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Abstract

In Compute Unified Device Architecture (CUDA), programmers must manage memory operations, syn-

chronization, and utility functions of Central Processing Unit programs that control and issue data-parallel

general purpose programs running on a Graphics Processing Unit (GPU). NVIDIA Corporation developed

the CUDA framework to enable and develop data-parallel programs for GPUs to accelerate scientific and

engineering applications by providing a language extension of C called CUDA-C. A foreign-function interface

comprised of Scheme and CUDA-C constructs extends the Gambit Scheme compiler and enables linking of

Scheme and data-parallel CUDA-C code to support high-performance parallel computation with reasonably

low overhead in runtime. We provide six test cases — implemented both in Scheme and CUDA-C — in order

to evaluate performance of our implementation in Gambit and to show 0–35% overhead in the usual case.

Our work enables Scheme programmers to develop expressive programs that control and issue data-parallel

programs running on GPUs, while also reducing hands-on memory management.
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Chapter 1

Introduction

Graphics processing units (GPUs) are massively parallel multicore processors. They can be used for

extensive data-parallel computations with a large degree of Single Instruction Multiple Data (SIMD) paral-

lelism. GPUs with a Central Processing Unit (CPU) to accelerate general purpose computations on GPUs

are known as the general purpose computations on GPUs (GPGPU) [14] computing. GPGPU computing

is becoming popular especially for scientific and engineering applications [48, 58, 65, 66, 70] because of its

data-parallel capabilities. A program that has some data-parallel properties is well suited for GPU compu-

tation. In general, any program that runs on multiple GPU processors can perform data-parallel operations

on shared data elements.

The Random Access Machine(RAM) is a convenient model of a sequential computer. It consists of a

Central Processing Unit (CPU) that executes user-defined programs and a random-access memory. The

random-access memory has a read-only memory-space for input data, a write-only memory-space for output

data. The user-defined programs are also stored in the random-access memory in a RAM processor. The

instruction set for a RAM processor typically includes arithmetic, logic, comparison, and jump instructions

[63].

The Parallel Random Access Machine (PRAM ) is a natural generalization of a RAM processor. It consists

of a bounded number of RAM processors and a shared memory. Each RAM processor can access its own

random-access memory as well as the shared memory. In a PRAM model, the RAMs execute the following

steps synchronously: they (a) read from the shared memory, (b) perform a local computation, and (c) write to

the shared memory [63]. There are four variations of this model depending on how multiple RAM processors

are permitted to access the same memory location at the same time.

1. Exclusive Read/Exclusive Write (EREW): No two processors are allowed to read or write the same

shared memory cell simultaneously.

2. Concurrent Read/Concurrent Write (CRCW): Multiple processors are allowed to read and write the

same shared memory cell simultaneously.

3. Concurrent Read/Exclusive Write (CREW): Simultaneous reads of the same memory cell are allowed,

but no two processors can write the same shared memory cell simultaneously.
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4. Exclusive Read/Concurrent Write (ERCW): Simultaneous reads of the same memory cell are not al-

lowed, but multiple processors can write the same shared memory cell simultaneously.

The GPGPU computing model exhibits the properties of a PRAM processor. In GPGPU computing,

multiple GPU processors can read from a global shared memory. Then, they run the same program in parallel.

Finally, they write the results to the same global shared memory. Moreover, multiple GPU processors can

read and write shared-memory cells simultaneously. Therefore, the GPGPU model specifically falls into

the category of CRCW PRAM processor. In addition, there are some read-only memory spaces in GPUs

where multiple GPU processors can read simultaneously. So, GPGPU can also be described as Concurrent

Read(CR) model.

In parallel computing, a task might be divided into completely independent parts. In this case, an

independent part can be executed on separate processors in parallel. This type of computation is called em-

barrassingly parallel and requires no communication [22]. GPGPU computing is embarrassingly parallel since

the same data-parallel program runs independently on multiple GPU processors simultaneously on shared

data, without any communication. However, initial data must be distributed among the GPU processors and

final results also must be collected. So, GPGPU computing requires a small communication among the GPU

processors before and after the data-parallel computation. Moreover, some GPGPU computations do re-

quire a small communication among the running GPU processors to synchronize data-parallel computations.

Therefore, we describe GPGPU computing as a nearly embarrassingly parallel computation.

NVIDIA Corporation developed a software framework for GPGPU computations known as the Compute

Unified Device Architecture(CUDA) [11]. CUDA provides an extension to the C programming language, also

known as the CUDA-C to develop data-parallel programs only for the NVIDIA GPUs. CUDA-C provides

new language constructs in C to issue and manage general purpose computations on GPUs. It also provides

a wide range of library functions for managing data-parallel programs.

Similarly, Open Computing Language (OpenCL) is another standardized framework for GPGPU com-

puting [5]. It is the first truly-open and royalty-free programming standard for GPGPU computing and

developed by an open standard-committee with representatives from major technology-vendors and man-

aged by Khronos Group. OpenCL provides a language extension to C for developing data-parallel programs

for a variety of hardware. This gives GPU programmers portable and efficient access to diverse processing

platforms such as CUDA-enabled GPUs, some ATI GPUs, multi-core CPUs from Intel and AMD, and other

processors such as the Cell Broadband Engine.

OpenCL and CUDA-C are low-level imperative languages to write data-parallel programs that run on

GPUs.

A programming language is a system of formal notations for expressing algorithms [67]. Programs must

be readable for both machines and human beings. In [17, p. xvii], authors state

Programs must be written for people to read, and incidentally for machines to execute.
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Many software development projects include a team of programmers who often need to read and understand

programs written by others. Hence, programs should be easy to understand and debug and their programming

language should support that. Programming languages that are expressive can help programmers to write

clear and concise programs that are easy to understand and debug [46]. Therefore, expressive power of a

programming language is important to make readable, understandable, and maintainable programs.

Language expressiveness is an important criteria in language design. However, there are always penalties

associated with expressiveness for a language. The language may have cryptic notations demanding much

attention from programmers. The compiler of the language may produce inefficient code. Or, it may run

only on a single specific computer. Moreover, there might be no compiler at all for that language, only an

interpreter.

In [54, p. 12], Tatsuru Matsushita states

Despite all these disadvantages, however, the designer might claim that his or her language has
enormous expressive power.

The reason is, there is no widely accepted definition and formal framework to formalize, measure or compare

expressive power of programming languages. As Matthias Fellesian states in [36, p. 1]:

The literature on programming languages contains an abundance of informal claims on the relative
expressive power of programming languages.

Further, he also develops a formal framework based on some of the widely-held beliefs about the expressive

power of several extensions of high-level functional languages.

Programs written in low-level languages are difficult to understand because programmers still need to give

low-level machine details to write programs. Moreover, Tatsuru Matsushita also notes that programs written

in low-level languages do not describe problems, but describe solutions to the problems. However, high-level

languages hide those details and provide abstractions for the programmers. In [67], Watt notes that

High-level languages are so called because they allow algorithms to be expressed in terms that are
closer to the way in which we conceptualize these algorithms in our heads.

Functional programming languages hide those low-level details and provide more abstractions to the

programmers. Functional programming languages actually do more than that. The special characteristics

and advantages of functional programming languages are often summed up more or less as follows in terms of

side effects [18, 45, 61]. Programs written in functional programming languages usually have no side effect at

all. A function call can have no effect other than simply to its own computation. Therefore, programs written

in functional programming languages are less error-prone [46]. No side effect also makes order of execution

irrelevant; and, because of this, an expression can be evaluated at any time. Therefore, it is always safe to

run computations written in functional languages in parallel. In programs written in functional languages,

variables can be replaced by their values and vice versa. This characteristics is called referential transparency.

It helps programs to be more tractable mathematically. John Hughes reports that one of the major benefit
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of functional programming languages is that program size is shorter compared to imperative languages. John

Hughes further states in [46, p. 2]

A functional programmer is an order of magnitude more productive than his or her conventional
counterpart, because functional programs are an order of magnitude shorter.

However, the same analysis shows that programs written in imperative languages contain 90% assignment

statements. This huge number of assignment statements are often irritating to the programmers. The reason

is programmers need to track the meaning of every variable and the order of every assignment. These

assignments can be omitted in programs written in functional languages; and, this makes programs shorter

compared to their imperative counterparts. Moreover, side effects from assignment statements can change

the states of variables unintentionally by the programmers defined in different parts of a program. Often this

can create bugs in programs.

As a result, programs written in high-level functional languages are easier to read, understand, and

maintain because of their expressiveness. However, in real-world systems, people often use less-expressive

languages. Programs written in less-expressive languages often show better performance compared to their

high-level counterparts. There are also tremendous amount of legacy code in imperative languages such as

C, C++; and, they are not disappearing soon. Operating systems are also written in C, C++, or other

similar imperative languages because imperative languages provide such low-level machine details that are

required to develop an operating system. Therefore, it is easier to interact with operating system Application

Programming Interfaces (APIs) with C, C++, or other similar imperative-style programming languages.

Moreover, people often argue that programs written in functional languages are difficult to understand.

The reason is because people are unfamiliar with the alternatives to assignments jumps; and, functional

programs usually contain few constructs indicating assignments or jumps. In addition, programmers often do

not think about programs in terms of mathematical functions. Once they start thinking about programs as

functions or predicates, programs written in functional languages become more clear and concise than their

imperative counterparts [54].

Programs written in functional languages usually do not contain side effects; and, this makes order

of execution irrelevant. Therefore, it is always safe to run computations in parallel. Moreover, parallel

computation is fundamentally about avoiding side-effect conflicts [43]; and, functional programming languages

can clearly help with this regard. Bob Harper states that [42, p. 201]

The only thing that works for parallel programming is functional programming.

In parallel programs, encapsulation and isolation of both task and memory is the key to achieve good

parallel performance. Functional programming languages can naturally provide these requirements for parallel

computations. For this reason functional languages such as Erlang [21], Haskell [49] and Scala [56] are

becoming popular for parallel computing.

Modeling of real-world objects is the backbone of object-oriented paradigm; and, real-world objects are

often parallel. Therefore, parallel computation is also available in object-oriented programming (OOP) lan-
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guages such as Mentat [24], Sloop [40], Java [15], Oberon [41]. OOP languages can provide better reusability

for parallel applications through the mechanism of inheritance and delegation. OOP languages support high-

level of abstraction through the separation of services from implementation that helps with portability for

parallel applications. In addition, parallel applications can be consistently and naturally developed through

object-oriented analysis, design, and programming [59].

Many experimental OOP languages for parallel computations are extensions of C++[24, 40]. Note that

all these languages have C style syntax. Moreover, they are actually imperative-style languages with object-

oriented features. Therefore, programs written in those languages contain side effects. In addition, these

parallel extensions can be large and complex. Therefore, they are not easy to learn, use, and implement

efficiently [59]. Interpreted OOP languages such as early Java [15], Self [29], Smalltalk [69], etc, do not provide

high runtime-efficiency which is undoubtedly important for high-performance data-parallel computations.

Scheme is a mostly functional programming language [31, 35, 60, 62]. Programs developed in Scheme

are clear and concise [38]. Therefore, Scheme programs are more likely to be easy to read, understand, and

maintain because of their expressiveness. In [36], Matthias Fellesian explains expressive power of Scheme by

comparing two equivalent Scheme programs using his framework. Earlier in this chapter we discussed that

programs written in functional languages usually do not contain side effects; and, because of this, it is always

safe to run computations in parallel. Scheme is a popular research language and currently no implementation

of Scheme has GPGPU support. Therefore, data-parallel computing-facility on GPUs in Scheme is also

desirable. Moreover, expressive power of Scheme can give clear and concise data-parallel programs for GPUs

that are easy to read, understand, and maintain. As a a first step towards that goal, we explore connecting

Scheme programs to manage GPU executions.

Gambit [33] is an implementation of Scheme programming language. Scheme is usually interpreted, but

Gambit compiles Scheme code to plain C code and also provides some foreign-function interfaces to link

Scheme code to C code. There are a number of research projects that generate low-level GPU code from

high-level functional languages [28, 51, 53, 64]. Our work is in the same spirit: we extend Gambit Scheme

compiler to link Scheme code to data-parallel GPU code written in CUDA-C that runs on a GPU. Our

work also enables Scheme programmers to develop expressive programs that control and issue data-parallel

programs for GPUs. Another important long-term objective is data-parallel programs should have sufficiently

clean semantic properties to make it possible to write simple yet robust code on top of it [38]. Scheme surely

can help with this regard.

We already discussed that OpenCL supports different GPU processor architectures. However, not all

OpenCL drivers are mature. Only AMD’s and NVIDIA’s drivers are reliable. Other drivers such as those

from Intel and IBM are not mature enough to get reliable and consistent results. Unlike OpenCL, CUDA

has support only for the NVIDIA’s GPUs and NVIDIA’s GPU drivers are mature and reliable. In addition,

OpenCL does not have a centralized library-package like CUDA. Moreover, CUDA is well marketed and also

provides more built-in functions and features compared to OpenCL. Hence, NVIDIA’s CUDA is a prime
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target for researching GPGPU computation in Scheme.

There has been a fair amount of work on performance comparison between CUDA and OpenCL. Much

of this work shows a performance loss in OpenCL compared to CUDA [32, 68]. Moreover, OpenCL requires

much hardware specific fine-tuning in order to get peak performance [30, 52]. This often varies from one GPU

processor architecture to another. Therefore, programmers must apply different optimization techniques for

different GPU processor architectures. All of these reasons motivate us to use CUDA instead of OpenCL for

this research.

In order to link a Scheme program to data-parallel programs developed in CUDA-C, our implementation

generates a foreign-function interface from the skeletons of those data-parallel programs defined in Scheme.

We also provide some special constructs in Scheme for GPU in our implementation.

1.1 Motivation

CUDA-C has special constructs to specify data-parallel programs that run on GPUs. In CUDA, programmers

must manage memory operations, synchronization and utility functions in a CPU program that controls and

issues data-parallel general purpose programs running on GPUs. Library functions in CUDA are often faceted

and programmers are frequently required to provide multiple library functions to perform a task.

In this thesis, our task was to link a Scheme program to data-parallel CUDA-C programs by generating

foreign-function interfaces from the skeletons of those data-parallel programs defined in Scheme. The gen-

erated foreign-function interfaces reduce hands-on memory-management for programmers with a reasonable

overhead in execution time. Our implementation allow Scheme programmers to develop expressive programs

that control and issue data-parallel computations on GPUs. We also provide some useful library functions in

Scheme to manage GPUs. Our work enables Scheme programmers to write clear and concise host programs

with sufficiently clean semantic properties that are easy to read, understand, and maintain.

Currently, our implementation in Gambit only works for one-dimensional arrays but it would be convenient

for programmers to develop data-parallel programs for two-dimensional arrays as well. Note that two-

dimensional arrays are representations of one-dimensional arrays that make it easy for programmers to

develop and understand code. Moreover, a program developed with two-dimensional arrays can also be

developed for the one-dimensional representations of those arrays. Therefore, it would not be an extensive

problem for programmers to develop CUDA-C kernels with one-dimensional arrays.

1.2 Thesis

A foreign-function interface comprised of Scheme and CUDA-C constructs extending the Gambit Scheme

compiler enables linking Scheme and data-parallel CUDA-C code to support high-performance parallel com-

putation with reasonably low overhead in runtime.
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1.3 Contributions

This research extends Gambit Scheme compiler that links Scheme programs to data-parallel CUDA-C pro-

grams. Our work allows programmers to develop expressive programs in Scheme that can issue and control

data-parallel CUDA-C programs that run on GPUs. This research also hides many details implementation

of memory management in CUDA-C for data-parallel programs. This work also enables synchronization of

data-parallel programs in Scheme. Furthermore, the addition of some utility library functions in Scheme for

Gambit makes GPU management more convenient. The specific contributions to Gambit Scheme compiler

are:

1. Extending Gambit with some special constructs enables GPU computation in Scheme. For now, these

constructs can be used to link Scheme code to data-parallel CUDA-C code by generating foreign-

function interfaces from the skeletons of those data-parallel programs defined in Scheme. In future,

these special constructs can also be used for compiling the whole body of those skeletons to develop

data-parallel program in Scheme.

2. Adding utility library functions for:

(a) Querying GPUs

(b) Managing executions in GPUs

(c) Timing executions for data-parallel programs

(d) Managing versions

1.4 Outline

This thesis is organized as follows:

• First, we introduce background materials related to this thesis in Chapter 2. This includes details

of GPU programming models and specifications of CUDA-C programming language. We also give a

description of the subprograms linking strategy. Next, we provide a description of C-interface in Gambit

that links Scheme code to C code. We also discuss the usage of Gambit Scheme compiler for compiling

Scheme code linked to C code to an executable.

• Next, we move on to design chapter of our implementation in Chapter 3. We describe the essential parts

of a foreign-function interface that can link a Scheme program to a data-parallel CUDA-C program

by using an example. We also describe an example makefile that can link a Scheme program to a

data-parallel CUDA-C program through the foreign-function interface and builds a GPU executable.

• Chapter 4 illustrates the implementation of our thesis in Gambit. We describe how to generate the

foreign-function interface from a special construct in Scheme that defines a skeleton for a data-parallel
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program. We describe our implemented constructs in Scheme for GPUs. We also provide a template

makefile that can manage the generation of a foreign-function interface from a skeleton for a data-

parallel program and build a GPU executable. We also describe the intermediate steps for building

a GPU executable. In this chapter, we also discuss our implemented library functions in Scheme for

GPUs.

• In Chapter 5, we evaluate our implementation in Gambit by comparing the performance of test cases

implemented both in Scheme and CUDA-C. These test cases cover various language constructs of our

implementation in Gambit and CUDA-C.

• In Chapter 6, we summarize our work and provide some scopes for future research.
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Chapter 2

Background

At present, Graphics processor Units (GPUs) can be used to run general-purpose data-parallel programs

to accelerate scientific and engineering applications. Programmable GPUs supported by a CPU can run

extensive data-parallel programs. These data-parallel programs are usually loaded into GPUs from a CPU,

and execute data-parallel computations on shared data elements.

NVIDIA Corporation developed the Compute Unified Device Architecture (CUDA)[11] framework to en-

able and develop data-parallel programs for GPUs. This accelerates scientific and engineering applications

by providing a language extension of C called CUDA-C. The CUDA framework consists of hardware and

software architectures that can issue and manage computations on GPUs.

In this thesis, we link Scheme code in Gambit system[33] — an implementation of Scheme programming

language — to data-parallel programs for GPUs developed in CUDA-C by generating a foreign-function

interface. Therefore, we begin this chapter by reviewing the GPU programming model. First we describe the

compute capability of a GPU device, followed by the concurrency basics of GPUs. Then we give a review of

the GPU memory hierarchy. Next, we give details of the C programming language extensions for CUDA.

In this chapter, we also review the Gambit system and discuss the working strategy of the Gambit linker.

Next, we describe issues for data type mapping from Scheme to C. We also describe the special constructs

provided by Gambit to interface Scheme code with C code. Finally, we close this chapter by giving an

overview of the usages of Gambit Scheme compiler.

2.1 Programmer’s model of an NVIDIA GPU

A Graphics Processing Unit (GPU) is a highly parallel, multi-threaded, multi-core processor. Its data-parallel

capabilities along with very high memory bandwidth can be used in real time, high-definition 3D applications.

GPUs with a CPU to accelerate general purpose scientific computations on GPUs are known as the

General Purpose Computations on GPUs (GPGPU). More specifically, the same program is running on the

different GPU processors on the shared data elements in parallel, and the data-parallel program distributes

data elements to parallel processing threads.

The GPU is viewed as compute device capable of running thousands of threads in parallel and assisting

a CPU or host. The data-parallel portions of an application are off-loaded onto a device from a host. These
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data-parallel or compute-extensive portions can be isolated into a special function called a kernel.

Both a host and a device maintain their own logical memory, known as host memory and device memory,

respectively. Data can be copied from one memory to another through Application Program Interface (API)

calls. In this section we describe the data-parallel computation capabilities of devices. Next, we describe

the parallelism through thread and block organization. We also describe the different device memory spaces.

Finally, we review the execution model of a GPU.

2.1.1 Compute capability of a device

A GPU application needs to adjust according to the data-parallel capability of an underlying device. The

features of a device defines its data-parallel capability, also known as its compute capability. Devices with

different core architectures may have the same compute capability [8]. The compute capability of a device

is specified by a major revision number and a minor revision number. Devices with the same major revision

number will have the same core architecture, whereas a minor revision number specifies an incremental

improvement of a particular device’s architecture.

Table 2.1: Device specifications for different compute capabilities

Compute Capability
Specifications 1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.5

Maximum dimensionality of a grid 2 3
Maximum dimensionality of a thread block 3
Maximum x-,y- and z-dimension of a grid 65535 231 - 1
Maximum x- or y-dimension of a thread block 512 1024
Maximum z-dimension of a thread block 64
Maximum number of threads per block 512 1024
Maximum number of 32-bit registers per thread 128 63 255
Maximum amount of shared memory per microprocessor 16 KB 48 KB
Double-precision floating-point operations No Yes

It is important to know the compute capability of a device for which a data-parallel program is being

developed because compiled device code must be suited to the data-parallel capabilities of an underlying

device. For example, CUDA devices with a compute capability of 2.0 or greater only allow three-dimensional

thread blocks in a grid. Therefore, a CUDA kernel programmed to run on a three-dimensional thread block

cannot launch in devices with a compute capability of 1.x.

In Table 2.1 we provide device specifications based on different compute capabilities. We will learn about

these device specifications throughout this chapter.

2.1.2 Basic processing on GPU through a thread

A GPU is a multiprocessor made up of a group of stream processors. Each stream processor is known as a

GPU core.
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A thread running on a GPU core is the basic processing element of a GPU. We refer to this thread as a

GPU thread. A GPU thread is different compared to a conventional CPU thread. A conventional CPU thread

is heavyweight. However, a GPU thread is extremely lightweight. Context switching (storing or restoring

state of a thread or process) is a computationally expensive operation for a GPU but is not a costly operation

for a GPU.

In CUDA, GPU threads are usually grouped together and run the same kernel in parallel. Each thread in

a group has a unique thread ID. A thread ID can be a one-component, two-component, or three-component

entity. In the Figure 2.1, each thread is represented by a red square with a two-component thread ID.

Figure 2.1: Organization of grid and thread blocks ( c© NVIDIA Corporation, used with permission)

2.1.3 Parallelism through thread batching

In a GPU, a batch of threads running the same kernel is known as a thread block. These blocks can cooperate

by sharing data through fast shared memory, described in section 2.1.5. All threads in a thread block running

the same kernel can be synchronized by synchronization points mentioned in that kernel code.

Every thread block has a unique block ID. How threads in a thread block are organized is displayed in

Figure 2.1, where thread blocks are represented by yellow rectangles. Threads in a thread block can also be

organized as a two- or three-dimensional array depending on the compute capability of device architecture.

In that case, each thread can be identified using a two- or three-component index.
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Both thread ID and block ID can be used for addressing a location in device memory. Many applications

use complex addressing using both thread IDs and block IDs to get the maximum parallelism.

2.1.4 Concurrency through a grid of blocks

A thread block has a limit on the maximum number of threads it contains. This number depends on the

compute capability of a device’s architecture. To overcome this, a group of thread blocks with the same

dimension are organized into a grid, as shown in Figure 2.1. A grid of thread blocks can be launched together

so that the total number of threads launching the same kernel is much larger. A grid of blocks can also be

a two- or three-dimensional array of arbitrary size. In that case, each block can be indexed using a two- or

three-component index, as described in section 2.2.1.

Threads from different thread blocks in the same grid cannot be synchronized with each other. A device

may run all thread blocks in a grid sequentially for its limited parallel capabilities, in parallel if it has many

parallel capabilities, or in a random order.

In Figure 2.1, the host and device are represented by the blue rectangles. In the host, two kernels (kernel1

and kernel2) are represented by green rectangles. In the device, two grids (grid1 and grid2) are represented

by green rectangles. The arrow from kernel1 to grid1 means all the threads in grid1 run kernel1 in parallel.

Similarly, the arrow from kernel2 to grid2 means all the threads in grid2 run kernel2 in parallel. Inside each

grid, thread blocks are represented by yellow squares. In this example, the thread blocks are organized as a

two-dimensional array and addressed using two-dimensional indices.

A detailed view of block (1,1) in grid1 is shown in Figure 2.1. Threads are organized as a two-dimensional

array. Each thread is represented by a red square with a two-dimensional index.

2.1.5 A variety of memory spaces with different tradeoffs

A GPU thread running a kernel for data-parallel computation independently can only access device memory

space. Device memory is divided into several different spaces, each with different features and performances.

Runtime performance of a GPU application can be enhanced by the correct uses of different device memory

spaces. Therefore, it is important to know the following features and performances:

• Register: A register can only be accessed through its designated thread. A thread can read or write

on its own register space. It is the fastest form of on-chip memory in a device and has the lifetime

of a thread. Registers are partitioned among all the resident threads running the same kernel. The

number of registers per thread depends on the available resources for registers of an underlying device.

In general, a small array of integers defined in a kernel is allocated to registers.

• Local Memory: A thread-local read-write memory space 150x slower than a register. It is off-chip and

not cached. If an array size is larger than the total number of registers then the local memory space is

utilized. Local memory shares the lifetime of its thread.
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• Shared Memory: All threads organized in the same block can access an on-chip shared read-write space.

It can be as fast as accessing a register when there are no bank conflicts [6] or when reading the same

addresses. It has the lifetime of all the threads in the same thread block. All devices with the compute

capability 2.x and greater have 48KB of available shared memory per multiprocessor.

• Global Memory: All threads for a current program have read-write access to global memory. Global

memory usually resides in a device, but recent versions of CUDA can map CPU memory to device

memory address space (device must support it). It is slower compared to shared memory and is not

cached. Global memory has a lifetime from allocation to deallocation. Data can be directly copied

from CPU memory to global memory.

• Texture Memory: A read-only memory space accessible to all threads running the same kernel. It is

cached but slower than shared memory. It is initialized by a host and read by a device.

• Constant Memory: Also a cached read-only memory accessible to all threads in a grid. It can be

accessed as fast as registers. Each device has a total of 64KB constant memory space. It is also

initialized by a host and read by a device.

In Table 2.2, we provide features of different device memory spaces.

Table 2.2: Features of different device memory spaces

Memory Location Cached Type of access Who can access
Local Off-chip No Read/Write One thread
Shared On-chip N/A Read/Write All threads in a block
Global Off-chip No Read/Write All threads + CPU

Constant Off-chip Yes Read/Write All threads + CPU
Texture Off-chip Yes Read/Write All threads + CPU

The memory model of a device is shown in Figure 2.2. In this figure the grid is represented by a blue

rectangle. Unlike Figure 2.1, threads are represented by green rectangles. Each thread block is represented

by a yellow rectangle. Registers and local memory spaces are represented by red rectangles.

There are two kinds of arrows: uni-directional and bi-directional. A uni-directional arrow from a memory

space to a thread means that thread has read-only access to that memory. A bi-directional arrow between a

memory space and a thread means that thread has both read and write access to that memory. The arrows

from each thread to registers and local memory depict that they are local to each thread. Each shared

memory space is represented by a red rectangle. All threads in a same thread block have access to a same

shared memory space, as depicted by the arrows from threads in the same thread blocks to the same shared

memory spaces.

Global memory, constant memory, and texture memory are represented by red rectangles. Arrows from

each thread in the grid to these three memories means they have access to all three memory types.
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Figure 2.2: Memory model of a device ( c© NVIDIA Corporation, used with permission)

In this section we described various device memory spaces and features. Certain device memory spaces

can also be accessible from a host. A host can read and write global, texture, and constant device memory

spaces, which remains persistent across kernel launches by the same host program.

2.1.6 Execution model of a device

All thread blocks in a grid cannot be processed at the same time. A GPU scheduler is involved to schedule

batches of thread blocks among the device multiprocessors. An in-device multiprocessor is responsible for

processing a batch of thread blocks.

In general, multiprocessors process thread blocks one after another from a batch. The number of blocks

a multiprocessor can process in a batch depends on the memory requirement of the given kernel for parallel

execution. The reason is multiprocessors registers and shared memory space are split among all the threads

from all thread blocks in the same batch executing the same kernel. If memory spaces cannot split atleast

one thread block then a kernel launch will fail. Moreover, a thread in a thread block cannot access the shared

memory of another thread block. Shared memory of multiprocessors is split among the thread blocks in the

same batch. Therefore, one thread block is allocated to one multiprocessor to access shared memory quickly.

Thread blocks processed by a multiprocessor in one batch are referred to as an active block. Each active

block splits into a number of thread groups of equal size, known as a wrap. All the wraps in an active block

execute in a time-sliced fashion.
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The order of wrap execution in a block is undefined. Their execution can be synchronized. However, the

order of block execution in a grid is also undefined and there is no synchronization mechanism among the

blocks. That is, unless all thread blocks finish their execution and control returns to the host program.

Multiple thread blocks can access the same locations in global memory but their execution cannot be

synchronized. Therefore, block communication through global memory is not safe.

2.2 CUDA-C programming interface for GPU

Compute Unified Device Architecture (CUDA) is a new software architecture for issuing and managing data-

parallel computation in GPUs. It provides CUDA-C programming language, which is an extension of C

programming language [11]. CUDA-C provides programming extensions to develop data-parallel programs

that run on devices. It also provides a wide range of library functions for effectively managing device memory

spaces, devices, and kernel executions on GPUs. In this section, we define elaborate the constructs of CUDA-C

programming language.

As a programming language, CUDA-C has four folds:

1. A new directive to call kernels,

2. Four built-in variables that specify grid and thread block dimensions, and with indices for thread block

and individual thread,

3. Function type qualifiers to specify weather a function executes on device or host,

4. Variable type qualifiers to whether specify spaces in device memory.

C programs using these extensions must be compiled by the CUDA compiler, nvcc. The front end of

nvcc processes CUDA source files according to C++ syntax. The host part of a CUDA program supports full

C++, but the device parts only support the C subset of C++. Moreover, nvcc is actually a compiler driver

that mimics the behaviour of the GNU compiler gcc. It hides the complicated details of CUDA compilation

from developers. nvcc separates device code from host code. Then compiles device code and forwards host

code to a general purpose C compiler such as gcc. Then, the C compiler compiles host code.

CUDA also allows the file extension .cu to develop data-parallel programs (kernels) for GPUs. In general,

a host program can be developed in a .c, .cpp, or .cu file, but kernel definitions must be in a .cu files.

2.2.1 New directive to call a kernel

Any call to a kernel must specify an execution configuration that defines the dimensions of a grid and thread

block that participate in data-parallel computations on a device. It can be specified by adding an expression

of the form <<< gridD, blockD, sharedM >>> between a kernel name and kernel’s argument list. For
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example, a kernel is declared as:

__global__ void kernel (int *array);

and a call to this kernel appears as:

kernel <<< gridD, blockD, sharedM >>> (array);

CUDA also provides built-in vectors which can be used as runtime components. They can be used by both

device and host functions. These vectors are structures derived from basic integer types and floating-point

types. The components of these structures are accessible through the fields x, y, and z, respectively. CUDA

provides type dim3 for these built-in variables and it is used to define the dimensions of thread blocks and

grids. Any component of type dim3 variable that is unspecified is automatically initialized to one. For

example, the execution configuration

<<< gridD, blockD, sharedM >>>

has three arguments, where:

1. gridD is a variable of type dim3. It specifies the dimensions of the grid. Here, gridD.x * gridD.y is

the total number of thread blocks in the grid.

2. blockD is also a variable of type dim3. It specifies the dimensions of the thread blocks. Here, blockD.x

* blockD.y * blockD.z is the total number of threads in a thread block.

3. sharedM is a variable of type size_t, and it determines a size for the dynamic shared memory at

runtime.

A code example for an execution configuration is also provided in the Listing 2.1.

2.2.2 Built-in variables for dimensional information

CUDA-C also provides four built-in variables to get the dimensions of a grid and thread blocks and indices

of thread blocks and threads at runtime. In a kernel definition, these variables can be used for addressing

locations of an array. These four variables are as follows:

1. gridDim contains the dimensions of a grid. We can get the dimensions of a one-dimensional or two-

dimensional grid using this variable. Its type is dim3.

2. blockIdx contains an index of a thread block in a grid. Its type is unit3.

3. blockDim contains the dimensions of a thread block. A thread block can be defined as one-dimensional,

two-dimensional or three-dimensional. Its type is dim3.
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4. threadIdx contains an index of a thread in a thread block. Its type is also unit3.

Note that all these four variables are not allowed to assign with values and take their addresses.

2.2.3 Function type qualifiers

CUDA provides function type qualifiers to enable programmers to define where a function should run. The

CUDA C function type qualifiers are as follows:

• __device__ (Device function): A __device__ qualifier declares a function that runs on devices. Hence-

forth we will refer to this as a device function. A device function is callable only from device code running

on a device. It does not support recursion and cannot reference static variables. Function pointers to

a device function are not permitted.

• __global__ (kernel): A __global__ qualifier declares a special device function that also run on

devices known as kernels. A kernel is callable only from a host program. It also does not support

recursion or static variables. However, function pointers to a kernel are supported. A kernel must have

void return type and calls to a kernel must specify its execution configuration. Host program calls to

multiple kernels are asynchronous.

• __host__ (Host function): A __host__ qualifier declares a function that runs on a host or CPU.

Henceforth, we will refer it as a host function. A host function is callable from a host program running

only on a CPU. Since this is default, use of this qualifier is optional. One important use is using

__device__ and __host__ together to create both a host and a device version of the same function.

Note that __host__ cannot be used with __global__.

In Table 2.3, we provide some features of CUDA function type qualifiers.

Table 2.3: Features of CUDA function type qualifiers

Function type qualifiers Where it runs What it can
__device__ GPU kernels
__global__ GPU host functions
__host__ CPU host functions

2.2.4 Variable type qualifiers

CUDA provides variable type qualifiers to specify the location of a variable in device memory. The CUDA-C

variable type qualifiers are as follows:

• __device__: The __device__ qualifier declares a variable that resides in global memory. It is accessible

from all the threads in a grid and from a host program through CUDA runtime library functions. A
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__device__ variable has the lifetime of an application and automatically freed when the application

ends. __device__ variables are only allowed at file scope and they cannot have extern linkages.

• __constant__: The __constant__ qualifier declares variables that reside in constant memory. It is also

accessible from all threads within a grid and from a host. It shares the lifetime of an application and is

freed automatically when the application ends. __constant__ variables cannot be written by a device;

they can only be loaded by a host program through CUDA runtime library functions. __constant__

variables are only allowed at file scope and they cannot have extern linkage. Constant memory size is

64 KB for devices with 1.x–3.x compute capabilities .

• __shared__: The __shared__ qualifier declares variables that reside in shared memory and are acces-

sible only to threads in a thread block. It has the lifetime of a thread block. The __shared__ variables

cannot be initialized as a part of their declaration. The size of a shared memory can be determined

at runtime by passing the number of bytes as the third argument in the execution configuration of a

kernel call. Sizes of shared memory for devices with 1.x–3.x compute capabilities are referred in Table

2.1.

Table 2.4 summarizes some features of CUDA variable type qualifiers.

