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ABSTRACT 
 
 
Clearwells are large water reservoirs often used at the end of the water treatment 

process as chlorine contact chambers.  Contact time required for microbe destruction is 

provided by residence time within the clearwell.  The residence time distribution can be 

determined from tracer tests and is the one of the key factors in assessing the hydraulic 

behaviour and efficiency of these reservoirs.  This work provides an evaluation of 

whether the two-dimensional, depth-averaged, finite element model, River2DMix can 

adequately simulate the flow pattern and residence time distribution in clearwells.  One 

question in carrying out this modelling is whether or not the structural columns in the 

reservoir need to be included, as inclusion of the columns increases the computational 

effort required. 

 

In this project, the residence time distribution predicted by River2DMix was 

compared to results of tracer tests in a scale model of the Calgary Glenmore water 

treatment plant northeast clearwell.  Results from tracer tests in this clearwell were 

available.  The clearwell has a serpentine baffle system and 122 square structural 

columns distributed throughout the flow.  A comparison of the flow patterns in the 

hydraulic and computational models was also made.  The hydraulic model tests were 

carried out with and without columns in the clearwell. 

 

The 1:19 scale hydraulic model was developed on the basis of Froude number 

similarity and the maintenance of minimum Reynolds numbers in the flow through the 

serpentine system and the baffle wall at the entrance to the clearwell.  Fluorescent tracer 

slug injection tests were used to measure the residence time distribution in the clearwell.  

Measurements of tracer concentration were taken at the clearwell outlet using a 

continuous flow-through fluorometer system.  Flow visualization was also carried out 

using dye to identify and assess the dead zones in the flow.  It was found that it was 

necessary to ensure the flow in the scale model was fully developed before starting the 

tracer tests, and determining the required flow development time to ensure steady state 

results from the tracer tests became an additional objective of the work.  Tests were 
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carried out at scale model flows of 0.85, 2.06, and 2.87 L/s to reproduce the 115, 280, and 

390 ML/day flows seen in the prototype tracer tests. 

 

Scale model results of the residence time distribution matched the prototype tracer 

test data well.  However, approximately 10.5 hours was required for flow development at 

the lowest flow rate tested (0.85 L/s) before steady state conditions were reached and 

baffle factor results matched prototype values.  At the intermediate flow, baffle factor 

results between the scale model and prototype matched well after only 1 h of flow 

development time, with improvements only in the Morril dispersion index towards 

prototype values with increased flow development time (at 5 h).  Similar results were 

seen at the highest flow tested.  For fully developed flow, there was little change in the 

baffle factor and dispersion index results in the scale model with varied flow rate.   

 

With the addition of columns to the scale model, there was no significant change 

in the baffle factor compared to the case compared to without the columns, but up to a 

13.9 % increase in dispersion index as compared to the tests in the scale model without 

columns for fully developed flow.  Further, the residence time distribution results from 

the scale model tests without columns matched the entire residence time distribution 

found in the prototype tests.  However, for the model with columns, the residence time 

distribution matched the prototype curve well at early times, but departed significantly 

from it at times later in the tests.  It appears the major effect of the addition of columns 

within a model clearwell is to increase the dispersion index and increase the proportion of 

the clearwell which operates as a mixed reactor.  

 

The results also showed there was good agreement between the physical model 

tests and River2DMix simulations of the scale model tests for both the flow pattern and 

residence time distributions.  This indicates that a two-dimensional depth-averaged 

computer model such as River2DMix can provide representative simulation results in the 

case where the inlet flow is expected to be quickly mixed throughout the depth of flow in 

the clearwell. 
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CHAPTER 1:  INTRODUCTION 
 

 
1.1 Background 

Adequate treatment of drinking water is a significant issue for society.  There 

were 200 documented incidents of contamination of drinking water systems with 

waterborne pathogenic microorganisms between 1974 and 1996 in Canada (Edge et al. 

2003).  There are three main types of microorganisms that can be found in drinking water: 

bacteria, viruses, and protozoa.  One of the main goals of drinking water treatment is to 

remove or kill these organisms to reduce the risk of illness (Health Canada 2006).  In the 

United States, the United States Environmental Protection Agency introduced the Surface 

Water Treatment Rule (SWTR) under the Safe Drinking Water Act Amendments of 1989 

to improve regulation of drinking water.  Similarly, in Canada, the regulations governing 

water supplies are becoming more stringent.  These regulations require that all public 

water is to be supplied without microbial contamination, with particular emphasis placed 

on protozoa (such as Giardia and Cryptosporidium), since these microorganisms are 

more resistant to destruction by chemical oxidizing agents such as chlorine.  Water 

utilities are also required to provide continuous chemical oxidation of the drinking water 

entering the distribution system and to maintain a detectable chlorine residual level 

within the distribution system (USEPA 1989).  

 

To specify the required level of treatment by chlorine, the CT concept has long 

been used.  The “CT” value is the residual concentration C of chlorine in milligrams per 

litre (mg/L) multiplied by the contact time T in minutes (USEPA 1989).  The contact 

time is the time it takes the water to move from the input point of a reactor to the outlet 

point where the residual concentration is measured.  The CT product required to reduce 

the count for a specific microorganism under defined conditions is a way of comparing 

the effectiveness of different oxidizing agents, and for specifying the resistance of a 

variety of pathogens.  The USEPA specifies CT values for free chlorine as standard 

indices to control pathogens in water treatment.  Some of these are listed in Crittenden et 

al. (2005). 

 



 2

Although chlorination effectively destroys pathogenic microorganisms there are 

heath concerns related to consumption of chlorination by-products.  Therefore, rules have 

been established to address these health risks.  For example, trihalomethanes are by-

products of chlorination of natural waters containing dissolved organic compounds.  A 

minimum residual concentration of 0.1 mg/L has to be maintained to prevent 

contamination of the water before it reaches customers (Alberta Environmental 

Protection 1988).  Therefore, the goal of water treatment facilities is to ensure destruction 

of pathogenic microorganisms while trying to avoid the formation of chlorination by-

products in the water supply.  

 

Water reservoirs in water distribution systems are used to ensure consistent water 

quality and adequate pressure for fire, domestic and industrial users (Clark et al. 1996).  

In the water treatment process, large reservoirs are also often used both as water storage 

tanks and chlorine contact chambers (sometimes also called “clearwells”).  These 

reservoirs can be very large.  For example, the clearwell at the Glenmore Water 

Treatment plant in Calgary, Alberta is approximately 123 m long, 112 m wide and 5 to 6 

m deep.  Due to the large size of the reservoirs and their often square geometry, 

reservoirs commonly have dead zones in the flow pattern through the reservoir.  Within 

the dead zones the water tends to stagnate.  Conversely, the flow can also short-circuit 

through the reservoir.  This means the flow moves directly from the inlet to the outlet of 

the reservoir. Both flow behaviours have negative impacts on the disinfection 

performance in clearwells.  Short-circuiting results in a short contact time and hence less 

reaction time for the disinfectant with the water.  The chlorine residual in the water can 

drop to below required levels in dead zones, which can allow the growth of 

microorganisms.  Generally, the two cases are related in that the higher percentage of 

dead zones in water storage systems, the more short-circuiting that exists.  Serpentine 

baffle walls are frequently installed within reservoirs to produce conditions to prevent the 

occurrence of short circuiting and dead zones. 

 

The flow behaviour in reservoirs is typically evaluated using tracer tests (Marske 

and Boyle 1973; Hart and Vogiatzis 1982; Teefy and Singer 1990; Boulous et al. 1996; 
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Maksymetz 1998; Grayman et al. 2004).  Although tests in the full-scale reservoir give 

the most reliable results, it is very expensive to run these tests and only a few variables 

can be tested.  It can also be difficult to schedule such testing.  As an alternative to field 

tests, tracer studies in scale models have been widely used to assess reservoirs, as they 

are an economical means to assess the flow behaviour and potential changes to the flow 

due to reservoir modifications (Rebhun and Argaman 1965; Kothandaraman and Evans 

1972; Hart and Gupta 1978; Hart 1979; Roy et al. 2002; McCorquodale and Machina 

2002).  More recently, both two and three-dimensional computational fluid dynamics 

models have been used to assess flow in reservoirs (Grayman et al. 1996; Wang and 

Falconer 1998a; Hannoun et al. 1997; Templeton et al. 2006). 

 

Whether the tracer test is carried out in the actual reservoir or a physical or 

numerical model, a conservative tracer chemical is injected into the flow either 

continuously or as a slug in the test.   In the continuous feed method, the tracer is injected 

at a constant dosage until the concentration at the reservoir outlet reaches a steady-state 

level.  In a slug test, a controlled amount of tracer is instantaneously added to the inlet 

flow and samples are taken at the exit of the reservoir over time as the tracer passes 

through the reservoir.  Analysis of both types of tests can define the residence time 

distribution of the fluid particles in the reservoir.  

 

In theory, the residence time distribution in a reservoir is determined by the 

percentage of “plug flow”, “dead zone” and “mixing zone” regions in the reservoir 

(Crittenden et al. 2005).  Plug flow is called piston-like flow, where every fluid particle 

spends an identical length of time in the reservoir (Levenspiel 1972).  The flow of fluid 

through the reservoir is orderly, with no element of fluid overtaking or mixing with any 

other element ahead or behind.  It is also assumed that the concentration is uniform 

through the cross-sectional area of the flow.  This is because the flow is quickly mixed in 

the transverse and vertical directions since the depth and width of the flow is very much 

smaller than its length.  For the situation termed “complete mixing”, it is assumed that the 

tracer is fully mixed with all the flow in the reservoir before leaving the reservoir.  For 
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real flows in reservoirs, usually the flow patterns consist of some portion of plug flow, 

with some mixed flow and dead zones. 

 

To assess the performance of reservoirs used as chlorine contact chambers, the 

USEPA (1989) sets out requirements for chlorine contact with the fluid moving through 

the reservoir based on the residence time distribution for the reservoir.  The time it takes 

for 10 % of the mass of a tracer injected at the inlet to pass through the reservoir, defined 

as “T10”, is one of the most important parameters.  The T10 gives the time for which 90 % 

of the mass of tracer is retained within the reservoir, while 10% of the mass has passed 

through the reservoir outlet.  The ratio of T10/Td is called the “baffle factor” for the 

reservoir, where the theoretical detention time Td is the volume of fluid in the reservoir 

divided by the flow rate.  Several other indices to describe the flow in reservoirs based on 

the residence time distribution curve are also utilized such as the Morril dispersion index 

T90/T10.   

 

1.2 Motivation for the Work 

The motivation for the work discussed herein was to better understand whether 

the computational, two-dimensional, depth-averaged, open channel flow mixing software 

such as River2Dmix is an appropriate tool for modeling water reservoirs (used for both 

storage and as chlorine contact chambers) in water treatment and distribution systems.  

As a first step in this evaluation, it was decided to assess the performance of River2DMix 

in modeling the residence time distribution and flow pattern of a clearwell where full-

scale residence time distribution data was available.  It was also decided to model a 

reservoir that might have approximately a two-dimensional flow (depth averaged and 

open channel flow) based on its geometry.  The results were also to be compared to tracer 

studies and flow pattern visualization in a scale hydraulic model of the same clearwell.  

Full-scale tracer study results were available from the City of Calgary for their Glenmore 

Water Treatment Plant northeast clearwell (Maksymetz 1998, 2003).  The Glenmore 

reservoir northeast cell is the main focus of the current research; in this reservoir there are 

122 - 400 mm × 400 mm square structural columns. 
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One of the issues for both the computational and hydraulic modeling of the 

reservoir (and reservoirs in general) was whether or not the structural columns need to be 

modeled.  Modeling the columns takes a considerable computational effort compared to 

the no-column case because there are more elements in model for the with columns case.  

It is also an additional burden to construct in hydraulic model study.  In some early work 

with River2DMix in modeling the Glenmore reservoir, Albers and Maksymetz (2004) 

and Albers et al. (2005a and 2005b) found that the simulation of the columns had a 

pronounced effect on the residence time distribution produced by the model.  It was 

uncertain whether this was a numerical or physical effect.   

 

1.3 Objectives 

The objectives of this thesis are as follows: 

 

• To assess the effect of flow rate on flow behaviour within the Calgary Glenmore NE 

Clearwell and the resulting residence time distribution curves using tracer studies and 

flow visualization in a physical scale model; 

• To evaluate the influence of columns on flow behaviour within the clearwell of the 

physical scale model and on the resulting residence time distribution curves using 

tracer studies and flow visualization in a physical scale model; and 

• To evaluate (most significant) whether a 2-dimensional depth averaged computational 

fluid dynamics model such as River2DMix can simulate the flow behaviour and 

residence time distribution curves seen in the scale physical model with and without 

columns over a range of flows by comparing the simulation results to the measured 

results. 

 

1.4 Organization of Thesis 

This thesis includes five chapters. The second chapter includes a review of the 

literature on physical and computational modeling of water treatment reservoirs.  It also 

includes an overview of the CT concept and analysis techniques used for evaluating the 

flow behaviour of the reservoirs.  Chapter 3 gives the details of the experimental setup, 

testing program, and tools that were used for physical test data measurement.  This is 
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followed by the details of the computational model.  Chapter 4 describes the results of the 

experiments, detailed analysis of the experimental data and computational simulation 

results.  Finally, Chapter 5 presents conclusions developed from the study and 

recommendations for further work. 
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CHAPTER 2:  LITERATURE REVIEW 
 
 

2.1 Introduction 

In order to fully understand the flow behaviour in clearwells, a wide range of 

experimental and numerical studies have been carried out.  These studies measure various 

flow parameters, including the flow pattern, residence time distribution, hydraulic 

efficiency (baffle factor), dispersion index, the locations of dead zones, and the 

percentage of dead space, plug flow, and mixing in a flow.  In this chapter, previous 

research on the assessment of the flow behaviour and retention time in clearwells using 

physical and computational modelling is reviewed.  Parameters for characterizing the 

flow and residence time distribution in clearwells are presented.  The methods for 

performing tracer studies to determine the residence time distribution are discussed.  

Finally, flow dynamics around columns are described in order to help explain the effect 

of columns on the flow at different Reynolds numbers in modelling columns in clearwells. 

 

2.2 Hydraulic Retention Time in Ideal and Non-Ideal Reactors 

Since the main purpose of the clearwell is to provide for sufficient contact time 

for the water with the chlorine before it moves into the distribution system, the hydraulic 

retention time in a clearwell is a key parameter in assessing whether a clearwell design 

will meet CT requirements.  The US Environmental Protection Agency guidance manual 

for compliance for disinfection (USEPA 1989) specifies required CT10 values for control 

of pathogens in water treatment.  As noted in Chapter 1, T10 is the time required for 10% 

of the mass of a tracer (fluid element) entering a clearwell to exit it. 

 

The use of this CT concept for clearwell design is based on theory developed for 

chemical reactors (Levenspiel 1972).  The ideal type of flow through the reactor, or 

clearwell, is plug flow (Teefy and Singer 1990).  In plug flow each fluid element has the 

same hydraulic residence time for all water passing through the reactor (Kothandaraman 

and Evans 1972).  The plug flow hydraulic retention time is the theoretical detention time 

defined in Chapter 1, Td, which is equal to the total volume of the reactor V divided by 

the flow rate, Q: 
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Q
VTd =  (2.1) 

 

 The actual flow in clearwells is different from the ideal case of plug flow because 

flow through typical clearwell geometries produces non-uniform velocity fields.  Many 

clearwell geometries result in flow separation, such as in the corners of a clearwell, which 

results in dead or stagnation zones in the flow.  Often the outlet of the clearwell is placed 

near the inlet, which can result in short circuiting in the flow.  Both cases result in a lower 

residence time than would be expected for the ideal case.  Thus, they both have negative 

effects on chlorine contact time in a clearwell.  The USEPA guidance manual (USEPA 

1989) uses the T10 value as the criterion for clearwell design to guard against short-

circuiting within a clearwell.   

 

For real flows in clearwells, usually the flow patterns consist of some portion of 

plug flow, mixed flow and dead zones (Falconer and Tebbutt 1986).  The difference 

between plug flow and mixed flow is that in plug flow there is no mixing (flow through 

the clearwell is orderly with no element of fluid overtaking another).  In “complete 

mixing”, it is assumed that the tracer is fully mixed with all the flow in the clearwell 

before leaving the clearwell.  The contact time in a reservoir is therefore determined by 

the percentage of “plug flow”, “dead zone” and “mixed flow” in the reservoir (Hart 1979).   

