
UNIVERSITÄT LEIPZIG
Fakultät für Mathematik und Informatik

Institut für Informatik

Comparison of Concept Learning Algorithms
With Emphasis on Ontology Engineering for the Semantic Web

Diplomarbeit

Leipzig, January 17, 2008

Betreuer:
Prof. Dr. Klaus-Peter Fähnrich
Jens Lehmann

vorgelegt von

Sebastian Hellmann
geb. am: 14.03.1981

Studiengang Informatik

Abstract

In the context of the Semantic Web, ontologies based on Description Logics are gaining more and
more importance for knowledge representation on a large scale. While the need arises for high quality
ontologies with large background knowledge to enable powerful machine reasoning, the acquisition of
such knowledge is only advancing slowly, because of the lack of appropriate tools. Concept learning
algorithms have made a great leap forward and can help to speed up knowledge acquisition in the
form of induced concept descriptions. This work investigated whether concept learning algorithms
have reached a level on which they can produce result that can be used in an ontology engineering
process. Two learning algorithms (YinYang and DL-Learner) are investigated in detail and tested
with benchmarks. A method that enables concept learning on large knowledge bases on a SPARQL
endpoint is presented and the quality of learned concepts is evaluated in a real use case. A proposal
is made to increase the complexity of learned concept descriptions by circumventing the Open World
Assumption of Description Logics.

CONTENTS ii

Contents

1 Introduction and Preliminaries 1

1.1 Semantic Web: Vision, OWL, SPARQL . 1

1.2 Description Logics . 4

1.3 Learning Problem in Description Logics . 7

1.4 DL-Learner Framework . 7

2 Automated Ontology Engineering 8

2.1 Current Problems of Ontology Engineering . 8

2.2 Use Cases and Requirements for Tool-Support . 10

2.3 SPARQL Component . 11

2.3.1 Circumventing the Problem of Reasoning on Large Knowledge Bases 13

2.3.2 Selection of Relevant Information . 13

2.3.3 OWL DL Conversion of SPARQL Results 16

2.3.4 Processing the Results . 18

2.3.5 Semi-automatic Improvement of Background Knowledge 18

3 Comparison of Learning Algorithms 19

3.1 Desired Properties of a Concept Learning Algorithm 19

3.1.1 Solutions within the Training Data (Example Sets) 19

3.1.2 Scaling the Learned Concept Definition on the Test Data 20

3.1.3 Biases of Learning Algorithms . 20

3.1.4 Important Features of a Learning Program 21

3.2 Existing Algorithms . 21

3.2.1 LCSLearn . 21

3.2.2 YinYang . 21

3.2.3 DL-Learner . 26

3.3 Comparison . 31

3.4 Problems of the Open World Assumption . 32

CONTENTS iii

4 Benchmarks 35

4.1 Some Remarks about the Experiments . 36

4.2 Simple Scenarios . 36

4.2.1 Identifying Arches . 36

4.2.2 Trains . 37

4.2.3 Summary . 37

4.3 Predictive Scenarios . 37

4.3.1 Moral Reasoner . 38

4.3.2 Family Benchmark . 39

4.4 Conclusions . 44

5 Creating a Sample Ontology with Learning Support 45

5.1 Creating a Mercedes Benz Car Ontology . 45

5.1.1 Extracting Instances . 46

5.1.2 Creating a Subclass Hierarchy . 48

5.1.3 Identifying Disjoint Classes . 49

5.1.4 Learning Background Knowledge . 50

5.2 Conclusions . 50

6 Related Work 53

7 Summary and Conclusions 54

8 Future Work 55

1 INTRODUCTION AND PRELIMINARIES 1

1 Introduction and Preliminaries

Current advances of the Semantic Web have created many new problems, that need to be solved in
order to fully use the advantages, the Semantic Web Vision of Tim Berners-Lee [9] has to offer. The
standardization of formats is almost concluded and the theoretical foundations are fortified. Basic
tools for editing and viewing of semantically annotated data have matured recently. and applications
are being developed that further use the new possibilities.

One of the major problems that the Semantic Web is currently facing, though, is the lack of structured
knowledge in form of ontologies. Existing data has to be converted to the new standards on a large
scale to match the new paradigm and new ontologies have to be created. A widespread acceptance of
ontologies as a way to represent information has yet not been achieved, which is due to the fact that
ontologies are difficult to create and require a new way of thinking in concepts and graphs. For the
forthcoming of the Semantic Web, applications are needed to ease the creation of ontologies with rich
background knowledge to fully unlock the potential of Tim Berners-Lee’s vision, in which machine
reasoning plays a powerful role.

Concept learning in Description Logics has made major advances and the existing, implemented
algorithms are now at the threshold to become applications that lower the complexity of creating
background knowledge. This work investigates the above mentioned problems and tries to cover all
aspects, that are important to step over that threshold. It not only compares the current approaches to
concept learning, but tries to analyze problems in detail and also provides some solutions.

After the preliminaries in this section, we will identify problems that occur during the creation of
ontologies in Section 2 and how concept learning algorithms can be used to tackle these problems
2.2. We will also give a solution how concept learning can be applied to large knowledge bases in
Section 2.3. Thereafter we will examine the most prominent existing learning algorithms in Section
3 and provide a solution for general problems all approaches still have to overcome (Section 3.4). In
Section 4, the currently implemented algorithms will be compared even closer with benchmarks and
in the end (Section 5), we will give an outlook about how concept learning algorithms can be used in
an ontology creation scenario.

1.1 Semantic Web: Vision, OWL, SPARQL

Since its creation in 1990, the World Wide Web has grown rapidly. This rapid growth comes along
with new problems. The original World Wide Web was designed as a loose, distributed collection of
documents, which are connected through Hyperlinks and can be reached via the Internet. Although
it can be seen as a universal source of information, which is readily accessible by humans, it does
not contain structured information, which can be efficiently analyzed by machines. The best example

1 INTRODUCTION AND PRELIMINARIES 2

for the shortcomings of this design might be a Google search. Google is a highly optimized search
engine with immense resources, yet it only presents a list of links with a short description, which has
to be reviewed manually by the human, who ran the search. A special challenge for humans is also
the correct guessing of keywords that might lead to relevant web pages. In 1998, Tim Berners-Lee
created a document with the title Semantic Web Road Map. We can not find better words to describe
the reasons for and the aim of the Semantic Web and thus prefer to quote the following sentences
from the introduction:

The Web was designed as an information space, with the goal that it should be use-
ful not only for human-human communication, but also that machines would be able to
participate and help. One of the major obstacles to this has been the fact that most infor-
mation on the Web is designed for human consumption, and even if it was derived from
a database with well defined meanings (in at least some terms) for its columns, that the
structure of the data is not evident to a robot browsing the web. Leaving aside the artificial
intelligence problem of training machines to behave like people, the Semantic Web ap-
proach instead develops languages for expressing information in a machine processable
form.

This document gives a road map - a sequence for the incremental introduction of technol-
ogy to take us, step by step, from the Web of today to a Web in which machine reasoning
will be ubiquitous and devastatingly powerful.

Tim Berners-Lee1

In 2001, Berners-Lee et al. further concretized these ideas in his often cited article The Semantic
Web [9]. Now, almost 10 years later, these ideas have taken an even more concrete form and the
standardization of the underlying formats (RDF, SPARQL, OWL) is about to be complete. Figure 1
shows the current architecture of the Semantic Web according to the World Wide Web Consortium
(W3C)2.

We will give a short description of the layers of the Semantic Web in Figure 1, that are the most
important for this work and skip the more basic knowledge like the Resource Description Framework
(RDF)3. These relevant layers include URIs and IRIs, the Web Ontology Language (OWL) and the
SPARQL Protocol and RDF Query Language (SPARQL).

1 http://www.w3.org/DesignIssues/Semantic.html
2http://www.w3c.org
3We refer the reader to http://www.w3.org/2001/sw/ which gives a complete overview of the current Semantic Web

technologies

http://www.w3.org/DesignIssues/Semantic.html
http://www.w3c.org
http://www.w3.org/2001/sw/

1 INTRODUCTION AND PRELIMINARIES 3

Figure 1: Latest "layercake" diagram, taken from http://www.w3.org/2001/sw/ .

URIs and IRIs4 are well-known from the World Wide Web and are used in the Semantic Web as
string representation of objects or resources in general. These objects can be virtually anything from
real existing things like animals to Web pages to categories in a hierarchy or anything else5. They
solve the problem of ambiguity of natural language, because it is possible to distinguish meaning.
The term Jaguar in natural language will always denote both meanings without a given context,
a car or an animal, while the denotational meaning of the two URIs http://www.cars.org/Jaguar and
http://www.zoo.org/Jaguar can have two different meanings, because they are different terms. Without
going further into detail, we just want to mention the commonly used method to abbreviate IRIs (IRIs
can contain Unicode characters, while URIs contain ASCII only). http://www.w3.org/1999/02/22-rdf-
syntax-ns#type for example is normally abbreviated as rdf:type.

4Uniform Resource Identifier and Internationalized Resource Identifier, see http://www.w3.org/Addressing/
5recent proposals try to distinguish real world objects from Web pages with further conventions for URIs, cf.

http://www.w3.org/TR/2007/WD-cooluris-20071217/ on this issue

http://www.w3.org/2001/sw/
http://www.w3.org/Addressing/
http://www.w3.org/TR/2007/WD-cooluris-20071217/

1 INTRODUCTION AND PRELIMINARIES 4

OWL6 has become a W3C Recommendation in February 2004. It is seen as a major technology for
the future implementation of the Semantic Web. It is especially designed to allow shared ontologies
and provide a formal foundation for reasoning. OWL is an extension of XML, RDF and RDF Schema
and facilitates greater machine interpretability for applications. It comprises of three sublanguages
with increasing expressivity. The three sublanguages are: OWL Lite, OWL DL, and OWL Full. Its
vocabulary can be directly related to the formal semantics of Description Logics (cf. Section 1.2), but
is extended to support practical issues like versioning and shared ontologies.

SPARQL7 has become a W3C Candidate Recommendation in June 2007. SPARQL is the most
important query language for RDF data and is developed by the Data Access Working Group of the
W3C. Its syntax is similar to that of SQL and it can be used to query a RDF knowledge base8 with
triple and graph patterns, that contain query variables that are bound to matching RDF Terms (an RDF
Term is a part of a triple). Example 1 shows how a simple query, that retrieves all instances for a class
Person, might look like.

Example 1 (Syntax of a SPARQL query)
The query

SELECT ?instance

WHERE { ?instance a <http://www.example.com/example#Person> }

returns a list of instances that belong to the class Person. "a" is a built-in abbreviation for
<rdf:type>, which is as mentioned above an abbreviation for: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#type>.

1.2 Description Logics

Description Logics is the name for a family of knowledge representation(KR) formalisms. They orig-
inated from semantic networks and frames that did not have formal semantics, which has changed.
The most common representative is ALC (Attribute Language with Complement), which was first
described in [33]. Although Description Logics are less expressive than full first-order logic, they
have certain properties, that admitted them to become a popular knowledge representation formalism,
especially in the context of the Semantic Web. The main advantages are that they usually have decid-
able inference problems and a variable free syntax, which can be easily understood. OWL (especially

6http://www.w3.org/TR/owl-features/
7http://www.w3.org/TR/rdf-sparql-query/
8Note that OWL is compatible with RDF (every OWL knowledge base is a RDF-S knowledge base is a RDF knowledge

base)

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-sparql-query/

1 INTRODUCTION AND PRELIMINARIES 5

the sublanguage OWL DL) is directly based on Description Logics and thus uses the same formal se-
mantics (see below for a mapping). With the increasing popularity of the Semantic Web, the interest
in Description Logics has also increased, which even resulted in the fact that DL knowledge bases are
"nowadays often called ontologies" (as noted by Baader et al. [3]).

Description Logics represent knowledge using objects (also called individuals), concepts and roles,
which correspond to constants, unary predicates and binary predicates in first-order logic. A knowl-
edge base is normally divided in a TBox and an ABox, whereas the TBox introduces the terminol-
ogy and the ABox contains assertions about named individuals based on the terminology. Concepts
can be interpreted as sets of individuals and roles denote binary relationships between individuals.
For completeness, we included the Definition 1 for the syntax of constructing complex concepts and
Definition 2 for the interpretation. Table 1 shows, how the interpretation function can be applied to
complex concept descriptions. The definitions and the table were taken from Lehmann [23].

Definition 1 (syntax of ALC concepts)
Let NR be a set of role names and NC be a set of concept names (NR ∩ NC = ∅). The elements of
the latter set are called atomic concepts. The set of ALC concepts is inductively defined as follows:

1. Each atomic concept is a concept.

2. If C and D are ALC concepts and r ∈ NR a role, then the following are also ALC concepts:

• > (top), ⊥ (bottom)

• C tD (disjunction), C uD (conjunction), ¬C (negation)

• ∀r.C (value/universal restriction), ∃r.C (existential restriction)

Definition 2 (interpretation)
An interpretation I consists of a non-empty interpretation domain ∆I and an interpretation function
·I , which assigns to each A ∈ NC a set AI ⊆ ∆I and to each r ∈ NR a binary relation rI ⊆
∆I ×∆I .

While Baader et al. [5] give an exhaustive description, we will only mention the basic terms we will
use in this work.

Of special importance is the possibility to create concept hierarchies using the subsumption operators
v andw, which play an important role in ontology engineering, since they enable concept hierarchies.
They create a quasi-ordering over the space of concepts, where> is always the most general concept,
while all concepts subsumed by > (C v >) are more specific, see Definition 3.

1 INTRODUCTION AND PRELIMINARIES 6

construct syntax semantics

atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I ×∆I

top concept > ∆I

bottom concept ⊥ ∅
conjunction C uD (C uD)I = CI ∩DI

disjunction C tD (C tD)I = CI ∪DI

negation ¬C (¬C)I = ∆I \ CI

exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI}
value restriction ∀r.C (∀r.C)I = {a | ∀b.(a, b) ∈ rI implies b ∈ CI}

Table 1: ALC semantics

Definition 3 (subsumption, equivalence)
Let C, D be concepts and T a TBox. C is subsumed by D, denoted by C v D, iff for any interpreta-
tion I we have CI ⊆ DI . C is subsumed by D with respect to T (denoted by C vT D)
iff for any model I of T we have CI ⊆ DI .

C is equivalent to D (with respect to T), denoted by C ≡ D (C ≡T D),
iff C v D (C vT D) and D v C (D vT C).

C is strictly subsumed by D (with respect to T), denoted by C @ D (C @T D),
iff C v D (C vT D) and not C ≡ D (C ≡T D).

Basic reasoning tasks, which aim at making implicit knowledge explicit, include, among others, sub-
sumption to verify if one concept is a subconcept of another concept, instance checks to verify if an
individual a is an instance of a concept C w.r.t. an ABox A and retrieval to find all individuals that
belong to a concept C, such that A |= C(a) for all individuals a.

Example 2 The knowledge base K consisting of the TBox T and ABox A (K = {T ,A}) defines
the application domain of a father and his two sons and another man. The TBox defines the vocab-
ulary and the relevant axioms, while the ABox defines extensional facts about the domain.
T = {Male v > , Father = Male u ∃ hasChild.> }
A = {Male (John_Senior) , Male (Peter) , Male (John_Junior1) , Male (John_Junior2) ,
hasChild (John_Senior, John_Junior1), hasChild (John_Senior, John_Junior2) }
Based on the knowledge base, we can infer by reasoning e.g. that John_Senior is a Father and
also that Father is a more specific concept than Male (Father @ Male).

Description Logics adopt the Open World Assumption (OWA), which is different from Negation
as Failure (NAF). Therefore, we can not deduct ∀ hasChild.Male (John_Senior) from the knowl-

1 INTRODUCTION AND PRELIMINARIES 7

edge base in Example 2, because the knowledge base does not explicitly contain the information that
John_Senior only has male children; the knowledge is assumed to be incomplete.

