
A PC-BASED DATA ACQUISITION SYSTEM FOR

SUB-ATOMIC PHYSICS MEASUREMENTS

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

By

Daron Chabot

c© D. Chabot, July 2008. All rights reserved.

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree
from the University of Saskatchewan, I agree that the Libraries of this University may
make it freely available for inspection. I further agree that permission for copying of this
thesis in any manner, in whole or in part, for scholarly purposes may be granted by the
professor or professors who supervised my thesis work or, in their absence, by the Head
of the Department or the Dean of the College in which my thesis work was done. It is un-
derstood that any copying or publication or use of this thesis or parts thereof for financial
gain shall not be allowed without my written permission. It is also understood that due
recognition shall be given to me and to the University of Saskatchewan in any scholarly
use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or
part should be addressed to:

Head of the Department of Electrical and Computer Engineering
57 Campus Drive
University of Saskatchewan
Saskatoon, Saskatchewan
Canada
S7N 5A9

i

ABSTRACT

Modern particle physics measurements are heavily dependent upon automated data ac-
quistion systems (DAQ) to collect and process experiment-generated information. One
research group from the University of Saskatchewan utilizes a DAQ known as the Lucid

data acquisition and analysis system. This thesis examines the project undertaken to up-
grade the hardware and software components of Lucid. To establish the effectiveness of
the system upgrades, several performance metrics were obtained including the system’s
dead time and input/output bandwidth.

Hardware upgrades to Lucid consisted of replacing its aging digitization equipment with
modern, faster-converting Versa-Module Eurobus (VME) technology and replacing the
instrumentation processing platform with common, PC hardware. The new processor
platform is coupled to the instrumentation modules via a fiber-optic bridging-device, the
sis1100/3100 from Struck Innovative Systems.

The software systems of Lucid were also modified to follow suit with the new hardware.
Originally constructed to utilize a proprietary real-time operating system, the data acquisi-
tion application was ported to run under the freely available Real-Time Executive for Mul-
tiprocessor Systems (RTEMS). The device driver software provided with sis1100/3100 in-
terface also had to be ported for use under the RTEMS-based system.

Performance measurements of the upgraded DAQ indicate that the dead time has been re-
duced from being on the order of milliseconds to being on the order of several tens of mi-

croseconds. This increased capability means that Lucid’s users may acquire significantly
more data in a shorter period of time, thereby decreasing both the statistical uncertainties
and data collection duration associated with a given experiment.

ii

ACKNOWLEDGMENTS

Thank you to my thesis supervisors: Dr. W. Eric Norum for helping me get my foot in the
door, Professor David Dodds for “going to bat” for an orphaned grad student, and Dr. Ru
Igarashi for his tireless efforts. None of this would’ve happened without you, Ru. Thanks
for everything! A special thank you to Dr. Rob Pywell for his guidance and support.

Thank you to the other grad students that I’ve had the privilege of working with: Tom
Regier, Joss Ives, Octavian Mavrichi, Ward Wurtz, and Brian Bewer.

To my parents and family: thank you for your endless encouragement and support.

And last, but not least, thanks to my friends: you’ve helped more than you’ll ever know.

iii

For Jen.

iv

CONTENTS

Permission to Use i

Abstract ii

Acknowledgments iii

Contents v

List of Figures xi

List of Tables xv

List of Abbreviations xvi

1 Introduction 1
1.1 Data Acquisition Systems . 1

1.2 Background . 2

1.2.1 HIγS Facility . 2

1.2.2 The Blowfish Neutron Detector 4

1.2.3 Input Event Rates . 5

1.3 Lucid . 7

1.3.1 Physical Subsystems . 8

1.3.2 The User’s Perspective: a usage example 9

1.4 Lucid Upgrade Project . 11

1.4.1 DAQ Component Upgrades . 12

1.4.2 DAQ Performance . 15

1.5 Thesis Overview . 15

2 DAQ Hardware Systems 16
2.1 Instrumentation Subsystems . 17

2.1.1 Trigger Logic . 17

2.1.2 Digitization Logic . 18

2.1.3 Detector High Voltage (HV) System 18

2.2 Instrumentation Components . 19

v

2.2.1 Electrical Bus Systems . 20

2.2.2 NIM . 22

2.2.3 CAMAC . 22

2.2.3.1 Arbitration . 23

2.2.3.2 Addressing . 24

2.2.3.3 Data Transfer . 24

2.2.3.4 Control/Status Signals 25

2.2.3.5 Interrupts . 25

2.2.3.6 Concluding Remarks 25

2.2.4 The VME Bus . 26

2.2.4.1 Arbitration . 28

2.2.4.2 Addressing . 28

2.2.4.3 Data Transfer . 29

2.2.4.4 Control/Status Signals 31

2.2.4.5 Interrupts . 31

2.2.4.6 Physics Extensions to the VME64x Standards 32

2.3 The PC: IOM and Workstation Platform 33

2.4 The PCI Bus . 34

2.4.1 Arbitration . 34

2.4.2 Addressing . 35

2.4.3 Data Transfer . 36

2.4.4 Control/Status Signals . 37

2.4.5 Interrupts . 37

2.5 VME-PCI Bridging Issues . 37

2.5.1 Address Mapping . 38

2.5.2 Byte-Ordering . 38

2.5.3 Data Transfer . 39

2.5.4 Interrupt Protocols . 39

2.6 The sis1100/3100 VME-PCI Interface 40

2.7 Summary . 42

3 Software Systems 43
3.1 Operating System Overview . 44

3.1.1 General-Purpose Operating Systems 45

3.1.2 Real-Time Operating Systems 46

3.2 Component Overview . 47

vi

3.2.1 Workstation (Linux) Components 47

3.2.2 I/O Manager Components . 50

3.3 Network Boot-Loader . 51

3.3.1 Dynamic Host Configuration Protocol (DHCP) 52

3.3.2 Trivial File Transfer Protocol (TFTP) 52

3.4 Real-Time Operating System: RTEMS 53

3.4.1 Task Manager . 55

3.4.2 Event Manager . 56

3.4.3 Message Manager . 56

3.4.4 Semaphore Manager . 57

3.4.4.1 Priority Inversion . 58

3.4.5 Device Manager . 59

3.5 IOMBase . 59

3.5.1 The Generic System (GeSys) Artifact 60

3.5.2 The Cexp Artifact (Dynamic Linker) 60

3.6 Instrumentation Interface . 62

3.6.1 System Integration . 64

3.6.2 Bus Access . 64

3.6.3 Interrupt Infrastructure . 65

3.6.4 Execution Context . 68

3.6.5 Inter-process Communication 69

3.6.6 Application Programming Interfaces 70

3.6.6.1 File System API . 70

3.6.6.2 LibVME API . 71

3.6.6.3 Memory-mapped API 71

3.6.7 Interrupt Interface . 72

3.7 The IOMReader Component . 74

3.7.1 Application Structure . 75

3.7.2 The Acquisition and DataWriter Threads 77

3.8 Summary . 81

4 Dead Time 82
4.1 Dead Time Models . 82

4.2 Mathematical Description . 84

4.2.1 Non-Paralyzable System . 84

4.2.2 Paralyzable System . 84

vii

4.3 The Effects of Dead Time . 86

4.3.1 Output Count Rates . 86

4.3.2 Interval Densities . 87

4.3.3 Counting Statistics . 88

4.4 Series Arrangements of Dead Times . 88

4.5 Measurement of Dead Time . 89

4.5.1 Two-Source Method . 90

4.5.2 Two-Pulser Method . 91

4.6 Concluding Remarks . 92

5 Introductory Queueing Theory 94
5.1 Queueing Notation . 95

5.2 Stochastic Processes . 97

5.3 Erlang’s Loss Equation . 98

5.4 The M/M/m/B Queueing Model . 101

5.5 The G/G/m Queueing Model . 102

5.6 Queueing Networks & Tandem Queues 103

5.7 Concluding Remarks . 106

6 DAQ Performance Measurements 107
6.1 DAQ Trigger System . 108

6.1.1 The INHIBIT Circuit . 108

6.1.2 Queueing Model . 110

6.2 Dead Time Component Intervals . 111

6.2.1 Digitization Period . 111

6.2.2 Interrupt Latency . 112

6.2.3 Context Switch Delay . 112

6.2.4 Application Response Latency 113

6.2.5 Data Transfer Period . 114

6.3 Test Apparatus and Algorithms . 114

6.3.1 Timing Mechanisms . 115

6.3.1.1 CAMAC Clock . 115

6.3.1.2 Software Clock . 116

6.3.1.3 Clock Conversion Factors 116

6.3.2 Dead Time Measurements . 117

6.3.2.1 Apparatus . 117

6.3.2.2 Methodology . 119

viii

6.3.3 Dead Time Component Measurements 121

6.3.3.1 Apparatus . 122

6.3.3.2 Methodology . 122

6.3.4 Data Transfer Rate Measurements 126

6.3.4.1 Apparatus . 126

6.3.4.2 Methodology . 126

6.4 Summary . 127

7 Data Analysis 128
7.1 Timing Mechanism Calibration . 129

7.2 DFELL Results . 131

7.2.1 Input Pulse Distributions . 131

7.2.2 Dead Time Measurements . 134

7.2.2.1 Application Response Latency and Readout Duration . 137

7.2.2.2 Erlang Losses . 138

7.2.3 VmeReader Data Rate . 139

7.3 Dead Time Component Results . 141

7.3.1 IOM Latencies . 142

7.3.2 VME to IOM Data Transfer Rates 145

7.4 Summary . 148

8 Summary and Concluding Remarks 149
8.1 The Upgrade Project . 149

8.2 DAQ Modeling and Performance Measurements 151

8.3 Ideas for Future Investigation . 154

8.3.1 IOM API Changes . 154

8.3.2 Modifications to Sis1100 Device Driver 154

8.3.3 Acquisition-DataWriter Interaction 154

References 155

Appendices 158

A Software Accessibility 159

B EDL-Generated Software: myExperiment.r 160

C Design Patterns 164

ix

C.1 Observer Pattern . 165
C.1.1 Problem Description . 165
C.1.2 Solution Description . 165
C.1.3 Consequences . 166

