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ABSTRACT 

Multiple sclerosis is a chronic autoimmune neurological disease 

characterized by inflammatory cell infiltration and demyelination in the central 

nervous system (CNS). It is considered to be mediated by Th1 and Th17 

immune responses. Experimental autoimmune encephalomyelitis (EAE) is 

widely used as a mouse model to study MS as it has features and histopathology 

similar to that of MS. Tolerogenic dendritic cells (DC) are reported to 

efficiently prevent sensitization for EAE. In this research, we induced 

tolerogenic DC (DC10) by differentiating them with IL-10. Compared to 

immature DC, DC10 did not show increased expression of MHC II or the 

co-stimulatory molecules CD40, CD80 and CD86, and produced low levels of 

pro-inflammatory cytokines IL-1β ,  IL-6, and IL-12 but higher levels of IL-10. 

This is consistent with their possessing a tolerogenic phenotype. We found that 

three intraperitoneal (i.p.) injections of DC10 successfully inhibited the signs 

of established, ongoing EAE: DC10 significantly reduced the clinical scores, 

demyelination and cell infiltration in the spinal cord, as well as the production 

of IL-4, IL-6, IL-10, IL-17 and IFN-γ  by spleen and lymph node (LN) 

lymphocytes. DC10 treatments did not significantly affect inflammatory 

cytokine mRNA levels in the CNS. We found that there was higher FoxP3 

expression in the CNS in response to DC10 treatments relative to PBS-treated 
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animals. We also found that DC10 treatments significantly enhanced IgG1, 

IgG2a and IgG2b production and total spleen and LN lymphocyte proliferation 

following challenge with myelin oligodendrocyte glycoprotein (MOG) antigen. 

As far as we know, this is the first report showing the successful therapeutic 

treatment with tolerogenic DC10 of established EAE in mice. 
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CHAPTER 1 
 

 
Introduction 

Multiple Sclerosis (MS) was first discovered in 1868. It is a chronic 

autoimmune neurological disease characterized by inflammatory cell 

infiltration and inflammation of the central nervous system (CNS) [1, 2]. MS 

is considered to be driven by Th1 and Th17 immune responses [2, 3]. Though 

the mechanisms mediating MS are still not clear today, it is suggested that 

both genetic and environmental factors affect MS development [2]. Currently, 

several drugs like Glatiramer acetate and IFN-β  are used to reduce the 

symptoms of MS in patients [4, 5]. Experimental autoimmune 

encephalomyelitis (EAE) is widely used as a model to study MS, as it 

demonstrates similar symptoms and histopathology with MS, such as 

demyelinaton and cell infiltration in the CNS, production of inflammatory 

cytokines like IL-17, IL-6 and IFN-γ, and myelin-specific antibody[6]. 

Immunizing mice or rats with myelin-specific antigens or peptides can 

induce different types of EAE, like chronic EAE in C57BL/6 mice induced 

by myelin oligodendrocyte glycoprotein (MOG)(35-55), relapsing-remitting 

EAE induced by proteolipid protein (PLP)(139-151) in SJL mice, and acute 

monophasic EAE induced by CNS homogenates in SJL mice [7]. But the 
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mechanisms of EAE induction and development, as well as the roles of 

Th1/Th2/Th17 responses in EAE are still not well understood [6].  

Tolerance is defined as an immunological state wherein the immune 

system does not react against self-antigens and tissues, as well as exogenous 

antigens (e.g., allergen and gut bacteria) [8]. Scientists today are trying to 

induce tolerance in autoimmune diseases like MS/EAE, for example, by 

inducing the deletion and anergization of autoreactive T cells, or by 

induction of suppressive or regulatory cells like Tregs [8, 9]. As professional 

antigen presenting cells (APC) dendritic cells (DC) play important roles in 

mediating immune responses. Our lab has already reported that IL-10 can 

induce tolerogenic DC in vitro [10]. These DC10 express lower levels of 

APC co-stimulatory molecules and pro-inflammatory cytokines. 

Allergen-presenting DC10 treatment can reverse airway hyperresponsiveness 

and induce tolerance to allergic asthma in mice [10] by inducing 

CD4+CD25+FoxP3+ regulatory T cells (Tregs) [11], which suppressed the 

Th2 response. Studies using peripheral blood Th2 cells from asthmatic 

donors, performed by Dr. Xiuling Li in our lab, also showed that DC10 

suppress the activity of effector T cells in vitro [12]. Though several reports 

showed that tolerogenic DC could prevent induction of EAE when 

administrated before sensitization [13-15], we wished to determine whether 

DC10 could be used as an therapy for established EAE. In this study, we 

generated DC10 in vitro,  pulsed them with specific antigen (MOG(35-55)), and 

injected them into EAE mice intraperitoneally (i.p.) after the mice had 
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developed advanced clinical symptoms. We found that EAE mice that had 

been treated with DC10 showed decreases in clinical scores as well as 

demyelination and inflammatory cell infiltration in the CNS, and decreased 

expression of inflammatory cytokines by spleen and LN cells. However, this 

reduction in EAE scores was accompanied by an increased production of 

MOG(35-55)-specific IgG1, IgG2a and IgG2b, as well as enhanced 

proliferation of total spleen and LN cells, suggesting that these could be 

associated with the reductions in EAE scores. We did not observe significant 

differences in the cytokine mRNA expression in CNS between DC10-treated 

and PBS-treated EAE mice, but did find a higher expression of FoxP3, which 

suggested a potential induction of Tregs in response to DC10 treatment. 

To our knowledge, it is the first study showing that 

IL-10-differentiated dendritic cells reduce established, chronic EAE in 

C57BL/6 mice. Our studies provide a novel insight into the therapeutical 

treatment with MS, in which patients could be treated with their own DC, 

which have been rendered tolerogenic ex vivo. 
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CHAPTER 2 
 

Literature review 

2.1. Autoimmune disease 

Autoimmunity is defined as a disease in which the immune system 

responds against self-antigens and thereby induces pathologic manifestations. 

Autoantigens are characterized as self-antigens, usually proteins, 

carbohydrates, lipids or DNA. About 5% of the world’s population is 

affected by autoimmune diseases, the incidence of which is higher today than 

over the past 50 years, especially in developed countries such as the United 

States and Canada [2, 8]. 

Autoimmune diseases have several immunological features [8]: 1) 

different kinds of autoantibodies can been detected in the serum of the 

patients with autoimmune disease; 2) antibodies can bind to their 

autoantigens, leading to the deposition of immune complexes in the affected 

tissues; 3) cellular infiltration, generally lymphocytes and monocytes, are 

widely detected in the affected organ.  

     The aetiology and development of autoimmune disease are still not 

clear, but previous studies indicated that both genetic and environmental 

factors are associated with their progression. The concordance rate in 

identical twins for development of autoimmune disease is about 25%, while 
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the concordance rate in non-identical twins is only about 5% [2, 8]. Major 

histocompatability complex (MHC) classⅡ  genes contribute by about 50% 

to the total genetic risk of developing autoimmunity, because most 

autoimmune diseases are CD4+ T cell-dependent, and APC (e.g., DC) present 

autoantigens that are associated with MHCⅡmolecules to CD4+ T cells, 

resulting in autoimmune responses [8, 16]. Other non-MHC genes, for 

example, the sex-related genes, also affect the susceptibility of autoimmune 

disease, as many autoimmune diseases such as MS and systemic lupus 

erythematosus (SLE) are more frequent in females. This could be in part due 

to the influence of sex hormones [8].  

People with specific combinations of susceptibility genes are 

considered to be at high risk of getting autoimmune disease, and 

environment factors may well play important roles in triggering disease. Two 

main mechanisms, known as molecular mimicry and tissue damage, have 

been proposed. In molecular mimicry, if a pathogen has an epitope that is 

similar to a self-peptide, T cells specific for the foreign epitope can 

cross-react with the self-peptide and thus be activated as autoreactive T cells 

[8]. Tissue damage caused by the invasion of pathogens and the ongoing 

inflammatory response can lead to the release of self-antigens which can be 

presented by DC to T cells, resulting in the activation of autoreactive T cells 

[8]. 

     Recent studies have found that viral infections can break peripheral 

self-tolerance and trigger autoimmune disease. The generation of 

 5



 

self-epitopes is up-regulated during infection-induced inflammation, leading 

to the subsequent release and the processing of self-antigens. Then viral 

proteins which were expressed during chronic infections can cross-react with 

self-antigens by activating DCs and priming the new autoreactive T cells [8, 

17]. Infectious agents, drugs, food, toxins and pollutants are other types of 

environmental factors that may trigger autoimmune diseases, as some may 

similarly cross-react with host self-antigens [8]. 

 

2.2. Multiple Sclerosis (MS) 

2.2.1. Introduction to MS 

Multiple Sclerosis (MS), first discovered in 1868 by Charcot, is a 

chronic autoimmune neurological disease characterized by inflammatory cell 

infiltration and inflammation of the central nervous system [1, 2]. MS can be 

divided into several phenotypes: 1) relapsing-remitting (RR) –MS, which 

affects about 85%-90% of patients, and is especially prevalent in women; 2) 

primary-progressive (PP)-MS, 10%-15% frequency; 3) 

secondary-progressive (SP)-MS, a sequel to RR-MS; 4) 

progressive-relapsing (PR)-MS, which is relatively rare; 5) benign MS, with 

long periods of remission and little disability after 15 years (20%-25% of 

patients diagnosed with RR-MS also have benign MS); and 6) malignant MS, 

a rare form with rapidly progressive disability within the first 5 years of 

diagnosis [5].  
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     Loss of balance, impaired speech, extreme fatigue, double vision and 

paralysis can be seen in MS patient [5]. Histopathologically, the brain and 

the spinal cord lesions are present as plaques within the white matter in 

which myelin and oligodendrocytes are absent. In active disease these 

plaques show infiltration by lymphocytes, plasma cells and macrophages, 

which cause destruction of the myelin surrounding the nerve cell axons. 

There are also tissue oedema, apoptotic oligodendrocytes and infiltrating 

cells within the plaques at the early stages. Lymphocytes and macrophages 

are also seen around the venules in the area [18]. 

     MS is considered to be a T cell-mediated autoimmune disease [19, 20], 

but the pathogenic mechanisms of MS are still not clear. Previous studies 

indicated that MS was associated with the up-regulation of proinflammatory 

cytokines such as IFN-γ , TNF-α and IL-12 [21]. Myelin basic protein 

(MBP) is considered to be one of the major autoantigens involved in the 

immunopathogenesis of multiple sclerosis, and MBP-specific T cells were 

found at high frequency in the cerebrospinal fluid and blood of MS patients 

[22]. 

Molecular mimicry and bystander activation have been proposed to 

explain how microbial infections may induce MS, though again the 

mechanisms are not clear [2]. If a pathogen has an epitope that crossreacts 

with a myelin self-antigen, any of the T cells that are specific for the 

self-antigen will be activated. These T cells can migrate across the 

blood-brain barrier and cause tissue damage if they recognize the 
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autoantigens expressed in the brain and/or spinal cord, leading to 

autoimmune demylinating disease [2]. On the other hand, autoreactive cells 

could be activated through nonspecific inflammatory events during the 

process of infection. For example, the destruction of self-tissue caused by 

pathogens could release autoantigens that could be presented by APCs to T 

cells, resulting in the activation of autoreactive T cells [2]. Proinflammatory 

cytokines such as TNF-αor IFN-γproduced by T cells may directly damage 

the myelin [21].  

According to Multiple Sclerosis International Federation, about 

2,000,000 people over the world have MS, and most of them are between 20 

to 50 years of age [23]. We must remember that Canada has one of the 

highest rates of multiple sclerosis in the world. According to the Multiple 

Sclerosis Society of Canada, three more people are diagnosed with MS every 

day in Canada and women are three times more likely than men to develop 

MS [5]. 

 

2.2.2. Current treatment of MS 

     Current drugs used in the treatment of MS are mostly based on IFN-β  

and Glatiramer acetate [5]. IFN-β  has been approved for the treatment of 

relapsing-remitting MS patients, wherein it reduces the relapse rate and CNS 

lesions [4, 5]. The mechanism of action for IFN-β  in the treatment of MS is 

still not well understood, but it was suggested that IFN-β could suppress 

effector T cell proliferation and thereby reduce CNS lesions. Unfortunately, 
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IFN-β  was found to have several side effects, such as flu-like symptoms, 

fatigue, depression, headache and abnormal liver function, etc [4]. 

Glatiramer acetate (GA) is a synthetic peptide (composed of tyrosine, 

glutamic acid, alanine and lysine) resembling myelin basic proteins [24], 

which can also reduce the relapse rate of MS patients [25]. How it works is 

also not well understood, but it could down-regulate Th1 responses and 

reduce CNS inflammation [26]. A study in an EAE model also showed that 

GA treatment inhibited IL-12 and IFN-γproduction while promoting Treg 

induction [24]. But GA may also have severe side effect on MS patients, like 

chest tightness, shortness of breath and anxiety, etc [25]. 

 

2.2.3. MS models: Experimental Autoimmune Encephalomyelitis (EAE) 

EAE has been used as a model to study MS for a long time, as it bears a 

resemblance to the feature of MS in humans. It was first used as a model of 

human demyelinating disease in 1933 by Rivers [27]. Rats and mice have 

widely served as the species of choice for EAE for the past 30 years [28]. 

Previous studies had reported that EAE can be induced by myelin basic 

protein (MBP), proteolipid protein (PLP) [28], myelin oligodendrocyte 

glycoprotein (MOG) [29], or brain spinal cord homogenates (BSCH) [30]. 

The brain contains a large amount of specialized cells called neurons. 

Neurons are the basic processing unit of the brain and convey signals by 

passing electrical impulses in the form of action potentials from one end of 

the cell to another (See Fig.2.1. below). MBP, PLP, MOG are the most 
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abundant and the best-studied CNS myelin proteins; these myelin proteins 

cover the axons [2]. Once autoreactive anti-nerve T cells are generated, they 

will produce inflammatory mediators and specifically attack the myelin 

sheath and destroy them. The destruction of myelin short-circuits electrical 

impulse transduction, leading to the clinical symptoms as described above. 

EAE can be induced in several strains of mice and rats by subcutaneous 

injection of myelin peptides or by the adaptive transfer of effector T cells 

from EAE mice. Interestingly, induction of EAE in different strains of mice 

or by different immunogens is associated with different phenotypes of EAE. 

For example, in female SJL/J mice induced with PLP(139-151)  or PLP(178-191),  

EAE is characterized as the RR-MS type. EAE induced by MOG(35-55) shows 

a chronic clinical phenotype in C57BL/6 mice [31].  
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Figure 2.1. Diagram of a neuron.  Myelin proteins are covered around the axons. 
The function of myelin is to conduct the electrical signals from node to node, as indicated 
in the diagram. If the myelin sheath is destroyed, axons lose their action potentials to 
conduct signals. (Adapted from Neil A. Campbell. Lawrence G. Mitchell. Jane B. Reece. 
Biology concepts and connections. Third Edition, 1999. Pg: 565.). 
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The progression of active EAE can be divided into the induction and 

effector phases [32]. The priming of the myelin-specific T cells following 

immunization with myelin protein or peptide occurs in the induction phase. 

