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1 General Introduction 

1.1 Development of the terminology and diagnostic criteria for 

primary progressive aphasia  

Progressive fluent and nonfluent language disorders associated with atrophy in left 

frontal, perisylvian, and temporal regions were first described by Pick, Sérieux, and 

Rosenfeld (Pick, 1892; 1904 available in translation by Girling and Berrios, 1994, 

1997; Rosenfeld, 1909; Sérieux, 1893). Pick (1892) described a woman who suffered 

from a social disorder characterized by disinhibition and poor insight and whose 

language abilities progressively deteriorated until she finally became mute. Sérieux 

(1893) provided the first case report of an isolated progressive language disorder by 

describing a patient with halting speech, but intact memory, visuospatial abilities, and 

social functioning. Rosenfeld provided an early description of a patient with word-

finding difficulties, including a striking loss of the names of objects, circumlocutions, 

and semantic paraphasic errors in spontaneous speech (Rosenfeld, 1909). A few 

decades later, more single cases with fluent and nonfluent aphasia were described 

(Holland, McBurney, Moossy, & Reinmuth, 1985; Tyrrell, Kartsounis, Frackowiak, 

Findley, & Rossor, 1991; Warrington, 1975). Selective impairment of semantic 

memory (component of long-term memory containing knowledge of objects, facts, 

and concepts as well as words and their meaning; Tulving, 1972, 1983) was first 

introduced by Warrington (1975) to describe three patients with cerebral atrophy 

presenting with progressive anomia (i.e., problems recalling words or names) and 

impaired word comprehension. 

Mesulam (1982) introduced slowly progressive aphasia without dementia as a 

syndrome that maintains relatively isolated aphasia until the terminal stages of the 

disease and is mainly associated with neurodegeneration in left perisylvian regions. 

Five years later, he renamed this syndrome into primary progressive aphasia (PPA; 

Mesulam, 1987). Snowden, Goulding, and Neary (1989) proposed to distinguish 

between three subtypes of PPA: fluent progressive aphasia, non-fluent progressive 

aphasia, and a mixed subtype. These authors furthermore introduced the term 

semantic dementia to designate fluent progressive aphasia characterized by a 
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progressive breakdown in language and visual perception due to loss of semantic 

information and circumscribed cerebral atrophy in the temporal lobes (Snowden et 

al., 1989). Hodges, Patterson, Oxbury, and Funnell (1992) provided a comprehensive 

characterization of five case reports suffering from semantic dementia, and 

Grossman et al. (1996) described extensively four case reports of progressive 

nonfluent aphasia. 

The Lund and Manchester Groups proposed the first general guidelines for the 

clinical diagnosis of frontotemporal dementia (FTD), mentioning PPA by referring the 

reader to single case studies for a more detailed description of PPA (Brun et al., 

1994; Neary, Snowden, & Mann, 1993a, 1993b; Snowden, Neary, Mann, Goulding, & 

Testa, 1992). A consensus on more specific clinical and research diagnostic criteria 

for PPA was reached in 1998 (Neary et al., 1998). Here, the core diagnostic features 

for progressive nonfluent aphasia encompassed the insidious onset and gradual 

progression of the disease as well as nonfluent spontaneous speech with 

agrammatism, phonemic paraphasias, and/or anomia. The core diagnostic criteria for 

semantic dementia, on the other hand, included the insidious onset and gradual 

progression of the disease, progressive fluent empty spontaneous speech, loss of 

word meaning which becomes manifest by impaired naming and comprehension, 

semantic paraphasias and/or a perceptual disorder characterized by prosopagnosia 

(i.e., impaired recognition of identity of familiar faces) and/or associative agnosia (i.e., 

impaired recognition of object identity). Perceptual matching and drawing 

reproduction, preserved single-word repetition, and ability to read aloud and write to 

dictation orthographically regular words were assumed to be preserved in patients 

suffering from semantic dementia (Neary et al., 1998). In 2001, an international group 

of clinical and basic scientists reassessed the clinical criteria for FTD and proposed 

that a part of the patients suffering from FTD could be characterized by an early 

progressive change in language, characterized by problems with expression of 

language or severe naming difficulties and problems with word meaning (McKhann et 

al., 2001). 
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At the same time, Mesulam (2001) proposed to define PPA as a disease starting with 

anomia that progresses either into a) nonfluent language with phonemic paraphasia 

associated with atrophy and hypometabolism within left frontal and perisylvian 

atrophy or b) semantic memory loss associated with atrophy and hypometabolism 

within the left temporal lobe (Abe, Ukita, & Yanagihara, 1997; Mesulam, 2001). 

Mesulam (2001) furthermore proposed that language impairments should be the 

most important symptoms for at least two years and to refine the use of semantic 

dementia that had originally been adopted for patients showing a combination of 

verbal and visual processing deficits (e.g., Neary et al., 1998) to patients without 

visual processing deficits. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Timeline of the development of the terminology and diagnostic criteria for primary 
progressive aphasia. 
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suffering from PPA and the criteria of Neary et al. (1998) to further specify the 

diagnosis as progressive nonfluent aphasia or semantic dementia. However, there 

were a number of PPA cases that could not be classified according to the criteria of 

Neary and colleagues (Gorno-Tempini et al., 2004; Grossman & Ash, 2004; Neary et 

al., 1998). Given that many of these unclassifiable cases of PPA showed a similar 

pattern of symptoms, Gorno-Tempini et al. (2004) proposed to introduce a third 

subtype for PPA named logopenic progressive aphasia or logopenic variant PPA. 

Logopenic variant PPA is mainly characterized by impaired single-word retrieval in 

spontaneous speech and naming, impaired repetition of sentences and phrases, 

phonologic errors in spontaneous speech and naming, spared single-word 

comprehension and object knowledge, spared motor speech, and absence of frank 

agrammatism (Gorno-Tempini et al., 2008; Gorno-Tempini et al., 2004). In response 

to these new insights into PPA, an international consortium proposed new diagnostic 

clinical and research criteria in 2011 (Gorno-Tempini et al., 2011). The chronological 

development of the terminology and diagnostic criteria for PPA are shown in Figure 

1. 

According to the revised diagnostic clinical and research criteria (Gorno-Tempini et 

al., 2011), a patient first needs to meet the basic criteria for PPA in general (i.e., 

prominent, isolated language disorder during the initial phase of the disease) as 

proposed by Mesulam in 2001. Thereafter, the patient can be further diagnosed more 

specifically as suffering from one of the three subtypes of PPA. In order to 

standardize the terminology for PPA, it has been proposed to use the terms 

nonfluent/agrammatic variant PPA (nfvPPA), semantic variant PPA (svPPA), and 

logopenic variant PPA (lvPPA). In the following, we will apply this terminology. Note 

that the abbreviated form nonfluent variant PPA instead of nonfluent/agrammatic 

variant PPA will be used to increase the readability. The current diagnosis of the 

variants of PPA is threefold, designating the probability of the diagnosis: clinical 

diagnosis, imaging-supported diagnosis, and diagnosis with definite pathology 

(Gorno-Tempini et al., 2011; see Table 1). 
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The current diagnostic criteria for PPA variants with definite pathology are relatively 

unspecific because there is no straightforward correspondence between any variant 

of PPA and a given pathology (Gorno-Tempini et al., 2011). In most cases, the 

pathology is either FTLD (predominantly FTLD-TDP or FTLD-tau) or an atypical form 

of Alzheimer’s disease (AD; Gorno-Tempini et al., 2011; Grossman, 2014; Mesulam 

et al., 2014). FTLD-TDP refers to an accumulation in central nervous system neurons 

of transactive response DNA-binding protein of ~ 43kD, known as TDP-43 and FTLD-

tau refers to an accumulation of the microtubule-associated protein tau (MAPT) in 

neurons and glia (Grossman, 2014). FTLD pathology can arise either sporadically 

(most cases) or autosomal dominantly inherited with mutations most commonly in the 

progranulin (GRN) gene (associated with FTLD-TDP pathology), the MAPT gene 

(associated with FTLD-tau pathology), or the chromosome 9 open reading frame 72 

(C9orf72) gene (associated with FTLD-TDP pathology; Grossman, 2014). Regardless 

whether sporadic or autosomal dominantly inherited, studies on clinical-pathologic 

correlations in PPA suggest that nfvPPA might be rather related to tau-positive 

pathology, while svPPA might be rather related to TDP-43-positive pathology 

(Josephs et al., 2006; Mesulam et al., 2014; Mesulam et al., 2008). LvPPA has been 

proposed to be rather related to AD pathology (Mesulam et al., 2014; Mesulam et al., 

2008; Rabinovici et al., 2008). However, there is no one-to-one correspondence 

between a PPA variant and a given pathology as each PPA variant has been related 

to several different pathologies (Gorno-Tempini et al., 2011; Mesulam et al., 2014). 

1.2 Risk factors for primary progressive aphasia 

Identical underlying pathology can thus lead to different syndromes (e.g., AD, PPA or 

bvFTD; Gorno-Tempini et al., 2011; Mesulam et al., 2014). It has been proposed that 

there might exist susceptibility factors that interact with the neurodegenerative 

disease to determine its primary anatomical location (Rogalski, Weintraub, & 

Mesulam, 2013). Except for a high prevalence of learning disabilities (especially 

dyslexia) in the personal history of PPA patients (regardless of the underlying 

pathology or PPA variant) or in the history of their first-degree relatives, there is 

however little evidence for the existence of susceptibility factors until now (Rogalski 

et al., 2013). One study showed that vasectomy rates were significantly higher in 
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PPA patients (40 %) as compared to healthy controls (16 %) (Weintraub et al., 2006). 

Weintraub et al. (2006) speculated that vasectomy might induce an immune 

response to sperm, akin to paraneoplastic encephalitis, which somehow interacts 

with the primary neurodegenerative disease to make the language network the most 

important locus of neurosynaptic loss. However, there is currently no evidence of an 

overt immune-mediated neuropathology in PPA. Therefore, this suggestion remains 

highly speculative (Rogalski et al., 2013). 

1.3 Incidence and prevalence of primary progressive aphasia 

During the last decade, several population studies investigated the prevalence and 

incidence of FTD patients in Italy, the Netherlands, Spain, Finland, the United 

Kingdom, Canada, the United States, Australia, Korea, China, Japan, and India (Kim 

et al., 2014; Luukkainen, Bloigu, Moilanen, & Remes, 2015; Riedl, Mackenzie, Förstl, 

Kurz, & Diehl-Schmid, 2014; Withall, Draper, Seeher, & Brodaty, 2014). LvPPA is 

only rarely included in population studies on FTD, because this syndrome has rather 

been related to AD pathology (Mesulam et al., 2014; Mesulam et al., 2008; 

Rabinovici et al., 2008).  

The estimates for the prevalence of FTD range from 2/100,000 to 31/100,000 (Riedl 

et al., 2014). This wide variation is due to several reasons. Many population studies 

report point prevalence estimates, while some studies report (cumulative) period 

prevalence estimates. Another reason is that different studies considered different 

age ranges and partly also different diagnostic criteria (Riedl et al., 2014). 

Unfortunately, most population studies report prevalence and/or incidence estimates 

across FTD syndromes and there are only a few studies which actually included PPA 

patients. In studies, where PPA patients were included, the estimated point 

prevalence of FTD is estimated at 15-22 per 100,000 in the population between 45 

and 65 years (Borroni et al., 2015; Harvey, Skelton-Robinson, & Rossor, 2003; 

Knopman & Roberts, 2011; Onyike & Diehl-Schmid, 2013; Ratnavalli, Brayne, 

Dawson, & Hodges, 2002; Riedl et al., 2014). This point prevalence corresponds 

approximately to the prevalence of AD in this age group (Onyike & Diehl-Schmid, 

2013; Riedl et al., 2014). The incidence for FTD (including PPA patients) estimates 
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for this age group ranged from 2.7-4.1 per 100,000 in the population (Onyike & Diehl-

Schmid, 2013). 

Until now, there are however no community-based prevalence and incidence 

estimates for the three PPA variants available (Grossman, 2014). Based on autopsy-

proven cases, however, it has been estimated that about 40 % of the patients with 

FTLD pathology have PPA (Grossman, 2014). BvFTD is thus almost three to four 

times as common as one of the three PPA variants (Hogan et al., 2016; Knopman & 

Roberts, 2011). This suggests a prevalence for PPA of 1.1-6.0 per 100,000 in the 

population with FTLD pathology and additional cases with AD pathology (Grossman, 

2014). The estimated incidence for PPA is approximately 0.88-1.4 per 100,000 in the 

population with FTLD pathology. Men and women seem to be equally affected 

(Hogan et al., 2016; Riedl et al., 2014) and the mean age of onset is approximately 

58 years with later peak ages at initial diagnosis for nfvPPA (70-79 years; Coyle-

Gilchrist et al., 2016; Grossman, 2014; Riedl et al., 2014). The survival time after 

initial diagnosis varies between 3-14 years with svPPA patients surviving a little bit 

longer (median of 12 years) than nfvPPA (median of 9 years). For lvPPA, there are 

currently no data on gender distribution, age at initial diagnosis and average survival 

time available. Due to its rareness, PPA has been declared an orphan disease 

(Orpha number ORPHA282, http://www.orpha.net). 

1.4 German and Italian Consortium of Frontotemporal Lobar 

Degeneration 

In order to gain more insight into prevalence and incidence estimates of the different 

clinical syndromes of frontotemporal lobar degeneration (FTLD), several national and 

international consortia have been established during the last years. Examples include 

the Italian FTD Network under the aegis of the Italian Neurological Society for 

Dementia (SINDEM) which includes 85 study centers (Borroni et al., 2015), the 

longitudinal study on FTD of the Clinical Research Center for Dementia of South 

Korea including 16 centers (Kim et al., 2014), or the German and Italian Research 

Consortium of FTLD (Otto et al., 2011).  
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The German and Italian Research Consortium of FTLD encompasses currently 12 

centers in Germany (see Figure 2) and 11 centers in Italy (www.ftld.de). All centers 

use a common study protocol involving medical assessment, neuropsychological and 

language assessment, MRI (and PET if available) scanning, as well as blood 

sampling. All instructions and materials are available in German and Italian language. 

The aims of this consortium besides collecting data on epidemiology, are to improve 

disease recognition along with its management, monitor disease progression, find 

early disease markers and to develop and evaluate possible therapeutic approaches 

(Otto et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Sites of the German study centers involved in the German and Italian Research Consortium 
for Frontotemporal Lobar Degeneration (modified from http://www.ftld.de). 

1.5 Therapeutic approaches for primary progressive aphasia 

There are a few studies that report minor improvements of confrontation naming 

immediately following speech therapy on word-finding abilities in patients with PPA 

and two studies reported successful short-term outcomes of treatment of written 

language (Riedl et al., 2014; Tippett, Hillis, & Tsapkini, 2015). A few studies also 
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showed short-term improvement of language abilities when repetitive transcranial 

magnetic stimulation or transcranial direct current stimulation was applied while 

participants were performing a language task. Note however that most intervention 

studies were case reports or included only a small number of participants (Tippett et 

al., 2015) and that there is no evidence for the sustainability and generalizability of 

any of these treatments (Riedl et al., 2014; Tippett et al., 2015). Symptoms in lvPPA 

might be reduced with medications that have been shown to reduce or delay the 

progression of symptoms in AD (acetylcholinesterase inhibitors as donepezil, 

rivastigmine, or galantamine and/or N-Methyl-D-Aspartat glutamate receptor 

antagonists as memantine) as most lvPPA patients show underlying AD pathology 

(see section 1.1). This assumption needs however still to be empirically supported by 

large-scale randomized clinical trials (Otto et al., 2011; Tippett et al., 2015). Selective 

serotonin reuptake inhibitors such as citalopram or sertraline have been shown to 

reduce behavioral disturbances such as obsessive-compulsive behavior, 

restlessness, eating disorders or disinhibition (Manoochehri & Huey, 2012). 

Therefore, clinicians are currently advised to prescribe selective serotonin reuptake 

inhibitors to PPA patients who show additionally symptoms that are rather 

prototypical for bvFTD (Manoochehri & Huey, 2012; Otto et al., 2011). All in all, there 

are currently no recommended medications for the treatment of PPA symptoms. 

1.6 Neuroimaging 

1.6.1 Positron emission tomography 

In positron emission tomography (PET), the patient receives an intravenous injection 

of a radiotracer that emits a positron (Berns, 1999; Small et al., 2008). When the 

positron encounters an electron, they annihilate each other and their collective 

energy is transformed into two gamma photons that are emitted in opposite directions 

and can be recorded by detectors that are 180° apart from each other. PET scanners 

are equipped with a ring of detectors that determine the line along which the 

annihilation occurs in order to reconstruct the 3D localization of the physiological 

process of interest with a spatial resolution of 3-5 mm. A physiological process that is 

often measured using PET is local glucose metabolism which changes in response to 
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synaptic activity and depends on cell density. PET is thus well suited to detect 

neurodegenerative diseases and monitor their disease progression. The most 

common radioactive tracer used to measure local glucose metabolism in the brain is 

fluoro-deoxyglucose (18FDG) which leads to the general use of the term FDG-PET to 

designate this neuroimaging method (Berns, 1999; Small et al., 2008). 

1.6.2 Structural magnetic resonance imaging  

Another neuroimaging method that is well suited to detect neurodegenerative 

diseases and monitor their progression is structural MRI. Structural MRI has some 

advantages over FDG-PET: it does not require the injection of a radioactive tracer 

(and is thus not invasive) and it provides images with a high resolution of ~1 mm 

(e.g., Berns, 1999).  

The magnetic resonance imaging technique is based on an intrinsic property of 

hydrogen protons, namely their spin (Berns, 1999; Small et al., 2008). Normally, the 

spin axes are oriented randomly, but when a strong external magnetic field (e.g., MRI 

scanner) is applied, the axes align themselves in the direction of that field. This leads 

to a measurable magnetization along the scanner magnet. The time to reach this 

magnetization is called T1. Similar to a spinning top, the single hydrogen protons do 

not spin exactly along a single axis, but instead, there is a slow wobble called 

precession. In MRI, after the hydrogen protons’ spins are aligned, a radiofrequency 

pulse at the precession frequency of the hydrogen protons is applied to knock the 

precession axis out of its original orientation. If enough protons get bumped, the 

tissue acquires a slight magnetization perpendicular to the external field which is 

called transverse magnetization. After switching off the radiofrequency pulse, the 

transverse magnetization decays. Different processes reflect the decay of the 

induced transverse magnetization, called T1-, T2- and T2*-relaxation. The duration of 

these different relaxation processes depends on the molecular environment of the 

protons, which allows differentiating between grey matter, white matter, and 

cerebrospinal fluid. By repeating the process of excitation and relaxation several 

times and varying the magnetic field gradients, 3D images of the brain can be 

encoded and reconstructed. 
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Before structural 3D images of the brain (acquired using PET or MRI) can be used in 

group-level analyses, they need to be preprocessed which includes realignment of 

the single slices, coregistration and normalization to a standard brain template, and 

segmentation of the different tissue types (grey matter, white matter, and 

cerebrospinal fluid) as well as smoothing by a Gaussian kernel (e.g., Ashburner & 

Friston, 2000, see section 3.2.3.2). 