C.2 Proxy Pattern . 166
C.2.1 Problem Description . 166
C.2.2 Solution Description . 166
C.2.3 Consequences . 167

D Lucid’s Code Generation Subsystem 168
D.1 Backus-Naur Form Grammar . 168
D.2 Regular Grammars and Regular Expressions 169
D.3 Compiler Processing Overview . 170

D.3.1 Source-Code Analysis . 171
D.3.2 Executable Object Synthesis . 172

D.4 Compiler Tooling . 173
D.4.1 Flex . 173
D.4.2 Bison . 174

D.5 Lucid’s Code Generation Component 174
D.5.1 An Example EDF: aExperiment.r 176
D.5.2 The MDF Compiler . 178
D.5.3 The EDL Compiler . 180

E Multi-Hit Mode DAQ Operation 183
E.1 Queueing Model . 183
E.2 Physical Model . 184
E.3 Analyses and Results . 185

x

LIST OF FIGURES

1.1 Conceptual illustration of equipment and data flow associated with the
Lucid DAQ. 3

1.2 Illustration of γ-ray production at Duke University’s HIGS facility [3]. . . 4

1.3 The Blowfish neutron detector array. 5

1.4 Use case diagram of Lucid. 8

1.5 Lucid’s major subsystems. 9

1.6 Clockwise from top left: the main, build, and histogram windows of gxlucid. 12

1.7 Mapping of DAQ component upgrades. 13

2.1 System view, exposing the inner-details of the Instrumentation subsystem. 17

2.2 Illustration of byte-ordering for little-endian (left) and big-endian (right)
systems. Memory addresses are indicated above the storage cells. 21

2.3 The 24 bit CAMAC code-word structure. 23

2.4 Block diagram of CAMAC system. 24

2.5 Block diagram of a VME system. Figure adapted from [10]. 27

2.6 Three-dimensional representation of VME address space. Note, the ad-
dress ranges are not to scale. 30

2.7 PC motherboard layout. 33

2.8 PCI configuration space memory region. The required regions must be
provided by the PCI device, whereas the optional regions may assigned
by the host system’s firmware. Figure from [12]. 36

2.9 Block-diagram of the sis1100/3100 VME-PCI bridge. 41

3.1 Components and interfaces of a typical operating system. 45

3.2 Deployment view of the Lucid data acquisition system, illustrating its
hardware nodes, bus connectivity, major software components, and arti-
facts. 48

3.3 RTEMS executive Super-Core, it’s major components and interfaces, and
several managers of the Classic API: an implementation of the RTEID
specifications. 55

3.4 State diagram depicting the states and transitions of the RTEMS thread
model. 56

xi

3.5 Structural diagram of the Instrumentation Control software component,
realized by the Sis1100Device class. Note, the < <active> > objects (i.e.
thread or interrupt context) are denoted by the double-barred boxes. . . . 63

3.6 Client-Sis1100Device interaction during instrumentation interrupts. Note,
the sequence shown here assumes the interrupting module is of the ROAK
variety. 73

3.7 Collaborative objects participating in the Proxy design pattern implemented
within Lucid. 74

3.8 A concurrency and resource view of the IOMReader component. Priorities
are indicated within each thread: numerically lower values indicate greater
priority. 76

3.9 Diagram of the Acquisition thread’s FSM structure and behavior. 78

3.10 Sequence diagram of Acquisition-DataWriter thread interactions. . . . 80

4.1 Illustration of paralyzable and non-paralyzable dead time behavioral mod-
els. Of the six input events, the non-paralyzable system resolves four,
while the paralyzable system resolves three. Adapted from the figure given
in [21]. 83

4.2 Output rate versus input rate for two systems with equally valued dead
time, but different models of dead time . Adapted from [21]. 85

4.3 Block diagram of simple systems to illustrate the effects of dead time on
output rates as a function of input rates. 86

4.4 Plot of the ratio of output rates, from Equation 4.7 for Systems A and B. . 87

4.5 Series arrangement of two elements with dead times τ1 and τ2, where
τ2 > τ1 . The rate of input pulses is λ , and output pulses is R. 89

4.6 Illustration of system dead time measurement using the two-pulser method. 91

4.7 Experimental count rate, νsup , as a function of ν1 , for the two-pulser

method of dead time measurement. Both ν2 and τ are constant. Figure
adapted from [20]. 92

5.1 State transition diagram of an M/M/m/m queueing system. The system is
entirely characterized by the number of customers present in it, j. The rate
of transitions between adjacent states is denoted by the symbols on the
inter-state arcs. 99

5.2 Log-Log plot of Erlang’s B-formula for m = 1,2,5, and 10 service facilities. 101

5.3 State-transition diagram for the M/M/m/B queueing system. 102

xii

5.4 Schematic of two-station tandem queueing system, with jobs arriving at
the average rate of λ , and identical average service rates, µ 104

5.5 State-transition diagram for the two-element tandem queueing system with
blocking. 105

6.1 Schematic of data flow through a single channel of the Lucid DAQ. 108

6.2 Timeline of events generating Lucid’s dead time components. This sce-
nario corresponds to the current, “event-by-event” acquisition algorithm
in use. Note, periods are not to scale. 109

6.3 Typical first-level trigger logic, incorporating an INHIBIT circuit and dead
time measurement facility. Figure adapted from [24]. 109

6.4 State-transition diagram of the M/G/1/1 queueing model for the Lucid’s
I/O manager, with two states, j = 0,1. 110

6.5 Module type and configuration within the VME crate, as used throughout
performance testing of the Lucid DAQ, while at the DFELL facility. . . . 118

6.6 Schematic of hardware and control signals used at the DFELL facility to
measure the dead time contributed by the “Digitization” and “Application
Response Latency” portrayed in Figure 6.2. 119

6.7 Signal timing diagram of events comprising the dead time measurements
performed at the DFELL. Periods are not to scale. 120

6.8 Overview of latency measurements. 123

6.9 Sequence of events during latency measurements. 123

6.10 Timing diagram of thread interactions and state-transitions during the dead
time component measurements. Time stamps were obtained at the points
indicated in the figure as, t0→3 , using the TSC register of the IOM 124

6.11 Behavior of the character-echo and ping-flood workload. 126

7.1 Histograms of SAL clock and time-stamp counter (TSC) frequency mea-
surements. Top: CAMAC SAL clock, Middle: 450 MHz Pentium III PC,
and Bottom: 2.4 GHz Pentium 4 PC. 130

7.2 Reduced -χ2 of input pulses. The run numbers are indicative of the se-
quence of data recording. 133

7.3 Raw scaler counts of input pulses for runs 227 and 228. Note, the SAL
clock values have been scaled down by a factor of 103 to fit on the same
plot. 134

7.4 Average dead time, τ̄, as a function of average trigger rate, λ. The solid
lines indicate the results of the weighted-average calculations. 136

xiii

7.5 Application Response Latency (top) and Readout duration (bottom), as
functions of the average input trigger rate. The solid lines indicate the
weighted average for each data set. 137

7.6 Erlang loss as a function of input trigger rate. The solid curves represent
the results of using the dead time weighted averages obtained in Section
7.2.2 in the Erlang-B equation, B(ρ = λτ, m = 1) 139

7.7 Average Ethernet data rate seen by the Reader process. Note the apparent
“plateau effect” due to compression software affecting the Ethernet data
stream. 140

7.8 Latency distributions for an otherwise idle IOM system. From top to bot-
tom: interrupt, context switch, Application Response latencies. 142

7.9 Latency distributions for the IOM under heavy loading by low-priority
I/O tasks. From top to bottom: interrupt, context switch, and Application
Response latencies. 143

7.10 Duration of memory-mapped (mmap) read versus transfer size. Readout
was performed from a single VME module, a v862 QDC. 146

7.11 Block transfer (BLT) duration as a function of transfer size. Top: BLT
duration from a single CAEN v862 module. Bottom: Chain Block Trans-
fer (CBLT) duration for a VME Chain consisting of 7 QDC and 3 TDC
modules. 147

C.1 Structure and behavior of objects participating in an Observer pattern:
(top) collaborating classes, (bottom) sequence diagram of collaborator
transactions. 165

C.2 Proxy design pattern. 167

D.1 Activity diagram of a generalized source-code compiler. 170
D.2 Activity diagram depicting the creation of an IOMReader application from

a user’s Experiment Description file, aExperiment.r. 176
D.3 Structured class diagram of the VmeBuildReader artifact. 177
D.4 The model of VME address spaces used by Lucid’s code generation com-

ponent. 182

E.1 Illustration of the 2-station, tandem queueing system. 183
E.2 State diagram of the tandem queueing system described here. 184
E.3 Plot of model calculations and experimental results. 186

xiv

LIST OF TABLES

2.1 Address-modifier codes used within Lucid. 29

7.1 Clock conversion factors and their uncertainties. Units are ticks/second. . 129
7.2 RTEMS IOM latency timing results. All times are in units of µs. 144
7.3 Latency measurements for a PowerPC-based RTEMS system [34]. All

times are in units of µs. 144
7.4 VME-to-IOM data transfer rates. 146
7.5 Performance figures for several VME-PCI bridge devices on a Red Hat