In the effector phase, myelin-specific T cells extravasate across the tight 

endothelial junctions comprising the blood brain barrier and migrate into 

the CNS. Chemokines and cytokines released from the T cells attract 

peripheral inflammatory cells into the CNS, and then these cells are 

activated by pro-inflammatory cytokines, resulting in inflammatory and 

cytotoxic effects and, hence, enhanced demyelination. In addition, within 

the CNS the local and infiltrating APC present myelin peptides in the 

context of co-stimulatory molecules to the infiltrating myelin-specific T 

cells, resulting in more inflammatory cytokine production and development 

of a cascade of CNS inflammation and myelin damage [29]. In the studies of 

histopathology, CNS-infiltrating cells in EAE include T cells, B cells, 

macrophages and neutrophils, while demyelination in the white matter of 

the CNS is similar to the pathology seen in MS patients [29]. In addition, it 

was reported that CNS local glial cells (e.g., astrocytes and microglia) are 

also present in the CNS lesions in EAE [33, 34]. 

Inflammatory cytokines such as IFN-γ,  IL-6 and IL-17 produced by T 

cells or other cells (e.g., macrophages) are considered to be one of the 

major factors causing EAE/MS [2]. Increased levels of IFN- γ and 

myelin-specific IFN-γ -producing T cells are found in the blood of MS 

patients [35, 36]. Injection of IFN- γ induced a significantly higher 
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exacerbation rate, increasing the numbers of attacks from 1.42 to 4.67 per 

year, as compared with pretreatment and follow-up periods [37]. 

Intraventricular injection of IFN-γ  induces a severe EAE with more 

relapses in a chronic-relapsing EAE model in rats [38]. Other inflammatory 

cytokines like IL-6 also contribute to the pathology of EAE/MS; 

IL-6-deficient mice were shown to be resistant to the induction of EAE in 

mice [39], and spleen cells derived from IL-6-deficient mice showed a 

significantly lower ability to produce IL-2 and IFN- γ in response to 

myelin-specific antigens [39]. High levels of IL-6 were detected in the 

plasma and cerebrospinal fluid (CSF) in MS patients [36, 40]. IL-6 was also 

shown to promote Th17 responses by suppressing Treg development, which 

will be discussed later in this chapter. 

Recently, another process called epitope spreading was considered to 

be involved in the pathogenesis of MS and EAE. Epitope spreading is 

defined as reactivity to neuroepitopes or neuropeptides other than that used 

to induce the initial phase of disease [41]. T cells which are specific for a 

particular epitope of MBP or PLP could be activated to respond against 

other MBP or PLP epitopes during the later stage of disease development [9, 

42, 43], and it was suggested that these T cells specific for other epitopes or 

peptides also contribute to the pathogenesis of EAE. Adoptive transfer of 

splenocytes from MBP(84-104)-induced EAE mice can transfer EAE to naive 

mice following activation by PLP(139-151) in vitro [43]. The release of such 

alternate epitopes or peptides may be due to the destruction of CNS tissue 
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caused by the specific T cells during the initial acute phase of disease 

development. It was also suggested that APC in the periphery could 

potentially captured these various peptides and present them to T cells, 

leading to the re-activation of other neuroantigen-specific T cells. 

 

2.2.4. T cells in EAE/MS 

    T cells are originally generated from bone marrow but develop into 

mature naive T cells in the thymus. T cells recognize antigens that are 

associated with MHC molecules expressed on APC via the T cells’ receptors 

(TCR) [8]. Two special mechanisms, positive selection and negative 

selection, are integral to T cells development in the thymus. During positive 

selection, T cells whose TCR can engage self-MHC receive survival signals 

and proceed into the next stages of development. Those T cells whose TCR 

don’t bind to MHC die by apoptosis. After positive selection, T cells which 

survive positive selection then undergo another process called negative 

selection. During negative selection, those T cells which react with 

self-peptides/self-MHC are eliminated via apoptosis, and only those T cells 

that do not react with self-peptides/self-MHC survive and leave the thymus 

as naive T cells [8].  

Effector CD4+ T cells can be divided into three subsets: Th1, Th2 and 

Th17 cells (See Fig. 2.2.below). Th1 cells are characterized as producing 

large amounts of IFN-γ and are predominantly involved in the clearance of 

intracellular pathogens, cell-mediated immunity and delayed-type 
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hypersensitivity (DTH) responses; Th2 cells mainly produce IL-4, IL-5 and 

IL-13 and are important for the elimination of extracellular pathogens and 

parasites, as well as allergic responses [44, 45]. Naive CD4 T cells may also 

differentiate into Th17 cells in response to several cytokines, including 

TGF-βplus IL-6, IL-23 and IL-21 [3]. Th17 cells mainly produce IL-17 and 

IL-21, and they are involved in clearance of extracellular parasites as well 

as the induction of autoimmunity [46]. 
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Figure 2.2. Summary of the differentiation of Th cell subsets.  Naive 
CD4 T cells can differentiate into Th1, Th2, Th17 or Tregs subsets in response to 
different cytokines. For example, IL-12 promotes Th1 cells differentiation and Th1 cells 
produce IFN-γ .  IL-4 promotes Th2 differentiation and Th2 cells mainly produce 
IL-4, IL-5 and IL-13.  IL-23, IL-21, TGF-β+IL-6 and IL-1β preferentially 
differentiate naive Th cells into Th17 subsets and Th17 cells predominantly produce 
IL-17 and IL-21,  TGF-βplus IL-2 promote Tregs development, and Treg mainly 
produce IL-10, IL-35 and TGF-β (Reference: [3, 6, 21, 46-48]). 
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EAE is considered to be a T cell-mediated disease [2, 49, 50]. It was 

indicated that Th1 cells, which are characterized by specific cytokine 

production like IFN-γ ,  are involved in the development and pathology of 

EAE. The strongest supportive evidence is that adoptive transfer of 

myelin-specific Th1 cells could induce EAE in mice [51, 52]. IFN-γ

-producing CD4+T cells and IFN-γwere found to be present in the CNS 

lesions during the peak of EAE development [44, 45]. Th1 cells were also 

essential for inducing EAE by promoting the further entry of Th17 cells into 

CNS, as it was reported that the i.v. injection of Th1/Th17 cells together 

induce severe EAE, while the injection of Th17 cells alone did not induce 

severe symptoms. When transferred together, significantly higher levels of 

Th1 cell infiltration than Th17 infiltration were found in the CNS. Th17 cells 

are found in the CNS only when co-injected with Th1 cells [53]. CD8+ T 

cells are also involved in EAE pathogenesis as the transfer of 

myelin-specific CD8+ T cells into mice induces rapid and severe EAE [54], 

suggesting that CD8+ T cells could potentially attack neurons and destroy the 

myelin, leading to axonal destruction and demyelination [2].   

Though Th1 cells are considered to be important in EAE pathogenesis, 

some evidence also challenges a role for Th1 responses in EAE induction and 

development [46]. IL-12 is considered to be a Th1-type cytokine as well as 

IFN-γ  [46], but IL-12-deficient mice were also shown to be susceptible to 

EAE induction [55], suggesting IL-12 was not critical in EAE induction. A 

controversial role of IFN-γ in EAE has also reported by others. IFN-γor 
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IFN-γ receptor-knock-out mice were showed to be susceptible to EAE 

induction as compared with WT mice [56, 57]. CNS-delivery of IFN-γ

before EAE induction or at the early stage, or after onset, of disease 

decreased EAE clinical scores and demyelination by inducing apoptosis of 

lymphocytes in the CNS [58]. Another interesting study showed that 

neutralization of IFN-γ by anti-IFN-γ mAb in WT EAE mice 1 week 

post-immunization worsened EAE clinical scores, but the same treatment 

decreased the clinical symptoms in IFN-γR-/-  mice [59]. The mechanisms 

are still not clear but it was suggested that a likely alternative mechanism or 

an unidentified second IFN-γ receptor mediated the different function of 

IFN-γ in EAE development [59]. The role of IFN-γ in EAE may be complex, 

but taken together the data suggest that IFN-γ is not critical in the induction 

of EAE, or that it might also function in a beneficial role, potentially during 

EAE development. 

Recent studies demonstrated that CD4+ Th17 cells, strongly 

contribute to the pathogenesis of EAE/MS [60, 61]. The development of 

Th17 cells is considered to be a key event in the pathogenesis of EAE [62, 

63], as the neutralization of IL-17 responses or IL-17-deficiency is 

associated with reduced EAE symptoms [3, 64]. The incidence and 

development of EAE in wild-type mice given IL-17-deficient CD4+T cells 

from EAE mice was significantly reduced as compared with those receiving 

wild-type CD4+ T cells [64], suggesting that CD4+ T cells’ IL-17 fosters EAE 

development. In MS patients, Th17 lymphocytes are found to efficiently 
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migrate across the blood brain barrier (BBB) [65]. Human BBB-endothelial 

cells (BBB-ECs) in MS lesions had a higher expression of IL-17 receptor 

(IL-17R), while IL-17R is undetectable in normal CNS tissues, suggesting 

that the activation of IL-17R expression in MS patients is involved in BBB 

permeability [65]. IL-6 was demonstrated to have a key role in the 

differentiation of Th17 cells in EAE; the blockade of IL-6 by anti-IL-6 

receptor monoclonal antibody (anti-IL-6R mAb) significantly suppressed 

EAE and the production of IL-17 and IFN-γ [62, 66]. Higher numbers of 

Treg and lower numbers of Th17 cells are also found in 

anti-IL-6R-mAb-treated EAE mice [62]. TGF-β signaling is also required 

for the differentiation of Th17 cells, as it was reported that the blockade of 

TGF-βby anti-TGF-βprevented IL-17 production and EAE onset [66, 67]. 

It was also reported that TGF-βplus IL-6 strongly induced Th17 cells in WT 

mice, but T cells from IL-6R-deficient mice did not differentiate into Th17 

cells in response to TGF- β plus IL-6, suggesting IL-6 signaling was 

important in the induction of Th17 cells in the presence of TGF-β [68].  

IL-23 can be produced by DC and macrophages [69, 70], and it is a 

potent activator of Th17 cell development, whereby it can activate 

pathogenic Th17 T cells. Monocyte-derived DCs from MS patients show 

production of IL-23, suggesting that IL-23 plays a role in the pathogenesis of 

MS [60]. IL-23 is composed of two subunits, p40 and p19, while IL-12 is 

composed of p40 and p35 [46]. IL-23-deficient mice are EAE-resistant, and 

this was confirmed by their significantly decreased clinical scores and low 
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production of IL-17 and IFN-γ [71, 72]. It was reported that p19-deficient 

mice (i.e., lacking IL-23) and wild-type (WT) mice developed EAE 

symptoms with similar severity after adoptive transfer of purified CD4+T 

cells from WT EAE donor mice, but that WT mice developed EAE with 

delayed disease onset and lower clinical scores when cells from 

p19-deficient EAE mice were injected. Neutralization of IL-23 during the 

effector phase of disease did not protect mice from EAE, suggesting that 

EAE could develop in the absence of IL-23 once the encephalitogenic T cells 

had developed [72], and that IL-23 plays an important role in the induction 

but not the effector phase of EAE [72]. It had also been reported that the 

p40-deficient (i.e, lacking IL-23 and IL-12) or p19-deficient mice 

(i.e,lacking IL-23) had less or no Th17 response and were resistant to EAE, 

while p35-deficient mice (i.e, lacking IL-12) showed normal Th17 response 

and were susceptible to EAE [46], suggesting IL-23 is required for the 

generation of the Th17 response, while IL-12 alone was not required in the 

induction of EAE.   

IL-21 is mostly produced by Th17 cells themselves, and it can further 

promote the activation of Th17 cells in an autocrine manner [73]. IL-21-/ -  

mice show a marked decrease in the production of IL-17, such that the 

frequency of Th17 cells induced in IL-21-deficient CD4+ T cells is less than 

that in WT CD4+ T cells in the presence of TGF-β and IL-6, but significantly 

higher than that without TGF-β and IL-6 in culture [73]. TGF-βplus IL-21 

significantly increased the frequency of Th17 T cells in IL-6-/ - mice, but 
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TGF-β plus IL-6 did not show any effect in inducing Th17 cells from 

IL-6R-/- T cells [68]. This suggested that TGF-βplus IL-21 represents an 

additional pathway which contributes to the generation of Th17 responses, 

and it was likely that IL-6 and IL-21 work independently in the presence of 

TGF-β ,  but that their cooperation can amplify the Th17 response [73]. The 

mechanisms are still not clear but it was considered that IL-21 and IL-6 can 

induce the activation of STAT3 and cooperate with TGF-β signaling to 

induce and amplify Th17 differentiation [73]. 

A recent study with human Th17 cells reported that TGF-βplus IL-1β , 

IL-6, IL-21 and IL-23 strongly increased IL-17 production in vitro,  while the 

highest production of IL-17 was found in cells cultured with TGF-β ,  IL-1β , 

IL-6, IL-21 and IL-23 together. Higher level IL-17 production is also found 

in the cells cultured with IL-1β ,  IL-6, IL-21 and IL-23 in the absence of 

TGF- β as compared with control cultures (i.e, without IL-1 β , IL-6, 

IL-21and IL-23), though IL-17 production is less than that with IL-1β , IL-6, 

IL-21 and IL-23 in the presence of TGF-β [74]. Taken together, these data 

suggest that TGF- β is important but not critical in promoting IL-17 

production when cooperating with other cytokines. It is likely that different 

combinations of cytokines could play different roles in the induction or 

inhibition of Th17 responses. Interestingly, TGF-β might inhibit IL-17 

production at later stages of inflammatory response, while it was required 

for the induction of IL-17 production at the beginning, as it was reported that 
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the neutralization of TGF-βdecreases IL-17 production in naive T cells but 

it does not affect IL-17 production by memory T cells [74]. It is likely that 

TGF-β is not critical for the maintenance of Th17 memory cells, and that 

other cytokines instead of TGF-β contribute to the development of Th17 

cells at this stage. Or it could be possible that high concentrations of TGF-

βdeliver negative signals to Th17 cells and suppress IL-17 production [74].  

IL-27 limits EAE pathogenesis by suppressing the development of 

Th17-producing cells [75, 76]. IL-27 is produced by DC and macrophages 

[46]. IL-27R-deficient mice are highly susceptible to EAE as they have a 

higher disease incidence, but there is no change in the day of disease onset, 

which probably indicates that IL-27 is important in disease induction but not 

its development. Increase of IL-17 production in LN and the CNS was found 

in IL-27R-deficient mice [75]. IL-27 inhibits the development of Th17 cells 

directly, and not through effects on Tregs. This was confirmed by 

experiments showing that CD4+ effector T cells from IL-27R-deficient and 

wild-type mice both had similar capacity to proliferate when co-cultured 

with wild-type Tregs. Tregs from IL-27R-deficient mice similarly 

suppressed the proliferation of wild-type T cells in the absence or presence 

of IL-27. IL-27 could also suppress the proliferation of effector cells from 

wild-type in the absence of Tregs [75]. Therefore, IL-27 was thought to be 

unnecessary for normal Tregs to suppress the development of Th17 cells. 