1.7 Aim of this thesis 

For two decades, researchers and clinicians have been using the diagnostic criteria 

for FTD (Brun et al., 1994; McKhann et al., 2001) to generally diagnose a patient as 

suffering from PPA and the criteria of Neary et al. (1998) to further specify the 

diagnosis as progressive nonfluent aphasia or semantic dementia. However, there 

were a number of PPA cases that could not be classified according to the criteria of 

Neary and colleagues (Gorno-Tempini et al., 2004; Grossman & Ash, 2004; Neary et 

al., 1998), which led to a revision of the diagnostic clinical and research criteria for 

PPA (Gorno-Tempini et al., 2011). The revised criteria encompass three PPA 

variants (svPPA, nfvPPA, and lvPPA) with three stages characterized by increasing 

evidence: clinical diagnosis, imaging-supported diagnosis, and diagnosis with definite 

pathology. As compared to the previous diagnostic criteria, more emphasis is placed 

on imaging markers as supportive features. These imaging criteria were however 

proposed based on a purely qualitative evaluation of the literature and have not been 

validated so far. 

The aim of this thesis was to evaluate the validity of the new diagnostic imaging 

criteria for PPA variants (first study) and to investigate the usefulness of these 

imaging criteria for the individual diagnosis of PPA patients in clinical routine (second 

study). 

In the first study (Bisenius et al., 2016), we raised the question whether the proposed 

diagnostic imaging criteria indeed represent subtype-specific prototypical atrophic 

networks for PPA variants (chapter 2). In order to address this question, we provided 

a quantitative evaluation (meta-analyses) of all currently available imaging studies on 

PPA. We hypothesized to find specific atrophic networks for each of the PPA variants 
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that are in line with the current diagnostic imaging criteria. Furthermore, we raised the 

question whether the proposed imaging criteria apply similarly to different imaging 

modalities (MRI and PET) as suggested in the current diagnostic criteria for PPA 

(Gorno-Tempini et al., 2011). Given that for other types of dementia (e.g., AD and 

bvFTD), separate diagnostic imaging criteria have been proposed for MRI and PET 

scans (Dubois et al., 2007; Schroeter et al., 2014), we hypothesized that separate 

imaging modality-specific criteria might also apply for PPA. 

In the second study (Bisenius et al., 2017), we first addressed the question whether 

(whole brain) structural MRI scans provide indeed useful information for the correct 

individual diagnosis of PPA patients (chapter 3). We were also interested in finding 

out which brain regions would be the most indicative for the correct diagnosis of PPA 

patients. We hypothesized that, when considering the whole brain MRI scan, the 

most important brain regions for the correct individual diagnosis of PPA patients 

would correspond to brain regions that are largely atrophied in these patients. In a 

second step, we raised the question whether focusing exclusively on the prototypical 

atrophic networks for PPA revealed by the meta-analyses reported in the first study, 

would enhance the diagnostic value of MRI scans for the correct diagnosis of PPA 

patients. These prototypical atrophic networks constitute in a sense a quantification 

of the current imaging criteria for PPA. Therefore, we hypothesized that considering 

only these prototypical atrophic networks would further enhance the diagnostic value 

of MRI scans (and thus provide empirical support for the usefulness of the proposed 

diagnostic imaging criteria for PPA in clinical routine). 
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2 Validating New Diagnostic Imaging Criteria for     

Primary Progressive Aphasia via ALE Meta-

Analyses 

2.1 Introduction 

Primary progressive aphasia (PPA) subsumes three gradually progressive language 

disorders, namely its semantic variant (svPPA) or semantic dementia, the nonfluent 

variant (nfvPPA) or progressive nonfluent aphasia, and the logopenic variant (lvPPA) 

or logopenic progressive aphasia (Gorno-Tempini et al., 2008; Gorno-Tempini et al., 

2004; Gorno-Tempini et al., 2011; Mesulam, 1982; Neary et al., 1998). Recently, an 

international consortium has refined the diagnostic clinical and imaging criteria for 

PPA variants (Gorno-Tempini et al., 2011). The imaging criteria include changes of 

structure, metabolism or perfusion in the anterior (ventral and lateral) temporal lobe 

for svPPA, in left posterior fronto-insular regions (inferior frontal gyrus, insula, 

premotor, and supplementary motor areas) for nfvPPA, and in left posterior 

perisylvian or parietal areas (posterior parietal, supramarginal, and angular gyri) for 

lvPPA (Gorno-Tempini et al., 2011). 

Here, we used anatomical likelihood estimation (ALE) meta-analyses to validate the 

current imaging criteria with higher statistical power than can be provided by single 

studies (Chein, Fissell, Jacobs, & Fiez, 2002; Turkeltaub, Eden, Jones, & Zeffiro, 

2002). ALE meta-analyses have been applied to investigate neurodegenerative 

diseases like mild cognitive impairment, AD, or FTD (Schroeter, Raczka, Neumann, 

& von Cramon, 2008; Schroeter, Stein, Maslowski, & Neumann, 2009; Yang, Pan, 

Song, Huang, et al., 2012; Yang, Pan, Song, & Shang, 2012). We wanted to identify 

the neural networks affected in the three PPA variants and examine their regional 

specificity in subtraction and conjunction analyses identifying specific and 

overlapping networks, respectively. It has been proposed that different diagnostic 

imaging criteria should be applied for AD and bvFTD to different imaging modalities – 

FDG-PET visualizing hypometabolism, MRI showing atrophy, and perfusion changes 
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(Dubois et al., 2007; Schroeter et al., 2014). Accordingly, we hypothesized that the 

new diagnostic imaging criteria for PPA should be differentiated for MRI and PET. 

2.2 Materials and methods 

2.2.1 General study selection criteria 

The present work was done following the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) statement guidelines (Moher, Liberati, 

Tetzlaff, & Altman, 2010). PubMed was queried for abstracts published between 

January 1990/April 2012 containing following keywords: (primary progressive 

aphasia OR progressive nonfluent aphasia OR semantic dementia OR logopenic 

progressive aphasia) AND (positron emission tomography OR PET OR magnetic 

resonance imaging OR MRI). Following inclusion criteria were applied: peer-reviewed 

original studies, patients classified according to internationally recognized diagnostic 

criteria (Brun et al., 1994; Gorno-Tempini et al., 2011; McKhann et al., 2001; Neary et 

al., 1998), age-matched healthy controls, whole-brain analyses reporting 3D-

coordinates of atrophy/hypometabolism maxima in standardized stereotaxic space, 

Talairach atlas or Montreal Neurological Institute (MNI) templates. Studies reporting 

only regions-of-interest (ROI) analyses were excluded to avoid a potential publication 

bias. When studies fulfilled the inclusion criteria, but no coordinates were reported, 

authors were asked to provide coordinates. 

2.2.2 Anatomical likelihood estimation meta-analysis method 

ALE meta-analyses were computed within BrainMap Ginger ALE 2.1.1 (online at 

http://www.brainmap.org/ALE; Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Eickhoff et 

al., 2009; Laird et al., 2005; Turkeltaub et al., 2002). Before data analysis, 

coordinates in Talairach space were converted into MNI coordinate space using the 

tal2icbm transform (Lancaster et al., 2007) except for one study (Perneczky, Diehl-

Schmid, Pohl, Drzezga, & Kurz, 2007) where we used the tal2mni transform (Brett, 

Johnsrude, & Owen, 2002) because these authors transformed data via mni2tal 

transform (Brett et al., 2002) into Talairach space. 
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In the ALE method, foci are modeled as 3D Gaussian probability distributions with 

variable full width at half maximum that takes into account between-subject and 

between-template variance (Eickhoff et al., 2009). We computed separate meta-

analyses for each of the three PPA variants at a false discovery rate (FDR) corrected 

significance level of p < 0.05. Cluster inference thresholds were chosen to exceed 

the number of voxels corresponding to 5 % possible false positives. 

We additionally computed subtraction analyses (Eickhoff et al., 2011) between the 

different meta-analyses on svPPA (MRI vs. PET) and the different variants of PPA. 

Here, the ALE maps (p < 0.05, FDR corrected) resulting from the separate meta-

analyses are subtracted from each other and compared against a null-distribution of 

differences in ALE scores (5000 permutations). The cluster inference threshold for 

the subtraction analyses was set to 200 mm3 (p < 0.05, uncorrected; Huang et al., 

2012). Conjunctions were assessed by a minimum statistic of images containing 

significant results from the individual meta-analyses (Nichols, Brett, Andersson, 

Wager, & Poline, 2005). 

2.3 Results 

2.3.1 Identified studies 

Out of 658 originally identified studies, 478 studies had to be excluded due to none-

relevant topics and 150 studies for specific reasons (see Supplementary Figure A). 

The final pool consisted of 30 studies (20 MRI, seven FDG-PET, three MRI & FDG-

PET) fulfilling the inclusion criteria. As some studies investigated more than one 

variant of PPA, the search resulted finally in 22 studies for semantic variant PPA (15 

MRI, six FDG-PET, one MRI & FDG-PET), 14 for nfvPPA (11 MRI, three FDG-PET), 

and six for lvPPA (six MRI, zero FDG-PET) including 396 patients. The one study on 

svPPA that reported both MRI and FDG-PET coordinates (Desgranges et al., 2007) 

was counted as one MRI and one FDG-PET study. Age, duration, and severity of 

disease as measured with the Mini-Mental State Examination did not differ between 

patients of the different PPA variants (Table 2). Detailed information for all included 

studies is available in the supplement (Supplementary Table A.1 and Supplementary 

References A). 
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Table 2 

Clinical characteristics of the patient groups 

Note. lvPPA logopenic variant PPA, MMSE Mini-Mental State Examination, MRI magnetic resonance 
imaging, nfvPPA nonfluent variant PPA, PET positron emission tomography, svPPA semantic variant 
PPA. Age, disease duration, and MMSE are indicated as mean±standard deviation. Age and disease 
duration are indicated in years. 

2.3.2 Separate meta-analyses for the different variants of primary progressive 

aphasia 

2.3.2.1 Semantic variant PPA 

MRI: As illustrated in dark green color in Figure 3 on the top, the meta-analysis on 

svPPA across the 16 MRI studies including 177 foci and 169 subjects yielded 

significant clusters of atrophy bilaterally in the inferior, middle, and superior temporal 

gyri, fusiform gyri, hippocampus, parahippocampal gyri, and right amygdala. Details 

on the respective MNI coordinates, cluster sizes, ALE values, and Brodmann Areas 

(Bas) are given in Table 3. 

FDG-PET: The meta-analysis on svPPA across the seven FDG-PET studies 

encompassed 36 foci and 70 subjects. As illustrated in light-green in Figure 3, 

second row, consistent hypometabolism was found bilaterally in the anterior inferior 

temporal gyri, the left fusiform gyrus, posterior midcingulate gyrus, corpus callosum, 

and left medial thalamus (for more details, see Table 3). 

 

 svPPA MRI svPPA PET nfvPPA MRI nfvPPA PET lvPPA MRI ANOVA (df, F, p) 

Number of 
studies/foci 

16/177 7/36 11/101 3/26 6/70 
 

Number of 
patients 

169 57 93 26 51 
 

Age  64.66 ± 2.91 64.29 ± 1.57 66.64 ± 2.32 67.90 ± 2.57 64.55 ± 4.47 (4,41), 1.32, 0.28 

Disease 
duration 

4.87 ± 1.64 3.82 ± 0.47 4.03 ± 1.22 3.30 ± 0.14 3.73 ± 1.30 (4,31), 1.86, 0.14 

MMSE 23.12 ± 2.18 23.10 ± 2.51 23.20 ± 3.44 21.34 ± 2.15 21.38 ± 1.15 (4,39), 0.89, 0.48 
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Figure 3: Results of the anatomical likelihood estimation (ALE) meta-analyses for each of the different 
variants of primary progressive aphasia. Atrophy was measured with magnetic resonance imaging 
(MRI), glucose hypometabolism with fluorodeoxyglucose positron emission tomography (PET). 
Logopenic variant PPA (lvPPA), nonfluent variant PPA (nfvPPA), semantic variant PPA (svPPA). 
False discovery rate (FDR) corrected p < 0.05. Left side is left. 
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Table 3 

 Results of the anatomical likelihood estimation meta-analyses on semantic variant PPA, nonfluent 
variant PPA, and logopenic variant PPA 

 

Note. ALE anatomical likelihood estimation, Bas Brodmann areas, FDG-PET fluorodeoxyglucose 
positron emission tomography, Lat. Lateralization, L left, lvPPA logopenic variant PPA, MNI Montreal 
Neurological Institute, MRI magnetic resonance imaging, nfvPPA nonfluent variant PPA, R right, 
svPPA semantic variant PPA. 

 

 

Region Lat. Bas                  MNI 

coordinates 

Volume  ALE 

             x         y       z   (mm3)   

svPPA MRI         
Inferior, middle, & superior temporal 
gyri/fusiform gyrus/hippocampus/ 

R 20/21/ 24 0 -22 11312   0.0202 

parahippocampal gyrus/amygdala  36/38       
Hippocampus/parahippocampal 
gyrus/fusiform gyrus 

L 36 -26 -12 -16 6744   0.0235 

Superior temporal gyrus L 38 -38 16 -28 2568   0.0172 
Inferior & middle temporal gyrus L 21/38 -46 2 -44 1552   0.0167 
Fusiform gyrus L 20 -44 -32 -24 1536   0.0227 

svPPA PET         
Inferior temporal gyrus/fusiform gyrus L 20/21 -38 -12 -34 1976    0.0127 
Inferior temporal gyrus L 20 -48 -26 -30 520   0.0108 
Inferior temporal gyrus R 20 42 -2 -42 448   0.0076 
Inferior temporal gyrus L 38 -40 2 -46 424   0.0106 
Posterior midcingulate gyrus/corpus 
callosum 

L 24 -10 6 26 424   0.0083 

Thalamus  L  -6 -20 14 376   0.0080 

nfvPPA MRI         
Insula/inferior frontal gyrus L 13 -44 12 2 1360  0.0107 
Middle & superior temporal gyri L 21 -62 -58 6 624  0.0109 
Inferior & middle frontal gyrus L 9/10 -34 46 20 552  0.0097 
Inferior frontal gyrus L  -48 16 24 544  0.0131 
Superior frontal gyrus  L 6 -22 -4 64 448  0.0102 
Putamen L  -22 10 -6 424  0.0110 
Middle frontal gyrus/precentral gyrus L 6 -42 2 50 424  0.0115 

nfvPPA PET         
Superior temporal gyrus L 21 -62 -14 -16 744  0.0089 
Insula/inferior frontal gyrus, pars opercularis L 13 -46 12 -6 160  0.0067 
Lateral orbital gyrus L 46 -50 46 -2 160  0.0073 
Middle temporal gyrus L  -50 -28 -12 88  0.0068 
Nucleus caudatus  R  10 6 4 88  0.0068 
Thalamus L  -2 -22 6 88  0.0068 
Nucleus caudatus L 22 -10 2 6 88  0.0068 
Middle frontal gyrus L 9 -52 28 28 88  0.0068 

lvPPA MRI         
Middle & superior temporal gyri/parallel 
sulcus 

L 22/41 -54 -38 14 3344  0.0120 

Supramarginal gyrus L 39/40 -54 -54 32 2184  0.0136 
Superior temporal gyrus  L 21 -66 -22 -4 1192  0.0135 
Dorsal posterior cingulate gyrus L 23 0 -32 28 488  0.0117 
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MRI & FDG-PET: The results of both imaging meta-analyses on svPPA were 

projected together onto the same MNI template, which revealed only small 

conjunctions between MRI and FDG-PET studies in the left inferior and middle 

temporal gyrus (see Figure 4 on the top). To validate the specificity between imaging 

modalities, we conducted additionally subtraction analyses between both meta-

analyses on svPPA. As shown in Figure 4 in the middle upper part, right inferior, 

middle and superior temporal gyri, right fusiform gyrus, and bilateral 

hippocampus/parahippocampal gyri/amygdalae were specifically related to atrophy 

as measured with MRI, while left thalamus and left inferior temporal gyrus/fusiform 

gyrus were more specifically related to hypometabolism as measured by FDG-PET. 

A detailed overview is given in Supplementary Table A.2. 

2.3.2.2 Progressive nonfluent aphasia 

MRI: An overview of the results for nfvPPA is given in Table 3 and the relevant 

clusters are depicted in red in Figure 3, third row. The meta-analysis on nfvPPA 

across the 11 MRI studies (101 foci, 90 subjects) revealed clusters of significant 

atrophy solely in the left hemisphere, in particular in the putamen, anterior and middle 

insula, inferior, middle, and superior frontal gyri, as well as middle and superior 

temporal gyri. This result was in essence replicated in an analysis including only the 

seven studies that explicitly excluded subjects with lvPPA. 

FDG-PET: As illustrated in orange color in Figure 4, fourth row, the meta-analysis on 

nfvPPA across the three PET studies including 26 foci and 26 subjects yielded 

significant clusters of hypometabolism bilaterally in the caudate nuclei as well as in 

the left hemisphere in the thalamus, middle and superior temporal gyri, insula/inferior 

frontal gyrus, pars opercularis, lateral orbital gyrus, and middle frontal gyrus.  

MRI & FDG-PET: The results of both imaging meta-analyses on nfvPPA were 

projected together onto the same MNI template to visualize possible conjunct atrophy 

and hypometabolism to identify common networks. As shown in Figure 4 on the 

bottom, the results of both meta-analyses were disjunct. Note however that due to 

the small number of studies in the meta-analysis on nfvPPA across PET studies, no 

subtraction analysis was performed. 
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Figure 4: Comparison between the anatomical likelihood estimation (ALE) meta-analyses across 
different imaging modalities for semantic variant PPA (svPPA) and nonfluent variant PPA (nfvPPA) to 
identify method-specific and -common neural networks. Conjunction/overlap between atrophy 
(magnetic resonance imaging, MRI), and glucose hypometabolism (fluorodeoxyglucose positron 
emission tomography, PET) (A) in svPPA, and (C) in nfvPPA. (B) Results of the subtraction analysis 
between both meta-analyses on svPPA. False discovery rate (FDR) corrected p < 0.05. Left side is 
left. 

2.3.2.3 Logopenic progressive aphasia 

MRI: As illustrated in blue color in Figure 3 on the bottom, the meta-analysis on 

lvPPA (6 MRI studies) encompassing 70 foci and 58 subjects yielded significant 

clusters of atrophy exclusively in the left hemisphere in middle and superior temporal 

gyri, parallel sulcus, supramarginal gyrus, superior temporal gyrus, and dorsal 

posterior cingulate gyrus. The respective MNI coordinates, cluster sizes, ALE values 
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and Bas are shown in Table 3. For FDG-PET, we did not find any study in the 

literature investigating lvPPA. 

Figure 5: Comparison between the meta-analyses on the different variants of primary progressive 
aphasia for atrophy as measured with magnetic resonance imaging (MRI). (A) Conjunction/overlap 
between semantic variant PPA (svPPA), nonfluent variant PPA (nfvPPA), and logopenic variant PPA 
(lvPPA). (B) Results of the subtraction analyses to identify PPA variant-specific networks. False 

discovery rate (FDR) corrected p < 0.05. Left side is left. 