Table 2.4: Features of CUDA variable type qualifiers

Variable type qualifiers Memory space What can access Lifetime Allocation Scoping
__device__ global all threads + host Application Static file
__constant__ constant all threads + host Application Static file
__shared__ shared all threads + host thread block Dynamic global scope

2.2.5 A simple CUDA-C program

In this section we give an example of a CUDA-C program (see in Listing 2.1). In this program, all participating

threads are running the same kernel performing add operations in parallel on the unique addresses of two

linear arrays. Unique addresses are computed at runtime for each thread. Results are stored in an another

array on the same unique addresses.

The program has two parts: host code and device code. The device code (lines 2–8) shows a CUDA-

C kernel parallel_add. The host code (lines 10–37) shows CUDA-C code for allocating device memory,

transferring vectors between host memory to device memory, a kernel call with an execution configuration,

and the deallocation of device memory. On line 2 of the device code, the header of the function

__global__ void parallel_add (float * x, float * y, int n)
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1 //The device code

2 __global__ void parallel_add(float * x, float * y, int n){

3 // complex addressing using the CUDA C built -in variables

4 int idx= blockIdx.x * blockDim.x + threadIdx.x;

5 if(idx < n){

6 x[idx] = x[idx] * y[idx];

7 }

8 }

9 //The host code

10 int main (){

11 float *x_h , *y_h; // declaring host pointers

12 float *x_d , *y_d; // declaring device pointers

13 int n= 20; size_t size= n * sizeof(float );

14 // allocating vectors in the host memory

15 x_h= (float *) malloc(size); y_h= (float *) malloc(size);

16 int i;

17 for(i=0; i < n; i++){

18 x_h[i]= (float) i; y_h[i]= (float) i;

19 }

20 // making device pointers

21 cudaMalloc ((void **) $x_d , size);

22 cudaMalloc ((void **) $y_d , size);

23 // copying vectors from host to device using CUDA library functions.

24 cudaMemcpy(x_d , x_h , size , cudaMemcpyHostToDevice );

25 cudaMemcpy(y_d , y_h , size , cudaMemcpyHostToDevice );

26 int block_size= 4;

27 int num_blocks= (n + block_size - 1) / block_size;

28 // Invoke the kernel with the execution -configuration

29 parallel_add <<<num_blocks , block_size >>> (x_d , y_d , n);

30 // copying vectors from device to host using CUDA library functions.

31 cudaMemcpy(x_h , x_d , size , cudaMemcpyDeviceToHost );

32 //free host memory

33 free(x_h);

34 free(y_h);

35 //free device memory

36 cudaFree(x_d);

37 cudaFree(y_d);

38 }

Listing 2.1: A simple CUDA-C program
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opens with the keyword __global__ and its return type is void. Therefore, parallel_add is a kernel. Three

parameters are supplied by the host: float* x, float* y, and int n. the kernel definition (line 3)

int idx = blockIdx.x * blockDim.x + threadIdx.x;

is an example of addressing locations by participating threads to perform data-parallel computation using

CUDA-C built-in variables blockIdx.x, blockDim.x, and threadIdx.x. Here, blockIdx.x gets the block

ID in x-dimension of a participating thread block blockDim.x is the x-dimension of the participating grid and

threadId.x is a thread ID in x-dimension of a participating thread in a thread block. Each participating

thread computes a unique value during execution and assigns it to the variable idx. Each thread then

performs the add operations (line 6),

x[idx] = x[idx] * y[idx];

on the address specified by the idx. Note that this add operation is determined for a thread by a conditional

guard (line 5)

if (idx < n)

specifying that only threads computing values of idx that are less than n can perform the add operations.

In the host part, first we declare two host memory pointers: float* x_h, and float* y_h (lines 11 and

12). Two device memory pointers: float *x_d, and float* y_d are also declared. On line 15 two arrays

pointed by the pointers x_h, and y_h are allocated in host memory and assigned values (lines 17–19). Next,

pointers x_d, and y_d are converted to device memory pointers (lines 21 and 22) using the CUDA library

function cudaMalloc().

Next, these two vectors are copied to device memory to perform parallel computation by the participat-

ing threads (lines 24 and 25) and the CUDA library function cudaMemcpy() is used to perform the copy

operations. On line 24,

cudaMemcpy(x_d, x_h, size, cudaMemcpyHostToDevice);

host memory pointer x_h is copied to device memory pointer x_d to transfer data to device memory. Here,

size represents the size of both arrays. The size of both arrays must be same. cudaMemcpyHostToDevice is

a CUDA transfer type specifying that the transfer is from host memory to the device memory. Similarly, on

line 25,

cudaMemcpy(y_d, y_h, size, cudaMemcpyHostToDevice);

host memory pointer y_h is copied to device memory pointer y_d to transfer data to device memory.
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In the host part, the number of participating thread blocks must be defined. Line 26,

int block_size = 4;

defines an one-dimensional grid of four thread blocks, and line 24,

int num_blocks = (n + block_size - 1) / block_size;

defines the number of participating threads in a thread block.

On line 29, the kernel parallel_add is called with three arguments (x_d, y_d, and n) along with the

execution configuration, where

parallel_add <<< num_blocks, block_size >>> (x_d, y_d, n);

Here,

<<< num_blocks, block_size >>>

is the execution configuration. num_blocks specifies the number of participating thread blocks in the grid

and block_size specifies the number of participating threads in a thread block.

After kernel execution, control returns to the host program. The resultant vectors are then copied back

to host memory (line 31)

cudaMemcpy(x_h, x_d, size, cudaMemcpyDeviceToHost);

CUDA transfer type cudaMemcpyDeviceToHost specifies that the transfer is from device to host.

Lastly, host and device memory spaces are freed. On line 36,

cudaFree(x_d);

and line 37,

cudaFree(y_d);

device memory pointers x_d and y_d are freed using the CUDA library cudaFree to release the allocated

device memory spaces. Similar, host memory pointers x_h and y_h are also freed on line 33,

free (x_h);

21



and line 34,

free (y_h);

2.2.6 Synchronization in CUDA

In CUDA, sometimes a kernel depends on the results of other kernels 1. Sometimes, a kernel might also

depend on the results of some CPU functions. It might also happen that a CPU function depends on the

results of others kernel. In this situation, kernels and CPU functions must be synchronized. This means a

kernel or a CPU function that depends on the results of other kernels or CPU functions must be blocked until

those prior kernels and CPU functions are finished. In order to do that, CUDA provides library function

cudaDeviceSynchronize() [12] that can be used to synchronize kernels and CPU functions.

1 __global__ void kernel1 (float* A, float *B) {

2 int i = threadIdx.x;

3 B[i] = B[i] * 2;

4 __syncthreads ()

5 A[i] = B[i] + B[i];

6 }

7 __global__ void kernel2 (float* A, float *B) {

8 int i = threadIdx.x,

9 A[i] = A[i] - 4*B[i];

10 __syncthreads ();

11 B[i] = B[i]/2;

12 }

13 int main (){

14 /*A and B are transferred to device memory */

15 // calling first kernel

16 kernel1 <<<1, N>>>(A, B);

17 /*A and B are transferred back to host memory */

18 cudaDeviceSynchronize ();

19 // calling a CPU function

20 CPU_function(B);

21 /*A and B are transferred to device memory again */

22 cudaDeviceSynchronize ();

23 // calling second kernel

24 kernel2 <<<1, N>>>(A, B);

25 }

Listing 2.2: An example of CUDA synchronization

1This further diminishes the "embarassingly parallel" nature of more GPU code; and, as a result, most GPU programmers
avoid algorithms that entail synchronization.
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In CUDA, sometimes all the participating GPU threads running a same kernel need to be synchronized.

This type of synchronization can be done by specifying synchronization points in a kernel definition by calling

the syncthreads() function. It acts as a barrier where all participating threads in the same thread block

must wait before following the instruction. When all the threads reach that barrier then they can proceed

and follow the instructions in the kernel. In Listing 2.2 we provide an example that demonstrates these two

types of synchronization in CUDA.

Here, two kernels kernel11 and kernel2 are defined ion lines 1–6 and on lines 7–12. In kernel1,

syncthreads() (line 4) specifies a synchronization point. Therefore, threads in a same thread block running

kernel1 must wait on line 4 until all of them reach this synchronization point. Similarly, in kernel2, threads

in same thread block must wait until all of them reach the synchronization point on line 10.

In this example, kernel1 is called on line 16 with two arrays A and B. Then, on line 18, cudaDeviceSynchron

ize() blocks the CPU function CPU_function on line 20. The is because CPU_function is called with the

modified array B, which is an output of kernel1. Another cudaDeviceSynchronize() is mentioned on line

22 that blocks kernel2 called on line 25, until CPU_function is finished. This is because kernel2 is called

with two modified arrays - A and B - where B is an output of CPU_function. Note that in this example code

for memory transfer operations are not shown.

2.2.7 CUDA library functions

CUDA provides a wide range of library functions [12]. These library functions can be used for querying

devices, handling errors generated from CUDA code, managing host and device memory spaces, timing

events, managing streams for concurrent executions, managing versions and access to device memory of a

peer device. The following addresses these categories of library functions:

• Device Management

CUDA provides twenty library functions for managing devices. These categories of library functions

enables programmers to choose, set, and reset devices to run data-parallel programs. For example,

cudaGetDeviceProperties(struct cudaDeviceProp * prop, int dev )

returns the properties of device dev into a CUDA built-in structure cudaDeviceProp type variable

prop that has fifty-one fields as the properties of device dev . cudaDeviceProp covers properties such

as device name, total global memory, shared memory per thread block, maximum threads per thread

block, maximum dimensions of thread blocks and grids, and so on.

CUDA also provides the library function cudaChooseDevice() that allows programmers to choose

a device based on the setting of cudaDeviceProp structure. Library function cudaSetDevice(int

dev ) sets current dev for kernel execution. cudaGetDevice(int *dev ) returns in *dev the current
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device on which active host executes kernel or device functions. Library function cudaDeviceReset()

destroys and cleans up all previous resource allocation with the current device.

• Memory Management

CUDA provides fifty-one library functions for managing different device memory and host memory

spaces. In Listing 2.1 we discussed using cudaMalloc() for allocating one-dimensional array in device

memory space. Now, we address some other library functions. First of all,

cudaHostAlloc (void ** pHost, size_t size, unsigned int flags )

is used to allocate size bytes of page-locked host memory which is accessible to a device. Note that ex-

cessive amount of pinned memory may degrade system performance because it reduces available memory

for paging. Here flags parameters are used to specify different options that affect the allocation.

CUDA also provides library functions for managing two- or three-dimensional arrays. For example,

cudaMemset2D (void * devPtr, size_t pitch, int value, size_t width, size_t height )

is used to allocate a two-dimensional array in device memory. Here, device memory pointer devPtr

allocates a two-dimensional array of height rows and width columns, and value is the specified

initial value for the two-dimensional array pointed by devPtr . pitch specifies the width in bytes

of two-dimensional array. Moreover, CUDA also provides library functions cudaMemset3D() and

cudaMalloc3D() to allocate three-dimensional arrays in device memory.

In order to allocate read-only constant memory CUDA provides library function

cudaMemcpyToSymbol(const char * symbol, const void * src, size_t count, size_t offset

= 0, enum cudaMemcpyKind kind = cudaMemcpyHostToDevice)

Here, count bytes are copied to a device memory pointer (may point to constant memory space) symbol

from host pointer src . Here, offset is the offset from the start of the symbol in bytes. kind specifies

the type of transfer.

CUDA also provides seven library functions for managing texture memory. One of the library func-

tions, cudaBindTexture() is used to bind a memory space to a texture. Similarly, library function

cudaBindTextureToArray() binds an array to a texture.

Note that for each kind of memory space there is also a memory-transfer operation associated with

it. For example, cudaMemcpy3D() copies data between two three-dimensional objects. Similarly,

cudaMemcpy2D() copies data between two-dimensional arrays.

• Event Management
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CUDA also provides library functions for setting, synchronizing, and destroying events. These events

are used to measure execution time for a kernel in a device. cudaEvent_t type variables are used to

declare events. Library function cudaEventCreate (cudaEvent_t *event ) creates an event event .

cudaEventRecord(cudaEvent_t event ) records event . In order to measure elapsed time between

two events library function

cudaEventElapsedTime(float * ms, cudaEvent_t start, cudaEvent_t end )

is provided. Events can be destroyed by library function cudaEventDestroy(cudaEvent_t event ).

• Error Management

CUDA provides library functions to manage error generated from CUDA code. Library function

cudaGetLastError (void) returns a cudaError_t type error if any operations related to a device

raises an error. In order to get the error message a string library function cudaGetErrorString(cudaEr

ror_t error ) takes cudaError_t type variable error and returns an error message string as-

sociated with error .

• Stream Management

CUDA provides library functions for managing streams. In CUDA, a stream is a sequence of op-

erations that executes in an order. Stream gives the ability to run CUDA operations in different

streams concurrently. CUDA operations in different streams can also be interleaved. In CUDA,

cudaStreamCreate (cudaStream_t * ptrStream ) creates a new asynchronous stream (ptrStream ),

and cudaStreamDestroy(cudaStream_t ptrStream ) destroys and cleans up the asynchronous stream

specified as ptrStream . Library function cudaStreamSynchronize(cudaStream_t ptrStream ) blocks

until ptrStream has completed all the operations in a device.

• Version Management

CUDA also provides library functions to get the installed CUDA driver version and the CUDA run-

time version. Library function cudaDriverGetVersion(int *versionDriver ) returns the version

number of the an installed CUDA driver in *versionDriver , and cudaRuntimeGetVersion (int

*versionRuntime ) returns the version number of an installed CUDA runtime in *versionRuntime .

• Peer Device Memory Access

CUDA provides library functions for managing access to device memory of a peer device. Library

function

cudaDeviceCanAccessPeer (int * pAccess, int dev, int pDev )

25



returns in *pAccess a 1 if dev can directly access the memory of pDev and 0 otherwise. cudaDeviceE-

nablePeerAccess(int pDev ) allows peer device pDev to access the device memory of the current

device. Peer access can be disabled for device pDev by cudaDeviceDisablePeerAccess(int pDev ).

These library functions are declared either in header-file cuda_runtime_api.h or cuda_runtime.h. Header-

file cuda_runtime_api.h is a C-style interface, and library functions declared in this file do not require com-

piling with nvcc compiler. However, header-file cuda_runtime.h is a C++ style interface, and the library

functions declared in this file must be compiled through nvcc. For example, cudaMallocHost() must be

compiled through nvcc because it is declared in file cuda_runtime.h. Overall twenty library functions, also

known as C++ API Routines [12] are declared in cuda_runtime.h.

So far in this chapter we discussed parallelism in a GPU programming model. We also covered different

language constructs of CUDA-C to develop data-parallel programs. We also discussed some categories of

CUDA library functions. In the rest of this chapter, we will review the Gambit Scheme compiler and the

C-interfaces in Gambit for linking Scheme code to C code.

2.3 Gambit Scheme an implementation of Scheme programming

language

Scheme, a dialect of Lisp, is a mostly functional programming language. It is also a lexically-scoped language

and uses dynamically-typed variables. One of the implementations of Scheme is Gambit. Gambit’s Scheme

compiler can compile Scheme code to C code. Gambit provides C-interface special constructs to link C code

from Scheme code. Gambit also implements a full numerical tower of numerical types : numbers, complex,

real, rational and integer for Scheme. Moreover, Gambit Scheme is well-maintained, stable, and robust.

In this section, we describe the linking strategy of a linker which is followed by a description of the Gambit

Linker. Then we describe the Scheme data types and how they can be mapped to C types. We also describe

the C-interface special constructs in order to link C code. Finally, we describe the Gambit compiler usage

and flags.

2.3.1 Linking subprograms by a linker

In Gambit, a Scheme program written in multiple files as subprograms can be translated to C code. Those

translated subprograms can be translated to object code by C compiler. The object code of subprograms are

linked together into a composite program known as linking. The program that performs this composition is

known as the linker.

In order to obtain flexibility and better utilization of main memory, compilers generate relocatable

code(object code), also know as the relocatable binary. This is a program that can be loaded into any

location of main memory. In relocatable binary code:
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1. Address fields have been translated relative to zero.

2. Relocation information is associated with the program to be loaded to indicate which address field must

be relocated.

The linker combines those relocatable subprograms into a single relocatable program. The input to a linker

consists of one or more subprograms in binary symbolic form. Binary symbolic form is similar to relocatable

binary except that an additional table known as the External Symbol Dictionary [4], or ESD, is included

with each subprogram and is translated to relocation binary code. ESD is used to indicate the definition

and the use of external symbols referenced by other subprograms. Independently translated subprograms

communicate each other through the external symbols. It is the responsibility of a linker to combine input

subprograms into a single relocatable output in which all the external references have been resolved.

ESD is a table that contains an entry for each external symbol defined within a subprogram. There are

two kinds of external symbols:

• External Name: a symbol which is referenced from other translated subprograms and is being linked

together with the subprogram containing the symbol [2].

• External Reference: a symbol which is mentioned as External Name in an another translated subpro-

gram [3].

The part of a binary symbolic file that contains relocatable machine language instruction and data is

known as the Text. Moreover, binary symbolic files also contain another piece of information known as

the Relocation Dictionary or RLD. It contains one entry for each address that must be relocated when the

composite program is loaded into main memory. It is the responsibility of a language translator (compiler or

assembler) to group relocation information into RLD. In RLD, each entry is actually a pointer to a machine

language instruction that must have its address field relocated.

In liking together a set of subprograms, the linker merges ESDs into a Composite External Symbol Dic-

tionary(CESD) [4]. The linker assigns consecutive relative addresses to each External Name. This is done by

assigning an address of zero to the first External Name and then assigning addresses relative to this origin

to all other External Names. All ESD entries are updated to reflect the new addresses that were assigned.

The CESD is followed by the a sequence of Text and RLD. Each Text and RLD corresponds to the Text

and RLD portion of an object file.

Once contiguous addresses have been assigned to the External Symbols in the object files, all entries in

the RLD must be relocated relative to the beginning of the composite output being created by the linker.

The end of an composite file is indicated by an END-Of-Module record, or EOM. The composite file is then

ready to be loaded in memory by a loader [23]. A loader that loads relocation binary form and updates all

relative addresses known as relocating loader. A relocating loader first requests for space in main memory for

the composite program and sets the starting address for the composite program. Note that the allocation
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of memory to a given program by a relocation loader will remain fixed for the duration of that program’s

execution.

Gambit also has a linker that does not actually link subprograms rather it generates a link file from

generated subprograms produced by the Gambit compiler. This link file is actually used later by the C-linker

(running under gcc compiler) in order to generate a composite relocating binary file.

2.3.2 Gambit linker

C files generated by the Gambit compiler must be linked together to generate a composite program. In order

to do that the Gambit linker generates a link file that contains various linking information gathered from the

generated C files. It contains a set of all symbols and a list of subprograms and global variables used in a

group of subprograms. This link file also contains linking information for external references. For example, If

a Scheme procedure makes reference to an external symbol, this linking information is actually stated in the

link file generated by the Gambit linker. This linking information of external references is utilized later by

the C-linker that generates a composite program from subprograms. This link file is also needed to initialize

the Scheme runtime system.

In general, a program for Gambit is composed of a set of Scheme subprograms or C subprograms. Some

of the subprograms are part of Gambit runtime library and others are supplied by the programmers. When

a program is started it must set up various global tables containing all the symbols and the supplied global

variables. Then all Scheme subprograms are executed sequentially. The information required for setting up

the global tables and sequential execution of subprograms is contained in the link file. This link file makes

it possible to use external procedures and variables in a program. Note that this link file is a C file and it

must be compiled to an object file by the C compiler. Later it is given to linker as an object file to generate

the composite program along with the compiled object files.

In this thesis, we need to ensure that CUDA-C code can be linked to Scheme code. In order to do that,

Scheme code refers symbols defined in CUDA-C code. Therefore, a C compiler requires linking information

about Scheme code. This linking information is actually provided by the link file generated by Gambit linker.

2.3.3 Mapping of types between Scheme and C

Scheme and C languages do not provide the same set of data types. Gambit Scheme provides foreign object

types [33] in order to map values from Scheme to C. Gambit also adds new C types [33] for those foreign

object types. A foreign object type is internally represented as a C pointer. It is important to know which

Scheme types are compatible with C and how the compatible types can be mapped back and forth.

In Scheme, a vector type is a sequence of values in memory, like an array in C. Gambit provides homo-

geneous vectors of raw numbers for both signed and unsigned exact integers and inexact reals. The foreign

object type for a Scheme vector is scheme-object, which is also the universal type for Scheme objects. The

added C-type for this universal type is ___SCMOBJ (defined in gambit.h header file). Therefore, ___SCMOBJ is
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also the C type for Scheme vector. Note that for a Scheme vector it is not enough to convert it from Scheme

to C in order to access it from C code. It also requires a pointer-casting operation for that vector. This

casting operation is called ___CAST discussed with the example Scheme program in Listing 2.3. The reason

for this is a Scheme vector contains extra information used by Scheme wrapped around a C pointer to an

actual C array.

In Gambit, a converted argument can be referred in C code through the built-in variable ___arg; this is

suffixed by the position of a variable in a parameter list. For example, the first argument can be referred as

___arg1, the second argument can be referred as ___arg2, and so on. The foreign object type for a scalar

is enough to convert it to C. It does not need the extra type-casting operation. A scalar type converted

argument can be referred by built-in variable ___arg followed by its position in parameter list in C code.

In this these in order to link Scheme code to CUDA-C code, we will need to pass data from Scheme code

to CUDA-C code. CUDA-C requires types for data because it is an extension of C. Therefore, we will need

to convert Scheme data to C data to their appropriate types. This conversion also gives the ability to access

Scheme data from C.

2.3.4 Linking a C code sequence using c-lambda

Gambit has the ability to link Scheme code to C code using the C-interface construct c-lambda. This special

form gives a way of representing a Scheme procedure that will act as a representative of a sequence of C

code. The first subform of a c-lambda function is a list that contains types of arguments. When a c-lambda

function is called all the arguments are coerced [47] to their C types. The return type of the procedure is

given next. The last sub-form is a string that contains a sequence of C code.

In Listing 2.3 c-lambda function assign_vector (lines 2–13) provides a sequence of C code. The keyword

c-lambda, on line 3 specifies that it is a c-lambda function. This function takes a vector and its length and

assigns each element of that vector. In the parameter list (line 3),

(scheme-object int)

scheme-object is the foreign object type for the Scheme vector and int is the foreign object type for the

length. This c-lambda function is called

(assign_vector vec N)

on line 15. Here, first argument vec is a vector of 32-bit unsigned integers defined on line 15 as

(define vec (make-u32vector 512 0))
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1 ;;Scheme procedure with a sequence of C code

2 (define assign_vector

3 (c-lambda (scheme-object int) ;;parameter list

4 void ;;return type

5 #<<c-lambda-end

6 ;;--------------- C code start----------------------------

7 int i;

8 ___U32* a_h = ___CAST(___U32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));

9 for (i=0; i< ___arg2; i++){

10 a_h[i] = i;

11 }

12 ;;--------------- C code end-----------------------------

13 c-lambda-end ))

14

15 (define vec (make-u32vector 512 0))

16 (define (top)

17 (let ([N (u32vector-length vec)])

18 (assign_vector vec N)

19 (display vec))

Listing 2.3: A Scheme procedure calling a c-lambda function containing a sequence of C code-

fragment

Its length is 512 elements, and initially its elements are assigned with 0. The second argument N is the length

of this vector which is calculated on line 16 as

([N (u32vector-length vec)])

Therefore, in parameter list, scheme-object and int are the types for vec and N respectively. These types

are appropriate to be converted from Scheme to C. The return type of this function is void on line 4 because

this function does not return anything to Scheme.

A sequence of C code in a c-lambda function can be defined within the scope of #«c-lambda-end, on

lines 5 and 13. In this example, the pointer-casting operation for the vector vec is shown on line 8 as

___U32* a_h = ___CAST(___U32,___BODY_AS(___arg1, ___tSUBTYPED));

Here, C pointer type ___U32(defined in gambit.h) with variable a_h is assigned with the cast pointer by

macro ___CAST. The pointer is extracted by macro ___BODY_AS (also defined in gambit.h) before the casting

operation and ___arg1 refers to the first parameter Scheme vector vec. We need to specify a tag for a vector

because it is a memory-allocated object in Scheme. For Gambit, tag ___tSUBTYPED (defined in gambit.h) is
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provided to specify a memory allocated object which is also not a pair. In Gambit, a pair is also a memory

allocated object. In order to specify a pair, another tag ___tPAIR (defined in gambit.h) is provided.

However, for a scalar type only the foreign object type is required in order to map from Scheme to C. On

line 9, ___arg2 refers to type int which is the length N of vector vec. A C for loop is used to loop through

the vector, on lines 9–11, and assigns value to each element on line 10,

a_h[i] = i;

of this vector.

Note that a c-lambda function must be in a file with a .scm extension. In Gambit it is also possible to

link an external stand-alone C function in a C file from Scheme code through the c-lambda function. In this

case, c-lambda function converts data from Scheme to C and calls the C-function, but it requires another

C-interface construct c-declare to provide the forward declaration of that C function.

2.3.5 Linking a C-function using c-lambda and c-declare

Gambit also has the ability to link Scheme code to an external C function in a .c file. Therefore, Gambit

provides a C-interface construct -c-declare -to link a C function, but this must be assisted by a c-lambda

function for type conversion. Listings 2.4 and 2.5 show how a C function in a .c file can be linked from

Scheme.

In Listing 2.4 lines 1–6, a C function assign_vector_C, in a file c_function.c is linked from Scheme.

This C function takes two arguments a C-pointer a_h of type uint32_t* pointing to a vector in C, and the

length of that vector N of type int. A for loop on lines 4–6, loops through and assigns values to each element

of vector a_h.

1 //file: c_function.c

2 void assign_vector_C (uint32_t* a_h , int N ){

3 int i;

4 for (i = 0; i < N; i++){

5 a_h[i] = i;

6 }

7 }

Listing 2.4: C function assign_vector_C in c_function.c file

In Listing 2.5 we show Scheme code that calls this C function assign_vector_C. First, it calls a c-lambda

function assign_vector with two arguments - vec, and N - on line 17,

(assign_vector vec N)
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Here, vec is a Scheme vector defined on line 14. The c-lambda function on line 7 is called to convert data

types from Scheme to C. This c-lambda function also calls the C function assign_vector_C on line 11 with

two arguments,

assign_vector_C (a_h, ___arg2);

Here, a_h is the cast pointer for Scheme vector vec and ___arg2 refers to second parameter int in the

parameter list on line 7; this represents length N on line 17 of this vector. Note that on line of Listing 2.5,

type ___U32 is compatible with the type uint_32 for pointer a_h in C function assign_vector_C. Gambit

does not allow a vector to pass to a C function using ___arg prefix. The pointer must be extracted and cast

from Scheme. Then the pointer is passed to a C function. For a scalar type ___arg prefix is used for passing

it to a C function.

1 (c-declare #<<c-declare-end

2 void assign_vector_C(int* a_h , int N);

3 c-declare-end

4 )

5

6 (define assign_vector

7 (c-lambda (scheme-object int) ;;parameter list

8 void ;;return type

9 #<<c-lambda-end

10 ___U32* a_h = ___CAST(___U32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));

11 assign_vector_C(a_h , ___arg2); ;; calling C function

12 c-lambda-end

13 ))

14 (define vec (make-u32vector 512 0))

15 (define (top)

16 (let ([N (u32vector-length vec)])

17 (assign_vector vec N)

18 (display vec )))

Listing 2.5: Linking C function assign_vector_C from file scheme_driver.scm

The definition of assign_vector_C is in file c_function.c, but the call is in file scheme_vector.scm.

Therefore, a forward declaration of assign_vector_C must be provided in scheme_vector.scm. The forward

declaration for assign_vector_C is provided within the c-declare construct on line 2 of Listing 2.5:

void assign_vector_C (uint32_t* a_h, int N);

32



Finally, newly assigned values to vector vec are displayed, on line 18, as

(display vec)

We have showed how Scheme code can be linked to a sequence of C code using a c-lambda construct.

We have also showed how an external C function in a .c file can be linked using both the c-lambda and

c-declare constructs. Through our discussion, we also showed that c-lambda functions convert data from

Scheme to C types. We also found that a Scheme vector can be passed to a C function by passing the

extracted C pointer of that vector. Note that c-lambda and c-declare constructs act as interfaces to C

code. The actual linking of these subprograms to an executable program is done by the C-linker.

In Table 2.5 we show added C types for Gambit with their equivalent original C types.

Table 2.5: Compatible C types in Gambit Scheme

Scheme C
___U8 uint8_t
___S8 int8_t
___U16 uint16_t
___S16 int16_t
___U32 uint32_t
___S32 int32_t
___U64 uint64_t
___S64 int64_t
___F32 float
___F64 double

2.3.6 Gambit Scheme Compiler usage and flags

The Gambit Scheme compiler is a program called gsc. Usually gsc accepts files with the .scm extension

containing Scheme code. It also accepts .c files containing C code.

In order to generate an executable, gsc follows the following four steps:

1. First, gsc generates C code in .c files from .scm files with the same name using the command line

option -c.

2. Then the C files generated by the Gambit compiler are used by the Gambit Linker using the command

-link to generate a link file or a C file that contains various linking information. By default, the name

of the link file is suffixed with a _ , and the name is the last generated C file’s name in the command

line.

3. Next, the command line option -obj is used to compile .c files to object files with .o extensions by

gsc. This actually invokes gcc compiler internally.
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4. Finally, C compiler builds executables from those .o files.

However, gsc can use two command-line options - -o and -exe - to make an executable in a single step

by implicitly invoking the intermediate steps.

In Listing 2.6, a makefile shows how the Scheme file scheme_driver.scm in Listing 2.5 and the C file

c_function.c, in Listing 2.4 can be compiled by gsc. First, gsc uses command-line options -c to compile

scheme_driver.scm to scheme_driver.c on line 9.

gsc -c scheme_driver.scm

1 GAMBIT_DIR = /usr/local/Gambit -C

2 scheme_driver_.c: scheme_driver.c

3 gsc -link scheme_driver.c

4 gsc -obj scheme_driver.c scheme_driver_.c c_function.c

5 gcc -I$(GAMBIT_DIR )/ include\

6 -L$(GAMBIT_DIR )/lib\

7 scheme_driver.o scheme_driver_.o c_function.o -lgambc

8 scheme_driver.c: scheme_driver.scm

9 gsc -c scheme_driver.scm

Listing 2.6: gsc commands to build executable from a .scm file and a .c file

Next, gsc uses option -link to create a link file (scheme_driver_.c) by invoking the Gambit linker. The

linker gathers linking information such as all the symbols and supplied global variables from compiled C file

(scheme_driver.c on line 3.

gsc -link scheme_driver.c

Note that, scheme_driver.c is the last and only generated .c file by gsc. Therefore, the name of the

link file is scheme_driver_.c. Next, gsc creates object files scheme_driver.o, scheme_driver_.o, and

c_function.o from scheme_dri- ver.c, scheme_driver_.c, and c_function.c, on line 4,

gsc -obj scheme_driver.c scheme_driver_.c c_function.c

Here, c_function.c contains plain C code. Finally, system C compiler gcc generates default executable

a.out from object files scheme_driver.o, scheme_driver_.o, and c_function.o, on lines 5–7. The C

compiler needs to know the include path and the runtime libraries of Gambit systems. Therefore, line 5,

-I$(GAMBIT_DIR/include)
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provides the location of gambit.h header-file to C compiler using the C flag -I. On line 6,

-L$(GAMBIT_DIR/lib)

provides the location of Gambit’s runtime libraries using the flag -L.

2.4 Summary

In this chapter, we gave details about the GPU programming model. We also described the different types

of GPU memory with their features. Then we gave details about CUDA-C language constructs to develop

data-parallel programs. We also described the linking strategy of a linker. Then we described data type

mapping between Scheme to C, and the C-interfaces to link Scheme code to C code in Gambit.

The primary motivation of our work is to link Scheme code to CUDA-C kernels by generating a foreign-

function interface from Scheme that reduces hands-on memory management with reasonable overhead in

runtime. The next chapter will describe the designing of the generated interface in Gambit that links Scheme

code to CUDA-C kernels.
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Chapter 3

Design

Gambit provides special constructs to link C code with Scheme code. These special constructs can be

used in a foreign-function interface that links a CUDA-C kernel to Scheme. In this chapter we describe our

design for such a foreign-function interface.

At the beginning of this chapter we describe the necessary parts of a foreign-function interface to link

a CUDA-C kernel from Scheme. First we describe the parts designed using Scheme constructs, and next

we describe the parts of the foreign-function interface designed using CUDA-C constructs. We then we

provide the complete code of a foreign-function interface in Listings 3.2 and 3.3. Finally, we give an example

of makefile that shows the necessary command-lines to compile this foreign-function interface through

Gambit.

3.1 A foreign-function interface for linking Scheme code to a CUDA-

C kernel

In this thesis we use both Scheme and CUDA-C constructs to design our foreign-function interface. Gambit

provides C-interfaces such as c-lambda and c-declare to link C code from Scheme.

These parts of the foreign-function interface designed with Scheme constructs — referred to collectively as

the Scheme shim — reside in a file with a .scm extension. The Scheme shim links a function call in Scheme to

CUDA-C constructs of this foreign-function interface. These constructs include operations in device memory

and kernel call with execution configuration.

Those parts of the foreign-function interface designed with CUDA-C constructs — referred to collectively

as the CUDA-C shim — reside in a file with a .cu extension. The CUDA-C shim connects the Scheme shim

to a CUDA-C kernel. We separate the Scheme constructs from the CUDA-C constructs into two different

files, because Gambit forbids some standard C constructs in C-interface constructs.

In our approach, a function call in Scheme calls to a CUDA-C kernel through the both shims of this

foreign-function interface. Therefore, kernel arguments of a function call in Scheme linking to a CUDA-C

kernel are passed through both shims of this foreign-function interface to that CUDA-C kernel.

A CUDA-C kernel must be called from a C host function and the call for that kernel must have an execution

configuration. Scheme does not have any construct to define the execution configuration. Therefore, we pass
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the parameters defining a execution configuration for a CUDA-C kernel through the Scheme shim to the

CUDA-C shim, and the kernel is called from CUDA-C shim. In this foreign-function interface, the first

seven arguments of a function call in Scheme linking to a CUDA-C kernel represent execution configuration

parameters. The first three of them define x-, y- and z-dimensions of a grid; the next three defines x-, y- and

z-dimensions of a thread block; and the seventh argument defines the amount of dynamic shared memory

needed by that CUDA-C kernel. These seven arguments are not passed directly to a CUDA-C kernel. Instead,

CUDA-C shim uses them to define an execution configuration as a part of a kernel call in CUDA-C. They

are converted to C types in Scheme shim because gsc requires that Scheme to C data type conversions must

happen in C code defined with C-interfaces

The rest of the arguments of a function call in Scheme are the actual kernel arguments. They are passed

through the Scheme shim and the CUDA-C shim of this foreign-function interface to a CUDA-C kernel. Note

that these actual kernel arguments are defined in Scheme; this means they reside in host memory. They need

to be transferred to device memory for data-parallel computation by a kernel because a CUDA-C kernel can

only access device memory. Furthermore, because they are Scheme values they are also converted to C types.

In CUDA-C, the copy of a vector in device memory is actually passed to the CUDA-C kernel. Moreover,

to allocate space in device memory for each vector, the lengths of those vectors are also required. Lengths

are only available to Scheme. Therefore, lengths of Scheme vectors are also calculated in Scheme shim and

passed to CUDA-C shim to allocate space in device memory.

