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Zusammenfassung:

Die hohe raumzeitliche Variabilität von konvektiven Wolken hat erhebliche

Auswirkungen auf die Quantifizierung des Wolkenstrahlungseffektes. Da konvektive

Wolken in atmosphärischen Modellen üblicherweise parametrisiert werden müssen,

sind Beobachtungsdaten notwendig, um deren Variabilität sowie Modellunsicherheiten

zu quantifizieren. Das Ziel der vorliegenden Dissertation ist die Charakterisierung

der raumzeitlichen Variabilität von warmen konvektiven Wolkenfeldern mithilfe von

Meteosat Beobachtungen sowie deren Anwendbarkeit für die Modellevaluierung.

Verschiedene Metriken wurden untersucht, um Unsicherheiten in Modell- und

Satellitendaten sowie ihre Limitierungen zu quantifizieren. Mithilfe des

hochaufgelösten sichtbaren (HRV) Kanals von Meteosat wurde eine Wolkenmaske

entwickelt, welche mit 1×2 km2 die Auflösung der operationellen Wolkenmaske von

3×6 km2 deutlich übertrifft. Diese ermöglicht eine verbesserte Charakterisierung von

kleinskaligen Wolken und bietet eine wichtige Grundlage für die Weiterentwicklung

von satellitengestützten Wolkenalgorithmen. Für die Untersuchung der Lebenszyklen

konvektiver Wolkenfelder wurde ein Tracking-Algorithmus entwickelt. Die

raumzeitliche Entwicklung des Flüssigwasserpfads (LWP) wurde sowohl in einer

Eulerschen Betrachtungsweise als auch entlang Lagrange’scher Trajektorien analysiert.

Für die Wolkenfelder ergab sich eine charakteristische Längenskala von 7 km. Als Maß

für die Wolkenlebenszeit ergab sich eine Lagrange’sche Dekorrelationszeit von 31 min.

Unter Berücksichtigung des HRV Kanals verringern sich die Dekorrelationsskalen

signifikant, was auf eine Sensitivität gegenüber der räumlichen Auflösung hindeutet.

Für eine Quantifizierung dieser Sensitivität wurden Simulationen des ICON-LEM

Modells mit einer Auflösung von bis zu 156 m berücksichtigt. Verbunden mit einem

zwei- bis vierfach geringeren konvektiven Bedeckungsgrad besitzen die simulierten

Wolken bei dieser hohen Auflösung deutlich größere LWP Werte. Diese Unterschiede

verschwinden im Wesentlichen, wenn die simulierten Wolkenfelder auf die optische

Auflösung von Meteosat gemittelt werden. Die Verteilungen der Wolkengrößen zeigen

einen deutlichen Abfall für Größen unterhalb der 8- bis 10-fachen Modellauflösung,

was der effektive Auflösung des Modells entspricht. Dies impliziert, dass eine

noch höhere Auflösung wünschenswert wäre, damit mit ICON-LEM Wolkenprozesse

unterhalb der 1 km-Skala realistisch simuliert werden können. Diese Skala wird

zukünftig erfreulicherweise vom Meteosat der dritten Generation abgedeckt. Dies

wird ein entscheidender Schritt für ein verbessertes Verständnis von kleinskaligen

Wolkeneffekten sowie für die Parametrisierung von Konvektion in NWP und

Klimamodellen sein.
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Abstract:

Convective clouds have a high spatiotemporal variability that complicates the

quantification of the cloud radiative effect. Since atmospheric models usually have

to parameterize convective clouds, observations are needed to characterize their

variability and to quantify model uncertainties. The aim of the present thesis is

to characterize the spatiotemporal evolution of warm convective cloud fields using

Meteosat observations and to evaluate simulated cloud fields in a high resolution

atmospheric model. Several metrics are studied to quantify model and satellite

retrieval uncertainties and sensor limitations. Meteosat’s high resolution visible (HRV)

channel was used to develop a cloud mask with 1×2 km2 resolution that is much

higher in comparison to the operational mask with 3×6 km2 resolution. This HRV

cloud mask improves the characterization of small-scale convective clouds and provides

valuable information for the further development of cloud retrievals. For investigation

of the spatiotemporal evolution, the cloud fields were tracked in sequential satellite

images. The spatiotemporal change of the liquid water path (LWP) was analyzed

adopting both, an Eulerian and a Lagrangian perspective. A characteristic length

scale of 7 km was found for the cloud fields. Furthermore, a Lagrangian decorrelation

time of 31 min is found corresponding to a measure of the average cloud life time. By

taking into account the reflectance of the HRV channel, these decorrelation scales were

essentially decreasing most likely due to small-scale cloud variability. This behavior

indicates a high sensitivity of the decorrelation scales on the spatial resolution. To

quantify this sensitivity, simulations from the ICON-LEM model with up to 156 m

horizontal grid resolution were considered. At 156 m resolution, the simulations show

a higher frequency of larger LWP values and an underestimation of the convective

cloud fraction by a factor of two to four. These differences are essentially removed,

if the simulated cloud fields are coarse-grained to the optical resolution of Meteosat.

The distribution of the simulated horizontal cloud sizes shows a significant drop

for sizes below 8–10 times the model grid resolution, which indicates the effective

resolution of the model. This implies that simulations with an even higher spatial

resolution than 156 m are desirable to resolve cloud scales below 1 km with ICON-LEM.

Fortunately, this 1-km scale will be covered by Meteosat Third Generation. Such an

observational capacity with a spatial resolution of at least 1 km will substantially

improve the understanding of small-scale cloud effects as well as the parameterization

development of cumulus convection for NWP and climate models.
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1 Introduction

1.1 The role of clouds in the climate system

Clouds play a fundamental role in the Earth’s climate system. They cover around

70 % of Earth’s surface (Stubenrauch et al., 2013), and influence the global climate

and the hydrologic cycle through many complex interactions. The major energy source

for the Earth is the sun. The incoming solar radiation, entering at the top of the

atmosphere (TOA), is scattered and absorbed by cloud droplets and ice particles,

aerosols, atmospheric gases and the Earth’s surface. The annual global incoming solar

energy on TOA is measured as 340 W m−2 on average (Fig. 1.1). From this amount of

solar energy, 100 W m−2 are reflected back to space. The remaining portion of about

240 W m−2 is absorbed by the Earth’s surface as well as gases and aerosol particles in

the atmosphere, which is nearly balanced by the TOA thermal emission of 239 W m−2

(Wild et al., 2012). Considering the absorbed and emitted energy, an imbalance of

approximately 0.6 W m−2 is estimated, which represents the increasing heat storage

in the Earth-Ocean-Atmosphere system due to a warming climate system (Loeb et al.,

2012). This net radiative imbalance has increased during the last decades (Allan et al.,

2014).

Fig. 1.1 includes the uncertainty range for all fluxes, showing some fluxes with large

uncertainties, as pointed out in many studies in the past (e.g., Hartmann et al., 1986;

Kiehl and Trenberth, 1997; Gupta et al., 1999; Trenberth et al., 2009; Stephens et al.,

2012; Wild et al., 2012). Estimation of the TOA fluxes has been improved in the last

decades through advanced satellite missions like the Clouds and the Earth’s Radiant

Energy System (CERES, Wielicki et al., 1996). Despite these improved observations,

substantial discrepancies remain between satellite observations and general circulation

models (GCMs) for the global energy balance, mainly due to deficits in the process

understanding which is important to develop appropriate parameterizations (Wild et al.,

2012).
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Figure 1.1: Annual global mean energy balance of the Earth, representing present day
climate conditions at the the beginning on the twenty-first century (Wild
et al., 2012).

1.2 Climate change

The major reason for the increase of the global average surface temperature of about

0.2 K per decade (Hansen et al., 2010) is the increase of greenhouse gases emitted

by human activity. This warming is referred as the anthropogenic climate change.

The primary greenhouse gases in Earth’s atmosphere are water vapor (WV), carbon

dioxide (CO2), nitrous oxide (N2O), methane (CH4) and tropospheric ozone (O3). The

CO2 concentration has substantially increased since 1750 due to human activity and

exceeded the pre-industrial concentration by 40% (Hartmann et al., 2013). In 2013,

CO2 concentration surpassed 400 ppm for the first time in recorded history1. It is still

not fully understood, how much the globe will warm exactly and how the climate system

will respond to rising CO2 concentration. Scientists are attempting to quantify the

total amount of global warming by using measures like the transient climate response

(TCR) and the equilibrium climate sensitivity (ECS).

While the TCR describes how much the Earth surface temperature will immediately

warm, once the level of double CO2 concentration is reached, the ECS refers to the

change of the global mean surface temperature that would result after the Earth

system has reached a new equilibrium for sustained doubling of the atmospheric CO2

1http://climate.nasa.gov/climate_resources/24/ (last accessed 29 August 2016)

http://climate.nasa.gov/climate_resources/24/
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Figure 1.2: Equilibrium temperature change associated with the Planck response, water
vapor, surface albedo and cloud feedback, computed for 12 CMIP3/AR4
calculations for a 2×CO2 forcing (Dufresne and Bony, 2008).

concentration. By deriving the ECS, it is possible to calculate the strength of the

feedback processes in the system. The best estimate of the ECS based on the energy

budget from the recent decade is 2.0 K, with a 5–95 % confidence interval from 1.2

to 3.9 K (Otto et al., 2013). Although this large uncertainty range has not narrowed

in the last 40 years, our understanding about the factors controlling the ECS has

been improved (Bony et al., 2015). In order to better understand the ECS uncertainty,

different feedback parameters were defined. They describe the adjustment of the surface

temperature in response to a particular forcing.

Fig. 1.2 shows the ECS for 12 different GCM runs decomposed into four different

feedbacks. While the Planck and WV response dominate the absolute ECS, the

intermodel differences are mainly due to variations in the cloud response to warming

and the climate feedback (Dufresne and Bony, 2008). The net effect of clouds,

including shortwave (SW) and longwave (LW) radiation, is to cool the planet by

∼20 W m−2 (Allan, 2011). In all recent GCM calculations, however, cloud feedbacks

are positive since cooling of the planet is reduced (Zelinka et al., 2012). Clouds can

adjust in different complex ways, depending on the cloud type and altitude, albeit the

large spread in net cloud feedback is due to uncertainties in the estimation of low

cloud changes (Zelinka et al., 2013). Thus, there is a great need to further investigate

the physical processes of low-level clouds to better quantify the uncertainties in

satellite observations as well as atmospheric and climate models.
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1.3 Satellite remote sensing of clouds

Passive imaging radiometers on meteorological satellites measure radiances in multiple

spectral bands at TOA. These radiances are reflected or emitted by the Earth’s surface,

clouds and different particles or molecules in the atmosphere. Satellites can be divided

into geostationary and polar-orbiting. Geostationary satellites are positioned in the

geostationary orbit about 36000 km above the equator and follow the direction of the

Earth’s rotation with the same speed. Thus, they continuously observe the same region

of the globe. Polar-orbiting satellites, on the other hand, rotate at a fixed path, with

high inclinations to the Earth’s rotation, passing across high latitudes near the poles.

With a distance of only 700 to 800 km to the Earth’s surface they yield a higher spatial

resolution. Polar-orbiting satellites measure polar regions several times a day, but lower

latitudes generally only twice a day. In contrast, geostationary satellites with very high

repeat cycles of a few minutes have the capability to observe and track clouds from

their early developing stage onwards, and are thus the focus of this thesis.

The interpretation of satellite measurements relies on radiative transfer model

calculations to relate cloud microphysical characteristics to radiances reaching the

TOA from a particular cloud (Minnis et al., 1998). For collecting and analyzing

satellite radiance data to investigate the global cloud property distributions, Schiffer

and Rossow (1983) established the International Satellite Cloud Climatology Project

(ISCCP) as part of the World Climate Research Programme (WCRP). The ISSCP

cloud analysis involves the separation of image pixels into clear sky and cloudy, the

radiative model analysis and the statistical analysis, merging cloud data from different

satellites on a 30 km pixel resolution (Rossow and Garder, 1993). Nakajima and King

(1990) introduced a method to determine the optical thickness and droplet effective

radius of water clouds from reflection function measurements at two different

wavelengths. This popular method is still used at the present day in numerous cloud

property retrievals. The accuracy of retrieved cloud properties has improved during

the last years due to advanced satellite instruments. If cloud properties retrieved from

satellites are compared to model simulations, large uncertainties arise, particularly for

low-level broken clouds with a high spatiotemporal variability (e.g., Marshak et al.,

2006; Koren et al., 2008; Wolters et al., 2010; Horváth et al., 2014). These studies

demonstrate that more research is needed to improve our knowledge of retrieval

uncertainties and satellite sensor limitations. A more detailed view on these

uncertainties is given in section 2.4.
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1.4 Representation of convective clouds in atmospheric

models

Due to the large range of relevant spatiotemporal scales, convective clouds cannot be

explicitly resolved in atmospheric models. The impact of these unresolved processes

on model variables like air motion, temperature, heat transfer, solar radiation and

humidity has to be considered by parameterization schemes. Particularly cloud

microphysical parameterizations play a key role in understanding latent heating and

cooling, convection, precipitation, cloud-radiative and cloud-aerosol-precipitation

interaction processes (Arakawa, 2004). All microphysical models can be basically

categorized into two groups, bulk schemes and spectral (bin) microphysical schemes.

Bulk schemes are commonly used in mesoscale models and are relatively cheap in

computational costs, because all microphysical processes are described in terms of

integral parameters. In contrast, bin microphysical models divide particles into

different size bins and calculate the evolution of droplets in each size bin separately

(Khain et al., 2000).

Figure 1.3: (a) Three length scales of an atmosperic model with different grid resolutions
of L=25.6 km (length scale of deterministic parameterizations in NWP
models), l=1.6 km (length scale where stochastic parameterizations are
required) and ∆x=50 m (length scale of LES simulations) (Dorrestijn et al.,
2012). (b) Decomposition of the resolved and unresolved turbulent fluxes in
relation to the grid resolution l for the full 25.6×25.6 km2 domain shown in
(a). The solid dotted line represents the standard deviation of the unresolved
fluxes.
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One very important characteristic of atmospheric models is their grid resolution. The

higher the grid resolution in general, the more realistically can cloud microphysical

and dynamical processes be simulated. To resolve convective clouds realistically, an

atmospheric model with a grid resolution of at least 100 m is required (Dorrestijn et al.,

2012). But a high grid resolution does not solve every problem. Barthlott and Hoose

(2015) stated that more sophisticated parameterizations for boundary layer turbulence

and cloud microphysics are also required to improve the representation of convective

clouds in high resolution models.

Fig. 1.3 indicates the so-called grey zone between 50 m and 800 m grid resolution

where resolved and unresolved turbulent heat fluxes are of the same order of

magnitude. The standard deviation of the unresolved fluxes is very large in this gray

zone, which demonstrates the difficulty to construct reliable parameterizations

(Dorrestijn et al., 2012). This standard deviation remains large up to 10 km and

indicates that stochastic parameterizations are most appropriate in this range. They

also found that unresolved fluxes above 10 km grid resolution can be determined by

using deterministic parameterizations. For grid resolutions lower than 50 m,

unresolved fluxes are almost zero, because convection processes are largely resolved.

Current operational numerical weather prediction (NWP) models for limited regions

reach 1 km resolution, but are still too coarse to resolve convection. Large eddy

simulations (LES) are resolving a large part of the convection and turbulence due to their

high grid resolution of usually 1 to 100 m. However, due to their high computational

costs, such simulations are basically run using idealized setups (e.g., with periodic

boundary conditions and without realistic land surface models) and are performed

for small regions (e.g., Heus et al., 2010), which complicates their comparison with

observational data. Due to the increasing capacity of supercomputers, large domain

simulations at a cloud resolving scale are becoming feasible, and show for example a

better timing of the diurnal cycle of convection (e.g., Hohenegger et al., 2008; Schlemmer

and Hohenegger, 2014).

1.5 Objectives

The overall aim of the present thesis is an in-depth characterization of the

spatiotemporal evolution of convective cloud fields with the Spinning Enhanced

Visible and Infrared Imager (SEVIRI) on-board the geostationary Meteosat Second

Generation (MSG) satellite and its applicability towards model evaluation. A further

goal is to establish appropriate metrics to evaluate the representation of convective

cloud fields in the high resolution model ICON-LEM and to characterize convective
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cloud fields across different spatial scales. While polar-orbiting satellites like MODIS

can resolve finer spatial cloud structures due to their higher spatial resolution, only

geostationary satellites like Meteosat have the capability to observe and track clouds

from their early developing stage onwards (see section 1.3). From the modeling

perspective, simulations with at least 100 m grid resolution are required to resolve

convective clouds realistically (Dorrestijn et al., 2012), which are however very

expensive in computational costs if a large domain is considered (see section 1.4).

Both perspectives, Meteosat observations and high resolution simulations of

convective clouds will be considered and compared in the present thesis.

A fundamental problem for the characterization of convective clouds with satellite

observations is the separation between cloudy and cloud-free areas. To approach this

issue and improve the detection of convective clouds from MSG, the first goal is to

develop and evaluate a threshold-based cloud mask for the high resolution visible (HRV)

channel of Meteosat SEVIRI with 1×1 km2 spatial resolution. The aim of using the

HRV channel is to study small-scale cloud features, like their horizontal dimensions,

which cannot be resolved by Meteosat’s low resolution channels (3×3 km2). Past

studies suggested that the HRV channel contains important information for investigating

the small-scale variability of convective clouds (e.g., Klüser et al., 2008; Deneke and

Roebeling, 2010). Sophisticated algorithms are required in order to determine reliable

thresholds for gray-level images (Kapur et al., 1985). The large variability in the surface

reflectance will be considered by using a differencing approach to improve the contrast

between clouds and the underlying surface (Minnis and Harrison, 1984; Ipe et al., 2003).

We finally want to evaluate the ability of the HRV cloud mask to identify convective

clouds by comparison with the operational cloud mask from EUMETSAT.

The second objective is to investigate suitable techniques and quantities for

characterizing the spatiotemporal evolution of convective cloud fields from space. This

characterization provides complementary information about the spatial structure as

well as temporal changes of cloud reflectances and micophysical properties. The latter

will serve as a fingerprint to the underlying dynamical and microphysical processes.

Especially warm convective clouds induce unresolved reflectance variations, which

cause high cloud property uncertainties (Han et al., 1994). Some of these uncertainties

have been quantified already with ground based measurements (Roebeling et al.,

2008), but such evaluations are challenging for warm convective clouds due to their

rapid changes in space and time (Feijt and Jonker, 2000; Deneke et al., 2009).

Observations with Meteosat offer the opportunity to investigate convective cloud life

cycles adopting a Lagrangian perspective. Nowcasting convective initiation and

tracking of deep convective cloud systems often rely on object-based approaches (e.g.,
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Mecikalski and Bedka, 2006; Zinner et al., 2008; Senf et al., 2015). We are focusing,

however, on warm convective clouds, which are changing too fast within a 5 min time

span in order to apply object-based approaches. Consequently, we are aiming to find a

sophisticated tracking algorithm, that is capable of considering the temporal change of

spatial coherence of the horizontal cloud field structure in sequential satellite images.

While the Eulerian perspective includes advective and convective affected processes,

the Lagrangian approach will provide the great opportunity to separate both.

The final aim is to apply these techniques when evaluating high resolution

simulations and to investigate the spatiotemporal characteristics of warm convective

cloud fields across different spatial scales to advance our understanding of the effects

of small-scale cloud processes, which are underrepresented by geostationary satellite

observations. Towards this goal, suitable metrics for comparing these high resolution

model results with relatively coarsely resolved satellite observations are required. A

better understanding of the scaling behavior of convective cloud scales at different

spatial resolutions will further help to evaluate and improve stochastic

parameterizations of cumulus convection in atmospheric models. Weisman et al.

(1997) demonstrated a significant resolution sensitivity of the representation of

convective cloud processes in a nonhydrostatic model with grid resolutions between

1 km and 10 km. We will consider simulations at a horizontal resolution up to 156 m

to investigate the resolution sensitivity of the analyzed metrics. These simulations are

based on the ICON-LEM model, which was developed within the High Definition

Clouds and Precipitation for Climate Prediction (HD(CP)2) project (Dipankar et al.,

2015; Heinze et al., 2017). Realistic ICON-LEM runs are performed on different grid

spacings between 156 m and 625 m for the whole of Germany. The comparison of

these high resolution model results with current satellite observations will further help

to quantify satellite retrieval uncertainties and sensor limitations.

The main research questions for this thesis are formulated as follows:

1. How can we improve the representation of small-scale convective clouds using

Meteosat observations?

2. What are suitable metrics for evaluating high resolution model simulations with

relatively coarsely resolved satellite observations?

3. How sensitive are the spatiotemporal characteristics of convective cloud fields to

the spatial resolution of a sensor or a model?
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4. How can uncertainties of retrieved cloud properties and the instrumental

limitations of MSG SEVIRI be quantified and which improvements are expected

with respect to upcoming satellite missions?

The present thesis is structured as follows. The instrumental and model datasets

are described in chapter 2 and 3. The results are presented in chapter 4 which is the

cumulative part of the thesis including Bley and Deneke (2013); Bley et al. (2016) and

Bley et al. (2017). The summary and conclusions including the answers of the research

questions, which are formulated above, are given in chapter 5. In the following outlook,

the implications for future satellite missions and model studies are discussed.
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2 Instruments and related datasets

2.1 The Meteosat SEVIRI instrument

Figure 2.1: SEVIRI Full disk red-green-blue (RGB) natural color image following the
Lensky and Rosenfeld (2008) method. Data for this thesis is taken from
the rapid scan service (RSS), which covers a sub region of the full disk from
approximately 15◦ to 70◦ N. This smaller area leads to a higher repeat cycle
of 5 min instead of 15 min. The white rectangle marks a region over Central
Europe, which is chosen for this thesis.
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Nr. Channel Spectral band (µm) Main gaseous absorber or window
λmin λcen λmax

01 VIS0.6 0.56 0.635 0.71 window
02 VIS0.8 0.74 0.81 0.88 window
03 NIR1.6 1.50 1.64 1.78 window
04 IR3.9 3.48 3.90 4.36 window
05 WV6.2 5.35 6.25 7.15 water vapour
06 WV7.3 6.85 7.35 7.85 water vapour
07 IR8.7 8.30 8.70 9.10 window
08 IR9.7 9.38 9.66 9.94 ozone
09 IR10.8 9.80 10.80 11.80 window
10 IR12.0 11.00 12.00 13.00 window
11 IR13.4 12.40 13.40 14.40 CO2

12 HRV broadband (∼0.4–1.1) window / water vapour

Table 2.1: Spectral channel characteristics of SEVIRI providing central, minimum
and maximum wavelength of the channels and whether the channel is an
absorbing or a window channel (Schmetz et al., 2002).

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is a passive

instrument that operates onboard the Meteosat Second Generation (MSG) satellites

on the geostationary orbit (Schmetz et al., 2002). EUMETSAT is currently operating

four MSG satellites – Meteosat-7, -8, -9 and -10, which are located 36000 km above

the Equator. Meteosat-10 is currently the primary operational satellite, positioned at

0◦ E, and provides full disk images covering Africa and Europe every 15 min.

Meteosat-9 is running the Rapid Scan Service (RSS) at 9.5◦ E and delivers images

over a sub-region of the full disk with a repeat cycle of 5 min. This sub-region covers

Europe with 5 min temporal resolution and thus serves as the main data basis for this

thesis. Meteosat-8 is the back-up satellite for Meteosat-9 and -10. Meteosat-7 was

shifted to 57◦ E for observations over the Indian Ocean.

SEVIRI as the main payload onboard the MSG satellites provides 12 spectral channels:

three solar (0.6, 0.8 and 1.6 µm), eight thermal infrared (IR) (3.9, 6.2, 7.3, 8.7, 9.7,

10.8, 12.0 and 13.4 µm) and one broadband high-resolution visible (HRV) (0.4–1.1 µm)

(Tab. 2.1).

Fig. 2.1 shows one example RGB image taken by Meteosat-10 on 25 June 2016.

The nadir spatial resolution is 1×1 km2 for its HRV channel and 3×3 km2 for the

other 11 channels. The true optical resolution, however, is lower by a factor of 1.6

for both the high resolution and the low resolution channels (Schmetz et al., 2002).

The spatial resolution is further decreased with an increasing distance to the nadir

satellite point. This effect has, particularly for Meteosat-9 and over Central Europe,
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almost no influence on the East-West pixel length, but is significant for the North-South

pixel length. This leads to an anisotropic pixel resolution of 1.2×2 km2 for the HRV

channel and 3.6×6 km2 for the narrow-band channels. The HRV channel is of particular

interest for this thesis. The level 1.5 image data of MSG is received and processed by

the satellite remote sensing group at the Leibniz Institute for Tropospheric Research

(TROPOS) in Leipzig.

2.2 KNMI Cloud Physical Properties retrieval

Figure 2.2: Look-up table for calculation of τ and re from the KNMI DAK radiative
transfer simulations. Solid lines are related to re, vertical dashed lines
correspond to τ . The red cross demonstrates an example cloudy pixel with
re=12 µm and τ=16.

The fundamental concept behind retrieving cloud properties from satellite is that the

optical thickness is closely related to the cloud reflectance at a nonabsorbing channel in

the visible wavelength (0.6 µm for SEVIRI), while the cloud droplet effective radius is

strongly related to the reflectance at an absorbing channel in the near infrared region

(1.6 µm for SEVIRI) (Roebeling et al., 2006). The relation between the cloud optical

thickness τ , the cloud droplet effective radius re and the reflectance in the two channels
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is simulated by radiative transfer calculations and stored in look-up tables (Fig. 2.2). For

this study, the Cloud Physical Properties (CPP) retrieval is used, which was developed

at the KNMI (Roebeling et al., 2006) in the framework of the Satellite Application

Facility on Climate Monitoring (CM SAF) (Schulz et al., 2009). The Doubling Adding

KNMI (DAK) radiative transfer model is considered to generate the look-up tables in

the CPP-retrieval (Roebeling et al., 2006).