Linux system [41]. 148

8.1 Summary of IOM performance data measured at DFELL. 152
8.2 RTEMS IOM latency timing results. All times are in units of µs. 153
8.3 VME-to-IOM data transfer rates. 153

xv

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter
AM Address Modifier
API Application Programmer Interface
ASIC Application Specific Integrated Circuit
BIOS Basic Input/Output Service
BLT Block Transfer
BNF Backus-Naur Form
BSD Berkeley Software Distribution
BSP Board Support Package
CAMAC Computer Automated Measurement and Control
CBLT Chained Block Transfer
CFD Constant Fraction Discriminator
DAQ Data Acquisition System
DFELL Duke Free Electron Laser Laboratory
DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access
EOI Event of Interest
FSM Finite State Machine
GUI Graphical User Interface
HIGS High Intensity Gamma Source
HV High Voltage
IACK Interrupt Acknowledge
ICMP Internet Control Message Protocol
IMFS In-Memory File System
INH Inhibit
IOM Input/Output Manager
IRQ Interrupt Request
ISR Interrupt Service Routine
IST Interrupt Service Thread
LAM Look-At-Me
MCST Multi-cast
NIM Nuclear Instrumentation Module
NTP Network Time Protocol
PCI Peripheral Component Interconnect
PIC Programmable Interrupt Controller
PMT Photo-Multiplier Tube
POSIX Portable Operating System Interface
QDC Charge-to-Digital Converter
QoS Quality of Service
ROAK Release on Acknowledgement
RORA Release on Register Access

xvi

RTEID Real-Time Executive Interface Definition
RTEMS Real-Time Executive for Multiprocessor System
RTOS Real-Time Operating System
SAL Saskatchewan Accelerator Laboratory
SSRL Stanford Synchrotron Radiation Laboratory
TDC Time-to-Digital Converter
TFTP Trivial File Transfer Protocol
TOF Time of Flight
UML Unified Modeling Language
VME Versa Module Eurobus

xvii

CHAPTER 1

INTRODUCTION

Photo-nuclear physics experiments utilize high-energy light, γ-rays, to study nature at
the subatomic level. Typically, the γ-rays are directed at some target material in order to
induce nuclear reactions. Particulate products originating from this beam-target collision
may then interact with a physical transducer, or detector, thus producing a measurable
electrical signal. This signal is then quantized and analyzed to obtain physical information,
such as the identity of the reaction products and their trajectory and energy.

Modern particle physics experiments rely on systems of computer-controlled hardware
to collect data from discrete collision events. These data acquisition systems form the in-
terface between experimenters and detectors, and realize vital services for the user, such
as analog signal digitization and data transport, processing, and storage. This thesis de-
scribes the project undertaken to upgrade several components of a data acquisition system
developed and used by researchers from the University of Saskatchewan (U of S). In ad-
dition to a detailed design analysis of the system and its modifications, results obtained
from the measurement of several key performance metrics are also presented, including
dead time, software process latencies, and data bandwidth requirements.

1.1 Data Acquisition Systems

A data acquisition system, or DAQ, may be defined as those components participating
in the process of transforming physical phenomena into electrical signals which are then
measured and converted into digital format for collection, processing, and storage by a
computer [1]. Often, analysis of the collected data is used to influence the data collec-
tion policy itself. Therefore, the above definition of a data acquisition system should be
appended to include control activities as well.

Data acquisition systems may be as simple as a personal computer (PC) recording
audio information from a microphone at a rate of tens of kilobytes per second, or as com-
plex as the computing challenges presented by the ATLAS detector at the Large Hadron
Collider facility, where data must be gathered from tens of millions of detector channels

1

producing terabytes of information per second [2]. The DAQ discussed in this work was
designed for small to medium sized data acquisition requirements, typically monitoring
several hundred channels of digital information at rates in the tens of kilohertz and vol-
umes on the order of a megabyte per second. This collaboration of hardware devices and
the software controlling them, as used by one research group from the U of S, is known as
the Lucid data acquisition and analysis system.

While the above definition includes the functionality of a sensor, or detector, which
provides the workload to drive the downstream DAQ components, the system detailed
in this work is presented from a detector-independent perspective wherever possible, in
order to highlight the system’s range of utility. While many contemporary experiments
rely on standardized systems of electronic hardware to interface with their detectors and
other equipment, software interfaces for data acquisition vary from site to site and even
from one detector to another. One of Lucid’s strengths is its flexibility with respect to the
degree of coupling between it and the detector it is interfaced with.

1.2 Background

The topology of the Lucid DAQ and the origin of information flow, from detector to ex-
periment workstation, is illustrated in Figure 1.1. The computational engine of the Lucid
data acquisition system consists of several software processes in close cooperation with
electronic hardware that is, in turn, interfaced directly with a detector. Particulate prod-
ucts, resulting from physical interactions between incident photons and the target material,
fuels the detector and downstream systems with events for measurement and collection.

Prior to outlining the high-level architecture of Lucid and the motivation and scope of
the upgrades to it, it will be helpful to provide some background information on those sys-
tems external, but essential, to Lucid’s operation: the mechanisms by which input events
are fed to the DAQ. This entails discussion of the gamma-ray production facility and the
sensory device which produces electrical signals characterizing the photo-nuclear reaction
products.

1.2.1 HIγS Facility

With the decomissioning of the Saskatchewan Accelerator Laboratory (SAL) in 1999,
researchers from the University of Saskatchewan physics department sought new facilities
where they may continue to perform nuclear physics experiments. A collaboration with
researchers from the University of Virginia and Duke University has met this requirement

2

Network
In

st
ru

m
en

ta
tio

n
B

us

Instrumentation

γ

n

Modules

Gamma−ray

Detector Elements

(gxlucid)

γ

Particles
Reaction

(gxlucid)

pp

n

Nucleus

I/O Manager
(IOM)

Experimenter
Workstation

Observer
Workstation

Figure 1.1: Conceptual illustration of equipment and data flow associated
with the Lucid DAQ.

in the form of the High Intensity Gamma-Source (HIγS), located at the Duke Free Electron
Laser laboratory (DFELL), in Durham, North Carolina. Experimenters utilize its intense
γ-ray beams to study nuclear phenomena in a controlled setting. Research areas include
studies of the strong force, nucleon polarizabilities and the internal dynamics implied by
it, as well as stellar astrophysical reaction channels.

Figure 1.2 depicts the layout of the DFELL storage ring and the generation of γ-rays.
As electron bunches circulating in the storage ring pass through the wigglers, an intense
beam of photons is emitted in the forward direction along the trajectory of the particle
beam. Those photons are reflected from the mirror at the end of the hall, returning to
elastically scatter from electron bunches still circulating in the storage ring. It is this
interaction that produces the γ-rays required to probe matter at the subatomic level.

In the configuration of Figure 1.2, HIγS produces 100% linearly polarized γ-rays with
an average flux of 105−107 γ · s−1, and energies ranging from 2-50 MeV (mega-electron-
volts) with an energy resolution (∆E

E) of better than 1% [3]. For comparison, medical
x-rays are in the energy range of 16 - 150 keV (kilo-electon-volts) [4].

3

Figure 1.2: Illustration of γ-ray production at Duke University’s HIGS fa-
cility [3].

Recent upgrades to the HIγS facility include the addition of a 1.2 GeV booster-injector
and a helical undulator. These new components will see the laboratory capable of produc-
ing completely circularly polarized γ-rays with energies of up to 225 MeV at an average
flux of 108−109 γ · s−1 .

While the laboratory provides the tools to produce and direct γ-rays at a target, it is
the domain of the beam-user to provide the necessary measurement apparatus, or detector.
For the neutron-based physics studied by U of S researchers and their collaborators, the
detector used is known as the Blowfish array.

1.2.2 The Blowfish Neutron Detector

So named for its resemblance to the fish of the same name, the Blowfish neutron detec-
tor was constructed in collaboration with researchers from the University of Virginia (see
Figure 1.3). Blowfish is a spherical arrangement of 88 liquid, organic scintillator cells cov-
ering a solid angle of approximately π steradians, and is designed to accurately determine
the angular distribution of reaction probabilities.

Each scintillator cell is optically coupled to a photomultiplier tube, or PMT. When ion-
izing radiation interacts with the scintillator, ultra-violet (UV) radiation is emitted. These
UV-photons are then directed by an optical waveguide into the photomultiplier tube. In
turn, a PMT exploits the photoelectric effect to produce a current pulse. This pulse is on
the order of tens of nanoseconds in length and is in direct proportion to the quantity of
photons captured from the organic scintillator. Thus, the electronic signal produced is a
measure of the energy deposited in the scintillator by an ionizing particle.

The analog signals generated by Blowfish constitute the primary source of input events
driving the data acquisition process. Each PMT “hit” is digitized over a period of tens of
microseconds along three independent channels: two charge-to-digital (QDC) channels of

4

Figure 1.3: The Blowfish neutron detector array.

differing integration times, and one time-to-digital (TDC) conversion channel, which mea-
sures the time-of-flight (TOF) of reaction products, from the arrival of γ-rays at the target,
to the arrival of reaction-ejecta at the PMT. These three channels of digitized information
are then utilized to discern the species and energy of the reaction products. The num-
ber of “hits” experienced by a particular PMT of the Blowfish array reveals information
regarding a reaction’s angular distribution probabilities.