 

2.3 Characterizing Hydraulic Retention Time in Clearwells 

2.3.1 Estimating Retention Time 

Tracer tests are specified by the USEPA in their guidance manual (USEPA 1989) 

and Handbook of Community Water Supplies, Water Quality and Treatment, 5th edition 

(AWWA 1999) as the desired method to estimate CT values.  However, the T10 value is 

also often only roughly estimated based on the degree of baffling in the clearwell (Bishop 

et al. 1993).  USEPA (1989) provides baffle factor, or T10/Td, values based on different 

baffle configurations in clearwells and this is summarized in Table 2.1.  It is seen in 

Table 2.1 that the baffling condition for a clearwell is divided into five categories.  For 

unbaffled conditions, the baffle factor is less than 0.1 and for perfect (plug flow) 
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conditions, the baffle factor is 1.  For typical clearwell conditions, the baffle factor is in 

the range of 0.1 to 0.8, since the flow is composed of some plug flow, mixed flow, and 

dead space.  

 

Table 2.1  Typical baffle factors (adapted from the USEPA (1989)) 
 

Baffling Condition T10/Td Description 
Unbaffled (mixed 

flow) 
<0.1 Non agitated basin, very low length to 

width ratio, high inlet and outlet flow 
velocities 
 

Poor 0.3 Single or multiple unbaffled inlets and 
outlets, no intra-basin baffling 
 

Average 0.5 Baffled inlet or outlet with some intra-
basin baffles 
 

Superior 0.7 Perforated inlet baffle, serpentine or 
perforated intra-basin baffles, outlet weir 
or perforated launders 
 

Perfect (Plug flow) 1.0 Very high length to width ratio (pipeline 
flow), perforated inlet, outlet, and intra-
basin baffles 

 

2.3.2 Tracer Studies in Clearwells 

As noted above, performing a tracer study is the desired method for characterizing 

the residence time distribution in a clearwell.  As such, tracer studies have been widely 

carried out in full-scale reservoirs and hydraulic models and also simulated in 

computational models (Falconer and Tebbutt 1986; Joost et al. 1990; Teefy and Singer 

1990; Bishop et al. 1993; Boulous et al. 1996; Maksymetz 1998; Roy et al. 2002; and 

Hurtig 2003). For these types of tests, firstly, a tracer must be chosen.  Joost et al. (1990) 

suggested the tracer chemical be mass conservative, easily analyzed, inexpensive and 

environmentally acceptable for use.  In operating clearwells, often fluoride is used as the 

tracer (Maksymetz 1998).  Fluoride injection is turned on or off at the start of a test.  

However, Rhodamine–WT and Pontacyl pink (intracid Rhodamine B) are also tracer 

chemicals recommended for use (Wilson et al. 1986).  These fluorescent dyes are used in 
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liquid form and are highly water soluble, detectable at very low concentrations, harmless, 

and reasonably stable in normal water environments (Wilson et al. 1986).   

 

The next step is to determine how the tracer will be injected.  Joost et al. (1990) 

investigated tracer input options, tracer selection, and background and data analysis 

techniques.  They suggested that the conventional continuous and slug input methods 

were the simplest way to analyze and interpret test results when compared with the 

random input and cyclic input methods.  Most studies in full-scale and model clearwells 

use either the slug input or continuous feed input of a mass conservative tracer at the 

clearwell input.  Following the injection of the tracer, the concentration in the water is 

measured at desired locations in the clearwell and recorded at a specified frequency over 

the course of the tracer test.  Finally, the measured tracer concentration versus time can 

be plotted for analysis. 

 

In a slug test, a mass of tracer is instantaneously added to the water at the 

clearwell inlet and samples are taken at the exit over time as the tracer passes through the 

clearwell.  The total mass of tracer material to be injected is carefully measured in 

advance.  Samples are taken at the outlet frequently enough to define the leading edge of 

the concentration versus time curve, and to identify the peak tracer concentration and 

time of occurrence (Hudson 1975; Joost et al. 1990).  After the peak concentration passes 

through the outlet, the frequency of sampling can be reduced.  Data from the slug test are 

plotted as a curve of concentration versus time.  Kothandaraman and Evans (1972) 

investigated the hydraulic characteristics of a model of a rectangular chlorine contact 

chamber using slug tests.  Teefy and Singer (1990) applied the slug input method to three 

full-scale clearwells to evaluate the CT10.  Roy et al. (2002) used a slug test to 

quantitatively evaluate the hydraulic performance of a 1:11.25 scale physical model of a 

clearwell system by continuously monitoring the model outlet concentration using a 

fluorometer.  These investigations have shown the slug test is an effective and simple 

method to investigate the flow behaviour in prototype and model clearwells. 
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In the continuous feed method, a mass conservative tracer is injected at the inlet at 

a constant dosage (mass flow rate) until the concentration at the outlet reaches a steady-

state.  The concentration versus time at the outlet is plotted from the beginning of the 

injection to the establishment of steady state.  Bishop et al. (1993) employed the 

continuous feed method in full-scale tests of five rectangular clearwells to estimate their 

hydraulic efficiency.  Hurtig (2003) studied the flow characteristics of two clearwells 

utilizing continuous feed tracer tests in scale physical models of the clearwells.  Taras 

(1956) investigated the difference between the continuous feed method and the slug feed 

method for determining the retention time distribution curve.  He pointed out the 

continuous feed method eliminated the problem of the large tracer mass needed in the 

slug test if the tracer test was carried out in a large volume reaction chamber. Also, the 

continuous feed method was compatible with routine plant operations. 

 

2.3.3    Analysis of Tracer Study Data 

In a non-ideal contact chamber each fluid element that enters the reactor will have 

a different time to pass through the reactor.  The distribution of these travel times is 

called the residence time distribution.  This distribution is determined from the results of 

the above-described types of tracer tests (Levenspiel 1972; Teefy and Singer 1990; 

Crozes et al. 1999).  In fact, two types of residence time distribution curves may be 

developed:  the residence time distribution, E(t); and the cumulative residence time 

distribution, F(t). 

 

The plot of tracer concentration verses time exiting a clearwell during a slug 

tracer test gives the residence time distribution of the fluid particles passing through the 

clearwell.  This “flow-through curve”, E(t), represents the time distribution of fluid 

elements in the reservoir (Levenspiel 1972).  The cumulative residence time distribution 

curve is called the F(t) curve.  It is derived by numerically integrating the E(t) curve.  The 

cumulative area under the E(t) curve at any time is the value of the F(t) curve, while the 

slope of F(t) curve is the value of the E(t) curve (Levenspiel 1972; Crozes et al. 1999).  

The F(t) curve is the age distribution of the tracer exiting the clearwell and directly 
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illustrates the hydraulic efficiency of the reservoir.  In the slug test, two steps are required 

to derive the F(t) curve, whereas it is directly measured in a continuous feed tracer test. 

 

The T10 is determined directly from the F(t) cumulative residence time 

distribution curve and is the time when F(t) = 0.1 (Thirumurthis 1969; Kothandaraman 

and Evans 1972; Mitha and Mohsen 1990; Teefy and Singer 1990).  Besides the T10 value, 

the T50 and T90 values are also used as indices to describe the hydraulic efficiency of the 

clearwell.  The 50 and 90 subscripts represent the times for 50 % and 90 % of a tracer 

mass to pass through the clearwell.  The T50 is the mean residence time.  Comparison of 

the T90 to the T10 gives the dispersion in the flow and is called the Morril Index.  Ideal 

plug flow has a Morril Index of 1.0 (Bishop et al. 1993), and a large number for the 

T90/T10 indicates more mixing (Hart 1979).  An increase in the baffle factor is typically 

reflected by a decrease in the Morril Index.  A list of other parameters taken from the F(t) 

curve is given in Table 2.2. 

 
Table 2.2  Performance parameters used in analysis of contact basins (adapted from 

Marske and Boyle, 1973) 
 

Parameter Definition 
Td Theoretical detention time 
Ti Time for the initial observation of the tracer at the outlet  
Tp Time to reach peak concentration 
Tg Time to reach centroid of residence time distribution 

T10/Td Baffle factor 
Ti/Td Index of short-circuiting 
Tp/Td Index of model detention time 
Tg/Td Index of average detention time 
T50/Td Index of mean detention time 
T90/T10 Morril dispersion index  

 
Further information on the flow behaviour in the clearwell can also be gained 

from more detailed interpretations of the F(t) based on the function shape (Rebhun and 

Argaman 1965; Hart and Gupta 1978; Hart 1979; Roy et al. 2002) and statistical methods 

(Kothandaraman and Evans 1972; Marske and Boyle 1973; Hart and Gupta 1978; Hart 

and Vogiatzis 1982).  These investigations demonstrated how to analyse the entire data 
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set of a tracer test in order to characterize the residence time distribution rather than using 

one value such as T10. 

 

Rebhun and Argaman (1965) developed a method to quantitatively assess the 

percent plug flow, mixed flow, and dead space in a reactor based on the shape of the F(t) 

curve.  They modified earlier work by Wolf and Resnick (1963) and derived the 

following equation for describing the relationship between the F(t) curve (based on the 

dimensionless time t/Td) and the fraction of plug flow and dead space in the reservoir: 

 

 
)1()1)(1(

1ln
p

p
dp

Tt
T
tF d

d −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−  (2.2) 

 
where d represents the dead volume fraction and p is the degree of plug flow. 

Experimental data are used to plot ln(1-F(t/Td)) vs. t/Td.  Then the intercept of the best-fit 

linear trend line is used to determine the plug flow proportion (p), and the slope of the 

line is used to determine the dead space proportion (d).  The mixed volume proportion (m) 

is equal to one minus the sum of the plug flow and the dead space proportions (m = 1-

(p+d)) (Roy et al. 2002).  Many researchers have used Eq. 2.2 to assess the percentage 

plug flow, mixed flow, and dead space in the reservoir (Kothandaraman and Evans 1972; 

Hart and Gupta 1978; Hart 1979; McCorquodale and Machina 2002; Roy et al. 2002).  It 

is recommended by the USEPA (1989) as a additional description of the flow behaviour 

the use of just the T10 or T90 values, since equation (2.2) takes a larger portion of the 

entire F(t) curve into account. 

 

Statistical methods are also to describe the flow characteristics by analyzing the 

residence time distribution or E(t) curve (Bishop et al. 1993).  Marske and Boyle (1973) 

used statistical interpretation of tracer data to evaluate the hydraulic characteristics of a 

clearwell and to determine the dispersion index (σ2) generally used in chemical 

engineering.  By this method the dispersion index σ2 was calculated as the variance of the 

E(t) curve rather than on the basis of just one or two points on the F(t) curve.  The 

dispersion index σ2 is expressed as:  
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where t is time and C is tracer residual concentration.  A dispersion index σ2 equal to zero 

indicates that no dispersion of the tracer substance has occurred and the clearwell is under 

ideal plug flow conditions.  A symmetrical E(t) represents a model when only dispersion 

is occurring and this gives σ2 = 0.01 (Johnson et al. 1998).  Mixing and dead space skew 

the E(t) curve. 

 

2.4 Physical Modelling of Flow in Clearwells 

2.4.1 Background 

Physical scale modeling of the flow in clearwells has often been undertaken.  This 

is because, although tracer studies in full-scale clearwells can provide useful information, 

they cannot be used to assess the effects of proposed modifications to clearwell design.  

Often the value of a full-scale tracer test is limited due to discontinuities in field data and 

variable factors such as non steady-state flow conditions.  Furthermore, tracer tests can be 

difficult to conduct in an operating water treatment plant because it is difficult to take the 

clearwell offline or have it operate at a constant flow and water surface elevation for long 

periods.  Therefore, scheduling of tracer tests can be difficult for potable water service 

providers who must maintain service to their customers.   

 

As an alternative to tracer studies in the actual clearwells, a scale model test is 

often employed to determine the residence time distribution (Hart and Gupta 1978; Hart 

1979; Falconer and Tebutt 1986; Mitha and Mohsen 1990; Bishop et al. 1993; 

McCorquodale and Machina 2002; Roy et al. 2002; Hurtig 2003).  Louie and Fohrman 

(1968) stated that physical modelling was not only an efficient method to study flow 
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within a clearwell, but also a relatively economical way to provide design guidance.  

Kothandrarman and Evans (1972) investigated the hydraulic characteristics of a 

rectangular contact tank under various flow conditions using the 1:10 scale model.  Roy 

et al. (2002) investigated the effects of finger baffles, guide vanes, and inlet piping on the 

hydraulic characteristics of a contact reservoir using a 1:11.25 scale model.  The results 

of the investigation aided in the development of cost-effective modifications to the full-

scale reservoir to improve performance.  In each of the studies citied above, a scale 

model was shown to be an effective alternative way to evaluate flow behaviour of an 

existing contact chamber and a useful tool to assess the effects of retrofits.   

2.4.2    Similitude for Clearwells 

Physical hydraulic models are usually constructed with much smaller dimensions 

than the prototype they represent due to space and cost limitations.  In order to fairly 

represent the flow mechanisms in a hydraulic system, and to compare flow characteristics 

measured in a physical model with the characteristics found in a prototype, it is critical to 

choose the scale ratios based on the principles of similitude (Falconer and Tebbutt 1986; 

Bishop et al. 1993; Hurtig 2003).  Similitude means that there is geometric, kinematic, 

and dynamic similarity for the flows in the model and prototype (ASCE 2000).  

Geometric similarity indicates that all the dimensions in the model are scaled from the 

prototype value at the same ratio.  When kinematic similarity is achieved, there is a 

constant ratio between velocities and accelerations in the physical model and the 

prototype at corresponding positions.  When dynamic similarity is achieved, there is a 

constant ratio between the forces in the physical model and the prototype at 

corresponding positions (ASCE 2000). 

 

It is common practice to design a physical hydraulic model using dynamic 

similarity by taking the ratio of the dominant force of the system and the inertial force 

(ASCE 2000).  In a physical hydraulic model, there can be many forces in the system that 

influence the fluid flow including gravitational, viscous, surface tension, and pressure 

forces.  If viscosity (and surface tension) is neglected and gravity dominates, the scale 

model is considered a Froude model.  In a Froude model, the Froude number is the same 
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in the model and prototype and is used to develop the scale factors for velocity and flow 

rate.  The Froude number, Fr, is expressed as: 

 

 
gL
VFr

2

=  (2.6) 

 
where V is average velocity of flow, g is gravity acceleration and L is the length scale for 

the flow (e.g. depth of flow).  For equivalent Froude numbers in the physical model and 

prototype, the velocity, time, volume and discharge is a function of length scale ratio (see 

Table 2.3, where Lr is the length ratio between model and prototype).  

 
Table 2.3  Scaling parameters 

Parameter in Model Scale Factor 

Length Lr 

Area Lr
2 

Volume Lr
3 

Time Lr
0.5 

Velocity Lr
0.5 

Discharge Lr
2.5 

 
The water in a clearwell is a free-surface flow which is a gravity-dominated flow.  

When there is turbulent inflow entering the reservoir, the fluid viscosity has little effect 

on the flow system and it is assumed negligible compared to gravity forces (ASCE 2000).  

Froude number similarity has been successfully applied in modelling clearwells by 

Kothanadaraman and Evans (1972), Hart and Gupta (1978), Falconer and Tebbutt (1986), 

Roy et al. (2002) and Hurtig (2003). 

  

The validity of Froude number scaling for the flow in a clearwell based on Froude 

number has been verified by comparing the results of tracer tests performed at full-scale 

and on the physical model.  Bishop et al. (1993) concluded there was good correlation 

between model and prototype results based on Froude number modelling because the 

cumulative residence time distribution curve, F(t) vs. dimensionless time t/Td, simulated 
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the full-scale system quite well over a range flows.  Hurtig (2003) also verified that 

physical models are an effective method of evaluating clearwell performance by 

comparing the results of tracer tests on models of two clearwell reservoirs to the results 

of prototype tests.  Falconer and Tebutt (1986) indicated that a hydraulic model based on 

Froude number similarity was able to closely reproduce general flow parameters in the 

prototype such as Ti/Td, T10/Td, T90/Td.  Hart and Gupta (1978) investigated the effect of 

various discharges on the parameters Ti/Td, T10/Td, T90/Td, p, m, and T90/T10 in the model 

because they thought that these parameters used to interpret dye tracer data may have 

different reliability or consistency when compared with the actual prototype values.  

They found that Ti/Td, T10/Td, T90/Td, p, and m were consistent with prototype results at 

the high end of the flow operating range; however, T90/T10 had good results over the 

entire range of flow tested.  As indicated above, the Froude number similarity criterion is 

only appropriate when the Reynolds numbers of the flow are large enough (flow 

Reynolds number in the channel is more than 2000 (Jain 2001)) to ensure the flow is 

turbulent. 

