
UNIVERSITÄT LEIPZIG
Faculty of Mathematics and Computer Science

Department of Computer Science
Institute of Business Information Systems

Community-Driven Engineering of the
DBpedia Infobox Ontology and DBpedia Live Extraction

Diploma Thesis

Leipzig, May 2010

Thesis Supervisors: Submitted by Claus Stadler
Prof. Dr. Inf. habil. K. Fähnrich Born 12.05.1984
Dipl. Inf. Sebastian Hellmann Course of Studies Computer Science

Abstract

The DBpedia project aims at extracting information based on semi-structured data present

in Wikipedia articles, interlinking it with other knowledge bases, and publishing this

information as RDF freely on the Web. So far, the DBpedia project has succeeded in

creating one of the largest knowledge bases on the Data Web, which is used in many

applications and research prototypes. However, the manual effort required to produce

and publish a new version of the dataset – which was already partially outdated the

moment it was released – has been a drawback. Additionally, the maintenance of the

DBpedia Ontology, an ontology serving as a structural backbone for the extracted data,

made the release cycles even more heavyweight. In the course of this thesis, we make

two contributions: Firstly, we develop a wiki-based solution for maintaining the DBpedia

Ontology. By allowing anyone to edit, we aim to distribute the maintenance work

among the DBpedia community. Secondly, we extend DBpedia with a Live Extraction

Framework, which is capable of extracting RDF data from articles that have recently been

edited on the English Wikipedia. By making this RDF data automatically public in near

realtime, namely via SPARQL and Linked Data, we overcome many of the drawbacks of

the former release cycles.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 1

1.3 Structure of this Thesis . 2

1.4 Conventions . 3

2 Preliminaries 4

2.1 The Semantic Web . 4

2.2 Uniform Resource Identifiers . 5

2.3 The Resource Description Framework 6

2.3.1 Syntaxes . 6

2.4 SPARQL and SPARUL . 8

2.5 Triple Stores and Query Engines . 8

2.6 Ontologies and Ontology Languages 9

2.6.1 RDFS, OWL and OWL 2 . 9

2.6.2 Manchester OWL Syntax (MOS) 10

2.6.3 Reification and Annotations 11

2.7 Linked Data . 11

3 Status Analysis of DBpedia 14

3.1 An Introduction to Wikipedia . 15

3.1.1 The Wiki Methodology . 15

3.1.2 The Wiki-Software MediaWiki 16

3.1.3 Wikipedia-Specific Structures 19

3.2 Data Extraction from Wikipedia Articles 20

3.3 The DBpedia Infobox Ontology . 22

3.4 Framework Architecture . 25

3.5 Classification and Interlinking . 27

3.6 DBpedia’s underlying RDF Engine - Virtuoso 28

ii

4 Community-Driven Engineering of the DBpedia Infobox Ontology 30

4.1 A Case for Community-Driven Ontology Engineering 30

4.2 Template-Based Ontology Engineering 31

4.2.1 Schema Definitions . 32

4.2.2 RDF Generation from Schema Definitions 35

4.2.3 Infobox Annotations . 37

4.3 Deployment . 41

4.3.1 Deployment of the Schema Definitions 41

4.3.2 Deployment of the Infobox Annotations 42

4.4 Discussion . 46

4.4.1 What Kind of Ontology . 46

4.4.2 User Friendliness vs Expressivity 47

4.4.3 Future Work . 48

5 DBpedia Live Extraction 50

5.1 The DBpedia Live Dataset . 51

5.2 Requirements . 52

5.3 DBpedia Live Architecture . 55

5.4 Extraction Workflows . 57

5.4.1 Retrieving updates from MediaWiki 57

5.4.2 English Wikipedia Extraction Workflow 58

5.4.3 MetaWiki Extraction Workflow 59

5.5 Triple Management . 60

5.5.1 Clean-Up Strategy . 62

5.5.2 Simple Annotation-Based Update Strategy 63

5.5.3 Generic Annotation-Based Update Strategy 64

5.5.4 Resource-Specific Graphs . 66

5.5.5 RDB-Assisted Update Strategy 66

5.5.6 Evaluation . 68

5.5.7 Conclusion . 70

5.6 Contributed Extractors . 70

iii

6 Related work 72

6.1 Research . 72

6.2 Tools . 73

6.3 Applications . 74

7 Conclusions and Future Work 76

8 Appendix 78

8.1 Source code . 78

iv

1 Introduction

Wikipedia has become the most popular online encyclopedia and ranks among the top ten

visited sites1. Most of its contained knowledge is represented as free text and is therefore

only of limited use to machines. However plenty of information is also provided in

semi-structured and even structured form as for example references to infobox templates

and links. The DBpedia project aims at extracting this (semi) structured information and

publishing it freely on the Web. So far, there are two teams collaboratively working on

DBpedia: One team from the Freie Universität (FU) Berlin, and one from the Universität

Leipzig. The DBpedia Ontology is a multi-domain ontology that serves as a structural

backbone for this data. This ontology was manually created and has been maintained by

the DBpedia team from the FU Berlin.

1.1 Motivation

So far the generation of the DBpedia datasets was based on database dumps from

Wikipedia. Each release required manual efforts of downloading the dumps, loading them

into a database, configuring and starting the extraction process, and finally publishing

the resulting data by making it accessible via file downloads, the Linked Data Interface,

and the SPARQL endpoint.

This accounted for a rather heavyweight release cycle and releases were only done

every three to six months. Also, due to the fast moving nature of Wikipedia, at the

time these datasets were released, they were already partially outdated. The DBpedia

Ontology and the mapping rules (rules that relate infoboxes to that ontology) also suffer

from actuality problems. But in addition it turned out that maintaining the ontology and

the mapping rules is very hard for a small team. After all, these things need to be kept in

sync with the actual data on Wikipedia.

1.2 Goals

The goals of this thesis are twofold: The maintenance of the DBpedia Ontology and the

mapping rules should be crowd-sourced in order to distribute the burden. For that reason

1rank 6 according to Alexa.com (retrieved 17-Feb-2010)

1

a wiki-based solution that allows modeling both of them is developed in the course of this

thesis. The other goal is to extend the original DBpedia Extraction Framework to make

it capable of processing the following things in real-time: edits of Wikipedia articles,

changes to the DBpedia Ontology, and changes to the mapping rules. This means that

a publicly accessible triple store should always contain two things: (1) All RDF data

corresponding to Wikipedia articles’ latest revisions and (2) the RDF data reflecting the

most recent state of the DBpedia ontology.

1.3 Structure of this Thesis

In the first chapter we give an introduction to basic Semantic Web technologies. The

following chapter gives an overview over the English Wikipedia and describes the

original state of the DBpedia Extraction Framework (i.e. the state when this thesis was

started). Chapters four and five explain the main contributions of this thesis: Chapter

four describes a wiki-based solution for engineering the DBpedia Ontology and relating

Wikipedia infoboxes to it. Chapter five explains how the original DBpedia Extraction

Framework has been improved: It was made capable of processing articles from the

English Wikipedia, as well as the Ontology definitions introduced in section four, in

realtime. Chapter six describes some of the related work. Finally, chapter seven concludes

this thesis.

2

1.4 Conventions

For making reading easier, the following conventions are used:

• The English Wikipedia will be referred to as EnWiki.

• Many URIs used throughout this thesis are abbriviated using the namespace

prefixes in Table 1.

Prefix URI

ex http://example.org/
dbpedia http://dbpedia.org/resource/
dbpedia-owl http://dbpedia.org/ontology/
dbpprop http://dbpedia.org/property
dbpmeta http://dbpedia.org/meta/
foaf http://xmlns.com/foaf/0.1/
opencyc http://sw.opencyc.org/concept/
owl http://www.w3.org/2002/07/owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
skos http://www.w3.org/2004/02/skos/core#
umbel-sc http://umbel.org/umbel/sc/
xsd http://www.w3.org/2001/XMLSchema#
yago http://www.mpii.de/yago/resource/

Table 1: Namespace prefixes used throughout this thesis

3

2 Preliminaries

2.1 The Semantic Web

The vision of the Semantic Web, first described in [6], is about computer agents being

able to understand the “meaning” of some of the content on the Web. By that we do

not mean that agents magically become as intelligent as humans, but rather that content

is published in a form that enables machines to easily gather information about things,

and eventually allows them to apply formal logic reasoning to that content. Consider

for example the query of finding inexpensive hotels in the vicinity of a given location

which offer certain services such as cable TV and a swimming pool. Traditional agents

would have a hard time determining the answer to such task. They would have to rely

on data scraping or would require specialized code in order to deal with the many non-

standard APIs sites nowadays provide. Once they manage to obtain the necessary data

for answering the query, there is still the problem of how to account for information

that may become available in the future, such as what TV channels are actually offered.

But there is even another problem: Agents supposedly solving the same problem, given

the exact same query, and the exact same data to operate on, may come to different

conclusions. This happens due to the data lacking a defined meaning.2 For example one

agent may interpret “hotels” as to include “motels” as well, while another agent may

follow different semantics. These are the basic problems addressed by the Semantic Web.

One of its fundamental properties is the implication of a Web of Data - a web made up

of links between individual pieces of data as opposed to the traditional links between

documents[25]. The main reason is that data is a prerequisite for reasoning. Traditional

(e.g. HTML and XML) documents with their sheer endless amounts of different schemas

are unsuitable for uniform data access.

In order to realize the Semantic Web, an architecture of technologies has been

proposed, which is known as the Semantic Web Stack. It is depicted in Figure 1. In the

following sections we will discuss the components which were relevant to this thesis.

2Or agents not adhering to it. But that is beside the point.

4

Source: http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)

Figure 1: Components of the Semantic Web Stack

2.2 Uniform Resource Identifiers

A Uniform Resource Identifier (URI) is a “compact sequence of characters that identifies

an abstract or physical resource”[5]. It is important to understand that the sole purpose

of URIs is to identify resources, but not to interact with them. As such they can be used

to identify anything - so any concept one can think of, such as websites, books, people or

numbers. The dereferencable subset of URIs - that is the set of URIs identifying machine

accessible resources such as websites - is known as Uniform Resource Locators (URLs).

Identifying things with URLs has the advantage that more information about the thing

may be retrieved upon dereferencing them. As a side note, a URL may both identify

a thing and point to a description of that thing, which makes its meaning ambiguous.

For example the URL http://en.wikipedia.org/wiki/European_Union

could refer to both the “European Union” as an organization and the article on Wikipedia.

Solutions to disambiguate the meanings are given in [17]. For convenience URIs are often

abbreviated using namespace prefixes. In regard to the example above, if we somewhere

stated that enwiki is an abbreviation of http://en.wikipedia.org/wiki/we

could have written enwiki:European_Union instead.

5

2.3 The Resource Description Framework

The Resource Description Framework (RDF) is used to represent information on the

Web[13]. The framework defines two things: A data model for representing arbitrary

statements about resources, and a basic vocabulary which can be used to give statements

a defined meaning. Since RDF is intended for the Web, it is natural that things are

identified with URIs. Furthermore RDF supports anonymous resources and literals such

as strings and integers. A statement consists of three parts namely subject, predicate and

object where the set of values they can take is shown below:

Part URI Anonymous Literal

Subject X X
Predicate X
Object X X X

Table 2: Valid values within an RDF statement

Since the object of one triple may appear as the subject in another triple it is easy

to see that a triple can be seen as an edge in a directed labeled graph. Therefore a set

of triples is also called a graph. Anonymous resources are usually referred to as blank

nodes.

It is worth pointing out that literals may be either plain or typed. A plain literal is a

combination of a string with an optional language tag. A typed literal is a combination

of string and a URI denoting its data type. This data type constrains the set of values that

may be assigned to the string.

A couple of RDF statements is shown in Listing 1: In this example this resource

ex:London shall denote the city of London. The first line states that its label in English

is “London”. The second line states that the population is an integer of value 8278251.

ex:London ex:label "London"@en .

ex:London ex:population 8278251^^xsd:integer

Listing 1: Examples of RDF statements

2.3.1 Syntaxes

The RDF data model itself is an abstract syntax which means that it is independent of

any particular representation or encoding. Several concrete syntaxes exist which vary in

6

readability, expressiveness and tool support.

RDF/XML is an XML based syntax and therefore has the same advantages and dis-

advantages as basically any other XML based syntax: On the one hand there exists a

wide range of tools which make parsing and processing of such data relatively easy for

machines. On the other hand XML documents contain a lot of syntactic noise which

makes human reading and writing of actual data harder than it ought to be. However,

RDF/XML is a mandatory exchange syntax[8] for some RDF-based languages, such

as OWL 23. This means that the syntax must be supported by tools dealing with that

language.

N-Triples, Turtle and Notation3 are plain text based concrete syntaxes which are

more human-friendly as the XML variant. N-Triples is a subset of Turtle and Turtle is

a subset of Notation3 which means that they are not completely different syntaxes but

merely syntaxes with varying degrees of expressivity, as shown in Figure 2.

Source: http://www.w3.org/DesignIssues/Notation3

Figure 2: Set relations between the various syntaxes

Besides the syntaxes listed here, others came into existence like TriX, TriplesML, or

3Discussed in 2.6.1

7

Regular XML RDF (RXR). However none of them seems to play an important role.

2.4 SPARQL and SPARUL

SPARQL[16] is a recursive acronym for “SPARQL Protocol and RDF Query Language”.

It is the query language for the Semantic Web and is therefore a language adapted to

the RDF data model. Since RDF data forms a graph, the central part of the SPARQL

query language are graph patterns. These graph patterns look similar to graphs written in

Turtle with the exception that variables may appear anywhere as a subject, predicate, or

object. Another important part of a SPARQL query is the query form which controls the

result being returned based on the data matched by the graph pattern of the query. Four

query forms are given, namely SELECT, CONSTRUCT, DESCRIBE and ASK. The first

two return the result as a table and a graph, respectively. DESCRIBE is used to fetch

data about individual resources, and ASK serves to determine whether a query yields any

result at all.

SPARUL[18] is the corresponding data manipulation language also known as SPAR-

QL/Update. It introduces the INSERT, DELETE and the more general MODIFY state-

ment. The latter is a combination of the first two. In essence it works like a SPARQL

CONSTRUCT query that inserts and/or removes the result set from the store. Table 3

shows some example queries.

Select Construct Insert

SELECT ?name
FROM <http://ex.org> {

?p ex:type ex:Person .
?p ex:name ?name .

}

CONSTRUCT {
?s rdfs:label ?o .

} FROM <http://ex.org> {
?s ex:name ?o .

}

INSERT INTO <http://ex.org> {
ex:Anne ex:knows ex:Bob .

}

Table 3: Examples of simple SPARQL queries

2.5 Triple Stores and Query Engines

Triple stores are database systems capable of storing and retrieving RDF data. Some

implementations are based on relational database technology which means that they inter-

nally rewrite SPARQL and SPARUL queries to SQL statements. There also exist native

8

implementations of triple stores such as Sesame4, Virtuoso5 and AllegroGraph6. Engines

like Triplify7 and D2R8 allow the definition of mappings from legacy relational data to

RDF. The latter engine even supports querying with SPARQL. The Berlin Benchmark[7]

compared the performance of native and rewriting-based triple stores. At that time

rewriters outperformed native stores with increasing dataset size.

2.6 Ontologies and Ontology Languages

“An ontology is a formal, explicit specification of a shared conceptualization. Conceptu-

alization refers to an abstract model of some phenomenon. Explicit means that the types

of concepts used, and the constraints on their use are explicitly defined. Formal refers to

the fact that the ontology should be machine- readable. Shared reflects the notion that an

ontology captures consensual knowledge, that is, it is not private of some individual, but

accepted by a group.”[21] Ontologies are represented using ontology languages. Many

of such languages exist which vary greatly in expressivity, computational complexity and

decidability. Some of them are presented in the following section.