In many parallel applications the C code requires the vector length. Therefore we also pass lengths of

Scheme vectors to a CUDA-C kernel. The benefit of this is that programmers don’t need to send lengths

of vectors to a kernel manually. However, in cases where vector lengths may not be used for data-parallel

computation in a kernel, these extra arguments are superfluous.

The Scheme shim of this foreign-function interface links a function call in Scheme to a CUDA-C shim has

three parts:

1. A vector-length-calculation helper function calculates length of a Scheme vector passed as an argument

to a CUDA-C kernel. It takes all arguments from a function call in Scheme and calls a c-lambda

function with all the arguments it takes. For each vector it passes one extra arguments that calculates

the length of that vector.

2. A c-lambda function performs Scheme to C data type conversion and calls into the CUDA-C shim with

the converted C arguments in host memory. Data defined in Scheme does not have type information,

but CUDA-C shim needs type information for those Scheme data. We therefore need to convert those

Scheme data to C-type data.

3. A forward declaration of the CUDA-C shim entry point defined within a c-declare construct. The

c-lambda function calls the CUDA-C shim.
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The CUDA-C shim of this foreign-function interface links the Scheme shim to a CUDA-C kernel. The

CUDA-C shim executes certain operations:

• It declares a device memory pointer for each converted C vector in host memory allocating space in

device memory for each device memory pointer using the supplied lengths of vectors.

• It transfers each vector from host to device memory.

• It also defines CUDA-C built-in vector data types to define the execution configuration parameters.

• Next, the CUDA-C shim calls a kernel with the execution configuration parameters. It also passes the

actual kernel arguments to the CUDA-C kernel. Note that for a vector as kernel argument length of

that vector is also passed to the kernel.

• After a kernel finished its execution, CUDA-C shim copies vectors from device to host memory to return

resultant data.

• Finally, it deallocates device memory occupied by the device memory pointers.

In Figure 3.1 we show how our foreign-function interface links a function call in Scheme to a CUDA-C kernel.

In this diagram, the blue area represents the Scheme shim, and green represents the CUDA-C shim.
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Figure 3.1: Foreign-function interface linking a function call in Scheme to a CUDA-C kernel

In this diagram, a CUDA-C kernel is called from Scheme as a function call in Scheme
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(kernel cfg s1 s2 v ...)

Here, kernel is the name of the kernel. It passes seven execution configuration parameters which is rep-

resented by the first argument cfg. It also passes the scalars s1, s2, ... and a vector v, ... to the

CUDA-C kernel.

Each arrow in this diagram represents a direction of data flow. The following line

kernel <<< cfg >>> (s1, s2, p, l, ...);

is a kernel call in CUDA-C shim. The name of the kernel is kernel which is same as in Scheme. This is

because we want to make the name of a kernel consistent to the programmers. Changing the name in CUDA

C shim may create confusion for programmers because the name in function call would be different with the

actual definition in CUDA-C.

The arrow from cfg in function call in Scheme pointing to cfg of CUDA-C call represents the seven

execution configuration parameters passed through the Scheme shim to CUDA-C shim. These appear at the

kernel call in CUDA-C to define the execution configuration. Similarly, arrows from scalar types s1, and

s2 from function call in Scheme point to s1, and s2 in CUDA-C kernel. This signifies they passed through

the Scheme shim to the CUDA-C shim and passed to the kernel. Note that seven execution configuration

parameters and scalar types are converted to C types by Scheme Shim’s c-lambda function before passing

them to CUDA-C shim, as represented by yellow dodecagons with C.

In this diagram we also show how vector type v is passed to a CUDA-C kernel. The arrow from vector

v to the yellow triangle in Scheme shim denotes that this vector is passed to the vector-length-calculation

helper function. From this triangle one arrow is pointing to the yellow oval in Scheme shim; this denotes that

the vector will pass to the c-lambda function to cast the C pointer. The arrow from the yellow oval to the

yellow trapezoid in CUDA-C shim denotes that the C pointer is passed to the CUDA-C shim to be copied

to device memory. In order to copy this vector to device memory, the length of this vector is also required.

The length of vector v is also passed to CUDA-C shim for copy operations, as denoted by another arrow

from the yellow triangle to the same yellow trapezoid. Next, the arrow from the yellow trapezoid to the

kernel argument p of CUDA-C kernel call denotes that after the copy operation the device memory pointer

p is passed to the kernel. The arrow from the yellow triangle in Scheme shim to kernel argument l denotes

that the length of vector v is also passed to the kernel. Note that length l is exactly the same as the device

memory pointer p corresponding to the host pointer of vector v.

Finally, the arrow from p to the other yellow trapezoid in CUDA-C shim denotes that the pointer p is

copied back to host memory. The arrow from this yellow trapezoid pointing to vector v represents that after

data is copied to host memory it returns back to Scheme.
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Note that if the vector is passed to that kernel only to assign it with the kernelâĂŹs resultant data, a

vector might not need to be copied to device memory before a kernel call. Similarly, if that vector is passed

to that kernel only to serve as input vector, it might need not to be copied back to host memory after a

kernel call.

In the following sections we describe parts of Scheme shim and CUDA-C shim based on code provided in

Listings 3.2 and 3.3.

3.2 Components of Scheme shim

The aforementioned three parts of the Scheme shim perform necessary transformations to connect with

CUDA-C code from Scheme code. A function call in Scheme interacts with Scheme shim’s vector-length-

calculation helper function, which calls the c-lambda function for data type conversion. This c-lambda

function also calls the CUDA-C shim residing in a .cu file. A forward declaration of that CUDA-C shim

defined in a c-declare construct acts as an entry point.

In Listings 3.1 and 3.2 we provide code that demonstrates how a function call in Scheme actually interacts

with a Scheme shim 1. The code in Listing 3.1 shows data types defined in Scheme and a function call to

the Scheme shim. In Listing 3.2 we provide code for that Scheme shim. For this example foreign-function

interface we append Scheme shim in Listing 3.2 with the function call in Listing 3.1 in the file main.scm.

Note that our implementation generates the Scheme shim in a separate .scm file and gsc combines it with

the file that has the function call.

1 (define N 100)

2 (define src (make-u32vector N 0))

3 (define constant 786)

4 (let (( nblocks 1)

5 (blockSize N)

6 (size-int32 4)) ;----------------- cfg-------------------------- ;s ;v

7 (vector_addition nblocks 1 1 blockSize 1 1 (* (* 2 N) size-int32) constant src)

8 (display src))

Listing 3.1: Data types defined in Scheme and a call to the Scheme shim of the foreign-function

interface

The goal of calling the Scheme shim of our foreign-function interface from Scheme is to call a CUDA-C

kernel, which requires an execution configuration. Therefore, in the foreign-function interface, we are passing

seven arguments along with the actual kernel arguments through the parts of the Scheme the shim to the

1In Listing 3.2, lines 3–8, 13–24, 29–37, are code generated from our implementation. We have added some comments and
adjusted spaces to improve readability.

40



CUDA-C shim to define the execution configuration and dynamic shared memory. The first six arguments

define the execution configuration, and the seventh one defines the size of the dynamic shared memory.

To understand how this all works, we begin at the function call in Scheme to the CUDA-C kernel in

Listing 3.1 (line 7):

(vector_addition nblocks 1 1 blockSize 1 1 (* (* 2 N) size-int32) constant src)

Here, vector_addition is the name of the kernel called. This kernel takes two arguments — a constant and

a vector — from the host. Each participating GPU thread adds the constant with its corresponding element

in the list. After these parallel additions by participating threads, data is returned back to the host. Finally,

the host program displays the result.

This kernel is called with nine arguments: nblocks, 1, 1, blockSize, 1, 1, (* (* 2 N) size-int32),

constant and src. This kernel call actually calls the Scheme shim of the foreign-function interface of this

kernel. Of the first six, the first three (nblocks, 1, and 1) are passed to define the x-, y-, and z-dimensions

of the grid. Next, three more arguments (blockSize, 1, and 1) are passed to define x-, y-, and z-dimensions

of a thread block. Although this example does not need to use shared memory, the seventh argument (*

(* 2 N) size-int32), supplies the value to determine the size of dynamic shared memory. The last two

arguments (constant and src) are the actual kernel arguments that are passed through the Scheme shim

and CUDA-C shim to the CUDA-C kernel. Here, variable constant is defined in Listing 3.1 (line 3) as

(define constant 786)

and src is a Scheme vector of 32-bit unsigned integer of length N initialized to 0 which is defined on line 2 as

(define src (make-u32vector N 0))

The actual definition of kernel vector_addition is in file kernel.cu but we do not show the code. We

generate the forward declaration of this kernel with the CUDA C shim, on lines 2–3 of Listing 3.3. This takes

only three arguments: u32_constant, u32v_srcl and u32v_src_len. In this foreign-function interface, the

first seven arguments are passed through Scheme shim to CUDA-C shim to define the execution configuration

in a call to this kernel. The rest of the arguments are the actual kernel arguments passed through the Scheme

shim to the CUDA-C shim. Our implementation does not generate the body of a kernel, it just generates

the skeleton of a kernel. Therefore, in Listing 3.3, we only provide the skeleton of kernel vector_addition.

The call to vector_addition kernel on line 7 of Listing 3.1 actually calls the Scheme shim’s vector-length-

calculation helper function vector_addition, shown on lines 29–37 of Listing 3.2. Note that the name of

the CUDA-C kernel and vector-length-calculation helper function in Scheme are identical. The reason for

this is that our implementation in Gambit compiler actually generates this foreign-function interface and

41



1 ;;-------------------------------- Scheme shim Start----------------------------

2 ;; A c-declare construct to provide a forward declaration of the CUDA C shim.

3 (c-declare #<<c-declare-end

4 // forward declaration for CUDA C shim

5 void vector_addition_cu_driver ();

6

7 c-declare-end

8 )

9 ;;the c-lambda function performs data type conversion and calls the CUDA C shim

10 ;;vector_addition_scm_driver :: int * int * int * int * int *

11 ;; int * int * uint32_t *

12 ;; u32vector * int -> null

13 (define vector_addition_scm_driver

14 (c-lambda (int int int int int int int unsigned-int32 scheme-object int)

15 void

16 #<<c-lambda-end

17 // casting to C pointer

18 ___U32* host_u32v_src =___CAST(___U32*,___BODY_AS(___arg9 ,___tSUBTYPED ));

19 // calling the CUDA-C shim

20 vector_addition_cu_driver( ___arg1 , ___arg2 , ___arg3 , ___arg4 , ___arg5 ,

21 ___arg6 , ___arg7 , ___arg8 ,

22 host_u32v_src , ___arg10);

23 c-lambda-end

24 ))

25 ;;vector-length-calculation helper function

26 ;;vector_addition :: int * int * int * int * int *

27 ;; int * int * uint32_t *

28 ;; u32vector -> null

29 (define (vector_addition gDx gDy gDz bDx bDy bDz shared-size u32_constant u32v_src)

30 ;;calling the c-lambda function vector_addition_scm_driver along with the

31 ;;vector-length-calculation as an argument

32 (vector_addition_scm_driver

33 gDx gDy gDz bDx bDy bDz shared-size

34 u32_constant

35 u32v_src

36 ;;vector-length-calculation function

37 (u32vector-length u32v_src )))

38 ;;------------------------ Scheme shim End--------------------------------------

Listing 3.2: Scheme shim links a function call in Scheme to CUDA-C shim
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the CUDA-C kernel skeleton from a kernel defined in Scheme. In order to link the CUDA-C kernel from the a

function call in Scheme, we must call a part of the foreign-function interface. In this foreign-function interface,

the vector-length-calculation helper function of Scheme shim is called. We can generate a different name for

the skeleton of a CUDA-C kernel, but in that case the actual definition of that kernel in Scheme would be

different. This may create confusion for programmers. Therefore, the name of the vector-length-calculation

helper function is same as the name of the CUDA-C kernel.

In Listing 3.2 (lines 29–37) we show the code for the vector-length-calculation helper function vector_

addition that is actually called when we call the kernel from Scheme on line 7 of Listing 3.1. This helper

function has the exact same name as the CUDA-C kernel, shown on line 2 of Listing 3.3. This helper function

takes nine parameters: gDx, gDy, gDz, bDx, bDy, bDz, shared-size, u32_constant, and u32v_src, as shown

on line 29 of Listing 3.2.

3.2.1 A vector-length-calculation helper function

In Scheme shim, a vector-length-calculation helper function is used to calculate lengths of Scheme vectors

passed as arguments to a CUDA-C kernel. Before passing them to a kernel, these vectors are passed to the

CUDA-C shim to allocate space in device memory. Therefore, we need to know the lengths of these vectors

for device memory allocation. These vectors are defined in Scheme, therefore their lengths are implicit to

the Scheme environment. Since the C environment does not have access to Scheme environment, a Scheme

function needs to calculate lengths of these vectors. Therefore, in Scheme shim a vector-length-calculation

helper function — which is also a Scheme function — calculates lengths of Scheme vectors and passes them

as arguments to the c-lambda function. In the argument list, the position of length calculation for a vector is

next to it, because it is easier for programmers to recognize the length calculation for a vector. In c-lambda

function lengths are converted from Scheme to C types and passed to the CUDA-C shim to allocate device

memory for their corresponding vectors.

We show the code for the vector-length-calculation helper function vector_addition on Listing 3.2

(lines 29–37). This helper function takes nine parameters: gDx, gDy, gDz, bDx, bDy, bDz, shared-size,

u32_constant, and u32v_src. All of these parameters, along with the length-calculation function call for

the vectors, are passed to the c-lambda function.

We follow a naming convention to name the parameters used in this function. In the parameter list,

the first three parameters represents dimensions of a grid. Their names names starts with a g for grid, are

followed by a D for dimension, and end with a specific dimension, either x, y, or z. Similarly, the next three

parameters represent dimensions of thread blocks and follow almost the same naming convention. Instead

of g, they starts with a b for thread block, are followed by a D for dimension, and end with a dimension

of either x, y or z. In the parameter list, we name the seventh parameter for dynamic shared memory as

shared-size. Here, shared is for shared memory, and size is for runtime size. By looking at lines 29 and

33 in Listing 3.2, we can see that gDx, gDy, and gDz represent grid dimensions; bDx, bDy, bDz represent block
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dimensions; and shared-size represents the size of dynamic shared memory.

We also follow a naming convention to name the actual kernel arguments in this helper function by

embedding type information with the name. The naming convention for a scalar type is different from a

vector type. For a scalar type, the naming convention is

[s, u, f]SIZE _NAME

Here, the name of a scalar type starts with either an s, u or f, for signed number, unsigned number, or

floating-point number, respectively. Next, SIZE is for the size of a variable in bits. SIZE may differ based

on the type of number.

• For a signed (s) or unsigned (u) number, SIZE may be either 8, 16, 32, or 64.

• For a floating-point (f) number, SIZE is either 32 or 64.

NAME is the name of that variable defined in Scheme. There is a _ between SIZE and NAME ; this helps the

programmer to differentiate type information from the actual name. It also makes the parameter names

more readable. On line 7 of Listing 3.1, the eighth argument constant is an actual kernel argument of scalar

type. Therefore, on line 29 of Listing 3.2 it is named as u32_constant and it says that it is 32-bit unsigned

integer of scalar type. Note that seven execution configuration parameters do not have the type information

in their names because we know in advance that their types are going to be int types. This also helps the

programmer to clearly identify them from the actual kernel arguments.

For a vector in parameter list, our naming convention is

[s, u, f]SIZE v_[IN\OUT]NAME

A v in a vector-type’s name after the SIZE differentiates it from a scalar type, but in all other regards it is

the same. Two optional notations - either IN or OUT - after v_ specify a direction of a copy operation

for a vector between host and device memory. Here, IN specifies that a vector is only copied to device from

host memory, and will not be copied back to host memory after the execution of a kernel. OUT specifies

that a vector is to be only copied back to host from device memory after the execution of a kernel. Initially,

it is not copied to device memory before a kernel call. If neither IN not OUT is specified then a vector is

copied back and forth between host and device memory. We provide these two optional notations to avoid

unnecessary memory transfer operations that create runtime overhead. It also helps programmers to identify

copy operations related to a vector.

For a vector type in this foreign-function interface, we declare a device pointer, allocate device memory,

and copy data back and forth to its corresponding host memory pointer. However, for a scalar type we don’t

need to perform these operations. We put v after the type information of a vector type since there are extra

operations for a vector type. The optional notation [IN\OUT] after v_ specifies the direction of vector

44



transfer operation. On line 7 of Listing 3.1, the ninth argument src is a vector of 32-bit unsigned integers.

Therefore, it appears as u32v_src in parameter list on line 29 of Listing 3.2. u32v_src does not have any

optional symbol IN or OUT that specifies whether that this vector will be transferred to device from host

memory before a kernel call, and returned back to host memory afterwards.

In our implementation, the parameters of a kernel defined in Scheme follow exactly the same naming

conventions for scalar and vector types. Our implementation generates type information in the foreign-

function interface based on embedded type information in a kernel’s parameter names.

In Listing 3.2 (lines 32–37), the vector-length-calculation helper function calls the c-lambda function

vector_addition_scm_driver with ten arguments: gDx, gDy, gDz, bDx, bDy, bDz, shared-size, u32_constant,

u32v_src, and (u32vector-length u32v_src). Here, the ninth argument u32v_src is a Scheme vector.

Therefore, this helper function calculates the length of this vector as it is the tenth argument of the c-lambda

call, shown on line 37

(u32vector-length u32v_src)

Here, u32v_src is a vector for 32-bit unsigned integers. Therefore, we use the Scheme-library function

u32vector-length for length calculation, which is compatible with this type of vector. Note that these

length calculation library functions must be compatible with the types of vectors defined in Scheme.

3.2.2 A c-lambda function

In the Scheme shim, the c-lambda function is called from the vector-length-calculation helper function. In

parameter list of a c-lambda function, the first six parameters describe the execution configuration and

the seventh describes the size of dynamic shared memory to be defined in CUDA-C shim. The rest of the

parameters are the actual kernel arguments and lengths of vectors. In the parameter list, if a parameter is an

actual argument and it is a vector, then the next parameter will be the length of that vector. The c-lambda

function performs Scheme to C data type conversions, executes casting operations for Scheme vectors, and

calls the CUDA-C shim with the converted C parameters. In Listing 3.2 (lines 13–24), we provide the

definition of the c-lambda function vector_addition_scm_driver.

In this example, vector_addition_scm_driver takes ten parameters. On line 14, the parameter list:

(int int int int int int int unsigned-int32 scheme-object int)

shows types for the parameters, because a c-lambda special form only accepts types of its parameters in the

parameter list. The last three are actual kernel arguments and the type unsigned-int32 is the type for the

argument u32_constant, in line 34. Then, the type scheme-object is the type for the argument Scheme

vector u32v_src, in line 35, and the last parameter int type is for the argument vector-length-calculation

on line 37
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(u32vector-length u32v_src)

Note that this type information is used during the time of compilation by the Gambit compiler to link with

C code.

In the CUDA-C shim, we need to allocate device memory for each vectors; therefore, we need to convert

each Scheme vector to its corresponding C type pointer. Gambit provides library functions in C for casting

Scheme vectors to C pointers and only allows those library functions in c-lambda or c-declare constructs.

Therefore, the pointer-casting operation must be done within a c-lambda or a C-function defined within a

c-declare construct. Both of these constructs must also be defined in a .scm file. Therefore, the pointer-

casting operations for the Scheme vectors in this foreign-function interface reside in the Scheme shim’s

c-lambda function in main.scm file. Note that this c-lambda function calls the CUDA-C shim.

In this example, pointer-casting operations and the call to the CUDA-C shim can also be defined in a C

function within a c-declare construct. Because Gambit compiler does not allow a C function in a c-declare

construct to be linked from a different file, that C function cannot have any external linkage. We cannot

use the simpler c-declare in our implementation because we generate this foreign-function interface in a

different file. Instead we put the pointer-casting operations and a call to the CUDA-C shim in a c-lambda

function, like an interface generated by our implementation. We also put a forward declaration of CUDA-C

shim within a c-declare construct.

The pointer-casting operation for the Scheme vector of type scheme-object to its corresponding Gambit

allowed C type is shown on line 18 of Listing 3.2,

___U32 *host_u32v_src = ___CAST(___U32*,___BODY_AS(___arg9, ___tSUBTYPED));

This operation extracts the pointer of the parameter ___arg9 (referring to the type scheme-object, which

is the ninth parameter in the parameter list, shown on line 14 of Listing 3.2) from Scheme using macro

___BODY_AS. Here, a tag ___tSUBTYPED in ___BODY_AS specifies that it is a memory allocated object. Next,

___CAST macro performs the type casting for the extracted pointer to type ___U32 because ___arg9 is a

vector of unsigned 32-bits integers. The pointer is then assigned to a ___U32 variable host_u32v_src. The

C pointer type ___U32 is defined in gambit.h along with ___U64. In this example note that the C pointer

type ___U32 is used because the vector contains 32-bit unsigned-integers defined on line 2 of Listing 3.1.

We follow a naming convention to name the cast-pointer for a Scheme vector, and it is

host_[u, s, f]SIZE v_[IN\OUT]NAME

The name of a pointer starts with a prefix host, followed by the same naming convention used in the vector-
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length-calculation helper function. The prefix host signifies that it is a host memory pointer in C and needs

to be copied to device memory by the CUDA-C shim. Type representation information is also embedded

with it. This helps maintenance programmers to recognize the appropriate type in CUDA-C shim for further

improvement of our implementation. In this example, the vector src is defined in Scheme. In the helper

function it becomes u32v_src and in the c-lambda function it becomes host_u32v_src. Note that this

consistent changing of names in different parts of Scheme shim helps to clearly identify the appearances of a

vector with different names and purposes.

Finally, we call the CUDA-C shim, vector_addition_cu_driver, with ten arguments (lines 20–22):

vector_addition_cu_driver( ___arg1, ___arg2, ___arg3, ___arg4, ___arg5, ___arg6, ___arg7,

___arg8, host_u32v_src, ___arg10);

We pass all the parameters of the c-lambda function to the CUDA-C shim. In the argument list, the first

seven arguments (___arg1, ___arg2, ___arg3, ___arg4, ___arg5, ___arg6 and ___arg7) refer to the first

seven int type parameters in the parameter list on line 14. The eighth argument (___arg8) refers to the type

unsigned-int32 in the parameter list. For the Scheme vector, we do not pass the type scheme-object, but

rather the converted C value host_u32v_src. We also pass the length computed by the helper function in

Listing 3.2 (line 37) of the converted C type vector. This is the last argument, ___arg10, which refers to the

last parameter type int in the parameter list on line 14. Note that the scalar types int and unsigned-int32

shown on line 14 of Listing 3.2 are auto-converted to C by c-lambda.

3.2.3 A forward declaration of CUDA-C shim

A forward declaration for the CUDA-C shim function must be given within a c-declare construct because

the actual definition for the CUDA-C shim resides in file kernel_driver.cu along with the CUDA-C kernel

forward declaration. In Listing 3.3 our c-lambda function calls the CUDA-C shim, which resides in the file

main.scm. The Gambit-compiler compiles that main.scm to a main.c . When nvcc compiles this main.c,

and finds a call to the CUDA-C shim, but the definition of the CUDA-C shim is not in main.c file, then it

gives a link-time error. Therefore, we need the forward declaration for the CUDA-C shim.

In Listing 3.2 (lines 3–8) we provide the code of a forward declaration for the CUDA-C shim function

vector_addition_ cu_driver within a c-declare construct. On line 5

void vector_addition_cu_driver();

is the forward declaration for the CUDA-C shim.
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3.3 Operations of CUDA-C shim

The CUDA-C shim links the Scheme shim to the programmer-supplied CUDA-C kernel by connecting to the

c-lambda function in the Scheme shim. CUDA-C shim allocates space in device memory for each vector and

transfers each vector from host memory to the allocated device memory space. It also defines the variables,

specifying execution configuration for a kernel. It then calls the kernel with the actual kernel arguments and

the vector lengths. After kernel execution, the CUDA-C shim copies back each vector from device to host

memory. Finally, it deallocates space for each vector from device memory.

On lines 7–32 of Listing 3.3 we provide code for the CUDA-C shim2 vector_addition_cu_driver used

in this sample foreign-function interface. It resides in the same file (kernel_driver.cu) with the forward

declaration of CUDA-C kernel vector_addition on lines 2–3. The programmers must supply the actual

definition of the CUDA-C kernel in a separate .cu file. The advantage of this separation is that programmers

can change the Scheme source without touching the kernel definition.

We follow a naming convention to name the CUDA-C shim function KERNEL-NAME _cu _driver in out

implementation. Here, KERNEL-NAME is the name of a kernel, cu is for CUDA, and driver indicates that

the this function calls a CUDA-C kernel. Our implementation generates CUDA-C shims for multiple kernels

in the same file, so this naming convention helps programmers to identify a CUDA-C shim for a particular

kernel.

In CUDA, because .cu files are effectively compiled as C++ files functions within .cu files need to be

declared as extern "C" in order to be visible by C functions in ordinary .c files. Therefore, we declare

the CUDA-C shim as extern "C" on line 7 because it is linked from the compiled c-lambda function (the

Gambit compiler compiles the c-lambda function into a C function) in a main.c file.

In the following sections we describe the operations of the CUDA-C shim vector_addition_cu_driver.

It is called from the c-lambda function in Listing 3.2 (lines 20–22), and it takes ten parameters: gDx, gDy, gDz,

bDx, bDy, bDz, shared_size, u32_constant, h_u32v_src and h_u32v_src_len. The first six parameters

are passed to define the execution configuration and the seventh one is passed to define the size of the dynamic

shared memory.

We follow the same naming convention used in vector-length-calculation helper function to name the

parameters defining grid and thread blocks in CUDA-C shim. The dimensions of a grid start with g for

grid, D for dimension, and either dimension x, y or z at the end. Similarly, dimensions of thread block start

with b for block and are followed by D, and either x, y, and z. The seventh parameter for shared memory

(shared-size) is same as it is in the Scheme shim’s helper function on line 29 of Listing 3.2.

The eighth parameter, u32_constant, is an actual kernel argument and is passed to the CUDA-C kernel.

Note that we do not change the name and scalar parameter as it is first used in Scheme shim’s helper function

2This CUDA-C shim is a generated code by our implementation. We have added some comments and adjusted spaces to
improve readability.
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on line 29 of Listing 3.2. We follow the exact same naming convention for the scalar parameters as they are

in the Scheme shim helper function. For scalar types we do not need to provide extra copy operations in a

CUDA-C shim.

1 // -----------------------------kernel forward declaration -----------------------

2 __global__ void vector_addition (uint32_t u32_constant , uint32_t* u32v_src ,

3 int u32v_src_len );

4

5 // -----------------------------Kernel forward declaration -------------------------

6 // -----------------------------CUDA -C shim Start ----------------------------------

7 extern "C" {

8 void vector_addition_cu_driver (int gDx , int gDy , int gDz , int bDx ,

9 int bDy , int bDz , int shared_size ,

10 uint32_t u32_constant , uint32_t* h_u32v_src ,

11 int h_u32v_src_len ){

12 // device pointers

13 uint32_t* d_u32v_src;

14 // calculating the size of device memory

15 size_t size_u32v_src = h_u32v_src_len * sizeof(uint32_t );

16 // allocating device memory

17 cudaMalloc ((void **) &d_u32v_src , size_u32v_src );

18 // copying host to device

19 cudaMemcpy(d_u32v_src , h_u32v_src , size_u32v_src , cudaMemcpyHostToDevice );

20 // defining Grid configuration

21 dim3 dimGrid(gDx , gDy , gDz);

22 // defining Block configuration

23 dim3 dimBlock(bDx , bDy , bDz);

24 size_t size = shared_size;

25 //Now , at this point it calls the kernel

26 vector_addition <<< dimGrid , dimBlock , size >>> (u32_constant , d_u32v_src ,

27 h_32v_src_len );

28 // copying device to host

29 cudaMemcpy(h_u32v_src , d_u32v_src , size_u32v_src , cudaMemcpyDeviceToHost );

30 // deallocation of device memory

31 cudaFree(d_u32v_src );

32 }

33 }

34 // -------------------------------------CUDA -C shim End -----------------------------

Listing 3.3: CUDA-C shim links Scheme shim to CUDA-C kernel
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The ninth parameter, h_u32v_src, is a C pointer type vector for which we cast the Scheme vector

in c-lambda function in the Scheme shim on line 18 of Listing 3.2. We change the naming convention

as it is used in the c-lambda function with a slightly change: instead of host, it starts with a h and

followed by the same naming convention as it is used in the Scheme shim’s c-lambda function as h_[u, s,

f]SIZE v_[IN\OUT]NAME . We reduce the size because the C pointer of a vector appears in many operations

in CUDA-C shim. We try to fit those operations on single lines to make the program readable.

In this example we can also check types for both scalar and vector types by looking at their names. Here,

type for scalar type u32_constant is uint32_t on line 10; this is consistent with the name. For vector type

h_u32v_src, its type is uint32_t*. It is a pointer because of *, and in its name we find a v for that.

In this foreign-function interface, we do not pass the C pointer h_u32v_src to the CUDA-C kernel because

it is a pointer to host memory. In CUDA, a vector in host memory is not passed to the kernel; rather, a

vector is copied to device memory and the pointer to that device memory is actually passed to the kernel.

Therefore, h_u32v_src is available to the kernel. We pass it to the CUDA-C shim for copying the vector

to device memory it is pointing, and the pointer to that device memory is passed to the kernel.

The last parameter, h_u32v_src_len, is the length of the vector pointed by h_u32v_src. It is passed to

the CUDA-C shim to allow for correct allocation in device memory where the vector pointed by h_u32v_src

is copied. It is also not an actual kernel argument. We follow a naming convention to name the parameter

defining length of a C pointer. We add the suffix _len after the name of the C pointer to help programmers

to identify a length associated with its C pointer easily.

Note that we follow consistent changing of name conventions for a Scheme vector passing from Scheme

shim to CUDA-C shim. We can clearly understand that h_u32v_src is a C pointer of vector src which is

defined in Scheme on line 2 of Listing 3.1, where h_u32v_src_len is its length. On line 7 of Listing 3.1,

vector src is passed through as a kernel argument to vector-length-calculation helper function as u32v_src,

on line 29 of Listing 3.2. It becomes host_u32v_src on line 18 of Listing 3.2 as a C pointer in c-lambda

function by extracting Scheme vector src before passing it to the CUDA-C shim.

3.3.1 Allocation of device memory for each vector

In the CUDA-C shim we need to allocate device memory for each vector and copy each vector to device

memory. Therefore, the C pointer for a Scheme vector, along with its length, is passed through the c-lambda

function of Scheme shim to this CUDA-C shim. Note that for each vector both host and device memory

pointers must be same type and size. The foreign-function interface does the device memory allocation as

well as performs data transfer operations between the host and device memory. The advantage here is that

programmers only need to define vectors in Scheme.

In Listing 3.2, we generate the following pointer in device memory on line 13

uint32_t* d_u32v_src;
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Our naming convention to name a device pointer is almost like its corresponding host pointer. Instead

of h, it starts with a d for device pointer. It is same as defined in Scheme shim’s vector-length-calculation

helper function. It also carries type information as in the Scheme shim. The actual name defined in Scheme

is src. This helps programmers to identify, for which Scheme vector a device memory pointer is declared. It

also helps to identify the associated host pointer and cast-pointer in the c-lambda function.

We calculate size in bytes to allocate space in device memory as on line 15:

size_t size_u32v_src = h_u32v_src_len * sizeof(uint32_t);

We use the supplied length (h_u32v_src_len), of C pointer (h_u32v_src) and the size of information for its

type. The variable size_u32v_src of type size_t is used to allocate space in device memory. We also follow

a naming convention to name this variable. It starts with a prefix size and is followed by the same naming

convention used in Scheme shim’s helper function. This naming convention helps the future improvement

programmers to identify the device pointer for which this is calculated. In this case, the device pointer

is h_u32v_src. It also helps to check the host pointer and its corresponding length variable in CUDA-C

shim. In this example, the host pointer is h_u32v_src, and its length (h_u32v_src_len) is used in the size

calculation for device memory.

After getting the size, we allocate space in device memory (line 17), denoted by

cudaMalloc((void **) &d_u32v_src, size_u32v_src);

for the device memory pointer d_u32v_src using CUDA-C library function cudaMalloc. At this point, device

memory is allocated by the host memory data pointed by h_u32v_src.

3.3.2 Transferring vectors from host to device memory

Vectors defined in Scheme are actually in host memory. In this example, the vector made available to the

kernel is passed through the foreign-function interface to a kernel. In Scheme shim, we can get the length of

the vector and the cast C pointers of those Scheme vectors, passing each of them to CUDA-C shim to allocate

space in device memory. From here the vectors can be copied from the host to device memory because a

CUDA-C kernel can perform data-parallel operations only in device memory.

In Listing 3.3 (line 19), the vector pointed by C pointer h_u32v_src is copied to device memory pointed

by d_u32v_src using CUDA-C library function cudaMemcpy.

cudaMemcpy(d_u32v_src, h_u32v_src, size_u32v_src, cudaMemcpyHostToDevice);

size_u32v_src specifies the size in bytes for this copy operation, which is the individual lengths of allocated

spaces by these two pointers. cudaMemcpyHostToDevice specifies that data is to be copied from host to
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device memory.

Host to device memory transfer is not needed for a vector if the notation OUT is mentioned after v_ in the

name of that vector. For example, if vector u32v_src is written as u32v_OUTsrc then the host pointer for

vector u32v_OUTsrc shim would appear as h_u32v_OUTsrc in CUDA-C. Then, the device memory pointer

would then appear as d_u32v_OUTsrc. Here, OUT in specifies that it is not necessary for host memory pointer

h_u32v_OUTsrc to be copied to device memory pointer d_u32v_OUTsrc using library function cudaMemcpy()

. For this reason, line 19 is not needed for these two pointers d_u32v_OUTsrc and h_u32v_OUTsrc to avoid

host to device memory transfer.

3.3.3 Defining built-in vector data types for an execution configuration

CUDA-C extension provides built-in structures as runtime components. Structures such as dim3 are used to

define variables for specifying dimensions of thread blocks and grid for a kernel execution configuration. In

the CUDA-C shim of the example’s foreign-function interface, the first six parameters (gDx, gDy, gDz, bDx,

bDy and bDz) are passed to define dimensions of a grid and thread blocks.

On line 21 we define x-, y- and z-dimensions of a grid as:

dim3 dimGrid(gDx, gDy, gDz);

Here, dim3 type structure dimGrid takes three parameters: gDx, gDy, and gDz. These represent x-,y-, and

z-dimensions. We name this variable dimGrid, where dim is for dimension and Grid is for a grid of thread

blocks. We do not specify any dimension x, y, or z, because it is a dim3 vector that takes three arguments

to define three dimensions of a grid for an execution configuration.

On line 23 we define the dimensions of thread blocks as:

dim3 dimBlock(bDx, bDy, bDz);

Here, structure dimBlock takes three parameters: bDx, bDy, and bDz. These define x-,y-, and z-dimensions.

We name this variable dimBlock, where dim is for dimension and Block is for thread blocks. Since it takes

three arguments to specify three dimensions and its type is dim3, this variable clearly states that it contains

dimension of a thread block for an execution configuration.