2.3.2.4 Comparison between the meta-analyses on the different variants of 

  primary progressive aphasia 

The results of the three MRI meta-analyses on the different variants of PPA were 

projected together onto an MNI template to investigate the variant-specificity. For 

FDG-PET such an analysis was not possible due to limited study numbers. As shown 

in Figure 5 at the top, there was no overlap between the results of the meta-analyses 

across MRI studies on svPPA (dark green), nfvPPA (red), and lvPPA (blue), except 

for a small conjunction (64 mm3, purple) between nfvPPA and lvPPA in the left 

posterior middle temporal gyrus. To validate the regional specificity for each PPA 

variant, we conducted additionally subtraction analyses (nfvPPA > svPPA & lvPPA, 

svPPA > nfvPPA & lvPPA, lvPPA > svPPA & nfvPPA) between the meta-analyses on 
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the different PPA variants. The results of the subtraction analyses are shown in 

Figure 5 at the bottom and details on the respective MNI coordinates, cluster sizes, 

ALE values, and BAs are reported in Supplementary Table A.2. The analysis 

revealed that almost all atrophic brain regions as identified in the ALE meta-analysis 

for each PPA variant separately (see Figure 3) were also specific for this variant (see 

anatomical description above). 

2.4 Discussion 

The present work validated the recently proposed imaging criteria for the three 

variants of PPA using ALE meta-analyses. In the following, we will first focus on the 

results of the variant-specific meta-analyses. Thereafter, we will emphasize the 

distinctiveness of the networks of atrophy for svPPA, nfvPPA, and lvPPA and discuss 

future clinical implications of the relative disjunction between the meta-analyses on 

svPPA (and nfvPPA) across different imaging modalities. 

2.4.1 Validation and refinement of diagnostic imaging criteria for primary 

 progressive aphasia 

The new diagnostic imaging criteria for svPPA include anterior (ventral and lateral) 

temporal lobes (Gorno-Tempini et al., 2011). Our meta-analyses on svPPA across 

MRI studies confirmed atrophy bilateral in anterior ventral temporal lobe (inferior 

temporal gyrus) and anterior lateral temporal lobe (middle/superior temporal gyri, 

fusiform gyrus), but extended the proposed regions towards the anterior medial 

temporal lobe (right amygdala and bilaterally hippocampus/parahippocampal gyri). 

Similarly, the results of our meta-analysis on nfvPPA across MRI studies confirmed 

insula, inferior frontal gyrus, premotor (inferior, middle, and superior frontal gyrus), 

and supplementary motor areas (superior frontal gyrus) as useful diagnostic imaging 

criteria for nfvPPA (Gorno-Tempini et al., 2011). The results of our meta-analysis on 

nfvPPA across MRI studies additionally showed consistent atrophy in middle and 

superior temporal gyri, putamen, and precentral gyrus, thus emphasizing the role of 

these regions for the diagnosis of nfvPPA. 

The proposed imaging criteria for lvPPA encompass posterior perisylvian/parietal 

areas, supramarginal gyrus, and angular gyrus (Gorno-Tempini et al., 2011). The 
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results of our meta-analysis on lvPPA support the supramarginal gyrus and posterior 

perisylvian regions (superior temporal gyrus), but not the angular gyrus as 

consistently atrophied regions across studies. Interestingly, our meta-analysis on 

lvPPA showed additionally atrophy in the dorsal posterior cingulate gyrus and in 

superior/middle temporal gyrus, thus highlighting the importance of these regions for 

future MRI based diagnosis of lvPPA. Furthermore, atrophy in the posterior cingulate 

cortex in lvPPA supports the assumption that lvPPA is pathologically closely related 

to AD (Rabinovici et al., 2008; Schroeter et al., 2009). Interestingly, the conjunction of 

the different meta-analyses across MRI studies showed a regional overlap in the 

posterior middle temporal gyrus between nfvPPA and lvPPA, which suggests that 

this region might play an important role in both PPA variants. However, given that 

this overlap was very small, a high clinical specificity and usability of the diagnostic 

imaging criteria for PPA variants is still guaranteed. This was further supported by the 

subtraction analysis identifying specific atrophic networks related to each PPA 

variant. 

Although the new diagnostic criteria contain also brain perfusion markers, we could 

not detect any studies with this imaging modality in PPA. Interestingly, recent studies 

for AD revealed regionally coinciding reductions in glucose metabolism and perfusion 

(e.g., Dubois et al., 2007). In analogy, we assume that changes of these imaging 

modalities coincide regionally in PPA variants as well, although this hypothesis has to 

be proofed by future meta-analyses. 

2.4.2 Open up the road to method-specific diagnostic imaging criteria for 

primary progressive aphasia 

Interestingly, there were only small conjunctions (in inferior and middle temporal 

gyrus) between the results of the meta-analysis on svPPA across MRI studies and 

the one across FDG-PET studies. The meta-analysis on svPPA across FDG-PET 

studies furthermore extended the relevant regions for this PPA variant towards limbic 

regions, in particular the posterior midcingulate gyrus, and the thalamus. This 

implicates on the one hand that the posterior midcingulate gyrus and thalamus might 

play a larger role as diagnostic imaging criteria for svPPA as formerly assumed. 

However, the specificity of these regions is hampered by the fact that comparable 
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meta-analyses have identified these regions as relevant for bvFTD and AD as well 

(Dubois et al., 2007; Schroeter et al., 2008). On the other hand, results suggest 

different diagnostic imaging criteria for FDG-PET than for MRI as has already been 

proposed for bvFTD and AD (Dubois et al., 2007; Schroeter et al., 2014; Schroeter et 

al., 2008). There was no overlap between the meta-analysis on nfvPPA across MRI 

studies and the one across FDG-PET studies, which further supports this idea. Note 

however, that this descriptive disjunction should be considered with caution as only 

three FDG-PET studies had been included, and, accordingly, no method-specific 

subtraction analysis could be conducted. There were no FDG-PET studies available 

for lvPPA. Therefore, no conclusions can be drawn regarding potential differences for 

FDG-PET and MRI in lvPPA. Future meta-analyses on nfvPPA and lvPPA across 

FDG-PET studies (when more data are available) will show whether the disjunction 

between hypometabolism and atrophy found in svPPA can be replicated in other 

PPA variants. 

2.5 Limitations 

Results of the pilot meta-analysis on nfvPPA across FDG-PET studies and the 

descriptive disjunction between atrophy and hypometabolism in nfvPPA are 

considered to show trends based on the present state of knowledge, but should be 

interpreted cautiously as only three FDG-PET studies were included. Also for the 

meta-analysis on svPPA across FDG-PET studies and the meta-analysis on lvPPA, 

the number of clusters might be increased by future additionally involved studies. 

However, a previous ALE meta-analysis including MRI studies with svPPA and 

nfvPPA identified comparable clusters (Schroeter et al., 2008), supporting generally 

the stability and reliability of our findings. The clinical Neary criteria are not 

completely interchangeable with the clinical Gorno-Tempini criteria (see 

Supplementary Table A.3). Therefore, some of the patients diagnosed with nfvPPA 

according to the Neary criteria may actually have suffered from lvPPA. However, as 

in seven of the 11 MRI studies and in one of the three PET studies the authors 

explicitly differentiated between both variants of PPA, this bias had, if ever, a minor 

impact on our results. This assumption was confirmed by an analysis including only 

the seven MRI studies on nfvPPA that explicitly excluded subjects with lvPPA. As the 
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foci included in the ALE meta-analyses were reported by different research groups 

using different statistical approaches and thresholds, the results might be influenced 

by the methodological quality (e.g., sample size) of the single studies. This problem 

is partly addressed in the ALE meta-analysis method by modeling results of studies 

with smaller sample sizes by smaller Gaussian probability distributions than those of 

studies reporting larger sample sizes (Eickhoff et al., 2009). 

2.6 Conclusion 

We used anatomical likelihood estimation meta-analyses to validate and refine the 

new diagnostic imaging criteria for the different variants of PPA. As there was almost 

no overlap between the meta-analyses on semantic variant PPA, nonfluent variant 

PPA, and logopenic variant PPA across MRI studies, the new imaging criteria are 

highly distinctive. Limbic regions, in particular the posterior midcingulate gyrus and 

thalamus might play a larger role for logopenic variant PPA and semantic variant 

PPA as has been assumed until now. Finally, our results on semantic variant PPA 

suggest different diagnostic imaging criteria for FDG-PET than for MRI scans. Future 

meta-analyses on nonfluent variant PPA and logopenic variant PPA across FDG-

PET studies will show whether this disjunction between hypometabolism and atrophy 

also concerns the other variants of PPA.  
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3 Predicting Primary Progressive Aphasia with 

Support Vector Machine Approaches in 

structural MRI data 

3.1 Introduction 

Primary progressive aphasia (PPA) is a neurodegenerative disease with insidious 

onset mainly characterized by a language dysfunction that remains isolated for at 

least two years without significant impairment in other cognitive domains (Gorno-

Tempini et al., 2011; Mesulam, 1982; Neary et al., 1998). PPA subsumes three 

gradually progressive language disorders, namely semantic variant PPA (svPPA) or 

semantic dementia, nonfluent/agrammatic variant PPA (nfvPPA) or progressive 

nonfluent aphasia, and logopenic variant PPA (lvPPA) or logopenic progressive 

aphasia (Gorno-Tempini et al., 2008; Gorno-Tempini et al., 2004; Gorno-Tempini et 

al., 2011). SvPPA is mainly characterized by impairments in confrontation naming, 

single-word comprehension, and object-knowledge, as well as surface dyslexia or 

dysgraphia (Gorno-Tempini et al., 2011). The imaging supported diagnosis of svPPA 

is given when patients additionally show atrophy and/or hypometabolism in the 

anterior (ventral and lateral) temporal lobe. Patients suffering from nfvPPA show 

predominantly agrammatism, effortful halting speech with inconsistent speech sound 

errors and distortions (apraxia of speech), and impaired comprehension of 

syntactically complex sentences. These language deficits are often associated with 

atrophy or hypometabolism in left inferior frontal gyrus, insula, premotor, and 

supplementary motor areas. LvPPA is characterized by impaired single-word retrieval 

in spontaneous speech and naming as well as impaired repetition of sentences. 

Patients suffering from lvPPA furthermore often show phonologic paraphasias in 

spontaneous speech and naming. The imaging supported diagnosis of lvPPA is 

given when patients additionally show atrophy and/or hypometabolism in left 

posterior parietal, supramarginal, and angular gyri (Gorno-Tempini et al., 2011). The 

suggested imaging criteria have recently been validated by comprehensive meta-

analyses (Bisenius et al., 2016). 
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The prevalence of PPA is roughly estimated to range from 3-15/100,000 in the US 

population (Grossman, 2010; Harvey et al., 2003; Ratnavalli et al., 2002). PPA is thus 

a rare disease, which makes it very difficult for neurologists outside specialized 

clinics to correctly recognize and differentiate between the three PPA variants in 

routine hospital practice (e.g., Wilson et al., 2009). Given that the current imaging 

criteria are only supportive for the diagnosis of PPA, magnetic resonance imaging 

(MRI) scans are often not included as standard in the clinical assessment of PPA, but 

mainly used to exclude differential diagnoses (e.g., Wilson et al., 2009). It has been 

shown for other types of dementia like for instance, AD that changes in atrophy as 

visualized by MRI are an especially good biomarker for correct early diagnosis and 

furthermore even predictive for individuals with mild cognitive impairment to decline 

into AD (e.g., Frisoni et al., 2010; McEvoy and Brewer, 2010; Schroeter et al., 2009; 

Weiner et al., 2010). Therefore, it might be highly interesting to investigate whether 

MRI scans have a similar predictive value for the correct early diagnosis of PPA and 

to investigate which brain regions contribute the most to the classification of its three 

variants.  

On the one hand, it seems plausible that brain regions proposed in the current 

diagnostic imaging criteria and based on a large range of imaging studies (Bisenius 

et al., 2016; Gorno-Tempini et al., 2011) enable the correct diagnosis of the three 

PPA variants. On the other hand, most of the current imaging studies report 

comparisons of the three variants of PPA with age-matched healthy controls at a 

group-level and it has been critically discussed that statistical differences at group 

level might not necessarily reveal the most important regions to correctly diagnose 

individual cases (Davatzikos et al., 2008a; Davatzikos et al., 2008b; Wilson et al., 

2009). Therefore, it might advance our knowledge in this field crucially to investigate 

whether brain regions contributing the most to the correct diagnosis of the three PPA 

variants indeed correspond to regions that are especially atrophied in these three 

variants. Moreover, it might be highly interesting to explore whether disease-specific 

regions of interest (ROIs) in comparison with whole brain approaches even enhance 

the predictive power of MRI scans for the correct PPA classification. 

To address these issues, we investigated here atrophy, namely changes in grey 

matter density, with voxel-based morphometry (VBM) in patients suffering from one 
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of the PPA variants in comparison with healthy controls as well as by comparing 

patients with different PPA variants at a group level. Subsequently, we used linear 

support vector machine (SVM) classification of the individual grey matter density 

maps to investigate their discriminative or predictive power for the correct 

classification of single subjects as belonging to one of the PPA variants or healthy 

controls. A number of recent studies have used similar pattern classification methods 

to classify patients with AD, FTD, and mild cognitive impairment (Davatzikos et al., 

2008a; Davatzikos et al., 2008b; Dukart et al., 2013; Dukart et al., 2011; Fan et al., 

2008; Klöppel et al., 2008b; Lerch et al., 2008; Misra et al., 2009; Teipel et al., 2007; 

Vemuri et al., 2008). Wilson and colleagues (2009) investigated the utility of structural 

MRI scans for SVM classification in PPA variants in a single center study. Here, we 

investigated patients included in the multi-center study of the German consortium for 

frontotemporal lobar degeneration (FTLD; Otto et al., 2011) to replicate and 

generalize previously reported results, where the multi-center design is a 

precondition for application in clinical routine in the future. Additionally, we compared 

a whole-brain approach to a disease-specific ROI approach based on comprehensive 

anatomical likelihood estimation meta-analyses on the three variants of PPA 

(Bisenius et al., 2016). These ROIs represent the prototypical networks consistently 

affected in the three variants of PPA across MRI studies reporting group-level 

statistics. Note that these ROIs are based on a totally different cohort avoiding 

circularity. In order to better understand possible differences between the whole brain 

and the regions-of-interest approach, we furthermore computed and visualized the 

voxels that contributed the most to the SVM classification in the whole brain 

approach. To reveal whether the brain regions that contributed the most to the SVM 

classification in the whole brain approach corresponded to the regions that were 

especially atrophic in the three PPA variants, we also report pairwise group-level 

comparisons of grey matter probability maps between patients and healthy controls, 

respectively between PPA variants. For the pairwise group-level comparisons, we 

hypothesized that, according to the current imaging criteria and previously published 

VBM studies, atrophy is focused to left fronto-insular regions in nfvPPA, to the 

(mainly left) anterior temporal lobe in svPPA, and to the (predominantly left) posterior 

perisylvian or parietal cortex in lvPPA (e.g., Bisenius et al., 2016; Desgranges et al., 
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2007; Gorno-Tempini et al., 2011; Grossman et al., 2004; Mummery et al., 2000). 

Furthermore, we hypothesized that the same brain regions would mainly contribute to 

the correct SVM classification in PPA variants and healthy controls and that disease-

specific ROI approaches would reveal a higher predictive power for the SVM 

classification than whole-brain approaches. 

3.2 Materials and methods 

3.2.1 Subjects 

Patients and healthy controls were recruited within seven centers (located in Ulm, 

Munich, Leipzig, Homburg, Erlangen, Bonn, and Goettingen) of the German 

consortium for FTLD (http://www.ftld.de). All subjects gave written consent. The 

research protocol was in accordance with the latest version of the Declaration of 

Helsinki and approved by the universities’ ethics committees. For each center, the 

clinical evaluation and the assessment of the MRI scans were done on site according 

to standard operating procedures. That is, all of these centers used the same study 

protocol (diagnostic criteria, demographic, neuropsychological and language 

assessment, and scanning parameters), except for one center, where different 

scanning parameters were used (see section 2.2). The diagnosis of PPA required 

progressive deterioration of speech and that the main deficits were restricted to 

speech and language for at least two years. Patients were diagnosed more 

specifically with nfvPPA, svPPA, or lvPPA according to the newest diagnostic criteria 

(Gorno-Tempini et al., 2011). Note that data from the patient’s first visit in the multi-

centric FTLD consortium’s study was included guaranteeing the relevance of our 

results for early diagnosis of PPA syndromes. None of the patients included in this 

study had any comorbid psychiatric or neurodegenerative disease. The degree of 

clinical impairment of the patients was assessed using the Clinical Dementia Rating 

scale (CDR) and the FTLD-modified Clinical Dementia Rating scale (FTLD-CDR). We 

compared 44 right-handed patients suffering from a variant of PPA (16 nfvPPA, 17 

svPPA, and 11 lvPPA) with 20 right-handed healthy controls. We report all possible 

pairwise comparisons between PPA variants. Subjects from the larger group of a 

given group comparison were matched as closely as possible to the smaller group for 

1) number, 2) scanning parameter, 3) age, and where possible 4) gender. 
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3.2.2 Image acquisition 

All structural images were acquired on Siemens Magnetom 3T scanners (2xVerio, 

2xSkyra, 2xTrio, 1xAllegra, Erlangen, Germany). 47 T1-weighted images (12 svPPA, 

11 nfvPPA, ten lvPPA, 14 healthy controls) were acquired using a magnetization 

prepared rapid gradient echo sequence with a matrix=240x256x176, 

resolution=1x1x1 mm, field of view=240 mm, repetition time=2300 ms, echo 

time=2.98 ms, inversion time=900 ms, and flip angle=9°. For 17 subjects (five 

nfvPPA, five svPPA, one lvPPA, six healthy controls), T1-weighted images were 

acquired using a magnetization prepared rapid gradient echo sequence with a 

matrix=208x256x256, resolution=1x1x1 mm, field of view=256 mm, repetition 

time=2200 ms, echo time=4.38 ms, inversion time=1200 ms, and flip angle=8°. The 

distribution of the two sequences (scanning parameters) did not differ significantly, 

neither between patient groups nor between patient groups and healthy control 

groups (see Table 4). The very first MRI scans that were assessed as soon as the 

subjects were enrolled in the study, were used for analyses. 

3.2.3 Data analysis 

3.2.3.1 Clinical characteristics 

We used SPSS version 22 (IBM Corporation, Armonk, NY) to compute descriptive 

group scores (mean and standard deviation) for the overall patient and healthy 

control groups as well as for the respective subsets after matching for sample size, 

age, gender, and scanning parameters. Group comparisons for age, disease 

duration, education, and total grey matter density between all patient and healthy 

control groups as well as between PPA variants were performed using one-way 

ANOVAs, Kruskal-Wallis tests, and post-hoc t-tests in SPSS. Group comparisons for 

demographic and clinical characteristics between the matched subsets were 

performed using independent t tests (normally distributed data) and Mann-Whitney U 

tests (not normally distributed data) in SPSS. Group comparisons for gender and 

scanning parameter were done using chi-square tests in SPSS. 
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3.2.3.2 Voxel-based morphometry 

Images were processed with the VBM toolbox (http://dbm.neuro.uni-jena.de/vbm/) in 

SPM 8 (Wellcome Department of Imaging Neuroscience, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) running in a MATLAB 8.5 

environment (Mathworks, Inc., Sherbon, MA, USA) using the default parameters. MRI 

images were segmented into grey matter, white matter, and cerebrospinal fluid using 

the unified segmentation module (Ashburner and Friston, 2005) and normalized to 

the standard Montreal Neurological Institute template including affine and non-linear 

modulation to account for local compression and expansion during transformation. 