2.6.1 RDFS, OWL and OWL 2

RDF schema (RDFS), the Web Ontology Language (OWL9), and its successor OWL 2

are ontology languages which have gained significant importance in the context of

the Semantic Web. OWL and OWL 2 can be broken down into sub languages which

trade expressive power for efficiency of reasoning. OWL’s sublanguages are OWL Lite,

OWL DL and OWL Full. The sublanguages of OWL 2, better known as profiles, are

OWL 2 EL, OWL 2 QL and OWL 2 RL. A major difference between the two versions

of OWL is, that the profiles were designed to be especially suitable for certain types of

applications.

These languages have the following basic concepts in common:

4http://www.aduna-software.com/technology/sesame
5http://virtuoso.openlinksw.com/
6http://www.franz.com/agraph/allegrograph/
7http://triplify.org
8http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
9This is not a typo: http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html

9

• Individuals are primitive entities. As such they are no sets which distinguishes

them from classes.

• Classes are sets of individuals. The members of a class are called instances. An

individual may belong to multiple classes which are referred to as its types.

• Literals are data values such as strings or integers.

• Properties are relations between individuals, classes and literals.

Although the aforementioned languages are all based on these concepts, their expressivity

varies. For example while it is legal in RDFS to model classes of classes, this is considered

illegal in OWL DL.

Ontologies form the backbone of the Semantic Web as they enable us to give meanings

to resources. For example, assume we are given the following statements:

Leipzig a City.
Leipzig locatedIn Saxony.
Saxony locatedIn Germany.

If a machine wanted to find all German cities based on these statements, it would

have to infer the fact Leipzig locatedIn Germany. Although a special treatment

of the locatedIn property could be hard coded into an application, the point of

ontologies is that this treatment can be explicitly stated: In our example we would have

to add the triple locatedIn a owl:TransitiveProperty in order to define

locatedIn as a transitive property. As a consequence, any application understanding

the ontology language is then able to draw the correct conclusions.

2.6.2 Manchester OWL Syntax (MOS)

This syntax’s main goal is to simplify the reading and writing of class expressions10,

especially for people who do not have Description Logic (DL) background[11]. It

achieves that goal by hiding the formal symbols typically used in this field behind

English keywords and introducing a grammar where these keywords appear in locations

that make them look more natural. An example is shown in Figure 3.

10Also known as class descriptions.

10

Pizza u (

¬(∃hasTopping.MeatTopping) t

¬(∃hasTopping.FishTopping))

Pizza THAT
NOT hasTopping SOME
(MeatTopping OR FishTopping)

Figure 3: DL Syntax vs MOS syntax
Definition of the class “Vegetarian Pizza” as a Pizza without Meat and Fish toppings in

traditional DL syntax (left) and MOS syntax (right)

2.6.3 Reification and Annotations

Reification, sometimes called “nounification” or “thingification”, refers to making a

statement about a statement. If we want to represent the statement “Anne knows Bob

claims Charlie” in RDF we first have to introduce a new resource - usually a blank node -

which represents the base statement “Anne knows Bob”. Once such a resource exists,

it can be used in further statements. RDF provides a reification vocabulary. However

it was declared deprecated because of unclear semantics. Eventually annotations were

introduced in OWL 2. Instead of making statements about statements, the view point

has changed to annotating statements. Annotations are logically irrelevant, which means

that they do not affect the truth value of the statement being annotated, and are therefore

ignored by a reasoner. An example of the RDF-reification and OWL 2 annotation

approaches is given in Table 4.

RDF-Reification OWL 2 Axiom Annotations

_:b a rdf:Statement
_:b rdf:subject :s
_:b rdf:predicate :p
_:b rdf:object :o

_:b a owl:Axiom
_:b owl:annotatedSource :s
_:b rdf:annotatedProperty :p
_:b rdf:annotatedTarget :o

Table 4: RDF-Reification vs OWL 2 Axiom Annotations

2.7 Linked Data

The fundamental feature which contributed to the success of the World Wide Web was

the hyperlink. In fact without links, there would not be any web at all. However most

links are untyped relations between documents (e.g. HTML or XHTML). While this is

of no problem for humans, it greatly complicates the tasks for machine agents to explore

and find relevant information. On the one hand an agent has to deal with the various

schemas of these documents and on the other hand it must somehow decide which links

11

to follow. In contrast, Linked Data is about making typed links between pieces of (RDF)

data. This makes it easier for machine agents to follow links and retrieve data that seems

interesting to them just like humans. Note that already existing technologies for naming

resources (URIs), resolving these names to physical addresses (DNS), and transferring

data from them (HTTP) can be reused directly. The following principles for publishing

Linked Data are adapted from [4] and are summarized as:

• Name things using HTTP11 URIs12. Even better, use URLs.

• Upon dereferencing such URL, return an RDF dataset describing that resource.

Additionally that dataset should. . .

• . . . contain URLs that can be further resolved to more RDF data.

Content negotiation is a feature of HTTP which enables user agents to choose from

different representations for a given resource identified by a URI. A browser could

for example attempt to request websites in preferred languages or images in preferred

formats. Of course the server must support the requested representation. By using content

negotiation, it is possible that for the same URI a browser would obtain a human readable

HTML representation while another agent would receive an RDF representation.

The Linking Open Data cloud (LOD cloud), depicted in Figure 4, is the result of

the Linking Open Data W3C Community project[19]: Within this project various open

datasets are (converted to and) published as RDF and interlinked with each other. As a

consequence, information about entities residing in multiple, partly even heterogeneous

datasets can be accessed in a uniform way.

Notably, DBpedia plays the role of a linking hub within the LOD cloud. The main

reasons that led to this development are:

1. The meaning of (most) EnWiki article names does not change (significantly) over

time as shown in [10], making them suitable for knowledge representation. The

same is valid for DBpedia URIs as they are based on these names.

11As HTTP is widely supported.
12As any URI may already be or eventually become a URL, making it machine accessible.

12

2. EnWiki covers multiple domains such as movies, places, organizations. The

corresponding identifiers are attractive for reuse in these domains due to their

stable meaning. As in the previous point, DBpedia benefits directly from EnWiki.

3. In contrast to Wikipedia, DBpedia URIs can be resolved to RDF via the Linked

Data interface. As DBpedia itself contains links to various other knowledge bases,

linking to DBpedia indirectly interlinks with them.

Source: http://www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets_2009-07-14_colored.png

Figure 4: The Linking Open Data cloud

13

3 Status Analysis of DBpedia

The DBpedia project aims at extracting information based on semi-structured data present

in Wikipedia articles, interlinking it with other knowledge bases, and publishing this

information as RDF freely on the Web. In a sense DBpedia can be seen as the “Semantic

Web mirror of Wikipedia”: The data generated within the project are RDF representations

of a subset of the information contained in Wikipedia articles. This data is then made

public in accordance with Semantic Web principles, concretely via Linked Data and

SPARQL interfaces. DBpedia’s prime showcase is its capability of answering complex

queries Wikipedia cannot answer, as for example the SPARQL query corresponding

to “find all soccer players, who played as the goalkeeper for a club that has a stadium

with more than 40.000 seats and who are born in a country with more than 10 million

inhabitants”13.

The three major parts of the DBpedia project are the website, the datasets and the

Extraction Framework. The DBpedia datasets are the results of extraction processes from

Wikipedia. The dataset based on EnWiki’s infoboxes is probably the most interesting

one. The extraction work is performed by the DBpedia Extraction Framework, which

can be freely downloaded from source forge14. The DBpedia ontology has been created

for the purpose of classifying this extracted data. In the course of the Linking Open

Data community project, DBpedia became interlinked with other knowledge bases. For

instance, YAGO, UMBEL and OpenCyc serve as additional classification schemas. More

information about these knowledge bases is presented in Section 3.5.

The DBpedia website provides access to the datasets via Downloads, SPARQL and

the Linked Data interface. Notably the latter two are powered by OpenLink’s Virtuoso

Universal Server. DBpedia is a community effort in the sense that anyone is invited to

share their ideas and criticism on the mailing list.

In this chapter we first give an introduction to Wikipedia, followed by an overview of

the structures present in its articles. Then we describe how those structures are translated

to RDF by the DBpedia Extraction Framework, which is also explained. Finally we

briefly describe some of the datasets DBpedia is interlinked with, and the triple store

13http://wiki.dbpedia.org/OnlineAccess
14http://sourceforge.net/projects/dbpedia

14

hosting these datasets.

3.1 An Introduction to Wikipedia

DBpedia uses Wikipedia as its primary data source. We will first give an overview of

Wikipedia in general before moving into the technical details like the structures present

in its articles.

3.1.1 The Wiki Methodology

Wikis are a proven technology for enabling massive amounts of users to collaboratively

contribute content to a system for gathering knowledge. The breakthrough came with

Wikipedia. Despite early concerns that the concept is doomed to end in pure chaos,

Wikipedia’s community succeeded in the development of mechanisms which prevent

that. Ward Cunningham, the founder of the first wiki, assembled a set of general design

principles15 for wikis. These include: easy to use, freely editable, and tolerant to errors.

Although these principles largely apply to Wikipedia as well, Wikipedia defines more of

them which ensure its status as an encyclopedia. These are known as the Five Pillars16.

Probably the best known of these principles is the Neutral Point of View (NPOV).

The basic concepts of a wiki are relatively simple: Users may view or edit pages. All

edits are tracked in a history and can be undone as needed as for example because of

vandalism. For each article in Wikipedia there is a talk page which allows discussion

prior to making changes to the article.

The social structures of Wikipedia are far more complex than that. Although there

exist roles such as bureaucrats and administrators which grant some users more power

and privileges than the average user (e.g. deleting articles and blocking users), their

actions must conform to certain rules. These rules are not dictated by an individual

person but are rather worked out and agreed upon through a community process. In

general, conflicts can be resolved on different levels. In the simplest case issues can

be resolved on talk pages. More complex cases are dealt with on the administrators’

notice board. Editors may also request comments or arbitration for their problem to get

15http://c2.com/cgi/wiki?WikiDesignPrinciples
16http://en.wikipedia.org/w/index.php?title=Wikipedia:Five_pillars&oldid=363811590

15

the community’s opinion on how to reach consensus. It is important to understand that

finding consensus on a matter does not aim for seeking universal agreement, but merely

the best solution that can be found at that time.17

3.1.2 The Wiki-Software MediaWiki

MediaWiki18 is Wikipedia’s underlying wiki software and was originally developed for

the needs of Wikipedia. Because it is free software, anyone can download it and set up

their own instance. Nowadays the WikiMedia foundation uses it for many other projects

besides Wikipedia, among them Wiktionary19 and Wikiquote20.

The software allows the creation of pages in which information is written in a

lightweight markup language known as wikitext. This markup is eventually rendered to

HTML for viewing with browsers. As a small clarification: We use the term article to

refer to encyclopedic articles, as EnWiki defines them21. Every article on Wikipedia is

technically realized with a MediaWiki page. However not every page corresponds to an

article. For instance, talk pages are clearly not articles.

In the remainder of this section we will give an overview over the page structure and

explain some of the most relevant markup for DBpedia.

Page structure A page title is composed of a namespace and a page name, which are

usually separated by the first colon. However if there is no colon or the part before the

first colon is not a namespace known to the wiki, the page will be considered to be in

the main namespace. MediaWiki defines a set of default namespaces such as Talk, User,

and Help. Therefore a page named Help:Namespace will be in the Help namespace,

whereas a page named Mission:Impossible will be located in the main namespace

(unless Mission is declared as a namespace). In general the MediaWiki software allows

every page to have sub pages, where the sub page name is separated from its parent page

by a slash. An example is given in Figure 5.

The case sensitivity rules are as follows: Namespaces are case insensitive, page

17http://en.wikipedia.org/w/index.php?title=Wikipedia:Consensus&oldid=359380073
18http://www.mediawiki.org
19http://wiktionary.org
20http://wikiquote.org
21

http://en.wikipedia.org/w/index.php?title=Wikipedia:What_is_an_article\%3F&oldid=357461931

16

http://en.wikipedia.org/wiki/Mission:Impossible

Page name

.../wiki/Template:Musical_artist/doc

Namespace Page name Sub page name

Figure 5: Examples of MediaWiki page names

names are case sensitive except for the first letter, and sub page names are fully case

sensitive.

Templates and Transclusion MediaWiki supports transclusion, which means that

a page can be embedded into another page by reference. Within the reference it is

possible to specify arguments, consisting of an optional argument-key and an argument

value. This causes every parameter in the referenced page to become replaced with

the value of the argument whose key matches the name of that parameter. The name

of a parameter corresponding to the nth key-less argument is “n”, starting with 1. An

example of a reference is given in Figure 6. Pages specifically intended for transclusion

are called Templates. Templates are often used for defining layouts, text snippets and

even calculations common to multiple pages. Naturally templates should reside in the

Template namespace.

{{{x}}}o {{{1}}}. This is
{{A|x=Hell|World}}
an example.

A
This is

B

an example.

Hello World.

{{{x}}}o {{{1}}}

Figure 6: Example of a MediaWiki transclusion
In this example page B transcludes page A. The parameter x becomes replaced with Hell.
As the argument with the value World is the first one without a key, the value is assigned

to the parameter 1.

17

Links MediaWiki supports four types of links. The following list is taken from the

MediaWiki documentation22,

• Internal links to other pages in the wiki

• Interwiki links to other websites registered to the wiki in advance

• Interlanguage links to other websites registered as other language versions of the

wiki

• External links to other websites

As a full description would be beyond the scope of this thesis, we only give a brief

overview. In general, the first three link types are syntactically equivalent: They consist

of the name of a link target enclosed with double square brackets. The software disam-

biguates the link types by matching the names of the link target against a set of registered

prefixes.

A special type of internal link is the category link: A page linking to another page in

the category namespace automatically becomes a member of that category, and therefore

appears in the member list of that category.

Absolute URIs within the text are automatically recognized as external links, however

it is also possible to enclose them with single square brackets. An alternate piece of text

that should be displayed in the rendered page instead of the raw link can only be specified

for links that are enclosed with single or double brackets. Figure 7 gives examples for

the different link types.

Link type Example

Internal [[Munich]]
Language [[de:München]]
Category [[Category:German state capitals]]
External http://www.muenchen.de/

[http://www.muenchen.de/]

Figure 7: Examples of MediaWiki links

22http://www.mediawiki.org/w/index.php?title=Help:Links&oldid=324505

18

3.1.3 Wikipedia-Specific Structures

While MediaWiki provides essential markup for the creation of articles, the design of

Wikipedia articles must also follow conventions in order to present information in a

coherent way. The structures interesting to DBpedia are presented below.

Abstracts Wikipedia articles should start with an abstract of the topic they are about.

Disambiguation pages Sometimes article names are discovered to be homonyms,

which means that they have multiple meanings. For instance Apple could refer to the

fruit or the company. In such cases the EnWiki community extends these names with

context information (e.g. “Apple_Inc.”) in order to distinguish the different meanings.

Additionally, a page with the name <homonym>_(disambiguation) is created which links

to all the articles that provide information about the different meanings of the homonym.

This page is called a disambiguation page.

Infoboxes EnWiki defines an infobox as a “fixed-format table designed to be added to

the top right-hand corner of articles to consistently present a summary of some unifying

aspect that the articles share”23. Infoboxes that are implemented using templates are

known as infobox templates. The obvious advantage of such templates is, that the work

required to set up an infobox on a page is reduced to a minimum. These templates form

the basis for DBpedia’s most specific data about articles. An example of the wikitext

of an infobox and its presentation is shown in Figure 8. By convention, the names of

infobox templates should start with Infobox_.

