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Abstract

Hybrid fiber coaxial (HFC) networks are used around the world to distribute cable tele-

vision and broadband internet services to customers. These networks are governed by the

Data-Over-Cable Service Interface Specification (DOCSIS) family of standards, with the

most recent version at the time of this writing being DOCSIS 3.1. A frequency division du-

plex (FDD) spectrum is used in DOCSIS 3.1, where the upstream and downstream signals

are separated in frequency to eliminate interference. A possible method to increase signal

bandwidths is to use a full-duplex (FDX) spectrum, in which the US and DS signals use the

same frequencies at the same time.

A main challenge faced when implementing FDX in a DOCSIS node is eliminating the

interference in the received US signal caused by the transmitted DS signal. One possible

method for eliminating the interference is utilizing an echo-canceling algorithm, which pre-

dicts the self-interference (SI) based on the known DS signal and cancels it from the received

US signal.

Although echo-cancellation algorithms exist for fundamentally similar applications, the

DOCSIS FDX case is more complicated for two main reasons. First, the DOCSIS node

uses a nonlinear power amplifier to amplify the DS signal. Second, the DS signal is an

ultra-wideband signal spanning a frequency range of up to 1.2 GHz. Most of the amplifier

modeling techniques discussed in the literature were designed for narrowband wireless signals

and will have limited performance when used with ultra-wideband signals.

This thesis develops an algorithm to characterize the power amplifier and to predict the

harmonics it generates for a given DS signal. These predicted harmonics can be used to

cancel the SI signal in a full duplex DOCSIS system. The algorithm, which is referred to

as the ultra-wideband memory polynomial (UWB-MP) model, is based on the well-known

memory polynomial model with adaptations which allow the model to predict harmonics for

ultra-wideband signals.

Since a direct implementation of the UWB-MP model in an FPGA would result in very

high resource usage, system architecture recommendations are provided. Our proposed im-
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plementation of the model compensates for harmonics up to and including the 3rd order,

which has a power spectrum extending above 3600 MHz. Using the techniques discussed in

this thesis, it is shown that a sampling rate of 4 GHz allows for cancellation of the SI signal

while providing a reasonable balance between performance and resource usage.

Matlab simulations of a DOCSIS node with various parameters and PA simulation models

were conducted. The simulations showed that over 75 dB of cancellation of the SI signal is

possible in an idealized hardware setup. It is also demonstrated that AWGN injected into

the received signal does not reduce the ability of the model to estimate the PA harmonics,

although the noise itself cannot be canceled. Further simulations showed that the UWB-MP

model could cancel harmonics whose power is much higher than that specified in DOCSIS.

Although the UWB-MP model was designed with memory polynomial type PAs in mind,

simulation results show that significant cancellation is possible with PAs that are represented

by Wiener models as well. Based on the simulation results, we recommend using a filter of

length 20 coefficients for each harmonic in the UWB-MP model, and 60 iterations with 500

samples for estimating the coefficients with the least squares method.
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1. Introduction

1.1 Cable Television History

Cable television, which was once referred to as Common Antenna Television (CATV),

started as a one-way television network from a single high gain receiving antenna over a

coaxial cable network to several televisions [1]. Over the decades as the demand for higher

data rates and the need for two-way communication grew, so did the technology supporting

the transmission and reception. The network evolved to support two-way communication

and data communication.

The cable industry changed with the advancement of the internet. Initially, telephone

companies offered internet service with digital subscriber line (DSL) technology, but as

the cable industry transitioned from analog to digital and implemented hybrid-fiber coaxial

(HFC) networks, it was able to compete with telephone companies as an internet service

provider (ISP) [1].

At the time, no industry-wide standards were governing the equipment used to pro-

vide cable and internet services. The lack of standards resulted in the service providers

being forced to purchase proprietary equipment at whatever cost the equipment provider de-

manded. Furthermore, the lack of standards meant that equipment provided by competing

hardware vendors was frequently incompatible, causing service providers to be “locked in” to

a particular vendor. This lead to the services providers collaborating to form CableLabs [1],

a not-for-profit organization which creates open standards for cable and internet equipment

to ensure compatibility between different equipment manufacturers. One essential standard

developed by CableLabs is the Data-Over-Cable Service Interface Specification, referred to

as DOCSIS.
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1.2 History of DOCSIS

DOCSIS 1.0 was released by CableLabs in 1997. The physical network described by

DOCSIS consists of a cable modem termination system (CMTS) connected to multiple cable

modems (CMs) via an HFC network as shown in Figure 1.1. The CMTS in the service

provider’s headend connects to many optical nodes via fiber optic cables. The optical node

receives the optical signal from the fiber and modulates it as a voltage signal on the copper

coaxial line connecting to multiple taps. The taps send a portion of the signal power on the

cable to the CMs in subscribers’ homes.

A DOCSIS network enables bidirectional communication. Downstream (DS) transmission

refers to transmission from the CMTS to the CMs, and upstream (US) transmission refers

to transmission from the CMs to the CMTS. Over the years CableLabs has updated the

standard to improve both US and DS data rates. However, the physical network has remained

relatively unchanged. Transmission rates between the node and the CM’s via coaxial cable

is the bottleneck in the system since fiber allows for higher transmission rates, so updates to

the DOCSIS standard typically involve increasing the transmission rate between the node

and CMs. DOCSIS updates have included versions 1.1, 2.0, 3.0, and 3.1, which was released

in 2013 and is the most recent version.

CMTS

Fibre-Optic
Cable

Optical
Node

Tap

CM

Coaxial
Cable

Figure 1.1: Hybrid fiber-cable network architecture

It should be noted that the update from version 1.0 [2] to 1.1 [3] was focused on quality of

service (QoS), and these two versions are often collectively referred to as DOCSIS 1.x. The
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main changes from DOCSIS 1.x to 2.0 [4] included enhanced upstream data rates and the

addition of synchronous code-division multiple access (S-CDMA) in the upstream direction.

The upgrade from DOCSIS 2.0 to 3.0 [5] significantly increased the data rates in both

the upstream and downstream directions. The increases were mainly due to significant

improvements to the modulation techniques used to transmit data over the coaxial network.

1.3 DOCSIS 3.1

DOCSIS 3.1 [6] includes significant improvements over DOCSIS 3.0. Most notably, the

maximum downstream capacity increased from 1.2 Gbps to 10 Gbps, and the maximum

upstream capacity increased from 100 Mbps to 1 Gbps. The frequency ranges allocated

to transmission in the US and DS directions in the coaxial cable network have increased

considerably as well. The US signals can occupy frequencies between 5 MHz to 204 MHz,

and the DS signals can occupy frequencies in the range of 54 MHz to 1218 MHz (and up to

1800 MHz, but this is not commonly used).

Since the US and DS signals coexist on the same coaxial cable, there is potential for

them to interfere with each other if the system is not carefully designed. DOCSIS avoids this

problem by using a scheme called frequency-division duplexing (FDD), in which the US and

DS signals are separated into non-overlapping frequency bands. DOCSIS 3.1 provides three

different options for this partitioning to accommodate a variety of network architectures. A

summary of the different frequency band options allowed in DOCSIS 3.1 is given in Table

1.1 and illustrated in Figure 1.2.

Option

#

Upstream Frequency

Band (MHz)

Downstream Frequency

Band (MHz)

1 5-45 54-1218

2 5-85 108-1218

3 5-204 258-1218

Table 1.1: DOCSIS 3.1 frequency band options

The increase in data rates in DOCSIS 3.1 is made possible by implementing orthogonal
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MHz

Upstream Downstream

45 54 1218

(a) FDD spectrum option 1

MHz

Upstream Downstream

85 108 1218

(b) FDD spectrum option 2

MHz

Upstream Downstream

204 258 1218

(c) FDD spectrum option 3

Figure 1.2: DOCSIS 3.1 frequency division duplex spectrum options

frequency-division multiplexing (OFDM) modulation in the downstream, and orthogonal

frequency-division multiple access (OFDMA) in the upstream. OFDM is a digital multi-

carrier modulation scheme that transmits over a large number of closely spaced narrow

orthogonal subcarriers instead of transmitting at a high rate over one wider subcarrier.

An OFDM signal is created by encoding the data to be transmitted (Tx) data into

frequency components of a signal, then converting the signal to its time domain equivalent by
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using an inverse fast Fourier transform (IFFT). The time domain signal is then transmitted

via coax to a receiver, in which it is converted back to frequency domain with a fast Fourier

transform (FFT). The original data is then recovered from the FFT output. An IFFT is

defined by

xn =
N−1∑

k=0

Xke
2πkn/N (1.1)

where Xk is a complex frequency domain signal, xn is a complex time domain signal, and N

is the IFFT order, or the number of subcarriers defined. Similarly, an FFT is defined by

Xk =
N−1∑

n=0

xne
−2πkn/N . (1.2)

OFDMA is similar to OFDM except it assigns subcarriers to multiple devices, allowing

for simultaneous data transmission from multiple devices over the same medium. OFDM on

the other hand only allows for one device to be transmitting at a time over the entire used

frequency spectrum.

One side effect of using multiple narrow subcarriers in OFDM and OFDMA signals is

that the output of the N-point IFFT is the sum of N independent random variables which

leads to the time domain signal having an amplitude distribution which is approximately

Gaussian. This causes the OFDM and OFDMA signals to have a high peak-to-average

power ratio (PAPR), primarily if a large number of subcarriers are used. In a DOCSIS 3.1

system, either 4096 or 8192 subcarriers are used in an OFDM block, potentially resulting in

extremely high signal peaks if most or all of the subcarriers align in time. Fortunately, the

probability of such events is extremely low.

A simplified diagram of the optical node in a DOCSIS 3.1 network is shown in Figure 1.3.

The physical layer (PHY) device is what communicates with the CMTS in the head-end.

The downstream PHY converts downstream digital data from the CMTS and converts it to

an analog RF signal to be transmitted over a coaxial cable and sent to cable modems [7].

In Figure 1.3 the digital-to-analog converter (DAC) and the DS PHY are shown separately,

but they may be contained in the same integrated circuit. Before the RF signal can be sent

to the coaxial cable (coax), it first has to be adjusted to compensate for the attenuation of
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the coax network. Long coax cables attenuate high frequencies more than low frequencies.

To compensate for this attenuation, a device is used to add a tilt in the frequency domain

to the transmitted signal with an opposite slope compared to the attenuation in the cable.

CableLabs standards call for a 21 dB tilt from 108 MHz to 1218 MHz. After the tilt com-

pensator, the RF signal is passed through a power amplifier to increase the power to a high

enough level such that the signal can be received by the CMs located farthest away.

Optical Node

Processor

DS
PHY DAC

Tilt

PA

D
ip
le
x
er

LNAADCUS
PHY

Coaxial
Cable

Network

Digital
Fiber

Figure 1.3: DOCSIS 3.1 optical node to coax interface

In both the optical node and the cable modems, a device called a diplexer is used to

separate the upstream and downstream signals that jointly occupy the coaxial cable. The

diplexer acts as a high pass filter (HPF) for the downstream data, and serves as a low pass

filter (LPF) for the upstream data, as illustrated in Figure 1.4 [6]. The combination of the

high pass and low pass filters prevents any part of the downstream signal from interfering

with the upstream signal. The power loss between the input and output ports of the diplexer,

referred to as the insertion loss, is usually around 0.5 dB [8].

The upstream data follows an opposite path in the node compared to the downstream

data, as shown in Figure 1.3. The US data is sent from the diplexer through a low noise

amplifier (LNA) to boost the received signal before it is sampled by the analog-to-digital

converter (ADC). The US PHY demodulates the received signal and sends the data to the

CMTS via a digital fiber optic line.
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Figure 1.4: Diplexer

1.4 DOCSIS 3.1 Full-Duplex

Cable and internet subscribers continue to demand higher data-rates, especially in the

upstream direction as services such as video conferencing and gaming become more popular.

Cable companies need to increase the throughput of their networks to remain competitive

with fiber-to-the-home (FTTH) networks, which run a fiber line all the way to the customer’s

location and eliminate the coax bottleneck. One method for increasing the upstream capacity

is to simultaneously transmit upstream and downstream on the same frequency band at

the same time, which is known as full-duplex (FDX). Full-duplex communication has the

potential to vastly increase the upstream data rates compared to DOCSIS 3.1 by allowing

more of the spectrum to be used by the upstream signal without significantly reducing the

achievable DS data rates. FDX is advantageous over FTTH because it can use the HFC

network that is already in service without requiring costly fiber installations.

In October 2017, CableLabs released the first version of the DOCSIS 3.1 Full-Duplex

standard. The standard dictates that for FDX operation, the downstream signal will occupy

frequencies from 108 MHz to 1218 MHz and the upstream signal will occupy 5 MHz to 684

MHz. This implies that there is a region in the spectrum (between 108 MH and 684 MHz)

which carries both US and DS data simultaneously, as illustrated in 1.5.

The main change in hardware components in implementing FDX compared to FDD is
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Figure 1.5: Full-duplex spectrum

the diplexer can no longer be used since the upstream and downstream signals will occupy

the same frequencies. Instead, a 2-wire to 4-wire directional coupler will have to be used to

couple the upstream and downstream signals in the node to the coaxial cable network. The

2-wire side of the coupler is the coaxial cable, and the 4-wire side consists of the upstream

and downstream signals in the node. A diagram of a coupler is shown in Figure 1.6.

Downstream
Signal

(Transmit)

Upstream
Signal

(Receive)

Cable
Network

Isolation
-30 dB

Insertion Loss
-3 dB

-3 dB
Coupled Loss

Figure 1.6: Directional coupler

A directional coupler is a passive RF device used to couple a specific portion of the

power in one transmission line out through another connection or port. In our particular

case, the coupler is used to couple the upstream signal and the downstream signal to the cable

network. The power propagating down the coaxial cable network toward the node enters

the 2-wire side of the coupler. The coupler splits the power and delivers portions to each of
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the two ports on the 4-wire side of the coupler1. The power delivered to the transmit port is

consumed by the output resistance and therefore wasted. This power loss causes about a 3

dB attenuation between the coupled and received port, referred to as the coupled loss. The

power entering the coupler from the transmit port on the 4-wire side is split with half that

power being delivered to the cable and the other half delivered to an internally terminated

port (not shown in the diagram). This causes about a 3 dB loss from the transmit to coupled

port, which is referred to as insertion loss. In theory, the two ports on the 4-wire side are

completely isolated, but in practice, there is a leakage path that couples the transmit port

to the receive port. In practice, the leakage is about 30 dB below the transmit level [9].

The other change in hardware involves inserting a LPF after the LNA and before the

analog-to-digital converter (ADC). This low pass filter is necessary because the coupler does

not act as a LPF to the US data as the diplexer did. The LPF removes unwanted high-

frequency components that would otherwise alias when sampled by the ADC. A diagram of

the FDX node is shown in Figure 1.7.
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Figure 1.7: DOCSIS 3.1 full-duplex optical node to coax interface

Using a directional coupler instead of a diplexer adds two main challenges in implementing

full-duplex. The first challenge is dealing with the self-interference (SI) created when the DS

1Couplers with various “coupling factors” are available, allowing the portions of power going to the US
and DS ports to be controlled. In the following discussion, a 3 dB coupler is assumed, meaning the power is
split equally between the two ports
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signal leaks into the US path. The self-interference comes from both the isolation path in

the coupler and from the DS signal being reflected due to imperfections in the cable network

and returning through the coupler into the US path, as shown in Figure 1.7.

Since the DS and US data occupy the same frequencies in the FDX band, the self-

interference overlaps with the upstream signal and cannot be directly filtered out. An al-

ternative way to deal with this self-interference is digital echo cancellation (EC). Digital

echo cancellation involves digitally modeling the path the known DS signal takes from the

transmitter to the receiver and using the model to construct a replica of the SI signal seen

in the receiver. If done correctly, the modeled signal and the received SI signal should be

nearly identical, and the SI can be canceled by the model signal leaving only the US signal

of interest for the receiver.

The other primary challenge imposed by the directional coupler is the increase in insertion

loss compared to the diplexer. The diplexer has 0.5 dB insertion loss and the coupler has

about 3 dB insertion loss, meaning the downstream signal must be transmitted with 2.5 dB

more power to compensate. To achieve this, the power amplifier (PA) in the node must

output 2.5 dB more power. However, driving the PA at a higher power has trade-offs, as

discussed in the following section.

1.5 Basic Amplifier Theory

The purpose of a power amplifier is to increase the power of an input signal. In the

context of a DOCSIS network, this allows the signal to travel a larger distance to reach

a CM while maintaining an adequate signal level. Ideally, the power amplifier would be

a linear device in which the output is equal to the input multiplied by a constant, i.e.,

vo(t) = Gvi(t). However, in practical amplifiers, the output becomes nonlinear as the input

signal level increases. The output is then not only linearly dependent on the input but also

on higher orders of the input, referred to as harmonics. For example, for input vi(t), the

output can be represented with the Taylor Series expansion [10]

vo(t) = a0 + a1vi(t) + a2v
2
i (t) + a3v

3
i (t) + . . . (1.3)
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where an is the coefficient for the nth order harmonic. The constant term, with coefficient

a0, leads to rectification, converting the AC input signal to DC. The linear term, a1, is the

linear gain of the nonlinear device, and therefore a1 > 1 for an amplifier. The higher order

coefficients (a2, a3, ...) represent the dominance of the higher order output voltages created

by the PA, which will be referred to as harmonics.

The function defining vo(t) differs from device to device based on the dominance of

particular terms in the Taylor expansion. Practical nonlinear devices usually have a se-

ries expansion containing many non-zero terms. Some of the critical impacts of the power

amplifier nonlinear behaviour will be discussed next.

1.5.1 Gain Compression

First consider the case where a single frequency sinusoid is applied to the input of an

amplifier:

vi = V0cos(ω0t) (1.4)

Equation (1.3) gives the output voltage as

vo = a0 + a1V0cosω0t+ a2V
2
0 cos

2ω0t+ a3V
3
0 cos

3ω0t+ . . .