The normalized segmented grey matter density maps were smoothed with a 

Gaussian kernel of 8 mm full-width-at-half-maximum. The group comparisons 

between the three variants of PPA and healthy controls as well as between PPA 

variants were performed in FSL (FMRIB Analysis Group, Oxford University, UK., 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) using permutation-based non-parametric 

testing (5000 permutations) with the Threshold-Free Cluster Enhancement (TFCE) 

method (Smith and Nichols, 2009; Winkler et al., 2014). Age, gender, and total grey 

matter were entered as covariates in the general linear model and results are 

reported at a family-wise error (FWE) corrected p < 0.05. 

SVM classification (Vapnik, 1995; Vapnik, 1998) was performed using libsvm version 

3.18 (Chang and Lin, 2001; https://www.csie.ntu.edu.tw/~cjlin/libsvm) in a MATLAB 

8.5 environment (Mathworks, Inc., Sherbon, MA, USA). Analyses were done using a 

linear kernel and the default solver C-SVC with C=1. In the training step, SVM 

assigns a weight to the scan of each subject which indicates its importance for the 

discrimination between groups. This weight is multiplied by a label vector which 

indicates the group of the scan (e.g., patient or healthy control). The cross-validation 

of the trained SVM was performed using the leave-one (subject)-out method. This 

procedure iteratively leaves-out the information of one subject of each group and 

trains the model on the remaining subjects for subsequent class assignment of the 

respective subject that was not included in the training procedure. This validation 

method allows the generalization of the trained SVM to data that have not been 

presented to the SVM algorithm previously and avoids the danger of inflating 

accuracies 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777677/#bb0145
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In the whole brain approach, we included all voxels that had a probability for grey 

matter higher than 0.2 (because voxels lying between white matter and ventricular 

cerebrospinal fluid tend to be misclassified as grey matter (e.g., Ashburner and 

Friston, 2000; Dukart et al., 2011). In the ROI approach, we used the results from a 

recently published anatomical likelihood estimation meta-analysis on the three 

variants of PPA (p < 0.05 false discovery rate corrected) across MRI studies as a 

prototypical disease-specific template (Bisenius et al., 2016). The original meta-

analytic clusters were coregistered to the Montreal Neurological Institute template of 

the VBM results using SPM 8 and dilated by two voxels using the 3 D dilation 

function implemented in the WFU PickAtlas (Maldjian, 

http://www.nitrc.org/projects/wfu_pickatlas). Non-parametric statistical comparisons 

were calculated between the performance (as indicated by the area under the 

receiver operating characteristic curve, AUC) of the ROI approach and the whole 

brain approach for all pairwise comparisons at p<0.05 in StAR (Vergara et al., 2008; 

www.melolab.org/star/home.php). In order to determine and visualize the importance 

of each voxel for the discrimination between groups in the whole brain approach, we 

multiplied each grey matter probability map (containing only voxels where p > 0.2) by 

the product of weight and label and summed on a voxel basis (Klöppel et al., 2008b). 

3.3 Results 

3.3.1 Demographic and clinical characteristics 

The demographic and clinical characteristics of the overall patient and healthy control 

groups are shown in Table 1. The patient and healthy control groups did not differ 

significantly from each other in age, education, or disease duration. The patient and 

healthy control groups differed however significantly in total grey matter density 

(F(3,63)=4.06, p=0.01) with svPPA and lvPPA showing lower values than healthy 

controls. The three PPA variants did not differ significantly from each other in age, 

education, disease duration, or total grey matter density.  
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Table 4 Demographic and clinical characteristics of patients and healthy controls 

 nfvPPA svPPA lvPPA HC  

number 16 17 11 20 

gender (m/f) 8/8 11/6 4/7 11/9 

scanning parameter 11/5 12/5 10/1 14/6 

age (years) 67.50 ± 7.42 62.53 ± 7.77 65.36 ± 6.25 67.05 ± 6.61 

education (years) 13.19 ± 4.29 15.35 ± 3.37 13.27 ± 3.35 14.10 ± 3.04 

disease duration (years) 2.19 ± 1.60 3.59 ± 2.45 3.64 ± 2.66 - 

total grey matter densitiy 
(dm3) 

0.54 ± 0.08 0.52 ± 0.08 0.51 ± 0.09 0.59 ± 0.05 

CDR 3.44 ± 3.20 5.32 ± 4.19 4.64 ± 4.43 0.03 ± 0.11 

FTLD-CDR 5.94 ± 4.07 7.88 ± 5.44 6.86 ± 5.81 0.05 ± 0.15 

CERAD Plus (test battery)     

MMSE 19.94 ± 7.25 19.31 ± 8.35 22.10 ± 6.03 28.70 ± 0.92 

word list memory (trials 1-3)  13.07 ± 6.61 13.92 ± 7.62 11.64 ± 8.93 23.40 ± 3.03 

word list recall 4.33 ± 2.62 3.77 ± 3.30 3.73 ± 3.88 8.20 ± 2.38 

word list recognition (yes) 8.57 ± 2.41 8.85 ± 1.41 9.10 ± 1.20 9.80 ± 0.52 

word list recognition (no) 9.57 ± 0.65 7.69 ± 2.63 8.40 ± 3.34 10.00 ± 0.00 

constructional praxis 9.06 ± 1.95 10.00 ± 2.08 8.18 ± 3.31 11.00 ± 0.00 

constructional praxis recall 6.75 ± 2.86 6.31 ± 4.31 4.55 ± 4.28 9.45 ± 1.91 

Trail Making Test A (s) 94.38 ± 46.95 75.69 ± 51.56 75.80 ± 51.33 35.80 ± 9.01 

Trail Making Test B (s) 220.18 ± 91.33 123.70 ± 72.24 201.13 ± 84.47 74.50 ± 19.12 

Boston Naming Test 9.93 ± 4.76 6.47 ± 4.26 10.18 ± 3.89 14.85 ± 0.49 

Verbal Fluency Test  8.06 ± 7.34 8.00 ± 5.01 12.09 ± 8.49 26.75 ± 5.50 

Phonemic Fluency Test  3.87 ± 4.09 7.23 ± 5.29 6.80 ± 4.52 18.20 ± 4.63 

Repeat and Point Test     

Repeat task 7.93 ± 2.34 8.93 ± 1.98 6.80 ± 3.36 10.00 ± 0.00 

Point task 8.53 ± 1.55 6.14 ± 2.85 8.10 ± 1.91 9.88 ± 0.49 

CDR clinical dementia rating scale, global score, CERAD Consortium to Establish a Registry for 
Alzheimer’s Disease, FTLD frontotemporal lobar degeneration, HC healthy controls, lvPPA logopenic 
variant PPA, MMSE Mini-Mental State Examination, nfvPPA nonfluent/agrammatic variant PPA, PPA 
primary progressive aphasia, svPPA semantic variant PPA. Note age, education, disease duration, 
CDR, FTLD-CDR, CERAD Plus, and Repeat and Point Test are indicated as mean ± standard 
deviation. Note that data was missing for a few subjects on some subtests of the CERAD Plus and the 
Repeat and Point Test. 

A detailed description of each of the pairwise comparisons between the matched 

subsets is given in Supplementary Table B.1. As shown in Table B.1, no pair of 

groups differed significantly in age, gender, and education and none of the patient 

groups differed significantly from the other patient groups in age, gender, education, 

duration of disease, CDR, and FTLD-CDR. PPA variants differed significantly from 

healthy controls in CDR, FTLD-CDR, and most of the subtests of the Consortium to 

Establish a Registry for Alzheimer’s Disease (CERAD) Plus test battery. NfvPPA and 

http://cerad.mc.duke.edu/
http://cerad.mc.duke.edu/
http://cerad.mc.duke.edu/
http://cerad.mc.duke.edu/
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svPPA additionally differed significantly from healthy controls in the Repeat and Point 

Test. In the pairwise comparisons between PPA variants, svPPA showed a 

significantly lower test score in the Point task than nfvPPA and a significantly higher 

test score in the Repeat task than lvPPA (see Supplementary Table B.1). 

3.3.2 Voxel-based morphometry results 

Significant results of the statistical comparison between grey matter density maps of 

healthy controls and patients are shown in red (nfvPPA), light green (svPPA), and 

blue (lvPPA) color in Figures 6-8 on the top left (for more details, see Supplementary 

Table B.2). All results are reported at an FEW corrected significance level of p < 

0.05. The results of the statistical comparison between grey matter density maps of 

svPPA and nfvPPA are shown in Figure 9 on the top left (svPPA < nfvPPA in light 

green color, nfvPPA < svPPA in red color). The results for the statistical comparison 

between lvPPA and svPPA are shown in Figure 10 on the top left (svPPA < lvPPA in 

light green color, lvPPA < svPPA no significant results at p < 0.05). There were no 

significant results for the comparison between lvPPA and nfvPPA at a FEW corrected 

significance level of p < 0.05 (therefore not shown). More details on the pairwise 

comparisons between PPA variants are given in Supplementary Table B.2. 

3.3.3 Support vector machine classification results 

SVM classification was applied separately to each group comparison: 1) nfvPPA vs. 

healthy controls, 2) svPPA vs. healthy controls, 3) lvPPA vs. healthy controls, and 4) 

svPPA vs. nfvPPA. The reported accuracy is the percentage of subjects correctly 

assigned to the clinical diagnosis (patient/healthy control or svPPA/nfvPPA). 

Sensitivity refers to the proportion of patients correctly classified as patients and 

specificity to the proportion of healthy controls correctly classified as healthy controls. 

Positive predictive value refers to the number of correctly classified patients out of all 

subjects classified as patients and negative predictive value refers to the number of 

correctly classified healthy controls out of all subjects classified as healthy controls. 
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3.3.3.1 Group comparisons between patients and healthy controls 

Figure 6: Voxel-based morphometry and support vector machine classification results for 
nonfluent/agrammatic variant PPA as compared to healthy controls. Top left: voxel-based 
morphometry (VBM) results for the comparison between nonfluent/agrammatic variant PPA (nfvPPA) 
and healthy controls (HC) (family-wise error corrected p < 0.05). Bottom left: Regions of interest 
(ROIs) based on independent meta-analyses. Right: Results of support vector machine classification 
(SVM) classification. Top: Regions most relevant for classification as patients in yellow, HC in light 
green. Note that the scale of the distance weights has no applicable units. Bottom: Sensitivity, 
specificity, and accuracy for the ROI approach and the whole brain approach in SVM classification. 

The accuracy for the classification between different variants and healthy controls 

using the leave-one-out approach ranged from 91 to 97 % for the whole brain 

approach and from 82 to 100 % for the ROI approach. Details on the respective 

sensitivity, specificity, and accuracy are given in Figures 6-8 on the bottom right and 

details on positive and negative predictive values are shown in Supplementary Table 

B.3. The results of the SVM classification between patients and healthy controls for 

the whole brain approach are shown on the top right of Figures 6-8. Here, values 

range between -1 and 0 or 0 and 1 and reflect the relative importance of these voxels 

in the discrimination between both groups. Voxels that contributed the most to the 

classification of subjects as patients (i.e., had a higher negative value) are depicted in 

yellow and the voxels that contributed the most to the classification of subjects as 

healthy controls (i.e., had a higher positive value) are shown in light green. A value 
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near 0 indicates that this voxel was neither indicative for the classification as patient 

nor as healthy control. 

Brain regions that contributed the most to the classification of subjects as nfvPPA vs. 

control subjects (Figure 6 on the top right) encompass bilaterally cerebellum, inferior, 

middle, and superior temporal gyri, middle occipital gyrus, parahippocampal gyrus, 

crus cerebri, thalamus, precuneus, inferior and superior frontal gyri, as well as in the 

left hemisphere orbital gyrus, insula, pre- and postcentral gyri, middle frontal gyrus, 

and angular gyrus. Classification accuracy was 91 % for the whole brain approach 

and 84 % for the ROI approach. The statistical comparison between both approaches 

revealed high AUC values, but without significant differences (AUCROI=0.90, AUCwhole 

brain=0.94, p=0.48). 

Figure 7: Voxel-based morphometry and support vector machine classification results for semantic 
variant PPA as compared to healthy controls. Top left: voxel-based morphometry (VBM) results for the 
comparison between semantic variant PPA (svPPA) and healthy controls (HC) (family-wise error 
corrected p < 0.05). Bottom left: Regions of interest (ROIs) based on independent meta-analyses. 
Right: Results of support vector machine (SVM) classification. Top: Regions most relevant for 
classification as patients in yellow, HC in light green. Note that the scale of the distance weights has 
no applicable units. Bottom: Sensitivity, specificity, and accuracy for the ROI approach and the whole 
brain approach in SVM classification. 



 3. Support vector machine classification in primary progressive aphasia 

45 

 

Regions that contributed the most to the classification of subjects as svPPA vs. 

control subjects included bilaterally (although predominantly in the left hemisphere) 

cerebellum, inferior, middle and superior temporal gyri, middle occipital gyrus, 

parahippocampal gyrus, hippocampus, amygdala, putamen, insula, precentral and 

postcentral gyri, middle frontal gyrus, inferior parietal gyrus, and cingulate gyrus (see 

Figure 7 on the top right). Classification accuracy was very high for both approaches 

(97 % for the whole brain approach and 100 % for the ROI approach). The statistical 

comparison between approaches showed very high AUC values for both, but without 

significant differences (AUCROI=1.00, AUCwhole brain=0.97, p=0.32). 

Figure 8: Voxel-based morphometry and support vector machine classification results for logopenic 
variant PPA as compared to healthy controls. Top left: voxel-based morphometry (VBM) results for the 
comparison between logopenic variant PPA (lvPPA) and healthy controls (HC) (family-wise error 
corrected p < 0.05). Bottom left: Regions of interest (ROIs) based on independent meta-analyses. 
Right: Results of support vector machine (SVM) classification. Top: Regions most relevant for 
classification as patients in yellow, HC in light green. Note that the scale of the distance weights has 
no applicable units. Bottom: Sensitivity, specificity, and accuracy for the ROI approach and the whole 
brain approach in SVM classification. 

Regions that contributed the most to the classification of subjects as lvPPA patients 

vs. control subjects are shown in yellow in Figure 8 on the top right and encompass 

left inferior temporal gyrus, fusiform gyrus, middle occipital gyrus, parahippocampal 



 3. Support vector machine classification in primary progressive aphasia 

46 

 

gyrus, hippocampus, putamen, insula, thalamus, precentral gyrus, middle and 

superior frontal gyri, angular gyrus, supramarginal gyrus, and cingulate gyrus as well 

as bilaterally cerebellum, middle and superior temporal gyri, caudate nucleus, 

thalamus, middle and superior frontal gyri, precuneus, and superior parietal gyrus. 

Classification accuracy was high for both, the whole brain approach (95 %) and the 

ROI approach (82 %). The statistical comparison between both approaches did show 

high AUC values without significant differences (AUCROI=0.91, AUCwhole brain=0.95, 

p=0.38). 

3.3.3.2 Group comparisons between PPA variants 

Figure 9 illustrates on top right in yellow the regions that contributed the most to the 

classification as svPPA and in green the regions that contributed the most to the 

classification as nfvPPA. Here, sensitivity refers to the ratio of correctly classified 

svPPA patients and specificity to the ratio of correctly classified nfvPPA patients. 

Details on positive and negative predictive values are given in Supplementary Table 

B.3. The regions that contributed the most to the classification of a subject as svPPA 

included bilaterally cerebellum, inferior, middle and superior temporal gyri, middle 

occipital gyrus, fusiform gyrus, parahippocampal gyrus, hippocampus, putamen, 

insula, cuneus, precuneus, inferior frontal gyrus, superior parietal gyrus, cingulate 

gyrus, and left precentral gyrus. Regions that contributed the most to the 

classification of nfvPPA included bilateral cerebellum, middle and superior occipital 

gyrus, superior temporal gyrus, gyrus rectus, posterior orbital gyrus, caudate nuclei, 

thalamus, inferior, middle, and superior frontal gyrus, precentral gyrus, postcentral 

gyrus, inferior parietal gyrus, angular gyrus, supramarginal gyrus, right precuneus, 

right superior parietal gyrus, and right cingulate gyrus. Classification accuracy was 

78 % for both, the whole brain and the ROI approach. Both approaches revealed 

high AUC values without significant differences between them (AUCROI=0.87, 

AUCwhole brain=0.88, p= 0.72). 
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Figure 9: Support vector machine classification results for the comparison and discrimination between 
semantic variant PPA and nonfluent/agrammatic variant PPA. Top left: VBM results for the comparison 
between semantic variant PPA (svPPA) and nonfluent/agrammatic variant PPA (nfvPPA) 
(svPPA<nfvPPA green, nfvPPA<svPPA red, family-wise error corrected p < 0.05). Bottom left: 
Regions of interest (ROIs) based on independent meta-analyses. Right: Results of support vector 
machine (SVM) classification. Top: Regions most relevant for classification as svPPA in yellow, 
nfvPPA in light green. Note that the scale of the distance weights has no applicable units. Bottom: 
Sensitivity, specificity, and accuracy for the ROI approach and the whole brain approach in SVM 
classification. 

Figure 10 illustrates on top right in yellow the regions that contributed the most to the 

classification as lvPPA and in green the regions that contributed the most to the 

classification as svPPA. Sensitivity refers to the ratio of correctly classified lvPPA 

patients and specificity to the ratio of correctly classified svPPA patients. Positive and 

negative predictive values are given in Supplementary Table B.3. The regions that 

contributed the most to the classification of a subject as lvPPA included bilateral 

cerebellum, middle occipital gyrus, middle and superior temporal gyri, caudate nuclei, 

thalamus, superior frontal gyrus, supramarginal gyrus, angular gyrus, precuneus, 

cingulate gyrus, right lateral orbital gyrus, inferior and middle frontal gyrus, and 

superior parietal gyrus. Regions that contributed the most to the classification of 

svPPA included bilateral cerebellum, inferior, middle, and superior temporal gyrus, 

parahippocampal gyrus, hippocampus, insula, and right putamen. Classification 

accuracy was 95 % for both, the whole brain and the ROI approach. Both 
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approaches reached high AUC values without significant differences between them 

(AUCROI=0.91, AUCwhole brain=0.93, p=0.41). 

Figure 10: Support vector machine classification results for the comparison and discrimination 
between logopenic variant PPA and semantic variant PPA. Top left: VBM results for the comparison 
between logopenic variant PPA (lvPPA) and semantic variant PPA (svPPA) (svPPA<lvPPA family-
wise error corrected p < 0.05). Bottom left: Regions of interest (ROIs) based on independent meta-
analyses. Right: Results of support vector machine (SVM) classification. Top: Regions most relevant 
for classification as lvPPA in yellow, svPPA in light green. Note that the scale of the distance weights 
has no applicable units. Bottom: Sensitivity, specificity, and accuracy for the ROI approach and the 
whole brain approach in SVM classification. 

Figure 11 illustrates on top in yellow the regions that contributed the most to the 

classification as lvPPA and in green the regions that contributed the most to the 

classification as nfvPPA. Sensitivity refers to the ratio of correctly classified lvPPA 

patients and specificity to the ratio of correctly classified nfvPPA patients. For details 

on positive and negative predictive values see Supplementary Table B.3. The 

regions that contributed the most to the classification of a subject as lvPPA included 

bilateral cerebellum, inferior, middle occipital gyrus, middle and superior temporal 

gyri, thalamus, putamen, middle and superior frontal gyrus, supramarginal gyrus, 

angular gyrus, precentral gyrus, cingulate gyrus, precuneus, superior parietal gyrus. 