23http://en.wikipedia.org/w/index.php?title=Help:Infobox&oldid=362463060

19

Wikitext Rendered

{{Infobox Town AT
| name = Berndorf
| image_coa = AUT Berndorf COA.jpg
| state = [[Lower Austria]]
| district = [[Baden (district of Austria)|Baden]]
| population = 8728
| population_as_of = 01.01.2005
| pop_dens = 497
| area = 17.57
| elevation = 314
| lat_deg = 47
| lat_min = 56
| lat_sec = 34
| lat_hem = N
| lon_deg = 16
| lon_min = 6
| lon_sec = 13
| lon_hem = E
| postal_code = 2560
| area_code = 02672
| mayor = Hermann Kozlik, [[SPÖ]]
| website = [http://www.berndorf-stadt.at

www.berndorf-stadt.at]
}}

Figure 8: Example of an EnWiki infobox

3.2 Data Extraction from Wikipedia Articles

Here we first explain the purpose of the DBpedia resources, and how they are created.

Afterwards we describe how the wikitext markup, introduced in the previous sections, is

converted to RDF.

DBpedia resources As a general rule, for each page a corresponding DBpedia resource

(also referred to as DBpedia URI) of the form http://dbpedia.org/resource/<page name>

is introduced. By convention, a DBpedia resource should represent the topic of its

corresponding Wikipedia article and not the page itself. This transformation is necessary

for Linked Data: In contrast to the DBpedia resources, the original Wikipedia article

URIs cannot be resolved to RDF representations because Wikipedia does not provide

them. Therefore, extractors will in general replace references to Wikipedia pages with

their corresponding DBpedia resources. As a side note, as most information extracted

from an article is (assumed to be) related to the topic of the article, a page’s DBpedia

resource will be the subject of most triples generated from it.

The conceptual stability of URIs is a major concern in the Semantic Web. URIs

20

are only conceptually stable if their meaning does not change24. Fortunately, in [10] it

was shown, that more than 90% of EnWiki’s article URIs are stable in that sense. Since

DBpedia mirrors these URIs, the same statistics apply to DBpedia URIs.

Extractors The original DBpedia framework consists of 11 extractors. The following

list, taken from [9], gives an overview how articles and their wikitext are transformed

into RDF.

• Labels. All Wikipedia articles have a title, which is used as an rdfs:label for the

corresponding DBpedia resource.

• Abstracts. We extract a short abstract (first paragraph, represented using rdfs:comment)

and a long abstract (text before a table of contents, at most 500 words, using the

property dbpprop:abstract) from each article.

• Interlanguage links. We extract links that connect articles about the same topic

in different language editions of Wikipedia and use them for assigning labels and

abstracts in different languages to DBpedia resources.

• Images. Links pointing at Wikimedia Commons images depicting a resource are

extracted and represented using the foaf:depiction property.

• Redirects. In order to identify synonymous terms, Wikipedia articles can redirect

to other articles. We extract these redirects and use them to resolve references

between DBpedia resources.

• Disambiguation. Wikipedia disambiguation pages explain the different meanings

of homonyms. We extract and represent disambiguation links using the predicate

dbpprop:disambiguates.

• External links. Articles contain references to external Web resources which we

represent using the DBpedia property dbpprop:reference.

• Pagelinks. We extract all links between Wikipedia articles and represent them

using the dbpprop:wikilink property.
24At least not significantly, whereas the definition of significance is left open.

21

• Homepages. This extractor obtains links to the homepages of entities such as

companies and organisations by looking for the terms homepage or website within

article links (represented using foaf:homepage).

• Categories. Wikipedia articles are arranged in categories, which we represent using

the SKOS vocabulary[14]. Categories become skos:concepts; category relations

are represented using skos:broader.

• Geo-coordinates. The geo-extractor expresses coordinates using the Basic Geo

(WGS84 lat/long) Vocabulary25 and the GeoRSS Simple encoding of the W3C

Geospatial Vocabulary26 . The former expresses latitude and longitude components

as separate facts, which allows for simple areal filtering in SPARQL queries.

3.3 The DBpedia Infobox Ontology

The DBpedia Infobox Ontology is a cross-domain ontology based on infobox templates

in Wikipedia articles. Its creation resulted from the attempt to solve the problems faced

with an early DBpedia extraction approach, described in [3]. We will first summarize

this early extraction method and explain the Infobox Ontology from there.

Originally a generic but also naive extraction method was used for generating RDF

data from arbitrary templates in articles. It proceeded as follows: Each article is scanned

for significant template references i.e. references to templates having a certain usage-

count or references with more than a certain minimum number of arguments provided.

For each argument of such a template a triple is generated according to the following

procedure: The article’s corresponding DBpedia resource becomes the subject, the

predicate is built by the concatenation of the prefix http://dbpedia.org/property/ and the

argument-key. The argument-value becomes the object. After that some post-processing

is applied to the object, such as detecting and typing numbers, or replacing links to other

articles with their corresponding DBpedia resources. Additionally the DBpedia resource

is classified based on the categories present in the article. Figure 9 shows an example of

this data generation.

25http://www.w3.org/2003/01/geo/
26http://www.w3.org/2005/Incubator/geo/XGR-geo/

22

DBpedia ResourceWikipedia Article

{{Infobox_Mountain

| name = Mount Everest

| height_m = 8848

| map = Nepal

| height_m = 8848

}}

dbpprop:name
”Mount Everest”

dbpprop:map
”Nepal”

dbpprop:height_m
”8848”^^xsd:integer

http://en.wikipedia.org/wiki/
Mount_Everest

http://dbpedia.org/resource/
Mount_Everest

[[Category:Seven Summits]]

}}

skos:subject
category:Seven_Summits

Figure 9: RDF data generation from articles using the generic approach

With this approach some problems soon became apparent: Wikipedia categories

are not very suitable for simple classification approaches for two reasons: Firstly the

meaning of a relation between an article and a category is often not the desired “is-a”

but rather a “somehow related to”. Secondly, occasionally the category graph contains

cycles. Therefore it was decided to use the names of infobox templates for the purpose

of relating articles to classes. Further issues resulting in poor quality data being extracted

by the naive method are related to the following observations:

• Parameters with identical meaning may have different spellings such as birthplace

and place_of_birth.

• Multiple pieces of information may be assigned to a single parameter. For example

an argument may provide both a date and place for the parameter born. (e.g. born

= 1982, Leipzig)

• A single piece of relevant information may be spread across multiple parameters.

For instance the infobox Infobox_NFLactive27 defines separate parameters for the

height of a person in feet and the remainder in inches instead of providing a single

parameter.

• Infoboxes with different spellings could be related to a common class.

As a solution to these problems, the DBpedia Infobox Ontology and the mapping-based

extraction[1] were introduced. This ontology is an OWL ontology and can therefore
27http://en.wikipedia.org/w/index.php?title=Brian_Brohm&oldid=338078082

23

be separated into schema and instance data. The mapping-based extraction produces

the instance data by mapping articles containing infoboxes to instances. It is guided by

metadata about infoboxes which defines how infoboxes relate to classes, how parameters

relate to properties, and how argument values should be post-processed. We will refer to

this metadata as Infobox Annotations.

The schema and the Infobox Annotations used to be manually created and maintained

by the DBpedia team from the FU Berlin. The design of the schema was mainly done

in a bottom-up manner: Initially about 350 of the most popular infobox templates were

identified and related to about 170 classes. After that, a shallow subsumption hierarchy

was built. The DBpedia resources of articles containing such infobox templates become

instances of the corresponding classes. The parameters of the infobox templates are

related to properties. Figure 10 gives an impression of this process.

DBpedia ResourceWikipedia ArticleDBpedia Infobox Class Hierarchy

MountainBuilding

Thing

PlaceEvent

{{Infobox_Mountain

| name = Mount Everest

| height_m = 8848

| map = Nepal

| height_m = 8848

}}

dbpedia­owl:label
”Mount Everest”

dbpedia­owl:locatedIn
dbpedia:Nepal

dbpedia­owl:height
”8848”^^xsd:integer

http://en.wikipedia.org/wiki/
Mount_Everest

http://dbpedia.org/resource/
Mount_Everest

rdf:type
dbp­owl:Mountain

M
ap

pi
ng

 R
ul

e s

Figure 10: RDF data generation from articles using the mapping-based extraction

The purpose of the DBpedia Infobox Ontology is threefold: Firstly it is used to

improve the data quality, as semantically equivalent infoboxes and infobox parameters

can be related to the same class and property, respectively. Secondly, it serves as a

lightweight taxonomy for the Wikipedia-based instance data that can be used in SPARQL

queries with inferencing enabled. And thirdly it may be used for consistency checks

such as detecting erroneous information in Wikipedia articles or bugs in the Extraction

Framework.

The reason the DBpedia Infobox Ontology schema was introduced at all, instead of

reusing (the schema) of existing ontologies, is basically because it makes certain things

24

easier: Although Wikipedia covers many different domains, already about 170 classes

suffice for classifying 57% of the articles containing infoboxes. In comparison: OpenCyc

and UMBEL define about 55000 and 21000 classes, respectively. Therefore the DBpedia

team decided it would be easier to introduce classes and properties on demand when

integrating new infoboxes, and interlinking them with other ontologies “lazily”, rather

than to use such ontology directly.

3.4 Framework Architecture

So far, we have described how articles are converted to RDF. In this section we explain

the architecture of the DBpedia Extraction Framework and the infrastructure how RDF

data is generated from pages, and eventually published on the Web.

Figure 11: High level overview of the DBpedia Extraction Framework

Essentially the workflow is as follows: First pages are retrieved from some source as

for example a local database loaded with a Wikipedia dump. Then the extraction process

is configured and started. The process requests pages from the source, and passes them

to the extractors which generate the RDF data. For that purpose extractors make use of

25

various parsers. The generated data is finally sent to a destination, as for instance a file

or a triple store. Figure 11 shows an overview of the architecture.

The original framework is written in PHP. It defines a set of core interfaces and classes

whose relations between them is depicted in Figure 12. Extensions for the framework

can be written by providing new implementations for these interfaces. What follows is a

description of the purpose of these interfaces and classes.

ExtractionJob ExtractionGroup

<<interface>>
IRDFDestination

<<interface>>
IRDFExtractor

0..1 0..*

0..1 1

0..* 1

ExtractionManager

0..1

0..1

<<interface>>
IPageContentProvider

0..*1

<<interface>>
IPageNameIterator

0..11

Figure 12: Class diagram of the DBpedia Extraction Framework

The following list explains the purpose of the interfaces.

• IPageNameIterator allows iteration of page names.

• IPageContentProvider resolves a page name to its content.

• IRDFExtractor generates RDF data from the content of a page.

• IRDFDestination proceeds with the generated RDF data, such as writing it to a

store or printing it to the screen.

The tasks of the remaining classes are:

• ExtractionGroup encapsulates a specific extractor configuration and delegates its

output to a given destination.

• ExtractionJob aggregates instances of IPageNameIterator, IPageCollection and

ExtractionGroup to form a workflow.

• ExtractionManager executes such a workflow.

26

In regard to the retrieval of pages, there are implementations for fetching data from

MYSQL-databases loaded with Wikipedia dumps, and from Wikipedia directly via the

export-interface28. Various extractors have been implemented for extracting the data as

described in Section 3.2. Implementations of destinations are provided for writing the

RDF data to files and to triple stores directly.

In the course of this thesis modifications were made to the framework which are

discussed in Section 5.

3.5 Classification and Interlinking

DBpedia is interlinked with other knowledge bases. Some of them are explained in this

section.

Interlinking two OWL ontologies can be done in different ways:

1. Class-level interlinking relates classes to each other (e.g. via owl:equivalentClass

and rdfs:subClassOf).

2. Instance-level interlinking relates instances to each other (e.g. owl:sameAs).

3. Instances of one ontology can be related to classes of the other ontology.

DBpedia itself contains links to several datasets which fall into all the above cate-

gories. A complete list is maintained on the website29. In the following we describe a

selection of them.

Yet Another Great Ontology (YAGO) is an ontology based on Wikipedia and Word-

Net30 and is described in [22]. Wikipedia’s category graph is unsuitable for building

taxonomies, however WordNet synsets (= sets of synonyms) already form an ontologi-

cal taxonomy. YAGO’s schema is created by treating Wikipedia leaf categories (those

without subcategories) as classes and relating them to the WordNet taxonomy. Further-

more, YAGO also contains about a million instances based on Wikipedia articles and

corresponding infoboxes. However, in contrast to DBpedia, YAGO only extracts data

28http://en.wikipedia.org/wiki/Special:Export
29http://wiki.dbpedia.org/Interlinking
30http://wordnet.princeton.edu/

27

for 14 properties. More details are given in [23]. A former DBpedia team wrote a script

that classifies DBpedia instances against YAGO classes and relates DBpedia instances to

YAGO instances.

OpenCyc 31 is the free subset of the commercial Cyc32 knowledge base. The latest

version (as of April 2009) contains about 55000 classes and 335.000 instances. DBpedia

instances may be classified against OpenCyc classes and linked to OpenCyc instances

via rdf:type and owl:sameAs, respectively.

The Upper Mapping and Binding Exchange Layer (UMBEL) 33 is an ontology

with the purpose of providing a “fixed set of reference points in a global knowledge

space”. It defines about 21000 concepts which were completely derived from OpenCyc.

DBpedia instances are interlinked with UMBEL in the same way as with OpenCyc.

Wikipedia Category graph Wikipedia categories and their relations are represented

using the SKOS[14] vocabulary. The categories become instances of skos:concept.

Relations between them are represented using skos:broader. DBpedia instances are

related to the corresponding categories via skos:subject34.

3.6 DBpedia’s underlying RDF Engine - Virtuoso

Virtuoso Universal Server is a product of the company OpenLink. The name is appro-

priate considering that this product combines a web server, an application server and a

virtual database system capable of unified handling of relational data, XML and RDF. We

were particularly interested in Virtuoso’s RDF capabilities. From a functional point of

view it supports standard SPARQL and SPARUL, but also non-standard extensions such

as counting results and sub-queries. Additionally, Virtuoso supports querying relational

data as RDF through RDF Views35. Virtuoso comes in different flavors ranging from

the freely available single-pc open source edition up to the commercial cluster version.

31http://www.opencyc.org
32http://cyc.com
33http://umbel.org
34Actually this predicate is deprecated but was not yet updated to dc:subject
35http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSSQL2RDF

28

Among the four native triples stores benchmarked in the Berlin SPARQL Benchmark[7],

Virtuoso (as of version 5.0.10) achieved the best overall performance for large datasets36.

36However, with a slightly modified benchmark (the “reduced query mix”), Virtuoso was outperformed
by Sesame.

29

4 Community-Driven Engineering of the DBpedia In-

fobox Ontology

In this section we present a wiki-based solution which is intended to enable anyone to

directly participate in the design of the DBpedia Infobox Ontology, an ontology which

used to be modeled only by a small team from the FU Berlin. The structure of this

chapter is as follows: We first describe the drawbacks of the original Infobox Ontology

followed by an explanation of how we intend to overcome them using a community-

driven ontology engineering approach. After that we describe our deployment attempt at

Wikipedia and the resistance encountered there. Finally we conclude this chapter with a

discussion.

4.1 A Case for Community-Driven Ontology Engineering

The mapping-based extraction, mentioned in Section 3.3, introduced new drawbacks:

Firstly, it managed to relate 57% of the articles to classes of DBpedia ontology. Although

this value is pretty good, considering that only about 350 infoboxes were mapped, this

still leaves room for improvement. Secondly, infoboxes now and then become modified

which regularly causes some of the mappings to go out of date. And thirdly, the mappings

were maintained by only a few people from the FU Berlin who kept the ontology in a

closed database. For that reason contributions such as adding new classes or integrating

new infoboxes were only possible indirectly via requests on the mailing list. This imposed

a limiting factor to the ontology’s coverage, growth and up-to-dateness.

Community-driven ontology engineering seeks to overcome these drawbacks by

handing a certain degree of power to a community. Wiki-like systems have emerged

as a promising technology for this purpose due to several reasons: Firstly talk pages

are provided that allow discussions about questions, uncertainties and conflicting views.