The suppressive effects of IL-27 on Th17 cells were dependent on the 

transcription factor STAT 1 [75]. It had been shown that IL-27 did not 
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inhibit the IL-17 production in STAT 1 - / -  mice, but it significantly inhibited 

the IL-17 production in STAT 1 WT mice [75] and reduced the 

differentiation of Th17 cells induced by IL-6 and TGF-β [75]. 

EAE is considered to be attributable to Th1 and Th17 responses, but it 

was found that Th2 responses are also involved in EAE [51, 77, 78]. It was 

reported that the transfer of MBP-specific Th2 cells (e.g., CD4+ T cells 

stimulated with MBP in the presence of IL-4) to RAG-1-/ -  mice also caused 

>90% EAE incidence, as does transfer of the same numbers of Th1 cells to 

these mice, although there was a few days delay in the disease onset. There 

was no evidence showing that these Th2 cells were converted into Th1 cells, 

as the spleens and CNS of Th2 cell recipients expressed IL-4, but not IFN-

γ  [51, 52]. IL-4-deficient C57BL/6 mice are also susceptible to EAE 

induction as compared with WT mice [79]. Mast cells, a major effector cells 

which is involved in the Th2 response, were shown to contribute to the EAE 

development, as mast cell-deficient mice exhibited a significantly lower 

disease incidence, delayed disease onset and lower clinical scores than 

wide-type mice [80]. These findings suggest the possibility that Th2 

response may be involved in EAE. But we must note that the roles of Th1, 

Th2 and Th17 response in the regulation of EAE are still not well 

understood.  
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2.2.5. B cells and antibodies in EAE/MS  

B cells are generated in the bone marrow, circulate through the 

bloodstream, spleen and LN. They express IgM and IgD on their surface as 

antigen receptors and make antibodies [8]. B cells can bind antigen via the B 

cell receptor (i.e, immunoglobin), process the antigen and present peptides 

in association with cell surface MHC II to T cells. These T cells recognize 

peptide/MHC II complexes via their TCR, and produce cytokines essential 

for the differentiation of B cells, as well as to antibody class switching [8]. 

Several cytokines are involved in the switching and production of antibody. 

For example, IL-4 and IL-13 are important in the production of IgG1, IFN-

γpromotes IgG2a production, while TGF-β  is involved in IgG2b production. 

IL-4 and IL-6 can promote the differentiation of B cells into plasma cells and 

increased the antibody production, while the interaction of CD154 on Th 

cells and CD40 on B cells can promote memory B cells generation [8].  

B cells and the antibodies they secret also have a specific role in EAE 

[81]. Previous studies indicated that B cells and antibody contribute to the 

recovery from EAE, inasmuch as myelin-specific antibodies can promote 

CNS remyelination and prevent further demyelination in EAE [82]. 

Increased production of MOG-specific IgG was found in IL-17-deficient 

mice during EAE as compared with wild-type EAE mice, suggesting that 

IL-17 influences MOG-specific IgG production by B cells [64]. The 

depletion of B cells before EAE sensitization significantly exacerbated 

disease symptoms and CNS demyelination [83]. Transfer of serum from rats 
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that had recovered from EAE to naive recipients suppresses the induction of 

EAE [84, 85]. In addition, the co-transfer of B cells and CD4+ suppressor T 

cells from rats that have recovered from EAE protects the recipients from 

EAE induction, suggesting that the suppressor T cells may stimulate the B 

cells to produce the antibodies that inhibited EAE development [86]. In the 

study of humoral immune responses that enhanced remyelination, some 

specific autoantibodies like IgG were found to be beneficial [82, 87]. To 

assess the importance of B cells in the regulation of EAE, Fillatreau, et al 

[88] found that B cells played an important role in the regulation of EAE by 

provision of IL-10. The transfer of B cells from WT mice that had recovered 

from EAE could protect against EAE in the recipients, but the transfer of 

IL-10-deficient B cells failed to do that.  

Conversely, B cells and CNS-specific autoantibodies are also involved 

in the pathogenesis of EAE and MS [89]. Increased levels of IgG are found in 

the CSF in MS patients [89, 90], and myelin-specific antibody-secreting B 

cells are present in the CNS lesions of MS patients [89, 91-93]. EAE mice 

induced by MOG(35-55) is associated with increased production of 

MOG(35-55)-specific IgG [94]. Myelin-specific B cells are found to 

accumulate in the CNS in EAE [95]. The depletion of B cells in mice with 

EAE significantly reduces clinical symptoms and the numbers of IFN-γ -and 

IL-17-producing CD4+T cells, as well as CNS demyelination [83]. The 

suggestion is that B cells could be related to an enhancement of 

antigen-presentation to antigen-specific T cells [96]. Thus, the roles of B 
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cells, antibodies and even complement in MS and EAE are complicated, and 

may include both pathogenic and reparative roles. One explanation is that 

different B cells subsets play different roles in the regulation of EAE. One 

kind of regulatory B cell, the IL-10-producing CD1dhi CD5+ regulatory cells, 

has been found to suppress EAE severity. As discussed above, depletion of B 

cells by anti-CD20 monoclonal antibody (mAb) before EAE sensitization 

significantly exacerbates EAE, and anti-CD20 mAb also depletes CD1dhi 

CD5+ regulatory B cells [83]. But the depletion of B cells shortly after 

disease onset inhibits EAE, probably because it inhibits the cooperation of 

antigen-specific T cells and B cells in EAE [83, 96]. 

 

2.2.6. Microglia and astrocytes in EAE 

Microglia and astrocytes are types of glial cells in the CNS. Microglia 

are CNS-resident macrophages, the function of which includes phagocytosis, 

antigen presentation, and cytokine and nitric oxide production [33]. 

Astrocytes are characterized as star-shaped glial cell which are involved in 

the maintenance of the BBB structure and barrier, neuronal replacement and 

signal conduction [97]. They were involved in the regulation of 

inflammatory responses in EAE, though the mechanisms are still not well 

understood [33, 98]. Increased numbers of microglia and astrocytes are 

observed in EAE lesions, suggesting they might potentially play a role in 

EAE pathogenesis [34]. Microglia and astrocytes could function as APCs 

during EAE development, as they express MHC II and co-stimulatory 
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molecules (e.g. CD80 and CD86), and have an ability to present antigen and 

co-stimulatory signals to autoreactive T cells [6, 33, 99]. In vitro 

experiments have shown that microglia can produce IL-12 and IFN-γ,  while 

astrocytes produce IL-12 and IL-23 under inflammatory condition, 

suggesting that they could potentially activate Th1 and Th17 cells and lead 

to further CNS inflammation [33, 100-102].  

But controversial results indicate that microglia and astrocytes may play 

a beneficial role in inhibiting EAE development. Microglia are capable of 

producing IL-10 in the normal CNS, which indicates that they might 

participate in immune surveillance and inflammation prevention in the 

normal CNS [33, 103]. Apoptosis of infiltrating cells in the CNS has been 

observed in EAE [104, 105], and these apoptotic cells are closely associated 

with astrocytes and microglia, such that it was thought that astrocytes and 

microglia could eliminate these inflammatory cells by inducing their 

apoptosis [105]. Astrocytes are also thought to participate in the 

remyelination in the CNS because of their ability to produce nerve growth 

factor (NGF) [98]. Taken together, it has been suggested that microglia and 

astrocytes may contribute to a balance in regulating the induction and 

prevention of inflammatory responses in the CNS during EAE development, 

and that their different roles may also depend on the local environment of 

CNS [98]. 
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2.3. Immunologic Tolerance 

2.3.1. Introduction to Tolerance 

Tolerance is an immunological response in which the immune system 

does not mount aggressive responses against self-antigen and tissues. The 

loss of immunologic tolerance may result in several kinds of autoimmune 

diseases, like MS [8, 16]. The immune system has several mechanisms, 

including central and peripheral tolerance, to maintain self-tolerance and 

prevent autoimmune responses. T cells which are specific for foreign 

peptides are selected by the process of negative selection in the thymus, 

whereas T cells that react with self-antigen are eliminated, leading to central 

tolerance, although these processes are not 100% efficient [8]. Thus, a 

peripheral mechanism for induction of T cell tolerance (i.e. outside the 

thymus) is necessary to prevent the autoantigen-specific T cells from 

damaging the host tissues. T cells are important in the maintenance of 

self-tolerance. The related mechanisms include [106]: 1) deletion by 

apoptosis, wherein autoreactive T cells could be induced to undergo 

apoptosis, leading to the elimination; 2) clonal anergy, which stops 

self-reactive T cells from responding to the signals of activation (for 

example, recognition of self-antigens by TCR leads to inactivation in the 

absence of co-stimulatory molecules) [8, 106, 107]; 3) the activation of 

immunosuppressive regulatory /suppressor T cells [16] and/or tolerogenic 

dendritic cells (DCs) which suppress autoreactive T cells. Similar 

mechanisms also prevent B cells from reacting against self-antigens. 
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Developing B cells recognizing self-antigens are induced to die by apoptosis, 

which is known as clonal deletion. In the process of clonal anergy B cells are 

rendered anergic if their receptors recognize self-antigens－ these B cells can 

no longer respond to specific antigen [8]. 

     

2.3.2. Characteristics and function of CD4+CD25+ Tregs 

CD4+CD25+ Tregs account for 5-10% of peripheral CD4+T cells [108]. 

Adoptive transfer of CD4+CD25- T cells to thymus-deficient mice leads to a 

higher risk of developing autoimmune disease, but the co-transfer of 

CD4+CD25+ T cells to the same mice does not lead to autoimmune disease 

[109]. This indicates that CD4+CD25+ T cells suppress the development of 

autoimmune disease [109]. CD4+CD25+ T cells express high levels of IL-10, 

TGF- β and IL-35, which suppress autoreactive T cells via 

cytokine-dependent mechanisms [47, 48, 110].  

 Autoreactive T cells are eliminated or inactivated via negative 

selection in the thymus, leading to central tolerance [107]. CD4+CD25+ 

Tregs are selected in the thymus by positive selection when interacting with 

intrathymic cortical epithelium-expressing MHC Ⅱ molecules [107]. The 

TCR expressed on CD4+CD25+ Tregs with higher avidity than those required 

for positive selection for effector T cells lead to the generation of 

CD4+CD25+ Tregs (naturally-occurring Tregs) [106]. Selection of 

CD4+CD25+ Tregs in the thymus is also controlled by FoxP3, a transcription 

factor that is necessary for the development of CD4+CD25+ Tregs [111]. 
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Tregs could also be induced in peripheral organs (induced Tregs), as 

suggested by the observation that Tregs reach normal numbers in 

thymectomized mice [106]. The main difference between naturally-occurring 

Tregs and induced Tregs is that nTregs are fully functional at the time of 

thymic export, whereas the development of iTregs in the periphery requires 

exposure to antigens under specific conditions [106, 112]. Current research 

has suggested that TGF-β  and IL-2 are necessary for the induction of FoxP3 

and generation of FoxP3+ iTregs [113]. When CD4+FoxP3- T cells are 

cultured with TGF-β  in the presence of IL-2, there was significant 

conversion of the CD4+FoxP3- T cells into CD4+FoxP3+ T cells as compared 

to cultures with TGF-β  alone [113]. Similarly, CD4+T cells cultured with 

IL-2 alone did not induce CD4+FoxP3+ Tregs [113]. In IL-2-/ -  mice the 

percentage of CD4+FoxP3+ T cells is significantly reduced even when 

cultured with TGF-β,  suggesting that TGF-β  and IL-2 are essential for the 

generation of CD4+FoxP3+ iTregs from CD4+FoxP3- T cells in the periphery 

[113]. It has also been shown that the addition of exogenous IL-4 or IFN-γ

reduces the ability of TGF-β  to induce FoxP3 expression in CD4+T cells 

[114]. The neutralization of IL-4 and IFN-γ  by anti-IL-4 and anti-IFN-γ

antibodies not only significantly increased the TGF-β-induced FoxP3 

expression, but also enhanced the suppressive ability of these cells [114]. It 

has also been reported that IL-6 can prevent the conversion of CD4+FoxP3- T 

cells to CD4+FoxP3+T cells in the presence of TGF-β  and, in the same vane, 

that IL-6R-deficient EAE mice have an enhanced frequency of CD4+FoxP3+ 
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T cells [68, 73]. Similarly, TGF-β  plus IL-21 or IL-27 also reduces the 

frequency of FoxP3+ T cells, although the stimulation with TGF-β  alone 

strongly induces CD4+FoxP3+ T cells [73]. Taken together, this suggests that 

different combinations of cytokines may play different roles in promoting or 

inhibiting Treg development and function.  

Previous studies revealed that CD4+CD25+ FoxP3+ Tregs are one of the 

major regulators of autoimmune tolerance [107]. They are potent suppressor 

cells, capable of suppressing the activity or the functions of effector T cells 

[47, 115]. This suppressive function is antigen non-specific, which is called 

bystander suppression [107, 116]. Several cytokines, such as IL-10 and 

TGF-β  are important in the function of CD4+CD25+ FoxP3+ Tregs [107, 117]. 

The mechanisms by which CD4+CD25+ FoxP3+ Tregs regulate the immune 

response can be divided in two ways: 1) cell-cell contact dependent; and 2) 

cytokine secretion-dependent. In the cell contact-dependent pathway, it was 

found that the suppressive function of Tregs was not mediated by cytokines, 

as the physically separation of Tregs from effector cells by a semi-permeable 

membrane resulted in no inhibition of proliferation of the effector cells [118]. 

Previous studies also confirmed that Treg derived from TGF-β-deficient or 

IL-10-deficient mice could still retain some of their suppressor function [106, 

119], which indicated that the function of Treg were only partially mediated 

by cytokine production. In addition, our lab also reported that 

IL-10-differentiated DC could induce Treg and these Treg suppressed the 

proliferation of effector T cells in a cell-cell contact-dependant mechanism, 
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as confirmed in transwell assays [12]. In the cytokine secretion-dependent 

mechanisms, IL-10 and TGF-β  are involved in the development and function 

of CD4+CD25+ Treg [48]. Treg produce high levels of IL-10 and TGF-β  

[120]. Tregs from IL-10-/ - mice fail to suppress airway hyperresponsiveness 

(AHR), and neutralizing antibodies against TGF-β  also reduce the 

suppression mediated by Treg and restored AHR [120], suggesting the 

suppressive function of Treg require the presence of IL-10 and TGF-β  [48].  