The following section presents a technique to estimate the expected rate at which these
events will occur. This information plays an important role in determining schedulability
and DAQ requirements for a given experiment.

1.2.3 Input Event Rates

The measurements performed by U of S researchers at the HIγS facility are of a type
known collectively as fixed-target scattering experiments. In this type of measurement,
gamma-rays produced by HIγS are directed at target positioned at the center of a detection
apparatus. For the purpose of example, this apparatus may be the Blowfish neutron de-
tector array. The incident gamma-rays interact with the target material, thereby scattering
reaction products into the detector, which produces an electrical signal characteristic of
the physical parameter(s) under study.

Not all incident gamma-rays are scattered, or react with the target. The number of
interactions is proportional to the incident photon flux (in γ/s), the target constant (F),
and the reaction cross-section (σ) [5]. The interaction cross-section, σ , is a parameter
derived from quantum mechanical theory, and is expressed in units known as barns (1 b

5

= 10−24cm2). As σ has the dimension of an area, it may be thought of as representing an
effective area of interaction between incident and target particles. The target constant, F,
is defined as:

F =
NAρL

A
(1.1)

where A is the atomic mass in g/mol, NA is Avagadro’s number (6.02×1023 mol−1), ρ is
the density in g/cm3, and L is the target thickness parallel to the γ-ray trajectory. With this
information, the rate at which events of interest (EOI) are generated may be estimated.

Given a liquid hydrogen target of length, L = 10 cm, and density, ρ = 0.071g · cm−3,
the target constant is:

F =
(6.02×1023mol−1)(0.071g · cm−3)(10cm)

1g ·mol−1 = (2.3barn)−1 (1.2)

Assuming incident gamma-ray flux and reaction cross-section values on the order of 106 γ ·
s−1 and 10−3 b , respectively, the rate of occurrence of events of interest (λEOI) may be
now be estimated as:

λEOI = σ ·F ·106
γ · s−1 (1.3)

λEOI ∼ 435s−1 (1.4)

It must be kept in mind that this figure is a “back-of-the-envelope” estimation, and that
both the cross-section and the incident flux may vary around the values used here by sev-
eral orders of magnitude, depending upon experimental conditions. However, the method
used to find λEOI would remain the same.

It must also be noted that detectors themselves are typically incapable of discerning
which events are interesting to an experimenter and which events are not. Hence, the
total rate of events observed by the detector will inevitably include “uninteresting” events,
hereafter referred to as background events. Thus, the total event rate, λT , seen by the
detector will be the sum of the rates of background events and events of interest:

λT = λEOI +λB (1.5)

The HIGS facility in particular has a high rate of background events, on the order of 10
kHz, as experienced by the 88 detector elements of the Blowfish array. Thus, the total
event rate seen by the Blowfish detector is often dominated by background events.

6

1.3 Lucid

Lucid was developed at the SAL in 1988, in an effort to reduce the complexity of develop-
ing data acquisition and analysis software for the nuclear physics experiments conducted
at the laboratory [6]. The design philosophy of Lucid was that it should, first and foremost,
be easy to use, presenting the user with an intuitive interface and a simple framework for
application software creation.

Utilizing a top-down design approach, physics experiment software may be decom-
posed into these basic use cases [7]:

1. Reading data, whether the source be detector-generated, or file storage.

2. Data analysis, including visual inspection of graphical data representations and
computational application.

3. Storage of data, to disk, tape drive, or removable optical media.

These ideas are depicted in the Use Case diagram of Figure 1.4. This diagram is the first
of several in this thesis to utilize the notational features of the Unified Modeling Language
(UML). The “stick figures” are known as actors: agents that are external, but operationally
essential to the system under study. The solid connecting lines are associations, symbol-
izing an information conduit between connected entities, while the dashed lines indicate
a dependency relationship. The guillemots (< < > >) denote UML stereotypes, metadata
conveying additional information to diagram elements.

In Lucid’s original design, the Acquire, Analyze, and Store Data use cases were reified
as three software entities, the Reader, Looker, and Writer, respectively. However, in the
present software configuration, the Writer process is now defunct, its functionality being
subsumed by the Looker process and configured via the graphical user interface (GUI),
known as gxlucid. The Reader may obtain data from a variety of sources, including in-
strumentation modules, disk files, or even simulation program output. The Looker process
may perform calculations on the data and format it for visual depiction in gxlucid in the
format of histograms, prior to its being written to permanent storage.

The system’s primary modes of operation, Online and Offline, are delineated primarily
by the source of the data stream feeding the system. Online-mode entails reading a data
stream provided by an external agent, the I/O manager (IOM), as it collects digitized in-
formation from experiment events (see Figure 1.1). Offline-mode is defined as such when
the data is sourced from file, either originating from a previously recorded experiment, or
supplied by computer-simulation output.

7

Analyze Data

Detector
<< Actor >>

Observer

Experimenter

Lucid Data Acquisition and Analysis System

Electronics Diagnoses

Acquire Data

Generate Software

Store Data

Figure 1.4: Use case diagram of Lucid.

An important element of Lucid’s design is network transparency: a user may start
the gxlucid GUI on one workstation, and connect to an experiment residing on a second
machine on another network, which performs the actual data acquisition, and merely for-
wards the display data to the user’s screen. The I/O manager too, forwards the data it
collects over a network link. Several observers may monitor an experiment’s progress in a
network-distributed fashion, but only one user, the “experimenter”, may create and modify
an experiment.

1.3.1 Physical Subsystems

Structurally, Lucid is composed of three major subsystems, illustrated in Figure 1.5, and
ordered here according to their proximity to the detector:

1. Instrumentation Modules - these electronic modules may be classified according to
standards-family and function:

(a) NIM - Nuclear Instrumentation Modules (DOE/ER-0457T). Provides Boolean
operations, signal level-shifting, level-crossing detection, and rate monitoring.
Collectively realizes the trigger logic subsystem (discussed in Sections 2.1.1
and 6.1).

(b) CAMAC - Computer Automated Measurement and Control (IEEE-583). Pro-
vides analog- and time-to-digital conversion (ADC and TDC), scalers, digital

8

<< Actor >>

Instrumentation
<<subsystem>>

<<subsystem>>
Workstation

I/O Manager
<<subsystem>>

Experimenter

Lucid
<<system>>

Detector

Figure 1.5: Lucid’s major subsystems.

I/O, and high-voltage (HV) subsystem control interface.

(c) VME - VersaModule Eurobus (IEEE-1014). Provides ADC and TDC services,
as well as digital I/O. Serves as a bridge between the CAMAC bus and the I/O
manager.

2. I/O manager (IOM) - Responsible for direct communication and control of the in-
strumentation modules. Hosting a real-time operating system (RTOS), the IOM
executes software generated by Lucid’s code-generation subsystem. The I/O man-
ager’s software components are discussed in Chapter 3, while the code generation
subsystem is presented in Appendix D.

3. Workstation - The software subsystem active on a user’s desktop Linux console.
Provides the GUI, experiment management services (locating, connecting, user per-
missions, etc.), software generation infrastructure, as well as communication with
the IOM. Also provides essential network services for the IOM, such as DHCP,
TFTP, and NTP. These services will be described in Chapter 3.

Furnished with a picture of the DAQ components, their roles, and location in the path
of information flow from detector to user, the next section will illustrate the system’s
employment from a user’s point of view.

1.3.2 The User’s Perspective: a usage example

Lucid’s acquisition and analysis processes, the Reader and Looker, execute instructions
specified by the experimenter in the form of a high-level programming language. This

9

language shall be denoted as the Experiment Description Language (EDL) for the pur-
poses of this thesis. Typically, the reading and analysis operations required to achieve the
experiment’s goals are specified in two files:

1. Reader-description file - this contains definitions of hardware modules and vari-
ables, as well as a list of triggers conditions and the actions that are to be executed
upon trigger invocation.

2. Looker-description file - this is optional, but may contain definitions of histograms
for gxlucid to display, computations to perform on the data stream, etc.

These description files are simple ASCII-text files that may be created and modified using
almost any text-editing application.

Three programs are used to parse EDL files and generate C language code from their
contents: vmebuildreader, buildreader, and buildlooker. Generation of C source code
permits compilation to executable format using the standard, open-source compiler suite
gcc. While buildlooker and buildreader produce executable entities that run on a Linux
workstation, vmebuildreader produces code which is loaded onto and executed by the I/O
manager.

An Online-session of data acquisition begins by with the creation of an Experiment

directory, followed by its population with Reader and Looker-description files, expressed
in the EDL. In this example, myExperiment, Lucid will generate code to read all channels
of a VME ADC module every tenth of a second. The Reader-description file, myExperi-

ment.r, for this experiment is given below, while the generated “C” code (executed by the
IOM) is provided in Appendix B.