The Web Ontology Language (OWL) can be directly mapped to certain extensions ofALC . The two
sublanguages (OWL Lite and OWL DL) are based on SHIF (D) (OWL Lite) and SHOIN (D)
(OWL DL) and will often use the term ontology, DL knowledge base, OWL ontology as synonym.
SHOIN (D) and OWL DL are of special interest since they allow for the most expressivity, while
all reasoning tasks are still decidable. SHOIN (D) is shorthand for the combination of ALC and
role hierarchies (H), nominals (O), role inverses (I), unqualified number restriction (N) and basic
data types (D).

1.3 Learning Problem in Description Logics

Although some authors (cf. Section 3.2 or [20]) adapt a slightly different definition, we used the
Definition in 4 in this thesis, because it was commonly used throughout the literature and describes
the core problem. For a given knowledge base K , a concept description C shall be found, based on
assertional observations, i.e. a set of individuals, where each individual is either labeled "positive" or
"negative" (supervised learning). If we add the axiom (Target ≡ C) to the TBox of K , resulting in
K ’, then the individuals labeled positive shall follow from K ’ and negatives should not.

Definition 4 (learning problem in Description Logics)
Let a concept name Target, a knowledge baseK (not containing Target), and sets E+ and E− with
elements of the form Target(a) (a ∈ NI) be given. The learning problem is to find a concept C such
that Target does not occur in C and forK′ = K∪{Target ≡ C} we haveK′ |= E+ andK′ 6|= E−.

In Definition 5 some shortcuts are defined. We will also use the term coverage. A correct, learned
concept definition covers all positive examples and does not cover the negative examples.

Definition 5 (complete, consistent, correct)
Let C be a concept, K the background knowledge base, Target the target concept, K′ = K ∪
{Target ≡ C} the extended knowledge base, and E+ and E− the positive and negative examples.

C is complete with respect to E+ if for any e ∈ E+ we have K′ |= e. C is consistent with respect to
E− if for any e ∈ E− we have K′ 6|= e. C is correct with respect to E+ and E− if C is complete with
respect to E+ and consistent with respect to E−.

1.4 DL-Learner Framework

In this section we will give an overview of the DL-Learner framework, because we actively took part
in the development during the course of this work. It recently became an Open-Source project and

2 AUTOMATED ONTOLOGY ENGINEERING 8

is available on Sourceforge9. Its core is divided in 4 components, which are knowledge sources like
OWL-files or the SPARQL extraction module (cf. Section 2.3), reasoners, which e.g. use the DIG10

reasoning interface (see [8] for details), learning problems and learning algorithms like the one based
on refinement, which we present in Section 3.2.3. The DL-Learner also has a Web Service interface
for integration in other applications like OntoWiki11.

2 Automated Ontology Engineering

Fast, cheap and correct construction of domain-specific ontologies12 is crucial for the forthcoming of
the Semantic Web. Although the number is growing, only few ontologies exist[34] and tool support
is still rare for other tasks than manually editing (see Swoop13 or Protégé14). Maedche and Staab are
calling it a knowledge acquisition bottleneck [28]. We will first give a short overview about problems
when designing ontologies, then we will look at approaches for automatic ontology generation. Based
on this we will show, why ontology engineering can greatly benefit from concept learning and how
this can help to create more ontological knowledge faster and easier. Finally, we will give our own
approach to enable concept learning on large, "unwieldy" ontological knowledge bases.

2.1 Current Problems of Ontology Engineering

Ontology creation is in general considered a difficult task. The errors that can be made are numerous
and we will try to name the most important here.

The most prominent problem is probably the fact, that it is not yet clear, how knowledge can be
lifted to an ontological representation. There does not exist a standard, which can tell what the best
practice looks like (cf. [34] on this issue). The fact that the Semantic Web community15 adopted
RDF and OWL and therefore Description Logics as standard formalism might mislead into thinking
there also exist best practises for ontology design. There is a big argument, ongoing since decades,
about how to model existing data and the real world in ontologies. We refer here especially to the
discussions in between the creators of the following TOP-level ontologies16: DOLCE, GFO, Cyc,

9http://dl-learner.org/Projects/DLLearner and http://sourceforge.net/projects/dl-learner
10http://dl.kr.org/dig/
11http://aksw.org/Projects/OntoWiki
12the discussion is concerned with Semantic Web ontologies, when we use the term ontology here, we mean an ontology

based on OWL and DL, excluding generality, although some parts might scale to a wider scope.
13http://www.mindswap.org/2004/SWOOP/
14http://protege.stanford.edu/
15we refer here to the World Wide Web Consortium, as the major institution for standardization, http://www.w3.org/
16Instead of providing links for each entry we would like to refer to

http://en.wikipedia.org/wiki/Upper_ontology_(computer_science), which gives an up-to-date link collection

http://dl-learner.org/Projects/DLLearner
http://sourceforge.net/projects/dl-learner
http://dl.kr.org/dig/
http://aksw.org/Projects/OntoWiki
http://www.mindswap.org/2004/SWOOP/
http://protege.stanford.edu/
http://www.w3.org/
http://en.wikipedia.org/wiki/Upper_ontology_(computer_science)

2 AUTOMATED ONTOLOGY ENGINEERING 9

WordNet and also there seems to be a discussion, if ontologies are needed at all to solve complex
problems17. To give a brief example of how difficult it is to lift simple real world facts and processes
to an ontological representation, we would like to mention a much discussed sentence: ”She drew a
line with her fountain pen until there was no more ink left.” If we assume that there is exactly one
point in time (modelled as real numbers) at which the ink is used up, then we have to admit that at
this point there is still ink in the pen and at the same time there is no ink any more. If we assume that
there are two time points, one which ends the interval of the pen still containing ink and one which
starts the interval, where the pen is empty, then we have to admit that there are infinitely many time
points in between, where there is an undefined pen-ink-level state. Without solving this intriguant
matter here, we refer the reader to Herre et al.[18], chapter 5.1. (Time), for an interesting solution.

The next problem, which is one step further down in the hierarchy of problems, is the creation of
domain specific ontologies. Although there still might be the same problems as in TOP-Level on-
tologies, normally they are one size smaller, because domain specific ontologies do not need to cover
everything, but just a small domain of the world. Occurring problems can also be circumvented more
easily by creating solutions that serve the practical purpose of the ontology, but still would not seem
to be correct, i.e. matching the domain knowledge from an intuitive view (cf. the discussion about the
"4-Wheel-drive" in Section 5).

The creation of an ontology from scratch requires immense resources18. Not only that existing data
has to be converted to match the form19, it has to be given ontological structure. Even the decision
about simple matters can be quite complex. An example can be found in Section 5. We just name the
problem whether an existing dataset shall be modelled as an individual or a concept or even a role.
Numerous tools exist, which aim at supporting these decisions like for example the conversion of text
[12] 20 or the transformation of existing relational databases [26].

Although those tool ease the burden of a knowledge engineer, the complex problems (like creating a
subsumption hierarchy, defining concepts, ontology merging) are not well supported, which basically
amounts to the necessity of manually post-processing the extracted ontology. For this post-processing
step, there exist numerous requirements a knowledge engineer21 has to meet. He needs to have at
least some profession in logical formulas to understand the assumptions (e.g. the UNA and the
OWA22) that are presupposed in Description Logics and he also has to know about the meaning of
OWL constructs and their implications. Furthermore he not only needs to have knowledge about the
domain, but also has to think in an analytic way, because he needs to analyze the structure of the

17remark: try a local search on Google or Yahoo, they work quite well already, although no ontologies are used.
18with resources we mean time and knowledge
19actually the simple conversion is the least problem
20http://olp.dfki.de/OntoLT/OntoLT.htm
21in practical terms this could also be a team of engineers, each specialized in a certain field
22Unique Name Assumption, Open World Assumption

http://olp.dfki.de/OntoLT/OntoLT.htm

2 AUTOMATED ONTOLOGY ENGINEERING 10

domain in terms of categories, hierarchies and membership. Without branding him an out-spoken
antagonist of ontologies, we would like to cite one of the founders of Google, Sergej Brin, on this
matter. When asked about the Semantic Web and RDF at InfoWorld’s 2002 CTO Forum, Sergey Brin
said:

Look, putting angle brackets around things is not a technology, by itself. I’d rather make progress by
having computers understand what humans write, than by forcing humans to write in ways computers
can understand.

All these requirements currently encumber the establishment of the Semantic Web in the sense of Tim
Berner-Lees Semantic Web Vision[9], because only a small group of people, i.e. mostly the people
who research ontology engineering, can successfully create valuable ontologies, while the number of
ontologies, which can be found in use in "real-world projects" is still relatively small (cf. the survey in
[34]). Instance-based concept learning might be able to change this, because it simplifies the creation
and enrichment of ontological knowledge; the difficulty of creating concept definitions is shifted to
the simplicity of selecting a set of instances and either accepting a proposed solution or rejecting it
to be refined again by a rerun of the learning algorithm. The more this process is automated, the less
human intervention is necessary, thus saving time and knowledge needed to create and improve an
ontology, making ontology more attractive for a broader audience.

2.2 Use Cases and Requirements for Tool-Support

We loosely define possible use cases here. The practical need to obtain ontologies has only surfaced
recently with the rise of the Semantic Web. The requirements which have to be fulfilled by a concept
learning tool have yet to be analyzed in detail. We mainly aim at providing suggestions, because it
would lead in a completely other direction.

When interacting with a user, usability clearly depends on the knowledge required by the engineer.
We assume now that it is easier to define groups of individuals than concepts, because the individuals
already exist (or are easier to import from other data sources than e.g. a taxonomy as we show in
Section 5) and the concept definitions either need to be created from scratch or have to be reinvented,
resulting in the same effort (knowledge needed).

Using learning algorithms, the concept can be learned with a relative small number of examples and
can be checked versus the other existing instances (cf. Section 4). This means that quality can be
calculated (in its simplest form by manually counting the actual coverage and dividing by wanted
coverage, i.e. precision) in numbers and, if necessary, the example set can be altered for iterative
runs. This process is far more effective than manually editing an ontology. Providing proposals for
concept definitions with the chance to edit them manually or refine them by rerunning the learning

2 AUTOMATED ONTOLOGY ENGINEERING 11

program together with a measure of how adequate the solution is, would greatly benefit the process
of background knowledge creation.

A completely automatic tool support can be achieved by devising an algorithm that can choose exam-
ple sets in a smart way, but this belongs more to the field of artificial intelligence, since the algorithm
had to guess the meaning of the data (which is prepared by the semantic annotation). There are how-
ever certain scenarios, when such an automatic choice is indicated. If new individuals are added to an
existing ontology, concept definitions can become inconsistent, covering individuals they should not
cover or they could become incorrect, not covering individuals they should. This could be detected
automatically and a learning tool can start redefining the concept, based on the previous individuals
and the new ones, thus easing maintenance cost.

2.3 SPARQL Component

A significant use case where (semi-)automatic support for concept learning and maintenance of con-
cept consistency could improve quality immensely, is the DBpedia23 knowledge base. DBpedia ex-
tracted information from the Wikipedia MediaWiki templates and thus created a huge RDF knowledge
base. In its new Version 2.0 it includes semantic information about 1,950,000 “things” with a total of
103 million RDF triples. Because of this immense size, manual editing has become unaffordable and
automated techniques for ontology enrichment need to be used.

We will now give a short description about the existing structure of DBPedia, then we will present an
algorithm that makes concept learning possible on large knowledge bases, before we think of possible
uses.

The base data of DBpedia was extracted from the MediaWiki templates of Wikipedia, which contain
structured information in a Wiki syntax for layout purposes. This layout structure was analyzed and
mapped to a Semantic Web structure, which was accumulated in RDF-triples and made freely avail-
able like Wikipedia (the process is described in detail in Auer et al. [2]). The Wikipedia categories
were used as concepts to group individuals. These categories were assigned by Wikipedia authors
on an arbitrary, subjective base and contained many inconsistencies and only sporadic hierarchical
information. Later the SKOS24 vocabulary was used to create a SKOS-taxonomy on the Wikipedia-
categories. Note, that SKOS relates instances and categories with its own vocabulary and thus differs
from OWL classes.

In a next step YAGO25 classes were added and assigned to the individuals as well as Word Net
23see http://www.dbpedia.org and for an overview of version 2.0 see

http://blog.dbpedia.org/2007/09/05/dbpedia-20-released/
24http://www.w3.org/2004/02/skos/
25http://www.mpi-inf.mpg.de/ suchanek/downloads/yago/

http://www.dbpedia.org
http://blog.dbpedia.org/2007/09/05/dbpedia-20-released/
http://www.w3.org/2004/02/skos/
http://www.mpi-inf.mpg.de/~suchanek/downloads/yago/

2 AUTOMATED ONTOLOGY ENGINEERING 12

Synset Links. YAGO recently has adopted a hierarchy. Currently, the two main hierarchies in
DBpedia, i.e. YAGO and the Wikipedia categories, are only useful to a certain extent. Although
YAGO is using the OWL vocabulary, its classes are very general like e.g. Philosopher, con-
taining thousands of instances. On the other hand, the Wikipedia categories are very specific like
Ancient_Greek_Philosophers and still contain inconsistencies. Since they are not OWL classes,
but SKOS concepts, it is difficult to combine both, which would result in a preferable hierarchy.

A point that is still missing is the enrichment of DBPedia with concept definitions to better cope with
queries and with new individuals and changes (the original Wikipedia is parsed in regular intervals).
Due to the immense size of the A-Box, reasoning, can not be conducted efficiently, but research
is ongoing (see e.g. InstanceStore26 or [16]). Although querying DBpedia with SPARQL, already
yields new possibilities to retrieve structured information, complex background knowledge combined
with proper retrieval algorithms can yet take it to a new level. A simple example, where a concept
definition, can improve the structure, shall be given here:

Example 3 Imagine there exists a concept like Mother.
When using a SPARQL query to retrieve all mothers (all instances of the concept Mother), we would
only retrieve all instances that are explicitly assigned to the concept Mother with rdf:type.

SELECT ?instance WHERE { ?instance a yago:Mother }

But if the concept had a concept definition like Mother = Womanu∃hasChild.Person, we could
first retrieve the concept definition and then pose the following SPARQL query to retrieve all instances
that match the definition (we use the YAGO classes here):

SELECT ?instance

WHERE {

?instance a yago:Woman;

dbpedia:hasChild ?c,

?c a yago:Person }

even consistency can be checked, by comparing the results of both sparql queries to this one (Mother

uWoman u ∃ hasChild.Person):

SELECT ?instance

WHERE {

?instance a yago:Mother;

a yago:Woman;

26http://instancestore.man.ac.uk

http://instancestore.man.ac.uk

2 AUTOMATED ONTOLOGY ENGINEERING 13

dbpedia:hasChild ?c,

?c a yago:Person }

which only retrieves correctly assigned instances.
Note: Since reasoning is so inefficient with such a large database like DBPedia, that it can hardly be
conducted, we name the SPARQL queries explicitly here. Normally this would be done by a reasoner
automatically. Also we will not retrieve instances that are merely assigned to subclasses of the above
stated concepts, which is normally also done by a reasoner.

2.3.1 Circumventing the Problem of Reasoning on Large Knowledge Bases

The currently existing concept learning techniques heavily depend on deductive reasoning (instance
checks as mentioned above are used by the DL-Learner, or subsumption checks by YinYang, see
Section 3.2). Thus they can not be used efficiently on large knowledge bases. We will provide a
method here that circumvents this problem and makes it possible to learn concepts. It served as a
basis for Hellmann, Lehmann and Auer [17] submitted to the ESWC 2008, where it is used with the
DL-Learner, exclusively. We will first describe the extraction algorithm in general and then use it on
DBpedia to learn concepts with the DL-Learner.