There are several characteristic markers of CD4+CD25+ Treg, including 

CD25, FoxP3, cytotoxic T lymphocyte–associated antigen (CTLA-4) and 

lymphocyte-activation gene (LAG-3) [107, 117]. CD25, known as IL-2Rα

chain, is a classical marker for Treg and it is expressed stably by these cells 

[121], but it is also expressed by other T cells with non-regulatory function. 

Most activated T cells, like CD8+T cells, express low/intermediate levels of 

CD25 and can differentiate into functional effector cells with high 

type-specific cytokine (e.g, IFN-γ ) production [47, 122]. The transcription 

factor FoxP3 is necessary for the development and the function of 

CD4+CD25+ Treg, IL-2 and TGF-β  contribute to the induction of FoxP3 [111, 

117]. Several genes, such as Gpr83, Ecm1, Cmtm7, Nkg7, Socs2 and 

glutaredoxin,  are found to be under the transcriptional control of FoxP3 

[123]. Many studies have shown that mice lacking FoxP3 are deficient in 

CD4+CD25+ Treg, and thereby develop multiple autoimmune diseases [117, 

124, 125]. FoxP3 is also considered to be a specific marker CD4+CD25+ 

Tregs [111, 117]. It confers suppressive function on CD4+CD25+ Treg [126]. 
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CTLA-4 is constitutively expressed by Treg and is essential for the 

activation of suppression and the maintenance of self-tolerance [48, 127, 

128]. Anti-CTLA-4 mAb does not alter the numbers of Tregs, but mice 

treated with anti-CTLA-4 mAb spontaneously developed autoimmune 

gastritis [129]. Treg from CTLA-4-knockout mice fail to suppress T effector 

cell activity [127]. LAG-3 is expressed by Treg upon activation and is 

necessary for their regulatory function. Thus, LAG-3-deficient Treg show a 

reduced regulatory function, while blockade of LAG-3 by anti-LAG-3 

antibodies also significant reduces the suppressive function of Treg [12, 

130]. CTLA-4 and LAG-3 can also bind to CD80/86 and MHC II on DC, 

leading to reduced expression of these molecule [48].  

 

2.3.3. CD4+CD25+Treg in EAE/MS 

Recent studies revealed that CD4+CD25+ Treg are the major players in 

the maintenance of immunologic self-tolerance (i.e., they can protect against 

EAE; [131]). Transfer of CD4+CD25+ Treg can induce tolerance to EAE 

induced by MOG(35-55) by suppressing IFN- γ production by 

MOG(35-55)-specific T cells and preventing CNS inflammation [132]. A study 

in a MBP-induced EAE model found that adoptive transfer of MBP-specific 

Treg induce bystander suppression in EAE, inasmuch as MBP-specific Treg 

provide significant protection against EAE induced by MBP, PLP and a 

mixture of MBP and PLP [133], indicating that the suppressive effects of 

these Treg was antigen-non-specific. In addition to these prophylactic effect, 
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Treg also showed a therapeutic effect in EAE, as i.v. administration of Treg 

on day 18 after EAE induction significantly reduces the severity of disease 

[133].  

As described above, FoxP3 is a specific marker of CD4+CD25+ Tregs. 

Reductions in FoxP3 expression are observed in MS patients, although there 

are no differences in the frequency of CD4+CD25+ Tregs when compared 

with healthy controls. This confirms that FoxP3 expression is required for 

the function of CD4+CD25+ Tregs [9, 126]. Tregs isolated from the 

circulation of MS patients poorly suppress the proliferation of, and IFN-γ  

production by T effector cells, but Tregs from healthy controls efficiently 

suppress both. There was no difference in the frequency of the Tregs from 

these 2 sources, suggesting that the suppressive function of Tregs in MS 

patients may be impaired [1, 9]. It is still not clear whether the loss of FoxP3 

expression was due to a reduction in the numbers of FoxP3+ Tregs, or to 

decreased FoxP3 expression at the cellular level [1, 9]. IL-10 expression is 

similar with cells from both populations, but blockade of IL-10 does not 

alter the suppressive function of Tregs [9], indicating that the operative 

mechanisms for these Tregs are cell contact-dependent.  

It had also been reported that IL-6 controls the induction of Th17 cells 

by suppressing the generation of Tregs in the presence of TGF- β .  

IL-6R-deficient mice show a significantly lower production of IL-17 as 

compared with wild-type mice and they are resistant to EAE induction, but a 

significantly higher frequency of CD4+CD25+FoxP3+ Tregs are found in their 
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spleens [68]. CD4+FoxP3- T cells from WT and IL-6R-deficient mice were 

transferred into RAG-/- mice after which the mice were immunized with 

MOG(35-55)/CFA. Twenty days later a significant conversion of FoxP3- T 

cells into FoxP3+ T cells as observed in the spleens of recipients receiving 

IL-6R-deficient CD4+FoxP3- T cells [68], suggesting that IL-6 signaling was 

capable of preventing the conversion of FoxP3- T cells into FoxP3+ T cells. 

Similarly, IL-6-/ - EAE mice induced by MOG(35-55)/CFA also demonstrate a 

defect in IL-17 production, but have a significantly higher frequency of LN 

FoxP3+ Tregs. The depletion of Tregs by anti-CD25 in IL-6-/ - mice rendered 

the mice more susceptible to EAE induction, suggesting that Tregs are 

important in preventing the development of EAE [73]. Interestingly, it had 

been reported that the deletion of Tregs could lead to a reappearance of Th17 

cells in IL-6-/ - mice, and that co-culture with combination of TGF-β and 

IL-21 reconstitutes the generation of Th17 cells and IL-17 production in 

these mice and suppress FoxP3+ T cells generation [68, 73]. Taken together, 

these recent findings suggest that there is a new paradigm in the balance of 

Th17 and Tregs, and this may contribute to the pathogenesis and regulation 

of EAE. Different combinations of Th1, Th2 and Th17 cytokines may 

regulate the balance of Th17 cells and Tregs during the immunological 

response, leading to the exacerbation or prevention of disease development.  
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2.3.4. The role of DCs in the immunologic stimulation and tolerance 

Dendritic cells (DCs), described early in the late 19th century, are 

considered to be professional APC and to play a significant role in the 

induction and regulation of immunological responses [16]. DCs, specialized 

bone marrow-derived cells that are found in most tissues of the body, are 

important to the induction of immunity and peripheral tolerance [134]. DCs 

have several characteristics in common. They are derived from hemopoietic 

bone marrow cells and their precursors travel through the blood to the tissues 

where they transform into immature DCs. These immature DCs constantly 

take up antigens from their surrounding environment, such as bacterial and 

viral antigens, but also normally processed self-tissues antigens, such as 

from apoptotic cells [8, 135]. Immature DCs become activated to mature 

upon interacting with pathogens. The captured antigens are degraded into 

small peptides capable of binding to MHC molecules within the 

phagolysomes, and then the peptide-MHC complexes are transported to and 

expressed on the cell surface. Upon stimulation, DC traffic to secondary 

lymphoid organs like LN, where they can stimulate naive T cells. The high 

density of MHC I- or MHC II-peptides complexes can be recognized by the T 

cell receptor (TCR) on the T cells (signal 1), resulting in the activation of 

effector CD8 or CD4 T cells, respectively. The expression of costimulatory 

molecules on the surface of DCs (signal 2) such as CD80/86 are increased 

following interaction with T cells, which deliver the second signal to T cells, 

leading to their further activation [8]. The secretion of cytokines signals by 
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DCs is important in the T cell differentiation. DCs that produce IL-12 

promote development of CD4 T cells into Th1 cells, whereas DC secretion of 

IL-4 drives development of Th2 cells [21]. DC are also important in Th17 

cells development. IL-6 and IL-23 produced by DC promote Th17 

differentiation, whereas IL-27 was involved in the suppression of Th17 

response [75].  

Dendritic cells play a significant role in immunologic tolerance in many 

diseases. Mature DCs induce immune responses, while tolerogenic DCs 

induce tolerance such as T cell anergy or Tregs which act as suppressor cells 

in the prevention of autoimmune disease [106]. Our lab had reported that 

tolerogenic DCs induced by IL-10 can inhibit Th2 response and reverse 

airway hyperresponsiveness in a mouse model of asthma [10]. IL-10 is 

produced by several kinds of cells, such as T cells, DC, B cells and 

macrophages [136, 137]. IL-10-treated DCs express lower levels of 

co-stimulatory molecules like CD40, CD54, CD80 and CD86 and surface 

MHC II, are actively endocytotic and secrete reduced levels of 

proinflammatory cytokines such as IL-1β,  IL-6 and IL-12. Activation of Treg 

markers such as LAG-3, CTLA-4 was found in response to tolerogenic DC 

treatment [11, 12]. As discussed above, the activation of effector T cells 

need 2 signals delivered by APCs, if T cells received only signal 1 without 

signal 2, they are rendered anergic, leading to the peripheral tolerance [8]. 

The down-regulation of co-stimulatory molecules induced by IL-10 is 

thought to be one of the mechanisms that mediates tolerance, as blocking this 
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signal delivery results in the inactivation of naive T cells. It is suggested 

that this suppressive function was partially due to a cell contact-dependent 

process [138, 139]. It was reported that DCs matured with TNF also induce 

tolerance to EAE by i.p. injection, but s.c. injection of these DCs did not, 

suggesting the protective effect of tolerogenic DC was partially depended on 

the delivery route [15].  

In humans, IL-10 treated-dendritic cells generated from peripheral 

blood mononuclear cells (MNC) induce T cells tolerance in vitro.  These 

DC10 expressed low levels of HLA-DR, CD86, CD80, CD83 and 

proinflammatory cytokines IL-12 and IL-6 [12, 139, 140]. The suppressive 

functions of DC10 appear to be dependent on a cell-cell contact mechanisms 

partially, which was confirmed in transwell assays [12, 139]. The soluble 

factors produced by DC 10 in the upper chambers of the transwell apparatus 

did not have any influence on effector T cells proliferation, suggesting that 

the suppressive function was not directly mediated by soluble factors such as 

cytokines and that Treg-T effector cell contact was required [139]. Our lab 

has also reported that DC derived from human peripheral blood could be 

differentiated into tolerogenic phenotype by treatment with IL-10. These 

tolerogenic DC10 also express low levels of several surface markers like 

CD40, CD54, CD80, CD83, CD86 and HLA-DR as well as low production of 

proinflamatory cytokines like IL-6 and IL-12, but express high levels of 

IL-10 and inhibitory receptor immunoglobulin-like transcripts 2 (ILT2). 

These DC10 could efficiently induce Th2 cell allergen tolerance and 
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suppress effector T cell activity by activating Tregs in vitro [12]. Taken 

together, this suggests a potential therapeutic strategy for MS and other 

autoimmune diseases by use of IL-10-inducd-tolerogenic DC in human. 

 

2.3.5. DC in the prevention of EAE/MS 

Several labs have reported that DC can prevent sensitization for EAE as 

described above [15, 141]. Huang, et al. [14] reported that bone 

marrow-derived DCs that have been pulsed with encephalitogenic MBP(68-86)  

in vitro could prevent sensitization for EAE in Lewis rats. These DC enhance 

apoptosis among spleen and LN cells. In a MOG(35-55)-induced EAE model in 

C57BL/6 mice, it has also been reported that the administration of 

IL-10-treated bone marrow derived-DC before sensitization prevents and 

reduces the severity of disease induction [13]. Injection of TNF- α

treated-DC that have been pulsed with MOG(35-55)  can prevent EAE induction 

in C57BL/6 mice given MOG(35-55), but unpulsed DC or DC pulsed with OVA 

in vitro failed to induce tolerance to EAE subsequently immunized with 

MOG(35-55) . This indicates that the tolerance to EAE induced by such DC is 

antigen-specific[142]. 

Several reports had indicated that tolerogenic DC induced by vasoactive 

intestinal peptide (VIP) [143] and Galectin-1 [144] could suppress 

established EAE. Based on the discovery of EAE prevention and treatment 

by tolerogenic DCs, we hypothesized that tolerogenic DC10 could be used to 

treat MS patients. IL-10-treated monocyte-derived DCs from MS patients 
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showed a significantly lower expression of surface molecules like CD80, 

CD83, CD86 and HLA-DR, and produce lower level of proinflammatory 

cytokines like IL-6 and IL-12 as compared with LPS-matured DCs [140]. 

This supports the suggestion that IL-10-differentiated DCs from MS patients 

could potentially be used therapeutically.     
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CHAPTER 3  

Research hypothesis and objectives 

3.1. Research hypothesis 

The purpose of this research is to determine whether that 

IL-10-differentiated dendritic cells can be used to therapeutically induce 

immunologic and disease tolerance in experimental allergic 

encephalomyelitis, a mouse model of multiple sclerosis.  

 

 

 

3.2. Objectives 

1.  To generate bone marrow derived DC10 by differentiating DC in the 

presence of IL-10.  

2.  To establish a chronic EAE model by immunizing C57BL/6 mice with 

MOG(35-55) .  

3.  To test the therapeutical effect of DC10 in mice with established EAE. 
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CHAPTER 4  

Materials and Methods  
 

4.1. Generation of IL-10- differentiated dendritic cells  

Bone marrow cells were flushed from the femora and tibiae of normal mice. 

We lysed the red blood cells by hypotonic lysis with sterile distilled water. 

We then resuspended the nucleated cells in RPMI-1640 supplemented with 

1% antibiotics/antimycotics, 50 μM 2-mercaptoethanol and 10% fetal bovine 

serum (FBS), and containing 20 ng/ml recombinant mouse granulocyte/ 

monocyte colony-stimulating factor (rmGM-CSF), then we seeded these cells 

into 6-well plates (VWR, Mississauga, ON). On days 3, 6 and 8, we removed 

half of the medium from each dish, centrifuged it to recover any cells, and 

resuspended any sedimented cells in 4 ml RPMI-10%FBS supplemented with 

20 ng/ml rmGM-CSF, then returned the cells to the plates. To generate 

immature DC, on day 10 the cells were collected by gentle pipetting and 

sedimented by centrifugation for 10 min at 1300 rpm (room temperature), 

then resuspended in 4 ml fresh RPMI-10% FBS containing 7.5 ng/ml 

rmGM-CSF. These cells were cultured for another 3 days before use as 

immature DC. To generate tolerogenic DC, the day 10 cells were instead 
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cultured for 3 days in 7.5 ng/ml rmGM-CSF and 50 ng/ml IL-10 [145]. On 

day 13, the cells were incubated for 4 hours at 37°C with antigen MOG(35-55) 

(MEVGWYRSPFSRVVHLYRNGK) (Genway, San Diego, CA; 50 μg/ml), or 

50 μg/ml ovalbumin (OVA; Sigma, Mississauga, ON.) before use.  