Module and variable definitions

define myADC "caen792" S(5)

Trigger definitions

trigger ReadADC every 0.1 seconds

Event definitions

event ReadADC:

blockread and save myADC

The Looker-description file, myExperiment.l, may be as simple as:

10

Variable definitions

define myADCHistogram[34] hist from 0 to 4095 (4096 bins)

Event responses

beginrun:

myADCHistogram = 0

event ReadADC:

incr myADCHistogram using myADC

While a Reader-description file is comprised of module, variable, trigger, and event defini-
tions, a Looker-description file contains only variable definitions and computations to be
executed when events defined in the Reader are encountered in the data stream produced
by the I/O manager. For example, myExperiment.l, specifies an array of 34 histograms,
myADCHistogram, each of which corresponding to one channel of the analog-to-digital
converter, myADC. When the Looker encounters a ReadADC event in the data stream,
it updates the histogram via the incr, or increment statement. The gxlucid program will
provide the graphical depiction of these histograms for the user’s inspection.

When gxlucid is initially invoked, the user is prompted to create the experiment, my-

Experiment, if it does not already exist. After confirmation, gxlucid’s main and message
logging windows will appear, as in Figure 1.6. This simple interface was designed to
mimic the appearance of a multimedia recording and playback application, in keeping
with the theme of a data acquisition device. The build window, available via the Build

drop-down menu of the main window and also shown in Figure 1.6, permits the experi-
menter to invoke Lucid’s code generation mechanism. Upon the successful completion of
this stage, the generated executable will be downloaded to and initiated on the IOM. Sim-
ply clicking the “Play”, or “Record” buttons will initiate the data acquisition code. The
data available in myADCHistogram will also be available for inspection. This window is
also shown in Figure 1.6.

1.4 Lucid Upgrade Project

With the modifications to HIγS, covered in Section 1.2.1, beam-users can expect to see
an order of magnitude increase (at least) in generated EOI from a given experiment cross-
section. Users might reasonably expect a corresponding decrease in experiment duration
given the increased gamma-flux. However, this assumption only holds if their data acqui-
sition system and detectors are able to process data at an equally increased rate.

With the exception of the workstations used during an online data-session, many of
Lucid’s systems were based on technologies that are now outdated by a decade or more.

11

Figure 1.6: Clockwise from top left: the main, build, and histogram win-
dows of gxlucid.

This is particularly true of those components in the most time-critical segment of the data
processing path: the CAMAC ADC modules and I/O manager, responsible for digitization
and extraction of detector information, respectively. Thus, the focus of the upgrades to
Lucid must target the IOM and instrumentation (digitization) subsystems.

Given the rapid pace of hardware development, considerations must also be made for
the future compatibility of any components that may be candidates for replacement. In ad-
dition, it is recommended that hardware/software systems be composed of well-supported,
standardized components. These features ease system-integration of advances made in the
base technology, and permit access to established technology and documentation.

1.4.1 DAQ Component Upgrades

Figure 1.7 is a “before-and-after” illustration showing the hardware components of the pre-
and post-upgrade Lucid data acquisition system. The migration path of each component
is detailed in the following:

1. Digitization Hardware - migrating the bulk of the digitization workload from CA-
MAC to VME modules will yield an order of magnitude decrease in the duration

12

I/O Bus

<< processor >>
{ m68k−psos }

I/O Manager
<< processor >>
{ i386−rtems }

I/O Manager

:VMEbus Interface

VMEChip2

<< device >>

:VMEbus Interface

sis1100

<< device >>

:Digitization
Hardware

CAMAC

<< device >>

:CAMAC Branch

CBD−8210

Driver

<< device >>

:VMEbus Interface

sis3100

<< device >>

:Digitization
Hardware

VME

<< device >>

VME
Backplane

CAMAC
Branch Highway

PCI
Bus

Optical
Fiber

VME
Backplane

Becomes

1

11

1

1

0..21

1

1

1

1

0..20

1

Pre−Upgrade Post−Upgrade

Figure 1.7: Mapping of DAQ component upgrades.

required for that activity (60 µs versus 7 µs). The bandwidth across the VME
backplane is some 40 to 80-times greater than that available across the CAMAC
dataway. In addition, the particular models of VME modules used possess sophis-
ticated features, like zero and overflow channel suppression, which is advantageous
when using detectors such as Blowfish that produce “sparse” data (∼ 1% channel
occupancy). These, and other VME features will be further detailed in Chapter 2.

2. VMEbus Interface - the migration of this interface from an application-specific in-
tegrated circuit (ASIC), the VMEChip2, to the PCI-based sis1100/3100 device en-
dows the system designer with the freedom to choose any available host platform
with PCI support. Also, the VMEChip2 device does not support VME slave-to-
master DMA read operations, thus negating one of the advantageous features of the
new VME digitization modules.

3. IOM Host Platform - The pre-upgrade MVME167 single board computer (SBC)
hosts a 40 MHz 68040 processor. This upgrade channel would see the IOM host
platform shifted to the Intel i386 architecture; the ubiquitous desktop PC. Not only
is this hardware plentiful and inexpensive, but the processing speeds are 10 to 100-

13

times what the 68040 can achieve. This makes available the possibility of having
the IOM perform filtering computations on data in real-time, instead of relegating
that task to the domain of software on the Lucid workstation.

4. IOM Operating System (OS) - although in this context data acquisition is not a hard
real-time application (discussed in Chapter 3), the choice of a real-time operating
system for the I/O manager is based on several factors:

(a) Quality of Service (QoS) - given that a general-purpose OS, such as Linux,
is designed to schedule processes in a fair manner, while an RTOS employs
unfair scheduling by design, a real-time time OS is thus able to guarantee a
certain level of performance that may be unachievable using another type of
operating system [8]. Plus, a RTOS is typically much less complex than a
general-purpose OS, and simplicity is nearly always an advantageous design
and development feature.

(b) Licensing and Support Issues - pSOS+ is a proprietary RTOS: fees are due for
both usage and support. The Real-time Executive for Multiprocessor Systems,
or RTEMS, is freely available under a derivative of the Gnu Public License

(GPL), and has a responsive support community in the form an online user’s
mailing list. Additionally, there was some in-house experience with RTEMS
prior to the planned upgrades.

(c) A Common API - both pSOS+ and RTEMS feature application programmer
interfaces (API) based on the same standard, the Real-time Executive Interface
Definition, or RTEID. This greatly eases porting applications between the two
operating systems.

(d) Increased Feature Set - obtainable via extensions, RTEMS is configurable with
features not found in pSOS+, such as dynamic loading and linking of code
libraries into its run-time environment.

Although not indicated in Figure 1.7 above, additional software had to be written in order
to take advantage of the increased functionality available with the new VME hardware.
This entailed additions and modifications to Lucid’s code-generation infrastructure. Also,
the sis1100/3100 VME-PCI interface shipped with support for the Linux and NetBSD
operating systems. Thus, the device driver software had to be ported for operation under
RTEMS.

Based on these details, the I/O Manager is the primary focus of this thesis.

14

1.4.2 DAQ Performance

With the upgrades of the previous section in place, some questions naturally arise: “How
well does the new system perform?” and “How does it compare to the system it replaced?”
It is performance-related questions such as these which this thesis answers.

One of the most important performance characteristics of a data acquisition system is
its dead time. This is the period of time during which the system is busy processing, and
cannot respond to new event arrivals. Dead time results in the loss of input events. This
prolongs an experiment’s duration and therefore plays an important role in determining
scheduling requirements.

Another important performance metric for a DAQ is its bandwidth requirements. Con-
sidering only the I/O manager, its input bandwidth is determined by the rate of data trans-
fer available from VME to PC, and on the output by the rate of data transfer across the
network connecting it and the experimenter’s workstation.

The performance of the upgraded I/O manager was measured in several areas, includ-
ing dead time, software and hardware processing latencies, and the range of possible data
transfer rates. While a detailed comparative study between the old and new data acquisi-
tion systems was not performed, some performance figures are available for the old system
[9].

1.5 Thesis Overview

This thesis focuses on the I/O manager subsystem of Lucid, and is organized around two
main topics: the design of and upgrades performed to that subsystem, followed by a de-
scription of DAQ performance metrics and the results of their measurement for the IOM.

The next chapter will examine the instrumentation subsystem, including VME, CA-
MAC, and PCI bus systems and their features. Following the hardware treatment, the I/O
manager is hierarchically decomposed, exposing the details of its components, services,
and features. This includes details on the porting of the sis1100 driver and RTEMS. An
examination of Lucid’s code generating component and the modifications performed to it
are discussed in Appendix D.

The second half of the thesis begins with a discussion of the analytical framework on
which the DAQ performance measurements are based. This includes theoretical discus-
sions on dead time and its relation to the field of queueing theory. Following this are details
of the performance measurement techniques. The thesis closes with a presentation of the
measurement outcomes, conclusions drawn, and suggestions for future investigation.

15

CHAPTER 2
DAQ HARDWARE SYSTEMS

Lucid is an event-driven, or reactive system: actions are executed in response to events
generated by device or software signals. Digital information sourced by the instrumenta-
tion modules is the catalyst which drives data acquisition activities. Although the sys-
tem’s software and hardware play equally important roles, the design of the software is
influenced to a large extent by characteristics of the physical devices under its control. In
light of their systemic importance, this chapter examines the structure and capabilities of
Lucid’s hardware infrastructure.

The hardware devices of Lucid may be broadly catagorized as belonging to two, major
groups:

1. Instrumentation Devices - provide detector-centric services, such as trigger and dig-
itization logic, as well as high-voltage distribution and monitoring. These are slave

devices, performing their tasks only at the direction of a managerial processor.

2. Personal Computers (PC) - both the I/O manager (IOM) and Linux workstations are
implemented on the PC architecture. These devices perform user services, such as
instrumentation control, data analysis and storage, and inter-PC communication.