=

(
a0 +

1

2
a2V

2
0

)
+

(
a1V0 +

3

4
a3V

3
0

)
cosω0t+

1

2
a2V

2
0 cos2ω0t

+
1

4
a3V

3
0 cos3ω0t+ . . . (1.5)

The resulting voltage gain of the signal component at frequency ω0 is:

Gv =
vω0
o

vω0
i

=
a1V0 + 3

4
a3V

3
0

V0
= a1 +

3

4
a3V

2
0 (1.6)

where only terms up to the third order have been considered.

The result of Equation (1.6) contains the coefficient of the linear term, a1, as expected,

but also an additional term proportional to the square of the input amplitude. In most

power amplifiers, a3 will have the opposite sign of a1 and thus the output of the amplifier

will be reduced from the expected linear gain for large values of input voltage V0. This effect

is called gain compression or saturation [10].
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Figure 1.8: Power amplifier 1dB compression point

A typical plot of the output power versus input power for an amplifier is shown in

Figure 1.8. An ideal amplifier would have a linear slope of a1 from equation (1.3). However

practical amplifiers saturate as illustrated in Figure 1.8. The linear operating range of a

device is quantified by defining the 1 dB compression point as the power level where the

power has decreased by 1 dB from the ideal linear characteristic [10]. This power level is

denoted by either the input power (IP1dB) or output power (OP1dB).

The nonlinear effects causing gain compression also leads to amplitude modulation (AM-

AM) and phase modulation (AM-PM). AM-AM is the amplitude conversion as a function of

the input amplitude to the amplifier, and AM-PM is phase conversion as a function of the

input amplitude [10]. In other words, if the amplitude at the input of an amplifier is A, then

the amplitude at the output of the amplifier is G(A), where G(·) is the AM-AM conversion

of the amplifier. This conversion is not linear as is shown in Figure 1.8. Likewise, the phase

response of the amplifier is F (A) where F (·) is the AM-PM conversion and is a function of

the input amplitude. F (·) is not necessarily a linear function of A either.
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1.5.2 Harmonic and Intermodulation Distortion

A nonlinear device such as a power amplifier with a single input frequency ω0 will generate

an output with harmonics of the input frequency at nω0, for n = 0, 1, 2, . . . . However, the

situation is different when the input signal consists of two closely spaced frequencies. Note

that an OFDM signal has many closely spaced frequencies.

Consider a two-tone input voltage, consisting of two closely spaced frequencies ω1 and

ω2:

vi = V0(cosω1t+ cosω2t) (1.7)

From equation (1.3) the output is

vo = a0 + a1V0(cosω1t+ cosω2t) + a2V
2
0 (cosω1t+ cosω2t)

2

+ a3V
3
0 (cosω1t+ cosω2t)

3 + . . .

= a0 + a1V0cosω1t+ a1V0cosω2t+
1

2
a2V

2
0 (1 + cos2ω1t) +

1

2
a2V

2
0 (1 + cos2ω2t)

+ a2V
2
0 cos((ω1 − ω2)t) + a2V

2
0 cos((ω1 + ω2)t)

+ a3V
3
0

(
3

4
cosω1t+

1

4
cos3ω1t

)
+ a3V

3
0

(
3

4
cosω2t+

1

4
cos3ω2t

)

+ a3V
3
0

[
3

2
cosω2t+

3

4
cos((2ω1 − ω2)t) +

3

4
cos((2ω1 + ω2)t)

]

+ a3V
3
0

[
3

2
cosω1t+

3

4
cos((2ω2 − ω1)t) +

3

4
cos((2ω2 + ω1)t)

]
+ . . . (1.8)

where standard trigonometric identities have been used to expand the initial expression.

It is seen that the output spectrum consists of harmonics at frequencies

mω1 + nω2 (1.9)

with m,n = 0,±1,±2, . . . . The combinations of these frequencies are called intermodulation

products and the order of a given product is defined as |m| + |n| [10]. The spectrum of

two-tone intermodulation of the second and third order is illustrated in Figure 1.9. Each

frequency component in the figure is labeled with its associated harmonic order.

Further expanding Equation (1.8) reveals that odd order products lie in odd multiples

of the center frequency (ωc = ω1+ω2

2
), and even order products lie in even multiples of the
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Figure 1.9: Intermodulation spectrum of second and third order two-tone signals

center frequency. For example, a 5th order harmonic has frequency components at ωc, 3ωc,

and 5ωc, and a 4th order harmonic has frequency components at 0ωc, 2ωc, and 4ωc. Further,

the frequency components belonging to a particular harmonic order are spread across a range

of frequencies proportional to the harmonic order. For example, the 2nd order harmonics

are twice as wide in frequency as the original signal, and the 3rd order harmonics are three

times as wide as the original signal. These frequency translation and spreading effects are

illustrated in Figure 1.102 for harmonics up to the 5th order.

1.5.3 Memory Effects

Power amplifiers typically exhibit memory effects, meaning the output is not only depen-

dent on the current input but also on past inputs. Regarding memory, nonlinear devices can

be classified into three categories: memoryless nonlinear elements (MNE’s), effectively mem-

oryless nonlinear elements (EMNE’s), and nonlinear elements with memory (NEWM’s) [12].

MNE’s respond to the input signals without delay. They can be characterized by:

v(t) = f [Acos(ωt+ φ(t))] (1.10)

where Acos(ωt+ φ(t)) is the sinusoidal input voltage, v(t) is the output voltage, and f [·] is

the function defining the power amplifier. v(t) can be put into the alternate form,

v(t) = G(A)cos(ωt+ φ(t)) (1.11)

2Figure derived from [11]
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Figure 1.10: Individual harmonics up to the 5th order

where G(A) is the AM/AM transfer characteristic of the MNE [12]. In both Equations (1.10)

and (1.11), the PA output v(t) will have frequency components at integer multiples of the

input frequency w due to the nonlinear nature of PA’s as discussed in the previous section.

These additional frequency components are considered by f [·] and G(A) respectively. MNE’s

however do not exist in practical devices because they would have to respond instantaneously

and experience no phase shift in the output.

EMNE’s on the other hand experience both AM-AM and AM-PM transfer characteristics.

Thus, v(t) in Equation (1.11) would take the form

v(t) = G(A)cos(ωt+ φ(t) + F (A)) (1.12)
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where F (A) is the AM-PM transfer characteristic which represents an envelope-dependent

phase shift in the output signal v(t) [12].

A nonlinear element with a bandwidth much wider than the signal passing through it can

be treated as an EMNE. However, nonlinear elements with bandwidths comparable to that of

the signal such as the solid state power amplifiers (SSPA’s) used in DOCSIS must be treated

as nonlinear elements with memory [12]. The effect of the memory on the power amplifier

output is to make the AM-AM and AM-PM conversions become frequency dependent. In

this case, Equation (1.12) becomes

v(t) = G(A, ω)cos(ωt+ φ(t) + F (A, ω)) (1.13)

where G(A, ω) and F (A, ω) are the frequency dependent AM-AM and AM-PM conversions

respectively. The frequency dependent effect on the power amplifier output results in a

non-flat gain across the passband frequencies and a nonlinear phase response.

1.6 Power Amplifier Operation

The harmonics in the output of the PA act as noise in the signal. Noise which falls outside

of the US frequency band, or out-of-band (OOB) noise can be filtered out and is therefore

not a concern but the in-band noise is an issue. One way this issue can be resolved is by

operating the amplifier strictly within the linear region defined as up to the 1 dB compression

point. However, this method results in extremely low power efficiencies in the PA [10]. If

the PA is to operate entirely in its linear region, then taking into account the very high peak

to average power ratio of the OFDM signals (typically 15 dB) the amplifiers would need to

operate on average 15 dB below the start of compression. This mode of operation is referred

to as input back-off (IBO) and it ensures that no significant signal compression occurs even

at the peaks of the signal.

Some noise, however, is acceptable. The DOCSIS standard requires the noise level to be

about 40 dB below the signal level at the PA output to enable high data rates. Therefore the

input only has to be backed off to the point where the noise reaches this level. The power

amplifier operating point is illustrated in Figure 1.11.
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Figure 1.11: Non-linear power amplifier distortion

1.7 Problem Definition

In the full-duplex node, the downstream signal from the output of the power amplifier

leaks into the upstream signal path through both the coupler and reflections in the ca-

ble network. This self-interference acts like noise in the upstream signal because the US

and DS signals occupy the same frequencies in FDX, and there is no longer a diplexer to

completely isolate the signals. Without cancellation, this SI noise makes it impossible to

demodulate high data rate signals, which are highly susceptible to noise. To eliminate this

self-interference, both the signal at the output of the power amplifier and the characteristics

of the channel that this signal takes to get to the receiver must be very accurately known.

The purpose of this thesis is to model the power amplifier to predict its output for an ultra-

wideband input signal such as that present in a DOCSIS node. Such a model is necessary
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to facilitate self-interference cancellation, thereby enabling FDX DOCSIS operation. To

predict the PA output, a nonlinear model must be used since the PA is a nonlinear device.

Estimating the SI channel is out of the scope of this thesis.

Perhaps an obvious and less complicated alternative EC structure compared to modeling

the PA output is to directly measure the PA output with an ADC and subtract this measured

signal from the received US signal to cancel the self-interference. Doing so would eliminate

the need for a nonlinear model. Although such a method would work, the trade-off is one

extra ADC per amplifier is required. A typical DOCSIS node has four amplifiers, meaning

four additional ADC’s along with the ADC’s for each upstream signal would be needed.

Including additional ADC’s into the node increases its cost and power consumption, both

of which could potentially make the node undesirable to customers. There is potential to

reduce cost and power consumption by instead modeling the SI signal to perform EC. These

two potential node designs are shown in Figure 1.12.

The level of accuracy needed in predicting the PA output stems from the SNR required

in the received upstream signal in the node. To reliably receive the high data rate signals

used in DOCSIS 3.1, an SNR of at least 40 dB is required [13]. This level of SNR requires

the self-interference signal from the coupler to be attenuated by 60 dB. The reasoning for

this is illustrated in Figure 1.13 and discussed in the following paragraphs.

From the DOCSIS 3.1 Full-Duplex standard, the downstream signal transmitted from

108 to 1218 MHz has a linear tilt in the frequency domain of 21 dB to compensate for the

frequency response of the coaxial cable. At 108 MHz the DS signal will have a PSD of

37 dBmV/6MHz, and at 1218 MHz it will have a PSD of 58 dBmV/6MHz. The coupler

provides about 30 dB isolation between the US and DS signal, leaving 7 dBmV/6MHz PSD

at 108 MHz and 28 dBmV/6MHz at 1218 MHz at the US receiver input. This signal is

shown as ’PA leakage’ in Figure 1.13. The PA generates nonlinearities at a power level 40

dB below the DS output signal, shown as ’PA noise’ in Figure 1.13. This noise signal also

experiences leakage through the coupler, and arrives at the US receiver input with a PSD

of -33 dBmV/6MHz at 108 MHz and -12 dBmV/6MHz at 1218 MHz, shown as ’PA noise

leakage’ in Figure 1.13.
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Figure 1.12: Noise cancellation options

In order to achieve a 40 dB SNR at the US receiver, the ’PA leakage’ and ’PA noise

leakage’ signals must be canceled at least to the level indicated as ’Receiver noise floor for

40 dB SNR’ in Figure 1.13. For an expected US input level of 3 dBmV/6MHz, this floor

would be at -37 dBmV/6MHz. However, we will specify the required noise floor to be -40

dBmV/6MHz to leave 3dB of headroom for additional sources of noise.

Note that we only need to cancel the portion of the signal which falls below the upper

edge of the US signal, as the remainder can be filtered away. The upper edge of the US signal

is at 684 MHz, which corresponds to a maximum SI PSD of about 18 dBmV/6MHz. For

this self-interference signal at the upper edge to be attenuated down to the -40 dBmv/6MHz
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Figure 1.13: Full-duplex signal power levels

noise floor in the receiver, it will have to be canceled by approximately 60 dB.

1.8 Thesis Outline

This thesis is organized as follows. Chapter 2 will discuss previous work in amplifier

modeling. Various amplifier models will be considered and the most promising models will

be looked at in greater detail. The limiting factors in these models will be discussed which

will demonstrate the need for a new model for the case of an ultra-wideband signal.

Chapter 3 discusses the theory of ultra-wideband power amplifier harmonic distortion. A

new model will be developed for the ultra-wideband case and the challenges of implementing

the model will be addressed. Chapter 4 will explain how to implement the proposed model

from Chapter 3 and will investigate practical limitations. Methods for reducing the sampling

rate and hardware resource requirements will also be discussed. Chapter 5 will show simu-

lation results and evaluate the performance of the newly developed model. Finally, Chapter
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6 will conclude the thesis by summarizing the main developments.
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2. Previous Work in Amplifier Modeling

Power amplifier modeling has been widely researched for the use of digital predistor-

tion (DPD) and echo cancellation (EC). Research into DPD techniques accelerated because

conventional power amplifiers in most radio-frequency (RF) applications must be backed

off considerably from their peak operating power level to control the in and out of band

harmonic noise caused by the nonlinear effects. This large back-off typically means that

expensive amplifiers with very high maximum power ratings must be used to transmit ade-

quate levels of output power. A more desirable alternative is to utilize digital predistortion

ahead of the amplifier to compensate for the nonlinear effects, therefore allowing it to operate

closer to its maximum power output while maintaining lower power in the harmonics.

The purpose of echo cancellation is to remove self-interference from the received signal in

a full-duplex transceiver. Echo cancellation is functionally similar to DPD in that it attempts

to model the output of the power amplifier to cancel the unwanted signal in the receiver.

A common application of EC is speakerphone applications where you can talk and listen

at the same time on the same frequency (the frequency of your voice), without feedback

occurring. More recently, EC has become increasingly popular in research towards FDX in

cellular communication, such as in [14–18] to name a few recent publications.

To explain the operation of digital predistortion and echo cancellation, some background

on complex signals and transmission/reception in a transceiver must first be reviewed.

2.1 Complex Signals

Complex signals can occupy positive and negative frequencies independently, but real

signals cannot independently occupy positive and negative frequencies. Instead, the distri-
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bution of power across the frequency spectrum for real signals is symmetric about 0 Hz.

The reasoning for this fact can be shown using a Fourier transform, which converts a time

domain signal to a frequency domain signal. First consider a real signal cos(2πFt) where F

is the frequency in Hz. From the well-known Euler formula,

cos(2πFt) =
1

2
e2πFt +

1

2
e−2πFt (2.1)

the Fourier transform of cos(2πFt) can be calculated,

F {cos(2πFt)} =
1

2
[δ(f − F ) + δ(f + F )] (2.2)

where δ(·) is the Dirac delta function [19]. This result means that cos(2πFt) has frequency

components at F and −F , both with amplitudes of 1/2. Next, consider the complex signal

cos(2πFt) +  sin(2πFt). From the Euler formula,

cos(2πFt) +  sin(2πFt) = e2πFt (2.3)

the Fourier transform can then be calculated,

F {cos(2πFt) +  sin(2πFt)} = δ(f − F ) (2.4)

which has an amplitude of 1 at only F [19]. This example shows how a complex signal can

define a positive frequency independently from the negative frequency, as opposed to a real

signal, which has symmetric amplitudes about 0 Hz.

2.2 Complex Signal Transmission

In most modern systems that communicate over an analog medium such as cable and

cellular, the signals are processed digitally at baseband (centered around 0 Hz) as complex

numbers and are transmitted/received in the analog domain as purely real signals at pass-

band (centered around a carrier frequency). The complex baseband transmit (Tx) signal

(x̃(n)) is up-converted to passband through multiplication with a complex sinusoid at the

carrier frequency, resulting in a real complex passband signal. Since only real signals can

be transmitted over a physical transmission medium, the imaginary portion of the complex

passband signal is discarded, yielding a real passband signal. The functional diagram of the
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Tx ×

e2πfn

<{·} x(n)
x̃(n)

0 fc fc−fc

Figure 2.1: Up-conversion using complex multiplication

up-conversion is shown in Figure 2.1. As shown in the diagram, discarding the imaginary

portion of the signal creates a frequency spectrum that is symmetric about 0 Hz.

A complex digital baseband signal x̃(n) is up-converted to the real passband signal x(n)

by

x(n) = <
{
x̃(n)e2πfn

}
(2.5)

where f is the passband (carrier) frequency in cycles/sample, f = F/Fs where F is the

passband frequency in Hz and Fs is the sampling rate in samples/second, n is the sam-

ple number (unit samples), and <{·} is an operator which returns the real portion of its

argument. Equation (2.5) can be rewritten as

x(n) = <{(x̃I(n) + x̃Q(n))(cos(2πfn) +  sin(2πfn))}

= <{x̃I(n) cos(2πfn)− x̃Q(n) sin(2πfn)

+ (x̃I(n) sin(2πfn) + x̃Q(n) cos(2πfn))}

= x̃I(n) cos(2πfn)− x̃Q(n) sin(2πfn) (2.6)

where x̃I(n) is the inphase (real) part of the complex baseband signal and x̃Q(n) is the

quadrature (imaginary) part of the complex baseband signal. The result of Equation (2.6) is

commonly used in hardware because taking only the real result of the complex multiplication

requires only two multiplies, whereas the full result of the complex multiplication requires

four multiplies.
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The hardware equivalent of Equation (2.6) is illustrated in Figure 2.2. In lower frequency

applications, this up-conversion can happen digitally if the sampling rate exceeds the Nyquist

rate, which is twice the highest frequency present in the signal after the up-conversion. The

sinusoids used to generate the carrier frequencies are digitally generated by a numerically

controlled oscillator (NCO) which stores the sinusoids in random access memory (RAM).

Tx

×

×

∑

cos(2πfn)

−sin(2πfn)

x(n)

x̃Q(n)

x̃I(n)

0

fc−fc

Figure 2.2: Up-conversion using quadrature multiplication

In high-frequency applications where the digital sampling rate cannot meet the Nyquist

rate for the passband signal, the complex baseband signals are first converted to analog then

multiplied by the output of a voltage controlled oscillator (VCO) and added together to be

up-converted to real passband. In the analog case, the n and f in Equation (2.6) would be

replaced by t and F respectively, where t is time in seconds and F is the carrier frequency

in Hz.

