9), 97.4 (t, CH2OC-3), 84.8 (d), 83.3 (d), 79.8 (d), 76.0 (d), 753.6 (d), 56.0 

(q, CH3OCH2OC-3), 42.3 (t, C-13), 39.6 (d), 37.6 (d), 37.5 (d), 33.0 (d), 31.7 (d), 30.8 (q, 

CH3COC-9), 25.9 (t, C-2), 22.0 (t, C-16), 20.3 (q, CH3COC-9), 16.5 (q), 15.9 (q), 15.1 

(q), 15.0 (q), 14.8 (q), 10.9 (q), 10.0 (q), 5.6 (q). 

 

LRMS (EI), m/z (relative intensity):  486 ([M]+, 1), 341 (2), 239 (11), 69 (100). 

 

HRMS m/z calcd. for C28H54O6:  486.3920; found:  486.3960. 
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354 

(5R,6S,7S,8S,9S)-11-tert-Butyl-5-ethyl-6,8,12,12-tetramethyl-9-((1R)-1-((4R,5S,6R)-
2,2,5-trimethyl-6-((E)-4-methylhept-4-en-2-yl)-1,3-dioxan-4-yl)ethyl)-2,4,10-trioxa-

11-silatridecane-5,11-diol 
 

2,6-Lutidine (0.02 mL, 18 mg, 0.17 mmol) was added to a stirred solution of diols 

353 (10 mg, 0.02 mmol; dr 6:1:1) in CH2Cl2 (2 mL) at rt under Ar.  After 2 min, t-

Bu2(OTf)2 (0.020 mL, 27 mg, 0.060 mmol) was added and the reaction was stirred 

vigorously for 7 h.  Methanol (0.2 mL) was added and the mixture was diluted with ethyl 

acetate and washed with 1% w/v aqueous citric acid (3×).  The combined organic layers 

were washed with sat. aqueous NaHCO3, dried over Na2SO4, concentrated and 

fractionated by PTLC (20% ethyl acetate in hexane) to give 354 as a mixture of 

diastereomers (10 mg, 77%; dr 6:1:1). 

 

IR (DRIFT) νmax:  3492, 2964, 1470, 1352, 1180 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 5.25 (1H, dd, J = 7, 7 Hz, HC-

15), 4.91 (1H, d, J = 6 Hz, HCOC-3), 4.79 (1H, d, J = 6 Hz, HCOC-3), 4.58 (1H, dd, J = 

1.5, 7 Hz), 4.35 (1H, d, J = 9 Hz), 4.21 (1H, s), 4.10 (1H, s), 3.91 (1H, ddd, J = 4.5, 4.5, 

8.5 Hz), 3.59 (1H, dd, J = 1.5, 11 Hz), 3.31 (3H, s, H3CO), 3.18 (1H, dd, J = 1.5, 9.5 Hz), 

2.46-2.35 (1H, m), 2.19-2.10 (1H, m), 2.07-1.89 (5H, m), 1.88-1.76 (1H, m), 1.69-1.59 

(1H, m), 1.49 (3H, s, H3CC-14), 1.48-1.37 (1H, m), 1.47 (3H, s, H3CCOC-9), 1.27-1.18 
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(18H, m), 1.11 (3H, s), 1.09-1.03 (6H, m), 1.00 (3H, d, J = 6.5 Hz), 0.99-0.93 (9H, m), 

0.88 (3H, d, J = 7 Hz). 

 

13C NMR (125 MHz, C6D6):  δ (for major diastereomer) 132.9 (s, C-14), 129.4 (d, C-15), 

99.7 (s, COC-9), 98.5 (t, CH2O), 82.1 (d), 79.4 (d), 78.9 (d), 76.4 (d), 72.6 (d), 55.9 (q, 

CH3O), 43.9 (d), 42.3 (t, C-13), 38.3 (d), 38.2 (d), 32.8 (d), 31.5 (d), 30.4 (q, CH3COC-

9), 28.5 (q ×3), 28.3 (q ×3), 25.7 (t, C-2), 22.1 (s), 22.0 (t, C-16), 20.8 (s), 20.1 (q, 

CH3COC-9), 16.6 (q), 16.0 (q), 15.8 (q, CH3C-14), 15.0 (q), 9.7 (q), 9.5 (q), 9.0 (q), 4.9 

(q). 

