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Abstract
Saurabh KUMAR

Obesity as an epidemic is a major contributor to ill-health, disabil-
ity and mortality worldwide and therefore intervention is of utmost
importance. Brain regions involved in the reappraisal of tasty but
unhealthy foods are of special interest for the development of new
therapeutic interventions for obesity. Using electroencephalogram
(EEG), we visually presented food items to obese and lean individu-
als, while they admitted or reappraised their desire for food. During
admitting the desire for low and high calorie food, obese as well as
lean individuals showed higher activity in the left dorsolateral pre-
frontal cortex (DLPFC), whereas the right frontal operculum was in-
volved in the reappraisal of the same food, suggesting interplay be-
tween executive control and gustatory regions. In lean participants,
we found an interaction between calorie content and admit/reappraise
condition in bilateral anterior insular cortices, suggesting that the
anterior insula, assumed to primarily host gustatory processes, also
underpins higher cognitive processes involved in food choices, such
as evaluating the foods’ calorie content for its reappraisal. We also
questioned how eating to satiety affects food reappraisal abilities
and corresponding neuronal activity in the left DLPFC and right
frontal operculum in lean and obese women. When hungry, lean
women self-rated the ability to reappraise visually presented food as
more difficult than allowing desire for the same food. Obese hungry
women instead rated their ability to reappraise food as equally well
as allowing the desire, probably suggesting hunger-related impaired
self-reflection of food reappraisal abilities. In obese women frontal
operculum was involved in the reappraisal of foods and surprisingly
also in admitting the desire for the same food suggesting that right
frontal operculum in the obese female brain underpins evaluation
processes involved in regulation of food desire after eating to sati-
ety. Therefore, the frontal operculum may in future serve as a target
for non-invasive brain stimulation or neurofeedback studies that aim
at modulating eating behavior in obese women towards better food
reappraisal abilities.
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Chapter 1

Introduction

The human race since its existence had to struggle constantly to over-
come the scarcity of food. Survival of the fittest dictated that in-
dividuals who stored energy in the most efficient way would sur-
vive the inevitable fast and famine that would follow times of plenty
(Spencer, 1864). With the beginning of the industrialization this strug-
gle became manageable as there were advances made in technol-
ogy, agriculture, communications and trade (Fogel and Costa, 1997)
which enabled easy access to nutritional food. The rapid develop-
ment in these fields lead to year 2000 where the first time in the
human history the number of adults with excess weights surpassed
the number of adults who were underweight (Gardner and Halweil,
2000) making the problem of obesity pronounced. There are three as-
pects of obesity that presently make it a public health burden : its the
seriousness, the prevalence and the resistance to change (Bray, 1969;
Van Itallie, 1979; Simopoulos and Van Itallie, 1984; Brownell, 1982).
Along with the medical implications (Sobal and Stunkard, 1989; Van
Itallie, 1979; Simopoulos and Van Itallie, 1984; Hubert et al., 1983) the
socio-psychological risks are also evident and more prominent for
the obese individuals (Brownell, 1982; Wadden and Stunkard, 1985).

Much effort has been put in dealing with this ever growing prob-
lem of obesity. The current weight-loss programs consist of diet-
ing (Soeliman and Azadbakht, 2014), physical activity (Jakicic and
Davis, 2011), combination of both (Amorim Adegboye and Linne,
2013) or the energy intake program (Rolls, Ello-Martin, and Tohill,
2004; Rolls, Drewnowski, and Ledikwe, 2005). The reviews of these
programs have repeatedly indicated that most of the interventions
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have limited effects or failed, and introduced no change in the di-
etary behavior (Summerbell et al., 2005; Ammerman et al., 2002; Con-
tento et al., 1995). New strategies combining physical activity and
psychological motivation have also been tried (Looney and Raynor,
2013; Ausburn et al., 2014). The majority of the participants do not
sustain the weight loss and gain weight immediately after the pro-
gram has ended. The general lack of success can be attributed to
incorrect theoretical knowledge of the mechanisms involved through
which the dietary behavior can be modified (Shaikh et al., 2008; Michie
et al., 2008). Therefore it is needed to shed light on the underlying
mechanisms and to develop innovative strategies against obesity.

Though food intake and body weight are under homeostatic reg-
ulation, when highly palatable food is available, the ability to re-
sist the urge to eat hinges on self-control. Exercising self-control
involves the modulation of dorsolateral prefrontal cortex (DLPFC)
(Hare, Camerer, and Rangel, 2009). The DLPFC is associated with a
variety of executive functions in the human brain like decision mak-
ing, attentional control, inhibitory control, working memory, and
cognitive flexibility, as well as reasoning, problem solving, and plan-
ning (Funahashi, 2001; Stuss and Benson, 1984; Luria, 1969). Recent
studies have also shown that the high cognitive control activates the
DLPFC (Fehr and Krajbich, 2013; Gupta and Tranel, 2012; Arnsten
and Jin, 2014). It is also shown that the DLFPC has neuronal connec-
tions to virtually all sensory and motor systems as well as subcortical
structures (Miller and Cohen, 2001).

There has been a recent study using functional magnetic resonance
imaging (fMRI) to identify the brain regions on the reappraisal of
food (Hollmann et al., 2012). FMRI bears limitations regarding the
temporal resolution (Kim and Ugurbil, 1997; Amaro and Barker, 2006)
despite high spatial resolution (Menon and Kim, 1999). One of the
first techniques to study human brain function non-invasively was
electroencephalography (EEG). Over the years, EEG has proven to be
the most widely used brain research technique in numerous experi-
ments owing to its advantages like very high temporal resolution, its
simplicity of implementation, its portability among others and de-
spite its limited spatial resolution it is a viable tool to identify the
neuronal responses. In the experiments of this thesis we used EEG
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to identify brain sites underpinning the reappraisal and the admis-
sion of food desire in obese as well as in lean individuals. We expect
to find differences in neuronal responses for these two different ex-
ecutive demands in the DLPFC.

High calorie food seems to have an identical affect on the brain as
drug usage. The brain’s reward system is dopaminergically con-
trolled (Volkow et al., 2013). Like drug abusers, obese individuals
seem to have an attenuated dopamine reward for high calorie food
and increased craving for food (Stice et al., 2008). The consumption
of excess high calorie food is like drug abuse that triggers amplified
dopamine responses as well as the down regulation of the dopamine
receptor availability (Wang et al., 2001). This suggests that obese in-
dividuals have a lower dopamine response to the same high calorie
food as compared to lean prompting them to overeat. Hence it is of
utmost importance to understand the mechanisms of the admission
and the reappraisal of food desire. Brain sites involved in the execu-
tive control of food desire may serve as targets for non-invasive brain
stimulation or neurofeedback training aiming to improve cognitive
control over food craving.

We study the effects of high calorie food versus low calorie food to
study interaction effects between allowing and reappraising food de-
sire in obese as compared to lean individuals. In the first study of
the project we used visual stimulus in the form of food pictures pre-
sented to the participants. While in the second study of this project
the participants were also subjected to real food consumption in the
form of a buffet in addition to the food pictures. We hypothesized
that when hungry, the admission of food desire is an easier task
which reverses when the participants are sated, i.e. the reappraisal
of the food desire become easier when sated. We also hypothesized
that eating to satiety is associated with decreased activation in brain
regions underpinning the admission of food desire; While brain re-
gion underpinning the reappraisal of food desire present elevated
neuronal activation.
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Chapter 2

Theoretical Background

2.1 Obesity

Obesity is an epidemic and is a result of industrialization (James et
al., 2001). It spreads not only in the developed countries but also
in the fast developing countries like China, India and many others.
From a relatively minor health burden of a very few affluent soci-
eties, it has slowly developed into a world-wide problem (Roman et
al., 2014). Interestingly only the high-income countries which would
presently mean Europe, North America and Australasia have come
forward and publicized it but the developing and new emerging
economies suffer from it nevertheless (Molarius et al., 2000; Mon-
teiro et al., 2004). The more recent increase in obesity population
in low and middle income countries is noticeable (Finucane et al.,
2011; Ng et al., 2014). The increase can be mainly attributed to the
easy availability of high calorie food that has been linked to the in-
creasing rates of obesity (Spence et al., 2009; Pereira et al., 2005;
Rosenheck, 2008). The Global Burden of Metabolic Risk Factors of
Chronic Diseases Collaborating Group analyzed data from 199 coun-
tries and territories and 9.1 million adults with respect to the preva-
lence of overweight and obesity between 1980 and 2008 (Finucane
et al., 2011). During that 28-year period, the prevalence of obesity
nearly doubled worldwide. Obesity according to the body mass in-
dex (BMI) can be classified into three broader categories of under-
weight, normal-weight and over-weight. To understand obesity one
should extend the broader categories into the classification of obesity
provided by the world health organization (WHO) (Seidell and Hal-
berstadt, 2015) (see figure 2.1). In 2008, about 1.5 billion adults were
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estimated to have a body mass index (BMI) of 25 or more (about
34%). Of these, 500 million were considered obese (about 10% men
and 14% women). More recently, the analyses for the Global Bur-
den of Disease Study 2013 (Ng et al., 2014) further documented that
worldwide, the proportion of adults with a BMI of 25 or greater in-
creased between 1980 and 2013 from about 29% to 37% in men and
from about 30% to 38% in women. It is not a surprise that the increase
in worldwide obesity has come to show that it has major impact on
the quality of life and impairs health (Taylor et al., 2013; Visscher and
Seidell, 2001). It has major impact on the cardiovascular disease, can-
cer, osteoarthritis, type 2 diabetes hence more effect on the morbidity
then on mortality. The Global Burden of Disease Study and the WHO
have recently documented that obesity is indeed a major contributor
to ill-health, disability and mortality in many regions of the world
(Lim et al., 2012; WHO, 2009).

FIGURE 2.1: The classification of obesity into differ-
ent groups dependent on the BMI and the severity of
associated health risks attached to it. (Source: World
Health Organization: Obesity: Preventing and Man-
aging the Global Epidemic. Report of a WHO Consul-
tation. WHO Technical Report Series, No 894. Geneva,

World Health Organization, 2000)

For the study purpose of this thesis work and related publications
the category of obese class I , obese class II and obese class III are
regarded as a single group referred as ’Obese’. (refer figure 2.1).

2.1.1 Fighting obesity

Excess body weight is related to many health risks like type 2 dia-
betes, cardiovascular diseases, hypertension and many others (Fogel,
1986). Hence successful treatment strategies become essential. The
people who are already obese require a lot of care and management
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considering the health and the social implications. The environmen-
tal factors like sociocultural and economic factors and the physical
environment also influence obesity (Seidell and Halberstadt, 2015;
Huang et al., 2009; Swinburn et al., 2011; Glass and McAtee, 2006)
(see figure 2.2). Dietary restraint (a measure of the extent to which
conscious control is exerted on food intake) provides an effective
measure against obesity. Restrained eaters, as compared with un-
restrained eaters, avoid increases in energy intake and weight gain
(Westerterp-Plantenga et al., 1998). This suggests that careful con-
trol of food intake can prevent weight gain. To build on this idea we
use the help of EEG to study the restraint behavior of obese and lean
individuals towards food pictures. We hypothozised the DLPFC as
a key player in these processes since the DLPFC is widely regarded
as an executive regions underpinning decision making (Funahashi,
2001; Stuss and Benson, 1984; Luria, 1969). We look for the differ-
ences between the obese and lean and take this knowledge as a base
for future intervention studies (non-invasive brain stimulation, neu-
rofeedback).

FIGURE 2.2: Obesity is affected by individual’s
physical, social and economic environment and also
through one’s behavior. (Source: (Seidell and Halber-

stadt, 2015))

Based on this work an intervention study has been conducted us-
ing transcranial direct current stimulation (tDCS). In a large series of
previous studies tDCS was shown to modulate cognitive functions
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in healthy individuals (Brunoni et al., 2012; Antal et al., 2004; Paulus,
2011; Fregni et al., 2005; Iyer et al., 2005; Nitsche et al., 2012) and
can be applied safely for upto thirty minutes (Hummel et al., 2005;
Iyer et al., 2005; Nitsche et al., 2012) (For more insight into tDCS
effects on brain sites identified in the studies of this thesis please re-
fer to the outlook section 4.2). The other method to modulate local
neuronal responses identifed by EEG is neurofeedback. It is an op-
erant conditioning technique providing neuronal feedback in real-
time, which in combination with mental strategies, may improve
associated behaviour in all-day life. Self regulation of brain activ-
ity facilitated by EEG neurofeedback has proven to be effective in
intervention studies of epilepsy (Sterman and Friar, 1972; Sterman,
Macdonald, and Stone, 1974), attention deficit hyperactivity disor-
der (ADHD) (Shouse and Lubar, 1979; Rossiter and La Vaque, 1995;
Lubar et al., 1995; Linden, Habib, and Radojevic, 1996) and also
in the treatment of substance abuse (Peniston and Kulkosky, 1989).
An alternative non-invasive brain stimulation technique is transcra-
nial magnetic simulation (TMS) that can temporarily excite or in-
hibit neuronal responses in the brain with higher spatial resolution
as compared to tDCS (Hallett, 2000; George, Lisanby, and Sackeim,
1999). Its effects can last beyond the simulation period and hence can
be used as potential therapy as suggested by studies on depression
(Pascual-Leone et al., 1996).

2.2 Electroencephalogram (EEG)

The literal translation of Electroencephalogram (EEG) is ’Electro -
electrical’, ’encephalo - brain’, ’gram - picture’ hence an electrical brain
picture. It is close to that as it measures the electrical activity in the
brain and can be presented in a picture form. The discovery of EEG
was initially started by experiments on rabbits, monkeys and dogs
(Swartz, 1998) which is in line with the other noteworthy experi-
ments. Since then the recording of electrical activity in the human
brain was started by Hans Berger (Berger, 1935), a German neu-
rologist. He used his normal radio equipment as an amplifier for
measuring the brain’s electrical activity that he measured from the
scalp. He was the first to show that brain’s activity can be measured
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even from the scalp without opening it. Theses responses can also
be recorded paper making them visully accessible and measurable.
It was a breakthrough as he also announced that electrical activity
assessed over the brain changes according to different physiological
or pathological states like during sleep, lack of oxygen, anesthesia,
and diseases like epilepsy (Collura, 1993; Haas, 2003). This was the
starting point which has led to many advancements in scientific and
clinic EEG methodology (Borck, 2005; Gloor, 1994).

2.2.1 Neuronal basics

EEG basically records the summation of excitatory and inhibitory
post synaptic potentials. To understand it in more detail one has to
look to a single neuron (see figure 2.3).

FIGURE 2.3: Shown is a single neuron consisting all
the major parts that contribute to the signal trans-
mission broadly. The signal is transmitted from the
dendrites to the cell membrane in the cell. The axon
hillock is the threshold decider which when over-
whelmed passes the signal through the axon to the
synaptic terminals. Where this is taken over by an-
other cell and the process is repeated. (Source: Hu-
manity+ magazine - Neuroscience – and the Future of

Humanity – Interview with Ken Hayworth)

Neurons communicate with each other with passing an electrical po-
tential. This is basically a culmination of the movement of positively
and negatively charged ions that are flowing though channels in neu-
ron membranes in the direction that is governed by the membrane
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potential (H.L. Attwood, W.A., 1989). Electrical current is transmit-
ted from the dendrites to the cell membrane where they meet at the
axon hillock, here the summation of all the charges from the den-
drites is concentrated at the axon hillock, which has the important
decision to make whether or not the signal should be passed on to
the axon terminals. The axon hillock is the point where the sum-
mation of the excitatory post synaptic potentials and the inhibitory
post synaptic potentials meet. If the summation of these potentials
reaches a certain threshold then the current passes. Neuron has a
resting membrane potential of about -70 mV, voltage gated sodium
channels will open when the membrane potential becomes more pos-
itive or depolarizes. When this occurs, the sodium rushes into the
cells transmitting the depolarization down the axon, this occurrence
is called an action potential. Along with the sodium ’Na+’, potas-
sium ’K+’, calcium ’Ca+’and the chlorine ’Cl−’ ions also play a part
(H.L. Attwood, W.A., 1989).

However, a single electrical event (action potential) is not big enough
to be detected by EEG. The action potentials can also cancel each
other out so there would be no detection. Luckily there are pyra-
midal neurons that are present in the most superficial layers of the
brain and are spatially aligned and thus their activity is synchronous
to each other which produces a larger signal that can be measured
superficially from the scalp (for a structural representation of the
pyramid cell, please refer to figure 2.4). Axons from the neighbor-
ing neurons synapse with the pyramidal neurons. Chemically gated
ion channels on the post synaptic membrane open in response to in-
creased concentration of neuro transmitters that bind to the protein.
However when the depolarization begins at one end of the neuron
the other end re-polarizes back to -70mv thus creating a dipole in
the neuron and conducting the current. It is important to remem-
ber that regardless to whether an action potential is reached or not
all post synaptic potentials will contribute to the EEG signal. Every
post synaptic potential causes the charge inside the neuron to change
and the charge outside the neuron to change in opposition. The sum-
mation of dipoles created by hundreds and thousands of neurons is
what is detected by the EEG.
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FIGURE 2.4: Shown here is a pyramid cell that is
present in the most superficial layers of the human
scalp and is spatially aligned. They have many synap-
tic connections with other neurons that communicate
with it as seen in the figure. When a synchronous acti-
vation of a number pyramid cells happen there is a no-
ticeable action potential which can be measured by the
EEG electrodes placed on the scalp. (Source: jkroger
lab (The Mind and Brain Laboratory. Department of
Psychology. New Mexico State University. James K.