Ideally such discussions converge to consensus. Secondly histories of all edits are kept

so that undesired or even harmful changes can be reverted. And thirdly write protection

mechanisms can be used to proactively protect critical resources, or reactively deal with

edit-wars and repeated vandalism.

30

In this thesis we are taking the previous approach of the mapping-based extraction

one step further: We provide the possibility for anyone to directly participate in the design

of both, the DBpedia Infobox Ontology and the Infobox Annotations, in an attempt to

overcome the aforementioned disadvantages. In combination with the Live Extraction

Framework, described in Section 5, these changes will be reflected in near real time by

updating a publicly accessible DBpedia dataset.

4.2 Template-Based Ontology Engineering

As explained in the previous sections, the schema of the DBpedia ontology is manually

defined. The instance data is generated from infobox templates using an extraction

method which is guided by metadata about these templates. We will refer to this

metadata as Infobox Annotations. In this section we show how the ontology schema and

the Infobox Annotations can be modeled with MediaWiki templates.

Our reasons for choosing templates are as follows. On the one hand their structured

form allows for relatively easy parsing by the DBpedia Extraction Framework. On the

other hand a template definition can be provided for rendering the given information in a

human friendly way. As templates reduce the amount of work to be done for repetitive

tasks, they are a heavily used feature throughout Wikipedia. This indicates that many

people know how to use them and it can be assumed that the template syntax itself does

not impose a high barrier for potential contributors to our project.

Initially we planned to host the ontology schema on MetaWiki and the Infobox

annotations on EnWiki. The hoped-for advantages of doing so were:

• raising the public awareness of DBpedia – and the Semantic Web in general – by

demonstrating the added value of structured data. . .

• . . . possibly resulting in Wikipedians making infoboxes more Semantic Web

friendly.

• lowering the barrier for making contributions, and therefore ultimately increasing

the likeliness of finding new users and further people willing to contribute.

In the next two sections we present the details about our template-based approach to

31

modeling the DBpedia Infobox Ontology schema and the Infobox Annotations. After

that we describe how these definitions are converted to RDF. Finally we discuss our

deployment attempt. To anticipate the last point, the deployment of the ontology schema

on MetaWiki succeeded, however the one of the Infobox Annotations on EnWiki did not,

due to the resistance encountered there.

4.2.1 Schema Definitions

Our goal is to provide a solution which allows modeling the DBpedia Infobox Ontology

schema with MediaWiki templates. As this ontology is an OWL ontology it consists of

classes and properties. We introduce three templates for their definition, namely DBpedia

Class, DBpedia ObjectProperty, and DBpedia DatatypeProperty. Defining a schema

item works by creating a page and placing a single instance of one of these templates with

respective values on it. The DBpedia Live Extraction Framework is able to recognize

these edits and to extract the corresponding RDF data.

The templates’ parameter names are chosen to relate as directly as possible to

predicates of the RDF, RDFS and OWL vocabulary. Therefore all parameter names start

with either rdf:, rdfs:, or owl:, followed by a corresponding unqualified property name.

In the case of properties whose range is constrained to plain literals, it is valid to append

the suffix @<language tag> to the corresponding argument key.

Argument values are either parsed as text or as a comma separated list of Manchester

OWL Syntax expressions (see Section 2.6.2). Also, if an argument is omitted or left

blank, potentially a default value will be assumed.

We are now going to present the details of each template.

Class Definitions The primary purpose of class definitions is to enable the creation of

taxonomies in order to ease access to the instance data with SPARQL. Therefore the most

important parameters of this template are rdfs:subClassOf, and rdfs:label. The former

one is sufficient for building taxonomies, the latter is intended for assigning human

friendly labels in arbitrary languages to the classes. Additionally it is usually desirable

to associate a class with a short textual description of its intended meaning. This can

be done via the parameter rdfs:comment. In order to support linking classes to other

32

knowledge bases, the parameters rdfs:equivalentClass and rdfs:seeAlso are provided.

Such external references are composed of a namespace prefix indicating the knowledge

base, followed by a colon and the unqualified name of a resource addressed in it. If no

namespace prefix is given, the reference is assumed to refer to an ontology item defined

on another page in the same wiki. Listing 2 contains the wikitext of a class definition,

whereas Figure 13 shows the corresponding presentation.

{{DBpedia Class

| rdfs:label@en = person

| rdfs:label@de = Person

| rdfs:label@fr = personne

| rdfs:comment@en = A person is defined as an individual human being.

| owl:equivalentClass = foaf:Person, umbel-sc:Person, yago:Person100007846, Human

| rdfs:subClassOf = Mammal

}}

Listing 2: A class definition using the DBpedia_Class-template

Figure 13: Presentation of a class definition

33

All previously mentioned parameters should be easy enough to understand by people

who are not familiar with ontology engineering. Therefore at this point the barrier for

participation in the DBpedia ontology design is kept rather low.

However, the expressivity of this template goes beyond these primary use cases:

The final supported parameter of the template is owl:disjointWith which can be used for

stating the disjointness of classes. The parameters owl:disjointWith, rdfs:subClassOf,

rdfs:equivalentClass not only accept references to other ontology items, but rather a

comma separated list of MOS class expressions. A simple reference is a special case of

such an expressions list. A more complex example would be Plant OR Animal.

Table 5 contains an overview of all supported parameters of the DBpedia class

template, whether corresponding arguments are interpreted as text or a MOS-list, and the

default value that is assumed if the argument is omitted or left blank.

Parameter Parse type Default value

rdfs:comment text
rdfs:label text
rdfs:seeAlso mos-list
rdfs:subClassOf mos-list owl:Thing
owl:disjointWith mos-list
owl:equivalentClass mos-list

Table 5: Parameters supported by DBpedia_Class

Unfortunately, in order to render the information given in the template reference cor-

rectly, this approach ultimately requires the template definitions to contain parameters for

every possible language tag. For example we might use the argument-key rdfs:label@ja

to assign a Japanese label, but if the template definition does not define a parameter of

the same name, it will not appear on the rendered page. The strategy we have chosen is

to update these missing parameter names on demand. As the Extraction Framework only

examines the argument keys of the template reference, it will recognize parameters and

their language tags regardless of the parameters defined in the template definition.

Object- and Datatype Property Definitions These types of properties are defined

using a similar template as the one used for class definitions. Therefore we only

discuss the differences here. As with the class definitions, it is possible to specify

34

Parameter Parse type Default value

rdf:type mos-list
rdfs:comment text
rdfs:domain mos-list
rdfs:label text
rdfs:range mos-list
rdfs:seeAlso mos-list
rdfs:subPropertyOf mos-list
owl:equivalentProperty mos-list

Table 6: Parameters supported by DBpedia_Object-/DatatypeProperty

a label and a comment for the property being defined. The analogue of the class

definitions’ rdfs:subClassOf and rdfs:equivalentClass parameters for properties are

rdfs:subPropertyOf and rdfs:equivalentProperty. The domain and range of properties

can be specified via the rdfs:domain, rdfs:range parameters. Finally, the last parameter is

rdf:type which is intended for defining a property to be functional, inverse-functional,

transitive, or symmetric.

Listing 3 contains the wikitext of an object property definition. Its corresponding

presentation is similar to the one of class definitions, and is therefore omitted. Table 6

summarizes the parameters of the respective templates.

{{ DBpedia ObjectProperty

| rdfs:label = birthPlace

| rdfs:label@de = Geburtsort

| rdfs:label@fr = lieu de naissance

| rdfs:comment = Relates a living thing to the place where it was born.

| owl:equivalentProperty =

| rdfs:seeAlso = cyc:birthPlace

| rdfs:subPropertyOf =

| rdfs:domain = LivingThing

| rdfs:range = Place

| rdf:type = owl:FunctionalProperty

}}

Listing 3: Example of a template-based property definition

4.2.2 RDF Generation from Schema Definitions

Here we explain how corresponding RDF is generated from the Schema Definitions

that were introduced in the previous section. The first step is to create DBpedia

35

resources for each page containing such a Schema Definition template. The corre-

sponding DBpedia resource for such pages is http://dbpedia.org/ontology/<name>.

Depending on whether the Schema Definition template referenced on the page is DBpe-

dia_Class, DBpedia_ObjectProperty or DBpedia_DatatypeProperty, a triple is generated

which relates the DBpedia resource via rdf:type to owl:Class, owl:ObjectProperty, and

owl:DatatypeProperty, respectively.

As a general rule, each value of an argument whose key matches one of the templates’

parameters is processed according to that parameter’s parse-type. If that parse-type is

text, then the value is turned into a plain literal with the corresponding argument key’s

language tag. If the parse-type is mos-list, then the value is split into the individual MOS

expressions. Each expression is then passed to OWL API’s37 MOS interpreter, which

outputs a tree structured RDF representation. Those triples themselves become part of

that Schema Definition’s corresponding RDF data set. Finally, triples are generated for

connecting the root resources of those trees, and the plain literals to the DBpedia resource

via the parameter’s corresponding property. An example for the RDF data generated

from a specific Schema Definition is given in Figure 14.

Wikitext Generated RDF

This template is assumed to appear on
an ontology page named ’LivingThing’
{{DBpedia_Class

| rdfs:label@en = "living thing"

| owl:equivalentClass = Plant OR Animal

}}

dbpedia-owl:LivingThing
rdf:type owl:Class .

dbpedia-owl:LivingThing
rdfs:label "living thing"@en .

dbpedia-owl:LivingThing
owl:equivalentClass bn:c .

bn:c rdf:type owl:Class .
bn:c owl:unionOf bn:l0 .

bn:l0 rdf:type rdf:List .
bn:l0 rdf:first dbp-owl:Animal .
bn:l0 rdf:rest bn:l1 .

bn:l1 rdf:type rdf:List .
bn:l1 rdf:first dbp-owl:Plant .
bn:l1 rdf:rest rdf:nil .

Figure 14: Example of RDF data generated from a class definition

A question that needed answering was whether to use URIs or blank nodes for

37http://owlapi.sourceforge.net

36

inner nodes of MOS-expressions. As blank nodes are very inconvenient to query with

SPARQL, we decided to use URIs. This leads to the next question of how to construct

them. By default, OWL-API’s MOS parser automatically generates blank nodes with

identifiers that are hashes from the children of that node. Therefore the same expression

will always result in the generation of the same hash. These hashes can be directly used

to form URIs by prefixing them. However there are two options for choosing the prefix:

• Use a global prefix such as http://dbpedia.org/ontology/expr-<hash>

• Use a local prefix that contains the name of the page the triples were generated

from, like http://dbpedia.org/ontology/<page>/expr-<hash>.

The advantage of the global pattern is that class expressions themselves would have

unique ids and could be easily referred to38, which might turn out to be useful in the

future. However this also means, that the sets of triples extracted from schema definition

pages are no longer necessarily pair wise disjoint (as the same MOS expression may be

used on multiple pages). This greatly increases the complexity of managing triples in the

Live Extraction Framework. Although such management strategy was implemented (see

Section 5.5.3) it turned out that the performance was not good enough. This forced use

to use the local URI pattern.

4.2.3 Infobox Annotations

In this section we present two templates for annotating infobox templates. The purpose

and principle of these annotations are the same as that of the Mapping-Based Extraction

introduced in Section 3.3: Infoboxes and their parameters are related to classes and

ontology properties, respectively. Effectively, the contribution made by this thesis in

that aspect is to enable the public to participate in the configuration of the Mapping-

Based Extraction using a wiki-based approach. To summarize the problem, there can be

relations of arbitrary cardinality between infobox parameters and ontology properties.

The following examples are repeated from Section 3.3:

1. Parameters with identical meaning may have different spellings such as birthplace

and place_of_birth.
38The DBpedia ontology is not expected to grow big enough for hash collisions to become likely.

37

2. Multiple pieces of information may be assigned to a single parameter. For example

an argument may provide both a date and place to for the parameter born. (e.g.

born = 1982, Leipzig)

3. A single piece of relevant information may be spread across multiple parameters.

For instance the infobox Infobox_NFLactive39 defines separate parameters for the

height of a person in feet and the remainder in inches instead of providing a single

parameter.

We name the operations required to deal with these cases map, split, and merge. A

depiction of these cases is shown in Figure 15.

RDFInfobox

| weighs = 160lb

| height_ft = 6

| born = 1980­01­27 [[Bonn]]

dbpedia­owl:weight
“72.73”^^xsd:float

dbpedia­owl:height
“185.42”^^xsd:float

dbpedia­owl:birthDate
“1980­01­27”^^xsd:date

| height_in = 1

dbpedia­owl:birthPlace
dbp­owl:Bonn

Figure 15: Illustration for map, split, and merge cases.

In our solution we only address the map and split cases, as for them defining mapping

rules is simple enough to be understood by many people. The problem with merge cases

is, that the required expressivity would not be very user friendly. For instance merging

the parameters height_ft and height_in would involve converting feet and inches to a

common unit and performing an addition. In the original Mapping-Based Extractor

handling of such cases was hard coded.

We introduce the template DBpedia infobox annotation which defines the two pa-

rameters relatesToClass and mapping, which serve the purpose of relating infoboxes

to classes and parameters to properties, respectively. An example of such a template is

shown in Listing 4.

39http://en.wikipedia.org/w/index.php?title=Brian_Brohm&oldid=
338078082

38

{{DBpedia infobox annotation

| relatesToClass = Musician

| mapping =

{{ DBpedia map | born | birthPlace | links}}

{{ DBpedia map | born | birthDate | date}}

{{ DBpedia map | weighs | weight | lb}}

}}

Listing 4: Example of an Infobox Annotation

The parameter relatesToClass is interpreted as the name of a single ontology class.

As these classes are defined on DBpedia ontology definition pages, the given value will

appear as a link to the corresponding page.

The parameter mapping is intended for specifying a list of parameter-to-property

mappings via instances of the DBpedia map template. The three parameters of that

template are (1) the name of the parameter being mapped, (2) the name of the ontology

property being mapped to, and (3) the parse hint, indicating which parts of an argument

should be used for triple generation.

Triple generation for such mapped parameters works as follows: Whenever the

Extraction Framework extracts data from an article referencing an annotated infobox, the

article’s corresponding DBpedia resource will become an instance of the given class.

The parse hint indicates which parts to match from the argument-value, and how to

process them. For each matching value, a triple with the following properties is generated:

The DBpedia URI corresponding to the page containing the infobox becomes the subject,

the property corresponding to the parameter becomes the predicate and the processed

value becomes the object. If the parse hint results in multiple parts of the argument-value

being matched, then a triple is created for each of them.

Parse hints are used by the DBpedia Extraction Framework for matching parts of an

argument-value and processing these parts in order to form the objects of triples. For

instance, the parse hint for pounds, lb, indicates to look for plain numeric values like 10,

and numeric values that have units associated with them, such as 12kg or 5m. If there is

no unit, then the value should be assumed to be in pounds. Otherwise, only values whose

quantity equals that of the parse type are considered matches. For instance, the quantity

of both lb, and kg is Weight. However the quantity of m is Length. Therefore the value

39

Quantity Unit Parse hint

Length metre m
km km
inch in
foot ft
mile mi

Area square metre m2
square kilometre km2
square mi mi2

Volume cubic metre m3
Temperature celsius C

fahrenheit F
kelvin K

Weight kilogram kg
pound lb

Flow rate cubic metres per second m3/s
cubic foot per second ft3/s

Population density individuals per square kilometre pop/km2
individuals per square mile pop/mi2

Table 7: Parse hints for units

5m would be ignored by a mapping rule with parse hint lb.

Currently supported parse hints of the framework are:

• text The whole argument-value is matched for being converted to a plain literal.

• links All links to other pages are matched, and the names of the link target converted

to their corresponding DBpedia resources.

• dates Matches dates in order to generate typed literals.

• currency Matches values that have a currency associated with them, such as 100$.

• The parse hints for specific units are shown in Table 7. We want to stress, that these

parse hints are not used for specifying the target unit values should be converted

to. Instead, they define the default unit that should be assumed for numeric values

without a unit.