 

Falconer and Tebutt (1986) conducted tracer tests in distorted physical models 

which had vertical distortions of two and three times the horizontal scale, i.e. the models 

had a water depth of two and three times the depth in a non-distorted model.  The purpose 

of the vertically distorted models was to increase the Reynolds number to achieve 

turbulent flow in the model and to increase the accuracy of flow velocity and depth 

measurements.  They found that there was little difference in test results between the 

undistorted model and distorted model, even though the undistorted model operated with 

a Reynolds number stated to be at the lower end of the turbulence scale (although 

Reynolds number values were not given).  They did not provide a quantitative 

comparison of the results.  However they pointed out that there were good agreement 

between physical model and prototype results for the undistorted model and concluded 

the undistorted model at the lower end of the turbulence scale had the ability to 

representatively simulate the prototype flow characteristics. 
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Hurtig (2003) conducted a tracer test in a physical model with scaled-down pillars 

to resemble the support columns in the Rossdale Water Treatment Plant Clearwell in 

Edmonton, Alberta.  The objective was to determine if the physical model could 

reproduce the effects of the columns in the prototype flow behaviour.  According to the 

test results, the columns did not significantly affect the baffle factor compared to the 

results without columns present.  Further, it was noticed that the columns marginally 

improved the longitudinal mixing based upon visualization tests.  Hurtig (2003) 

suggested that the columns were not a dominant factor in the scale model in representing 

the flow behaviour of the prototype reservoir.  This is contrary to Albers et al. (2005, 

2006), who argued that the presence of structural columns in a clearwell greatly improved 

the mixing between the baffle walls and increased the hydraulic efficiency (also called 

baffle factor) of a clearwell when compared to the conditions without structural columns.  

They attributed the increased hydraulic efficiency to internal mixing, which reduced the 

recirculation and dead zone areas in the clearwell. 

 

2.4.3    Issues with Using Scale Models of Clearwells 

One of the issues with using physical scale models to run tracer or mixing studies 

is that the diffusion in the model is less than the prototype because the turbulence is less 

at the smaller scale (ASCE 2000).  When dye is injected into the water, dispersion of the 

dye through the flow occurs due to the presence of velocity gradients (Socolofshy and 

Jirka 2002).  In addition to dispersion, diffusion also occurs due to random motion of 

fluid packets from higher concentration to lower concentration areas (due to turbulence).  

Diffusion is less in the model than in the prototype.  However, longitudinal dispersion is 

dominant over longitudinal diffusion by several orders of magnitude (Fisher et al. 1979), 

so the longitudinal dispersion in the direction of flow plays a major role in mixing in a 

clearwell. 

 

Mitha and Mohsen (1990) conducted tracer studies in four geometrically similar 

physical models of contact chambers based on the equal detention time criterion to 

investigate the effect of scale on dispersion characteristics.  However, Froude number 

similarity was not used for the modelling.  A lower flow rate was adopted in the model 
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based on the equal detention time compared with the flow rate based on Froude similarity.  

It was found that the dispersion appeared to be more dependent on changes in channel 

size for smaller channels, whereas larger channels were less sensitive to scale.  However, 

the interpretation of the results is uncertain since the scaling was not done on the basis of 

the Froude number, unlike in other studies.  Bishop et al. (1993) also pointed out, besides 

the effects on dispersion, the model scale ratio needs to provide an adequate depth of 

flow to avoid surface tension effects, it must provide reasonably sized model (so that 

measurements can be taken), and model flow rates must be practical. 

2.4.4    Flow Visualization in Model Clearwells 

In addition to quantitative tracer studies, visual observations of a tracer can also 

be used to identify short-circuiting, dead zones and longitudinal dispersion by assessing 

the degree of the dye colour.  Louie and Fohrman (1968) investigated the approximate 

velocity distribution at the locations of interest by flow visualization.  They delineated the 

regions of flow separation and eddy activity in contact chambers for several different 

model configurations.  Falconer and Tebbutt (1986) undertook visual observations of 

different model configurations and found the trends of dead space identified were 

compatible with the interpretation of dye concentration analysis.  Also, Roy et al. (2002) 

conducted flow visualization tests with potassium permanganate dye in a 1:11.25 scale 

model of a chlorination reservoir system in conjunction with a slug test to measure the 

concentration of tracer.  The flow patterns in the scale reservoir model for various 

configurations were evaluated by flow visualization to identify the short-circuiting and 

dead zones. 

      

2.5 Numerical Modelling  

2.5.1 Why Conduct Numerical Modelling? 

Disadvantages of the use of physical models to perform tracer studies are the 

costs of construction, time to set up model, requirements for the physical space to run 

such tests, and issues with modelling the diffusion in the flow at a small scale.  Also, it is 

hard to investigate three-dimensional flow characteristics in a physical model unless 

sophisticated measurements techniques are applied (Hannoun et al. 1998).   
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An alternative to the use of a physical model is the application of a computational 

fluid dynamics (CFD) model to assess the flow in a clearwell.  CFD models are generally 

based upon the finite element concept and have been used in fields such as aerodynamics, 

thermodynamics and chemical reactor engineering.  The application of CFD models in 

the waterworks industry was initiated early in the 1990’s and now is widely applied to 

optimize water storage reservoir and clearwell design (Grayman et al. 1996; Falconer and 

Ismail 1997; Hannoun et al. 1998; Hannoun et al. 2003; Templeton et al. 2006).  CFD 

models offer several advantages over physical models such as no data limits, flexible 

parameter selection, and the ability to calibrate the CFD model based on the prototype 

data (Grayman et al. 1996).   

 

One of the important characteristics of CFD models is the ability to model time-

dependent or transient processes resulting in concentrations and flow velocity vectors that 

vary over time.  It is much more difficult to investigate transient processes in field tests in 

prototypes or in physical models (Hannoun et al. 1998).  CFD modelling of clearwells 

can track the residence time of each fluid packet to obtain a retention time distribution 

curve from which baffle factors can be determined (Stovin and Saul 1998).  Templeton et 

al. (2006) also note that particle paths and velocity contours can be generated by CFD 

models.  The particle paths can depict the location of dead zones or zones of re-

circulation within the clearwell where water is stagnant or moving very slowly relative to 

the rest of the water (Hannoun and Boulous 1997).  Wang and Falconer (1998b) and 

Wang et al. (2003) reported that CFD models are able to predict the time distribution of 

tracer injected into the inflow, after a steady-state solution of the velocity field was 

created. 

 

Hannoun et al. (1998) reported that most CFD software includes a graphical 

interface that provides users with the ability to modify boundary conditions such as outlet 

or inlet configurations, clearwell geometry and inflow and outflow conditions.  After a 

basic CFD model of a clearwell is established, it can then be extended to more 

complicated situations to simulate modifications such as alternative inlet-outlet 
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conditions and the effects of thermal and buoyancy induced flow, which are difficult to 

do in physical model tests and not possible in prototype studies.   

 

Hannoun et al. (2003) applied CFD modelling to circular and rectangular clearwells 

to demonstrate that simple modifications to the original design can achieve required CT 

results easily and cost-effectively, and increase the disinfection effectiveness.  Reddy et 

al. (1999) applied CFD modelling to improve clearwell design and to alleviate short-

circuiting problems in existing reservoirs.  They reported that CFD modelling is an 

especially economical method of evaluating different reservoir layouts, configurations 

and operating conditions compared to field tracer or scaled-down physical model studies.   

 

A limitation of CFD modelling is that the computational model should be 

validated using field data before it is applied to a wide range of operating conditions 

(Grayman et al. 1996).  Only after comparing the CFD simulation results with measured 

field data can the predictive capability of the CFD models be verified (Reddy et al. 1999).  

2.5.2    Numerical Models Used for Flow Assessment in Clearwells 

Hannoun and Boulos (1997) and Hannoun et al. (1998) solved the three-

dimensional time-averaged Navier-Stokes fluid flow equations with a k-ε turbulence 

model applied to a water treatment plant clearwell and compared the numerical results 

with the prototype tracer test data.  The effects of baffling on disinfection efficiency also 

were investigated.  The CFD model included a geometrical description of the reservoir, a 

reaction rate expression for the tracer, and initial flow and boundary conditions as the 

input.  Using the computer language Fortran 77, a computational mesh was established 

by subdividing the domain into discrete computational volumetric cells.  The residence 

time distribution of particles was determined from the simulation.  The CFD model was 

used to assess the flow through the clearwell in the Tulsa, Oklahoma, water treatement 

plant.  However, no prototype tracer study results were available for comparison. 

 

Hannoun et al. (2003) further discussed the application of CFD modelling using 

the program FLOWMOD.  This program is based on the theory presented in Hannoun 
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and Boulous (1997).  The FLOWMOD model was applied in several studies of the flow 

behaviour within different structures and water treatment facilities (clearwells, tanks, and 

distribution storage reservoirs).  The study results showed the FLOWMOD model was 

capable of producing highly accurate results in comparison to field test measurements. 

Hannoun et al. (2003) simulated the flow behaviour in a clearwell (Palmdale, California) 

using three different configurations of intra-baffle walls to explain how to apply CFD 

models to optimize water quality in a clearwell. 

 

Ta and Brignal (1998) used a CFD model (Fluent) to simulate the flow dynamics 

in a water storage reservoir.  The three-dimensional, finite-volume model was used to 

investigate the interior flow pattern, short-circuiting, stagnant zones and residence time 

distribution curves for different inlet and outlet configurations.  Even though they did not 

undertake a comparison between the simulated and measured results (i.e. they did not 

validate their model), they concluded that a manifold inlet option can produce good plug 

flow conditions and a smaller stagnation zone when the residence distribution and 

cumulative residence distribution were compared between the four types of inlet 

arrangement.  

 

Crozes et al. (1999) applied the computational model FIDAP to model the flow 

through a clearwell of a water treatment plant (Oak Creek, Wisconsin).  FIDAP can 

simulate steady or transient two- or three-dimensional flows based on Navier-Stokes, 

continuity, and convective-diffusion equations.  In this study, they employed a two-

dimensional simulation because the computational time required for solving the equations 

of mass and momentum transport in three dimensions is significantly more than for two 

dimensions.  The results included the residence time distribution curve and fluid dynamic 

simulation to illustrate the effect of baffling on the flow patterns within a contactor.  

After comparing with full-scale tracer tests, FIDAP was able to predict the flow behavior 

in the disinfection contactors like the prediction of T10/T within 10-15% of the measured 

value. 
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Reddy et al. (1999) used a CFD model to simulate the clearwell in Phoenix, 

Arizona to investigate short-circuiting problems.  The results included the cumulative 

residence time distribution curve and the flow patterns within the clearwell for various 

baffle configurations.  The simulation results were able to predict the flow behavior in the 

clearwell when CFD data matched the field tracer test data with 10 %.  However, they did 

not specify what model was used. 

 

Falconer and Liu (1988) used a two-dimensional depth-integrated numerical 

model (QUICK scheme which is a method of quadratic upstream interpolation for term of 

convective kinematics in the governing differential equation) to predict the depth mean 

velocity field and the spatial concentration distribution in a chlorine contact tank.  

Falconer and Ismail (1997) further applied the QUICK scheme to model the transport of a 

tracer in a scale physical model of a chlorine contact disinfection tank with a serpentine 

baffle system.  The numerical model results for different tank configurations were 

compared with corresponding physical model results.  The predicted mass flow curves 

assuming two-dimensional (depth-averaged) flow for a conservative tracer were 

compatible with the corresponding laboratory model results.   

 

Wang and Falconer (1998a, 1998b) and Wang et al. (2003) also investigated 

application of flow and transport simulation models to the prediction of flow-through 

curves of a chlorine contact tank.  Two-dimensional numerical models using various 

combinations of turbulence stress models and numerical schemes were developed to 

solve the two-dimensional flow and transport equations.  Predicted flow patterns using 

various turbulence models (depth mean mixing length model, depth mean k- ε model and 

Smagorinsky model) and numerical schemes (first-order upwind scheme, QUICK scheme, 

and third-order upwind difference scheme) were compared with measurements from a 

physical model.  It was concluded that the depth-mean k-ε model gave the most accurate 

prediction of turbulent flow and mixing over a cross-section.  Meanwhile, Wang and 

Falconer (1998a) pointed out that one of testing criteria of a mathematical model was 

whether a mathematical model can predict the sizes and locations of recirculation zones 

in a contact tank or not. 
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Baawain et al. (2006) investigated the chlorine contact chamber performance of 

the E.L. Smith Water Treatment Plant in Edmonton, Alberta by creating a three-

dimensional (3-D) computational fluid dynamics model (CFXTM5.6).  The results of the 

computational fluid dynamic model were compared to experimental residence time 

distribution (RTD) curves from a scale model test of the clearwell given in Hurtig (2003).  

The three-dimensional computational fluid dynamic model was able to predict the 

measured RTD curves.  However, they noted the inlet geometry had a great impact on the 

flow pattern in the clearwell and noted that 3-D computational modeling was required for 

this inlet region.  Wang and Falconer (1998a) also indicated that it is typical that 3-D 

water flow with strong horizontal and vertical recirculation regions commonly exists at 

the inlet and outlet of a contact tank.  However, the flow tends to be uniform over the 

water depth at locations away from the inlet region and 2-D modelling is acceptable in 

these regions.   

 

Templeton et al. (2006) applied two–dimensional CFD modeling to simulate 

tracer tests results in a full-scale clearwell.  A two-dimensional model was used instead 

of a three-dimensional model to simplify the modelling procedure and reduce 

computation time.  It was thought possible to use the 2-D model due to the large surface 

area to depth ratio (> 180) of the modeled clearwell.  The model was created using Fluent 

6.0 software and was used to predict the residence time distribution curve for various 

clearwell configuration and flow rate conditions and to determine the baffle factors.  The 

standard k-ε turbulence model was applied in the model.  A particle tracking function was 

used to simulate the tracer movement at specified locations.  The study demonstrated that 

the two-dimensional model could successfully predict clearwell residence times for a 

range of baffle configurations and flow rates.  CFD predictions were verified using tracer 

study results in the prototype. 

 

Albers and Maksymetz (2004) and Albers et al. (2005a and 2005b) applied 

River2DMix to investigate the effect of structural columns within the Calgary Glenmore 

WTP on the baffle factor.  The 2D computational model was used to simulate field tracer 

tests, generate cumulative retention time distribution curves and baffle factors.  In the 
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simulation process, the same clearwell geometry and flow conditions were modelled 

without columns and with columns.  This research showed that River2DMix was 

sufficiently accurate to describe the flow behaviour in the clearwell compared to field 

tests conducted by Maksymetz (1998).  By comparing the simulation results for the 

without columns condition and the with columns condition, a significant difference was 

identified.  Albers et al. (2005a and 2005b) suggested that the structural columns in the 

clearwell enhanced internal mixing and minimized the presence of dead zone and short-

circuiting in the clearwell.  Further, the assumption of uniform concentration in the water 

used by the depth-averaged finite element approach agreed well with the +/- 4% 

difference in measured tracer concentration between the water surface and the bed at the 

6 m deep clearwell outlet. 

 

2.6 River2DMix 

River2DMix, the program used to simulate the flow in the Glenmore clearwell 

herein, is a modified version of the River2D software developed at the University of 

Alberta to simulate hydrodynamic flow and mass transport in a river.  The software 

utilizes a depth-averaged finite element approach to simulating the St. Venant equations 

(Albers et al. 2005a and 2005b).  The hydrodynamic simulation within River2DMix 

initially runs to converge upon a solution.  Then the mixing model runs to simulate mass 

transport and to determine concentration profiles in the two horizontal directions.  

Velocity vectors from the hydrodynamic simulation can be used to trace the path of 

particles that travel through a modelled system (Stovin and Saul 1998).  A time series of 

concentrations from the mass transport and mixing model can be used to depict residence 

time distribution curves at selected locations.  

 

In River2DMix, a Boussinesq type eddy viscosity formulation is used for the 

transverse turbulent shear stress τxy and τyx in the hydrodynamic model and mixing model.  

The terms τxy and τyx are estimated using the turbulent kinematic viscosity νt.  The νt term 

includes the eddy viscosity coefficient, which is assumed to be composed of three 

components: a constant ε1 (default value 0), a bed shear generated term ε2, and transverse 

shear generated term ε3 (Steffler and Blackburn 2002).  All three components are 
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adjustable parameters within the hydrodynamic and mass transport simulation in 

River2DMix. 

 

The general modeling procedure is to develop a bed topography file from 

available engineering drawings.  The resulting .bed file is loaded into R2D_Mesh to 

generate the computational mesh files for the River2DMix model.  Next, the River2DMix 

program executes the hydrodynamic simulation until the inflow discharge is equal to the 

outflow discharge.  Finally, the mass transport simulation runs utilizing the fluid flow 

field determined in the hydrodynamic simulation (Steffler and Blackburn 2002).  

 

In River2DMix, hydrodynamic boundary conditions usually take the form of a 

specified total discharge at inflow sections; fixed water surface elevations or rating 

curves at outflow sections and no-flow vertical walls.  There is also a function in 

River2DMix called “simple tracer mass initial condition specification” that is used in 

mass transport mixing simulation.  Some key assumptions in the model are a hydrostatic 

pressure distribution in the vertical, a constant horizontal velocity distribution over the 

depth, and negligible Coriolis and wind forces (Steffler and Blackburn 2002). 