Kroger, Ph.D. Neural Mechanisms of Reasoning))

2.2.2 EEG measurement methodology

There are a number of steps in order to measure a good EEG sig-
nal at the scalp which is then digitized for further processing. The
electrodes placed on the scalp measure the electrical signals relative
to the designated reference electrode amongst them, also one elec-
trode performs the role of the ground electrode. There are designated
places on the human scalp where the electrodes are placed based on
the distance measured from the inion and the nasion points (see fig-
ure 2.5). The ’nasion’ is the intersection of the frontal bone and two
nasal bones of the human skull. Its manifestation on the visible sur-
face of the face is a distinctly depressed area directly between the
eyes, just superior to the bridge of the nose. The ’inion’ is a small
protuberance on the external surface of the back of the skull near
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the neck (both are represented in figure 2.5). These electrodes have
a letter and a number attached to them for the quick identification
of its approximate position. The alphabetical abbreviations of the
electrode identifies the area or the lobe of the brain on which it is
located, and the proceeding number identifies the brain hemisphere
(odd numbers on the left brain hemisphere and even numbers on the
right brain hemisphere, for center ’z’ is used) and the distance from
the center of the scalp (higher the number, greater the distance from
the center of the head). For example ’F - Frontal’, ’C - Central’, ’T -
Temporal’, ’O - Occipital’ and ’P - Parietal’. The attachment of the elec-
trodes to the scalp in the traditional way is an extensive process that
involves lot of measurement of the scalp surface to guarantee an ex-
act location. For example a set of 32 electrodes would take over an
hour to be attached. This is not very practical when there are lot of
measurements to be made with different participants . To overcome
this problem there are EEG caps that have fixed opening for the at-
tachment of the electrodes into the correct location. The electrodes
are attached to the adapters that are present in the specified openings
and act as a housing place. This also gives flexibility as the user is
able to desire which adapters are to be used for electrode connections
depending upon the requirement. There are also varying amount of
cap sizes that are available in order to fit any head shape and size
and all are designed with the international ’10-20’ and ’10-10’ elec-
trode placement standards (see figure 2.5). These standards were de-
veloped too ensure standardized reproducibility so that a participant
studies could be compared over time to each other. The ’10’ and ’20’
refers to the actual distances between adjacent electrodes that are ei-
ther 10% or 20% of the total front–back or right–left distance of the
skull. There are three anatomically defined main measures, (i) na-
sion to inion via ’Cz’ (center of the scalp) = 100% - uses percentage
of this to place ’FPz’, ’Cz’, ’Pz’, (ii) left ear channel opening to
right ear channel opening via ’Cz’ = 100% - uses percentage of this
to place ’T7’, ’C3’, ’Cz’, ’C4’, ’T8’ and (iii) nasion to inion via ear
channel opening = 100% - uses percentage of this to place ’FP1/2’,
’F7/8’, ’T7/8’, ’P7/8’, ’O1/2’. All the other electrodes are places us-
ing the same logic (see figure 2.5). For this thesis work a cap with
64 electrodes was used from the Easycap company using the ’10-10’
standard, we also used an extra electrode below the left eye to deal



2.2. Electroencephalogram (EEG) 13

with the eye artifacts which we discuss in section 2.3. The cap makes
the process of electrode placement much simpler and faster. There
is always some impedance between the electrodes and the skin sur-
face usually due to dead skin cells, daily cosmetic products and even
hair which acts as a barrier in the effective electrical conductance. To
get around this problem we use a conductive gel placed between the
electrodes and the skin surface to reduce this impedance.

FIGURE 2.5: Shown is a human head form with the
scalp layer with the reference points ’nasion’ and
’inion’. These points help design the placement of the
other electrodes on the scalp. Here is an example of the
international 10-20 system where the percentage of the
distance from the nasion and the inion is used for the
electrode positioning. (Source: The McGill Physiology
Virtual Lab - Biomedical Signals Acquisition - Record-

ing the EEG - Electrode positioning (10/20 system))

The recorded EEG signals need amplification in order to be used by
the analog to digital converter (A/D converter) and the display unit.
The amplifiers need to do a selective amplification of the physiolog-
ical signal and reject the superimposed noise and other interfering
signals. Amplifiers also work as circuit breakers providing protec-
tion for the participant and the equipment. The amplifier gain is the
ratio of the output signal to the input signal. In EEG this ratio has
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to be of an order of 100 − 100000 for adequate voltage level. Along
with the amplification the amplifier need to also maintain a high sig-
nal to noise ratio. In order to decrease other electrical noise coming
from the the input side a differential amplifier is used that uses the
technique of common mode rejection to clean the signal. This is basi-
cally the rejection of the common signal components obtained from
different channels. The reasoning being that if the signal is coming
from two different channels then it is ought to be different but with
the similar electrical noise. Moreover the EEG recordings are done
in a shielded cabin which forms a Faraday cage. This is done in or-
der to avoid as much as possible the influence of the external noise
sources. If possible all the equipment inside the cabin is used that can
run on a direct current source. This avoids interference with the al-
ternating brain activity. Computers are used as the recording devices
and hence they require an A/D converter. The channels of the analog
signal are repeatedly sampled at fixed time intervals (sampling inter-
val) and each sample is converted into a digital form, which is then
saved. The sampling rate required should be atleast double of the
highest frequency component of interest based on the Nyquist cri-
teria. Highpass filters are also used in the complete arrangement to
remove low frequency noise sources like breathing. Before perform-
ing the final measurements we tested the whole EEG system and also
before the start of the study a pilot experiment was done.

2.2.3 Forward solution

Forward solution is a process of simulating the brain and the head
model in general. It is a combination of the model and the internal
connections defined by the lead-field matrix (refer section 2.2.3) con-
tributing to the electrical activity on the scalp (see figure 2.6). Its re-
alism is very important for the localization of the neuronal source ac-
tivity (Akalin Acar and Makeig, 2013; Montes-Restrepo et al., 2014).
It is dependent on the requirement of the particular task and capabil-
ity as to how complex one wants to create this brain model. Various
parameters need to be considered as the idea of modeling the human
brain is very enticing. For instance one needs to decide the size of
the brain and the different layers it may consist. The different layers
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may have their own permeability relating to the magnetic and elec-
tric potentials that are generated during the neuronal activity. For
this thesis work including the two publications we used the bound-
ary element method (BEM) for the generation of the brain model
which included more than eight thousand dipoles inside the brain
and the brain itself was layered into the inner cortical brain, the skull
and the scalp. The different layers of the brain model have their dif-
ferent conductivities. The BEM model assumes homogeneous and
isotropic conductivity through the volume of each tissue shell (e.g.,
brain, skull, scalp) but not across the boundaries of these shells.

FIGURE 2.6: Visual representation of the forward and
inverse problem. Figure shows the blue spot at some
location on the brain and the task is to simulate this
spot onto the scalp digitally. A successful completion
of this task is the forward solution. Alternatively to
find the correct location of that activation in the brain
from the scalp is the successful completion of the in-
verse solution. (Source: Neuroelectromagnetic Source
Imaging of Brain Dynamics - Rey R. Ramírez, David

Wipf, Sylvain Baillet)

Boundary element method (BEM)

The forward model in simple mathematical terms can be expressed
as the product of the primary currents by the vector lead-field (see
2.2.3) (J, 1983; Brody, Terry, and Ideker, 1973). The BEM method can
be explained by the method of weighted residuals (Mosher, Leahy,
and Lewis, 1999). It is a numerical technique for calculating the sur-
face potentials which are a result of the current sources (dipoles) in-
side the brain model. It relies on separating the regions of different
conductivities inside its model. In its basics the model consists of
three surfaces namely brain-skull interface, skull-scalp interface and
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the outer surface, and the regions between these interfaces are de-
faulted to having homogeneous and isotropic conductivities. Each
interface has its own boundary elements and at every point in the
entire volume a potential can be defined (Geselowitz, 1967; Barnard,
Duck, and Lynn, 1967; Sarvas, 1987). Each interface is digitized in
triangles as seen in figure 2.7. The center of each triangle has a po-
tential and the entire interface can be defined over the surface by the
summation of all the triangle potentials keeping its distance and ori-
entation. In general the exact calculation is not possible and therefore
an approximation is expected.

FIGURE 2.7: Example mesh of the human head used
in BEM. Triangulated surfaces of the brain, skull and
scalp compartment used in BEM. The surfaces indi-
cate the different interfaces of the human head: air-
scalp, scalp-skull and skull-brain. (Source: Review on
solving the forward problem in EEG source analysis
- Hans HallezEmail author, Bart VanrumsteEmail au-
thor, Roberta Grech, Joseph Muscat, Wim De Clercq,
Anneleen Vergult, Yves D’Asseler, Kenneth P Camil-
leri, Simon G Fabri, Sabine Van Huffel and Ignace

Lemahieu)

The calculation is quite an extensive one and computationally very
exhausting. There exists three kinds of approaches for it called the
’solutions for the solid angle’ (Barnard, Duck, and Lynn, 1967; Barnard
et al., 1967; Meus et al., 1989). Typically the skull conductivity is
lower than the the brain and scalp layers. There can be issues with
the differences in the conductivities of the three layers since the dif-
ferences are quite large. To avoid the amplification of the numerical
errors in the calculation the technique of isolated problem approach
(IPA) also sometimes referred to as the isolated skull approach (ISA)
is applied (Hämäläinen and Sarvas, 1989; Fuchs et al., 1998; Gençer
and Akalin-Acar, 2005). The BEM method benefits from the increased
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number of triangles and nodes and is relatively simple. In figure 2.8
we see the exact BEM model that was used for this research project.

FIGURE 2.8: The BEM model that consists of different
layers including the brain (coloured blue here) and the
scalp used in this research project. The green ’∗’ repre-
sent the location of the electrodes placed on the scalp.

Lead-field matrix

Lead-field matrix is the matrix of coefficients that maps current sources
to potential differences at the scalp. It can be considered as the miss-
ing puzzle piece that joins the sources in the brain to the recordings
we make at the scalp through the EEG electrodes. Normally there
are two ways the lead-field matrix can be generated. In the first way
the sources are defined by three orthogonal dipoles, the lead-field
will contain the number of columns equal to the number of sources
times three for the three dipoles. The number of rows are dependent
on the number of electrodes that are used for the measurement of
the potentials at the scalp. The size of the this matrix is huge and
has a very good resolution (see figure 2.9) but this is dependent on
the requirement if one is ready to use such computational power in
its calculation and solution. The other way of calculating the lead-
field matrix is that instead of the the orthogonal dipoles, the nodes
between the sources act as the columns of the matrix and the rows
are as in the previous case dependent on the electrodes at the scalp.
When the lead-field matrix is created in this way the size of the ma-
trix is greatly reduced but on the flip side the calculations run faster.
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This has a lower resolution therefore should only be used where the
accuracy of the sources is not the most important criteria. For this
thesis work and the two publications the first method was used aim-
ing for the better resolution as the locations of the sources inside the
brain played an important part in the study.

FIGURE 2.9: [A] Visual representation of the sources
in the brain with the three orthogonal dipoles. They
show the three dimensions x,y and z. The numbers
shown in circles are the positions of the electrodes. [B]
shows the structure of the leadfield matrix based on
the representation of [A]. The number of rows are the
number of electrodes and the number of columns are
the number of dipoles multiplied by three for the three
orthogonal dimensions. (Source: M. Muthuraman,
Signal processing for medical applications - frequency
domain analysis (Lecture 7), Uni-klinikum neurologie

kiel, 2013-2014.)

2.2.4 Inverse solution

Inverse solution is the process of finding the sources in the simulated
brain that is created by the forward model with the help of channels
that we record on the brain scalp (see figure 2.6). It sounds simple
enough but since the sources inside the brain outnumber the chan-
nels recorded on the scalp by a big margin, the problem becomes
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ill-poised. Therefore, there is no unique solution to the inverse prob-
lem. We agree to the most likely solution and different methods of
finding the inverse solution may produce slightly different results.
The basis of choosing the inverse solution method depends on the
particular case as different solutions have varying advantages and
drawbacks. The inverse solution consists of solving the lead-field
matrix (lead-field matrix described in section 2.2.3).

The raw EEG data recorded at the scalp is highly variable alternat-
ing time course. We can reconstruct the underlying neuronal activity
with the assumption that the data comes from a group of discrete
brain sources which in turn constitutes a group of neurons with syn-
chronous fluctuations. There are generally two ways to solve this
problem. The first way ’few sources way’ is to assume a small number
of active sources and fit the measured data using a non-linear search
method throughout the brain (Supek and Aine, 1993). The limitation
of this way is that when the number of sources increase, the method
does not work well. We usually are looking for an accurate represen-
tation which involves a very high number of sources in the brain. For
this another way ’distributed way’ uses a large number of fixed dipoles
that constitute the area of interest. It estimates their amplitudes (Dale
and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994). The distributed
way has the advantage of being linear with neuronal currents but the
large number of unknowns make it an ill-posed problem and hence
like any such problem one needs to make assumptions and include
some prior information (Baillet, Mosher, and Leahy, 2001; Grech et
al., 2008; Michel et al., 2004; Pascual-marqui, 1999). Despite the prob-
lem being ill-posed, the distributed solutions have received a boost
because of its linearity and independence to the number of sources.
It has become robust and also computationally viable. This thesis
work uses the distributed way as its inverse solution.

Distributed way (distributed source activity reconstruction)

This inverse solution is a linear method based on the mapping of
a fixed set of dipoles distributed in the brain to the set of signals
/ channels recorded on the scalp by the electrodes placed for this
purpose (Dale and Sereno, 1993). The number of dipoles are far
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greater than the number of sensors recording them at the scalp. This
in turn means that it is not possible to find the inverse of the lead-
field matrix easily. We need the help of the Bayesian assumptions to
get around this problem. In Bayesian universe we can assume that
the neuronal source activity is a zero mean gaussian process with
some covariance (Auranen et al., 2005; Baillet and Garnero, 1997;
Phillips, Leahy, and Mosher, 1997; Sato et al., 2004; Schmidt, George,
and Wood, 1999; Trujillo-Barreto, Aubert-Vazquez, and Valdes-Sosa,
2004; Wipf and Nagarajan, 2009). It also tells us that the source es-
timates can be defined by the expected value of the posterior distri-
bution (distribution of unobserved observations (prediction)) of the
source activity. The source activity of the dipoles has a prior proba-
bility and the likelihood for the given activity gives us the probability
of the data (Dale and Sereno, 1993).

In general the the expected value of the source activity can be ob-
tained by a combination of the lead-field matrix with the recorded
data and the related covariances, based on the Bayesian assumptions
(Liu, Dale, and Belliveau, 2002; Lopez et al., 2014). This means that
the main focus and the whole approach boils down to finding the ap-
propriate sensor and source level covariances (Baillet and Garnero,
1997; Phillips, Leahy, and Mosher, 1997; Phillips et al., 2005).

In case where we are unaware of the noise covariance at the sen-
sors, we assume the noise covariance to be unity (identity matrix),
meaning the noise variance on all sensors is the same. This has been
referred as as regularization parameter (Golub, Heath, and Wahba,
1979; Hansen, 2000) or a hyperparameter (Phillips, Rugg, and Fris-
ton, 2002). In many cases the sensor noise estimations are based
on empty room recordings and not very accurate because there are
other components to the noise that must be added (Henson et al.,
2011), hence the unity covariance assumption is very common. Out
of many variations of the distributed way the multiple spars pri-
ors method makes use of the limitations of the LORETA and the
Minimum-norm method to give an accurate solution.
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Multiple spars priors

There are multiple assumptions that can be used to come up with the
prior source covariance matrix, the most common also being the sim-
plest called the ’Minimum-norm’. It assumes that all source dipoles
have approximately a same prior variance and no covariance (Hämäläi-
nen and Ilmoniemi, 1994). Another popular assumption is used by
the ’LORETA’ which states that all sources vary smoothly over the
space domain (Pascual-marqui, 1999). Although these are the very
popular algorithms used around the world there is a bias associated
with their usage. It states that all the superficial sources have a larger
impact on the sensors then the deep sources. There are some other
solutions available as many have tried to come around this very ob-
vious bias like the method of column weighting (Fuchs et al., 1999;
Hauk, 2004; Ioannides, Bolton, and Clarke, 1990; Lin et al., 2006)
and the method of noise normalization (Dale et al., 2000; Pascual-
Marqui, 2002). To make a smooth final solution one assumes that
all the source dipoles are active at the same time which also helps
to explain the source artifacts but this assumption makes the data
more susceptible to external artifacts. There is another approach that
comes around this problem called the beamforming approach which
tries to remove the covariance (smoothness) from the solution (Hille-
brand et al., 2005; Sekihara et al., 1999; Van Veen et al., 1997). This
makes this solution very robust to external noise but it does perform
poorly when there is a real covariance amongst the sources.