In the receiver, the signal is converted back down to complex baseband in a very similar

fashion. The received real passband signal y(n) has the form

y(n) = Ax̃I(n) cos(2πfn+ θ)− Ax̃Q(n) sin(2πfn+ θ) (2.7)

where A is an arbitrary amplitude and θ is an arbitrary phase shift dependent on the length

and properties of the transmission medium. y(n) is then converted to complex baseband ỹ(n)
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through multiplication with a complex exponential with a frequency equal to the negative

of the carrier frequency, resulting in

ỹ(n) = (Ax̃I(n) cos(2πfn+ θ)− Ax̃Q(n) sin(2πfn+ θ))e−2πfn

= Ax̃I(n) cos(2πfn+ θ) cos(2πfn)

− AX̃Q(n) sin(2πfn+ θ) cos(2πfn)

+  [−Ax̃I(n) cos(2πfn+ θ) sin(2πfn)

+ Ax̃Q(n) sin(2πfn+ θ) sin(2πfn)] . (2.8)

Using the following trigonometric identities,

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y)) (2.9)

cos(x) sin(y) =
1

2
(sin(x+ y)− sin(x− y)) (2.10)

sin(x) sin(y) =
1

2
(cos(x− y)− cos(x+ y)) (2.11)

Equation (2.8) becomes

ỹ(n) = Ax̃I(n)
1

2
(cos(θ) + cos(4πfn+ θ))

− Ax̃Q(n)
1

2
(− sin(θ) + sin(4πfn+ θ))

+ 

[
−Ax̃I(n)

1

2
(− sin(θ) + sin(4πfn+ θ))

+Ax̃Q(n)
1

2
(cos(θ)− cos(4πfn+ θ))

]
(2.12)

The double frequency components at 4πf in Equation (2.12) can be easily removed using a

LPF. In addition, the receiver must have circuitry to correct for the arbitrary phase offset θ,

making it equal to zero. Assuming θ = 0 and the double frequency components are filtered

away, ỹ(n) becomes

ỹ(n) =
A

2
x̃I(n) +

A

2
x̃Q(n) (2.13)

which is equal to the original baseband Tx signal with a scaled magnitude.

2.3 Digital Predistortion

The idea behind a digital predistorter is quite straightforward. The DPD circuit attempts

to model the inverse of the power amplifier’s nonlinear response, such that the cascade of the
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DPD circuit and the power amplifier will result in a linear gain. The operation of a DPD-

amplifier cascaded system is illustrated in Figure 2.3. Figure 2.3a contains a block diagram

indicating where the DPD fits into the feedback system. Note that many modern DACs

and ADCs contain circuitry to perform the up-conversion and down-conversion discussed in

section 2.2. We assume that the data converters being used include this functionality.

The DPD operates on the baseband signal x̃(n) to create the inverse PA response for

the passband signal x(t) as shown in Figure 2.3b. Figure 2.3c shows the AM-AM curve of

the power amplifier, and finally Figure 2.3d shows the AM-AM curve of the cascade of the

DPD and PA. As this cascaded result becomes linear, the power in the harmonic noise will

decrease.

x̃(n) DPD

with mixer

DAC PA y(n)

with mixer

ADC

x(t)

(a) DPD block diagram
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(b) DPD AM-AM
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(c) PA AM-AM
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t
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m
)

(d) DPD-PA AM-AM

Figure 2.3: Digital predistortion operation

Usually, a DPD device will model the PA using the baseband transmitted and received

signals. An ADC can be used to tap into the output of the power amplifier to sample

and down-convert the signal to complex baseband for use by the DPD algorithms. Using the
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baseband equivalents of the input and output to the power amplifier, the DPD will construct

a nonlinear model of the PA, then calculate the inverse of the model and apply the inverse

characteristics to the Tx signal. A parameter estimation technique such as least squares is

used to estimate the parameters of the nonlinear model [20–22].

Applying DPD at complex baseband as opposed to real passband has many benefits. The

main reason the modeling and predistortion are done at baseband is sampling rate. In high-

frequency applications such as 4G (cellular), the carrier frequency can be up to nearly 6 GHz

[23] which would require a sampling rate of at least 12 GHz to capture all of the signal without

aliasing, which is beyond the capabilities of current technology. Also, when a baseband signal

is raised to a higher order, the resulting signal contains only the in-band harmonics. In

contrast, a passband signal which is raised to a higher order will generate both in-band and

out-of-band harmonics. The distinction between in-band and out-of-band harmonics will be

discussed in more detail later in this chapter. Since out-of-band harmonics are often filtered

out and not reflected in the final signal, a baseband representation may be preferable. The

downside to processing at complex baseband is that one complex multiplication at passband

requires four multipliers whereas one real multiplication requires only one multiplier.

2.4 Echo Cancellation

Echo cancellation, like DPD, involves modeling the power amplifier. However, it does

not compute the inverse of the PA model. Instead, it directly calculates an estimate of the

output of the PA and uses this estimate to cancel the signals reflected back to the receiver

(echos). Like a DPD, EC usually takes place at complex baseband because of sampling rates

and the ability to calculate only in-band harmonics.

An echo canceler uses the complex baseband equivalents of the input and output of the

PA to construct a nonlinear model. Using these signals along with a parameter estimation

technique such as least squares, the PA can be modeled, and its output can be predicted.

An ADC can be used to tap into the output of the PA to sample it and down-convert it to

baseband for use during the model parameter estimation process.
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For EC to be successful, along with the output of the PA, the path that the self-

interference signal takes from the PA to the receiver must be known. This path is referred to

as the SI channel. The SI channel can be represented with a linear model since the channel

typically has a linear response. The number of samples needed to model the linear SI channel

will depend on how long it takes for the last echo to return to the receiver, as well as the

sampling rate. For example, if the sampling rate is 100 MHz and if the last echo returns in 3

µs, the SI channel model must include at least (100×106 samples/sec)×(3×10−6 sec) = 300

samples.

A block diagram of an echo canceler is shown in Figure 2.4. In the figure, x̃(n) is the

transmitted (Tx) baseband signal, ỹ(n) is the received (Rx) baseband signal, and d̃(n) is

the self-interference signal down-converted to baseband. The SI, as mentioned previously,

includes the leakage of the PA output through the coupler as well as echos returning from

the channel. As you can see in Figure 2.4, one ADC is used to receive the signal from the

channel (transmitted from the cable modems in the case of DOCSIS), and another ADC is

used to tap into the output of the power amplifier. The digital signals at the output of both

ADCs feedback into the echo canceling circuit to update the power amplifier and channel

model. Once the echo canceler has converged, it will calculate an estimate of the SI signal

(
̂̃
d (n)) which would ideally be equal to the actual SI signal (d̃(n)). The estimated SI signal

is then used to cancel the actual SI signal, ideally leaving only the desired received signal

ỹ(n) to be demodulated.

2.5 Power Amplifier Models

Previous work in modeling amplifiers falls into two main categories: frequency inde-

pendent and frequency dependent models. Frequency independent models assume the gain

of the amplifier is constant across the entire passband and there are no memory effects.

Frequency-dependent models, on the other hand, compensate for non-flat passband gains as

well as memory effects. It was noted in Chapter 1 that power amplifiers with wideband signal

inputs often experience frequency dependent AM-AM and AM-PM effects, implying their

models must include memory samples. Frequency independent models will not be discussed
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Figure 2.4: Block diagram of an echo canceler

here since they do not apply to the wide-band signals seen in DOCSIS.

Frequency-dependent models are widely used for power amplifier modeling, usually at

complex baseband for the use of pre-distortion and echo cancellation. For notational pur-

poses, a signal name with a tilde, i.e., x̃, will represent a complex baseband signal and a

signal name with no tilde, i.e., x, will represent a real passband signal. The most prominent

models from the literature are discussed in the following sections.

2.5.1 Volterra Series

The Volterra series is a nonlinear behavioral model developed by Vito Volterra in the

late 1800’s. The Volterra series is similar to the Taylor series except it also includes memory

effects. The Taylor series can be used to approximate the output of a nonlinear system if

the output depends only on the input at that given time, whereas the Volterra series output

depends on the current input and all past inputs.

The Volterra series is defined by Equation (2.14). For an input x(n) the output y(n) is
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given by [24]:

y(n) = h0

+
∞∑

m1=0

h1(m1)x(n−m1)

+
∞∑

m1=0

∞∑

m2=0

h2(m1,m2)x(n−m1)x(n−m2)

+
∞∑

m1=0

∞∑

m2=0

· · ·
∞∑

mp=0

hp(m1,m2, ...,mp)x(n−m1)x(n−m2) · · · x(n−mp)

+ · · · (2.14)

where hp(m1,m2, ...,mp) is known as the p-th order Volterra kernel. The zeroth-order kernel

h0 is a constant, the first-order kernel h1 is a linear filter, and the rest of the kernels are higher

order convolutions. Without any loss of generality, one can assume that the Volterra kernels

are symmetric about the diagonal. For example, h2(a, b) = h2(b, a) since x(n− a)x(n− b) =

x(n− b)x(n− a).

The Volterra series expansion can be written more compactly by defining the pth-order

Volterra operator hp(x(n)) as

hp(x(n)) =
M−1∑

m1=0

M−1∑

m2=0

· · ·
M−1∑

mp=0

hp(m1,m2, ...,mp)x(n−m1)x(n−m2) . . . x(n−mp). (2.15)

Substituting Equation (2.15) into Equation (2.14) yields

y(n) = h0 +
∞∑

p=1

hp(x(n)). (2.16)

The structure for the Volterra series is illustrated in Figure 2.5.

Since the infinite series given in Equation (2.14) cannot be practically implemented, one
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Figure 2.5: Block diagram of Volterra series

must work with the truncated form [24]

y(n) = h0 +
P∑

p=1

hp(x(n))

= h0

+
M−1∑

m1=0

h1(m1)x(n−m1)

+
M−1∑

m1=0

M−1∑

m2=0

h2(m1,m2)x(n−m1)x(n−m2)

+
M−1∑

m1=0

M−1∑

m2=0

· · ·
M−1∑

mp=0

hp(m1,m2, ...,mp)x(n−m1)x(n−m2) . . . x(n−mp) (2.17)

where P is the highest order of non-linearity of the Volterra series expansion, M is referred

to as its length, and M − 1 as its memory. Figure 2.6 illustrates the computation of a

Volterra series with M = 2 and P = 2. The Volterra series has a computational complexity

of O(MP ), i.e., the number of coefficients in this polynomial expansion is proportional to

MP . This means that implementing this system will result in very large filters for even

moderate values of M and P . Consequently, various alterations to the Volterra series have

been developed to make implementation more practical.
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Figure 2.6: Example 2nd-order Volterra series with length 2

2.5.2 Wiener Model

A special case of the truncated Volterra series is the Wiener model. The Wiener model

consists of a linear filter (h) followed by a memoryless nonlinearity [24] and is equivalent to

taking

hk(m1,m2, · · · ,mk) = akh(m1)h(m2) · · ·h(mk), k = 1, 2, ..., K (2.18)

in (2.17), where ak are the complex polynomial coefficients of the nonlinearity. Thus, the

Wiener model can be written as [21]

yW(n) =
K∑

k=1

ak

[
M−1∑

m=0

h(m)x(n−m)

]k
. (2.19)

where M is the memory length and K is the highest order of nonlinearity.

Equation (2.19) results in the input x(n) first being convolved with the linear filter h,

followed by a nonlinear calculation where the output of the convolution is raised to the power

of k and multiplied by the corresponding coefficient ak. The initial convolution accounts for

memory effects in a nonlinear system. The block diagram of this operation is shown in Figure
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2.7.

x(n) h(m) NL yW (n)

Figure 2.7: Wiener diagram

The Wiener model has been studied for traveling-wave tube (TWT) amplifiers for satellite

communication in [25] and [26] and for general nonlinear system identification in [27] and [28].

The Wiener approach is a simple model, but its effectiveness in modeling most PA’s is

limited [21], and the output in (2.19) depends nonlinearly on the coefficients h(m), making

the system identification more difficult and costly.

2.5.3 Hammerstein Model

Another simple nonlinear model with memory is the Hammerstein model. The Ham-

merstein model is formed by a nonlinearity followed by a linear filter (h), which is the

same structure as the Wiener model in reverse order. Thus, for the Hammerstein model we

have [21]

yH(n) =
M−1∑

m=0

h(m)
K∑

k=1

akx
k(n−m). (2.20)

This model is also straightforward in that the result is formulated by convolving the

output of a memoryless nonlinear system with a linear filter. The model has been studied

for general nonlinear system identification in [28–31], as well as for modeling power amplifiers,

most notably in [32–34]. The block diagram of the Hammerstein model is shown in Figure

2.8. This structure is more desirable compared to the Wiener model because it is linear in

the parameters h(m) and ak, which makes the parameters easier to estimate.

It should be noted that Wiener and Hammerstein models can cascade into the Wiener-

Hammerstein model, which consists of a linear filter followed by a memoryless nonlinearity,

followed by another linear filter [21]. Although the resulting filter is more general than either

one of the Wiener or Hammerstein models, it is still nonlinearly dependent on the first linear
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x(n) NL h(m) yH(n)

Figure 2.8: Hammerstein diagram

filter in the cascade and hence has only been studied as a general analysis tool [21].

2.5.4 Memory Polynomial Model

The memory polynomial model is a widely researched and commonly used method for

modeling power amplifiers for both DPD and EC. It is a modification of the Volterra series

that significantly reduces the complexity yet has superior performance compared to the other

models discussed. The memory polynomial model is defined by assuming all Volterra kernels

to be zero except for the diagonal [22], resulting in the equation

yMP (n) =
K∑

k=1

M−1∑

m=0

akmx
k(n−m). (2.21)

This structure involves K linear convolutions, each with memory depth M , where the input

to each convolution is the current sample x(n) raised to the power of k. This model is similar

to the Taylor series of Equation (1.3), with the extension of memory samples for each order

k. A diagram of the memory polynomial structure is given in Figure 2.9. Notice that the

MPM model can be thought of as a generalized Hammerstein model. If the coefficients for

each order of nonlinearity are the same, it is equivalent to a Hammerstein model.

2.6 Baseband Models

The models discussed in Section 2.5 accept passband input signals. However, since DPD

and EC are typically performed at baseband, the models can be modified for narrowband

applications at baseband. The updated models can be derived by first defining x(n) in terms

of its complex baseband equivalent. Let x̃(n) = x̃I(n) + x̃Q(n), and let the passband carrier
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Figure 2.9: Memory polynomial structure

frequency be ωc.

x(n) =<{x̃(n)eωcn}

=<{x̃(n)(cosωcn+  sinωcn)}

=<{(x̃I(n) + x̃Q(n))(cosωcn+  sinωcn)}

=x̃I(n) cosωcn− x̃Q(n) sinωcn

=x̃I(n)

(
1

2
eωcn +

1

2
e−ωcn

)
− x̃Q(n)

(
1

2
eωcn − 1

2
e−ωcn

)

=
1

2

(
x̃I(n)

(
eωcn + e−ωcn

)
+ x̃Q(n)

(
eωcn − e−ωcn

))

=
1

2

(
(x̃I(n) + x̃Q(n))eωcn + (x̃I(n)− x̃Q(n))e−ωcn

)

=
1

2

(
x̃(n)eωcn + x̃∗(n)e−ωcn

)
(2.22)

Where x̃∗(n) is the complex conjugate of x̃(n).

Using the result from (2.22) we can square x(n) to find the second order passband har-

monics in terms of the baseband signal,

x2(n) =
1

4

(
(x̃(n))2ej2ωcn + 2|x̃(n)|2 + (x̃∗(n))2e−j2ωcn

)
(2.23)

which has harmonics at 0 Hz (DC) and at 2ωc, and no harmonics in-band at ωc. Upon
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down-conversion to baseband, the harmonics will have the form

x2(n)e−ωcn =
1

4

(
(x̃(n))2ejωcn + 2|x̃(n)|2e−jωcn + (x̃∗(n))2e−3jωcn

)
(2.24)

which has no frequency components at DC and hence will have no harmonic noise in the

signal, assuming a narrowband x(n). The baseband memory-polynomial model therefore

generally ignores second order harmonics.

Similarly, we can calculate the third order harmonics,

x3(n) =
1

8

(
2|x̃(n)|2x̃(n)ejωcn + (x̃(n)ejωcn)3 + |x̃(n)|2x̃∗(n)e−jωcn

+ 2|x̃(n)|2x̃∗(n)e−jωcn + |x̃(n)|2x̃(n)ejωcn + (x̃∗(n)e−jωcn)3
)

=
1

8

(
3|x̃(n)|2x̃(n)ejωcn + (x̃(n))3ej3ωcn + 3|x̃(n)|2x̃∗(n)e−jωcn + (x̃∗(n))3e−j3ωcn

)
.

(2.25)

which has harmonic components at both positive and negative ωc and 3ωc. The third order

harmonic down-converted to baseband will then be

x3(n)e−ωcn =
1

8

(
3|x̃(n)|2x̃(n) + (x̃(n))3ej2ωcn

+ 3|x̃(n)|2x̃∗(n)e−2jωcn + (x̃∗(n))3e−j4ωcn
)
. (2.26)

Since a harmonic does land at the carrier frequency, after down conversion to baseband in

(2.26) the term |x̃(n)|2x̃(n) will remain as baseband noise and therefore must be calculated

by the baseband polynomial model. Following the same pattern for fourth, fifth, and higher

order harmonics it can be seen that only odd order harmonics fall in-band, and when down-

converted to baseband these harmonics will take the form

xk(n)→ x̃(n)|x̃(n)|k−1, k odd (2.27)

for odd values of k. We can use the results from Equation (2.27) to adapt the passband

nonlinear models to be used at baseband. The Wiener model is excluded from the baseband

analysis because of the nonlinear dependence on the h(m) coefficients and is therefore not

as simple to adapt to baseband.
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2.6.1 Baseband Hammerstein Model

The Hammerstein model given in Equation (2.20) can be adapted to be used for narrow-

band applications at baseband by substituting in Equation (2.27) and only calculating odd

order harmonics. The resulting equation is

ỹH(n) =
M−1∑

m=0

h(m)
K−1∑

k=0
k even

akx̃(n)|x̃(n)|k, (2.28)

where k = 0 corresponds to the 1st order harmonic, k = 2 corresponds to the 3rd order

harmonic, and so on.