Regions that contributed the most to the classification of nfvPPA included right 

inferior temporal gyrus, bilateral middle and superior temporal gyri, gyrus rectus, 
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lateral orbital gyrus, insula, caudate nuclei, cuneus, cingulate gyrus, middle and 

superior frontal gyri, postcentral gyrus, supramarginal gyrus, and superior parietal 

gyrus. Classification accuracy was low with 55 % for the whole brain approach and 

higher with 64 % for the ROI approach. AUC values were comparable, namely higher 

for the ROI than the whole brain approach, but without significant differences 

between them (AUCROI=0.64, AUCwhole brain=0.59, p=0.50). 

Figure 11: Support vector machine 
classification results for the discrimination 
between logopenic variant PPA and 
nonfluent/agrammatic variant PPA. Top: 
Regions most relevant for support vector 
machine classification as logopenic variant 
PPA (lvPPA) in yellow, nonfluent/agrammatic 
variant PPA (nfvPPA) in light green. Note that 
the scale of the distance weights has no 
applicable units. VBM results are not shown 
for the group comparisons, because no 
significant results were obtained. Middle: 
Sensitivity, specificity, and accuracy for the 
ROI approach and the whole brain approach 
in SVM classification. Bottom Regions of 
interest (ROIs) based on independent meta-
analyses. 

 

 

 

3.4 Discussion 

To our knowledge, this is the first study demonstrating that SVM classification in 

multi-center MRI data can be used to diagnose and dissociate PPA subtypes, where 

the multi-center design is a precondition for application in clinical routine in the future. 

Moreover, we compare a whole brain vs. data-driven disease-specific ROI approach 

for SVM classification. We used ROIs reported in a recent comprehensive meta-

analysis on PPA (Bisenius et al., 2016). In order to reveal whether the regions that 

contributed the most to the whole brain SVM classification of the three variants of 

PPA corresponded to the regions that were especially atrophic in the respective 
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variant, we additionally conducted statistical group-level comparisons between 

patient groups and healthy control groups. In the following, we are going to introduce 

the results of these group-level comparisons, before we discuss in more detail the 

results of the SVM classification for the whole brain approach and the ROI approach 

as well as possible further implications. 

3.4.1 Atrophy in the different variants of primary progressive aphasia 

The group comparisons in our study revealed regional brain atrophy that included the 

disease-specific brain areas identified in comprehensive systematic and quantitative 

meta-analyses across imaging studies from the literature, if one compares this data 

for each PPA variant (see left top and bottom images in Figures 6-8). Beyond that our 

group-level comparisons are in line with studies showing that, with the progression of 

the disease, the atrophic networks in the three subtypes of PPA partly converge (e.g., 

Gorno-Tempini et al., 2011; Rogalski et al., 2011). Mild and early svPPA has been 

shown to involve atrophy in (predominantly left) anterior temporal lobe, with extension 

to the adjacent temporoparietal junction, hippocampus and amygdala and posterior 

orbital cortex as well as in the right anterior temporal lobe (Czarnecki et al., 2008; 

Grossman, 2010 Krueger et al., 2010; Mesulam et al., 2012; Rohrer et al., 2008) and 

to progress bilaterally into posterior and superior temporal lobe, left temporoparietal 

junction, bilateral cingulate cortex and orbitofrontal gyri, left superior orbitofrontal 

gyrus, left inferior and superior frontal gyri (e.g., Grossman, 2010; Kumfor et al., 

2016; Rogalski et al., 2011). Early and mild stages of nfvPPA, on the other hand, 

have been shown to be characterized by atrophy in left inferior frontal gyrus, 

temporoparietal junction, anterior superior temporal gyrus, posterior middle frontal 

gyrus and precentral gyrus (Mesulam et al., 2012) and to progress into left anterior 

temporal lobe, orbital cortex, dorsolateral prefrontal cortex, anterior cingulate cortex, 

and along the perisylvian fissure into the parietal lobe (e.g., Grossman 2010; 

Rogalski et al., 2011). For lvPPA, atrophy has been shown to progress from 

(predominantly left) posterior superior temporal cortex, inferior parietal cortex, 

posterior cingulate cortex and medial temporal cortex into the anterior and lateral 

temporal cortex, caudate nucleus, insula, inferior frontal gyrus and dorsal frontal 
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cortex as well as into the temporo-parietal junction, posterior cingulate and 

precuneus of the right hemisphere. (e.g., Rogalski et al., 2011; Rohrer et al., 2013).  

3.4.2 Support vector machine classification is a useful tool to differentiate 

between healthy controls and primary progressive aphasia variants 

Accuracies for the whole brain approach in SVM classification between patients and 

healthy controls ranged from 91 % for nfvPPA over 95 % for lvPPA to 97 % for 

svPPA. The between-subtype whole brain SVM classification enabled high accuracy 

of 78 and 95 % for the discrimination between svPPA vs. nfvPPA and svPPA vs. 

lvPPA variant. Only for the discrimination between nfvPPA and lvPPA variants 

accuracy was low with 55 %. These numbers are in line with previously reported 

accuracies ranging from 58-100 % in studies on neurodegenerative diseases like AD 

(e.g., (e.g., Chetelat and Baron, 2003; Davatzikos et al., 2008b; Dukart et al., 2013; 

Dukart et al., 2011; Klöppel et al., 2008b; Lerch et al., 2008; Teipel et al., 2007; 

Vemuri et al., 2008), mild cognitive impairment (e.g., Davatzikos et al., 2008a; Teipel 

et al., 2007), FTD (e.g., Davatzikos et al., 2008b; Dukart et al., 2011; Klöppel et al., 

2008a), and PPA (Wilson et al., 2009; Zhang et al., 2013).  

Until now, there has only been one study investigating the three variants of PPA with 

SVM classification (Wilson et al., 2009). These authors performed a principal 

component analysis on MRI scans from one study center and subsequently used the 

results for the pairwise SVM classification between patients and healthy controls as 

well as between the three patient groups. Wilson et al. (2009) found an accuracy of 

100 % for the discrimination between svPPA patients and healthy controls, 100 % for 

the classification between lvPPA patients and healthy controls, and an accuracy of 

89 % for the discrimination between nfvPPA and healthy controls. These authors 

report an accuracy of 89 % for the discrimination between svPPA and nfvPPA 

patients, 93.8 % for svPPA vs. lvPPA, and 81.3 % for lvPPA vs. nfvPPA. Our SVM 

results using the whole brain approach on grey matter density maps in the multi-

center cohort of the FTLD consortium are thus comparable with the results of Wilson 

et al. (2009) with regard to the classification between patients and healthy controls 

showing higher accuracies for svPPA and lvPPA than for nfvPPA and the 
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classification between lvPPA and nfvPPA showing a lower classification accuracy 

than the other classifications between PPA variants.  

Additionally, we performed group-level comparisons on the grey matter density maps 

between patients and healthy controls as well as between PPA variants in order to 

investigate whether the regions that contributed the most to the SVM classification of 

patients also corresponded to the regions mostly atrophied in these patients. Figures 

7 and 8 show that brain regions that were most consistently atrophied in svPPA and 

lvPPA indeed also contributed the most to the SVM classification of these patients. 

For nfvPPA, on the other hand, brain regions that contributed the most to the SVM 

classification as patients were not constrained to the regions that were atrophied in 

our nfvPPA patients, but also encompassed very similar regions in the contralateral 

(right) hemisphere (see Figure 6). A possible explanation for the importance of the 

additional brain regions in the right hemisphere might be that they were affected to a 

lesser extent (and thus not significant in the group-level comparison) and that SVM 

classification as a more sensitive method already took into account early atrophy in 

these regions. There is a general consensus that the results of group-level statistics 

might not be applicable to individual scans, because their sensitivity and specificity at 

early stages of brain pathology is insufficient for the prediction of the status of 

individual scans (Davatzikos et al., 2008b; Fan et al., 2008; Wilson et al., 2009).  

Interestingly, for the discrimination between svPPA and nfvPPA, the regions that 

contributed to the SVM classification as svPPA patients (see Figure 9 on the top), 

corresponded to the regions that were most consistently atrophied in these patients 

(see Figure 7 on the top left). The regions that contributed to the SVM classification 

as nfvPPA, on the other hand, were (except for two characteristic regions in the 

inferior and middle frontal gyri) rather spread. This might be due to the fact that the 

group comparisons between patients and healthy controls showed for both, svPPA 

and nfvPPA, significant atrophy in the superior temporal gyrus, parahippocampal 

area, hippocampus, insula, and inferior frontal gyrus (see Figures 6 and 7 on the top 

left). Although atrophy in the superior temporal gyrus, parahippocampal area, and 

hippocampus have been discussed to be rather specific for svPPA, while insula, and 

inferior frontal gyrus have been discussed to be rather characteristic for nfvPPA, it 

has been shown in longitudinal studies that with the progression of the disease, the 
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atrophic networks in the three variants of PPA partly converge (e.g., Gorno-Tempini 

et al., 2011; Rogalski et al., 2011). Given that on the one hand several regions might 

be affected similarly in nfvPPA and svPPA depending upon the current stage of the 

respective disease and on the other hand structural MRI scans do not provide any 

information regarding the temporal dynamic pattern of brain atrophy, the SVM 

classification method, given its high sensitivity, might not always be able to perfectly 

discriminate between these two variants. For both subtype-specific classifications, 

svPPA vs. nfvPPA and svPPA vs. lvPPA, we reached a high classification accuracy, 

although the number of patients was rather low for lvPPA and the respective 

comparison. The high accuracy might be related to a relatively strong (in the sense of 

high t-values) and regionally focused atrophy in svPPA. This is obvious in the group 

comparisons revealing much higher atrophy in svPPA than nfvPPA or lvPPA, 

whereas nfvPPA showed stronger atrophy only in a very small area and lvPPA did 

not show any atrophy in comparison with svPPA. Note that disease duration and 

severity did generally not significantly differ between PPA subtypes excluding these 

factors as explanation for differences in classification accuracy. 

As stated before the whole-brain SVM classification between nfvPPA and lvPPA 

variants reached only a low accuracy. This might be related to relatively small and 

rather distributed atrophy in these two PPA variants or to conceptual issues. In a 

prospective data-driven study, Sajjadi et al. (2012) examined to which extent PPA 

patients would be classifiable according to the revised clinical diagnostic criteria and 

which linguistic impairments would cluster together (and thus form distinct 

syndromes) using principal factor analysis. In this cohort, 58.7 % of the patients could 

be assigned to one of the three variants of PPA proposed by Gorno-Tempini et al. 

(2011), while 41.3 % of the patients were classified as mixed PPA because their 

deficits either extended beyond a single PPA variant or they met the diagnostic 

criteria for more than one variant. The principal factor analysis identified two clear 

syndromes corresponding to the proposed syndromes of svPPA and nfvPPA as well 

as a residual miscellany. Interestingly, impaired sentence repetition, which has been 

proposed as a cardinal diagnostic feature for lvPPA, aligned with the factor 

corresponding to nfvPPA. One might therefore speculate that low classification 

accuracy between nfvPPA and lvPPA in imaging data might not only be related to the 
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rather relatively small and distributed atrophy, but possibly also to problems in 

clinically distinguishing both PPA syndromes.  

3.4.3 Regions-of-interest approach or whole brain approach? 

We compared the whole brain approach for SVM classification with an ROI approach 

using ROIs from a recent meta-analysis on the three variants of PPA (Bisenius et al., 

2016). A similar approach has already been adopted by Dukart and colleagues who 

compared the whole brain versus ROI approach for SVM classification between FTD 

and AD as well as between these patient groups and healthy controls using structural 

MRI and PET scans (Dukart et al., 2013; Dukart et al., 2011). These authors reported 

that for MRI scans, the ROI approach was comparable to the whole brain approach 

for the discrimination between patients and healthy controls, but had a lower 

accuracy for the discrimination between patient groups (AD vs. FTD) (Dukart et al., 

2013; Dukart et al., 2011). In the current study, the ROI approach reached generally 

a high accuracy in diagnosis and, at least mainly, differential diagnosis/classification 

of PPA syndromes, comparable to the whole-brain approach. In detail, it showed a 

higher accuracy as compared to healthy controls for svPPA patients and a slightly 

lower accuracy for nfvPPA and lvPPA patients, while it showed a similar accuracy for 

svPPA vs. nfvPPA and svPPA vs. lvPPA patients as compared to the whole brain 

approach. Remarkably, for the lvPPA vs. nfvPPA comparison the ROI approach 

showed a higher accuracy than the whole brain approach, may be due to the 

diffusivity and similar strength (in the sense of t-values) of brain atrophy requiring 

higher regional specificity for the analysis. One might speculate that ROI-based 

classification might be given preference for special questions in differentiating 

between syndromes in the future. Given however that none of these trends was 

statistically significant, we consider both approaches as equally valid.  

The visual comparison between the whole brain approach and the ROI approach 

raises however the question about the optimal method to choose ROIs for SVM 

classification in PPA. The optimal number of ROIs for SVM classification needs to be 

such as to accurately capture all subtleties of the structural abnormality in these 

patients and thus achieve a sufficient predictive accuracy without however reducing 

predictive accuracy through the increase of noise that possibly accompanies 
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additional ROIs that are less relevant to the classification. Selecting ROIs based on 

group-level comparison between patients and healthy control groups might for 

instance provide a higher discriminative power for the SVM classification in the same 

study sample. These ROIs would however be biased to at least some extent by the 

specific study sample and might therefore not necessarily lead to similar good results 

in other study samples. Another possibility to find the optimal ROIs for the SVM 

classification between nfvPPA (or lvPPA) and healthy controls might consist in 

rerunning meta-analyses on the three variants of PPA across MRI studies using a 

less conservative statistical threshold. This methodological approach might no longer 

exclusively reveal the brain regions that are specific to a given variant (and to some 

extent possibly even false positive results), but due to the higher sensitivity, also 

common networks between variants that become usually only visible in longitudinal 

studies monitoring the progression of the disease (e.g., Rogalski et al., 2011). For the 

ROI approach of SVM classification between the different variants of PPA, on the 

other hand, it might be rather promising to only consider ROIs that are either more 

severely impaired in one variant as in the other variants as for instance the inferior 

and middle temporal gyri in svPPA, or rather specific to the given variant (e.g., middle 

frontal gyrus in nfvPPA as compared to svPPA). The considerations regarding the 

optimal ROI for SVM classification in PPA are however purely hypothetical and need 

to be investigated in future studies. 

Furthermore, it might be interesting to compare the ROI approach to the whole brain 

approach using combined imaging data as for instance MRI and PET as has already 

been done for AD and FTD (e.g., Davatzikos et al., 2008b; Dukart et al., 2013; Dukart 

et al., 2011) or using MRI and diffusion tensor imaging data as has been done by 

Zhang et al. (2013), who showed, in a small sample, higher accuracies for whole 

brain SVM classification of diffusion tensor imaging data than of MRI data for nfvPPA 

and svPPA versus healthy controls. Moreover, the potential of ROI approaches for 

disease classification has to be validated in longitudinal studies, where one would 

assume higher accuracy in early stages.  
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3.5 Limitations 

The relatively small number of subjects might hamper the generalization of the 

results to the overall population of PPA patients. Given however that our results are 

very similar to another study including more patients but using a different approach 

(Wilson et al., 2009) this should not really constitute a major issue. A problem that 

might occur in pattern classification methods is the risk of overfitting the data due to 

the high-dimensionality of the data, which can however be reduced by using the 

leave-one out approach as has been done in the current study. Segmentation and 

normalization processes are not always perfect which might result in underestimation 

of atrophy in patients or underestimation of grey matter in healthy controls, which 

leads to lower accuracies in the SVM classification. This issue should however at 

least partly be addressed in the current study as that our data have been acquired on 

different scanners and were well balanced between patient and healthy control 

groups. Finally, the classification between pairs of groups was a highly idealized 

situation that does not reflect the problem in the real world of differential diagnosis 

between several neurological diseases with different prevalence rates – an issue that 

has to be addressed in future studies validating the application of SVM approaches in 

every day diagnostic life. 

3.6 Conclusion 

Our study aimed at validating the potential of structural multi-center MRI data for 

disease classification in PPA. We compared the whole brain approach with a 

disease-specific ROI approach for SVM classification in the three variants of PPA. 

Generally, both the whole brain and the disease-specific approach reached high 

classification accuracy in diagnosis and differential diagnosis of PPA syndromes 

without significant differences. Our results showed that for svPPA, the ROI approach 

using prototypical disease-related networks as revealed by meta-analyses across 

MRI studies revealed a higher accuracy (perfect discrimination of 100 %) than the 

whole brain approach. For nfvPPA and lvPPA on the other hand, the SVM 

classification showed higher accuracies when using the whole brain approach. The 

regions contributing to the correct SVM classification of patients mostly corresponded 

to regions that were consistently atrophied in these patients as shown by the VBM 
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results. For the discrimination between svPPA and nfvPPA, and between svPPA and 

lvPPA the whole brain approach and the ROI approach showed similar results. The 

ROI approach increased accuracy in classification between lvPPA and nfvPPA in 

comparison with the whole brain approach, which might be related to the diffusivity 

and similar strength (in the sense of t-values) in these PPA syndromes requiring 

higher regional specificity for the analysis. Given that the accuracies for SVM 

classification using the ROI approach were still quite high despite the relatively small 

size of the chosen ROIs as compared to the regions that were taken into account in 

the whole brain SVM classification of the respective patients, future studies shall 

further explore the potential of the ROI approach using different ROIs for SVM 

classification of PPAs. 
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4 General Discussion 

In the revised diagnostic criteria for PPA (Gorno-Tempini et al., 2011), more 

importance is attributed to the assessment of imaging scans as has been the case in 

the previous consensus diagnostic criteria for PPA (Neary et al., 1998). The current 

imaging criteria have been proposed based on a qualitative evaluation of the 

literature in this field. Here, we provided a quantitative evaluation of the currently 

available MRI and PET studies in order to statistically validate the proposed 

diagnostic imaging criteria using ALE meta-analyses. Thereafter, we investigated the 

diagnostic value of MRI scans for early individual diagnosis of PPA in clinical routine 

using support vector machine classification and explored whether focusing 

exclusively on prototypical networks for the single PPA variants would ameliorate the 

diagnostic value of MRI scans. In the following, we are not going to discuss in detail 

the results of the two studies presented on the previous pages as this has already 

been done extensively in section 2.3 and section 2.4, but rather discuss the 

usefulness of these findings for clinicians within a broader framework. 

4.1 Evaluation of the validity of the current diagnostic criteria for 

primary progressive aphasia 

To a great extent, the results of our separate meta-analyses on nfvPPA, svPPA, and 

lvPPA studies validated the revised diagnostic imaging criteria. Interestingly, the 

results of our meta-analyses across MRI studies even extended the proposed 

imaging criteria by showing additional atrophy in the anterior medial temporal lobe 

(right amygdala and bilaterally hippocampus/parahippocampal gyri) for svPPA and in 

the middle temporal gyrus, superior temporal gyrus, putamen, and precentral gyrus 

for nfvPPA. Furthermore, the results of our meta-analysis on lvPPA showed that the 

angular gyrus might not be as consistently atrophied in these patients as has been 

assumed so far, while the dorsal posterior cingulate gyrus and superior/middle 

temporal gyrus most probably constitute additional diagnostic imaging marker for 

lvPPA. We suggest that these findings should be considered in future revisions of the 

diagnostic criteria for PPA. 
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Another highly interesting finding resulted from the comparison between the results 

of both meta-analyses (one across MRI and one across PET studies) on svPPA. This 

comparison showed that it might be useful, at least for this PPA variant, to define 

separate diagnostic imaging criteria for FDG-PET and MRI scans. Future studies will 

show whether separate imaging criteria for FDG-PET and MRI should be applied 

similarly to nfvPPA and lvPPA. Separate imaging modality-specific diagnostic criteria 

have also already been proposed for other types of dementia (Dubois et al., 2007; 

Schroeter et al., 2014; Schroeter et al., 2008). We suggest that future revisions of the 

diagnostic criteria for PPA should include the current knowledge about separate 

imaging markers for FDG-PET and MRI scans. 