In the function call in Scheme on line 7 of Listing 3.1,

(vector_addition nblocks 1 1 blockSize 1 1 (* (* 2 N) size-int32) constant src)

the arguments nblocks, and blockSize define x-dimensions for a grid and thread blocks, respectively.

dimGrid and dimBlock variables require three dimensions. Therefore, four 1s are also passed to the CUDA-C

shim to define y- and z-dimensions both for a grid and thread blocks.
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3.3.4 Calling the kernel with an execution configuration

In this foreign-function interface, a CUDA-C kernel is called with an execution configuration via the CUDA-C

shim. We define two dim3 type variables to specify dimensions of grid and thread blocks. In the parameter

list of this CUDA C shim, kernel arguments are u32_constant of type uint32_t and h_u32v_src of type

uint32_t*. Note that h_u32v_src is a host memory pointer, therefore it is not passed to the CUDA-C

kernel. Instead, device memory-pointer d_u32v_src and size h_u32v_src_len of type int are passed to

the kernel, which has the same type and size of pointer as h_u32v_src.

In this example we are also passing the Scheme expression, ((* (* 2 N) size-int32)) on line 7 of

Listing 3.1 as the seventh argument to the CUDA-C shim to define the size of the dynamic shared memory.

The seventh parameter of CUDA-C shim shared_size of type int on line 9 of Listing 3.3 contains the size

of dynamic shared memory. But we need to assign it to a variable of type size_t. Because it is the type to

define the size of dynamic shared memory in an execution configuration, we need to assign it to a variable of

type size_t. On line 24,

size_t size = shared_size;

assigns variable shared_size to variable size of type size_t. Next, we call the kernel vector_addition

with the actual kernel arguments u32_constant and d_u32v_src along with an execution configuration as

on line 26:

vector_addition <<< dimGrid, dimBlock, size >>> ( u32_constant, d_u32v_src,

h_u32v_src_len );

In execution configuration, dimGrid and dimBlock define the grid and thread blocks organizations, respec-

tively. size defines the size of the dynamic shared memory. At this point, the GPU kernel execution is

initiated.

In Listing 3.3 (lines 2–3), we provide a forward declaration for kernel vector_addition because it is the

definition of this kernel is in another .cu file. vector_addition takes three parameters: u32_constant of

type uint32_t, u32v_src of type uint32_t*, and u32v_src_len of type int . We followed naming con-

ventions here for a scalar type [u, s, f]SIZE _NAME and for a vector type [u, s, f]SIZE v_[IN\OUT]NAME .

This naming convention is exactly the same as was used in the Scheme shim’s vector-length-calculation helper

function. It helps programmers to identify which arguments are passed through from Scheme to a kernel.

Although the name of length parameter u32v_src_len does not reflect its type, it is identifiable that

u32v_src_len is the length for vector u32v_src.

3.3.5 Transferring results from device to host memory

When a kernel finishes its execution, the CPU may need the result. Since a CUDA-C kernel performs data-

parallel operations only in device memory, we need to transfer resultant data from device to host memory.
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We already know that CUDA-C provides library function cudaMemcpy for the memory transfer operations.

In Listing 3.3 (line 29),

cudaMemcpy(h_u32v_src, d_u32v_src, size_u32v_src, cudaMemcpyDeviceToHost);

cudaMemcpy copies data to host memory pointed by h_u32v_src from device memory pointed by d_u32v_src.

CUDA memory copy type, cudaMemcpyDeviceToHost specifies that data is to be copied to host from device

memory. The argument size_u32v_src is the size of both vectors. Note that the host pointer h_u32v_src

represents the Scheme vector src. After the kernel finishes its execution, resultant data is copied from device

to host memory pointed by h_u32v_src. In Scheme, host pointer h_u32v_src is actually the vector src, so

we can access the result from Scheme as shown on line 8 of Listing 3.1.

Device to host memory transfer is not needed for a vector if the notation IN is mentioned after v_

in the vector name. For example, device memory pointer d_u32v_INsrc for vector u32v_INsrc will not

be copied to host memory pointer h_u32v_INsrc after the kernel execution using CUDA library function

cudaMemcpy() . Line 29 is therefore not needed for these two pointers (d_u32v_INsrc and h_u32v_INsrc)

to avoid device to host memory transfer.

3.3.6 Freeing device memory

In this foreign-function interface, a device memory space pointed by a device memory pointer is freed after

copying data to host memory because the device memory copy is no longer needed. CUDA provides the

library function cudaFree to free device memory. In this example, we free the device memory by passing the

device memory pointer d_u32v_src to cudaFree on line 31 of Listing 3.3:

cudaFree(d_u32v_src);

In CUDA-C, the same device memory pointer can be reused in an another kernel, but we do not send the

same device memory pointer to an another kernel in our implementation. A more sophisticated Scheme shim

might recognize repeated use of a Scheme vector and reuse device memory. Therefore, if we want to pass

the same Scheme vector to a different kernel, it must be passed through the foreign-function interface of that

kernel. In this case, another C pointer of that vector is copied to a different device memory space pointed by

a different device memory pointer from that interface.

Our implementation in Gambit Scheme compiler generates both shims to link Scheme to CUDA-C kernels.

The whole linking process is transparent to the programmers. Therefore, they do not need to see the both

generated shims. However, our implementation also allows programmers to retain both shims as temporary

files for debugging purpose after building a GPU executable. Since the shims are transparent and any

intentional changes in the temporary generated shims do not affect an executable, we do not use the constant
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keyword to declare the generated parameters and variables as constants in both shims.

3.4 Gambit command-line options to build a GPU executable

For this example we compiled three files - – main.scm, kernel_driver.cu, and kernel.cu — through the

Gambit compiler gsc to use the CUDA C compiler nvcc, for building a GPU executable. In order to do this,

we extended the Gambit compiler so that it accepted the .cu file extension. Here, gsc compiles Scheme code

to C code. Then it forwards C code internally to the nvcc compiler; then nvcc compiles generated C code to

object code. Therefore, gsc is also a compiler driver since it forwards generated C code to nvcc internally.

Both a CUDA-C shim and the CUDA-C kernel must be in .cu files. In this example, CUDA C shim is in

kernel_driver.cu and the kernel definition is in kernel.cu. We also identify gsc command-line options

for passing appropriate compiler flags to nvcc compiler.

gsc uses command-line options -o and -exe to build an executable. We need to use gsc command-

line options ’-cc-options’ to pass the directories of header files, and ’-id-options-prelude’ to pass the

directories of runtime libraries of both Gambit and CUDA to nvcc compiler.

In order to compile this example program, gsc first compiles main.scm to main.c containing the compiled

C code. gsc also generates the incremental link file main_.c by implicitly invoking option -link. gsc

also implicitly invokes option -obj to compile main.c, main_.c, and kernel_driver.cu to objects files

main.o, main_.o, and kernel_driver.o. This is done by implicitly invoking nvcc, as nvcc invokes the GNU

gcc compiler. Finally, gsc invokes nvcc to compile main.o, main_.o, kernel_driver.o, and kernel.o to

generate GPU executable.

1 GAMBIT_DIR = location of the Gambit installation directory

2 CUDA_DIR = location of the CUDA installation directory

3 CC = $(GAMBIT_DIR )/bin/gsc

4 INCLUDE_DIR = "-I $(CUDA_DIR )/ include -I $(GAMBIT_DIR )/ include"

5 LIB_DIR = "-L $(CUDA_DIR )/lib64 -lcuda -lcudart -L $(GAMBIT_DIR )/lib"

6 SRCS = main.scm kernel_driver.cu kernel.cu

7 EXE = kernel.exe

8

9 $(EXE): $(SRCS)

10 $(CC)

11 -cc-options $(INCLUDE_DIR)

12 -ld-options -prelude $(LIB_DIR)

13 -keep -c -o $(EXE) -exe $(SRCS)

Listing 3.4: A makefile to build a GPU executable through the extended Gambit compiler

In Listing 3.3 we provide the command-line options in a makefile to compile main.scm, kernel_driver.cu,

and kernel.cu into a GPU executable (kernel.exe). The code for main.scm is shown in Listings 3.1 and
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3.2, and code for kernel_driver.cu shown in Listing 3.3. Note that we do not show the definition of kernel

vector_addition in file kernel.cu.

We use constants to generalize this makefile. On line 1 of Listing 3.3, constant GAMBIT_DIR specifies the

path of the Gambit installation directory. On line 2, CUDA_DIR specifies the CUDA installation directory.

Programmers must supply these two paths according to their installation destination.

On line 3, CC specifies path for the Gambit compiler executable gsc as

CC = $(GAMBIT_DIR)/bin/gsc

On line 4, INCLUDE_DIR specifies the directories of header files CUDA, $(CUDA_DIR)/include, and Gambit

$(GAMBIT_DIR)/include

INCLUDE_DIR = "-I $(CUDA_DIR)/include -I $(GAMBIT_DIR)/include"

Here, C compiler flag -I is used to indicate the paths for header files. Directories of runtime libraries are

specified by LIB_DIR on line 5

LIB_DIR = "-L $(CUDA_DIR)/lib64 -lcuda -lcudart -L $(GAMBIT_DIR)/lib"

Here, $(CUDA_DIR)/lib64 is the directory for the CUDA runtime library and $(GAMBIT_DIR)/lib is the

directory for Gambit. -lcuda and -lcudart are provided to link objects files main.o, main_.o, kernel.o,

and kernel_driver.o with library files libcuda.dylib and libcudart.dylib in standard library directory.

C flag -L is used to specify the locations of runtime libraries. On line 6, SRCS is used to specify the sources

main.scm, kernel_driver.cu, and kernel.cu. On line 7, EXE specifies the GPU executable kernel.exe.

The options -o and -exe on line 13 of Listing 3.4 tell gsc compiler $(CC) on line 10 to build the

executable $(EXE) from the sources main.scm, kernel_driver.cu and kernel.cu (represented by ($SRCS))

by implicitly invoking nvcc.

On line 11, command-line option

-cc-options $(INCLUDE_DIR)

passes both directories of header files for the Gambit compiler and CUDA to nvcc. On line 12, command-line

option

-ld-options-prelude "$(LIB_DIR)"

passes the directories of runtime libraries for Gambit and CUDA to C linker. This is also invoked by nvcc.

Gambit command line option -keep-c on line 13 of Listing 3.4 keeps temporary files main.c and main_.c

generated by gsc.
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Note that this makefile generates a GPU executable from Scheme with the provided foreign-function

interface and a provided CUDA-C kernel. It cannot handle the generation of the foreign-function interface

from Scheme. For our implementation, we provide a template makefile that generates the foreign-function

interface from a Scheme binding. Then, it builds a GPU executable from the provided CUDA-C kernels and

the C files generated by Gambit.

In Chapter 1, we discussed how the OpenCL framework that supports diverse data-parallel platforms

including CUDA GPUs, some ATI GPUs, multi-core CPUs from Intel and AMD. OpenCL shares some

core ideas with CUDA. Both of them have similar platform models, memory models, execution models and

programming models [5, 11]. Like CUDA, the OpenCL programming model also consists of a host, and

one or more devices that are massively parallel processors. It also has similar device memory spaces such

as global memory, constant memory, local memory (termed as shared memory in CUDA), private memory

(termed as local memory in CUDA). Moreover, syntax for various keywords and built-in functions are almost

identical to each other. A GPU thread in OpenCL is called a work item and a thread block is called a work

group [32]. In OpenCL, it is also required to define an execution configuration to lunch a kernel like CUDA.

Programmers also need to manage memory transfer operations between host and device memory.

Hence, it is also possible to link Scheme or other functional languages to data-parallel OpenCL by gen-

erating shims similar to those discussed earlier in this chapter. In order to do this, high-level languages

should have foreign-function interface support, like Gambit’s c-lambda or c-declare constructs, to link

data-parallel OpenCL code. Moreover, the shims should also contain data-type mapping-operations from

high-level languages to low-level OpenCL, memory-transfer operations between host and device memory,

kernel-call primitives in OpenCL with execution configuration, and allocation/deallocation operations.

3.5 Summary

In this chapter we show that a CUDA-C kernel can be linked from Scheme by a foreign-function interface

comprised of both Scheme and CUDA-C constructs. In our example, when a kernel is called from Scheme

this, in fact, calls the Scheme shim of our foreign-function interface is actually called. It calculates lengths of

vectors, converts data from Scheme to C types, casts C pointers for Scheme vectors, and calls the CUDA-C

shim of our foreign-function interface. A CUDA-C shim allocates space in device memory and transfers data

between host to device memory for each vector. It also defines CUDA built-in vectors for the execution

configuration and calls the kernel along with execution configuration.

This example offers the necessary parts of a foreign-function interface we want to generate. For our

implementation, we provide new special forms in Scheme for GPU computation. We also follow a strict

naming convention to name the parameters of a kernel binding in Scheme. This is because Scheme does not

provide type information, whereas CUDA-C requires type information for its data types. Therefore, we need

to extract type information for kernel parameters from Scheme. While we can use type-inference techniques

57



to infer the type of a kernel’s parameter, it may not be time- and cost-effective for this project. In our

implementation, acceptable prefixes for kernel parameters are as follows:

• u8[v]_[IN\OUT]NAME for 8-bit unsigned-integers

• s8[v]_[IN\OUT]NAME for 8-bit signed-integers

• u16[v]_[IN\OUT]NAME for 16-bit unsigned-integers

• s16[v]_[IN\OUT]NAME for 16-bit signed-integers

• u32[v]_[IN\OUT]NAME for 32-bit unsigned-integers

• s32[v]_[IN\OUT]NAME for 32-bit signed-integers

• u64[v]_[IN\OUT]NAME for 64-bit unsigned-integers

• s64[v]_[IN\OUT]NAME for 64-bit signed-integers

• f32[v]_[IN\OUT]NAME for 32-bit floating-point numbers

• f64[v]_[IN\OUT]NAME for 64-bit floating-point numbers

Including v after the size of a number is optional and is used only for vector types. In this chapter, we also

identify necessary command-line options of the Gambit compiler to compile the foreign-function interface

through the nvcc compiler.
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Chapter 4

Implementation

In this chapter we discuss our implementation using Gambit to link a CUDA-C kernel from Scheme. Our

implementation generates the interface from a Scheme binding of a kernel skeleton that contains the name

of the kernel and the parameters that have type information in their names.

We begin this chapter with a discussion of new, special constructs for our implementation in Gambit for

GPUs. Second, we describe how to extract necessary information from those constructs in the form of parse

tree nodes to generate the foreign-function interface. Third, we discuss how to generate of the foreign-function

interface by using this extracted information. Fourth, we demonstrate how to convert a special construct

for calling a kernel into an ordinary Scheme function call that links the generated foreing-function-interface

and a CUDA-C kernel. Fifth, we also discuss some useful library functions in Scheme for GPUs that enables

Scheme programmers to manage GPUs from Scheme. Finally, we describe a template makefile that can

manage interface generation from a Scheme bindings of a kernel skeleton and build a GPU executable from

a provided CUDA-C kernel.

4.1 Special forms for GPU

Our implementation in Gambit generates interfaces from Scheme bindings that call CUDA-C kernels. These

Scheme bindings must contain special keywords that enable Gambit compiler to generate the interfaces.

Therefore, we provide some special forms in Scheme for GPU computation in Gambit. These special forms

differentiate new, special forms for GPU computations from normal Scheme special forms for CPU compu-

tations.

4.1.1 Special form for a kernel

In CUDA, kernels are used for extensive data-parallel operations on GPUs. We provide a special form in

Scheme to define a kernel, as follows:

(define kernel-name

(kernel (parameter-list ...)

expression ...))

In our implementation, a kernel skeleton is a top-level definition because it must be visible for other
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Scheme constructs to call it. Here, kernel-name is the name of a kernel. The keyword kernel specifies that

this is a special form that runs on GPUs. Next, parameter-list defines the parameters it takes. In this

thesis, we follow a naming convention for the kernel parameters. expression defines a sequence of Scheme

expressions in its body. Note that our implementation in Gambit does not compile the body of a kernel.

Gambit can recognize the body of a kernel definition and extract the body of that kernel but it does not

generate code for it. Therefore, Scheme programmers do not need to provide expression and define the

body of a kernel skeleton. We provide this body expression as future work for this thesis.

In CUDA-C, keyword __global__ specifies a C function as a kernel that runs on GPUs and is only

callable from host functions. However, global as a term in programming language is usually used to refer to

an object that has global scope; this does not reflect the idea that it is a kernel or a special function that

runs on GPUs. Therefore, we prefer the keyword kernel over global in a top-level definition to specify a

kernel in Scheme for Gambit.

In our implementation, kernel definitions are similar to lambda definitions in Gambit, but with a keyword

change from lambda to kernel :

(define kernel-name

(lambda (parameter-list ...)

expression ...))

In Gambit, lambda special form is used to define a procedure that can be called from other Scheme

expressions. Similarly, in CUDA-C a kernel is a special C-function that can be called from other C-functions.

Therefore, we chose the structure of lambda special form to define a kernel in Gambit.

4.1.2 Special form for a device function

The special form for a device function is similar to a lambda special form in Scheme:

(define device-function-name

(device (parameter-list ...)

expression ...))

Here, device-function-name is the name of a device function. The keyword device denotes that this

is a device function. In CUDA-C, the keyword __device__ is used to define a device function that runs on a

GPU but is only callable from kernels. We chose the keyword device to define a device function in Scheme.

Here, parameter-list defines the parameters passed from a kernel. The parameters of a device function

also follow the same naming convention used to name kernel parameters. expression defines the body of a

device function.

For now, Gambit can accept a device function defined in Scheme. Gambit then extracts the parse tree

nodes constructed from the device function. Our implementation does not generate the Scheme and CUDA-C

shims for a device function. Note that a host cannot call a device function; a device function is only callable

from kernels. This special form is an area for future work for our implementation in Gambit.
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4.1.3 Special form for calling kernel with execution configuration

We provide a special form in Scheme to call a kernel. Every kernel call must have an execution configuration

that defines the dimensions of a grid and thread blocks. It also defines a size for dynamic shared memory.

The following is a kernel call special form in Scheme:

(symbol <<< (exp [exp exp ]) (exp [exp exp ]) [exp ] >>> arg ... )

Here, symbol denotes the identical name of a CUDA-C kernel which is being called. Note that symbol

must not have any special character that are to nvcc compiler (e.g., space, #, ?, –).. Next, the expression,

<<< (exp [exp exp ]) (exp [exp exp ]) [exp ] >>>

defines the execution configuration for a launching kernel. There are three parts to the execution config-

uration. The first two parts - (exp [exp exp ]) and (exp [exp exp ]) - are mandatory for defining the

dimensions of a grid and thread blocks. The third part [exp ] is optional and defines the size of dynamic

shared memory. (exp [exp exp ]) defines dimensions of a grid. Its first exp is mandatory, as it defines

x-dimension of a grid, but the next two two exps ([exp exp ]) are optional. These define the y- and z-

dimensions of a grid. Similarly, the second part (exp [exp exp ]) defines the x-,y-, and z-dimensions of a

thread block and follows the same constructions used for a grid. Note that enclosed [ ] symbols are not

part of our provided kernel call construct, but separate optional from mandatory expressions. Next, arg ...

represents the kernel arguments that are passed to a kernel.

In the following, we provide some allowed execution configurations for our implementation:

• Defining only x-dimensions of a grid and thread blocks

( symbol <<< ( exp )( exp ) >>> arg ... )

• Defining x-dimension of a grid and x-, y-dimensions of thread blocks and dynamic shared memory

( symbol <<< ( exp )( exp exp ) exp >>> arg ... )

• Defining x-, y-dimensions of a grid and x-dimension of thread blocks

( symbol <<< ( exp exp )( exp ) >>> arg ... )

• Defining x-, y-dimensions of a grid and x-,y-, and z-dimensions of thread blocks

( symbol <<< ( exp exp )( exp exp exp ) >>> arg ... )

• Defining x-, y-, and z-dimensions of a grid, thread blocks, and dynamic shared memory

( symbol <<< ( exp exp exp )( exp exp exp ) exp >>> arg ... )

Note that exp s used in an execution configuration must return integer values.
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4.1.4 Synchronization of multiple kernel executions

In CUDA-C, sometimes the execution of multiple kernels may need to be synchronized. Therefore, we provide

special form sync to synchronize executions of multiple kernels. It takes kernel calls as its arguments.

(sync (k1 <<< (exp [exp exp ]) (exp [exp exp ]) [exp ] >>> arg-list...)

(k2 <<< (exp [exp exp ]) (exp [exp exp ]) [exp ] >>> arg-list...)

...)

Here, execution of kernels k1 and k2 are synchronized. k2 and the kernels following k2 will not start

until all participating threads running k1 are finished. This way, kernels following k2 will not start until

k2 is finished. Note that sync can take just one kernel call as argument. In that case, operations in host

following that kernel will be blocked until device has completed the execution of that kernel. Note that the

execution of multiple kernels without sync is by default, asynchronous. We also provide a special form async

to specify the kernels that are not synchronized. async takes kernel calls as arguments.

(async (k1 <<< (exp [exp exp ]) (exp [exp exp ]) [exp ] >>> arg-list...)

(k2 <<< (exp [exp exp ]) (exp [exp exp ]) [exp ] >>> arg-list...)

...)

Here, the execution of k1 and k2 is independent. It is not mandatory to use special form async to

specify kernels that are not synchronized, but this helps programmers to clearly distinguish synchronized

kernels from non-synchronized kernels.

4.2 Naming kernel parameters with the constant prefixes

Scheme is a dynamically-typed language. Therefore, Gambit compiler does not check for type compatibility

at compile time. It does not have a type-inference system that can automatically deduce the type of an

expression. In this thesis, we link Scheme code to CUDA-C kernels, where CUDA-C is a typed language.

Therefore, we must supply type information for kernel parameters to Gambit in order to generate appropriate

types for them in both the Scheme and CUDA-C shim that link a CUDA-C kernel. In order get type

information from Scheme we follow a strict naming convention with constant prefixes for kernel parameters.

Gambit compiler can extract type information for kernel parameters from their names, check them, and

generate appropriate type information to be used by nvcc .

In our implementation, constant prefixes for kernel parameters’ names help programmers to identify types

easily. It also enables programmers to follow a standard so that others can easily read and understand type

information. These constant prefixes help programmers to guess the generated operations both in Scheme

and CUDA-C shims, as they depend strictly on types.

In our implementation, a vector as a kernel argument passes through the generated foreign-function

interface to a CUDA-C kernel. In Scheme shim, a pointer-casting operation for that vector is generated to

extract its C-pointer of that vector. This pointer-casting operation depends on the C-type for that vector. In
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CUDA-C shim, operations such as the declaration of a device memory pointer, allocation of space in device

memory, and transfer operations between host and device memory are also generated for that vector. All

of these operations depend strictly on the type of vector extracted from a constant prefix attached to the

vector’s name.

Moreover, there are some other reasons to use constant prefixes to name kernel parameters in our imple-

mentation. First of all, suppose we want to pass a Scheme vector of 64-bit unsigned integers to a kernel. The

vector must pass through the generated foreign-function interface of that kernel. In that interface, all the

operations related to this vector must be compatible with its 64-bit unsigned-integer type. Suppose, Gambit

generated code for 32-bit signed-integers instead of 64-bit unsigned-integers due to a lack of available type

information regarding size in bits for the elements of that vector. In that case, allocated integers in that

vector may contain values that are out of the range for 64-bit signed-integers and integer overflow may occur.

Second, we can also save space in device memory by specifying the size of vector elements. For example,

if we want to pass a vector of 8-bit unsigned integers of ten elements to CUDA-C kernel, then Gambit should

generate code for allocating space in device memory for 8-bit unsigned-integers with ten elements. However,

due to the a lack of size information for the vector elements, Gambit instead generates code to allocate

32-bit integers. Therefore, instead of allocating 10 bytes of space, 40 bytes of space is allocated in device

memory, and 30 bytes of device memory would be unused. It is preferable, then, to generate appropriate

size in memory allocation code for a vector to reduce unnecessary device memory consumption. Moreover, a

vector of 40 bytes would take more time than a vector of 10 bytes to be transferred between host and device

memory. This may affect the overall execution time and create overhead.

Moreover, following a strict naming convention for data types makes it easier for programmers to under-

stand types and sizes of variables. The implementation of these constant prefixes in Gambit is easy. However,

it is less flexible to change which may sometimes be irritating to programmers.

We can implement a type-inference system in Gambit in order to get types for kernel parameters. In that

case, programmers do not need to use constant prefixes to name kernel parameters. However, implementation

of a type-inference system is much harder compared to the implementation of constant prefixes in Gambit.

Therefore, we chose constant prefixes to name kernel parameters in order to get their type information.

On line 2–3 of Listing 4.1 we provide an example of a kernel skeleton binding in Scheme for kernel

vector_addition. The keyword kernel specifies that it is a binding for a kernel. This kernel takes two

arguments - u32_constant and u32v_src - specified with constant prefixes on line 3. Here, u32_constant

is a scalar type of 32-bit unsigned-integer and u32v_src is a vector of 32-bit unsigned-integers, as defined on

line 6. The kernel skeleton does not have any expression as its body because our extension in Gambit does

not compile the body of a kernel defined in Scheme. Our implementation requires a skeleton of a kernel in

Scheme to generate both shims that link a kernel implemented in CUDA-C.

This kernel’s execution configuration is called, on lines 12–14 with with two arguments (constant and

src):
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(vector_addition <<< (nblocks) (blockSize) (* (* 2 N) size-int32) >>>

constant

src)

In the execution configuration, nblocks specifies the organization of the grid; blockSize specifies the size

of the participating thread blocks; and (* (* 2 N) size-int32) determines the size of dynamic shared

memory.

1 ;;Binding for a kernel skeleton

2 (define vector_addition

3 (kernel (u32_constant u32v_src )))

4

5 (define N 100)

6 (define src (make-u32vector N 0))

7 (define constant 786)

8 (let (( nblocks 1)

9 (blockSize N)

10 (size-int32 4))

11 ;; Grid-x Block-x shared memory

12 (vector_addition <<< (nblocks) (blockSize) (*(* 2 N)size-int32) >>>

13 constant ;;scalar type

14 src) ;;vector type

15 (display src))

Listing 4.1: Binding of a kernel skeleton and a call to that kernel with execution configuration special

form

Our implementation generates the Scheme shim and CUDA-C shim from a kernel skeleton. Therefore,

we replace the Scheme shim shown in Listing 3.2 of Chapter 3 as file main.scm, with the kernel skeleton of

vector_addition on lines 2–3 of Listing 4.1. Our implementation generates the Scheme shim (Listing 4.2)

and the CUDA-C shim (Listing 4.3) from this kernel skeleton.

The kernel call on line 7 of Listing 3.1 is also changed with the new special form for calling a kernel in

Scheme, shown on lines 12–14 of Listing 4.1. Our implementation converts this special form to an ordinary

function call that calls the Scheme shim to link the CUDA-C kernel.

4.3 Recognizing GPU special forms

We provide some special forms in Gambit Scheme as device syntax for device computation. Gambit can check

Scheme source expressions for GPU and builds a list of parse tree nodes from those Scheme expressions.

We add the extra flag -cu to Gambit in order to check for device syntax and generate the shims. This

flag give a hint to Gambit to check for device syntax in a source file. Without this flag Gambit has to check
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all Scheme expressions for device syntax every time, even though a source file may not contain any GPU

special forms. This flag separates device syntax from ordinary Scheme syntax.

In order to generate the foreign-function interface, our implementation requires the name of a kernel and

the names of its parameters with type information. This information can be extracted from the parse trees

constructed by Gambit from Scheme source expressions defining a kernel/device function.
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Figure 4.1: Pictorial representation of a parse tree constructed from kernel/device function in Scheme

4.3.1 Recognizing kernel/device symbols

Gambit checks the syntax of Scheme source expressions. If the syntax is correct, then it constructs a list of

parse trees from that source. In order to check for a kernel or device function we need to access the parse tree

nodes. First, we need to check for the define symbol, then we need to check for the kernel/device symbol.

In Scheme, the keyworddefine is used to define a procedure or a global variable. In this thesis, kernel/device

function must be a procedure. Therefore, we also need to check in parse trees for a node constructed from a

procedure.

In Figure 4.1 we show parse tree nodes generated by Gambit from a kernel/device function. In Gambit,

a Scheme object defined with the keyword define makes a parse tree node (usually represented as a vector)

with nine fields. It starts with a tag called def-tag in field 0 to represent a node which is defined with define

in a Scheme source expression. This is shown in Figure4.1 with a blue-bordered table with nine fields. Field
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1 of that node parent represents a node if it is a sub-expression of a parent node. In field 2, child represents

a list of nodes containing sub-expressions. Field 3, fv, represents a list of free variables contained in this

expression. Field 4, bfv, represents a list of free variables with binding used in this expression. Field 5, env, is

the environment of this node. In field 6, source represents the source of this node. In field 7, next-node-stamp

contains an integer which is used to identify the next node. In field 8, var contains the name of the identifier.

1 ;;AST -> boolean

2 ;;returns true if the node indicate a kernel/device-function

3 (define (is-kernel/device-function node)

4 (and (vector? node)

5 (eqv? ’def-tag (car (vector-ref node 0)))

6 (= 8 (vector-length node))

7 (let ([ child (car (vector-ref node 2))])

8 (and (vector? child)

9 (eqv? ’prc-tag (car (vector-ref child 0)))

10 (= 13 (vector-length child))

11 (let ([ source (vector-ref child 6)])

12 (and (vector? source)

13 (= 4 (vector-length source ))

14 (let ([tag (vector-ref source 1)])

15 (or (eqv? ’kernel tag)

16 (eqv? ’device tag )))))))))

Listing 4.2: Scheme code snippet to access kernel/device symbol in the parse tree nodes constructed

by Gambit

In order check for a kernel/device symbol, we access the child in field 2 of def-tag node. This node is

represented as a red table with thirteen fields in 4.1. It starts with the tag prc-tag in field 0; this represents

that this node is constructed from a Scheme source expression, which is a procedure. This node also contains

the fields parent, child, fv, bfv, env, source, next-node-stamp, name, and others. Field 6, source, is represented

by an orange table with four fields and contains the keyword kernel/device in field 2. In field 0, source no,

contains the command-line argument number for a source file. directory in field 2 is the location of the source

file, and line no in field 3 represents the line number of kernel/device symbol in the source file. In this

way, we can check for a kernel/device symbol in a parse tree node constructed from a Scheme expression

defining a kernel/device function. In Listing 4.2 we provide Scheme code snippet to access kernel/device

symbol in the parse tree nodes generated from kernel/device function source expressions.

4.3.2 Extracting kernel/device function name

After checking for a kernel/device symbol in a parse tree node starting with a def-tag, our implementation

extracts the name of a kernel/device function from that node. In Figure 4.1, we show how to extract the
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name of a kernel/device function. First, we access the node with def-tag. In this node, field 2 contains

the node starting with a prc-tag. In that node field 8 contains the name of a kernel/device function. In

Listing 4.3 we provide a Scheme code snippet that returns the name of a kernel/device function from parse

tree nodes.

1 ;;AST- >symbol

2 (define (kernel/device-function-name node)

3 (cond (( is-kernel/device-function node)

4 (let ([ child (car (vector-ref node 2))])

5 (vector-ref child 8)))))

Listing 4.3: Scheme code snippet to extract the name of a kernel/device function from the parse tree

nodes

In Listing 4.1 for the kernel skeleton vector_addition, our implementation extracts the name vector_

addition from the parse tree nodes constructed from the Scheme source expression on lines 2–3.

4.3.3 Extracting parameter list

In order to generate the shims from a kernel skeleton, our implementation also extracts the names of kernel

parameters from the parse tree. Figure 4.1 shows where to extract parameters from parse tree nodes generated

from a kernel/device function. In the def-tag node, child (field 2) contains the prc-tag node. Field 10

(parms) of prc-tag node contains the list of parameters of a kernel/device function represented by a green

rounded rectangle.

1 ;;AST -> list

2 (define (get-parameters node)

3 (cond (( is-kernel/device-function node)

4 (let* ([ child (car (vector-ref node 2))])

5 ([parms (vector-ref child 10)])

6 (map (lambda (var)

7 (cond (( is-var-tag var)

8 (vector-ref var 1))

9 (else

10 (error "This is not a variable."))))

11 parms )))))

12 ;;AST -> boolean

13 (define (is-var-tag node)

14 (and (vector? node)

15 (= 11 (vector-length node))

16 (eqv? ’var-tag (car (vector-ref node 0)))))

Listing 4.4: Scheme code snippet to extract the names of kernel/device function parameters
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Each parameter contained in a node starts with a tag var-tag with eleven fields (only the fields 0 and 1

are shown in Figure 4.1), represented by each black table contained within the green rounded rectangle. In

field 1 of a var-tag node, the name contains the symbol that denotes the variable. In Listing 4.4, we provide

a Scheme code snippet that extracts the kernel parameters from the parse tree nodes and returns a list that

contains the extracted names.

In Listing 4.1, kernel skeleton vector_addition takes two parameters: u32_constant and u32v_src.

Gambit builds two var-tag nodes and puts them into field 10 of the prc-tag node. Our implementation

extracts the first parameter u32_constant from field 1 of the first var-tag node. Similarly, the second

parameter u32v_src is extracted from field 1 of the second var-tag node. These parameters also contain

type information in their symbols.

4.4 Generating Scheme shim

Our implementation checks for a kernel/device function in a list of parse tree nodes. After recognizing a

kernel/device function the name of that kernel/device function and the parameters are extracted from the

parse tree nodes constructed by Gambit.

In order to generate the Scheme shim, the name of a kernel and its parameters with type information are

required. In Listing 4.5 we provide the generated Scheme shim from the kernel skeleton vector_addition.

In our implementation, calling a kernel is actually calling the Scheme shim of the interface that links to that

kernel. In Scheme shim, the vector-length-calculation helper function calculates the length of a vector which

is a kernel argument. Therefore, we need to generate this helper function. The name of this helper function

is identical to the kernel skeleton. Our implementation uses the extracted name of a kernel to generate the

name of this helper function. This helper function has seven extra parameters for execution configuration.

These seven extra parameters are added with the extracted parameters to generate the parameter list. Our

implementation generates the helper function, shown on lines 32–37 of Listing 4.5, from the kernel skeleton

vector_addition. In the parameters list on line 29, gDx, gDy, bDx, bDy, bDz, and shared-size are generated

to take the execution configuration parameters. The actual kernel arguments (u32_constant, and u32_src)

are then extracted from the parse tree nodes and appended to the parameter list.

This helper function also calls the c-lambda function to convert data types from Scheme to C. This

function call passes all helper function’s parameters to a c-lambda function. It also passes the length for

each vector by adding a length calculation expressions for each vector. On lines 32–37, the c-lambda function

call is generated. The extracted kernel name vector_addition is appended with the suffix _scm_driver on

line 32 in order to generate the name vector_addition_scm_driver for the c-lambda function.

In order to generate the argument list for the c-lambda function call, our implementation generates the

seven execution configuration parameters on line 33. Next, it appends the actual extracted kernel parameters

to the argument list and adds the appropriate length calculation expression to that list for each vector.
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1 ;;-------------------------------- Scheme shim Start----------------------------

2 ;; A c-declare construct to provide a forward declaration of the CUDA C shim.