Since the learning algorithm induces ontological knowledge, based on extensional information(facts),
we use a set of instances as a starting point. The algorithm described in the following will then explore
the RDF-graph with SPARQL in such a way that relevant information is extracted, i.e. information
that provides a sufficient description of the facts and the corresponding concepts to apply the learning
algorithm. The extracted information is filtered and corrected in a way that it complies with the
requirements of OWL-DL. In the following we will adopt the RDF/OWL vocabulary, using the terms
"classes", "properties" and "instances" instead of "concepts", "roles" and "individual", when it is more
appropriate, especially in cases where OWL is used.

2.3.2 Selection of Relevant Information

Starting from the example set given for the learning problem, we start to explore the graph using
SPARQL queries recursively up to a given depth. We will define a SPARQL query template with
certain parameters, which is used to generate the actual queries in each recursion step.

Definition 6 (Special SPARQL query template using filters)
A SPARQL query of the form SQTFE (resource , predicateFilter, objectFilter, literals) takes as input
a resource, a list of prohibited URIs for predicates, a list of prohibited URIs for objects and a boolean
flag, indicating whether datatype properties should be retrieved. It returns a set of tuples of the form

2 AUTOMATED ONTOLOGY ENGINEERING 14

(p,o), where (p,o) are the resources (properties and objects) returned from the following SPARQL
query on an endpoint E:

SELECT ?p ?o WHERE {resource ?p ?o .

FILTER(generateFilter(predicateFilter,objectFilter,literals))}

We will simply use SQTF(resource) when the context is clear.

Example 4 (Example SPARQL query on DBpedia) In this example we show, how we filter out
triples using SKOS27 and DBpedia categories, but leave YAGO28 classes. Furthermore, FOAF29 is
allowed but websites are filtered out. The actual filters used are yet larger; we omitted some for
brevity.
SQTFDBPedia("http://dbpedia.org/resource/Angela_Merkel", predicateFilter, objectFilter, false) is
resolved to:

SELECT ?p ?o WHERE {

<http://dbpedia.org/resource/Angela_Merkel> ?p ?o.

FILTER (

!regex(str(?p),’http://dbpedia.org/property/website’)

&& !regex(str(?p),’http://www.w3.org/2004/02/skos/core’)

&& !regex(str(?o),’http://dbpedia.org/resource/Category’)

&& !isLiteral(?o)). }

The filters are necessary to avoid retrieving information, that is not important to the learning process.
The learning algorithm does not make use of datatype properties, thus literals will always be omitted.
The predicate filter removes properties that are not important (in the case of DBpedia for example
properties that point to web pages and pictures). The same accounts for the object filter. We filter
owl:sameAs out by default, because it might result in the extracted fragment being in OWL Full
(e.g. when it links instances to classes).

More namespaces and URIs can be added manually to the filter depending on the SPARQL endpoint.
The choice is important since it determines which information is extracted. If the knowledge base
makes use of different subsumption hierarchies like e.g. DBpedia, which uses YAGO classes and the
SKOS vocabulary combined with its own categories, a special hierarchy can be selected by excluding
the others (as e.g. in Example 4).

27http://www.w3.org/2004/02/skos/
28http://www.mpi-inf.mpg.de/ suchanek/downloads/yago/
29http://xmlns.com/foaf/0.1/

http://www.w3.org/2004/02/skos/
http://www.mpi-inf.mpg.de/~suchanek/downloads/yago/
http://xmlns.com/foaf/0.1/

2 AUTOMATED ONTOLOGY ENGINEERING 15

After having defined the filters for the respective SPARQL endpoint, the algorithm (see Algorithm
1) starts to extract knowledge recursively based on each instance (SQTF(instance)) in the example
set. The objects of the retrieved tuples (p,o) are then used to further extract knowledge (SQTF(o))
until a given recursion depth is reached. The algorithm also remembers valuable information that is
later used in the conversion to OWL DL, which we will describe in Section 2.3.3. To disburden the
SPARQL endpoint, caching is used to remember SPARQL query results which were already retrieved.
The clear bottleneck of the extraction algorithm is the SPARQL retrieval via HTTP.

The recursion depth greatly determines the number of triples extracted. A recursion factor of 1 means,
that only the directly related instances and classes are extracted. A recursion factor of 2 extracts all
direct classes and their super classes and all directly related instances and their direct classes and
directly related instances30(see Figure 2). If we use all existing instances as starting seeds with a
sufficient recursion depth, the algorithm will extract the whole knowledge base with the exception of
unconnected resources, which in most cases barely contain useful information.

With a depth of 1 the algorithm only extracts directly related resources, which is too scarce for sensible
class learning. Depending on the average number of properties, a recursion depth of 2 or 3 represents
a good balance between the amount of useful information and the possibility to reason efficiently.
This choice as well as the choice of filterlists clearly depends on the SPARQL endpoint and has to be
chosen manually.

By allowing some dynamic when decreasing the recursion counter, we can also extract more
background knowledge. If the property we retrieved in the tuple (p,o) was e.g. rdf:type or
rdfs:subClassOf, which indicates, that the respective object is a class, we could just not decrease
the recursion counter and thus retrieve the whole hierarchy of classes that belongs to the instances;
this will only slightly increase the size of the extracted triples, since the number of superclasses nor-
mally gets smaller. We can also avoid cycles by setting the recursion counter to 0, when we encounter
properties like owl:equivalentClass, thus preventing infinite extraction. But if the object is a
blank node, we will not decrease the recursion counter until no further blank nodes are retrieved31.
Thus we can extract complex class definition.

The triples can further be manipulated during collection by user defined rules. There are vocab-
ularies that are similar to OWL class hierarchies, but use different names. The SKOS vocabu-
lary for example uses skos:subject instead of rdf:type and skos:broader instead of
rdfs:subClassOf. We can convert those hierarchies to OWL DL during retrieval by replacing
the strings as mentioned above (e.g. skos:broader is replaced by rdfs:subClassOf). We

30Remark: to enrich the fragment further, we also retrieve other types like owl:SymmetricProperty and super properties
of the respective properties in separate SPARQL queries, a fact, we omitted here for brevity.

31The further retrieval of blank nodes requires a redefinition of the SPARQL query, which is merely a technical matter,
not described here in detail

2 AUTOMATED ONTOLOGY ENGINEERING 16

could also use this technique e.g. to convert tags or other structurally important instances to classes
to enable class learning.

Algorithm 1: SPARQL Knowledge Extraction Algorithm
Input: set E of instances
Input: parameters: recursion depth, predicateFilter, objectFilter, literals
Output: set T of triples
define function SQTF using (predicateFilter, objectFilter, literals)1

T = empty set of triples2

foreach e ∈ E do3

T = T ∪ extract(recursion depth, e, "instance");4

return T5

2.3.3 OWL DL Conversion of SPARQL Results

The extracted knowledge has to be converted into OWL DL for processing, which means explicitly
typing classes, properties and instances. Since the algorithm can not guarantee to extract all type
definitions, if they exist, we chose another approach. We remove all type definitions during extrac-
tion and remember the type of the resource, based on the assumption that if the type of the subject
is known, we can infer the type of the object by analysing the property. In a triple (s,p,o), we thus
know e.g. that o is a class if s is an instance and p is rdf:type. We further know that o is an in-
stance for all other properties. If it is the case that s is a class then o must also be a class, unless the
SPARQL endpoint is in OWL Full, in which case we transform the property to rdfs:subClassOf
if it is rdf:type and ignore all other properties, except properties from the OWL vocabulary like
owl:equivalentClass. With the help of these observation we can type all collected resources
iteratively, since we know that the starting resources are instances. Since DatatypeProperties are fil-
tered out by default, all properties can be typed owl:ObjectProperty.

We thus presented a consistent way to convert the knowledge fragment to OWL DL based on the
information collected during the extraction process. The extracted information is a clearly cut out
fragment of the larger knowledge base. It contains relevant information, since we use an instance
based approach to class learning, hence information can be considered relevant, if it is directly re-
lated to the instances. Due to its comparatively small size, deductive reasoning can now be applied
efficiently, thus enabling to apply concept learning techniques. The fact that it is now OWL DL also
renders all reasoning queries decidable.

2 AUTOMATED ONTOLOGY ENGINEERING 17

Function extract(recursion counter, resource,typeOfResource)

if recursion counter equals 0 then1

return ∅2

S = empty set of triples;3

resultSet = SQTF(resource);4

newResultSet = ∅ ;5

foreach tuple (p,o) from resultSet do6

// the function manipulate basically replaces strings after user defined rules7

// and evaluates the type of the newly retrieved resources8

newResultSet= newResultSet ∪ manipulate(typeOfResource,p,o);9

create triples of the form (resource,p,o) from the newResultSet ;10

add triples of the form (resource,p,o) to S;11

foreach tuple (p,o) from the newResultSet do12

// the extended flag determines if all superclasses are extracted13

if p is rdf:type or rdfs:subClassof and the extended flag is true then14

S = S ∪ extract(recursion counter,o);15

// classproperty is a property from the OWL vocabulary like16

// {owl:equivalentClass,owl:disjointWith,owl:intersectionOf,etc.}17

else if p is a classproperty and o is not a blank node then18

S = S ∪ extract(0, o);19

else if o is a blank node then20

S = S ∪ extract(recursion counter, o);21

else22

S = S ∪ extract(recursion counter-1, o);23

return S24

2 AUTOMATED ONTOLOGY ENGINEERING 18

Figure 2: Extraction with three starting instances. The circles represent different recursion depths,
where boxes mean recursion depth 1 and diamonds recursion depth 2.

2.3.4 Processing the Results

We showed that the DL-Learner can be used on large knowledge bases and we will now describe
what can be done with the learned concept definitions. We will consider DBpedia only, because we
especially designed the extraction algorithm for DBpedia. In [17] we also provided some concrete
evaluation and Use Cases for detailed scenarios, which we omitted here, since we want to look at the
possibilities from a broader perspective.

2.3.5 Semi-automatic Improvement of Background Knowledge

Because of the large number of classes in DBpedia, resources and know-how would be needed to
substantially improve the background information. A similar problem exists in the Cyc project, which
recently has also taken interest in DBpedia. To design concept definitions from scratch, experts had
to look manually at the data and then in numerous steps refine their axioms. With the above described
process, experts would have at the very least a first proposal for a concept definition, which in the
best case they only needed to accept. By changing the original examples, they could easily modify
the proposal by a new run of the algorithm. By changing the perspective from a skill-intensive, formal

3 COMPARISON OF LEARNING ALGORITHMS 19

view to a lightweight one, the know-how needed to make a decision about correctness could be
lowered further. Instead of regarding classes as concepts with a formal concept definition, classes
could be simply seen as sets of instances, thus changing the decision about a correct and sensible
concept definition to a decision about the now retrieved set of instances. This set would be based on
a retrieval of instances according to the new concept definition and the only question that needs to
be answered is now, whether all the shown instances are members of the concept. For a human, this
question can be answered easily with the inherited knowledge of the world and intuition or at least
with very few research. It could even go so far that this semi-automatic process could be conducted
by a community effort similar to the original Wikipedia itself.

3 Comparison of Learning Algorithms

In this section we will consider different approaches to solve the learning problem in Description
Logics. The application of refinement operators has produced useful results in Inductive Logic Pro-
graming and the most promising of the available algorithms try to apply this success to DL. We
consider the learning algorithms of Lehmann [25] (DL-Learner) and Iannone [20] (YinYang) clos-
est, because they are the most advanced and are already implemented for evaluation (cf. Section 4).
They also incorporate gained experience from earlier approaches and directly work on Description
Logics in OWL form, which makes them candidates for direct OWL tool support when designing and
improving Semantic Web ontologies.

3.1 Desired Properties of a Concept Learning Algorithm

A concept learning algorithm takes as input a knowledge base and a list of positive and negative
examples and outputs a concept definition, which poses a "good" solution to the learning problem as
defined in Definition 4 in Section 1.2. We will now identify what a "good" solution is and we will
later state what desired properties a learning program (tool) should have.

3.1.1 Solutions within the Training Data (Example Sets)

The learning problem in DL has not yet been proven to be decidable. As we will see later, certain
design aspects of learning algorithms guarantee that a solution will be found if it exists. In this case a
solution means a correct concept definition (like defined in Definition 5 in Section 1.2) with respect
to the examples. If no solution exists or the algorithm is not complete, a "good" approximation should
be found. Here, "good" depends on the number of positive and negative examples covered. A "better"
solution therefore covers more positive examples, while it does not cover many negative examples. In

3 COMPARISON OF LEARNING ALGORITHMS 20

other words the learning algorithm has to be able to find a solution while at the same time it should
be robust with respect to inconsistent data. As far as we know, there is up to now no way to tell in
advance, if a solution exists, which would be desirable, since it could lead to high runtimes with poor
results, if none exists.

3.1.2 Scaling the Learned Concept Definition on the Test Data

The quality of the learned concept definition can be assessed further when being compared to the
remaining relevant instances (in general called the test data), i.e. all instances that are not part of
the example set {a|a ∈ NI ∧ a /∈ E} and that should or should not belong to the target concept.
We differentiate this from the above, because learning a concept definition for the training set only,
could be wanted in a case where no prediction is necessary32 and ontologies, where it is unlikely that
more instances will be added later e.g. for an ontology about chemical elements. Hence, we will refer
to scenarios, where the test data is taken into account as predictive scenarios (as opposed to simple
scenarios). To assess the quality of a learned concept definition C, we can consider how "good" the
solution is by looking at the test data and apply common machine learning measures like accuracy,
precision, recall and F-measure.

3.1.3 Biases of Learning Algorithms

We can now define the following biases for learning algorithms:

Definition 7 (Minimum cross-validation error)
When learning concept definitions in DL the concept definitions with the minimum cross-validation
error is preferred.

Definition 8 (Minimum description length)
When learning concept definitions in DL, in a case where both definitions are correct, the concept
definition with the smaller description length is preferred (after Occam’s razor [10])

Definition 9 (Correctness)
When learning concept definitions in DL the concept definition which is correct is preferred over one
that is not correct.

32One could argue that the induced concept description can contain useful knowledge about the instances itself, e.g. if
we learn the concept Father = ∃ hasChild.Person, it would tell us something about the real existing world like that a
father has at least one child.

3 COMPARISON OF LEARNING ALGORITHMS 21

3.1.4 Important Features of a Learning Program

Because we put special emphasis on the engineering process, we are also concerned about other
features, which actually go beyond the scope of the learning algorithm itself, but have to do with the
whole learning program. In the following we will give a list of features we consider useful for concept
learning programs.

• can use RDF/OWL-files.
• can ignore concepts (enables the relearning of concepts).
• can learn online, thus avoiding a complete new calculation.
• can further refine concept definitions (improve found solutions).
• uses minimal amount of reasoner queries (performance).
• possibly selects instances smart (can automatically detect example sets for possible learning

problems, fully automated concept learning)

3.2 Existing Algorithms

3.2.1 LCSLearn

Cohen and Hirsh [13] proposed a learning algorithm in 1994, which was based on the CLASSIC
description logic, an early DL formalism. Their approach is simple and the definition of the learning
problem is a little bit different. They assume the existence of most specific concepts (MSC)33 for
individuals and and take those MSC’s as input examples. Then they simply create the target concept
by joining all MSC’s with the disjunction operator(t). This generates extremely large concept def-
initions, some of them thousands of symbols long. The clear advantage is that this approach can be
solved in polynomial time with respect to length of the MSC’s. The disadvantages are obvious. Long
concept definitions can not be handled or modified by a knowledge engineer anymore. They also lead
to overfitting and do not scale well in a predictive scenario, leading mostly only to a solution within
the training data itself. In [13] they also provide some evaluation, but upon request neither the data
nor the algorithm were available to us for further investigation.