In the Bayesian universe the prior source covariance can be defined
as the weighted sum of multiple prior components where each com-
ponent is a prior source covariance matrix. The weights are called
the hyperparameters for these components. It means that the large
hyperparameter regions will have a larger variance. The choice of
the selection of a particular model naturally depends on the choice
of the prior components. Unlike the ’Minimum-norm’ solution or
the ’LORETA’ solution, the multiple sparse priors (MSP) solution is
based on a library of hundreds of covariance components, each cor-
responding to a different locally smooth focal region (or patch) of
cortex (Lopez et al., 2014) and the size and the number of regions can
be based on the the prior knowledge (López and Barnes, 2012). We
have used the advantages of this solution in the localization of our
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sources in both the studies of this research project .

2.2.5 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) is an imaging technique that is
extensively used for medical purposes in order to obtain high qual-
ity images of the insides of the human body and also the human
brain. While localizing the source of the signals on the human head
using an EEG, we need to visualize it for better understanding of the
location and its implications, and for this purpose it is important to
align the forward model of the human brain with the MRI scans (re-
fer section: 2.2.3) . For the purpose of this thesis work and the related
publications we have used a standard MRI that is an average of hun-
dreds of scans that have been collected and is readily available for
research purpose (see figure 2.10).

FIGURE 2.10: The figure shows a typical example of
an MRI image. It has three views, the top left showing
the ’coronal’ view, the top right showing the ’sagittal’
view and the bottom left showing the ’axial’ view. The
positioning of the blue cross-hair and the yellow cir-
cle around it shows the location of interest. (Source:
Dipole Simulations with different phasic oscillatory
signals - Saurabh Kumar - Kiel 2014 M.Sc. Thesis -
Uni-Klinikum (Neurologie) Kiel Christian-Albrechts-
University of Kiel Faculty of Engineering Digital Sig-

nal Processing and System Theory)
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2.3 Artifact correction

In recent times there have been many new methods proposed for the
correction of artifacts in the EEG recording in addition to the clas-
sical methods like the regression (Pham et al., 2011), ocular artifact
correction (Croft and Barry, 2000b), filtering (Sweeney, Ward, and
McLoone, 2012), blind source separation (BSS) (James and Hesse,
2005; Vigario and Oja, 2008). The new techniques are a combina-
tion of these methods in order to optimize the signal to noise ratio
in post processing. It also points that the methods converge in terms
of their performance and highly dependent on the requirement of a
particular experiment or application.

Before one looks into the correction of the unwanted artifacts one has
to understand the background activity of the EEG signals. EEG sig-
nal has a range of frequency from 0.01Hz to around 100Hz and the
voltage varies from a few micro-volts to around 100µ. The amplitude
has a larger range because of the artifacts not related to the signals
received from the brain activity. There are some recordings at low
frequencies like 0.01Hz which are not considered but in some cases
useful in the brain computer interface (BCI) (Fatourechi et al., 2007).
Most of the EEG activity is concentrated in the lower frequency spec-
trum (Daly et al., 2012). It is classified broadly into five different fre-
quency bands: delta (∼ 0.5-4 Hz), theta (4-7 Hz), alpha (8-13 Hz),
beta (14-30Hz) and gamma (> 30-< 100Hz) (please also refer figure
2.11). Many EEG studies depend on these bands and the classifica-
tion of normal or abnormal band activity depends on age and the
mental state of the participant (Sanei and Chambers, 2007). Its been
widely considered that prediction of the exact characteristics of the
EEG signal in terms of amplitude, duration or morphology is not
possible (Sörnmo and Laguna, 2014; Rèmond A Gasser, 1977) and
hence it should be considered a stochastic signal even-though some
of its characteristics are known (Daly et al., 2012). A specific kind
of waveform in the EEG activity is called the evoked potential (EP)
which is the part of deterministic signals, separated from the stochas-
tic. It is deterministic in the sense that they are evoked and not spon-
taneous like the rhythms (figure 2.11). Event related potential (ERP)
is also a name given to such waveforms which are generated in the
brain. It is related to a specific stimulus and it time-locked (Sur and
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Sinha, 2009). The amplitude of the ERP is small and not easily vi-
sualized by the human eye because of the background EEG activity
(Sanei and Chambers, 2007), therefore signal processing techniques
like averaging trials and others are required for its study.

FIGURE 2.11: This figure shows the brain waves clas-
sification and their frequency ranges. Shown also is
the particular mental states that the brain waves are

associated with.

Signal processing is also required to get rid of the artifacts that make
the EEG recording noisy, therefore in order to make the influence of
the artifacts on the EEG signal minimal it is required to know the
most common types that exist. Broadly they can be classified into
the physiological and the non-physiological (technical) (Sörnmo and
Laguna, 2014; Fish, 1999). Out of these the non-physiological ones
can be reduced by proper attachment of electrodes and setting up
the EEG recording arrangement in a controlled environment away
from the obvious sources of noise (Anderer et al., 1999). Our setup
of the experiments was well regulated and therefore we did not have
to deal with these types of artifacts. The physiological type is harder
to avoid because they are beyond control of the experimenter and
therefore there are lot of techniques and algorithms dedicated for the
reduction of such artifacts. We concentrated our efforts in getting rid
of such artifacts.

2.3.1 Ocular artifacts and correction

The electro-oculogram (EOG) is used to measure the activity pro-
duced by the eye movement, it is basically an electrode or a set of
electrodes attached near the eyes to measure the electrical signals
that can be used to correct for the eye blinks an the eye movements.
EOG is normally recorded with the EEG (Croft and Barry, 2000b),
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although the EOG electrodes are dedicated for picking up the eye
artifacts the effects of the eye movements and the blinks extend fur-
ther onto other electrodes to be picked up by them also (Romero,
Mañanas, and Barbanoj, 2008; Fish, 1999). We used a single electrode
below the left eye of the participants to pick up eye movements. One
should be careful in placement of the EOG electrode in order to make
a better use of them and avoid the contamination of the EEG signal
in other electrodes. The eye blinks contaminates the EEG signal with
a more abrupt change in the amplitude and generally quite distin-
guishable than the eye movements (Croft and Barry, 2000b). It is
seen that of particular advantage to measure the EOG along with the
EEG for the cancellation of the ocular artifacts but one has to keep
in mind that as the EEG is contaminated by the signals picked in
EOG, the EOG is also contaminated by the EEG (Gratton, 1998; Wall-
strom et al., 2004; Romero, Mañanas, and Barbanoj, 2008). For the
eye blinks we used the difference of the EOG electrode with the elec-
trode that is placed on the top of the left eye as these electrodes are at
the most appropriate locations to pick up these abrupt changes in the
amplitude. We also used the summation of the electrodes above the
two eye as the reference for the eye movements (Parra et al., 2005).

Regression technique

A common technique that is widely used seems to be a old one which
has the basics in the use of the ’least-squares’ regression function (PM
Quilter, 1977; Croft and Barry, 2000b). The regression function cal-
culates the proportion of one variable that is explained by the other
hence the estimate of the EOG that is present in the EEG. A time
domain approach (TDA) is used that compares the voltage from the
EOG channel with the EEG channel voltage at each time instance ir-
respective of the frequency. It can be used for a single channel EOG
but also can be extended into a double channel (VEOG, HEOG) and
also into a multiple channel calculation as per the requirement and
the application. We took the VEOG and HEOG channels as the com-
bination of the EOG, FP1 an FP2 electrodes (Parra et al., 2005). The
next step after using a technique is to check for its validation, and for
the EEG artifact correction it is not straight forward.
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Validation and usage

There are many ways in order to correct for the artifacts but there is
no one efficient or correct way to check for its validation. The main
reason is that there is no actual way of measuring EEG without con-
tamination from the artifacts. One way to say if the correction is
good, is to check if the correlation between the EOG and the EEG is
very low as one would expect and assume that there is no correla-
tion between the EOG and the corrected EEG (Verleger, Gasser, and
Mocks, 1982). This may not be a very good way to decide because of
the obvious flaw that there actually exists a correlation between EEG
and the EOG. This is due to the fact that EEG and the EOG channels
pick up the brain activity intended for them individually (Gratton,
1998). Another way of validating the correction procedure is to check
if the uncontaminated EEG is similar to the corrected EEG (Gratton,
Coles, and Donchin, 1983). The flaw with this technique is that there
is no uncontaminated EEG and hence the uncontaminated EEG that
can be used is basically the EEG which does not have the specific ar-
tifact that we are correcting for. Because of the limitations of the val-
idation, one has to revert back to the face validity (Verleger, Gasser,
and Mocks, 1982) which means one has to rely on the experience of
the experimenter and also on discussions with other researchers. We
therefore used the tested technique (least mean square fitting proce-
dure (Parra et al., 2005)) and checked for the performance comparing
with the other techniques.

There have been discussions whether the eye blinks and the eye move-
ments should be dealt differently and separately. There have been
studies that say that the eye blinks and the eye movement voltages
propagates differently (Corby and Kopell, 1972; Gratton, Coles, and
Donchin, 1983; Lins et al., 1993; Overton and Shagass, 1969) and
some studies therefore say that these artifacts should be corrected
separately (Gratton, 1998). The counter argument is that the correct
methods need to be implemented effectively in order to deal with
the two types of eye artifacts regardless of the type of artifact (Croft
and Barry, 1998b). It has also been shown that when the sources of
interference are removed from the EOG and the EEG then the differ-
ences between the blinks and the movements are also non-existent
(Croft and Barry, 1998a; Croft and Barry, 2000a; Brunia et al., 1989;
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Kamiya and Francisco, 1973). Therefore eye blinks and eye move-
ments should be handled together if an appropriate interference re-
moving is implemented. Another way to argue about the eye arti-
facts correction is through the argument that different movements in
the eye are a result of a combination of frequencies (Whitton, Lue,
and Moldofsky, 1978) and therefore the correction of these artifacts
should be done on different frequencies using the frequency domain
approach (FDA) (Gasser, Sroka, and Möcks, 1985; Gasser, Ziegler,
and Gattaz, 1992; Woestenburg, Verbaten, and Slangen, 1983). How-
ever there is no study that puts the FDA at a higher advantage than
the time domain approach that we have used in this research project
and some studies have shown that the TDA and the FDA produce
similar results hence there is no point in disregarding the time based
artifact correction of the eye artifacts (Brunia et al., 1989; Kenemans
et al., 1991; Berg-Lenssen, Gisbergen, and Jervis, 1994).

2.4 Other considerations

All the processing that was done on the EEG data (for the following
two publications, refer section 3.1 and section 3.2) was done offline
and hence we had time to look in each processing step and optimize
the process for the participants where it could not be generalized. In
order to work with the data we had to deal with the computation
time and resolution issues and therefore we had to down-sample the
data to one-fourth the recorded resolution. For our study we did
not require any data that was over the frequency of 45Hz and hence
our down sampling of the data to 250Hz did not have any impact
and served us in saving a lot of out computation power. The fil-
tering was done with the widely accepted and popular third order
butterworth filter. The order of the filter was kept to three to avoid
any unwanted noise that may creep in. The performance of the filter
was also checked in the frequency domain using the frequency trans-
formation method based on the Welch method. The decision to use
the Welch method meant that no unwanted noise was introduced
in the data due to this conversion. As much as the pre-processing
of the recorded EEG data is concerned it must be mentioned that
for correcting the ocular artifacts many methods were tested. The



28 Chapter 2. Theoretical Background

method based on linear regression analysis was selected (Parra et
al., 2005) (For more understanding please look in section 2.3). The
method was tested and compared with other known popular meth-
ods like the independent component analysis (ICA) method (Zhou
et al., 2005; Jung et al., 1998; Shen, Zhang, and Li, 2002), the temporal
decorrelation source separation (TDSEP) method (Ziehe and Müller,
1998), the second order blind identification (SOBI) method (Delorme
et al., 2007; Tang, Sutherland, and McKinney, 2005) and statistical
control of artifacts in dense array EEG (SCADS) method (Junghöfer
et al., 2000). For the purpose of this project it was decided that the
method of regression by (Parra et al., 2005) provides sufficient cor-
rection of the artifacts and allows us to quickly and automatically
remove them from the EEG recorded data. The implementation of re-
gression method was taken from the Berlin Brain Computer Interface
(BBCI) toolbox that is built to work in conjunction with MATLAB.
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Brain regions involved in the reappraisal of tasty but unhealthy foods are of special
interest for the development of new therapeutic interventions for obesity, such as non-
invasive brain stimulation or neurofeedback. Here, we visually presented food items
(i.e., high/low caloric) to obese and lean individuals during electroencephalogram (EEG)
recordings, while they either admitted or regulated their food desire. During admitting
the desire for low and high calorie foods, obese as well as lean individuals showed
higher activity in the left dorsolateral prefrontal cortex (DLPFC), whereas the right frontal
operculum was involved in the reappraisal of the same foods, suggesting interplay
between executive control and gustatory regions. Only in lean participants, we found an
interaction between calorie content and the regulate/admit conditions in bilateral anterior
insular cortices, suggesting that the anterior insula, assumed to primarily host gustatory
processes, also underpins higher cognitive processes involved in food choices, such as
evaluating the foods’ calorie content for its reappraisal.

Keywords: obesity, EEG, dorsolateral prefrontal cortex, frontal operculum, insular cortex, reappraisal of food

INTRODUCTION

Obesity is a major health burden and dramatically climbing incidence rates, especially in rapidly
developing countries like China or India, lead to a demand on developing new therapeutic
strategies (Roman et al., 2014). Currently available weight-loss programs consist either of dieting
(Soeliman and Azadbakht, 2014), physical activity (Jakicic and Davis, 2011), or the combination of
both (Amorim Adegboye and Linne, 2013), with mostly modest and also timely restricted effects
on participants’ body weight. The majority of participants start regaining weight directly after
the program has ended. Based on these experiences, new therapeutic strategies started combining
dieting and physical activity with regular psychological interventions to strengthen motivation and
volition (Looney and Raynor, 2013; Ausburn et al., 2014). This combination seems specifically
effective for stabilizing the program-associated weight-loss beyond the program’s duration, but the
influences on body weight and metabolism are per se small. Establishing new programs that, at
the same time, produce profound weight loss and long-term body-weight stability seem generally
difficult because the neuronal mechanisms driving and sustaining overeating are still not well
understood.

Regular consumption of high-calorie foods affects the brain’s reward system in comparable
ways as addictive drugs (Volkow et al., 2013). If rats consume such foods over several weeks,
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they react with compulsive eating habits that resemble
drug craving behavior (Johnson and Kenny, 2010). One
mechanism driving this addiction-like behavior is an altered
dopaminergically mediated reward response to foods (Wang
et al., 2001; Stice et al., 2008). Regular consumption of high-
calorie foods regularly amplifies the dopaminergic response in
regions underpinning habitual eating behavior such as the dorsal
striatum, which over time is compensated by a reduction of the
striatal dopamine receptor availability (Stice et al., 2008; Johnson
and Kenny, 2010; Volkow et al., 2013). In rats, this reduced
receptor availability leads to weakened dopaminergic responses
to the same foods as before high-calorie diet, which, in turn,
supports further overeating (Johnson and Kenny, 2010).

Wanting food is different from liking food, but both together
are necessary for food-related reward responses (for a review see
Berridge, 2009). Wanting food without liking it is merely a sham
or partial reward, without the gustatory and olfactory pleasure.
‘‘Wanting’’ is still an important component of food reward,
especially when combined with ‘‘liking’’. Food reward cannot
happen without incentive salience, even if hedonic ‘‘liking’’ is
present. Hedonic ‘‘liking’’ by itself is simply a triggered affective
state. It is the process of incentive salience attribution that makes
a specific associated food the object of desire. ‘‘Liking’’ and
‘‘wanting’’ are needed together for full food reward. Fortunately,
both usually happen together in human life (Berridge, 2009).

Brain regions involved in the reappraisal of wanting and
liking food are of special interest since the modulation of their
functional implementation within brain circuitries commonly
orchestrating eating behavior may represent a future target
for brain-stimulation or neurofeedback training. Whether such
interventions underpin, accelerate, or even initiate changes in
body weight remains another area for future research.

On the search for neurofeedback targets, we recently used
functional magnetic resonance imaging (fMRI) in a group of
lean to overweight participants to identify brain regions involved
in the reappraisal of food (Hollmann et al., 2012). As in the
present study, participants were visually presented food items
under two different conditions: Either they admitted the desire
for the presented food by thinking, e.g., of its taste and flavor
(i.e., admit condition), or they regulated their desire by thinking,
e.g., that the food is unhealthy or its consumption is followed
by weight gain (i.e., regulate condition). Comparing the regulate
to the admit condition, we identified the dorsolateral prefrontal
cortex (DLPFC), pre-supplementary motor area (pre-SMA) and
inferior frontal gyrus (IFG); regions that are well known to
underpin top-down control of craving, inhibition of learned
associations and prepotent responses. Furthermore, we observed
increased activation in bilateral OFC, a key region of the brain’s
reward valuation system, as well as the anterior insula together
with the frontal operculum and temporoparietal junction (TPJ)
suggesting interoceptive awareness and self-reflection. These
results suggest that reappraisal of food recruits the brain’s
valuation system in combination with prefrontal cognitive
control areas associated with response inhibition (Hollmann
et al., 2012).