The instrumentation electronics are largely based on the modular, standardized technolo-
gies of NIM, CAMAC, and VME specifications. These modules are ultimately connected
to the PC architecture of the IOM via a specialized bridge device, the sis1100/3100 VME-
PCI interface. In turn, the IOM communicates over standard Ethernet cable networks with
software processes on other PC workstations. These network communications are also
enabled via PCI hardware.

Lucid’s instrumentation devices are discussed here, ordered by their historical appear-
ance: NIM, CAMAC, and VME. This approach reveals the evolution of modular elec-
tronic equipment commonly found in particle physics measurements. The influence of
earlier systems on newer generations of devices is readily apparent when presented in this
manner. Coincidentally, this approach also closely mirrors the flow of data in Lucid, from
source to sink.

16

Following the path of data and control signals, from their origin in the instrumentation
subsystem to their destination in PC memory, leads naturally to a discussion of the PC
architecture and its PCI bus system. Continuing along a similar vein, the chapter concludes
by examining the issues that arise when interfacing the VME and PCI bus systems. This
includes an overview of the bridging technology used within Lucid, the sis1100/3100
VME-PCI interface, and its features for coping with the bridging issues.

2.1 Instrumentation Subsystems

Figure 2.1 reveals those subsystems of which the instrumentation subsystem is itself com-
prised. The high-voltage, trigger, and digitization logic subsystems are directly interfaced
with the detector, providing key services for its signal production. An overview of each of
those services is provided in the following discussion.

Trigger Logic
<< subsystem >>

Detector
<< actor >>

Digitization
<< subsystem >>

High Voltage
<< subsystem >>

Workstation
<< subsystem >>

I/O Manager
<< subsystem >>

Experimenter

Lucid << system >>

Instrumentation << subsystem >>

Figure 2.1: System view, exposing the inner-details of the Instrumentation
subsystem.

2.1.1 Trigger Logic

In the context of particle physics experiments, a trigger is a collection of one or more sig-
nals indicating that some event of interest (EOI) has occurred, based on some pre-defined
condition for its existence [5]. These existence conditions are known as an event signature.
For example, in the case of the experiments performed at HIγS with the Blowfish detector,
a “neutron event” may be triggered by a coincidence of photo-multiplier tube (PMT) and
γ-pulses within a time-window of pre-defined tolerance. Thus, a trigger may be formed by
the logical AND of signals from the detector and from the beamline state.

17

Other trigger schemes may be more complicated and include multiple “levels” of trig-
ger decisions, where event signature discrimination is made increasingly stringent with
each subsequent level of event analysis. While the initial stage of a multi-level trigger
system is almost certain to be implemented entirely at the hardware level, the latter stages
may be realized by software processes using information available from the preceding
trigger stages.

2.1.2 Digitization Logic

In order to store and process analog signals, they must first be digitized. The digitization
systems employed by Lucid consist primarily of two types of logic: charge-integrating
and time-to-digital converters, or QDC’s and TDC’s, respectively.

Recall from Section 1.2.2, the output signal of a photomultiplier tube (PMT) is an
electrical current pulse. QDC modules integrate that input current over the duration of a
GATE signal (typically on the order of 100 ns), enabling experimenters to determine the
amount of charge, and hence the amount of electrons produced in the particle-scintillator
interaction. This value is directly related to the amount of energy deposited in the scin-
tillator by the incident particle. Furthermore, the particle species may also be determined
from the QDC values by a technique known as pulse-shape discrimination (PSD). This
technique exploits the fact that the time-constant of the scintillator’s light-decay charac-
teristics differs between neutrons and gamma-rays. However, a detailed discussion of PSD
is beyond the scope of this thesis, and will not be covered further.

TDC devices are functionally equivalent to the familiar “stop-watch”: separate start

and stop signals control a counter of sub-nanosecond resolution, allowing precise deter-
mination of event durations. For example, time-of-flight (TOF) measurements of sub-
relativistic particles are obtained from the interval defined by a start-pulse, triggered on
the arrival of γ-rays at the target, and a stop-signal emitted by a detector PMT in response
to a scintillator event. Given this duration, the distribution of times-of-flight may be used
to discriminate between gamma-rays and neutrons. In the case of the slower-travelling
neutrons, the TOF distribution is also representative of their energy distribution.

2.1.3 Detector High Voltage (HV) System

The eighty-eight photomultiplier tubes of Blowfish require high-voltage (HV), DC sup-
plies for operation. PMT’s require DC bias-voltages on the order of a kilovolt to generate
the electric fields necessary for correct operation. Other detector systems commonly used
in particle physics, such a multi-wire proportional chambers (MWPC), drift chambers, and

18

time-projection chambers (TPC), also have high voltage requirements for similar reasons.

The high-voltage system used with Blowfish is a LeCroy 1440 multi-channel HV sys-
tem, consisting of a central control-node and multiple 16-channel distribution modules
delivering up to 2.5 kV at 2.5 mA per channel. Each PMT requires one delivery chan-
nel. Per channel control is achieved through a CAMAC-to-serial interface, a LeCroy 2132
module. This module communicates with the HV-1440 control-node over a 2400-baud,
universal asynchronous receiver/transmitter (UART) channel, and with the IOM via its
CAMAC interface. Under software control, the experimenter may activate/de-activate the
control-node, get and set voltage points and current limits, and also get and set voltage
ramp-rates.

2.2 Instrumentation Components

The services described in the previous section are realized by modular electronic devices,
or modules for short. These modules may be characterized not only by function, but
also by the standards to which they adhere. Standards provide the mechanical, electrical,
and communication specifications that define families of devices. The use of standards-
based technologies provides a stable, flexible platform, in the sense that compliant devices
may be shared, exchanged, and inter-operate within a well-tested and well-documented
framework.

Another benefit of modular instrumentation systems is their configuration flexibility. It
is simple to restructure a system of modules to meet the requirements of a new experiment,
or to add new modules to augment an existing configuration in response to increased exper-
iment demands, or technological advances. Also, modules may be independently tested,
prior to their integration with a more complex system.

NIM, CAMAC, and VME are the standardized instrumentation modules used within
the Lucid data acquisition system. These modules share the common feature of being
housed in a crate, or bin structure. All three module-families provide and distribute power
from a crate-integrated supply, but CAMAC and VME crates also feature a digital data
communication path, known as a CAMAC dataway or VME backplane. This communi-
cation path, or bus, shuttles control and data signals between crate-resident modules and
an instrumentation manager, typically a microprocessor. Each family of instrumentation
modules is further detailed in the following discussion.

19

2.2.1 Electrical Bus Systems

Although it is always possible to achieve inter-device communication by wiring them in a
point-to-point configuration, this scheme has obvious drawbacks that could be avoided by
requiring the devices to share a common communication path. Power distribution require-
ments may be met in the same fashion.

In the context of computer architecture, a bus may be defined as a subsystem that
enables the transport of data and/or power between components of a larger system [10].
These data transfers are initiated upon request by a single bus master communicating with
one or more slave devices; slaves may not publish data autonomously.

A master wishing to initiate communication with a single slave device will broadcast
the address of the slave on the bus. All slaves on the bus will compare this address with
their own, and connect to the bus if their address corresponds to that of the broadcast
address. Note, this implies slave addresses must be unique. Assuming the master-slave
connection has been established, only then may data and/or control signals be transferred
over the bus. The procedure governing the sequence of information exchange between
master and slave is known as a bus protocol. The most basic exchange of a single slave
address and data piece is known as a bus cycle. Typical data transactions may require
several bus cycles for completion.

All bus transactions require a synchronization mechanism to maintain timing integrity
across bus cycles. To accomplish this, bus cycles may be executed using either syn-

chronous or asynchronous methods. Asynchronous architectures depend on a handshake

mechanism between master and slave. This serves as an acknowledgment from the slave
that the previous instruction was received and the next stage of the transaction may now
proceed. Synchronous designs rely on a clock to orchestrate transactions between mas-
ter and slave. Acknowledgments need not be sent by the slave, thus eliminating the time
consumed by a handshake apparatus.

Byte-ordering, or endian-ness, is an important aspect to consider when interfacing
multiple bus systems. The term endian refers to the order in which bytes are stored in
memory. A bus is classified as being either big-endian, or little-endian, based upon the po-
sition of the most significant byte (MSB) of a data word relative to the address it occupies
in memory. For example, consider the 32-bit number, 1234ABCDh : within a little-endian
architecture, successive bytes of this number would be stored in memory exactly as it is
written, with the MSB occupying the highest address (see Figure 2.2). However, a big-
endian system would store the data word as CDAB3412h, with the MSB at the numerically
smallest address. Conversion from one representation to another is a task best realized

20

using hardware resources, if at all possible, thus removing the burden of byte-swapping
from a CPU.

Big−Endian

CD AB 34 12
4 3 2 1

12 34 AB CD
4 3 2 1

Little−Endian

Figure 2.2: Illustration of byte-ordering for little-endian (left) and big-
endian (right) systems. Memory addresses are indicated above the storage
cells.

Bus systems share several features in common, differing only in the details of their
implementation. The following general features constitute a framework within which dif-
ferent buses may be compared and contrasted [5]:

1. Arbitration - as a bus constitutes a shared resource, some provision must be made to
permit the arbitration of resource contention among multiple bus masters.

2. Addressing - three techniques are typically used to identify communication end-
points: i) geographical, or positional addressing, ii) logical addressing, and iii)
broadcast, or multicast addressing.

3. Data Transfer - this includes both the volume per transaction, in terms of bytes, and
the delivery method, which may be either serial or parallel.