3 (c-declare #<<c-declare-end

4 // forward declaration for CUDA C shim

5 void vector_addition_cu_driver ();

6

7 c-declare-end

8 )

9 ;;the c-lambda function performs data type conversion and calls the CUDA C shim

10 ;;vector_addition_scm_driver :: int * int * int * int * int *

11 ;; int * int * uint32_t *

12 ;; u32vector * int -> null

13 (define vector_addition_scm_driver

14 (c-lambda (int int int int int int int unsigned-int32 scheme-object int)

15 void

16 #<<c-lambda-end

17 // casting to C pointer

18 ___U32* host_u32v_src =___CAST(___U32*,___BODY_AS(___arg9 ,___tSUBTYPED ));

19 // calling the CUDA-C shim

20 vector_addition_cu_driver( ___arg1 , ___arg2 , ___arg3 , ___arg4 , ___arg5 ,

21 ___arg6 , ___arg7 , ___arg8 ,

22 host_u32v_src , ___arg10);

23 c-lambda-end

24 ))

25 ;;vector-length-calculation helper function

26 ;;vector_addition :: int * int * int * int * int *

27 ;; int * int * uint32_t *

28 ;; u32vector -> null

29 (define (vector_addition gDx gDy gDz bDx bDy bDz shared-size u32_constant u32v_src)

30 ;;calling the c-lambda function vector_addition_scm_driver along with the

31 ;;vector-length-calculation as an argument

32 (vector_addition_scm_driver

33 gDx gDy gDz bDx bDy bDz shared-size

34 u32_constant

35 u32v_src

36 ;;vector-length-calculation function

37 (u32vector-length u32v_src )))

38 ;;------------------------ Scheme shim End--------------------------------------

Listing 4.5: Generating the Scheme shim from the kernel skeleton vector_addition
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In order to generate the length calculation expression, our implementation extracts type information from a

vector’s name. For this example, u32v_src is a kernel parameter. It contains the symbol v identifying it as

a vector. Type information for this vector can also be identified from its name. Here, u32 specifies that it

is a vector of 32-bit unsigned-integers. Therefore, our implementation can generate its corresponding vector

length calculation expression (u32vector-length u32v_src), shown on line 37.

Our implementation generates the c-lambda function on lines 13–24. Its parameter list containing type

information is also generated, as shown on line 14. Our implementation generates default type int for the

seven execution configuration parameters. Foreign object type for the first kernel parameter u32_constant

is generated as unsigned-int32 and foreign object type scheme-object is generated for the second kernel

parameter vector (u32v_src). Finally, parameter int is generated as the default type for the length of vector

u32v_src.

In c-lambda function pointer-casting operations are generated to extract the C-pointers for the vectors.

On line 18, extracted C-pointer type ___U32* is generated for kernel parameter u32v_src . Our implemen-

tation can identify its type from its constant prefix u32v. Here, u32 determines the C-pointer type ___U32*.

The name of C-pointer host_u32v_src is generated by adding prefix host_ to its name u32v_src . Then,

our implementation generates the ___CAST macro to extract the C-pointer. Our implementation keeps track

of the position of vectors in a parameter list because a Scheme vector in a pointer-casting operation must

be referred to with the keyword ___arg followed by its position in that parameter list. In this case, our

implementation generates ___arg9 on line 18 of the ___CAST macro to refer to type scheme-object in the

parameter list.

Next, our implementation generates a call to the CUDA-C shim on lines 20–23. The kernel name vector_

addition is appended with the suffix _cu_driver to generate the name of CUDA-C shim vector_addi

tion_cu_driver. Then our implementation generates the arguments list. All the parameters of this c-lambda

function are passed to the CUDA-C shim. Therefore, in the argument list parameters are referred to using

the keywords ___arg followed by their position in the parameter list apart from the vectors. For a vector the

casted pointer is passed to the CUDA-C shim. Our implementation generates the casted C-pointer variable

name, and passes this pointer variable as an argument to the CUDA-C shim. On line 18, host_u32v_src

is a C-pointer type variable for the vector u32_src. In order to generate it in the argument list, our

implementation keeps track of the position of a vector and prefix host_ is added to its name on line 22.

Our implementation also generates the c-declare constructs to provide forward declarations for CUDA-C

shims. Lines 3–8 on Listing 4.2 is the forward declaration for the CUDA-C shim vector_addition_cu_driver.

The return type void is generated on line 15 because the CUDA-C shim does not return anything.

Our implementation generates the Scheme shim in a file named file-name _gpu-interface_kernel-

name.scm. Here, file-name specifies the name of a .scm file that has the kernel skeleton. In this case, for

the kernel skeleton vector_addition in Listing 4.5, Scheme shim is generated in file main_gpu-interface_ve

ctor_addition.scm in Listing 4.2.
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Note that our implementation appends the generated Scheme shim to the parse tree constructed from the

file containing the kernel skeleton, but it does not change the source file containing the kernel skeleton. In

order to do that, our implementation constructs a parse tree node for Scheme, including the expression

(include "file-name _gpu-interface_kernel-name.scm")

that appends the Scheme shim generated in file file-name _gpu-interface_kernel-name.scm to the parse

tree generated from file file-name.scm .

The Gambit compiler compiles this Scheme shim to file main.c. Note that Gambit also compiles Scheme

source expressions for host programs in the main.scm file that also contains the kernel skeleton to file

main.c . Our implementation does not compile the kernel skeleton, It just constructs the parse tree of it.

Therefore, only lines 5–15, representing the host program in Listing 4.1, are compiled to file main.c. In

general, the file containing Scheme shim is deleted by gsc. In order keep the Scheme shim we added an extra

flag -keep-scm-shim to gsc .

Our implementation generates a separate Scheme shim file for each kernel. After generating the Scheme

shim it is compiled to the same file containing the compiled host program. If we want to generate all the

Scheme shims in a single file then the file would be overwritten again and again by the generated Scheme

shim for each kernel skeleton. Therefore, we generate separate files containing Scheme shims for each kernel

skeleton.

Note that the commenting and indentation in Listing 4.5 is not auto-generated. We annotate the generated

Scheme shim code from our implementation to provide more clarity to the readers.

4.5 Generating CUDA-C shim

In order to generate the CUDA-C shim, our implementation requires the kernel name and the actual kernel

arguments. Kernel parameters contain type information, so it is easy to identify C-types for kernel arguments

and generate them. For example, kernel parameter u32v_src has the constant prefix u32v that identifies its

C-type as uint32_t* . Here, u32 identifies the C-type uint32_t and v specifies that it is a C-pointer.

Our implementation generates CUDA-C shim vector_addition_cu_driver for the kernel skeleton vector

_addition on lines 7–32 of Listing 4.6. First, our implementation generates a forward declaration for the ker-

nel vector_ addition in line 2. Name of the kernel is extracted from parse tree nodes. Then, the parameter

list is generated. In parameter list, C-type for kernel parameter u32_constant is uint_32, and C-type for

u32v_src is uint32_t*. The arguments that take the length of a vector are also generated. In this example,

u32_src_len is generated by adding the suffix _len with the actual name u32_src. Its default type, int is

also generated.

On line 7, our implementation generates CUDA-C shim enclosed with extern "C" because it is linked from

a .c file containing the compiled host program in C. It generates the name vector_addition_cu_driver
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by adding suffix _cu_driver to kernel name vector_addition. Then it generates the parameter list. Seven

parameters are generated on lines 8–9 to take the execution configuration values and the size of the dynamic

shared memory. Then the actual kernel parameters are generated and for each vector an extra parameter is

also generated to take the length of that vector. For a vector h_ is added at the beginning of its name

1 // -----------------------------kernel forward declaration -----------------------

2 __global__ void vector_addition (uint32_t u32_constant , uint32_t* u32v_src ,

3 int u32v_src_len );

4

5 // -----------------------------Kernel forward declaration -------------------------

6 // -----------------------------CUDA -C shim Start ----------------------------------

7 extern "C" {

8 void vector_addition_cu_driver (int gDx , int gDy , int gDz , int bDx ,

9 int bDy , int bDz , int shared_size ,

10 uint32_t u32_constant , uint32_t* h_u32v_src ,

11 int h_u32v_src_len ){

12 // device pointers

13 uint32_t* d_u32v_src;

14 // calculating the size of device memory

15 size_t size_u32v_src = h_u32v_src_len * sizeof(uint32_t );

16 // allocating device memory

17 cudaMalloc ((void **) &d_u32v_src , size_u32v_src );

18 // copying host to device

19 cudaMemcpy(d_u32v_src , h_u32v_src , size_u32v_src , cudaMemcpyHostToDevice );

20 // defining Grid configuration

21 dim3 dimGrid(gDx , gDy , gDz);

22 // defining Block configuration

23 dim3 dimBlock(bDx , bDy , bDz);

24 size_t size = shared_size;

25 //Now , at this point it calls the kernel

26 vector_addition <<< dimGrid , dimBlock , size >>> (u32_constant , d_u32v_src ,

27 h_32v_src_len );

28 // copying device to host

29 cudaMemcpy(h_u32v_src , d_u32v_src , size_u32v_src , cudaMemcpyDeviceToHost );

30 // deallocation of device memory

31 cudaFree(d_u32v_src );

32 }

33 }

34 // -------------------------------------CUDA -C shim End -----------------------------

Listing 4.6: Generating CUDA-C shim
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to distinguish from its device memory pointer on line 10. The name of the parameter taking the length of

a vector is also generated by adding h_ at the beginning of a vector’s name and _len at the end. Vector

u32v_src is named h_u32_src_len on line 11. For the scalar type kernel parameter u32_constant on line

11, it remains unchanged in the parameter list of CUDA-C shim. This is because a scalar type CUDA-C

does not need another scalar type in device memory in order to pass it to a CUDA-C kernel.

Memory operations on lines 17,19, 29, and 31 are generated by the vector’s name, with prefixes added in

order to distinguish them from device, host, and size variables. Since u32v_src has neither OUT nor IN

in its name, line 19 transfers this vector from host to device memory before the kernel call (lines 26–27) and

line 20 transfers it from device to host memory after the kernel call. Note that our implementation will not

generate line 19 if u32v_src has an OUT notation. Similarly, line 29 will not be generated if an IN notation

is present in u32v_src. Our implementation generates the device pointer by adding d_ at the beginning of

a vector name, in line 13. Size calculation in bytes is also generated on line 15 by adding size to the name

of the vector u32v_src.

The generation of grid and thread block configuration variables on lines 21 and 23 are fixed string. A

kernel call with execution configuration is generated on lines 26 and 27. The kernel’s name is extracted from

the parse tree. The execution configuration is also a fixed string

<<< dimGrid, dimBlock, size >>>

and the arguments are generated from the extracted parameters, but for a vector the device memory pointer

is passed to a kernel. Our implementation can distinguish a vector from a scalar by identifying the sub-string

v in the name of a kernel parameter. In the argument list, the first extracted kernel parameter u32_constant

is added to the beginning of the argument list without any modification of its name because it is a scalar type.

However, the second extracted kernel parameter u32v_src is identified as a vector, therefore its corresponding

device memory pointer d_u32v_src is actually passed to the kernel. The suffix d_ is added to the vector

name and instead of vector u32v_src, device memory pointer d_u32v_src is added to the argument list.

For a vector, its length is also passed to a kernel. Therefore h_u32_src_len - representing the length of

u32v_src - is added to the argument list.

This CUDA-C shim in Listing 4.6 is generated in a file named maingpu.cu because the kernel skeleton

vector_addition is in file main.scm.

4.6 Generating the Scheme kernel call

We provide a special construct in Scheme for Gambit to call a kernel. This special construct also has a

part that defines an execution configuration. In our implementation, when a kernel is called by this special

construct, it actually calls the generated Scheme shim. Our implementation identifies the special construct

calling a kernel and then converts it into an ordinary Scheme function call.

73



4.6.1 Identifying a kernel call constructs

In order to identify a kernel call construct that has an execution configuration, our implementation checks

for it in a parse tree node constructed with tag app-tag that has eight fields. app-tag specifies a node for a

function call Scheme expression. A kernel call construct is actually a function call, except it has a part that

contains expressions defining an execution configuration. In order to check for an execution configuration in

a function call, parse tree nodes constructed from that function call must have the following parts:

1. It must be a function call.

2. Its first argument must be a marker <<< that marks the start of an execution configuration. Second

and third arguments must be function calls containing expressions defining grid and thread block

dimensions. Each of them must not contain more than three parts.

3. The fourth argument must be an expression to define the size of the dynamic shared memory. In this

case, the fifth argument is the marker >>> that specifies the end of an execution configuration.

4. The last argument must be the marker >>> that marks the end of an execution configuration.

Our implementation checks for app-tag in parse tree nodes to identify a function call. In order to enable

this we must supply a -cu flag to gsc . In our implementation, apart from the name of a kernel in our kernel

call constructs, every thing is treated like normal arguments by Gambit.

In Figure 4.2 we show how the execution configuration expressions are treated as arguments in a node

specified with app-tag as represented by blue-colored box with eight fields.
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Figure 4.2: Accessing expressions defining an execution configuration in a parse tree
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All of the nodes, represented as black-bordered rectangles containing argument symbols , are listed to-

gether and represented as a blue-bordered frame contained in field 2 (child) of the app-tag node. The first node

contains the marker <<<. The second node contains arguments (gDx gDy gDz) that define grid dimensions.

The third node contains arguments (bKx bKy bKz) that define thread block dimensions. The fourth node —

sh-mem — contains expressions for defining the size of dynamic shared memory. The fifth node contains the

marker >>>, which is followed by the nodes containing actual kernel arguments arg1, ... argN. This way our

implementation can access and check expressions defining execution configuration and check whether it is a

kernel call or not.

Note that the second and third nodes defining grid and thread block dimensions are also constructed as

two app-tag nodes. This is because both (gDx gDy gDz) and (bKx bKy bKz) are treated as function calls

by Gambit.

4.6.2 Converting an execution configuration into an argument list

Our implementation checks the parse tree of a function call in order to identify a kernel call. If it finds a

kernel call with an execution configuration, it converts the expressions used in execution configuration into

an argument list of a Scheme function call. Our kernel call construct is

(kernel-name <<< (gDx gDy gDz ) (bKx bKy bKz ) sh-mem >>> arg ... )

After the conversion into an ordinary function call by our implementation, it becomes

(kernel-name gDx gDy gDz bKx bKy bKz sh-mem arg ... )

Our implementation arranges all seven execution configuration expressions into an ordinary argument list.

An execution configuration might not have expressions defining y- or z-dimensions of a grid and thread

blocks, or defining the size of dynamic shared memory. In that case, our implementation add 1s in the

argument list for the positions reserved for y- or z-dimensions and adds 0 for dynamic shared memory. For

example, on lines 12–14 of Listing 4.1, kernel call

(vector_addition <<< (nblocks) (blockSize) (* (* 2 N) size-int32) >>>

constant

src)

does not define y- and z-dimension for grid and thread block organization. Our implementation converts it

into an ordinary function call and inserts 1s in the argument list in places reserved for y- and z-dimensions:

(vector_addition nblocks 1 1 blockSize 1 1 (* (* 2 N) size-int32) constant src)

This is shown in Listing 3.1 in Chapter 3. Note that this function call actually calls the vector-length-
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calculation helper function vector_addition on lines 29–37 of Listing 4.5.

Our implementation extracts the parse tree nodes of execution configuration expressions and actual kernel

arguments expressions from the app-tag node. Next, it removes the parse tree nodes for the two markers

<<< and >>> , as well as the two app-tag nodes for expressions (gDx gDy gDz) and (bKx bKy bKz) defining

grid and thread block organizations. The six var-tag nodes for expressions - gDx , gDy , gDz , bKx , bKy

, and bKz - are then extracted from their parent app-tag nodes constructed from expressions (gDx gDy

gDz) and (bKx bKy bKz). These six var-tag nodes are inserted into the app-tag node constructed from a

kernel call construct in the sequence gDx , gDy , gDz , bKx , bKy , and bKz in order to make them arguments

of an ordinary function call.

In order to arrange them in a sequence of arguments, next-node-stamp field of nodes for six execution

configuration expressions, shared memory, and actual kernel arguments must be sequenced. For example, in

order to make the expression gDx as the first argument, next-node-stamp field of parse tree node sets to 0.

In the same way, next-node-stamp field of parse tree node for expressions gDy sets to 1. In this way, next-

node-stamp field of expression sh-mem is set to 6. For the first kernel argument the next-node-stamp fields

is set to 7. Similarly, the rest of the kernel arguments follow the same sequence to set their next-node-stamp

fields.

In an execution configuration, programmers may define only one or two expressions with x- or y-dimensions.

In that case, our implementation constructs a parse tree node that contains a constant 1 for those missing

dimensions. It then adds the parse tree node as an argument to the app-tag node that calls the kernel. Note

that next-node-stamp field of that node must be sequenced.

Programmers might not define an expression for dynamic shared memory. In this case, our implementation

generates a parse tree node that contains a constant 0 and inserts it as an argument to the app-tag node

constructed from a kernel call special form. Its next-node-stamp field is set to 6 because it is the seventh

argument in the argument list.

So far in this chapter we described the generation of both shims from a kernel skeleton in Scheme. We also

described how a kernel call construct is converted to an ordinary function call that calls the generated Scheme

shim to link a CUDA-C kernel. In the following section we describe the implementation of synchronization

special forms in Gambit.

4.7 Implementation of synchronization macro

We provide synchronization macro sync in Gambit to synchronize the execution of multiple kernels. sync

can take multiple kernel calls as its arguments, and after each kernel call this macro calls a generated

c-lambda function call-syncthread shown in Listing 4.7.

From this c-lambda function CUDA library function cudaDeviceSynchronize() is called, as shown in

line 5. This call actually forces the host program running on a CPU to be idle until all the previously-launched
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kernels running on GPUs have completed their executions. Note that this macro can also take

1 (define call-syncthread

2 (c-lambda ()

3 void

4 #<<c-lambda-end

5 cudaDeviceSynchronize ();

6 c-lambda-end

7 ))

Listing 4.7: Definition of c-lambda function call-syncthread

only a single kernel call, where call-syncthread will be called only once after that kernel call. async

specifies non-synchronized kernel calls in a host program and can take multiple kernel calls as its arguments.

It organizes the kernel calls sequentially but it does not make a call to cudaDeviceSynchronize() library

function in between two kernel calls. This macro can also take one kernel call as argument. Note that the

execution of multiple kernels is not synchronized without a call to cudaDeviceSynchronize() in between

two kernel calls.

In order to manage GPUs CUDA provides some library functions. Therefore, we also provide some useful

library functions for Gambit Scheme that enables programmers to manage GPUs from Scheme as described

in the following section.

4.8 Library functions in Scheme for GPU

In CUDA, there are library functions for querying and managing devices, controlling kernel executions, timing

kernel executions, and managing versions of CUDA runtime libraries. These library functions are faceted.

Programmers often need to provide multiple library functions to perform a task. Therefore, we provide some

useful library functions in Scheme for GPUs for our implementation. These simple library functions reduce

the burden of combining multiple library functions. It also gives opportunity for Scheme programmers to use

those CUDA-C functionalities in Scheme.

4.8.1 Device management

Sometimes programmers may need some functionality for managing GPU devices. The following functional-

ities help programmers to query a device and find out an appropriate device for data-parallel computation.

• (query-device)

The (query-device) library function displays to the standard output the properties of all the devices.

It prints the compute capability, shared memory size per block, total number of registers per block,

wrap size, maximum threads per block, maximum grid dimension, clock rate, total constant memory,
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and total constant memory texture alignment of all active devices. query-device uses CUDA library

function

cudaGetDeviceProperties(struct cudaDeviceProp *prop, int device-id )

to get the device properties of a particular device. This utility function sets the CUDA structure

cudaDeviceProp [12] for a valid device-id . Here, device-id is an integer index number of an active

GPU device. It also uses cudaGetDeviceCount(int *count ) [12] to get the number of currently active

devices.

• (check-and-set-device device-id )

The (check-and-set-device device-id ) library function checks for a valid device-id . This

means it checks for an actual GPU device not the CUDA device CPU emulation (a CPU emulator

that can run CUDA-C kernels on a system with no installed GPU). If the device-id is less than or

equal to the system device count then it is a valid device. Next, it checks for CPU device emulation. If

deviceProp.major defined in the structure cudeDeviceProp is greater than 999 then it is not a GPU

device. If the device passes these two tests, it sets the device for the current execution and responses

to the standard output device. Here, device-id is an integer number.

• (set-device device-id )

The (set-device device-id ) library function does not perform any checking operations, but rather

sets the device using the CUDA library function

cudaSetDevice(int device-id )

If the device does not exist, it raises a cudaError_t type exception cudaErrorInvalidDevice .

• (get-device-id)

The (get-device-id) library function returns an integer index number of an active device in

device-id using the library function [12]

cudaGetDevice(int *device-id )

• (reset-device device-id )

The (reset-device device-id ) library functions resets all states of an active device. It also cleans

up any resources allocations by the current program on the device. This function resets the device

immediately. The programmer must ensure that the device is not accessed by any other running host

threads when this function is called. Note that this function does not check for other running host
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threads that might try to access the same device. We recommend that Scheme programmers use

reset-device at the beginning or at the end of a host program.

• (reset-all-devices)

The (reset-all-devices) library function resets all the devices and destroys all previous resource

allocations. We recommend that Scheme programmers also use (reset-all-devices) at the beginning

or at the end of a host program.

4.8.2 Version management

• (driver-version)

We provide library function (driver-version) to know the version number of the installed CUDA

driver application programming interface. This library function prints the version number to standard

output. It prints 0.0 if no driver is installed. This version number describes the features supported

by the installed driver and runtime libraries. Programmers can check whether they need to install a

newer device driver than the one currently installed.

• (runtime-version)

The (runtime-version) library functions prints the version of the installed CUDA runtime libraries

to standard output. Note that CUDA runtime libraries must be compatible with the version number

of installed CUDA driver.

4.8.3 Timing function

We implemented a simple timing function (gpu-time kernel call ...) in Scheme to measure execution

time for kernels. This timing function reduces the burden of defining, synchronizing, and measuring time

lapse between separate CUDA events. It takes into account execution times for kernels, Scheme shim, and

CUDA-C shim. This means it also counts vector transfer times between device and host memory, allocation

and deallocation operations of device memory pointers in CUDA-C shim.

gpu-time displays the kernel execution time in milliseconds to standard output, and it also returns time

for later use to a host program. It is similar to Scheme time macro. For example:

(gpu-time

(k1 <<< >>> arg ... )

(k2 <<< >>> arg ... ))

measures the combined execution time for kernel k1 and k2 .

In CUDA-C, programmers need to create two cudaEvent_t [12] type variables to capture the kernel

start and end time-stamps. cudaEventCreate[12] then creates both the events one before the kernel call
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and another after the kernel call. cudaEventSynchronize [12] then waits to finish the kernel execution and

cudaEventRecord [12] computes the elapsed time between the two events in milliseconds. In our implemen-

tation, the gpu-time function only requires kernel call expressions and is very simple to use.

In order to implement this library function, our implementation generates two files: cudalib.scm and

cudalib.cu. Here, Scheme file cudalib.scm contains c-lambda and c-declare constructs in order to call

C-functions in file cudalib.cu. For example, library function (query-device) calls a c-lambda function

query-device in file cudalib.scm, which then device-query calls the C-function deviceQuery in file

cudalib.cu with the CUDA-C code for querying a device.

4.8.4 CUDA library functions unavailable in Scheme

We have implemented some useful library functions in Scheme that enable convenient GPU management for

Scheme programmers. However, we do not provide all the CUDA library functions in Scheme. The reason

is that many of these library functions are not frequently used in CUDA programs. Moreover, a Scheme

implementation of these library functions would not be convenient for Scheme programs because many of

them depend on many C struct values which would need to be constructed in Scheme. In order to use

them in Scheme programs, programmers still need to learn and know low-level CUDA detail; and, this is not

necessarily useful to Scheme or other functional languages.

Some CUDA library functions unavailable in Scheme are listed below:

• In CUDA, programmers can choose devices using the library function

cudaChooseDevice ( int * device, const struct cudaDeviceProp * prop )

based on the values set to fifty-one fields of the cudaDeviceProp structure type variable prop . We

do not provide this library function in Scheme because programmers need to set all the fifty-one fields

of the cudaDeviceProp structure type variable prop which might not be convenient for the Scheme

programmers.

• CUDA provides library function

cudaPointerGetAttributes (struct cudaPointerAttributes *attributes, const void *ptr )

to return the attributes of a pointer ptr to a cudaPointerAttributes structure type variable

attributes . This function can identify whether a pointer points to device or host memory. In

our implementation we do not need to provide a separate device memory vector in Scheme. Our

implementation hides a device memory pointer for a Scheme vector generated in CUDA-C shim to

provide an abstraction to reduce hands-on memory management. In our implementation we assume
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that a Scheme vector defined in a host program is in host memory, but when it is passed to a kernel

skeleton it is in device memory. Therefore, we do not need to provide this library function in Scheme.

• CUDA provides library function

cudaMallocHost(void ** ptr, size_t size )

that allocates size bytes of page-locked host memory to a pointer ptr which is accessible from

a device. Allocation of an excessive amount of page-locked memory may degrade system performance

due to a lack of available memory for paging. Accessing host memory from a kernel is an order of

magnitude slower than accessing device memory. It also has both very high latency and very limited

throughput. It is also recommended this library function to be used more economically in terms of host

memory consumption. Apart from that, this library function is usually used to allocate host memory

to manage streams of operations on the GPU. This is not covered in this thesis, therefore we do not

provide this library function in Scheme.

• A device may have the capability to directly access the device memory of a peer device. CUDA provides

library function

cudaDeviceCanAccessPeer (int * canAccessPeer, int device, int peerDevice )

to verify whether device device can access the device memory of another device peerDevice . This

library function returns 1 in canAccessPeer if device has access to the device memory of device

peerDevice . If not, this library function returns 0 in canAccessPeer . A device can enable the

accessibility of another device to its memory by calling a library function cudaDeviceEnablePeer

Access(). Note that access to peer device is not available to 32-bit CUDA applications. We do not

provide this library function in Scheme because in this thesis we only focus on the interactions between

host and device. Moreover, peer access is not a common practice in most of the CUDA applications 1.

• CUDA provides some stack-based library functions in order to launch a kernel. First, library function

cudaConfigureCall( dim3 gridDim , dim3 blockDim , size_t sharedMem = 0,

cudaStream_t stream = 0)

pushes execution configuration parameters to the top of stack. The arguments for a kernel can be

pushed to the top of stack using the library function

1Only the Simple Peer-to-Peer Transfers with Multi-GPU CUDA SDK example uses this library function. It just demon-
strates how to access device memory of a peer device.
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cudaSetupArgument( const void * arg , size_t size )

Here, argument arg of size bytes is pushed to the stack. Note that cudaSetupArgument() must

be preceded by the library function cudaConfigureCall() . Kernel name entry is then launched

using the library function

cudaLaunch( const char * entry )

which is preceded by calls to cudaSetupArgument() . Note that all three library functions are a part

of C API. That means they can be compiled by a C-compiler. These library functions are used as an

alternative of CUDA execution configuration syntax to launch a kernel. CUDA execution configuration

syntax can only be compiled through nvcc compiler. In our implementation, we provide a special

form in Scheme to call a kernel, therefore, we do not need to provide these stack-based library functions

in Scheme to launch a kernel.

4.9 Template makefile

We provide a template makefile in Listing 4.8 that can manage the generation of Scheme shim and CUDA-

C shim from a Scheme file, and compiles to a GPU executable from the provided source files. First, gsc

generates the Scheme shim and CUDA-C shim from a Scheme file and compiles the Scheme file to a C file.

gsc then generates a link file that contains linking information gathered from the Scheme file. Next, gsc

generates object files from the compiled C file, linking file, CUDA-C shim file, and file containing the actual

definition of the CUDA-C kernel. Finally, nvcc compiler generates a GPU executable from those object files.

In this makefile, programmers must provide the names of Scheme file containing the kernel skeleton , the

CUDA-C file containing the kernel definition and discard the .scm and .cu extensions. On line 11, variable

SCM_FILE must be assigned with the name of a Scheme file, and variable KERNEL_FILE, on line 14, must be

assigned with the name of a CUDA-C file. For example, in Listing 4.1, file main.scm contains the kernel

skeleton vector_addition on lines 2–3. The definition for kernel vector_addition is in file kernel.cu.

Therefore, programmers should assign main to variable SCM_FILE and kernel to variable KERNEL_FILE.

Programmers must provide the Gambit installation directory in variable GAMBIT_DIR on line 19, and the

CUDA installation directory in variable CUDA_DIR on line 21.

First, gsc (assigned to variable $(GSC)) generates the Scheme shim and CUDA-C shim $(SCM_FILE)gpu.cu

from Scheme file $(SCM_FILE).scm on line 25 and compiles $(SCM_FILE).scm to a C file $(SCM_ FILE).c on

line 82. Command-line option -cu, in line 66, is provided in order to generate the Scheme shim and CUDA-C

shim. For example, gsc compiles file main.scm to file main.c. At the same time, main_gpu-interface_vect

82



or_addition.scm — containing the Scheme shim — and maingpu.cu — containing the CUDA-C shim —

are generated. Note that our implementation inserts the Scheme shim into the parse tree generated from

the Scheme file main.scm containing the kernel skeleton , and compiles the Scheme shim along with the

host program to a C file. Here, generated Scheme shim in file main_gpu-interface_vector_ addition.scm

is appended with the parse tree generated from main.scm. gsc then compiles that combined parse tree to

main.c. Note that a -keep-scm-shim option is provided to gsc in order to keep the Scheme shim file.

1 #

2 # template makefile for build CUDA -scheme executables.

3 # (c) 2013 Rashed Chowdhury ....

4 #

5 # to use this , fill in the SCM_FILE (without the .scm extension !)

6 # ...

7

8 ###############################################################

9

10 # no .scm extension

11 SCM_FILE =

12

13 # no .cu extension -- often the same as $(SCM_FILE)

14 KERNEL_FILE =

15

16 ################################################################

17 # if your installation directories change , fix these macros

18 # main gambit install

19 GAMBIT_DIR =/grad/arc552/research/Gambit -Install -Dir

20 # main CUDA install

21 CUDA_DIR =/usr/local/cuda

22

23

24 #you shouldn ’t need to change these

25 GSC = $(GAMBIT_DIR )/bin/gsc

26 NVCC = $(CUDA_DIR )/bin/nvcc

27 TEMP = cudalib.cu cudalib.scm

28 ################################################################

29

30

31 VERBOSE = -verbose

32 ARCH = -arch=sm_20

33 CUDA_LIB = -lcuda -lcudart
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34 LIB = $(CUDA_LIB) -ldl -lgambc -lm -lutil

35 RM = -rm

36

37 ##############################################################

38 all: $(SCM_FILE ).exe

39 ##############################################################

40

41

42 ################################################################

43 #DO NOT CHANGE ANYTHING BELOW THIS LINE

44

45 #step 4: building a GPU executable

46 $(SCM_FILE ).exe: $(SCM_FILE ).o $(KERNEL_FILE ).o $(SCM_FILE)gpu.o $(SCM_FILE)_.o

47 -@echo "---------------------------------------"

48 -@echo "generating GPU executable:- "$(SCM_FILE)".exe"

49 -@echo "---------------------------------------"

50 $(NVCC) -v -L "$(GAMBIT_DIR )/lib" -L "$(CUDA_DIR )/ lib64" -D___SINGLE_HOST\

51 $(LIB) -o $(SCM_FILE ).exe *.o

52 -@echo "--------removing object -files and temporary library files -------"

53 $(RM) -f *.o $(TEMP)

54 $(RM) -f $(SCM_FILE)gpu.cu

55 $(RM) -f $(SCM_FILE)_.c

56 $(RM) -f $(SCM_FILE ).c

57

58

59 #step 3: generating objects file

60 # also generates $(SCM_FILE)gpu.o

61 $(SCM_FILE ).o $(SCM_FILE)gpu.o: $(SCM_FILE ).c $(KERNEL_FILE ).cu $(SCM_FILE)gpu.cu \

62 $(SCM_FILE)_.c

63 -@echo "---------------generating object files --------------"

64 $(GSC) -cc-options #---------------------------------------------------#

65 "-I $(CUDA_DIR )/ include -I $(GAMBIT_DIR )/ include $(ARCH)" \

66 -ld-options -prelude # -------------------------------------------#

67 "-L $(CUDA_DIR )/lib64 $(CUDA_LIB) -L $(GAMBIT_DIR )/lib" \

68 -obj $(VERBOSE) $(SCM_FILE)gpu.cu $(KERNEL_FILE ).cu $(SCM_FILE ).c \

69 $(SCM_FILE)_.c

70

71

72 #step 2:- build link file
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73 $(SCM_FILE)_.c: $(SCM_FILE ).c

74 -@echo "------------generating link file -----------------------"

75 $(GSC) -link $(VERBOSE) $(SCM_FILE ).c

76

77

78 #step 1:- build the shim

79 # also generates CUDA -C shim file $(SCM_FILE)gpu.cu

80 $(SCM_FILE ).c $(SCM_FILE)gpu.cu: $(SCM_FILE ).scm

81 -@echo "-------Building Scheme shim and CUDA shim --------------"

82 $(GSC) $(VERBOSE) -keep -scm -shim -bare -time -cu $(SCM_FILE ).scm

83

84 #utility targets

85 clean:

86 $(RM) -f $(SCM_FILE ).exe *.o $(SCM_FILE)_.c $(SCM_FILE ).c \

87 *_gpu -interface_ *.scm

Listing 4.8: Template makefile for compiling kernel skeleton

Next, the link file is generated from the compiled C file $(SCM_FILE).c on line 75. In case of main.c,

main_.c is generated as the link file. Objects files are then generated by invoking gsc on line 64–69 from

$(SCM_FILE)gpu.cu (CUDA-C shim), $(KERNEL_FILE).cu (definition of CUDA-C kernel), $(SCM_FILE).c (

compiled C file that also contains Scheme shim), and $(SCM_FILE)_.c (linking information) files. Therefore,

maingpu.cu, kernel.cu, main.c, and main_.c are compiled to object files by invoking gsc. Note that in

this stage gsc compiles kernel file $(KERNEL_FILE).cu to the object file $(KERNEL_FILE).o by implicitly

invoking nvcc.

Last, nvcc is directly invoked to generate GPU executable $(SCM_FILE).exe from the object files on lines

56–57. Therefore, GPU executable main.exe is generated from object files maingpu.o, kernel.o, main.o,

and main_.o.

This template makefile deletes the CUDA-C shim $(SCM_FILE)gpu.cu on line 54. It also deletes the

cudalib.scm and cudalib.cu files assigned to variable $(TEMP) on line 53. Link file $(SCM_FILE)_.c and C

file (SCM_FILE).c are also deleted on lines 55 and 56. In order to keep them, programmers need to comment

out these commands. In order to delete the Scheme shim programmers can remove the command-line option

-keep-scm-shim on line 82. gsc then automatically deletes the Scheme shim during the time of compilation.

We also introduce to Gambit another command-line option on line 82: -bare-time. This displays two

execution times in millisecond to a standard-output device in milliseconds. Here, the first execution time is

for a CUDA-C kernel and the second one is the combined execution time for the CUDA-C shim of that kernel

and the kernel itself. These two timings help to analyze performance for the different parts of the generated

shims. Programmers can avoid these two timings by removing this command-line option from the template

makefile.
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4.10 Summary

In this chapter, we showed Scheme special forms for GPUs in order to generate the foreign-function interface.