3.2.2 YinYang

YinYang34 was implemented by Luigi Iannone and is currently in the process of redesign, which was
not finished by the time of our evaluation. We will investigate the changes here only from a theoretical
point of view [19; 20], while the evaluation in Section 4 is done with the previous version of 2005.

33the least concept description in the available description language that has this individual as an instance
34Yet another INduction Yields to ANother Generalization, http://www.di.uniba.it/ iannone/yinyang/

http://www.di.uniba.it/~iannone/yinyang/

3 COMPARISON OF LEARNING ALGORITHMS 22

The learning process is close to an intuitive approach humans might follow, when trying to conceptu-
alize instances. First the instances are raised to a concept level representation and then those concept
representations are compared to each other, taking out parts that are responsible for inconsistency and
adding parts to achieve completeness until a solution is found. We will investigate the approximation
of the concept level representation now, which makes up the basis for the manipulation described
thereafter.

The raising of individuals to a concept level representation is first mentioned in Dietterich [15] as
the Single representation trick. The aim is to construct a concept representation that represents the
individual, so that the individual is an instance of this concept and no other more specific concept
exists that covers the individual. The general problem with these so called Most Specific Concepts
(MSC) in DL is that they often do not exist and have to be approximated. It is also highly probable
that in a sufficiently large knowledge base two instances exist, which have the same properties and
realizations35 and thus share the same MSC. In YinYang (version of 2005) an (upper) approximation
is calculated according to the method proposed in Brandt[11], which is in some respect similar to the
method in LCSLearn. In LCSLearn MSC’s were calculated up to a user-given length k, which results
in concept representation up to a length k (with k nested restriction on roles in CLASSIC DL). A
short example for k = {0...3} (taken from [20] and slightly extended):

Example 5 (k-bound abstraction) Let a knowledge base K = (T , A) be given with:
T = {A , B , C , ∃ R.>}
A = { A(a), A(a), D(a), B(b), C(c), R(a,b), R(b,c), R(c,a) }
msck(a) is the k-bound abstraction of a.
For k = 0 the msc is a disjunction of all the concepts it belongs to:
msc0(a) = A uD
a takes part in role R with b as a filler and b belongs to B.
Therefore: msc1(a) = A uD u ∀R.B
b takes part in role R with c as a filler and c belongs to C.
Therefore: msc2(a) = A uD u ∀R(B u ∀R.C)
For k >= 3 a cycle will occur, because R(c, a) will be considered next and the abstraction of a will
start again.
msc3(a) = A uD u ∀R.(B u ∀R.(C u ∀R.(A uD)))

In the redesigned version of 2007 (cf. [20]), Iannone et al. propose an algorithm for the assessment
of the size of k, so that it can be decided in advance, if their algorithm will find a solution of the
learning problem. He states, that if for a k-bound abstraction of the example individuals, the least

35most specific classes that an individual belongs to

3 COMPARISON OF LEARNING ALGORITHMS 23

common subsumer(lcs) 36 is a possible solution of the learning problem, then the learning problem is
well-posed and has a solution. Thus, the proposed algorithm starts with k = 0 and stops as soon as the
lcs is a possible solution, taking the resulting k as the bound for abstraction when calculating MSC
representatives. On the one hand this is useful since it creates an a-priori condition, if the algorithm is
able to find a solution at all, but on the other hand it does not solve the problem of decidability of the
learning problem as such, since it only accounts for the concept level representations of the example
individuals. In Iannones et al. terms the learning problem is solved if the solution subsumes the MSCs
of the positive examples while not subsuming the representation of the negative ones.

The employment of the MSC or an approximation thereof is critical for this algorithm. A major
drawback of MSC’s is that they do not(cf. [4] on this issue) exist for expressive languages likeALC,
which is the basis for OWL (which is even more expressive). This problem becomes obvious in
example 5.4 shown in [20] which is repeated here in short:

T = { A @ >, B @ > , C @ > , D @ > }
A = { A(a1), (∀ R.(¬ A u B u C))(a1), A(a2),
(∀ R.(¬ A u B u D))(a2), A(a3), R(a3,b), A(a4),
R(a4,a5), A(a5), (¬ B)(a5), A(b), B(b) }
positive examples = {a1, a2}
negative examples = {a3, a4}
msc∗(a1) = A u ∃ R.(¬ A u B u C)
msc∗(a2) = A u ∃ R.(¬ A u B u D)
msc∗(a3) = A u ∃ R.(A u B)
msc∗(a4) = A u ∃ R.(A u ¬ B)

For a complete example of the algorithm see below (Example 6), after the details of the methods are
explained.

Presented solution: CL = A u ∃ R.(¬ A)

After Iannones et al. definition of coverage of examples, CL = A u ∃ R.(¬ A)is a correct solution
of the learning problem, since CL w {msc∗(a1),msc∗(a2)}, but the positive examples do neither
follow from CL (CL 2T a1, a2) nor from the MSC representatives (msc∗(ai) 2T ai(i = 1, 2)),
which means the solution presented is actually incomplete. We considered that there maybe is an
error in the paper only, since the method described above would yield different MSC’s for a1 and a2

36the function lcs(Ci) returns the least concept subsuming its arguments. According to Baader and Küsters [4] the lcs in
DLs allowing disjunction is simply the disjunction of its arguments.

3 COMPARISON OF LEARNING ALGORITHMS 24

(msc∗(a1) = A u ∀ R (¬ A u B u C)). An email to the author remained unanswered, though.

The core algorithm of YinYang consists of two interleaving methods, which alternately either gener-
alize or specialize parts of the current concept definition. As the bases for this process, the algorithm
uses the MSC’s of the example instances, see Figure 3.

Figure 3: Interleaving methods of YinYang

Generalization At start, some positive MSC’s are selected as a starting seed. These positives repre-
sent very special concepts and therefore need to generalized. They are selected after a heuristic, which
chooses the ones, that cover the most positives, which are then merged with the disjunction operator.
The resulting solution (called partial generalization ParGen) is further refined by an upward refine-
ment operator, which uses the definition of the remaining positive MSC’s to achieve a more general
concept. The upward refinement operator either adds another disjunct to the partial generalization in a
way that more positive MSC’s are covered, while not covering more negatives (add disjunct), or tries
to generalize one of the disjuncts of the partial generalization. This generalization is done by either
dropping a conjunct from a disjunct (the concepts are in ALC normal form) or by generalizing one
of the inner conjuncts with the help of the add disjunct method. This generalization is repeated until
some negative MSC’s are covered, then the specialization is called. See Example 637.

Example 6 (generalization in YinYang) The same knowledge base is used as presented above. The
example is taken form [20], we omitted some parts and added comments.

generalize
ResidualPositives leftarrow {msc ∗ (a1),msc ∗ (a2)}
Generalization←⊥

/*The first msc* is selected as a starting seed*/
ParGen←msc∗(a1) = A u ∃ R (¬ A u B u C)

37We refrained from repeating the complete algorithm here, since it is very long and can be explained using only a
fraction of space. It can be found in [20] in full.

3 COMPARISON OF LEARNING ALGORITHMS 25

CoveredPositives← { msc∗(a1)}
CoveredNegatives← {}
/*the restriction is dropped to generalize the disjunct*/
ParGen← A

CoveredPositives← { msc∗(a1), msc∗(a2)}
CoveredNegatives← {msc∗(a3), msc∗(a4)}
/*The current solution ParGen is too general now, that is why
it has to be specialized, by calling the specialize function*/
Call specialize (ParGen, CoveredPositives, CoveredNegatives)

Specialization The procedure used for specialization obtained basic changes in between the two
versions of YinYang [19; 20]. In the previous version the concept was specialized with counterfactu-
als only. Counterfactuals are the result of a difference operator on DL concepts (e.g.Counterfactual
= A - B) and are investigated in [11] and [35]. In the new version the algorithm additionally uses a
downward refinement operator. The basic idea of specialization with counterfactuals was to remove
the part from the current solution, that is responsible for covering the negative MSC’s, by subtracting
the covered negative MSC’s. The authors, however, discovered that counterfactuals are not correct
with respect to value restrictions in a Logic that adopts the Open World Assumption like Description
Logics (see [20] for details). If such a failure is detected, the algorithm38 uses a non-deterministic
downward refinement operator to either remove a disjunct from the partial generalization in a way
that less negative MSC’s are covered, while covering the same amount of positive MSC’s (remove
disjunct), or tries to specialize the disjuncts of the partial generalization (specialize disjunct). The
two functions are only mentioned for completeness though, since they are defined analogously to the
upward refinement operator. The authors propose a further downward refinement method for spe-
cialization, which is used in the new version of the algorithm, whenever counterfactuals fail. This
specialization is done by adding a conjunct to the partial generalization (ParGen) to cover less nega-
tives (add conjunct) (ρ(C) = C u C ′).

The problem here is to find a suitable conjunct C ′. The algorithm searches through the disjuncts of
C = {C1 t ... t Ci} and evaluates the conjuncts within the Cis to find those that do not already
subsume ParGen (else C u C ′ =⊥), do not subsume the already covered negatives and subsume each
of the already covered positives. If it finds such conjuncts they are joined with t and added to C
with u. If it does not find any suitable conjuncts, it substitutes ParGen with the lcs of the already
covered positives and starts another generalization. The search for conjuncts is a costly task and thus

38The algorithm actually uses a downward refinement operator to create possible specialization from which the best one
is chosen, how this is done though is left open.

3 COMPARISON OF LEARNING ALGORITHMS 26

is simplified with the disadvantage of rendering the method incomplete but tractable.

In the previous version which we used for our experiments YinYang had only one mode for general-
ization (greedy), where it tried to select the best (covering the most positives) positive MSC’s to form
the partial generalization. It also had only one method for specialization (counterfactuals), which only
works properly in a setting adopting the CWA. The new version furthermore uses one more method
for generalization, where drop conjunct is used to drop one inner conjunct at a time. Also there is a
mode to change the ontology to adopt the CWA, which makes the use of counterfactuals more ap-
propriate (cf. Section 3.4). In spite of these improvements, there are many issues which still need
improvement. The complexity of approximating MSC’s is polynomial in the size of k (see above) and
could lead to an increased computing time, since it is not ensured that correct MSC’s can be found at
all. Furthermore the solutions YinYang produces tend to be quite long which normally leads to over-
fitting (low recall) and which render the resulting description unreadable by humans. The algorithm
is thus unlikely to be useful for semi-automatic tool support for an ontology engineer like in Section
5. In a scenario, where humans are not involved, like automatic repair of an ontology, YinYang might
successfully be used.

3.2.3 DL-Learner

The DL-Learner uses an approach completely different from YinYang and LCSLearn. The learning
algorithm is an informed search algorithm using a heuristic over the space of possible solutions (space
of states with goal states (one passing the goal test)) combined with a failsafe method that ensure
completeness and guarantees that a solution, if it exists, is found.

It is currently implemented as a top-down algorithm, going from general to specific, but the other way
is theoretically possible with a different heuristic. The operator responsible for node expansion (i.e.
a refinement operator) makes good use of the partial-order (subsumption) and creates a search tree39

with TOP (the supremum of the partial-ordered space) as its root. Then it starts to expand the nodes
with best fitness (best heuristic estimate) up to a certain depth-limit here called horizontal expansion.
If this limit is reached, nodes that are higher in the search tree and have not been expanded yet are
expanded (failsafe), which makes sure that a solution, if it exists, is found. Certain techniques are
applied to further prune the search tree.

We will first take a close look at the refinement operator. Throughout the literature[6; 7; 19; 25] we
can find the following properties of refinement operators:

Definition 10 (properties of DL refinement operators)
An ALC refinement operator ρ is called

39Note that it does not matter if the tree is explicit or implicit (generated on the go).

3 COMPARISON OF LEARNING ALGORITHMS 27

• (locally) finite iff ρ(C) is finite for any concept C.
• redundant iff there exists a refinement chain from a concept C to a concept D, which does not

go through some concept E and a refinement chain from C to a concept weakly equal to D,
which does go through E.
• proper iff for all concepts C and D, D ∈ ρ(C) implies C 6≡ D.
• ideal iff it is finite, complete (see below) and proper.
• optimal iff it is finite, non-redundant and weakly complete.[19; 6]

An ALC downward refinement operator ρ is called
• complete iff for all concepts C,D with C @T D we can reach a concept E with E ≡ C from
D by ρ.
• weakly complete iff for all concepts C @T > we can reach a concept E with E ≡ C from >

by ρ.
• minimal iff for all C, ρ(C) contains only downward covers and all its elements are incompa-

rable with respect to v.
The corresponding notions for upward refinement operators are defined dually.

In a recent paper by Lehmann [24], foundations for refinement operators have been thoroughly in-
vestigated. Lehmann proves that certain combinations of properties do not exist and provides a list of
possible combinations.

Theorem 1 (properties of refinement operators (II))
Considering the properties completeness, weak completeness, properness, finiteness, and non-
redundancy the following are maximal sets of properties (in the sense that no other of the mentioned
properties can be added) of ALC refinement operators:

1. {weakly complete, complete, finite}
2. {weakly complete, complete, proper}
3. {weakly complete, non-redundant, finite}
4. {weakly complete, non-redundant, proper}
5. {non-redundant, finite, proper}

To design a learning algorithm using a refinement operator, one of the sets in Theorem 1 has to be
chosen and a work around has to be found to cope for the properties not included in the choice. In
case of this algorithm, the second set was chosen for the refinement operator, while the horizontal ex-
pansion provides finiteness and the search heuristic, among other things, helps to reduce redundancy.
For the search tree this means, that the completeness of the operator provides that the node with a
solution, if it exists, can be reached by expanding any node with a concept that subsumes the solution,
while properness ensures that the concept of a parent node always strictly subsumes the concepts of
its child nodes.

3 COMPARISON OF LEARNING ALGORITHMS 28

ρ′↓(C) =



∅ if C = ⊥

{C1 t · · · t Cn | Ci ∈M (1 ≤ i ≤ n)} if C = >

{A′ | A′ ∈ nb↓(A)} ∪ {A uD | D ∈ ρ′↓(>)} if C = A (A ∈ NC)

{¬A′ | A′ ∈ nb↑(A)} ∪ {¬A uD | D ∈ ρ′↓(>)} if C = ¬A (A ∈ NC)

{∃r.E | E ∈ ρ′↓(D)} ∪ {∃r.D u E | E ∈ ρ′↓(>)} if C = ∃r.D

∪ {∃s.D | s ∈ nb↓(r)}

{∀r.E | E ∈ ρ′↓(D)} ∪ {∀r.D u E | E ∈ ρ′↓(>)} if C = ∀r.D

∪ {∀r.⊥ | D = A ∈ NC and nb↓(A) = ∅}

∪ {∀s.D | s ∈ nb↓(r)}

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn | if C = C1 u · · · u Cn

D ∈ ρ′↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn | if C = C1 t · · · t Cn

D ∈ ρ′↓(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 t · · · t Cn) uD | D ∈ ρ′↓(>)}

Figure 4: definition of ρ′↓ from [25]

In the following, we will describe how the refinement operator works and then how the created tree
structure is traversed and optimized.

The first part of the refinement operator is defined in detail in Figure 4. nb↓(A) with A ∈Nc is the set
of atomic concepts, which are directly subsumed by A with no intermediate atomic concepts (nb↑(A)
analogously) and the set M is defined as: All elements in {A | A ∈ NC , nb↑(A) = ∅} , {¬A | A ∈
NC , nb↓(A) = ∅}, and {∃r.> | r ∈ mgr} are in M . If a concept C is in M , then ∀r.C with r ∈ mgr
is also in M . Which means M is the combined set of all most general atomic concepts, all negated
most specific atomic concepts, all existential value restrictions on all most general roles(mgr) with >
and all quantified value restrictions on all most general roles with the concepts from M .