A small real world example Consider the excerpt in Listing 5, taken from the infobox

about “Björk”40

{{Infobox musical artist

| Born = {{birth date and age|df=yes|1965|11|21}}
 [[Reykjavik]],

[[Iceland]] }}

Listing 5: A small excerpt from an infobox

40http://en.wikipedia.org/w/index.php?title=Bj\%C3\%B6rk&oldid=343461245

40

As we can see, the parameter born contains both links relating to the birth location as

well as a date relating to her birth date.

We now use the snipped in Listing 6 to annotate Infobox_musical_artist41.

{{DBpedia template

| relatesToClass = Musician

| mapping =

{{ DBpedia attribute | Born | birthPlace | links}}

{{ DBpedia attribute | Born | birthDate | date}}

}}

Listing 6: Annotation of the infobox

In this case the birth date and birth place can be easily separated using the appropriate

parse hints. In this case the parse hint date is used to match the birth date and age

template in order to eventually generate a RDF date literal from it. As there are multiple

links given for birth place, a triple will be generated for each of them. In the case that the

link targets are again articles which contain annotated infoboxes, it is indirectly possible

to tell the country and the city apart.

4.3 Deployment

The deployment plan was as follows: The Schema Definitions should be hosted on

MetaWiki, and the Infobox Annotations should be added to the corresponding infoboxes’

documentation pages. We discuss these two deployments separately.

4.3.1 Deployment of the Schema Definitions

One of the major questions about the DBpedia ontology was whether there should be an

individual DBpedia Infobox Ontology for each language version of Wikipedia or whether

there should be only a single ontology for all language versions. Eventually the DBpedia

team decided in favor of the latter option as it seemed easier having to only maintain a

single ontology. As a consequence, language specific Wikipedias were considered to be

unsuitable hosts.

Eventually MetaWiki was chosen as a suitable host for the following reasons:

41http://en.wikipedia.org/wiki/Template:Infobox_musical_artist

41

• One of the roles MetaWiki serves is being a multilingual discussion forum for

various matters concerning all Wikimedia related projects. These projects include

(but are not limited to) all language versions of Wikipedia. It seemed that the

Schema Definitions could be one of those matters.

• It is possible to create interwiki-links to MetaWiki from any Wikipedia. Therefore

classes and properties referenced in Infobox Annotations could be displayed as

links to Schema Definition pages on MetaWiki.

• As MetaWiki and Wikipedia are both based on the MediaWiki software, they both

support the same wikitext.

The original DBpedia ontology was automatically converted into the template repre-

sentation using a script. Each of these templates then needed to be placed on appropriate

pages located at http://meta.wikimedia.org/wiki/User:DBpedia-Bot/ontology/<name>.

As about 200 classes, 400 object and 300 data type properties were converted, a total

of 900 pages needed to be upladed. In order to avoid having to do the upload manually,

a script was written which automatically performed the upload using the MediaWiki

API. Wikipedia policies state, that large amounts of automatic edits must be done using a

dedicated user account with permission to perform these edits. As a consequence, the

user DBpedia-Bot was created. There is a reason why the ontology resides in the user

space of this bot, rather than the main namespace. Initially the ontology was uploaded to

. . . /wiki/DBpedia/ontology, but it was found out to clutter up searches, as various labels

are used throughout the ontology. As by default, searches on MediaWiki are only carried

out on the main namespace, it was suggested to move it to a different namespace.

4.3.2 Deployment of the Infobox Annotations

The infobox annotations were intended to be added to corresponding infoboxes’ docu-

mentation pages on EnWiki. In contrast to the ontology schema pages, which were all

newly created, these documentation pages usually already contained content contributed

by other Wikipedians. As there were only about 350 infobox annotations, we considered

that the risk of damaging these pages with automatic edits is high enough to favor a

manual approach. Therefore the annotations were distributed among the members of the

42

DBpedia team who manually performed the edits. At that time, an early design of the

Infobox Annotation templates was used, which is depicted in Figure 16.

Figure 16: Early design of the presentation of an Infobox Annotation

Unfortunately during this step the teams’ user accounts were blocked. An entry was

made on the adminstrators’ notice board42 where the team was accused of spamming.

Eventually a large discussion arose there of whether the Infobox Annotations could be

placed on EnWiki, and if yes, whether the realization is appropriate. At some point, the

discussion was continued on the technical village pump43.

What follows is a summary of the arguments for and against the DBpedia approach.

Some arguments we encountered in the discussion showed a lack of understanding of our

intentions. Other arguments showed our lack of understanding the Wikipedia community

processes. Although there was support for the general idea of making infobox data better

accessible for machines, there were concerns about our technical implementation. In the

following we discuss some arguments that were brought up in the discussion.

• “Putting the Infobox annotations on En-Wiki makes extraction easier for DBpedia”.

This is not true. On the contrary, the extraction job becomes more complex by

that. However, what we do expect in the mid run is, that the maintainance of the

Infobox Annotations becomes easier once a community has been established and

some tools have been created.
42

http://en.wikipedia.org/wiki/Wikipedia:Administrators’_noticeboard/IncidentArchive576#DBpedia_spamming_infobox_
templates

43
http://en.wikipedia.org/wiki/Wikipedia:Village_pump_(technical)/Archive_67#For_your_attention_-_DBpedia_

templates

43

• “The annotations are very bloated and ugly, and totally dominating the pages they

were on. Also, the enormous logo gives a strong impression of spam.”

Unfortunately this is correct. While many Infobox Annotations were relatively

small and therefore did not look too bad, some annotation tables exceeded fifty

rows. This issue was addressed with a revised presentation of the infobox templates,

as explained later.

• We were not granted permission to do these changes.

Ultimately this is true, although we talked with people, who were to a certain

extend involved in Wikipedia, about our plans beforehand. Since they did not

oppose them, we though it would be ok to proceed. In fact none of us was an

expert at Wikipedia community processes.

• “Wikipedia is not your web host and your content does do nothing to serve

Wikipedia. If we allowed DBpedia to put such unrelated content on Wikipedia,

everyone else would also have to be allowed to do so. Therefore the content does

not belong there.”

Our hopes were that Wikipedia would also benefit from the project: The annota-

tions would make Wikipedia more attractive for other extraction projects as well,

since they could freely reuse our annotations.

• “Some redundancy of infoboxes is due to the lack of proper programming language

support which results in many similar infoboxes to be created which serve a

similar purpose. This is another reason why parameters are not streamlined. But

instead of introducing mappings to fix that, rather introduce a proper programming

language.”

A programming language would be a nice thing to have, but it would not help us

relating infoboxes to classes, or streamlining the names of certain parameters. Our

approach would still be useful.

• “Infoboxes are a mess. But building a layer of abstraction over this mess is the

wrong thing to do. It would not be hard standardizing infoboxes once the need

occurs.”

44

Our point is, that there is a high barrier of making modifications to the infoboxes

directly as they affect all articles which use them. However the Infobox Annota-

tions have no effect on Wikipedia. The burden of processing such changes is on

DBpedia’s side.

Revised Presentation of Infobox Annotations In the course of the discussion the

DBpedia team filed a “Request for Comment” (RFC) with the purpose of explaining our

goals and approaches to the Wikipedia community. In this RFC44 a revised version of

the appearence of the Infobox Annotation template is presented. The DBpedia logo is

no longer present, the font is sleeker, and most importantly, its visibility can be toggled.

A depiction of it is shown in Figure 17. Therefore if that template was allowed on the

documentation pages, it could by default be shown collapsed, resulting in as little space

as possible being used up, effectively being no longer as bloated as our original version

was.

Figure 17: The revised presentation for Infobox Annotations

Unfortunately the outcome of the discussion was, that there was no consensus for

another deployment attempt with the revised Infobox Annotations. As a consequence,

the DBpedia team decided to set up their own MediaWiki instance45 for hosting the

Schema Definitions and the Infobox Annotations. The templates used on the new wiki

are based on the design presented in this chapter, but were slightly improved.

44
http://en.wikipedia.org/wiki/Wikipedia_talk:Requests_for_comment/infobox_template_coherence

45http://mappings.dbpedia.org

45

4.4 Discussion

The discussion is divided into three parts: First we discuss general issues with the

DBpedia Infobox Ontology and the Schema Definitions. Afterwards we focus on usability

aspects of our approach. Finally, we conclude this chapter with future work.

4.4.1 What Kind of Ontology

During the development of the Extraction Framework for the ontology definitions it

became apparent that even among the DBpedia team there were different views about

the nature of the DBpedia ontology. Essentially we identified three major diverging view

points:

• The ontology should capture the essence of EnWiki’s infoboxes. Therefore it

should neither contain very abstract class hierarchies nor superficial classes (classes

with hardly any instances). For example, OpenCyc defines physical information

bearing object46 as a subclass of hexalateral object47. Both classes do not seem

very useful for classifying infoboxes.

• The ontology should be “unconstrained”: Eventually the contributors decide what

kind of ontology they want to have. Their edits will lead to discussions which

ultimately lead to the definition of rules of what content should be permitted and

what not.

• An application ontology: It should be permitted to add application specific data

to the ontology. For instance, it was suggested to allow stating that the heights of

people should be extracted in centimeters, as this would make it easier to display

that information in a specific user interface.

In our opinion the first option is the only sensible way to go. The schema of the

Infobox Ontology should provide an intuitive and pragmatic entry point to the instance

data, and a basis for linking it to other knowledge bases. In regard to the second option,

it is likely that such approach leads to confusion. At the very least, we have to set up

46http://sw.opencyc.org/2009/04/07/concept/en/HardcopyInformationBearingObject
47http://sw.opencyc.org/2008/06/10/concept/en/HexalateralObject

46

the basic rules that point into the direction the project should head. Application specific

information should be kept elsewhere.

As for issues with the Schema Definitions, just one wrong rdfs:subClassOf could

already have a significant effect on the classification of instances (assume someone stating

that Place is the same class as Person). Even worse, a wrong value for owl:disjointWith

may render the schema inconsistent. A possible solution to these cases would be, to set

the live extraction framework up the way, that the Schema Definitions are piped through

a reasoner. This would allow for detecting major schema changes and inconsistencies as

soon as they become introduced. Unfortunately due to the other challenges and barriers

we faced during this thesis, we ran short of time. Therefore we need to leave such an

implementation as well as the design of what procedure to follow, if such events are

detected, for future work.

4.4.2 User Friendliness vs Expressivity

A major problem is keeping the balance between user friendliness and expressivity.

For instance, the current implementation of the Infobox annotations does not support

specifying rules for mapping multiple infobox parameters to a single ontology prop-

erty. These cases are still handled with the original Extraction Framework, where

these rules are hard coded. Furthermore, the Infobox Annotations do not provide any

means of conditional mappings, which would be very useful for example for the infobox

Infobox_musical_artist: According to its documentation48, the value given for the param-

eter background should categorize the topic being described, so whether it’s for example

a solo singer, a band, or a classical ensemble. In regard to our Infobox Annotations, it

would mean that the related class depends on the value given for that parameter. In that

case, the question is, whether to extend the Infobox Annotations with conditionals, or

define such classes implicitly using OWL axioms. Unfortunately either solution is rather

complex to use. For example, the content of Listing 7 would be necessary for stating:

“Any resource using the template Infobox_musical_artist, and having the value Classic

ensemble for the parameter background, should become an instance of ClassicEnsemble.

48http://en.wikipedia.org/w/index.php?title=Template:Infobox_
musical_artist/doc&oldid=343114884

47

Class: ClassicEnsemble

EquivalentTo: wikiPageUsesTemplate Infobox_musical_artist AND

background value "Classic ensemble"

Listing 7: Classification with OWL axioms

Another issue is, that there are articles which cover multiple very similar topics and

therefore transclude multiple infoboxes. For example many manga/anime related articles

deal with the comic, the computer game, the TV series, and the movie at once. Some of

the infoboxes in question are named Infobox animanga/Film, Infobox animanga/Video,

Infobox animanga/Print. In such cases it would be necessary to generate distinctive

resources for each meaning of the article. A possible solution would be to extend the

Infobox Annotation language to allow for specifying arbitrary strings that will become

appended to the respective DBpedia-URI. For instance if an article named <name> uses

the infobox Infobox animanga/Film, a resource . . . /<name>/film could be created.

Additional complexity is introduced as the more Infobox Annotations and Schema

Definitions there are, the harder it it becomes to keep track of them.

4.4.3 Future Work

The deployment of the Infobox Annotations turned out to be a very heavyweight process

due to the resistance encountered. Even the successful deployment of the ontology

schema on MetaWiki took its time, as permissions for automatic edits had to be requested,

and once even the whole ontology had to be moved to a different namespace. Eventually

the DBpedia team decided that at current state, the flexibility gain by setting up their own

wiki outweighs the advantages of a deployment on EnWiki and MetaWiki. Eventually,

the DBpedia team from the FU Berlin set up their own publicly accessible MediaWiki

instance49 for the purpose of modeling the Schema Definitions and Infobox Annotations.

The templates used on that wiki are a slightly improved version of the ones presented in

this thesis and were jointly developed with us. Currently the wiki provides the following

tools:

• An Ontology View, which provides an overview of the DBpedia Ontology.

49http://mappings.dbpedia.org

48

• A Mapping Validator, which checks for syntactical correctness and ontological

consistency.

• An Extraction Tester for extracting EnWiki pages against given Infobox Annota-

tions, in order to provide direct feedback on the mapping.

The reason MediaWiki is used, is, that depending on the success of this new wiki, another

deployment of the templates, together with the newly developed tools, might be attempted

on EnWiki in the future. An alternative goal would be to move the mapping-wiki into

the Wikipdia farm in the sense that potential DBpedia-contributors could reuse their

Wikipedia login rather than having to register at the mapping-wiki separately.

Currently the DBpedia Ontology Mapper, depicted in Figure 18, is being developed

by the FU Berlin with the aim of easing the annotation and schema definition process. It

provides a search field with auto-completion for browsing available infoboxes. When

one is selected, its corresponding parameters are displayed in the left panel, whereas

the Infobox Annotations can be edited in the center panel. The right panels are used for

editing the Schema Definitions. Any changes made with this tool should be eventually

written back as templates on the wiki again. Unfortunately, there has not been an official

release at the time this thesis was finished.

Figure 18: The DBpedia Ontology Mapper

49

5 DBpedia Live Extraction

The aim of the DBpedia Live Extraction is to extract RDF data from relevant pages

on EnWiki and MetaWiki immediately after they are edited. For each of these pages a

corresponding dataset is maintained in a triple store. Whenever a page is edited, any

previously existing dataset is discarded and the dataset corresponding to the page’s

latest revision is inserted. In our case the relevant pages are the articles and the Infobox

Annotations (see Section 4.2.3) on EnWiki, and the Schema Definitions on MetaWiki

(see Section 4.2.1). Although so far the deployment of the Infobox Annotations failed, as

discussed in Section 4.3.2, we still refer to these two wikis in order to ease the discussion.

DBpedia Live enables us to overcome the manual efforts originally required to

produce the DBpedia datasets. But even more interesting is the fact that the datasets will

contain up-to-date data, thereby making certain use cases more appealing. These are

summarized as follows:

• List maintenance: Lists containing up-to-date data from EnWiki can be easily

aggregated with SPARQL queries. Therefore in some cases DBpedia Live can

be used instead of having to write custom scrapers or even having to manually

keep such lists up-to-date. For instance a fan site of a movie could power a widget

displaying a list of current movies done by the same director with DBpedia Live.

As a side note: Such widget would have to present the DBpedia data in some

way. Fortunately there are tools which simplify this task. For instance, arbitrary

presentations of RDF data (e.g. as HTML) can be defined with the Fresnel

vocabulary[15]. Examples of corresponding implementations are given in the

same reference. Another solution for this problem is provided by LESS[2] where

presentations are defined based on templates.