While we evaluated and validated the revised diagnostic imaging criteria, other 

authors evaluated the revised diagnostic clinical criteria for PPA (Harris et al., 2013; 

Mesulam, Wieneke, Thompson, Rogalski, & Weintraub, 2012; Sajjadi, Patterson, 

Arnold, Watson, & Nestor, 2012; Wicklund et al., 2014). In a prospective data-driven 

study, Sajjadi et al. (2012) examined to which extent 46 consecutively recruited 

patients would be classifiable according to the revised clinical diagnostic criteria for 

PPA. Additionally, these authors investigated which linguistic impairments would 

cluster together (and thus form distinct syndromes) using principal factor analysis. In 

this patient cohort, 58.7 % of the patients could be assigned to one of the three 

variants of PPA proposed by Gorno-Tempini et al. (2011), while 41.3 % of the 

patients were classified as mixed PPA because their deficits either extended beyond 

a single PPA variant (i.e., showed also linguistic impairments expected to be spared 

in this syndrome) or they met the diagnostic criteria for more than one variant 

(whithout showing differences in disease duration). The principal factor analysis 

identified two clear syndromes corresponding to the proposed syndromes of svPPA 

and nfvPPA as well as a residual miscellany. Interestingly, impaired sentence 

repetition which has been proposed as a cardinal diagnostic feature for lvPPA 

aligned with the factor corresponding to nfvPPA (Sajjadi et al., 2012). Similarly, 

Wicklund et al. (2014) showed that 31 % of 84 PPA patients were unclassifiable 

according to the current diagnostic criteria (some fulfilled simultaneously the 

diagnostic criteria for more than one PPA variant and some fulfilled the criteria for 

lvPPA except for the core feature of impaired repetition). 
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It has been proposed that some of the problems of unclassifiable patients according 

to the diagnostic criteria of Gorno-Tempini et al. (2011) might be circumvented if 

impaired repetition would be regarded as an ancillary rather than a core feature of 

lvPPA and if the “absence of definite grammar and comprehension impairment” 

would be regarded as a core feature of lvPPA (Mesulam & Weintraub, 2014). 

Mesulam and Weintraub (2014) furthermore proposed that the recognition of a 

“mixed” PPA variant might highly decrease the number of unclassifiable cases 

because some patients already show at very early stages of the disease a 

combination of agrammatism and semantic impairment. It is thus highly probable that 

the diagnostic criteria for PPA will be revised within the next years.  

Changes in consensus diagnostic criteria can have a major impact as has for 

instance been shown for the shift from the previous consensus criteria on PPA 

proposed by Neary et al. (1998) to the current diagnostic criteria for PPA of Gorno-

Tempini et al. (2011). Chare and colleagues showed that the comparison of the 

diagnostic criteria of Neary et al. (1998) and the revised criteria of Gorno-Tempini et 

al. (2011) revealed no changes in the diagnosis of 87 % of the svPPA patients, but 

that 51 % of the nfvPPA patients were reclassified as suffering from lvPPA (Chare et 

al., 2014). These reclassifications of patients were due to several reasons (Mesulam 

& Weintraub, 2014). Altough Neary et al. (1998) did not explicitly claim to cover and 

characterize all possible variants of PPA in their diagnostic criteria, most researchers 

and clinical practicioners used these diagnostic criteria as such (Mesulam & 

Weintraub, 2014). Consequently, lvPPA was not recognized as a distinct syndrome 

and PPA patients with a pathology different from FTLD were previously implicitly 

excluded from the diagnosis of PPA. Furthermore, in the revised diagnostic criteria of 

Gorno-Tempini et al. (2011) impaired repetition is no longer one of the supportive 

criteria for nfvPPA, but is included as a core diagnostic criterium for lvPPA. Anomia, 

which has previously been part of the diagnostic features for nfvPPA (Neary et al., 

1998), is meanwhile attributed to svPPA if it is accompagnied with loss of word 

meaning and to lvPPA if it appears without loss of word meaning (Mesulam & 

Weintraub, 2014). By first diagnosing PPA according to Mesulam (2001) before 

further specifying the concrete variant of PPA, patients whose most prominent 

problem is prosopagnosia and/or an associative agnosia (and would therefore have 
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been classified as svPPA according to the criteria of Neary et al. (1998)) are now 

explicitly excluded from the diagnosis of svPPA (Mesulam & Weintraub, 2014).  

The changes from the diagnostic criteria for PPA proposed by Neary et al. (1998) to 

the current diagnostic criteria for PPA of Gorno-Tempini et al. (2011) lead to a 

relatively large number of reclassified patients (Chare et al., 2014). One might 

wonder how importantly the suggested revisions of the diagnostic criteria of Gorno-

Tempini et al. (2011) might affect the current diagnoses of PPA patients. The 

suggested revisions for future consensus diagnostic criteria concern mostly lvPPA 

(i.e., regard impaired repetition as ancillary feature and the absence of definite 

grammar and comprehension impairment as core features for lvPPA) and the 

recognition of patients showing a combination of agrammatism and semantic 

impairment as distinct “mixed” PPA variant (Mesulam & Weintraub, 2014; Mesulam et 

al., 2014). 

In the following, we will discuss possible implications of future revisions of the 

diagnostic criteria for the validity and informative value of the two imaging studies 

presented in this thesis. As svPPA and nfvPPA are not affected by the recommended 

revisions, we do not expect that future imaging results (after revision of the current 

diagnostic criteria) for svPPA and nfvPPA will differ importantly from the ones 

presented here. For lvPPA on the other hand, we expect larger study samples 

(including lvPPA with and without impaired repetition), which will enhance the 

statistical power of future studies and thus provide more solid results. Sajjadi, 

Patterson, and Nestor (2014) showed that PPA patients that were unclassifiable 

according to the diagnostic criteria of Gorno-Tempini et al. (2011) showed at group-

level atrophy similar to the currently proposed imaging criteria for lvPPA. Therefore, 

we assume that also for lvPPA, the results of future imaging studies (after revision of 

the current diagnostic criteria) will not differ drastically from the ones presented here. 

Note however, that it is not sure yet, whether the diagnostic criteria of Gorno-Tempini 

et al. (2011) will indeed be revised in near future. The assumptions regarding 

imaging results for PPA variants after the revision of the current diagnostic criteria 

are thus purely speculative and need to be substantiated by future studies. 
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4.2 How useful are the current diagnostic imaging criteria for 

clinical routine? 

In the following, we are going to discuss the usefulness of the current diagnostic 

imaging criteria (respectively their quantification via ALE meta-analysis) for clinical 

routine. The comparison of the separate meta-analyses across MRI studies (via 

conjunction and subtraction analyses) showed that the imaging criteria for the PPA 

variants are highly distinct. The conjunction analysis showed a small regional overlap 

in the posterior middle temporal gyrus between nfvPPA and lvPPA, which suggests 

that this region might play an important role in both PPA variants. Nevertheless, as 

this overlap was very small, a high clinical distinctiveness is still guaranteed. At first 

sight, studies comparing PPA patients to healthy controls at group-level thus suggest 

that these imaging markers constitute useful guidelines for clinicians to correctly 

distinguish between PPA variants in clinical routine. 

We used support vector machine classification to investigate statistically how useful 

MRI scans are actually for the individual diagnosis of PPA patients. In order to 

represent the situation in clinical routine as closely as possible, we considered scans 

assessed at initial presentation for each subjet. Our SVM results showed accuracies 

(in the whole brain approach) ranging from 55 % to 97 %. In a second step, we 

investigated whether it would be sufficient to only consider brain regions 

corresponding to the proposed diagnostic imaging criteria (respectively their 

quantification via ALE meta-analysis) or whether additional brain regions should be 

taken into account. Our results showed that for svPPA, focusing only on the 

(quantification of the) proposed diagnostic imaging criteria lead to a perfect 

discrimination (of 100 %) between patients and healthy controls. For nfvPPA and 

lvPPA on the other hand, the SVM classification showed slightly higher accuracies 

when considering the whole brain. For the discrimination between svPPA and 

nfvPPA/lvPPA, both approaches showed similar results. For the discrimination 

between lvPPA and nfvPPA, the ROI approach showed a higher accuracy than the 

whole brain approach. Given that none of the differences between both approaches 

were statistically significant, we consider both approaches as equally valid. Our 

accuracies for SVM classification considering only the (quantification of the) 
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proposed diagnostic imaging criteria were (except for the discrimination between 

lvPPA and nfvPPA) quite high despite the relatively small size of the chosen brain 

regions. These findings thus provide empirical evidence that (except for the 

differential diagnosis between lvPPA and nfvPPA) the proposed supportive imaging 

criteria constitute (not only at group-level, but) also at individual subject level useful 

guidelines for clinicians to correctly diagnose PPA variants in clinical routine. 

Besides providing a sound statistical method to evaluate the discriminative power 

(and thus the usefulness) of single features (e.g., MRI scans) for the correct 

diagnosis of patients in clinical routine, the SVM method has the practical advantage 

that its algorithm (used to classify subjects after the classifier has been trained), can 

be implemented in an imaging software. SVM is a highly sensitive method which 

takes into account early changes in atrophy that cannot easily be perceived by the 

naked eye. Providing such a software might thus ensure the best use of imaging 

scans to support the diagnosis of PPA patients in clinical routine. Before such a 

software can be put on the market, the algorithm needs however to be optimized in 

order to provide classification accuracies of approximatively 100 %. In the following, 

we are going to discuss possible ways to improve the algorithm and thereby the 

accuracy of support vector machine classification for PPA.  

One possibility to improve the accuracy of the SVM classification using MRI might 

consist in further exploring the optimal number and size of brain regions to be taken 

into account (see section 3.4.3). Regarding this our results unveiled matters of a 

rather technical nature. The SVM classification method is highly sensitive and 

therefore takes into account also very early atrophy. Supposed that several regions 

might be affected similarly in the three PPA variants depending upon the current 

stage of the respective disease (e.g., Rogalski et al., 2011) and structural MRI scans 

do not provide any information regarding the temporal dynamic pattern of brain 

atrophy, SVM classification might not always be able to perfectly discriminate 

between PPA variants. In order to address this rather technical issue, it might be 

highly interesting to investigate in future studies, whether considering disease-

specific networks including also very early atrophy and additionally weighting more 

importantly the brain regions that are rather specific for a given PPA variant as 
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compared to the other PPA variants, would increase the accuracy of SVM 

classification significantly.  

Another possibility to improve the accuracy of the SVM classification using MRI might 

consist in including further parameters like for instance additional imaging data (e.g., 

FDG-PET or diffusion tensor imaging) or language test scores (e.g., Dukart et al., 

2011; Wilson et al., 2009; Zhang et al., 2013) or constructing dynamic disease 

models based on longitudinal data. Wilson et al. (2009) showed for instance, that at 

least for the discrimination between svPPA and nfvPPA, adding linguistic variables to 

MRI data improved significantly the accuracy of the SVM classification. In this regard, 

it might be highly interesting to further investigate which standard language tests 

used in clinical routine provide the most promising results. It has for instance been 

proposed that the Repeat and Point Test (Hodges, Martinos, Woollams, Patterson, & 

Adlam, 2008) assessing single word repetition and comprehension might be 

especially useful for the discrimination between svPPA and nfvPPA. Other authors in 

contrast proposed that considering language tests assessing comprehension and 

grammaticality might discriminate best between PPA variants (Mesulam & Weintraub, 

2014; Mesulam et al., 2014). It might thus be of interest to investigate whether these 

assumptions can be empirically supported using SVM classification and to provide a 

good overview for clinicians regarding the informative value of standard language 

tests used in clinical routine. 

Note however that including further parameters like language test scores and 

additional imaging data into SVM classification for PPA is most probably rather of 

scientific interest than of practical benefit in the sense of realistically implementable 

into an imaging software for clinical purposes. This is due to the fact that different 

clinics use partly different standard tests to evaluate language impairments in their 

PPA patients. Furthermore, most clinics are rather in the possession of an MRI 

scanner than of a PET scanner, because of the great expenses of PET and 

invasiveness of the radioactive tracers (e.g., Berns, 1999). Similarly, diffusion tensor 

imaging sequences on MRI scanners are usually run for scientific purposes only and 

not included as standard sequences in clinical routine. 
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4.3 General limitations 

The main limitations of the work presented in this thesis are the relatively small 

number of studies included in the ALE meta-analyses as well as the relatively small 

number of patients included in the SVM study. Small sample sizes in this research 

field are due to the fact that PPA is an orphan disease with an estimated prevalence 

of approximately 1.1-6.0 per 100,000 in the population (Grossman, 2014). Although 

the cooperation between several clinics and research centers within national and 

international consortia has already largely alleviated this problem, the number of 

subjects recruited over a period of several years is still relatively low.  

Another reason for the relatively small sample sizes in cross-sectional studies is that 

it is advisable to include patients at a relatively early stage of the disease, because it 

has been shown in longitudinal studies that with the progression of the disease, the 

language impairments as well as the atrophic networks in the three variants of PPA 

partly converge (Gorno-Tempini et al., 2011; Rogalski et al., 2011). Furthermore, it 

has been shown that there are considerable longitudinal shifts in PPA variant 

classification while the disease progresses (Mesulam et al., 2014). This seems to 

concern especially lvPPA where seven out of 11 patients progressed over time into 

nfvPPA, svPPA, or mixed PPA (Mesulam et al., 2014). Other authors showed that 

these longitudinal shifts are not limited to the diagnosis of PPA variants, but also 

include other FTLD syndromes (Knibb & Hodges, 2005). Whereas svPPA patients 

frequently develop characteristical features of bvFTD, nfvPPA patients often show 

similarities to patients with corticobasal syndrome (Knibb & Hodges, 2005). In order 

to gain new insights into PPA, it is thus necessary to include patients at a relatively 

early or middle stage of the disease and recruit them over a longer period of time. 

4.4 General conclusion 

The aim of the two studies presented in this thesis was to evaluate the validity of the 

new diagnostic imaging criteria for PPA variants using anatomical likelihood 

estimation meta-analysis and to investigate the usefulness of these criteria for the 

individual diagnosis of PPA patients in clinical routine. To a great extent, the results 

of our separate meta-analyses on nfvPPA, svPPA, and lvPPA studies validated and 
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even extended the revised diagnostic imaging criteria. Furthermore, our results 

suggest that at least for svPPA, it might be useful to define separate diagnostic 

imaging criteria for FDG-PET and MRI scans. Our support vector machine 

classification results showed that the accuracies for SVM classification considering 

only the (quantification of the) proposed diagnostic imaging criteria were (except for 

the discrimination between lvPPA and nfvPPA) quite high despite the relatively small 

size of the chosen brain regions. Our findings thus suggest that (except for the 

differential diagnosis between lvPPA and nfvPPA) the proposed supportive imaging 

criteria constitute (not only at group-level, but) also at individual subject level useful 

guidelines to correctly diagnose PPA variants in clinical routine. 
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5.1 German summary 

Primär progrediente Aphasien (PPA) sind neurodegenerative Erkrankungen, die zu 

einer alltagsrelevanten Beeinträchtigung von Sprachfunktionen führen können. Die 

ersten Studien, die zu PPA und ihren Varianten veröffentlicht wurden, berichteten 

Ergebnisse über sehr geringe Stichprobengrößen oder aber waren Fallbeispiele. 

Dies lag daran, dass es sich bei PPA um eine seltene Erkrankung handelt, deren 

Prävalenz auf circa 1.1-6.0 pro 100.000 Personen in der Bevölkerung geschätzt wird 

(Grossman, 2014). Erst der Zusammenschluss von mehreren Studienzentren zu 

nationalen und internationalen Konsortien machte es möglich größere Stichproben 

zu erheben, welche für repräsentative inferenzstatistische Erkenntnisse unabdinglich 

sind. Weitere Ziele solcher Konsortien sind die Verbesserung der Früherkennung der 

Erkrankung, die Erhebung des Krankheitsverlaufs, das Sammeln von 

epidemiologischen Daten, das Aufdecken von möglichen Risikofaktoren, die 

Evaluation von möglichen Therapien, sowie die Etablierung von einheitlichen 

Diagnosekriterien (z.B., Otto et al., 2011; Brun et al., 1994).  
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Während zwei Jahrzehnten wurden die allgemeinen Diagnosekriterien für 

frontotemporale Demenz (Brun et al., 1994; McKhann et al., 2001) herangezogen, 

um Patienten mit PPA zu diagnostizieren. Die anschließende Spezifizierung des 

Subtyps als progressive nichtflüssige Aphasie oder semantische Demenz erfolgte 

nach den Diagnosekriterien von Neary und Kollegen (Neary et al., 1998). Es stellte 

sich jedoch mit der Zeit heraus, dass nicht alle PPA Patienten eindeutig einem der 

beiden Subtypen zugeordnet werden konnten (z.B., Gorno-Tempini et al., 2004), was 

eine Revision der Diagnosekriterien für PPA zur Folge hatte (Gorno-Tempini et al., 

2011). PPA wurde neu definiert als eine neurodegenerative Erkrankung mit 

schleichendem Beginn, welche sich in den ersten zwei Jahren hauptsächlich als 

isolierte, progrediente Sprachstörung (ohne bedeutsame Beeinträchtigung in 

anderen kognitiven Bereichen) bemerkbar macht. PPA umfasst drei Varianten: die 

semantische Variante (svPPA, früher als semantische Demenz bezeichnet), die 

nichtflüssige Variante (nfvPPA, früher als progressive nichtflüssige Aphasie 

bezeichnet), und die logopenische Variante (lvPPA). Das klinische Erscheinungsbild 

der svPPA ist hauptsächlich gekennzeichnet durch Beeinträchtigungen im Benennen 

und im Verständnis von einzelnen Wörtern, zunehmenden Verlust des Wissens um 

die Bedeutung von Wörtern, Oberflächendyslexie und Oberflächendysgraphie. Die 

Diagnose gilt als bildgebungsgestützt, wenn Patienten zusätzlich Atrophie, 

Hypometabolismus oder Hypoperfusion im anterioren Temporallappen aufzeigen. 

Die nfvPPA ist charakterisiert durch eine nichtflüssige Spontansprache mit 

Sprechanstrengung und langen Pausen, Agrammatismus, Sprechapraxie (Störung 

der Initiierung und Exekution der für das Sprechen notwendigen Bewegungsabläufe), 

sowie beeinträchtigtes Verständnis von grammatikalisch komplexen Sätzen. Diese 

Sprachstörung geht häufig mit Schädigungen in links posterioren frontoinsulären 

Gehirnregionen einher. Die lvPPA ist hauptsächlich gekennzeichnet durch 

beeinträchtigten Wortabruf in der Spontansprache und beim Benennen, sowie 

beeinträchtigtes Nachsprechen von längeren Sätzen. Die Diagnose der lvPPA gilt als 

bildgebungsgestützt, wenn die Patienten zusätzlich zu den genannten klinischen 

Symptomen ebenfalls Atrophie, Hypometabolismus oder Hypoperfusion in links 

posterioren perisylvischen oder parietalen Gehirnregionen aufzeigen. 
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In den revidierten Diagnosekriterien für PPA wird den Ergebnissen aus 

Bildgebungsverfahren ein größerer Wert beigemessen, als es in den vorherigen 

Diagnosekriterien der Fall war (Gorno-Tempini et al., 2011 vs. Neary et al., 1998). 