The operator up to now is complete and infinite but not yet proper. Properness is achieved by a closure
of the operator as proposed in Badea and Nienhuys-Cheng[7]. The closure of a refinement operator
is achieved by consecutively applying the operator, thus refining the concept, until a proper result is
reached. Lehmann [25] shows that the closure can be computed in finite time. Infiniteness is tackled
by only allowing concepts up to a certain length, which is iteratively increased during the progression
of the algorithm.

We will now take a closer look at the search process, how it traverses the search tree and eliminates re-
dundant nodes. The elimination of redundant nodes is of great importance, since it is computationally
expensive to assess a heuristic estimate for a node (see below), because expensive reasoner queries are

3 COMPARISON OF LEARNING ALGORITHMS 29

needed. ρcl
↓ is redundant as we saw above, but this redundancy is eliminated by removing nodes with

concepts that are weakly equal(weak equality (') is similar to equality, but ignores e.g. the syntactic
order of constructs) to concepts of other already existing nodes in the search tree, which can be done
before evaluating the heuristic estimate. This is legal, because the refinement operator would expand
these nodes in a "weakly equal" way (ρcl

↓ (C) ' ρcl
↓ (D) if C ' D). Finding weakly equal concepts

normally is computationally expensive because of the large size of combinatorial possibilities (e.g.
A1 u A2 u A3 ' A1 u A3 u A2 ' A2 u A1 u A3 ' etc...), but here the concepts are converted to
ordered negation normal form which only takes a small amount of time compared to evaluating those
redundant nodes.

The quality of a concept is evaluated by a function that assigns values according to example coverage.
If not all positive examples are covered, then the value "tw" (too weak) is assigned. Since the algo-
rithm performs a top-down search with a downward refinement operator, there is no need to further
refine concepts with quality "tw" since it would only result in concepts, which are also "too weak".
If all positive examples are covered, the quality is the negated number of negative examples covered
0...|E−| with 0 being the best since it is satisfies the goal condition and |E−| being the worst (e.g.
>). Note that the calculation of the coverage needs instance checks, which have a high complexity (
EXPTIME for ALC, NEXPTIME for SHOIN (D) and OWL-DL), thus pruning the search tree (in
this case, by not expanding nodes with quality "too weak") which greatly benefits performance.

The heuristic function of the search algorithm uses of course the quality of concepts to determine the
next node that should be expanded, but it also takes into account another factor which is responsible
for the strong bias of this algorithm that shorter concept description are better. It is called the hori-
zontal expansion and corresponds with the length of a concept definition, though it is not exactly the
same. As we have seen above, the algorithm handles infinity by only considering created concepts of
a refinement step up to a certain length. This means essentially that a node can be expanded several
times, while it will always produce additional nodes (i.e. with longer concept description (or at least
equal length)). The heuristic function works like this: If a node has better quality than any other node,
expand it. If there are several nodes having the highest quality, expand the one with the smallest hor-
izontal expansion, i.e. the node that has been expanded least often and thus is likely to have a shorter
concept definition. Note that one thing is still missing. The described learning algorithm up to now
would not be complete, since if there existed a node with a high quality (e.g. -1), it would straight
go into that branch of the tree and would only expand this. Therefore minimal horizontal expansion
is introduced, which expands nodes with a low horizontal expansion up to a minimum length which
is constantly increased throughout the run of the algorithm. This guarantees that a solution will be
found, which is proven in [25].

The algorithm is repeated here (cf. Algorithm 3, we added comments):

3 COMPARISON OF LEARNING ALGORITHMS 30

Algorithm 3: learning algorithm of the DL-Learner
Input: horizExpFactor in]0,1]
//user chosen value, if high the algorithm will go deeper in the tree before expanding1

horizontally
ST (search tree) is set to the tree consisting only of the root node (>, 0, q(>), false)2

minHorizExp = 03

while ST does not contain a correct concept do4

//if nodes with equal quality exist, choose the one with the least horizontal expansion5

choose N = (C, n, q, b) with highest fitness in ST6

expand N up to length n+ 1, i.e. :7

begin8

//checks for weak equality9

add all nodes (D,n,−, checkRed(ST,D)) with10

//achieves properness11

D ∈ transform(ρcl
↓ (C)) and |D| = n+ 1 as children of N12

evaluate created non-redundant nodes13

change N to (C, n+ 1, q, b)14

end15

minHorizExp = max(minHorizExp, dhorizExpFactor ∗ (n+ 1))e)16

while there are nodes with defined quality and horiz. expansion smaller minHorizExp do17

expand these nodes up to minHorizExp18

Return a correct concept in ST19

3 COMPARISON OF LEARNING ALGORITHMS 31

3.3 Comparison

After we investigated the inner workings of the algorithms, we will compare them directly in this
section. The two main algorithms use completely different methods for learning concepts. One con-
structs the solution bottom-up and the other one top-down. For the following analysis, we will ignore
the approach by Cohen and Hirsh [13] using the lcs, since YinYang is based upon their results and is
much more advanced. Another approach that we will skip here was proposed by Badea et al. [7], who
construct a complete and proper refinement operator for theALERDescription Logic. This approach
was not implemented and it served as a basis for the top-down search and the refinement operator of
the DL-Learner, which uses much more advanced methods and works on ALC , which is directly
relevant for OWL DL.

Both the DL-Learner and YinYang have, as stated in the respective papers, the same ambition to
become tools for ontology engineering. Each adopts a different bias for their solutions. While the DL-
Learner has a strong bias for short concept descriptions and correct solutions, YinYang tries to achieve
a minimal cross-validation error, while ignoring concept length. The DL-Learner uses a complete
and efficient algorithm to search top-down preferring short concepts. During the process, its current
solution is always complete according to Definition 5 in Section 1.2, which makes it possibly to stop
the algorithm at any time and still receive a solution that at least covers all the positive examples.
Because of this behavior, there is also the risk of producing concepts which are too general, which
tend to have a lower precision. This risk is reduced greatly though, through the use of the heuristic,
which prefers consistent concepts. Yinyang on the other hand seems to completely ignore the length
of the produced solution, which has the clear disadvantage that the solution can hardly be altered
manually. During the run, it tries to alternately optimize both coverages, i.e. how many positive and
negative examples are covered. While the amount of positive examples covered directly influences
recall, both coverages are needed to achieve a high precision. If we consider a web scenario, where
users are able to stop the algorithms, if they become impatient, the DL-Learner therefore would emit a
short solution, which covers all positive examples, but not all negatives, while YinYang would return
a long concept description, which would probably cover less negative examples, but not all positives.

We will briefly verify, if the programs possess the features mentioned in Section 3.1.4. Both learning
programs can process RDF/OWL and have the ability to ignore concepts for relearning the definition.
Both algorithms bear the possibility to learn online, although they did not implement it yet. Learning
online becomes important when an existing concept becomes incorrect, e.g. when new instances
are added. It is thus preferable to start from the existing concept definition instead of starting from
scratch. YinYang was especially designed to work online (see [19; 20]). The existing incorrect concept
definition can be used as partial generalization as a starting input. A major drawback is that the MSC’s
have to be recalculated. In case of the DL-Learner an upward refinement operator could be used until

3 COMPARISON OF LEARNING ALGORITHMS 32

a more general concept is reached (similar to YinYang), which covers the newly added instances, then
the downward refinement can be used combined with the top-down search.

Another useful feature is the ability to further refine a found solution. Once the DL-Learner found
a solution, it is possible to search for further solutions, which could be requested by a knowledge
engineer through interaction (cf. Section 5). We are not sure what will happen if YinYang tries to
further refine concepts. YinYang heavily depends on the information contained in the MSC’s. The
algorithm stops, if all MSC’s contributed to the solution, so there are none left to further improve the
solution. Also the methods used for specialization seem to bear the risk that a further refinement of
a solution could always decrease the quality (lcs substitution, if counterfactuals and add conjuncts
fail).

3.4 Problems of the Open World Assumption

The Open World Assumption poses a problem, when checking example coverage for verifying the
solution of a learning problem. The issue is mentioned in Badea et al. [7], who propose to close the
knowledge base to allow example coverage checks in cases were examples would be covered under
the Closed World Assumption (CWA). The next two examples show the problem of open knowledge
bases when learning concepts. A problem that would not occur in Inductive Logic Programming when
learning clauses in logic programs because of the CWA .

Example 7 Consider the following knowledge base K = (T ,A) with
T = ∅
A = {A(a1), A(a2), A(b1), B(b1), A(b2), B(b2), R(a1, b1), R(a2, b2)}

and the example sets of the learning problem:

E+ = {a1, a2}
E− = {b1, b2}

With CWA in effect correct solutions would e.g. (there are more) be

C = ∀R.B or C = ¬B

since K′ |= E+ and K′ 6|= E− with K′ = K ∪ {Target ≡ C}

however with the OWA the positive examples do not follow from the learned concept. There could be
more unknown roles of a1 and a2 with fillers not instances of B and they are not explicitly defined
instances of the negated concept ¬B, meaning it is unknown, whether they belong to B. Note that
the Unique Name Assumption (UNA) adds to this problem, because it prevents the learning of e.g.
number restrictions. The concept≤ 2Rwould not cover both positive examples since an interpretation
could assign a1 and a2 to the same element xI ∈ ∆I{aI1 = aI2 = xI}.

3 COMPARISON OF LEARNING ALGORITHMS 33

When considering OWL (Lite, DL, 1.1) as the target language, it is impossible to learn the following
language constructs (if of course they are not defined already in a given knowledge base) without
circumventing the problems stated above.

• Quantified value restriction
• Negated concepts
• Number restrictions

This directly restricts the usefulness of a learning algorithm for ontology engineering since the learned
concepts will be less expressive. There are different ways to cope with these problems.

The knowledge engineer could be given a choice upon the presentation of the learned concept
C containing an existential value restriction (∃R.D) to transform ∃R.D to a quantified value
restriction(∀R.D). The new problem is now that all the positive examples and possibly more indi-
viduals will not be covered by the concept anymore. To fix this problem an even more invasive choice
could be presented to an engineer, i.e. explicitly adding C(a) to the ABox for each a ∈ RA(C)
(RA(C) for retrieval of all individuals that are instances of C) , thus forcing the assignment of indi-
viduals to the concept. In a second step, the chosen ∃R.D could be transformed to (∃R.Du∀R.D)40.
There are numerous possible examples where such a step would be sensible, e.g. a vegetarian meal
can have numerous meatless ingredients, but should have at least one (a meal without any ingredients
would be cheap to produce, but would not appeal to a hungry customer in any way) and all the ingre-
dients should be without meat. One more proposal could be made to the engineer, in case it applies.
The ∃R.D could also be transformed to a number restriction [< | > | =]nR, which would result in an
even stronger expression. In OWL DL qualified number restrictions do not exist, which would make
the preservation of ∀R.D mandatory, while it can be omitted in OWL 1.1 with [< | > | =]nR.D
(Note that all major reasoner already support qualified number restrictions). The proposed number
n for these restrictions could be assessed in a simple way by counting the number of participations
in certain roles by the concerning individuals. Some reasoners might make it necessary though to
dissolve the UNA (with the owl:AllDifferent statement for example).

The proposed solution above solves the major problems that come with the OWA and the UNA,
but it still is burdensome on the engineer, because he still has to make difficult decisions about the
Ontology design. Thus a tool, in this respect, would only be semi-automatic in a way, that it takes
tedious manual work away from the engineer, but does not aid him in the decision process, i.e. does
not make proposals how he preferably should design the ontology.

The preferable way in our opinion should be, that the learning algorithm closes the knowledge base
temporary to learn stronger statements, which then can be proposed to the knowledge engineer for

40Of course this could only be an option, if all the individuals do not have roles with individuals not belonging to the
extension of D, because it otherwise would result in an inconsistent ontology.

3 COMPARISON OF LEARNING ALGORITHMS 34

his approval or rejection (relearn with an open knowledge base). Some authors have committed work
[7; 20; 21] to this issue and we will analyze it here briefly while proposing a new way at the end
which will be incorporated in the DL-Learner in future releases.

With respect to concept learning in DL, Badea and Nienhuys-Cheng [7] considered the K operator41

from a theoretical point of view. The K operator alters constructs like ∀ in a way that they operate on
a Closed World Assumption. The definition of such a operator is simple, because it has the desired
properties by definition. The creation and implementation of such an operator is however not trivial.
In a recent paper [21] of the developers of Pellet42, they analyze how such an operator could be used
in applications. The paper just considers many possible ways to incorporate such an operator, but in
the end comes to the conclusion, that really none of those ways provide a best practice. Nevertheless
on their homepage43, they announce that they are working on the implementation of a K operator to
provide CWA-based OWL reasoning.

Another approach is provided in the most recent paper about the YinYang algorithm[20]. They are
adding axioms to the ABox (namely e.g. ∀(a), a ∈ NI) to provide that the instance checks of the
msc’s contain the individual, they were created from. Since they define coverage (a learned concept
covers examples) in a broader sense (solution is correct if it subsumes the msc’s of positive examples
(and not the msc’s of negative examples)), they rather circumvent the problem than tackling it. Thus it
might be argued, that the solution only is useful for the knowledge base with the added ABox axioms,
but does not account for the original knowledge base.

The method we are pursuing is based on two assumptions. The first assumption is that from a practical
view, a knowledge engineer (with domain knowledge) naturally rejects the Unique Name Assumption,
meaning that he considers all instances different from one another, unless explicitly stated otherwise
with e.g. owl:sameAs. The second assumption, we make, is that when providing choices to an en-
gineer with domain knowledge, the choice if a number restriction applies and how big that number
should be, is a choice that normally can be answered easily (e.g. a car has at least 4 tires, a hand has
5 fingers, the H in H2O has two atomic connection to the oxygen). We are proposing a closure by
adding number restrictions to individuals that mirror the amount of roles they take part in. Note that
number restrictions do not make statements about values a role might take and do not make global
assumptions. The way we apply them just reflects the actual state of the knowledge base. Instead of
giving an exact definition, we just give a short example which suffices to explain the idea (since it is
not that complicated).

Example 8 (closure with number restrictions) We change a given ABox:
A = {A(a1), A(a2), A(a3), A(a4),

41The K-estimation operator is originally named after Kripke.
42http://pellet.owldl.com/
43http://pellet.owldl.com/faq/closed-world/

http://pellet.owldl.com/
http://pellet.owldl.com/faq/closed-world/

4 BENCHMARKS 35

B(b1), B(b2), B(b3), B(b4),
R(a1, b1), R(a1, b2), R(a1, b3),
R(a2, b1), R(a2, b2), S(a2, b3)}
by adding the following axioms:
= 3R(a1)(a1 participates three times in R)
= 2R(a2)(a2 participates two times in R)
= 1S(a2)(a2 participates one time in S)

Because of the way the DL-Learner is implemented, it suffices to add the axioms to the DIG-code44

that is sent to the reasoner, thus leaving the original knowledge base unchanged. Another statement,
which is part of OWL-DL, is added to the DIG-code, namely owl:AllDifferent, which disposes of the
UNA45. The addition of the axioms, now enables learning stronger statements containing e.g. the ∀
constructor. Note that now e.g. ∀R.B(a1) and ∀R.B(a2) can be inferred, i.e. they are true. The main
difference now, compared to the above proposal, where the choice is up to the engineer, is that the
bias is different. The learned concept containing e.g. an ∀ constructor is now a proposal, which means
the learning algorithm (or more general speaking the tool supporting the engineer) considers it as a
good solution, while before it was a mere choice after the liking of the engineer. If he accepts the
proposal the above mentioned steps can be taken (assigning all concerning instances to the learned
concept, etc.).

We, therefore, shifted the problem of the OWA, since now, the problem is not anymore that complex
and stronger definitions can not be learned, it now all depends on how good the solutions are, the
learning algorithm proposes.