FMRI is one method to assess neural underpinnings in the
cortex. These neural responses can also be acquired in real-time

for neurofeedback training. Real-time fMRI for neurofeedback
training, however, bears several limitations, such as the
spatial (i.e., magnetic resonance imaging (MRI) environment),
application-based (i.e., no self-application) and temporal (i.e.,
limited MRI scanning time, latency of the hemodynamic
response) restrictions. Many fMRI-based neurofeedback
attempts therefore failed in translating the training effect
into every-day behavior. Electroencephalogram (EEG) instead
offers real-time feedback capability, longer training and self-
application, despite lower spatial brain resolution. In the present
study, we therefore used EEG in combination with a study
design adapted from our recent fMRI study (Hollmann et al.,
2012), to identify neuronal responses involved in regulating
the desire for food in obese as well as lean individuals. We
hypothesized, that comparing EEG responses of the regulate
and admit condition reveals neuronal activation in brain areas
involved in executive control and active reappraisal, such as
the DLPFC in the prefrontal cortex. Furthermore, we expected
differences in the DLPFC’s activity for lean as compared to obese
participants, as well as for visually presented high as compared
to low calorie foods.

MATERIALS AND METHODS

Participants
This study was approved by the local Ethics Committee of
the Medical Faculty Leipzig and carried out according to the
Declaration of Helsinki. All participants gave written informed
consent prior to their participation. Forty-six right-handed
participants took part in this study. Half of them were lean (Body
mass index (BMI) >20 and <25 kg/m2, mean = 23, SD = 1.4)
and the other half obese (BMI > 30 kg/m2, mean = 36.81,
SD = 6.21). Participants were financially reimbursed for their
participation. All participants were fasting for 5 h before the
experiment and were tested around noon (12 am to 2 pm). As
compared to shorter fasting periods, 5 h enhanced participants’
attention for the visually presented food items as well as their
effort in regulating their food desire (pilot data, not shown).
Exclusion criteria were any present or past neurological or
psychiatric diseases, as well as prescribed central acting drugs.
Depression was assessed using the BDI-II questionnaire. A score
of 29 or higher, indicating severe depression, was considered as
an exclusion criterion. Five participants had to be excluded due
to high BDI-II scores. One other subject had to be excluded
due to technical problems in data recording. The remaining 40
subjects consisted of 20 males and 20 females. Each gender group
consisted of 10 lean and 10 obese participants (see Table 1).
Groups were matched for age (unpaired t-test p > 0.5). In
addition, the BMI did not differ between males and females
(p > 0.1), neither for the group of lean (p > 0.3), nor for obese
participants (p > 0.2).

Visual Analog Scales (VAS)
By means of a quasi-continuous, digital VAS, we assessed
six psychological states before and after the experiment. The
processed levels for each VAS ranged from 0 on the left hand side
(i.e., not at all) to 100 on the right hand side (i.e., fully true) and
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TABLE 1 | Mean and standard deviation (SD) for age and body mass index
(BMI) for the four different study groups.

N/subgroup Age range (mean) BMI range (mean)
[years] [kg/m2]
± (SD) ± (SD)

10 lean males 24–33 (29.2) ± (3.3) 20.6–24.8 (23.1) ± (1.3)
10 lean females 25–34 (28.6) ± (3.3) 20–24.9 (22.5) ± (1.5)
10 obese males 23–37 (28.6) ± (4.2) 30.9–55 (38.3) ± (7.3)
10 obese females 23–33 (27.9) ± (2.9) 31.4–42.9 (35.3) ± (4.0)

the following questions were raised: ‘‘How tired are you?’’, ‘‘How
hungry are you?’’, ‘‘How dry is your mouth?’’, ‘‘How stressed do
you feel?’’, ‘‘How thirsty are you?’’, ‘‘How sated are you?’’ For pre-
post comparisons, we used the paired t-test.

EEG Recording
EEG data was recorded with a 64-channel Brain Amp recorder
(Brain Products, Gilching, Germany) with 1000 Hz temporal

resolution.We applied 63 electrodes apart from the reference and
the ground electrodes to participant’s scalp arranged according
to the international 10–10 system. One additional electrode was
attached below the left eye to measure vertical eye movements
(i.e., electro-occulogram or EOG).

Experimental Schedule
Participants were comfortably seated in front of a computer
screen in a shielded EEG cabinet. First, we acquired 5 min
of task-free resting-state EEG data to familiarize participants
with the environment. These resting-state measurements were
followed by the first session of task-based EEG recordings
(20 min). Afterwards, we acquired another 5 min resting-state
data. Participants were asked to relax during these 5 min. Finally,
we recorded a second session of task-based EEG (see Figure 1A).

Task-Based EEG Recordings
During EEG recordings, we presented food pictures on the
computer screen in front of the participant. Before the

FIGURE 1 | Experimental design. (A) Shown is the order of the two resting-state and the two experimental sessions. Before the first resting-state
electroencephalogram (EEG) measurements, participants rated their tiredness, hunger, satiety, thirstiness, and stress levels on a visual analog scale (VAS).
(B) Example of one block from the task-based EEG session. Three food pictures from one category (high or low calorie) were presented in a row. Prior to the
presentation of the pictures, participants were instructed to either regulate or admit their desire for the upcoming food pictures. After presentation of the three
pictures, participants rated their ability to either regulate or admit the desire for the three presented foods. This was repeated 20 times for each condition
(regulate/admit), resulting in a total of 40 blocks.
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experiment, participants were instructed to either admit their
desire for the presented food (ADMIT condition) or to
regulate their desire (REGULATE condition) according to the
instructions presented on the computer screen. The trials were
grouped into blocks of three trials. At the beginning of each
block, an instruction was shown. The instruction on the screen
was either ‘‘ADMIT’’ or ‘‘REGULATE’’. The instruction was
presented for 2 s followed by a crosshair for another 2 s.
Afterwards, we presented the three food pictures. Each picture
was presented for 5 s followed by a crosshair for 2 s (see
Figure 1B). The order of blocks was pseudo-randomized across
each session.

We used a 2-by-2 factorial design with the factors
REGULATE/ADMIT-by-high/low calorie foods. Each calorie
group consisted of an equal amount of sweet and savory foods.
The comparison of sweet to savory (and vice versa) was of
no interest and only implemented to better meet participants’
food preferences and to keep the task interesting. Sixty food
pictures were chosen from a pre-rated in-house repertoire of
standardized food pictures with 60 pictures for each condition
(Hollmann et al., 2012). In each of the 2 experimental sessions,
we acquired 20 blocks (three food pictures per block) for both,
the ADMIT and the REGULATE condition. To cancel out the
influence of the presented foods, each food picture was presented
twice, one time in the REGULATE, and the other time in the
ADMIT condition in each session. After presenting the three
food pictures, another screen with a 4-point Likert scale showed
up for 3 s and participants rated their subjective impression on
how well they regulated or admitted their desire for the three
food items. The scale of these self-ratings were ranged from 1
(very bad) to 4 (very good).

After the experiment, we asked participants about the specific
mental strategies they used to either regulate or admit their
desire for the presented food items. The different strategies are
summarized in Table 2.

Preprocessing of the EEG Data
Using the FieldTrip Software package (Donders Centre for
Cognitive Neuroimaging, University Nijmegen, Netherlands)
and the Berlin Brain Computer Interface (BBCI) toolbox (Berlin
Institute of Technology, Germany), EEG data was first down-
sampled to 250 Hz and band-pass filtered (3rd order Butterworth
filter) between 0.05 and 45 Hz (BBCI toolbox). Then the data was
re-referenced from the original reference of FCz to the common
average reference (CAR; Bertrand et al., 1985; Pascual-Marqui
and Lehamann, 1993). To correct for eye movement and facial
muscles contractions we regressed out the sum of recordings
from channels Fp1 and Fp2, indicating horizontal EOG, and the
subtraction of channels Fp1 and EOG indicating vertical EOG,
respectively, with a least mean-square fitting procedure (Parra
et al., 2005). Since these channels acted as EOG channels, they
were rejected from further analysis.

Thereafter, the EEG data was epoched into trials of 5 s length
(i.e., presentation time for one food item) and baseline corrected
using the mean value of the time course for the particular
trial. The self-ratings across all epochs (i.e., same value for each
picture within one block) were added as an interacting covariate.

TABLE 2 | Mental strategies the participants used in order to admit or
regulate their desire of the foods.

ADMIT Obese (N = 20, Lean (N = 20,
28 indications) 27 indications)

Imagination of consuming 14 7
Combination with other food 6 9
Positive environment/atmosphere 3 1
Positive properties of the food 2 5
Appetite 0 3
Other/none specific strategy 3 2

REGULATE Obese (N = 20, Lean (N = 20,
27 indications) 25 indications)

Negative properties (rotten, etc.,) 12 11
Suppression of thinking about 8 2
Persuade oneself of being sated 1 8
Consequences for ones body 2 1
Other 4 3

Note that some participants used more than one strategy during the course of the

experiment. That is why the N is higher than the actual number of participants.

The temporal window of interest was identified by a heuristic
search, based on a signed point-biserial correlations that has
been widely used in event-related potential (ERP) based brain-
computer interfaces (BCIs) to select the most discriminative
temporal windows between different experimental conditions
(Blankertz et al., 2011). In particular, the sums of the absolute
correlation coefficient values at the given time window were
calculated and then the temporal window corresponding to the
highest sum value was selected for the analyses. The time period
between 1675 and 2055 ms after stimulus onset was selected for
source localization.

Source Localization of the EEG Data
Source localization was done with the Statistical Parametric
Mapping (SPM) Software package 12 (Wellcome Trust Centre
for Neuroimaging at University College London, UK,1), running
under MATLAB version 8.2 (The MathWorks, Ismaning,
Germany). The forward model consists of the model of the
brain itself, which was formed by the boundary element
method (BEM) with the different layers of the brain tissue,
the skull and the scalp. The co-registration was done by
matching the electrode sensor locations on participant’s scalp
and the coordinate mapping from the scalp to the cortex. The
standardized MRI was used with this cortical mesh model as
implemented in SPM12. The inverse problem was solved by the
multivariate source pre-localization (MSP) algorithm (Mattout
et al., 2005).

On the group level we used the full factorial design as
implemented in SPM 12 with the independent factor ‘‘obese/lean
participants’’, and the dependent factors ‘‘high/low calorie foods’’
as well as ‘‘REGULATE/ADMIT’’. A family-wise error (FWE)
corrected p-value of < 0.05 together with a minimum cluster
size to 20 voxel indicated significance. We used post hoc
paired (within-subject) and unpaired (between-subject) t-tests to
decipher the structure of significance.

1http://www.fil.ion.ucl.ac.uk/spm
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Analyses of the Self-Ratings Assessed
During the EEG Experiment
Besides the implementation of the trial-by-trial self-
ratings as a covariate for the single participant EEG
analyses, we also applied them to an ANOVA with
the dependent factors ‘‘REGULATE/ADMIT’’, and
‘‘high/low calorie foods’’, as well as the independent
factor ‘‘obese/lean participants’’ (same model as for the
analyses of the EEG data). In case of significance, we
applied post hoc paired (within-subject) and unpaired
(between-subject) t-tests to investigate the structure of
significance.

RESULTS

Visual Analog Scales
Comparing the post VAS to the pre VAS, we found significantly
increased rating for tiredness (paired t-test p < 0.001), and
hunger (p < 0.001), whereas the satiety ratings significantly
decreased (p < 0.035).

Self-Ratings in the REGULATE/ADMIT
Conditions
We found higher self-rating scores for the ADMIT as
compared to the REGULATE condition for lean and obese
participants together, across high and low calorie foods
(ANOVA, p < 0.0001). Post hoc paired t-tests revealed that
lean participants rated their performance better for admitting,
relative to regulating their desire for food, irrespectively of
whether this was high (p < 0.001) or low caloric (p < 0.009).
Obese participants also rated their performance better for
admitting, relative to regulating their desire for low calorie foods
(p < 0.007). For high calorie foods, however, they unexpectedly
rated their performance equally well (p > 0.2; Figure 2).

Task-Based EEG Findings
Comparing the ADMIT to the REGULATE condition (i.e.,
interaction between self-ratings and EEG activity) for both,
lean and obese participants, we found a FWE-corrected
activation (p < 0.05) in the left DLPFC (peak voxel:
MNI coordinates (x, y, z): −42, 38, 20 mm, T = 5.55,

FIGURE 2 | Shown are lean and obese participants’ self-ratings on how well they either admitted or regulated the desire for high and low calorie
foods on the Likert scale from 1 (very bad) to 4 (very good) shown as y-axis. Lean participants rated their ability to admit the desire for foods as better than
their ability to reappraise the foods, irrespectively of whether this was high (p < 0.009) or low caloric (p < 0.032). Obese participants also rated their performance
better for admitting the desire for low calorie foods (p < 0.007). For high calorie foods, however, they unexpectedly rated their performance equally well (p > 0.2).
The whiskers index the standard errors and the significance is marked with asterisks.
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p < 0.0005; post hoc paired t-tests for lean p < 0.005
and for obese p < 0.012), whereas the inverse contrast
(REGULATE > ADMIT), revealed an FWE-corrected activation
in the right frontal operculum (peak voxel: MNI coordinates
(x, y, z) 50, 34, −6 mm, T = 5.28, p = 0.0123; see
Figure 3A). According to post hoc paired t-tests, the latter
effect was driven solely by lean participants (p < 0.001; obese
group p > 0.137; see Figure 3C). Comparing both study
groups, we furthermore found higher activations in the ADMIT
condition in obese as compared to lean participants (p < 0.04;
Figure 3B).

Only lean participants showed a significant interaction
between ‘‘calorie content’’ (high-caloric/low-caloric) and
‘‘condition’’ (ADMIT/REGULATE), not in the DLPFC or
the frontal operculum, but in the anterior insular cortex of
both hemispheres (left: −50, 20, 8, T = 6.45, p < 0.001;
right: 50, 22, 8, T = 6.32, p < 0.0003; Figure 4A). Post hoc
t-tests revealed a significantly higher activity of the insula
during the REGULATE as compared to the ADMIT condition
in the left (p < 0.01) and right insular cortex (p < 0.001),
but only for low calorie foods. For high calorie foods, we
found the opposite pattern: higher activations during the
ADMIT as compared to the REGULATE condition, although
the difference between ADMIT and REGULATE did not

reach significance (left insula p < 0.09, right insula p < 0.14;
Figures 4B,C).

DISCUSSION

In agreement with our a-priori hypotheses, we show that in
obese as well as in lean individuals, the left DLPFC underpins
the desire for foods, however, irrespectively of whether these
were high or low caloric. We further hypothesized an interaction
between participants’ self-rated ability to reappraise foods and
body weight in the DLPFC, which we could not confirm. Not
the DLPFC, but the frontal operculum on the contralateral right
hemisphere was involved in the self-rated ability to reappraise
foods, again irrespectively of calorie content. During admitting
the desire for low calorie foods (i.e., interaction between
self-ratings and EEG activity), not the frontal or prefrontal
cortex, but both hemispheres’ anterior insular cortices responded
with high activity for high calorie foods and low activity for
low calorie foods. During the reappraisal of the same foods,
the same areas showed the inverse pattern: low activity for
high calorie foods and high activity for low calorie foods.
Nonetheless, the difference between the admit and regulate
condition reached significance only for low, and not for high
calorie foods.

FIGURE 3 | Task-based EEG results. (A) ADMIT > REGULATE (i.e., interaction between self-ratings and EEG activity) across lean and obese participants resulted
in activation of the left dorsolateral prefrontal cortex (DLPFC; red cluster, family-wise error (FWE)-corrected, p < 0.05). REGULATE > ADMIT activated the right frontal
operculum (green cluster, FWE-corrected, p < 0.05). “z” Indicates the MNI coordinates of the axial brain slices. “R” indicates the right and “L” the left brain
hemisphere. (B) Bar plots show the estimated marginal means for REGULATE and ADMIT in the left DLPFC separately for lean and obese participants. (C) Bar plots
show the estimated marginal means for REGULATE and ADMIT in the right frontal operculum separately for lean and obese participants. For (B,C) the whiskers
index the standard errors and significance is marked with asterisks.
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FIGURE 4 | Task-based EEG results of the interaction between “calorie content” (high-caloric/low-caloric) and “condition” (admit/regulate, including
the self-ratings as covariates) in lean participants only. Note that in obese participants the same comparison revealed no significant effects. (A) In lean
participants we found activations in the anterior insular cortex in both hemispheres (red clusters, FWE corrected, p < 0.05). (B) Bar plots show the estimated
marginal means for high and low calorie foods for either the REGULATE or the ADMIT condition in the left anterior insula. (C) Bar plots show the estimated marginal
means in the right anterior insula, respectively. The whiskers indicate the standard errors and significance is marked with asterisks.