The primary cloud property for this thesis is the liquid water path (LWP), which

represents the vertical integrated cloud water content between cloud base and cloud

top. Passive satellite instruments, however, retrieve cloud parameters such as the LWP

in a rather indirect way. The estimation of LWP from re and τ requires assumptions

about the vertical cloud structure. Usually, the liquid water content (LWC) and re are

assumed to be constant with height, resulting in the relation

LWP =
2

3
· ρw · τ · re. (2.1)

where ρw is the density of liquid water (Stephens, 1978; Roebeling et al., 2008).

However, Wood and Hartmann (2006) demonstrated that observations of boundary

layer clouds often show a linear increasing LWC with cloud height. This model results

in the relationship

LWP =
5

9
· ρw · τ · re. (2.2)

to estimate the LWP, assuming adiabatic clouds (see Wood and Hartmann, 2006,

for further discussion). Since a linear increase of LWC is typically found for warm

convective clouds (Merk et al., 2016), we use the equation 2.2 for the calculation of

LWP.

τ and re are estimated from the simulated look-up tables. Fig. 2.2 illustrates an

example look-up table calculated with the KNMI DAK radiative transfer simulations

with the 0.6 µm as nonabsorbing and the 1.6 µm as the absorbing channel. The red

cross illustrates one example cloud pixel with τ=16 and re=12 µm. The retrieval of re

is related to the upper part of the cloud (Platnick, 2001). Fig. 2.2 also shows that the

curves of re are lying very close to each other for optically thin clouds, which indicates

large uncertainties in that region. For these small τ , the relation between re and the

1.6 µm reflectance is highly nonlinear which further influences the retrieval accuracy

(Cahalan et al., 1994b). An in-depth description of the retrieval uncertainties follows

in section 2.4.
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2.3 NWC SAF cloud products

The Satellite Application Facility on Support to Nowcasting and Very Short Range

Forecasting (NWC SAF) provides algorithms to improve the use of data from the

Meteosat satellites which is relevant for Nowcasting applications. Nowcasting and very

short range forecasts are essential for the safety of our daily life. The MSG SEVIRI

images are supporting many nowcasting applications, like monitoring of convection

which can lead to severe convective thunderstorms, or detection and tracking of dust

storms, volcanic ash and fog. From a large variety of cloud products, the cloud mask

(CM) and cloud type (CT) (Derrien and Le Gléau, 2005) as well as the cloud top height

(CTH) (Derrien, 2012) and high resolution wind vectors (HRW) (Garćıa-Pereda, 2013)

are used in this thesis.

The NWC SAF provides the software packages with full default configuration data

for free. Please note that the default configuration was partially adjusted to focus the

calculation of the HRW product on the textural patterns of the HRV channel. The

CM algorithm identifies cloudy and cloud-free regions in Meteosat images and uses

different tests applied to various channel combinations for each pixel of a current image.

Complementary to these pixel-based tests, some spectral combinations of channels are

applied to the temporal and spatial coherence of the image, to improve the detection

of low cumulus clouds (Derrien and Le Gléau, 2005). Some IR tests further require

NWP parameters from the European Center for Medium range Weather Forecasting

(ECMWF) model like surface temperature, humidity and water vapor content. Vertical

NWP profiles are also used as input for the very fast radiative transfer model (RTTOV)

to simulate the clear sky radiance at TOA. All these tests, assumptions and input

parameters from different models demonstrate the complexity of the CM algorithm.

The HRW product represents the basis for the Lagrangian analysis of the Meteosat

observations (Bley et al., 2016). It is based on a cross-correlation technique and contains

atmospheric motion vectors (AMVs) for cloudy pixels characterized by particular tracers

that can be matched in subsequent satellite images. Please note that the default

configuration for the HRW product was adjusted to improve the determination of low-

level cloud motions, which are usually rejected by the stringent quality tests in the

default configuration (Bedka and Mecikalski, 2005). This was realized by considering

more tracers that are used for the calculation and by slightly reducing the quality

threshold (Bley et al., 2016).
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2.4 Uncertainties in cloud properties retrieved from

geostationary satellites

The derived optical and microphysical cloud properties from geostationary satellite

retrievals are accompanied by high uncertainties, especially for warm convective

clouds. These uncertainties complicate the evaluation of modeled cloud properties

with observations (Jonkheid et al., 2012). They showed that the CPP retrieval of the

cloud water path (CWP) is very sensitive to the assumptions made in the code.

Retrieval errors of the CWP are found to be generally small for homogeneous single

layer clouds, but are substantially increasing up to 40–80 % in multi-layer cloud

conditions with ice and water within one pixel (Jonkheid et al., 2012). This is due to

the fact that clouds are assumed to be plane-parallel, in a multi-layered Rayleigh

scattering atmosphere and that the cloud water is horizontally uniformly distributed

within the cloud (Roebeling et al., 2006). In the real atmosphere, this is evidently not

the case. Especially convective clouds have a very heterogeneous structure, which can

only be coarsely resolved from geostationary satellite observations. The CPP retrieval

of τ and re is conducted on a pixel basis, and only for those that are classified as

cloudy by the NWC SAF cloud mask. Ignoring the sub-pixel variability of the cloud

reflectances leads to large uncertainties in the retrieval of τ and re (e.g., Cahalan

et al., 1994a; Davis et al., 1996; Platnick, 2001; Roebeling et al., 2006; Marshak et al.,

2006; Zinner and Mayer, 2006; Várnai and Marshak, 2007; Wolters et al., 2010; Zhang

and Platnick, 2011; Horváth et al., 2014; Cho et al., 2015; Zhang et al., 2016). This

large number of studies demonstrates the importance of considering and quantifying

these effects for reliable physical interpretations.

Cahalan et al. (1994b) described the influence of averaging the unresolved cloud

reflectance variations on the derived τ and re due to the nonlinear relation between

the measured reflectance and the related τ . Fig. 2.3 illustrates this effect for look-up

tables based on a channel combination of the 0.8 µm and 2.13 µm bands (Zhang et al.,

2016). In this example, two clouds with different τ=2.8 and τ=30.8 but the same

re=8 µm are assumed to fill the footprint of one pixel. The retrieved τ=10.8 based on

the average reflectance is substantially smaller than the arithmetic average of the real

unresolved τ , leading to τ=16.8. This plane-parallel albedo bias generally causes much

smaller τ for satellite observations with relatively coarse spatial resolution compared

to retrieved values from higher resolution observations such as the MODIS instrument

or the Advanced Very High Resolution Radiometer (AVHRR) (Roebeling et al., 2006).

They also reported that differences in the derived LWP are usually smaller due to a

compensation of slightly larger re resulting from the plane-parallel albedo bias that is
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Figure 2.3: Theoretical case to illustrate the nonlinearity effect in re retrievals resulting
from sub-pixel cloud inhomogeneity (Zhang et al., 2012). Numbers on top
of the Nakajima King look-up table correspond to τ , numbers on the right
represent re.

also shown in Fig. 2.3. The influence on re can be explained by the retrievals of re and

τ , which are not independent (Marshak et al., 2006).

Such sub-pixel cloud reflectance variations can be also caused by shadowing effects

due to surrounding pixels. These 3-D radiative effects, however, cannot be explained

by the 1-D radiative transfer theory (Marshak et al., 2006). The retrieval accuracy is

further reduced in multi-layer cloud conditions. Watts et al. (2011) used an optimal

estimation method to develop a two-layer cloud retrieval scheme with multispectral

channels from MSG SEVIRI. A recent study by Sourdeval et al. (2016) describes an

algorithm to retrieve cloud ice and water properties simultaneously with the capability

to determine multi-layer cloud properties.

Since the focus of the present thesis is on single-layer convective clouds that are

purely liquid, such effects are neglected. In contrast, large retrieval uncertainties are

expected for this type of clouds due to the coarse spatial resolution of Meteosat, which

was already described as the plane-parallel albedo bias. Consequently, the influence of

the spatial resolution on the statistical representation of warm convective clouds needs

to be quantified. Geostationary satellite retrievals generally underestimate the LWP
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especially for broken convective clouds due to their coarse resolution (e.g., Wolters

et al., 2010; Marshak et al., 2006). This effect is also influenced by the viewing angle

of the satellite instrument (Horváth et al., 2014). Due to the relatively high viewing

angle of 60◦ for observations over Central Europe, this influences not only the retrieval

accuracy but also the cloud fraction (CF). These effects are quantified and discussed

in Bley et al. (2017).
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3 Model data

3.1 ICON-LEM high resolution simulation

The ICON-LEM model is based on the unified modeling system for climate and

numerical weather forecast ICON (ICOsahedral Nonhydrostic) developed by the

German Weather Service, which is extended to a large eddy simulation that partially

resolves turbulence and convection. For the unresolved part, a new three-dimensional

turbulence scheme based on the classical Smagorinsky scheme has been implemented

and is applied to the prognostic winds, potential temperature, specific humidity and

specific cloud liquid water content (Dipankar et al., 2015). The cloud microphysics are

parameterized by the two-moment mixed phase bulk microphysical scheme after

Seifert and Beheng (2005). The cloud fraction scheme does not account for fractional

cloudiness at the subgrid scale (Heinze et al., 2017). To keep the integration of the

physical parameterizations stable, horizontal diffusion is added. ICON-LEM is used in

a real-case configuration with prescribed lateral boundary conditions and a nesting

approach (Heinze et al., 2017). ICON-LEM is not running in a semi-idealized setup

like the PArallelized Large Eddy simulation Model (PALM) but uses the realistic land

surface model Terra which is also used in COSMO-DE (Heinze et al., 2017). Each

simulation day is initialized at 00 UTC from the operational COSMO-DE analysis and

runs for 24 h.

Within the HD(CP)2 project, ICON-LEM performed four simulations for the 24–26

April and the 2 May 2013 with a very high spatial resolution of 156 m for a large domain

covering Germany (Fig. 3.1). Grid refinement steps are taken from 624 m to 312 m

and to 156 m in the innermost domain (Heinze et al., 2017). As the grid spacings of

the ICON-LEM runs are somewhat higher than those used typically in LES models for

cloud studies, these runs could also be classified as “near-LES” experiments (Mechem

et al., 2012). The simulations were originally performed on a 100 m icosahedral grid,

but regridded afterwards on a regular grid to facilitate the model evaluation with

observations. The resulting spatial resolution is related to the square root of the mean

cell area in the icosahedral grid, which is equivalent to about 1.5 times the corresponding

resolution in a regular grid (Heinze et al., 2017). ICON-LEM uses 150 vertical model
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Figure 3.1: ICON-LEM domain and its two nests with grid refinement. The open lateral
boundaries are relaxed towards COMSO-DE analysis (Heinze et al., 2017).

layers with a decrease of the spatial resolution towards the domain top and with 20

layers representing the lowest 1000 m.

Apart from the great challenge to carry out such high performance simulations at

the German Supercomuting Centre (DKRZ), it also took massive storage capacities to

write the model results to files (Heinze et al., 2017). A large number of approximately

3.3 billion grid cells have been processed with a model run time step of 0.75 sec (Heinze

et al., 2017). Keeping this in mind, it was a great challenge to analyze the data

output. 50 terabyte of data output were generated for one day of simulation. The

three-dimensional model variables were mapped to a regular grid with 1 km grid spacing

and written out every hour. Variables on the unstructured high resolution model grid

were written to files only once or twice a day during MODIS overpasses. The two-

dimensional data output for the cloud properties is archived at 156 m, 312 m and

625 m grid spacing and a 1 sec time frequency, albeit sub-sampled to 1 min time steps

for the present study to reduce the computing time for the analysis.
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Figure 3.2: Domain covered by the COSMO-DE model with 421×461 grid points
(Baldauf et al., 2011).

3.2 COSMO-DE

The Consortium for Small Scale Modelling (COSMO-DE) is a numerical weather

prediction model which is operating at the German Weather Service (DWD). It runs

on a convection-permitting scale with 2.8 km grid resolution and is thus able to

predict deep convection explicitly (Baldauf et al., 2011). In contrast to NWP models

in the past, COSMO-DE partially resolves convective cloud structures by using a

Runge-Kutta method. Small-scale shallow convection is parameterized with the

Tiedtke (1989) scheme, that is also used in the ICON-LEM model. In comparison to

ICON-LEM, which uses the two-moment cloud microphysical scheme after Seifert and

Beheng (2005), however, COSMO-DE parameterizes the cloud microphysics with a

one-moment Lin et al. (1983) type scheme that is extended by a graupel class.

COSMO-DE uses 50 vertical model layers with a stretched level spacing at the domain

top. While the improved microphysical scheme leads to a successful prediction of deep

convection, Baldauf et al. (2011) describe the Planetary Boundary Layer (PBL)
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scheme as the most problematic model deficit in order to better resolve small-scale

convection in the boundary layer. They further state that an improved vertical

resolution is required to improve the representation of the PBL. The domain covered

by the COSMO-DE model Fig. 3.2 completely overlaps the domain of the ICON-LEM

model, which facilitates inter-model comparisons.

For evaluation of the ICON-LEM model, COSMO-DE simulations were carried out

with the operational configuration, but with the same Seifert and Beheng (2005) scheme

which was used in ICON-LEM. The cloud liquid and ice water content contain the grid

scale and subgrid scale cloud water and ice, as used in the radiation scheme.
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4 Results and discussion

4.1 First publication: A threshold-based cloud mask for

the high-resolution visible channel of Meteosat

Second Generation SEVIRI

The content of this chapter has already been published in the manuscript “A

threshold-based cloud mask for the high-resolution visible channel of Meteosat Second

Generation SEVIRI” by Sebastian Bley and Hartwig Deneke in the journal

“Atmospheric Measurement Techniques” in 2013 with the doi:

10.5194/amt-6-2713-2013.

Reprinted with permission by the authors from Atmospheric Measurement

Techniques. 2013, 6, 2713–2723.
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Abstract. A threshold-based cloud mask for the high-
resolution visible (HRV) channel (1× 1 km2) of the Meteosat
SEVIRI (Spinning Enhanced Visible and Infrared Imager)
instrument is introduced and evaluated. It is based on opera-
tional EUMETSAT cloud mask for the low-resolution chan-
nels of SEVIRI (3× 3 km2), which is used for the selection
of suitable thresholds to ensure consistency with its results.
The aim of using the HRV channel is to resolve small-scale
cloud structures that cannot be detected by the low-resolution
channels. We find that it is of advantage to apply thresholds
relative to clear-sky reflectance composites, and to adapt the
threshold regionally. Furthermore, the accuracy of the differ-
ent spectral channels for thresholding and the suitability of
the HRV channel are investigated for cloud detection. The
case studies show different situations to demonstrate the be-
havior for various surface and cloud conditions.

Overall, between 4 and 24 % of cloudy low-resolution SE-
VIRI pixels are found to contain broken clouds in our test
data set depending on considered region. Most of these bro-
ken pixels are classified as cloudy by EUMETSAT’s cloud
mask, which will likely result in an overestimate if the mask
is used as an estimate of cloud fraction. The HRV cloud
mask aims for small-scale convective sub-pixel clouds that
are missed by the EUMETSAT cloud mask. The major limit
of the HRV cloud mask is the minimum cloud optical thick-
ness (COT) that can be detected. This threshold COT was
found to be about 0.8 over ocean and 2 over land and is highly
related to the albedo of the underlying surface.

1 Introduction

The effect of clouds on radiative fluxes depends on cloud
type and can vary strongly both in space and time. Accu-
rate information about the physical and radiative properties
of clouds is necessary to determine the role of clouds in
the climate system including their response to anthropogenic
forcings (e.g.,Forster et al., 2007).

Geostationary satellite imagers such as Meteosat SEVIRI
(Spinning Enhanced Visible and Infrared Imager) are well-
suited to monitor the temporal development of clouds, and
to resolve their diurnal cycle fully over land and ocean
(Roebeling and van Meijgaard, 2009). The spatial resolution
of SEVIRI’s narrowband channels (3× 3 km2) lags behind
that of polar orbiting imagers such as MODIS (1× 1 down
to 0.25× 0.25 km2) and AVHRR (1.1× 1.1 km2), which lim-
its its ability to resolve small-scale structures. SEVIRI does
however have a high-resolution visible (HRV) channel with
a nadir resolution of 1× 1 km2.

The HRV channel contains important information for
studying the small scale variability of clouds and the underly-
ing surface (e.g.,Klüser et al., 2008; Deneke and Roebeling,
2010). The study ofDerrien et al.(2010a) improves the
detection of small-scale low clouds by use of the HRV
channel. The HRV channel reflectance was also used by
Carbajal Henken et al.(2011) for the detection of deep con-
vective clouds. Nevertheless, few operational products based
on the HRV channel are available, which is a significant hur-
dle for use of its finer spatial resolution for scientific studies
and applications.

The estimation of cloud and/or surface properties from
multispectral satellite images requires the classification of
pixels into cloud-free and cloudy classes as an initial step.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Most cloud detection algorithms described in the literature
rely on a combination of threshold tests applied to differ-
ent spectral channels for this purpose.Rossow et al.(1989)
present an overview of early methods chosen for cloud mask-
ing. These methods often exploit the fact that clouds gener-
ally appear brighter in solar channels due to reflection, and
colder in infrared channels relative to cloud-free surfaces.
In addition, spatial coherence tests are commonly used, as
clouds are often more variable than the underlying surface
(e.g., seeSaunders and Kriebel, 1988). It should be noted that
spatial coherence tests also rely on thresholds for identifying
regions with high variability.

Cloud masking is one particular case of object identifica-
tion by thresholding, and can be described mathematically
by considering the grey-level histograms based on specific
channel radiances. Thresholds are selected to separate the
histograms for the cloud-free and cloudy pixels of a satel-
lite image best. Suitable thresholds for satellite channels are
often selected by experts (e.g.,Saunders and Kriebel, 1988).
As an alternative, automatic statistical methods can be ap-
plied to select optimal thresholds. Here, methods that make
use of a training data set for threshold selection (supervised
methods) need to be differentiated from those that select
thresholds based on intrinsic properties of the data set (un-
supervised methods).Yang et al.(2007) have investigated
several algorithms for unsupervised threshold selection, and
have determined the most accurate ones for application to
cloud masking for the multi-angle imaging spectroradiome-
ter (MISR) over land. Regardless of the method, indepen-
dent reference data are needed to establish the accuracy of
threshold-based classification methods.

The goal of the present paper is to develop a cloud mask
based on the HRV channel, which exploits its high spatial
resolution, and is suitable to study small-scale features of
clouds, including, for example, their horizontal dimensions.
This does preclude the use of spatial coherence tests due to
their non-local nature. Instead, a differencing approach using
clear-sky composite reflectances as a background is adopted
to improve the contrast between clear-sky and cloudy situa-
tions (e.g.,Minnis and Harrison, 1984; Ipe et al., 2003). Nev-
ertheless, a threshold test applied to a single visible channel
cannot achieve the accuracy of other SEVIRI cloud masks
that are based on multiple spectral channels. Instead of repli-
cating other cloud mask algorithms, this HRV mask is de-
signed as a complement to an existing cloud mask used as a
reference for threshold selection and to estimate the mask’s
accuracy. The operational cloud mask product (CLM) by
EUMETSAT’s Meteorological Product Extraction Facility,
which is based on the narrowband channels of SEVIRI (EU-
METSAT, 2007), is a convenient choice for this purpose as it
is distributed through the EUMETCast system together with
the level 1.5 SEVIRI images, and it is used in our study.

This paper is structured as follows: in Sect. 2, a brief
overview of the data sets used in our study, including the
characteristics of the SEVIRI instrument, is given. This is

followed by Sect. 3, which describes our proposed cloud
masking method. Section 4 presents results and discussions,
followed by conclusions and an outlook in Sect. 5.

2 Data

2.1 Instrumental data

The current series of European geostationary satellites, Me-
teosat Second Generation (MSG), is operated by EUMET-
SAT. Its main payload is the the Spinning Enhanced Visible
and Infrared Imager (SEVIRI), an optical imaging radiome-
ter. Three MSG satellites, Meteosat-8 to Meteosat-10, were
launched and are positioned in geostationary orbit at an al-
titude of 36 000 km above the Equator. Meteosat-9 observes
the full disk of the earth as a primary geostationary service
with a repeat cycle of 15 min. Meteosat-8 is currently used as
a standby and operates the rapid-scan service covering Eu-
rope with a 5 min repeat cycle. Meteosat-10 was launched on
5 July 2012, and is currently in commissioning. A detailed
description of MSG is given bySchmetz et al.(2002).

The SEVIRI instrument has 3 solar channels (0.6, 0.8 and
1.6 µm), 8 thermal infrared channels (3.9, 6.2, 7.3, 8.7, 9.7,
10.8, 12.0 and 13.4 µm) and one high-resolution visible chan-
nel (HRV) (0.4–1.1 µm). The nadir spatial resolution for SE-
VIRI’s HRV channel is 1× 1 km2 and 3× 3 km2 for the other
11 channels. However, the true optical resolution is lower
by a factor of about 1.6 for both high resolution and low-
resolution (LRES) channels (Schmetz et al., 2002).

Only the 0.6, 0.8, 1.6, 8.7 µm and HRV channels are con-
sidered in this study. The normalized spectral response func-
tions of the narrowband solar and the broadband HRV chan-
nels are shown in Fig.1.

The narrowband channels cover the full disk of the earth
with 3712× 3712 pixels. At a 3-fold higher resolution, this
results in a nominal image size of 11 136× 11 136 pixels for
the HRV channel. However, the actual HRV channel cover-
age is only 5568 pixels in east–west direction. An upper re-
gion of 3072 scanlines with a fixed position is centered on
Europe. The lower region consisting of 8064 scan lines fol-
lows the daily illumination. Only the upper region is consid-
ered in this study.

2.2 EUMETSAT cloud mask

The EUMETSAT cloud mask (CLM) is derived by the Me-
teorological Product Extraction Facility (MPEF) and uti-
lizes a combination of several multi-spectral threshold tests
grouped into different categories to distinguish between
cloudy and cloud-free pixels (seeEUMETSAT, 2007, for
a detailed description of the algorithm). The CLM is an op-
erational SEVIRI product and is derived every 15 min for
the full disk. In the final product, each pixel is labeled either
as 0 (clear-sky ocean), 1 (clear-sky land), 2 (cloudy) or 3 (no
data). The EUMETSAT threshold tests involve almost every

Atmos. Meas. Tech., 6, 2713–2723, 2013 www.atmos-meas-tech.net/6/2713/2013/
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Table 1. Contingency table with binary classification cloudy and clear.

EUMETSAT EUMETSAT

CLM cloudy CLM clear

predicted HRV cloudy true positiv false positiv

predicted HRV clear false negativ true negativ

Table 2. Results of the HRV cloud mask algorithm averaged over three 16-day periods starting 1 June 2011,

1 July 2011 and 1 August 2011. The four regions considered are listed in column 1. Cc is the average cloud

cover, and rcs is the spatial averaged temporal median HRV clear sky reflectance including its standard deviation

std(rcs). Columns 4 and 5 report the cloud detection thresholds above which a pixel is classified as cloudy. tabs

lists the absolute threshold without use of the HRV clear sky reflectance composite, while trel is the threshold

relative to the composite. The percentage deviations between the HRV and the EUMETSAT cloud mask are

given in columns 6–8. Here, Devabs and Devrel are the deviations found using tabs and trel, respectively.

Column 8 lists the final deviation Devfi after applying the HRV clear sky composite and thin cloud restoral.

Regions Cc [%] rcs±std(rcs) [–] tabs [–] trel [–] Devabs Devrel Devfi

Atlantic 85 0.068±0.007 +0.042 +0.029 7.1 6.1 2.9

The Alps 75 0.187±0.022 +0.080 +0.051 13.6 10.1 8.4

Up. R. Val. 79 0.191±0.017 +0.067 +0.048 10.7 8.8 6.5

Spain 40 0.193±0.03 +0.085 +0.044 12.4 10.3 5.3

Fig. 1. Normalized spectral response functions of the Meteosat-9 SEVIRI radiometer for the 0.6 µm (red),

0.8 µm (green) and HRV (black) channels. The central wavelength of each channel is marked by a thick colored

line, and the spectral region covered by the channel width has been shaded. The solar spectrum is added as

dotted line.
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Fig. 1. Normalized spectral response functions of the Meteosat-9
SEVIRI radiometer for the 0.6 µm (red), 0.8 µm (green) and HRV
(black) channels. The central wavelength of each channel is marked
by a thick colored line, and the spectral region covered by the chan-
nel width has been shaded. The solar spectrum is added as a dotted
line.

SEVIRI channel with the exception of channel 8 (9.7 µm), as
it is mainly sensitive to tropospheric and stratospheric ozone
and thus adds little additional information for cloud masking,
and channel 12 (HRV), as it is not available for the full disk.

2.3 Study regions

To evaluate the threshold-based cloud mask algorithm and
study its performance for different surface types and synop-
tic conditions, we have selected the following four regions
in and around Europe: (1) Atlantic, (2) the Alps, (3) Upper
Rhine Valley and (4) Spain (see Fig.2). The four regions
comprise 192× 192 HRV pixels (or 64× 64 LRES pixels)
to provide enough data points to calculate representative his-
togram functions. This size has been chosen as a reasonable
trade-off versus the advantage offered by a smaller size and
thus a smaller surface variability. To illustrate the improve-
ments gained by applying thresholds relative to a clear-sky
composite, we have focused on regions with a relatively high
spatial surface variability such as the Alps and the Upper
Rhine Valley. Due to our future plans to investigate the di-
urnal cycle of shallow cumulus convection we use the Rapid
Scan Service (RSS) of Meteosat over the European region.
The presented algorithm is limited in terms of the surface
albedo, which is discussed in Sect.3 (Fig. 4).

3 Methods and algorithms

For applying a binary classification to separate cloudy and
clear-sky pixels, we rely on the following simplified assump-
tion. In general clouds have a higher HRV reflectance com-
pared to the clear-sky surface and thus appear brighter. Coun-
terexamples include snow-covered surfaces, enhanced clear-
sky reflectances due to aerosols, and cloud shadows, but they
are neglected here. A perfect classification would allow an
exact separation between clear-sky and cloudy reflectances
based on a single reflectance threshold.