These special constructs carry special symbols that are necessary to generate the interface. Gambit constructs

parse tree nodes from these constructs and extracts necessary information from the parse tree nodes. The

parameters of those special constructs contain type information in their names. This type information can

be used to identify types, and generate the appropriate types and generate the appropriate types in different

parts of the interface.

We also showed how the special kernel call constructs can be converted to an ordinary Scheme function

call to call the generated Scheme shim and supply necessary execution configuration parameters to define the

execution configuration in CUDA-C shim. We then we described some useful library functions from Scheme

to ease the GPU management.

We also described a template makefile that manages the generation of the foreign-function interface

and builds a GPU executable from files containing kernel skeletons in Scheme and actual CUDA-C kernel

definitions. The steps involved in the compilation process are demonstrated by this makefile.

We now need to evaluate our implementation in Gambit. In order to do that we measure the runtime

performances of some example test cases implemented both in CUDA-C and Scheme. This will be described

in the next chapter.
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Chapter 5

Testing and Evaluation

We provided six test cases in order to evaluate the performance of our implementation in Gambit. We

implemented our test cases both in Scheme and CUDA-C. We then analyzed performance of these test

cases implemented in Scheme by comparing then with their implementation performance in CUDA-C. Some

of the CUDA-C implementations are taken from various open-source projects. For each test case Scheme

implementation a Scheme program was linked to CUDA-C kernels. Note that we also used the same CUDA-C

kernel in the CUDA-C implementations for that test case.

Our testing platform consisted of a host machine connected to with two GPU devices: GeForce GTX

560 Ti [10] and Quadro 600 [13]. Although the machine was equipped with an on-board Quadro 600; that

processor is very weak and was dedicated to system display purposes. Therefore, we only tested GPU functions

on the higher performance GeForce GTX 560 Ti. Table 5.1 we provide some specifications of GeForce GTX

560 Ti.

Table 5.1: Specifications of GeForce GTX 560 Ti

Specifications GeForce GTX 560 Ti
Compute capability 2.1
Global memory 1GB

Shared memory per thread block 48KB
Constant memory 64KB

Maximum threads per thread block 1024
Maximum thread blocks per grid 65535

No. of multiprocessor 8
Bus type GDDR5

Bus interface PCIe 2.0 x16

In order to evaluate the runtime performance of the generated code by our implementation in Gambit, we

needed to compare execution times for a test case implemented in Scheme with its CUDA-C implementation.

Our host machine had a model 44 Intel (R) Xeon (R) CPU E5607 @ 2.27 GHz processor, was manufac-

tured by Intel Corporation, and had 6 GB of memory. In our host machine, a GNU/Linux operating system

with a Linux kernel was installed with version #1 SMP Wed May 15 10:48:38 EDT 2013. Note that our host

machine did not drive a display and did not perform other tasks, so there was only a small overhead.

The version of Gambit compiler we used for our implementations was 4.6.2 [34]. The nvcc compiler driver
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V0.2.1221, release 5.0 [7] was installed on our host machine, as well as CUDA driver 5.0 [7] and gcc

version 4.4.7 [1]. For each experiment for our test cases, we ran each program 100 times and measured the

arithmetic mean time and standard deviations for execution times. We also measured execution times against

different vector sizes and different numbers of participating thread blocks. We then calculated curve-fitting

functions and drew trend lines for both implementations of a test case to observe scaling behavior.

5.1 Measuring Execution Time

We evaluated our implementation in Gambit by comparing execution times for six test cases implemented

in Scheme with CUDA-C. In this section we describe how we measured times both in Scheme and CUDA-C

implementations for single and multiple kernel executions.

5.1.1 Single Kernel

• Measuring time in Scheme

We used macro gpu-time to measure execution times for the Scheme implementations of our test cases.

For example, in the following Scheme code gpu-time measures execution time for kernel kernel1 that

takes a constant constant and src:

(gpu-time

(kernel <<< (nblocks) (blockSize) >>> constant src))

Here, gpu-time takes the kernel call kernel1 as an argument. In our implementation, gpu-time

recorded the start time stamp for a kernel before calling both shims. This macro actually counted the

execution times for the generated vector-length-calculation helper function and c-lambda function in

Scheme shim, CUDA-C shim, and a supplied CUDA-C kernel. gpu-time also recorded the stop time

stamp after the execution of CUDA-C shim.

For a Scheme implementation, we also measured execution times for different parts of a generated

foreign-function interface. In order to do that, we measured combined execution time for a generated

CUDA-C shim and a supplied CUDA-C kernel. We also measured execution time for a supplied CUDA-

C kernel only. In Scheme implementation for a test case, execution time is the combined execution

time for a generated Scheme shim, CUDA-C shim, and a supplied CUDA-C kernel. Therefore, we can

measure the execution time for a generated Scheme shim by comparing it with the combined execution

time for a CUDA-C shim and a kernel. Execution time of a CUDA-C shim can be measured by

comparing with the execution time for a kernel only.

In order to measure execution times for a generated CUDA-C shim and a supplied CUDA-C kernel in

Scheme implementation, we provided compiler flag -bare-time to generate CUDA code for measuring
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times by Gambit compiler that involved two cudaEvent_t type variables. These two variables computed

elapsed time to measure combined execution time for a generated CUDA-C shim and a supplied CUDA-

C kernel and a s supplied CUDA-C kernel, as described in Appendix G. We also measured execution

time for the generated code and subtracted it from execution times to measure actual execution times.

• Measuring time in CUDA-C

In order to measure execution times for the CUDA-C implementations of our test cases, we used CUDA

library functions. In Listing 5.1 we show a code snippet from an example host program in CUDA-C

that calls the CUDA-C kernel kernel1 and measures execution times for this example using CUDA

library functions involving cudaEvent_t types. On line 1, four cudaEvent_t types variables (start,

stop, start_k and stop_k) are declared. Here, start and stop time stamps are used to measure

execution time for CUDA-C implementation. This execution time includes vector transfer operations

between host and device memory and allocation/deallocation operations in device memory. The other

two cudaEvent_t type variables (start_k and stop_k) are used to compute the elapsed time and to

measure execution time for the kernel only.

On line 2, a float type variable elapsed_time_ms is declared and initialized to store an elapsed time

between two time stamps. On lines 3–6, start, stop, start_k, and stop_k are initialized using CUDA

library functions cudaEventCreate(). Then the start time stamp for CUDA-C implementation is

recorded on line 8:

cudaEventRecord(start, 0)

Next, device memory is allocated on line 10. Next, the vector is transferred to device from host memory

on line 11 and the kernel is called on lines 15–16. Here, start time stamp only for the kernel execution

is recorded just before the kernel call on line 13:

cudaEventRecord(start_k, 0)

The stop time stamp stop_k is recorded on line 16:

cudaEventRecord(stop_k, 0)

just after the kernel call. After the kernel execution, the vector is transferred back to host memory on

line 19. Next, device memory is deallocated on line 20. The stop time stamp is recorded on line 22:

cudaEventRecord(stop, 0)
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1 cudaEvent_t start , stop , start_k , stop_k;

2 float elapsed_time_ms = 0.0f;

3 cudaEventCreate (&start );

4 cudaEventCreate (&stop);

5 cudaEventCreate (& start_k );

6 cudaEventCreate (& stop_k );

7 // taking stop time stamp for CUDA -C implementation

8 cudaEventRecord(start , 0);

9 size_t size_u32v_src = h_u32v_src_len * sizeof(uint32_t );

10 cudaMalloc ((void **) &d_u32v_src , size_u32v_src );

11 cudaMemcpy(d_u32v_src ,h_u32v_src ,size_u32v_src ,cudaMemcpyHostToDevice );

12 // taking start time stamp only for kernel execution

13 cudaEventRecord(start_k , 0);

14 // calling kernel

15 kernel1 <<<blockSize ,nBlocks >>> (u32_constant , d_u32v_src ,

16 h_u32v_src_len );

17 // taking stop time stamp only for kernel execution

18 cudaEventRecord(stop_k , 0);

19 cudaMemcpy(h_u32v_src ,d_u32v_src ,size_u32v_src ,cudaMemcpyDeviceToHost );

20 cudaFree(d_u32v_src );

21 // taking stop time stamp for CUDA -C implementation

22 cudaEventRecord(stop , 0);

23 cudaEventSynchronize(stop);

24 cudaEventElapsedTime (& elapsed_time_ms , start , stop );

25 printf("%f,",elapsed_time_ms );

26 cudaEventElapsedTime (& elapsed_time_ms , start_k , stop_k );

27 printf("%f,",elapsed_time_ms );

28 cudaEventDestroy(start);

29 cudaEventDestroy(stop);

30 cudaEventDestroy(start_k );

31 cudaEventDestroy(stop_k );

Listing 5.1: Measuring execution times in CUDA-C implementation using cudaEvent_t type vari-

ables.

Next, the stop time stamp is synchronized on line 23 with the most recent call to cudaEventRecord(stop,0)

on line 22. The elapsed time between start and stop time stamps is measured in milliseconds on line

24 and displayed to standard output on line 25. Execution time for the kernel only is measured by

computing the elapsed time between time stamps start_k and stop_k on line 26 and displayed to

standard output on line 27. Finally all four time stamps are destroyed on lines 28–31. Note that start
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and stop time stamps also count the execution of time stamps start_k and stop_k on lines 18 and

22, but their execution times are so small that we can easily neglect them.

5.1.2 Multiple Synchronized Kernels

• Measuring time in Scheme

Sometimes multiple kernel calls need to be synchronized because a kernel may depend on the results

of other kernels. In order to synchronize multiple kernel executions we used our kernel synchronization

macro, sync, shown on lines 4–6 of Listing 5.2. Below we describe how we measured time for the test

cases involving multiple synchronized kernel executions using a sample Scheme code snippet. Here, the

host program calls two synchronized kernels kernel1 and kernel2.

1 (let ([ constant 786]

2 [src (make-u64vector N 100)])

3 (gpu-time

4 (sync

5 (kernel1 <<< (nblocks) (blockSize) >>> constant src)

6 (kernel2 <<< (nblocks )( blockSize) >>> constant src ))))

Listing 5.2: Measuring execution time for two synchronized kernels using sync.

In this example, gpu-time, records the start time stamp before calling the first kernel (kernel1) on

line 5. This calling actually calls the kernel’s generated foreign-function interface which includes the

vector-length-calculation helper function, c-lambda function, and CUDA-C shim. The second kernel

(kernel2) is then called along with its generated foreign-function interface which includes the vector-

length-calculation helper function, c-lambda function, and CUDA-C shim. Note that when the first

kernel is finished, the vector returns back to host memory from device memory before the code involving

kernel synchronization is called. Before calling to the second kernel, the vector is again transferred to

device memory and the resultant vector is returned back to host memory after the second kernel is

finished. Control is then returned back to the host program in Scheme. Finally, gpu-time records the

stop time stamp. Note that in CUDA-C shim there is one allocation and one deallocation operation

for each vector.

Sometimes multiple kernels do not need to be synchronized. In that case, multiple kernel calls do not

need sync, as on line 4.

• Measuring time in CUDA-C

In Listing 5.3 we provide a sample CUDA-C code snippet that describes how we measured execution

times for the CUDA-C implementation of our test cases involving multiple synchronized kernels. Here,

start time stamp is recorded on line 6 and device memory is allocated on line 8. Next, the vector is
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transferred to device memory on line 9 and the first kernel (kernel1) is called on lines 11–12. The

vector is transferred back to host memory on line 13. On line 15, cudaDeviceSynchronize() holds all

operations from lines 16–28 until (kernel1) is finished. This is the synchronization point. The vector

is again transferred back to device memory before calling the second kernel (kernel2) on lines 18–19.

When the second kernel is finished, the vectors is again transferred back to host memory from device

memory on line 20.

1 cudaEvent_t start , stop;

2 float elapsed_time_ms = 0.0f;

3 cudaEventCreate (&start );

4 cudaEventCreate (&stop);

5 // taking start time stamp

6 cudaEventRecord(start , 0);

7 size_t size_u64v_src = h_u64v_srclen * sizeof(uint64_t );

8 cudaMalloc ((void **) &d_u64v_src , size_u64v_src );

9 cudaMemcpy(d_u64v_src ,h_u64v_src ,size_u64v_src ,cudaMemcpyHostToDevice );

10 // calling first kernel

11 kernel1 <<< blockSize , nBlocks >>> (u32_constant , d_u64v_src ,

12 h_u64v_srclen );

13 cudaMemcpy(h_u64v_src ,d_u64v_src ,size_u64v_src ,cudaMemcpyDeviceToHost );

14 // synchronizing kernel

15 cudaDeviceSynchronize ();

16 cudaMemcpy(d_u64v_src ,h_u64v_src ,size_u64v_src ,cudaMemcpyHostToDevice );

17 // calling second kernel

18 kernel2 <<<blockSize , nBlocks >>> (u32_constant , d_u64v_src ,

19 h_u64v_srclen );

20 cudaMemcpy(h_u64v_src ,d_u64v_src ,size_u64v_src ,cudaMemcpyDeviceToHost );

21 cudaFree(d_u64v_src );

22 // taking stop time stamp

23 cudaEventRecord(stop , 0);

24 cudaEventSynchronize(stop);

25 cudaEventElapsedTime (& elapsed_time_ms , start , stop);

26 printf("%f ", elapsed_time_ms );

27 cudaEventDestroy(start);

28 cudaEventDestroy(stop);

Listing 5.3: Measuring execution time for two synchronized kernels in CUDA-C implementation..

The device memory is deallocated on line 21 and the stop time stamp is recorded on line 23. In this

CUDA-C implementation, the vector is allocated (line 8) and deallocated (line 21) only once. However,

in the Scheme implementation in Listing 5.2, allocation and deallocation happen twice for the vector
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src. The reason is that in this example, vector src is passed to both kernels. At first the vector is

allocated and deallocated in the CUDA-C shim of the first kernel, kernel1, and then again in the

CUDA-C shim of the second kernel, kernel2. Therefore, if a vector is passed to multiple kernels there

will be separate allocation and deallocation operations in each CUDA-C shim for each kernel.

Note that a CUDA-C implementation does not need cudaDeviceSynchronize() as on line 15, if mul-

tiple kernels do not need to be synchronized.

So far in this chapter, we have described how time both in Scheme and CUDA-C for our test cases was

measured. In the following sections we describe our test cases and analyze their performance in Scheme with

CUDA-C. We provide charts to analyze performance. In those charts, we use different shapes and colors to

represent different execution times:

• Blue diamonds represent execution time for a Scheme implementation that includes execution times

for Scheme Shim, CUDA-C shim, and a supplied CUDA-C kernel. For multiple synchronized kernels,

execution time for sync is also included.

• Red squares represent execution time for a CUDA-C implementation that includes execution times

for vector transfer operations, allocation/deallocation operations, and a supplied CUDA-C kernel. For

multiple synchronized kernel calls, it also includes execution times for cudaDeviceSynchronize().

• Kiwi triangles represent combined execution time for a CUDA-C shim and a supplied kernel, in short

cuShim+kernel.

• Blue circles represent execution time for a supplied kernel called from Scheme code.

• Red circles represent execution time for a supplied kernel called from CUDA-C code.

Apart from that we also provide trend lines in the charts to observe scaling behavior for different execution

times. We use different colors to distinguish them:

• Blue trend lines show the scaling behavior for execution times for Scheme implementations as well as

supplied CUDA-C kernels.

• Red trend lines show the scaling behavior for CUDA-C implementations as well as supplied CUDA-C

kernels.

• Kiwi trend lines show the scaling behavior for cuShim+kernels.

We also provide data labels for different execution times. Blue and red boxes represent execution time in

Scheme and CUDA-C, respectively. Kiwi boxes represents combined execution time for cuShim+kernels. In

our charts, we also provide the mathematical functions for those trend lines. Blue and red square boxes rep-

resents functions for Scheme and CUDA-C, respectively. Kiwi boxes represent functions for cuShim+kernels.
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5.2 Vector Addition

This is the simplest test case for our implementation. This example implemented element-by-element vector

addition in the supplied CUDA-C kernel. In this test case, the host program passed two Scheme floating-point

vectors and an integer constant to a kernel that performed parallel vector addition. Here, the first vector was

an input vector and the second vector was an output vector. All participating GPU threads running the same

kernel added the constant to an element of the input vector and stored the additions to the output vector.

When the kernel is finished, the vector is returned back to the host program. We provided IN notation in the

name of input vector and OUT notation in the name of output vector to avoid unnecessary memory transfer

operations in the generated CUDA-C shim.
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Figure 5.1: Performance comparisons of vector addition between Scheme and CUDA-C (block size
fixed to 1024 threads)

The chart in Figure 5.1 compares execution times for this test case implemented in Scheme with CUDA-C.

Here, Y-axis represents execution times in milliseconds and the X-axis represents vector sizes in millions. In

execution configuration, we kept the thread block size to 1024 threads and the grid size changed according

to the vector sizes on the X-axis. Both Scheme and CUDA-C showed liner trends y = 3.021x + 1.380

and y = 2.995x + 1.625, respectively. The execution time difference between Scheme and CUDA-C was

∆y = 0.026x − 0.245, which is the execution time for the Scheme shim. Note that the R Square values

were 0.999 for both trend lines, which means that the both lines fit the data perfectly. We observed no

overhead in Scheme compared to CUDA-C. Execution times for cuShim+kernel also showed a liner trend

y = 3.026x+ 1.344. The R Square value for cuShim+kernel was 0.999, which means that the line fit the data
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perfectly. This trend line was almost the same as the trend for Scheme. Therefore, most of the execution

time in the Scheme implementation for this test case was occupied by the generated CUDA-C shim and the

supplied CUDA-C kernel. Therefore, execution time for the generated Scheme shim was negligible.
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Figure 5.2: Performance comparisons for the supplied kernel only

We provide a chart in Figure 5.2 that compares execution time for the supplied CUDA-C kernel only

for this test case called from both Scheme and CUDA-C code. We found that both Scheme and CUDA-C

followed exactly the same liner trends of y = 0.123x + 0.016 and y = 0.123x + 0.016, respectively. There

was no difference for the supplied CUDA-C kernel in this test case, weather it was called from Scheme or

CUDA-C code. Note that the R Square values were 0.999 for both trend lines, which means that both lines

fit the data perfectly.

In Figure 5.3 we compared execution times for this test case implemented both in Scheme and CUDA-C.

We kept the grid size fixed to 65535 thread blocks as this was the maximum grid size in our testing GPU.

Therefore, thread block size increased with increasing vector sizes along the X-axis. Here, we found that both

Scheme and CUDA-C shim showed liner trends y = 2.923x+ 2.05 and y = 2.911x+ 2.186, respectively, and

there was no overhead in Scheme compared to CUDA-C. The execution time difference between Scheme and

CUDA-C was ∆y = 0.012xx − 0.136; this is the execution time for the Scheme shim only. cuShim+kernel

also followed liner trend y = 2.931x+ 1.975; which is similar to the Scheme trend. We also found that most

of the execution times in our Scheme implementation were occupied by the cuShim+kernel. Therefore, we

found that the generated Scheme shim was negligible in this experiment. Note that the R Square values were

0.999 for all three cases, which means that all lines fit the data perfectly.

Figure 5.4 shows a comparisons of execution times for the supplied kernel in this experiment. We found
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Figure 5.3: Performance comparisons of vector addition between Scheme and CUDA-C (grid size
fixed to 65535 thread blocks)
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Figure 5.4: Performance comparisons for the supplied kernel only
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that execution times for the CUDA-C kernel were the same in both cases. Both execution times for the

kernel called from Scheme and CUDA-C followed liner trends y = 0.035x + 0.591 and y = 0.035x + 0.591,

respectively. Execution times in both cases were the same for different vector sizes. Note that the R Square

values were 0.918 for both Scheme and CUDA-C, which is a relatively good fit of the lines to the data sets.

In this test case we found that there was almost no overhead in Scheme compared to CUDA-C in both

experiments. We observed that execution time for the Scheme shim was negligible in both experiments and

most of the execution time for the Scheme implementations was occupied by the generated CUDA-C shim.

We also observed that execution time for the supplied kernel was the same in both cases, weather it was

called from Scheme or CUDA-C code. Note that the Scheme implementation of this test case is provided in

Appendix A.

5.3 Multiple Synchronized Kernels

In this test case, a host program called two synchronized kernels, where the second kernel will not start

until the first kernel has finished execution in device. The first kernel takes two vectors containing 32-bit

unsigned-integers and an integer constant. The first vector is the input vector and contains initial data.

The second vector is the output vector and contains the result. Each participating thread adds the supplied

constant to an element of the input vector in parallel and stores the result to the output vector, just like the

example described in Section 5.2. The output vector is then returned back to the host program. The second

kernel would then be called called with two vectors also containing 32-bit integers and the same constant.

Here, the first vector is also an input vector and the second vector is an output vector containing the result.

In this test case, the output vector for the first kernel was the input vector of the second kernel. Therefore,

the second kernel could not start execution until the first kernel was finished. In the second kernel, each

participating thread subtracts the constant from the input vector and stores the result to the output vector.

The resultant vector is then returned back to device memory, which means the input vector to the first kernel

is now exactly the same as the resultant vector of the second kernel.

In this test case, we measured overhead for two synchronized kernel executions implemented in our system.

Both kernels were synchronized using sync. The chart in Figure 5.5 compares execution times for this example

implemented in Scheme and CUDA-C. Here, the X-axis represents vector sizes in millions and the Y-axis

represents execution times in milliseconds. For results in Figure 5.5, we kept the block size fixed to 1024

threads, as this was the maximum block size in our testing GPU, and the grid sizes for this experiment were

changed according to the vector sizes along the X-axis.

We found that both Scheme and CUDA-C showed liner trends y = 4.231x+1.675 and y = 5.398x+2.741,

respectively. The time difference between Scheme and CUDA-C was ∆y = −1.167x − 1.066; this included

sync macro, two generated Scheme shims, and four allocation/deallocation operations. It suggests that there

was no overhead in Scheme for this test case compared to CUDA-C. Note that the R Square value was 0.990
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Figure 5.5: Performance comparisons of two synchronized kernels

for both implementation, which means that both lines fit the data perfectly.

We ran the same kernel with different execution configurations in this experiment and kept the grid size

fixed to 65535 thread blocks while the block size increased with increasing vector size. The chart in Figure

5.6 compares execution times in Scheme with CUDA-C. Here, we observed that both Scheme and CUDA-C

showed liner trends y = 4.066x + 2.9 and y = 5.236x + 3.894, respectively. The time difference between

Scheme and CUDA-C was ∆y = −1.17x − 0.994. We also observed no overhead in Scheme compared to

CUDA-C. Note that the R Squared value was 0.990 for both implementations, which means that the both

lines fit the data perfectly. Note that the Scheme implementation of this test case is provided in Appendix

B.

5.4 Reduction

This test case performed a parallel sum reduction [44] on a vector of 32-bit unsigned-integers to calculate

a single sum. Parallel reduction is a common technique that used to compute a result in a set of data.

Reduction can be used when a vector of values needs to be reduced to a single value using any binary

associative operator such as maximum, minimum, average or product from a set of numbers.

This example used multiple thread blocks to process very large vectors. Each thread block performed

reduction to compute a partial sum for a segment of that array. Finally, a thread block performed reduction

on the partial sums to compute the overall sum. Therefore, we used two synchronized kernels to compute

the overall sum. The first kernel was invoked twice to compute a partial sum for all the participating thread
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Figure 5.6: Performance comparisons of two synchronized kernels

blocks. Here, 32 threads block were organized into a one-dimensional grid where each thread block containing

512 one-dimensional threads ran this kernel in parallel. Another kernel was then invoked to compute, the

overall sum from the partial sums computed by the first kernel. This kernel was run by a single, one-

dimensional thread block containing 32 threads. These two kernels must be synchronized to compute the

final sum. Therefore, the second kernel must not start until the first kernel is finished. In this test case, both

kernels were optimized to improve overall performance.

The chart in Figure 5.7 compares sum reduction implemented in Scheme and CUDA-C. In this chart,

the X-axis represents sizes for input vectors in 1024 or 1K units and is in logarithmic scale. The Y-axis

represents execution times in milliseconds. Execution times for Scheme and CUDA-C are represented with

blue diamonds and red squares, respectively.

In this example, both Scheme and CUDA-C showed polynomial trends y = −2E − 09x2 + .0004x+ 2.231

and y = −2E − 09x2 + .0004x+ 1.560, respectively. The trend line for Scheme never met the trend line for

CUDA-C. The difference in execution time between Scheme and CUDA-C for this example was ∆y = 0.671;

this included three Scheme shims and six allocation/deallocation operations. Note that the R Square value

was 1.0 for both implementations, which means that the both lines fit the data almost perfectly. We found

that overhead in Scheme decreased gradually with increasing vector size. Initially overhead was 35% for

vector size 128K and gradually decreased to less than 1% for vector size 32768K.

In this test case, the fist kernel was called twice and second kernel was called only once. Both kernels

take two vectors. Therefore, twelve memory allocation/deallocation operations for the vectors were exe-

cuted in the CUDA-C shims for these two kernels. However, the CUDA-C implementation had six extra
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Figure 5.7: Performance comparisons of sum reduction

allocation/deallocation operations, which contributed to overhead in the Scheme implementation.

For this test case, we also compared performance in Scheme with CUDA-C for an increasing number of

threads, as in Figures 5.8–5.11. In these charts, the X-axis represents the number of participating thread

blocks in a grid. In this experiment, we ran kernels for vector sizes 4M, 8M, 16M and 32M.

Figure 5.8: Performance comparison of sum reduction

As shown in Figure 5.8, we ran the kernel for vector size 4M. We found that both Scheme and CUDA-C

showed inverse trends y = 19.115 + 3.225/x and y = 17.831 + 3.309/x, respectively. The R Square values for

Scheme and CUDA-C were 0.998 and 0.994, respectively, which means that both lines fit the data almost

perfectly. From this trend line we observed that execution times for both Scheme and CUDA-C decreased
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gradually but implementation execution times remained consistent after grid size 4. We found a consistently

small overhead in Scheme of between 5–7% for the grid sizes on the X-axis. For this experiment, we found

that ∆y = 1.284 − 0.054/x; this included three Scheme shims and six allocation/deallocation operations.

Figure 5.9: Performance comparison of sum reduction

In Figure 5.9, the kernel was called with vector size 8M. Here, we also found that both kernels showed

inverse trends y = 35.459 + 6.575/x and y = 33.775 + 6.425/x, respectively. The R Square values for

Scheme and CUDA-C were 0.994 and 0.993, respectively, which means that both lines fit the data almost

perfectly. Here we also observed that execution times for both Scheme and CUDA-C decreased gradually but

implementation execution times remained consistent after grid size 4. Here, we also found consistently small

overhead in Scheme of between 4–5% for the grid sizes along the X-axis. For this experiment, we found that

∆y = 1.684 + 0.15/x; this also included three Scheme shims and six allocation/deallocation operations.

Figure 5.10: Performance comparison of sum reduction

In Figure 5.10, the kernel was called with vector size 16M. Here we found that both kernels showed inverse

trends y = 69.287 + 12.788/x and y = 66.013 + 12.811/x, respectively. The R Square values for Scheme and
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CUDA-C were 0.995 and 0.996, respectively, which means that the both lines fit the data perfectly. We also

observed that execution times for both Scheme and CUDA-C decreased gradually but that implementation

execution times remained consistent after grid size 4. We also found a consistently small overhead in Scheme

of between 4–5% for the grid sizes along the X-axis. For this experiment, we found that ∆y = 3.274−0.022/x;

this included three Scheme shims and six allocation/deallocation operations.

Figure 5.11: Performance comparison of sum reduction

In Figure 5.11, the kernel was called with vector size 32M. Here we found that both kernels show inverse

trends y = 137.130 + 25.357/x and y = 130.899 + 25.605/x, respectively. The R Square values for Scheme

and CUDA-C were 0.991 and 0.995, respectively, which means that the both lines fit the data perfectly.

We also found consistently small overhead in Scheme of between 3–5% for the grid sizes along the X-axis.

For this experiment, we found that ∆y = 6.231 − 0.248/x; this included three Scheme shims and six extra

allocation/deallocation operations.

From these four experiments we observed that both execution times reduced with an increasing number

of thread blocks. We also observed that after a certain number of thread block there was no improvement

in performance for both implementations. We found a consistently small overhead in Scheme compared to

CUDA-C across an increasing number of thread blocks and an increasing number of vector sizes. The reason

for this consistent overhead was the six extra allocation/deallocation operations in the generated CUDA-C

shim since execution times for the generated Scheme shim, since execution times for the generated Scheme

shims were negligible. Note that the Scheme implementation for this test case is provided in Appendix C.

5.5 Matrix Multiplication

In this test case, the supplied CUDA-C kernel [16] performed parallel matrix multiplication on two square

matrices of 32-bit floating-point numbers and stored results in another square matrix. Here, all three matrices

were identical in size. In this test case, participating threads were organized into square thread blocks, and
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thread blocks were organized into a two-dimensional square grid. Each thread block performed matrix

multiplication on one-dimensional segments of the two matrices. Therefore, each participating thread in a

thread block looped through a row of a segment of the first matrix and a column of a segment of the second

matrix based on its two-dimensional thread ID. Each thread then multiplied an element from a row with

the corresponding element in a column and summed up the total for all multiplications. Next, it stored the

summation in the third matrix in a position determined based on its two-dimensional index. In this example,

the first two matrices have IN notations and the third matrix has an OUT notation in their names in order to

avoid unnecessary memory transfer operations.

Table 5.2: Execution configurations used for different vector sizes seen on the X-axis of Figure 5.12

Size of vector Block Dimension Grid Dimension
288 × 288 8 × 8 9 × 9
576 × 576 16 × 16 9 × 9
1152 × 1152 16 × 16 18 × 18
2304 × 2304 32 × 32 18 × 18
4608 × 4608 32 × 32 36 × 36
9216 × 9216 32 × 32 72 × 72

We ran the kernel with different vector sizes in this text case. We also used different execution configu-

rations for different vector sizes, as shown in Table 5.2. In this test case we used a two-dimensional grid and

two-dimensional thread blocks to run this kernel.

In Figure 5.12 we provide a chart that compares performance of matrix multiplications implemented in

Scheme with CUDA-C. In this chart, the X-axis represents the widths of input and output vectors and the

Y-axis represents execution times in milliseconds. Note that Y-axis is in logarithmic scale for this test case.

In this example, we doubled the widths of the matrices for scaling. Both dimensions of the matrices are

doubled since the matrices are square matrices. Therefore, vector sizes are quadrupled because of this scaling

behavior.

In this test case, both Scheme and CUDA-C implementations followed power trends y = 2E − 07x2.817

and y = 4E − 07x2.730, respectively. The execution time difference between Scheme and CUDA-C was

∆y = −2E − 07x0.087; this included the generated Scheme shim. In this test case, we observed no overhead

in Scheme and the trend line in Scheme never crossed the trend line in CUDA-C. However, it met the

CUDA-C trend line after matrix width 4608. cuShim+kernel also showed the power trend y = 2E− 07x2.819

which is almost the same as with Scheme. It suggests that most of the execution time was consumed by the

CUDA-C shim and the kernel. In this chart, the trend line for Scheme is overlapped by the trend line for

cuShim+kernel 1. Therefore, execution time for the generated Scheme shim was also negligible in this test

case. Note that the R Square values for these three timings are 0.994, 0.993, and 0.994; this means the lines

1We can only see the kiwi trend line for cuShim+kernel in Figure 5.12
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Figure 5.12: Performance comparison of parallel matrix multiplication

fits the data almost perfectly.

For this test case, we also measured execution time for the supplied kernel only in both Scheme and

CUDA-C. The chart in Figure 5.13 compares execution times for the kernel in Scheme with CUDA-C. Both

Scheme and CUDA-C showed power trends y = 8E − 08x2.925 and y = 2E − 07x2.801, respectively. The

difference in kernel execution time between Scheme and CUDA-C was ∆yk = −1.2E − 07x0.124. Therefore,

execution time for the supplied kernel was less when called from Scheme code compared to CUDA-C. In this

example, the initially Scheme trend line maintained a distance from the CUDA-C trend line before it met

this line smoothly smoothly after matrix width 4608 on the X-axis.

For this test case, we also ran the same kernel without IN and OUT notations in the names of the kernel

parameters to observe its performance without IN/OUT notations. We found that there was no overhead in

Scheme compared to CUDA-C, as shown in the chart in Figure 5.14. Both Scheme and CUDA-C showed

power trends y = 3E − 07x2.754 and y = 4E − 07x2.730, respectively. The execution time difference between

Scheme and CUDA-C was ∆y = −1E − 07x−0.007; this included Scheme shim and three extra memory

transfer operations. Here, extra execution time without IN/OUT notation was ∆yIN/OUT = 1E − 7x−0.273

and included three extra memory transfer operations. The generated cuShim+kernel also showed power

trend y = 3E − 07x2.761; this is similar to Scheme, so the execution time for generated Scheme shim was

also negligible here. We found that execution times in Scheme decreased by around 0.7% –16.4% in this

experiment compared to execution times with IN and OUT notations in Figure 5.12. The reason is without

IN and OUT notations our implementation generated three extra memory transfer operations in the CUDA-C

shim. Note that the Scheme implementation of this test case is provided in Appendix D.
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Figure 5.13: Performance comparison of matrix multiplication for CUDA-C kernel
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Figure 5.14: Performance comparison of parallel matrix multiplication without IN/OUT notations
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5.6 3D Finite Difference computing

In this test case, we linked a kernel that performed parallel 3D finite difference computations [57] from

Scheme. We chose this example to evaluate runtime performance of our implementation in complex and real

world applications. This example illustrated a 3D stencil computation [50] over a uniform grid [55]. Stencil-

only computation is a common computational technique used in finite difference codes. This technique can

also be used for finite difference discretization of wave equation, which is a major building block for Reverse

Time Migration (RTM) [25], used in seismic imaging.

In this example, the kernel processed two-dimensional thread blocks along the slowest varying dimension

of the three-dimensional data set in order to maximize data reuse from shared memory. In this test case, 32

× 32 thread blocks are organized into a two-dimensional grid. Each two-dimensional thread block contains

16 × 16 threads. Two vectors - each 703MB in size - contained 32-bit floating-point numbers were passed to

the kernel. Here, one vector contained initial data and other vector contained the results.

Table 5.3: Assessment of runtime (ms) performance of parallel 3DFD

Programs Mean(ms) σ (ms)
CUDA-C Implementation 214.1 0.9

Shims+Kernel 276.8 1.6
Shim(CUDA-C)+Kernel 276.8 1.6

Kernel(Scheme) 32.9 0.2
Kernel(CUDA-C) 30.9 0.4

In this test case, Scheme implementation (Shims+Kernel) created 29% or 62.7 ms overhead compared to

its CUDA-C implementation, as seen in Table 5.3. Here, the Scheme implementation of this example included

execution times for generated Scheme shim, CUDA-C shim and the supplied CUDA-C kernel from Scheme.

The combined execution time for the CUDA-C shim and the CUDA-C kernel in Scheme implementation was

276.8 ms. Therefore, overhead contributed by the Scheme shim was negligible in this test case. We also found

that when the CUDA-C kernel was linked from Scheme its execution time was 2.00 ms (32.9 - 30.9 = 2.0)

longer on average compared to its execution times in the CUDA-C implementation. This extra time created

about 3% of overall overhead. Therefore, almost 97% (62.7 - 2.0 = 60.7) of overall overhead in this test

case was caused by the CUDA-C shim, including memory transfer operations, allocation and deallocation

operations in device memory, and a call to the CUDA-C kernel.