During EEG recordings, we visually presented food items
out of two different categories (i.e., high/low caloric). Each
picture was presented twice—one time, participants were
instructed to regulate the desire for the presented foods,
the other time, they had to allow the desire for the same
foods. After picture presentation, participants rated their ability
to either regulate or admit the desire for the presented
foods on a 4-point Linkert-scale ranging from 1 (very bad)
to 4 (very good). These self-ratings were implemented into
the EEG data analyses as covariates to assess the related
brain activity for either the admit or regulate condition.
Participants were free in choosing the best strategy in order
to either admit or regulate their food desire. After the
experiment, we asked them which strategy they used. For
regulating their desire, most participants reported of thinking
that the presented foods were rotten. To allow the desire
for the same foods they simply thought of its delicious
taste during consumption. Comparing these two conditions,
irrespectively of whether participants were obese or lean
or whether the food was high or low caloric, we found
a sub-region within the right frontal operculum involved
in the regulation of the food desire. Its activity during
admitting food desire was significantly higher in obese as
compared to lean individuals possible indicating a stronger

gustatory response to the visually presented foods. In the
DLPFC on the opposite hemisphere, we found a region
involved in the desire for the same foods. During admitting
food desire, its activity was enhanced by trend in lean
as compared to obese participants probably suggesting a
stronger executive control. Together, these findings address
opposing effects in food choices to sub-regions within left
prefrontal and right frontal cortex in both, lean and obese
individuals.

Previous fMRI studies on central nervous taste processing
showed, that taste stimuli applied either to the right or
left side of the tongue predominantly activate ipsilateral
brain regions as well as their connections, not only at the
thalamus level, but also in higher-level gustatory cortices
(Iannilli et al., 2012). We in the present study, however,
found clearly lateralized effects for admitting or regulating
food desire in the left DLPFC and right frontal operculum,
respectively. In previous fMRI studies using almost the same
experimental design as in the present study, we also found
that regulating the desire for food activated the frontal
operculum, however, not only in one but both brain hemispheres
(Hollmann et al., 2012). This suggests that different study groups
with different BMI ranges (lean to overweight in Hollmann
et al., 2012 vs. lean and obese in the present study) induce
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differentially lateralized brain effects related to the reappraisal of
foods.

Only in lean individuals, we found an interaction between
high and low calorie foods, in a region neighboring the
frontal operculum, namely the anterior insular cortex.
Regarding the insula’s cognitive implementation, recent
studies suggest that its activation relates to the sense of
ownership and agency (Farrer et al., 2003), or the subjective
awareness and affective processing of bodily signals (Craig,
2002, 2004). Especially the anterior insula is assumed to
play a major role in viscerosensory (Oppenheimer et al.,
1992) and interoceptive cognition (for a review see Craig,
2009), suggesting its involvement in higher-order perceptual
processing of the body that is either related to a sense of
ownership or to emotional experience. In the context of
eating, the anterior insula, together with the neighboring
frontal operculum, are described to host the primary
gustatory cortex, which is assumed to primarily code
taste (Rolls et al., 1988; Zatorre et al., 1992; Small et al.,
1999). During eating, exteroceptive food-related sensory
signals from taste and olfactory receptor cells activate
the anterior insula together with the frontal operculum,
where stimulus identity and intensity are merged into a stable
representation, independent of the homeostatic or motivational
state (Rolls et al., 1988; Zatorre et al., 1992; Small et al.,
1999).

Our findings extend these functions, since in lean
participants visually presented foods activated the anterior
insular cortex, independently of signals from peripheral taste
or olfactory receptor cells. This finding is well in line with
previous studies in mice, showing that the insular cortex
regulates food choices even in the absence of peripheral taste
inputs (Oliveira-Maia et al., 2012). One possible interpretation
of this finding is that the anterior insula in humans also
contributes to the ability to imagery food and taste (as indexed
by the self-ratings), with, however, different response profiles
for high as compared to low calorie foods. Whether these
calorie-related differences in neural responses primarily
originate from the insular cortex or mirror top-down
influences from other brain sources not captured by EEG
remains an open question for future research. Food and taste
evaluation and imagery, nonetheless, is an essential function
for survival. Its implementation in the primary gustatory
cortex may therefore represent an evolutionary well-preserved
effect.

Lean and obese individuals together rated their ability
to admit the desire for low-calorie foods as better than
the ability to reappraise the desire for the same foods.
These findings suggest that following the hedonic feelings
of wanting and liking foods is easier than their reappraisal
(Berridge, 2009). However, only in lean participants, self-
ratings were well reflected by the activity obtained from
the anterior insular cortices. For high-calorie foods, they
showed an inverse insula response profile as for low calorie
foods, which, however, did not reach significance. Obese
participants unexpectedly rated their ability to reappraise high
calorie foods as equally well as the ability to admit the desire

for the same foods. However, contrarily to lean participants,
self-ratings in obese individuals were not reflected by neuronal
responses neither by the insula’s activity levels, nor by any
other EEG sources throughout the brain. Although it is
problematic to interpret such non-significant effects, since they
still may become significant with increasing the sample size,
they probably point to an association between obesity and
an impaired self-reflection of the ability to reappraise foods
in the insular cortex. However, in disagreement with our a-
priori hypotheses, we found no differences between groups of
obese and lean individuals: a lack of effect, which is possibly
driven by the food pictures that we applied in the present
study.

These pictures were chosen from a larger assembly that
was validated in pilot experiments in only lean individuals
(others than those who participated in the present study;
data not published). The pictures chosen for the present
study were those with the highest ratings in terms of esthetic
and tastiness in the photographic presentation. Due to the
validation in only lean individuals, the present set of food
pictures may have been more sensitive to changes in lean
ones, possibly explaining the lack of interaction effects in
obese participants (admit/regulate-by-low/high calorie food)
as well as the lack of differences between lean and obese
participants.

In summary, we show distinct brain regions in obese
and lean individuals involved in the evaluation of the
food’s calorie content and its reappraisal. The interplay
between the left DLPFC and the right frontal operculum
may in future serve as a target for non-invasive brain
stimulation or neurofeedback studies that aim at modulating
eating behavior towards better reappraisal capacities for
foods. The involvement of the anterior insular in lean
subjects suggests that the insula, so far assumed to host
primary gustatory processes, also plays a role in processes
underpinning higher cognitive functions involved in food
choices.
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1 Abstract 27 

Identifying brain regions involved in the reappraisal of tasty but unhealthy foods is important for 28 

the development of cognitive interventions for obesity, such as non-invasive brain stimulation or 29 

neurofeedback. In a recent EEG study, we showed that allowing the desire for low and high 30 

calorie food in hungry obese as well as lean women and men related to enhanced activity in the 31 

left dorsolateral prefrontal cortex (DLPFC), whereas the right frontal operculum, suggested to 32 

host gustatory processes, was involved in the reappraisal of the same food. These findings 33 

suggest an interplay between executive control (DLPFC) and gustatory regions (frontal 34 

operculum) for opposing cognitive influences on the desire for food. In the present EEG study, 35 

we questioned how eating to satiety affects cognitive influences on the desire for food and 36 

corresponding neuronal activity in the left DLPFC and right frontal operculum in lean and obese 37 

women. When hungry, lean women self-rated the ability to reappraise visually presented food as 38 

more difficult than allowing the desire for the same food. Obese women instead, rated their 39 

ability to reappraise food as equally well as allowing the desire, suggesting hungriness-related 40 

problems in self-reflection of food reappraisal abilities. Comparing the EEG data of the sated to 41 

the hungry state, we found that the frontal operculum was involved in the reappraisal of food, but 42 

surprisingly also in admitting the desire for the same foods - an effect which we expected to find 43 

in the left DLPFC. This suggests that the right frontal operculum in the obese female brain 44 

underpins or at least reflects both opposing cognitive influences on the desire for food after 45 

eating to satiety. In the future, these findings may help to find potential brain targets for non-46 

invasive brain stimulation or neurofeedback studies that aim at modulating the desire for food.  47 
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2 Introduction 48 

Obesity is a worldwide health burden of industrialization (James et al. 2001). Especially in 49 

rapidly developing countries, the quickly expanding access to high calorie foods causes 50 

dramatically increasing rates of obesity and its comorbidities (Spence et al. 2009; Pereira et al. 51 

2005; Rosenheck 2008). Despite these alarming facts, therapeutic options remain sparse. Most 52 

modern weight loss programs combine calorie restriction and physical activity with behavioral or 53 

cognitive therapy, with, however, limited influences on body weight and long-term weight 54 

stability (Soeliman and Azadbakht 2014; Jakicic and Davis 2011; Amorim Adegboye and Linne 55 

2013; Ausburn et al. 2014; Looney and Raynor 2013). The central problem in developing 56 

effective therapies is that central nervous mechanisms guiding everyday food choices, especially 57 

those underpinning overeating, are not well understood.  58 

High-caloric foods seem to affect the brain’s reward responses like drugs of abuse (Volkow et al. 59 

2013). Like drug-dependent persons, obese individuals present increased craving as well as 60 

attenuated reward responses to high-calorie food, probably supporting compensatory overeating 61 

(Wang et al. 2001; Stice et al. 2008; Johnson and Kenny 2010). Breaking this vicious circle 62 

demands the understanding of the brain’s top-down influences on food craving, such as those 63 

involved in reappraisal of food. 64 

In recent studies, we investigated hungriness-related functional brain processes related to the 65 

desire for food in lean and obese men and women (Hollmann et al. 2012; Kumar et al. 2016). We 66 

visually presented food items (i.e., high/low caloric) while acquiring neural or neuronal brain 67 

activity with, either functional magnetic resonance imaging (fMRI) (Hollmann et al. 2012) or 68 

electroencephalography (EEG) (Kumar et al. 2016), respectively. In both studies, food items 69 

were presented under two opposing conditions; once ,  participants were instructed to admit the 70 

desire for the presented food, by thinking, e.g. of its delicious smell or taste;  the other time they 71 

were instructed to reappraise the food, e.g. by thinking that it might be poisoned, spoiled or lead 72 

to weight gain. Participants were free to choose the best strategy in order to admit or regulate 73 

their desire. During the task, they additionally rated their ability on how well they admitted or 74 

regulated their food desire from trial to trial.  75 

Comparing fMRI responses in lean to obese women and men of the “REGULATE” to the 76 

“ADMIT” condition, revealed the dorsolateral prefrontal cortex (DLPFC), pre-supplementary 77 

motor area (pre-SMA) and inferior frontal gyrus (IFG) (Hollmann et al. 2012); regions that are 78 

well known to underpin top-down control of craving, inhibition of learned associations and 79 

prepotent responses (Sharp et al. 2010; Swick, Ashley, and Turken 2008). Furthermore, we 80 

observed increased activation in bilateral orbitofrontal cortex (OFC), a key region of the brain’s 81 

reward valuation system, as well as the anterior insular cortex and temporoparietal junction (TPJ) 82 

suggesting interoceptive awareness and self-reflection (Zald 2009; Kringelbach 2005; Kahnt et 83 

al. 2010; Kennerley et al. 2009; Peters and Büchel 2010). These results suggest that the 84 
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reappraisal of food recruits the brain’s valuation system in combination with prefrontal cognitive 85 

control areas associated with response inhibition (Hollmann et al. 2012). 86 

With EEG, we found that allowing the desire for low and high calorie food in obese as well as 87 

lean women and men was related to enhanced activity in the left DLPFC, whereas the right 88 

frontal operculum, assumed to host gustatory processes (Rolls et al. 1988; Zatorre et al. 1992; 89 

Small et al. 1999), was involved in the reappraisal of the same food (Kumar et al. 2016). These 90 

findings suggest an interplay between executive control (DLPFC) and gustatory regions (frontal 91 

operculum) for opposing cognitive influences on the desire for food. Only in lean participants, 92 

did we find an interaction between calorie content of the visually presented food and the self-93 

rated ability to regulate/admit the desire for food in bilateral anterior insular cortices, suggesting 94 

that the anterior insular cortex, assumed to primarily host gustatory processes (Rolls et al. 1988; 95 

Zatorre et al. 1992; Small et al. 1999), also underpins higher cognitive processes involved in 96 

food choices (Petit et al., 2016), such as evaluating the foods’ calorie content for reappraisal. 97 

Contrarily to lean women and men, obese individuals’ self-ratings for regulate/admit were not 98 

related to any brain responses, neither in the insular cortex’s, nor by any other EEG sources 99 

throughout the brain. Although it is generally problematic to interpret such non-significant 100 

effects, as they may become more significant by increasing the sample size, they likely point to 101 

an association between obesity and an impaired self-reflection of the ability to reappraise food in 102 

the insular cortex (Kumar et al. 2016). 103 

The present study is a follow-up study of our recent EEG study (Kumar et al. 2016). To impede 104 

food reappraisal abilities, participants of the present and our previous two studies went five hours 105 

without eating prior to the experiments (Hollmann et al. 2012; Kumar et al. 2016). In the present 106 

study, we questioned how eating to satiety affects cognitive influences on the desire for food in 107 

obese and lean women. To this end, women were tested twice: once before and once directly 108 

after eating to satiety. As in our previous study (Kumar et al. 2016), we again used EEG to assess 109 

neuronal brain responses related to the regulation of the desire for food. 110 

We hypothesized that, when hungry, admitting the desire for food is easier than the reappraisal 111 

of the same food (Kumar et al. 2016). After the buffet, we expected this effect to reverse, i.e. 112 

reappraisal is easier, whereas admitting the desire for the same food is more difficult. Comparing 113 

the EEG findings of the sated to the hungry state, we expected to find a decreased activity within 114 

the left DLPFC in parallel to a decreased ability to admit the desire for food after eating to 115 

satiety, whereas we expected to find an increased activity within right frontal operculum in 116 

relation to strengthened reappraisal abilities. We hypothesized that all these effects were 117 

significantly stronger in obese women as compared to lean.    118 
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3 Materials and methods 119 

3.1 Participants 120 

This study was approved by the local ethics committee of the medical faculty of the University 121 

of Leipzig and carried out according to the Declaration of Helsinki. Because of the known 122 

gender differences in brain morphology and function (Horstmann et al. 2011; Mueller et al. 123 

2011; Melasch et al. 2016), we only invited women to participate in the present study. None of 124 

these women participated in our previous two studies (Hollmann et al. 2012; Kumar et al. 2016). 125 

All twenty right-handed women gave written informed consent prior to their participation. 126 

Before the experiments, we assessed each participant’s age. We also measured participant’s 127 

weight with a scale and height with a stadiometer to compute the body mass index (BMI, kg/m
2
). 128 

Half of them were lean (BMI >20 and <25 kg/m
2
, mean = 23.10, SD = 1.63) and the other half 129 

obese (BMI >30 kg/m
2
, mean = 35.97, SD = 6.54). Age for lean (mean = 25.56, SD = 2.88) and 130 

obese women (mean = 26.75, SD = 2.81) were matched (p > 0.759 (parametric t-test)) (Table 1). 131 

All women were asked for any regular medication or contraceptives. Participants were 132 

financially reimbursed for their participation. All women were told to go five hours without 133 

eating prior to the experiment to enhance their sensitivity for visually presented food and to 134 

impede their reappraisal abilities (same design as in (Hollmann et al. 2012; Kumar et al. 2016)). 135 

All experiments were performed afternoon, between 1 to 2 p.m. 136 

3.2 Visual Analog Scales (VAS) 137 

VAS with scales ranging from 0 (i.e., lowest) on the left hand side to 100 (i.e., highest) on the 138 

right hand side were filled out before and after the first EEG session, before the second EEG 139 

session (i.e., after eating to satiety) as well as thereafter. We assessed six different VAS for each 140 

time point: degree of tiredness, hungriness, thirstiness, stress level, dryness of mouth, satiety. 141 

Participants were asked to make a cross between 0 and 100. The distance between 0 and the 142 

cross in cm was used for further analyses. 143 

3.3 Buffet 144 

The (cold) buffet was prepared during the first EEG experiment in a separate room, next to the 145 

EEG research facilities. All foods were weighted (in g) before and after the buffet with a 146 

standard kitchen scale to compute the consumed g per item. All items were presented identically 147 

for each participant in a palatable manner (cheese and meat pieces on plates, buns in a basket, 148 

fruit and vegetables cut, tomatoes in bite size). Every category (high/low calorie x sweet/salty) 149 

was represented by five food items. Additionally, we also offered snacks (pudding, peanuts, 150 

chocolate bars). We used the kcal/100g indications provided on the products’ packages to 151 

translate consumed g into kcal. For fruit/vegetables we took the brand-specific kcal/100g 152 
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indications as provided by the Food database (fddb), accessible via 153 

http://fddb.info/db/en/index.html. 154 

3.4 EEG Recording 155 

We used a 64-channel BrainAmp recorder (Brain Products, Gilching, Germany) with a temporal 156 

resolution of 1000 Hz. The electrodes were placed on participant’s scalp according to the 10-10 157 

international system. Electrodes included the reference, ground, and the electrode below the left 158 

eye as an electro-occulogram (EOG). 159 

3.5 Experimental Schedule 160 

We used a shielded cabin to exclude any electro-magnetic interference on EEG recordings as 161 

well as distracting noises. Within the cabin, each participant was comfortably seated in front of a 162 

computer screen. After we assessed VAS, we first acquired five minutes of task-free EEG 163 

recordings before the food task started, to familiarize participants with the environment. The 164 

food task thereafter was 20 min long. After the first EEG session, participants were offered a 165 

buffet outside the cabin including all food categories that were included in the task. Participants 166 

were instructed to eat to their preference and satiation. After the buffet, participants were again 167 

placed in the EEG cabin while reassuring that the electrodes were in the correct spot with low 168 

impedance. After the initial five min of task-free EEG recordings, a second EEG session started. 169 