2.6.2 Baseband Memory Polynomial Model

The Memory polynomial model in Equation (2.21) can be used for narrowband signals

at baseband by substituting in Equation (2.27). The resulting equation is

ỹMP (n) =
K−1∑

k=0
k even

M−1∑

m=0

akmx̃(n−m)|x̃(n−m)|k. (2.29)

Although only even values of k (hence odd powers) are commonly used, some researchers

have reported mild performance improvements when using a more general model including

odd values of k (even powers of x̃) [35]. Also, it should be noted that it is not necessary

to have the same memory depth for all powers of k. A diagram of the baseband memory

polynomial model is shown in Figure 2.10.

The baseband memory polynomial model has been researched for digital predistortion,

most notably in [20, 21, 36] and echo cancellation in [35]. It has proven to provide a good

balance of complexity and performance.

2.7 General Memory Polynomial Model

An even higher performance model derived from the baseband memory polynomial model

is the general memory polynomial model, developed in [21]. This model uses kernels in the

Volterra series offset from the diagonal in both the positive and negative direction, in addition
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x̃(n)|x̃(n)|2

x̃(n)|x̃(n)|K−1

..
.

Figure 2.10: Baseband memory polynomial diagram including all values of k

to the diagonal kernels. The result therefore includes the MP model as well as products of

the current sample x̃(n) with delayed and advanced samples. The resulting equation is

ỹGMP(n) =
Ka−1∑

k=0

La−1∑

l=0

aklx̃(n− l)|x̃(n− l)|k

+

Kb−1∑

k=0

Lb−1∑

l=0

Mb∑

m=1

bklmx̃(n− l)|x̃(n− l −m)|k

+
Kc−1∑

k=0

Lc−1∑

l=0

Mc∑

m=1

cklmx̃(n− l)|x̃(n− l +m)|k (2.30)

where Ka, Kb, and Kc are the highest orders of nonlinearities for the aligned envelope

(memory polynomial), lagging envelope, and leading envelope respectively. La, Lb, and Lc

are the memory depths for the aligned, lagging, and leading signals respectively and finally

Mb and Mc are the number of cross terms to include in the lagging and leading signals

respectively.

Here, KaLa is the number of coefficients for the aligned signal and envelope (memory

polynomial); KbLbMb is the number of coefficients for signal and lagging envelope; and

KcLcMc is the number of coefficients for signal and leading envelope. This cross-term model,

like the memory polynomial model, is also linearly dependent on the coefficients and can

therefore be estimated using a linear method such as least-squares.
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In many cases, not all of the coefficients are required in (2.30). For instance, odd-order

nonlinearities usually dominate so one may want to consider only even multiples of k. Also,

it is not necessary to have the same memory depth for all powers of k. A diagram of the

general memory polynomial is given in Figure 2.11, where z−1 is a delay, z1 is an advance,

and MP is the memory polynomial model. In a causal system, future samples cannot be

taken. Instead, x̃(n) can first be delayed by Mc samples to ensure the most advanced value

is not a future sample in time.

x̃(n) MP

MP

MP

MP

MP

..
.

..
.

..
.

..
.

..
.

..
.

z−1

z1

z1

z−1

x̃(n)

x̃(n)

x̃(n)z−1

x̃(n)

x̃(n)z1

x̃(n)

x̃(n)zMc

x̃(n)

x̃(n)z−Mb

∑
ỹ(n)

Figure 2.11: Generalized memory polynomial diagram

The general memory polynomial model scales the number of coefficients compared to the

memory polynomial model by the total number of cross terms used. Even for a small number

of cross terms, the complexity will significantly increase. However, there are applications

where performance can be more important than complexity to an extent. The GMP model

was first used in [21] as a predistorter for a wireless CDMA signal, and in [37] the GMP
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model was found to have the highest accuracy in modeling PA’s when complexity is not a

concern.

2.8 Limitations of Models

There are implementation issues with the passband models and conceptual problems

with the baseband models. First, consider a 250 MHz passband signal which is a low enough

frequency that it could be processed digitally at passband. If, for example, the 5th order

products had to be calculated at passband, the highest frequency harmonic would extend past

1.25 GHz, requiring a sampling rate of at least 2.5 GHz. Such high sampling rates become

very expensive regarding cost, power consumption, and resource usage, if even possible to

implement.

The baseband models on the other hand only work well if the signal bandwidth is narrow

enough such that the out-of-band harmonics can be filtered away before down-converting

to baseband, such as in Figure 2.121. Figure 2.12a shows how a bandpass filter can isolate

the 3rd and 5th order harmonics, so that after a down-conversion to baseband as in 2.12b, a

nonlinear model such as the memory polynomial model can accurately calculate the in-band

harmonics. This is the method used in many modern wireless systems [20–22,35,38].

However, for a wideband signal such as the example illustrated in Figure 2.13, the har-

monics with center frequencies at multiples of the carrier frequency overlap with the main

signal and will therefore interfere with the main signal when filtered and converted to base-

band. These out-of-band harmonics cannot be calculated with the current baseband models

and thus cannot be accounted for in a DPD or EC circuit. As discussed in Chapter 3, this is

the scenario faced when performing DPD or EC on the wideband output signal from a DOC-

SIS 3.1 node. Consequently, modifications to the traditional amplifier models are necessary

for this application.

1Figure derived from [11]
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0 fc 2fc 3fc 4fc 5fc

(a) Out-of-band harmonics filtered away

0

(b) Resulting baseband signal after down conversion.

Figure 2.12: Baseband representation of narrow-band harmonics

0 fc 2fc 3fc 4fc 5fc

Figure 2.13: Ultra-wideband intermodulation distortion
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3. Ultra-Wideband Power Amplifier Modeling

3.1 Introduction

The nonlinear models discussed in Chapter 2 cannot compensate for the in-band distor-

tions from harmonics of ultra-wideband signals, and therefore these models must be adapted.

This chapter will develop a new model which is suitable for DOCSIS 3.1 signals. The mem-

ory polynomial model is used as the starting point for the development of this new model

since it has relatively good performance and reasonable resource usage. Before discussing the

new model, sampling theory will be reviewed as it pertains to the challenges in developing

this model. Next, the theory of ultra-wideband harmonics and their effects on the baseband

processing will be discussed. Then the difficulties with processing UWB signals at baseband

will be investigated, and finally, the proposed solution will be developed.

3.2 Digitally Processing an Analog Signal

Information is conveyed over coaxial cable networks through analog voltage signals. How-

ever, these signals are typically processed digitally in the transmitter and receiver, requiring

conversion between the analog and digital domains. This section discusses analog-to-digital

conversion, some essential digital signal processing (DSP) operations, and digital-to-analog

conversion.

3.2.1 Analog-to-Digital Conversion

Analog (continuous-time, CT) signals are sampled and stored as discrete-time (DT) dig-

ital signals to be digitally processed. If the sampling period is Ts seconds/sample, then the

sequence of digital samples x(n) is obtained from the continuous-time signal xc(t) according
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to the relationship

x(n) = xc(nTs), −∞ < n <∞ (3.1)

where n is an integer representing the sample number. The sampling rate, Fs, is the reciprocal

of the sampling period, i.e. Fs = 1/Ts samples/second. The sampling frequency can also be

expressed as Ωs = 2πFs when we want to use the unit radians/second. Note that DT signals

will have the unit samples as its index, such as x(n samples), and CT signals will have the

unit time as its index, such as x(t seconds), however the unit is not usually written.

It is convenient to represent the sampling process mathematically in two stages [19]. The

first stage is an impulse train modulator, and the second is a conversion of the impulse train

to a sequence. The periodic impulse train is

s(t) =
∞∑

n=−∞
δ(t− nTs), (3.2)

where δ(t) is the Dirac delta function. The product of s(t) and the CT input xc(t) is

xs(t) =xc(t)s(t)

=xc(t)
∞∑

n=−∞
δ(t− nTs) =

∞∑

n=−∞
xc(t)δ(t− nTs), (3.3)

where the area (size) of xs(t) at time t = nTs is equal to the value of the CT signal xc(t) at

that time. Since δ(t) is zero for all t except t = 0, xs(t) can be expressed as

xs(t) =
∞∑

n=−∞
xc(nTs)δ(t− nTs). (3.4)

Figure 3.1 shows a CT signal xc(t) being sampled with an impulse train then converted

to the DT signal x(n). The essential difference between xs(t) and x(n) is that xs(t) is a

continuous time signal that is zero except at integer multiples of Ts where the area of the

impulse is equal to xc(t) at integer multiples of Ts. x(n) on the other hand is a digital signal

whose value at sample n is equal to the value of the CT signal at time nTs, and is indexed

on the integer variable n, which, in effect, introduces a time normalization. This means that

the sequence of numbers x(n) contains no information about the sampling period. Note that

the value of x(n) is undefined for non-integer values of n.
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×
xc(t)

s(t)
Conversion
from impulse

train to
discrete-time
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x(n) = xc(nTs)

C/D Converter

(a) C/D converter

−4Ts −2Ts 0 2Ts 4Ts
t

xc(t)
xs(t)

(b) Sampled signal

−4 −3 −2 −1 0 1 2 3 4
n

xc(t)
x(n)

(c) Discrete-time signal

Figure 3.1: Continuous-to-discrete conversion model

It is essential to note that Figure 3.1 is strictly a mathematical representation of the

sampling process and does not reflect how an actual analog-to-digital converter operates.

The model is useful however to derive some important insights about sampled signals.

3.2.2 Frequency Domain Representation of a Sampled Signal

The frequency domain representation of the discrete signal x(n) is important for under-

standing sampling rate requirements, up/down sampling, and digital-to-analog conversion.

To derive the frequency domain relation between the input and output of an ideal analog-to-

digital converter, consider the Fourier transform of xs(t). From (3.3), xs(t) is the product of

xc(t) and s(t), and therefore the Fourier transform of xs(t) is the convolution of the Fourier

transforms of xc(t) and s(t) scaled by 1
2π

. The Fourier transform of the periodic impulse
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train s(t) is

S(Ω) =
2π

Ts

∞∑

k=−∞
δ(Ω− kΩs), (3.5)

where Ωs = 2π/Ts is the sampling frequency in radians/second. Since

Xs(Ω) =
1

2π
Xc(Ω) ∗ S(Ω), (3.6)

where ∗ denotes convolution. It follows that [19]

Xs(Ω) =
1

Ts

∞∑

k=−∞
Xc((Ω− kΩs)). (3.7)

Equation (3.7) states that the Fourier transform of the sampled signal (Xs(Ω)) consists

of periodically repeated copies of Xc(Ω). These copies are shifted by integer multiples of

the sampling frequency to produce the Fourier transform of xs(t). Figure 3.2 illustrates the

sampling process.

An effect referred to as aliasing occurs when the sampling rate is less than double the

highest frequency signal being sampled (Ωs < 2ΩN). Aliasing will corrupt the sampled signal,

which leads to the Nyquist sampling theorem which states that the sampling frequency must

be at least double that of the highest frequency signal to fully capture the signal [19]. Figure

3.2d illustrates an example of aliasing.

Conversion from the CT sampled signal xs(t) to the DT signal x(n) involves frequency

normalization. If the sampling rate is Fs in samples/second and the frequency of the CT

signal being sampled is Fo cycles/second (Hz), then the sampled signal x(n) has a discrete

time frequency of fo = Fo/Fs cycles/sample. Alternatively, if the CT signal is expressed

in unit radians/second instead of cycles/second, the CT frequency would be Ωo = 2πFo

radians/second, and the discrete time frequency would be ωo = Ωo/Fs radians/sample.

Conversions between the units radians and cycles maybe be performed by utilizing the factor

1 cycle = 2π radians. Hence ωo = 2πfo.

The Fourier transform of the DT signal, X(eω) is shown in Figure 3.3. When processing

a DT signal, we usually only look at the frequencies −π < ωo < π since the spectrum is

periodic with period 2π, which means that −π to π encompasses all of the unique frequency

content of the signal.
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Ω

Xc(Ω)

−ΩN ΩN

(a)

Ω

S(Ω)

−2Ωs −Ωs 0 Ωs 2Ωs 3Ωs

(b)

Ω

Xs(Ω)

−2Ωs −Ωs Ωs 2Ωs 3Ωs−ΩN ΩN

(Ωs − ΩN)
(c)

Ω

Xs(Ω)

Ωs 2Ωs
(Ωs − ΩN)

(d)

Figure 3.2: Frequency domain representation of sampling in the time domain. (a) Spectrum

of the original signal. (b) Fourier transform of the sampling function. (c) Fourier transform

of the sampled signal with Ωs > 2ΩN . (d) Fourier transform of the sampled signal with

aliasing (Ωs < 2ΩN)

3.2.3 Up-Sampling

Up-sampling involves increasing the sampling rate of a DT signal. Consider the originally

sampled signal

x(n) = xc(nTs). (3.8)
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(a) Sampled-signal spectrum

ω

X(eω)
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· · ·· · ·

(b) Discrete-time signal spectrum

Figure 3.3: Continuous-time and discrete-time signal spectrums

The up-sampled signal would then be

xL(n) = x(n/L) = xc(nTs/L), n = 0,±L,±2L, . . . . (3.9)

and xL(n) = 0 for all other values of n. xL(n) can be alternatively represented by sampling

the original discrete signal x(n) with an impulse train

xL(n) =
∞∑

k=−∞
x(k)δ(n− kL). (3.10)

which has the effect of inserting L− 1 zeros in-between samples of the original signal. The

Fourier transform of xL(n) can then be described as [19]

XL(eω) =
∞∑

n=−∞

( ∞∑

k=−∞
x(k)δ(n− kL)

)
e−ωn

=
∞∑

k=−∞
x(k)e−ωLk

=X(eωL) (3.11)

Thus, the Fourier transform of the output of an up-sampler is a frequency-scaled version of

the Fourier transform of the original signal, i.e. ω is replaced by ωL.
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The Fourier transforms of X(eω) and XL(eω) are plotted in Figure 3.4. You can see

that the effect of up-sampling compresses the signal in the frequency domain, and brings

in copies (images), of the signal into the ω = −π to π frequency range, as shown in Figure

3.4b. These images must be filtered away to reconstruct the signal properly.

ω

X(eω)

−2π −π π 2π−ωo ωo

· · ·· · ·

(a) Original Signal

ω

XL(e
ω)

· · ·· · ·

−2π −π π 2π
ωo

L
2π
L

(b) Signal up-sampled by L = 3

Figure 3.4: Frequency-domain representation of a signal up-sampled by a factor of L = 3

3.2.4 Down-Sampling

Down-sampling a DT signal x(n) by an integer factor M involves keeping every M th

sample from the signal and discarding the rest, and reducing the sampling rate Fs by the

same factor. The down-sampled signal xM(n) can be expressed as

xM(n) = x(nM) = xc(nMTs). (3.12)

First, recall that the DTFT of x(n) = xc(nTs) is

X(eω) =
1

Ts

∞∑

k=−∞
Xc

[


(
ω

Ts
− 2πk

Ts

)]
. (3.13)
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Similarly, the DTFT of xM(n) = x(nM) = xc(nMTs) is

XM(eω) =
1

MTs

∞∑

r=−∞
Xc

[


(
ω

MTs
− 2πr

MTs

)]
. (3.14)

To see the relationship between between Equations (3.13) and (3.14), note that the summa-

tion index in (3.14) can be expressed as

r = i+ kM (3.15)

where k and i are integers such that −∞ < k <∞ and 0 ≤ i ≤M − 1. Equation (3.14) can

now be expressed as

XM(eω) =
1

M

M−1∑

i=0

{
1

Ts

∞∑

k=−∞
Xc

[


(
ω

MTs
− 2πk

Ts
− 2πi

MTs

)]}
. (3.16)

The terms inside the curly brackets in (3.16) is recognized from (3.13) as

X(e(ω−2πi)/M) =
1

Ts

∞∑

k=−∞
Xc

[


(
ω − 2πi

MTs
− 2πk

Ts

)]
. (3.17)

Thus, we can express Equation (3.17) as [19]

XM(eω) =
1

M

M−1∑

i=0

X(e(ω/M−2πi/M)) (3.18)

Equation (3.18) tells us that the spectrum of the down-sampled signal (XM(eω)) is equal

to a scaled version of the spectrum of the original signal (X(eω)) with the spectral shape

widened by a factor of M , and with images at integer multiples of 2π as is the case for all

DT signals.

The Fourier transform of a DT signal before and after down-sampling is shown in Figure

3.5. It is clear that down-sampling expands the range of occupied frequencies by a factor of

M . It is also important to note that the signal being down-sampled must be band-limited

such that ωo < π/M otherwise aliasing will occur, as shown in Figure 3.5c.

3.2.5 Discrete-to-Continuous Conversion

According to the Nyquist sampling theorem, a continuous-time signal can be entirely

reconstructed from its samples if the samples were taken at a rate greater than twice its
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(c) Aliasing resulting from down-sampling when ωo > π/M

Figure 3.5: Frequency spectrum of a signal down-sampled by a factor of M = 3

frequency [19]. The mathematical model of discrete-to-continuous conversion first involves

creating the sampled signal xs(t) discussed in the previous section, followed by a CT low

pass filter to remove the high-frequency signal copies.

The sampled signal xs(t) can be formulated by multiplying the sequence x(n) by an

impulse train,

ys(t) =
∞∑

n=−∞
x(n)δ(t− nTs), (3.19)

where the nth sample is associated with the impulse at t = nTs, and Ts is the sampling period

associated with x(n). This impulse train is the input to an ideal low pass continuous-time
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reconstruction filter with frequency response Hr(Ω) and impulse response hr(t). The output

of the filter will be the reconstructed CT signal

yr(t) =
∞∑

n=−∞
x(n)hr(t− nTs) (3.20)

which in theory will exactly equal the originally sampled signal xc(t). The D-to-C process

is depicted in Figure 3.6.

3.3 Ultra-Wideband Harmonic Theory

Calculating the harmonics in an ultra-wideband system is similar to the narrow-band

calculations in Chapter 2, however the larger bandwidths present new challenges. We want

to model the harmonics seen at baseband created from an ultra-wide passband signal to

perform baseband echo-cancellation.