Fig. 2. Day natural color (RGB) clear sky composite of Lensky and Rosenfeld (2008) based on clear sky re-

flectances of the 0.6, 0.8 and 1.6 µm channel. Median values of clear sky reflectance over a period of 16 days

(1–16 June, 2011) and cloud-cleared with the EUMETSAT cloud mask are shown (at standard SEVIRI resolu-

tion). The following four regions used in our study are marked by boxes: (1) Atlantic, (2) the Alps, (3) Upper

Rhine Valley and (4) Spain.
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Fig. 2.Day natural color (RGB) clear-sky composite ofLensky and
Rosenfeld(2008) based on clear-sky reflectances of the 0.6, 0.8 and
1.6 µm channel. Median values of clear-sky reflectance over a pe-
riod of 16 days (1–16 June 2011) and cloud-cleared with the EU-
METSAT cloud mask are shown (at standard SEVIRI resolution).
The following four regions used in our study are marked by boxes:
(1) Atlantic, (2) the Alps, (3) Upper Rhine Valley and (4) Spain.

The first step in this study is the separation of clear-sky and
cloudy HRV pixels based on the EUMETSAT cloud mask.
The latter includes multiple solar and thermal threshold tests.
As it is not based on a fixed reflectance threshold, clear-sky
pixels can have a higher HRV reflectance than cloudy pixels.
Consequently, there is an overlap between the histograms of
the clear-sky and the cloudy reflectances (Fig.3). The nor-
malized frequency distribution of clear-sky and cloudy HRV
reflectances are shown for the regions Spain (yellow), Up-
per Rhine Valley (green), the Alps (red) and Atlantic (blue).
The clear-sky histograms have been calculated as a median
value over a 16-day period (1–16 June 2011). Figure 3 shows
the lowest clear-sky reflectance and lowest variability over
the Atlantic region. The clear-sky reflectance histogram over
Spain reveals a high value and simultaneously a high spatial
variability. Readers should note the overlap between the clear
and cloudy histograms.

Several reasons can cause the broadness of the clear-sky
histogram and thus the overlap in the HRV reflectance his-
tograms (Fig.3). This includes spatial and temporal variabil-
ity of the surface reflectance (e.g., due to changes in veg-
etation, atmospheric aerosols). Additionally undetected thin
cirrus clouds with low visible reflectance can contaminate the
HRV clear-sky histogram. This overlap is the major source of
uncertainty for our cloud mask. The challenge is thus to re-
duce this overlap, and to find an optimal threshold to obtain
the best classification.

One of the major problems that causes the overlap is the
broadness of the cloudy histogram due to different cloud
types with different COTs. This broadness is strongly related
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Fig. 3. Normalized frequency distribution of cloudy and clear sky HRV reflectances over Spain (yellow), Upper

Rhine Valley (green), the Alps (red) and Atlantic (blue) observed by MSG SEVIRI. Separation between cloudy

(dotted line) and clear sky (solid line) reflectances is based on EUMETSAT cloud mask. EUMETSAT cloud

mask is upsampled to HRV resolution.
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Fig. 3. Normalized frequency distribution of cloudy and clear-sky
HRV reflectances over Spain (yellow), Upper Rhine Valley (green),
the Alps (red) and Atlantic (blue) observed by MSG SEVIRI. Sep-
aration between cloudy (dotted line) and clear-sky (solid line) re-
flectances is based on EUMETSAT cloud mask. EUMETSAT cloud
mask is upsampled to HRV resolution.

to the definition of the cloud the user wants to capture with
his/her cloud mask. In our study it is related to the mini-
mum COT that can be detected reliably by the HRV cloud
mask depending on the underlying surface albedo. In order
to quantify the accuracy of the cloud detection algorithm and
the implication of the underlying surface, we calculate the
minimum COT using a simple, qualitative model (Eq.1 by
Lacis and Hansen, 1974). The change in the planetary albedo
due to the occurrence of clouds is based on an expression by
Liou (1980) to take into account multiple scattering between
the cloud and the underlying surface. Furthermore, no ab-
sorption within the cloud is considered in this formula:

AP = AC + RS ·
(1 − AC)2

1 − RS · AC
. (1)

TherebyAP is the change in the planetary albedo,AC the
cloud albedo andRS the albedo of the underlying surface.
The cloud albedo can be approximated by

AC =
τc

τc + 7.7
, (2)

whereτc is the cloud optical thickness (Lacis and Hansen,
1974). The statement of Eq. (1) is illustrated by Fig.4 for
four different COTs. The curves show the change in plane-
tary albedo due to the occurrence of clouds with a particular
COT from 0.2 to 2 over a surface with different clear-sky re-
flectances between 0 and 0.55.δ (planetary albedo− surface
albedo) indicates the accuracy of the threshold that is neces-
sary to detect a cloud over a specific ground. The thin blue
area (COT = 0.2–0.5) illustrates that a high accuracy of the
threshold is necessary to detect those optical thin clouds. A
smallerδ (planetary albedo− surface albedo) is related to a

Fig. 4. Change in planetary albedo due to the occurrence of clouds with a COT of 0.2 (blue), 0.5 (green), 1

(red) and 2 (cyan) as function of the clear sky reflectance of the underlying surface. The δ(y-axis) demonstrates

the accuracy that is necessary to detect a cloud over a surface with a specific clear sky reflectance. This simple

model is based on formula 1 by Lacis and Hansen (1974).
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Fig. 4. Change in planetary albedo due to the occurrence of clouds
with a COT of 0.2 (blue), 0.5 (green), 1 (red) and 2 (cyan) as a
function of the clear-sky reflectance of the underlying surface. The
δ (y axis) demonstrates the accuracy that is necessary to detect a
cloud over a surface with a specific clear-sky reflectance. This sim-
ple model is based on Eq. (1) by Lacis and Hansen(1974).

higher accuracy. This accuracy has to be even higher with
an increasing clear-sky reflectance of the underlying surface
(Fig. 4). For a higher COT theδ (planetary albedo− surface
albedo) is obviously higher, although substantially decreas-
ing with a decreasing clear-sky reflectance.

Applying Eq. (2) to the average clear-sky reflectances (Ta-
ble 2) for our four regions results in a minimum ascertain-
able COT of 0.88, 2.62, 2.62 and 2.95 over the Atlantic, the
Alps, the Upper Rhine Valley and Spain during the summer
period. This result demonstrates a negligence of thin cirrus
clouds over land solely with the solar channel information.
In summary, it can be stated that for a clear-sky reflectance
higher than 0.25 it is very difficult to detect clouds above
such bright surfaces. Over surfaces with about 0.35 clear-sky
reflectances or even higher, no accurate cloud mask can be
derived (Fig.4). Equation (2), Fig. 4 and Table2 indicate
that no cloud with a COT above 1 can be detected reliably by
the HRV cloud mask over the regions that are investigated in
this study.

3.1 Cloud-free composites

To reduce the uncertainties caused by spatially varying sur-
face reflectance, we apply the thresholds for cloud detection
relative to a composite map of clear-sky HRV reflectance.
These maps are derived initially based on the EUMETSAT
cloud mask. Due to the lower SEVIRI standard resolution,
it is necessary to upsample the EUMETSAT cloud mask
to the 3 times higher resolution of the HRV channel. This
is done using nearest-neighbor interpolation. The clear-sky
composite is based on the median valuer̃cs of all clear-sky
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Table 1. Contingency table with binary classification cloudy and
clear.

EUMETSAT EUMETSAT
CLM cloudy CLM clear

Predicted HRV cloudy true positive false positive
Predicted HRV clear false negative true negative

reflectances observed during a 16-day period. The median is
chosen as an alternative to the average value to neglect sub-
pixel small-scale clouds, which are labeled as clear by the
MPEF cloud mask. The average value would include biases
such as small-scale undetected clouds or cloud shading. The
length of this period seems appropriate to ensure relatively
constant surface conditions and a high likelihood of finding
at least one cloud-free observation for each pixel. Neverthe-
less, pixels can occur with no clear-sky observation due to
persistent clouds. Such HRV pixels are always reported as
cloudy.

Instead of subtracting the clear-sky composite from the
observed reflectance, an anomaly map is created for each
192× 192 pixel region using Eq. (3):

rnorm(x, t) = robs(x, t) −
(
〈r̃cs(x)〉t − 〈r̃cs〉t,x

)
. (3)

Here,robs(x, t) is the observed HRV reflectance field at time
t during a specific period. The subtrahend〈r̃cs(x)〉t − 〈r̃cs〉t,x
consists of two parts. The first term〈r̃cs(x)〉t is the spatially
resolved temporal median of the clear-sky reflectance, while
the second term〈r̃cs〉t,x is the spatial and temporal median of
the clear-sky reflectance.

Figure 5 demonstrates the effects of reducing the spa-
tial variability by applying the clear-sky composite anomaly
map. The solid line shows the histogram of the clear-sky
HRV reflectance over Spain observed by MSG SEVIRI on
15 July 2011 and derived by applying the EUMETSAT cloud
mask. The dotted line represents the normalized clear-sky
histogram.

The effect of this treatment is illustrated by the green ar-
rows in Fig.5. The distribution indeed becomes more nar-
row, which indicates that our method is capable of compen-
sating for the spatial variability of the underlying surface re-
flectance. This method therefore minimizes the overlap be-
tween the cloudy and clear histograms and reduces the asso-
ciated uncertainty of the HRV cloud mask.

3.2 Optimal threshold

The threshold for detecting cloudy pixels should maximize
the quality of our classification. It is thus necessary to com-
pare it to reference data, and to define suitable quality cri-
teria for assessing its accuracy. The four possible outcomes
for comparing two binary classifications are listed in the con-
tingency Table1. In this study the EUMETSAT cloud mask
is used as a reference, and the predicted class of the HRV

Fig. 5. Normalized frequency distribution of clear sky HRV reflectances over Spain observed by MSG SEVIRI

on 15 July 2011. The solid line is the distribution of clear sky reflectances identified by the EUMETSAT cloud

mask. The dotted line is the histogram of the normalized clear sky reflectance after subtraction of the clear sky

composite anomaly map. The green arrows symbolize the reduction of spatial variability.
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Fig. 5. Normalized frequency distribution of clear-sky HRV re-
flectances over Spain observed by MSG SEVIRI on 15 July 2011.
The solid line is the distribution of clear-sky reflectances identified
by the EUMETSAT cloud mask. The dotted line is the histogram of
the normalized clear-sky reflectance after subtraction of the clear-
sky composite anomaly map. The green arrows symbolize the re-
duction of spatial variability.

cloud mask depends on the selected reflectance threshold.
Due to the use of prior information, this method corresponds
to a supervised classification algorithm. For determining the
optimal threshold, a suitable measure is sought that combines
the frequencies of the four outcomes into one scalar quantity.

One measure that meets our requirements is the Matthews
correlation coefficient (MCC,Matthews, 1975). Like the
Pearson correlation coefficient for the continuous case, it
quantifies the correlation between two binary variables in
a range from−1 to 1, with 1 corresponding to perfect
agreement.

The MCC is defined as follows:

MCC =
tp · tn − fp · fn√

(tp + fp) · (tp + fn) · (tn + fp) · (tn + fn)
. (4)

It can be calculated directly from the contingency table from
Eq. (4). One advantage of the MCC is its insensitivity to the
frequency of both classes. This ensures that our cloud mask
performs well in regions and seasons with low, medium and
high frequency of clouds. The threshold that corresponds to
the maximum of the MCC is chosen as optimal.

The flow chart in Fig.6 visualizes the HRV cloud mask
algorithm. The first step is the calculation of the clear-sky
composite. This clear-sky composite consists of HRV re-
flectances, but the assignment between clear-sky and cloudy
pixels is based on the MPEF cloud mask (see Sect.3.1 for
details). In the next iteration we consider the sub-pixel cloud
coverage in the MPEF cloud mask to get a clear-sky com-
posite that is based on detected clear-sky HRV pixels. The
normalized HRV reflectance field improves with a higher ac-
curacy of the clear-sky composite (Fig.6, middle plot on
the right panel). The variability of the cloudy histogram is
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Fig. 6. Flow chart of our HRV cloud mask algorithm, based on the HRV reflectance and the EUMETSAT cloud

mask as inputs. The clear sky composite is initally calculated based on the HRV reflectance and the EUMETSAT

cloud mask for 16 day periods. The panel showing the histograms represents the threshold selection step based

on maximizing the MCC. As final step, the thin cloud restoral to consider thin clouds is carried out. An iterative

approach including the HRV cloud mask is chosen for the calculation of the clear sky composite for consistency.
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Fig. 6. Flow chart of our HRV cloud mask algorithm, based on
the HRV reflectance and the EUMETSAT cloud mask as inputs.
The clear-sky composite is initially calculated based on the HRV
reflectance and the EUMETSAT cloud mask for 16-day periods.
The panel showing the histograms represents the threshold selec-
tion step based on maximizing the MCC. As a final step, the thin
cloud restoral to consider thin clouds is carried out. An iterative ap-
proach including the HRV cloud mask is chosen for the calculation
of the clear-sky composite for consistency.

decreased as well, because thin cirrus clouds below the de-
fined minimum COT are no longer considered by the HRV
cloud mask (Fig.6).

The calculation of the quality criteria is based on the
MPEF cloud mask and the normalized HRV reflectance field.
The corresponding reflectance of the maximum of the MCC
is defined as the relative thresholdtrel; trel of each iteration
is then applied to the reflectance field and results in a higher
accuracy of the HRV cloud detection algorithm. The MPEF
cloud mask is the constant reference mask for this calcula-
tion. The resulting HRV cloud mask of this algorithm is used
as new input for the whole procedure. The iteration algorithm
will stop if the deviation of the relative threshold between
two iterations is below 0.001.

A final processing step is introduced to consider thin
clouds with athin cloud restoral. The detection of thin cir-
rus clouds solely based on the broadband information from
the HRV channel is difficult. As it is our aim to determine
a HRV cloud mask that is complementary to and consistent

with the MPEF cloud mask, we redefine 3× 3 clear-sky HRV
pixel blocks as cloudy if the appropriate pixel of the MPEF
cloud mask detects clouds. These redefined HRV pixels are
flagged in a different way than cloudy pixels that are intro-
duced as cloudy from the HRV cloud detection algorithm
(Fig. 6). This is mainly done due to the fact that this gives
the user of the cloud mask the choice of what cloud type will
be investigated depending on the application (e.g., clear-sky
composites). The thin cloud restoral has no impact on small-
scale clouds, which are undetected by the MPEF cloud mask.
Our future plan is to use the cloud type description of the
Support to Nowcasting and Very Short Range Forecasting
(NWCSAF) for the investigation of thin cirrus clouds (see
Sect.5 for details).

4 Results and discussion

In order to assess the quality of the HRV cloud mask, some
aspects related to its accuracy are investigated and discussed
in this section. The EUMETSAT cloud mask is used as a ref-
erence to support the consistency of both cloud masks, and
due to the lack of other suitable reference data. For this anal-
ysis, the four regions shown in Fig.2 are used as typical ex-
amples for different surface types.

To compare our results with the EUMETSAT cloud mask,
the latter mask has been upscaled to HRV resolution.

First, the cloud detection frequency for pixels in the
EUMETSAT cloud mask has been determined as a func-
tion of the number of cloudy pixels identified by the HRV
cloud mask algorithm in the corresponding 3× 3 HRV pixel
blocks. Results have been aggregated for each region over the
time period from 1 July until 16 August 2011. The result of
this comparison is plotted in Fig.7. For completely cloudy
HRV pixel blocks, we find 100 % agreement with the cor-
responding EUMETSAT cloud mask classification. In con-
trast, 10 % of all completely clear HRV pixel blocks are ac-
tually identified as cloudy by the EUMETSAT cloud mask.
Closer inspection of several corresponding scenes revealed
that this deviation is mainly caused by optically thin cirrus
clouds, which are not detected by the HRV channel due to
their low reflectance. These cases are addressed by the thin
cloud restoral and motivated its inclusion in the algorithm.
Although the thin cloud restoral works well in general, some
artifacts can occur under specific circumstances as described
below.

One particular case over the Upper Rhine Valley has been
chosen to illustrate the complementary information of the
MPEF and the HRV cloud mask (Fig.8). This case exam-
ple demonstrates very well how both cloud masks gain dif-
ferent information about the cloud types. Misclassified cloud
pixels by the HRV cloud mask against detected cloud pix-
els by the MPEF cloud mask can be explained by optical thin
clouds with a COT underneath a critical threshold (Fig.8, red
pixels). Areas that are contaminated with small-scale shallow
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Table 2.Results of the HRV cloud mask algorithm averaged over three 16-day periods starting 1 June, 1 July and 1 August 2011. The four
regions considered are listed in column 1.Cc is the average cloud cover, andrcs is the spatially averaged temporal median HRV clear-sky
reflectance including its standard deviation std(rcs). Columns 4 and 5 report the cloud detection thresholds above which a pixel is classified
as cloudy.tabs lists the absolute threshold without use of the HRV clear-sky reflectance composite, whiletrel is the threshold relative to the
composite. The percentage deviations between the HRV and the EUMETSAT cloud mask are given in columns 6–8. Here, Devabsand Devrel
are the deviations found usingtabsandtrel, respectively. Column 8 lists the final deviation Devfi after applying the HRV clear-sky composite
and thin cloud restoral.

Regions Cc [%] rcs± std (rcs) [−] tabs[−] trel [−] Devabs Devrel Devfi

Atlantic 85 0.068± 0.007 +0.042 +0.029 7.1 6.1 2.9
The Alps 75 0.187± 0.022 +0.080 +0.051 13.6 10.1 8.4
Upper Rhine Val. 79 0.191± 0.017 +0.067 +0.048 10.7 8.8 6.5
Spain 40 0.193± 0.03 +0.085 +0.044 12.4 10.3 5.3

convection with an optical thickness above our threshold can-
not be detected by the MPEF cloud mask (Fig.8, blue pixels).

The HRV reflectance misses a high amount of cloudy pix-
els corresponding to thin cirrus clouds. This example demon-
strates that the capabilities of the HRV channel for detecting
thin cirrus clouds are limited. When considering the bright-
ness temperature difference BT 10.8 µm–BT 3.9 µm, the thin
cirrus clouds can clearly be recognized in the northwestern
corner of the region. Usually the brightness temperature dif-
ference BT 10.8 µm–BT 12.0 µm is applied over all surfaces
to detect thin cirrus clouds (Derrien et al., 2010b). To give
a better feeling of our statement about Fig.8c, we use the
brightness temperature difference BT 10.8 µm–BT 3.9 µm
for that, because it shows a better occurrence of thin cirrus
clouds in the northwestern corner in our case example (Frey
et al., 2008).

The thin cloud restoral redefines a 3× 3 pixel block only
as cloudy if the entire block is detected as clear by the thresh-
old algorithm. This approach is problematic for situations
where small-scale low-level clouds occur underneath a larger
cirrus cloud. This effect is visible in Fig.8. The EUMET-
SAT cloud mask and the brightness temperature difference
BT 10.8 µm–BT 3.9 µm indicate a larger cloud coverage due
to cirrus. Some brighter pixels appear in the northern HRV
image section, which are likely caused by small convective
clouds. In the vicinity of these clouds, unrealistic gaps in
cloud coverage occur.

The most valuable benefit of the HRV cloud mask is the
high proportion of small-scale cumulus clouds that are likely
missed by the MPEF cloud mask. This effect is indicated
by the blue areas in Fig.8d. Concerning the frequency of
cloudy HRV pixels that are assigned as clear by the MPEF
cloud mask, we found an amount of 10 % over the Upper
Rhine Valley. This frequency demonstrates the number of
small-scale cumulus clouds missed by the MPEF cloud mask
(false positive) divided by the number of all clouds (true pos-
itive + false positive).

The HRV channel is not used by the EUMETSAT cloud
detection algorithm. To demonstrate that its broad spectral
response is still suitable for an accurate threshold-based

Fig. 7. Cloud detection frequency of the EUMETSAT cloud mask versus the number of cloudy HRV pixels

detected by the HRV cloud mask for a corresponding 3× 3 HRV pixel block. The solid colored lines mark the

average obtained for all HRV pixel blocks for the four regions between 1 June 2011 and 16 August 2011. The

average over all regions is indicated by the dotted line.
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Fig. 7. Cloud detection frequency of the EUMETSAT cloud mask
versus the number of cloudy HRV pixels detected by the HRV cloud
mask for a corresponding 3× 3 HRV pixel block. The solid colored
lines mark the average obtained for all HRV pixel blocks for the four
regions between 1 June 2011 and 16 August 2011. The average over
all regions is indicated by the dotted line.

cloud detection, we have compared the results of our algo-
rithm applied to the HRV channel to those obtained with the
narrowband channels at 0.6 and 0.8 µm wavelength and at
LRES spatial resolution (Fig.9). For this purpose, the HRV
channel is simulated as a linear combination of the 0.6 and
0.8 µm reflectances as proposed byCros et al.(2006) and
using the regression coefficients reported byDeneke and
Roebeling(2010). The accuracy of the cloud mask applied
to the simulated HRV channel lies between those achieved
with the 0.6 and 0.8 µm channels. Over ocean, differences are
small, and the best accuracy is found for the 0.8 µm channel,
as it is slightly darker than the other channels. Over land, best
results are obtained with the 0.6 µm channel, but the accu-
racy of the simulated HRV signal is only slightly lower. Over
vegetated surfaces, the 0.8 µm exhibits a significantly lower
skill, while the relatively bright surface over Spain causes an
overall degradation of detection accuracy.

Table2 summarizes the results of our threshold algorithm
and lists the final deviations versus the EUMETSAT cloud
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Fig. 8. (a) SEVIRI HRV reflectance over the Upper Rhine Valley on 5 July 2011, 12:00 UTC and (b)

HRV cloud mask (white = cloudy, black = clear sky). (c) Corresponding brightness temperature difference BT

10.8 µm - BT 3.9 µm while (d) difference between MPEF and HRV cloud mask (white = cloudy, black = clear

sky, red = HRV clear sky versus MPEF cloudy and blue = HRV cloudy versus MPEF clear sky).
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Fig. 8. (a)SEVIRI HRV reflectance over the Upper Rhine Valley on 5 July 2011, 12:00 UTC and(b) HRV cloud mask (white: cloudy, black:
clear-sky).(c) Corresponding brightness temperature difference BT 10.8 µm− BT 3.9 µm and(d) difference between MPEF and HRV cloud
mask (white: cloudy, black: clear-sky, red: HRV clear-sky versus MPEF cloudy and blue: HRV cloudy versus MPEF clear-sky).

Fig. 9. Average deviation of the EUMETSAT cloud mask and our threshold-based cloud mask algorithm at low

resolution and applied to the 0.6 µm, 0.8 µm channels and a linear combination of both channels to simulate the

HRV signal (see text for details). Results have been calculated for three periods of 16 days starting on 1 June

2011, 1 July 2011 and 1 August 2011.

Fig. 10. Comparison of the cloud coverage of the EUMETSAT and HRV cloud masks after thin cloud restoral.

The blue dots show the cloud coverage, and the errorbars illustrate the fraction of deviating HRV pixel clas-

sifications, obtained for each timeslot and given in percent. Results have been obtained for three periods of

16 days (starting 1 June 2011, 1 July 2011 and 1 August 2011).
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Fig. 9. Average deviation of the EUMETSAT cloud mask and our
threshold-based cloud mask algorithm at low resolution and applied
to the 0.6 and 0.8 µm channels and a linear combination of both
channels to simulate the HRV signal (see text for details). Results
have been calculated for three periods of 16 days starting on 1 June,
1 July and 1 August 2011.

mask. Based on the EUMETSAT cloud mask, all regions but
Spain have a high average cloud cover ranging from 75 to
85 %. The Atlantic (1) is a region with frequent passages of
frontal systems. The Alps (2) and Upper Rhine Valley (3)
are characterized by orographically induced convection. One
should recognize that the 12:00 UTC time slot is used for this
study, which implies a high level of solar irradiance and thus
a well-mixed convective boundary layer (Driedonks, 1982).
In contrast, the cloud coverage over northern Spain is rela-
tively low. The large observed differences in average cloud
cover for the four regions illustrate the importance of choos-
ing a threshold selection scheme that is insensitive to the rel-
ative occurrence frequencies of both classes (see Sect.3.2).

The high standard deviation of the clear-sky reflectance
over the Alps and Spain underlines the high spatial variabil-
ity of the surface over these regions. This finding correlates
with a strong reduction of the thresholdstabs and trel. Here,
tabs is the absolute threshold determined without using the
clear-sky composite information, whiletrel is the threshold
relative to the clear-sky composite. Both the lower thresh-
old trel compared totabs, and the resulting lower deviation
(Devrel) compared to Devabs confirm that our choice of us-
ing a clear-sky composite improves the separability of clear
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Fig. 9. Average deviation of the EUMETSAT cloud mask and our threshold-based cloud mask algorithm at low

resolution and applied to the 0.6 µm, 0.8 µm channels and a linear combination of both channels to simulate the

HRV signal (see text for details). Results have been calculated for three periods of 16 days starting on 1 June

2011, 1 July 2011 and 1 August 2011.

Fig. 10. Comparison of the cloud coverage of the EUMETSAT and HRV cloud masks after thin cloud restoral.

The blue dots show the cloud coverage, and the errorbars illustrate the fraction of deviating HRV pixel clas-

sifications, obtained for each timeslot and given in percent. Results have been obtained for three periods of

16 days (starting 1 June 2011, 1 July 2011 and 1 August 2011).
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Fig. 10.Comparison of the cloud coverage of the EUMETSAT and HRV cloud masks after thin cloud restoral. The blue dots show the cloud
coverage, and the error bars illustrate the fraction of deviating HRV pixel classifications, obtained for each time slot and given in percent.
Results have been obtained for three periods of 16 days (starting 1 June, 1 July and 1 August 2011).

and cloudy radiances, and thus results in an overall improved
classification accuracy.

Even though the clear-sky variability over the Atlantic re-
gion is very low with a standard deviation of only 0.007,
there is still a significant spread of 0.013 betweentabs and
trel. This effect is caused by the initial clear-sky composite,
which includes some brighter pixels corresponding to small
clouds missed by the EUMETSAT cloud mask. By applying
our iteration scheme, these bright pixels are filtered out, as
is reflected by a reduced standard deviation of the clear-sky
reflectance.

Devfi is the final deviation after applying the thin cloud
restoral. The difference between Devfi and Devrel is lowest
over the Alps (1.7 %) and the Upper Rhine Valley (2.3 %).
This is probably due to the high amount of clouds in general,
and convective clouds in particular over these regions, which
limit the applicability of the thin cloud restoral. On the other
hand, a strong impact of the thin cloud restoral on the devi-
ation of the final HRV cloud mask is found for the Atlantic
and Spain. Sample scenes such as Fig.8 indicate a relatively
high amount of thin clouds over these regions.