EEG electrodes were not removed from participant’s scalp between the two EEG sessions. 170 

3.6 Task-Based EEG Recordings 171 

Each of the two EEG sessions included 40 blocks. Each block consisted of three food pictures 172 

and was 28 seconds long. During the first two seconds of each block, an instruction screen 173 

showed up, either showing “ADMIT” or “REGULATE”, followed by three food items within 174 

one block. Each food picture was presented for five seconds. The three pictures were separated 175 

by the presentation of the crosshair for another two seconds. The three pictures within a given 176 

block were from the same of four different food categories: high-calorie sweet, high-calorie 177 

salty, low-calorie sweet or low-calorie salty. To this end, 60 food pictures were chosen from a 178 

pre-rated standardized food picture database (see (Hollmann et al. 2012; Kumar et al. 2016)). We 179 

used the same amount of high and low calorie pictures. Sweet and salty was equally distributed 180 

across high and low calorie food. We included the latter conditions to meet each participant’s 181 

taste preferences (same as in (Kumar et al. 2016)). Within each of the two EEG sessions, a given 182 

food picture was presented once in the “ADMIT” and once in the “REGULATE” condition, 183 

cancelling out any influence of food preferences on the comparison of both conditions. For each 184 

participant, we acquired 60 trials for the “ADMIT” and 60 trials for the “REGULATE” condition 185 

within each EEG session. At the end of each block (i.e., presentation of three food pictures from 186 
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one category), and after another crosshair for two seconds appeared, a screen with a 4-point 187 

Likert scale was presented for three seconds. Participants rated how well they thought they either 188 

admitted or regulated the desire for the presented food items. The scale ranged from 1 (very bad) 189 

to 4 (very good). After participants rated their performance, the next block of three food items 190 

from another category started. The order of the food pictures within each block and the order of 191 

blocks was pseudo-randomized inter-individually (i.e., between participants) and intra-192 

individually (i.e., between both EEG sessions) (Figure 1). 193 

3.7 Pre-processing of the EEG Data 194 

Pre- and post-EEG processing was done with MATLAB version 8.2 (The MathWorks, Ismaning, 195 

Germany). We down-sampled EEG data to 250 Hz using the Berlin Brain Computer Interface 196 

(BBCI) toolbox (https://github.com/bbci/bbci_public). The data was band-pass filtered between 197 

0.05 and 45 Hz (3
rd

 order Butterworth filter). To exclude any bias towards a particular reference 198 

electrode, we converted the data to a common average reference (CAR) (Bertrand, Perrin, and 199 

Pernier 1985; Pascual-Marqui and Lehamann 1993). To correct for vertical eye movements, we 200 

computed the difference between the EOG and the FP1 electrodes above the left eye. To correct 201 

for horizontal eye movements we computed the sum of the Fp1 and Fp2 electrodes above the two 202 

eyes. The resulting data was applied to a regression analysis to cancel out the corresponding 203 

variance from the EEG data using the least mean-fitting procedure (Parra et al. 2005) of the 204 

BBCI. The FieldTrip Software package (Donders Center for Cognitive Neuroimaging, 205 

University Nijmegen, Netherlands) was used for further pre-processing. The corrected EEG data 206 

was epoched into 5 seconds covering the presentation of each food picture and baseline 207 

corrected. For baseline correction, we applied the mean value of the given trial instead of the 208 

time prior to presentation to rule out any bias based on anticipation. To model the EEG data, we 209 

applied the self-ratings as an interacting trial-by-trial covariate. The temporal window for source 210 

analysis was selected between 1675 and 2055 ms, based on signed point-biserial correlations 211 

(Blankertz et al. 2011). In particular, sums of the absolute correlation coefficient values at a 212 

given time window were calculated and then the temporal window corresponding to the highest 213 

sum value was selected for further analyses. 214 

3.8 Source Localization of the EEG Data 215 

The Statistical Parametric Mapping (SPM) Software package 12 (Wellcome Trust Centre for 216 

Neuroimaging at University College London, UK, http://www.fil.ion.ucl.ac.uk/spm) running 217 

under MATLAB version 8.2 was used for source localization. The boundary element method 218 

(BEM) was considered for the forward model consisting of the three cortical layers along with 219 

co-registration to the default model of electrode positions using the standard magnet resonance 220 

imaging (MRI) template as implemented in SPM. To overcome the inverse problem we applied 221 

the multivariate source pre-localization (MSP) algorithm (Mattout et al. 2005).  222 
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3.9 Second (group) level analysis of the EEG data 223 

For second (group) level analysis, we applied the full factorial design (i.e., ANOVA) consisting 224 

of the between-subject factor “obese/lean participants” and the within-subject factors “pre-225 

buffet/post-buffet”, “REGULATE/ADMIT” as well as high/low calorie content. As in our 226 

former study (Kumar et al. 2016), self-ratings were inserted as interacting covariate. Following 227 

our a-priori hypotheses (see Introduction), we applied small volume correction. To this end we 228 

used a sphere of 10 mm centered on the Montreal Neurological Institute (MNI) co-ordinates (x, 229 

y, z, in mm) as derived from our latest EEG study (Kumar et al. 2016). For the right frontal 230 

operculum the coordinates were 50, 34, -06 (x, y, z, in mm); for the left DLPFC the coordinates 231 

were -42, 38, 20 (x, y, z). A voxel-wise family-wise error (FWE) corrected p-value of < 0.05 232 

together with a minimum cluster size of 10 voxels indicated significance. In the post-hoc 233 

analysis, paired (within-subject) and unpaired (between-subject) t-tests were applied to decipher 234 

the structure of significance. 235 

3.10 Analysis of self-ratings  236 

We also applied self-ratings to the ANOVA (same design as for EEG data analysis). In case of 237 

significance post-hoc paired (within-subject) and unpaired (between-subjects) t-tests were 238 

applied. 239 

3.11 Correlations between calorie consumption, EEG data, self-ratings and VAS 240 

For each woman, we totaled the consumed calories from the buffet offered between both EEG 241 

sessions. Next, we applied Pearson's correlation analysis to assess a possible positive or negative 242 

relationship between calorie consumption and changes (i.e., post – pre) in EEG data, self-ratings 243 

and VAS. 244 

4 RESULTS 245 

4.1 VAS 246 

Lean women were comparatively more tired than obese women after the first EEG session (i.e., 247 

before the buffet) as well as after the buffet (i.e., before the second EEG session) (p < 0.045 and 248 

p < 0.0002, respectively). Obese women instead, felt less stressed throughout the experiment 249 

than lean women (from first to fourth VAS: p < 0.002; p < 0.0001; p < 0.014; p < 0.0002). Lean 250 

women surprisingly felt less sated before the first EEG session (i.e., start of the experiment and 251 

after five hours without eating) (p < 0.015). Analyzing satiety, hungriness and thirstiness after 252 

the buffet (i.e. before the second EEG session) in the group of lean and obese women separately, 253 
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revealed an elevated level of satiety (lean: p < 0.0001; obese: p < 0.0001), whereas hungriness 254 

(lean: p < 0.0001; obese: p < 0.0001) and thirstiness decreased (lean: p < 0.0001; obese: p < 255 

0.031). There was also a trend of less dryness of the mouth but the t-test was inconclusive (lean: 256 

p > 0.062; obese: p > 0.087). All women were taking contraceptives. Therefore,  we could not 257 

address any menstrual cycle-related influences in the present findings. None of the women took 258 

other regular medication with central nervous (side-) effects.   259 

4.2 Self-Ratings acquired during the first and second EEG session 260 

According to our a-priori hypotheses (see Introduction), we found that for both, obese and lean 261 

women, admitting the desire for food was easier during the EEG session prior to the buffet (i.e., 262 

five hours without eating) as compared to the EEG session after the buffet (i.e., after eating to 263 

satiety) (obese: p < 0.003, lean: p < 0.001), whereas the reappraisal of food was easier after the 264 

buffet, when sated (obese: p < 0.032, lean: p < 0.006). After the buffet, obese and lean women 265 

rated their ability to reappraise food as better than admitting the desire for food (REGULATE > 266 

ADMIT, obese: p < 0.019, lean: p < 0.019) (Figure 2A).  267 

In line with our former study (Kumar et al. 2016), we found that before the buffet, when hungry, 268 

lean women self-rated their ability to admit the desire for food as easier than reappraising food 269 

(ADMIT > REGULATE, obese: p > 0.525, lean: p < 0.001), irrespective of calorie content (high 270 

calorie p<0.001, low calorie p<0.001). Obese women resembled these findings, however only for 271 

low calorie food (p<0.0017). For high calorie food they instead self-rated their ability in both 272 

conditions and for both calorie groups as equally well (p>0.03) (Since only one-fourth of trials 273 

were used for this analysis p value was set to 0.0125). An unexpected finding, which, 274 

nevertheless, resembles previous observations (Kumar et al., 2016) (Figure 2B). 275 

4.3 Task-Based EEG findings 276 

Comparing the EEG data of both, lean and obese women, acquired after the buffet (i.e., after 277 

eating to satiety) to the EEG data assessed prior to the buffet (i.e., five hours without eating) 278 

revealed a significant FWE-corrected main effect represented by an increased activity in the right 279 

frontal operculum (p < 0.005). Post-hoc paired t-test computed for the group of obese and lean 280 

women separately, revealed that this post > pre effect was significant only in obese women (peak 281 

voxel: MNI coordinates (x, y, z): 50, 36, 02 mm, T = 3.93, p < 0.006). Post-hoc t-tests in the 282 

group of obese women surprisingly revealed significantly increased activity in the frontal 283 

operculum, not only during the “REGULATE” condition (see Introduction for our a-priori 284 

hypotheses), but in both, the “ADMIT” (p < 0.045) as well as the “REGULATE” condition (p < 285 

0.027) (Figure 3). In lean women, we found no significant post > pre differences in activity 286 

levels. Also the inverse contrast (i.e., pre > post) did not show the expected significant activity in 287 

the left DLPFC, neither in the group of lean, nor in the group of obese women. Besides these two 288 
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regions identified in our former EEG study (i.e., right frontal operculum, left DLPFC, see 289 

(Kumar et al. 2016) and our a-priori hypotheses in the Introduction), we found no other 290 

significant increases or decreases in activity levels between the two EEG sessions and the two 291 

conditions of interest throughout the entire brain. Furthermore, we could also not find any 292 

significant interaction between lean/obese and high-caloric/low-caloric foods. 293 

To assess whether present EEG findings replicate previous observations (Kumar et al., 2016), we 294 

also analyzed EEG data acquired prior to the buffet (i.e., after five hours without eating). 295 

Comparing the “REGULATE” to the “ADMIT” condition revealed enhanced activity in right 296 

frontal operculum (peak voxel: (x, y, z): 48, 38, 02 mm, T = 3.64, p < 0.011). This finding 297 

replicates previously reported effects (Kumar et al., 2016). Comparing the “ADMIT” to the 298 

“REGULATE” condition, however, did not reveal the expected effect in left DLPFC (Kumar et 299 

al., 2016). Since our previous study included women and men (Kumar et al., 2016) and the 300 

present only women, we next split previous EEG data from left DLPFC into males and females. 301 

We hypothesized that effects in the left DLPFC, as reported elsewhere (data from Kumar et al., 302 

2016), might account for men, but not women. Unpaired t-tests between women and men 303 

however suggest that both genders contributed commonly to the effects in left DLPFC 304 

(“ADMIT” condition: women 0.066, men 0.035, p > 0.21). The same accounted for right frontal 305 

operculum that also showed no significant differences between women and men (“REGULATE” 306 

condition: women 0.11, men 0.12, p > 0.82). 307 

4.4 Calorie consumption from the buffet between the two EEG sessions 308 

We surprisingly found no significant differences in the consumption of calories between lean and 309 

obese women. We expected that obese women might consume more calories than the lean 310 

women after going five hours without eating. Contrarily, we even found a vague trend that lean 311 

women consumed more calories than obese (p > 0.108). We also found no differences in calorie 312 

consumption between lean and obese women for the four different food categories (high caloric 313 

sweet foods: p > 0.066, high caloric salty foods: p > 0.068, low caloric sweet foods: p > 0.196, 314 

low caloric salty foods: p > 0.461). For both, lean and obese women, we found that they 315 

consumed significantly more high calorie food than low calorie food (sweet: lean: p < 0.0001, 316 

obese: p < 0.0001; salty: lean: p < 0.0001, obese: p < 0.0001). Both groups also showed a trend 317 

for preferring salty over sweet food (lean: p > 0.197; obese: p > 0.139) (Figure 4). Pearson’s 318 

correlation analyses revealed a positive correlation between changes in hungriness ratings (VAS) 319 

from before to after the buffet and calorie consumption, however, only in the group of obese 320 

women (r = 0.69, p < 0.0266). This finding suggests that the more obese women ate, the more 321 

their hungriness-ratings declined. We surprisingly found no such correlation in lean women (r = -322 

0.35, p > 0.1957). We also found no correlation between calorie consumption and the other VAS 323 

(i.e., degree of tiredness, hungriness, thirstiness, stress level, dryness of the mouth, satiety) (p > 324 

0.058). Furthermore, we found no correlation between calorie consumption and neuronal activity 325 

in the frontal operculum in obese women (r = 0.17, p > 0.6431), as well as between calorie 326 
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consumption and self-ratings for admitting the desire for food (lean: r = 0.0056, p >0.9876, 327 

obese: r = 0.3342, p > 0.3453) or regulating the desire for food (lean: r  = 0.2239,  p > 0.5340, 328 

obese: r  = 0.0842, p > 0.8171). 329 

5 Discussion 330 

The present study is a follow-up study investigating the influences of eating to satiety on the 331 

desire for food. In our former EEG study (Kumar et al. 2016), we used the same task design as in 332 

the present study to investigate brain responses in lean and obese women and men, involved in 333 

cognitive influences on the desire for food. To impede reappraisal of food, participants in both 334 

studies went five hours without eating prior to the experiments. In our former study (Kumar et al. 335 

2016), we found that in hungry obese as well as lean women and men, admitting the desire for 336 

low and high calorie food related to higher activity in the left DLPFC, whereas the right frontal 337 

operculum, assumed to host gustatory processes (Rolls et al. 1988; Zatorre et al. 1992; Small et 338 

al. 1999), was involved in the reappraisal of the same foods.  339 

In the present study, we questioned how eating to satiety affects reappraisal of food as well as 340 

corresponding neuronal responses. To this end, we enrolled a new group of lean and obese 341 

women in the same EEG task as in our former study (Kumar et al. 2016). All women underwent 342 

the task twice: once while hungry and the other time while sated. As in our previous study, 343 

participants went five hours without eating prior to the first EEG session. After this session, they 344 

were offered a buffet complied in accordance to the EEG food picture task. Obese as well as lean 345 

women, selected more high-calorie than low-calorie food from the buffet. Both groups, 346 

moreover, preferred salty over sweet food. Surprisingly, lean women showed a trend for 347 

consuming more calories as compared to obese women. This difference was well reflected by the 348 

VAS ratings, as lean women rated themselves being less sated before the first EEG experiment 349 

compared to obese women. Since all women were taking contraceptives, we were not able to 350 

consider menstrual cycle-related influences on the desire for food. 351 

In contrast to the present findings, most studies in fact showed that overweight or obese 352 

individuals consume more calories (Batterham et al. 2003) and a greater proportion of unhealthy 353 

food (Medic et al. 2016), if a buffet is offered under lab conditions. Others studies, however, 354 

agree with our observation that obese and lean individuals consumed comparable amounts of 355 

calories under lab conditions (Druce et al. 2005). Besides a potential incompliance in food 356 

restriction, different study-related social-environmental factors, such as the gender and 357 

attractiveness of the instructor, as well as the choice and appearance of food items, may variably 358 

influence eating behavior, similar to obese women when feeling observed (Robinson et al. 2016). 359 

In the present study, we found that when hungry (i.e., five hours without eating as in Kumar et 360 

al., 2016), lean women self-rated the ability to reappraise visually presented food as more 361 
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difficult than allowing the desire for the same food. Obese hungry women instead, rated their 362 

ability to reappraise food as equally well as allowing the desire for food.  363 

To test whether the present self-ratings replicate previous ones (Kumar et al. 2016), we 364 

additionally split present self-ratings into low and high calorie food. Self-ratings only for low, 365 

but not for high calorie food showed the expected effect with higher ratings for allowing the 366 

desire for food when women were hungry (Kumar et al. 2016). In both studies, however, obese 367 

women (and men, see Kumar et al. 2016), not lean, unexpectedly rated their ability to reappraise 368 

high calorie food as equally well as the ability to admit the desire for the same food. These 369 

findings most likely point to an association between obesity and an impaired self-reflection of 370 

the ability to reappraise especially high-calorie food after five hours without eating.  371 