In this example, the resultant vector did not need to be copied from host to device memory before kernel

execution. Similarly, the vector containing initial data did not need to be copied back to host memory

after execution of the kernel. In order to do this we provided an IN notation in the name of the vector

containing initial data. We also provided an OUT notation in the name of the vector containing results

to avoid two extra memory transfer operations. We found that without these two notations in the names

of kernel parameters, execution times in Scheme increased to 433.7 ms. This is almost double compared
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to the CUDA-C implementation (214.1 ms). Therefore, IN and OUT special notations are needed to avoid

extra memory-transfer operations that are cause huge overhead for this test case. Note that the Scheme

implementation for this test case is provided in Appendix E.

5.7 Scalar Product

In this test case, we linked Scheme code to a CUDA-C kernel that performed parallel scalar product on GPU.

This kernel was taken from NVIDIA’s CUDA SDK [9]. In this example, a kernel takes an input vector pair

containing floating-point numbers and an output floating-point vector. Both input vectors were divided into

equal number of segments. Here, the kernel calculated a scalar product for each segment pair from both

input vectors and stored resultant scalar products on the output vector. Therefore, the length of the output

vector was equal to the number of segments of input vectors. In this example, each input vector was divided

into 2560 segments. Therefore, CUDA-C kernel calculated 2560 scalar products.

In this test case, we measured execution times against different numbers of participating thread blocks.

We changed the grid size in execution configuration for a particular size of input vector pairs. In this test case

we measured execution time for an increasing number of threads with a fixed vector size. We also increased

vector sizes linearly to observe the scaling behavior in the separated charts.

The charts in Figures 5.15 –5.18 show performance comparisons of parallel scalar product implemented in

Scheme and CUDA-C for four different vector sizes. In these charts, the X-axis represents number of thread

blocks per grid and the Y-axis represents execution time in milliseconds. In the execution configuration,

each one-dimensional thread block had 256 threads. Therefore, the number of participating threads for a

particular execution time can be found by multiplying grid size with the fixed block size.

Figure 5.15: Performance comparison of parallel scalar product

First, the kernel was called with a vector size 10M for both input vectors. In Figure 5.15 both execution

times for Scheme and CUDA-C showed inverse trends y = 21.912 + 21.744/x and y = 22.140 + 13.208/x,
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respectively. The R Square values in Scheme and CUDA-C were 0.964 and 0.969, respectively, this means

that both lines fit the data almost perfectly. By seeing both trend lines we understand that both execution

times reduced with an increasing number of thread blocks. Initially, Scheme took longer to execute than

CUDA-C. With an increasing number of thread blocks along the X-axis, the distance between these two

trend lines decreased. This means the difference between the two execution times is also reduced. Finally,

the Scheme trend line crossed the CUDA-C trend line after 32 thread blocks on the X-axis. Scheme then

takes less time compared to CUDA-C for the rest of the values on the X-axis. For this experiment, we found

that ∆y = −0.228 + 21.744/x included the generated Scheme shim. We observed that initially there was a

1–4% overhead in Scheme for grid sizes 8 to 16, but that there was no overhead in Scheme from grid size 32

on. Both Scheme and CUDA-C then showed consistent execution times.

Figure 5.16: Performance comparison of parallel scalar product

In Figure 5.16, we ran the same programs for both implementations but we doubled the vector size to

20M. We also found that both implementations showed inverse trends, with y = 42.435+45.134/x in Scheme

and y = 42.825+25.752/x in CUDA-C. The R Square values for Scheme and CUDA-C were 0.970 and 0.954,

respectively, which is a good fit of both lines to the data. We observed that the execution times for both

implementations were double compared to the execution times in Figure 5.15. This is because vector size

doubled in this experiment. This chart also shows the same behavior as the previous chart. Initially, Scheme

implementation took longer than CUDA-C. As the grid size increased, distance between two execution times

reduced until the Scheme trend line crossed the CUDA-C trend line after the thread block 32 on the X-axis.

Scheme then took less time compared to CUDA-C for the rest of the values along the in X-axis. For this

experiment, we found that ∆y = −0.39 + 19.382/x; this included the Scheme shim. We also found that

1–5% overhead in Scheme compared to CUDA-C for grid sizes 8 to 16. At grid size 32. the overhead became

almost 0% in Scheme and then execution times for both implementations were almost consistent across the

grid sizes on the X-axis.
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In Figure 5.17, the kernel was called with vector size 30M for two input vectors. This tripled the vector

size compares in Figure 5.15. Here, we also found both Scheme and CUDA-C show inverse trends y =

63.198 + 65.123/x and y = 63.123 + 38.832/x, respectively. The R Square values for both Scheme and

CUDA-C were 0.969 and 0.953, respectively. This is a relatively good fit of both lines to the data.

Figure 5.17: Performance comparison of parallel scalar product

Here, we also found that initially Scheme had longer execution times compared to CUDA-C and gradually

the difference between Scheme and CUDA-C reduced on the Y-axis. After grid size 32 both trend lines kept

consistent distance across the values on the X-axis. In this experiment, the Scheme trend line never met the

CUDA-C trend line. For this experiment we found that ∆y = 0.074+26.58/x and contained only the Scheme

shim. We also found an initial 1–5% overhead in Scheme for grid sizes 8 to 32 and almost 0% overhead after

grid size 64. In this experiment, we observed that 0% overhead in Scheme drifted to the right on the X-axis

compared to Figures 5.15 and 5.16. For these experiments, we found 0% over head at grid size 32.

Figure 5.18: Performance comparison of parallel scalar product
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In Figure 5.18, the kernel was called with the vector size 40M for two input vectors. The vector size

is now four times bigger compared to the vector size in Figure 5.15. Here, we observed that both Scheme

and CUDA-C showed inverse trends y = 83.789 + 87.781/x and y = 83.601 + 51.662/x, respectively. The R

Square values for Scheme and CUDA-C were 0.974 and 0.956. This is a good fit of both lines to the data.

We also observed that initially Scheme had longer execution times compared to CUDA-C. Gradually, the

difference between these two execution times reduced. After grid size 32, both trend lines kept consistent

distance across the X-axis values. In this experiment, the Scheme trend line never met the CUDA-C trend

line and we found that ∆y = 0.18 + 36.119/x. We also found a 1–6% overhead in Scheme implementation

for grid sizes 8 to 32. After grid size 64, we observed almost 0% overhead in Scheme, as seen in Figure 5.18.

In this example we observed a 0–5% overhead in Scheme. We also found that overhead in Scheme reduced

with increased grid sizes on the X-axis and after a certain grid size, overhead became almost 0%. We also

found that increasing the grid size did not always reflect better performance for both implementations. After

a certain grid size we repeatedly observed similar execution times. We also found that increasing vector size

required more thread participation to achieve optimal performance in Scheme.

5.8 Related Work

5.8.1 GPGPU-Based Systems

The Lua programming language has an extension to access data-parallel OpenCL code known as LuaGPU [19].

It allows programmers to write host programs in Lua. LuaGPU saves programmers from a lot of error-prone

error-checking and pointer-operations in OpenCL. Unlike our implementation, a host program in LuaGPU

takes a data-parallel OpenCL kernel source code as a Lua string. Programmers also need to write their own

datatype mapping operations to pass kernel arguments from a Lua program to an OpenCL kernel, whereas

our system automatically generates these mapping operations in the Scheme shim. In addition, LuaGPU

requires programmers to write out the memory transfer operations which are also automatically generated

in the CUDA-C shim in our system.

Moreover, data and kernel are launched from a queue-like data structure defined in Lua, whereas our

system does not require any additional data structure to call a kernel. A kernel call is like an ordinary function

call in Scheme. It just requires an additional construct to define an execution configuration. Therefore,

LuaGPU still leaves a lot of Lua coding for programmers.

The Python programming language also has an extension to access data-parallel CUDA-C code called

PyCUDA [51]. This extension allows programmers to write host programs in Python that control and issue

data-parallel programs written in CUDA-C. Unlike our system, PyCUDA requires programmers to define

memory transfer operations, allocation/deallocation operations, and it also takes data-parallel CUDA-C

code as Python strings. PyCUDA provides special arrays for GPUs, whereas our system does not require

any additional special GPU arrays in Scheme. An ordinary Scheme vector can be passed to a kernel.
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Our system does not provide any error-reporting facility, whereas in PyCUDA, errors generated from

GPU computations are detected and reported automatically. In contrast to our system, every feature of

the CUDA runtime system is accessible from Python via PyCUDA, including textures, pinned-host memory,

OpenGL interaction, zero-copy host memory mapping, etc. PyCUDA also provides some library functionality

such as element-wise arithmetic-operations, map-reduce, and parallel scan that allows a restricted subset of

Python code to be automatically farmed out to the GPU. In addition, PyCUDA has a just-in-time compiler

that generates NVIDIA’s low-level PTX abstract-machine code [6] which allows automated tuning of device

code to improve runtime performance, whereas our system does not generate code at runtime.

PyCUDA has been used successfully in many research projects. Tomasz Rybak at Bialystok Technical

University uses PyCUDA for generating recurrence diagrams for time-series analysis. He was able to achieve

an 85-fold speedup compared to CPU computations. Romain Brette and Dan Goodman are also using

PyCUDA to simulate spiking neural networks with their simulator Brian [39]. Brian relies on PyCUDA to

generate runtime GPU code for the integration of differential equations provided by the users in a Python

script. GPU performance was up to 60 times faster than a comparable CPU implementation for some models.

There are some image processing applications developed with PyCUDA that implement k-means clustering

routines [27]. For those applications, PyCUDA was about 10x slower than the CUDA-C implementations

but these were still probably an improvement over CPU computations. In contrast to PyCUDA, overhead

in our system for the test case 3DFD as a real-world example, discussed in Section 5.6, was 1.3x slower than

the CUDA-C implementation.

Accelerate [28] is a domain-specific high-level skeleton-based language for GPGPU computing in the

Haskell programming language. In Accelerate, both host and kernel programs are written in high-level

Haskell, whereas our system allows only host programs in Scheme as high-level language. Accelerate provides

abstractions for the programmers both for device and host programs that eases GPU programming. Unlike

our system, Accelerate has a dynamic code generator that instantiates CUDA implementations as PTX at

runtime. This code generator exploits runtime information to optimize GPU code. However, compiling

kernels at runtime is an overhead at execution time. In order to reduce this overhead, Accelerate memoizes

compiled kernels. Therefore, kernels that are invoked multiple times are only generated and compiled once.

In [28], Manuel M.T. Chakravarty et al. mention three test cases in order to evaluate performance of

Accelerate. For parallel dot product, Accelerate takes almost precisely twice as long as CUDA-C, whereas

overhead for this test case in our system was only 0–4% compared to CUDA-C. Another test case, the

Black-Scoles option pricing algorithm shows that the overhead for Accelerate reduces with increasing vector

sizes compared to CUDA-C. Similarly, sparse-matrix vector multiplication also shows similar performance

behavior to Black-Scholes as overhead reducing compared to CUDA-C with increasing vector sizes. In our

system, we also observed similar performance behavior, diminishing overhead rapidly with the increasing

vector sizes for the test case parallel sum reduction, discussed in Section 5.4.

Firepile [56] is a library for GPU computing in Scala programming language which has both functional and
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object-oriented features. Firepile allows programmers to write both host and kernel code in Scala, whereas

our system allows only host programs in Scheme as high-level language. Like our system, the Firepile library

hides details of GPU programming by managing devices and memory operations automatically. However,

Firepile is a library to manage devices and memory operations, whereas our system generates code for the

memory operations in the shims and GPUs are managed by the library functions in Scheme provided to our

system.

In order to compile from Scala to OpenCL, Scala compiler first compiles both host and kernel into Java

bytecode. Then the Java Virtual Machine executes the bytecode. Next, the Firepile library identifies the

bytecode for the kernel and invokes its internal compiler to convert kernel bytecode to native OpenCL code.

Next, Firepile copies data from host to device memory and then invokes the kernel. Finally, it copies back

results from device to host memory.

In [56], Nathaniel Nystrom et al. mention five test cases: reduction, Black-Scholes, matrix multiplication,

the discrete cosine transform (DCT8x8), and matrix transpose. The Firepile version of parallel reduction

performed as well as CUDA-C. In our system, parallel reduction showed 35% overhead for small vector sizes.

However, this overhead diminished rapidly with increasing vector sizes. For matrix multiplication, Firepile

version was 15% faster than the NVIDIA CUDA-C version. In our system, matrix multiplication was also

faster than the CUDA-C version. Firepile versions of discrete cosine transform (DCT8x8), Black-Scholes and

matrix transpose were consistently slower than the CUDA-C versions. In contrast to Firepile, test cases for

our system initially showed overhead for smaller vector sizes. However, we observed that overhead diminished

rapidly with increasing vector sizes or number of thread blocks.

5.8.2 Concurrent and Distributed Systems

Erlang [20] is a functional programming language designed for programming concurrent, and distributed

systems. It is developed by Ericsson to write programs to provide a flexible and safe support for telecommu-

nication equipment. Like Scheme, Erlang is a dynamically typed language and has support for higher-order

functions. It also provides C/C++ interfaces to link C code.

In Erlang, processes are the executing elements that run on the Erlang virtual machine. Processes are

created and managed by the Erlang runtime system, not by the underlying operating system. Concurrent

Erlang processes are totally separate and share nothing (Multiple Instructions Multiple Data). But, they are

not embarrassingly parallel because they interact with each other only through message passing. Data is also

immutable in an Erlang process. Multiple processes can be synchronized only through the message-passing

mechanism; and, this is inefficient since messages must be copied among the processes. Erlang also includes

sophisticated error-handling, code-replacement mechanisms, and a large set of libraries.

In contrast to Erlang, our system compiles programs for data-parallel computations on GPUs with a

large degree of SIMD parallelism. In GPGPU computing, a kernel actually runs on a GPU rather on a

virtual machine. Moreover, there is no message-passing mechanism in GPGPU computing to synchronize
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multiple kernel executions. Multiple GPU threads can access shared data in parallel. Therefore, our system

works for a completely different paradigm than the Erlang; and, it is also true for others GPGPU based

systems, discussed in Section 5.8.1. GPGPU computing fundamentally works differently from concurrent

and distributed computing. Currently, Erlang has no support for high-performance GPGPU computing.

Gambit Scheme also has a support for concurrent and distributed computing, known as Termite Scheme

[38]. Termite Scheme is mainly inspired by Erlang. Therefore, Termite processes also communicate through

message-passing mechanism; and, it is impossible for a process to directly access the memory space of another

process. Termite is flexible enough that the programmers can easily build, and experiment with libraries

providing higher-level distribution primitives and frameworks [38].

Moreover, the semantic properties of Termite Scheme allow programmers to write simple yet robust

code to build higher layers of abstractions that are themselves clean, maintainable, and reliable [38]. Unlike

Erlang, Termite provides macros and continuations for distributed computing; this enables task migration and

dynamic code updates. In contrast to Termite, our system extends Gambit to write data-parallel programs

only for the NVIDIA’s GPUs.

OpenMP [26] is an API to develop multithreaded applications available for C, C++, and FORTRAN. It

supports most processor architectures and operating systems. OpenMP consists of a set of compiler directives

and library functions that enables Symmetric Multiprocessing in C, C++, and FORTRAN. Unlike our system,

OpenMP uses a fork-join model of parallel execution. When a thread encounters a parallel construct, the

thread creates a team composed of itself and some additional number of threads. This thread is called a

master thread. The other threads of the team are called slave threads of the team.

There are two types of synchronization available in OpenMP: implicit and explicit. Implicit synchroniza-

tion points exists at the beginning and the end of a parallel construct. When a thread finishes its work, it

waits at the implicit barrier at the end of the parallel construct. When all team members have arrived at the

barrier, then the threads can leave the barrier. This implicit barrier works similar to CUDA synchronization

primitives.

Like CUDA, OpenMP also allows all threads to access the same global shared memory. Moreover, every

individual thread has it’s own private memory. Explicit synchronization is also available in OpenMP through

shared data residing in global shared memory allowing interprocess communication. Although there are some

similarities between CUDA and OpenMP. However, OpenMP only works on CPUs, whereas our system is

designed only to work on NVIDIA GPUs.

5.9 Summary

We provided six test cases implemented both in Scheme and CUDA-C in order to evaluate performance of

our implementation in Gambit. This showed 0-35% overhead on average for our test cases case. Our test

cases covered various constructs of our implementation in Gambit. We evaluated the performance ranging
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from single kernel execution to multiple synchronized kernel executions. We also evaluated performance of

simple kernels with a few statements to synchronized kernels with nested loops and conditional statements.

We also tested the performance of kernels executed by one-dimensional thread blocks to multi-dimensional

thread blocks, and from one-dimensional grid to multi-dimensional grid.

We found that the execution time for a generated Scheme shim was negligible. Most of the execution

time in Scheme was occupied by CUDA-C shim and the supplied kernel. We observed that the single kernel

executions described in Section 5.6 create high overhead. However, the single kernel executions described in

Sections 5.2 and 5.5 did not create any overhead. In the case of multiple synchronized kernels, we found that

overhead was caused by extra memory allocation/deallocation operations in CUDA-C shim. We also found

that without IN and OUT notations in the name of kernel parameter performance decreased for the Scheme

implementations described in Section 5.5. This was because of extra memory transfer operations in CUDA-C

shim. These extra memory transfer operations cause a huge overhead of more than 100% for test case 3DFD

in Section 5.6.

We also evaluated performance of our implementation against an increasing number of thread in Sections

5.4 and 5.7. We found a small, consistent overhead of 0–5% in Scheme compared to CUDA-C. For the

single kernel execution in Section 5.7, we observed that overhead in Scheme reduces with an increasing

number of participating thread blocks. After a certain number of thread blocks we found that performance

in Scheme surpassed CUDA-C. However, with increased vector sizes Scheme can not surpass CUDA-C but

consistently showed almost 0% overhead. In case of multiple synchronized kernel executions, we also found

consistent overhead in Scheme implementations because of extra allocation/deallocation operations in device

memory. Although execution times for Scheme implementations reduced with an increasing number of thread

blocks, execution times for CUDA-C implementations also reduced. Therefore, we observed consistently small

overheads for vector size across the X-axis.

Our test cases showed that overhead rapidly reduced to almost 0% with increasing vector sizes as well as

increasing number of thread blocks as described in Sections 5.4 and 5.7. Therefore, overhead in days/weeks-

long real-world applications can also be reduced reasonably by increasing vector sizes or number of thread

blocks.
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Chapter 6

Conclusion

This chapter summarizes our work that linking Scheme code to data-parallel CUDA-C kernels in Gambit.

We begin with a brief review of our thesis, followed by outlining the contributions of our work, and identifying

some future research from our implementation.

6.1 Summary

Data-parallel computation in GPUs for scientific and engineering applications is becoming popular. NVIDIA

Corporation provides CUDA-C programming language to develop data-parallel programs - also known as

kernels - for GPUs. The execution of these kernels is managed and issued by a host program that runs on a

CPU. Therefore, programmers must manage memories both for GPUs and a CPU.

Scheme is a mostly functional programming language. It is also an expressive language. Therefore,

programs developed in Scheme are easy to maintain and understand. In this thesis, we showed how a Scheme

program can be linked to a data-parallel CUDA-C kernel. In our work, the Gambit Scheme compiler generates

an interface (Scheme and CUDA-C shims) from a kernel skeleton defined in Scheme. This kernel skeleton acts

as a representative in Scheme for a data-parallel CUDA-C kernel supplied by programmers and the generated

shims manage the memory operations. Therefore, our work reduces hands-on memory management and

enables developing expressive host programs in Scheme for managing and issuing data-parallel programs

running on GPUs.

Our implementation in Gambit generates a foreign-function interface from a kernel skeleton defined in

Scheme in order to link Scheme code to a data-parallel CUDA-C kernel. In Chapter 3, we described what

parts are required for an interface that links a CUDA-C kernel from Scheme. From our investigation we

found four parts to be necessary:

1. A vector-length-calculation helper function for calculating length of a vector

2. A c-lambda function for converting kernel arguments from Scheme to C types

3. A forward declaration for a CUDA-C shim using a c-declare construct

4. A C-function for managing memory operations and calling a CUDA-C kernel
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We named helper function, c-lambda function, and forward declaration together as Scheme shim and the

C-function that calls a CUDA-C kernel as CUDA-C shim. These two shims are separated into two different

files: Scheme shim are in a file with a .scm extension and CUDA-C shim are in a file with a .cu extension.

CUDA-C shim calls a supplied CUDA-C kernel to link with Scheme code. In this thesis we used constant

prefixes to name kernel parameters and supply type information for Gambit.

We discussed the implementation of our work in Gambit in Chapter 4. We provided special constructs

in Scheme to define a kernel, call a kernel with an execution configuration, and synchronize multiple kernels.

Gambit extracts necessary information to generate both shims from parse tree nodes generated from a kernel

skeleton defined in Scheme. Type information for kernel arguments is extracted from the constant prefixes

mentioned in their names, so programmers must follow a strict naming convention in our implementation

when naming kernel parameters. In Chapter we also discussed some implemented library functions in Scheme

for GPUs.

In Chapter 5, we evaluated our implementation by running some test cases. These test cases cover

various language constructs of our implementation in Gambit and CUDA-C. We found that some test cases

implemented in Scheme created a reasonably low overhead compared to their CUDA-C implementations. We

also found that some test cases do not create any overhead. We implement two extra notations - IN and

OUT - to avoid unnecessary memory transfer operations for vectors. We found that, without these two extra

notations, some test cases created overhead ranging from more than 100% in Scheme.

Our work enables Scheme programmers to develop expressive programs that control and issue data-parallel

programs running on GPUs, while also reducing hands-on memory management.

6.2 Contributions

The specific contributions of this work are:

1. An extended Gambit Scheme compiler with some special constructs for GPU computation

2. A linkage of Scheme programs to CUDA-C kernels that involves necessary type conversions for data

types.

3. Parse tree nodes generated by Gambit to extract kernel parameters and names.

4. Useful library functions in Scheme for Gambit to manage GPUs.

6.3 Future Work

Our implementation in Gambit creates some scope for future works. These future works are directly related

to the limitations of our work.
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6.3.1 Type inference for kernel parameters

In our implementation, we use constant prefixes to extract type information for kernel parameters. Therefore,

programmers must follow a strict naming conventions to name kernel parameters in our implementation.

Using these constant prefixes might be irritating to Scheme programmers. It would be easy for programmers

to name kernel parameters without constant prefixes. However, in order to link Scheme code to CUDA-C

kernel type information, kernel parameters are required. This is because Scheme does not provide any type

information for data types. However, CUDA-C requires type information for data types, whereas We can

extract type information for kernel parameters using type inference [37] technique by implementing it in

Gambit. Type inference technique allows a compiler to deduce the type for a data type during the time of

compilation.

6.3.2 Minimization of unnecessary memory transfer operations

In Chapter 5, we described how our implementation eliminates extra unnecessary memory transfer operations

by providing IN and OUT annotations in kernel parameters’ names. Specifically, when a vector is passed

to multiple kernels our implementation requires two extra memory transfer operations for each vector in

CUDA-C shim. These extra memory transfer operations contribute to overall overhead. Therefore, we need

to eliminate these extra memory transfer operations in order to minimize overhead in our implementation.

6.3.3 Compiling body of a kernel

For now, our implementation links Scheme code to CUDA-C kernels. In order to do that, our implementation

generates Scheme and CUDA-C shims from a kernel skeleton defined in Scheme. We extend Gambit so that

it accepts this special constructs for kernel skeleton and generates both shims. Our implementation extracts

the parse tree nodes constructed from the body of a kernel skeleton. Theses parse tree nodes can be used

to compile the body of a kernel to CUDA-C code that can run on a GPU. Compilation of a kernel’s body

also enables us to link device functions from a kernel because device functions are only callable from kernels.

Note that kernels in CUDA-C do not support recursion and they cannot declare static variables inside their

body.
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Appendix A

Vector addition

This appendix shows code for test case parallel vector addition, described in section 5.2. We provide the
host program implemented in Scheme.

A.1 Host program in Scheme

In Listing A.1 we provide host program implemented in Scheme calls CUDA-C kernel VecAdd on line 48. The
kernel skeleton is defined on lines 2–3.

1 ;;-------------------- kernel skeleton----------------------
2 (define VecAdd
3 (kernel (f32v_IN_D_A f32v_D_B u32_constant u32_N )))
4 ;;---------------------------------------------------------
5 (c-declare #<<c-declare-end
6 void RandomInit(float*, int);
7 void checkResult(float*, float*, int , int);
8 c-declare-end
9 )

10
11 (define check-result
12 (c-lambda (scheme-object scheme-object int int)
13 void
14 #<<c-lambda-end
15 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
16 ___F32* host_vec2 = ___CAST(___F32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
17 checkResult(host_vec1 , host_vec2 , ___arg3 , ___arg4);
18 c-lambda-end
19 ))
20
21 (define random-init
22 (c-lambda (scheme-object int)
23 void
24 #<<c-lambda-end
25 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
26 RandomInit(host_vec1 , ___arg2);
27 c-lambda-end
28 ))
29
30 (define args (command-line ))
31 (define N (string- >number (car (cdr args ))))
32 (define check-result? (string- >number (car (cdr (cdr args )))))
33 ;;for fixed grid size
34 (define constant 786)
35 (define grid-size 65535)
36 (define block-size (+ 1 (floor (/ N grid-size ))))
37 ;;for fixed block size
38 ;(define block-size 1024)
39 ;(define grid-size (floor (/ (- (+ N block-size) 1) block-size )))
40
41 (define D_A (## still-copy(make-f32vector N)))
42 (define D_B (## still-copy(make-f32vector N)))
43
44 (define (main)
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45 (random-init D_A N)
46 (random-init D_B N)
47 (gpu-time
48 (VecAdd <<< (grid-size) (block-size) >>> D_A D_B constant N))
49 (if (= check-result? 1)
50 (check-result D_A D_B constant N)))
51
52 (main)

Listing A.1: Host program implemented in Scheme calling CUDA-C kernel VecAdd
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Appendix B

Synchronized kernels

In this appendix we provide the Scheme implementation for the test case multiple synchronized kernels,
described in Section 5.3. In this test case host program calls two synchronized kernels.

B.1 Host program in Scheme

In Listing B.1 we provide host program implemented in Scheme calls two synchronized kernels VecAdd and
VecSub on lines 54–55. Two kernel skeletons are defined on lines 2–6.

1 ;;------------------ kernel skeleton---------------------------------
2 (define VecAdd
3 (kernel (u32v_IN_A u32v_OUT_B u32_constant u32_N )))
4
5 (define VecSub
6 (kernel (u32v_IN_B u32v_OUT_C u32_constant u32_N )))
7 ;;------------------------------------------------------------------
8 (c-declare #<<c-declare-end
9 #include <stdint.h>

10 void RandomInit(uint32_t*, int);
11 void checkResult(uint32_t*, uint32_t*, int , int);
12 c-declare-end
13 )
14
15 (define check-result
16 (c-lambda (scheme-object scheme-object int int)
17 void
18 #<<c-lambda-end
19 ___U32* host_vec1 = ___CAST(___U32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
20 ___U32* host_vec2 = ___CAST(___U32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
21 checkResult(host_vec1 , host_vec2 , ___arg3 , ___arg4);
22 c-lambda-end
23 ))
24
25 (define random-init
26 (c-lambda (scheme-object int)
27 void
28 #<<c-lambda-end
29 ___U32* host_vec1 = ___CAST(___U32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
30 RandomInit(host_vec1 , ___arg2);
31 c-lambda-end
32 ))
33
34 (define args (command-line ))
35 (define N (string- >number (car (cdr args ))))
36 (define check-result? (string- >number (car (cdr (cdr args )))))
37
38 (define constant 786)
39 ;;for fixed grid size
40 (define grid-size 65535)
41 (define block-size (+ 1 (floor (/ N grid-size ))))
42 ;;for fixed block size
43 ;(define block-size 1024)
44 ;(define grid-size (floor (/ (- (+ N block-size) 1) block-size )))
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45
46 (define D_A (## still-copy(make-u32vector N)))
47 (define D_B (## still-copy(make-u32vector N)))
48 (define D_C (## still-copy(make-u32vector N)))
49
50 (define (main)
51 (random-init D_A N)
52 (gpu-time
53 (sync
54 (VecAdd <<< (grid-size) (block-size) >>> D_A D_B constant N)
55 (VecSub <<< (grid-size) (block-size) >>> D_B D_C constant N)))
56 (if (= check-result? 1)
57 (check-result D_A D_C constant N)))
58
59 (main)

Listing B.1: Host program in Scheme calls two synchronized kernels VecAdd and VecSub
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Appendix C

Reduction

This appendix shows host program implemented in Scheme for the test case parallel sum reduction
described in Section 5.3.

C.1 Host program in Scheme

In Listing C.1 we provide the host program implemented in Scheme calls two synchronized kernels performing
sum reduction. Here, two kernel skeletons are defined on lines 2–6. Kernel reduce5 is called on lines 57–60
and kernel reduce6 is called on lines 62–66. In this test case sync macro takes the function calls to reduce
as arguments on lines 76–81 to synchronized executions of reduce6 and reduce5.

1 ;;------------------ kernel skeleton------------------------------
2 (define reduce6
3 (kernel (u32v_idata u32v_odata u32_size u32_threads )))
4
5 (define reduce5
6 (kernel (u32v_INidata u32v_OUTodata u32_threads )))
7 ;;---------------------------------------------------------------
8 (c-declare #<<c-declare-end
9 void random_data ();

10 int CPU_result ();
11 c-declare-end
12 )
13
14 (define random-data
15 (c-lambda (scheme-object scheme-object int int)
16 void
17 #<<c-lambda-end
18 ___U32* host_vec1 = ___CAST(___U32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
19 ___U32* host_vec2 = ___CAST(___U32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
20 random_data(host_vec1 , host_vec2 , ___arg3 , ___arg4);
21 c-lambda-end
22 ))
23
24 (define CPU-result
25 (c-lambda (scheme-object int)
26 int
27 #<<c-lambda-end
28 ___U32* host_vec1 = ___CAST(___U32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
29 ___result = CPU_result(host_vec1 , ___arg2);
30 c-lambda-end
31 ))
32
33 (define args (command-line ))
34 (define SCALING (string- >number (car (cdr args ))))
35 (define check-result? (string- >number (car (cdr (cdr args )))))
36 (define maxBlocks (string- >number (car (cdr (cdr (cdr args ))))))
37
38 (define int-size 4)
39 (define size (arithmetic-shift 1 SCALING ))
40 (define maxThreads 512)
41
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42 (define (block-size n maxThreads)
43 (if (= n 1)
44 1
45 (if (< n (* maxThreads 2))
46 (/ n 2)
47 maxThreads )))
48
49 (define (num-blocks n whichKernel threads maxBlocks)
50 (let (( blocks (/ n (* threads 2))))
51 (if (= whichKernel 6)
52 (min maxBlocks blocks)
53 blocks )))
54
55 (define (reduce size threads blocks whichKernel d_idata d_odata)
56 (cond ((= whichKernel 5)
57 (reduce5 <<<(blocks )( threads )(* threads int-size)>>>
58 d_idata
59 d_odata
60 threads ))
61 ((= whichKernel 6)
62 (reduce6 <<<(blocks )( threads )(* threads int-size)>>>
63 d_idata
64 d_odata
65 size
66 threads ))))
67
68 (let* (( numThreads (block-size size maxThreads ))
69 (numBlocks (num-blocks size 6 numThreads maxBlocks ))
70 (idata (make-u32vector size))
71 (odata (make-u32vector numBlocks )))
72 (begin
73 (random-data idata odata size numBlocks)
74 (let (( cpu-result (CPU-result idata size )))
75 (gpu-time
76 (sync
77 (reduce size numThreads numBlocks 6 idata odata)
78 (reduce size numThreads numBlocks 6 idata odata)
79 (let* (( threads (block-size numBlocks maxThreads ))
80 (blocks (num-blocks numBlocks 5 threads maxBlocks )))
81 (reduce numBlocks threads 1 5 odata odata ))))
82 (if (= check-result? 1)
83 (if (= cpu-result (u32vector-ref odata 0))
84 (display "TestPassed")
85 (display "TestFailed"))))))

Listing C.1: Host program in Scheme calls two synchronized kernels reduce6 and reduce5.
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Appendix D

Matrix Multiplication

This appendix shows code for test case parallel matrix multiplication, described in Section 5.4. We pro-
vide the host program implemented in Scheme. The CUDA-C implementation for this text case is available at
http://stackove rflow.com/questions/12526062/test-the-result-of-cuda-matrix-multiplication-
using-shared-memory-and-global-mem?rq=1.

D.1 Host program in Scheme

In Listing D.1 we provide the host program in Scheme that calls CUDA-C kernel kernel_global that
performs parallel matrix multiplication on two squares matrices and returns results in another square matrix.
The kernel skeleton is defined on lines 2–4 and the kernel is called on lines 36–41.

1 ;;------------------------------- kernel skeleton----------------------------------
2 (define kernel_global
3 (kernel(f32v_INinput1 f32v_INinput2 f32v_OUToutput
4 u32_width u32_divide u32_tileWidth )))
5
6 ;;--------------------------------------------------------------------------------
7
8 ;;------------------------------ helper-functions----------------------------------
9 (define (matrix-size)

10 (* matrix-width matrix-width ))
11
12 (define (get-gridDim)
13 (/ (/ matrix-width matrix-divide) tile-width ))
14 ;;--------------------------------------------------------------------------------
15
16 (define (test-result output)
17 (let loop (( counter 0))
18 (if (< counter (matrix-size ))
19 (if ( = (f32vector-ref output counter) matrix-width)
20 (begin
21 ;;( display (f32vector-ref output counter ))
22 (loop (+ counter 1)))
23 (display "Test Failed"))
24 (display "Test Passed"))))
25
26 (define matrix-width 9216)
27 (define tile-width 32)
28 (define matrix-divide 4)
29
30 (let (( input1 (make-f32vector (matrix-size) 1.00))
31 (input2 (make-f32vector (matrix-size) 1.00))
32 (output (make-f32vector (matrix-size) 0.0)))
33 (display "calling-kernel")( newline)
34 (gpu-time
35 ;; gridDim-x gridDim-y blockDim-x blockDim-y
36 (kernel_global <<<((get-gridDim )( get-gridDim ))( tile-width tile-width) >>>
37 input1
38 input2
39 output
40 matrix-width

129



41 matrix-divide tile-width ))
42 (display "testing results")( newline)
43 (test-result output ))

Listing D.1: Host program in Scheme that calls CUDA-C kernel kernel_global that performs
parallel matrix multiplication
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Appendix E

3DFD

This appendix shows code for test case parallel 3D finite difference computation, discussed in Section 5.6.
We provide the host program implemented in Scheme. CUDA-C implementation for this test case is available
at http://www.naic.edu/∼phil/hardware/nvidia/doc/src/3DFD.

E.1 Host program in Scheme

In Listing E.1 we provide the host program in Scheme that calls CUDA-C kernel stencil_3D_16x16_order8.
We also provide the wrapper functions that links C functions for CPU computation on lines 35–90. The kernel
skeleton is defined on lines 2–3 and the kernel is called on lines 98–104.