• Concept Tagging: In contrast to free tagging which allows people to use arbitrary

pieces of text as tags, concept tagging limits the choice of tags to a predefined set of

concepts. One aim is to overcome the problems of synonyms (e.g. New York City

and NYC) and homonyms (e.g. Jaguar could be an animal or the brand of a car).

Among others, Wikipedia and DBpedia have been used as such concept sources.

However, DBpedia Live will now be on a par with Wikipedia’s up-to-dateness and

50

therefore recent events such as the Haiti-Earthquake50 will be available as concepts

immediately.

In the following sections we first describe the DBpedia live datasets. Then we present

the contributions made to the DBpedia extraction framework. Afterwards we go into

its technical details, especially concerning the triple management strategies involved.

Finally we describe the new extractors that were created in the course of this thesis.

5.1 The DBpedia Live Dataset

The DBpedia Live dataset made publicly available is composed of the following four

major parts: (1) the dataset based on EnWiki pages, (2) the dataset containing the schema

definitions extracted from MetaWiki, (3) metadata for the schema definitions with the

purpose of simplifying certain queries and finally (4) these links to the knowledge base

described in Section 3.5. The first three datasets are dynamically updated whenever

respective pages are modified. The fourth dataset is “static”, in the sense that is unaffected

by such edits.

All datasets reside in the graph http://dbpedia.org, except for (3) which is

stored in http://dbpedia.org/meta. We will refer to these graphs as DataGraph

and MetaGraph, respectively. Access is provided via SPARQL51 and the Linked Data

interface52. As a side note, during development, the MetaGraph was intended to also hold

metadata about every single triple in (1). Especially the information about the page, the

extractor, and the point in time a triple was generated is essential for creating incremental

database dumps. Due to performance reasons we eventually refrained from solving this

using the MetaGraph. Instead we decided to keep this information in a separate database

as described in Section 5.5.5.

The metadata vocabulary about the schema definitions consists of the following

properties:

• dbpmeta:sourcePage The DBpedia-resource of the page the triple was extracted

from e.g. dbpedia:ontology/birthPlace.
50http://en.wikipedia.org/wiki/2010_Haiti_earthquake
51http://dbpedia-live.openlinksw.com/sparql
52http://dbpedia-live.openlinksw.com/resource/

51

• dc:modified When the triple was extracted the last time e.g. 2009.11.24T09:10:36

• dbpmeta:usedExtractor The URI of the extractor that was used for generating the

triple. Currently the only value is dbpmeta:TBoxExtractor.

• dbpmeta:aspect Multiple triples may be generated from arguments of ontology

definition templates such as owl:equivalentClass = Plant OR Animal (see Table 14

in Section 4.2.2 for an example of the generated RDF). In order to be able to

easily query those triples with SPARQL, their reifiers are related to the argument-

key’s corresponding property (in this example to owl:equivalentClass) via the

dbpmeta:aspect property. An example query is given in Listing 8.

SELECT ?s ?p ?o

FROM <http://dbpedia.org/meta>

WHERE {

_:b owl:annotatedSource ?s .

_:b owl:annotatedProperty ?p .

_:b owl:annotatedTarget ?o .

_:b dbpmeta:sourceResource dbpedia-owl:LivingThing .

_:b dbpmeta:aspect owl:equivalentClass .

}

Listing 8: Querying sets of triples for specific properties using dbpmeta:aspect

5.2 Requirements

What follows is a list of the most important requirements that had to be met.

• Performance On average, about 2.3 pages are edited on EnWiki per second53,

totalling nearly 200.000 pages per day. Among these pages, approximately 150.000

are articles, 2500 are templates, and less than 150 are template-doc pages. These

are the page types that are relevant to DBpedia Live. Ideally, their edits are handled

immediately, which means, that the average extraction time of a single page must

not exceed 0.56 seconds, which is very little time.

However, if pages were repeatedly edited within a certain period of time, the

overall amount of pages required to be processed could be reduced, by dealing

with only the most recent of their edits.
53Measured on 14th May 2010.

52

We measured the potential savings with the following two strategies:

1. Every time a page is edited, a count down is started for it. We then count the

total number of subsequent edits while the count down has not reached zero.

This is the number of edits that need not be processed.

2. Same as (1), except that every subsequent edit resets the count down.

Figure 19 shows the ratio of saved edits to the total number of edits for count

downs ranging from 0 to 30 minutes. For instance, a value of 5 minutes reduces

the workload by 20%, which increases the allowed average processing time per

page to 0.7 seconds. DBpedia Live is not required to process edits immediately,

however, it should not use delays greater than 5 minutes.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30

S
av

ed
 e

di
ts

 (
%

)

Count down (minutes)

Count down reset enabled
Count down reset disabled

Figure 19: Workload reduction vs article process delay

MetaWiki’s total edit rate is more relaxed with less than 1500 edits per day, and

since we are only interested in the ontology schema definitions, we expect far less

than a hundred daily relevant edits.

• Cleanliness The store should only contain the most recent triples extracted from a

page. Therefore outdated triples must be removed.

• Deployment The Live Extraction was destined to be hosted at one of OpenLink’s

servers. In the early stages this was a test server. After the extraction was running

53

stable, it has been moved to its final destination. Due to the hosting of other

services besides DBpedia on those servers, we were not granted direct access to

them. For that reason it was important to pay attention to robustness and logging.

• Robustness The Live Extraction process is a long running one. Once the process

is initialized successfully, it must recover from most errors encountered during

runtime. Concretely these errors are: connection loss to any of the frameworks

own relational databases, its triple stores, EnWiki, and MetaWiki. Furthermore

it must be considered that extractors may sometimes bail out (e.g. due to invalid

wikitext).

• Logging The purpose of logging is to keep track of all relevant internal events

encountered during the extraction process. Since we did not have access to the

server the extraction was running on, this was crucial for debugging.

54

5.3 DBpedia Live Architecture

The Live Extraction Framework is an extension of the original Extraction Framework.

New components were introduced, which will be briefly described in this section. The

components and their relationships are depicted in Figure 20.

EnWiki Component
(Java)

DataGraph
(RDF Store)

poll records write records to files

Extraction
Component

(PHP)

Spooler directory
(Filesystem)

poll

Infobox Annotation DB
(SQL)

Triple Management DB
(SQL)

update

MetaWiki Component
(Java)

poll records

delete

query

update

update

update

MetaGraph
(RDF Store)

update

update

Contributed components are marked red.

Figure 20: Overview of the DBpedia Live Extraction Framework

DataGraph The graph containing the RDF data extracted from articles and Schema

Definitions.

MetaGraph A newly introduced graph providing metadata about the triples in the

DataGraph, such as which page they originated from, which extractor produced them, or

when they were created.

Infobox Annotation DB A database holding the Infobox Annotations extracted by the

EnWiki component. The LiveInfoboxExtractor uses this information in order to guide its

extraction process.

55

Triple Management DB A database used for managing triples. Sets of triples are

associated with the page and extractor that generated them. This database is needed for

identifying the triples that need to be removed from the DataGraph in the event of page

edits.

MetaWiki component This component solely serves the purpose of extracting the

Schema Definitions from MetaWiki. The extracted triples are stored in the DataGraph.

Furthermore, metadata about those triples comprising the corresponding extractor, page,

and timestamp are inserted into the MetaGraph.

EnWiki component This component was initially introduced in order to account for

fetching recent edits from EnWiki’s update stream and saving them to files. Java was

chosen as existing libraries such as Jena and OWL-API could be reused. As time passed,

this component grew, so it now also handles the deletions of articles and the extraction of

Infobox Annotations.

Extraction component This is the original extraction framework. During the develop-

ment of the Live Extraction Framework, its core architecture (outlined in Section 3.4)

remained unchanged. However, some sub-components were created or adapted. These

changes are:

1. Implementations of the interfaces IPageNameIterator and IPageContentProvider

were created, which support processing the files generated by the EnWiki compo-

nent.

2. A new extractor for infoboxes taking Infobox Annotations into account was created.

This extractor is known as the LiveMappingBasedExtractor.

3. The ActiveAbstractExtractor generates abstracts from articles. While its perfor-

mance surpasses that of the previously existing AbstractExtractor, the quality of

the output is unfortunately noticeable worse.

56

5.4 Extraction Workflows

In this section we first explain how pages that were recently edited can be retrieved from

EnWiki and MetaWiki. Then we describe how the live extraction framework processes

them.

5.4.1 Retrieving updates from MediaWiki

A fundamental prerequisite for DBpedia Live is to have access to updates from Wikipedia

in near realtime. This functionality is provided by the freely available OAIRepository

MediaWiki-extension which is especially deployed at EnWiki and MetaWiki. This

extension makes it possible to poll modifications of pages.

The OAIRepository MediaWiki extension is an implementation of the Open Archive

Initiative Protocol for Metadata Harvesting (OAI-PMH)54. Its key concepts are items,

records and repositories. In general, items are identifiers, while its representation in a

certain format is called a record. We will refer to these item identifiers as oaiIds. In

our context, items correspond to page names and records to pieces of XML providing

information about that page as for example its content and last modification date. A

metadata prefix is used to choose between representations. A repository is a server which

is capable of processing the HTTP-requests defined in the specification. These request

types are called verbs. In our case the most important verbs were listIdentifiers

and listRecords which allow retrieval of sets of identifiers and records, respectively,

which were modified after a given date. Additionally the verb getRecord is used to

retrieve a single record for a specific oaiId.

The OAIRepository extension only stores the latest revision of a page and discards

the others. Therefore requesting pages in a certain period of time will not return all

modifications that occurred in that range, but only the pages whose last modification

date lies within that range. Whenever a record is deleted, only the oaiId and the deletion

date can be retrieved, not the page title. For that reason the oaiId must be associated

with the extracted data in order to allow for clean deletions. The oaiId is a URI com-

posed of the parts oai:<domain>:<wikiName>:<pageId> and have the specific forms

54http://www.openarchives.org/OAI/openarchivesprotocol.html

57

oai:en.wikipedia.org:enwiki:<pageId> and oai:meta.wikimedia.org:metawiki:<pageId>

for EnWiki and MetaWiki, respectively. Access to Wikipedia’s OAIRepository is not

public and therefore requires credentials which were kindly provided to us by Brion

Vibber55.

5.4.2 English Wikipedia Extraction Workflow

The process of extracting RDF data from the wikitext of EnWiki pages works as follows:

The EnWiki component polls EnWiki’s OAIRepository at a fixed rate (about thirty

seconds) for the most recent records. If the result of a poll reveals that there are still

more records available, polling continues with a shorter delay (about five seconds)

in order to catch up. This is repeated until no more records are available. A more

sophisticated solution could consider records-per-time ratios in order to reduce the

polling to a minimum.

A record either denotes a modification of a page’s content (including its creation) or

the deletion of a page. In the former case it is determined whether the page is an article

or a template documentation. Articles are put into the spooler directory to be processed

by the Extraction component. Template documentation pages are scanned for Infobox

Annotations. If such an annotation is found, it is extracted and the Infobox Annotation

DB is updated accordingly. The current implementation does not support reprocessing

articles containing infoboxes, whose corresponding Infobox Annotations were changed.

In the event of deletions, we are only given the oaiId of the deleted page. Therefore

we need to check the Triple Management DB as well as the Infobox Annotations DB

whether triples or Infobox Annotations were associated with that identifier, and remove

the corresponding data. The Extraction component polls the spooler directory on a

regular basis and sends the pages it finds to the extractors which extract RDF data. This

data is then written into the DataGraph and the Triple Management DB. In the latter DB

this data is associated with the page’s corresponding oaiId. A graphical overview of the

workflow is shown in Figure 21.

55Lead developer of MediaWiki until late 2009.

58

Figure 21: Article and Infobox Annotation extraction workflow

5.4.3 MetaWiki Extraction Workflow

The extraction workflow from MetaWiki is aimed at extracting the ontology Schema

Definitions located on the subpages of User:DBpedia-Bot/ontology. In fact, these are

the only pages on MetaWiki we are interested in. Whenever such a page is edited, any

previously extracted data that is contained in the DataGraph and MetaGraph is discarded.

Figure 22 depicts this workflow.

Figure 22: Schema Definition extraction workflow

59

5.5 Triple Management

In this section we discuss various strategies for updating a page’s corresponding set

of triples in the DataGraph after an edit. Large parts of this section (including its

subsections) have been published in [20].

The main difference between the original and the live version of the framework is,

that a strategy for updating the DBpedia dataset needs to be employed, as only the data

corresponding to the articles’ latest revisions should be retained. Such update strategy

needs to respect two things: Firstly, the DBpedia live store is seeded with the latest

DBpedia dataset, which is ver. 3.4 at the time of writing. The seeding is done in order

to provide initial data about articles that have not been edited since the start of the Live

Extraction process. Therefore the extraction takes place on an existing dataset, which

not only contains data extracted from EnWiki, but also the third party datasets, that

were outlined in Section 3.5. As the data of these third party datasets can neither be

constructed from articles nor ontology definition pages, this data must remain unaffected

by the Live Extraction process. However, when an article gets edited, its corresponding

data in the seeding dataset must be updated. Since all data resides in the DataGraph, this

becomes a rather complex task.

Secondly, the state of the extractors need to be taken into account. An extractor can

be in one of the states Active, Purge, and Keep, which affects the generation and removal

of triples as follows:

• Active The extractor is invoked on that page so that triples are generated.

• Purge The extractor is disabled and all triples previously generated by the extractor

for a that page should be removed.

• Keep The extractor is disabled but previously generated triples for that page should

be retained in the store.

The state Keep enables us to deactivate an extractor without losing its previously gen-

erated data (if it exists) for pages that are edited. This is useful in order to turn off

extractors for maintenance. For instance when it is discovered that an extractor occasion-

ally produces wrong data, it is neither desirable for the errors to spread further (Active),

60

nor to lose all previously generated - presumably mostly correct - data (Purge).

Our initial strategy is summarized as follows: When the extraction framework

recognizes an edit of an article for the first time, a clean up is performed, which removes

all but the static facts from the seeding data set for the article’s corresponding resource.

The new triples are then inserted into the DataGraph. Addionally, the following

metadata is added to the MetaGraph: A resource representing the extraction process that

generated these triples is created. The page, the extractor and the time of the extraction,

as well as all generated triples56 are then associated with that resource. On subsequent

edits of the respective article, this metadata can be used to easily identify the triples

needed to be updated.

As DBpedia consists of approximately 300 million facts, annotations would boost

this value by a factor greater than four57.

OpenLink provided us with a test server that was claimed to be capable of handling

these amounts of data. Unfortunately, as the amount of data in the store grew, we soon

realized that the update performance became so slow that edits on Wikipedia occurred

more frequently than they could be processed. Even skipping articles that are edited

repeatedly within a certain period in time (see Section 5.2) did not lead to a sufficient

performance gain.

Obviously there was a misunderstanding: The server actually was capable of answer-

ing queries on these amounts of data in reasonable time, however, it was not capable

of processing the updates fast enough. Before resorting to acquire better hardware, we

considered alternative triple management approaches.

In order to ease the discussion, we explain the “simple annotation-based update

strategy” before the generic one, although we implemented them in reverse order.

• Clean-Up: This is the strategy required for cleaning up the seed dataset, for which

no explicit information about the triples’ corresponding extraction processes exists.

Although other strategies may introduce their own metadata for managing the

triples, they must fall back on this strategy at least on an article’s first recognized

56Actually their reifiers.
57Three triples in order to form the reifier (omitting the rdf:type-triple), and one triple for associating the

reifier with the extraction process resource. Additionally, each extraction process requires three additional
triples, describing its page, extractor, and time.

61

edit.

• Simple annotation-based: Each triple is directly annotated with the corresponding

extractor, page and time.

• Generic annotation-based: This is our initial strategy. Each extraction process,

identified by the page, extractor, and time, is represented using a distinct resource.

The corresponding triples are associated with it. This is our initial implementation.