To identify the overall effect of including the HRV channel
for cloud masking, Fig.10compares the cloud coverages ob-
tained from the EUMETSAT and HRV cloud masks for the
three land regions. In the majority of cases, the average HRV
cloud coverage lies below the cloud coverage of the EUMET-
SAT cloud mask. This systematic difference is composed of
two effects: first, thin cirrus clouds that are missed by the
HRV cloud mask but at least partly corrected for by the thin
cloud restoral; second, SEVIRI LRES pixels that are counted
as completely cloud-filled by the EUMETSAT cloud mask,
but are identified as broken by the HRV cloud mask. While
it is impossible to separate both effects without independent
reference data, the latter seems to dominate.

The blue error bars indicate the fraction of deviating classi-
fications between both cloud masks found for each time slot.

Generally, the fraction rises with increasing cloud amount,
until it reaches a value of about 80 % where it starts to fall
again. Thus, partly cloudy conditions cause the highest de-
viations. This result is expected, because the HRV cloud
mask can gain additional information about partly cloud-
filled pixels and cloud edges compared due to its higher spa-
tial resolution.

5 Summary and conclusions

In this study we have presented and evaluated a threshold-
based HRV cloud mask that is based on the EUMETSAT
cloud mask and extends it to a 3-fold higher spatial resolu-
tion while maintaining consistency with its results. The opti-
mal threshold to differentiate between clear-sky and cloudy
radiances is chosen by maximizing the Matthews correlation
coefficient (MCC), a quality measure for binary classifica-
tions that is not influenced by the ratio of cloudy to clear
pixels, to ensure the best agreement of our cloud mask with
the EUMETSAT cloud mask. Clear-sky anomaly maps are
used to account for regions with high variability in surface
reflectance. As a result, the overlap in the clear and cloudy
histograms, and thus the uncertainty in the classification, is
significantly reduced. An iterative approach is chosen to in-
clude the HRV cloud mask information in the calculation
of the clear-sky anomaly maps, with convergence generally
achieved after two iterations.

A thin cloud restoral is done to account, for example, for
thin cirrus clouds that are not detected by the high-resolution
visible channel, in order to ensure that the HRV cloud mask
results are consistent with the EUMETSAT cloud mask.
Completely clear 3× 3 HRV pixel blocks are redefined as
cloudy if the corresponding LRES pixel is reported as cloudy
in the EUMETSAT cloud mask. Some remaining artifacts af-
ter this cloud restoral are found, which are explained and il-
lustrated in Fig.8. These redefined pixel blocks are flagged

www.atmos-meas-tech.net/6/2713/2013/ Atmos. Meas. Tech., 6, 2713–2723, 2013
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in a different way than the cloudy pixels that are introduced
by the HRV cloud mask. The thin cloud restoral causes some
biases, which have been mentioned already. Our future plan
is to use the NWCSAF cloud type description to improve
the detection of thin cirrus clouds in the HRV cloud mask
(Dybbroe et al., 2005). The HRV cloud mask aims to resolve
sub-pixel small-scale clouds that are missed by the MPEF
cloud mask. In our example, we found an amount of 10 %
of these small-scale cumulus clouds over the Upper Rhine
Valley. This study shows that the HRV channel offers impor-
tant sub-pixel information for the remaining low-resolution
channels.

On average, 10 % of all 3× 3 clear-sky HRV pixel blocks
are missed by our threshold test and restored to cloudy pix-
els, which occurs mainly for thin cirrus clouds. Our results
indicate that the HRV cloud mask performs very reliably in
cloudy conditions. The frequency of cloudy LRES pixels that
are found to be broken in our data set is 16 %. The high-
est frequency with 24.3 % occurs over the Alps and the low-
est fraction over the Atlantic (4.6 %). The amount of broken
pixels reaches 15.5 % over Spain and 19.4 % over the Upper
Rhine Valley. The high values over the Upper Rhine Valley
and the Alps are expected and underline the frequent occur-
rence of small-scale convective cumuli clouds over these re-
gions. Deviations between the EUMETSAT cloud mask and
the HRV cloud mask after thin cloud restoral occur for 5.8 %
of the HRV pixels. This deviation results from an overesti-
mate of the cloud fraction due to partially cloudy HRV pixel
blocks, which are reported as completely cloudy by the EU-
METSAT cloud mask.

This HRV-based cloud mask is part of our wider effort
to extend the cloud physical properties retrieval (Roebeling
et al., 2006; Roebeling et al., 2008) to the high spatial res-
olution of the HRV channel, including an estimate of cloud
optical thickness (Carbajal Henken et al., 2011) and other
cloud properties. It offers also the possibility of applying the
cloud mask as a tool to study the geometric size of convective
clouds including their temporal evolution in the future. Simi-
lar approaches will be essential to utilize the data from future
satellite missions optimally, such as Meteosat Third Gener-
ation, whose imager has different spatial resolutions for the
solar and infrared channels. For a disk-wide application of
the HRV cloud mask, more regions with a higher amount of
cirrus clouds or high aerosol loads should be considered.

To validate the HRV cloud mask, we have used the MPEF
cloud mask as a reference and pointed out the consistency
between both masks, but they have different limitations.
The cloud retrieval evaluation workshop (CREW) introduces
some studies that will be used as independent validation data
for the HRV cloud mask in further research (Roebeling et al.,
2012). However, more validation has to be done to quantify
the accuracy of the HRV cloud mask and the improvements
of using the HRV channel for cloud detection schemes. Ide-
ally, the comparison should include MODIS and CloudSat

data as has already been done with the MPEF cloud mask
(Ricciardelli et al., 2008).
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4.2 Second publication: Meteosat-based

characterization of the spatiotemporal evolution of

warm convective cloud fields over Central Europe

The content of this chapter has already been published in the manuscript “Meteosat-

Based Characterization of the Spatiotemporal Evolution of Warm Convective Cloud

Fields over Central Europe” by Sebastian Bley, Hartwig Deneke and Fabian Senf in
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ABSTRACT

The spatiotemporal evolution of warm convective cloud fields over central Europe is investigated on the basis of 30

cases using observations from the SpinningEnhancedVisible and Infrared Imager (SEVIRI) on board the geostationary

Meteosat platforms. Cloud fields are tracked in successive satellite images using cloudmotion vectors. The time-lagged

autocorrelation is calculated for spectral reflectance and cloud property fields using boxes of 163 16 pixels

and adopting both Lagrangian and Eulerian perspectives. The 0.6-mm reflectance, cloud optical depth, and

water path show a similar characteristic Lagrangian decorrelation time of about 30min. In contrast, signifi-

cantly lower decorrelation times are observed for the cloud effective radius and droplet density. It is shown

that the Eulerian decorrelation time can be decomposed into an advective component and a convective

component using the spatial autocorrelation function. In an Eulerian frame cloud fields generally decorrelate

faster than in a Lagrangian one. The Eulerian decorrelation time contains contributions from the spatial

decorrelation of the cloud field advected by the horizontal wind. A typical spatial decorrelation length of 7 km

is observed, which suggests that sampling of SEVIRI observations is better in the temporal domain than in the

spatial domain when investigating small-scale convective clouds. An along-track time series of box-averaged

cloud liquid water path is derived and compared with the time series that would be measured at a fixed

location. Supported by previous results, it is argued that this makes it possible to discriminate between local

changes such as condensation and evaporation on the one hand and advective changes on the other hand.

1. Introduction

Warm convective clouds are highly variable in space

and time and cover large areas of Earth (Turner et al.

2007). Through the transport of energy and moisture,

they couple the boundary layer and the free troposphere.

Their bright cloud tops reflect the incoming sunlight,

which strongly modulates the atmospheric radiation bud-

get (Trenberth et al. 2009). Because of our lack of un-

derstanding of relevant processes and feedbacks, low-level

clouds remain a dominant source of uncertainty in cli-

mate projections (Clement et al. 2009).

The central motivation of this study is to find suitable

techniques and quantities that allow a spatiotemporal

characterization of convective cloud fields and their life

cycle from space, and can subsequently serve, for ex-

ample, as metrics for evaluating parameterizations of

cumulus convection in climate models (Dorrestijn et al.

2013). This characterization provides complementary

information about the spatial structure and temporal

changes of cloud properties to serve as a fingerprint of

underlying dynamical and microphysical processes. In

addition, information on the spatial structure of cloud

fields as given by the power spectrum are essential to

realistically represent cloud radiative effects in models

and observations (Davis et al. 1996).

In an early global study based on satellite observa-

tions, the frequency of fractional cloudiness on scales

smaller than 50–200km2 was found to be 20%–30%

(Rossow and Garder 1993). Albrecht (1989) already

pointed out the high uncertainties of the global albedo

in climate models due to the crude representation of
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cumulus cloud coverage, which still affect currentmodels.

It has been suggested that intercomparisons of observa-

tions, large-eddy simulations (LES), and single-column

models (SCM) are essential for improving such parame-

terizations (Lenderink et al. 2004). Brown et al. (2002)

designed a LES model of shallow cumulus convection

over land as basis for testing cloud parameterizations in

numerical weather prediction and climatemodels. High-

resolution models, however, also have problems in

representing clouds realistically, as can be determined

by comparisons with observations. In recent years the

spatiotemporal resolution of models has been steadily

increased to better resolve relevant small-scale cloud

processes. One promising source of observations for the

evaluation of high-resolution models is meteorological

satellites because of their global coverage. In contrast to

polar-orbiting satellites, geostationary satellites like

Meteosat have the capability to observe and track cu-

mulus clouds from their early developing stage onward

and are the focus of the present study.

Separating cloudy from cloud-free areas is an essential

first step in the retrieval of cloud physical properties from

satellite. Roebeling et al. (2006) developed an algorithm

to retrieve the cloud optical thickness (t), the cloud

droplet effective radius (re), and the liquid water path

(LWP) from solar channels during daytime. However, the

investigation of warm convective cloud fields based on

these retrieved properties is challenging because of low

LWP values and small clouds sizes. Fractional cloudiness

induces small-scale optical property variations and thus

high uncertainties (Han et al. 1994). This can be explained

by small clouds and cloud-free areas that are smaller than

the actual satellite resolution (Koren et al. 2008). In par-

ticular the retrieval of re is very sensitive to the spatial

satellite resolution. Wolters et al. (2010) identified that re
is highly overestimated at lower satellite resolutions be-

cause of variability and the nonlinear relation between the

absorbing reflectances and re. These uncertainties also

propagate to estimates of the LWP, which is generally

assumed to be proportional to the product of t and re
(Horvath et al. 2014).

These cloud property uncertainties demonstrate that

validation of cloud property retrievals with ground-

based or other satellite measurements is required

(Roebeling et al. 2008). However, comparing convective

cloud properties obtained from satellite with instanta-

neous ground-based measurements is challenging be-

cause of their rapid changes in space and time (Feijt and

Jonker 2000; Deneke et al. 2009). Despite these un-

certainties, Meteosat observations are the best available

option to characterize the spatiotemporal evolution of

cloud fields over Europe, and thus offer unique refer-

ence data for model evaluation. Up to now, however,

this potential has not been fully exploited, also because

of the lack of established techniques and quantities for

such an evaluation.

In prior studies, Cahalan et al. (1982) performed

a spatiotemporal statistical analysis of day-to-day

changes in cloudiness using data from the scanning

radiometer aboard the polar-orbiting National Oce-

anic and Atmospheric Administration satellites. They

calculated characteristic time and length scales from

decorrelation functions of time- and space-lagged in-

frared (IR) images and showed that Lagrangian cor-

relation times are always larger than the Eulerian.

They, however, focused on relatively large spatial and

temporal scales on the order of several hundred kilo-

meters and several days, respectively. For the charac-

terization of statistical cloud properties on a kilometer

scale, Slobodda et al. (2015) investigated decorrelation

lengths for different measurements in the solar and IR

part of the spectrum over Europe and using Meteosat

observations. They stated that visible and near-IR ob-

servations, which are basis for cloud property re-

trievals, decorrelate much faster than IR fields, which

are related to cloud-top temperature and obtain their

signals from higher atmospheric layers. Feijt and

Jonker (2000) showed that temporal scales of vari-

ability in LWP derived from ground-based microwave

measurements can be matched to spatial scales in

satellite-retrieved fields of LWP.

A spatiotemporal characterization of convective

cloud fields does potentially have, however, a wide

applicability, ranging from forecasts of solar irradiance

in the context of solar power generation (Hammer et al.

1999) to the detection of convective initiation (Senf

et al. 2015). Toward this, the Eulerian perspective and

the Lagrangian perspective will be contrasted. While

the former is typical for ground-based measurements,

we argue that the latter is better suited for a process-

based characterization of clouds, as it allows a separa-

tion of advective and convective changes. Taking these

findings into account has high implications for obser-

vation networks. We also aim for the identification of

quantities that are suitable for model comparison. We

therefore consider not only Meteosat reflectances but

also optical and microphysical cloud properties and

high-resolution wind data. Here, the temporal changes

of satellite-derived LWP fields receive particular at-

tention in our correlation analysis because LWP is

readily available from models, and changes can be at-

tributed to physical processes affecting condensation

and evaporation of cloud droplets. Please note that

precipitation and glaciation processes also influence

the evolution of LWP fields; however, they are not

considered in our study.

2182 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 55



Section 2 provides an overview of the data, and sec-

tion 3 describes our main methodology for the study. In

section 4, we present the results and discuss how they

relate to similar past studies. Section 5 summarizes

conclusions and gives suggestions for future studies.

2. Data

Data from the Spinning Enhanced Visible and In-

frared Imager (SEVIRI) are used in this analysis. This

optical imaging radiometer is themain payload on board

the geostationary Meteosat Second Generation (MSG)

satellites, which are operated by EUMETSAT. In ad-

dition to 11 narrowband channels (solar and IR) with a

nadir spatial resolution of 3 3 3 km2, one broadband

high-resolution visible (HRV) channel (1 3 1km2 in

nadir) is applied. A detailed technical description of

MSG is given by Schmetz et al. (2002).

For this paper, 30 cases from the years 2012 and 2013

have been selected from Meteosat’s rapid-scan service

(RSS) covering Europe with a 5-min repeat cycle

from a satellite position at 9.58E above the equator.

The cases show low-level broken cumulus clouds in

different meteorological environments. Detailed in-

formation about the meteorological conditions can be

found in section 4a. Meteosat-8 provided this service

until 9 April 2013, when it was replaced by Meteosat-9.

Our domain of interest covers Germany and parts of

eastern, western, and central Europe (Fig. 1). The

white rectangles indicate the starting box of each track,

which is labeled with a track number. Because of the

viewing geometry of Meteosat, the box area varies

from approximately 50 3 110 km2 in the north to 50 3
90 km2 in the south of the domain. The orange barbs

represent the calculated cloud motion velocity (CMV)

and direction. In the center of our domain, one pixel

has a sampling size of about 6 km (northward) by

3.6 km (eastward) and 2 km (northward) by 1.2 km

(eastward) for the narrowband channels and the HRV

channel, respectively.

For the analysis, the EUMETSAT Satellite Appli-

cation Facility on Support to Nowcasting and Very

Short Range Forecasting (NWC SAF) software

package (Derrien and Le Gléau 2005) was used

together with the KNMI cloud physical properties

(CPP) retrieval (Roebeling et al. 2006), which has been

developed in a framework of the Satellite Application

Facility on Climate Monitoring (CM-SAF; Schulz et al.

2009). With the NWC SAF software, the cloud mask

(CMa), cloud type (CT), cloud-top height (CTH), and

high-resolution wind (HRW) products have been de-

rived. The quantities t, re, and LWP have been retrieved

for cloudy pixels with CPP; t and re retrievals use sim-

ulated lookup tables for cloudy 0.6- and 1.6-mm re-

flectances and are described in more detail in Roebeling

et al. (2006). All these cloud properties except the HRW

product (1 3 1 km2) have the MSG standard resolu-

tion of 3 3 3 km2. The estimation of cloud properties

within CPP assumes a vertically homogeneous cloud.

However, observations of shallow cumulus clouds indicate

FIG. 1. Overviewmap of the selected cases. The underlyingRGB image (Lensky andRosenfeld 2008) is a composite of the 0.6-, 0.8-, and

1.6-mm channels and the HRV channel from MSG SEVIRI showing the cloud scene of case 20 at 1200 UTC 17 May 2012. The white

rectangles indicate the track starting area along with the number of the trajectory. The orange barbs illustrate the cloudmotion vectors for

the respective case. Note that the cloud scenery is different for each of the cases except case 20.
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a linear increasing liquid water content (LWC) with

height within the cloud (Nicholls and Leighton 1986).

Since the focus of this study is the characterization of

warm convective clouds, the relation

LWP5
5

9
r
w
t3 r

e
(1)

is used to estimate the LWP, assuming adiabatic clouds

where rw is the density of liquid water [see Wood and

Hartmann (2006) for further discussion]. As a fourth

cloud-field variable, the cloud droplet number concen-

tration can be expressed as

N
d
5at0:5 3 r22:5

e , (2)

assuming adiabatic clouds with a monotonic increasing

LWCand re (Quaas et al. 2006). The constant a5 1.373
1025m20.5 as given by Brenguier et al. (2000) is used in

our study.

The selected cases show a high degree of spatial

cloud variability. Cloudy pixels might indeed contain

partially cloud-free regions in the subpixel range that

are smaller than SEVIRI’s narrowband spatial resolu-

tion (Roebeling et al. 2006). Consequently, SEVIRI’s

narrowband observations as well as retrieved cloud

products might be strongly affected by this subpixel

variability (Deneke et al. 2009; Wolters et al. 2010).

Because of the coarse spatial resolution of MSG, t is

usually underestimated while re is generally over-

estimated. This effect depends on viewing geometry

(e.g., Horvath et al. 2014) and becomes even more

pronounced for broken cumulus clouds (Wolters et al.

2010; Marshak et al. 2006). The resulting cloud prop-

erty uncertainties and biases are not further in-

vestigated or corrected for this study. Instead, we focus

on the characterization of the cloud-field structure as

well as the spatiotemporal evolution of cloud proper-

ties. Both processes reduce the autocorrelation be-

tween space and time-lagged cloud fields.

Shallow cumulus clouds cannot be detected from

Meteosat in their early initiation phase because of

the limited sensor resolution. Even cumulus medi-

ocris or congestus are oftentimes smaller than the

area probed by a standard-resolution Meteosat pixel

(’20 km2). For that reason, we additionally make use

of the HRV channel, which covers a pixel area of

1.9–2.4 km2 in our domain. Furthermore, a high-

resolution visible cloud mask (HRV-CMa) is calcu-

lated to separate between cloudy and cloud-free regions

and to improve the case selection (Bley and Deneke

2013). We eliminate all cases where the CT products

detect ice clouds and assume nonprecipitating cloud

fields, because rain formation mainly involves ice-related

processes in our domain.

3. Method

a. Cloud-field tracking

Because of the relatively coarse spatial resolution of

MSG, we are not able to derive characteristics repre-

sentative of single cumulus clouds. Instead, we determine

the statistics of a spatially extended convective cloud field

within a selected box. To get a sufficient number of pixels

representative of a cloud field, we analyze boxes con-

taining convective clouds within an area of 16 3 16 low-

resolution or 483 48 HRV pixels [;(603 96)km2]. The

cloud fields are tracked temporally through successive

satellite images from MSG. This is done in a two-step

procedure.

Initially, the NWC SAF HRW product is calculated

and used as a first guess of the horizontal wind (García-
Pereda 2013). This product is based on a cross-correlation

method and contains atmospheric motion vectors

(AMVs) for pixels that are characterized by particular

tracers (e.g., cloud edges) that can be matched in sub-

sequent satellite images. We have adapted the default

configuration files of the algorithm to get more motion

vectors representative for the motion of low-level broken

clouds, which are normally rejected by the stringent

quality tests of operational AMV products (Bedka and

Mecikalski 2005). Details can be found in appendix A,

including the configuration file that is contained in the

online supplemental material. To also consider slow

cloud motions, the shortest possible time interval of

10min is chosen. The most important input to the HRW

product for our applications is the HRV channel, as the

low-resolution channels are not able to properly resolve

the cloud edges of small convective clouds. The output of

the HRW product contains all AMVs that are found in a

specific height level. We average all AMVs within our

area of interest for each height level. This mean AMV

yields the direction and shift within a 10-min time interval

that is applied to the central pixel of the box. To identify

the height level that represents the cloud-field motion

best, the autocorrelation between the actual and shifted

box is calculated for each level (see section 3b). The

AMV that yields to the highest autocorrelation is then

chosen for the tracking. The optimalAMV is divided by a

factor of 2 to obtain the displacement of the cloud field at

full 5-min resolution. The motion vectors are then as-

sembled for different time steps to obtain a trajectory

offering a Lagrangian perspective of the evolving cloud

field (Fig. 2). As a final quality check, we tested whether

the decorrelation time for the fieldwithin anEulerian box
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is higher than that along the Lagrangian trajectory. This

happens if the mean cloud motion is so small that it

cannot be accurately quantified by AMVs, which are

limited to integer pixel resolution. In this case, a neigh-

boring box yielding a higher autocorrelation for a time lag

of 30min is sought. If such a box is found, it is used to

redefine the trajectory.

b. Autocorrelation for successive cloud fields

The autocorrelation function r that describes the

similarity of successive cloud fields is used in this study

to quantify the temporal persistence of cloud structures

and is used as basis of our spatiotemporal analysis of

clouds fields. To avoid edge effects on the box sides, the

cloud fields are multiplied by a normalized Hamming

window filter function.

The autocorrelation function is calculated in three

different ways. First, it is calculated as time-lagged au-

tocorrelation function for a fixed box (Euler), then along

the cloud motion trajectory (Lagrange), and also for a

fixed time but for different discrete displacement vectors

in x and y directions to obtain the spatial autocorrela-

tion. Figure 3 illustrates schematically how the box shifts

are applied. The scheme is plotted in two dimensions

collapsing the two spatial dimensions into one for easier

visualization. However, the spatial box shift is not only

performed in the x direction but also in the y direction.

Each Lagrangian trajectory consists of N 5 24 motion

vectors that connect the 25 box centers to form a 2-h track

with a time resolution ofDt5 5min. For a time lag of kDt,
the average autocorrelation is defined as

R
k
5

1

N2 k
�
N2k

n51

r(n, n1k) (3)

for successively determined autocorrelation functions

r(n, n1 k) correlating the cloud field at time nDt with the

field at (n 1 k)Dt. The average autocorrelation function

Rk represents a robust measure of the temporal persis-

tence of a cloud field and reduces statistical variations.

For the calculation of Eulerian and Lagrangian decorre-

lation times, time lags up to k 5 12, that is, up to 60min,

are considered. For the determination of decorrelation

lengths, a maximum pixel shift in row- or columnwise

direction of k 5 10 is applied.

c. Decorrelation time and length

The autocorrelation as function of time lag or pixel

shift typically has been found to follow an exponential

decay with sufficient accuracy for our purposes.

FIG. 2. Illustration of a 48 3 48 box that moves along its trajectory. The white arrow indicates the direction and

distance for the next center of the box, starting from the center of the previous box.

FIG. 3. Schematic diagram illustrating the way by which the

Lagrangian, Eulerian, and spatial autocorrelations are applied

with respect to time and space dimensions. The arrows indicate

the box shift for the different approaches with constant location

but varying time (blue), constant time but different spatial shifts

(green), and varying time and location (red) related to the cloud-

field tracks.
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Therefore, the average Eulerian autocorrelation Rk,E,

the average Lagrangian autocorrelation Rk,L, and the

average spatial cross-correlation Rk,S are approximated

by

R
k,E

5 e2(kDt)/tD,E , (4)

R
k,L

5 e2(kDt)/tD,L , and (5)

R
k,s

5 e2(kDx)/lD,x , (6)

whereDt andDx represent the time step of 5min and spatial

distance of a pixel shift, respectively. The quantities tD,E,

tD,L, and lD, x stand for the characteristic time and space

scales at which the convective cloud field has substantially

changed its structure from its initial pattern. A similar def-

inition of characteristic scales was applied by Cahalan et al.

(1982). Practically, the Eulerian (tD,E), and Lagrangian

(tD,L) decorrelation times as well as the decorrelation

lengths (lD) are calculated as the intersection between the

e21 line and the linear fit between Rk . e21 and Rk , e21.

The simplest statistical model yielding the described

decorrelation behavior is an autoregressive process of first

order (Von Storch and Zwiers 2002), which describes a

noise-driven system with some persistence. More com-

plex statistical models, like an autoregressive process of

second order, will exhibit a different decorrelation func-

tion and might ultimately better describe the observa-

tions. This has, however, not been pursued in our study

and is left for future research.

4. Results and discussion

In this section, we quantify the statistical parameters

for all analyzed cases including their uncertainties.

Relevant satellite attributes that influence the spatio-

temporal characteristics of warm convective cloud fields

are discussed. In section 4d, we present two case studies

and their associated LWP time series including a sepa-

ration between advectively and convectively induced

changes of their field-averaged LWP.

a. Meteorological conditions

In total, 30 cases were selected in the period from

April to August from the years 2012 and 2013. The

spring and summer period is chosen because of favor-

able meteorological conditions for warm convective

clouds over central Europe. The cases are characterized

by different environmental conditions with respect to the

cloud motion velocity and direction, synoptic situation,

and cloud extent. (An overview of all tracked convective

cloud fields, including the exact time and the meteoro-

logical conditions, is given in Table B1 in appendix B.)

Additionally the calculated characteristic spatiotemporal

scales are included. All cloud fields are analyzed for 2h

covering the early afternoon, which is usually the time of

day with the highest convection potential.

Four example cloud fields are shown in Fig. 4.

Figures 4a and 4b show convective clouds forming in

postfrontal cloud air conditions connected with rela-

tively highwind speeds over northernGermany (Fig. 4a)

and Poland (Fig. 4b). Both examples indicate homoge-

neous cloud patterns lateral to the wind direction. In

contrast, Figs. 4c and 4d demonstrate example scenes

with slow wind speeds with no constant wind directions.