 

2.7 Flow Dynamics Around Columns 

In order to better understand the flow behaviour around structural columns, the 

following paragraphs review some previous and current research regarding flow around 

columns with circular and square cross sections.  In particular, the variation of the flow 

behaviour with Reynolds number is described to better understand the changes in flow 

behaviour around columns present in the model studied herein. 

 

Firstly, in considering the flow around a single cylinder that is circular in cross-

section, it is known that the flow behavior depends strongly on the Reynolds number.  

Here Reynolds number is based on the cylinder diameter and is defined as follows: 

 
ReD=ρUDc/μ              (2.7) 
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where ρ is the free-stream density; μ is the free-stream dynamic viscosity; U is the 

velocity of the approach flow; and Dc is the cylinder diameter.  When ReD is less than 5, 

the flow is mirrored on the front side and back side of the cylinder (Williamson 1996).  

When ReD > 5, the flow begins to separate at the rear stagnation point and the flow 

pattern changes to the steady twin vortex regime where two steady symmetric vortices 

are formed behind the cylinder (Li 2008).  Williamson (1996) defined flow with ReD less 

than 49 as the laminar steady regime including the creeping flow regime and steady twin 

vortex regime (Figure 2.1(a)).  The wake starts to become unstable at the end of the 

recirculation region behind the cylinder when ReD is greater than 49 (Williamson 1996).  

The recirculation region  

 
Figure 2.1  The vortical wakes from a bluff body (a) at low Reynolds numbers and (b) at 

higher Reynolds numbers (adapted from Williamson 1996). 
 

becomes larger with increasing ReD.   As the ReD increases further, vortices begin to be 

shed alternately from each side the cylinder (i.e. vortex shedding).  When ReD is 190 to 

260, instabilities are amplified to develop turbulence in the wake (Williamson 1996). The 

flow develops into an irregular vortex shedding regime where the separated shear layers 

transition to turbulence before roll-up into a Karman vortex street.  This causes turbulent 

fluctuations of the wake. When ReD is 260 to 1000, the length of recirculation region 
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increases with disordered three-dimensional vortices (Williamson 1996).  When ReD is 

1000 to 2x105, the transition point of the shear layer from laminar to turbulent flow 

moves upstream and the vortex shedding from the cylinder has a three-dimensional 

structure.  Additional changes happen at even higher Reynolds numbers. 

 

In contrast to flow around circular columns, the flow around a square column has 

a different flow pattern because the geometry differences provide a different relationship 

between the vortex structure and flow characteristics (Lyn et al. 1995).  Also, features 

which are less obvious in the circular geometry may be accentuated in the square 

geometry (Okajima 1982).  Kumar et al. (2008) reported that square columns tend to fix 

the separation point, which increases the shedding frequency and hydrodynamic force.  

The separation mechanism also was greatly different from the flow around the circular 

columns.  Generally speaking, the flow behaviour around square and rectangular columns 

is more complicated than flow around a circular column.  However, the flow around a 

sharp-edged column has received far less attention than the flow around circular columns 

(Lyn et al. 1995, Kumar et al. 2008). 

 

Okajima (1982) reported that variation of the width-to-depth (width is the normal 

to the flow direction, and depth is parallel to the flow direction) ratio of a square column 

is closely correlated with changes in the flow pattern.  The flow pattern around a square 

or rectangular column is dependent on the Reynolds number for a sharp-edged object 

where the separation points are fixed at the leading edges or trailing edges (Figure 2.2 

and Figure 2.3).  The Okajima (1982) experiments measured the vortex-shedding 

frequencies of various rectangular columns to investigate how Strouhal number varies 

with width-to-depth ratio in a range of Reynolds number (Re=UH/ν where U is velocity, 

H is depth of column and ν is kinematic viscosity) between 70 and 2 x 104.  Strouhal 

number is defined as: 

U
fDSt =               (2.8) 

where : f is the frequency of vortex shedding, D is diameter of the cylinder and U is the 

average flow velocity.  The experiments showed that the wake velocity fluctuates in a 
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fairly sinusoidal pattern and Strouhal numbers of a square column have slight and 

continuous change around a constant value in the wide range of Re = 100 to 2 x104.  

These findings have been verified by Turki et al. (2003).  When Re = 80, the flow has 

been calculated to separate just at the trailing edge (Daiguji and Kobayashi 1981).  When 

Re = 150, the flow is separated at the leading edge and is seen to detach itself on either 

the upper or the lower surface (Okajima 1982).  When there are incidence angle θ 

between the square column and flow direction, there are still some wake and vortex 

shedding behind the columns with the different drag coefficient comparing to the no 

incidence angle situation.  For incidence angle θ = 0, the coefficient is 1.05 when 

Reynolds number is more than 104; and for incidence angle θ = 45, the coefficient is 0.8 

with the same Reynolds number (Bruce et al. 2002). 

 

The study of uniform flow around a cylindrical obstacle has a lot of detailed 

information pertaining to it in the literature.  The above paragraphs described some 

previous and current studies on the behaviour of flow around individual columns and 

groups of columns including variation in flow behaviour with different Reynolds 

numbers.  It is seen that the flow behavior around the cylinder (square column) is 

complex.  At lower Reynolds numbers, there is no discernible vortex shedding from the 

trailing edge of the column; at higher Reynolds numbers, there is vortex shedding rolling 

up behind the square column while the flow separation starts at the leading edge of the 

column. 

 
 

Figure 2.2  Flow pattern for a square cylinder at Reynolds number 80 (adapted from 
Daiguji and Kobayashi 1981). 
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Figure 2.3  Flow pattern for a square cylinder at Reynolds number 150 (adapted from 

Okajima 1982). 
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CHAPTER 3:  DEVELOPMENT OF THE PHYSICAL MODEL, 
EXPERIMENTAL SETUP, AND TESTING PROGRAM 

 
 
3.1 Background 

The Glenmore Water Treatment Plant (GWTP) clearwell consists of two parts:  

the southwest (SW) cell and the northeast (NE) cell.  Preceding the northeast cell of the 

clearwell, the flow moves from the treatment plant through a box culvert about 1.83 m 

high and 1.22 m wide, which is about 300 m upstream of the inlet gate structure to the 

clearwell.  Fluoride is injected into the flow just upstream of the culvert.  The flow then 

moves over a weir and enters into a large chamber.  Next, it moves through a perforated 

baffle wall with circular openings of 400 mm diameter and then through a system of 

serpentine baffles through the main portion of the clearwell.  Finally, the flow then moves 

into the southeast cell of the reservoir by flowing over another weir.  The research 

presented herein focuses on the northeast cell of the clearwell, for which tracer studies 

have been carried out for three flow rates by Maksymetz (1998). 

 

In the Maksymetz (1998) tracer tests, the northeast cell of the clearwell was 

studied over the full range of operating conditions.  The minimum and maximum 

operating flow rates were 115 ML/d and 390 ML/d, respectively. One intermediate flow 

of 280 ML/d was also tested.  These flows correspond to flow depths near the outlet of 

the northeast portion of clearwell of 5.91, 6.00 and 5.96 m, respectively.  For these 

prototype tracer studies, when the flow rate through the reservoir reached steady-state, 

the supply of fluoride to the clearwell was shut off at the injectors.  This marked the start 

of the tracer test.  The decrease in concentration of fluoride with time was monitored at 

the end of the NE cell.  Five sample lines near the weir at the outlet of the cell were 

placed vertically at a 1 m spacing to collect samples at a typical frequency of every 10 

minutes.  The three tests ran 313, 122, and 92 minutes duration for the flow rates of 115 

ML/d, 280 ML/d and 390 ML/d, respectively.  From the tracer test data, the cumulative 

residence time curves were developed from which the baffle factors were assessed.  The 

estimate error of prototype data was ± 2.5 % over the three flow rate. 
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For the experiments described herein, a scale physical model of the NE cell of the 

Glenmore clearwell was set up and tested using tracer studies and flow visualization.  

Tests were conducted under flow conditions to model the prototype tests described above, 

plus one other intermediate flow.  Test flows were selected according to the guidelines 

for testing reservoirs specified by USEPA (1989).  For the experiments, the physical 

model of the reservoir was run with and without the many structural columns in the 

clearwell.  These physical model studies were followed by a study using the software 

River2DMix to model the flow and retention times in the model clearwell under the same 

conditions.  

 

This chapter gives the details of the development, construction, and operation of 

the hydraulic model.  Next, the tracer tests run in the model are described, including the 

method of preparation of tracer used in the experiments, the calibration of the instrument 

used to measure the concentration of the tracer, and how these measurements were taken.  

It also gives details of the test program.  Finally, some details are given about how the 

computational model River2DMix was set up to simulate the flow behaviour in the model 

clearwell. 

 

3.2 Hydraulic Model 

3.2.1 Development of Physical Model 

Hydraulic models have a scaled-down geometry of the actual structure (prototype).  

In order to fairly represent the physical processes in a hydraulic system, the dimensions 

of a physical model compared to the prototype must be chosen based on the principles of 

similitude (ASCE 2000). 

As discussed in Chapter 2, the hydraulic model of the clearwell can be considered 

a Froude model.  For the model clearwell, the Reynolds number also needs to be high 

enough to create a turbulent jet through the perforated baffle wall at the entrance of the 

reservoir and to ensure turbulent flow within the reservoir.  For the flow through the 

perforated baffle wall at the inlet, it is known that a jet Reynolds number Ri = 500 is 

about the lowest Ri that will create a turbulent jet (Rajaratnam and Flint-Peterson 1989).  

The Reynolds number is Ri = UiD/ν, where Ui is the average velocity of flow through the 
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holes of the perforated baffle wall, D is the diameter of one of the holes in this wall (the 

hole size is constant in the wall), and ν is the kinematic viscosity of the fluid.  Rajaratnam 

and Flint-Peterson (1989) note that although the minimum Reynolds number for 

turbulence for a single circular free jet is about 500, the growth of the jet does not depend 

on Reynolds number for about Ri >10,000.  Meanwhile, the flow within the reservoir 

must also be in the turbulent range.  The Reynolds number of the flow in the reservoir is 

expressed as Rr = 4VRh/ν, where V is the average velocity of flow in the reservoir through 

the section of interest and Rh is the hydraulic radius, where Rh = A/P and A and P are the 

cross-sectional area and wetted perimeter of the flow, respectively.  Rr has to be larger 

than 2000 to ensure turbulent flow (Jain 2001).  The Reynolds number of column is ReD 

=VDc/ν, where Dc is the square column diameter (width).  In model design, the Reynolds 

number for columns was neglected. 

 

Based on a desired minimum reservoir Reynolds number Rr of 2000 and space 

and flow handling limitations in the Hydraulics Laboratory at the University of 

Saskatchewan, an undistorted scale model of 1:19 was chosen.  In the model tests, Rr then 

varied from 2011 to 6776 and the Ri for the perforated baffle wall varied from 1240 to 

4200.  Although the Reynolds numbers for the jet is not in the range of Ri >10,000, where 

the growth of a turbulent jet does not depend on Ri, the several jets that move through the 

perforated baffle wall will quickly merge together. Thus, the growth rate of an individual 

jet is less important.  Table 3.1 gives a comparison of the Glenmore clearwell and 

physical model parameters for the minimum and maximum flow rate.  At the 1:19 scale, 

the flow rates of 115 ML/d, 280 ML/d and 390 ML/d give model flow rates of 0.85, 2.06, 

and 2.87 L/s, respectively.  The depths of 5.91, 5.96, and 6.00 m in the actual clearwell 

gave respective depths of 0.311, 0.314, and 0.316 m in the scale model.  This corresponds 

to Froude numbers in the clearwell through the widest channel from 0.002 to 0.008.   

 

3.2.2 Construction of Physical Model 

A 1:19 scale model of the Glenmore Reservoir NE cell was constructed in the 

Hydraulics Laboratory of the University of Saskatchewan.  It was constructed of plywood, 

which was waterproofed using oil based primer and glossy oil paint.  Figure 3.1 shows 
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the schematic layout of the physical model with columns.  Information on the layout of 

the reservoir was available from drawings provided by the City of Calgary.  Figure 3.2 

shows a photograph of the model without the columns.  The model included a  

 
Table 3.1  Glenmore Water Treatment Plant clearwell and hydraulic model parameters 

 
Parameters Prototype Physical model

Width of Widest Channel, W (mm) 16200 853 
Highest Flow Rate (ML/D) 390 0.248 
Highest Flow Rate (L/s) 4514 2.868 
High Flow Depth (m) 6 0.316 
Average Velocity at Highest Flow Rate  

in Widest Channel (m/s) 0.0464 0.0107 

Minimum Flow Rate (ML/D) 115 0.073 
Minimum Flow Rate (L/s) 1331 0.846 
Minimum Flow Depth (m) 5.91 0.311 
Average Velocity at Minimum Flow Rate  

in Widest Channel (m/s) 0.0139 0.0031 

Reynolds No. Rr (Minimum - Maximum) 1.5E+05 - 5.6E+05 2011 - 6776 
Reynolds No. Ri (Minimum - Maximum) 1.03E+05 - 3.5E+05 1240 - 4200 
Reynolds No. ReD (Minimum - Maximum) 4.8E+03 - 1.6E+04 59 - 197  

 

perforated baffle wall at the inlet (Figure 3.3(a)) and three serpentine intra-baffle walls as 

shown in Figure 3.1.  There was a bit of difference between the prototype baffle wall 

(Figure 3.3 (b)) and one used in the physical model.  The height of the baffle wall used in 

the physical model was higher than the height of the prototype baffle wall scaled down in 

terms to 1:19 with 184 mm difference.  Due to these change, the flow was jet flow after it 

passed through the perforate baffle wall in the physical model.  However, in the prototype 

clearwell, the top parts flow over the perforated baffle wall is overflow and rest of flow 

below that is the jet flow through the perforated baffle wall.  The change have no effect 

on the test results, because the purpose of two type perforated wall is to make fully 

mixing in width and depth direction of channel at the beginning of the channel.  There is 

a sharp-crested rectangular weir at the clearwell outlet that was used to adjust the flow 

depth in the reservoir.  In order to allow visualization of the tracer movement using 

photographs or video of the tests, a 100 mm x 100 mm grid of black twine was attached 
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on top of the model.  A camera or video recorder was suspended above the model for 

taking pictures or video used for flow visualization. 

 

Based on the research objectives, there were two separate test conditions for the 

model: without the structural columns and with the columns.  For the second phase of the 

experiments, when the columns were added, there were 122 columns fixed to the floor of 

the model at locations simulating the Calgary Glenmore Water Treatment Plant northeast 

cell as shown in Figure 3.1.  The square columns were 19 mm a side in the model 

corresponding to the actual columns that were 400 mm a side.  The model columns were 

also painted with oil-based primer and glossy oil paint.  As well, the columns were 

covered with a plastic screen to increase the roughness of the columns in hopes of 

increasing some of additional turbulence that might be seen at full-scale (Krogstad et al. 

1992; Zdravkovich 1997).   

 

In the physical model, the water enters the clearwell after passing through an inlet 

flow chamber (Figure 3.4).  A diffuser (Figure 3.5(a) and (b)) was designed and used to 

evenly distribute the flow rate into the model clearwell across the channel and was set 

250 mm upstream of the perforated baffle wall.  The diffuser was set at two-thirds the 

depth of water in the inlet chamber and the centres of the holes in the diffuser were set 

about 105 mm from the floor of the inlet chamber.  The perforated baffle wall separated 

this chamber from the rest of the clearwell.  Flow passed through the baffle wall and into 

the serpentine baffle system of the clearwell.  To exit the model clearwell, the flow 

passed over the weir at the outlet of the clearwell and dropped into another chamber.  

Two gate valves of 76.2 mm diameter were attached to the wall of this chamber.  These 

valves were used to control whether the flow moved to the sewer or entered a tank used 

for volumetric measurements of flow. 

 

3.2.3 Operation of the Model and Tracer Tests 

As noted in the previous section, in operating the model, water was pumped into a 

diffuser set in the inlet chamber before the baffle wall.  A valve was used to control the 

inflow rate and a rotameter made by Muis Control Ltd (Model 7205-0211-33W, 
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maximum capacity 190 Lpm, 6 % accuracy at full scale) was used to set the flow rate for 

a test (Figure 3.6 (a)).  This flow measurement was checked by collecting the 

overflowing water using a known volume and measuring the time to fill a 125 L 

 
 
Figure 3.1  Plan view NE Cell of the Calgary Glenmore Water Treatment Plant Clearwell 

(prototype and model dimensions in metres). 
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(a) 

 

 
(b) 

 
Figure 3.2  Physical model of NE cell without the columns (a) looking from the 

inlet/outlet end of the reservoir and (b) looking at the serpentine baffling from the 
opposite end of the reservoir. 
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(a) 

 
(b) 

Figure 3.3  Perforated baffle wall (a) in the scale model looking from downstream of the 
inlet (b) in the prototype. 
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Figure 3.4  Diffuser and inlet chamber of the physical model. 
 

container (Figure 3.6 (b)).  To avoid build-up of the background concentration of tracer, 

water was not recirculated in the model.  For the experiments without columns, the water 

was pumped into the model from the sump of the Hydraulics Lab.  The tests were run 

when the temperature of the water in the model was approximately 15-26°C.  For the 

second set of tests when the model was run with columns, the water was supplied by 

pumping from a steel tank that was fed continuously with tap water.  There was no 

technical reason to change the way that water was supplied to the reservoir.  However, 

the second method of supplying water allowed the model to operate independently of the 

activities of the other students in the laboratory.  And the tests in the second method were 

implemented after the experiments without columns were completed. 