4 Benchmarks

We used several benchmarks to compare the two implemented learning systems YinYang and DL-
Learner. In Section 4.2, we tested both the algorithms for correctness, basically using the training
data as test data. This resembles the use case, in which an engineer selects all available instances to
learn a concept description during ontology creation. In Section 4.3, we evaluated the usefulness of
the algorithms to make accurate predictions about instances not belonging to the training data. This
normally occurs, if new instances are added to the knowledge base. The used benchmarks will be
available with further releases of the DL-Learner at Sourceforge46.

44http://dl.kr.org/dig/
45 in contrast to a complete closure owl:AllDifferent is implemented in all major reasoners (FaCT++, Pellet)
46http://sourceforge.net/projects/dl-learner/

http://dl.kr.org/dig/
http://sourceforge.net/projects/dl-learner/

4 BENCHMARKS 36

4.1 Some Remarks about the Experiments

Since the DL-Learner is open source we used the latest SVN version from the repository. For YinYang
we had to use an older version, which was available for download from the authors homepage. In an
email Luigi Iannone, the main developer of YinYang, stated that a release is scheduled in the next
months; thus we could not use the improved version, which was used to produce the results in [20].
We used the newest version (1.5.1) of Pellet47 a state-of-the art reasoner, which is freely available.
We ran the programs from the console and measured the time they needed for a complete run. We
did not subtract the times, they needed to start internal components or parse the ontologies, since
we assume, that either the time needed for these tasks is marginal compared to the time needed
for concept learning or is roughly the same for both algorithms. To validate the results we parsed
the output and converted the learned concepts to an internal representation. The concept length is
calculated by counting the number of atomic concepts, including > and ⊥, and constructors as in
Example 9.

Example 9 (concept length)
length 1: A
length 3: A u B
length 4: A u ∃ role.>
length 4: A u ∃ role.B

We converted the internal representation to DIG code and queried the reasoner Pellet 1.5.1. for all
instances of the given concept, which we then compared with the target data.

4.2 Simple Scenarios

As mentioned before, we will use the training data as test data in this section. We will measure
correctness, time and concept length of the learned concept. Each subsection will give a brief overview
about the used data and the results are summarized in the end.

4.2.1 Identifying Arches

The arch problem is small in terms of size and complexity of the background knowledge. It was first
mentioned in [36] and used by [32] to evaluate the learning program FOIL, which learns Horn clauses.
The axioms in the paper were converted to Description Logic axioms and one more negative example
was added. The algorithms are presented 5 instances, of which two are arches and three are not.

47http://pellet.owldl.com/

http://pellet.owldl.com/

4 BENCHMARKS 37

Figure 5: 5 constructions, of which 2 are arches

4.2.2 Trains

The trains problem originated from [30] and was converted to Description Logics by Lehmann [25]
. The data describes different features of trains, e.g. which cars are appended to a train, whether they
are short or long, closed or open, jagged or not, which shapes they contain and how many of them.
The five trains on the left are the positive examples, the trains on the right negative examples.

Figure 6: Ten trains

4.2.3 Summary

Table 2 presents the results of the experiments. Both algorithms succeed in learning correct concepts
in adequate time. The obvious difference is the increased solution length produced by YinYang.

4.3 Predictive Scenarios

In this section we tested the algorithms for their predictive qualities. We applied common measures
like precision, recall, f-measure and accuracy on the results. The measures were calculated in
the following way. We queried Pellet 1.5.1 and compared the results to the data according to the

4 BENCHMARKS 38

Correctness Length Time
Experiment DL YY DL YY DL YY

Arches 100% 100% 6 24 8,82sec 6,11sec
Trains 100% 100% 4 12 3,69sec 6,88sec

Table 2: Results of the Arches and the Trains experiment

following formulas:

Definition 11 (Measures)

Definition of the sets:
Relevant all instances that should belong to the target concept.
Retrieved all instances retrieved by the reasoner query.
Testdata all positive and negative instances belonging to the Testdata.
Positives all positive instances from the Testdata.
Negatives all negative instances from the Testdata.
TruePositves Retrieved ∩ Positives
TrueNegatives Negatives without {Retrieved ∩ Negatives}

Definition of the measure:
Precision |Relevant ∩ Retrieved| / |Retrieved|
Recall |Relevant ∩ Retrieved| / |Relevant|
F-measure 2 ∗ (Precision ∗ Recall) / (Precision + Recall)
Predictive Accuracy |TruePositves ∪ TrueNegatives| / |Testdata|

4.3.1 Moral Reasoner

The benchmark was taken from the UCI Machine Learning Repository48. We converted it from Dat-
alog to DL and it now consists of 18 defined concepts and 202 instances of which 102 belong to the
target concept "guilty". The main aim of the problem is to learn rules whether people are to be judged
guilty or not guilty. We conducted two experiments. In the first experiment we removed the axiom

guilty = blameworthy t vicarious_blame
(formerly in Datalog:

48http://archive.ics.uci.edu/ml/ and for the data
http://mlearn.ics.uci.edu/databases/moral-reasoner/

http://archive.ics.uci.edu/ml/
http://mlearn.ics.uci.edu/databases/moral-reasoner/

4 BENCHMARKS 39

guilty(X) :- blameworthy(X).
guilty(X) :- vicarious_blame(X).)

and choose 40 instances (20, which originally belonged to the concept guilty and 20 which did not)
as example set. In the second experiment we used the same example sets and further removed the two
intermediate concepts:
blameworthy, vicarious_blame
The remainder of the instances served as test data. We discovered that YinYang produced different
results at each run. We could not find an explanation for this behavior and thus just averaged the
results over 6 runs.

Table 3 shows the results of the experiment. The DL-Learner scores high overall, needs less time
and produces short solutions. It lost 3.77% in the precision for the complex experiment, because it
retrieved 4 additional negative instances. This matches exactly the expectation of short solutions. They
score high on recall and predictive accuracy, but have a tendency due to their generality to retrieve
unwanted instances. Nevertheless it is just marginal in this case. The results YinYang produced on
the other hand also match the expectation. It produced high precision, since it covers the positive
examples, but does not scale well over the whole data. The recall shows how more or less exactly
the 20 positive examples used for learning are retrieved out of 102 relevant. The high predictive
accuracy is mostly achieved by excluding the target negatives, which count as TrueNegatives in the
calculation.

DL-Learner
concept precision recall f-measure pred. acc avg length avg time

Moral simple 100% 100% 100% 100% 3 61.3sec
Moral complex 96.23% 100% 98.08% 97.48% 8 122sec
Total avg 98.12% 100% 99.04% 98.74% 5.5 91.65sec

YinYang
Concept precision recall f-measure pred. acc avg length avg time

Moral simple 69.82% 25.33% 37.17% 49.69% 111.7 85.5sec
Moral complex 71.43% 19.61% 30.77% 50.84% 77.8 177.4sec
Total avg 70.63% 22.47% 33.97% 50.27% 94.75 131.45sec

Table 3: Results for the moral reasoner benchmark

4.3.2 Family Benchmark

Throughout the literature we can find many evaluations that use family trees for learning hypotheses.
Family relations and concepts are well suited, because the initial knowledge is fairly simple and pos-

4 BENCHMARKS 40

sible target hypotheses range from simple to difficult. Instead of using an existing example taken e.g.
from FORTE49 or [19; 32], we chose to create our own benchmark to be able to test a wide range of
learning problems with oracled data. The ontology we created contains 257 instances, which belong
to the concept Person and to either Male or Female. We furthermore used four properties to de-
scribe the relations between instances:married, hasSibling, hasChild, hasParent. We conducted
two sets of experiments, one set with easier learning problems and one with a very complex problem.
In the following, we will first describe the process in detail how the ontology was created.

Process of creation With the help of a script a randomized family ontology was created. Starting
from one couple, we generated the family tree based on the following probabilities. In the first run the
couple (first generation) has a 100% chance to have one child, an 80% chance to have a second child
and a 60% chance for a third and so on. Each child, no matter what generation, has a 50% chance to
be male or female. In the next run for the second generation each child of the first couple has an 80%
chance of getting married and if this occurs, there is an 80% chance for the first child, 60% chance for
the second child and so on. In the third generation, the children of the second generation only have
a 60% chance of getting married and a starting chance of having one child of 60%. There are two
factors that influence the size of the ontology, namely the diminishing factor, which was 20% in the
above example and the number of families, meaning that one starting couple is used to create a family
tree for each family. We defined 19 target concepts and collected the belonging instances during the
creation process. A separate ontology was created based on the same instances, but containing more
background knowledge, which was used for the second experiment. The basic ontology only contains
three concepts, which are ordered as follows:

Person wMale

Person w Female

The ontology with extended background knowledge contains the same instances and 15 more con-
cepts with the most complicated one, i.e. Uncle left out (that presumably has the longest concept
descriptions and thus is difficult to learn) It also contains a hierarchical order between the concepts
like:

Parent w GrandParent
GrandParent w GrandFather
Male w GrandFather

Table 4 shows detailed information about the number of instances for each concept.
49First Order Revision of Theories from Examples, http://www.cs.utexas.edu/users/ml/forte.html

http://www.cs.utexas.edu/users/ml/forte.html

4 BENCHMARKS 41

Concept Instances Percentage
Person 202 100%
Male 104 51.48%
Female 98 48.51%
PersonWithASibling 72 35.64%
Father 60 29.70%
Mother 60 29.70%
Son 52 25.74%
Daughter 52 25.74%
Grandson 43 21.28%
Sister 42 20.79%
Uncle 38 18.81%
Granddaughter 37 18.31%
Grandfather 35 17.32%
Grandmother 35 17.32%
Brother 30 14.85%
Grandgrandson 24 11.88%
Grandgrandfather 17 8.41%
Grandgrandmother 17 8.41%
Grandgranddaughter 17 8.41%

Table 4: The table shows the number of instances for each target concept

Cross validation We divided the data for each instance randomly in 6 folds and used 5 for training
and 1 for testing. The last target concepts did not have sufficiently enough instances for more folds.
As a special tough test for the learning programs we decided not to include all negative examples in
the folds, but only up to the size of the positive example set size.

Complexity of target concepts The complexity of target concepts vary heavily, which directly
results in the big differences in accuracy and time. The simplest concepts are the ones that have
the shortest definition like Father, Mother, Son, Daugther. The more difficult ones include
Grandgranddaughter, Grandgrandson, etc. To give one short example, one of the shortest possi-
ble solutions for Grandgrandfather, which we could intuitively think of, (Male u ∃ hasChild.∃
hasChild.∃ hasChild.>) was found by the DL-Learner. It has a length of 6. YinYang on the other
hand produced much longer solutions with an average length of 108.3, which we consider unreadable
by a human. In a second experiment we tried to evaluate the solution for the most complex learning
problem for the target concept Uncle, where we assume that the shortest possible solution is Male

4 BENCHMARKS 42

u (∃ hasSibling.∃ hasChild.> t ∃married.∃ hasSibling.∃ hasChild.> (A man that has a sib-
ling that has a child or that is married to someone who has a sibling that has a child.). Actually that
problem was so difficult to learn, that we faced some problems during the experiments, which we will
analyze below in the Paragraph Uncle.

Result of the first experiment set The results for each of the 15 easier target concepts are sum-
marized in Table 5. Both algorithms have a perfect score in the first 9 experiments with the DL-
Learner being faster and producing shorter solutions. For the last 6 experiments the performance of
the DL-Learner stays good to excellent with two exceptions for the concepts Grandgranddaughter
and Grandgrandmother. We already stated above, that we used, as an extra difficulty, positive
and negative example sets of the same size, not including all negative examples in the folds. As
we looked closer at the results, we discovered that the DL-Learner learned the correct concepts for
Granddaughter and Grandmother in those two cases, which are superclasses of the two target
concepts (every Grandgrandmother is also a Grandmother). Since there were not any Grandmothers
or Granddaughter included in the negative example sets, the DL-Learner stopped, because the con-
cepts were correct. As it is a top-down algorithm it thus produced a more general concept, which
has a lower precision, a high recall and a good predictive accuracy , as confirmed by the experiment.
YinYang behaves similar for those two concepts. It also learned the concept for Grandmother in-
stead of Grandgrandmother and performs even poorer for the concept Grandgranddaughter50.
In the other 4 from the last 6 more difficult experiments YinYang showed more weaknesses, which
in some cases can even be considered horrible compared to the DL-Learner. It hardly reaches a pre-
cision of 30% for the concept Grandgrandfather (only 50.53% for Grandgrandson) and it does
not only produce very long concept description with sizes of e.g. 108.3 and 199.3, it also needs more
than 20 times longer for some concepts (Granddaughter). The averaged scores reveal that YinYang
compared to the DL-Learner has a lower total F-measure by 12.25%, a lower predictive accuracy by
7.65% and 7.6 times longer concept descriptions while needing 5.6 times longer.

Uncle As mentioned above, there seems to be a direct relation between target concept length and
learning complexity. We originally planned on testing the algorithm with 3 target concepts of high
complexity. The concepts were Uncle, Aunt, Cousin (A Person who has a Parent that either has
a Sibling that has a Child or who has a Parent that is married to someone who has a Sibling who
has a Child), whereas Cousin had the highest complexity. We intended to test it twice, i.e. with the

50Remark: At first we assumed a flaw in our preparation of the folds, but we discovered that the target concept and the
assigned instances and the instances in the folds were all correct, so that this outcome was produced by chance only. We
refused to let the dice role one more time, because we do not consider it legal to tweak the data until the results appear
pleasant.

4 BENCHMARKS 43

DL-Learner Concept Precision Recall F-measure Pred. Acc. avg length avg time

PersonWithASibling 100% 100% 100% 100% 2 5.5sec
Brother 100% 100% 100% 100% 4 7.1sec
Sister 100% 100% 100% 100% 4 7.7sec
Son 100% 100% 100% 100% 4 7.6sec
Daughter 100% 100% 100% 100% 4 7.8sec
Father 100% 100% 100% 100% 4 9.3sec
Mother 100% 100% 100% 100% 4 10.5sec
Grandfather 100% 100% 100% 100% 5 11.3sec
Grandmother 100% 100% 100% 100% 5 11.3sec
Grandson 96.63% 100% 98.29% 98.61% 4.8 12.3sec
Granddaughter 100% 100% 100% 100% 5 11.4sec
Grandgrandson 100% 100% 100% 100% 6 25.6sec
Grandgranddaughter 45.95% 100% 62.96% 100% 5 7.9sec
Grandgrandfather 100% 100% 100% 100% 6 22.7sec
Grandgrandmother 48.57% 100% 65.38% 100% 5 7.5sec
Total avg 92.74% 100% 95.11% 99.91% 4.52 11.03sec

YinYang Concept Precision Recall F-measure Pred. Acc. avg length avg time

PersonWithASibling 100% 100% 100% 100% 8 19.1sec
Brother 100% 100% 100% 100% 8 13.1sec
Sister 100% 100% 100% 100% 8 14.2sec
Son 100% 100% 100% 100% 6 15.1sec
Daughter 100% 100% 100% 100% 6 15.2sec
Father 100% 100% 100% 100% 6 15.8sec
Mother 100% 100% 100% 100% 6 15.7sec
Grandfather 100% 100% 100% 100% 15.5 35sec
Grandmother 100% 100% 100% 100% 16 37.9sec
Grandson 85.15% 100% 91.98% 98.61% 22 94.7sec
Granddaughter 83.18% 40.09% 54.1% 68.33% 16.5 329.6sec
Grandgrandson 50.53% 100% 67.13% 91.67% 199.8 180.1sec
Grandgranddaughter 12.95% 56.86% 21.09% 58.33% 73.3 75.1sec
Grandgrandfather 27.81% 97.06% 43.23% 66.67% 108.3 49.8sec
Grandgrandmother 48.57% 100% 65.38% 100% 16 21.4sec
Total avg 80.55% 92.93% 82.86% 92.24% 34.36 62.12sec

Table 5: The table shows the results of a 6-fold cross validation

4 BENCHMARKS 44

ontology containing only three defined concepts and with the ontology with larger background. We
could not conduct the experiment, because we discovered that the bias for short concepts of the DL-
Learner currently hinders it to learn long concept definitions. After we ran the DL-Learner on the first
folds, we discovered that the runtime for one fold was approximately 15 hours with small background
knowledge and 11 hours with large background, since it could use the hierarchy. The estimated time
for all folds and all concepts would have been at least (3 * 6 * 15h + 3 * 6 * 11h) = 468 hours = 19.5
days. We therefore tested only all folds for one concept, namely Uncle and only with the ontology
with more background knowledge. The results are shown in Table 6, in which we also included two
rows that show the results of a dumb learning algorithm that just returns > or ⊥ . Since the long time
the DL-Learner needed (40,252.19 sec) is unacceptable, we also included the solution the DL-Learner
produced, if it is stopped at approximately the same time that YinYang needed for a complete run (cf.
Section 3.3). If we look at the results, we can see that although YinYang finished in acceptable time
it produced a poor solution. The concept length is incredibly high and the F-measure is only slightly
higher than what we retrieved for >. Also, the predictive accuracy barely reaches 50%. The results
we received, when stopping the DL-Learner, where as expected in Section 3.3, with a low precision
and a high recall, but still significantly better than YinYang. The long time needed for a complete run
of the DL-Learner makes the question necessary, why it needed that long and how it can be further
optimized. A question we will analyze in the next section.