4. Control/Status Signals - control signals permit variation of general read/write trans-
fers into more specialized operations, such read-modify-write, bitwise test-and-set,
or block transfer operations. Also, some method must be available for devices to
indicate transaction success or the presence of abnormal conditions, perhaps com-
pelling a controlling device to take appropriate action.

5. Interrupts - these signals permit a device on the bus to indicate that it requires the
attention of another device, typically a central processing unit.

With the exception of interrupts, which are always asynchronous signals, and may there-
fore occur at any time, the above features are listed roughly in order of their occurrence
within a typical bus cycle.

In the following discussions, CAMAC, VME, and PCI buses will all be examined in
the context provided by this framework.

21

2.2.2 NIM

Although devices from the Nuclear Instrumentation Methods (NIM) family do not share
a communication pathway, and therefore do not constitute a bus system by the definition
given above, they are directly interfaced with both the Blowfish detector and the CAMAC
and VME bus systems. Hence, their role in the data acquisition system is critical, and it is
natural to discuss the NIM standards prior to the buses with which they are interconnected

Nuclear Instrumentation Methods was established as a standard in 1964, and still enjoy
wide-spread use in contemporary particle physics measurements. The standard specifies
physical dimensions, power requirements, and pin configuration for modules housed in a
NIM bin, or crate, which provides power for the modules at ±6, ±12, ±24 volts.

The NIM standard specifies three sets of logic levels:

1. Fast-negative, or NIM-logic levels provide rise-times on the order of 1 ns at 50 Ω

input\output impedance. This logic level is defined by current ranges, corresponding
to voltages of 0 V and -0.8 V for logic 0 and 1, respectively.

2. Slow-positive logic is rarely used due to the unsuitability of its very slow rise-times
for use in fast-pulse electronics.

3. Emitter-coupled logic (ECL) voltage levels and interconnects have also been added
to the NIM standard.

Of these logic types, the DAQ makes extensive use of the fast-negative and ECL versions.

Within the DAQ, NIM modules are used to realize Boolean-logic functions, rate-
meters, signal level-shifting, and threshold-crossing detectors, known as constant fraction

discriminators (CFD). The analog output signal from each of Blowfish’s photomultiplier
tubes is fed directly into a CFD channel, which produces a fast logic pulse at a constant
fraction of the input-pulse height only if the analog pulse exceeds a programmable thresh-
old. Taken in coincidence with a facility-provided signal indicating the passage of an
electron bunch in the HIγS storage ring, the CFD output pulses denote the signature of
an event of interest, and hence set in motion the entire chain of processes to acquire data
pertinent to that event.

2.2.3 CAMAC

CAMAC, or IEEE 583, was originally developed in 1969 by the European Standards on
Nuclear Electronics (ESONE) committee. The NIM committee in the United States further

22

refined the standard, where it soon experienced widespread adoption in nuclear, astronom-
ical, and medical research, as well as in industrial control system applications [11].

A CAMAC system is composed of crates, populated with instrumentation modules,
like ADC’s, TDC’s, and scaler devices. Not only does the 25-slot crate house the modules
and provide an integrated power supply, but it also contains the module interconnection
fabric, or motherboard, also known as the dataway in CAMAC jargon. The dataway is the
communication medium over which data and control signals flow between modules and
the crate controller (CC), occupying the two, rightmost slots of the CAMAC crate.

The role of the crate controller is two-fold: first, it serves as crate master, delivering
commands to slave modules, and second, the CC serves to link the instrumentation devices
of a crate with managerial logic, typically a microprocessor.

Multi-crate systems may connected in either a serial (loop), or a parallel (branch) ar-
rangement. For the hardware configuration presently used at HIγS with the Blowfish array,
the latter, branch-topology is employed.

In the branch configuration, the CC is interfaced with a device known as a branch

driver. Lucid utilizes the CBD 8210 parallel branch driver, a VME module, to bridge the
CAMAC dataway with the VME bus. The branch driver connects to the crate controller
by way of a 66-wire cable known as the branch highway.

Command and control signals are encoded in a 24-bit word, passed from controlling
entity (the IOM in this case), to branch driver, to crate controller, and finally across the
dataway to a target module. Data and status signals follow the reverse path, back to the
IOM. The code-word is associated with the mnemonic BCNAF (Branch, Crate, StatioN,
Sub-Address, Function), and has the structure illustrated in Figure 2.3.

1 = 16−bit data

B B B C C C N N N N N A A A A F F F F F01 0

23 7 015

0 = 24−bit data

Figure 2.3: The 24 bit CAMAC code-word structure.

2.2.3.1 Arbitration

In the context of Lucid, all CAMAC access is serialized by the I/O manager. All CAMAC
modules are slave devices and respond only to the direction of the Crate Controller, the
lone bus master of each crate. Therefore, because there is no possibility of competition for
the bus, the CAMAC standard does not define an arbiter.

23

2.2.3.2 Addressing

The “N” line is a point-to-point connection allowing the CC to select one or more modules
as transaction targets (see Figure 2.4). This is a form of geographical addressing, as each
“N” line corresponds directly to the module’s slot, or position, within a crate.

The sub-address, or “A”, component of the BCNAF code-word permits addressing up
to 16 different components internal to a module. These may be registers in a device, such
as the per-channel conversion buffers in an ADC module.

Broadcast addressing is used for the delivery of the self-explanatory dataway signals
Busy, Initialize, Inhibit, and Clear signals (B, Z, I, and C).

Module Controller
(CC)

Command Function, Sub−Address
("F", "A")

Response
(Q, X)

Data Bus
(24−bit)

Timing
(S1, S2)

Unaddressed Command
(Z,C,I,B)

"L" Line
(Service Request; LAM)

"N" Line
(Station Addressed)

Branch
Driver

Branch
Highway

Crate

Figure 2.4: Block diagram of CAMAC system.

2.2.3.3 Data Transfer

To initiate a data transfer, the I/O manager sends an approriate BCNAF code to the CC,
which in turn drives the “N” line to select a target module, encodes the desired internal
register of the target in the “A” component of the code-word, and encodes the transaction
type in the “F” component. Module data may be up to 24-bits per word, and is transferred
in parallel, across both the dataway and the branch highway.

The CAMAC standard dictates a minimum time of 1.0 µs per control or data trans-
action. When the data’s path across the branch highway is accounted for, a single 24-bit
transaction requires on the order of 1.5 µs. Therefore, the bandwidth available over the

24

CAMAC branch highway is limited to approximately 2 MB/s.

This relatively small bandwidth is one of the chief motivational factors behind the
pursuit to replace CAMAC technology as the primary digitization instrumentation within
the Lucid data acquisition system.

2.2.3.4 Control/Status Signals

The “F” component of the CAMAC code-word allows for the definition of 32 function
codes, approximately half of which are defined by the CAMAC standard. For example,
F(0) is defined as, “read data from group register one”, and F(16) is, “write data to group
register one”. Other defined function codes may instruct the module to clear a register, or
silence a module demand signal, the “L” line of Figure 2.4. The remaining undefined “F”
codes are left to instrumentation designers to implement in a module-dependent fashion.

The “X” signal is issued by a module when it has successfully recognized and accepted
the NAF portion of the command code as being an action it can perform.

The interpretation of the “Q” signal was left to the control of module designers, and
therefore its meaning varies from module to module. For example, it may indicate an
operation has successfully been completed.

2.2.3.5 Interrupts

Each module has a point-to-point link to the crate controller via its “L” line, also known
as the “Look-At-Me” line, or LAM. Modules use this connection to indicate that they
require service. This type of asynchronous request notification is more generally known
as an interrupt. From the I/O manager’s perspective, all CAMAC module interrupts are
routed through the CBD8210 branch-driver on the module’s behalf.

Communication of LAM signals over the branch highway is by way of the BD, or
Branch Demand wire. The 24-bit bidirectional read/write lines of the branch highway
carry a demand-status word known as the GL, or Graded-LAM word. This is a logical OR
of all interrupting modules within a parallel branch.

The Branch Graded L-request, or BG, commands each crate in the parallel branch to
place its contribution to the GL-word on the read/write bus. In this fashion, a branch driver
is able to determine which crates in the branch contain interrupting modules.

2.2.3.6 Concluding Remarks

As mentioned, the CBD 8210 branch driver is the key piece of technology interfacing
CAMAC instrumentation modules with the VME backplane. This permits a single point

25

of control for both systems, thus simplifying communication and control requirements.

However, CAMAC has at least two features which designate it as a technology whose
role within Lucid should be minimized:

1. the relatively slow rate of data transfer (2 MB/s) over the dataway and branch high-
way, and

2. the lengthy digitization period of CAMAC ADC and TDC modules.

Given that detector event digitization lies on a time-critical path within Lucid’s event-
driven data collection process, faster data digitization and extraction from instrumentation
can only be beneficial to system performance.

The next section will examine the VME bus and those features which denote it as a
viable candidate to supplant CAMAC in its role as the primary digitization technology
within the Lucid data acquisition system.

2.2.4 The VME Bus

The development efforts of several companies resulted in the 1980 release of a microprocessor-
independent instrumentation system known today as the VME bus. The electrical spec-
ifications were originally based upon Motorola’s VERSAbus standard, which supported
their 68000 series of processors, while the mechanical specifications (crates and modules)
are rooted in the Eurocard form factor. The form of VME hardware found today is a direct
result of the hybridization of these two technologies [10].