Die neuen bildgebenden Diagnosekriterien wurden jedoch auf Grund einer rein 

qualitativen Evaluation der Literatur vorgeschlagen. Ziel der beiden im Folgenden 

dargestellten Studien war es, die Validität der neuen bildgebenden Diagnosekriterien 

für PPA zu evaluieren (erste Studie) und ihren praktischen Nutzen für die individuelle 

Diagnosestellung von PPA-Patienten im klinischen Alltag zu untersuchen (zweite 

Studie). 

Die erste Studie befasste sich mit der inferenzstatistischen (quantitativen) 

Evaluierung der Validität der neuen bildgebenden Diagnosekriterien für PPA. Zu 

diesem Zweck wurden Metaanalysen über alle verfügbaren MRT und PET Studien 

durchgeführt (Kapitel 2). Ziel war es die in den einzelnen PPA-Varianten konsistent 

(über mehrere Studien hinweg) betroffenen Gehirnregionen auszumachen und mit 

Hilfe von Subtraktions- und Konjunktionsanalysen herauszufinden, wie 

subtypspezifisch oder überlappend diese Regionen zwischen den einzelnen 

Varianten sind. Ein weiteres Ziel bestand darin zu untersuchen, ob die 

vorgeschlagenen bildgebenden Diagnosekriterien gleichermaßen für alle 

Bildgebungsverfahren gelten, oder ob unterschiedliche Diagnosekriterien für MRT 

und PET angewendet werden sollten, wie es bereits für andere Demenzen 

vorgeschlagen wurde (Dubois et al., 2007; Schroeter et al., 2014). Unsere 

systematische Literaturrecherche ergab 22 Studien (15 MRT, sechs FDG-PET, eine 

MRT & FDG-PET) für svPPA, 14 Studien (11 MRT, drei FDG-PET) für nfvPPA, und 

sechs Studien (sechs MRT, null FDG-PET) für lvPPA. Die Ergebnisse unserer 

Metaanalysen bestätigten größtenteils die vorgeschlagenen bildgebenden 

Diagnosekriterien (p < 0.05, False Discovery Rate korrigiert). Interessanterweise 

zeigten unsere Metaanalysen über MRT-Studien zusätzliche bedeutsame 

Gehirnareale für die einzelnen PPA-Varianten auf. So fanden wir zusätzliche 

Atrophie im anterioren medialen Temporallappen (rechte Amygdala und beidseitig 

Hippocampus) für svPPA sowie im mittleren und superioren Gyrus temporalis, 

Putamen und Gyrus praecentralis für nfvPPA. Des Weiteren zeigten unsere 

Ergebnisse zu lvPPA, dass der Gyrus angularis nicht so konsistent in dieser Variante 
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betroffen ist, wie bislang angenommen wurde, während der dorsale posteriore Gyrus 

cinguli sowie der mittlere und superiore Gyrus temporalis möglicherweise weitere 

bildgebende Marker für lvPPA darstellen. Die Ergebnisse der Subtraktions- und 

Konjunktionsanalysen zeigten, dass (bis auf eine kleine regionale Überlappung 

zwischen nfvPPA und lvPPA im posterioren mittleren Gyrus temporalis), die 

betroffenen Regionen in hohem Maße spezifisch für die einzelnen Varianten sind. 

Der Vergleich zwischen beiden Metaanalysen zu svPPA (eine über MRT- und eine 

über PET-Studien) zeigte nur sehr kleine Überlappungen im inferioren und mittleren 

Gyrus temporalis auf. Diese Ergebnisse legen nahe, dass für svPPA, ähnlich wie für 

andere Demenzen (z.B., Dubois et al., 2007), separate bildgebende 

Diagnosekriterien für PET und MRT von Nutzen sein könnten. Zukünftige Studien 

werden zeigen, ob dies ebenfalls für nfvPPA und lvPPA zutrifft. 

Die vorgeschlagenen bildgebenden Diagnosekriterien für PPA scheinen folglich 

(zumindest für die Beurteilung von MRT-Scans) nützliche Richtlinien für Kliniker 

darzustellen. Es besteht jedoch genereller Konsens, dass Studienergebnisse, die auf 

Gruppenvergleichen basieren, nicht unbedingt zur Evaluierung einzelner individueller 

MRT-Scans herangezogen werden können, weil die Sensitivität und Spezifizität von 

Gruppenvergleichen nicht ausreichend sind, um anfängliche Atrophie zu erfassen. 

In der zweiten Studie wollten wir mittels Support Vektor Maschinen (SVM)-

Klassifikation statistisch untersuchen, wie nützlich MRT-Scans allgemein für die 

Diagnosestellung von PPA-Patienten im klinischen Alltag sind (Kapitel 3). Des 

Weiteren wollten wir gezielter untersuchen, ob hierbei die ausschließliche 

Fokussierung auf die vorgeschlagenen bildgebenden Diagnosekriterien (bzw. deren 

Quantifizierung mittels Metaanalysen, welche in der ersten Studie berichtet wurde) 

den diagnostischen Wert von MRT-Scans verbessern würde. Wir verglichen hier 44 

rechtshändige PPA Patienten (16 nfvPPA, 17 svPPA und 11 lvPPA) mit 20 

rechtshändigen gesunden älteren Kontrollen, welche für Stichprobengröße, Alter, 

Geschlecht und Scanning-Parameter gematcht waren. Alle Probanden wurden im 

Rahmen des Deutschen und Italienischen Konsortiums für Frontotemporale 

Lobärdegeneration erhoben (Otto et al., 2011). Die verglichenen Gruppen 

unterschieden sich nicht signifikant in Alter, Geschlecht, Bildungsstand, oder 

Krankheitsdauer. Die Vorhersagegenauigkeit für die Analysen, die das gesamte 
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Gehirn umfassten, variierten für die SVM-Klassifikationen zwischen PPA-Patienten 

und Kontrollen von 91 % für nfvPPA über 95 % für lvPPA zu 97 % für svPPA. Die 

SVM Klassifikation zeigte eine Genauigkeit von 78 % für svPPA versus nfvPPA und 

eine Genauigkeit von 95 % für lvPPA versus svPPA. Für die Unterscheidung 

zwischen lvPPA und nfvPPA zeigte die SVM Klassifikation eine Genauigkeit von 

55 %. Diese Zahlen sind im Einklang mit SVM Studien zu anderen 

neurodegenerativen Erkrankungen (z.B. Alzheimer-Krankheit oder leicht kognitive 

Einschränkung; Davatzikos, Resnick, et al., 2008; Dukart et al., 2011). Um 

herauszufinden ob die Gehirnregionen, die am meisten zur SVM-Klassifikation 

zwischen Patienten und Kontrollen beitragen, den Gehirnregionen entsprechen, die 

am meisten in diesen Patientengruppen atrophisch sind, haben wir zusätzlich 

statistische Gruppenvergleiche zwischen Patienten und gesunden Kontrollen 

gerechnet. Unsere Ergebnisse zeigten, dass die Regionen, die am meisten zur SVM-

Klassifikation zwischen Patienten und Kontrollen beitrugen, in der Tat größtenteils 

den Regionen entsprachen, die in den entsprechenden Patientengruppen atrophisch 

waren. Die ausschließliche Fokussierung auf die (Quantifizierung mittels 

Metaanalysen der) bildgebenden Diagnosekriterien zeigte für svPPA eine höhere 

Vorhersagegenauigkeit auf (100 %) als wenn das gesamte Gehirn berücksichtigt 

wurde (97 %). Die Vorhersagegenauigkeiten für nfvPPA (84 %) und lvPPA (82 %) 

hingegen waren leicht geringer, wenn ausschließlich die bildgebenden 

Diagnosekriterien in Betracht gezogen wurde. Für die Klassifikation zwischen svPPA 

und nfvPPA bzw. lvPPA war die Vorhersagegenauigkeit bei beiden Methoden gleich 

(78 % bzw. 95 %). Für die Klassifikation zwischen lvPPA und nfvPPA war die 

Vorhersagegenauigkeit leicht höher (64 %), wenn ausschließlich auf die 

bildgebenden Diagnosekriterien fokussiert wurde. Zusammengefasst waren die 

Vorhersagegenauigkeiten der SVM-Klassifikationen, wo ausschließlich die 

(Quantifizierung der) bildgebenden Diagnosekriterien berücksichtigt wurde, trotz der 

geringen Größe der betrachteten Regionen, (außer für die Unterscheidung zwischen 

lvPPA und nfvPPA) recht hoch. Unsere Ergebnisse untermauern den praktischen 

Nutzen der vorgeschlagenen bildgebenden Diagnosekriterien für die Beurteilung von 

MRT-Scans zur Diagnosestellung von PPA-Patienten im klinischen Alltag (mit 

Ausnahme für die Differentialdiagnose zwischen lvPPA und nfvPPA). 



 5.Summary 

72 

 

5.2 English summary 

Primary progressive aphasias (PPA) are neurodegenerative diseases that lead to 

profound impairments in language functions. For almost a decade, most studies on 

PPA and its variants were either case reports or single-center studies reporting very 

small sample sizes. Until now, there are no community-based prevalence estimates 

for PPA available, but based on autopsy-proven cases, the prevalence for PPA is 

estimated at approximately 1.1-6.0 per 100,000 in the population (Grossman, 2014). 

PPA is thus an orphan disease. Only the cooperation between several study centers 

within national and international consortia in recent years made it possible to gather 

sufficiently large sample sizes making deductive statistical research in this field 

possible. Further aims of these consortia are to improve disease recognition along 

with its management, evaluate disease progression, collect data on epidemiology, 

find risk factors and early disease markers, evaluate possible therapeutic approaches 

as well as to discuss and establish standard diagnostic criteria (e.g., Otto et al., 2011; 

Brun et al., 1994). 

For two decades, researchers and clinicians have been using the diagnostic criteria 

for frontotemporal dementia (Brun et al., 1994; McKhann et al., 2001) to generally 

diagnose a patient as suffering from PPA and the criteria of Neary et al. (1998) to 

further specify the diagnosis as progressive nonfluent aphasia or semantic dementia. 

However, there were a number of PPA cases that could not be classified according 

to the criteria of Neary and colleagues (Gorno-Tempini et al., 2004; Grossman & Ash, 

2004; Neary et al., 1998), which led to a revision of the diagnostic criteria for PPA 

(Gorno-Tempini et al., 2011). PPA has been redefined as a neurodegenerative 

disease with insidious onset mainly characterized by a language dysfunction that 

remains isolated for at least two years without significant impairment in other 

cognitive domains. PPA subsumes three gradually progressive language disorders, 

namely the semantic variant PPA (svPPA, formerly also known as semantic 

dementia), nonfluent variant PPA (nfvPPA, formerly also known as progressive 

nonfluent aphasia), and the logopenic variant PPA (lvPPA). SvPPA is clinically 

mainly characterized by impairments in confrontation naming, single-word 

comprehension, and object-knowledge, as well as surface dyslexia or dysgraphia. 
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The imaging supported diagnosis of svPPA is given when patients additionally show 

atrophy and/or hypoperfusion/-metabolism in the anterior (ventral and lateral) 

temporal lobe. Patients suffering from nfvPPA show predominantly agrammatism, 

effortful halting speech with inconsistent speech sound errors and distortions (apraxia 

of speech), as well as impaired comprehension of syntactically complex sentences. 

These language deteriorations are often conjoined with atrophy or hypoperfusion/-

metabolism in left posterior fronto-insular regions (e.g., inferior frontal gyrus, insula, 

premotor, and supplementary motor areas). LvPPA is characterized by impaired 

single-word retrieval in spontaneous speech and naming as well as impaired 

repetition of sentences. The imaging supported diagnosis of lvPPA is given when 

patients additionally show atrophy and/or hypoperfusion/-metabolism in left posterior 

perisylvian or parietal areas (e.g., posterior parietal, supramarginal, and angular gyri). 

In the revised diagnostic criteria for PPA, more importance is attributed to the 

diagnostic assessment of imaging scans as has been the case in previous diagnostic 

criteria (Neary et al., 1998). The diagnostic imaging criteria were however proposed 

based on a qualitative evaluation of the literature and have not been validated so far. 

The aim of the two studies presented in this thesis was to evaluate the validity of the 

new diagnostic imaging criteria for PPA (first study) and to investigate the usefulness 

of the diagnostic imaging criteria for the individual diagnosis of PPA patients in 

clinical routine (second study).  

The aim of the first study was to validate the proposed diagnostic imaging criteria for 

PPA at a deductive statistical level. Therefore, we quantitatively evaluated all 

currently available PET and MRI studies using anatomical likelihood estimate meta-

analyses (chapter two). Our objective was to identify the neural networks affected in 

the three PPA variants and examine their regional specificity in subtraction and 

conjunction analyses identifying specific and overlapping networks, respectively. A 

further objective was to investigate whether the proposed imaging criteria would 

apply similarly to PET and MRI scans or whether separate, imaging modality-specific 

imaging criteria should be applied for PPA as has been suggested for other types of 

dementia (Dubois et al., 2007; Schroeter et al., 2014). Our systematic literature 

search yielded 22 studies (15 MRI, six FDG-PET, one MRI & FDG-PET) for svPPA, 

14 studies (11 MRI, three FDG-PET) for nfvPPA, and six studies (six MRI, zero FDG-
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PET) for lvPPA. Analyses were conducted using a false discovery rate corrected 

threshold of p < 0.05. To a great extent, the results of our separate meta-analyses on 

nfvPPA, svPPA, and lvPPA studies validated the revised diagnostic imaging criteria. 

Interestingly, our meta-analytic results across MRI studies even extended the 

proposed imaging criteria by showing additional atrophy in the anterior medial 

temporal lobe (right amygdala and bilaterally hippocampus/parahippocampal gyri) for 

svPPA and in the middle temporal gyrus, superior temporal gyrus, putamen, and 

precentral gyrus for nfvPPA. Furthermore, the results of our meta-analysis on lvPPA 

showed that the angular gyrus might not be as consistently atrophied in these 

patients as has been assumed so far, while the dorsal posterior cingulate gyrus and 

superior/middle temporal gyrus most probably constitute additional diagnostic 

imaging markers for lvPPA. The conjunction and subtraction analyses between the 

separate meta-analyses on PPA variants across MRI studies showed that except for 

a very small regional overlap in the posterior middle temporal gyrus between nfvPPA 

and lvPPA, the neural networks affected in the three PPA variants were highly 

distinct. The comparison between the results of both meta-analyses (one across MRI 

and one across PET studies) on svPPA showed only small conjunctions in inferior 

and middle temporal gyrus, which suggest that it might be useful to define separate 

diagnostic imaging criteria for FDG-PET and MRI. Future studies will show whether 

separate imaging modality-specific criteria apply similarly to nfvPPA and lvPPA. 

At first sight, these results thus suggest that the current imaging criteria indeed 

constitute useful supportive guidelines for clinicians to correctly distinguish between 

PPA variants in clinical routine. There is however a general consensus that the 

results of group-level statistics might not be applicable to individual scans, because 

their sensitivity and specificity at early stages of brain pathology is insufficient for the 

prediction of the status of individual scans (Davatzikos, Resnick, et al., 2008; Fan et 

al., 2008; Wilson et al., 2009).  

In the second study presented in this thesis, we therefore aimed at investigating 

statistically how useful MRI scans are for the individual diagnosis of PPA patients 

using support vector machine (SVM) classification. Furthermore, we raised the 

question whether focusing exclusively on the diagnostic imaging criteria (respectively 

their quantification via anatomical likelihood estimate meta-analyses presented in the 
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first study) would improve the diagnostic value of MRI scans for the individual 

diagnosis. We compared 44 right-handed patients suffering from a variant of PPA (16 

nfvPPA, 17 svPPA, and 11 lvPPA) with 20 right-handed healthy controls that were 

matched as closely as possible for sample size, age, gender, and scanning 

parameters. All data were acquired within the German and Italian Consortium for 

FTLD (Otto et al., 2011). No pair of groups differed significantly in age, gender, 

education, or disease duration (if applicable). Accuracies for the whole brain 

approach in SVM classification between patients and healthy controls ranged from 

91 % for nfvPPA over 95 % for lvPPA to 97 % for svPPA. The SVM classification of 

svPPA vs. nfvPPA showed an accuracy of 78 %. The SVM classification for lvPPA 

vs. svPPA showed an accuracy of 95 % and the SVM classification for lvPPA vs. 

nfvPPA showed an accuracy of 55 %. These numbers are in line with previously 

reported accuracies ranging from 58-100 % in studies on neurodegenerative 

diseases as Alzheimer’s disease and mild cognitive impairment (e.g., Davatzikos, 

Resnick, et al., 2008; Dukart et al., 2011; Klöppel, Stonnington, Barnes, et al., 2008). 

In order to reveal whether the regions that contributed the most to the whole brain 

SVM classification of the three variants of PPA corresponded to the regions that were 

especially atrophied in the respective variants, we additionally conducted statistical 

group-level comparisons between patients and healthy controls. Brain regions that 

were most consistently atrophied in svPPA and lvPPA indeed also contributed the 

most to the SVM classification of these patients. For nfvPPA, on the other hand, 

brain regions that contributed the most to the SVM classification as patients were not 

constrained to the regions that were atrophied in our nfvPPA patients, but also 

encompassed very similar regions in the contralateral hemisphere. A possible 

explanation for the importance of the additional brain regions in the right hemisphere 

might be that they were affected to a lesser extent (and thus not significant in the 

group-level comparison) and that SVM classification as a more sensitive method 

already took into account early atrophy in these regions. For the discrimination 

between svPPA and nfvPPA, the regions that contributed to the SVM classification 

as svPPA patients corresponded to the regions that were most consistently atrophied 

in these patients, while the regions that contributed to the classification as nfvPPA 

were rather spread. Our results showed that for svPPA, focusing only on the 
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(quantification using anatomical likelihood estimate meta-analyses of the) diagnostic 

imaging criteria for PPA showed a higher accuracy (100 %) than the whole brain 

approach (94 %). The accuracy for nfvPPA (84 %) and lvPPA (82 %) was slightly 

lower when focusing only on the (quantification of the) diagnostic imaging criteria as 

compared to the whole brain approach. For svPPA versus nfvPPA (78 %) as well as 

for svPPA versus lvPPA patients (95 %), the accuracy remained unchanged. For 

lvPPA versus nfvPPA, the accuracy was slightly higher when focusing only on the 

(quantification of the) diagnostic imaging criteria (64 %). All in all, the accuracies for 

SVM classification considering only the (quantification of the) proposed diagnostic 

imaging criteria were (except for the discrimination between lvPPA and nfvPPA) quite 

high despite the relatively small size of the chosen brain regions. These findings 

suggest that (except for the differential diagnosis between lvPPA and nfvPPA) the 

diagnostic imaging criteria constitute (not only at group-level, but) also at individual 

level useful guidelines for clinicians to correctly diagnose PPA variants in clinical 

routine. 
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7 Appendix  

7.1 Supplementary material  

7.1.A Supplementary material for “Validating New Diagnostic Imaging Criteria 

for Primary Progressive Aphasia via ALE Meta-analyses” 

Supplementary Table A.1 

Overview of the studies included in the separate meta-analyses on semantic variant PPA, nonfluent 
variant PPA, and logopenic variant PPA 

Study 
 

    N Diagnostic criteria      Age          Disease duration    MMSE    

SvPPA MRI      

Adlam et al. (2006) 7 svPPA Gorno-Tempini et al. 
(2004) 

62.8 (57-72) n.a. 26.0 (23-29) 

 12 HC  65.0 (55-75)  28.8 (27-30) 

Agosta et al. (2012) 7 svPPA 
27 HC 

Gorno-Tempini et al. 
(2011) 

71.5 ± 6.5 5.6 ± 1.5 20.4 ± 8.6 

  68.9 ± 5.9   

Boxer et al. (2003) 11 svPPA Neary et al. (1998) 66.2 ± 9.8 n.a. 21.7 ± 7.1 

 15 HC  65.1 ± 8.3  29.5 ± 0.5 

Brambati et al. (2009) 13 svPPA Neary et al. (1998) 62.0 ± 6.3 3.2 ± 1.1 22.0 ± 6.9 

 6 svPPA  63.1 ± 6.3 5.7 ± 3.7 27.0 ± 2.6 

 25 HC  64.8 ± 6.9  29.6 ± 0.8 

Desgranges et al.  10 svPPA Neary et al. (1998) 65.7 ± 8.6 3.3 ± 2.5 24.2 ± 3.08 

(2007) 17 HC  65.8 ± 7.4  n.a. 