Alternatively, obese women deliberately tried to show that they are capable of regulating their 372 

food desire even when hungry, rendering social modeling as a potential influencing factor. 373 

Cruwys et al., reviewed several studies published between 1974 and 2014 and found that social 374 

modeling of eating seems at least to be partially mediated through behavioral mimicry, which 375 

occurs without conscious awareness (Cruwys, Bevelander, and Hermans 2015). Since 376 

participants in our study were alone at the buffet, there was no “ideal model” they may have 377 

desired to affiliate with. This makes social modeling rather unlikely to account for the 378 

unexpected low calorie intake in obese women. However, heightened awareness of observation 379 

was more recently shown to cause obese females to reduce their calorie consumption during a 380 

meal under lab conditions (Robinson et al. 2016). Since the room where we offered the buffet, 381 

was right next to the EEG research facilities, our participants might have felt observed.  382 

Alternatively, obese women simply might have not refrained from eating before the experiments 383 

as required, since they also rated themselves being more sated as lean women before the first 384 

EEG session. This would also explain the trend for lower calorie consumption from the buffet in 385 

obese as compared to lean women. Future studies, should aim at controlling fasting periods in 386 

both, lean and obese participants, especially when they are as long as in the present study (i.e., 387 

five hours). Nevertheless, only in obese women changes in hungriness ratings (VAS) from 388 

before to after the buffet positively correlated with calorie consumption, suggesting that the more 389 

obese women ate, the more their hungriness declined. We could not find such a relationship in 390 

lean women, suggesting that obese women are probably more sensitive in reflecting their 391 

hungriness with respect to calorie demand. However, this interpretation has to be considered 392 

with caution since we could not find any supporting evidences in the literature (PubMed search). 393 

In our former EEG study (Kumar et al., 2016), we showed that when admitting the desire for low 394 

and high calorie foods, obese as well as lean individuals presented higher activity in the left 395 

dorsolateral prefrontal cortex (DLPFC), whereas activity in the right frontal operculum related to 396 

the reappraisal of the same foods. In the present study, after eating to satiety, we found enhanced 397 

activity in the frontal operculum during reappraisal of food, but surprisingly also when admitting 398 
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the desire for food- an effect which we, based on our previous study (Kumar et al. 2016), 399 

expected to find in the left DLPFC.  400 

This contradictory finding, questions the comparability of both studies. That is why we 401 

additionally analyzed the EEG data assessed prior to the buffet, which we acquired with the same 402 

study design (particularly, five hours without eating prior to the experiment), the same task, and 403 

the same EEG settings as in Kumar et al. (2016). When women reappraised food before the 404 

buffet, we found significantly increased activity in the right frontal operculum – a finding that 405 

resembles previous observations in women and men (Kumar et al., 2016). However, while 406 

admitting the desire for the same foods, we unexpectedly found no effects in the left DLPFC, 407 

which is against our a-prior hypotheses and former findings (Kumar et al., 2016). We next 408 

revisited gender effects in our previous study (Kumar et al., 2016), and analyzed EEG recordings 409 

from right frontal operculum and left DLPFC for women and men separately. Both regions, left 410 

DLPFC and right frontal operculum, in both genders showed comparable activity levels during 411 

admitting the desire for food, as well as their reappraisal, respectively. 412 

In the present study, we revealed no significant effects in the left DLPFC in women, possibly due 413 

to the halved sample size in the present (n=20) as compared to our previous study (n=40), and 414 

also the halved trials that probably caused a power problem. In our former study (Kumar et al., 415 

2016), when women were hungry, activity levels in the frontal operculum were furthermore 416 

higher than in the left DLPFC, possibly rendering the frontal operculum more sensitive to the 417 

reappraisal of food than the DLFPC to admitting the desire for the same food. After eating to 418 

satiety, the right frontal operculum, nevertheless, seems to contribute to or at least reflects 419 

modulatory influences on both opposing cognitive influences modulating the desire for food. 420 

To test in how far EEG results were influenced by the self-ratings that we included to the GLM 421 

analyses as interacting covariate (see “3.9 Second (group) level analysis of the EEG data” for 422 

further information), we reran all EEG first- and second level analyses excluding self-ratings. 423 

Findings resembled effects reported in this paper (data not shown to avoid redundancy), 424 

suggesting that self-evaluation of the ability to modulate the desire for food had rather minor 425 

influences on frontal operculum’s activity enhancements. These processes may alternatively be 426 

embedded in other brain regions, possibly more deeply located in the brain (e.g., striatum or 427 

posterior orbitofrontal cortex, (Hollmann et al. 2012)), and were therefore not captured by EEG. 428 

In turn, frontal operculum in the obese brain may host more upstream processes not directly 429 

related to self-evaluation, possibly reflecting elevated cognitive effort for the regulation of 430 

opposing cognitive operations - the reappraisal of food and the desire for food.  431 

In the context of eating, the frontal operculum, together with the neighboring anterior insular 432 

cortex, are assumed to host the primary gustatory cortex – predominately involved in encoding 433 

taste (Rolls et al. 1988; Zatorre et al. 1992; Small et al. 1999) but also higher cognitive 434 

processing of gustatory sensations (Petit et al. 2016). While eating, exteroceptive sensory signals 435 

arising from the food’s taste and smell activate olfactory receptor cells that propagate associated 436 
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inputs to the frontal operculum together with the anterior insular cortex, where stimulus identity 437 

and intensity are merged into a stable representation, independent of the homeostatic or 438 

motivational state (Rolls et al. 1988; Zatorre et al. 1992; Small et al. 1999).  439 

Regarding the insular cortex’s functional non-gustatory implementation, recent studies suggest 440 

its involvement in higher cognitive processes related to the sense of ownership and agency 441 

(Farrer et al. 2003), or the subjective awareness and affective processing of bodily signals ( a. D. 442 

Craig and Craig 2002; A. D. Craig 2004). The anterior part of the insular cortex is specifically 443 

assumed to play a major role in viscerosensory (Oppenheimer et al. 1992) and interoceptive 444 

processing (for a review see ((Bud) Craig 2009). The frontal operculum, instead, has been 445 

suggested as a key node in a network for exerting control over cognitive processes. It seems to 446 

have a role in regulating the activity in relevant or irrelevant brain representations for response 447 

selection (Higo et al. 2011), possibly also in the context of regulating the desire for food.  448 

In our former EEG study (Kumar et al. 2016), we found that activity in the anterior insular cortex 449 

was distinguished between high and low calorie foods. Whether these calorie-related differences 450 

in neuronal responses primarily originate from the insular cortex or mirror top-down influences 451 

from other brain sources not captured by EEG remains an open question. Nonetheless, these 452 

findings suggest  that the anterior insular cortex, so far assumed to host primary gustatory 453 

processes, also plays a role in processes underpinning higher cognitive functions involved in 454 

food imagery and food choices (Kumar et al. 2016). This finding is well in line with previous 455 

studies in mice  (Oliveira-Maia et al. 2012) and humans (Petit et al. 2016), showing that the 456 

insular cortex regulates food choices even in the absence of peripheral taste inputs.  457 

Our present findings suggest that it is not only the anterior insular cortex involved in such higher 458 

cognitive processes, but also the neighbored frontal operculum. However, its cognitive 459 

embedment seems different as compared to the anterior insular cortex. While the latter region 460 

seems to encode calorie-related processes (Kumar et al. 2016), the former seems to relate to food 461 

reappraisal in the obese brain after eating to satiety. Both regions’ activity was however elicited 462 

by visually presented foods, independent of signals from peripheral taste or olfactory receptor 463 

cells, suggesting that the primary gustatory cortex, not only in mice (Oliveira-Maia et al. 2012), 464 

but also in humans (Petit et al., 2016) contributes to the ability to imagine food and taste. Food 465 

and taste evaluation, imagery and their influences on food choices are an essential function for 466 

survival. Their implementation in the primary gustatory cortex may therefore represent a well-467 

preserved evolutionary effect (Kumar et al. 2016). Since we did not find any evidence for 468 

differences between women and men when hungry, neither with respect to the function 469 

assignment of the desire for food to brain regions at hand, nor to their activity levels, we 470 

speculate that males may present comparable effects in the frontal operculum as women after 471 

eating to satiety. However, unveiling the neural underpinnings of admitting or regulating food 472 

desire in the male brain demands further studies. 473 
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In summary, we show that the right frontal operculum in obese women is involved in evaluation 474 

processes related to the regulation of the desire for food after eating to satiety. Therefore, it may 475 

in future serve as a target for non-invasive brain stimulation or neurofeedback studies that aim at 476 

modulating cognitive influences on the desire for food. The involvement of the frontal 477 

operculum and the anterior insular cortex in food-related higher cognitive processing suggests 478 

that the primary gustatory cortex also plays a role in higher cognitive processes related to food 479 

choices.       480 
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7        Figure legends and table 486 

 487 

Figure 1. Experimental design. (A). Shown is the order of the two resting-state and the two 488 

experimental EEG sessions. Before and after each EEG sessions, lean and obese women rated 489 

their tiredness, hungriness, satiety, thirstiness, and stress levels on a visual analogue scale (VAS). 490 

The buffet was offered between the two EEG sessions. (B). Example of one block from the task-491 

based EEG session. Three food pictures from one out of four categories (high or low calorie x 492 

sweet or salty) were presented in a row. Prior to the presentation of the pictures, participants 493 

were instructed to either regulate or admit the desire for the upcoming food pictures. After 494 

presentation of the three pictures, participants rated their ability to either regulate or admit the 495 

desire for the three presented foods. This was repeated 20 times for each condition 496 

(regulate/admit), resulting in a total of 40 blocks. 497 

 498 

Figure 2. Shown are lean and obese women’s self-ratings on how well they either admitted or 499 

regulated the desire for the visually presented foods on the Likert scale ranging from 1 (very bad) 500 

to 4 (very good) before and after the buffet. (A) Before the buffet, lean participants rated their 501 

ability to admit the desire for food as better than their ability to reappraise the same food (p < 502 

0.0001). After eating to satiety, this effect reversed: the ability to reappraise food is easier as 503 

compared to allowing the desire for the same foods (p < 0.019). Also sated obese participants 504 

rated their ability to regulate the desire for food as better than allowing it (p < 0.019). The 505 

whiskers index the standard errors and significance is marked with asterisks. (B) Before the 506 

buffet, lean participants rated their ability to admit the desire for food as better than their ability 507 

to reappraise food, irrespectively of whether this was high (p < 0.001) or low caloric (p < 0.001). 508 

Obese women also rated their ability to admit the desire for low calorie foods as easier than to 509 

reappraise it (p < 0.0017). For high calorie foods, however, they unexpectedly rated their 510 

performance equally well (p > 0.03); an effect that is well in line with previous findings (Kumar 511 

et al., 2016) (Since only one-fourth of trials were used for this analysis p value was set to 512 

0.0125). The whiskers index the standard errors and the significance is marked with asterisks. 513 

 514 

Figure 3. Task-based EEG results comparing the pre-buffet EEG session to the post-buffet EEG 515 

session. (A) Only in obese women, did we find increased neuronal activity in the right frontal 516 

operculum after eating to satiety (red cluster, family-wise-error (FWE)-corrected, p<0.006). “z” 517 

indicates the MNI coordinates (mm) of the axial brain slices. “R” indicates the right and “L” the 518 

left brain hemisphere. (B) Bar plot shows the estimated marginal means for the “REGULATE” 519 

and the “ADMIT” condition in the right frontal operculum for obese women prior to the buffet 520 

and after the buffet. We found an increased activity in the frontal operculum after the buffet for 521 

both, the “REGULATE” (p < 0.027) and the “ADMIT” condition (p < 0.045). There was no 522 
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difference between REGULATE and ADMIT, neither prior to the buffet (p > 0.549), nor 523 

thereafter (p > 0.164). The bars represent mean values and whiskers index standard errors. 524 

Significance is marked with asterisks. 525 

 526 

Figure 4. Calorie consumption in the buffet between the two EEG sessions. Obese as compared 527 

to lean women did not show any significant differences in calorie consumption. Surprisingly, 528 

lean women even showed a trend towards higher calorie consumption as compared to obese 529 

women (p>0.108). We also found no differences between obese and lean women for the different 530 

food categories (high calorie sweet food: p>0.066, high calorie salty food: p>0.068, low calorie 531 

sweet food: p>0.196, low caloric salty food: p>0.461). Both lean and obese women showed a 532 

tendency for preferring salty over sweet food (lean: p>0.197; obese: p>0.139). Both groups also 533 

preferred high calorie over low calorie food (sweet foods: lean: p<0.0001, obese: p<0.0001; salty 534 

foods: lean: p<0.0001, obese: p<0.0001). The bars represent the mean and whiskers index 535 

standard errors. Significance is marked with asterisks. 536 

 537 

Table 1: Mean and standard deviation for age and BMI of lean and obese women. 538 

N/subgroup Age range (mean) 

[years] +/- (standard 

deviation) 

BMI range (mean) [kg/m
2
] +/- 

(standard deviation) 

10 lean females 22 - 30 (25.56) +/- (2.88) 20.06 - 24.91 (23.10) +/- (1.63) 

10 obese females 21 - 34 (26.75) +/- (2.81) 30.49 - 47.88 (35.97) +/- (6.54) 

 539 

  540 
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Chapter 4

Discussion and outlook

4.1 Discussion

The experimental findings and the related understanding have been
already discussed in the related publications attached in chapter 3.
Here, I will be concentrating more on the general findings and gen-
eral issues that have arisen through the course of this research project.

This thesis work is a combination of two studies and aims to add
more knowledge in understanding the mechanisms of obesity. We
hypothesized that participants irrespective of whether obese or lean
will show activation in the DLPFC while admitting their food desire.
We confirmed this hypothesis for the left DLPFC (see publication 1
in section 3.1). We also expected to find an activation in the DLPFC
during the reappraisal of food desire. In contrast we saw activation
in the contralateral right hemisphere, and more specifically in the
right frontal operculum. The activation of both regions was inde-
pendent of the food calorie content. In line with our expectation,
we observed an interaction between the calorie content (high/low
caloric food) and regulation of food desire (admit/reappraise food).
We found this interaction in the anterior insular cortex of both hemi-
spheres; not in the DLPFC. We moreover found this effect only for
lean individuals. We saw that during admitting the food desire the
bilateral anterior insular cortex responded with high activity for high
calorie food and low activity for low calorie food. When the task was
reversed, i.e. during the reappraisal of food, there was an inverse
pattern: low activity for high calorie food and high activity for low
calorie food.
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In a recent fMRI study (Hollmann et al., 2012) (lean and overweight
participants) which included a similar experimental procedure, it
was found that the reappraisal of food desire activated bilateral frontal
operculum. This is in line with our findings (in lean and obese par-
ticipants together). Different BMI ranges seem associated to differ-
entially lateralized brain mechanisms underpinning the reappraisal
of food. The anterior insula is associated with a role in viscerosen-
sory (Oppenheimer et al., 1992) and interoceptive perception (Craig,
2009). It has been shown that the anterior insula along with the
frontal operculum form the primary gustatory cortex (Rolls et al.,
1988; Zatorre et al., 1992; Small et al., 1999). In rats its shown that the
insular cortex regulates food choices even in the absence of periph-
eral taste inputs (Oliveira-Maia et al., 2012). This could also suggest
that the anterior insula in humans contributes to higher cognitive
processe such as the ability of food imagery and taste. The partici-
pants were asked to fast for at least five hours before the commence-
ment of the study to increase cognitive demand to the food pictures.
We found that both the obese and lean found it easier to admit their
food desire than to regulate it. This could as well be because the he-
donic feeling of wanting and liking food is easier to allow then its
reappraisal. It is interesting to note that the obese rated their per-
formance to reappraise food as equally good as to admit the food
desire, while lean rated their performance better for admitting food
desire as expected. This may suggest an impaired self-reflection of
food reappraisal abilities in obese.

The second study was a continuation of the first and the primary dif-
ference was the structure of the experimental procedure. The study
included a real buffet which was presented to the participants (only
females) between two equally designed EEG sessions (see publica-
tion 2 in section 3.2). For the buffet the participants were told to
eat to satiety and a questionnaire (Visual analog scale (VAS)) helped
us to track levels of satedness and hungriness. Confirming our hy-
pothesis we found that it was easier to allow food desire before the
buffet and it was easier to reappraise the same food desire after being
sated. Post-hoc tests revealed that obese women rated their perfor-
mance regarding the reappraisal of food to be equally good as the
admission of food desire. This is in accord with our findings from
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the first study. In obese women we saw a positive correlation be-
tween the calorie consumption and the changes in their hunger rat-
ings suggesting more sensitivity in reflecting hunger with respect to
the calorie demand. We confirmed our hypothesis that after eating
to satiety there is higher activation in the right frontal operculum in-
dicating elevated reappraisal abilities. Contrary to our hypothesis
we did not find any activation difference in the left DLPFC but in-
stead in the right frontal operculum. This is surprising as the right
frontal operculum was expected to be only involved during the reap-
praisal of food desire but not during the admission of food desire
when sated. We confirmed the effects with and without the perfor-
mance ratings as an interacting covariate. The elevated activation in
the right frontal operculum in the obese may point to an elevated
cognitive effort for regulating food desire when being sated.