• Resource-Specific Graphs: A strategy where all triples generated from a specific

page-extractor pair reside in their own graph.

• RDB-Assisted: In this strategy, metadata about triples is stored in a relational

database, rather than the MetaGraph.

Finally we present an evaluation of some of the implemented strategies.

5.5.1 Clean-Up Strategy

The problem we are facing with the seed-dataset is: Whenever a page is edited, we need

to update its corresponding triples in the DataGraph according to the extractors’ states.

In order to do so, we must be able to determine what the corresponding triples are, and

what extractor was used to generate them. However, in regard to the seed dataset, we

lack metadata that would enable us to easily achieve that.

Fortunately this problem can be solved by describing an extractor’s output with

patterns. Based on the states of the extractors and its pattern definitions, a clean up query

can be generated. Listing 9 contains an example of such pattern definition, and Listing 10

shows an excerpt of the clean up query generated from it.

’HomepageExtractor’ => array(

PRODUCES => array(

// Pattern matching triples whose predicate equals foaf:homepage

array(’type’=>EXACT, ’s’=>’’, ’p’=>FOAF_HOMEPAGE, ’o’=>’’)

)),

’AlwaysFilterExtractor’ => array(

PRODUCES => array(

// Pattern matching triples whose predicate matches rdf:type and

// whose objects starts with the yago namespace

array(’type’=>STARTSWITH,

62

’s’=>’’, ’p’=>RDF_TYPE, ’o’=>DB_YAGO_NS, ’pexact’=>true),

)),

Listing 9: Patterns describing extractors’ outputs

DELETE

FROM <http://dbpedia.org>

{ <http://dbpedia.org/resource/London> ?p ?o . }

{ <http://dbpedia.org/resource/London> ?p ?o .

Dynamically generated filters based on extractors in

active and purge state

FILTER(?p = foaf:homepage ||

more conditions for other extractors

) .

Static filters preventing deletion of the static DBpedia part

FILTER((?p != <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ||

!(REGEX(?o, ’^http://dbpedia.org/class/yago/’)) &&

more conditions for the static part

) .

}

Listing 10: Clean up query generated based on extractors’ output patterns

As can be seen in the example, the query becomes very complex as every pattern

definition of an extractor results in more filter criterias being added. Therefore we seek

to reduce the complexity of updates at least for subsequent edits of an article.

We want to mention, that the same patterns used for describing an extractor’s output

can also be used for validation. This is useful for debugging, as it allows for identifying

cases where an extractor’s output is not matched by its corresponding patterns.

5.5.2 Simple Annotation-Based Update Strategy

Here we describe an update strategy based on annotating triples directly with its generat-

ing extractor and corresponding page as shown in Figure 23. These annotated triples are

stored in the MetaGraph, whereas the actual triples reside as usual in the DataGraph.

This approach has the constraint that at any point in time, every triple in the DBpedia

graph may only be generated by a single extraction process. Otherwise a triple would end

up having multiple dbpmeta:usedExtractor and dbpmeta:sourceResource statements and

it would be impossible to uniquely relate it back to its generating extraction processes.

In other words: This approach only supports relations between processes and triples of

63

dbpedia:London

dbpprop:popu
lationTotal

dbpmeta:usedExtractor

dc:created

owl:Axiom

a

“7556900”^^xsd:int

owl:annotatedSource

owl:annotatedProperty

owl:
anno

tate
dTar

get

dbpm
eta:

sour
ceRe

sour
ce dbpedia:London

dbpmeta:Infobox
Extractor

“2010­01­12T10:04:00Z”
^^xsd:dateTime

Reifier­URI

Figure 23: Direct annotation of a triple

cardinality 1:N.

With these annotations present, the update procedure becomes fairly simple: Upon

an edit of a page, a delete query is built which removes all those triples from the

DataGraph, that have a reifier with respective annotations in the MetaGraph. Immediatly

afterwards, the corresponding triples in the MetaGraph are also removed. Finally, the

newly extracted triples are inserted into the DataGraph, and their new annotations are

added to the MetaGraph.

5.5.3 Generic Annotation-Based Update Strategy

In this section we discuss a strategy for managing triples, which – in contrast to the

strategy in the previous section – supports relations of arbitrary cardinality between

triples and their generating extraction processes. The basic view point is as follows:

Every triple is generated by one or more extraction processes. Such process is carried

out on a certain date, with an extractor, which takes a page as its input. These facts can

be represented in RDF as illustrated in Figure 24.

dbpedia:London

dbpprop:popu
lationTotal

dbpmeta:usedExtractor

dc:created

owl:Axiom dbpmeta:ExtractionProcess

a

“7556900”^^xsd:int

owl:annotatedSource

dbpmeta:generatedowl:annotatedProperty

owl:
anno

tate
dTar

get

a

dbpm
eta:

sour
ceRe

sour
ce dbpedia:London

dbpmeta:Infobox
Extractor

“2010­01­12T10:04:00Z”
^^xsd:dateTime

Reifier­URI Process­URI

Figure 24: Relating a triple to its generating extraction process

In this example, we state that the triple corresponding to “London has 7556900

64

inhabitants” was generated by an extraction process, performed on the 12th January

2010, from the resource dbp:London, using the InfoboxExtractor. We create URIs for

reifiers based on MD5 hashes from the subject, predicate, and object of the triples. The

process URI is created similarly; except that its MD5 hash is based on the values of the

dbpmeta:usedExtractor and dbpmeta:sourceResource predicates.

This strategy was implemented in order to support the global URI scheme for class

expressions, as explained in Section 4.2.2.

The update strategy works as follows: Whenever an extraction process p takes place,

we are left with two sets of triples: The (possibly empty) set of triples already residing

in the DataGraph that was previously generated by an equivalent process, and the one

that was recently generated and should replace the old one. We call these sets O and

N , respectively. Based on these sets, we derive two further sets: The set of removal

candidates R = O/N and the set of insertion candidates I = N/O. Generally any triple

in R loses its relation to p. Furthermore, the triple itself needs to be removed from the

graph when it loses its last relation to a process. As a consequence, a triple that is not

related to any process in the first place is not deleted by this method. This property is

exploited for preventing damage to the static DBpedia part in the case that a process

generates triples that are already members of the static part: Before a triple is inserted

and related to a process, it is first checked whether the same triple without any relations

to processes already exists in the graph. If that is the case, insertion of that triple is

skipped.

The update strategy becomes very heavyweight because of the many database queries

that are involved: First the whole set O needs to be retrieved, followed by determining

process relations of triples in R and I , and additionally pre-existence of triples in I .

Although our implementation worked correctly, the performance was rather bad. The

query execution times jumped at random times from about 1 to 300+. seconds. This

rendered this approach useless for us as this meant that these queries would not only

delay processing of individual pages, but they would also very likely slow down all

queries against the database in general. Our attempts in rewriting and optimizing these

queries did not solve that problem. After too much time went into this, we abandoned

this strategy.

65

5.5.4 Resource-Specific Graphs

Here we describe an update strategy based on partitioning the DBpedia live dataset into

multiple graphs, whereas each graph corresponds to a single extraction process.

The previously mentioned attempts have the disadvantage of either introducing a

high overhead with respect to the amount of triples needed to store meta data or being

very complex. A different approach is to put each set of triples generated by an extractor

from an article into its own graph. For instance a URI containing a hash of the extractor

and page name could serve as the graph name. The update process then becomes greatly

simplified as upon an edit, it is only necessary to clear the corresponding graph and

insert the new triples. This approach requires splitting the seeding DBpedia dataset into

separate graphs from the beginning. As the DBpedia dataset v3.4 comes in separate files

for each extractor, the subjects of the triples in these files determine the target graph. The

downside of this approach is, that the data no longer resides in a single graph. Therefore

it is not possible to specify the dataset in the SPARQL FROM clause. Instead, a FILTER

over the graphs is required as shown in Listing 11.

SELECT ?s ?p ?o

{ GRAPH ?g {?s ?p ?o} .

FILTER(REGEX(?g, ’\^http://dbpedia.org/’)) .

}

Listing 11: Selecting triples across multiple graphs

In fact, the breakage of the FROM clause was one of the main reasons we decided to

avoid this strategy. DBpedia Live already comprises two graphs (the DataGraph and the

MetaGraph), and the server where it gets deployed may contain more graphs, therefore it

is desired to be able to chose graphs in the usual way.

5.5.5 RDB-Assisted Update Strategy

The third approach we evaluated and implemented is to store RDF statements in a

relational database (RDB) in addition. This approach is motivated by the observation that

most changes made to Wikipedia articles only cause small changes in the corresponding

RDF data. Therefore, the idea is to have a method for quickly retrieving the set of

triples previously generated for an article, comparing it to the new set of triples and only

66

performing the necessary updates.

For selection of resources which have to be updated after a periodically finished

Wikipedia extraction process, we firstly created an RDB table as illustrated in Figure 25.

Whenever a Wikipedia page is edited, the extraction method generates a JSON object

dbpedia_page

page_id

resource_uri

serialized_data

Figure 25: Definition of the RDB table

holding information about each extractor and its generated triples. After serialization of

such an object, it will be stored in combination with the corresponding page identifier.

In case a record with the same page identifier already exists in this table, this old JSON

object and the new one are being compared. The results of this comparison are two

disjoint sets of triples which are used on the one hand for adding statements to the

DBpedia RDF graph and on the other hand for removing statements from this graph.

Therefore the update procedure becomes straight forward:

With this strategy, once the initial clean up for a page has been performed, all further

modifications to that page only trigger a simple update process. This update process

no longer involves complex SPARQL filters, instead it can modify the affected triples

directly.

SELECT data FROM dbpedia_page

WHERE page_id = "http://dbpedia.org/resource/London";

INSERT INTO dbpedia_page(page_id, data)

VALUES("http://dbpedia.org/resource/London", <JSON-Object>);

UPDATE dbpedia_page SET data = <JSON-Object> WHERE page_id = <pageId>

Listing 12: SQL Statements for fetching data for a resource

Delete From <http://dbpedia.org> { ... concrete triples ... }

Insert Into <http://dbpedia.org> { ... concrete triples ... }

Listing 13: Simple SPARQL Delete and insert queries

67

Algorithm 1 Algorithm of the RDB assisted update process
//The data to be put into the store is included in the extractionResult
//object
pageId← extractionResult[pageId]
resourceUri← extractionResult[resourceUri]
newTriples← extractionResult[triples]

//Attempt to retrieve previously inserted data for the pageId
jsonObject← fetchFromSQLDB(pageId)
if jsonObject 6= NULL then
oldTriples← extractTriples(jsonObject)
insertSet← newTriples− oldTriples
removeSet← oldTriples− newTriples
removeTriplesFromRDFStore(removeSet)
addTriplesToRDFStore(insertSet)

else
cleanUpRDFStore(pageId)
insertIntoRDFStore(newTriples)

end if

jsonObject← generateJSONObject(pageId, resourceUri, newTriples)
putIntoSQLDB(jsonObject)

5.5.6 Evaluation

We did a small evaluation by comparing the RDB assisted update process to a simplified

version of the Clean Up strategy. This simplified version deletes triples with a certain

subject using the query of Listing 14 instead of the one of Listing 10. The difference is

only that the complex filter patterns were omitted.

FROM <http://dbpedia.org>

{ <http://dbpedia.org/resource/London> ?p ?o . }

{ <http://dbpedia.org/resource/London> ?p ?o . }

Listing 14: Example of the simplified delete query

The benchmark simulates edits of articles and was set up as follows. 5000 distinct

resources were picked at random from the DBpedia dataset. For each resource two sets

O and N were created by randomly picking p% of the triples whose subject starts with

the resource. The sets O and N represent the sets of triples corresponding to an article

prior and posterior to an edit, respectively. A run of the benchmark first clears the target

graph and dbpedia_page table. Then each resource’s O-set is inserted into the store.

68

Finally the time to update the old sets of triples to the new ones using either the simplified

specialized update strategy or the RDB assisted one58 is measured. Additionally the total

number of triples that were removed (O − N), added (N − O) and retained (N ∩ O)

were counted. Three runs were performed with p = 0.9, p = 0.8, and p = 0.5 meaning

that the simulated edits changed 10%, 20% and 50% of the triples, respectively. We

assume that the actual ratio of triples updated by the Live Extraction process in the event

of repeated edits of articles is between 10 and 20 percent. However the exact value has

not been determined yet. The benchmark was run on a machine with a two core 1,2GHz

Celeron CPU and 2GB RAM. The triple store used was "Virtuoso Open-Source Edition

6.1.1" in its default configuration with four indices GS, SP, POGS, and OP.

p Added Removed Retained Strategy Time taken
(sec)

0.5 124924 124937 123319 SQL 240
RDF 200

0.8 79605 79710 318149 SQL 200
RDF 250

0.9 44629 44554 402748 SQL 170
RDF 300

Table 8: Benchmark results

In Table 8 the value SQL indicates the RDB assisted approach, and RDF the special-

ized one. As can be seen from the table, the former approach - which reduces the updates

to the triple store to a minimum - performs better than specialized version when there

is sufficient overlap between O and N (p = 0.8 and p = 0.9) On the other hand, the

smaller the overlaps the more the RDB becomes a bottleneck (p = 0.5). This is expected

as in the worst case there is no overlap between O and N . In this situation the specialized

approach would delete and reinsert triples directly. The RDB assisted approach would

ultimately do the same; however with the overhead of additionally reading from and

writing to the dbpedia_page table.

58As this approach involves a JSON object holding information about each extractor, the generation of
the sets O and N was related to a dummy extractor

69

5.5.7 Conclusion

Since the RDB assisted update strategy turned out to be the fastest one, we used it in the

version of the DBpedia Live Extraction Framework, that is now deployed at OpenLink59.

However, even with this strategy we did not reach the necessary performance. The

problem was finally solved, when OpenLink provided us better hardware. In fact, the

new server is now fast enough, that it now seems possible to re-extract RDF data from

all articles containing infoboxes whose Infobox Annotations were edited.

5.6 Contributed Extractors

In this section we summarize the extractors that were added to the framework.

TBoxExtractor This extractor is responsible for generating RDF from the Schema

Definition templates. It proceeds as described in Section 4.2.2. It is part of the Java-

Component.

InfoboxAnnotationExtractor The extractor for processing the Infobox Annotations,

which were described in Section 4.2.3. The extracted data is written into the Infobox

Annotation DB. The extractor is part of the EnWiki component.

LiveMappingBasedInfoboxExtractor This component is a rewrite of the original

MappingBasedExtractor. When invoked on a page it proceeds as follows: First the page

is scanned for template references which do not appear within other template references.

Each of these template references is then decomposed into its name and the key-value

pairs used as the arguments. Afterwards the Infobox Annotation DB is consulted in order

to determine if any related classes or parameter mappings are defined. If such mappings

exist, the infobox arguments are extracted accordingly. Otherwise the generic extraction,

described in Section 3.3, is used.

LiveAbstractExtractor The original AbstractExtractor extracts abstracts from articles

and connects them to the corresponding DBpedia resource via the predicate dbpedia-

59http://dbpedia-live.openlinksw.com/sparql

70

owl:abstract. However, the wikitext of abstracts often contains helper templates such as

for phonetic spelling. In order to produce quality abstracts, these need to be resolved.

The original extractor does that using the API of a local MediaWiki instance with those

templates loaded. The API of EnWiki cannot be used because the load imposed on the

server would be too high.

In order to reuse this extractor, the Live Extraction Framework would have to addi-

tionally keep such MediaWiki instance in sync. Although technically this is not very

difficult, there were two reasons against it:

• We were already struggling with performance issues, and keeping another wiki -

which implies another database - in sync would have meant even more overhead.

• The Live Extraction Framework was going to be deployed at one of OpenLink’s

servers. As this company develops their own database (Virtuoso), we wanted to

avoid potential conflicts by requiring them to install a MySQL database, as up to

now MediaWiki provides no Virtuoso backend.