 

LRMS (EI), m/z (relative intensity):  629 ([M−15]+, 1), 479 (10), 181 (69), 95 (37), 69 

(100). 

 

HRMS m/z calcd. for C36H72O7Si:  644.5047 (629.4813 for M−CH3); found: 629.4186. 
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355 

(4S,5S,6R)-2,2-Di-tert-butyl-4-((2R,3R)-3-(methoxymethoxy)pentan-2-yl)-5-methyl-
6-((1R)-1-((4R,5S,6R)-2,2,5-trimethyl-6-((E)-4-methylhept-4-en-2-yl)-1,3-dioxan-4-

yl)ethyl)-1,3,2-dioxasilinane 
 

TFA (0.5 mL) was added dropwise to a stirred solution of diols 354 (21 mg, 0.03 

mmol; dr 6:1:1) in THF (0.5 mL) and water (0.5 mL) at rt.  After 15 min, ethyl acetate 

was added and the reaction was washed with sat. aqueous NaHCO3 (3×), brine, dried 
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over Na2SO4, concentrated, and fractionated by PTLC (10% ether in hexane) to give 355 

as a mixture of diastereomers (15 mg, 75%; dr 6:1:1). 

 

IR (DRIFT) νmax:  2964, 1468, 1200, 1101, 923 cm-1. 

 

1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 5.21 (1H, dd, J = 6.5, 6.5 Hz, 

HC-15), 4.92 (1H, d, J = 6.5 Hz, HCOC-3), 4.77 (1H, d, J = 6.5 Hz, HCOC-3), 4.23 (1H, 

dd, J = 1.5, 4.5 Hz, HC-5 or HC-9), 4.21 (1H, dd, J = 1.5, 4.5 Hz, HC-5 or HC-9), 3.90 

(1H, dd, J = 1.5, 9.5 Hz, HC-7), 3.82 (1H, ddd, J = 4.5, 4.5, 8.5 Hz, HC-3), 3.41 (1H, dd, 

J = 1.5, 9.5 Hz, HC-11), 3.30 (3H, s, H3CO), 2.39-2.26 (1H, m, HC-6), 2.18-1.95 (6H, 

m), 1.94-1.82 (1H, m, HC-12), 1.66-1.53 (1H, m, HC-2), 1.53-1.45 (1H, m, HC-10), 1.50 

(6H, s ×2, H3CCOC-9, H3CC-14), 1.49 (3H, s, H3CCOC-9), 1.35 (1H, dd, J = 1.5, 12 Hz, 

HC-13), 1.20 (9H, s ×3), 1.19 (9H, s ×3), 1.07 (3H, t, J = 7.5 Hz, H3C-1), 1.03 (3H, d, J = 

6.5 Hz, H3CC-12), 1.02-0.98 (6H, m), 0.99-0.95 (6H, m), 0.90 (3H, d, J = 6.5 Hz, H3CC-

6). 

 

13C NMR (125 MHz, C6D6):  δ (for major diastereomer) 133.0 (s, C=CH), 129.2 (d, 

CH=C), 99.8 (s, COC-9), 98.5 (t, CH2O), 85.0 (d, C-7), 82.2 (d, C-3), 81.1 (d, C-5 or C-

9), 79.7 (d, C-11), 73.2 (d, C-5 or C-9), 55.8 (q, CH3O), 42.2 (t, C-13), 40.1 (d, C-6), 38.7 

(d), 37.6 (d), 32.9 (d, C-12), 31.8 (d), 30.8 (q, CH3COC-9), 28.6 (q ×3, CH3CSi), 28.5 (q 