DL-Learner
Concept precision recall f-measure pred. acc avg length avg time

Uncle stopped 44.19% 100% 61.29% 85% 6 465.95sec
Uncle 100% 100% 100% 100% 10 40,252.19sec

YinYang

Uncle 40.76% 37.72% 39.18% 45% 246.2 505.1s

TOP and BOTTOM

Uncle TOP 18.81% 100% 31.67% 50% 1 0sec
Uncle BOTTOM 0% 0% 0% 50% 1 0sec

Table 6: Results for the second experiment (concept Uncle) with more concepts defined explicitly in
the background knowledge

4.4 Conclusions

In our experiments the DL-Learner clearly produced better results than YinYang. This might be due
to the fact that we had to use an old version of YinYang, but we refrain here from speculating, what
results a newer version of YinYang might produce. A clear advantage of the DL-Learner is the avail-

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 45

ability of the latest modifications, because it is freely available as Open-Source. Nevertheless, we
clearly identified the limitations of both algorithms in our Uncle experiment. Especially the DL-
Learner, which we deemed more useful, based on our previous experiments, needed unacceptably
long to compute a solution. This is due to the fact that it searches and evaluates all nodes up to a
certain depth in the search tree (based on horizontal expansion). To find a solution for this problem
is not trivial, because a change in the search process might lead to incompleteness in the algorithm.
The use of other complete search algorithms like e.g. A* would certainly solve this problem, but it
is difficult to choose an admissible heuristic. Neither the length of the concept nor the coverage of
examples nor the horizontal expansion can be efficiently combined for a better heuristic.

5 Creating a Sample Ontology with Learning Support

In this section we propose an instance driven method for Ontology Engineering. The reason for this
proposal is obvious. The realm of instances and individuals with their properties can be easily mod-
eled by a human with domain knowledge only, while on the other hand modeling concepts requires
more time, formal knowledge and also deep domain specific knowledge.

Imagine building a colour ontology, an issue that is still heavily argued about. Identifying different
instances is easy, but the creation of background knowledge is still a matter of research. In case of
e.g. a clothes company that needs to a certain extent ontological knowledge about colours, expenses
for creating a complete colour ontology could not be justified. But even partial ontological knowledge
comes at a price. As soon as a problem arises, e.g. a customer wants matching shoes for her red skirt,
the need arises to find a simple solution.

The instance driven method we are proposing tries to simplify all problems a knowledge engineer
might encounter by changing the view on the problem. Defining concepts is simplified to selecting
example instances and creating background knowledge is simplified to assigning classes to instances.

In the following example we assume a knowledge engineer, which mostly has domain knowledge and
only knows the basic principles of ontologies. His task is to design a domain specific ontology from
scratch based on already existing instances from another data source.

5.1 Creating a Mercedes Benz Car Ontology

We chose the Daimler domain as an example because of its vast complexity. The Daimler AG offers
its customers almost a free choice of configuration options when ordering a Mercedes Benz. Unlike
other car producers which produce a large quantity of same car configurations, the Daimler AG as-
sembles cars according to customer wishes. Estimates state that the factory in Sindelfingen alone can

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 46

theoretically produce 1027 different cars. Creating an ontology to cope with this complexity is, given
the actual procedures, a project which would consume an immense amount of resources. In this exam-
ple we try to establish a new procedure, which could make it at least more affordable. The ontology
we will create is by far not complete or exhausting, but we try to identify special steps, which can be
eased by semi-automatic tool support. To put this procedure to practice much more research and case
studies are needed. This section merely serves as a starting point.

5.1.1 Extracting Instances

Research has fostered numerous ways to convert conventional data sources to semantic enriched data.
Some of those ways are very advanced and already produced amenable results. Besides the methods
mentioned above (Section 2.3, [2] Wikipedia) several tools already exist. We will not go into further
detail here, because our proposal builds upon those results. The interested reader is referred to [29],
some existing tools are named here: D2R MAP51 , Protégé Plug-In for Ontology Extraction from Text
[12] 52. Also, [26] provides a sound method to convert a relational database to an OWL ontology.

For our purpose we assume a simple relational database as existing data source, because it is the most
common way to keep conventional data. The method for extracting the information from the data is
straightforward and is only mentioned here for completeness. Every tuple in the database is extracted
as one instance with foreign keys resulting in relations between instances. Classes were assigned
according to table name and values in columns. The Tables 7, 8 and 9 show two different cars from
the C-Klasse in the database.

The resulting A-Box can be found here:

C-Klasse (C-Klasse_Sportcoupe_1) .
Sportcoupe (C-Klasse_Sportcoupe_1) .
hasEngine (C-Klasse_Sportcoupe_1 , Engine_C_220_CDI_1) .
Engine (Engine_C_220_CDI_1) .
C_220_CDI (Engine_C_220_CDI_1) .
Diesel (Engine_C_220_CDI_1) .
R4 (Engine_C_220_CDI_1) .
hasTransmission (C-Klasse_Sportcoupe_1 , Transmission_Mechanic_Gear-6_Rear-Wheel-Drive_1
) .
Transmission (Transmission_Mechanic_Gear-6_Rear-Wheel-Drive_1) .
Mechanic (Transmission_Mechanic_Gear-6_Rear-Wheel-Drive_1) .

51http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm
52http://olp.dfki.de/OntoLT/OntoLT.htm

http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm
http://olp.dfki.de/OntoLT/OntoLT.htm

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 47

ID Class Type Engine Drivetrain
1 C-Klasse Sportcoupe 1 1
1 C-Klasse Limousine 2 2

Table 7: Car

ID Label Fuel Cylinder
1 C_220_CDI Sportcoupe R4
2 C_350_4MATIC Super V6

Table 8: Engine

ID Type Drivetrain Gear
1 Mechanic Rear-Wheel-Drive Gear-6
2 Automatic 4-Wheel-Drive Gear-7G-TRONIC

Table 9: Transmission

Gear-6 (Transmission_Mechanic_Gear-6_Rear-Wheel-Drive_1) .
Rear-Wheel-Drive (Transmission_Mechanic_Gear-6_Rear-Wheel-Drive_1) .

C-Klasse (C-Klasse_Limousine_2) .
Limousine (C-Klasse_Limousine_2) .
hasEngine (C-Klasse_Limousine_2 , Engine_C_350_4MATIC_2) .
Engine (Engine_C_350_4MATIC_2) .
C_350_4MATIC (Engine_C_350_4MATIC_2) .
Gas (Engine_C_350_4MATIC_2) .
Super (Engine_C_350_4MATIC_2) .
V6 (Engine_C_350_4MATIC_2) .
hasTransmission (C-Klasse_Limousine_2 , Transmission_Gear-7G-TRONIC_4-Wheel-Drive_2) .
Transmission (Transmission_Gear-7G-TRONIC_4-Wheel-Drive_2) .
Automatic (Transmission_Gear-7G-TRONIC_4-Wheel-Drive_2) .
Gear-7G-TRONIC (Transmission_Gear-7G-TRONIC_4-Wheel-Drive_2) .
4-Wheel-Drive (Transmission_Gear-7G-TRONIC_4-Wheel-Drive_2) .

Instances were named after their classes for convenience only, just the id would have sufficed also.

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 48

The tables53 were automatically (randomly generated) populated with legal configurations of cars
according to certain rules (e.g. cars with 4 wheel drives can only have a 7G-TRONIC automatic gear).
Since we did not have any electronic data, we created those rules manually, based on freely available
brochures about the cars. The transformation from the table to the DL ontology is then straightforward
as mentioned above. In total, 123 instances were extracted with 30 classes and 2 relations.

5.1.2 Creating a Subclass Hierarchy

We can now create a subclass hierarchy by finding all concepts C that contain at least all instances of
a target concept E, i.e. the possible super concepts of E.

For a given set of instances, a solution would be to find all existing concepts that the instances belong
to with the exception of the TOP-Concept, which would be a trivial solution, see Algorithm 4.

Algorithm 4: Finding super concepts for E
Input: named class E
Input: set of named classes C
T = empty set of classes1

foreach c ∈ C do2

I = retrieve all instances belonging to E3

N = {c | c(i), ∀i ∈ I , c 6= E }4

T = T ∪ N5

return T6

The engineer can then choose all superclasses for each concept from this list. In general the list shows
only possible superclasses. The correct superclasses have to be identified by the engineer according
to the domain knowledge. By applying the algorithm to the extracted instances and the knowledge
base, the hierarchy shown in Figure 7 is created54.

The resulting hierarchy is quite different from an intuitive approach. Several inclusions are not ex-
pected and would not result from an intuitive manual approach. The concept 4-Wheel-Drive (ger.:
Allrad) is a subclass of the concept Gear-7G-TRONIC, which according to domain knowledge
does not make perfectly sense. 7G-TRONIC is a special 7-speed automatic transmission which has at
first glance nothing to do with the drivetrain (ger.: Antrieb). But all C-Klasse cars with a 4-wheel-drive

53Since this example was completely created from scratch, we actually did not make the effort to produce the tables just
to extract the data from there. We created PHP-objects held in memory, which have the same built as the shown tables and
exported them to RDF

54created with the DL-Learner

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 49

Figure 7: automatically created hierarchy

also have 7G-TRONIC transmission, thus rendering it a valid subclass. Almost exactly the opposite
applies to the 5 and 6-speed transmissions. They are considered subconcepts of Rear-Wheel-Drive
(ger.: Heckantrieb), which is also valid, since all C-Klasse cars with 5 and 6-speed transmissions will
have a rear-wheel-drive. This method thus proves useful, because it aides the engineer to design on-
tologies that might not reflect his view of the domain, but are formally correct, i.e. they match the
data.

5.1.3 Identifying Disjoint Classes

To support the knowledge engineer further an algorithm can propose disjoint classes. In a strict hier-
archy, subconcepts of a concept are normally disjoint. An easy algorithm can now test for all subcon-
cepts of each concept, if this case applies and then present a decision to the engineer, which judges
according to his domain knowledge. We will not present a formal algorithm here, because unlike
above, numerous approaches already exist and are incorporated in tools already like in Protégé.

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 50

5.1.4 Learning Background Knowledge

Up to now, we automatically created an ontology that has instances, a subclass hierarchy and disjoint
classes. We will now show, how the DL-Learner can be used to easily add complex background
knowledge without the need to write formulas, but merely by selecting instances.

For the three most general concepts (C-Klasse, Transmission, Engine) we learned the following
definitions, by choosing the 41 instances for each concept as positive examples and the remaining
instances as negative examples; we relearned the concept.

C −Klasse = ∃hasTransmission.Transmission u ∃hasEngine.Engine
Transmission = Automatic tMechanic

Engine = (Diesel t Gas) u (R4 t V 6)

We added a total of 5 more classes and learned their definitions by selecting the appropriate instances
as positive and negative instances. These newly added classes aim at providing structure to the ontol-
ogy. They divide the 41 cars into subsets. The learned definitions are displayed here:

Cars_Kompressor = ∃hasEngine.(C_180_Kompressor t C_200_Kompressor)
Cars_Mechanic = ∃ hasTransmission.Mechanic

Cars_Automatic = ∃ hasTransmission.Automatic
Cars_Diesel = ∃hasEngine.Diesel
Cars_Diesel_Limousine = Cars_Diesel u Limousine

To validate the results we added the learned class definitions to the ontology and opened it with
Protégé to use its ability to visualize inference. The Figures 8 and 9 show that the classes were
included correctly in the hierarchy (Figure 8) and that the instances are correctly retrieved for each
learned class (Figure 9).

5.2 Conclusions

We provided a process to create an ontology with minimal effort for a knowledge engineer. The most
prominent result is, that the whole ontology was created completely without manual editing, which
greatly eases the burden normally involved. We presented the ontology to Michael Herrmann, who
currently writes his PhD thesis at the Daimler AG and discussed it in a meeting. We especially talked
about the subclass problem, which we investigated in Section 5.1.2, where the concept 4-Wheel-
Drive was assigned a subclass of Gear-7G-Tronic. We came to the conclusion, that it definitely
conflicts with domain knowledge and normally would not be considered a subclass, but in this case it
might make sense, since it matches the data. The clear benefit is, that the problem is discovered and

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 51

Figure 8: The Protégé screenshot shows how the classes with the learned definitions are included in
the hierarchy by inference.

5 CREATING A SAMPLE ONTOLOGY WITH LEARNING SUPPORT 52

Figure 9: The Protégé screenshot shows how the instances are matched to the newly added classes.

presented as a choice to the engineer. The engineer therefore receives more options when designing an
ontology and is not left alone with his opinion only. Besides this matter we also discussed the quality
of the learned concept definitions. Michael Herrmann considered the learned concept definitions fairly
simple, and concluded that an engineer with some skill in Description Logics could have defined them
manually very fast without the proposed tool support. We share his opinion on this matter, but do not
consider this fact as a failure of the tool support, but as a valuable suggestion for further improvement.
As mentioned before in Section (2.2), the automatic selection of example sets is an issue still not
solved, which would in this example further support the engineer in defining classes. Also the lack of
more complex class definitions is directly related to the problem of the Open World Assumption with
respect to concept learning (cf. Section 3.4). We agree that e.g. :

C −Klasse = ∀hasTransmission.Transmission u
(= 1 hasTransmission) u ∀hasEngine.Engine u (= 1 hasEngine)

or
Cars_Diesel = ∀hasEngine.Diesel

would be stronger and more adequate statements, but could not be learned as of now. We nevertheless

6 RELATED WORK 53

consider our approach successful, because we showed that concept learning can be used in an engi-
neering process. This is important because it is the first step of evolution from an algorithm towards
the creation of a useful application which can benefit the manifestation of the Semantic Web.

6 Related Work

Although we already related to significant other work in the respective sections, we would like to
give a complete account with some additions here. Related work can basically be divided in two
parts. The first part is only important for the extraction method in Section 2.3 and is concerned with
other approaches for deductive reasoning on large knowledge bases and modularization/reuse, the
second part gives an overview of the compared concept learning algorithms and other approaches for
ontology enrichment different from concept learning.