An ultra-wide signal is defined as a signal whose absolute bandwidth is large relative to

its center frequency. The metric used to make this classification is the fractional bandwidth,

defined by [39]

fractional bandwidth =
fn − f1
fc

, (3.21)

where fn, f1, and fc is the highest, lowest, and center frequency of the passband signal.

When the fractional bandwidth is above 0.2 [40]1, the application is deemed ultra-wideband.

For the DOCSIS 3.1 FDX application, recall from Figure 1.5 that the downstream signal

spans from 108 MHz to 1218 MHz and has a center frequency of 663 MHz. Thus, the

fractional bandwidth of this signal is (1218− 108)/663 = 1.7 and the DOCSIS 3.1 DS signal

is therefore considered an ultra-wideband signal. In contrast, typical wireless applications

(the focus of most existing PA modeling literature) are very narrowband, with fractional

bandwidths mostly in the range 0.01 to 0.04 [23].

For narrowband applications, only harmonics with center frequencies at fc must be mod-

eled as was shown in Figure 2.12 in Chapter 2 since the harmonics with center frequencies

other than fc do not interfere with the signal of interest. However, with ultra-wideband

1The definition of an UWB signal is vague and depends on the application. See the Appendix for further
details.
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Figure 3.6: Reconstructing a CT signal from a DT signal

signals like the one shown in Figure 2.13, harmonics with center frequencies other than fc,

such as DC, 2fc, and 3fc, will interfere with the SOI and therefore must also be modeled.

With ultra-wideband signals, the harmonics can grow so wide in frequency that the
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harmonics centered at positive frequencies can spread past 0 Hz and into the negative fre-

quencies. Since real signals are symmetric about 0 Hz, this situation results in the spectrum

“folding” back into the positive frequencies, as illustrated in Figure 3.7. This “folded” back

signal can also interfere with the SOI, however by computing the harmonic correctly it can

still be accounted for.

f

SOI

harmonic

“folded” back

Figure 3.7: Example of a harmonic “folding” back into the signal of interest

An obvious starting point for computing the OOB harmonics might be to raise the

passband signal to various powers to calculate all of the harmonics. However, this would

unnecessarily calculate the high-frequency harmonics that do not interfere with the signal of

interest, and it would require a higher sampling rate to handle the high-frequency signals. A

more desirable approach is to calculate only the harmonics that interfere with the SOI. The

SOI in the DOCSIS FDX case is the upstream signal. Since the US signal frequency spreads

from 5 MHz to 684 MHz, only the harmonics that overlap with these frequencies need to be

calculated.

For echo-cancellation to execute at baseband, the harmonics should be calculated from

the baseband transmitted signal. Recall from Equation (2.22) that the real passband Tx

signal is given from the complex baseband Tx signal by

x(n) = <{x̃(n)eωcn} =
1

2

(
x̃(n)eωcn + x̃∗(n)e−ωcn

)
, (3.22)

where ωc = 2πfc, and fc is the carrier frequency. Now we can square x(n) to find the second

order harmonics,

x2(n) =
1

4

(
(x̃(n)ejωcn)2 + 2|x̃(n)|2 + (x̃∗(n)e−jωcn)2

)
. (3.23)
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Using Equation (3.22) and the property of complex conjugates that (x̃∗)2 = (x̃2)∗, we can

write x2(n) as

x2(n) =
1

2
<
{
|x̃(n)|2 + (x̃(n)ejωcn)2

}
. (3.24)

We can now calculate the third order harmonics:

x3(n) =x2(n)x(n)

=
1

8

(
(x̃(n)eωcn)2 + 2|x̃(n)|2 + (x̃∗(n)e−ωcn)2

)
(x̃(n)eωcn + x̃∗(n)eωcn)

=
1

8

(
(x̃(n)eωcn)3 + 3|x̃(n)|2x̃(n)eωcn + 3|x̃(n)|2x̃∗(n)e−ωcn + (x̃∗(n)e−ωcn)3

)

=
1

4
<
{

(x̃(n)eωcn)3 + 3|x̃(n)|2x̃(n)eωcn
}
. (3.25)

By following the same process used to generate Equations (3.24) and (3.25), the Kth or-

der passband harmonics are generalized by Equation (3.26). Note that the scaling constants

corresponding to the individual harmonic terms have been omitted from (3.26) for brevity.

The reason this omission is justified is that the PA modeling process applies unknown co-

efficients to each harmonic component in order to model device specific variations, so the

specific constants in (3.26) are of little consequence.

xK(n) =





<
{
|x̃(n)|K + |x̃(n)|K−2(x̃(n)ejωcn)2

+|x̃(n)|K−4(x̃(n)ejωcn)4 + · · ·+ (x̃(n)ejωcn)K
}
, K even

<
{
|x̃(n)|K−1(x̃(n)ejωcn) + |x̃(n)|K−3(x̃(n)ejωcn)3

+|x̃(n)|K−5(x̃(n)ejωcn)5 + · · ·+ (x̃(n)ejωcn)K
}
, K odd

(3.26)

For K ≥ 1. Equation (3.26) can be compressed using summation notation:

xK(n) =





K∑
r=0
r even

|x̃(n)|K−r<{(x̃(n)ejωcn)r} , K even

K∑
r=1
r odd

|x̃(n)|K−r<{(x̃(n)ejωcn)r} , K odd

, K ≥ 1 (3.27)

Equation (3.27) can be used to calculate the individual passband harmonics using the

baseband Tx signal. Figure 3.8 shows the position of each harmonic in a DOCSIS FDX
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application with the bandwidths drawn to scale in frequency. Each harmonic is labeled

with its equation in terms of the complex baseband Tx signal given in (3.27), with the <{·}
omitted. Only the DC and positive frequencies are shown in the figure, but recall that each

signal will also have a negative frequency component because the passband signal is purely

real.

MHzfc108 1218

DS Signal

−684 6845

US Signal

|x̃(n)|2 (x̃(n)eωcn)2

0 2fc|x̃(n)|2x̃(n)eωcn (x̃(n)eωcn)3

fc 3fc
|x̃(n)|4 |x̃(n)|2(x̃(n)eωcn)2 (x̃(n)eωcn)4

0 2fc 4fc

|x̃(n)|4x̃(n)eωcn |x̃(n)|2(x̃(n)eωcn)3 (x̃(n)eωcn)5

fc 3fc 5fc

All Signals

0 fc 2fc 3fc 4fc 5fc

Figure 3.8: Harmonics in a DOCSIS FDX application (bandwidths drawn to scale)

For DOCSIS FDX echo-cancellation, we are concerned with the harmonics that interfere
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with the upstream frequency band from 5 MHz to 684 MHz. Figure 3.82 provides a good

starting point for identifying which individual harmonics will need to be calculated. However,

the power in each harmonic differs from one device to the next, and will also depend on the

operating point (output power, temperature, etc.) of the power amplifier. A method for

determining which harmonics need to be canceled could be canceling one at a time and

observing the reduction in error power in the received signal. A significant reduction in error

power implies the harmonic in question has substantial power in the US signal frequency

band.

Upon calculating the passband harmonics, the harmonics will have to be down-converted

to baseband as would the received US signal. Down-conversion is executed by multiplying

each harmonic by e−ωcn as described in Chapter 2. After down-conversion, all of the base-

band signals should be in the correct locations for echo-cancellation. Unfortunately, practical

hardware has limitations on how high of a sampling rate it can handle. The impact of these

limitations on the ultra-wideband PA modeling process is discussed in the following sections.

3.4 Sampling Rate Limitations

Practical devices such as application-specific integrated circuits (ASICs) and field-programmable

gate arrays (FPGAs) have physical limitations that cap their maximum sampling rate. For

example, a top of the line FPGA such as the Intel Arria 10 has a maximum clock rate of 800

MHz [41]3. Thus, only sampling rates of up to 800 MHz can directly be used, corresponding

to signals with bandwidths of up to 400 MHz (according to the Nyquist theorem). However,

operations can happen in parallel in an FPGA, thereby providing an effectively higher sam-

pling rate. For example, the sampling rate could be increased from 800 MHz to 3200 MHz

by executing four parallel operations at each clock pulse. The trade-off in doing so is at least

four times the hardware resources will be used inside the FPGA, and the implementation

complexity will significantly increase.

2Figure derived from [11]
3In practice, FPGA designs typically operate will below this maximum due to difficulties in meeting

register setup and hold time requirements when the maximum clock rate listed in the datasheet is approached.
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Although a harmonic from a power amplifier might extend to a very high frequency, the

entirety of the harmonic does not have to be known to perform echo-cancellation. Only the

portion of the harmonic interfering with the US signal must be known since that is the part

we need to cancel, and the remaining portion of the harmonic can be filtered away. From

Equation (3.27), we see that each individual harmonic can be calculated at baseband prior

to up-conversion by first evaluating all terms with x̃(n), then multiplying by (eωcn)k to shift

the harmonic to its proper center frequency.

Recall that if the frequency of a sampled signal extends past the Nyquist rate, or Fs/2,

the signal will alias. The aliased signal is mirrored about Fs/2, and the portion of the

signal that is aliased is corrupted. Fortunately, we are not concerned about a corrupted

signal outside of the US signal frequency band because it will eventually be filtered away.

Therefore, when the harmonic at baseband is up-converted to passband, we can allow it to

alias as long as the bandwidth of the signal beyond Fs/2 is less than the frequency spread

between Fs/2 and the upper edge of the US signal (684 MHz). In this case, the portion of

the harmonic overlapping with the US signal will remain correct.

Two different situations need to be considered. The first situation arises when the base-

band version of harmonic fits within the Nyquist rate like that in Figure 3.9a. If the up-

converted harmonic aliases such that the aliased part of the signal does not interfere with

the SOI such as the example in Figure 3.9b, then the in-band harmonic will be correct.

If, on the other hand, the harmonic is aliased such as that in Figure 3.9c where aliasing

occurs within the SOI, the calculated harmonic will not be correct. In this case, there are

two options for solving the problem. The first is to increase the sampling rate such that

the in-band signal no longer aliases on top of the SOI. The second option is to apply a

complex LPF to the signal at baseband to band-limit it as illustrated in Figure 3.10a. The

impulse response of the filter must be complex so that it can attenuate positive frequencies

that would alias into the SOI while allowing the negative frequencies that overlap with the

SOI at passband to pass. A filter with a real-valued impulse response would attenuate

both positive and negative frequencies. The result of up-converting the filtered harmonic to

passband is illustrated in Figure 3.10b.
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SOISOI
Fs/2−Fs/2

(a) Baseband harmonic is not aliased

SOI
Fs/2

(b) Up-converted harmonic does not alias into the SOI

SOI
Fs/2

(c) Up-converted harmonic does alias into the SOI

Figure 3.9: Examples of aliased harmonics (gray dashed signals are aliases)

Another situation to consider occurs when the baseband harmonic does not fit within

the Nyquist rate as shown in Figure 3.11. Upon up-converting the harmonic, if the aliased

portions of the signal do not interfere with the SOI (both positive and negative frequencies),

then the aliasing is not a concern as it will eventually be filtered away in the receiver.

However, if the aliased portions do interfere with the SOI, then it is necessary to increase

the sampling rate.

Finally, with our understanding of how to calculate ultra-wideband harmonics and the as-

sociated sampling rate limitations, we can devise an ultra-wideband echo-cancellation model

for the DOCSIS FDX application.
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SOISOI
Complex
LPF

Fs/2−Fs/2

(a) Complex LPF applied to baseband harmonic prior to up-conversion

SOI
Fs/2

(b) Up-converted filtered harmonic no longer aliases into the SOI

Figure 3.10: Examples of aliased harmonics (gray dashed signals are aliases)

SOISOI
Fs/2−Fs/2

Figure 3.11: Baseband harmonic aliases

3.5 Ultra-Wideband Harmonic Model

Given the baseband transmitted signal x̃(n), we want to approximate the baseband equiv-

alent of the output of the power amplifier ỹ(n). First, we must decide on a nonlinear model

to adapt into an ultra-wideband model. The performance and resource usage of various

models have been compared in many papers including [37, 42, 43]. In general, polynomial-

based models exhibit superior performance with reasonable complexity. The researchers

in [37, 42] compare the MP and GMP models directly and find that the GMP has slightly

better performance for the same number of coefficients, however, the GMP model has a

more complex structure and is, therefore, more challenging to implement. In this thesis,
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we will adapt the memory polynomial model to calculate individual out-of-band harmonics

due to its adequate performance and simple structure, which simplifies the derivation of the

ultra-wideband model.

To begin the formulation of the UWB-MP model, recall from Eq. (3.27) that the Kth

order passband harmonics calculated from the baseband signal x̃(n) are given by

xK(n) =





K∑
r=0
r even

|x̃(n)|K−r<{(x̃(n)ejωcn)r} , K even

K∑
r=1
r odd

|x̃(n)|K−r<{(x̃(n)ejωcn)r} , K odd

, K ≥ 1.

This equation can be compressed by allowing r to be an element of the set {RK}, where the

set includes the values of r for the given harmonic order K. In general, RK = {0, 2, 4, ..., K}
for even K, and RK = {1, 3, 5, ..., K} for odd K. However, RK can be selective, meaning not

all values of r need to be included in the model, depending on the application. For example,

consider the 5th order harmonics. Perhaps only the the harmonics at fc and 3fc are to be

included and the harmonic at 5fc is to not be included. In this case, R5 = {1, 3}. Re-writing

Eq. (3.27) with this new notation results in

xK(n) =
∑

r∈RK
|x̃(n)|K−r<{(x̃(n)eωcn)r} , K ≥ 1. (3.28)

Now let us form a summation of passband harmonics for orders up to and including K.

We do so by replacing K with k in Equation (3.28) and summing k from 1 to K. The

resulting Equation is

K∑

k=1

xk(n) =
K∑

k=1

∑

r∈Rk
|x̃(n)|k−r<{(x̃(n)eωcn)r} , K ≥ 1. (3.29)

Finally, by including memory samples as well as a set of unknown coefficients for each

harmonic term, we arrive at the ultra-wideband memory polynomial model for passband

harmonics:

yUWB−MP(n) =
K∑

k=1

∑

r∈Rk

M−1∑

m=0

bkrm|x̃(n−m)|k−r<
{(
x̃(n−m)eωc(n−m)

)r}
(3.30)

where,
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• K is the highest order of nonlinearity,

• Rk is the set of individual passband harmonics to be included for the order k, Rk =

{0, 2, 4, ..., k}, k even,

Rk = {1, 3, 5, ..., k}, k odd,

Rk is selective, i.e. not all values have to be used,

• M is the number of samples (memory) to include,

• bkrm is the real coefficient corresponding to the rth harmonic of order k with a delay of

m samples.

To complete the baseband power amplifier model, the passband harmonics in (3.30)

must be down-converted to baseband and filtered with a LPF. The down-conversion involves

multiplication by e−ωcn which produces the desired baseband signal along with a double

frequency component. Note that again we will drop the coefficient bkrm since it is for the

passband harmonics, and instead we will introduce a coefficient for the baseband harmonics

when completing the baseband model. The down-converted unfiltered signal is given by

e−ωcn
K∑

k=1

∑

r∈Rk

M−1∑

m=0

|x̃(n−m)|k−r<
{(
x̃(n−m)eωc(n−m)

)r}
. (3.31)

The e−ωcn term can be moved to inside the summation. After doing so, (3.31) is re-written

as:
K∑

k=1

∑

r∈Rk

M−1∑

m=0

e−ωcn|x̃(n−m)|k−r<
{(
x̃(n−m)eωc(n−m)

)r}
. (3.32)

Finally, the down-converted signal in (3.32) is filtered to remove the double-frequency

component with the following convolution, where h(l) are the coefficients for a low pass filter

and L is the length of the filter:

L−1∑

l=0

h(l)
K∑

k=1

∑

r∈Rk

M−1∑

m=0

e−ωcn|x̃(n−m− l)|k−r<
{(
x̃(n−m− l)eωc(n−m−l)

)r}
. (3.33)

As was done with the e−ωcn term, we will move the
∑L−1

l=0 h(l) term to be inside the other

summations. The resulting equation is:

K∑

k=1

∑

r∈Rk

M−1∑

m=0

L−1∑

l=0

h(l)e−ωcn|x̃(n−m− l)|k−r<
{(
x̃(n−m− l)eωc(n−m−l)

)r}
. (3.34)
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Equation (3.34) can be simplified by substituting

ψ(n, k, r,m) =
L−1∑

l=0

h(l)e−ωcn|x̃(n−m− l)|k−r<
{(
x̃(n−m− l)eωc(n−m−l)

)r}
. (3.35)

Finally, the ultra-wideband polynomial model for baseband signals is given in Equation

(3.36), where the coefficients akrm have been re-introduced for the baseband model.

ỹUWB−MP(n) =
K∑

k=1

∑

r∈Rk

M−1∑

m=0

akrmψ(n, k, r,m) (3.36)

The benefit of moving the down-conversion multiplication and LPF inside the summations

is it allows us to down-sample the signals before convolving them with the akrm coefficients.

Down-sampling enables this convolution to happen at a lower clock rate, therefore using

fewer resources.

A block diagram showing the sequence of operations in generating ỹUWB−MP(n) from x̃(n)

is given in Figure 3.12.

x̃(n) | · |

×

eωcn

×

× <{·}

<{·}

<{·}

<{·}

×

×

··
·

×

×

×

×

×

e−ωcn

h(l)

h(l)

h(l)

h(l)

h(l)

LPF

↓

↓

↓

↓

↓

Down
Sample

a11m

a20m

a22m

a31m

a33m

··
·

akrm

∑
ỹUWB−MP(n)

Figure 3.12: Ultra-wideband memory polynomial block diagram

Equations (3.36) and (3.35) provide a full mathematical representation of how the re-

ceived baseband signal from the output of a power amplifier can be computed given the
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baseband input to the amplifier. Although it might look daunting, it arises from the cascade

of a few simple operations. To summarize, the |x̃(n−m)|k−r<
{(
x̃(n−m)eωc(n−m)

)r}
term

comes from the passband UWB-MP model from Equation (3.30), the e−ωcn term down-

converts the harmonics to baseband, and the h(l) term and substitution of n with n − l

results from the low pass filtering operation after the down-conversion.

The next step in predicting the output of an ultra-wideband PA is to use a parameter

estimation technique to solve for the unknown akrm coefficients in Equation (3.36).