 

One issue that arose during testing was the length of time required for the model 

to operate before the tracer tests were initiated.  Initially, the tracer tests were conducted 

after about 1 h of operation of the model.  Initial tracer study results at the lowest flow 
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rate showed a markedly lower baffle factor in the model than the prototype (detailed 

results are given in Chapter 4).  In investigating potential explanations for this difference, 

it was found the time allowed for flow development before the tracer test was initiated 

could strongly affect results.  Flow development time thus became another variable for 

the tests.  

 

For the tracer tests, two methods were chosen to input the tracer:  as a slug, and as 

a continuous feed.  For the slug input of tracer, three 140 cc syringes filled with the 

required amounts of Rhodamine WT (175 ppm) were set at a height of half the water 

depth.  The syringes were quickly pushed simultaneously to almost instantaneously inject 

tracer into the tank just upstream of the perforated baffle wall.  For the continuous feed 

tests a peristaltic pump with flow rate of 1.25 mL/s was used to continuously pump a 

specified concentration (100 ppm) of Rhodamine WT from a vessel of known volume 

into the flow through a small tube connected to the pipe just upstream of the diffuser (see 

Figure 3.5(b)). 

 

Samples for assessing the concentration of tracer at the clearwell outlet were 

taken by continuously drawing fluid from just above the weir through a fluorometer 

(Turner Designs Model 10) using a peristaltic pump (Figure 3.7).  The fluorometer was 

connected to a data acquisition system that used LabView software to record the 

concentration every 5 seconds.  Other measurements during a tracer test included the 

pump delay time for the sampling flow to move between the sampling point at the 

reservoir outlet and the fluorometer detection cell, and the test temperature.  Hudson 

(1975) recommended that at least two theoretical detention time periods be used to 

monitor a tracer test and suggested that three or four theoretical detention times may be 

required to ensure complete recovery of the tracer.  Therefore the duration used for each 

tracer test was three theoretical detention times.   
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(a) 

 

 
(b) 

Figure 3.5  Diffuser (a) side view (b) dimensions. 
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(a) 

 

 
(b) 

Figure 3.6  (a) Rotameter used for flow measurements and (b) tank used for volumetric 
flow measurements. 
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Figure 3.7  Fluorometer (Turner Designs Model 10) used in tracer tests. 

 

3.3 Test Program  

For the experiments, the test variables included the flow rate, the flow 

development time, and whether or not the structural columns were present in the model.  

Table 3.2 summaries the details of the testing program.  In Experiments 1-6, three trials 

under the same hydraulic conditions (same flow rate Q = 2.06 L/s and depth of 0.314 m, 

without columns) were conducted each for the slug and the continuous feed tracer 

additions to test for repeatability and to decide which tracer feed gave the most consistent 

results.  These tests were conducted allowing for a flow development time of only one 

hour.  Since the slug feed produced the most consistent results and was easier to 

implement, this method of tracer addition was used for the rest of the tests.  Finally, the 

mass recovery was computed for each tracer test experiment to investigate the quality of 

the tracer test according to Liem et al. (1999). 

 

3.4 Flow Visualization 

Flow visualization tests were conducted to assess the flow pattern in the model 

clearwell.  These tests provided information to be able to delineate the main flow channel 

and dead zones in the model.  For the visualization tests, a slug of dissolved potassium 
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permanganate was added to the flow and a video camera that was suspended above the 

model was used to take pictures of the coloured flow.  To visualize the flow contours at 

the inlet area of the model, a slug of dye was dumped into the flow upstream of the 

perforated baffle wall.  However, this dye plume dispersed too quickly to make 

observation further downstream in the model.  Therefore, dye was also injected across the 

width of channel just upstream of five other locations of interest along the flow in the 

clearwell.  All flow visualization tests were run as separate tests from the tracer tests.  

Table 3.2 shows the experimental conditions for which flow visualization tests were 

carried out. 

 

To better identify the dead zone in the clearwell of physical model, the sketch of 

the line of dead zone and circulation area was drawn at the same time as the dye injected 

into the flow (see example Figure 3.8).  The layout of clearwell of physical model with 

the 100 mm x 100 mm reference line was used to delineate the circulation zone while dye 

moving downstream with the flow.  There were tab fixed on the twine on the top of the 

physical model with 500 mm space as the marker to identify the location of dye when it 

moving, then found the same location on the layout of clearwell of the physical model.  

These sketches were combined with the images from the video mentioned above, and 

finally provided the dead zones in the clearwell of the physical model. 
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Figure 3.8  Sketch of dead zone of clearwell of physical model used in the flow 

visualization test. 
 

3.5 Selection and Preparation of Tracer for Tracer Study Tests 

For the experiments, Rhodamine WT (concentration of 20% by weight with a 

specific gravity of 1.19) was used as the tracer since it is a commonly used chemical and 

meets the requirements that it is non-toxic, economical, and detectable in low 
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concentrations (Wilson et al. 1986).  The tracer was prepared by diluting concentrated 

liquid Rhodamine WT with distilled water.  The standard for fluorometer calibration (100 

ppb) and the injection solution for test tracers (175000 ppb) were prepared step-by-step 

by making serial dilutions of the stock Rhodamine WT liquid (20% by weight, SG 1.19). 

The dilution concentration was computed following the equation  

 

⎥
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⎤
⎢
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dw

d
in VV

V
CC                             (3.1) 

 
where Vw = volume of the added diluent;  Vd = pipette volume of the dye solution; Ci = 

initial concentration; and Cn = new concentration after each dilution step.  Table 3.3 gives 

details of the three-step of serial dilution preparations.  

Table 3.3  Serial dilutions for preparation of working tracer solutions 
 

Serial dilutions 

(mL) 

Working 

solution  

(ppb, ug/L) Dye used in test 

First step 

(Dilution 1) 

Second step 

(Dilution 2) 

Third step 

(Dilution 3) 

Final dilution 

(Dilution 3) 

Vd          Vd+Vw Vd          Vd+Vw Vd        Vd+Vw  

5            1000 10            1000 10         1000 100 
Rhodamine WT 

(20%, SG 1.19) 
10           500 43.75       1000  175000 

 
To get the 100 ppb working solution, the serial dilution procedure was carried out 

as follows: (1) add distilled water into 5 mL Rhodamine WT to get 1000 mL total volume 

(Dilution 1); (2) took out 10 mL of Dilution 1, added distilled water to get 1000 mL total 

volume (Dilution 2); (3) took 10 mL of Dilution 2, added distilled water again to get 

1000 mL total volume (Dilution 3).  The working solution at 175000 ppb was prepared 

using the same procedures but with different values of Vd and Vw as shown in Table 3.3.  

To avoid concentration stratification, all final solutions were agitated until each was 

thoroughly mixed.  All working solutions were retained in an airtight bottle and were 

stored in a dark place to avoid degradation by UV light. 
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3.6 Fluorometer Calibration  

 In this study, a Turner Designs Model 10-AU Fluorometer was used for the tests 

to measure tracer concentration.  The detection limits of the Turner Model 10-AU can be 

as low as 0.01 ppb and as high as 100 ppb (Turner Designs 1993).  The calibration 

procedure for this fluorometer consist of two steps:  (1) running the “blank”, which is the 

matrix of the background solution that is used to set the instrument to read zero; and (2) 

adjusting the fluorometer to read out a known concentration of sample called the standard.  

For the present experiments, the blank was taken as the tap water which was used to fill 

the physical model.  Once the fluorometer warmed for at least 30 minutes, the 

fluorometer calibration process was started.  First, the background concentration 

influence on the final concentration readout was eliminated by running the blank solution 

and choosing “subtract blank” on the instrument.  Secondly, the standard solution was 

used to adjust the span and instrument sensitivity until the reading on the full scale value 

was 100 ppb.  After calibration of the fluorometer, the readout on the screen of the 

fluorometer is the concentration of Rhodamine in the sample without influence of any 

background concentration in the water.  Note it was recommended to keep the calibration 

within fluorometer specifications during the tests (Turner Designs 1993).   

 

3.7 Modeling with River2DMix 

3.7.1 Background 

The second aspect of this research project was to develop a computational model 

of the NE part of the Glenmore Water Treatment Plant clearwell at the same scale as the 

physical model using River2DMix software developed at the University of Alberta.  

River2DMix was used to simulate the flow field in the clearwell and to predict the 

cumulative residence time distribution curve of a tracer in the clearwell.  The model was 

run for conditions with and without columns in the clearwell.  The River2DMix software 

is a modification of the River2D software developed to simulate the hydrodynamics of 

flow in a river.  In River2D, the simulation results is related with the hydrodynamic part, 

like flow velocity, shear stress and flow pattern.  In River2DMix, besides the 

hydrodynamic results same as River2D, it also has the mixing results of a tracer like 

residence time distribution.  
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 The two-dimensional depth-averaged River2D software simulates the governing 

equations of flow based on a finite element approach.  Some key assumptions in the 

model are hydrostatic pressure distribution in the vertical, constant horizontal velocities 

over the depth and negligible Coriolis and wind forces.  Steffler and Blackburn (2002) 

describe the two-dimensional depth-averaged St. Venant equations of the hydrodynamic 

model applied in River2D.  The St. Venant equations are the transformation of the depth-

averaged Reynolds equations and they are solved by a finite element method (Streamline 

Upwind Petrov-Galerkin Weighted Residual formulation) in River2D.  The Streamline 

Upwind Petrov-Galerkin Weighted Residual formulation is a way to ensure solution 

stability under the different flow conditions by more weighting of  an element upstream 

of a node comparing to the an element downstream of a node (Steffler and Blackburn 

2002). 

 

 In River2D (Steffler and Blackburn 2002), the St. Venant equations include the 

two-dimensional; depth averaged conservation of mass, and the depth averaged, two-

dimensional Reynolds equations (x and y direction).  In equations, the depth and 

discharge intensities are basic variables. 

Conservation of mass: 
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Conservation of x-direction momentum: 
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Conservation of y-direction momentum: 
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Where H is the depth of flow, U and V are the depth averaged velocities in the x and y 

directions respectively, qx and qy are the respective discharge intensities, g is acceleration 

due to gravity and ρ is the density of water, S0x and S0y are the bed slopes in the x and y 

directions, Sfx and Sfy are corresponding friction slopes.  The River2D (Steffler and 

Blackburn 2002) software uses a Bossinesq type eddy viscosity formulation for 

transverse turbulent shear stress (τxy).  It is expressed as 
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νt is eddy viscosity given by 
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Where ε1, ε2, ε3, represent the only user definable calibration coefficients, usually, ε1= 0.  

C* is the dimensionless Chezy coefficient given by 
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             (3.7) 

Where Κ is Von Karmen’s constant and ks is the equivalent sand grain roughness of the 

bed.  

 

3.7.2 Building the Model 

In order to run River2DMix, the bed topography files (a text file with a .bed file 

name extension) are first developed based on the position and elevation of the 

geometrical characteristics and bed roughness of the physical model of the NE clearwell.  

The file also includes the boundary conditions.  The inflow boundary condition took the 

form of a specified total discharge (flow rate of 2.87 L/s, 2.06 L/s or 0.85 L/s) at the 

inflow section.  The outflow boundary condition was specified as a fixed water depth 

(0.316 m, 0.314 m or 0.311 m) at the outlet of the clearwell.  Another boundary condition 

that had to be specified was that there were no-flow vertical walls (no lateral discharge 

through the walls) and no-slip wall and columns.  Each square was modeled as a conical 

frustum, in which the same presentation area to the flow for the frustum shapes as for the 

square column shape of the physical model.  By this way, the same drag would be 
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experienced by both the physical model column and the simulated column.  The frustum 

columns were 31.6 mm in width at the bed and 10.5 mm in width at the top.  The 

resulting bed file was then input into “R2D_Mesh” to develop a computational 

discretization finite element mesh file.  Figure 3.9 showed the mesh of computational 

model of scale clearwell under “without column” condition and Figure 3.10 showed the 

mesh of computational model of scale clearwell under “with column” condition.  There 

are 4906 elements used under “without column” and 10,488 elements used under “with 

column” condition, respectively.  The output of “R2D_Mesh” was used to generate the 

input files for the “River2DMix” model.  Finally, the River2DMix program executed the 

hydrodynamic simulation until the inflow discharge was equal to the outflow discharge.  

Then, the tracer transport simulation was run once the fluid flow field was determined. 

 

For the tracer transport simulations, there is a check box in “River2DMix” that is 

called the simple tracer mass initial condition specification.  It is used to set the initial 

normalized tracer mass concentration equal to 1.  The output of “River2DMix” is then the 

normalized concentration of tracer remaining in the clearwell.  With water entering the 

River2DMix, inflow boundary have a concentration of zero.  The normalized 

concentration of tracer exiting the clearwell is then equal to unit 1 minus the normalized 

concentration of tracer remaining in the clearwell. 

 

3.7.3 Calibration of the River2DMix Model 

In operating the “River2DMix” model, the hydrodynamic simulation portion of 

the program runs to reach convergence and a steady-state solution for the velocity field is 

obtained through iteration.  Then, the tracer transport mixing model is run to provide the 

tracer cumulative residence time in the model.  For the “River2DMix” model, a 

Bossinesq type eddy viscosity formulation is used for the transverse turbulent shear stress 

τxy and τyx in the hydrodynamic model and mixing model.  τxy and τyx are estimated using 

the turbulent kinematic viscosity νt.  The νt term includes the eddy viscosity coefficient, 

which is assumed to be composed of three components:  a constant ε1 (default value 0), a 

bed shear generated term ε2, and transverse shear generated term ε3 (Steffler and 

Blackburn 2002).  All three components are adjustable parameters within the 
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hydrodynamic and mass transport simulation in River2DMix.  

 

 

 

 
Figure 3.9  Full computational mesh used in computational model of scale 

clearwell under without columns condition. 
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Figure 3.10  Full computational mesh used in computational model of scale 

clearwell under with columns condition. 
 

River2DMix was first calibrated for the “without columns” condition and then for 

the “with columns” condition.  For each case, the model was calibrated at both the 

minimum and maximum flows.  A hydrodynamic and a mixing calibration were 

conducted for each condition.  In the hydrodynamic calibration, the difference between 

the flow rate at the inlet and the flow at the outlet are minimized.  In the hydrodynamic 
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calibration, first, initial values for ε2 =0.2 and ε3 =0.1 were set (based on the River2D 

manual).  Then the velocity field was created by the hydrodynamic model and the 

minimum flow continuity tolerance in the hydrodynamic model is reached by adjusting ε2.  

Then, for the mixing calibration, the cumulative RTD curve was compared to physical 

model results and the results of the simulation were improved by adjusting ε3 but not ε2.  

The goal was to minimize the root mean square error between the measured F(t) in the 

model and the simulated F(t) between the times corresponding to the start of the test to t99 

on the F(t) curve.  The time T99 is the time for 99 % of the tracer mass to exit the 

clearwell.  Because there was no velocity distribution data to calibrate the model, the 

hydrodynamic and mixing calibration can only be validated using the tracer test data.   

 

For the condition where the model had columns, the bed shear generated term ε2 

and transverse shear generated term ε3 were adjusted to fit the physical model data as for 

the calibration process in the without columns condition.  First, ε3 was set to equal to the 

final value of ε3 found for the without column simulation, then ε2 was adjusted so that the 

outflow equalled the inflow.  Albers et al. (2005) suggested that the bed shear generated 

term ε2 is not sensitive to adjustments because turbulent bed shear resistance should be 

small compared to form drag generated as water flows past the structural columns.  When 

calibrating the computational model under “with column condition”, the same procedure 

was taken as the one for “without columns condition”.  The results of the calibration 

procedure and analysis are given in Chapter 4.  The test conditions simulated using 

River2DMix are listed in Table 3.2. 
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CHAPTER 4:  EXPERIMENTAL RESULS, ANALYSIS AND DISCUSSION 
 
 
4.1. Introduction 

In this chapter, the results of the experiments and the analysis of data are given.  

First, the methods of analysis for the tracer tests and flow visualization experiments are 

presented.  Next, the repeatability of the experiments is discussed.  Following this, the 

effect of flow development time and columns are given.  Finally, the results of 

River2DMix are compared to the hydraulic model results. 