In [16], Fokoue et al. (2006) describe an approach to produce a summary of the ABox. They argue
that reasoning can be conducted efficiently on this summary and can be related to the original large
knowledge base (although it has to be verified sometimes). While the approach successfully allows
to spot inconsistencies, other inference methods like retrieval are not mentioned. Our method uses
existing reasoners with full reasoning capacities and is efficient, because it reasons only over relevant
parts, which successfully enables the use of applications that depend on reasoning [17]. It is further
able to handle multi-domain ontologies in a remote scenario (over HTTP) and works without index-
ing and other preparation steps. The ability to relate inconsistencies spotted in the extraction to the
original larger knowledge base, depends on the size of the extraction (recursion depth) and has not yet
been investigated in detail. D’Aquin et al. (2007) [14] committed work about modularization of on-
tologies in general, mainly analyzing the problems and the criteria after which modularization should
be conducted. They tested some existing tools for modularization and partitioning, which focus on
TBox axioms, while we devised an instance based method for extraction.

In this work we compared the concept learning algorithms proposed in [13; 19; 20; 25] in detail,
whereas the latter three use refinement operators, which were first mentioned for Description Logics
in Badea et al. (2000) [7] and later put on thorough theoretical foundations by Lehmann et al. (2007)
[24]. Although our work is not concerned with the creation of a concept learning algorithm, we still
consider Iannone et al. (2007) [20] and Lehmann et al. (2007) [25] closest to the essentials of our
work, since both follow the goal to use concept learning as a tool for ontology engineering. Other
interesting work that is concerned with tool support for knowledge engineers can be found in Baader
et al. (2007) [3]. The approach is quite different, since it tries to adapt methods of Formal Concept
Analysis to complete DL knowledge bases instead of learning concepts according to user-defined ex-
ample sets. The proposed method for completion aims at asking a domain expert a minimal amount of

7 SUMMARY AND CONCLUSIONS 54

questions about axioms that might not have been included in the knowledge base during the engineer-
ing/extraction process. The domain expert can then decide to include those axioms, which is similar
to the acceptance of a learned concept definition as in our work. Without going into detail, we would
also like to mention the work of Lisi et al. (2003) [27], which is concerned with refinement operators
and concept learning for the hybrid languageAL-Log , which merges Datalog with Description Log-
ics. Although their work might be valuable for expert systems, it surely does not match the paradigm
of the Semantic Web, which has adopted OWL as its standard. We agree with the arguments given
in Patel-Scheider et al. (2007) [31] on this issue and completely omitted these approaches from our
analysis. The work of Maedche et al. [29] about Ontology Learning for the Semantic Web is comple-
mentary and looks at the process of ontology engineering from a broader perspective. Their approach
for ”learning ontologies” consists of four steps, which are: import/reuse, extract, prune and refine. In
this context, concept learning can be sorted into the refine step. Our approach for extracting relevant
knowledge from existing ontologies via SPARQL belongs to the import/reuse step after some modi-
fications (cf. Section 8). For completeness, we would also like to mention the approaches of [22; 1],
whereas the first expresses the idea to transform DL knowledge bases to feature vectors to be able to
apply existing machine learning methods and the second uses a probabilistic Description Logic called
YAYA. We did not consider both approaches for our investigations, because the achieved results are
used for classification only and depend on internal classifiers, which can not be used to improve the
original ontology.

7 Summary and Conclusions

We identified current problems of ontology engineering for the Semantic Web and connected the
concept learning methods to the engineering process to show how some of these obstacles can be
overcome. We further provided useful observations about how concept learning can be used for semi-
automatic tool support or even to automatically enrich ontologies. Especially in combination with the
proposed SPARQL extraction method, concept learning can be applied easily to very large ontologies
once they are available over a SPARQL endpoint, which was not possible before. Furthermore, we
investigated in detail the most promising approaches for concept learning, which are likely to become
useful applications in the future (especially the DL-Learner). We identified theoretical weaknesses
in YinYang, which occur during the creation of the MSC’s and when the counterfactuals fail. The
need for benchmarks for concept learning algorithms expressed in Lehmann et al. [25] is answered
and thorough testing of the algorithms clearly revealed the necessity for further improval, before the
threshold to becoming an application can be crossed. The created benchmarks are published in the
Sourceforge project of the DL-Learner and might serve as the basis for the first concept learning
repository for Description Logics. At the end, we tried to apply concept learning to a potentially real

8 FUTURE WORK 55

existing use case, the Daimler ontology with the result of identifying further weaknesses with respect
to the value of learned concepts, but also showed that concept learning can be successfully used for
tool support. We also provided a solution to learn concept definitions that could not be learned before
without major disadvantages, because of the Open World Assumption.

8 Future Work

This thesis was created in the context of ongoing research by the AKSW group of the department of
computer science, University of Leipzig, where it is part of a larger process.

The provided solution for closing an ontology for concept learning needs to be included in the DL-
Learner framework for future releases. Based on the resulting ability of the DL-Learner to learn more
complex concept definitions on the closed knowledge base, the car ontology can be recreated and
extended. Once it reaches a sufficient size and quality, the created ontology could be evaluated by real
domain experts, who work at a car producing company with the help of a questionnaire, which could
become the first real use case for ontology engineering with concept learning support.

Based on the results of the experiments, the DL-Learner framework can be extended by another
learning algorithm, that succeeds in learning the concept for Uncle in reasonable time. Although it
is not yet clear how the new learning algorithm will look like, the ability to directly test it on the
benchmarks, will lower the time needed for improvement.

The availability of benchmarks will also enable a new comparison of algorithms as soon as the new
version of YinYang will be published or any other approaches to concept learning surface.

The possibility of Class Learning on SPARQL endpoints [17], which is based on the extraction al-
gorithm in this thesis, will eventually result in the DBpedia Navigator (implementation has already
started), which will, combined with proper retrieval methods, enable users to navigate through sets of
instances based on learned concept descriptions.

We also consider, the possibilities the extraction algorithm implies, as interesting. Based on the as-
sumption that the function extract (cf. Section 2.3.2) can retrieve all important information for one
instance under a certain aspect (defined by the filter SQTF and the recursion depth), it might be pos-
sible to create a semantic neighborhood of a single fact in a knowledge base. It would be interesting
to show that this neighborhood, if it is well-defined, can be used to define and extract sensible packets
of information from a knowledge base. These packets enable the sharing of Semantic Web knowl-
edge based on instances. New domain ontologies can be created e.g. by defining starting instances
and extracting sensible parts of one knowledge base like DBpedia and then relating those instances to
another knowledge base, extracting more neighborhoods to merge them with the existing knowledge

REFERENCES 56

on a local level, thus easing reuse of structured knowledge throughout the Semantic Web instead of
starting from scratch each time.

References

[1] Jordi Alvarez. A formal framework for theory learning using Description Logics. In James
Cussens and Alan M. Frisch, editors, ILP Work-in-progress reports, volume 35 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2000. 54

[2] Sören Auer and Jens Lehmann. What have Innsbruck and Leipzig in common? Extracting
semantics from wiki content. In Enrico Franconi, Michael Kifer, and Wolfgang May, editors,
ESWC, volume 4519 of Lecture Notes in Computer Science, pages 503–517. Springer, 2007. 11,
46

[3] Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. Completing Description
Logic knowledge bases using Formal Concept Analysis. In Manuela M. Veloso, editor, IJCAI,
pages 230–235, 2007. 5, 53

[4] Franz Baader and Ralf Küsters. Non-standard inferences in Description Logics: The story so
far. In D. M. Gabbay, S. S. Goncharov, and M. Zakharyaschev, editors, Mathematical Problems
from Applied Logic I. Logics for the XXIst Century, volume 4 of International Mathematical
Series, pages 1–75. Springer-Verlag, 2006. 23

[5] Franz Baader and Werner Nutt. Basic Description Logics. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Description Logic Handbook:
Theory and Implementation and Applications, pages 47–100. Cambridge University Press, 2003.
5

[6] Liviu Badea. Perfect refinement operators can be flexible. In Werner Horn, editor, Proceedings
of the 14th European Conference on Artificial Intelligence, pages 266–270. IOS Press, 2000. 26,
27

[7] Liviu Badea and Shan-Hwei Nienhuys-Cheng. A refinement operator for Description Logics.
Lecture Notes in Computer Science, 1866:40–58, 2000. 26, 28, 31, 32, 34, 53

[8] Sean Bechhofer. The DIG description logic interface: Dig/1.1. Technical report, 2003. 8

[9] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001. 1, 2, 10

REFERENCES 57

[10] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s
Razor. In Readings in Machine Learning, pages 201–204. Morgan Kaufmann, 1990. 20

[11] Sebastian Brandt, Ralf Küsters, and Anni-Yasmin Turhan. Approximation and difference in
Description Logics. In KR, pages 203–214, 2002. 22, 25

[12] Paul Buitelaar, Daniel Olejnik, and Michael Sintek. A Protégé plug-in for ontology extrac-
tion from text based on linguistic analysis. In Proceedings of the International Semantic Web
Conference (ISWC), 2003. 9, 46

[13] William W. Cohen and Haym Hirsh. Learning the Classic Description Logic: Theoretical and
experimental results. In Jon Doyle, Erik Sandewall Pietro Torasso, editor, Proceedings of the
4th International Conference on, pages 121–133, Bonn, FRG, May 1994. Morgan Kaufmann.
21, 31, 53

[14] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt, and Marta Sabou. Ontology modu-
larization for knowledge selection: Experiments and evaluations. In Roland Wagner, Norman
Revell, and Günther Pernul, editors, DEXA, volume 4653 of Lecture Notes in Computer Science,
pages 874–883. Springer, 2007. 53

[15] Thomas G. Dietterich, Bob L. London, Kenneth Clarkson, and Geof Dromey. Learning and
inductive inference, volume III of The Handbook of Artificial Intelligence, chapter XIV, pages
323–512. William Kaufmann, 1982. 22

[16] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and Kavitha Srinivas. The Sum-
mary Abox: Cutting ontologies down to size. In ISWC, pages 343–356, 2006. 12, 53

[17] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Class learning on SPARQL endpoints. In
ESWC 2008, submitted. 13, 18, 53, 55

[18] Heinrich Herre, Barbara Heller, Patryk Burek, Robert Hoehndorf, Frank Loebe, and Hannes
Michalek. General Formal Ontology (GFO): A foundational ontology integrating objects and
processes. Part I: Basic principles. Technical report, Research Group Ontologies in Medicine
(Onto-Med), University of Leipzig, 2006. 9

[19] Luigi Iannone and Ignazio Palmisano. An algorithm based on counterfactuals for concept learn-
ing in the Semantic Web. In Moonis Ali and Floriana Esposito, editors, IEA/AIE, volume 3533
of Lecture Notes in Computer Science, pages 370–379. Springer, 2005. 21, 25, 26, 27, 31, 40,
53

REFERENCES 58

[20] Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based on counterfactuals
for concept learning in the Semantic Web. Applied Intelligence, 26(2):139–159, 2007. 7, 19,
21, 22, 23, 24, 25, 31, 34, 36, 53

[21] Yarden Katz and Bijan Parsia. Towards a nonmonotonic extension to OWL. In Proceedings of
OWL: Experiences and Directions Workshop. Galway, Ireland., 2005. 34

[22] Daniel Kudenko and Haym Hirsh. Feature-based learners for Description Logics. In Description
Logics, 1999. 54

[23] Jens Lehmann. Concept learning in Description Logics. Master’s thesis, TU Dresden, 2006. 5

[24] Jens Lehmann and Pascal Hitzler. Foundations of refinement operators for Description Logics.
In Proceedings of the 17th International Conference on Inductive Logic Programming (ILP),
2007. 27, 53

[25] Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm for the ALC
Description Logic. In Proceedings of the 17th International Conference on Inductive Logic
Programming (ILP), 2007. 19, 26, 28, 29, 37, 53, 54

[26] Man Li, Xiao-Yong Du, and Shan Wang. Learning ontology from relational database. In Pro-
ceedings of International Conference on Machine Learning and Cybernetics, Volume 6, Issue ,
18-21 Aug. Page(s): 3410 - 3415, 2005. 9, 46

[27] Francesca A. Lisi and Donato Malerba. Ideal refinement of descriptions in AL-log. In Tamás
Horváth, editor, ILP, volume 2835 of Lecture Notes in Computer Science, pages 215–232.
Springer, 2003. 54

[28] Alexander Maedche and Steffen Staab. Ontology learning for the Semantic Web. IEEE Intelli-
gent Systems, 16(2):72–79, 2001. 8

[29] Alexander Maedche and Raphael Volz. The Text-To-Onto Ontology Extraction and Maintenance
System. In Workshop on Integrating Data Mining and Knowledge Management co-located with
the 1st International Conference on Data Mining, San Jose, California, USA, 11 2001. 46, 54

[30] Ryszard S. Michalski. Pattern recognition as rule-guided inductive inference. Machine Intelli-
gence, 2(4):349–361, 1980. 37

[31] Peter F. Patel-Schneider and Ian Horrocks. A comparison of two modelling paradigms in the
Semantic Web. Journal of Web Semantics, 2007. 54

[32] J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–266,
1990. 36, 40

REFERENCES 59

[33] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with comple-
ments,. Artificial Intelligence, 48:1–26, 1991. 4

[34] Elena Paslaru Bontas Simperl and Christoph Tempich. Ontology engineering: A reality check.
In Robert Meersman and Zahir Tari, editors, OTM Conferences (1), volume 4275 of Lecture
Notes in Computer Science, pages 836–854. Springer, 2006. 8, 10

[35] Gunnar Teege. Making the difference: A subtraction operation for Description Logics. In
J. Doyle, E. Sandewall, and P. Torasso, editors, Principles of Knowledge Representation and
Reasoning: Proc. of the 4th International Conference (KR94), San Francisco, CA, 1994. Morgan
Kaufmann. 25

[36] Patrick H. Winston. Learning structural descriptions from examples. Technical report, Cam-
bridge, MA, USA, 1970. 36

REFERENCES 60

Acknowledgement

Ich wollte mich nur bedanken bei allen, die mich, hauptsächlich moralisch, da das Thema doch sehr
speziell war, unterstützt haben.

Ich danke Seebi für seine Ideen, wie man den Rahmen so einer Diplomarbeit gut organisieren kann
und für seine herzlichen Begrüßungen besonders in unachtsamen Momenten.

Dank an Micha, der, während ich beschäftigt war, immer noch andere wichtige Sachen im Blick
gehabt hat auf unserem gemeinsamen Weg durchs Studium.

Besonders besonderer Dank an meinen Betreuer Jens, der mich über viele Irrtümer aufgeklährt hat,
auch wenn ich es zuerst nie einsehen wollte.

Hanne, Dir möchte ich im Speziellen danken, Vielen Dank

REFERENCES 61

"Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebe-
nen Quellen und Hilfsmittel angefertigt habe".

Ort Datum Unterschrift

	Introduction and Preliminaries
	Semantic Web: Vision, OWL, SPARQL
	Description Logics
	Learning Problem in Description Logics
	DL-Learner Framework

	Automated Ontology Engineering
	Current Problems of Ontology Engineering
	Use Cases and Requirements for Tool-Support
	SPARQL Component
	Circumventing the Problem of Reasoning on Large Knowledge Bases
	Selection of Relevant Information
	OWL DL Conversion of SPARQL Results
	Processing the Results
	Semi-automatic Improvement of Background Knowledge

	Comparison of Learning Algorithms
	Desired Properties of a Concept Learning Algorithm
	Solutions within the Training Data (Example Sets)
	Scaling the Learned Concept Definition on the Test Data
	Biases of Learning Algorithms
	Important Features of a Learning Program

	Existing Algorithms
	LCSLearn
	YinYang
	DL-Learner

	Comparison
	Problems of the Open World Assumption

	Benchmarks
	Some Remarks about the Experiments
	Simple Scenarios
	Identifying Arches
	Trains
	Summary

	Predictive Scenarios
	Moral Reasoner
	Family Benchmark

	Conclusions

	Creating a Sample Ontology with Learning Support
	Creating a Mercedes Benz Car Ontology
	Extracting Instances
	Creating a Subclass Hierarchy
	Identifying Disjoint Classes
	Learning Background Knowledge

	Conclusions

	Related Work
	Summary and Conclusions
	Future Work