 

4.2. Characterization of IL-10-differentiated dendritic cells   

On day 13, 1-2x105 DC were collected and analyzed by FACS for the 

expression of selected APC-relevant surface markers. FITC-anti-mouse 

CD40 (BD, Mississauga, ON), CD80 (BD, Mississauga, ON), CD86 (BD, 

Mississauga, ON) and MHC II (eBioscience, San Diego, CA) were used to 

stain the DC (Isotype controls: CD40, hamster IgM; CD80, hamster IgG2; 

CD86, rat IgG2a; and MHC II, rat IgG2b) (BD, Mississauga, ON). The cells 

were then washed with PBS two times and fixed with equal volumes of 1% 

paraformaldehyde, then analyzed by FACS (Counter EPICS XL Flow 

cytometer, Beckman coulter, Mississauga, ON).  

 

To assess their cytokine secretion, at the end of the 13 days of culture, the 

DC were washed twice with PBS and cultured in RPMI-10% FBS 

supplemented with 7.5 ng/ml rmGM-CSF for two more days. Supernatants 

were then collected and their cytokines (IL-1β , IL-6, IL-10 and IL-12) 

analyzed by ELISA.  
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4.3. Induction of EAE 

Animals: female C57BL/6 (B6) mice (6-8 week old), were purchased from 

our institutional breeding colony. The following reagents were purchased: 

MOG(35-55)  (MEVGWYRSPFSRVVHLYRNGK) (Genway, San Diego, CA ; 

>95% purity), Mycobacterium tuberculosis H37Ra (Difco, Michigan), 

pertussis toxin (Calbiochem, CA), and Incomplete Freund’s adjuvant (IFA) 

(Difco, Michigan).  

 

B6 mice were injected s.c. into three sites on the shaved back on day 0 with 

100 µl of 200 µg MOG(35-55)  in CFA emulsion containing 400 µg  M 

tuberculosis H37Ra. We injected 200 ng of pertussis toxin i.v (100μ

L/mouse) in the tail vein of each mouse on days 0 and 2. Pertussis toxin can 

promote the activation of T cells and contribute to the destruction of 

blood-brain barrier [146, 147]. The mice were monitored and scored in a 

blinded manner (experiments 2 and 3 only) for the development of clinical 

symptoms using the following scale: 0, normal; 1, limp tail; 2, hind limb 

weakness; 3, partial hind-limb paralysis; 4, complete hind-limb paralysis; 5, 

hind-limb and forelimb paralysis, or the animal is moribund. 

 

4.4. DC10 treatment   

DC10 were pulsed with 50 μg/mL MOG(35-55) in RPMI-10%FBS medium 

for 4 hours at 37℃ ,  then the cells were washed in PBS twice to remove 

excess antigen and re-suspended at 1×106/ml PBS before injection (1×106 
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cells/mouse, i.p.). For therapeutic treatments, we injected the mice either 

once, or three times at weekly intervals, beginning when their clinical score 

had reached ≈ 2. The mice were killed at 7, 10 or 37 weeks post-treatment 

under isoflurane (Abbott Laboratories, QC) inhalant anesthesia. In our pilot 

experiment, we gave EAE mice a single treatment (n=7) while in the 

following experiments we gave them three injections of DC10 to improve the 

efficiency of DC10 treatment. We also increased our animal numbers to 

14-15 per group in order to reduce the standard error.  

Experiments design is showed in Figure 4 below. 
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Figure 4.1. Experiments design. EAE is induced by s.c. injection of 
MOG(35-55)/CFA on day 0. Pertussis toxin is i.v. injected on day 0 and 2. For 
therapeutic treatments, we injected the mice either once, or three times at weekly 
intervals, beginning when their clinical score had reached ≈ 2. Mice are killed on week 
7, 10 or 37 after EAE induction. A, pilot exp (n=7), DC10 was injected on day 16; B, 
Exp 1 (n=5), DC10 was injected on day 16, 23, 30 and 240; and C, Exp 2 & 3 (n=14-15), 
DC10 was injected on day 16, 23 and 30. 
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4.5. Histology staining and analysis 

Brains and spinal cords were harvested and fixed in 80% ethanol, 15% 

formaldehyde and 5% acetic acid for 3 hours on ice, then transferred into 

70% ethanol and stored at -70˚C before use. Sections (5μm) were prepared 

and stained with Hematoxylin-eosin (H&E) for evaluation of inflammatory 

cell infiltrates and Luxol fast blue (LFB) for demyelination. We estimate the 

area percentages of white matter by visual observation under light 

microscopy in a blinded manner using the following scoring scale:  

For Demyelination (spinal cord): 0, normal; 1, mild demyelination (<10% of 

the total area of the dorsal or ventral white matter); 2, moderate 

demyelination (10%-50% of the total area of the dorsal or ventral white 

matter); 3, severe demyelination (>50% of the total area of the dorsal or 

ventral white matter).   

For inflammatory cell infiltration (spinal cord): 0, normal; 1, mild 

infiltration (a single vessel affected, 1 layer of cells); 2, moderate 

infiltration (>2 vessels affected, 1-2 layers of cells); 3, severe infiltration 

(>2 vessels affected, >2 layers of cells).  

For inflammatory cell infiltration (brain): 0, normal; 1, mild infiltration 

(single vessel affected, 1 layer of cells); 2, moderate infiltration (single 

vessel affected, >2 layers of cells or >2 vessels affected, 1-2 layers of cells); 

3, severe infiltration (>2 vessels affected, >2 layers of cells). 
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4.6. Spleen and lymph node cell culture 

Mice were killed on week 7, 10 or 37 after EAE induction. Splenocytes and 

LN (cervical, mesenteric and mediastinal nodes) cells were counted and 

cultured in RPMI-10% FBS medium at 5x106 cells/ml for 72 hours in the 

presence (100μg/mL) or absence of MOG(35-55). Supernatants were collected 

at the end of culture and cytokine (IL-4, IL-6, IL-10, IL-12, IL-17, IFN-γ

and TGF-β) levels were measured by ELISA. 

 

4.7. Enzyme-linked Immunosorbant Assay (ELISA) 

ELISA was used for the detection of cytokines (IL-1β , IL-4, IL-6, IL-10, 

IL-12, IL-17, IFN-γ,  TGF-β) in the supernatants of DC, spleen or LN cell 

cultures. Immulon-4 ELISA plates were incubated with capture antibodies (2

μg/ml) (R & D Systems, Minneapolis, MN) in 50μL/well coating buffer 

(1M NaHCO3, 1M Na2CO3;  pH 9.6) overnight at 4℃ , and then were washed 

three times with PBS-0.5% Tween 20 (Polyoxyethylene-sorbitan 

monolaurate, Sigma Chemical Co.) (PBST). We then blocked non-specific 

binding by adding blocking buffer (PBS-10%FBS) (200μL/well) for 2 hours 

at room temperature and then washed 4 times with PBST. Next, we added the 

recombinant cytokine standards (R & D Systems, Minneapolis, MN) diluted 

in PBST (100μL/well) or samples (100μL/well) to the wells, and incubated 

them overnight at 4℃ ,  then washed the wells 4 times with PBST. Next, we 

added the detection antibodies (IL-1β, IL-6, IL-10, IL-12 and IL-17, 

200ng/mL; IL-4 and IFN-γ, 1μg/mL; TGF-β ,  100ng/mL) (R & D Systems, 
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Minneapolis, MN) (100 μ L/well) and incubated for 1 hour at room 

temperature, and then washed 6 times with PBST. Then, 100μL/well of 

streptavidin-conjugated horseradish peroxidase (Vector Laboratories Inc., 

Burlingame, CA), diluted 1:1000 in PBST, was added to each well and the 

plates were incubated at 37℃  for 1 hour. Following 8 washes with PBST, 

we added 100μ L of l2, 2’-azinobis (3-ethylbenthiazoline-sulfonic acid) 

(ABTS) peroxidase substrate solution (Gaithersburg, MD) to the plates and 

incubated them for 5-15 min at room temperature for color development, and 

finally read the plates at OD 405 nm using a NOVOSTAR plate reader (BMG 

LABTECH, Ontario). We did not perform ELISA for CNS cytokine 

expression because of the limiting amounts of material available from CNS 

homogenates. 

For antibody (IgG1, IgG2a, IgG2b) detection, 5μ g/mL MOG(35-55) was 

diluted in coating buffer and 50μL/well was added as the capture reagent. 

Sera were diluted in 1:10 in PBS and added (100μL/well). Anti-mouse IgG1, 

IgG2a and IgG2b (BD, Mississauga, ON) was diluted in PBST (1μg/mL) 

and added (100μL/well) as the detection antibody. Streptavidin-conjugated 

horseradish peroxidase and ABTS Substrate Solution were subsequently 

added as above, and the plates were read at OD 405nm as described above. 
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4.8. Spleen/ lymph node cell proliferation 

Proliferation was assessed by measuring the levels of 3H-methylthymidine 

incorporation into cellular DNA using liquid scintillation counting. 

Splenocytes and LN cells were harvested from mice and cultured in 

RPMI-10% FBS medium (200μL, 5 x 105 cells/well) in the presence (100μ

g/ml) or absence of MOG(35-55) . The cells were cultured in triplicate for 72 

hours, then pulsed with 1 µCi of [3H] thymidine (GE HealthCare, Mississauga, 

ON) for the last 16 to 18 hours of the culture and the levels of 3H-thymidine 

incorporation determined by a liquid scintillation counting (Beckman coulter 

LS6000IC, Fullerton, CA).  

 

4.9. RNA purification and qRT-PCR analysis: 

Total RNA was purified from the CNS using RNeasy Mini Kits (Qiagen, 

Mississauga, ON). Briefly, brain and spinal cord tissues were harvested 

from mice and 600μL Buffer RLT (i.e., guanidinum isothiocyanate) was 

added. The tissues were disrupted and homogenized using a homogenizer 

(Kinematca, NY). The lysates were transferred into QIAshredder spin 

columns and centrifuged for 2 min (>10,000 rpm), and the supernatants 

collected and mixed with 1 volume of 70% ethanol. About 700μL of sample 

was transferred to an RNeasy spin column placed in a 2 ml collection tube 

and centrifuged for 15 s at >10,000 rpm. The flow-through was discarded 

and 700μL Buffer RW1 (contains guanidine salt) was added to the RNeasy 

column and centrifuged for 15 s at >10,000 rpm to wash the spin column. 
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The flow-through was again discarded and 500μL of Buffer RPE was added 

to the RNeasy spin column to wash the column 2 times. We then placed the 

RNeasy spin column in a new 1.5 ml collection tube and add 50μ L 

RNase-free water directly to the column membrane and spun the column for 

1 min at >10,000 rpm to elute the RNA, which was stored at -80℃ for later 

use.   

The RNA was reverse-transcribed to DNA using quantitative real time 

(qRT)-PCR. qRT-PCR analysis was carried out using Brilliant II SYBR 

Green qRT-PCR Master Mix Kits (Stratagene, La Jolla, CA). The reactions 

were run using a Mx3005P Instrument (Stratagene, La Jolla, CA) as follows: 

segment 1 (1 cycle), 50˚C for 30 min and 95˚C for 10 min; segment 2 (40 

cycles), 95˚C for 30 sec, 63˚C for 30 sec, and 72˚C for 30 sec; segment 3, 

the reading was taken at 72˚C during the 30-sec plateau. All mRNA levels 

were normalized to mouse β -actin levels. The results were calculated as 

quantities relative to the calibrators, where the calibrator samples were 

assigned a value of 1 and all the samples are expressed as the fold-changes 

relative to the calibrators. The formula used for the analysis was [148]:  

Relative quantity to calibrator = ;  
)(2 CtΔΔ−

Where unknownNormalizerGOICalibratorNormalizerGOI CtCtCtCtCt )()( −−−=ΔΔ   
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Table 4.1. The sequences of primers for qRT-PCR 

Host Primer Name Length (bp) Primer Sequence 

Mouse β-actin F 20 AGAGGGAAATCGTGCGTGAC 

Mouse β-actin R 21 CAATAGTGATGACCTGGCCGT 

Mouse IFN-γ F 23 TCAAGTGGCATAGATGTGGAAGA 

Mouse IFN-γ R 22 TCAGGTGTGATTCAATGACGCT 

Mouse IL-4 F 19 ACAGGAGAAGGGACGCCAT 

Mouse IL-4 R 21 GAAGCCCTACAGACGAGCTCA 

Mouse IL-10 F 22 AAGCCTTATCGGAAATGATCCA 

Mouse IL-10 R 22 GCTCCACTGCCTTGCTCTTATT 

Mouse IL-12 p40 F 24 GAAGTTCAACATCAAGAGCAGTAG 

Mouse IL-12 p40 R 20 AGGGAGAAGTAGGAATGGGG 

Mouse IL-17 F 23 ATCTGTGTCTCTGATGCTGTTGC 

Mouse IL-17 R 20 CACGCTGAGCTTTGAGGGA 

Mouse IL-23 p19 F 23 CACCTGCTTGACTCTGACATCTT 

Mouse IL-23 p19 R 22 GCTGCCACTGCTGACTAGAACT 

Mouse TGF-β F 20 GACTCTCCACCTGCAAGACCAT 

Mouse TGF-β R 22 GGGACTGGCGAGCCTTAGTT 

Mouse FOXP3 F 23 CTTTCACCTATGCCACCCTTATC 

Mouse FOXP3 R 23 TCAAATTCATCTACGGTCCACAC 
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(F=Forward, R=Reverse; GOI: gene of interest; Ct: the numbers of cycles required 

for the fluorescent signal to cross the threshold (background level)) 

 

5.0. Statistics 

All data were expressed as the mean±SEM. Clinical scores were analyzed 

by repeated measure analysis-of-variance (ANOVA). Other group 

differences were analyzed by one-way ANOVA with Fisher’s LSD post-hoc 

testing. Differences were considered significant when P-values were less 

than 0.05. 
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CHAPTER 5  

Results 
 

5.1. In vitro characterization of IL-10-differentiated DC  

5.1.1. DC treated with IL-10 do not show increased expression of CD40, CD80, 

CD86 or MHC II relative to immature DC 

IL-10-differentiated DC were generated in vitro by differentiation in the 

presence of IL-10 and then their expression of CD40, CD80, CD86 and 

MHC II was assessed by FACS using FITC-labeled Abs. DCs were 

harvested on day 13 of culture. The results were shown in Fig. 5.1.1. FACS 

analysis confirmed that IL-10-differentiated DC (DC10) did not show 

increased expression of the DC markers CD40 (Mean fluorescence intensity 

[MFI]: 6.56 vs 12.7), CD80 (MFI: 61 vs 88.7), CD86 (MFI: 19.1 vs 17.8) or 

MHC II (MFI: 86 vs 107) relative to immature DC (DC(GM-CSF)), 

indicating that IL-10 does not induce high expression of these molecules as 

compared with DC generated without IL-10 (DC(GM-CSF)).   
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Figure. 5.1.1. Expession of CD40, CD80, CD86 and MHC II by the DC 
populations assessed by FACS. Bone marrow cells were cultured in RPMI-10% 
FBS containing 20 ng/ml GM-CSF for 10 days. On day 10, cells were cultured in 
RPMI-10%FBS containing 7.5 ng/ml GM-CSF and IL-10 (50 ng/ml) to generate 
tolerogenic DC (DC10). For immature DC generation (DC(GM-CSF)), cells were 
cultured in RPMI-10%FBS containing 7.5 ng/ml GM-CSF alone.  On day 13, the cells 
were stained for CD40, CD80, CD86 and MHC II and analyzed by FACS using 
FITC-labeled specific (solid line) and isotype controls (shaded) antibodies. 
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5.1.2. IL-10-differentiated DC produce similar levels of IL-1β ,  IL-6 and 

IL-12, but higher levels of IL-10 relative to immature DC 

At the end of the DC culture (day 13) from Fig 5.1.1, DC were washed twice 

with PBS and culture for two more days. Supernatants were collected and 

their IL-1β ,  IL-6, IL-10 and IL-12 levels were assessed by ELISA. Fig. 