 

4.2. Analysis of Data  

4.2.1. Tracer Study Results 

In order to present the results of the tracer tests, firstly there must be a discussion 

of how the tracer study data were analyzed.  To determine the residence time distribution 

and associated baffle factor, the method for analyzing the concentration of tracer at the 

outlet with time discussed in Fogler (1992) was followed.  In this method, for a slug input 

of tracer, the mass of tracer ΔN leaving the reservoir in a time period Δt is 

 
ΔN =

1
2

( Ct + Ct + Δt )QΔt                  (4.1) 

where C = concentration of tracer measured by the fluorometer; Q = flow rate; and t = 

time.  If ΔN is summed over the test duration, the result should equal the total mass of 

tracer inputted into the reservoir, No.  The ratio of this sum to No is called the mass 

recovery, which USEPA (1989) recommends should be greater than 90 % for a tracer 

test.  The residence time distribution function E (t) is given by 

 
E( t ) =

ΔN
NoΔt

                  (4.2) 

E(t) is typically plotted against the dimensionless time t/Td to show the residence time 

distribution for the reservoir.  The fraction of the flow that has resided in the reservoir for 

a time shorter than time t is given by the cumulative residence time distribution F(t), 

where 
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F ( t ) = E ( t )dt

0

t

∫                  (4.3) 

F(t) is also plotted against t/Td.  As noted previously, the baffle factor is determined from 

the cumulative residence time distribution plot and is the time t/Td for which F(t) = 0.1 

(USEPA 1989).  The Morril dispersion index is also determined from F(t); it is the ratio 

T90/T10, where T90 is the time for F(t) = 0.9 and T10 is the time for F(t) = 0.1 (USEPA 

1989). 

 

4.2.2. Analysis of Data for Flow Visualization 

 For the flow visualization tests, the video recordings made during each 

visualization test were used to prepare still images of various sections of the model.  The 

images were arranged together to form a composite image of the entire reservoir.  In the 

visualization tests, firstly, a slug of dye was dumped into the flow upstream of the 

perforated baffle wall (same location as the tracer test).  As the slug of dye advanced in 

the physical model, a video camera fixed on a movable support was used to track and 

record the movements of the dye plume front.  The degree of color was used to identify 

the preferential flow paths.  Dye in the channel indicated a preferential flow path since 

dead zone space had no visible colorimetric dye present.  Because the dye plume 

dispersed as it moved downstream, it became increasingly more difficult to define the 

dead zones in the flow at the downstream end of the clearwell.  Therefore, dye was also 

injected at five other sections, which were just upstream of each corner of the channel.  

These plumes were also videotaped to better identify the flow patterns and dead zones in 

that region of the model.  For these tests the video camera was fixed in place above the 

corner of interest in the model to record the dead zone locations.  Depending on the dye 

injection location and the time delay between dye injection and when the photograph was 

taken, preferential flow paths could be highlighted by dark or clear water.   

 

4.3. Results  

4.3.1. Assessment of Repeatability of Experiments 

 At the beginning of the study, tests were conducted to assess the repeatability of 

the experiments.  In this study, three replicate tests were each carried out for the 0.85 and 
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2.06 L/s flows in the model (115 and 280 ML/d in the prototype).  Figure 4.1 shows the 

residence time distributions (RTDs) for the replicate tests for the 0.85 L/s flow rate.  

Figure 4.2 shows the results for Q=2.06 L/s.  For convenient reference, all the 

experimental analysis data and mass recovery have been included in Table 4.1. 
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Figure 4.1  Residence Time Distribution for replicate experiments at 0.85 L/s in model 

(115 ML/d in prototype). 
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Figure 4.2  Residence Time Distribution for replicate experiments at 2.06 L/s in model 

(280 ML/d in prototype). 
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The results show the RTD produced in the replicates are similar.  For Q=0.85 L/s, 

the baffle factors(T10/Td) found from the tests were 0.41, 0.42, and 0.45 and the Morril 

dispersion indices(T90/T10) were 2.77, 2.77, and 2.66.  For Q=2.06 L/s, the baffle factors 

were 0.67, 0.72, and 0.68 and Morril dispersion indices were 2.19, 2.10, and 2.14.  The 

percent difference between the smallest and largest values for the baffle factor for 

replicate tests were 8.7 % for the 0.85 L/s flow (115 ML/day in prototype) and 7.1 % for 

the 2.06 L/s flow (280 ML/d in prototype).  The percent difference between the smallest 

and largest values for the Morril index for replicate tests were 4.0 % for the 0.85 L/s flow 

(115 ML/day in prototype) and 4.0 % for the 2.06 L/s flow (280 ML/d in prototype).  It is 

noted these experiments had been run for a flow development time of 1 h. 

 

 In these experiments, the baffle factors observed in the physical model were lower 

compared to the prototype tracer study results. The average baffle factor found in the 

model was 0.43 for 0.85 L/s flow, whereas the prototype baffle factor was 0.74 from 

Maksymetz (1998), which is a 42.7 % difference.  The dispersion index, T90/T10, in the 

model at this flow was 2.73, whereas in the prototype it was found to be 1.82.  Figure 4.3 

shows this departure from the prototype results using the cumulative residence time 

distribution.  For 2.06 L/s flow, the average baffle factor found in the model was 0.69, 

whereas the prototype factor was 0.69 from Maksymetz (1998) and thus the averaged 

baffle factor in the scale model was same as the prototype.  The dispersion index, T90/T10, 

in the model at this flow was 2.14, whereas in the prototype it was found to be 1.84.  This 

difference between the model and the prototype results for the 2.06 L/s flow are shown in 

Figure 4.4.  The significant difference of baffle factor between the scale model and 

prototype results may be induced by the lower flow Reynolds number (2100) in the 

channel for the scale model at the minimal flow rate. 

 

4.3.2. Flow Development Time 

 As mentioned above, the baffle factors observed in the physical model were lower 

compared to the prototype tracer study results at the minimum flow rate (0.85 L/s).  In 

assessing potential causes for this discrepancy, it was decided to check whether the time 

for flow development before initiation of the tracer tests would affect test results.   
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Figure 4.3  Cumulative Residence Time Distribution for 0.85 L/s flow (115 ML/d in 

Prototype). 
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Figure 4.4  Cumulative Residence Time Distribution for 2.06 L/s flow (280 ML/d in 

Prototype). 
 

 Therefore, two tests were conducted when the flow was allowed to develop for 14 

h (equivalent to 12Td) before the tracer test was carried out at Q = 0.85 L/s.  Analysis of 

the RTD from the tests, shown in Figure 4.5, showed that in these experiments the baffle 
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factor T10/Td differed on average only 0.1 % and the dispersion index differed only 3.8 % 

between the model and prototype.  It is seen in Figure 4.5 that there is an obvious 

displacement of the RTD in time between a flow development time τ =1 (0.9Td) and 14 

14 h (12Td). 
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Figure 4.5  Residence Time Distribution for minimum flow rate (0.85 L/s) tests for 

various flow development times.  
 

Additional tests were then carried out to assess how the time allowed for flow 

development affected the tracer test results after 3.5, 7 and 10.5 h of flow development 

(equivalent to 3Td, 6Td, and 9Td).  Figure 4.6 shows the cumulative residence time 

distributions for flow development (τ).  Figure 4.7 shows the variation of the baffle factor 

and dispersion index with flow development time.  It is seen that the physical model 

baffle factor and dispersion index asymptotically approach the prototype values and seem 

to reach a stable value after about 10.5 h of flow development at the minimum flow rate.  

For τ = 10.5 h, the difference in baffle factor between the model and prototype is only 0.2 

% and dispersion index is only 2.1 %.  It is also seen that the increased baffle factor is 

related to a decreased dispersion index.  Finally, a tracer test was conducted with τ = 30 h 

(equivalent to 25.6Td) to fully make sure that the flow parameters had reached their 
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asymptotic values.  It is seen (Figure 4.7) there is little change in results between τ = 30 

and 10.5 h. 
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Figure 4.6  Cumulative Residence Time Distribution for minimum flow rate (0.85 L/s, 

115 ML/d in prototype) tests without column condition. 
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Figure 4.7  Baffle factor and dispersion index for minimum flow rate (0.85 L/s in model, 

115 ML/d in prototype) tests without column condition. 
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The difference in the baffle factor is 0.2 % and dispersion index is 1.7 % between the 

10.5 and 30 h tests.  Note that these tests are all for the “without columns” condition in 

the clearwell. 

 

Figure 4.8 shows the RTD from three replicate tests with a flow development time 

τ =1 h (equivalent to 2.0Td) and another with a flow development time τ = 5 h (equivalent 

to 9.8Td) for the flow rate of 2.06 L/s (without columns in the model).  Figure 4.9 shows 

the equivalent cumulative residence time distributions for these tests.  The difference of 

baffle factor is 8.8 % and dispersion index is 10.8 % between the results for τ = 1 and τ = 

5 h.  The increased flow development time affected the dispersion index as compared to 

the τ = 1 h, but not the baffle factor. With τ = 5 h, the model and prototype showed a 

difference in baffle factor of 8.6 % and in dispersion index of 1.5 %.  Thus, there is only 

improvement in the dispersion index with increased flow development time at this flow 

rate. 
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Figure 4.8  Residence Time Distribution for 2.06 L/s flow rate (280 ML/d in prototype) 

for various flow development time. 
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Figure 4.9  Cumulative Residence Time Distribution for 2.06 L/s flow rate (280 

ML/d in prototype) for various flow development time. 
 

For the highest flow rate tested of 2.87 L/s (390 ML/d in the prototype), a 

comparison of the RTD and cumulative RTD curve between the model and the prototype 

for various τ is shown in Figures 4.10 and 4.11.  These tests were conducted after 1 h 

(equivalent 2.6Td) and 4 h (equivalent 10.6Td) after initiation of flow through the model.  

For the test with τ =1 h, the baffle factor determined from the scale model was 0.73 as 

compared to the prototype value of 0.71 , which gives a marginal 2.8 % difference.  The 

dispersion index was 1.97 in physical model and 1.82 in prototype test with a 7.9 % 

difference.  A comparison of the cumulative RTD between the model and prototype for 

the τ =4 h test showed a difference in baffle factor of 2.7 % and in dispersion index of 2.3 

%.  In Figure 4.10, the difference between the RTD of two tests at the different τ is not 

readily apparent.  However, the difference between the two tests is more clearly shown in 

the cumulative residence time distribution curve in Figure 4.11.  Therefore, the results 

above showed a strong dependence on the flow development time for the lowest flow rate 

in the model and some improvement in the dispersion index for intermediate and 

maximum flow rates.   
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Figure 4.10 Residence Time Distribution for 2.87 L/s flow rate (390 ML/d in prototype) 

for various flow development times. 
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Figure 4.11  Cumulative Residence Time Distribution for 2.87 L/s flow rate (390 ML/d in 

prototype) for various flow development time. 



 68

 To investigate the effect of the columns in the model on the flow development 

time, a series of tests with varied τ were carried out for the “with columns” conditions of 

the model.  Tests were carried out at the minimum flow for the same development times 

as tested for the without columns condition (τ = 1, 3.5, 7, 10.5, and 14 h).  In Figure 4.12, 

it is seen the residence time distribution curve has little relative change with flow 

development time when compared to the without columns condition (Figure 4.5).  Figure 

4.13 shows the cumulative residence time distribution function (RTD) produced for the 

same experiments.  The baffle factors observed in the physical model in the “with 

columns” condition are closer to the prototype tracer study results compared to the baffle 

factor “without columns” condition at the same flow development time (τ = 1, 3.5 and 7 

h).  Analysis of the results showed the biggest difference of the baffle factor from the 

cumulative RTD curve in these experiments was 9.1 % and the dispersion index differed 

only 7.6 % between τ = 1 and 14 h.  Table 4.2 summarizes the percentage differences in 

baffle factor and dispersion index results between the model and prototype for both the 

“with” and “without columns” condition for the model for varied τ.  Note that the model 

results are averages when there are repeated tests. 
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Figure 4.12  Residence Time Distribution for 0.85 L/s flow rate (115 ML/d in prototype) 

with columns for various flow development time. 
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Table 4.2  Difference of baffle factor and dispersion index without columns and with 
columns compared to the prototype for the minimum flow 
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Figure 4.13  Cumulative Residence Time Distribution for 0.85 L/s flow rate (115 ML/d in 

prototype) with columns for various flow development time. 
 

The variation of the baffle factor and dispersion index with the time allowed for 

flow development for the “with columns” condition is shown in Figure 4.14.  The same 

tendency towards asymptotical values occurred as for the “without columns” condition 

(Figure 4.7).  It is seen that the physical model baffle factor and dispersion index 

asymptotically approach the prototype value and seem to reach a stable value still after 

Flow 
development 

time 
(τ hours) 

% Difference of values between 
“without columns” tests  and 

prototype 

% Difference of values between 
“with columns” tests  and 

prototype 

 Baffle factor Dispersion Index Baffle factor Dispersion Index 

1 42.7 50.0 9.4 23.9 
3.5 13.1 12.0 5.8 19.6 
7 5.6 9.1 2.9 15.0 

10.5 0.2 2.1 0.8 14.8 
14 0.1 3.8 0.4 15.2 
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only about 10.5 h of flow development at the minimum flow rate.  The increased time for 

flow development did not greatly improve the baffle factor and dispersion index over the 

14 h test.  The baffle factor is the same and the dispersion index has a 0.4 % difference 

between τ =10.5 and 14 h.  Again the increasing baffle factor is related to a decreasing 

dispersion index with increasing flow development time.  The baffle factors observed in 

the physical model with columns condition are closer to the prototype tracer study results 

compared to the baffle factor without columns condition at τ =1, 3.5 and 7 h.  However, 

more dispersion occurs in the “with columns” condition, with a difference of 15 % 

compared with a difference of 3.8 % under no columns conditions when τ = 14 h. 
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Figure 4.14  Baffle factor and Dispersion index for minimum flow rate (0.85 L/s in model, 

115 ML/d in prototype) tests with column condition. 
 

In Figure 4.15, the residence time distribution curves at the flow rate of 2.06 L/s 

(280 ML/d in prototype) for a model with columns shows that two tests conducted with 

the development time τ =1 and 5 h fall on top of each other.  Figure 4.16 shows that the 

flow development time had no effect on the cumulative residence time distribution and 

therefore baffle factor and the dispersion index.  The baffle factor and dispersion index 

between the two tests were different only by 1 %.  For the test conducted 5 h after 
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initiation of flow through the model, the baffle factor and dispersion index between the 

model and prototype were 4 % and 12 % difference respectively.   

 

 Further testing was then conducted at the maximum flow rate of 2.87 L/s (390 

ML/d in prototype).  Slug tracer tests were conducted after 1 and 4 h of flow 

development. Figure 4.17 gives residence time distribution curves for these tests.  Again 

the results fall on the same curve.  From the cumulative residence time distributions 

shown in Figure 4.18, it was found that the baffle factor was constant at 0.73.  The 

dispersion indices for the tests were 2.14 and 2.13 with the increase in τ from 1 to 4 h.  

Prototype measurements had a baffle factor of 0.71 and dispersion index of 1.83 at the 

maximum flow rate. Compared to the results for Q=2.87 L/s after 4 h of flow 

development under the without columns condition, the baffle factor was the same, but 

there was a 13.9 % increase in dispersion index when columns were placed in the 

clearwell.  There was 8.6 % increase in dispersion index between without column and 

with columns after 1 h of initial flow development.  The later part of the cumulative 

residence time distributions curve for the  
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Figure 4.15  Residence Time Distribution for 2.06 L/s flow rate (280 ML/d in prototype) 

with columns for various flow development time. 
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Figure 4.16  Cumulative Residence Time Distribution for 2.06 L/s flow rate (280 ML/d in 
prototype) with columns for various flow development time. 
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Figure 4.17  Residence Time Distribution for 2.87 L/s flow rate (390 ML/d in prototype) 

with columns for various flow development time. 
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Figure 4.18  Cumulative Residence Time Distribution for 2.87 L/s flow rate (390 ML/d in 
prototype) with columns for various flow development time. 

 
“with column” condition in the model does not follow the prototype residence time 

distribution as well as the model for the “without columns” condition ( see Figure 4.11). 

 

In order to help explain how the time allowed for flow development affected the 

tracer test results, the images from the visualization tests were analyzed to determine if 

there were any changes in dead space in the clearwell with the flow development.  In 

addition, an alternative analysis to determine reservoir dead space that used the tracer test 

results was carried out using the procedure described by Rebhun and Argaman (1965) 

discussed in Chapter 2.  In this procedure, a log transformation of the cumulative 

residence time distribution is used to characterize the clearwell into three fractions 

representing plug flow volume (p), mixed reactor volume (m) and dead zone volume (d).  

The results of this analysis are presented in Table 4.1. 