3.6 Parameter Estimation

A parameter estimation technique must be used to estimate the coefficients akrm for the

ultra-wideband memory polynomial model in Equation (3.36). Since the output ̂̃yUWB−MP (n)

is linearly dependent on akrm, a linear parameter estimation technique can be used. In

literature, the most common technique used for estimating the parameters for a memory

polynomial model is least squares (LS) [21, 22, 35, 44], so the LS method will also be used

here. First, we will go through the development of the LS algorithm, then apply it to the

MP model, and finally extend it to the UWB-MP model.

3.6.1 Least Squares

The basic idea of the method of least squares is to fit a curve to a set of measured data

in a manner which minimizes the sum of squares of the difference between the measured and

calculated outputs [45].

Consider a physical phenomenon that is characterized by two sets of variables, {y(n)}
and {x(n)}, where y(n) at sample n is a function of the subset of variables x(n), x(n −
1), ..., x(n −M + 1) applied as inputs. If this relationship is linear, we may express y(n)

as [45]

y(n) =
M−1∑

i=0

aix(n− i) + e(n) (3.37)

where ai are unknown parameters of the model, and e(n) represents the measurement error.

In the absence of evidence to the contrary, it is customary to assume that the measurement
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error is a white noise process with zero mean.

The problem we want to solve is to estimate the unknown parameters ai given the two

observable sets of data {x(n)} and {y(n)}, n = 0, 1, ..., N − 1. In this thesis, we will denote

an estimated value with an overhead hat ( ·̂ ), so the estimates of the unknown parameters

are denoted âi. Once the âi parameters have been estimated, they can be used to generate

estimates of the output data ŷ(n) based on the known input samples x(n) as follows:

ŷ(n) =
M−1∑

i=0

âix(n− i). (3.38)

The error in the estimated output samples is then calculated by:

e(n) = y(n)− ŷ(n). (3.39)

In the method of least squares, the estimated coefficients âi are chosen to minimize the sum

of squared errors where M is the memory depth (number of coefficients) and N is the number

of equations to solve (number of observations of x(n) and y(n)). The LS algorithm generally

operates on an over-determined system, meaning there are more equations than there are

variables (N > M).

From [45], the LS algorithm using the inputs and outputs of a system can be expressed

as follows. Equation (3.38) can be put into the matrix form

y = XA (3.40)

where the desired response over some measurement interval of length N can be written in

matrix form as an (N × 1) column matrix,

y = [y(0), y(1), ..., y(N − 1)]T , (3.41)

the coefficient matrix as an (M × 1) column matrix,

A = [a0, a1, ..., aM−1]
T , (3.42)
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and the input written as an (N ×M) rectangular matrix,

X =




x(0) x(1) . . . x(M − 1)

x(1) x(2) . . . x(M)
...

...
. . .

...

x(N − 1) x(N) . . . x(N +M − 2)



. (3.43)

The coefficients can then be estimated as [45]

Â = (XHX)−1XHy (3.44)

where (·)H denotes a Hermitian (complex conjugate transpose) matrix transform. In a

dynamic system such as a power amplifier, the true coefficients can change over time. The

estimated coefficients in this case can be updated using a gradient-based approach [45]

Â(m) = Â(m−1) + µ(XHX)−1XHe (3.45)

where µ is the step size, e = y −XÂ(m−1) is the (N × 1) error matrix between the desired

signal y and the LS estimation XÂ(m−1) from the previous iteration, and Â(0) is the initial

estimation from (3.44). For a small step size µ, the algorithm converges more slowly but

will result in a more accurate final estimate, whereas a larger µ will converge more quickly

but will have more error in the converged solution. It is usually a good idea to begin with a

larger µ then reduce µ as the estimation converges.

3.6.2 Least Squares for Nonlinear Systems

The least squares algorithm can be used to solve nonlinear systems as long as the system

is linearly dependent on the coefficients. As we saw in Chapter 2, the output of the memory

polynomial model is nonlinearly dependent on the input, and linearly dependent on the

coefficients, so the LS algorithm is suitable to calculate the coefficients.

Here, the LS algorithm will first be used to estimate the coefficients for the memory

polynomial model, then further adapted for the ultra-wideband memory polynomial model.

Recall from (2.29) the equation of the memory polynomial model with all values of k
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included,

ỹ(n) =
K−1∑

k=0

M−1∑

m=0

akmx̃(n−m)|x̃(n−m)|k. (3.46)

The MP model can be put into matrix form [35]:

y = XA (3.47)

where y is the (N × 1) matrix,

y = [ỹ(0), ỹ(1), ..., ỹ(N − 1)]T , (3.48)

A is the (KM × 1) coefficient matrix,

A = [a00, ..., akm, ..., aK−1,M−1]
T , (3.49)

and X is the (N ×KM) rectangular input matrix,

X = [Ψ0,Ψ1, ...,ΨN−1]
T , (3.50)

where Ψn is the (KM × 1) matrix,

Ψn = [ψ(n, 0, 0), ..., ψ(n, k,m), ..., ψ(n,K − 1,M − 1)]T , (3.51)

and

ψ(n, k,m) = x̃(n−m)|x̃(n−m)|k. (3.52)

Thus, for an over-determined system (N > M), the coefficient matrix is estimated by

the LS equations given in (3.44) and (3.45).

Now we can further extend the LS algorithm to calculate the coefficients for the ultra-

wideband memory polynomial model. In order to do so, we need to define a new constant

S which equals the total number of values in all {Rk} sets. For example, if K = 2 and

R1 = {1}, R2 = {0, 2}, then S = 3. This can be represented by the following equation,

S =
K∑

k=1

Rk, (3.53)

where Rk is the cardinal number for Rk, which is equal to the number of elements in the set.
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Now we put the UWB-MP model into matrix form to solve for the coefficients using the

LS method. From Equation (3.36), ỹUWB−MP(n) can be put into the matrix form,

y = XA (3.54)

where y is the (N × 1) matrix,

y = [ỹ(0), ỹ(1), ..., ỹ(N − 1)]T , (3.55)

A is the (SM × 1) coefficient matrix,

A = [a110, a200, a220, a310, ..., akrm, ..., aK,RK ,M−1]
T , (3.56)

and X is the (N × SM) rectangular input matrix,

X = [Ψ0,Ψ1, ...,ΨN−1]
T , (3.57)

where Ψn is the (1× SM) matrix,

Ψn = [ψ(n, 1, 1, 0), ψ(n, 2, 0, 0), ψ(n, 2, 2, 0), ψ(n, 3, 1, 0), ...,

ψ(n, k, r,m), ..., ψ(n,K,RK ,M − 1)], (3.58)

and,

ψ(n, k, r,m) =
L−1∑

l=0

h(l)e−ωcn|x̃(n−m− l)|k−r<
{(
x̃(n−m− l)eωc(n−m−l)

)r}
. (3.59)

Finally, with the above equations the coefficient matrix is estimated by the LS equations

given in (3.44) and (3.45).
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4. Implementing the Ultra-Wideband Model

This chapter covers the requirements for implementing the ultra-wideband memory poly-

nomial model. Considering the sampling rate limitations discussed in Chapter 3, we will

investigate techniques for modeling harmonics with the lowest possible sampling rate for the

specific case of DOCSIS FDX.

4.1 Calculating UWB Harmonics

As discussed in Chapter 3, maximum device clock rates limit the maximum frequency

of signals that can be represented straightforwardly. Although parallel operations can be

used to achieve an effective sampling rate that is a multiple of the clock rate, doing so

uses proportionally more hardware and is, therefore, more expensive. The purpose of this

section is to find the lowest possible sampling rates required for accurately modeling each

harmonic present at the power amplifier output, thus providing recommendations for the

sampling rates and implementation structures to be used when constructing the DOCSIS

3.1 UWB-MP model in hardware.

First, we must decide which harmonics are to be calculated and canceled with echo-

cancellation. Referring to Figure 3.8, all harmonics up to and including the 5th order interfere

with the signal of interest from 5 MHz to 684 MHz. Therefore we might have to compensate

for each of these harmonics. The power in each harmonic will vary from device to device

and based on operating point, so the only way to know for sure which harmonics must be

compensated for is testing the EC algorithm with an actual PA and observing how much

additional cancellation is obtained when additional harmonics are included.

A good starting point is to begin by modeling the harmonics requiring the lowest sampling
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rates, and including additional harmonics as necessary until satisfactory echo-cancellation is

achieved. We will start with the 1st, 2nd, and the 3rd order harmonics, as these are tradi-

tionally the most significant harmonics in CATV amplifiers [46]. The process for extending

past the 3rd order will be very similar, but with higher sampling rate requirements.

To simplify the hardware implementation of the UWB-MP model, it is desirable to use

a single sampling rate for all harmonics. Therefore, the strategy pursued in this section is

to first determine the required sampling rate for each harmonic, then select the common

sampling rate as the largest of the individual rates.

Each harmonic must be analyzed individually to find its minimum sampling requirements.

Where advantageous, sampling rates will be reduced by applying the technique discussed in

Section 3.4 which involves the use of complex filters. Therefore, there are two methods of

calculating the harmonics at baseband: one which includes a complex filter and one which

does not. Diagrams of the two options are given in Figure 4.1. The following sections

analyze each harmonic using both options. We first consider the general case of a harmonic

of arbitrary order and center frequency in Section 4.1.1. Then, Sections 4.1.2 and 4.1.3 apply

the analysis to the specific cases of 2nd and 3rd order harmonics, respectively.

x(n) xk ×

663 MHz× r

y(n)
A B

(a) Option 1 - no baseband filter

x(n) xk

LPF

×

663 MHz× r

y(n)
A C D

(b) Option 2 - with baseband filter

Figure 4.1: Two options for computing harmonics at baseband
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In Figure 4.1, the xk block represents calculating the harmonics at baseband. Recall

the block diagram of the UWB-MP model in Figure 3.12. In this diagram, the harmonics

were calculated at passband directly. To calculate the harmonics at baseband with optional

filters, then up-convert the harmonics to their proper center frequencies, the diagram of the

UWB-MP model would take the form presented in Figure 4.2.
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↓

↓

↓

↓

↓

Down
Sample

a11m

a20m

a22m

a31m

a33m

··
·

akrm

∑
ỹUWB−MP(n)

Figure 4.2: UWB-MP diagram with harmonics calculated at baseband and optional filters

4.1.1 Modeling Arbitrary Harmonics

Let each harmonic be denoted by Hkr, where k is the harmonic order and r is the

multiple of the carrier frequency at which the harmonic is centered. For example, H20

is the 2nd harmonic at DC, and H33 is the 3rd order harmonic at 3fc. Recall that the

downstream signal is centered at fc = (1218 + 108)/2 = 663 MHz, and has a bandwidth of

BW = 1218 − 108 = 1110 MHz. The center frequencies and bandwidths of each harmonic
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up to the 5th order are summarized by Table 4.1, where all values are in units of MHz.

Harmonic BW Center Lower Edge Upper Edge

H20 2220 0 -1110 1110

H22 2220 1326 216 2436

H31 3330 663 -1002 2328

H33 3330 1989 324 3654

H40 4440 0 -2220 2220

H42 4440 1326 -894 3546

H44 4440 2652 432 4872

H51 5550 663 -2112 3438

H53 5550 1989 -786 4764

H55 5550 3315 540 6090

Table 4.1: Harmonic spectrum centers and spans (all frequencies in MHz)

Before calculating the passband harmonics in Table 4.1, they can first be calculated at

baseband in our model. The method for determining whether or not a baseband complex

filter is beneficial (option 2) is described here. The specific cases of calculating the 2nd and

3rd order harmonics are discussed as examples in Sections 4.1.2 and 4.1.3.

Recall the spectrum of the downstream signal x(n) at baseband spans from −555 to 555

MHz, and the US spectrum at baseband (which is the signal of interest - SOI) spans from

−339.5 to 339.5 MHz. At passband, the US signal spans the frequency range from 5 to 684

MHz. However, since the passband US signal is real, it also occupies the negative frequencies

from -684 to -5 MHz. Correctly modeling the effect of the passband harmonics created by

the PA requires an accurate representation of the entire US regions at passband. Thus, there

can be no aliasing into the region spanning -684 to 684 MHz.

Points A, B, C, and D in the following discussion will be referring to Figure 4.1. At point

A, the spectrum spans from −k × 555 to k × 555 MHz, and at point B the spectrum spans

from −k × 555 + 663× r to k × 555 + 663× r MHz.
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At point B, aliasing into the US region will occur if

684 < Fs − k × 555− r × 663, (4.1)

where all values are in units of MHz. Therefore, for no aliasing to occur in the US region at

point B,

Fs > 684 + k × 555 + r × 663. (4.2)

For no aliasing of the DS signal on top of itself at point A,

Fs > 2k × 555. (4.3)

The spectrum at point C depends on the LPF. The filter should be designed to allow the

portion of the signal that will overlap with the SOI to pass and remove as much of the rest

as possible. The portion of the signal that will overlap with the SOI is the part that will be

in the −684 to 684 MHz region after up-conversion. Let us define the baseband equivalent

of this region as the set of frequencies Q:

Q = {F | −684− r × 663 < F < 684− r × 663 } (4.4)

We will also define the set of frequencies S that is occupied by the baseband harmonic at

point A:

S = {F | −k × 555 < F < k × 555 } (4.5)

The output of the baseband filter should be the portion of the signal which falls within Q.

Therefore the baseband filter should have a passband which is the intersection of the sets Q

and S, i.e. Q
⋂
S. The intersection is not empty (sets overlap) if

max(−k × 555,−684− r × 663) < min(k × 555, 684− r × 663). (4.6)

If the above inequality is true, then the intersection of the sets spans from

max(−k × 555,−684− r × 663) to min(k × 555, 684− r × 663). (4.7)

Equations (4.6) and (4.7) tell us two important details. First, (4.6) tells us if the Hkr

harmonic interferes with the signal of interest. If so, it will contribute to the SI corrupting
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our US signal. Second, (4.7) gives the frequency range of the baseband harmonic that will

interfere with the SOI at passband. This region will be the passband of the filter if Option

2 from Figure 4.1 is used to calculate the harmonic.

Designing the complex LPF for option two involves a trade-off between transition band-

width and filter length. Bellanger’s rule for digital filter design [47] indicates that the tran-

sition width of the filter is inversely proportional to the length of the filter, and therefore

the cost of the filter. In our specific case, using a narrow transition band allows for a lower

sampling rate, but at a higher cost. Whereas a wide transition width requires a higher

sampling rate but allows a lower filter cost. In the end, a common sampling rate will be

chosen for calculating all harmonics, so it is reasonable to use the widest allowable transition

bandwidth for each filter, given the sampling rate. The next sections apply the logic from

this section in determining the minimum sampling rate required for calculating the 2nd and

3rd harmonics.

4.1.2 Calculating 2nd Order Harmonics

The spectrum of the 2nd order harmonic at DC, H20, is illustrated in Figure 4.3, with the

US signal band also labeled.

US SignalUS Signal Fmin/2−Fmin/2

F,MHz−1110 −684 684 1110−897 897

Figure 4.3: H20 harmonic with minimum sampling rate

Since this is a baseband signal it is not up-converted and therefore filtering will not help

reduce the sampling rate. From Equation (4.2), the minimum sampling rate for calculating
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H20 is

Fmin > 684 + 2× 555 + 0× 663

Fmin > 1794 (4.8)

The second order harmonic at 2fc, H22, is first calculated at baseband then up-converted

to passband. The passband and baseband spectra of H22 are given in Figure 4.4. Figures

4.4a and 4.4b illustrate the harmonic both with and without the use of a baseband filter.

The hatched out area is the portion of the signal the filter would remove, and the dotted

line represents the filter’s frequency response.

US SignalUS Signal
H22

F,MHz216 684 2436

(a) H22 harmonic at passband

F,MHz−1110 −642 1110

(b) H22 at baseband prior to up-conversion

Figure 4.4: H22 at passband and baseband with a complex LPF

From Figure 4.4a, it is seen that only the portion of the passband signal spectrum from

216-684 MHz interferes with the US signal. Therefore, only this portion of the spectrum

needs to be captured by the model. The remainder can be filtered away at baseband to

reduce the sampling rate requirements. If filtered at baseband, the minimum sampling rate

required to represent H22 at passband is 2 × 684 = 1368 MHz plus the baseband filter

transition width.
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H22 at baseband is shown in Figure 4.4b. The portion of this spectrum interfering with

the US signal at passband is the most negative part of the spectrum, from -642 to -1110 MHz.

Thus, a complex LPF with a cutoff frequency as low as -642 MHz can be used to pre-filter

the signal. However, the minimum sampling rate required to calculate this baseband signal is

2×1110 = 2220 MHz since no part of the signal can alias before the filter without corrupting

the signal of interest. This means that the minimum sampling rate for the calculation of H22

is 2220 MHz if a filter is used.

If H22 is not pre-filtered, then from (4.2) the lowest sampling rate at passband would be

Fmin > 2436 + 684 = 3120 MHz. Therefore, pre-filtering the harmonic can save up to 900

MHz in sampling rate requirements, at the expense of implementing a complex filter.

4.1.3 Calculating 3rd Order Harmonics

The spectrum of the 3rd order harmonic centered at fc, H31, is given in Figure 4.5a.

From Figure 4.5a, frequencies that will be above the US signal band at passband can be

US Signal

H31

F,MHz−1002−684 684 2328

(a) H31 harmonic at passband

Fmin/2−Fmin/2

Complex LPF

F,MHz−1665 21 1665
−1347 1506

(b) H31 at baseband prior to up-conversion with a complex filter

Figure 4.5: H31 at passband and baseband with a complex LPF

filtered away at baseband to reduce the sampling rate requirement. Also, frequencies that
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will fall below the negative US signal band at passband may be allowed to alias up to the

point where the aliased signal reaches −684 MHz. If H31 is filtered at baseband, then the

minimum sampling rate at passband is 2× 684 = 1368 MHz plus the filter transition width.

The baseband complex filter and aliasing is illustrated in Figure 4.5b. The −1347 to

11 MHz band at baseband corresponds to the US signal band at passband. The minimum

sampling rate at baseband required to calculate the signal of interest from −1347 to 11

MHz is the rate where the alias interferes up to −1347 MHz. This rate is calculated by

Fmin > 1665 + 1347 = 3012 MHz.