5.1.2 shows that DC10 secreted low levels of IL-1β ,  IL-6 and IL-12, like 

DC(GM-CSF), but higher levels of IL-10. It was interesting that OVA-pulsed 

DC10 (DC10+OVA) showed a higher secretion of IL-6 and IL-10 as 

compared with MOG(35-55)-pulsed DC10 (DC10+MOG(35-55)), suggesting that 

OVA may provide stimulatory signals for production of these cytokines by 

DC10. Taken together, the secretion of low levels of proinflammatory 

cytokines like IL-1β , IL-6 and IL-12 but higher levels of IL-10 further 

suggested that these DC10 express a tolerogenic phenotype. We don’t think 

DC10+OVA here could be used as effectively tolergenic treatment to EAE 

because of its antigen non-specificity. The relative tolerogenic potentials of 

MOG-DC10 vs OVA-DC10 is discussed further in the ‘Discussion’ section. 
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 4 hours and then washed twice 
with PBS and cultured for two more days. Supernatants were collected and IL-1β, IL-6, 
IL-10 and IL-12 levels were assessed by ELISA. Statistic was not done because cells 
from all mice were pooled. Data are representative of two experiments. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.2. Cytokine production by DC10 and DC(GM-CSF). DC 10 and 
DC (GM-CSF) were generated as described in Fig.5.1.1. At the end of culture (day 13), 
DC were pulsed with MOG(35-55) or OVA (50 μg/ml) for
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5.2. Treatment of established EAE mice with DC10 

repetitive injections of DC10. For the single treatment, DC10 were injected 

6

h there was no significant difference 

etween the DC treatment group and non-treatment group (From day 16 to 74, 

=0.23; from day 30 to 74, p=0.21).  

 

 

 

 

                      

 

 

5.2.1. Impact of DC10 treatment in EAE  

The aim of our research was to test whether DC10 could be used to 

effectively treat on-going EAE. For the treatment, we tried both a single and 

i.p. (1×10  cells/mouse) when the average clinical score had reached ≈ 2 

(i.e., when the mice had developed readily discernible symptoms of EAE 

[specifically, hind limb weakness]). As shown in Fig. 5.2.1., we found that 

the EAE mice treated with DC10 showed a lower mean value for their 

clinical score (1.5 vs 2.0-2.5), althoug

b

p
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Figure 5.2.1. Clinical scores of EAE mice in response to a single DC10 
treatment.  C57BL/6 mouse were immunized with 200 ng MOG(35-55)/CFA 
containing 400 μg M. tuberculosis H37Ra into three sites on the shaved 
back on day 0. Pertussis toxin was given i.v (200 ng/mouse) in the tail vein 
of each mouse on days 0 and 2. (Disease incidence: 71%). For the single 
DC10 treatment, DC10 were injected i.p (1×106 cells/mouse) when the 
clinical score had reached ≈ 2 (day 16, black arrow). The mice were 
monitored and scored (not blinded in this experiment) for the development 
of clinical symptoms (n=7) using the following scale: 0, normal; 1, limp tail; 
2, hind limb weakness; 3, partial hind-limb paralysis; 4, complete hind-limb 
paralysis; 5, hind-limb and forelimb paralysis or the animal is moribund. 
This experiment was done once. All P values were determined by repeated measure 
analysis-of-variance (ANOVA). 

paralysis; 5, hind-limb and forelimb paralysis or the animal is moribund. 
This experiment was done once. All P values were determined by repeated measure 
analysis-of-variance (ANOVA). 
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5.2.2. Assessment of DC10 as a therapeutic approach for EAE 

To improve the efficiency of DC10 treatment, we performed repetitive 

injections, giving DC10 i.p every week for 3 weeks beginning when their 

clinical scores were ≈ 2. As shown in Fig. 5.2.2., we repeated this experiment 

3 times. The clinical scores in the 1st experiment were not determined in a 

blinded fashion while the 2nd and 3rd experiments were. In 2 of our 

experiments, we found that DC10 significantly inhibited EAE development 

(p<0.05), as determined using repeated measure ANOVA assays. As shown 

in Fig. 5.2.2.A (the 1st  experiment), DC significantly decreased the clinical 

scores in EAE mice (From day 16 to 130, p=0.003; from day 24 to 130, 

p=0.002). The therapeutic effect started from about day 24 (i.e, 8 days after 

the treatment started) and lasted for about 120-130 days after EAE induction 

(mean clinical score: 0-1.0). Compared to the DC10 treatment group, the 

PBS-treated group maintained their EAE clinical scores at around 1.5-2.5. 

The DC10 treatment group mice reverted to the EAE phenotype at about day 

100-112. We then gave these reversed DC10 treated-mice one more DC10 

treatment on day 240 to see whether this could reestablish tolerance, but we 

did not observe any significant difference subsequent to this 4th DC10 

treatment. 

In our second experiment, we did not observe any statistical difference 

in clinical scores. As shown in Fig. 5.2.2.B, although there was no  
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Figure 5.2.2. Clinical scores of EAE mice in response to repeated 
treatment with DC10.  C57BL/6 mouse were immunized and scored as described. 
For the repetitive DC10 treatment, DC10 were injected i.p weekly for 3 wk (1×106 
cells/mouse) when the clinical score had reached ≈ 2 (Day 16, 23, 30 or 240; black 
arrows)). The mice were monitored and scored for the development of clinical 
symptoms (A, n=5; B and C, n=14-15). Only experiment 2 and 3 were scored in 
blinded manner. Disease incidence in 1st exp., 69%. 2nd exp., 97%. 3rd exp. 100%. All 
P values were determined by repeated measure ANOVA. 
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significant difference (From day 16 to 52, p=0.164; from day 24 to 52, 

p=0.132) in the clinical scores between the PBS-treated and DC10-treated 

EAE groups, nevertheless the DC10-treatment group had lower clinical score 

values than the PBS-treatment group. The reasons why there was no 

statistical difference in clinical scores in this experiment are unclear, but 

could probably due to the variance of DC10 treatment effects (i.e, the 

activity and the function of DC10 generated for these experiments). Such 

effects could also in part explain the reason why the DC10 treatments work 

so well in the first experiment (i.e, DC10 treatments reduced clinical scores 

to almost 0.). Other factors such as stress could also affect the clinical scores, 

as it has been suggested that stress can influence EAE susceptibility [149].   

Similarly, in the 3rd experiment, as shown in Fig. 5.2.2.C, DC10 were 

also injected i.p on days 16, 23 and 30. In the DC10 treatment group, the 

clinical score decreased significantly after the DC10 treatments. After 3 

injections, we did not see a relapse of the EAE clinical scores as compared 

with PBS-treatment group (From day 16 to 70, p=0.014; from day 24 to 70, 

p=0.009).  
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5.3. DC10 treatment reduces demyelination and cell inflammation in the 

spinal cord 

EAE is characterized by demyelination and inflammatory cell infiltration 

within the CNS, both of which contribute to the paralysis observed clinically. 

Herein, we wanted to determine whether our DC10 treatments could reduce 

demyelination and cell infiltration in the CNS in our EAE model. In our 

histological studies, MOG-induced EAE mice developed cellular infiltration 

and demyelination within the white matter of the spinal cord (Fig. 5.3A). We 

also found foci of cell infiltration in the brains of the EAE mice, but there 

was no significant difference as compared with normal mice (p>0.05), and 

there was also no demyelination observed in the brains of the EAE mice 

(Fig.5.3.B, C and D). Fig. 5.3.A depicts the spinal cord histology in normal, 

EAE and EAE-DC10 mice in our experiments. In the 1st experiment (Fig. 5.3 

B), the mice were harvested at 37 wk. At this time we did not see any 

significant difference in demyelination or cellular infiltration into the CNS 

between the DC10- and PBS-treated groups, although there is a lower level 

of demyelination in the DC10 treatment group (p=0.063) within the spinal 

cords. One potential reason why we did not see significant differences in 

demyelination and infiltration could be that these effects had declined to 

background at this a late stage of disease, although we have no evidence to 

support this. In the 2nd experiment (Fig. 5.3C), the DC10 treatments 

significantly reduced demyelination in the spinal cord at 7 wk, but there was  
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Figure 5.3. Histological evaluation of the impact of DC10 treatment on 
brain and spinal cord inflammation and demyelination in EAE mice. 
C57BL/6 mouse were immunized and treated with DC10 as described. Mice 
were killed on week 7, week 10 or week 37. Spinal cords and brains were 
fixed and stained with hematoxylin-eosin (H&E) to determine cellular 
infiltration or luxol fast blue (LFB) to evaluate demyelination (original 
magnification, X200; or under oil immersion lens, X600). (A), 
Photomicrographs of the spinal cord lesions in normal, EAE and 
EAE-DC10 mice (7 wk, 3rd experiment). (B), Histology scores of spinal 
cords (LFB and H&E) and brains (H&E) in the 1st experiment (37 wk, n=5). 
(C), Histology scores of spinal cords (LFB and H&E) and brains (H&E) in 
the 2nd experiment (7 wk, started with 14 animals, 7 from them were killed 
at 7 wk). (D), Histology scores of spinal cords (LFB and H&E) and brains 
(H&E) in the 3rd  experiment (7 and 10 wk, started with 15 animals, 7 from 
them were killed at 7 wk, then with 7 from them until wk 10). ND: Not 
determined. No demyelination was observed in the brain. 
Photomicrographs were representative of 3 independent experiments. 
Histology scores were examined by light microscopy in a blinded manner 
using the following scoring scale: For Demyelination (spinal cord): 0, 
normal; 1, mild demyelination (<10% of the total area of the dorsal or 
ventral white matter); 2, moderate demyelination (10%-50% of the total 
area of the dorsal or ventral white matter); 3, severe demyelination (>50% 
of the total area of the dorsal or ventral white matter).  For inflammatory 
cell infiltration (spinal cord):0, normal; 1, mild infiltration (a single vessel 
affected, 1 layer of cells); 2, moderate infiltration (>2 vessels affected, 1-2 
layers of cells); 3, severe infiltration (>2 vessels affected, >2 layers of 
cells). For inflammatory cell infiltration (brain): 0, normal; 1, mild 
infiltration (single vessel affected, 1 layer of cells); 2, moderate 
infiltration (single vessel affected, >2 layers of cells or >2 vessels affected, 
1-2 layers of cells); 3, severe infiltration (>2 vessels affected, >2 layers of 
cells). All P values were determined by ANOVA. * P<0.05, ** P<0.01, *** 
P<0.001. 
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no significant difference (p>0.05) in inflammatory cell infiltrates in spinal 

cord or brain. In the 3rd experiment (Fig. 5.3D), the DC treatment 

significantly reduced demyelination in the spinal cord at 7 wk and 10 wk, as 

well as cell infiltration at 7 wk, but there was no significant difference in 

inflammatory cell infiltrates in the spinal cord at 10 wk. We did not observe 

any significant differences in cell infiltration of the brain at 7 wk or 10 wk. 
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5.4. DC10 treatment reduces inflammatory cytokine production 

 in the spleens and lymph nodes 

To investigate how DC10 treatments affected the production of 

Th1/Th2/Th17 cytokines, we performed ELISA on the 3 day culture 

supernatants generating from total spleen and LN cells that were stimulated 

with or without MOG(35-55). In the 1st experiment (Fig. 5.4 A), we showed 

that the DC10 treatments had significantly reduced the production of IFN-γ ,  

IL-4, IL-6 and IL-10 in the spleen and IFN-γ ,  IL-4, IL-6, IL-10 and IL-17 in 

the LN. We did not see much difference in IL-12 and TGF-β expression in 

between the PBS- and DC10-treated EAE groups. In the 2nd experiment (Fig. 

5.4B), we found that the DC10 treatments had significantly reduced IFN-γ ,  

IL-4, IL-6, and IL-17 expression in the spleen (7 wk). In the LN, the DC10 

treatment significantly decreased only IL-4 production (7 wk), but there was 

no significant difference in the IL-17 expression (p=0.056) in the LN. In the 

3rd experiment (Fig. 5.4C), we found that DC10 treatments significantly 

reduced IFN-γ ,  IL-4, IL-6, IL-10 and IL-17 in the spleen and IFN-γ ,  IL-4, 

IL-6, IL-10, TGF-β and IL-17 in the LN (7 wk). We also found that the 

DC10 treatment had significantly reduced IL-6 and IL-17 expression in the 

spleen and IFN-γ ,  IL-4 and IL-10 in the LN at 10 wk, but there were no 

statistically significant differences in any other cytokines. Nevertheless 

there was a lower level of IFN-γ (p=0.062) and IL-4 (p=0.06) in the spleen 
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and IL-6 (p=0.065) and IL-17 (p=0.073) in the LN in response to the DC10 

treatment.  
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Figure 5.4. The impact of DC10 treatment on spleen and lymph node 
cell cytokine production in EAE. C57BL/6 mouse were immunized as 
described. Mice were killed on week 7, 10 or 37 wk after EAE induction. 
Total cells from the spleens and lymph nodes were counted and cultured in 
RPMI-10% FBS medium at 5x106 cells/mL. These cells were cultured for 
72 hours in the presence or absence of MOG(35-55) (0 or 100μ g/mL) 
(n=5-7). Supernatants were collected at the end of culture and IL-4, IL-6, 
IL-10, IL-12, IL-17, IFN-γ and TGF-β  levels were measured by ELISA. A, 
1st experiment; B, 2nd experiment; C, 3rd experiment.  All P values were 
determined by ANOVA. *P<0.05, ** P<0.01, *** P<0.001.
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In these experiments, IL-4, IL-6, IL-10, IL-12, IFN-γ and TGF-β  levels 

did not markedly increase in response to antigen, suggesting that the 

production of these cytokines might not be antigen-specific, or the cells were 

already activated to produce cytokines in vivo,  perhaps due to the leakage of 

myelin antigens from the CNS, or to in situ antigen presentation by 

CNS-derived DC. Taken together, despite some occasional exceptions, our 

data shows that DC10 treatments suppressed the production of inflammatory 

cytokines in secondary lymphoid organs, suggesting that DC10 treatments 

suppress the activation of inflammatory cells in the spleens and LNs of mice 

with EAE.
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5.5. Effect of DC10 treatment on the production of IgG1,IgG2a  

and IgG2b: 