In central Europe, warm convective cloud fields

typically develop after the passage of cold fronts con-

nected with low pressure systems when cold and humid

air is advected from the Atlantic Ocean and North Sea

(cases 2–8, 10, 15–22, 30). Because of large-scale hori-

zontal advection of humid air, these cloud fields are

sometimes stable over long distances (;100 km).

Warm convective cloud fields with very low average

cloud motions (CMV , 5m s21) mainly occur in warm

sectors or prefrontal conditions with low horizontal

gradients (cases 9, 25–29). This leads to the initiation of

convective clouds that can grow into deep convective

systems (Senf et al. 2015). The other cases (1, 11–14, 23,

24) are associated with low pressure systems over south-

ern and eastern Europe.

The spatial distribution of LWP, t, re, and Nd for one

selected case over Poland on 19May 2013 is visualized in

Fig. 5. The convective cloud field formed around

noontime in southeasterly warm air advection due to a

low pressure system over Italy. Moderate-speed CMVs

were observed with 5.5m s21 in the x direction and

6ms21 in the y direction. The LWP field exhibited a

spatial decorrelation length of 8 km in the north–south

direction and 6.5 km in the east–west direction. All

cloud properties are estimated at SEVIRI’s standard

resolution with a typical pixel area of 21 km2. To illus-

trate the large subpixel variability in these cloud

scenes, a semitransparent overlay of a high-resolution

red-green-blue (RGB) image is used in Fig. 5. In gen-

eral, cloudy pixels that are considered by the CPP re-

trieval might contain cloudy and cloud-free areas.

Consequentially t and LWP are usually underestimated,

while re is overestimated (Coakley et al. 2005; Jonkheid

et al. 2012). However, the LWP uncertainty is likely still

smaller for these broken liquid water cloud fields than

that for mixed-phase clouds (Jonkheid et al. 2012). As

mentioned before, we do not elaborate on these un-

certainties, which have been extensively studied in the

scientific literature (e.g., Zinner and Mayer 2006). In-

stead, we focus here on the question whether they are

well suited to characterize the temporal evolution of
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cloud fields and allow amore physically based description

than that offered by radiances.

b. Comparison of radiances and cloud properties with
respect to their correlation behavior

In this section, we present the decorrelation times

obtained for the different spectral reflectance channels

of MSG and compare them to those found for various

retrieved cloud properties. This analysis is done to de-

termine the temporal persistence of the different pa-

rameters. Furthermore, we demonstrate the reliability

of our cloud-field-tracking method.

The following results are based on Eq. (3) and calcu-

lated for the Lagrangian tracks (listed in Table B1). As

described earlier, these tracks are based on theNWCSAF

HRW motion vectors, which are mainly calculated from

HRV reflectance images. Figure 6 contrasts the Eulerian

(Fig. 6a) and Lagrangian (Fig. 6b) autocorrelation

function for the 0.6-mm channel, the 0.8-mm channel,

the HRV channel, and a coarse-grained HRV channel.

The coarse-grained HRV channel has been obtained

from the standardHRVchannel by averaging 33 3 pixels

to approximate the standard MSG horizontal resolution.

This averaging has been performed to test the sensitivity

of the decorrelation time to spatial resolution.

At this point, we caution that 30 cases might be too few

to assess whether some of the smaller differences in the

average decorrelation times are statistically significant.

However, larger differences are likely robust, especially

those found when contrasting the decorrelation times for

different cloud properties.

The average decorrelation times for all spectral channels

are nearly 2 times longer for the Lagrangian than for the

Eulerian perspective. Regardless of the perspectives, the

0.6-mm channel shows the highest decorrelation times,

while the HRV channel exhibits rather low values. This is

likely caused by the threefold higher spatial resolution

of the HRV channel, which better resolves small-scale

variability in the inhomogeneous structure of convective

cloud fields. If this small-scale and evidently short-lived

FIG. 4. Four selected cases displayed with the same markers as in Fig. 1, but magnified. The

RGB images show postfrontal cases over (a) Germany and (b) Poland, (c) a case over Poland

that is associatedwith a low over southernEurope, and (d) a case for a scattered cloud field over

southern Germany in a low horizontal wind gradient environment.
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cloud variability is removed by smoothing to lower

resolution, an increase in the temporal autocorrelation

is found. As the broadband spectral response of the

HRV channel overlaps the response functions of the 0.6-

and 0.8-mm channels, the temporal autocorrelation of

the HRV channel is expected to lie between that of both

narrowband channels. This is in fact observed, with a

Lagrangian decorrelation time for the coarse-grained

HRV channel of 31min, which lies between tD,L(0:8mm)

(27.7min) and tD,L(0:6mm) (33.2min). In the Eulerian

perspective, the relatively higher tD,E(0:8mm) is likely

caused by stationary patterns in the underlying surface

reflectance caused by the strong reflectance of vegetation

at 0.8-mm wavelength.

In the next step, the correlation analysis is repeated

for different cloud properties of the convective cloud

fields. The result for t, re, LWP, andNd is shown in Fig. 7.

We have additionally added the autocorrelation of the

0.6-mm reflectance as reference. In both perspectives,

the correlation functions of the 0.6-mm reflectance and

t show the best results and are hardly distinguishable.

This is expected, because the retrieval of t is highly de-

pendent on the 0.6-mm reflectance (Nakajima and King

1990; Roebeling et al. 2006) and therefore shares similar

spatial statistics. The shortest decorrelation times are

found for Nd and re, with both decorrelating faster than

20min. It remains unclear whether this behavior is

physically caused or is attributable to uncertainties in the

retrievals. In contrast, tD,L(LWP) (31min) lies in a similar

range with tD,L(t) (34.1min) and tD,L(0:6mm) (33.2min).

The shaded areas demonstrate a high standard deviation

of approximately 65min, which has been determined

from the case-to-case variations. In conclusion, even be-

sides possible shortcomings in the retrievals of cloud

properties due to subpixel variability, the structures of

t and LWP fields can be used to characterize the spa-

tiotemporal evolution of warm convective cloud fields. In

contrast to radiances, LWP in particular has the advan-

tage of being a physically meaningful and interpretable

quantity, which is readily available as output from at-

mospheric models. Hence, it can offer better insights into

the underlying physical processes of clouds, and is well

suited for model evaluation purposes. Our results also

demonstrate, however, that the observed decorrelation

time depends on sensor resolution, which needs to be

taken into account in such a model evaluation study.

c. Spatiotemporal characteristics of LWP fields

The relation between tD,E, tD,L, and the CMVs is dis-

played in Fig. 8 for all analyzed cases. While tD,E decays

with increasing CMV, tD,L remains relatively constant,

having a mean value of 31min. The average Eulerian de-

correlation time is 15.5min. For CMVs lower than 5ms22,

FIG. 5. Two-dimensional fields of cloud properties for case 23 on

19 May 2013 over Poland. The RGB composite is plotted in the

background. Illustrated are (a) LWP, (b) t, (c) re, and (d)Nd.While

the cloud properties contain only 163 16 low-resolution pixels, the

underlying RGB image involves 48 3 48 HRV pixels.

FIG. 6. (a) Eulerian and (b) Lagrangian autocorrelation function

averaged for all cases and applied to MSG’s standard visible

channels 0.6 and 0.8mm, the HRV channel, and an additional

coarse-grainedHRV channel withMSG’s standard resolution. The

shaded areas illustrate the standard deviation, and the dashed

vertical lines show the decorrelation times tD for the four channels.

The horizontal black line marks the decorrelation threshold.
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tD,E and tD,L are hardly distinguishable because the re-

sulting track length is smaller than the box area, and the

Eulerian andLagrangian cloudfields strongly overlap. If the

actual CMV increases above this value, tD,E drops rapidly.

The strong decay in tD,E is caused by the fact that the

convective cloud fields that are subsequently advected into

the box are both temporally and spatially separated from

the instantaneous cloud field. Thus, the advection-based

change in the LWP structures is added to the internal or

Lagrangian change of the LWP fields, an effect that in-

creases with wind speed. The shaded red and blue areas

indicate the standard deviation of tD,L and tD,E for a

running average over different cloud motion categories.

We now assume that the statistical properties of the

LWP fields are, to the first order, stationary, homoge-

neous, and described by Eqs. (4)–(6). As a result, the

Eulerian time scale is decreased by perturbations of the

spatial scales lD,x and lD,y that are advected by the cloud

motion; that is,

1

t
D,E

5
1

t
D,L

1
juj
l
D,x

1
jyj
l
D,y

. (7)

Here, u and y are the cloudmotion velocities in the x and y

directions, respectively. Please note that all time and space

scales are positively defined. In the limit of u and y ap-

proaching 0ms21, tD,E and tD,L become equal. In the limit

of a conserved, frozen LWP structure in a Lagrangian ref-

erence frame, that is, tD,L /‘, tD,E is solely determined

by advection and only depends on u, y, lD,x, and lD,y.

The above relation (7) is shown inFig. 8 by a dashedblue

line as a function of CMV, where constant, case-average

values of tD,L 5 31 min and lD,x 5 7:3 km have been as-

sumed. For faster CMVs, derived tD,E converge to ap-

proximately 5–10min because of the temporal resolution

constraints. A CMV uncertainty of 2ms21 is estimated

from the discretization bias, which corresponds to the

speed needed for one HRV pixel shift within 5min. The

uncertainty of the decorrelation time is around 5min and

has been derived from the standard deviation of tD,L

across all cases.

The above relation linking Eulerian and Lagrangian

time scales has important implications for the inter-

pretation of remote sensing observations. When ana-

lyzing the temporal characteristics of a time series of

ground-based observations, one has to keep in mind

that the observed changes obtained from a single point

measurement are always a combination of an in-

herent, Lagrangian temporal change, and an advective

component that depends on both wind speed and a

decorrelation length scale. Tracking these cloud fields

in a Lagrangian reference frame allows us to separate

both contributions but can be only performed with

either geostationary satellite observations or a network

of ground-based measurements with sufficient spatial sam-

pling like scanning radars or cloud cameras.

FIG. 7. As in Fig. 6, but on the basis of cloud products (re, t, LWP,

and Nd). The autocorrelation function of the 0.6-mm channel is

added for comparison.

FIG. 8. Relation between the Eulerian (blue) and Lagrangian

(red) decorrelation time tD and the CMV fromMSG observations.

The error bars represent the uncertainty of the CMV (2m s21) and

of tD (5min), while the shaded colored areas indicate the standard

deviation. The blue dashed line shows the calculated Eulerian

function given by Eq. (7).
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Figure 9 contrasts the observed and the estimated

Eulerian decorrelation times. The estimated Eulerian

decorrelation time is given by the reciprocal of Eq. (7)

and illustrates the link between the observed Lagrang-

ian decorrelation time, the cloud motion velocity, and

the spatial decorrelation length. The values show a

rather good correlation for low decorrelation times be-

tween 10 and 20min that are associated with high cloud

motion velocities, while the spread strongly increases for

high decorrelation times. The error bars of the estimated

decorrelation times that are based on Gaussian error

propagation even increase up to 70% for the high de-

correlation times. These deviations are due to the sensor

limitations of SEVIRI that lead to high tracking un-

certainties especially for low cloud motions in subpixel

range. However, the Pearson correlation coefficient of

0.81 demonstrates a reliable connection of the different

spatiotemporal scales.

In addition to the temporal characteristics, the spatial

characteristics of the cloud fields are considered by cal-

culating the autocorrelation Rk,S of the LWP fields as a

function of distance from the actual cloud-field position.

The quantities lD,x and lD,y are related to the typical

spatial scales of LWP in the x and y directions, re-

spectively. Averaged over all cases, lD, x is 6.5km and lD,y

is 8 km, with a standard deviation of 2km for both. The

difference between the two values might result from the

different sensor resolutions in both directions. Figure 10

shows the relation between lD,x, lD,y, and the mean cloud

diameter. The cloud diameter is determined as mean di-

ameter of connected cloudy areas in a box referring to

pixels that have a LWP higher than zero. An increase of

the correlation length with increasing cloud diameter is

observed. This implies that cumulus clouds lead to an even

shorter decorrelation length. In contrast, we expect that

much longer decorrelation lengths are obtained for more

homogeneous stratocumulus cloud decks.

A statistical link between the spatial and temporal

scales of cumulus cloud fields was already demon-

strated by Feijt and Jonker (2000). They showed that

for a cumulus and stratocumulus case, the temporal

scales of a high-resolution LWP time series measured

at one station could be matched to the spatial scales

inferred from an LWP field obtained from a polar-

orbiting satellite. The relation between correlation and

distance reported here is also consistent with the find-

ings of Slobodda et al. (2015). They report an expo-

nential decrease of correlation with increasing distance

especially for the three solar MSG channels (0.6, 0.8,

and 1.6mm), which carry information about the cloud

microphysical and optical properties. Further, they

concluded that correlation lengths are smaller for

scenes with lower cloud coverage. The much larger

decorrelation distances reported by Slobodda et al.

(2015) can result from the differences in methodology

and our selection of scenes with cumulus convection. In

their study, time series of fixed pixels representing

ground-based measurement sites have been correlated

as a function of pixel distance. We, however, apply the

correlation analysis to cloud-field structures in boxes

that are significantly larger than the field characteristic

scales. Furthermore, the decorrelation distance and

time increase strongly if the considered area is in-

creased (Cahalan et al. 1982). For a large region over

the Pacific Ocean, they found correlation lengths of up

to 600 km and Lagrangian correlation time scales ex-

ceeding two days. Because of the differences in region

area, methodology, and data, a comparison of our re-

sults with their reported values is not possible.

d. Temporal evolution of the cloud field-averaged
LWP

The total temporal change of the box-averaged LWP

is given by

D
t
(LWP)5 ›

t
(LWP)1 u � =(LWP). (8)

Here, the total derivative Dt(LWP) is given as sum of

the partial derivative ›t(LWP) and the advection of the

gradient =(LWP) with horizontal wind speed u.

FIG. 9. Relation between the observed and estimated Eulerian

decorrelation times. The estimated time connects the Lagrangian

decorrelation time with the spatial decorrelation length and the

cloud motion velocity according to Eq. (7). The observed average

error is given as 5min, while the estimated error results from

Gaussian error propagation. The red dashed line illustrates the

identity line. The green dashed line shows the linear fit function,

and the surrounding shaded area spans the 5th and 95th percentiles

using a bootstrap approach that indicates the error variability.
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In this part of the study, we investigate the temporal

change in average LWP for warm convective clouds.

LWP is connected to the total mass of condensed water

assuming that changes in box area and contributions

from frozen hydrometeors can be neglected. Re-

formulating Eq. (8), a discretized version is given by

D
t
(LWP)5 d

t
(LWP)1 ud

x
(LWP)1 yd

y
(LWP), (9)

where Dt(LWP), dt(LWP), and dx,y(LWP) denote the

Lagrangian change, Eulerian change, and local spatial

differences, respectively. On the one hand, if dt(LWP)

is obtained from the Eulerian perspective, it can be

directly compared with ground-based measurements.

On the other hand, if we assume that LWP is affected

by neither precipitation nor glaciation, Dt(LWP) is di-

rectly linked to evaporation and condensation within

the cloud field.

The derivative Dt(LWP) is determined along the

Lagrangian trajectory. Consequently Dt(LWP). 0 im-

plies an increase in the mass of liquid water, that is,

condensation, while Dt(LWP), 0 implies evaporation.

The advective part is divided into two terms, the spa-

tial change along the x direction given by dx(LWP) and

along the y direction given by dy(LWP), and multiplied

by the CMVs u and y, respectively. As in Eq. (7),

Dt(LWP) and dt(LWP) are equal if the advective part

is zero.

The time series Dt(LWP) and dt(LWP) and the total

average LWP in both perspectives are shown in Fig. 11

for two exemplary cases. The bars illustrate the magni-

tude of the LWP change within 5min but are scaled to

rate per minute. The right y axis represents the cloud-

field-averaged LWP time series concerning the Eulerian

(blue line) and the Lagrangian (red line) perspective.

The shaded areas display the absolute difference

between Dt(LWP) and dt(LWP). For red areas, the

Lagrangian changes dominate the local tendencies.

Figure 11a shows case 2 over northern Germany close to

the North Sea. A cold front passed the region before the

start of the track. The advection velocity was 9ms21,

which caused a track length of approximately 60 km.

Although the boxes are overlapping for most of the

track, Eulerian and Lagrangian changes are quite dif-

ferent. The average LWP is clearly increasing in the

Lagrangian perspective, while the LWP change at a

fixed location is much smaller, resulting in only a slight

increase in LWP. This implies that cumulus clouds grow

along their path because of condensation. However, this

increase is masked to a large extent by advection in the

Eulerian perspective. In contrast, case 30 (see Fig. 11b)

represents an example for a rather highCMVof 18ms21.

FIG. 10. Relation between the decorrelation length lD in the east–

west (green) and north–south (orange) directions and the average

cloud diameter d. The error bars represent the uncertainty of d (2 km)

and lD (4 km), while the shaded colored areas indicate the standard

deviation. The solid lines show the linear fit of both functions.

FIG. 11. Time series of the box-averaged LWP changes dt(LWP)

and Dt(LWP) for the Eulerian (blue bars) and the Lagrangian (red

bars) perspective, respectively. The error bars illustrate the standard

deviation, and the gray line shows the absolute difference between

Dt(LWP) and dt(LWP). Red shaded areas indicate jDt(LWP)j .
jdt(LWP)j, whereas blue areas indicate the opposite. The y axis on

the right-hand side demonstrates the Eulerian (blue dashed line) as

well as the Lagrangian (red dashed line) time series of the cloud-field

average LWP. Shown are (a) case 2 and (b) case 30.

OCTOBER 2016 B LEY ET AL . 2191



For a fixed location, the mean LWP is continuously

increasing, while the tracked cloud field exhibits a dif-

ferent temporal evolution. A maximum LWP of around

20 gm22 is reached after 40min, before it drops down

again to a small value of 5 gm22, indicating the dissi-

pation of the cloud field.

These two cases illustrate that the temporal changes of

cloud properties are dependent on the observational per-

spective, and that the Lagrangian is preferable over the

Eulerian perspective for a physical interpretation of gov-

erning processes. This is especially true in the presence of

strong winds and large gradients in the cloud properties.

The accuracy of the Lagrangian analysis is, however, af-

fected by tracking uncertainties in addition to other un-

certainties, which has to be taken into account in the

interpretation of quantitative results. In the limit of low

CMVs, both perspectives should converge to the same

result. In our setup, however, the limited resolution of

motion vectors that is fixed to multiples of the pixel reso-

lution introduces complications for very low wind speeds.

5. Conclusions and outlook

In the present study, we have investigated the spa-

tiotemporal evolution of warm convective cloud fields

obtained from Meteosat SEVIRI observations. An ad-

vantage of Meteosat and similar geostationary satellites

is their ability to monitor convective clouds and to fully

resolve the cloud life cycle from the early stages of de-

velopment on. We have used 30 cases of convective

clouds under different synoptic conditions over central

Europe as the basis of this investigation.

Solar reflectances have been used together with cloud

products (HRV-CMa, CT, t, re, LWP, Nd, and CMV) to

characterize the spatiotemporal evolution of convective

cloud fields. First, trajectories have been determined from

sequences ofHRVimages.Boxes covering 163 16SEVIRI

standard-resolution pixels have been used to obtain an es-

timate of the mean properties of the convective clouds. The

temporal and spatial persistence of different cloud proper-

ties has been studied with special focus on the differences

between the Eulerian (i.e., fixed in space) and the La-

grangian (i.e., track following) perspectives. Assuming

a Gaussian function for the autocorrelation function,

which corresponds to the assumption of a first-order

autoregressive process, the e-folding value has been

determined as characteristic time and space scales.

The decorrelation times of SEVIRI’s solar re-

flectances has been studied first. The decorrelation times

for the 0.6-mm channel are generally larger than the

decorrelation times for the 0.8-mm channel, likely be-

cause of influence of surface reflectance in particular

caused by vegetation. In addition, the decorrelation of

theHRV channel at high spatial resolution (1.23 2km2)

and SEVIRI standard resolution (3.63 6 km2) has been

compared, which has been obtained by coarse graining.

The reduction in resolution results in an increase of

around 3–5min in the corresponding decorrelation

times. This implies that small-scale variability in cloud

structures decorrelate faster, and thus the decorrelation

times are highly sensitive to the spatial resolution of the

satellite sensor.

The decorrelation times of different retrieved cloud

products have been determined and compared to those

obtained for the reflectances. It has been found that

fields of re and Nd exhibited much less persistence than

LWP and t, which showed comparable decorrelation

times to the 0.6-mm channel. This implies that re and Nd

are not suited as tracers for tracking. It remains unclear

whether this behavior is attributable to physical reasons

or is the consequence of retrieval uncertainties.

Based on our previous findings, LWP fields have been

used in our further analyses, as LWP is a quantity that

should be insensitive to surface heterogeneity, facilitates a

process-based interpretation, and is readily available from

atmospheric models and thus allows a direct comparison

with model results.

The temporal evolution of box-averaged LWP was

contrasted for cloud fields adopting both the Lagrangian

and Eulerian perspectives. Excluding precipitation and

freezing, changes in LWP in a Lagrangian reference

frame are attributable to condensation and evaporation,

which is essentially triggered by local convection and

mixing processes. For our cases, an average decorrela-

tion time of about 31min has been found. The budget in

an Eulerian or fixed-in-space reference frame can be

significantly influenced by the advection of LWP gradi-

ents. Thus, the Eulerian decorrelation time is always

lower than the Lagrangian one and depends also on the

wind speed and the spatial decorrelation length scale.

Typical decorrelation lengths have been found to be

6.5 km in the x direction and 8km in the y direction. The

differences between Eulerian and Lagrangian time se-

ries have been discussed for two cases.

Several sources for uncertainties have been identi-

fied that can affect the relation between the charac-

teristic scales. The spatial decorrelation scale of 7.3 km

is close to the sensor resolution of Meteosat. Further-

more, warm convective clouds often exhibit slow cloud

motion velocities. This leads to uncertainties in our

cloud-field tracking, because the spatial resolution of

the narrowband channels and hence also the cloud

properties is approximately 3.6 3 6 km2, which is

coarser than the displacement of the cloud field within

5min. To overcome this limitation and take into account

subpixel shifts for an accurate estimation of spatial scales,
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the use of the HRV channel with a threefold higher

spatial resolution is essential.

This study demonstrates that the spatiotemporal char-

acterization of warm convective clouds is currently limited

by the spatial sensor resolution of Meteosat. Carbajal

Henken et al. (2011) already found that SEVIRI’s standard

resolution is not sufficient to fully resolve the small-scale

spatial variability required for the identification of warm

convective clouds, and used an estimate of t based on the

HRV channel. The additional use of theHRV channel can

thus not only improve the tracking accuracy (Zinner et al.

2008), but can also help to better resolve small-scale cloud

variability. A successful application of the HRV re-

flectances to improve the spatial resolution of narrowband

images was presented by Deneke and Roebeling (2010).

Bley and Deneke (2013) developed an HRV-CMa to im-

prove the detection of small-scale convective clouds. The

HRV channel was further applied to sharpen partly cloudy

IR satellite pixels for improving convective initiation de-

tection schemes (Mecikalski et al. 2013).

These studies support the concept that the HRV

channel can help to overcome the limitations due to

SEVIRI’s standard spatial resolution noted in this work.

Within the framework of the Germany-wide research

initiative High Definition Clouds and Precipitation for

Climate Prediction [HD(CP)2] (Dipankar et al. 2015), the

authors are therefore currently developing a cloud prop-

erty retrieval based on the HRV channel, which includes

downscaled cloud properties (t, re, and LWP). Future

plans also include the application of the spatiotemporal

analysis presented here to the high-resolution simulations

of icosahedral nonhydrostatic (ICON)-LES, which cover

Germany with a horizontal resolution of 150m.

The analysis demonstrates the advantage of the La-

grangian perspective for studying convective and advec-

tive processes that are influenced by cloud variability.

These results should be considered in future modeling

studies to evaluate and improve stochastic parameteri-

zations of cumulus convection. Further comparisons of

the spatiotemporal characteristics of convective clouds

with high-resolution model results are essential to better

understand and reduce their uncertainties.

On the one hand, the methods used in this investigation

can serve as basis for an evaluation of the realistic

TABLEB1. Overview of cases including the track number, time and date of the track starting box as well as its longitude and latitude, the

averageCMV, the track length between the central pixel of the starting box and the central pixel of the ending box, the Eulerian (tD,E) and

Lagrangian (tD,L) decorrelation time, and the decorrelation length in the x direction (lD,x) and y direction (lD,y).