 

Composite images showing the entire clearwell from the flow visualization tests 

were prepared for the Q=0.85 L/s without columns condition for flow development times 

of τ = 1, 7 and 14 h and these are shown in Figure 4.19 (a, b, c).  Note the dashed line in 



 74

the following composite figure means the injection location of potassium permanganate 

dye.  It is seen that the percentage area of dead space, based on a visual determination of 

zones of separation in a plan view of the model, decreased from 50 % to 39 % for the 

lowest flow rate with the increase in flow development time from 1 to 14 h.  In 

comparison, dead space fraction calculated by the method of Rehbun and Argunam (1965) 

showed a decrease from 54.9 to 43.9 %.  The decrease in dead space fraction explains the 

significant increase in baffle factor with τ at the lowest flow.  This appears to be a result 

of better distribution of momentum through the model flow at longer times. 

 

The composite images prepared for the minimum flow rate tests under the “with 

columns” condition for flow development time τ= 1, 7 and 14 h respectively, are shown 

in Figure 4.20 (a, b, c).  It was seen that the percentage area dead space, based on a visual 

determination of zones of separation in a plan view of the model, decreased from 43 % to 

41 % for the lowest flow rate with the increase in flow development time from 1 to 14 h.  

In comparison, dead space fraction calculated by the method of Rehbun and Argunam 

(1965) showed a decrease from 40.6 to 39.6 %.  Less change of dead zone space is 

consistent with the changes in baffle factor with the flow development time between the 

two model conditions (Table 4.3).  This shows that the effect of the flow development 

time on the reduction of dead space under the “with column” condition is less than under 

the “without columns” condition.  

 

Flow visualization tests were also conducted in the scale model for flows rates 

(2.06 and 2.87 L/s) for the condition with and without columns present.  The calculations 

to estimate the dead zone proportion of clearwell based upon the flow visualization tests 

indicate no significant change in dead zone area between the with columns and without 

columns conditions for the reservoir, as seen by the results given in Table 4.3.  It should 

be noted that the accuracy of this visual analysis is estimated to be ± several percent at 

best. 
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(a) 

Figure 4.19  Flow pattern for minimum flow rate (0.85 L/s) without columns (a) for τ =1 
h ,(b) for τ =7 h, (c) for τ =14 h. 
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(b) 
Figure 4.19  Cont’d 
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(c) 

Figure 4.19  Cont’d 
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(a) 

Figure 4.20  Flow pattern for minimum flow rate (0.85 L/s) with columns (a) for τ =1 h 
(b) for τ=7 h (c) for τ =14 h. 
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(b) 

Figure 4.20  Cont’d 
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(c) 

Figure 4.20  Cont’d 
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Table 4.3  Dead zone proportion of clearwell from visualization tests in the scale model 
tests 

From flow visualization Rehbun and Argunam (1965) 
Flow 
(L/s) 

τ 
(hour) 

Dead space  
no columns 
(% of area) 

Dead space 
with columns 
(% of area) 

Dead space  
no columns 
(% of area) 

Dead space 
with columns 
(% of area) 

1 50 42 54.9 40.6 
7 44 41 44.5 41.7 0.85 
14 39 40 43.9 39.6 
1 37 36 40.3 39.6 2.06 5 38 38 42.6 40.8 
1 33 36 38.6 36.3 2.87 4 34 35 39.2 37.8 

 

4.3.3. Effect of columns 

It was shown above that the baffle factor at the lowest flow rate for the “with 

columns” condition was closer to the prototype value at τ = 1, 3.5 and 7 h compared with 

the “without columns” condition.  For intermediate flow and maximum flow, the baffle 

factors at the shorter development times did not vary greatly from prototype values.  

Therefore, considering only the baffle factor, the columns did not have significant effect 

on the required flow development time for these cases. 

 

Considering now only “fully developed flow”, Table 4.4 gives the baffle factor 

and dispersion index results for the scale model with and without columns and the 

associated values from the prototype tracer tests.  Note that the model results for Q=0.85 

L/s are the average results for the tests that were considered fully developed (i.e. for 

times of τ = 10.5, 14 and 30 h).  As the results show, there is little difference in the baffle 

factor between with and without condition for fully developed flow.  However, the 

dispersion index for the “without columns” case is closer to the prototype value than for 

the “with columns” case. 

 

A potential explanation for the poorer modelling results when columns were 

present in the scale model is that the wake area behind the column may hold some tracer 

within it.  This would cause tracer to be “emitted” into the bulk of the flow over a  
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Table 4.4  Baffle factor and Morril dispersion index results for the tracer tests and 
prototype test 

 
No Columns With Columns 

Test type Flow rate Baffle 

Factor 

Dispersion 

Index 

Baffle 

Factor 

Dispersion 

Index 

Prototype 115 ML/d - - 0.74 1.82 

 280 ML/d - - 0.69 1.88 

 390 ML/d - - 0.71 1.83 

0.85 L/s 0.74 1.88 0.74 2.10 

2.06 L/s 0.75 1.91 0.72 2.11 
Scale model 

tracer tests 
2.87 L/s 0.73 1.87 0.73 2.13 

 

longer time in the test.  The Reynolds number of column of scale model is range from 59- 

197, the wake behind the column is laminar.  However, the Reynolds number of column 

of prototype clearwell is range from 4800-16280.  This would cause the residence 

distribution curve to have more skew and hence there would be a higher dispersion index 

for the test.  

 

4.4. River2DMix Modelling Results 

4.4.1. Calibration Results 

As mentioned in Chapter 3, River2DMix was used for simulating the flow and 

residence time distribution in the scale model of the clearwell.  It was run with and 

without the columns in the clearwell and the results was compared to the measurements 

taken in the fully developed flow in the scale model.  The first step using River2DMix is 

to calibrate it.  Also noted in Chapter 3, the eddy viscosity coefficient used for 

determining the turbulent shear stresses in the model is composed of three parts: a 

constant ε1, a bed shear generated term ε2, and a transverse shear generated term ε3.  

During the calibration, ε1 = 0, ε2 = 0.2, and ε3 = 0.1 were chosen as the initial value 

(Albers and Maksymetz 2004).  The model was calibrated using the scale model tracer 

test data for the minimum and maximum flow.  To do this, the simulation results were 

compared to the cumulative residence time produced in the scale model.  Mohamed et al. 
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(2008) recommended the statistical parameters to assess the computational model 

performance on the basis of an entire set of data that is outputted as a curve (such as the 

cumulative residence time distribution).  For the present work, to measure the goodness-

of-fit of the computational model to the scale model results, the root mean squared error 

(RMSE) was used, which is defined as 

 

( )∑
=

−=
N

i
ii PO

N
RMSE

1

21           (4.4) 

 

where Pi and Oi are respectively the computational and physical model values at time i, 

and N is the number of data points.  As noted in Chapter 3, the cumulative residence time 

distributions produced in the computational and physical models were compared between 

the start of the tracer test and the time T99.  The best calibration coefficients for the 

simulations are those that give the lowest RMSE.  Tables 4.5-4.8 show results of the 

calibration procedure for the two different flows simulated and two different model 

conditions (with/without columns).  Note that ε1 was not calibrated because it usually 

takes a zero value (Steffler and Blackburn 2002). 

 

From Table 4.5, it is seen for minimum flow rate and without columns condition, 

the calibration coefficients that minimized the RMSE were ε2 = 0.15 and ε3 = 0.084.  

From Table 4.7, for the maximum flow rate and “without columns” condition, the 

coefficients that provided the best fit to the data were ε2 = 0.15 and ε3 = 0.1.  Thus, it is 

seen that the calibration coefficients do not strongly depend on the flow rate.   

 

Table 4.6 shows the calibration coefficients that minimized the RMSE were ε2= 

0.15 and ε3 = 0.036 for minimum flow rate and the “with columns condition”.  From 

Table 4.8, the coefficients that provided the best fit to the data were ε2 = 0.15 and ε3 = 

0.04 for maximum flow rate and “with columns condition”.  This shows again that the 

calibration coefficients do not strongly depend on the flow rate and also that the columns 

decrease ε3. 
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Table 4.5  Calibration coefficients and resulting difference in baffle factor and dispersion 
index between simulation and physical model for Q = 0.85 L/s for the “without columns” 

condition 
 

Hydrodynamics Mixing 

No. 

Baffle Factor 
difference  
between 

simulation 
 and physical 

model 

Dispersion 
Index 

difference  
between 

simulation 
 and physical 

model 

RMSE
ε2 ε3 ε2 ε3 

(1) 2.7% 9.2% 0.020 0.2 0.1 0.2 0.1 
(2) 2.0% 7.9% 0.018 0.15 0.1 0.15 0.1 
(3) 0.5% 5.6% 0.015 0.15 0.1 0.15 0.075 
(4) -1.4% 2.0% 0.014 0.15 0.075 0.15 0.075 
(5) -6.4% 7.7% 0.027 0.15 0.05 0.15 0.05 
(6) -5.4% 5.6% 0.025 0.2 0.05 0.2 0.05 
(7)* 0.0% -4.7% 0.013 0.15 0.084 0.15 0.084 

 
 

Table 4.6  Calibration coefficients and resulting difference in baffle factor and dispersion 
index between simulation and physical model for Q = 0.85 L/s for the “with columns” 

condition 
 

Hydrodynamics Mixing 

No. 

Baffle Factor 
difference  
between 

simulation 
 and physical 

model 

Dispersion 
Index 

difference  
between 

simulation 
 and physical 

model 

RMSE
ε2 ε3 ε2 ε3 

(1) 10.8% 18.6% 0.049 0.15 0.075 0.15 0.075 
(2) -5.4% 2.5% 0.029 0.15 0.03 0.15 0.03 
(3)* -1.6% 1.4% 0.007 0.15 0.036 0.15 0.036 
(4) 17.2% 25.0% 0.07 0.15 0.1 0.15 0.1 
(5) -17.7% 25.3% 0.069 0.15 0.01 0.15 0.01 
(6) -8.1% 7.1% 0.031 0.15 0.025 0.15 0.025 
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Table 4.7  Calibration coefficients and difference in baffle factor and dispersion index 

between simulation and physical model for Q = 2.87 L/s for the “without columns” 
condition 

 
Hydrodynamics Mixing 

No. 

Baffle Factor 
difference  
between 

simulation 
 and physical 

model 

Dispersion 
Index 

difference  
between 

simulation 
 and physical 

model 

RMSE
ε2 ε3 ε2 ε3 

(1) 1.4% 1.7% 0.007 0.2 0.1 0.2 0.1 
(2)* 0.1% 0.2% 0.006 0.15 0.1 0.15 0.1 
(3) -4.1% 8.5% 0.019 0.15 0.075 0.15 0.075 
(4) -2.7% 6.3% 0.015 0.15 0.08 0.15 0.08 
(5) -9.6% 19.9% 0.036 0.15 0.05 0.15 0.05 
(6) 3.2% 5.0% 0.013 0.15 0.12 0.15 0.12 

 
 

Table 4.8 Calibration coefficients and difference in baffle factor and dispersion index 
between simulation and physical model for Q = 2.87 L/s for the “with columns” 

condition 
 

Hydrodynamics Mixing 

No. 

Baffle Factor 
difference  
between 

simulation 
 and physical 

model 

Dispersion 
Index 

difference  
between 

simulation 
 and physical 

model 

RMSE
ε2 ε3 ε2 ε3 

(1) 19.6% 20.9% 0.071 0.15 0.1 0.15 0.1 
(2) 0.0% 1.9% 0.007 0.15 0.0375 0.15 0.0375 
(3) -4.1% 9.4% 0.018 0.15 0.03 0.15 0.03 
(4) -7.7% 14.7% 0.027 0.15 0.025 0.15 0.025 
(5) 8.0% 8.5% 0.033 0.15 0.06 0.15 0.06 
(6)* 0.0% 0.46% 0.003 0.15 0.04 0.15 0.04 
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4.4.2. Comparison of Simulation and Scale Model Results 

Figure 4.21 shows the cumulative residence distribution curves F(t) based on the 

physical hydraulic model and final calibrated computational model for the flow of 0.85 

L/s and the without columns condition.  The baffle factor determined from the simulation 

was the same as the scale model value of 0.74.  The dispersion index was 1.79 in the 

simulation and 1.88 in the physical model with a 4.7 % difference.  A comparison of the 

simulation and prototype results showed no difference in baffle factor and a difference in 

dispersion of 1.5 %.   

 

Figure 4.22 shows the simulation results for the velocity field when looking in 

plan at the Glenmore clearwell for Q = 0.85 L/s and the “without columns” model 

condition.  It is seen at the inlet the velocity is uniform across the width of the channel.  

Zones shown as regions of recirculation and those where velocities are very small are 

considered dead zones and are generally coloured blue.  In Figure 4.22, the dead zones 

are located in all corners of the clearwell.  Also, for each 180 degree turn of the flow 

direction, a recirculation zone is  
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Figure 4.21  Comparison of the Cumulative Residence Time of the full-scale test to the 
simulated breakthrough curves and hydraulic model tracer test results for the without 

columns condition for the flow rate 0.85 L/s. 
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Figure 4.22  Velocity field produced by River2DMix for the 0.85 L/s flow simulation of 

the physical scale model without columns. 
 

.   
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created at the inside of channel starting at the upstream edge of the wall.  This compares 

well with what was found in Figure 4.19c, which gives the results of the flow 

visualization in the physical model.  The main difference between the simulated and 

measured flow patterns are that the scale model had a much larger dead zone within the 

section labelled as point A in Figure 4.19c. 

 

When simulating the flow of 2.06 L/s for the without columns condition, the same 

values of ε2 and ε3 were used as the maximum flow rate (ε2 = 0.15 and ε3 = 0.1).  This 

was because the flow rate Q = 2.06 L/s is closer to the maximum flow rate than the 

minimum flow rate of Q=0.85 L/s.  Figure 4.23 shows the cumulative residence 

distribution curves based for the physical and computation models for the flow of 2.06 

L/s for the “without columns” condition.  The baffle factor determined from the 

simulation was 0.73 as compared to the scale model value of 0.75, which gives a 2.7 % 

difference then between the simulation and scale model.  The dispersion index was 1.85 

in the simulation and 1.91 in physical model, which gives a 3.2 % difference in values.   
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Figure 4.23  Comparison of the Cumulative Residence Time Distribution of the full-scale 
test to the simulated breakthrough curves and hydraulic model tracer test results for the 

without columns condition for the flow rate 2.06 L/s. 
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Meanwhile, a comparison of the cumulative RTD between the simulation and prototype 

showed a difference in baffle factor of 5.8 % and difference in dispersion index of 1.6 %.   

 

Figure 4.24 shows the simulated velocity field at the flow rate Q=2.06 L/s for the 

“without columns” condition in the model.  Again, the flow visualization (Figure 4.25) 

showed similar results in comparison with the predictions obtained using River2DMix.  

Both of them showed a large stagnant zone behind the baffle wall and small stagnant 

zones in the upstream and downstream corners of the channel.  The same issue existed for 

this flow as for the minimum flow rate.  The simulation did not predict the stagnant zone 

shown in the region given by point A in Figure 4.25. 

 

Figure 4.26 shows the cumulative residence distribution curves F(t) based on the 

hydraulic model and final calibrated computational model for the flow of 2.87 L/s and the 

“without columns” condition.  The baffle factor determined from the simulation was the 

same as the scale model value of 0.73.  Also the dispersion index determined from the 

simulation was same as the physical model value of 1.87.  Meanwhile, a comparison of 

the cumulative RTD between the simulation and prototype results showed the difference 

in baffle factor of 2.9 % and difference in dispersion index of 2.4 %.   

 

Figure 4.27 shows the simulated velocity field at the flow rate Q=2.87 L/s for the 

“without columns” condition in the model.  In Figure 4.27, there are dead zones in all 

corners of the clearwell.  Also, a recirculation zone is located at the 180-degree turn of 

the flow direction when starting at the upstream edge of the wall.  The simulated flow 

pattern showed similar results as the measured flow pattern (Figure 4.28), except again 

that the extent dead zone at point A is smaller in the simulated flow pattern (Figure 4.27).  
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Figure 4.24  Velocity field produced by River2DMix for the 2.06 L/s flow simulation of 

the physical scale model without columns. 
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Figure 4.25  Flow pattern in scale model for flow rate Q=2.06 L/s without columns for 
τ =5 h (fully developed flow). 
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Figure 4.26  Comparison of the Cumulative Residence Time Distribution of the full-scale 
test to the simulated breakthrough curves and hydraulic model tracer test results for the 

without columns condition for the flow rate 2.87 L/s. 
 

Figure 4.29 shows the cumulative residence distribution curves F(t) based on the 

hydraulic model and final calibrated computational model for the flows of 0.85 L/s and 

the “with columns” condition.  The baffle factor determined from the simulation was 0.73 

and 0.74 in the physical model with a 1.6% difference.  Also, the dispersion index was 

2.13 in the simulation and 2.10 in physical model with a 1.4 % difference.  Meanwhile, a 

comparison of the cumulative RTD between the simulation and prototype showed 

difference in baffle factor of 1.6 % and difference in dispersion index of 16.9 %.   