×3, CH3CSi), 25.4 (t, C-2), 23.9 (s, CSi), 22.0 (t, C-16), 21.1 (q, CH3COC-9), 20.9 (s, 

CSi), 16.5 (q), 15.9 (d), 15.2 (q), 15.0 (q), 13.3 (q, CH3C-6), 9.3 (q), 8.6 (q, CH3C-1), 5.5 

(q, CH3C-12). 
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HRMS m/z calcd. for C36H70O6Si:  626.4942 (627.5020 for M+H); found: 627.5027 (CI, 

NH3). 
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360 

(R)-((3R,4R)-3-((S)-((3R,4S,5S)-4-(Benzyloxy)-5-((S)-((R)-4-oxotetrahydro-2H-
thiopyran-3-yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-4-yl) 3,3,3-trifluoro-2-methoxy-
2-phenylpropanoate 

 

Oxalyl chloride (0.015 mL, 22 mg, 0.17 mmol) was added to a solution of (R)-(+)-

MTPA (8 mg, 0.03 mmol) and DMF (0.003 mL, 3 mg, 0.04 mmol) in hexane (1 mL) at 

room temperature.  A white precipitate formed immediately.   After 1 h the mixture was 

filtered and concentrated.  A solution of ketol 323 (3 mg, 0.004 mmol), Et3N (0.010 mL, 

7 mg, 0.07 mL) and DMAP (ca. 1 mg) in CH2Cl2 (1 mL) was added to the residue.  After 

1 h, excess reagent was quenched with methanol (0.5 mL) and the mixture was diluted 

with ethyl acetate and washed sequentially with 1% w/v aqueous citric acid (3×), sat. 

aqueous NaHCO3 and brine, dried over Na2SO4, and concentrated to give crude Mosher's 

ester which was a 11:1 mixture of diastereomers by 1H NMR.  Fractionation on the crude 

by PTLC (15% ether in hexane) gave a mixture of Mosher's esters 360 (4 mg, >95%) 

which was a 11:1 mixture of diastereomers by 1H NMR. 
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1H NMR (500 MHz, C6D6):  δ (for major diastereomer) 7.65 (10H, m, Ph), 5.45 (1H, br 

s), 5.06-4.91 (2H, m), 4.79 (1H, d, J = 10.5 Hz), 4.41 (1H, d, J = 8 Hz), 3.75 (1H, dd, J = 

9.5, 9.5 Hz, HC-4), 3.27 (3H, s, H3CO), 3.02 (1H, dd, J = 3, 14 Hz), 2.96 (1H, br d, J = 

12.5 Hz), 2.94-2.25 (14H, m), 2.36-2.26 (1H, m), 1.79 (1H, br d, J = 13 Hz), 1.72-1.62 

(1H, m), 1.61-1.52 (1H, m), 1.08-0.93 (18H, m, (H3CC)3Si ×2), 0.83-0.58 (12H, m, 

(H2C)3Si ×2). 

 

S S S

OBn
TES
O

TES
OO O-(S)-MTPA

2

35

62''6''

5'' 1'

2'

5'

6'

1''

 

361 

(S)-((3R,4R)-3-((S)-((3R,4S,5S)-4-(Benzyloxy)-5-((S)-((R)-4-oxotetrahydro-2H-
thiopyran-3-yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-3-

yl)(triethylsilyloxy)methyl)tetrahydro-2H-thiopyran-4-yl) 3,3,3-trifluoro-2-methoxy-
2-phenylpropanoate 

 

Oxalyl chloride (0.015 mL, 22 mg, 0.17 mmol) was added to a solution of (R)-(+)-

MTPA (8 mg, 0.03 mmol) and DMF (0.003 mL, 3 mg, 0.04 mmol) in hexane (1 mL) at 

room temperature.  A white precipitate formed immediately.   After 1 h the mixture was 

filtered and concentrated.  A solution of ketol 323 (4 mg, 0.006 mmol), Et3N (0.010 mL, 