The roles of autoantibodies in EAE are still not clear, although increase in 

their levels have been reported by others [94]. To investigate the influence 

of DC10 treatments on the production of MOG(35-55)-specific IgG1, IgG2a 

and IgG2b in EAE, we collected the serum on week 7, 10 or 37 after EAE 

induction and measured the levels of these antibodies by ELISA. In the 1st 

experiment (Fig. 5.5A), we found that DC10 treatments significantly 

increased IgG1 production on week 7, 10 and 37; IgG1 and IgG2a production 

on week 10 and 37; and IgG1, IgG2a and IgG2b production on week 37; In 

the 2nd experiment (Fig. 5.5B), we also found that the DC10 treatments 

increased IgG1 on week 7, although no differences in IgG2a and IgG2b 

levels in the PBS- and DC10-treated groups were observed at this time. We 

also found that DC10 treatments significantly increased IgG1, IgG2a and 

IgG2b levels on week 10. Similarly, in the 3rd experiment (Fig. 5.5 C), we 

showed that DC10 treatments significantly increased IgG1 on week 7, as 

well as IgG1 and IgG2a in week 10. Though it is not clear why DC10 

increased these antibody responses, we query whether the DC10 treatments 

may have in part inhibited EAE through their effects on the 

MOG(35-55)-specific IgG1, IgG2a and IgG2b responses [82]. 
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Figure 5.5. Impact of DC10 treatments on MOG-specific antibody 
production in EAE mice. C57BL/6 mouse were immunized as described. 
Serum was collected on week 7, 10 or 37 after EAE induction, and 
MOG(35-55)-specific IgG1,IgG2a and IgG2b levels were measured by ELISA 
as described (n=5-7). Fig. 5.5 shows the data from the 1st (A), 2nd (B) and 
3rd (C) experiment. All P values were determined by ANOVA.*P<0.05, ** P<0.01, 
*** P<0.001. 
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5.6. DC10 treatments did not have significant effects on inflammatory or 

immunoregulatory cytokine mRNA expression in the CNS of EAE mice 

Inflammatory cytokines produced by infiltrating cells contribute to the 

inflammatory response in the CNS and thereby can significantly affect EAE 

[2, 46]. Herein we used qRT-PCR to compare the expression of a number of 

cytokines in the CNS of DC10- and PBS-treated EAE mice, using total RNA 

purified from the CNS. In none of the three experiments (Fig. 5.6) we 

observed significant differences in the expression of IL-12, IFN-γ ,  IL-4, 

IL-17, IL-23 or TGF-β in the CNS of EAE mice as compared with normal 

controls. In the 1st experiment (Fig. 5.6A) in which the mice were harvested 

at a late stage (37 wk after EAE induction), we did not detect any expression 

of IL-12, IFN-γ ,  IL-10 or IL-17 in spinal cords or IL-17 in the brains in this 

experiment. In response to the DC10 treatments, we did not observe 

significant differences in expression of most of these cytokines. In the 2nd 

experiment (Fig. 5.6B), we observed a similar pattern, but we also found a 

significant higher expression of IL-10 in the spinal cord in response to DC10 

treatments (7 wk), and a higher expression of FoxP3 (p=0.07) in the brain (7 

wk), but there was no significant difference. In the 3rd experiment (Fig. 

5.6C), on wk 7 we found a significant increase in FoxP3 mRNA in the brains 

and IL-10 mRNA expression in the spinal cords. It suggests that Tregs were 

induced in the CNS or migrated from periphery into the CNS. But it still 

needs to be investigated further, as in two of our experiments there was no 

discernible induction of Foxp3, while in the third there was. 
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Figure 5.6. The impact of DC10 treatments on inflammatory cytokine 
expression in the CNS of EAE mice.  C57BL/6 mouse were immunized as 
described. Mice were killed on week 7, 10 or 37 and total RNA was 
purified from the brains and spinal cords (n=5-7). IL-4, IL-10, IL-12, IL-17, 
IL-23, IFN-γ，FoxP3 and TGF-β  expression in the brains and spinal cords 
were measured by qRT-PCR. We did not analyze FoxP3 for spinal cord, 7 
week in the 2nd experiment because of the limitation of low mRNA 
extraction. The reaction conditions used were: segment 1 (1 cycle), 50˚C 
for 30 min and 95˚C for 10 min; segment 2 (40 cycles), 50˚C for 30 min, 
95˚C for 30 sec, 63˚C for 30 sec, and 72˚C for 30 sec; segment 3, the 
reading was taken at 72˚C during the 30-sec plateau. All mRNA levels were 
normalized to mouse β -actin levels. Results were calculated as relative to 
the calibrators, where the calibrator samples were assigned a quantity of 1 
and all the samples are expressed as fold-changes relative to calibrators. 
All samples were processed individually. Fig. 5.6 shows the data from the 
1st (A), 2nd (B) and 3rd (C) experiment (nd, not detectable). All P values were 
determined by ANOVA.*P<0.05, ** P<0.01. 
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5.7. DC10 treatments increased the proliferation of spleen and lymph node 

cells 

EAE is considered to be mainly mediated by T cells [2, 49, 50]. To investigate 

whether DC10 treatments had any affect on T cell responses while they were 

decreasing clinical scores, we measured the proliferation of total spleen and LN 

cell in response to MOG(35-55)  antigen challenge. Total spleen and LN cells 

were cultured with 0 or 100 μg/mL MOG(35-55) and proliferation was measured 

using a 3H-thymidine incorporation assay. In the 1st experiment (Fig. 5.7 A), we 

found that DC10 treatments significantly increased spleen cell proliferation in 

the cultures on week 37, irrespective of whether we added exogenous 

MOG(35-55) . In the 2nd and 3rd experiment (Fig. 5.7 B and C), we also found that 

the proliferations of spleen and LN cells in the culture were enhanced on week 

7 or 10 in response to the DC10 treatments. Our results are similar to those of 

previous reports in which higher proliferation of spleen and LN cells was 

observed for immature MBP-pulsed prophylactically DC-tolerized EAE rats 

[14].  
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Figure 5.7. Impact of DC10 treatments on spleen and lymph node cell 
proliferation in EAE mice. C57BL/6 mouse were immunized as described. 
Mice were killed on week 7, 10 or 37 after EAE induction. Total nucleated cells 
from the spleens and lymph nodes were counted and cultured in RPMI-10% FBS 
medium in a total volume of 200μL (5 x 105 cells/well). These cells were 
cultured in triplicate for 72 hours in the presence or absence of MOG(35-55) (0, 
100μg/mL), then pulsed with 1 μCi of 3H thymidine for the last 16 to 18 
hours. The levels of 3H-thymidine incorporation were determined by liquid 
scintillation counting (n=5-7). (ND, Not determined). Fig. 5.7 shows the data 
from the 1st (A), 2nd (B) and 3rd (C) experiments. All P values were determined by 
ANOVA.*P<0.05, ** P<0.01, *** P<0.001.
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CHAPTER 6 

Discussion and Conclusions 

6.1. Discussion 

Our lab has already reported that OVA-specific DC10 treatments can 

reverse airway hyperresponsivness and induce tolerance in allergic asthma in 

mice [10, 11, 150]. Herein, we wanted to test the therapeutic effects of 

MOG(35-55)-presenting IL-10-differentiated DC (DC10) in ongoing EAE. 

DC10 were characterized as expressing low levels of CD40, CD80, CD86 and 

MHC II, which is consistent with an immature phenotype. It suggests that 

DC10 have lower antigen-presenting and stimulatory abilities for T cell 

activation. In addition, DC10 produced lower levels of pro-inflammatory 

cytokines IL-1β ,  IL-6, and IL-12. Similar results have been reported by others, 

who showed that DC10 do not efficiently produce IL-6 or IL-12, when 

compared to mature DC [13, 140], suggesting that DC10 are not capable of 

strongly inducing inflammatory responses [8]. IL-1β  and IL-6 play important 

roles in the development of Th17 cells and IL-17 production, and IL-17 is 

considered to be important in the inflammatory responses in EAE [46, 68]. 

Thus we query whether the low production of IL-1β  and IL-6 by DC10 might 

be associated with the reduced Th17 response.  
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Our lab has already reported that DC10 express high levels of IL-10 

[10-12, 150]. The induction of Th2 tolerance in asthmatic mice by DC10 is 

dependent on IL-10 production, as Dr. Huang in our lab found that 

IL-10-specific siRNA-treated DC10 have no tolerogenic effects in asthmatic 

mice. This data suggests that IL-10 expression by DC10 is important for 

their tolerogenic functions, as reported by others [151]. In this study, we 

found higher level expression of IL-10 in our MOG(35-55)-specific DC10 

cultures as compared to immature DC, but the levels of IL-10 produced by 

MOG(35-55)-pulsed DC10 is lower than that by OVA-pulsed DC10. The 

reasons are not clear but it is thought that the OVA-specific DC10 may be 

stimulated by LPS that is known to contaminate commercial preparations of 

OVA [152]. It has been reported that LPS can activate DC via TLR-mediated 

signaling pathways, and thereby augment IL-10 expression in vitro [153, 

154]. We have also transfected IL-10-mRNA into DC and found significantly 

increased IL-10 production by these IL-10-transfected DC when LPS is 

added into the cultures (J.R. Town, J.R. Gordon, unpublished observations). 

These data further suggest that DC10 may receive stimulatory signals from 

LPS which triggers and amplifies their IL-10 secretion, though we do not 

have direct evidence to support this. Variable coincidental LPS 

contamination could potentially have contributed to the variable efficacy of 

our DC10 treatments in our three experiments. This could potentially occur. 

For example, because LPS can adhere strongly to glass and plasticware and 

because it is difficult to remove completely during cleaning [155], we query 
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whether such putative and adventitious LPS contamination of our cell culture  

reagents could have delivered stimulatory signals to our differentiating 

DC10 to induce greater IL-10 expression. 

One of the most important and difficult parts of this research was to 

set up the chronic EAE model in mice. EAE is widely used as an animal 

model to study MS because it presents symptoms similar to those of human 

MS. Our research showed that MOG(35-55) could induce severe EAE 

symptoms in C57BL/6 mice. However, we found that the day of onset and 

severity of disease could vary from mouse to mouse, and that the disease 

incidence was not always 100%, as also indicated by others [29]. The reasons 

are still unknown, but decreases in incidence or severity of EAE might be 

attributed to the stress of the mice [156]. According to our experience, 

several steps should be taken in order to decrease such stress: the mice 

should be acclimatized in the animal room for at least one week before 

immunization, inasmuch as new environments are stressful to animals. They 

should also be acclimatized to human handling before immunization. They 

must be treated gently when immunizing and anesthesia should be avoided, 

as we found that using anesthesia greatly decreases the incidence of EAE. 

It has already been shown that antigen-pulsed DC, which were induced 

by IL-10 or other mediators (e.g, TNF-α), can protect mice or rats from EAE 

induction [13, 142]. Most of these researches treated the mice or rats with 

their tolerogenic cells before EAE sensitization or after induction but before 

disease onset. We found that the clinical scores decreased from ≈ 2.5 to 1.5 
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after one injection of DC10 (Fig. 5.2.1), although there was no significant 

difference between the PBS-treated and DC10-treated EAE groups. The lack 

of significance could be explained by the small sample size and therefore 

high standard error in each group. After treating the EAE mice a second and 

third time with DC10, their clinical scores decreased significantly (Fig. 

5.2.2). Menges, et al. [142] found that single injection of MOG 

(35-55)-specific DC matured by TNF-α  did not prevent EAE induction, but 

three such treatments did. As far as we know, this is the first report showing 

the successful therapeutic treatment with IL-10-differenatiated DC10 to the 

established EAE mice.  

In addition to following the clinical scores, we performed histological 

studies to visualize how the DC10 treatment affected the CNS tissues in EAE 

mice. In the 1st  experiment there was a lower level of demyelination in the 

DC10 treatment group (p=0.063). In the 2nd experiment, we found that DC10 

treatments significantly reduced demyelination in the spinal cord at wk 7, 

but there was no difference in the cellular infiltration. In the 3rd experiment, 

we also found that DC10 treatments significantly reduced demyelination in 

the spinal cord at wk 7 and 10. DC10 treatments also reduced cellular 

infiltration at wk 7, but not wk 10 in the 3rd  experiments. Interestingly, in 

our 2nd experiment, there was no significant reduction in clinical scores. The 

reasons for this are unknown to us, but other factors such as stress or further 

damage of axons may affect the clinical scores [156, 157]. We did not 

observe any reductions in cell infiltration in the brains in response to the 
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DC10 treatments. This may be due to the structural differences between the 

brain and spinal cord, or perhaps to our DC10 treatments preferentially 

targeting the inflammatory cells which migrate into the spinal cord rather 

than into the brain. 

In our experiments, significantly higher levels of inflammatory 

cytokines (e.g., IL-6, IL-17 and IFN-γ ) were expressed by lymphocytes in 

the EAE mice, suggesting that these cytokines could play an important role 

in EAE development, and thus they serve as specific makers of EAE 

development. This is consistent with previous reports that IL-6, IL-17 and 

IFN-γplay important roles in the pathogenesis of EAE [39, 62, 158, 159].  

We also found that there was a significant increase of IL-10 expression in 

the spleens and LNs in EAE mice in our model, which was in part consistent 

with previous research. It had been shown that polarized Th1 cells derived 

from MOG-induced EAE mice were capable of producing IL-10 [53]. IL-6 

can increase the production of IL-10 by CD4+T cells in the presence of 

TGF-β  [160]. In MS patients, elevated numbers of IL-10 mRNA-expressing 

cells are found in the blood [136]. The role of IL-10 in EAE and MS is 

complex and still needs to be confirmed, but IL-10 is an anti-inflammatory 

cytokine produced by Th2 cells, B cells, macrophages [161], and it is known 

for its ability to down-regulate Th1 responses [162]. Previous studies found 

that IL-10 levels were correlated with recovery from EAE [163], but 

Cannella et al. [164] showed that administration of IL-10 had no effect in the 

protection from EAE. In our studies, we found higher levels of IL-10 in the 
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spleen and LN in EAE mice, suggesting that IL-10 was involved in the 

development of EAE. Another study also reported that neutralization of 

IL-10 with anti-IL-10 monoclonal antibodies did not protect mice from EAE, 

suggesting that IL-10 might not play a critical role in the pathogenesis of 

EAE, even though it is expressed during EAE development [165]. In our 

experiments, we also found higher levels of IL-4 expression in the spleen 

and LN as compared to normal mice, which was similar to previous results, 

describing high levels of IL-4-producing cells and IL-4 mRNA expression in 

the peripheral blood of MS patients [36, 166]. This opened the possibility 

that Th2 responses might be mixed with Th17 and Th1 responses. Our DC10 

treatments significantly reduced IL-4 expression in the spleens and LNs, 

indicating that DC10 treatments could affect Th2 responses in EAE mice. 