4.1.1 Limitations

Looking at the number of participants over the two studies over the
course of this research project we in general had a total of sixty par-
ticipants and none of the participants were part of both the studies.
In the first study there were forty participants that formed the co-
hort and were included in the analysis. They were divided into four
groups (based on gender and BMI ranges) as a part of our study de-
sign which led to a relatively small number of participants for more
specific results. A large number of participants could result in more
robust insight. Observing gender differences in our preliminary re-
sults of the first study (Kumar et al., 2016) we saw that the obese fe-
male were more prominent to show significant results probably due
to their known higher sensitivity towards food. We had a group of
twenty female only participants in the second study which also in-
volved a real buffet along with the visual picture presentation. The
visual picture presentation was common in both the studies. We also
made sure that in both the studies there was no overlap of any par-
ticipant and hence no related bias can be expected. Another aspect of
the EEG task was the total duration, as it was important to keep the
task short and interesting offering a large variety of different food.
This enabled the participants to be concentrated throughout the EEG
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recording. Another limitation was the subjective assessment of men-
tal strategies. Ideally we would want an efficient control of partic-
ipants’ strategies regarding the regulation of food desire. We could
have suggeted certain strategies, but we allowed each participant to
decided on which strategy to use to support optimal performance.
We also had no measure of the co-operative level of the participants
regarding the fasting times before our experiments.

4.2 Outlook and further work

It has been shown during the course of this research project (the two
studies included) that the left DLPFC region in obese and lean partic-
ipants is involved in the admission of food desire. The right frontal
operculum in obese women is associated with the regulation of food
desire. It interacts with other regions of the brain like the anterior
insular cortex (Kumar et al., 2016). Based on these findings we inves-
tigated the effect of tDCS over the left DLPFC and the right frontal
operculum in obese women. We investigated tDCS effects on the ac-
tive reappraisal of visually presented high/low calorie food and also
their consumption. This study included the largest human obese
sample size so far in the given context and is the first study con-
ducted in a double-blinded, fully randomized, within-subject and
placebo-controlled design. Most of the studies done so far were re-
stricted to lean and overweight participants but our study included
obese females only. Previous studies suggest that repetitive applica-
tion of anodal prefrontal tDCS to the left DLPFC decreases calorie
intake (Gluck et al., 2015) and reduces craving for food after an-
odal simulation applied to the right DLPFC (Ljubisavljevic et al.,
2016). We instead used a single session tDCS of twenty minutes
and our findings suggest that this single tDCS session is not effec-
tive to modulate reappraisal strategies as well as calorie intake in
obese females. Our null findings are hard to interpret because the
effects may become significant with a larger sample size or repetitive
tDCS sessions. We however suggest that further investigation is re-
quired to identify a method that effectively modulates brain activity.
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Other ways of non-invasive brain simulation (e.g., TMS) or neuro-
feedback may target these regions (left DLPFC and right frontal op-
erculum) . In an other study we are looking beyond the localized
sources and searching for differences at the sensor level (in the ERP),
mainly concentrating on the statistical significant difference between
the obese/lean and between the admit/regulate condition. We want
to classify these differences and use them specifically for neurofeed-
back training. Our project hopefully offers basic knowledge for fu-
ture interventional studies.
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Chapter 5

Summary

5.1 English Summary

Obesity is a world epidemic resulting from unhealthy lifestyle choices
and other socio-economic factors. It leads to lower quality of life and
occurs together with many other major diseases like type 2 diabetes,
cardiovascular diseases, hypertension and many others. It is of ut-
most importance to support research for its cure and prevention. Pre-
vious intervention studies mainly focused on dieting and exercising
(Soeliman and Azadbakht, 2014; Jakicic and Davis, 2011; Amorim
Adegboye and Linne, 2013), but it has been shown that as soon as
the treatment is over participants started gaining weight (Summer-
bell et al., 2005; Ammerman et al., 2002; Contento et al., 1995). A
recent fMRI study investigated brain mechanisms underpinning the
admittance and reappraisal of food desire (Hollmann et al., 2012).
Building on that knowledge, in this research project we used EEG
due to its advantage of portability, simplicity and excellent temporal
resolution. It located the brain regions that are involved in the de-
cision making process that facilitates the consumption of presented
food. The far reaching goal was to identify brain sites that serve as
targets for future non-invasive brain stimulation or neurofeedback
training.

This research project combines two related studies. In the first study
we recruited forty participants - half obese, and half lean, based on
their BMI. Both groups consisted of equally distributed males and
females to better represent general population. All the participants
were presented pictures of food on a computer screen and their task
was to either admit their desire for the presented food or reappraise
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the food. The participants were free to choose any strategy in their
mind in order to do the task as efficiently as they could. We reported
these strategies in the first publication (Kumar et al., 2016). While
the participants were doing the task we recorded EEG. Participants
were seated comfortably in an isolated room with no distractions but
only the task to concentrate on. After each picture presentation par-
ticipants were asked to rate their performance. We used these perfor-
mance ratings for informing our analysis of the recorded EEG data.
For the EEG analysis we simulated a human head using the stan-
dard BEM modeling. We identified and removed the artifacts that
spoil the brain activity measurements such as eye blinks and body
movements. For this various methods were compared including the
ICA algorithm and the regression technique. Due to the speed of
the regression technique and equal performance with the ICA al-
gorithm we used the regression as the basis for the artifact correc-
tion which we used in both the studies of this project work. The
head model created was incorporated with the standard MRI to bet-
ter understand the obtained results regarding their origin within the
brain. We also used the participants’ performance as a covariate to
inform EEG analyses by participants’ confidence on given trials. In
first study (publication 1 in section 3.1) we identified the left DLPFC
involved in processes underpinning the admittance of the desire for
food and the right frontal operculum in the reappraisal of the same
food regardless whether the participants were obese or lean. We also
found evidences that obese may have a impaired self-reflection when
it comes to resisting visually presented foods.

Based on the results of the first study we were motivated to extend
this even further. For the second study we enrolled twenty females
out of which half were obese and half lean. We took only females
for this study because during the analysis of the first study we found
that females tend to be more sensitive towards food cues (Horstmann
et al., 2011; Mueller et al., 2011; Melasch et al., 2016; Kumar et al.,
2016). For the second study (publication 2 in section 3.2) we mea-
sured the participants once with the same task that was used in the
first one. In the second study, participants were offered a real food
buffet to assess calorie consumption. We also asseseed their psy-
chological state (VAS ratings, please refer the publications in section
3.1 and section 3.2). Post buffet after eating to satiety, participants
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were enrolled in the same food picture task as prior to the buffet. We
aimed at investigating how eating to satiety affects food reappraisal
abilities in lean and obese females and if there exists a difference be-
tween them. The EEG techniques used in this second study is com-
parable to the first one with the only difference that the second study
involved two sessions divided by a buffet. In the second study we
also found that the obese seem to have an impaired self-reflection
of their abilities to reappraise food when hungry. EEG recordings
revealed elevated activation in the right frontal operculum during
the reappraisal of food: a replication of our findings in the first EEG
study. We found a significant higher activation in the frontal oper-
culum post buffet (sated state) comparing to the pre buffet (hungry
state) for obese females during reappraisal of food desire. We saw a
similar increase in the activation in the obese females in the same re-
gion while admitting the food desire. This came as a surprise because
we expected to see this effect in the left DLPFC. The right frontal op-
erculum in obese women is involved in evaluation processes under-
pinning the regulation of food desire after eating to satiety. We also
indicated that the more obese women ate, the more their hunger de-
clined, suggesting that obese women are probably more sensitive in
reflecting hunger with respect to calorie demand.

This research project as a whole did add more knowledge to the un-
derstanding of the mechanisms underpinning the admittance and
reappraisal of food in obese and lean individuals. The present find-
ings add to the understanding of complex processes underpinning
food choices in the obese brain. More research needs to be done but
this project serves as a basis on which further interventions, such as
non-invasive brain simulation or neurofeedback can be based.

5.2 German Summary

Adipositas ist eine weltweite Epidemie, die aus einem ungesunden
Lebenstil und anderen sozio-ökonomischen Faktoren resultiert. Sie
wirkt sich negativ auf die Lebensqualität aus und tritt häufig zusam-
men mit Erkankungen wie Typ 2 Diabetes, Bluthochdruck, kardio-
vaskulären und anderen Erkrankungen auf. Daher ist es von großer
Wichtigkeit, Forschung zur Heilung und Prävention von Adipositas
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zu fördern. Frühere Interventionsstudien fokussierten hauptsäch-
lich auf Ernährung und körperliche Betätigung (Soeliman and Azad-
bakht, 2014; Jakicic and Davis, 2011; Amorim Adegboye and Linne,
2013). Die Effekte waren aber nur kurzfristig und die Teilnehmer
nahmen nach Ende der Intervention wieder an Gewicht zu (Sum-
merbell et al., 2005; Ammerman et al., 2002; Contento et al., 1995).
Eine fMRI-Studie untersuchte die Gehirnprozesse, die dem Zulassen
oder der Neubewertung des Verlangens nach Essen zugrunde liegen
(Hollmann et al., 2012). Basierend auf den Erkenntnissen dieser Studie
verwendete das vorliegende Forschungsprojekt die EEG-Methodik,
um die Gehirnregionen zu lokalisieren, welche in den Entscheidungs-
prozess zur Nahrungsaufnahme bzw. -nichtaufnahme präsentierter
Nahrung eingebunden sind. Das weitreichende Ziel dieser Studie
war es, Gehirnregionen zu identifizieren, die als Target für zukün-
ftige nicht-invasive Hirnstimulation oder Neurofeedback Training
geeignet sind.

Dieses Forschungsprojekt kombiniert zwei zusammenhängende Stu-
dien. An der ersten Studie nahmen vierzig Personen teil, die auf-
grund ihres BMIs zu einer der beiden Gruppen – adipös oder nor-
malgewichtig – zugeordnet werden konnten. In beiden Gruppen
war das Geschlechterverhältnis ausgeglichen, um die Allgemein -
bevölkerung besser repräsentieren zu können. Allen TeilnehmerIn-
nen wurden Bilder von verschiedenen Nahrungsmitteln auf einem
Computerbildschirm präsentiert. Die Aufgabe der TeilnehmerInnen
war es, ihr jeweiliges Verlangen anch den präsentierten Nahrungsmit-
teln zuzulassen beziehungsweise neuzubewerten. Daber waren die
TeilnehmnerInnen frei darin eine geeignete mentale Stragetie zu wählen,
um die Aufgabe so effektiv wie möglich zu bewältigen. Die gewählten
Strategien berichten wir in der ersten Publikation (section 3.1). Während
der Aufgabe wurden EEG-Aufzeichnungen gemacht. Während des
Experiments saßen die TeilnehmerInnen in einem bequemen Stuhl in
einem schall-isolierten Raum ohne Ablenkungen.

Nach der Präsentation jedes einzelnen Bildes wurden die Teilnehmer
Innen gebeten Ihre Leistung zu bewerten. Wir verwendeten diese
Bewertungen bei der späteren Auswertung der EEG Daten. Für die
EEG Analyse simulierten wir einen menschlichen Kopf anhand von
standard BEM modeling. Artifakte, wie z.B. Wimpernschlag oder
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Körperbewegungen, wurden vor der Analyse identifiziert und eli-
miniert. Im Rahmen dessen verglichen wir verschiedene Methoden,
wie ICA Algorithmus oder Regressionstechnik. Aufgrund der höheren
Geschwindigkeit bei vergleichbarer Leistung, verwendeten wir die
Regression als Basis für Artefaktkorrekturen in beiden Studien. Das
Modell des Kopfes wurde in ein Standard MRI inkorporiert, um ein
besseres Verständnis der erhaltenen Ergebnisse hinsichtlich ihres Ur-
sprungs im Gehirn zu ermöglichen. Des Weiteren inkludierten wird
die Leistungsbewertungen durch die TeilnehmerInnen als Kovari-
ate in unserer EEG Analyse, um Informationen über die Selbstein-
schätzung der Proband Innen in den jeweiligen Durchläufen ein-
beziehen zu können. In der ersten Studie (section 3.1) identifizierten
wir den DLPFC als Region, die beim Zulassen des Verlangens nach
Nahrung beteiligt ist, während das rechte frontale Operculum für die
Neubewertung derselben Nahrung in adipösen wie normalgewichti-
gen Proband Innen involviert zu sein scheint. Des Weiteren fan-
den wir Hinweise darauf, dass adipöse Teilnehmer Innen eine beein-
trächtigte Selbstreflexion hinsichtlich ihrer Fähigkeit visuell präsen-
tierten Nahrungsmitteln zu wiederstehen aufweisen. Basierend auf
den Resulaten der ersten Studie, waren wir motiviert eine zweite
Studie zu entwickeln. In dieser nahmen zwanzig Frauen (10 adipös,
10 normalgewichtig) teil. Der Grund für die Aufnahme von auss-
chließlich Frauen in unsere Studie war ihre tendenziell höhere Sen-
sitivität für Nahrungsreize im Vergleich zu männlichen Probanden
in der ersten Studie (section 3.1). In der zweiten Studie (section
3.2) wurden die EEGs der Teilnehmerinnen aufgezeichnet, während
sie dieselbe Aufgabe erfüllten, die in der ersten Studie beschrieben
wurde. Danach wurde den Probandinnen ein Buffet angeboten, um
die Kalorienzufuhr einzuschätzen. Darüberhinaus wurde der psy-
chologische Status der Probandinnen abgefragt (section 3.1 und sec-
tion 3.2). Nachdem die Teilnehmerinnen bis zur Sättigung gegessen
hatten, durchliefen sie nochmals die Aufgabe mit den Abbildungen
von Nahrungsmitteln wie vor dem Buffet.

Unser Ziel war es zu untersuchen, wie Nahrungsaufnahme bis zur
Sättigung die Fähigkeit zur Neubewertung von Nahrungsmitteln in
adipösen und normalgewichtigen Frauen beeinflusst und ob dabei
Unterschiede zwischen den zwei Gruppen bestehen. Die EEG - Tech-
niken der zweiten Studie sind vergleichbar mit denen der ersten Studie,
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mit dem Unterschied, dass in der zweiten Studie zwei EEG - Aufze-
ichnungen durch ein Buffet voneinander getrennt waren. In Übere-
instimmung mit den Ergebnissen der ersten Studie zeigten adipöse
Probandinnen eine beeinträchtigte Selbsteinschätzung in ihrer Fähigkeit
Nahrungsmittel neuzubewerten während sie hungrig waren. In der
zweiten Studie konnten wir eine Aktivierung des rechten frontalen
Operculums während der Neubewertungsaufgaben replizieren. Wir
fanden außerdem eine signifikant höhere Aktivierung des frontalen
Operculum in adipösen Teilnehmerinnen nach dem Buffet (im gesät-
tigten Zustand) als vor dem Buffet (hungriger Zustand) während
der Neubewertungsaufgabe. Wir beobachteten einen ähnlichen Ak-
tivierungsanstieg in derselben Region in adipösen Proband innen
während des Zulassens des Verlangens nach Nahrung. Dieses Ergeb-
nis war überraschend, da wir diesen Effekt im linken DLPFC er-
warteten. Das rechte frontale Operculum scheint in adipösen Frauen
in den Evaluationsprozess, der mit der Regulation der Bedürfnisses
zu Essen nach Sättigung zusammenhängt, eingebunden zu sein. Wir
konnten auch zeigen, dass adipöse Teilnehmerinnen mit zunehmender
Nahrungsaufnahme geringeren Hunger berichteten. Wir fanden außer-
dem, dass adipöse Frauen mit zunehmender Nahrungsaufnahme gerin-
geren Hunger berichteten. Dies weißt darauf hin, dass adipöse Frauen
möglicherweise sensitiver in der Einschätzung ihres Hungers im Zusam-
menhang mit ihrem Kalorienbedarf sind.

Dieses Forschungsprojekt hat zu einem besseren Verständnis der Mech-
anismen beigetragen, die beim Zulassen oder Neubewerten von Nahrung-
mitteln in adipösen und normalgewichtigen Individuen eine Rolle
spielen. Die vorliegenden Ergebnisse helfen dabei, die komplexen
Prozesse, die bei der Wahl von Nahrungsmitteln im adipösen Gehirn
von Bedeutung sind, besser zu verstehen. Mehr Forschung ist nötig,
um noch tiefere Einblicke in diese Prozesse zu bekommen. Dieses
Projekt kann aber als Ausgangspunkt für zukünftige Interventionen
mit Methoden wie z.B. nicht-invasiver Hirnstimulation oder Neuro-
feedback dienen.
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