7 mg, 0.07 mL) and DMAP (ca. 1 mg) in CH2Cl2 (1 mL) was added to the residue.  After 

1 h, excess reagent was quenched with methanol (0.5 mL) and the mixture was diluted 

with ethyl acetate and washed sequentially with 1% w/v aqueous citric acid (3×), sat. 

aqueous NaHCO3 and brine, dried over Na2SO4, and concentrated to give crude Mosher's 

ester that was a 11:1 mixture of diastereomers by 1H NMR.  Fractionation on the crude 
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by PTLC (15% ether in hexane) gave a mixture of Mosher's esters 361 (4 mg, >95%) 

which was a 11:1 mixture of diastereomers by 1H NMR. 

 

1H NMR (500 MHz, C6D6):  (for major diastereomer) δ 7.71-6.96 (10H, m, Ph), 5.35 

(1H, br s), 5.07-4.93 (2H, m), 4.79 (1H, d, J = 10.5 Hz), 4.33 (1H, d, J = 7.5 Hz), 3.79 

(1H, dd, J = 9.5, 9.5 Hz, HC-4), 3.32 (3H, s, H3CO), 3.06-2.22 (17H, m), 1.98-1.80 (2H, 

m), 1.63 (1H, m), 1.07-0.92 (18H, m, (H3CC)3Si ×2), 0.80-0.58 (12H, m, (H2C)3Si ×2). 
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APPENDIX A 

Determination of enantiomeric purity 

230⋅HCl 

A solution of NaOH in D2O (1.1 M 0.05 mL, 0.055 mmol) was added to a solution 

of 230⋅HCl (6.5 mg, 0.025 mmol) and (+)-(R)-TFAE (55 mg, 0.20 mmol) in CDCl3 (0.4 

mL) in a 5 mm NMR tube.  After shaking the sample, the 1H NMR spectrum (500 MHz) 

was obtained.  To verify separation, the chemical shift of the minor enantiomer was 

established by adding a solution of ent-230⋅HCl (ca. 2 mg) in CDCl3 (ca 0.05 mL) to the 

above NMR tube and then reacquiring the NMR spectrum (Figure A.1.). 

 
Figure A.1.  Determination of enantiomeric purity of 230·HCl. 
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Mono-silyl enol ether (−)-261 

A stock solution of (+)-Eu(hfc)3 (0.1 M) and AgO2CCF3 (0.1 M) in CDCl3 was 

prepared.  The above solution of shift reagent (0.025 mL) was added to a solution of 261 

(6 mg, 0.01 mmol) in CDCl3 (0.4 mL) in a 5 mm NMR tube.  After shaking the sample, 

the 1H NMR spectrum (500 MHz) was obtained.  To verify separation, the chemical shift 

of the minor enantiomer was established by adding a solution of ent-261 (obtained by 

enolization of meso 233 using ent-230) (ca. 2 mg) in CDCl3 (ca. 0.05 μL) to the above 

NMR tube and then reacquiring the NMR spectrum (Figure A.2.). 

 
Figure A.2.  Determination of enantiomeric purity of 261. 

Mono-silyl enol ether (−)-315 

Enantiomeric purity of mono-silyl enol ether 315 was determined by analysis of the 

1H NMR spectra of the diastereomeric Mosher's esters resulting from the reaction of ketol 

323 and (R)-MTPCl and (S)-MTPCl.  Both Mosher's esters 360 and 361, respectively, 

were prepared to verify peak identities (Figure A.3.).   
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Figure A.3.  Determination of enantiomeric purity of 315 (83% ee). 

 
Figure A.4.  Determination of enantiomeric purity of 315 (93% ee). 
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APPENDIX B 

X-ray crystallographic data 

 

ORTEP diagram of bis-silyl enol ether 262 
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ORTEP diagram of syn triol 297 
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