However, we must note that the role of Th1/Th2 cytokines in the induction 

and development of EAE is not well understood. Chitnis and Khoury showed 

that knock-out of Th1 or Th2 cytokines like IFN-γor IL-4 renders mice 

more susceptible to EAE induction, while partial reduction of IFN-γ or 

administration of IL-4 could reduce severity of disease [167]. This suggests 

that the presence of these cytokines might be involved in the protection from 

EAE, but that their over-expression might potentially worsen EAE [167, 

168]. 

It was also interesting that we observed high levels of IL-4, IL-6, 

IL-10 and IFN-γ in the supernatants of spleen and LN cells that had not been 

challenged with antigen. One explanation is that, during EAE, CNS antigens 
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are consistently presented in the spleen and LN. This could be due to the 

destruction of the blood brain barrier (BBB), one of the characteristics of 

EAE, leading to the leakage of myelin antigens to these organs, with 

subsequent stimulation of antigen-specific cells in situ. Such in vivo 

activation of T cells could continue to proliferate and / or produce cytokines 

ex vivo. Epitope spreading contributes to the activation of autoreactive T 

cells at later stages of EAE development, when T cells specific to other CNS 

Ag are observed in the spleen and LN [41, 42, 169]. Release of endogenous 

myelin antigens or peptides following the CNS tissue damage caused by 

specific T cells might also potentially activate inflammatory T cells with 

diverse specificity, leading to further activation of T cells and cytokine 

production [170]. For example, Tuohy, et al. found that autoreactive T cells 

from PLP(139-151)-induced EAE mice were capable of producing IL-4, IL-10 

and IFN-γ in response to both PLP(139-151) and MBP(87-99) [170, 171]. In 

addition, local dendritic cells in the CNS could carry myelin peptides across 

the blood brain barrier and present these to peripheral T cells in the spleen 

and LN [172], it may lead to inflammatory cytokine production and further 

inflammatory cell infiltration and myelin destruction in the CNS. Another 

potential explanation is that there is activation of antigen-non-specific T 

cells. In MS patients, the combination of inflammatory cytokines such IL-6 

and IFN-γ  produced by antigen-specific inflammatory cells could activate 

peripheral resting T cells by increasing intracellular calcium concentration. 

This activation was independent of specific antigens [173, 174]. The 
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production of IL-4 and IL-6 in EAE mice was also contributed by 

cytokine-mediated bystander reactions [175], wherein MOG(35-55)-specific 

CD4+T cells from IL-4-/ - and IL-6-/ -  mice could induce bystander IL-4 and 

IL-6 production in spleen cells from naive WT mice. The supernatants of 

MOG(35-55)-specific CD4+T cells cultured from WT EAE mice could also 

induce IL-4 and IL-6 production in spleens from naive WT mice [175]. 

Taken together, these antigen-non-specific responses are considered to be 

involved due to the additional production of inflammatory cytokines like 

IL-6 and IFN-γ ,  and may potentially promote further activation of T cells, 

thereby amplifying the inflammatory response [174]. We did not see a 

significant increase of spleen and LN cell proliferation in the absence of 

specific antigen as compared with normal mice, while proliferation increased 

in response to antigen. This means that there was antigen-specific 

proliferation, and suggests that the high production of these cytokines 

without antigen in culture was from other antigen non-specific cells, which 

partially support the hypothesis above. We also observed that IL-4, IL-10, 

IL-12, TGF-β and IL-6 were not markedly increased in response to antigen, 

suggesting that the production of these cytokines might be 

non-antigen-specific. The relatively low production of IL-12 and TGF-βby 

spleen and LN cells in culture with or without antigen may suggest that these 

cytokines were not important to pathogenesis at this stage of the disease. 

Also, our restimulation culture conditions (3 days culture in vitro) might 
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have failed to optimally induce their maximum production, or they were 

already consumed in the early days of culture by other cells. 

Our DC10 treatments significantly reduced clinical symptoms and 

inflammatory cytokine production in the spleen and LN, suggesting that 

DC10 treatments are capable of suppressing the activation of inflammatory 

lymphoid cells and CNS inflammation in EAE. During the development of 

EAE, myelin-specific T cells are activated in secondary lymphoid organs and 

escape immune tolerance such that these autoreactive T cells infiltrate the 

CNS and induce neuroinflammatory responses [29]. Our data clearly shows 

that the DC10 treatments suppressed spinal cord demyelination [32, 99]. 

Though we did not further look at the mechanisms of DC10-mediated 

tolerance in EAE in this study, our data is consistent with the DC10 

treatments having induced Tregs in our EAE mice. Our lab has reported that 

Tregs are induced and activated by DC10 treatments of asthmatic mice, and 

these cells suppressed the effector T cell response [11, 12, 150]. Min et al. 

[176] also reported that there was a self-maintaining regulatory loop in 

which tolerogenic DC could promote the generation of Tregs while Tregs 

induced generation of tolerogenic DC from bone marrow progenitors, 

suggesting that a self-renewal mechanisms might exist in vivo for a long time 

after treatment, thus it is possible that DC10 could potentially educate other 

DC to become tolerogenic via the induction of Tregs. This is fully consistent 

with other data from our lab, wherein DC10 induce both regulatory T cell 

populations and regulatory DC populations [11, 12, 150]. Herein we found 
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that DC10 treatments maintained tolerance up to 70 -130 days, and it is 

unlikely that these DC10 could have survived for such a long time. Thus we 

speculate that the down-regulatory effects induced by DC10 treatments 

would be maintained by other cells, such as Tregs or other 

induced-tolerogenic DC, which could keep interacting with each other to 

maintain a tolerogenic environment [176]. We also speculate that other 

possible mechanisms, like the induction of regulatory B cells and / or CD8+ 

regulatory T cells, could contribute to the tolerance via alternate pathways. 

It had been reported that CD1dhiCD5+ regulatory B cells effectively inhibit 

EAE development during the initiation stage [83], and that CD8+ regulatory 

T cells are capable of suppressing ongoing EAE [177-179]. 

We also assessed the levels of inflammatory cytokine expression in the 

CNS by qRT-PCR, but we didn’t see significant differences in expression of 

most of these cytokine in the PBS- and DC10-treated EAE mice. We found 

that there was a higher expression of FoxP3 in the brains and spinal cords of 

the both groups of mice, even though there were no significant differences 

between these groups. We have reported previously that there are no 

difference in the numbers of CD4+CD25+FoxP3+ cells in saline- and 

DC10-treated (i.e., tolerant) asthmatic mice, but that the cells from the latter 

mice are highly activated and express a regulatory phenotype [11, 12, 150]. 

Our data suggested that Tregs were stimulated in the CNS or migrated from 

the spleen or LN into the CNS, and that these Tregs could have inhibited 

cytokines production in the CNS locally. This is supported by the evidences 
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that Tregs accumulate in the CNS during the recovery from EAE and that 

these CNS-derived Tregs can suppress EAE induction [180]. Similarly, Korn, 

et al. reported that the highest numbers of MOG-specific T effector cells 

were found at the peak of disease but that they decrease markedly in the 

recovery stage, while the numbers of Treg do not decline. They also 

compared the ratio of Treg to T effector cells during EAE and found that this 

ratio increased from 1:13 at the peak of disease to 1:4 during remission [181], 

suggesting that Treg may contribute to the infiltrating cell population. In 

addition, T cell apoptosis is reported to occur in the CNS after the acute 

phase of EAE development, leaving few T cells present in the lesions of CNS 

[104]; such apoptotic T cells would have lost their ability to produce 

cytokines, despite the fact that infiltrating cells would still be observed 

histologically in the CNS. Tregs are thought to be involved in inducing 

apoptosis of CD4+T cells [25]. In our experiments, we harvested the mice 

either 6-9 week or 35 week after the peak of the disease, such that very likely 

inflammatory cytokine expression would have declined in the CNS by this 

time.  

Another interesting finding in our report was the induced increase in 

antibody levels associated with the DC10 treatments. Our data showed that 

DC10 treatments significantly increased MOG-specific IgG1, IgG2a and 

IgG2b levels. The reasons for this are unknown, as is the role of antibody in 

EAE. It has been reported that increased production of IgG occurs in MS 

patients [89] but, conversely, transfer of serum from rats that had recovered 
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from EAE to naive recipients suppresses the induction of EAE [84]. 

Increases in IgG, IgG1, IgG2a and IgG2b production might also be related to 

the decreases in IL-17, as enhanced MOG-specific IgG, IgG1, IgG2a and 

IgG2b production are found in IL-17-deficient mice during EAE. It was 

suggested that IL-17 could prevent IgG production by B cells [64]. Our 

DC10 treatments significantly decreased IL-17 production in the EAE mice, 

and this could similarly have facilitated the production of MOG-specific-IgG 

by B cells during EAE. Myelin-specific antibodies are potentially beneficial 

to CNS remyelination in EAE [82], as EAE rats that received i.p. injections 

of myelin-specific serum or myelin-specific IgG develop significantly 

increased CNS remyelination [82, 87]. Wolf et al. [182] also showed that B 

cell-deficient EAE mice failed to completely recover after the peak of 

disease as compared to WT mice, though they had similar disease incidence, 

suggesting B cell might play a role in the regulation of EAE during the 

recovery stage. The mechanisms were not clear, but it was suggested that 

these myelin-specific IgG could facilitate the growth and activation of 

oligodendrocytes, the cells which promote myelin production and thereby 

remyelination [82]. We can not exclude the possibility that the increased 

antigen-specific antibodies levels induced by the DC10 treatment in our 

experiments were involved in the remyelination and inhibition of further 

demyelination, although we have no direct evidence to suggest that 

remyelination had occurred in our DC10 treated EAE mice. 
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We also found something interesting related to the proliferation of 

spleen and LN cells. There was a significantly higher proliferation of these 

cells in cultures of cells (with or without antigen) from the DC10-treated 

groups. Previous research also reported similar results as antigen-pulsed 

immature DC significantly induced proliferation of spleen and LN cells in 

DC-tolerized EAE rats [14], but the reason why our DC10 treatments 

increased spleen and LN cell proliferation is unknown. There are many 

different kinds of cells in the spleen and LN, and the interactions between 

these cells are complicated. Bone marrow derived-DC can not only induce 

differentiation of FoxP3+ Tregs from FoxP3- precusors, but also directly 

stimulate Treg proliferation in vitro [128, 183], and these Treg could 

potentially have contributed to the increases in the total cell proliferation in 

our experiments. This observation also suggests a mechanism whereby DC 

treatment could actively expand Treg to suppress autoreactive response in 

EAE. DC10 treatments significant increased spleen and LN cell proliferation 

even without antigen in the cultures, suggesting that antigen-specific cells 

were activated in situ.  It might be possible that this proliferation was 

contributed not only by T cells but also other cell types such as B cells, as it 

has been reported that DC can directly stimulate B cells to proliferate 

[184-187]. In addition, it had been reported that higher proliferation of 

spleen and LN cells was observed for immature MBP-pulsed prophylactically 

DC-tolerized EAE rats [14]. Zhang, et al. also suggested that this 

suppression of EAE was due to the apoptosis of T cells that had proliferated 
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[188] (i.e., T cells that had proliferated would be deleted by apoptosis [189, 

190]). Thus this provides another potential mechanism whereby DC10 

treatments could suppress inflammatory cell activation (i.e., via induction of 

apoptosis). 

To our knowledge, this is the first study showing that 

IL-10-differentiated dendritic cells can reverse established, chronic EAE. 

This DC10-induced tolerance in EAE provides us with a novel approach that 

could potentially be applicable to MS treatment in the clinic. But we must 

keep in mind that there are still many challenges which need to be further 

resolved. For example, in only two of our three experiments did we observe 

significant reductions in EAE clinical scores following DC10 treatments. 

Further experiments should be needed to confirm the effect of DC10 

treatment in this model. Specific computer program and image software can 

be used to analyze the exact area of demyelination in spinal cord to provide 

us a better understanding of the pathological changes.  
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6.2. Conclusions and future directions 

In conclusion, it is clear that: 

1. IL-10-differentiated dendritic cells (DC10) did not express high levels of 

CD40, CD80, CD86 and MHC II; 

2. DC10 produce low levels of IL-1β ,  IL-6, and IL-12 similar to 

DC(GM-CSF) but high levels of IL-10; 

3. A single injection of DC10 did not significantly inhibit EAE development, 

but three DC10 injections reversed the course of established EAE; 

4. DC10 treatments significantly reduced demyelination in the spinal cord; 

5. DC10 treatments significantly reduced the production of inflammatory 

cytokines the in spleen and LN; 

6. DC10 treatments did not show significant effects on inflammatory 

cytokine expression in the CNS of EAE mice; 

7. DC10 treatments significantly increased MOG(35-55)-specific IgG1, IgG2a 

or IgG2b levels in EAE mice; and 

8. DC10 treatments significantly enhanced proliferation of spleen and LN 

cells in EAE mice. 
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Figure 6 hypothesizes general mechanisms by which DC10 mediate EAE 

tolerance. In general, IL-10-differentiated DC show low expression of MHC 

II and costimulatory molecules and high production of IL-10. These DC10 

induce autoreactive T cell anergy possibly via their reduced costimulatory 

signals and the IL-10 production, which would lead to autoreactive T cells 

tolerance. DC10 suppress inflammatory cytokines production by these T cells, 

as well as their migration into the spinal cord, resulting in the suppression of 

CNS local inflammation and demyelination. For our future directions, we 

would investigate the suggestion that DC10 induce Tregs activation in the 

CNS. We are also interested in investigating whether DC10 and these putative 

Tregs migrate into the CNS and mediate immune tolerance locally. Due to the 

multiple phenotypes of MS, we are similarly interested in whether DC10 

could be used to treat clinical signs in other EAE models of multiple sclerosis 

(e.g., acute)[7]. Furthermore, in the human in vitro studies, Dr. Xiuling Li in 

our lab has already reported that DC10 could induce Th2 tolerance ex vivo in 

human asthmatic subjects [12], and this provides us with insights into 

potential treatments with DC10 in MS patients. Thus we are interested to test 

whether DC10 could suppress effector T cells response in MS patients ex vivo 
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Figure 6 General mechanisms by which DC10 may reduce EAE clinical 
signs and CNS pathology. IL-10-differentiated DC show low expression of 
MHC II and costimulatory molecules and high production of IL-10. These 
DC10 induce autoreactive T cell tolerance and suppress production of 
inflammatory cytokines by these T cells, as well as their migration into the 
spinal cord, resulting in the suppression of CNS local inflammation and 
demyelination. We also suggest a possibility that DC10 induce Tregs which 
could directly suppress autoreactive T cells activation and CNS inflammation. 
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