Gorno-Tempini et al.  10 svPPA Neary et al. (1998) 63.0 ± 5.8 4.0 ± 1.2 23.1 ± 6.5 

(2004) 64 HC Gorno-Tempini et al. 
(2004) 

68.2 (56-81)  n.a. 

Grossman et al. 
(2004) 

8 svPPA McKhann et al. (2001) 65.5 ± 13 3.46 ±  3.27 23.8 ± 4.6 

 12 HC Neary et al. (1998) 68.5 ± 9.4  n.a. 

  The L&MG (1994)    

Halpern et al. (2004) 3 svPPA McKhann et al. (2001) 67.73 ± 8.75 4.72 ± 1.73 22.87 ± 3.72 

 12 HC Neary et al. (1998) matched   

  The L&MG (1994)    

      

Josephs et al. (2008) 15 svPPA Neary et al. (1998) 64 (54-74) 3.7´(0.7-0.5) 21 (9-28) 

 12 svPPA  64 (49-77) 3.4 (1.2-5.4) 26 (18-29) 

 27 HC  64 (53-75)  29 (27-30) 

Josephs et al. (2009) 8 svPPA Neary et al. (1998) 68 (56-73) n.a. 26 (20-27) 

 30 HC  matched   

Mummery et al. 
(2000) 

6 svPPA Neary et al. (1998) 60.5 (58-65) n.a. n.a. 

 14 HC  62 (60–65)   

Noppeney et al. 
(2007) 

6 svPPA The L&MG (1994) 61.17 (59-
66) 

n.a. 21.83 

 60 HC     
 

Pereira et al. (2009) 8 svPPA Neary et al. (1998) 62.9 ± 6.40 5.0 ± 2.52 21.0 ± 5.86 

 25 HC  63.8 ± 7.20  29.3 ± 0.84 
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Schwindt et al. (2011) 9 svPPA Neary et al. (1998) 67.6 ±7.6 6.4 ± 2.7 19.9 ± 8.4 

 16 HC Gorno-Tempini et al. 
(2011) 

   

Wilson et al. (2009) 5 svPPA Neary et al. (1998) 61.4 ± 4.8 5.9 ± 1.7 24.2 ± 4.8 

 48 HC  61.5 ± 10.3  n.a. 

Wilson et al. (2010) 25 svPPA Neary et al. (1998) 66.7 ± 6 8.9 ± 3.1 22 ± 6.2 

 10 HC  68.5 ± 5.9  29.5 ± 0.5 

      

SvPPA PET      

Desgranges et al.  10 svPPA Neary et al. (1998) 65.7 ± 8.6 3.3 ± 2.5 24.2 ± 3.08 

(2007) 17 HC  65.8 ± 7.4  n.a. 

Diehl et al. (2004) 9 svPPA The L&MG (1994) 62.1 ± 3.6 4 ± 4.05 25.00 ± 3.55 

 15 HC  61.8 ± 9.1  n.a. 

Diehl-Schmid et al.  8 svPPA Neary et al. (1998) 62.8 ± 3.8 4.38 ± 3.34 25.1 ± 4.8 

(2006) 15 HC  61.8 ± 9.1 4.4 ± 3.1 n.a. 

Drzezga et al. (2008) 8 svPPA Neary et al. (1998) 66.4± 4.9 n.a. 19.9 + 6.7 

 26 HC  65.4 ± 10.5  n.a. 

Nestor et al. (2006) 9 svPPA Neary et al. (1998) 63.4 ± 7.0 3.6 ± 2.1 25.8 ± 3.3 

 14 HC  61.4 ± 6.9  29.8 ± 0.4 

Raczka et al. (2010) 7 svPPA The L&MG (1994) 64.6 ± 3.0 n.a. 20.0 ± 10.0 

 9 HC Neary et al. (1998) 59.3 ± 8.0  n.a. 

Suh et al. (2010) 6 svPPA Neary et al. (1998) 65.0 ± 9.6 n.a. 21.7 ± 3.7 

 13 HC  71.5 ± 2.0  n.a. 

      

      

      

NfvPPA MRI      
Agosta et al. (2011) 9 nfvPPA Gorno-Tempini et al. 

(2011) 
67.7 ± 5.1 2.0 ± 1.0 20.0 ± 7.0 

Gorno-Tempini et al.  11 nfvPPA Neary et al. (1998) 67.9 ± 8.1 4.4 ± 2.5 26.0 ± 3.4 

(2004) 64 HC Gorno-Tempini et al. 
(2004) 

68.2 (56-81)   

Gorno-Tempini et al.  6 nfvPPA Gorno-Tempini et al. 
(2004) 

69.2 ± 8.2 4.5 ± 2.1 26.8 ± 1.3 

(2006) 5 nfvPPA  62.4 ± 9.5 4.3 ± 2.1 29.2 ± 0.8 

 40 HC  65.1   

Grossman et al. 
(2004) 

7 nfvPPA McKhann et al. (2001) 68.9 ± 11.4 3.25 ± 1.88 21.9 ± 7.1 

 12 HC Neary et al. (1998) 68.5 ± 9.4   

  The L&MG (1994)    

Hu et al. (2010) 11 nfvPPA Neary et al. (1998) 65.16 ± 0.45 3.11.± 1.66 22.58 ± 

 24 HC McKhann et al. (2001) 65.2 ±8.6  5.78 

  Gorno-Tempini et al. 
(2008) 

   

Josephs et al. (2006) 3 nfvPPA Neary et al. (1998) 63.3 ± 7.1 5.7 ± 1.2 n.a. 

 12 HC  matched   

Nestor et al. (2003) 7 nfvPPA Neary et al. (1998) 68.8 ± 7.8 3.4 ± 1.4 22.1 ± 7.0 

 10 HC  65.9 ± 6.1  29.8 ± 0.4 

Pereira et al. (2009) 3 nfvPPA Neary et al. (1998) 68.33 ± 9.02 3.3 ± 2.52 17.7 ± 4.51 

 25 HC  63.8 ± 7.20  29.3 ± 0.84 

Schwindt et al. (2011) 9 nfvPPA 
16 HC 

Neary et al. (1998) 65.2 ±10.8 
70.1 ± 8.7 

4.1 ± 2.0 20.0 ± 10.1 

 Gorno-Tempini et al. 
(2011) 

  

Wilson et al. (2010) 14 nfvPPA Gorno-Tempini et al. 
(2011) 

67.8 ± 8.1 6.3 ± 1.9 25.9 ± 4.1 

 10 HC  68.5 ± 5.9  29.5 ± 0.5 

Zahn et al. (2005) 5 nfvPPA 
10 HC 

Neary et al. (1998) 65.0 ± 7.4 
65.8 ± 7.8 

n.a. 23.0 ± 5.3 
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NfvPPA PET      

Nestor et al. (2003)   7 nfvPPA Neary et al. (1998) 68.8 ± 7.8 3.4 ± 1.4 22.1 ± 7.0 

 10 HC  65.9 ± 6.1  29.8 ± 0.4 
Perneczky et al. 
(2007) 

11 nfvPPA 
16 HC 

Neary et al. (1998) 69.91 ± 8.10 
67.88 ± 9.99 

3.20 ± 2.04 18.91 ± .76 
30.00 ± 0.00 

Zahn et al. (2005)   5 nfvPPA Neary et al. (1998) 65.0 ± 7.4 n.a 23.0 ± 5.3 

 12 HC  48.0 ± 16.0  n.a. 

      

LvPPA MRI      

Agosta et al. (2011)   4 lvPPA 
27 HC 

Gorno-Tempini et al. 
(2011) 

66.8 ± 6.4 
68.9 ± 5.9 

2.5 ± 0.7 19.5 ± 5.2 

  

Gorno-Tempini et al.  10 lvPPA Neary et al. (1998) 72.0 ± 8.5 4.5 ± 0.8 22.2 ± 4.6 

(2004) 64 HC Gorno-Tempini et al. 
(2004) 

68.2(56–81)   

Gorno-Tempini et al.  
(2008) 

  4 lvPPA 
40 HC 

Gorno-Tempini et al. 
(2004) 

58.75 ± 2.9 
matched 

3 ± 0 21.5 ± 2.87 

   

Hu et al. (2010) 12 lvPPA Neary et al. (1998) 62.74 ± 8.36 3.05 ± 1.9 22.28 ± 7.73 

 24 HC McKhann et al. (2001) 65.2 ±8.6   

  Gorno-Tempini et al. 
(2008) 

   

Migliaccio et al. 
(2009) 

10 lvPPA 
65 HC 

Gorno-Tempini et al. 
(2004) 

63.5 ± 7.2 
60.7 ± 10.1 

3.3 ± 2.1 20.5 ± 4.4 
28 ± 1.5 

   

Wilson et al. (2010) 11 lvPPA 
10 HC 

Gorno-Tempini et al. 
(2011) 

63.5 ± 7.3 
68.5 ± 5.9 

6 ± 2.8 22.3 ± 6.2 
29.5 ± 0.5 

   

Note. HC healthy controls, lvPPA logopenic variant PPA, L&MG Lund and Manchester groups, MMSE 
Mini-Mental State Examination, MRI magnetic resonance imaging, nfvPPA nonfluent variant PPA, n.a. 
not available, N number of subjects, PET positron emission tomography, svPPA semantic variant 
PPA. Age (years), disease duration (years), and MMSE are indicated either as mean (range) or mean 
± standard deviation as reported in the respective single studies. The diagnostic criteria were taken as 
they were from the original studies.  
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Supplementary Table A.2 

Results of the subtraction analyses between meta-analyses on semantic variant PPA (magnetic 
resonance imaging studies versus positron emission tomography studies) and between meta-analyses 
on different variants of primary progressive aphasia (magnetic resonance imaging studies) 

Note. ALE anatomical likelihood estimation, BAs Brodmann areas, FDG-PET fluorodeoxyglucose 
positron emission tomography, Lat. lateralization, L left, lvPPA logopenic variant PPA, MNI Montreal 
Neurological Institute, MRI magnetic resonance imaging, nfvPPA nonfluent variant PPA, R right, 
svPPA semantic variant PPA.  

 

 

Region Lat. BAs 
    MNI 

coordinates 
    x        y      z 

Volume 
     (mm3) 

ALE-
value 

SvPPA MRI > PET         
Inferior, middle, & superior 
temporal gyri/fusiform gyrus/ 

R 28/34/38  27 -0 -21 6592 3.2389 

hippocampus/parahippocampal 
gyrus/amygdala 

        

Hippocampus/parahippocampal 
gyrus/amygdala 

L 28/34  -26 -4 -20 3504 2.9478 

         

SvPPA PET > MRI         
Thalamus L   -7 -18 15 280 1.8807 
Inferior temporal gyrus /fusiform 
gyrus 

L 20  -48 -22 -32 240 2.2903 

         

SvPPA > nfvPPA & lvPPA         
Inferior, middle, & superior 
temporal gyri/fusiform gyrus/ 
hippocampus/parahippocampal 
gyrus/amygdala 

R 28/34/38/  27 -1 -1 8952 3.7190 

Inferior temporal 
gyrus/hippocampus/parahippoca
mpal gyrus 

L 20/28  -28 -4 -7 5304 3.7190 

Fusiform & parahippocampal gyri L 20/36  -38 -30 -22 1432 3.1559 
Superior temporal gyrus L 38  -44 15 -3 912 1.9881 
Inferior temporal gyrus L 21/38  -42 -2 -44 664 2.5366 
Middle temporal gyrus R 21  48 10 -44 472 2.9112 
Superior temporal gyrus L 38  -36 14 -42 248 2.1200 
         

NfvPPA > svPPA & lvPPA         
Insula/inferior frontal gyrus L 6  -42 22 2 944 3.2388 
Middle frontal gyrus  L 13/44  -35 42 21 448 2.2903 
Superior frontal gyrus L   -21 -7 62 448 2.9478 
Insula L 13  -40 4 49 424 1.8694 
Putamen L 10  -24 10 -4 416 2.8208 
Insula L 9  -52 14 18 368 1.9172 
         

LvPPA > svPPA & nfvPPA         
Middle & superior temporal gyri L 13/21/22  -55 -39 9 3352 3.7190 
Supramarginal gyrus L 39/40  -55 -52 33 2184 3.5401 
Temporal gyrus L 21/22  -65 -22 1 1192 3.7190 
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Supplementary Figure A: PRISMA 2009 Flow Diagram of the study selection for the meta-analyses on 
primary progressive aphasia 

Records identified through database 
searching 
(n = 658) 

Additional records identified through 
other sources 

(n = 0) 

Records after duplicates removed 
(n = 658) 

 

Records screened based 
on title and abstract 

(n = 180) 

Full-text articles excluded 
(n = 150) 

 

42 reviews/case reports 

31 no whole brain 
coordinates 

(region of interest, 
correlation between 
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psychological functions) 

24 no healthy controls 

41 PPA without further 
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12 other methods (fMRI, 
cortical thickness) 
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7.1.B Supplementary material for “Validating New Diagnostic Imaging Criteria 

for Primary Progressive Aphasia via ALE Meta-analyses” 

Supplementary Table B.1  
Demographic and clinical characteristics of the investigated subject groups 
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Supplementay Table B.2 

Voxel-based morphometry results for the three variants of PPA as compared to healthy controls 

Note. Lat. Lateralization, MNI Montreal Neurological Institute, PPA primary progressive aphasia. 

 

 

region Lat. MNI coordinates    p-value T-
value x y z 

Nonfluent variant PPA < healthy controls       

Inferior, middle, and superior temporal gyri/parahippocampal 
gyrus/hippocampus/amygdala/orbital 
gyri/putamen/insula/inferior frontal gyrus/angular  
gyrus/supramarginal gyrus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L -42 -16 10 < 0.0001 6.92 

 -42 -12 18  6.14 

 -18 -15 -12  
6.09 

 
  

Inferior frontal gyrus/precentral gyrus/middle frontal gyrus 
 

L -52 8 31 < 0.0001 5.86 

 -28 5 52  5.43 

 -30 -10 63  4.68 

Middle frontal gyrus/superior frontal gyrus L -26 48 21 < 0.0001 5.82 

 -6 63 12  5.80 

 -21 41 24  5.61 

Inferior frontal gyrus, pars orbitalis/insula  34 24 9 0.036 4.82 

Semantic variant PPA < healthy controls       

Inferior, middle, and superior temporal gyri/fusiform 
gyrus/parahippocampal gyrus/hippocampus/amgdala/gyrus 
rectus/orbital gyrus/insula /inferior frontal gyrus/cingulate 
gyrus/putamen/caudate nucleus/angular gyrus 

L/R -27 2 -36 < 0.0001 13.98 

 -15 3 -45  11.98 

 -44 -15 -45  11.58 

Superior frontal gyrus/cingulate gyrus L -3 15 34 0.009 4.65 

 -3 2 42  4.30 

 -3 44 19  4.30 

Logopenic variant PPA < healthy controls       

Inferior, middle, and superior temporal gyri/fusiform 
gyrus/middle occipital gyrus/gyrus rectus/orbital 
gyrus/putamen/caudate nucleus/thalamus/insula/inferior 
frontal gyrus, pars orbitalis/middle frontal gyrus/superior 
frontal gyrus/cingulate gyrus/precentral gyrus/postcentral 
gyrus/angular gyrus/precuneus/supramarginal gyrus 

L -32 26 9 < 0.0001 10.29 

 -46 -52 4  8.41 

 -30 3 52  7.72 

      

Middle and superior temporal gyri R 69 -40 9 < 0.0001 5.75 

 54 -25 -11  5.36 

 50 -27 1  5.25 

Cingulate gyrus/precuneus 
 

L -12 -54 27 0.040 6.08 

 -15 -49 42  
 
 

5.14 

Semantic variant PPA < nonfluent variant PPA 
 

      

Inferior, middle, and superior temporal gyri/fusiform 
gyrus/parahippocampal gyrus/hippocampus/amgydala/insula 

L -16 3 -44 < 0.0001 7.99 

 -33 -25 -30  7.92 

 -22 12 -32  7.22 

Inferior, middle, and superior temporal gyri/fusiform 
gyrus/parahippocampal gyrus/hippocampus/amgydala/insula 
 
 
 

R 42 -4 -29 < 0.0001 6.50 

 36 4 -32  6.16 

  45 27 -33  5.93 
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Supplementary Table B.3 

Positive and negative predictive values for the support vector machine classification results between 
the three variants of primary progressive aphasia and healthy controls as well as between PPA 

variants 
 

 Positive predictive value Negative predictive value 
nfvPPA versus healthy controls       
regions-of-interest   87 %   82 %  
whole brain  93 %   88 %  
svPPA versus healthy controls       
regions-of-interest   100 %   100 %  
whole brain  100 %   94 %  
lvPPA versus healthy controls       
regions-of-interest   82 %   82 %  
whole brain  100 %   92 %  
svPPA versus nfvPPA       
regions-of-interest   76 %   80 %  
whole brain  76 %   80 %  
lvPPA versus svPPA       
regions-of-interest   92 %   100 %  
whole brain  92 %   100 %  
lvPPA versus nfvPPA       
regions-of-interest   62 %   67 %  
whole brain     54 %    56 %  

Note. LvPPA logopenic variant PPA, nfvPPA nonfluent/agrammatic variant PPA, PPA primary 
progressive aphasia, svPPA semantic variant PPA. Positive predictive value=true positives (patients 
that were correctly classified as patients)/all subjects that were (correctly or incorrectly) classified as 
patients. Negative predictive value=true negatives (healthy controls that were correctly classified as 
healthy controls)/all subjects that were (correctly or incorrectly) classified as healthy controls. For 
svPPA versus nfvPPA, the positive predictive value refers to the number of correctly classified svPPA 
patients/all patients that were (correctly or incorrectly) classified as svPPA patients, while the negative 
predictive value refers to the number of correctly classified nfvPPA patients/all patients that were 
(correctly or incorrectly) classified as nfvPPA patients. For lvPPA versus svPPA/nfvPPA, the positive 
predictive value refers to the number of correctly classified lvPPA patients/all patients that were 
(correctly or incorrectly) classified as lvPPA patients, while the negative predictive value refers to the 
number of correctly classified svPPA/nfvPPA patients/all patients that were (correctly or incorrectly) 
classified as svPPA/nfvPPA patients. 
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