1 ;;----------- kernel skeleton----------------------------------
2 (define stencil_3D_16x16_order8
3 (kernel (f32v_OUToutput f32v_INinput u32_dimx u32_dimy u32_dimz )))
4
5 ;;------------------------------------------------------------
6
7 (define BLOCK_DIMX 16)
8 (define BLOCK_DIMY 16)
9 (define RADIOUS 4)

10 (define dimx 480)
11 (define dimy 480)
12 (define dimz 400)
13 (define nreps 1)
14 (define float-size 4)
15
16 (define len (* dimz (* dimx dimy )))
17 (define d_input (create-still-f32vector (* float-size len)))
18 (define d_output (create-still-f32vector (* float-size len )))
19 (define h_data (create-still-f32vector (* float-size len )))
20 (define h_reference (create-still-f32vector (* float-size len )))
21
22 ;;---------------- helper function-------------------------------
23 (define create-still-f32vector
24 (c-lambda (int) scheme-object
25 #<<c-lambda-end
26 ___result = ___alloc_scmobj(___sF32VECTOR , ___arg1 , ___PERM);
27 ___EXT(___release_scmobj) (___result);
28 c-lambda-end
29 ))
30 ;;--------------------------------------------------------------
31
32 ;;------------------------------- wrapper-functions--------------
33 ;; interface to C-functions for CPU computation
34
35 (c-declare #<<c-declare-end
36 #include <stdlib.h>
37 #include <stdio.h>
38 #include <stdbool.h>
39
40 // forward-declarations for CPU functions
41
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42 void random_data(float* h_data1 , float* h_data2 ,
43 int dimx , int dimy , int dimz , int one , int five);
44 void reference_3D(float* h_reference , float* h_data ,
45 int dimx , int dimy , int dimz , int radious );
46 bool within_epsilon(float* h_data ,float* h_reference ,
47 int dimx , int dimy , int dimz , int zadjust , float delta);
48
49 c-declare-end
50 )
51
52 (define random-data
53 (c-lambda (scheme-object scheme-object int int int int int)
54 void
55 #<<c-lambda-end
56 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
57 ___F32* host_vec2 = ___CAST(___F32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
58
59
60 random_data(host_vec1 , host_vec2 , ___arg3 ,
61 ___arg4 , ___arg5 , ___arg6 , ___arg7);
62
63 c-lambda-end
64 ))
65
66 (define reference-3D
67 (c-lambda (scheme-object scheme-object int int int int)
68 void
69 #<<c-lambda-end
70 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
71 ___F32* host_vec2 = ___CAST(___F32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
72
73 reference_3D(host_vec1 , host_vec2 , ___arg3 ,
74 ___arg4 , ___arg5 , ___arg6);
75
76 c-lambda-end
77 ))
78
79 (define within-epsilon
80 (c-lambda (scheme-object scheme-object int int int int float32)
81 bool
82 #<<c-lambda-end
83 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
84 ___F32* host_vec2 = ___CAST(___F32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
85
86 ___result = within_epsilon(host_vec1 , host_vec2 , ___arg3 ,
87 ___arg4 , ___arg5 , ___arg6 , ___arg7);
88
89 c-lambda-end
90 ))
91 ;;------------------------------------------------------------------------------------
92
93 (define (main)
94 (begin
95 (random-data h_data d_input dimx dimy dimz 1 5)
96 (display "\n calling kernel for device-computation \n")
97 (gpu-time
98 (stencil_3D_16x16_order8 <<<((/ dimx BLOCK_DIMX )(/ dimy BLOCK_DIMY ))
99 (16 16) >>>

100 d_output
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101 d_input
102 dimx
103 dimy
104 dimz))
105 (display "\n calling functions for CPU-computation \n")
106 (reference-3D h_reference h_data dimx dimy dimz RADIOUS)
107 (display "\n comparing results \n")
108 (if (within-epsilon
109 d_output
110 h_reference
111 dimx
112 dimy
113 dimz
114 (* RADIOUS nreps)
115 0.000100)
116 (begin
117 (display "\n Result within epsilon\n")
118 (display "\n TEST PASSED \n"))
119 (display "\n TEST FAILED \n")))))
120
121 (main)

Listing E.1: Host program in Scheme calling CUDA-C kernel stencil_3D_16x16_order8 that per-
forms parallel 3DFD
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Appendix F

Scalar Product

This appendix shows code for test case parallel scalar product discussed in Section 5.6. We provide the
host program implemented in Scheme. The CUDA-C kernel is taken from NVIDIA’s CUDA SDK which is
available at http://www.naic.edu/∼phil/hardware/nvidia/doc/src/scalarProd/.

F.1 Host program in Scheme

In Listing F.1 we provide the host program implemented in Scheme that calls CUDA-C kernel scalarProdGPU.
Here, kernel skeleton for CUDA-C kernel scalarProdGPU is defined on lines 2–3. We provide some c-lambda
functions on lines 28–57 to link some helper functions implemented in C. The kernel is called on lines 66–71.

1 ;;------------------ kernel skeleton -----------------------------------
2 (define scalarProdGPU
3 (kernel (f32v_OUTh_C_GPU f32v_INh_A f32v_INh_B u32_vectorN u32_elementN )))
4 ;;---------------------------------------------------------------------
5 (define args (command-line ))
6 (define SCALING (string- >number (car (cdr args ))))
7 (define check-result? (string- >number (car (cdr (cdr args )))))
8 (define GRID-SIZE (string- >number (car (cdr (cdr (cdr args ))))))
9

10 (define BLOCK-SIZE 128)
11 (define VECTOR_N (* 256 SCALING ))
12 (define ELEMENT_N 4096)
13 (define DATA_N (* VECTOR_N ELEMENT_N ))
14 (define float-size 4)
15
16 (define h_A (## still-copy(make-f32vector DATA_N )))
17 (define h_B (## still-copy (make-f32vector DATA_N )))
18 (define h_C_GPU (## still-copy (make-f32vector VECTOR_N )))
19 (define h_C_CPU (## still-copy (make-f32vector VECTOR_N )))
20
21 (c-declare #<<c-declare-end
22 void random_data(float*, float*, int);
23 void scalarProdCPU(float*, float*, float*, int , int);
24 void compareResult(float*, float*, int);
25 c-declare-end
26 )
27 ;;--------------- interface to C code----------------------------------------
28 (define random-data
29 (c-lambda (scheme-object scheme-object int)
30 void
31 #<<c-lambda-end
32 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
33 ___F32* host_vec2 = ___CAST(___F32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
34 random_data(host_vec1 , host_vec2 , ___arg3);
35 c-lambda-end
36 ))
37
38 (define scalarProd-CPU
39 (c-lambda (scheme-object scheme-object scheme-object int int)
40 void
41 #<<c-lambda-end
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42 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
43 ___F32* host_vec2 = ___CAST(___F32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
44 ___F32* host_vec3 = ___CAST(___F32*, ___BODY_AS(___arg3 , ___tSUBTYPED ));
45 scalarProdCPU(host_vec1 , host_vec2 , host_vec3 , ___arg4 , ___arg5);
46 c-lambda-end
47 ))
48
49 (define compare-result
50 (c-lambda (scheme-object scheme-object int)
51 void
52 #<<c-lambda-end
53 ___F32* host_vec1 = ___CAST(___F32*, ___BODY_AS(___arg1 , ___tSUBTYPED ));
54 ___F32* host_vec2 = ___CAST(___F32*, ___BODY_AS(___arg2 , ___tSUBTYPED ));
55 compareResult(host_vec1 , host_vec2 , ___arg3);
56 c-lambda-end
57 ))
58 ;;---------------------------------------------------------------------------
59 (define (host)
60 (display "\ncalling for random data ...\n")
61 (random-data h_A h_B DATA_N)
62 (display "calling for CPU result ...\n")
63 (scalarProd-CPU h_C_CPU h_A h_B VECTOR_N ELEMENT_N)
64 (display "Calling kernel ...\n")
65 (gpu-time
66 (scalarProdGPU <<<(GRID-SIZE )( BLOCK-SIZE)>>>
67 h_C_GPU
68 h_A
69 h_B
70 VECTOR_N
71 ELEMENT_N ))
72 (display "Compare results ...\n")
73 (if (= check-result? 1)
74 (compare-result h_C_GPU h_C_CPU VECTOR_N )))
75 (host)

Listing F.1: Host program in Scheme calling CUDA-C kernel scalarProdGPU performing parallel
scalar product on a GPU
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Appendix G

Shims with time stamps code

In this appendix, we present a generated CUDA-C shim and a Scheme shim with the generated time
stamps in CUDA-C by Gambit. These generated time stamps measure execution time for a supplied CUDA-
C kernel only and the combined execution time for a CUDA-C shim and a supplied kernel. We provide the
command-line option -bare-time to generate these time stamps in both shims. We also present some code
snippets from our implementation in Gambit that inject time stamps CUDA-C code in both shims.

G.1 CUDA-C shim generated with time stamps

In Listing F.1, we provide a generated CUDA-C shim with the time stamps to measure execution time only
for a CUDA-C kernel. Here, lines 32–37 and 42–47 are generated to measure execution time for a CUDA-C
kernel only which is called on lines 39–40.

1 #include <stdio.h>
2 #include <assert.h>
3 #include <cuda.h>
4 #include <math.h>
5 #include <stdint.h>
6 #include "cuda.h"
7 #include "cudalib.cu"
8 #include "cuda_runtime_api.h"
9

10
11 __global__ void vector_addition ( uint32_t u32_constant , uint32_t* u32v_src ,
12 int u32v_src_len ) ;
13
14
15
16
17 extern "C" {
18
19 void vector_addition_cu_driver ( int gDx , int gDy , int gDz , int bDx , int bDy ,
20 int bDz , int shared_size , uint32_t u32_constant ,
21 uint32_t* h_u32v_src , int h_u32v_src_len ) {
22 uint32_t* d_u32v_src;
23 size_t size_u32v_src = h_u32v_src_len * sizeof(uint32_t );
24 cudaMalloc ((void **) &d_u32v_src , size_u32v_src );
25 cudaMemcpy(d_u32v_src , h_u32v_src , size_u32v_src , cudaMemcpyHostToDevice );
26
27 dim3 dimGrid(gDx , gDy , gDz);
28 dim3 dimBlock(bDx , bDy , bDz);
29
30 size_t size = shared_size;
31
32 cudaEvent_t start , stop;
33 float elapsed_time_ms = 0.0f;
34 cudaEventCreate( &start );
35 cudaEventCreate( &stop);
36 // taking start time -stamp
37 cudaEventRecord( start , 0);
38 // calling kernel
39 vector_addition <<< dimGrid , dimBlock , size >>> (u32_constant , d_u32v_src ,
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40 h_u32v_src_len );
41 // taking start time -stamp
42 cudaEventRecord( stop , 0);
43 cudaEventSynchronize( stop );
44 cudaEventElapsedTime( &elapsed_time_ms , start , stop );
45 printf(" %f ",elapsed_time_ms );
46 cudaEventDestroy(start);
47 cudaEventDestroy(stop);
48 cudaMemcpy(h_u32v_src , d_u32v_src , size_u32v_src , cudaMemcpyDeviceToHost );
49 cudaFree(d_u32v_src );
50 }
51 }

Listing G.1: A CUDA-C shim with the generated time stamps code to measure execution time for a
supplied CUDA-C kernel only

G.2 Scheme shim generated with time stamps

In Listing F.2, we provide a generated Scheme shim with time stamps to measure combined execution time
for a CUDA-C shim and a supplied CUDA-C kernel. Here, lines 12–17 and 22–27 are generated to measure
a combined execution time. On n lines 19–20, the CUDA-C shim is called and the supplied CUDA-C kernel
is called on 39–40 of Listing F.1.

1 (c-declare #<<c-declare-end
2
3 void vector_addition_cu_driver ();
4 c-declare-end
5 )
6
7 (define vector_addition_scm_driver
8 (c-lambda ( int int int int int int int unsigned-int32 scheme-object int)
9 void

10 #<<c-lambda-end
11 ___U32* host_u32v_src = ___CAST(___U32*, ___BODY_AS(___arg9 , ___tSUBTYPED ));
12 cudaEvent_t start , stop;
13 float elapsed_time_ms = 0.0f;
14 cudaEventCreate( &start );
15 cudaEventCreate( &stop);
16 // taking start time-stamp
17 cudaEventRecord( start , 0);
18 // calling CUDA-C shim
19 vector_addition_cu_driver( ___arg1 ,___arg2 ,___arg3 ,___arg4 ,___arg5 ,___arg6 ,
20 ___arg7 ,___arg8 , host_u32v_src , ___arg10);
21 // taking stop time-stamp
22 cudaEventRecord( stop , 0);
23 cudaEventSynchronize( stop );
24 cudaEventElapsedTime( &elapsed_time_ms , start , stop );
25 printf(" %f ",elapsed_time_ms);
26 cudaEventDestroy(start);
27 cudaEventDestroy(stop);
28
29 c-lambda-end
30 ))
31
32 (define (vector_addition gDx gDy gDz bDx bDy bDz shared-size u32_constant u32v_src)
33 (vector_addition_scm_driver
34 gDx gDy gDz bDx bDy bDz shared-size
35 u32_constant
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36 u32v_src
37 (u32vector-length u32v_src ))
38 )

Listing G.2: Generated Scheme shim with time stamps to measure combined execution time for a
generated CUDA-C shim and a supplied CUDA-C kernel

Note that commenting and indentation in Listings F.1 and F.2 are not auto generated. We annotate the
generated CUDA-C shim and Scheme shim to provide more clarity to readers.

G.3 Implementation in Gambit

Here, we present code snippets from our implementation in Gambit that generates two time stamps CUDA-C
code before and after a call to a CUDA-C shim or a supplied CUDA-C kernel. In Listing F.3 two Scheme
functions generates time stamps in CUDA-C. Here, dump-event-bf on lines 1348–1356 generates time stamps
in CUDA-C before a call and dump-event-af generates time stamps in CUDA-C after a call.

1348 (define (dump-event-bf file-port)
1349 (display
1350 "cudaEvent_t start , stop;
1351 float elapsed_time_ms = 0.0f;
1352 cudaEventCreate( &start );
1353 cudaEventCreate( &stop);
1354 cudaEventRecord( start , 0);\n\n"
1355 file-port)
1356 (force-output file-port ))
1357
1358
1359 (define (dump-event-af file-port)
1360 (display
1361 "cudaEventRecord( stop , 0);
1362 cudaEventSynchronize( stop );
1363 cudaEventElapsedTime( &elapsed_time_ms , start , stop );
1364 printf (\" %f \", elapsed_time_ms );
1365 cudaEventDestroy(start);
1366 cudaEventDestroy(stop );\n\n"
1367 file-port)
1368 (force-output file-port ))

Listing G.3: Code snippet in Gambit that generates time stamps in CUDA

In Listing F.4 on lines 1795–1796 calls dump-event-bf to generate time stamp in CUDA-C before gener-
ating a call to a CUDA-C kernel. Lines 1808–1809 calls dump-event-af after generating a call to a CUDA-C
kernel in a CUDA-C shim.

1791 (define (gen-kernel-call parms c-type-table name)
1792 (display "dim3 dimGrid(gDx , gDy , gDz);\n" cu-file-port)
1793 (display "dim3 dimBlock(bDx , bDy , bDz);\n\n" cu-file-port)
1794 (display "size_t size = shared_size ;\n\n " cu-file-port)
1795 (cond ((memq ’bare-time opts)
1796 (dump-event-bf cu-file-port )))
1797 (display name cu-file-port)
1798 (generate " <<< ")
1799 (display "dimGrid" cu-file-port)
1800 (generate ", ")
1801 (display "dimBlock" cu-file-port)
1802 (generate ", ")
1803 (display "size" cu-file-port)
1804 (generate " >>> ")
1805 (generate "( ")
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1806 (gen-kernel-call-arg-list parms c-type-table)
1807 (generate " );\n\n")
1808 (cond ((memq ’bare-time opts)
1809 (dump-event-af cu-file-port )))
1810 )

Listing G.4: Code snippet in Gambit that generates time stamps to measure execution time only for
a CUDA-C kernel

Code in Listing F.5 on lines 2017–2018 calls to dump-event-bf to generate a time stamp before generating
a call to a CUDA-C shim and lines 2020–2021 calls dump-event-af to generate after generating a call to a
CUDA-C shim in a Scheme shim to measure a combined execution time for a CUDA-C shim and a supplied
CUDA-C kernel.

2012 (dump-code <<-sym)
2013 (dump-code c-lambda-end-sym)
2014 (dump-code "\n")
2015 (if (not (eq? parms ’()))
2016 (gen-c-ptr parms c-type-table ))
2017 (cond ((memq ’bare-time opts)
2018 (dump-event-bf scm-file-port )))
2019 (gen-cu-driver-call kernel-name parms c-type-table)
2020 (cond ((memq ’bare-time opts)
2021 (dump-event-af scm-file-port )))
2022 (dump-code c-lambda-end-sym)
2023 (dump-code "\n))\n\n")

Listing G.5: Code snippet in Gambit that generates time stamps to measure a combined execution
time for a CUDA-C shim and a CUDA-C kernel

Note that code snippets in Listings F.3, F.4 and F.5 are in file _ptree1.scm under gsc directory of our
extended Gambit development source 4.6.2.
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Appendix H

Code snippets from Gambit

Here, we present some code snippets from our implementation in Gambit. Code snippets in Listings G.1,
G.2, G.3, G.4 and G.5 are in file _ptree1.scm under gsc directory of our extended Gambit development
source 4.6.2.

Code snippet in Listing G.1 recognizes a kernel/device symbol.

1448 (define (gpu-kernel-construct? ptree)
1449 (if (def? ptree)
1450 (prc-tag? ptree)
1451 #f))
1452
1453
1454
1455 (define (prc-tag? t1)
1456 (let ((t2 (car (vector-ref t1 2))))
1457 (if (prc? t2)
1458 (kernel-or-device-symbol? (vector-ref t2 6))
1459 #f)))
1460
1461
1462
1463 (define (kernel-or-device-symbol? t2)
1464 (let (( symbol (vector-ref (car (vector-ref t2 1)) 1)))
1465 (if (or (eq? kernel-sym symbol)
1466 (eq? device-sym symbol ))
1467 symbol
1468 #f)))

Listing H.1: Code snippet in Gambit that checks kernel/device function

This code snippet in Listing G.2 extracts name of a kernel and parameters from a parse tree node.

1539 (define (get-name prc-tag)
1540 (vector-ref prc-tag 8))
1541
1542 (define (get-parms prc-tag)
1543 (let* (( var-tag (vector-ref prc-tag 10))
1544 (n-parms (length var-tag )))
1545 (let loop (( var-tag var-tag)
1546 (parms ’()))
1547 (if (eq? (cdr var-tag) ’())
1548 (append parms(list(symbol- >string (vector-ref (car var-tag) 1))))
1549 (loop
1550 (cdr var-tag)
1551 (append parms(list(symbol- >string (vector-ref (car var-tag) 1)))))))))

Listing H.2: Code snippet in Gambit that extracts a kernel/device function name and parameters
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This code snippet in Listing G.3 recognizes a kernel call special construct and converts it into an ordinary
Scheme function call.

162 (define gd-max-dim 3)
163 (define bk-max-dim 3)
164
165
166 (define (kernel-call-exp? args)
167 (if (list? args)
168 (if (<= 5 (length args))
169 (let (( arg1-pt (car args))
170 (arg2-pt (car (cdr args )))
171 (arg3-pt (car (cdr (cdr args ))))
172 (arg4-pt (car (cdr (cdr (cdr args ))))))
173 (if (and (check-exe-config-sym <<<-sym arg1-pt)
174 (check-exe-config arg2-pt gd-max-dim)
175 (check-exe-config arg3-pt bk-max-dim)
176 (if (check-exe-config-sym >>>-sym arg4-pt)
177 #t
178 (check-exe-config-sym >>>-sym (get-arg5-pt args ))))
179 #t
180 #f))
181 #f)
182 #f))
183
184 (define (show-then-return obj)
185 (display "showing the object")
186 (display obj)
187 obj)
188
189 (define (get-arg5-pt args)
190 (car (cdr (cdr (cdr (cdr args ))))))
191
192
193 (define (get-new-arg-list args source-template env >>>-sym-pos)
194 (let (( gd-pt (car (cdr args )))
195 (bk-pt (car (cdr (cdr args ))))
196 (rest-args-pt (get-rest-args-pt args source-template env >>>-sym-pos )))
197 (make-arg-list
198 (exe-config- >arglist gd-pt bk-pt source-template env)
199 rest-args-pt )))
200
201 ;;;just show and return the pt
202 ;(define (show lst)
203 ; (search-ptree lst 0)
204 ; lst)
205
206
207 (define (get-rest-args-pt args source-template env >>>-sym-pos)
208 (cond ((= >>>-sym-pos 4)
209 (append
210 (get-fake-shared-mem-pt source-template env)
211 (get-only-kernel-args-pt args )))
212 ((= >>>-sym-pos 5)
213 (append
214 (get-shared-mem-size-pt args)
215 (get-kernel-args-pt args )))))
216
217 (define fake-shared-mem-size 0)
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218 (define fake-shared-mem-pos-src-file 262147)
219
220 (define (get-fake-shared-mem-pt source-template env)
221 (let (( fake-source (gen-fake-source
222 source-template
223 fake-shared-mem-size
224 fake-shared-mem-pos-src-file )))
225 (list (pt fake-source env ’true ))))
226
227
228 (define (get-only-kernel-args-pt args)
229 (cdr (cdr (cdr (cdr args )))))
230
231 (define (get-kernel-args-pt args)
232 (cdr (cdr (cdr (cdr (cdr args ))))))
233
234 (define (get-shared-mem-size-pt args)
235 (list (car (cdr (cdr (cdr args ))))))
236
237 (define (make-arg-list exe-config-args-pt kernel-args-pt)
238 (change-next-node-stamp* kernel-args-pt)
239 (append exe-config-args-pt kernel-args-pt ))
240
241 (define kernel-args-init-next-node-stamp 8)
242
243 (define (change-next-node-stamp* pt)
244 (let loop ((pt pt)
245 (i kernel-args-init-next-node-stamp ))
246 (node-stamp-set! (car pt) i)
247 (if (not (eq? (cdr pt) ’()))
248 (loop
249 (cdr pt)
250 (+ i 1)))))
251
252
253 (define (check-exe-config-sym symbol arg-pt)
254 (if (ref? arg-pt)
255 (let ((tag (vector-ref arg-pt 8)))
256 (if (var? tag)
257 (if (eq? symbol (vector-ref tag 1))
258 #t
259 #f)))
260 #f))
261
262
263 (define (check-exe-config pt max-dim)
264 (if (app? pt)
265 (let (( dim-pt (vector-ref pt 2)))
266 (if (list? dim-pt)
267 (if (<= (length dim-pt) max-dim)
268 #t
269 #f)))
270 #f))
271
272 (define (exe-config- >arglist gd-pt bk-pt kernel-name-source env)
273 (let* (( arg-list1 (config- >arglist
274 (append-fake-arg kernel-name-source (vector-ref gd-pt 2) env)
275 1))
276 (arg-list2 (config- >arglist
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277 (append-fake-arg kernel-name-source (vector-ref bk-pt 2) env)
278 4)))
279 ;(display "\nthis is exe-config- >arglist\n")
280 (append (reverse arg-list1) (reverse arg-list2 ))))
281
282 (define (append-fake-arg kernel-name-source lst env)
283 (if (< (length lst) 3)
284 (append
285 lst
286 (get-fake-pt
287 (gen-fake-source kernel-name-source 1 262147)
288 (length lst)
289 env))
290 lst))
291
292
293 (define (get-fake-pt fake-src lst-len env)
294 (let (( ptree (list (pt fake-src env ’true ))))
295 (cond ((= lst-len 1) (append ptree ptree ))
296 ((= lst-len 2) ptree ))))
297
298 (define (gen-fake-source kernel-name-source value pos-in-src)
299 (vector-set! kernel-name-source 1 value)
300 (vector-set! kernel-name-source 3 pos-in-src ))
301
302 (define (config- >arglist child-nodes init-stamp)
303 (let loop ((nodes child-nodes)
304 (modified-nodes ’())
305 (i init-stamp ))
306 (let ((node (car nodes )))
307 (remove-parent node)
308 (node-stamp-set! node i)
309 (if (not (eq? (cdr nodes) ’()))
310 (loop
311 (cdr nodes)
312 (cons node modified-nodes)
313 (+ 1 i))
314 (cons node modified-nodes )))))
315
316 (define (remove-parent node)
317 (vector-set! node 1 #f))

Listing H.3: Code snippet in Gambit that recognizes a kernel call expression and converts that kernel
call into an ordinary function call

Code snippet in Listing G.4 calls code generation routines after recognizing a kernel/device function. It
also initiates output file ports to generate both shims.

779 ((** define-expr? source env)
780 (let* (( var-source (definition-name source env))
781 (var (source-code var-source ))
782 (v (env-lookup-var env var var-source )))
783 (if *ptree-port*
784 (begin
785 (display " " *ptree-port *)
786 (write (var-name v) *ptree-port *)
787 (newline *ptree-port *)))
788
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789 (let ((node (pt (definition-value source) env ’true )))
790 (set-prc-names! (list v) (list node))
791 (parse-prog
792 (cdr program)
793 env
794 (let ((temp (new-def source env v node )))
795 (if cu-file-port
796 (let (( symbol-found? (gpu-kernel-construct? temp )))
797 (if symbol-found?
798 (begin
799 (let (( fun-name (get-kernel-name temp )))
800 (if (eq? symbol-found? kernel-sym)
801 (set!
802 gpu-interface-scm-file-port
803 (open-output-file (## string-append
804 (## path-strip-extension output)
805 "_gpu-interface_"
806 fun-name
807 gpu-interface-scm-file-extension ))))
808 (generate-gpu-code
809 cu-file-port
810 gpu-interface-scm-file-port
811 temp
812 symbol-found?
813 opts)
814 (if (eq? symbol-found? kernel-sym)
815 (let*(( scm-file (string-append
816 (## path-strip-directory
817 (## path-strip-extension output ))
818 "_gpu-interface_"
819 fun-name
820 gpu-interface-scm-file-extension ))
821 (expr (generate-include-source
822 (vector-ref source 0)
823 (vector-ref source 2)
824 scm-file )))
825 (if (** include-expr? expr)
826 (begin
827 (set! gpu-interface-source(include-expr- >source expr *ptree-port *))
828 (set! gpu-interface-source? #t)))
829 (if (not (## memq ’keep-scm-shim opts))
830 (delete-file scm-file )))))
831 lst)
832 (cons temp lst)))
833 (cons temp lst)))
834 proc ))))

Listing H.4: Code snippet in Gambit that initiates code generation after recognizing a kernel

Code snippet in Listing G.5 generates CUDA-C functions for the implemented library functions in Scheme
for GPUs.

1069 (define (dump-cuda-library-function cudalib-file-port)
1070 (display
1071 " extern \"C\" {
1072 #include <stdio.h>
1073 void devCheckAndSet(int gpudevice)
1074 {
1075 int device_count =0;
1076 int device;
1077
1078
1079 cudaGetDeviceCount( &device_count );
1080 if (gpudevice > device_count)
1081 {
1082 printf (\" gpudevice >= device_count ... exiting \\n\");
1083 exit (1);
1084 }
1085 cudaError_t cudareturn;
1086 cudaDeviceProp deviceProp;
1087
1088
1089 cudaGetDeviceProperties (&deviceProp , gpudevice );
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1090 printf (\"[ deviceProp.major.deviceProp.minor] = [%d.%d]\\n\",
1091 deviceProp.major , deviceProp.minor);
1092
1093 if (deviceProp.major > 999)
1094 {
1095 printf (\" warning , CUDA Device Emulation (CPU) detected , exiting \\n\");
1096 exit (1);
1097 }
1098
1099
1100 cudareturn=cudaSetDevice(gpudevice );
1101 if (cudareturn == cudaErrorInvalidDevice)
1102 {
1103 perror (\" cudaSetDevice returned cudaErrorInvalidDevice \");
1104 }
1105 else
1106 {
1107
1108 cudaGetDevice (& device );
1109 printf (\" Device =%d is valid .\\n\",device );
1110 }
1111 }
1112
1113 void driver_version (){
1114
1115 int driverVersion =0;
1116 cudaDriverGetVersion (& driverVersion );
1117 printf (\" CUDA Driver Version: %d.%d\\n\", driverVersion /1000, driverVersion %100);
1118 }
1119
1120 void runtime_version (){
1121 int runtimeVersion =0;
1122 cudaRuntimeGetVersion (& runtimeVersion );
1123 printf (\" CUDA Runtime Version: %d.%d\\n\", runtimeVersion /1000 , runtimeVersion %100);
1124
1125 }
1126 void setDevice(int device ){
1127 cudaError_t cudareturn;
1128 cudareturn=cudaSetDevice(device );
1129 if (cudareturn == cudaErrorInvalidDevice)
1130 {
1131 perror (\" cudaSetDevice returned cudaErrorInvalidDevice \");
1132 }
1133
1134 }
1135
1136 int getDeviceId (){
1137 int device;
1138 cudaGetDevice (& device );
1139 return device;
1140 }
1141
1142 void resetDevice(int device ){
1143 cudaSetDevice(device );
1144 cudaDeviceReset ();
1145 }
1146
1147 void resetAllDevice (){
1148 int devCount;
1149 cudaGetDeviceCount (& devCount );
1150 for(int i=0; i< devCount;i++){
1151 cudaSetDevice(i);
1152 cudaDeviceReset ();
1153 }
1154 }
1155
1156
1157
1158 void printDevProp(cudaDeviceProp devProp)
1159 {
1160 printf (\" Major revision number: %d\\n\",devProp.major);
1161 printf (\" Minor revision number: %d\\n\",devProp.minor);
1162 printf (\" Name: %s\\n\",devProp.name);
1163 printf (\" Total global memory: %.0f MBytes (%llu bytes )\\n\",
1164 (float)devProp.totalGlobalMem /1048576.0f, (unsigned long long) devProp.totalGlobalMem );
1165 printf (\" Total shared memory per block: %u\\n\",devProp.sharedMemPerBlock );
1166 printf (\" Total registers per block: %d\\n\",devProp.regsPerBlock );
1167 printf (\" Warp size: %d\\n\",devProp.warpSize );
1168 printf (\" Maximum memory pitch: %u\\n\",devProp.memPitch );
1169 printf (\" Maximum threads per block: %d\\n\",devProp.maxThreadsPerBlock );
1170 for (int i = 0; i < 3; ++i)
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1171 printf (\" Maximum dimension %d of block: %d\\n\",i,devProp.maxThreadsDim[i]);
1172 for (int i = 0; i < 3; ++i)
1173 printf (\" Maximum dimension %d of grid: %d\\n\",i,devProp.maxGridSize[i]);
1174 printf (\" Clock rate: %d\\n\",devProp.clockRate );
1175 printf (\" Total constant memory: %u\\n\",devProp.totalConstMem );
1176 printf (\" Texture alignment: %u\\n\",devProp.textureAlignment );
1177 printf (\" Concurrent copy and execution: %s\\n\",( devProp.deviceOverlap ? \"Yes\" : \"No\"));
1178 printf (\" Number of multiprocessors: %d\\n\",devProp.multiProcessorCount );
1179 printf (\" Kernel execution timeout: %s\\n\",( devProp.kernelExecTimeoutEnabled? \"Yes \":\" No\"));
1180
1181 }
1182
1183 void deviceQuery (){
1184 int devCount;
1185 cudaGetDeviceCount (& devCount );
1186 printf (\" CUDA Device Query ...\\n\");
1187 printf (\" There are %d CUDA devices .\\n\", devCount );
1188
1189 // Iterate through devices
1190 for (int i = 0; i < devCount; ++i)
1191 {
1192 // Get device properties
1193 printf (\"\\ nCUDA Device #%d\\n\", i);
1194 cudaDeviceProp devProp;
1195 cudaGetDeviceProperties (&devProp , i);
1196 printDevProp(devProp );
1197 }
1198 }
1199 }\n\n" cudalib-file-port)
1200 (force-output cudalib-file-port)
1201 )

Listing H.5: Code snippet in Gambit that generates CUDA-C functions for the Scheme library
functions to manage GPUs

This code snippet in Listing G.6 implements macros for GPUs. This code snippet is in file _nonstd.scm
under lib directory of Gambit development source 4.6.2.

2711 (define-runtime-macro (async . args)
2712 (if (## null? args)
2713 (display "Warning! async does not have a kernel call")
2714 (if (## null? (##cdr args))
2715 (## car args)
2716 ‘(let ((temp ,(##car args )))
2717 temp
2718 (async ,@(## cdr args ))))))
2719
2720 (define-runtime-macro (sync . args)
2721 (if (## null? args)
2722 (display "Warning! sync does not have a kernel call")
2723 (if (## null? (##cdr args))
2724 ‘(begin
2725 ,(##car args))
2726 ‘(let ((temp ,(##car args )))
2727 temp
2728 (call-syncthread)
2729 (sync ,@(## cdr args ))))))
2730
2731 (define-runtime-macro (gpu-time . args)
2732 (if (## null? args)
2733 (display "Warning! gpu-time does not have a kernel call")
2734 ‘(begin
2735 (call-cudaeventlib-bf-gpu-call)
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2736 (begin ,@args)
2737 (call-cudaeventlib-af-gpu-call ))))

Listing H.6: Code snippet in Gambit that implements runtime macros for our implementation
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Appendix I

NVIDIA permission

13-08-06 2:06 PMGmail - RE: Requesting for the permission to add two CUDA figures in the M.Sc thesis

Page 1 of 2https://mail.google.com/mail/?ui=2&ik=3df7643c1f&view=pt&q=ccheij%40nvidia.com&qs=true&search=query&msg=13a4b120423cfa4e&dsqt=1

A.K.M.Rasheduzzamn Chowdhury <rashed044416@gmail.com>

RE: Requesting for the permission to add two CUDA figures in the M.Sc thesis

Chandra Cheij <ccheij@nvidia.com> Wed, Oct 10, 2012 at 8:26 AM
To: "A.K.M.Rasheduzzamn Chowdhury" <rashed044416@gmail.com>

!""#$#%&'(#)&%#*+&*#,-.#/&0#.%1#*+1#2+-*-%#&%#"-03#&%#,-.#&/40-)"1(31#)+151#,-.#3-*#*+16#&0(#*+&*#,-.#(-
789#&"*15#*+16:

#

#

From: A.K.M.Rasheduzzamn Chowdhury [mailto:rashed044416@gmail.com] 
Sent: Tuesday, October 09, 2012 4:09 PM
To: Chandra Cheij
Subject: Re: Requesting for the permission to add two CUDA figures in the M.Sc thesis

 

Dear Chandra Cheij,

 

The e-mail you just send me at the address  (arc552@mail.usask.ca)  doesn't show the contenet. It just only shows up
as a message header. Can you please send me your acknowledgement again.

 

Thank you so much for your time.

 

Regards,

AKM RASHEDUZZAMN CHOWDHURY

Software Research Lab

Dept. of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

On Tue, Oct 9, 2012 at 1:09 PM, Chandra Cheij <ccheij@nvidia.com> wrote:

 

This email message is for the sole use of the intended recipient(s) and may contain confidential information.  Any

Figure I.1: Permission from NVIDIA corporation to use Figures 2.1 and 2.2 in this thesis
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