Track Time and date Lon (8E) Lat (8N) CMV (m s21) Track length (km) tD,E (min) tD,L (min) lD,x (km) lD,y (km)

001 1200 UTC 14 Apr 2012 13.12 51.5 6.0 43.1 20.2 38.5 10.9 9.8

002 0930 UTC 16 Apr 2012 8.73 53.72 8.6 62.2 18.1 41.1 5.1 6.4

003 1220 UTC 16 Apr 2012 11.72 52.85 8.9 63.8 11.8 38.8 5.2 7.8

004 1220 UTC 16 Apr 2012 3.33 48.44 11.1 79.8 8.7 31.3 5 6.5

005 1340 UTC 16 Apr 2012 12.14 52.5 9.1 65.4 13.6 39.7 4.4 6.8

006 1200 UTC 21 Apr 2012 14.45 52.78 6.9 49.5 17.2 23.1 4 8.2

007 1200 UTC 21 Apr 2012 20.68 47.44 12.4 89.6 8.8 34.6 7.4 9

008 1200 UTC 21 Apr 2012 14.37 52.39 7.7 55.4 15.1 26.8 5.2 10.2

009 1330 UTC 4 May 2012 12.1 49.7 3.8 27.5 21.7 37.3 7.3 6.1

010 1200 UTC 17 May 2012 18.54 51.53 10.3 74.0 10.3 25.9 5.5 5.7

011 1230 UTC 22 May 2012 10.69 52.59 6.4 45.9 22.5 27.0 6.1 7

012 1230 UTC 22 May 2012 11.7 51.94 6.3 45.7 14.1 35.6 6.2 6

013 1230 UTC 22 May 2012 16.66 52.57 6.3 45.1 7.6 16.6 3.9 5.1

014 1200 UTC 25 May 2012 20.14 50.75 6.0 43.5 21.6 28.4 6.8 8.6

015 1020 UTC 13 Apr 2013 3.8 50.6 10.5 75.8 13.4 29.8 8.7 9.2

016 1130 UTC 16 Apr 2013 11.47 53.56 10.0 71.9 15.8 27.7 7.6 12.4

017 1250 UTC 18 Apr 2013 7.5 52.6 17.7 127.2 12.5 31.2 8.9 8.6

018 1200 UTC 12 May 2013 3.18 49.4 9.8 70.4 9.3 29.4 7.4 10.4

019 1240 UTC 12 May 2013 9.09 51.35 9.0 64.8 8.1 29.9 9.7 12.4

020 1240 UTC 12 May 2013 5.94 47.49 8.0 57.5 11.7 31.4 5.3 5.1

021 1140 UTC 15 May 2013 0.78 48.84 11.4 82.2 13.7 31.9 6.5 8.8

022 1250 UTC 15 May 2013 20.68 47.44 9.9 71.3 8.7 26.7 5.4 8.1

023 1150 UTC 19 May 2013 18.3 52.67 7.3 52.4 13.7 31.1 4.8 7.9

024 1230 UTC 19 May 2013 18.6 52.5 8.1 58.2 16.8 28.3 4.8 8.2

025 1250 UTC 19 May 2013 14.47 51.92 4.2 30.0 21.7 28.3 6.1 7.7

026 1100 UTC 8 Jun 2013 5.51 49.34 2.3 16.8 36.1 34.4 8.1 10.4

027 1100 UTC 8 Jun 2013 9.645 51.2 0.6 4.5 31.6 32.8 8 8

028 1300 UTC 8 Jun 2013 9.92 48.3 1.3 9.1 24.0 27.1 4.9 5.5

029 1300 UTC 8 Jun 2013 9.5 48.8 1.3 9.4 29.6 42.2 5.4 7.8

030 1250 UTC 15 Jun 2013 5.82 52.32 17.3 124.7 6.8 38.2 9.7 8.2
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representation of clouds in ICON-LES including their

spatiotemporal behavior. On the other hand, the high

resolution of themodel runs enable a quantification of the

resolution dependence of the temporal and spatial

scales determined in this article, and can thus help to

quantify the information gains expected from future

geostationary satellites such as Meteosat Third Genera-

tion with improved spatial and temporal resolutions. It

will have a 10-min standard repeat cycle for the full disk

(Stuhlmann et al. 2005) and an improved spatial resolu-

tion of 1km for all solar channels, which will offer the

great opportunity to investigate the temporal evolution

of cumulus cloud fields over other relevant climatic

regions (e.g., the Atlantic warm pool) using the tech-

niques introduced here.
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APPENDIX A

Configuration of the HRW Tools

The configuration file of the HRW product has been

adapted to obtain more tracers especially for small cu-

mulus structures with low reflectance values. This could

be realized by considering more tracers for the vector

calculation even for a slightly smaller quality threshold.

More details can be found in the configuration text file

that is available in the online supplemental material.

APPENDIX B

Overview of Cases

Table B1 gives an overview of all analyzed cases in-

cluding the track identification number, date and time of

the track starting box as well as its longitude and lati-

tude, the average CMV, the track length between the

central pixel of the starting box and the central pixel of

the ending box, the Eulerian (tD,E) and Lagrangian

(tD,L) decorrelation time, and the decorrelation length

in the x (lD,x) and y (lD,y) directions.
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4.3 Third publication: Metrics for the evaluation of

warm convective cloud fields in a large eddy

simulation with Meteosat images

The content of this chapter has already been published in the manuscript “Metrics for

the evaluation of warm convective cloud fields in a large eddy simulation with Meteosat

images” by Sebastian Bley, Hartwig Deneke, Fabian Senf and Leonhard Scheck in the

journal “Quarterly Journal of the Royal Meteorological Society” in 2017 with the doi:

10.1002/qj.3067.
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The representation of warm convective clouds in atmospheric models and satellite
observations can considerably deviate from each other partly due to different spatial
resolutions. This study aims to establish appropriate metrics to evaluate high-resolution
simulations of convective clouds by the ICON Large-Eddy Model (ICON-LEM) with
observations from Meteosat SEVIRI over Germany. The time series and frequency
distributions of convective cloud fraction and liquid water path (LWP) are analyzed.
Furthermore, the study focuses on size distributions and decorrelation scales of warm
convective cloud fields. The investigated metrics possess a pronounced sensitivity to the
apparent spatial resolution. At the fine spatial scale, the simulations show higher occurrence
frequencies of large LWP values and a factor of two to four smaller convective cloud
fractions. Coarse-graining of simulated fields to the optical resolution of Meteosat
essentially removes the differences between the observed and simulated metrics. The
distribution of simulated cloud sizes compares well with the observations and can be
represented by a power law, with a moderate resolution sensitivity. A lower limit of cloud
sizes is identified, which is 8–10 times the native grid resolution of the model. This likely
marks the effective model resolution beyond which the scaling behaviour of considered
metrics is not reliable, implying that a further increase in spatial resolution would be
desirable to better resolve cloud processes below 1 km. It is finally shown that ICON-LEM
is consistent with spatio-temporal decorrelation scales observed with Meteosat having
values of 30 min and 7 km, if transferred to the true optical satellite resolution. How-
ever, the simulated Lagrangian decorrelation times drop to 10 min at 1 km resolution,
a scale covered by the upcoming generation of geostationary satellites.

Key Words: warm convective cloud fields; model evaluation; geostationary satellite remote sensing; cloud field
metrics; resolution sensitivity; large-eddy simulation
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1. Introduction

The realistic representation of clouds in general circulation
models (GCMs) in general, and convective clouds in particular,
remains a fundamental challenge of climate research (Bony
et al., 2015). This difficulty arises in part from the coarse
horizontal resolution (∼100 km) of GCMs, which does not allow
one to resolve individual clouds nor the underlying turbulent,
microphysical and convective processes. Instead, subgrid-scale
processes below the model resolution have to be parametrized.
To evaluate and improve these parametrizations, and to advance
our understanding of the effects of such small-scale processes,
the characterization of the spatio-temporal characteristics of

convective clouds across all relevant scales based on observations
and high-resolution models is essential. Towards this goal,
suitable metrics for comparing observations and model results
are required, and their sensitivity to the spatial resolution of the
underlying data needs to be quantified.

Weisman et al. (1997) reported a strong sensitivity of the
temporal evolution of convective cloud systems to the grid
resolution of the atmospheric model. They also demonstrated
that a resolution below 1 km is necessary to resolve the cellular
structure of cumulus clouds. The cloud size distribution and
the morphology of simulated clouds has also been found to be
sensitive to the horizontal resolution (Nagasawa et al., 2006).
Brown (1999) showed that the cloud size distribution is clearly
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shifted towards smaller clouds if the grid resolution of their large-
eddy simulation (LES) model is increased up to 20 m. They also
found that the higher frequency of smaller clouds is compensated
by a reduction of larger clouds, resulting in no significant change
of the total cloud fraction (CF). In contrast, Neggers et al. (2003)
demonstrated that the sizes of the dominating clouds are robust in
their LES model considering a horizontal grid spacing from 25 to
100 m. Heus and Seifert (2013) tracked shallow cumulus clouds
in a LES with 25 m grid resolution covering a relatively large
domain, and investigated the resulting cloud size distributions.
Applying different liquid water path (LWP) thresholds for cloud
masking, a power law dependency was observed, with exponents
ranging from −2.2 to −2.9. Moreover, they found the cloud size
distributions for different resolution set-ups start to converge
if only clouds larger than the effective model resolution are
considered. The latter was assumed to be six times the grid
resolution in their study. Dorrestijn et al. 2012) pointed out that
a spatial resolution of at least 100 m is required to realistically
resolve convective dynamics of small-scale clouds in numerical
models. At the same time, large-domain calculations are needed to
obtain meaningful cloud statistics (Stevens et al., 2002). Based on
30 m resolution Landsat observations, Koren et al. (2008) showed
that, as the spatial resolution of the satellite sensor decreases,
an increasing fraction of small clouds are missed. Cloudy
pixels also increasingly contain significant clear-sky contributions
from the cloud-free surface. Overall, the CF was found to be
strongly overestimated due to the resolution sensitivity. The
described effects will result in signficant and resolution-dependent
uncertainties in derived cloud properties, and highlight the
sensitivity of satellite products to sensor resolution.

Due to the increasing capacity of supercomputers, large-
domain simulations at a cloud-resolving scale are becoming
feasible, and show, for example, a better timing of the diurnal
cycle of convection (Hohenegger et al., 2008). Within the High
Definition Clouds and Precipitation for Climate Prediction
(HD(CP)2) project, a number of LESs were conducted with
the ICOsahedral Non-hydrostatic (ICON) atmospheric model
(Dipankar et al., 2015) covering a large domain over Germany.
These ICON-LEM runs were carried out on a 156 m grid, and thus
partially resolve turbulence and large eddies, and allow study of
their influence on shallow cumulus convection. A comprehensive
evaluation of the ability of ICON simulations to reproduce the
general thermodynamic and cloud-precipitation characteristics
was performed by Heinze et al. (2016). This resulted in the
overall agreement that high-resolution ICON-LEM simulations
enable an improved understanding of cloud and precipitation
processes, and can serve as reference for the development of novel
cloud parametrizations in GCMs. Our study extends the efforts
of Heinze et al. (2016) and assesses the representation of warm
convective cloud fields including their spatio-temporal variability
in more detail.

One challenge for the evaluation of high-resolution and large-
domain simulations is the lack of suitable reference observations.
Polar-orbiting satellite instruments like MODIS provide global
datasets with high spatial resolution (∼250–1000 m), but do not
allow to evaluate the temporal evolution of convective cloud
fields. In contrast, the geostationary Meteosat satellites observe
Central Europe with a 5 min repeat cycle, but only at a nadir
resolution of ∼3 km, which is relatively coarse in comparison to
the typical size of warm convective clouds. Nevertheless, Meteosat
offers the unique opportunity to characterize both the spatial and
the temporal variability of small-scale convective cloud fields,
and to use these characteristics for model evaluation. Towards
this goal, Bley et al. (2016) introduced metrics to characterize the
spatio-temporal evolution of convective cloud fields. Considering
the fields of the retrieved liquid water path, a characteristic
decorrelation time-scale of 30 min in a Lagrangian reference
frame, and a decorrelation length-scale of 7 km was identified.
However, these scales are only valid at the coarse horizontal
resolution of Meteosat (∼3.1 × 6 km2), and a decrease of the

Figure 1. ICON-LEM domain and its two nests with grid refinement. The open
lateral boundaries are relaxed towards the COMSO-DE analysis (Heinze et al.,
2016). [Colour figure can be viewed at wileyonlinelibrary.com].

decorrelation time when considering the high-resolution visible
(HRV) channel with 1.2 × 2.1 km2 horizontal resolution was also
observed. This suggests a strong resolution dependency of the
decorrelation scales on spatial resolution. Typical lifetimes of
cumulus clouds simulated by LES lie between 20 and 40 min, but
small clouds dissipate much faster after a few minutes (Jiang et al.,
2006).

The central goal of the present study is to establish appropriate
metrics to evaluate the representation of convective cloud fields
in ICON-LEM with observations from the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) on board Meteosat, and to
investigate the effects of model and sensor resolution. The main
research questions can be summarized as:

(i) Does ICON-LEM realistically simulate the CF frequency
distribition of LWP, as well as the horizontal structure and
temporal evolution of convective cloud fields?

(ii) How sensitive is the comparison of satellite observations
and model results to the spatial resolution of the satellite
instrument and model grid?

(iii) Can we understand some limitations of the Meteosat
observations using the much higher-resolved ICON-LEM
results?

For this study, ICON-LEM simulations are carried out with three
horizontal grid resolutions of 156, 312 and 625 m. This allows us to
analyze differences in the cloud fields arising from different model
resolutions, and to separate model-inherent resolution effects
from those resulting from a coarse-graining of the model outputs.

The ICON-LEM, COSMO-DE and Meteosat data used in this
study are briefly described in section 2. Results are presented and
discussed in section 3. The main conclusions and an outlook are
given in section 4.

2. Data and methods

2.1. Simulations

The ICON-LEM model is based on the unified modelling system
for climate and numerical weather forecast ICON (ICOsahedral
Non-hydrostic), which has been extended to a LES that partially
resolves turbulence and convection within the HD(CP)2 project.
For the unresolved scales, a new three-dimensional turbulence
scheme based on the classical Smagorinsky scheme has been
implemented on a triangular grid (Dipankar et al., 2015).

Within the project, four ICON-LEM runs have been performed
for 24–26 April and 2 May 2013 with a very high spatial resolution
of 156 m over a large domain covering Germany (Figure 1). The
four simulated days comprise a range of typical weather conditions
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(a) (b)

(c) (d)

Figure 2. Case-study over the HD(CP)2 domain on 25 April 2013 at 1430 UTC
with (a) the high-resolution natural colour RGB image from Meteosat
O(1×2 km2), (b) the cloud liquid water path (LWP) retrieved from Meteosat
O(4×6 km2), (c) simulated by ICON-LEM O(156 m) and (d) simulated by
COSMO-DE O(2.8 km). The cyan colours identify high cirrus clouds and deep
convective cloud systems that contain ice particles, attributable to the strong
absorption in the near infrared 1.6 μ m channel. All frozen cloud fraction is
visually filtered out by the white mask in (b)–(d). [Colour figure can be viewed
at wileyonlinelibrary.com].

for Germany and the spring season. One-way nesting of ICON-
LEM simulations is performed with grid refinement steps ranging
from 624 to 312 m and 156 m in the innermost domain. As the grid
spacings of the ICON-LEM runs are somewhat higher than those
used typically in LES models for cloud studies, these runs could
also be classified as ‘near-LES’ experiments (Mechem et al., 2012).

ICON-LEM is used in a real-case configuration with prescribed
lateral boundary conditions and a nesting approach (Heinze et al.,
2016). ICON-LEM is not run in a semi-idealized set-up like most
other LES models, but uses the realistic land surface model TERRA
which is also used in COSMO-DE (Heinze et al., 2016). Each
simulation day is initialized at 0000 UTC from the operational
COSMO-DE analysis and runs for 24 h. The two-moment mixed-
phase bulk microphysical parametrization of Seifert and Beheng
(2005) is applied.

Apart from the great challenge to carry out such high-
performance simulations at the German Supercomuting Centre
(DKRZ), massive storage capacities are also needed to write the
model output to disk (Heinze et al., 2016). Data output of 50
terabytes was generated for one day of simulation. The three-
dimensional model variables were mapped to a regular grid with
1 km grid spacing and written out every hour. Variables on the
unstructured high-resolution model grid were written to files
only once or twice a day during MODIS overpasses. The two-
dimensional data output for the cloud properties is archived at
156, 312 and 625 m grid spacing and a 1 s time frequency, albeit
sub-sampled to 1 min time steps for the present study to reduce the
computing time for the analysis. Simulations from all three nests
are compared. To avoid precipitation and glaciation effects that
could influence the evolution of total cloud water, only the LWP is
considered. Furthermore, to increase comparability to the satellite
observations, we removed all columns of LWP that contain less
than 1 g m−2 to reflect the sensitivity limit of the satellite sensors.

For comparison, COSMO-DE simulations have been carried
out based on the operational set-up with 2.8 km horizontal grid
resolution, but with the two-moment microphysical scheme also
used in ICON-LEM (Seifert and Beheng, 2005). The initial and
boundary conditions are prescribed by COSMO-EU on 7 km
horizontal resolution. The COSMO-DE output has a 15 min
temporal resolution, and contains the atmospheric pressure,
temperature, water vapour mixing ratio and liquid water mixing
ratio, which are used for calculation of the LWP. The liquid water
mixing ratio already includes the subgrid-scale cloud information
as used in the radiation scheme.

The performance of ICON-LEM in terms of boundary-layer
variables, clouds and precipitation has already been evaluated by
Heinze et al. (2016) using a comprehensive database including
in situ and remote-sensing observations as well as reference
model data from the COSMO-DE model. The key results of
their study can be summarized as follows. COSMO-DE and
ICON-LEM show a similar good performance with respect to
cloud distributions and the large-scale situation, as both models
are forced with nearly identical initial and boundary conditions.
In ICON-LEM, shallow cumulus clouds are simulated as too
large, which is likely attributable to the effective model resolution.
Applying the ICON-LEM output to forward simulations relying
on the look-up table-based Method for Fast Satellite Image
Synthesis (MFASIS; Scheck et al., 2016) shows similar cloud size
distributions to the observations for cloud sizes between 1 and
100 km. Heinze et al. (2016) also show substantial improvements
in the variability of the ICON-LEM LWP in 25×25 km2 grid
boxes compared to COSMO-DE.

2.2. Observations

Satellite data are taken from SEVIRI, which is the main payload
on board the geostationary Meteosat Second Generation (MSG)
satellites operated by EUMETSAT. The LWP is calculated using
the Cloud Physical Properties retrieval (CPP; Roebeling et al.,
2006) developed in the framework of the Satellite Application
Facility on Climate Monitoring (CM SAF; Schulz et al., 2009). The
lower part of the LWP distribution might be under-represented
by MSG due to its detection limit, which mainly affects thin cirrus
clouds and low small cumulus clouds. These highly variable clouds
cause large uncertainties in the MSG retrieval of cloud optical
thickness (τ ) and droplet effective radius (re), and further lead to
an underestimation of the LWP due to the plane-parallel albedo
bias. Geostationary satellite retrievals generally underestimate
the LWP especially for broken cumulus clouds (e.g. Marshak
et al., 2006; Wolters et al., 2010). This effect also depends on
the viewing geometry (Horvath et al., 2014), and causes LWP
uncertainties that influence the spatio-temporal characteristics of
convective cloud fields. In the following, all ice-containing clouds
have been identified with a cloud phase flag and filtered out. This
has been done to emphasize the focus on liquid water clouds of
the present study. However it should be noted that cloud phase
determination from satellite is also subject to some uncertainties.
The standard nadir sampling resolution of SEVIRI is ∼ 3×3 km2

with a 5 min repeat cycle in the rapid scan mode. However, the
horizontal resolution decreases for an increasing distance from
the Equator due to the viewing geometry, having a pixel area of
about ∼3.1×6 km2 in the centre of our domain. The real optical
resolution of MSG is lower as characterized by the modulation
transfer function (MTF) and the pixels are oversampled in the
image rectification process by a factor of about 1.6 (Deneke and
Roebeling, 2010). Thus the effective area of a pixel is slightly larger
than the actual sampling resolution.

2.3. Scene selection

From the simulated ICON-LEM days, we selected two types
of scene. First, domain-scale cloud scenes from one particular
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day, 25 April 2013, were selected for the investigation of LWP
frequency distribution (FD) and time series (TS) as well as the
distribution of cloud sizes. For this day, Figure 2 shows the
modelled and satellite-retrieved fields of LWP at 1430 UTC.
To provide an overview of the synoptic situation and the
thermodynamic phase of clouds, the satellite observations are
shown as day natural colour red-green-blue (RGB) composite
(Lensky and Rosenfeld, 2008). We eliminate the effect of larger-
scale cloud fields that are advected into the model domain from
the northwest by only considering the lower half of the domain
for the calculation of FD and TS. Furthermore, cloud cover that
touches the evaluation domain borders has been removed.

Second, we consider local-scale cloud scenes of a size of around
62×62 km2 from all four simulated days. Corresponding boxes
have a size of 400×400 (24×24) grid cells for ICON-LEM
(COSMO-DE) simulations and are centred around developing
warm convective cloud fields. This box size has been chosen
to ensure preferably homogeneous advection conditions for an
accurate tracking and to comprise a sufficient number of warm
convective clouds at the same time to obtain robust cloud field
statistics. However, the cloud cases have been subjectively selected,
imposing an upper limit on cloud faction of 0.4 and 0.8 for ICON-
LEM and COSMO-DE fields, respectively. A set of ten cloud
cases is identified and tracked forward in time. A Fast Fourier
Transform is used to calculate the spatial phase shift, determined
by the maximum correlation (Anuta, 1970). This phase shift is
finally transformed into a pixel shift for each of the 1 min time
steps. For the local-scale cloud scenes, relations between average
cloud aspect ratio and viewing angle dependence as well as the
effects of resolution on spatio-temporal decorrelation scales are
investigated on this data basis.

We do not expect ICON-LEM and COSMO-DE to perfectly
match the MSG observations for small-scale convective clouds
with respect to time and location. Rather we aim to compare
the general statistics of simulated spatio-temporal decorrelation
scales with the observational results obtained between April and
July 2013 in our earlier study (Bley et al., 2016).

2.4. Spatial resolution

The spatial resolution is a fundamental characteristic of
atmospheric models and satellite instruments, which can
influence not only the cloud properties but also the whole cloud
field statistics, such as the distribution of cloud sizes and CF
(Koren et al., 2008). Particularly for the characterization of
warm convective cloud fields, the spatial resolution needs to be
considered carefully.

We emphasize that there can be an inherent difference between
the resolution at which the data are provided, called the native
resolution here, and the optical or effective resolution, for
satellite observations and model simulations, respectively. For
Meteosat observations, the optical resolution is lower than the
native resolution, by a factor of 1.6 (section 2.2 gives details).
For numerical simulations, the effective resolution is always
coarser than the native grid resolution and represents a range
at which the variability of physical processes can be resolved.
With the term ‘native resolution’ we are assigning the grid
spacing of the model data and the original pixel size of the
satellite data in the present study. For the comparison of data
at very different native resolutions, a third type of resolution,
the coarsed-grained resolution comes into play which is used
to convert the higher-resolved data into their lower-resolved
counterpart. The ICON-LEM model has three different native
grid resolutions, which are abbreviated by O(156 m), O(312 m)
and O(625 m) in the present study. The COSMO-DE model has
a spatial resolution of O(2.8 km) and the Meteosat native pixel
resolution is O(3.6×6 km2) for the narrowband channels and
O(1.2×2 km2) for the HRV channel. As stated above, the optical
resolution of Meteosat is a factor 1.6 larger than the native pixel

resolution. Hence, for comparison of ICON-LEM and Meteosat
warm convective cloud fields, a coarse-graining of ICON-LEM
cloud fields to 7 km average pixel size is performed, although
ignoring the anisotropy in the observation grid.

The coarse-graining is performed sequentially. The original
field is divided into small subdomains of 2×2 size for which the
average is calculated and retained. After the first coarse-graining
step, the resulting field hassmaller pixel size by a factor of four. σ
represents the number of coarse-graining iterations. The ICON-
LEM cloud fields are gradually coarse-grained to 156 × 2σ m
until 7000 m spatial resolution is reached. COSMO-DE is coarse-
grained to 5.6 km resolution. For the coarse-grained cloud fields,
to avoid confusion over the origin of these cloud fields, the
following notation is introduced: C(native resolution→coarse-
grained resolution).

3. Metrics

In this section, results from the investigated metrics are presented
and discussed. As metrics for the evaluation of warm convective
clouds in the ICON-LEM model with Meteosat observations and
COMSO-DE data, we first consider the frequency distribution
and time series of LWP and CF. The effect of the cloud aspect
ratio, spatial resolution and viewing geometry is subsequently
addressed. In the following, the frequency distribution of cloud
sizes is analyzed for the native resolution and coarse-grained to the
optical resolution of Meteosat. The power laws are also compared
to the observations. Convective cloud field tracking is finally
applied to evaluate the decorrelation time- and length-scales.
The model results are related to spatio-temporal characteristics
achieved in Bley et al. (2016). The main focus of these investigated
metrics lies on the spatial resolution sensitivity.

3.1. Frequency distribution of LWP

Figure 3 shows an example LWP distribution for a local-scale
cloud field from the ICON-LEM model over southern Germany
on 25 April 2013 at 1300 UTC. The image demonstrates how a
warm convective cloud field is captured by the optical Meteosat
resolution of 7 km (right-hand side). The fine LWP structures
that are simulated by ICON-LEM O(156 m), O(312 m) and
O(625 m) (left-hand side) are completely smoothed down by a
coarse-graining to 7 km with a substantial decreasing frequency of
high LWP values. Coarse-graining of the LWP fields additionally
leads to a strong increase in the CF, because larger clouds grow
faster in the coarse-graining than smaller clouds disappear in the
gaps (Koren et al., 2008). For the case example in Figure 3, the CF
of 0.23 in ICON-LEM O(156 m) is increased to 0.69 when going
to ICON-LEM C(156 m → 7 km). Also, the spatial decorrelation
length (λ) changes drastically from λ = 733 m to λ = 4531 m,
implying that the cloud sizes are increasing and that a part of the
texture information is lost. λ represents a measure of the change
of spatial coherence of the horizontal cloud field structure, and
indicates how far the box can be still displaced before the LWP
structure between the displaced and the initial cloud field is
decorrelated (Bley et al., 2016). The resolution sensitivity of CF
and λ is discussed in more detail in sections 3.3 and 3.5.

Most of the fine LWP structure from ICON-LEMO(156 m) can
be still obtained from ICON-LEMC(156 m → 1250 m). However,
coarse-graining to 7 km clearly eliminates the original 156 m
structure. Every pixel in the 7 km box includes a substantial
amount of unresolved sub-pixel variability. Using complementary
data from the HRV channel with 1.2×2 km2 resolution can help
to resolve a part of this variability (Bley et al., 2016).

Figure 3 further indicates a nonlinear relation between
the spatial resolution and CF as well as λ. The change in
LWP structure, CF and λ is much more pronounced between
C(156 m → 625 m) and C(156 m → 2500 m) than between
O(156 m) and C(156 m → 625 m), although the resolution is
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Figure 3. Example of a local-scale ICON-LEM 62×62 km2 cloud field showing the LWP over Southern Germany on 25 April 2013. The first row shows the native
resolution and coarse-grained cloud fields, originated from ICON-LEM O(156 m), the second row from ICON-LEM O(312 m) and the third row from O(625 m).
The grey backgroud indicates cloud-free areas; λ is the decorrelation length and CF the convective cloud fraction for each cloud field. [Colour figure can be viewed at
wileyonlinelibrary.com].