While searching for an alternative we found the ActiveAbstract MediaWiki extension[24].

The core of this extension is made of a set of regular expressions which essentially re-

move the MediaWiki markup such as template references or smart links. Although

parsing is very fast, as it only takes a few milliseconds, unfortunately the quality of the

abstracts is sometimes rather low. Therefore we decided not to overwrite the existing

abstracts, and introduce the new property dbpedia-owl:abstract_live instead.

71

6 Related work

The related work is structured into the sections Research, Tools, and Applications.

6.1 Research

Wikipedia has been and still is a target for a vast amount of research. An incomplete

list is maintained by Wikipedia itself60. Another now slightly outdated list containing

more than a hundred resources related to how the semantification of Wikipedia aids the

Semantic Web is compiled at Michael Bergman’s blog61.

DBpedia is not the only project focusing on RDF information extraction from

Wikipedia articles. For instance [12] uses similar extraction techniques as DBpedia

such as extracting information from infoboxes and links. Although DBpedia already

existed at this time, the authors wanted to make their own experiences with Wikipedia

extraction. In contrast to DBpedia, they also experimented with information extraction

from free text using list-lookup extraction, fillers (essentially regular expression patterns),

and spatial/proximity analysis (such as if in a sentence two values are found out to

correspond to a year and a month, a third value will probably correspond to a day).

More sophisticated techniques from the field of machine learning are used in KYLIN[26].

One of this project’s goals is to extract key-value pairs from sentences summarizing

an article’s properties. This information could be used for things such as: consistency

checking between texts and infoboxes, filling out missing values in exisiting infoboxes,

and even suggesting new infoboxes.

KYLIN proceeds in first training document classifiers and sentence classifiers,

whereas the latter are trained in respect to a certain document class. Finally, for each

resulting sentence class extractors are trained for matching the desired data. The training

is done by first assigning feature vectors to the documents and sentences, and then

applying learning algorithms such as Support Vector Machines and Conditional Random

fields.

In a further step, the developers of KYLIN created the KYLIN Ontology Generator

(KOG)[27]. This system is capable of automatically deriving subsumption hierachies
60http://en.wikipedia.org/wiki/Wikipedia:Academic_studies_of_wikipedia
61http://www.mkbergman.com/417/99-wikipedia-sources-aiding-the-semantic-web/

72

between infobox-based classes. Again the creators use machine learning techniques,

specifically Support Vector Machines and Markov Logic Networks.

DBpedia could greatly benefit from incorporating such automatic ontology generation

techniques: The output of these systems could be presented to people editing the Schema

Definitions and Infobox Annotations. These people can then review, adapt, and accept

(or reject) those suggestions.

6.2 Tools

In the following, two other projects, which serve a similar purpose as DBpedia are

explained.

Semantic MediaWiki Semantic MediaWiki (SMW)62 is a MediaWiki extension which

directly integrates Semantic Web technologies. It allows for ontology engineering by

introducing - among other things - special namespaces for properties, datatypes and

classes, a syntax extension for typed links, inline queries for autmatic generation of lists,

form-based template editing and RDF exports. There already exist many extensions

which are based on SMW core functionality. SMW and most, if not all, extensions can

be downloaded and used free of charge.

The typed link is the most fundamental feature. Its syntax is [[<property-name>::<value>]].

The double colon indicates a typed link between the page the link appears on and the

given value. The interpretation of the value depends on the type-definition given on the

property’s page. If no such definition exits, the value is assumed to be the name of page.

Therefore if a property such as population was undefined, any value assigned to it would

be treated as reference to a page instead of a number. The type of a property is defined by

adding the snippet [[has type::<type>]] on its page, where has type is a built-in property.

It isn’t hard to see that these typed links can be mapped to RDF. An RDF export of a

page can be obtained through the page Special:ExportRDF.

Because SMW covers similar grounds as DBpedia, it is very likely to supersede it

once it becomes deployed on Wikipedia. However, currently their website states “The

62http://semantic-mediawiki.org/wiki/Semantic_MediaWiki

73

Wikimedia Foundation has general plans to do its own performance testing, and code

review, of SMW, at an unknown date in the future.”63

Freebase Freebase is proprietary platform for collaborative knowledge acquisition.

While SMW provides features for annotating free text, Freebase is all about structured

data. Each topic is given it’s own site, where information about it is kept in the form

of key-value pairs, which can be viewed and edited. Users can can further create

Domains which are collections of Types and Properties. A domain may become adapted

and improved by a larger community when it considers it useful. Types indicate is-a

relationships while properties indicate has-a relationships.

6.3 Applications

A number of applications have been built that use DBpedia as their datasource (or at least

as one of their datasources). An incomplete list is maintained at the DBpedia website

itself64. These applications are currently based on the original dumb-based DBpedia

dataset. However, in the future some of them may become adpated to the live one.

DBpedia Facetted Browser The browser allows facetted navigation of the DBpedia

dataset. Facetted navigation essentially means browsing from set of things to sets of

things. The initial set contains every DBpedia item. After each navigation step, a user is

presented a summary of the features about the items in the current set. A user can then

refine such a set by successively setting constraints on these features. For example, a

user could first choose to only select people. In subsequent steps he or she can refine the

set further to ones born in a specific country after a certain year.

DBedia Mobile “is a location-centric DBpedia client application for mobile devices”65.

This application augments maps (e.g. provided from Google Maps and OpenStreetMap)

with information (e.g. labels and icons) from DBpedia and its interlinked datasets. Based

63http://semantic-mediawiki.org/w/index.php?title=FAQ&oldid=2733
(retrieved 31st May 2010)

64http://wiki.dbpedia.org/Applications
65http://wiki.dbpedia.org/DBpediaMobile

74

on the GPS position of the mobile device, it can provide this information for nearby

locations.

DBpedia Relationship Finder The DBpedia Relationship Finder66 is a browser-based

application for searching connections between two DBpedia URIs and displaying them

graphically. This gives the opportunity to serendipitous discoveries. Technically the

DBpedia RDF graph is searched for all paths connecting these resources. A screenshot is

shown in Figure 26.

Figure 26: The DBpedia Relationship Finder

66http://relfinder.dbpedia.org

75

7 Conclusions and Future Work

The three major contributions made by this thesis are the Infobox Annotations, the

Ontology Schema Definitions and the DBpedia Live Extraction Framework.

We introduced templates for defining the schema of the ontology (consisting of

classes, object and datatype properties) and templates for defining the mappings between

infobox parameters and ontology properties. These templates were intendend to provide

a wiki based solution for engineering the DBpedia Infobox Ontology. We were able to

convince the MetaWiki community to allow us host the schema definitions there, but

we failed to convince the english Wikipedia community of permitting us to host our

Infobox Annotations. From the discussion that arose we got more insight into community

processes. Specifically, we learnt that we first need to show more benefits and solve some

of the currently unaddressed problems of our approach, before we can expect community

acceptance.

In a reaction to this, the FU Berlin recently decided to set up their own wiki, in order

to host the Schema Definition- and Infobox Annotation-templates, developed in this

thesis, there. The Live Extraction Framework was configured accordingly.

This wiki hosts tools for: validating the templates (syntactically and semantically),

performing test extractions against Infobox Annotations, and displaying an overview of

ontology. The DBpedia Ontology Mapper tool, which is currently in development, will

provide a web-based GUI for editing the Schema Defintions and Infobox Annotations.

The DBpedia Live Extraction Framework was enhanced to be capable of processing

edits of EnWiki articles, Schema Definitions, and Infobox Annotations in near realtime.

During the development of the framework, several strategies for updating the DBpedia

Live dataset have been evaluated.

Currently the extraction framework is being completely redesined from scratch in

Scala67, which will hopefully get rid of many of the struggles we had with the mixed

PHP-Java code base.

The immediate next step is restoring the status quo of the Live Extraction Framework

in Scala. In subsequent steps, strategies for lowering the barrier for making constributions

67http://www.scala-lang.org

76

to DBpedia further, will be evaluated. For instance, approaches based on presenting

automatically generated suggestions to users seem promising. Ultimately, the goal is to

bring some of the results back to Wikipedia in order to improve its data (even more).

77

8 Appendix

8.1 Source code

The source code that was written in the course of this thesis is available in the DBpedia

SVN repository at

http://dbpedia.svn.sourceforge.net/svnroot/dbpedia/extraction

The author of this thesis made changes to the code base under the name Aklakan. Revision

3440 represents the state of the repository at the time of submission.
The wikitext of the templates for the Infobox Annotations and the Schema Definitions is
located at

http://dbpedia.svn.sourceforge.net/viewvc/dbpedia/extraction/MediawikiPages

78

List of Figures

1 Components of the Semantic Web Stack 5

2 Set relations between the various syntaxes 7

3 DL Syntax vs MOS syntax . 11

4 The Linking Open Data cloud . 13

5 Examples of MediaWiki page names 17

6 Example of a MediaWiki transclusion 17

7 Examples of MediaWiki links . 18

8 Example of an EnWiki infobox . 20

9 RDF data generation from articles using the generic approach 23

10 RDF data generation from articles using the mapping-based extraction . 24

11 High level overview of the DBpedia Extraction Framework 25

12 Class diagram of the DBpedia Extraction Framework 26

13 Presentation of a class definition . 33

14 Example of RDF data generated from a class definition 36

15 Illustration for map, split, and merge cases. 38

16 Early design of the presentation of an Infobox Annotation 43

17 The revised presentation for Infobox Annotations 45

18 The DBpedia Ontology Mapper . 49

19 Workload reduction vs article process delay 53

20 Overview of the DBpedia Live Extraction Framework 55

21 Article and Infobox Annotation extraction workflow 59

22 Schema Definition extraction workflow 59

23 Direct annotation of a triple . 64

24 Relating a triple to its generating extraction process 64

25 Definition of the RDB table . 67

26 The DBpedia Relationship Finder . 75

79

Listings

1 Examples of RDF statements . 6

2 A class definition using the DBpedia_Class-template 33

3 Example of a template-based property definition 35

4 Example of an Infobox Annotation . 39

5 A small excerpt from an infobox . 40

6 Annotation of the infobox . 41

7 Classification with OWL axioms . 47

8 Querying sets of triples for specific properties using dbpmeta:aspect . . 52

9 Patterns describing extractors’ outputs 62

10 Clean up query generated based on extractors’ output patterns 63

11 Selecting triples across multiple graphs 66

12 SQL Statements for fetching data for a resource 67

13 Simple SPARQL Delete and insert queries 67

14 Example of the simplified delete query 68

80

List of Tables

1 Namespace prefixes used throughout this thesis 3

2 Valid values within an RDF statement 6

3 Examples of simple SPARQL queries 8

4 RDF-Reification vs OWL 2 Axiom Annotations 11

5 Parameters supported by DBpedia_Class 34

6 Parameters supported by DBpedia_Object-/DatatypeProperty 35

7 Parse hints for units . 40

8 Benchmark results . 69

81

References

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A

Nucleus for a Web of Open Data. In Proceedings of the 6th International Semantic

Web Conference (ISWC), volume 4825 of Lecture Notes in Computer Science, pages

722–735. Springer, 2008.

[2] S. Auer, R. Doehring, and S. Dietzold. Less- template-based syndication and

presentation of linked data, 2010.

[3] S. Auer and J. Lehmann. What have innsbruck and leipzig in common? extracting

semantics from wiki content. In E. Franconi, M. Kifer, and W. May, editors, ESWC

2007: Proceedings of the 4th European Semantic Web Conference, Innsbruck,

Austria, volume 4519 of Lecture Notes in Computer Science, pages 503–517,

Berlin, 2007. Springer.

[4] T. Berners-Lee. Linked data design issues. W3C design issue document, June 2009.

[5] T. Berners-Lee, R. Fielding, and L. Masinter. Rfc 3986: Uniform resource identifier

(uri): Generic syntax. http://www.ietf.org/rfc/rfc3986.txt, 2005.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,

284(5):34–43, 2001.

[7] C. Bizer and A. Schultz. The berlin sparql benchmark. Int. J. Semantic Web Inf.

Syst., 5(2):1–24, 2009.

[8] W. O. W. Group. Owl 2 web ontology language document overview. http:

//www.w3.org/TR/owl2-overview, October 2009.

[9] S. Hellmann, C. Stadler, J. Lehmann, and S. Auer. Dbpedia live extraction. In Proc.

of 8th International Conference on Ontologies, DataBases, and Applications of

Semantics (ODBASE), volume 5871 of Lecture Notes in Computer Science, pages

1209–1223, 2009.

82

[10] M. Hepp, K. Siorpaes, and D. Bachlechner. Harvesting wiki consensus: Using

wikipedia entries as vocabulary for knowledge management. IEEE Internet Com-

puting, 11(5):54–65, 2007.

[11] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, and H. H. Wang.

The manchester owl syntax. In B. C. Grau, P. Hitzler, C. Shankey, and E. Wallace,

editors, Proceedings of OWL: Experiences and Directions (OWLED’06), Athens,

Georgia, USA„ 2006.

[12] J. Isbell and M. H. Butler. Extracting and re-using structured data from wikis.

Technical Report HPL-2007-182, Hewlett-Packard, 2007.

[13] B. M. G. Klyne. Resource description framework (rdf): Concepts and abstract

syntax. W3C Recommendation, February 2004.

[14] A. Miles, B. Matthews, M. Wilson, and D. Brickley. SKOS core: Simple Knowledge

Organisation for the Web. In Proceedings of the 2005 international conference on

Dublin Core and metadata applications, pages 1–9, Madrid, Spanien, 2005. Dublin

Core Metadata Initiative.

[15] E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel: A Browser-Independent

presentation vocabulary for RDF. In The Semantic Web - ISWC 2006, volume 4273

of Lecture Notes in Computer Science, pages 158–171. Springer-Verlag, 2006.

[16] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for

RDF. W3C Recommendation, 2008. http://www.w3.org/TR/

rdf-sparql-query/.

[17] L. Sauermann and R. Cyganiak. Cool uris for the semantic web. w3c interest group

note 03. http://www.w3.org/TR/cooluris/, December 2008.

[18] A. Seaborne and G. Manjunath. Sparql/update - a language for updating rdf graphs,

2008.

[19] Several. Linking Open Data. http://esw.w3.org/topic/SweoIG/

TaskForces/CommunityProjects/LinkingOpenData, August 2009.

83

[20] C. Stadler, M. Martin, J. Lehmann, and S. Hellmann. Update strategies for dbpedia

live, 2010.

[21] R. Studer, R. Benjamins, and D. Fensel. Knowledge Engineering: Principles and

Methods. Data and Knowledge Engineering, 25:161–197, 1998.

[22] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.

In WWW ’07: Proceedings of the 16th international conference on World Wide

Web, pages 697–706, New York, NY, USA, 2007. ACM Press.

[23] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A large ontology from

wikipedia and wordnet. Journal of Web Semantics, 6(3):203–217, 2008.

[24] B. Vibber. ActiveAbstract MediaWiki extension. http://www.mediawiki.

org/wiki/Extension:ActiveAbstract.

[25] W3C. W3c semantic web activity. http://www.w3.org/2001/sw/.

[26] F. Wu and D. S. Weld. Autonomously semantifying wikipedia. In CIKM ’07:

Proceedings of the sixteenth ACM conference on Conference on information and

knowledge management, pages 41–50, New York, NY, USA, 2007. ACM.

[27] F. Wu and D. S. Weld. Automatically refining the wikipedia infobox ontology. In

WWW ’08: Proceeding of the 17th international conference on World Wide Web,

pages 635–644, New York, NY, USA, 2008. ACM.

84

Declaration

This diploma thesis is the result of my own work. Material from the published or

unpublished work of others, which is referred to in the thesis, is credited to the author in

the text. I understand that failure to do this amounts to plagiarism and will be considered

grounds for failure in this thesis and the degree examination as a whole.

Leipzig, 31. May 2010 Signature

85