 

Figure 4.30 shows the simulation results for the velocity field of flow rate Q=0.85 

L/s and the “with columns” model condition.  In Figure 4.30, the dead zones are seen in 

all corners of the clearwell.  In comparison to the “without columns” condition simulation 

(Figure 4.22), the flow pattern is similar between the two different cases.  However, for 

the “with columns” case, there are more slow velocity zones for the first half of the flow 

length than for the “without columns” case.  In comparison of the “with column” results 

to the hydraulic model, the main difference between the simulated and measured flow 



 93

patterns were again that the scale model had a much larger dead zone within the section 

labelled as point A in Figure 4.20c, which was also seen for the “without columns” case. 

 

 
Figure 4.27  Velocity field produced by River2DMix for the 2.87 L/s flow simulation of 

the physical scale model without columns. 
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Figure 4.28  Flow pattern in scale model for flow rate Q=2.87 L/s without columns for 
τ =4 h (fully developed flow). 
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Figure 4.29  Comparison of the Cumulative Residence Time Distribution of the full-scale 
test to the simulated breakthrough curves and hydraulic model tracer test results for the 

with columns condition for the flow rate 0.85 L/s. 
 

When simulating the flow of 2.06 L/s and the “with columns” condition, the same 

value of ε2 and ε3 were used as the maximum flow rate (ε2 = 0.15 and ε3 = 0.04).  Figure 

4.31 shows the cumulative residence distribution curves F(t) based on the physical and 

computational models for the flows of 2.06 L/s for the “with columns” condition.  The 

baffle factor determined from the simulation was 0.70 as compared to the scale model 

value of 0.72, which gives a 2.78 % difference.  The dispersion index was 2.17 in the 

simulation and 2.11 in physical model, which gives a 2.84 % difference in values.  

Meanwhile, a comparison of the cumulative RTD between the simulation and prototype 

showed difference in baffle factor of 1.4 % and difference in dispersion index of 15.2 %. 

 

Figure 4.32 shows the simulated velocity field at the flow rate Q=2.06 L/s for the 

“with column” condition in the model.  The flow visualization (Figure 4.32) showed 

similar results in comparison with the predictions obtained using River2DMix.  Both of 

them showed a large stagnant zone behind the baffle wall and small stagnant zones in the 
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Figure 4.30  Velocity field produced by River2DMix for the 0.85 L/s flow simulation of 

the physical scale model with columns. 
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Figure 4.31  Comparison of the Cumulative Residence Time Distribution of the full-scale 
test to the simulated breakthrough curves and hydraulic model tracer test results for the 

with columns condition for the flow rate 2.06 L/s. 
 

upstream and downstream corners of the channel.  The same issue existed for this flow as 

for the minimum flow rate (Q = 0.85 L/s).  The simulation did not predict the stagnant 

zone shown in the region given by point A in Figure 4.33. 

 

Figure 4.34 shows the cumulative residence distribution curves F(t) based on the 

hydraulic model and final calibrated computational model for the flows of 2.87 L/s and 

the “with columns” condition.  The baffle factor determined from the simulation was 0.73, 

which is the same as the value found in the scale model.  The dispersion index was 2.14 

in simulation and 2.13 in physical model with a 0.46 % difference.  Meanwhile, a 

comparison of the cumulative RTD between the simulation and prototype showed a 

difference in baffle factor of 2.8 % difference and in dispersion of 16.9 %.   

 

Figure 4.35 shows the simulated velocity field at the flow rate Q=2.87 L/s for the 

“with column” condition in the model.  Again, the flow visualization (Figure 4.36) 

showed similar results in comparison with the predictions obtained using River2DMix.  It 

was found that the separation of the flow initiates at the baffles’ toes.  Then, each of the 
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three 180-degree turns within the clearwell generated a recirculation region behind the 

baffle wall.  There are stagnant zones almost equal to the entire length of baffle wall and 

some localized stagnant zones around the corners.  Again, the simulation did not predict 

the stagnant zone shown in the region given by point A in Figure 4.36. 

 
 

Figure 4.32  Velocity field produced by River2DMix for the 2.06 L/s flow simulation of 
the physical scale model with columns. 
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Figure 4.33  Flow pattern in scale model for flow rate Q=2.06 L/s with columns for τ =5 

h (fully developed flow). 
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Figure 4.34  Comparison of the Cumulative Residence Time Distribution of the full-scale 
test to the simulated breakthrough curves and hydraulic model tracer test results for the 

with columns condition for the flow rate 2.87 L/s. 
 

In summary, it was found that River2DMix adequately simulated the residence 

time distribution and flow pattern for the scale model of the Glenmore clearwell.  There 

was little difference between measured and predicted (simulated) baffle factors and 

dispersion indices both for the scale model and the prototype.  River2DMix was able to 

predict the location of recirculation zones within the clearwell, although River2DMix 

significantly underestimates the size of the separated zone seen in the model at the 

particular point in the flow path. 
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Figure 4.35  Velocity field produced by River2DMix for the 2.87 L/s flow simulation of 
the physical scale model with columns. 
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Figure 4.36  Flow pattern in scale model for flow rate Q=2.87 L/s with columns for τ =4 

h (fully developed flow). 
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4.5. Analysis of Errors 

 The analysis of the errors in the mass recovery is described below.  The 

calculations used to estimate the errors are according to the method defined by Topping 

(1979).  There are three syringes used as holder for Rhodamine (WT) solution with 

concentration of 175 ppm.  Each has the theoretical capacity of 140 mL.  During tests, 

there were air bubbles in the syringe when withdrawing the 175 ppm solution from the 

plastic bottle which contained the solution.  To compensate for the volume of air bubbles, 

the bottom of core of syringe was to a point a little higher than the 140 mL scale marked 

on the syringe, which results an estimated error of 3.9 % when the 175 ppm solution was 

measured by the syringe.  When making up the 175 ppm solution, there are pipettes used 

for measuring the solution and volumetric flasks used for the dilution.  The estimated 

error for pipettes is range from 0.08 to 0.8 %, and for volumetric flask is range from 0.08 

to 0.1%.  A theoretical mass N0 is expressed as the product of C0Vs, where C0 is the 

makeup 175 ppm solution and Vs is the theoretical volume of syringes.  When C0 and Vs 

have fractional errors 0.2 % and 11.7 % respectively, the total estimated error is 11.9 % 

in physical model tracer tests in the worst condition.  The above estimated error for the 

total mass inputted into the clearwell also result in the mass recovery in most tests with 

higher error. 

 
 The flow rate into the physical model of clearwell was checked by the volumetric 

method.  The estimated error for flow measurement is ± 2.1 % for worst case over the 

range of the flow rate.  The fluorometer manufacturer’s error is ± 1 % of the full scale.  

Various precautions were taken to eliminate the errors in the concentration readings while 

carrying the tracer test.  By applying the above estimates of uncertainty for the ΔN (the 

mass of tracer leaving the physical model of the clearwell in time interval Δt),  the 

maximum error for the residence time distribution E(t) is ± 10 % and for the cumulative 

residence time distribution F(t) is ± 10 %.   
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CHAPTER 5:  CONCLUSIONS AND RECOMMENDATIONS 
 
 
5.1       Conclusions and Recommendations 

The objectives of the work were to study the affect of flow rate on the flow 

behavior and the resulting residence time distributions in the Calgary Glenmore NE 

Clearwell, to evaluate the influence of columns on the flow behavior, and to investigate 

whether River2DMix could simulate the flow behavior and residence time distribution 

curves seen in the scale physical model (with and without columns in the model).  After 

some initial testing, it also became evident that a certain flow development time was 

needed in order to achieve steady state results in the hydraulic model and this was also 

investigated. 

 

At the low flow tested, the flow development time significantly impacted the 

residence time distribution of the scale model of the clearwell for without column case.  

At a flow development time τ =1 h, there was 42.7 % difference in baffle factor between 

the physical model and the prototype value.  At τ =10.5, 14 and 30 h, there were 0.2 %, 

0.1 % and 0.2 % differences in baffle factor between the physical model and the 

prototype value, respectively.  At τ =1 h, there was a 50.0 % difference in Morril 

dispersion index between the physical model and the prototype value.  However, at τ 

=10.5, 14 and 30 h, there were 2.1 %, 3.8 % and 3.8 % differences in Morill dispersion 

between the physical model and the prototype values, respectively.  It was seen that it 

required approximately 10.5 hours of flow development time before a tracer test was 

initiated in the model at the lowest flow rate tested to achieve steady results in baffle 

factor and dispersion index and also results that closely matched prototype values.  This 

low flow rate testing used a low Reynolds number for the flow in the reservoir of Rr = 

2011.   

 

For the “with columns” condition for the model at the lowest flow rate tested, at τ 

=1 h, there was 9.4 % difference in baffle factor between the physical model and the 

prototype value.  At τ =10.5 and 14 h, there were 0.8 % and 0.4 % differences in baffle 

factor between the physical model and the prototype value respectively.  At τ =1 h, there 
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was a 23.9 % difference in Morril dispersion index between the physical model and the 

prototype value.  At τ =10.5 and14 h, there are 14.8 % and 15.2 % difference in Morril 

dispersion index between the physical model and the prototype value respectively.  It is 

thus seen that the flow was closer to prototype conditions at earlier flow development 

times for the with columns case than for that without column.  However, the baffle factor 

and dispersion index still reached steady values only after 10.5 h of testing.  It is also 

seen that there was more of a departure of the dispersion index from prototype values at 

steady state for the “with columns” condition. 

 

For intermediate flow rate tested, there was only improvement in the Morril 

dispersion index, not the baffle factor, with increased flow development time.  For the 

“without columns” condition, at τ =1 h, there was a 4.2 % difference in baffle factor and 

a 13.8 % difference in Morril dispersion index between the physical model and the 

prototype value.  At τ =5 h, there was an 8.6 % difference in baffle factor and a 1.5 % in 

Morril dispersion index between the physical model and the prototype value.  For the 

“with columns” model condition, both the baffle factor and the Morril dispersion index 

between the two tests τ =1 and 5 h were different only by 1.0 %.  It appeared the flow 

development time had no effect on the baffle factor and the dispersion index for the with 

columns case.   

 

For the highest flow rate tested, at τ =1 h, there was a 2.8 % difference in baffle 

factor and a 7.9 % difference in Morril dispersion index between the physical model and 

the prototype value.  At τ =4 h, there was a 2.7 % difference in baffle factor and a 2.3 % 

difference in Morril dispersion index between the physical model and the prototype value.  

Again, it appeared at this flow rate that the flow development time had an impact on the 

Morril dispersion index but not the baffle factor.  For the with columns case, the baffle 

factor was constant at 0.73 and the dispersion indices for the tests were 2.14 and 2.13 

with the increase of τ = 1 to 4 h.  Again, the flow development time had no effect on the 

baffles factor and the dispersion index in the highest flow rate for the with columns 

model condition. 
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The above work shows that in hydraulic model studies of clearwells, results 

should be checked to ensure the flow is fully developed for tracer tests by running a few 

tests at different flow development times.  It also indicates that baffle factors expected for 

normal operating conditions may be lower upon startup of the clearwell than anticipated, 

for example, in the case of start-up of the clearwell after maintenance. 

 

To evaluate the influence of columns on flow behavior within the clearwell and 

on the resulting residence time distribution curves, a comparison was made between the 

“without columns” and ‘with columns” condition at the full range of flow rates for the 

fully developed flow condition.  There was little difference in the baffle factor between 

with and without columns model conditions for fully developed flow.  However, the 

dispersion index for the “without columns” case is closer to the prototype value than for 

the “with columns” case.  For minimum flow rate, there was the same baffle factor and 

11.7 % difference of Morril dispersion index between the “without column” and “with 

column”.  For intermediate flow rate, there are 4.0 % difference of baffle factor and 10.5 

% difference of Morril dispersion index between the “without column” and “with 

column” condition.  For maximum flow rate, there are same baffle factor and 13.9 % 

difference of Morril dispersion index between the “without column” and “with column” 

condition.  The potential reason could be that the wake differences behind the square 

column probably changed dispersion index of the scale model.  In terms of the Reynolds 

number of column (Table 3.1), the wakes behind the square column in the scale model of 

clearwell are laminar compared to the turbulence wake behind the square column in the 

prototype clearwell. 

 

The dispersion index for the “without columns” case is closer to the prototype 

value than for the “with columns” case, so it is indicated that it is likely not necessary to 

model the structure columns in the clearwell when building the physical model of 

clearwell as long as a check to see whether the flow is fully developed is undertaken.  

However, it was seen that the columns increased the percentage mixing in the flow by a 

few percent (2 to 3 %) over the without columns case for fully developed flow and that 

this increased mixing was taken from the dead space portion of the flow. 
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To investigate whether River2DMix could simulate the flow behavior and 

residence time distribution curves seen in the scale physical model (with and without 

columns in the model), a comparison was made between the simulation, physical model 

(for fully developed flow) and prototype test results.  For minimum flow rate, there was 

the same baffle factor and 4.7 % difference of Morril dispersion index between the 

simulation and scale model for “without column” condition.  There was a 1.6 % 

difference of baffle factor and a 1.4 % difference of the Morril dispersion index between 

the simulation and scale model for “with column” condition.  For intermediate flow rate, 

there are 2.7 % difference of baffle factor and 3.2 % difference of Morril dispersion index 

between the simulation and scale model for “without column” condition.  There was a 2.8 

% difference of baffle factor and 2.8 % difference of the Morril dispersion index between 

the simulation and scale model for “with column” condition.  For maximum flow rate, 

there were the same baffle factor and Morril dispersion index between the simulation and 

scale model for “without column” condition.  There were the same baffle factor and 0.46 

% difference of the Morril dispersion index between the simulation and scale model for 

“with column” condition.  Hence, River2DMix simulation of the scale model flow 

conditions support the trends in baffle factor and dispersion index effects observed in the 

scale model tracer test results. 

 

Comparison between the simulated velocity field from the River2DMix and the 

visualization test results showed that the measured and simulated flow patterns are 

similar.  There was a large stagnant zone behind the baffle wall and small stagnant zones 

in the upstream and downstream corners of the channel.  However, the scale model had a 

large dead zone for one section with a 180 degree turn in the flow. In general, 

River2DMix can simulate the flow behavior and residence time distribution curves seen 

in the scale physical model with and without columns for this clearwell over a range of 

flows.  Even though, in modeling at the smaller scale, both the physical and computation 

models showed increased dispersion as compared to results from tracer studies in the full-

scale reservoir.  It appears that a two-dimensional model such as River2Dmix can provide 

good results in the case where the flow is not expected to have large vertical variation in 

horizontal velocity.  Generally, the River2DMix software package does not need the 
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more computational time than 3-D model. And it is also give the reasonable and good 

result when applied with the 2-D flow condition like effluent discharges into rivers, water 

storage reservoir, and disinfection contact chamber. 

 

5.2 Future Research 

The following recommendations should be considered for future research: 

 

• There were differences in required flow development time for tracer study results to 

reach steady state between the flow rates tested.  At the low flow, allowing for a 

longer flow development time seemed to compensate for a relatively low Reynolds 

number for the flow (and less turbulent mixing).  It shows that the can be transient 

conditions in the clearwell that have to be assessed.  The flow development concept 

should be pursued in future studies. 

 

• For the Glenmore Clearwell itself, the hydraulic efficiency of NE cell of Glenmore 

clearwell over flow range is within the superior baffle condition (more than 0.7).  It is 

noted that this clearwell has a high proportion of plug flow.  However, the 

distribution of disinfectant across the clearwell is also important and there are some 

recirculating areas in this flow.  Future designers should consider taking steps aimed 

at reducing the separating at the toe of baffle near the inside of a turn in the flow such 

as the vane or intra-diffusion wall at down stream the turn.   

 

• It was found that the two-dimensional depth-averaged computational model 

River2DMix could predict the flow pattern seen in the hydraulic model in the 

Glenmore clearwell well.  However, this is a flow situation where the flow could be 

expected to be approximately two-dimensional depth-averaged flow.  Additional 

work must also be conducted to test whether such a model can adequately simulate 

different potential modifications to the clearwell to improve flow conditions such as 

finger baffles or screens.  A two-dimensional depth-averaged model will likely not 

simulate the flow in the clearwell where the inlet is circular and small compared to 

the overall depth of flow.  In such a case, a three-dimensional computational model 
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would be required at least near the inlet.  Limits for the use of the depth-averaged 

model need to be addressed. 

 

• More work needs to be done to give a range of calibration coefficients that will be 

appropriate for modeling clearwells using River2DMix, as velocity measurements 

and prototype tracer study results are often not available for developing such a model.   
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