If H31 is not pre-filtered, then from (4.2) the minimum sampling rate would be Fmin >

684 + 3 × 555 + 1 × 663 = 3012 MHz. In this case, pre-filtering does not reduce sampling

rate requirements.

H33 is calculated in a similar fashion, with the signal’s spectrum given in Figure 4.6.

From Figure 4.6a, the passband spectrum from 324 to 684 MHz must be calculated as it

US Signal
H33

F,MHz324 684 3654

(a) H33 harmonic pre-filtered

F,MHz−1665−1305 1665

(b) H33 prior to up-conversion with a complex filter

Figure 4.6: H33 at passband and baseband with a complex LPF

interferes with the US signal, and the remaining portion can be filtered away at complex

baseband. Thus, the minimum sampling rate required to represent H33 at passband with
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pre-filtering at baseband is 2× 684 = 1368 MHz plus the filter roll-off.

H33 at baseband is given in Figure 4.6b. As in the case of H22, the most negative part

of the spectrum from -1305 to -1665 MHz at baseband interferes with the US signal at

passband. Thus, a complex LPF with a cutoff frequency as low as -1305 MHz can be used to

pre-filter the signal. The minimum sampling rate required to calculate this baseband signal

before the filter is 2× 1665 = 3330 MHz since we cannot allow aliasing to occur before the

filter.

If H33 is not pre-filtered, then from (4.2) the lowest sampling rate at passband would be

Fmin > 684 + 3× 555 + 3× 663 = 4338 MHz. Thus, pre-filtering the harmonic can save 1008

MHz in sampling rate requirements.

Calculating higher order harmonics follows the same process as the calculations for the

2nd and 3rd order harmonics.

4.1.4 Summary of Calculations

A summary of the required sampling rates for calculating the harmonics discussed in

Section 4.1 is presented here.

Table 4.2 gives the minimum sampling rate in MHz required for calculating each har-

monic, both with and without a baseband filter. These sampling rates do not account for

the filter transition width, so the sampling rate used will have to be adequately higher than

the listed rate to allow for a reasonable filter transition band.

Harmonic
Fmin

No Filter

Fmin

With Filter

H20 1794 1794

H22 3120 2220

H31 3012 3012

H33 4338 3330

Table 4.2: Summary of minimum sampling rates for calculating harmonics
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Upon examining the minimum required sampling rates, it is reasonable to conclude that

we should calculate H20, H22, and H31 without a filter since H33 requires the highest sampling

rate. H33, however, should be calculated using a baseband filter since this signal is the

limiting factor for the system.

If we implement a complex baseband filter when calculating H33, the filter transition

width will equal the increase in sampling rate frequency required. For example, if the filter’s

transition width is 200 MHz, then the minimum sampling rate would be 3330 + 200 = 3530

MHz. A mathematical optimization problem could be set up here to minimize hardware cost

based on sampling rate and filter length, but that is left as future work.

4.2 Down-Converting Harmonics

The passband harmonics calculated in the previous section model the self-interference

signal leaking into the upstream signal path. These modeled signals must follow the same

operations done on the actual received signal as they are down-converted to baseband. Fol-

lowing the same operations as the actual received signal, the modeled baseband signals

should match the received baseband signals, allowing echo-cancellation to take place.

The actual received signal goes through an analog low pass filter before the ADC to

band-limit the signal to prevent aliasing. In the DOCSIS FDX case, the analog LPF will

likely have a passband corner at 684 MHz such that the upstream signal is preserved while

eliminating out-of-band power that could otherwise saturate the ADC. This spectrum with

the LPF is illustrated in Figure 4.7.

DS

US

noise
· · ·· · ·

Analog LPF

MHz−108−684−1218 108 684 1218

Figure 4.7: Received signal with analog LPF
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After the filter, the signal is sampled by the ADC and down-converted to baseband.

Following the down-conversion, the double-frequency component is filtered away as discussed

in Section 2.2. The complex baseband result of the down-conversion and filtering is illustrated

in Figure 4.8. After the down-conversion and filtering, the signal is down-sampled before

demodulation.

DS

US

noise

Fs/2−Fs/2

MHz−339.5 339.5

Figure 4.8: Complex down-converted received signal

Note that the analog LPF does not necessarily have to be modeled for our echo-cancellation

system. Consider a case where we do not apply a filter in our model corresponding to the

analog LPF seen in the actual system. The system would proceed to down-convert the

output of the PA, including the high-frequency harmonics. After the down-conversion, the

signal would be digitally filtered. This digital filter would remove the out-of-band harmonics

that would have been removed by the analog LPF seen in the actual system.

Therefore we do not need to model the analog filter. The trade-off here is that when the

signal is down-converted, the power in the high-frequency harmonics aliases and adds power

to the spectrum that is being filtered by the baseband digital LPF after the down-conversion.

There would be more remaining OOB power at the input of this filter if it was not removed

by an equivalent analog LPF. Therefore the digital LPF must have a better out-of-band

attenuation compared to the case where we model the analog filter.

Finally, after the modeled harmonics are represented at baseband, they can be down-

sampled and used in conjunction with the least squares algorithm to estimate the UWB-MP

model coefficients.
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4.3 Echo-Cancellation

Using the baseband down-sampled modeled harmonics developed in Section 4.2, along

with the least squares algorithm for computing coefficients as discussed in Section 3.6, echo-

cancellation can take place. Assuming that the amplifier characteristics do not significantly

change over time and temperature, the LS calculations may be performed offline. Optionally,

the computational workload of the FPGA can be further reduced be offloading these calcu-

lations to a processor. In such an implementation, the processor calculates the coefficients

for the UWB-PM model and sends them back into the FPGA to be applied to the mod-

eled baseband signals. The result is subtracted from the received signal, hence performing

echo-cancellation.

The coefficients are repeatedly updated until the error power is below a threshold, at

which point the coefficients can stop updating until the PA response changes substantially.

Such a change would be detected via a significant increase in the error power. An illustration

of the completed echo-cancellation operation is provided in Figure 4.9.

x(n)

DAC

PA

Least-Squares

UWB-MP

Power Monitor

Atten

∑

ADC

Amplifier Characterizer

ỹ(n)
+

akrm

Update
Coeffs ẽ(n)

̂̃y(n)

−

Figure 4.9: Echo cancellation block diagram

Of course, the system in Figure 4.9 can only be used to characterize the amplifier. To

perform full echo-cancellation, the FDX echo channel response must first be estimated. The

estimated PA output from the UWB-MP model can then be convolved with the (linear)
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FDX channel estimate to produce an estimate of the self-interference seen at the US receiver.

Finally, this SI estimate is subtracted from the signal at the US receiver. In the ideal case,

where all of the estimates are perfect, only the US signals transmitted from cable modems

would remain after the cancellation. Implementing the FDX channel estimation is out of the

scope of this thesis, however, Figure 4.10 provides a recommended structure derived from

the narrowband EC structure presented in [35].

Tx Signal

DAC

PA

Nonlinear
Model

Atten

ADC

∑

Linear
Model

∑

ADC

Coupler

Rx Signal

Digital Echo
Canceller

x̃(n)

ỹ(n)
+−

̂̃y(n)

̂̃ySI(n) −
ỹSI(n)

+

y(t)

ySI(t)

Cable
Network

r̃(n)

Figure 4.10: Full echo-cancellation system diagram

The echo-canceler given in Figure 4.10 requires only a single feedback ADC for EC

purposes, regardless of the number of amplifiers in the node because as soon as the nonlinear

model converges to sufficiently characterize the amplifier, that model can stop updating, and

the ADC can be used to characterize another PA. When all PAs have been characterized,

the ADC can be shutdown until an amplifier response changes.
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5. Results

This chapter tests the performance of the ultra-wideband memory polynomial (UWB-

MP) echo-cancellation model. The chapter is organized as follows. First, the simulation

procedure is described, and a diagram of the simulation model is given. Next, the perfor-

mance metrics used to compare results are developed. Lastly, simulations are demonstrated,

and the results are discussed.

Since no other publicly available1 echo-cancellation algorithms exist for our particular

problem, we cannot compare our newly developed algorithm against others. Instead, we

will compare the performance of the newly developed UWB-MP model against a linear

model. Doing so will justify the cost and complexity of the UWB-MP model by showing the

performance difference compared to using only a linear model, which is unable to predict or

represent the harmonics generated by the PA.

Further simulations will compare the impact on cancellation performance of changing the

number of coefficients used in the UWB-MP model, the number of samples used with the

LS algorithm, and the number of iterations of the LS algorithm. We will also investigate the

change in performance based on the power amplifier simulation model used.

The simulations in this chapter serve multiple purposes. First, the simulations verify

the mathematical representation of the UWB-MP derived in Chapter 3. Additionally, we

will justify the increase in cost and complexity associated with canceling harmonics with

the UWB-MP model opposed to using a simple model only able to cancel the linear signal.

1While a number of companies in the cable/DOCSIS industry have developed or are working to develop
ultra-wideband models for this application, these models are proprietary. To the best of our knowledge, no
suitable models have been disclosed in the open literature.
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Lastly, the results of the simulations tell us if the amount of cancellation required to support

DOCSIS FDX is possible. The simulations are not intended to find an optimal hardware

implementation of the algorithm. Chapter 6 draws conclusions from the simulations and

lays out potential future work on the topic of DOCSIS full-duplex echo-cancellation.

5.1 Simulation Procedure

This section describes the simulations of the ultra-wideband power amplifier character-

ization model in Matlab. The downstream signal is simulated with a band-limited AWGN

signal. Such signals have been shown to be reasonable approximations of OFDM signals [48].

The bandwidth of the signal will closely represent the frequencies used in DOCSIS FDX.

The reason for using a band-limited AWGN signal instead of an actual OFDM signal con-

forming to DOCSIS 3.1 is for simplicity. An actual DOCSIS signal consists of many channels

and different OFDM blocks [6]. Simulating such a signal would make the simulations less

configurable, slower to run, and add unnecessary complexity.

The PA models chosen take the same structures as those found in the literature. How-

ever, most PA models used in research only account for in-band harmonics for narrow-band

signals, and the coefficients are often given for a baseband equivalent power amplifier. In our

simulations, we use a passband PA model with an UWB signal. Therefore, the coefficients

of the PA models in literature are not applicable for our simulations. Instead, we will use

PA model architectures found in literature, but with our coefficients at passband.

The coefficients are chosen such that the power in the harmonics corresponds to the power

we expect to see in the output of an actual DOCSIS PA. From the DOCSIS specification,

the in-band distortion of the DS signal in the spectrum below 684 MHz must have power at

least 39 dB down from the carrier power, i.e., 39 dBc [7]. Referencing the datasheet of the

Qorvo RFPD3580 power amplifier, which is a DOCSIS compliant amplifier, we see that the

worst case MER for the input power discussed in Chapter 1 is about 40 dB [49]. Thus, in our

simulations, we adjust the coefficients such that the total power in the harmonic distortion

is about 40 dBc.

84



Further, the Qorvo datasheet indicates that the power in the second and third order

distortions is roughly equal. Therefore in our PA models, we will make the total power in

each of the second and third order harmonics the same.

5.1.1 Simulation Model

Figure 5.1 provides a diagram of the Matlab simulation used in the following section.

8 GHz

4 GHz

1 GHz

AWGN BPF Tilt ×

eωn

<{·} Power Amplifer
Model

↓ 2

UWB-MP
Model

∑

LPF

↓ 2

×

e−ωn

LPF↓ 4ẽ(n)

(A) (B) (C)

(D)

(E)(F)ỹ(n)

x̃(n)

̂̃y(n)
−

Figure 5.1: Matlab simulation model

The simulation of the downstream signal operates as follows. The DS signal is generated

at complex baseband with AWGN generators creating the real and imaginary signals (point

A).

This Tx baseband signal is filtered to band-limit it from -555 to 555 MHz. This band-

limited signal then has a 21 dB tilt applied to it (point B) using an FIR filter to correspond

to the tilt applied to the DOCSIS DS signal, as discussed in Chapter 1. Although in an

actual FDX system the filter which produces the tilt will have to be adapted to since it is

applied in the analog domain, we assume here that the coefficients used to create the tilt are

already known. This assumption is realistic because, in a real system, the response of the
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tilt filter could be measured during manufacturing. Therefore, estimating these coefficients

is out of the scope of this project.

The output of the tilt filter is then up-converted to passband, where the signal’s frequency

spectrum spans from 108 to 1218 MHz (point C). This represents a transmitted signal in the

DOCSIS FDX system. The signal is put through a power amplifier model, which includes

memory and nonlinear terms (point D). This operation happens at a high enough sampling

rate to capture all of the high-frequency harmonics without aliasing to accurately represent

what the signal would experience in the analog domain.

The PA output is passed through a LPF which represents the analog antialiasing filter

the signal would see before the ADC in an actual US demodulator. The output of the

filter is down-sampled to the system sampling rate (point E), down-converted to complex

baseband, then filtered to remove the double frequency component (point F). Finally, the

signal is down-sampled again to produce ỹ(n) which can be used with the UWB-MP model

and the LS algorithm to characterize the simulated power amplifier model. The signal ỹ(n)

represents the self-interference present in the FDX node.

In parallel, the simulation applies the UWB-MP model to estimate the self-interference.

Harmonics up to and including the 3rd order are calculated in the simulations as discussed

in Chapter 4. The process for including higher order harmonics would be the same, but a

higher sampling rate would be required. The input to the UWB-MP model is x̃(n) from

Figure 5.1, which is the down-sampled output of the tilt filter. A down-sampler is used

because the data is generated at a higher rate for the power amplifier model. However, the

digital baseband system runs at a lower rate to reduce the hardware requirements. This is

consistent with the expected implementation in an actual system.

The output of the UWB-MP model ̂̃y(n) is the approximation of the self-interference

signal ỹ(n), and is subtracted from ỹ(n) to produce the error signal ẽ(n). The coefficients

used in the UWB-MP model to calculate ̂̃y(n) are computed using the LS algorithm, as

described in Section 3.6

The sampling rate used to calculate the harmonics in Matlab was chosen to be 4 GHz.
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This rate is used for a number of reasons. First, referring back to Table 4.2, we found that

the minimum sampling rate required to calculate the 1st, 2nd, and 3rd order harmonics was

dictated by the calculation for the 3rd order harmonic at 3fc, referred to as H33. To first

calculate this harmonic at baseband, the minimum required sampling rate was 3330 MHz.

To calculate H33 at passband without first filtering it at baseband, the minimum required

sampling rate was 4338 MHz.

However, if H33 is filtered at baseband before up-converting, the minimum required sam-

pling rate was reduced to 3330 MHz. Thus, for the simulations, we choose to use a 4 GHz

sampling rate and apply a complex filter to H33 at baseband before up-conversion. Therefore

we can calculate all of the 1st, 2nd, and 3rd order harmonics without the aliases corrupting

the signal of interest. A slightly lower sampling rate could be used at the expense of using

a larger filter on H33. However, this trade-off will not be analyzed here.

As previously mentioned, the input signal is processed at a higher sampling rate so the

PA can be accurately modeled. This rate was chosen to be 8 GHz for two reasons. First,

this rate allows the PA output to be modeled without aliasing. Recall from Chapter 4 that

the highest frequency harmonic H33 harmonic extends to 3654 MHz. Therefore, the chosen

sampling rate of 8 GHz can capture this signal entirely without aliasing. Second, a rate of 8

GHz allows the signal to be matched to the system sampling rate of 4 GHz through a simple

down-sample by 2 operation.

After the harmonics are down-converted to baseband, the sampling rate is reduced by a

factor of 4, which results in a sampling rate of 1000 MHz. This sampling rate is theoretically

capable of handling signals with frequencies as high as 500 MHz, which makes it sufficient

for calculating the baseband US signal approximation which has frequencies as high as 339.5

MHz.

Although there are other combinations of sampling rate and down-sampling factors that

would work, we found the values chosen to be realistic regarding the hardware implemen-

tation of the model. Furthermore, they provide a reasonable trade-off between performance

and resource usage.
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5.2 Performance Metrics

To quantify the performance of an echo-cancellation algorithm, the normalized mean

square error (NMSE) is commonly used, and is defined as [37]:

NMSE =

∑
n

|ỹ(n)− ̂̃y(n)|2
∑
n

|ỹ(n)|2 . (5.1)

where ỹ(n) and ̂̃y(n) are the measured and approximated SI signals respectively from Figure

5.1.

The NMSE is useful for quantifying the cancellation over the entire frequency band from

−π to π rad/sample. However, for FDX EC, we are more concerned with the cancellation

in the upstream frequency band (from −339.5 to 339.5 MHz after down-conversion), as any

power remaining out of band can be filtered away. The signal-to-error power in the US signal

band can be determined by taking the ratio of the signal power in the US signal band with

the error power in the same band.

The signal power in the US band is found by calculating the DFT of the measured signal,

and summing together the powers in the frequency components of the US band. The total

power of a signal x(n) over a range of discrete frequencies is calculated by

kend∑

k=kstart

∣∣∣∣∣
N−1∑

n=0

x(n)e−
2πk
N
n

∣∣∣∣∣

2

, (5.2)

where k is an integer between 0 and N − 1, and N is the total number of samples in the

signal. The indices kstart and kend are chosen to define the range of frequencies over which

the power is to be summed. This calculation is accurate as long as the frequency step size

(2π/N) is sufficiently small, i.e. N is sufficiently large. Finally, the total cancellation of the

self-interference signal will be given in log scale, calculated by

Total in-band cancellation = 10log10

(
total in-band signal power

total in-band error power

)
. (5.3)

5.3 Simulations

The following parameters will be held constant through all of the simulations. The DS

signal will occupy the spectrum from 108 to 1218 MHz, and the US signal will occupy 5 to 684
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MHz. Echo-cancellation will take place at complex baseband. The results of each simulation

show the received self-interference signal, the resulting error signal after the cancellation,

and the total in-band cancellation.