Figure 4. Probability density function (PDF) of the domain-scale LWP with
warm convective clouds retrieved by MSG (black) and simulated by ICON-LEM
C(156 m → 7 km) (blue solid) and COSMO-DE C(2.8 km → 5.6 km) (red solid)
on 25 April 2013 between 0900 and 1530 UTC. The dashed lines indicate the
ICON-LEM O(156 m) and COSMO-DE O(2.8 km) functions at their native
resolution. [Colour figure can be viewed at wileyonlinelibrary.com].

quadrupled in both cases. This is most likely related to the
effective resolution of the model and will be discussed in detail in
section 3.5

The domain-scale LWP frequency distribution averaged
between 0900 and 1530 UTC is presented in Figure 4. ICON-LEM
and COSMO-DE are coarse-grained towards Meteosat resolution
for a solid comparison. The original ICON-LEM O(156 m) and
COSMO-DE O(2.8 km) data are also shown for a demonstration
of the resolution sensitivity.

On the one hand, COSMO-DE at native resolution
underestimates the typical range of LWP values compared to
the observations – a situation that becomes even worse after
coarse-graining to C(2.8 km → 5.6 km). On the other hand, the
high-resolution simulations performed by ICON-LEM achieve
LWP values at native resolution that are more than one magnitude

larger. Coarse-graining brings the ICON-LEM LWP values closer
to the observations, but still a significant overestimation remains.
This might be a real model deficit and be caused by the fact
that too much water is accumulated at convection scales of 1 km
and more, which would have been distributed over much smaller
cloud scales in reality. A comparison of observed and simulated
cloud size distributions will be discussed in depth in section 3.4. In
general, Figure 4 reveals the strong resolution sensitivity of LWP.

Heinze et al. (2016) evaluated the combined liquid and ice
cloud water path (CWP) for all days over the full HD(CP)2

domain and concluded that ICON-LEM simulates clouds better
than COSMO-DE in comparison to the satellite-retrieved CWP.
The MODIS CWP retrieval was found to agree better with ICON-
LEM than the MSG retrieval, which is likely attributable to the
higher resolution of the MODIS instrument (1×1 km2). While
MODIS seems to be a better reference dataset to evaluate small-
scale cloud structures in ICON-LEM, only MSG as a geostationary
instrument with a high temporal sampling is able to resolve the
temporal evolution of warm convective clouds. The temporal
development of a warm convective cloud field is analyzed in the
next section.

3.2. Time series of LWP and CF

Due to the high spatio-temporal LWP inhomogeneity of warm
convective clouds, we do not expect a perfect agreement between
simulations and observations with respect to time and location of
individual cumulus clouds. Therefore, the evaluation of the LWP
time series is performed for the domain scale.

Figure 5 shows the time series of the in-cloud averaged LWP,
the CF and the area-average LWP, again for the native resolution
of MSG, ICON-LEM and COSMO-DE and for COSMO-DE
and ICON-LEM also coarse-grained. In contrast to the LWP
frequency distribution, the ICON-LEM C(156 m → 7 km) time
series is in a much better agreement with MSG than with COSMO-
DE C(2.8 km → 5.6 km). However, the upper quartile range is
substantially higher, in both the native and the coarse-grained
ICON-LEM distribution, which is also supported by Figure 4. The
MSG retrieval indicates an artifact around 1400 UTC which is
most likely caused by a particular scattering angle of∼135◦ around
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(a)

(b)

(c)

Figure 5. Time series of (a) the in-cloud LWP, (b) the CF and (c) the domain-
scale average LWP retrieved by MSG (black), and simulated by ICON-LEM
O(156 m) (cyan), ICON-LEM C(156 m → 7 km) (blue) and COSMO-DE
O(2.8 km) (orange) and COSMO-DE C(2.8 km → 5.6 km) (red). The in-
cloud LWP errorbars represent the interquartile range, CF errorbars
indicate the sensitivity of the CF on the LWP threshold of LWP>1 g m−2

(marker) and LWP>5 g m−2 (lower range). [Colour figure can be viewed at
wileyonlinelibrary.com].

the cloudbow caused by liquid water droplets (Cho et al., 2015).
In conclusion, this shows that also the time series of quartile values
of the in-cloud LWP is very sensitive to the spatial resolution.

This resolution sensitivity can be perfectly demonstrated
with the time series of the CF (Figure 5(b)). Understanding
the sensitivities and changes in CF is very important for
climate projections, but a reliable comparison between satellite
observations and model results of the CF is challenging due to
different aspects. Due to the detection sensitivity, MSG basically
excludes thin clouds with a LWP lower than 1 g m−2. A cloud
mask filter is consequently applied to the ICON-LEM, COSMO-
DE and MSG cloud fields, defining LWP pixels above 1 g m−2 as
cloudy, otherwise as cloud-free. The CF is also sensitive to the
LWP threshold which is applied for the CF in our study. We
therefore show the CF for LWP>1 g m−2 and LWP>5 g m−2 in
the present study.

Figure 5(b) shows that observed convective CF increases from
∼ 8% in the morning hours to a peak around 20% between
1300 and 1400 UTC. The simulated CFs at native model
resolution, which peak at 5% (9%) for ICON-LEM (COSMO-
DE), are significantly increased by coarse-graining. COSMO-DE
still remains below the observational level whereas ICON-LEM
slightly overestimates the peak values in the early afternoon. Both
simulations, but especially coarse-grained ICON-LEM, exhibit
an overestimation of the diurnal amplitude of convective CF.

Figure 6. Sketch of the projected location of a cloud on the surface, seen from
nadir perspective (blue) and from geostationary satellite perspective with a satellite
zenith angle of 60◦ (grey). [Colour figure can be viewed at wileyonlinelibrary.com].

However, the timing of the CF peaks seems to be in better
agreement for ICON-LEM and MSG. In the late afternoon, the
simulations and observation display a decreasing CF, which is
likely attributable to dissolving clouds or phase transition into ice
clouds due to cloud deepening. (Senf et al., 2015).

Figures 5(a) and (b) clearly demonstrate a sensitivity to
the spatial resolution, which affects the comparison between
observations and models. Figure 5(c) presents the area-averaged
LWP, which combines the in-cloud LWP and the CF and gives
information about the total liquid water amount within the
domain. Now the effect of the spatial resolution is eliminated,
only the cloud bow artifact in the MSG retrieval is still apparent.
A better agreement is found between ICON-LEM and MSG than
for the COSMO-DE LWP which significantly underestimates
the total amount of liquid water. From a budget point of view,
the efficiency of the liquid water production of water vapour is
significantly increased when going from convection-permitting
scales of COSMO-DE to very high resolution of ICON-LEM
(Baldauf et al., 2011). This increase goes even beyond the
observational values leading to an overestimation of simulated
convectively generated liquid water.

In conclusion, this analysis demonstrates that higher-
resolution simulations are able to reduce biases in liquid cloud
properties that show up in the coarser convection-permitting
simulations. An overcorrection seems to happen in which the
negative bias in convective CF and total liquid water amount
changes into a positive bias in the high-resolution runs.

3.3. Cloud aspect ratio and viewing geometry

A further important aspect that can influence the CF, but has
not been discussed so far in this study, is the cloud aspect
ratio, which leads to CF uncertainties due to the slanted viewing
geometry of MSG. Due to the position of MSG in the geostationary
orbit, observations over Central Europe are performed at high
satellite viewing angles between 45◦ and 65◦. This oblique viewing
perspective leads to three-dimensional radiative interactions
between cloud edges that are not considered in current one-
dimensional cloud retrievals (Várnai and Marshak, 2007). That
the viewing geometry also influences the CF and causes high
uncertainties in data record of the average cloudiness has already
been studied by Evan et al. (2007).

Figure 6 contrasts the projected location of a cloud over
Germany, seen from nadir and from geostationary satellite view
under a zenith viewing angle θ of 60◦. When clouds of a
certain height h are viewed from space by zenith angle θ and
azimuth angle φ, an apparent northward shift �y ≈ h tan θ , the
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Figure 7. (a) Frequency distribution of the CF enhancement factor on a local scale for 62×62 km2 ICON-LEM O(156 m) warm convective cloud fields and
coarse-grained. (b) CF enhancement factor due to artificial oblique viewing geometry applied to ICON-LEM O(156 m) cloud fields in relation to the cloud aspect
ratio for a 60◦ satellite zenith angle. The solid dark red line indicates the linear regression with slope a and correlation coefficient r2. The dashed lines represent the
theoretical curves for varying zenith angle, (c) is the CF enhancement factor frequency for 60◦. [Colour figure can be viewed at wileyonlinelibrary.com].

so-called parallax shift, happens (e.g. Kostka et al., 2014, gives
further discussion). We use this relation and apply an artificial
viewing angle to the ICON-LEM cloud fields to imitate a satellite
instrument that observes the simulated cloud field from the
geostationary orbit. Since the longitude position of the satellite
(9.5◦) lies in our ICON-LEM domain, we furthermore neglect
shifts in the longitude direction. From Figure 6, an increased
cloud diameter and corresponding cloud area is calculated. The
gain in cloud area is given by CAR tan θ , where the cloud aspect
ratio CAR is defined as cloud geometrical thickness divided by
the cloud diameter. Furthermore, we account for the overlap of
closely located cloud towers.

The enhancement factor of CF is plotted in Figure 7 for the
set of local-scale cloud scenes. It represents the change in coarse-
grained convective CF relative to the initial CF of the cloud field
at 156 m spatial resolution. The viewing geometry effect causes
CF enhancement factors of 1.2–1.4 for the ICON-LEMO(156 m)
cloud fields. This effect appears small in comparison to the CF
enhancement, supported by Figure 5(b). Figure 7(a) quantifies
the increase in the CF for the same convective cloud fields as
in Figure 7(b), but as the result of decreasing spatial resolution
due to coarse-graining. This CF enhancement already exceeds
at C(156 m → 1250 m) the viewing geometry CF enhancement,
which demonstrates that coarse-graining to 7 km substantially
predominates over the influence of the viewing geometry. One
should note that Figure 7(b) is only shown for ICON-LEM
O(156 m) and not for any coarser resolution, because coarse-
graining is only done in the horizontal direction. This would
result in considerably lower aspect ratios, which most likely lead
to smaller CF enhancement factors.

One uncertainty, which we cannot account for, is the aspect
ratio. The mean aspect ratio for all local-scale cloud scenes is
0.2, ranging from 0.1 to 0.27. These values only overlap at the
lower end of aspect ratios calculated in (e.g.) Benner and Curry
(1998) or Kassianov et al. (2005), who found values between 0.2
and 1. Therefore, ICON-LEM aspect ratios seem to be slightly
too small, which might be caused by numerical diffusion at the
scale of the effective resolution. We also suggest that the ratio
between vertical and horizontal grid box size might influence
the distribution of cloud aspect ratios. Uncertainties in the cloud
aspect ratios can cause high uncertainties in the representation
of cloud radiation interactions. Han and Ellingson (1999) found
a strong influence of the estimated cloud aspect ratios on results

in the long-wave radiation transfer calculations. Furthermore,
adiabaticity of convective clouds and hence the liquid water
distribution depends on cloud geometrical thickness (Merk et al.,
2016). The CF strongly increases for increasing aspect ratios and
is even higher for higher zenith angles (Figure 7(b)). The highest
CF enhancement appears for low CF between 0.1 and 0.2, which
is consistent with results from Minnis (1989). The MSG retrieval
gives reliable information neither about the cloud thickness nor
the cloud-base height. Analysis of data from active satellite sensors
can help to better evaluate the aspect ratios, however this goes far
beyond our study focus.

In summary, coarse-graining the ICON-LEM cloud fields
to MSG resolution dominates the CF enhancement factor in
comparison to the viewing angle effect. Although the latter effect
seems to be rather weak in the present study, it needs to be
carefully considered for deeper convective clouds and long-term
global trends of CF from different satellite instruments (Evan
et al., 2007).

3.4. Cloud size distribution

For evaluation of ICON-LEM cloud size distributions and the
investigation of their resolution sensitivity, a binary cloud mask
is generated by applying a 1 g m−2 threshold to the domain-scale
LWP fields. From this cloud mask, connected cloud regions are
labelled using a connectivity clustering method. For each cloud
object, an area-equivalent diameter is calculated. The relative
occurrence frequencies of the number of cloud objects within a
certain size range are divided by the domain area which results
in the unit km−3. Note that the normalization of the resulting
density functions was performed with respect to equidistant size
ranges to be comparable with the studies of Heus and Seifert
(2013) and Heinze et al. (2016), even though we present our
cloud size distributions in log space.

Figure 8 shows the frequency distribution n(L) of clouds with a
given cloud size L. Different studies show that a power law is the
most appropriate way to fit the horizontal cloud size distribution
(Benner and Curry, 1998; Zhao and Di Girolamo, 2007; Wood
and Field, 2011). We calculate the power law exponent as the
slope of the least squares fit to the data in logarithmic space.

The frequency distribution of cloud sizes is well represented
by a power law with exponent β ranging from −2.3 to −3.2.
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(a) (b)

Figure 8. Domain-scale frequency distribution for cloud sizes (a) simulated by ICON-LEM and (b) observed by Meteosat (dark red), the Meteosat HRV mask
(orange) and MODIS (green) and simulated by COSMO-DE (red) on 25 April 2013. The native ICON-LEM curves are shown as solid lines, and the coarse-grained
distributions are additionally marked by filled circles. Linear regressions of the size distributions between different size ranges are indicated by dashed lines which can
be described by the power law with exponent β. The standard error of the linear regression is ∼0.1 for the original ICON-LEM distributions, ∼0.15 for MSG, MODIS,
MSG-HRV mask and COSMO-DE and ∼0.3 for the coarse-grained ICON-LEM functions. [Colour figure can be viewed at wileyonlinelibrary.com].

Exponents between −2.3 and −2.7 are found for the coarse-
grained fields and MSG, whereas a somewhat steeper decline
with exponents between −2.9 and −3.2 is obtained for higher-
resolution cloud fields. However, the power laws only show
a moderate resolution sensitivity, which is consistent with a
study by Wood and Field (2011), who demonstrated that sensor
resolution is not found to strongly influence the power law. Koren
et al. (2008) investigated the resolution sensitivity of the cloud size
distribution by comparing Landsat and MODIS data with 30 m
and 1 km spatial resolution, respectively. They concluded that, at
any spatial resolution, a substantial number of small clouds are
missed and that clouds below the sensor detection limit are more
numerous than the detectable ones.

The ICON-LEM power law range between −2.9 and −3.2 is
consistent with power laws obtained in a LES study by Heus
and Seifert (2013) who found −2.2 to −2.9. Heinze et al. (2016)
calculated MODIS-like ICON-LEM satellite images based on a
fast radiative transfer method (Scheck et al., 2016) for calculating
the distribution of cloud sizes from the visible images, resulting
in β = −3.1.

Using the Meteosat HRV mask for the object-based analysis
yields an exponent of β = −3.05, which is also in a excellent
agreement with the ICON-LEM slopes. Considering the fit
standard errors of 0.1–0.3, the coarse-grained power laws
remain consistent with other satellite-based studies like Zhao
and Di Girolamo (2007), who estimated β = −2.85. Due to the
relatively small number of data points for the COSMO-DE, MSG
and coarse-grained ICON-LEM fits, these power laws should be
interpreted with caution.

While the parameters of the fitted power laws show just
a moderate resolution sensitivity, the ICON-LEM distributions
start to strongly deviate from the power laws for sizes smaller than
1.4 km, 2.5 km and 4.3 km for ICON-LEMO(156 m), ICON-LEM
O(312 m) and ICON-LEM O(625 m), respectively. These cloud
sizes are in the range of the effective model resolution, which is
about 8–10 times the native grid resolution (Zängl et al., 2015).
Consequently, ICON-LEM suppresses clouds that are smaller
than this effective resolution. This clearly has implications for
the planning of high-resolution simulations of cloud processes:
if a reliable description of cloud and precipitation processes at
a 1 km scale is targeted, than the native model resolution has to

be chosen to be 156 m or higher to avoid the impact of artificial
numerical smoothing.

3.5. Decorrelation length- and time-scales

We follow the methodology of Bley et al. (2016) and investigate
the decorrelation scales and their resolution sensitivity in ICON-
LEM warm convective cloud fields. Based on MSG observations,
Bley et al. (2016) estimated the average cloud lifetime of warm
convective clouds by approaching a Lagrangian perspective.
In the present study, simulated warm convective cloud fields
are analyzed in a similar way. A set of ten local-scale cloud
scenes are analyzed. The decorrelation length is calculated for
a horizontal displacement of a box at constant time. The
Lagrangian decorrelation time is calculated along the trajectory,
while the Eulerian decorrelation time is obtained for a constant
location. While the Lagrangian decorrelation time is expected to
be generally larger than the Eulerian decorrelation time, the latter
is also beneficial to estimate the impact of advective processes
onto the local decorrelation behaviour.

Figure 9 shows the decorrelation length, Eulerian decorrelation
time and Lagrangian decorrelation time as averages of ten
ICON-LEM and COSMO-DE fields of warm convective clouds
in relation to the reciprocal horizontal resolution. The black
diamonds illustrate the MSG scales obtained by Bley et al. (2016).
Two red diamonds show the COSMO-DE decorrelation lengths
for its original 2.8 km and coarse-grained 5.6 km resolution,
but no decorrelation time scales were calculated due to its
coarse temporal sampling of 15 min, which does not allow the
determination of reliable cloud field tracks (Bley et al., 2016).

An excellent agreement is found between the observed and the
ICON-LEM C(7 km) scales within the error range. The spatial
decorrelation scales of COSMO-DE O(2.8 km) and COSMO-DE
C(5.6 km) also match well with the ICON-LEM scales within the
respective reciprocal resolution. In contrast, ICON-LEM cloud
fields at 156 m resolution exhibit substantially lower decorrelation
lengths of 1 km and Lagrangian decorrelation times of 10 min.
This result also demonstrates a high amount of unresolved
cloud variability in the coarse-grained ICON-LEM and MSG
cloud fields, which causes the high-resolution sensitivity of the
decorrelation scales.
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Figure 9. (a) Spatial decorrelation length and (b) Eulerian and (c) Lagrangian decorrelation times in relation to the reciprocal horizontal resolution of simulations
from ICON-LEM O(156 m) (yellow), O(312 m) (blue) and O(625 m) (green), COSMO-DE (red) and observations by MSG (black) of warm convective cloud fields
on a local scale averaged over ten 62×62 km2 LWP fields. The large circles represent the ICON-LEM scales for their native resolution, and smaller circles indicate the
coarse-grained ICON-LEM scales. The vertical error bars indicate the standard deviation between the different cases for ICON-LEM, COSMO-DE and MSG. [Colour
figure can be viewed at wileyonlinelibrary.com].

Bley et al. (2016) found average spatial decorrelation scales of
7 km and Lagrangian decorrelation times of 30 min. It was further
shown that the decorrelation scales start to decrease when the HRV
channel with 1×2 km2 resolution is utilized. The metrics which
are presented here for characterizing the decorrelation scales
give the opportunity to understand more clearly the resolution
sensitivity of decorrelation scales.

The ICON-LEM cloud fields of 156, 312 and 625 m native
resolution attain similar decorrelation scales between 4 and 7 km
spatial resolution. At higher spatial resolution, they start to deviate
from each other. Consequently, and similar to the distribution
of cloud sizes (Figure 8), the decorrelation scales below the
effective model resolution are not fully resolved. The Lagrangian
decorrelation times exhibit the highest deviations between the
different ICON-LEM runs, which is caused by uncertainties in
the tracking. Thus, an accurate tracking is necessary to study
warm convective cloud fields in a Lagrangian reference frame.
An extrapolation of the resolution dependency of considered
decorrelation scales beyond the effective model resolution is not
physically meaningful. This also holds true for all other considered
metrics.

With the MSG SEVIRI rapid scan, we are able to characterize
the changes in convective cloud fields with an update frequency
of 5 min, which is sufficient for its spatial resolution. The
biggest limit of MSG is the spatial resolution, which leads to a
substantial overestimation of the CF and decorrelation scales and
underestimation of the LWP. The future generation of European
geostationary satellites, the Meteosat Third Generation, will give
great opportunity to bring down these limits to a spatial resolution
of 1 km or even 500 m for selected channels (Stuhlmann et al.,
2005). The analyzed scaling behaviour of Figure 9 suggests the
conclusion that the planned temporal update frequency of 10 min
for the operational scan schedule and 2.5 min for the rapid scan
are still sufficient to thoroughly characterize the decorrelation
properties, including an estimate of the cloud lifetime, of
convective cloud fields at the corresponding spatial scales.

4. Summary and conclusions

In the present study, several metrics have been investigated to
evaluate the representation of convective clouds in the high-
resolution atmospheric model ICON-LEM with observations
from the geostationary Meteosat SEVIRI instrument. ICON-
LEM simulations covering a large domain at 156 m grid resolution

and containing convective cloud fields have been analyzed and
compared to Meteosat observations and simulations with the
COSMO-DE model. A variety of metrics including the time series
of convective cloud fraction and LWP, the frequency distributions
of LWP and cloud size, and the spatial and temporal decorrelation
length-scales, have been considered. Using the cloud fields at three
ICON-LEM native grid resolutions and after coarse-graining, the
sensitivity of these metrics to the spatial resolution of the model
and the observations has also been quantified.

The evaluation is performed on two types of cloud scenes:
the one defined on the domain scale and including a variety of
local conditions and the other one defined on the local scale
following a convective cloud field during its temporal evolution
in a Lagrangian perspective. For the latter, a set of ten cloud
cases was collected with areal coverage of 62×62 km2. Cloud
fields containing ice have been excluded to avoid complications
caused by mixed-phase and precipitating clouds. We have further
imposed an upper limit on the CF for the simulated cloud fields,
to focus on broken convective cloud fields with a high degree of
spatial inhomogeneity.

On a domain scale, we analyzed the spatial and temporal
LWP and convective CF distribution as well as the cloud size
distributions of convective cloud fields. On the local scale, spatio-
temporal statistics of simulated cloud fields are compared to MSG
observations. Sequences of LWP fields from ICON-LEM with a
1 min repeat cycle have been used to determine cloud field tracks
to evaluate along-track correlation statistics and to study the
resolution sensitivity on these scales. For this issue, ICON-LEM
is gradually coarse-grained to the MSG resolution.

The main results are summarized as follows:

(i) The coarse-grained ICON-LEM fields show improvements
in the representation of the frequency distribution of
the LWP, convective CF and cloud sizes compared to
convection-permitting simulations of COSMO-DE.

(ii) A substantial resolution sensitivity is found for the
convective CF, in-cloud LWP and decorrelation scales.
However, the power laws of the cloud size distribution
exhibit only a moderate resolution sensitivity. The different
metrics show that the spatial resolution needs to be
considered to avoid the interpretation of non-physical
differences that are attributable to the different resolutions.
One could alternatively compare time series of the LWP
on a domain average which substantially reduces the
resolution sensitivity.
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(iii) The results suggest that Meteosat is mainly limited by
its spatial resolution, which is much coarser than the
decorrelation length-scales. Due to its coarse spatial
resolution, a lot of the small-scale LWP variability remains
unresolved, which causes large uncertainties. If the spatial
resolution of a satellite instrument were highly increased,
the temporal resolution needs also to be increased, to
allow an accurate characterization of the spatio-temporal
behaviour.

Because the present study is based on a selection of only ten
cases obtained from four days of simulations, it remains unclear
whether our results are statistically robust and representative,
in particular for other synoptic conditions. Nevertheless, the
methodology presented here can serve as an example for future
studies aimed at evaluating the representation of convective
clouds in high-resolution models. A larger number of simulation
days will allow us to verify the robustness of our results. To
address this point, it is planned to carry out more ICON-LEM
runs over Germany and over the Atlantic Ocean within the second
phase of the HD(CP)2 project.

In terms of comparability, forward satellite simulators using
ICON-LEM cloud properties will be important to account for
inconsistencies between assumptions made in satellite retrievals
and simulations of convective clouds. Such simulators will also
improve the quantification of retrieval sensitivities at very small or
large LWP values. As soon as the implementation of the absorbing
1.6 μ m channel in the satellite forward operator is finished, it will
become possible to apply the LWP retrieval algorithm on model
data and thus to investigate such inconsistencies and sensitivities.

The intercomparison of observations and high-resolution
model output demonstrates that Meteosat SEVIRI observations
are limited by the sensor spatial resolution in the rapid scan
mode. If the spatial resolution were highly increased to 500 m or
even 100 m, an enhancement of the temporal resolution would
be required also, in order to consider rapid changes of convective
clouds and to calculate accurate cloud field tracks. In 2020, six new
satellites from the Meteosat Third Generation will be launched,
which will have operational scans down to 500 m resolution
(Stuhlmann et al., 2005).

Recent atmospheric models are still unable to fully resolve
convective cloud processes in particular for large-domain
simulations. This study demonstrates that even ICON-LEM with
a native resolution of O(156 m) is not able to fully resolve the
spatio-temporal variability of convective clouds in the so-called
grey zone as power spectra are indicating (Dorrestijn et al.,
2012). The effective model resolution has implications for the
planning of high-resolution simulations, where cloud processes
on a 1 km scale need to be simulated at 150 m grid size or less. The
insights gained here into the scaling behaviour at different model
resolutions can help to improve stochastic parametrizations of
cumulus convection in future modelling studies, and to better
compare observational datasets and model results with different
resolutions. Additionally, there is still a great step to go towards
a large-domain observational dataset with a similar spatial and
temporal resolution like ICON-LEM. Using data from the HRV
channel with 1 km spatial and 5 min temporal resolution has
already demonstrated a reduction in the tracking uncertainties
(Bley et al., 2016). The authors are currently developing an
extension of the cloud property retrieval to the high resolution of
Meteosat.
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5 Summary and Conclusions

The overall goal of the present thesis was an in-depth investigation of the

spatiotemporal characteristics of convective cloud fields with the Spinning Enhanced

Visible and Infrared Imager (SEVIRI) on-board the geostationary Meteosat satellite

and its applicability towards model evaluation. The high resolution visible channel of

SEVIRI was considered to improve the representation of small-scale convective cloud

features, like their horizontal dimensions and their temporal evolution. The achieved

techniques and findings were finally applied to high resolution model simulations to

investigate the spatiotemporal characteristics of warm convective cloud fields across

different spatial scales to advance our understanding of the effects of small-scale cloud

processes. Towards this goal, we studied several metrics for comparing these high

resolution model results with comparatively coarsely resolved satellite observations.