In all simulations, nonlinear terms up to and including the 3rd order are included in

both the PA simulation model and the UWB-MP cancellation model. The first simulation

changes the number of memory terms used in the UWB-MP model, the number of data

points included in the LS algorithm, and the number of LS iterations to compare the impact

of these parameters upon the cancellation performance. The remainder of the simulations

uses a constant set of parameters to compare the performance of the UWB-MP model against

different power amplifier models. The least-squares step factor is set to µ = 0.1. Increasing

µ typically leads to a faster convergence (if the coefficients don’t diverge), but will have

more error when they are converged. Our tests indicate that µ = 0.1 is a good compromise

between these conflicting goals. Ideally µ would start larger then decrease as the coefficients

converge. However, for simplicity we keep µ fixed.

5.3.1 Simulation 1 - Memory Polynomial PA Model

First, we will simulate the power amplifier using a passband memory polynomial model

derived from [20]. In [20], the model was used at baseband and included only odd-order

in-band harmonics. Instead, we will implement the model at passband with both 2nd and

3rd order harmonics, as would be experienced with an actual DOCSIS power amplifier.

The model takes the form:

y(n) =
K∑

k=1

Q−1∑

q=0

ckqz(n− q)k−1. (5.4)

The coefficients are chosen such that the PA has a linear gain of 1 (c10 = 1), followed by

random memory terms. The memory terms for the 2nd and 3rd order harmonic are also

randomly chosen. The criteria for selecting the noise terms is such that the total power

in the 2nd and 3rd order harmonics is about 40 dB down from the total power in the DS

signal. This difference in power is observed by plotting the power spectrums of the linear

signal and harmonics. The total number of memory terms for each harmonic is chosen to be
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Q = 10. In Matlab, the memory terms are chosen by 0.01× randn(1, 10), where randn(1,10)

is 10 samples chosen independently from a Gaussian distribution and 0.01 is the variance.

Note that this is a pessimistic model, as the memory terms are likely to be correlated in a

practical system [50]. The resulting ckq for this simulation is:

c10 = 1

c11 = 0.0064

c12 = −0.0021

c13 = 0.0013

c14 = 0.0048

c15 = 0.0069

c16 = −0.0131

c17 = −0.0101

c18 = −0.0128

c19 = −0.0006

c20 = −0.0156

c21 = 0.0167

c22 = 0.0047

c23 = 0.0097

c24 = −0.0068

c25 = −0.0062

c26 = 0.0256

c27 = −0.0056

c28 = 0.0029

c29 = −0.0129

c30 = −0.0125

c31 = −0.0054

c32 = −0.0071

c33 = 0.0105

c34 = 0.0018

c35 = 0.0182

c36 = −0.0039

c37 = 0.0012

c38 = −0.0133

c39 = −0.0019

(5.5)

The passband PA output is shown in red in Figure 5.2, with the noise from the 2nd and

3rd harmonics plotted in blue.

Cancellation will be performed with the UWB-MP model from Equation (3.36) with

memory depths of M = 10, 20, and 30. The number of LS data points used will be N = 250

and 500, and the number of iterations used will be 20, 40, and 60.

Figure 5.3 plots an example of the spectrums of the SI signal ỹ(n), remaining error signal

ẽ(n) after the cancellation, and the extracted harmonic noise. When generating the plot,

the parameters used were M=20, LS data points = 500, and number of iterations = 60. The

total in-band cancellation in this example is 74.9 dB. Table 5.1 provides a summary of the

total in-band cancellation for each combination of the given parameters.

Simulation 1 results can be compared against the amount of cancellation achieved using

only a linear model to justify the added complexity involved with using the UWB-MP model

to predict the SI signal, as opposed to a simple linear model. By setting K = 1 in Equation
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Figure 5.2: Passband PA output with noise
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Figure 5.3: Simulation 1 results with M=20, N=500, iterations=60

(3.36), the UWB-MP model is reduced to a simple linear model. The resulting cancellation

from this simplified model is 40.1 dB, with the resulting spectrum shown in Figure 5.4.

Obviously, the performance of the linear model is limited by the total power in the harmonic

distortion, as the linear model is unable to cancel the harmonic distortion.

To determine the limitations of the UWB-MP model, we repeated simulation 1 with
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Iterations

M N 20 40 60

10 250 51.1 68.7 71.7

10 500 59.7 71.0 71.7

20 250 48.6 66.3 74.5

20 500 58.1 72.8 74.9

30 250 42.8 60.9 73.5

30 500 56.2 71.9 74.9

Table 5.1: Simulation 1 total in-band cancellation (dB)
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Figure 5.4: Simulation 1 results with a linear model

various numbers of coefficients in the MPM for the power amplifier. These simulations

showed the cancellation performance begins degrading around 130 coefficients for each order

in the PA model. Given that all known PA models require significantly fewer than 130

coefficients per path, this result considerably increases our confidence in the applicability of

the UWB-MP model to practical amplifiers.
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5.3.2 Simulation 2 - Memory Polynomial PA Model With AWGN

Simulation 2 uses the same power amplifier model as simulation 1, but it adds zero-mean

white Gaussian noise to ỹ(n) in Figure 5.1. The UWB-MP cancellation model parameters

for this simulation and the remainder of the simulations will be set to M=20, N=500, and

the number of iterations = 60. The power of the AWGN was set to be 60 dB less than the

power in the received signal ỹ(n).

Figure 5.5 gives the results of the simulation. Even with the noise floor raised due to the

Gaussian noise, the algorithm still cancels the signal down to the noise floor. This indicates

that the model was able to accurately estimate and model the harmonic distortions, even in

the presence of AWGN. The total in-band cancellation in this simulation is 59.8 dB.
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Figure 5.5: Simulation 2 results

5.3.3 Simulation 3 - Arbitrary Memory Polynomial PA Model

Simulations 1 and 2 assumed the MPM followed that of a typical PA, with the gain of

the first linear coefficient (c10) being large, followed by random small coefficients for the

memory and harmonic terms. The simulation in this section will use the same parameters

as Simulation 1, but with completely arbitrary coefficients for the PA model, meaning all of
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them (including c10) will be generated randomly. This means that the signal to distortion

ratio at the PA output will likely be much worse than the 40 dB chosen in Simulation 1.

The test will demonstrate the ability of the UWB-MP model to cancel the output of an

arbitrary ultra-wideband nonlinear model, opposed to a PA-specific model. The simulation

results are plotted in Figure 5.6, and the total in-band cancellation achieved is 76.3 dB. For

comparison, the linear only model achieved a cancellation of only 9.3 dB. This proves that the

UWB-MP model can provide significant cancellation even when the power in the harmonic

terms is much larger than dictated by DOCSIS 3.1. Note that the amount of cancellation

using the linear model will vary greatly from run to run, depending on the magnitude of

the linear coefficients. However, the cancellation of the UWB-MP model has been observed

to be consistently in the 75-77 dB range (essentially the noise floor), regardless of the PA

coefficients used.
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Figure 5.6: Simulation 3 results

5.3.4 Simulation 4 - Wiener-Hammerstein PA Model

Simulation 4 uses a Wiener-Hammerstein power amplifier model derived from the model

presented in [20], which consists of a linear time-invariant (LTI) system, followed by a memo-

ryless nonlinearity, followed by another LTI system. The W-H model block diagram is given
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in Figure 5.7.

x(n) H(z) F (v) G(z) y(n)
v(n) w(n)

Figure 5.7: W-H block diagram

The LTI blocks in the W-H model from Figure 5.7 denoted H(z) and G(z), were extracted

from an actual Class AB PA in [20], and are given to be

H(z) =
1 + 0.5z−2

1− 0.2z−1
, G(z) =

1− 0.1z−2

1− 0.4z−1
. (5.6)

The model in [20] assumed a high frequency low bandwidth signal, so the memoryless non-

linearity in their W-H model only included odd order terms for a baseband model. For our

case, we will include nonlinearities of order 2 and 3 at passband. The memoryless nonlinear

portion of the W-H model in Figure 5.7 is

w(n) =
K∑

k=1

bkv(n)k, (5.7)

where v(n) and w(n) are respectively the input and output of the memoryless nonlinear

block. The coefficients chosen based on our desired total harmonic power of 40 dB are

b1 = 1

b2 = 0.1

b3 = −0.1 (5.8)

The baseband Rx self-interference signal and the remaining error signal after cancellation

are given in Figure 5.8. The total in-band cancellation for this simulation is 59.4 dB. In

comparison, a linear model achieves 44.4 dB of cancellation.

5.4 Discussion

Through the Matlab echo-cancellation simulations, we verified the mathematical UWB-

MP model by observing significant cancellation of the UWB nonlinear signals. In general,
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Figure 5.8: Simulation 4 results

the UWB-MP model is capable of canceling a significant amount of the self-interference

signal.

The performance of the UWB-MP model is dependent on the PA model. The UWB-MP

model performs exceptionally well with cancellation down to the noise floor when the PA

model involves a nonlinearity followed by memory terms. The UWB-MP model does not

perform quite as well if the PA model requires memory terms before the nonlinearity. The

behavior is expected since the UWB-MP model extends from the MPM which assumes a

nonlinear term followed by memory terms. Recall from Chapter 2 that Hammerstein models

also follow this pattern. However, Wiener models assume memory terms before nonlinear

terms. It is reasonable to assume that the closer the characteristics of a PA match that of an

MPM or Hammerstein model, the better the cancellation will be when the UWB-MP model

is used. Our simulation results confirm this expectation.

In Simulation 1, we found that the simulated UWB-MP model achieves excellent can-

cellation performance when the memory length of the PA model is less than 130 samples

for each nonlinearity. Since the UWB-MP model used in the simulations used 20 memory

samples at 1 GHz, and the PA was simulated at 8 GHz, the theoretical maximum number of

memory samples that could be accounted for is 20× 8 = 160. The reason that performance
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began degrading before 160 samples is likely because the UWB-MP used an approximation

of the analog LPF instead of using a LS algorithm or similar method to adapt the coefficients

more accurately to the filter.

This observation highlights the necessity to perform the cancellation at the lowest sam-

pling rate possible. Naturally, running at a lower sampling rate uses fewer resources on an

FPGA for a given UWB-MP length. An additional benefit is that running the UWB-MP

model at a lower speed would require fewer coefficients to predict the SI signal from a PA

of fixed memory length. With fewer coefficients, the model is both cheaper to implement in

the cancellation stage and faster to converge during the adaptation stage.

Simulation 2 demonstrates that injecting AWGN does not hinder the ability of the UWB-

MP and least-squares adaptation to characterize the power amplifier. As seen in the simu-

lation results, the EC system can characterize and cancel the self-interference signal down

to the level of the AWGN, which would be the noise floor in most applications.

The results from the simulation indicate that sufficient cancellation for FDX communi-

cation may be feasible, since the cancellation obtained in simulation 1 was nearly 75 dB,

whereas the necessary cancellation for FDX as stated in Section 1.7, is 60 dB. However, the

performance of the UWB-MP model for modeling an actual DOCSIS power amplifier can

only be determined by testing with the actual amplifier. Furthermore, a practical FDX node

will have many additional sources of noise and hardware imperfections that could limit the

cancellation performance. For example, the ADCs and DACs in the system add quantization

noise. Only when testing with a full FDX node is conducted will it be known if the UWB-

MP model is capable of providing sufficient cancellation to allow high data-rate full-duplex

communication.
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6. Conclusions

6.1 Summary

Demand for higher data rates from cable providers requires more bandwidth through

HFC networks. The DOCSIS 3.1 standard has been updated by CableLabs to support

full-duplex operation which increases the upstream and downstream signal bandwidths by

simultaneously sharing part of the spectrum.

Implementing FDX in a DOCSIS node involves significant challenges that must be ad-

dressed. A primary challenge includes eliminating the self-interference from the downstream

signal that leaks into the upstream signal through the coupler in the node. A significant

source of the SI signal is the power amplifier, which tends to product nonlinear distortions

when the output power level is high. Many echo-cancellation algorithms exist for canceling

SI signals in other FDX systems. However, the case of full duplex DOCSIS is particularly

challenging because the bandwidth of the downstream signal is extremely wide (over 1 GHz).

Although algorithms have been developed to characterize power amplifiers to predict

nonlinear SI signals, these algorithms are typically for the case of high frequency, narrowband

signals in which only odd-order harmonics centered at the carrier frequency interfere with

the signal of interest. In the DOCSIS FDX case, the downstream signal is ultra-wideband,

which results in many orders and center frequencies of harmonics interfering with the signal

of interest.

This thesis provided an echo-cancellation algorithm for DOCSIS FDX communication

involving ultra-wideband signals. Further, suggestions were given to reduce the implemen-

tation cost of this algorithm on an FPGA in a DOCSIS node. Performance analysis of the
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new algorithm was done using Matlab simulations.

6.2 Contributions

The primary contribution of this work is the development of the ultra-wideband memory

polynomial model to be used for echo-cancellation in a DOCSIS FDX node. The UWB-MP

model is an extension of the well-known memory polynomial model and is unique from other

models in the literature in that it characterizes harmonic distortions from power amplifiers

with ultra-wideband signals. The model accepts a baseband copy of the outgoing downstream

signal and computes estimates of the harmonic components that will be generated by the

power amplifier. The model contains a set of coefficients which characterize the amplifier

response. We have shown how a least-squares algorithm can be used to find a suitable set

of coefficients for representing a particular amplifier.

Further, implementation guidelines for reducing hardware costs and complexity were

given. These guidelines are an essential bridge between the simulation model and the design

of a hardware implementation of the model. The trade-off between hardware implementation

complexity and model performance was investigated through simulations, and recommen-

dations for the size and structure of the model were produced. Analysis showed that these

guidelines could significantly reduce the hardware implementation costs of the model.

6.3 Results and Conclusions

The UWB-MP echo-cancellation model was tested by simulating an FDX node in Matlab

and observing the amount of cancellation of the self-interference signal. Since the problem

of ultra-wideband EC has not been thoroughly studied in the literature, there are no bench-

mark algorithms to compare our performance or resource usage with. Instead, the UWB-MP

model was compared against a linear model which can only compensate for 1st order harmon-

ics. Doing so justifies the cost and complexity of using the UWB-MP model by illustrating

the performance difference compared to the linear model, which would be the default imple-

mentation for a cable node.
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The simulation of the FDX node involved various system settings and different power

amplifier simulation models. We found that with memory polynomial type amplifier models,

the in-band cancellation reached 75 dB (approximately down to the noise floor). With

Wiener type amplifier models, the in-band cancellation achieved about 59 dB. Injecting an

AWGN signal into the system did not affect the performance of the UWB-MP cancellation

algorithm. However, the cancellation was limited to the new noise floor created by the

AWGN signal.

The amount of cancellation achieved by the UWB-MP model is not limited by the power

in the harmonic distortions. The simulations demonstrated that the algorithm could suffi-

ciently cancel harmonics even at much higher levels than the -40 dBc expected in a DOCSIS

system. Further, the performance did not begin to degrade until the number of memory

samples in the PA model exceeded 130 samples. This length is much longer than one would

expect for an actual PA, which means our algorithm should be able to handle the memory

effects associated with most power amplifiers.

From the results of the simulations, we conclude that sufficient cancellation of the SI

signal for FDX communication may be possible. In addition, we can also conclude that the

cancellation can take place at baseband, which significantly reduces resource requirements

when implementing the model. The maximum cancellation achieved in the simulations was

75 dB, whereas the necessary cancellation for FDX to run at the desired data rate is around

60 dB. However, the cancellation performance in an actual node with a real power amplifier

can only be determined by hardware testing. Furthermore, a practical FDX node will have

additional noise sources that could limit cancellation performance, such as quantization noise

in the ADC and DAC. Only after testing with an actual FDX node takes place will we know

if sufficient cancellation using the UWB-MP model is achievable to allow high data-rate

full-duplex communication.

6.4 Future Work

The most relevant future work involves hardware testing with an actual DOCSIS power

amplifier and node. The amount of cancellation possible with the UWB-MP model should
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be measured to see if the proposed scheme is capable of supporting full duplex communi-

cation. Note that there are additional sources of noise present in hardware that was not

taken into account in the simulations such as quantization noise and phase noise. Next, a

channel estimation algorithm could be used in conjunction with the UWB-MP model to fully

characterize the self-interference from reflections in the channel along with the interference

from leakage within the node. An entire full duplex system could then be thoroughly tested.

Further research involves performance and resource usage. After testing with an actual

PA, if the amount of cancellation is not sufficient, a more robust power amplifier model could

be adapted to ultra-wideband signals. If this turns out to be the case, the general memory

polynomial model is an alternative worth considering, although it would entail an increase

in implementation cost.

We strongly recommend investigating the use of a compressed sensing (CS) based tech-

nique for reducing the hardware costs of the echo-canceling algorithm. CS algorithms at-

tempt to determine which coefficients in a model (in our case, the UWB-MP model and

channel model) are necessary and which are not based on measurements in the actual sys-

tem. Doing so creates a sparse representation of the system which may use significantly fewer

coefficients than the full system while experiencing only a minor performance degradation.
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Appendix

Defining an Ultra-Wideband Signal

The characterization of a signal as ultra-wideband is typically governed by its fractional

bandwidth. Recall from Section 3.3, the fractional bandwidth of a signal is defined as

fractional bandwidth =
fn − f1
fc

.

The Federal Communications Commission (FCC) defines an UWB signal as having a frac-

tional bandwidth ≥ 0.2, or an absolute bandwidth ≥ 500 MHz, regardless of the fractional

bandwidth [40]. Our DOCSIS 3.1 DS signal has a fractional bandwidth of 1.67 and an ab-

solute bandwidth of 1110 MHz, placing it solidly in the category of ultra-wideband signals

by either definition.

The purpose of defining a fractional bandwidth in this thesis is to distinguish between

the behaviour of signals when applied to a nonlinear device. For ultra-wideband signals,

the out-of-band harmonics will interfere with the signal of interest, which is not the case

for narrowband signals. In other words, harmonics with center frequencies at 2fc, 3fc, etc.,

will have a wide enough bandwidth to interfere with the original signal centered at fc. In

this case, narrowband DPD and EC algorithms will not be able to attenuate the harmonics

interfering with the SOI. One could argue that very high order of harmonics at multiples of

the carrier frequency would eventually interfere with the SOI for even narrowband signals,

however the power in such harmonics is typically insignificant. For ultra-wideband signals,

even the low order harmonics tend to interfere with the SOI.
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