The simulations of convective clouds are based on the ICON-LEM model, which was

developed within the High Definition Clouds and Precipitation for Climate Prediction

(HD(CP)2) project (Dipankar et al., 2015; Heinze et al., 2017). The simulations were

conducted on different grid resolutions between 156 m and 625 m for the whole of

Germany. The sensitivity of the studied metrics on the spatial resolution was

quantified. The scaling behavior at a variety of spatial scales demonstrates new

insights into the uncertainties of retrieved cloud properties and the current sensor

limitations of Meteosat SEVIRI.

The main results of this thesis referring to the research questions formulated in

section 1.5

1. How can we improve the representation of small-scale convective clouds using

Meteosat observations?

2. What are suitable metrics for evaluating high resolution model simulations with

relatively coarsely resolved satellite observations?

3. How sensitive are the spatiotemporal characteristics of convective cloud fields to

the spatial resolution of a sensor or a model?
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4. How can uncertainties of retrieved cloud properties and the instrumental

limitations of MSG SEVIRI be quantified and which improvements are expected

with respect to upcoming satellite missions?

are summarized as follows:

1. The high resolution visible channel was used to develop a cloud mask with an

enhanced spatial resolution from 3×6 km2 to 1×2 km2 compared to the

operational cloud mask. Suitable techniques were investigated to improve the

representation of small-scale convective clouds and to further increase the

resolution of retrieved convective cloud properties. The HRV mask identifies a

ratio of 16 % of the operational cloudy pixel as fractional clouds on average.

2. The frequency distribution of the LWP, cloud size distribution and

spatiotemporal scales were characterized across different spatial scales, ranging

from the comparatively coarse satellite resolution to high model resolution. A

sophisticated tracking algorithm was developed to quantify the convective and

advective changes, which influence the evolution of warm convective cloud fields.

The simulated spatiotemporal scales, however, had to be coarse-grained to the

optical resolution of Meteosat to enable an appropriate evaluation and ensure

comparability.

3. The investigated metrics reveal a pronounced sensitivity to the spatial model

and satellite sensor resolution. The scaling behavior of the spatiotemporal

characteristics and the cloud size distribution of the simulations indicates the

effective resolution of the ICON-LEM model, which is 8–10 times the native

model grid resolution.

4. The gained insights into the sensitivity of the spatiotemporal characteristics on

the spatial resolution indicate that an increase of the spatial resolution to 1 km

or even 500 m would be desirable for the Meteosat cloud properties, to better

quantify the small-scale variability of convective clouds. This range will be covered

by Meteosat Third Generation (MTG) and highlights the great opportunity to

improve the observations of convective clouds once the new series of satellites is

launched in 2021.

In the first study presented here (Bley and Deneke, 2013), a threshold-based cloud

mask was developed for the high resolution visible (HRV) channel of Meteosat SEVIRI

to improve the identification of small-scale convective clouds. It has an enhanced spatial

resolution of 1×2 km2 in comparison to the operational cloud mask with 3×6 km2
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resolution, and accounts for inhomogeneities in the land surface reflectance by using

clear-sky reflectance composites from temporally averaged clear-sky images. These

composites are considered as input for an iterative algorithm to reduce the overlap

in the histograms of the clear-sky and cloudy reflectances, and thus to optimize the

threshold relative to the underlying surface reflectance. The study finally shows that the

HRV channel offers important sub-pixel information for the remaining low-resolution

channels, and substantially improves the identification of low-level convective clouds

which was exemplarily shown over the Upper Rhine Valley. This region was chosen as

one of the case studies, because it is characterized by a high frequency of orographically

induced convective clouds. On average over all case studies, 16 % of the pixels which are

classified as cloudy by the operational EUMETSAT cloud mask correspond to fractional

clouds in the HRV cloud mask. This fraction increases up to 20 % over the Upper

Rhine Valley. The results indicate that the HRV cloud mask performs very reliably in

cloudy conditions and misses only 10 % of the cloudy pixels which are attributable to

thin cirrus clouds. These thin cirrus cloud misses were, however, restored in the HRV

cloud mask.

This HRV mask together with high resolution clear sky reflectance composites is part

of our wider effort to extend the cloud physical property retrieval (Roebeling et al.,

2006) to the high spatial resolution which has been already performed for the cloud

optical thickness (Carbajal Henken et al., 2011). The higher spatial resolution will

reduce the cloud property uncertainties due to the plane-parallel albedo bias which has

a substantial impact for fractional cumulus clouds (e.g., Wolters et al., 2010; Marshak

et al., 2006). These uncertainties also depend on the viewing geometry, which can

introduce further complications (Horváth et al., 2014). Mecikalski et al. (2013) used

the HRV channel to sharpen infrared pixels to improve the estimation of the cloud top

temperature and height. They reported a strong influence of the fractional cloudiness

on the estimation of the cloud top temperature, especially for small sub-pixel cloud

fractions. A recent study by Zhang et al. (2016) used a framework of synthetic cloud

fields from a LES simulation together with MODIS observations to investigate the

influence of the unresolved reflectance variations on the τ and re retrieval based on a

bispectral method. They summarized that the unresolved reflectance variability in low

resolution satellite observations mainly causes a positive bias in the retrieval of re. The

HRV channel contains valuable information about these reflectance variations and, is

thus also used in Senf et al. (2015) for improving the tracking and characterization of

convective storms.

The subject of the second study (Bley et al., 2016) was to characterize the

spatiotemporal evolution of warm convective cloud fields with Meteosat SEVIRI over
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Central Europe. Solar reflectances have been used together with cloud products (cloud

optical thickness, droplet effective radius, liquid water path, droplet number

concentration and HRV cloud mask) to investigate spatiotemporal decorrelation scales

in an Eulerian and a Lagrangian reference frame. For the latter, a tracking algorithm

was applied to sequential satellite images from the HRV channel. The decorrelation

scales represent a change of the spatial and temporal coherence of the horizontal cloud

field structure, while the Lagrangian decorrelation time is assumed as average cloud

life time. Results obtained with the HRV channel at high spatial resolution

(1.2×2 km2) and SEVIRI’s standard resolution (3.6×6 km2) indicate a high sensitivity

to the spatial resolution, which is most likely due to small-scale variability in cloud

structures which decorrelate much faster than large-scale cloud features. Besides this

resolution sensitivity, the 0.6 µm reflectance fields reveal explicitly higher

decorrelation times than the 0.8 µm-channel, because the latter is highly sensitive to

variations in the underlying surface reflectance, which also influence the tracking

accuracy. The spatial pattern of τ as well as LWP shows, however, similar

decorrelation scales like the 0.6 µm reflectance. The LWP has been used for the main

analysis, because it is a quantity that facilitates a process-based interpretation and

allows direct comparison with atmospheric models. For all cases, a Lagrangian

decorrelation time of 31 min and a spatial decorrelation length scale of 7 km is found.

As expected, the warm convective cloud fields decorrelate much faster in an Eulerian

reference frame, because of the decorrelation by the horizontal advection, which can

be most likely neglected when adopting the Lagrangian perspective. Slobodda et al.

(2015) considered the spatial decorrelation length as an indicator for the

representativeness of a point measurement for its surrounding. They found similar

decorrelation scales with smaller values for the solar channels, which correspond to the

cloud microphysical properties, compared to the infrared channels.

Several sources of uncertainties have been identified for the calculated spatiotemporal

characteristics, which are basically attributable to the limited spatial resolution of

Meteosat. To overcome these limitations, the HRV channel was already used in a

study by Carbajal Henken et al. (2011). Madhavan et al. (2017) investigated the

spatiotemporal variability in global radiation measurements for varying length scales

ranging from 100 m to 10 km and averaging time scales below 1 min. A network

of 99 pyranometers was used to measure the global radiation with a high frequency.

Their results also show a significant decrease of the spatiotemporal correlation for all

considered frequencies, especially in situations with broken clouds.

To deepen our understanding of small-scale convective cloud variability, which can be

only coarsely covered by current Meteosat observations, we need realistic simulations of
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convective clouds at a high spatial resolution and for a large domain. Such simulations

can also serve as reference for upcoming geostationary satellite missions like MTG with

substantially enhanced spatial resolution compared to MSG (Stuhlmann et al., 2005).

Furthermore, reliable metrics are required to exploit current Meteosat observations for

model evaluation and for the development of parameterizations in GCMs.

The third study (Bley et al., 2017) builds on the methods developed in Bley et al.

(2016) and proposes metrics for the evaluation of simulated convective cloud fields in a

large eddy simulation. Several metrics are investigated in order to compare simulated

convective cloud field characteristics from high resolution models with comparatively

coarse resolution Meteosat observations and model results from the German operational

model COSMO-DE. At a very fine spatial scale of 156 m, the simulations show a higher

frequency of large LWP values with a factor of two to four smaller convective cloud

fractions. Also the Lagrangian decorrelation time falls from 30 min to 10 min for an

increase in the spatial resolution from 7 km to 1 km. Coarse graining of the simulated

fields removes most of the differences between the observations and the simulations.

It was shown that the effect of the oblique viewing geometry of Meteosat has only

a comparatively minor influence on the convective cloud fraction compared to the

resolution sensitivity, and can thus be neglected. The distribution of the cloud sizes

can be represented by a power law and compares well between the observation and

simulations. This power law is consistent across the different spatial scales, indicating

a scale invariant metric, while all other investigated metrics show a high resolution

sensitivity. The power law, however, shows a lower limit for the simulated cloud

sizes that is in the range of 8–10 times the native model resolution which most likely

corresponds to the effective resolution of the ICON-LEM model. This implies that

simulations with a least 156 m grid resolution are required in order to resolve spatial

cloud structures of 1 km. Barthlott and Hoose (2015) recently conducted simulations

with the COSMO-DE model at grid resolutions between 2.8 km and 250 m, to investigate

how the spatial resolution of the model influences the representation of convective clouds.

They found that several meteorological processes, especially in the planetary boundary

layer, show a strong resolution sensitivity. Furthermore, an effective grid resolution of

6–7 times the native resolution of COSMO-DE is inferred. In conclusion, they state

that numerical simulations with a higher grid resolution of up to 100 m are desirable

to improve the representation of boundary layer cloud processes.
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6 Outlook

The results presented in this thesis demonstrate a significant sensitivity of most of the

investigated metrics on the spatial resolution. This implies that the spatial resolution

of a simulation or an observation needs to be carefully considered to avoid a

nonphysical interpretation of the results in such a model evaluation. Beyond this

resolution sensitivity, this study also quantifies several cloud field characteristics at

varying spatial resolutions and the effect of satellite or model limitations. The scaling

behavior at different model resolutions will further help to improve stochastic

parameterizations of cumulus convection.

Determination of cloud radiative effects, especially in convective situations, remains

highly uncertain due to the spatial variability of the cloud structures. Song et al.

(2016) developed a parameterization to quantify the characteristic spectral signature

of spatial cloud reflectance inhomogeneities. The high resolution cloud mask

developed in this thesis provides important information about the small-scale

fractional cloudiness and will thus help to improve the estimation of cloud radiative

effects in Meteosat observations. It further gives the opportunity to calculate high

temporal and spatial clear sky reflectances which are important for estimations of the

aerosol concentration and for understanding the interaction between aerosol and

convective clouds (Koren et al., 2008). The Meteosat cloud property retrieval of LWP

is, however, still limited to a relatively coarse spatial resolution. An extension of the

cloud property retrieval towards the resolution of the HRV cloud mask, including the

LWP, is currently under development. An example satellite with highly spatially and

temporally resolved measurements is the recently launched Geostationary Operational

Environmental Satellite-R series (GOES-R) satellite, which is now operating over the

USA with a spatial resolution down to 500 m for the visible 0.64 µm-channel and

rapid scans for limited areas with a repeat cycle of 30 sec (Schmit et al., 2005). For

temporally resolved observations over Europe, however, the MSG series currently

represents the state-of-the-art satellites until it will be replaced by Meteosat Third

Generation, which will have similar performance as the GOES-R imager, but

additionally to the 0.6 µm-channel also a near-IR channel at 500 m resolution

(Stuhlmann et al., 2005). This enhanced spatial resolution will significantly improve
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the quantification of indirect aerosol effects by using collocated measurements or

simulations of cloud condensation nuclei (CCN) (Merk et al., 2016). The wide range of

spatial resolutions of observations and simulations has also implications on the

uncertainty estimates of such effects (McComiskey and Feingold, 2012). Uncertainties

in both satellite and model data cause large uncertainties in the quantification of the

indirect aerosol climate forcing (Quaas et al., 2008). To substantially improve our

understanding of aerosol-cloud-precipitation interactions and how they modify cloud

microphysical properties, Rosenfeld et al. (2014) suggest to coordinate a wider effort

using observations and models from process scale (where these interactions occur) to

large scale (where sophisticated parameterizations are required).

Similar approaches as used in the present thesis to increase the spatial resolution of

cloud products by using the high-frequency signal from the HRV channel are essential for

upcoming satellite missions with different sensor resolutions and can be useful precursors

for MTG. Such techniques can be also applied to polar-orbiting instruments with

substantially higher spatial resolution to study unresolved cloud variability in coarser

resolved satellite images. Zhang et al. (2016) used synthetic cloud fields and MODIS

observations to investigate the influence of the unresolved reflectance variations within

satellite pixels on the retrievals of τ and re. They suggested to consider satellite data

from ASTER, which has a much higher resolution than MODIS, leading to substantially

improved texture information about the unresolved cloud variability.

Recent atmospheric models with comparable spatial resolution as ICON-LEM are

still unable to fully resolve cloud processes in the so-called gray zone (Dorrestijn et al.,

2012). Although the model runs on a 156 m grid, it indicates remarkable deficits below

the effective resolution, which was found to be about 1.2 km. The effective model

resolution has implications for the planning of upcoming high resolution simulations.

A further increase in the ICON-LEM model resolution would be desirable in order to

improve the representation of convective clouds below 1 km length scale. Also a larger

number of simulations is required to verify the robustness of the results, especially under

different synoptic conditions. This is already in progress in the second phase of the

HD(CP)2 project. Besides simulations over Germany, additional ICON-LEM runs will

be conducted over the Atlantic Ocean, which will give the opportunity to investigate

spatiotemporal cloud processes over the ocean. It is also shown that a further increase of

the Cloud Physical Properties Retrieval would be desirable, too. The spatial resolution

of the retrieved LWP is still much coarser than the spatial decorrelation scales of

1 km that were calculated for the simulated convective cloud fields. Fortunately, this

resolution range will be captured by the Third Generation of the Meteosat satellites

(Stuhlmann et al., 2005). The scale behavior of the decorrelation analysis indicates that
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if the spatial resolution of the satellite sensor will be highly increased to 500 m or 100 m,

the temporal resolution has to be increased as well. Fortunately, the passive imager

onboard MTG will deliver a visible and a near-IR channel not only at a high spatial

resolution of 500 m, but also with a higher repeat cycle of 2.5 min for the European

Regional Rapid Scan.

Beyond considering the spatial resolution for an appropriate comparison between

satellite retrieved and simulated cloud properties, the different assumptions in

retrieval and model algorithms also represent an important source of uncertainty.

Thus, uncertainties in the estimated cloud properties from satellite observations and

models are not solely due to model and retrieval errors but also due to inconsistencies

in their assumptions. These uncertainties can be quantified by utilizing satellite

simulators. Such simulators apply inverse radiative transfer modeling to simulate

satellite retrievals by considering model results about the sub-grid scale variability of

clouds (Bodas-Salcedo et al., 2011). The pioneering ISCCP simulator is a diagnostic

code that calculates what a satellite would retrieve for synthetic clouds by a given

model output to improve the comparability of climate model output with satellite

data (Klein et al., 2013). Their results demonstrate that simulations by climate

models of the cloud amount, the cloud top pressure and particularly the cloud optical

thickness have significantly improved over the last decade. To consider the spatial

resolution of observations and simulations, these satellite simulators have to take into

account the spatial limitations of the sensor (Quaas et al., 2004). Reverdy et al. (2015)

introduced a Cloud Feedback Model Intercomparison Project Observation Simulator

Package (COSP) for the ATmospheric LIDar (ATLID) instrument onboard the Earth

Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite to evaluate cloud

fraction profiles predicted from GCMs, once EarthCARE is launched.

It should be also noted that passive satellite instruments, particularly on the

geostationary orbit, are not able to provide a complete picture of the dynamical and

microphysical cloud properties. To better understand aerosol-cloud interactions,

Doppler radar instruments which will be operating on EarthCARE will provide better

information about the updrafts and downdrafts of convective clouds complementary to

measurements of the radiation at the same time (Illingworth et al., 2015).

In conclusion, this study emphasizes that a geostationary satellite instrument with a

repeat cycle of at least 1 min and a horizontal resolution of 100 m would be desirable to

substantially improve the characterization of convective clouds and the development of

sophisticated parameterizations for numerical weather prediction and climate models.

Such an observational capacity could contribute towards answering the question: “What
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role does convection play in cloud feedbacks?” which is one of the big challenges of

climate science as formulated by Bony et al. (2015).
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Appendix

A.1 Authors contribution to the three publications

First publication: A threshold-based cloud mask for the high-resolution

visible channel of Meteosat Second Generation SEVIRI

In this publication, I developed the threshold-based HRV cloud mask algorithm,

evaluated the data with the EUMETSAT cloud mask and wrote the manuscript draft.

Moreover, I processed the HRV cloud mask for three years from 2012–2014 using the

newly developed algorithm. Dr. Hartwig Deneke gave the full support, proposed many

valuable suggestions for this study and carried out corrections for this publication.

Second publication: Meteosat-Based Characterization of the

Spatiotemporal Evolution of Warm Convective Cloud Fields over Central

Europe

For this paper, I performed the tracking of the warm convective cloud fields and did

the statistical analysis with the auto-correlation function. For the tracking, I adjusted

the configuration of the high resolution wind product in the NWC SAF software package.

I calculated the wind vectors and collected a case database with warm convective cloud

fields over Central Europe. After a comprehensive analysis I wrote the manuscript draft

with full support and many corrections carried out by Hartwig Deneke and Fabian Senf.

Third publication: Metrics for the evaluation of warm convective cloud

fields in a large eddy simulation with Meteosat images

For this study, I accessed and prepared the data output from the ICON-LEM and

COSMO-DE simulations, which were both conducted in the HD(CP)2 project. Due to

the large model output of several TB per simulation day, it took me quite some time

to cut out the relevant cloud microphysical data and to interpolate it to an equidistant

two-dimensional grid to enable comparability with the satellite observations. In the

next step, I developed a coarse-graining algorithm to average the high resolution model

data to the satellite data and implemented the different metrics in the analysis in

collaboration with Hartwig Deneke and Fabian Senf. Leonhard Scheck supported the

distribution of the simulated cloud sizes and gave many valuable comments. I finally
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wrote the manuscript draft, that was also supported and corrected by Hartwig Deneke

and Fabian Senf.
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Horváth, Á., Seethala, C., and Deneke, H.: View angle dependence of MODIS liquid

water path retrievals in warm oceanic clouds, J. Geophys. Res., 119, 8304–8328, 2014.

Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux,
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Quaas, J., Boucher, O., and Bréon, F.-M.: Aerosol indirect effects in POLDER

satellite data and the Laboratoire de Mtorologie Dynamique-Zoom (LMDZ) general

circulation model, J. Geophys. Res., 109, 2156–2202, 2004.

Quaas, J., Boucher, O., Bellouin, N., and Kinne, S.: Satellite-based estimate of the

direct and indirect aerosol climate forcing, J. Geophys. Res. Atmos., 113, D05 204,

2008.



Bibliography 81

Reverdy, M., Chepfer, H., Donovan, D., Noel, V., Cesana, G., Hoareau, C., Chiriaco,

M., and Bastin, S.: An EarthCARE/ATLID simulator to evaluate cloud description

in climate models, J. Geophys. Res. Atmos., 120, 11,090–11,113, 2015.

Roebeling, R. A., Feijt, A. J., and Stammes, P.: Cloud property retrievals for climate

monitoring: Implications of differences between Spinning Enhanced Visible and

Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution

Radiometer (AVHRR) on NOAA-17, J. Geophys. Res., 111, D20 210, 2006.

Roebeling, R. A., Deneke, H. M., and Feijt, A. J.: Validation of cloud liquid water path

retrievals from SEVIRI using one year of CloudNET observations, J. Appl. Meteor.

Climatol., 47, 206–222, 2008.

Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P.,

Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K. S., Suni,

T., Wagner, T., Wild, M., and Quaas, J.: Global observations of aerosol-cloud-

precipitation-climate interactions, Rev. Geophys., 52, 750–808, 2014.

Rossow, W. B. and Garder, L. C.: Cloud detection using satellite measurements of

infrared and visible radiances for ISCCP, J. Climate, 6, 2341–2369, 1993.

Schiffer, R. and Rossow, W. B.: The International Satellite Cloud Climatology Project

(ISCCP) – The first project of the world climate research programme, Bull. Amer.

Meteor. Soc., 64, 779–784, 1983.

Schlemmer, L. and Hohenegger, C.: The formation of wider and deeper clouds as a

result of cold-pool dynamics, J. Atmos. Sci., 71, 2842–2858, 2014.

Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and Ratier, A.: An

introduction to Meteosat Second Generation (MSG), Bull. Amer. Meteor. Soc., 83,

977–992, 2002.

Schmit, T. J., Gunshor, M. M., Menzel, W. P., Gurka, J. J., Li, J., and Bachmeier,

A. S.: Introducing the next-generation advanced baseline imager on Goes-R, Bull.

Amer. Meteor. Soc., 86, 1079–1096, 2005.

Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Drr, B., Fuchs,

P., Gratzki, A., Hechler, P., Hollmann, R., Johnston, S., Karlsson, K.-G., Manninen,
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Warm convective clouds are highly variable in space and time and cover large areas of the earth
(Turner et al., 2007). Through the transport of energy and moisture, they couple the boundary
layer and the free troposphere. Their bright cloud tops reflect the incoming sunlight which
strongly modulates the atmospheric radiation budget (Trenberth et al., 2009). There is a clear
evidence that the Earth’s climate is changing and that greenhouse gases emitted by human
activity are drastically increasing (Hartmann et al., 2013). It is still not fully understood,
how much the globe will warm exactly and how the climate system will respond to rising
greenhouse gases, particularly the carbon dioxide (CO2) concentration. Because of our lack of
understanding of relevant processes and feedbacks, low-level clouds remain a dominant source
of uncertainty in climate projections (Clement et al., 2009). The realistic representation of
clouds in general circulation models (GCMs) in general, and low-level convective clouds in
particular, remains a fundamental challenge of climate research (Bony et al., 2015). This
difficulty arises in part from the coarse horizontal resolution (∼ 100 km) of GCMs, which
does not allow to resolve individual clouds nor the underlying turbulent, microphysical and
convective processes. Instead, sub-grid scale processes below the model resolution have to
be parameterized. Thus, there is a great need to further investigate the physical processes
of convective clouds to better quantify the uncertainties in satellite observations as well as
atmospheric and climate models.
The overall aim of the present thesis is an in-depth characterization of the spatiotemporal
evolution of convective cloud fields with the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) on-board the geostationary Meteosat Second Generation (MSG) satellite and its
applicability towards model evaluation. While polar-orbiting satellites like MODIS can resolve
finer spatial cloud structures due to their higher spatial resolution, only geostationary satellites
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like Meteosat have the capability to observe and track clouds from their early developing stage
onwards. A further goal is to establish appropriate metrics to evaluate the representation of
convective cloud fields in the high resolution model ICON-LEM and to characterize convective
cloud fields across different spatial scales. This characterization provides complementary
information about the spatial structure and temporal changes of cloud properties, to serve as
finger-print of underlying dynamical and microphysical processes. In addition, information on
the spatial structure of cloud fields as given by the power spectrum are essential to realistically
represent cloud radiative effects in models and observations (Davis et al., 1996).
The main scientific questions for this thesis are formulated as follows:

1. How can we improve the representation of small-scale convective clouds using Meteosat
observations?

2. What are suitable metrics for evaluating high resolution model simulations with
relatively coarsely resolved satellite observations?

3. How sensitive are the spatiotemporal characteristics of convective cloud fields to the
spatial resolution of a sensor or a model?

4. How can uncertainties of retrieved cloud properties and the instrumental limitations
of MSG SEVIRI be quantified and which improvements are expected with respect to
upcoming satellite missions?

Summarizing the results of this thesis, the answers to these questions are formulated as
follows:

1. The high resolution visible channel was used to develop a cloud mask with an enhanced
spatial resolution from 3×6 km2 to 1×2 km2 compared to the operational cloud mask.
Suitable techniques were investigated to improve the representation of small-scale convective
clouds and to further increase the resolution of retrieved convective cloud properties. The
HRV mask identifies a ratio of 16 % of the operational cloudy pixel as fractional clouds on
average.

2. The frequency distribution of the LWP, cloud size distribution and spatiotemporal scales
were characterized across different spatial scales, ranging from the comparatively coarse
satellite resolution to high model resolution. A sophisticated tracking algorithm was
developed to quantify the convective and advective changes, which influence the evolution of
warm convective cloud fields. The simulated spatiotemporal scales, however, had to be
coarse-grained to the optical resolution of Meteosat to enable an appropriate evaluation and
ensure comparability.

3. The investigated metrics reveal a pronounced sensitivity to the spatial model and satellite
sensor resolution. The scaling behavior of the spatiotemporal characteristics and the cloud
size distribution of the simulations indicates the effective resolution of the ICON-LEM
model, which is 8–10 times the native model grid resolution.

4. The gained insights into the sensitivity of the spatiotemporal characteristics on the spatial
resolution indicate that an increase of the spatial resolution to 1 km or even 500 m would be
desirable for the Meteosat cloud properties, to better quantify the small-scale variability of
convective clouds. This range will be covered by Meteosat Third Generation (MTG) and
highlights the great opportunity to improve the observations of convective clouds once the
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new series of satellites is launched in 2021 (Stuhlmann et al., 2005).

In conclusion, this study emphasizes that a geostationary satellite instrument with a repeat
cycle of at least 1 min and a horizontal resolution of 100 m would be desirable to
substantially improve the characterization of convective clouds and the development of
sophisticated parameterizations for numerical weather prediction and climate models. Such
an observational capacity could contribute towards answering the question: “What role does
convection play in cloud feedbacks?” which is one of the big challenges of climate science as
formulated by Bony et al. (2015).
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