Over the years since its inception, the VME bus specifications have experienced sev-
eral refinements, revisions, and additions. For the purposes of this thesis, the most im-
portant additions to the standard are known as VME64, and its super-set with extensions,
VME64x. Devices compliant with the VME64x specifications include features such as
geographic addressing, configuration ROM and control and status regions (CR/CSR), and
bandwidth increases up to 160 MB/s with two-edge, source-synchronous transmission
(2eSST). Key VME technologies used within Lucid will be covered in the discussion of
this section.

The VME bus is a multi-master, multiprocessor bus design that is not tied to any pro-
cessor family. The maximum capacity of a single crate is twenty-one slots, with the first
slot (leftmost) reserved for the occupation of the System Controller (SC).

A system controller implements several vital functions, such as the bus arbiter: a sin-
gle VME crate may contain up to twenty-one masters, each with the ability to request bus

26

ownership and data transmission activities. The SC arbitrates via three policies: priority-
based, round-robin sharing, or single-level based. An arbitration mode is selected as sys-
tem initialization and generally remains static over the life-cycle of a system.

Internally, the VME bus is comprised of four sub-buses, as illustrated in Figure 2.5:

1. Data Transfer Bus - composed of address, data, and control signal lines, it is used
by system masters to move data to/from slaves. It is also used to transfer inter-
rupt status/ID information (i.e. an interrupt request (IRQ) vector) from interrupting
modules during an interrupt acknowledge (IACK) sequence.

2. Data Transfer Arbitration Bus - the arbiter, functionally housed in the system con-
troller, determines which master is granted ownership of the Data Transfer Bus.

3. Priority Interrupt Bus - up to seven, prioritized levels of interrupt may used. During
an interrupt acknowledge sequence the IACK and IACKIN/IACKOUT daisy-chain
drivers, initiated by the system controller, deliver information between interrupters

and interrupt handlers.

4. Utility Bus - a collection of miscellaneous signals used for reset, timing, diagnostics,
power failure, and geographic addressing information transport.

Next, characteristics of the VME bus will be examined in the context of the general bus
framework of Section 2.2.1.

VME Bus

Backplane
Interface Logic

Bus
Arbiter

IACK
Daisy−Chain

Driver

Bus
Timer

System Controller (SC)
Interrupter Slave Interrupter

Requester

Master
Interrupt
Handler

Backplane
Interface Logic

Backplane
Interface Logic

Data Processing Device
(CPU)

Memory or I/O
Device

Undefined by
VME Specifications

Data Transfer Bus

Priority Interrupt Bus

Data Transfer Arbitration Bus

Utility Bus

Figure 2.5: Block diagram of a VME system. Figure adapted from [10].

27

2.2.4.1 Arbitration

All VME bus masters must negotiate for bus ownership with the Arbiter in slot one, prior
to any master-slave bus transactions. Typically, an Arbiter chooses a bus owner amongst
contending masters based on one of three policies, chosen at system power-up:

1. Priority Policy - masters may assert one of four lines bus-request lines, to indicate
their desire for bus ownership. In the event that multiple masters simultaneously
assert the same bus-request line, the master physically closest to the Arbiter (Sys-
tem Controller) will win bus ownership due to the way in which “ownership” is
propagated between adjacent slots along the Data Transfer Arbitration Bus.

2. Round-Robin Policy - all masters will be sequentially granted bus ownership. When
the last master has surrendered the bus, the first master will again be granted the bus,
and the cycle will begin anew.

3. Single-Level Policy - this is a simple FIFO-based scheduling policy (First-In, First-
Out). Multiple, simultaneous requests for bus ownership are handled the in the same
fashion as in 1), above.

Caution must be exercised when configuring a multi-master VME system: it is possible
for a single master to monopolize the bus, thus starving all other masters of bus access.
VME masters will relinquish bus ownership according to their subscription to one of two
policies:

1. Release-When-Done (RWD) - the master will only yield the bus when it has deter-
mined that it no longer needs the bus.

2. Release-on-Request (ROR)- the master will surrender the bus to any competitor’s
request for bus ownership.

The present configuration of Lucid utilizes a single VME bus master subscribing to the
Release-When-Done policy and the Single-Level scheduling policy.

2.2.4.2 Addressing

VME standards permit several address ranges, or address spaces, to concurrently exist.
These are A16, A24, A32, and A64 in the the VME nomenclature, and define viable
address widths of 16, 24, 32, and 64-bits, respectively. A40 is also defined, but is very
rarely used.

28

An extra classifier is used to further characterize a VME address region and data
transfer-type. This 6-bit entity is known as an address-modifier (AM), and it serves to
denote additional attributes of an address space. For example, the 24-bit CR/CSR address
space is associated with an address-modifier of 0x2F (hexadecimal notation), while the
AM associated with an A24/D32 block transfer is 0x3F.

During a bus cycle, the master tags each address with an AM code. Slave devices
monitor these codes, and thus determine which data and address lines to monitor and what
type of transaction is expected of them. The AM codes relevant to the Lucid DAQ are
listed in Table 2.1.

AM Code Description
0x3F A24 BLT
0x3D A24 Data Access
0x2F A24 CR/CSR Space
0x2D A16 Data Access
0x0F A32 BLT
0x09 A32 Data Access

Table 2.1: Address-modifier codes used within Lucid.

VME address space accesses are uniquely specified by the triplet of data access width,
address space width, and address-modifier code, {Dxx, Axx, AMxx}. It may be helpful to
visualize these triplets as parallel planes in a 3-dimensional space, as illustrated in Figure
2.6.

Geographic addressing capability was added to the VME standards with the appear-
ance of the VME64x specifications. This feature allows modules to discover their slot po-
sition in the VME crate, and thereby generate a base-address for themselves, determined
by that position. This form of auto-configuration is useful as a means to double-check
that modules are in the desired position within a crate. The five, most-significant bits of
a board’s 24-bit base-address are assigned the value of the board’s slot position. Thus, in
C-language notation, a board’s base-address is:

baseAddress = (slotNumber << 18) (2.1)

2.2.4.3 Data Transfer

Data may be transferred between master and slave in 8, 16, 32, or multiplexed 64-bit
volumes. In VME jargon, these data sizes are denoted by the mnemonics D8, D16, D32,
and D64, respectively. Two basic types of transaction are possible between masters and

29

0x2D

Space (Axx)

Address
Modifier (AMxx)

Data

Space
 (D

xx
)

A32

A16

A24

0x09

D08
D16

D32

0x2F

Address

Figure 2.6: Three-dimensional representation of VME address space. Note,
the address ranges are not to scale.

slaves: single-cycles and block transfers (BLT). In the remaining discussion, signal lines
on a bus are denoted by uppercase lettering, and signals that are active-low have an asterisk
(*) appended to their name.

A single-cycle read begins when a master addresses a slave by driving low the ad-
dress A01-A31, the address-modifier AM0-AM5, IACK*, and LWORD* lines. These are
qualified by the falling edge of the address-strobe line (AS*). The master also negates
the WRITE* line, and asserts the data strobes DS0* and/or DS1*. The slave then de-
codes the address, places data onto D0-D31, and asserts the data transfer acknowledge
line (DTACK*). After the master has latched the data, it informs the slave of this by
negating the data strobe lines. The slave then negates DTACK* to complete the cycle.

Block transfers may be faster than single-cycle accesses because the master presents an
address only once, at the onset of the transfer. The slave device will increment the address
appropriately as each data word is transmitted, as it knows the data transfer-type is a BLT
based on the information it received in the AM of the initial stage of the BLT cycle. In
the case of a block transfer to/from a slave with a FIFO memory, such as is present in
the CAEN digitization modules used in the Lucid DAQ, the slave need not increment the
initial address: all reads from the FIFO start at the first data word contained therein.

Multiplexed block transfers (MBLT) combine the 32-bit address and data lines to form
a 64-bit data transfer bus. However, this mode of transfer is not presently used within

30

Lucid, and will not be discussed further.

2.2.4.4 Control/Status Signals

The VME64x standard specifies two, distinct bus lines for indication of abnormal condi-
tions:

1. BERR*, or bus error, is asserted by slaves to indicate the presence of a transac-
tion abnormality, or to signal the termination of a chained block transfer (CBLT).
Chained block transfers will be discussed in Section 2.2.4.6.

2. BTO*, or bus time-out, is issued when the data strobes (DS0-DS1) remain asserted
for longer than a predefined period, configured during system initialization. Thus,
the BTO* signal realizes the alarm-portion of a “watch-dog” timer service, managed
by the VME system controller.

The response of a master to either of these signals is not specified by the VME64x stan-
dard, and is therefore implementation-dependent.

2.2.4.5 Interrupts

The VME standards specify a 7-level, prioritized interrupt architecture, driving the bus
lines IRQ1*-IRQ7*, with IRQ7* being the highest priority. Those modules generating
interrupts on these lines are known as interrupters, and those that service their requests
are known as interrupt handlers. In the case of Lucid, the interrupt handler service is
realized by the IOM.

As an example of a typical interrupt sequence, consider an interrupter asserting one of
IRQ1*-IRQ7*, indicating a need for service. The interrupt handler monitors one or more
of the seven lines, and when it senses one them is active, it requests and acquires the bus.
It then places the 3-bit binary number corresponding to the priority of the IRQ level on the
address bus, and asserts AS* and IACK*.

The assertion of IACK* serves two purposes: 1) it notifies all modules that an inter-
rupt acknowledgment sequence is in progress, and 2) it initiates the IACK* daisy-chain
driver of the system controller, located in slot 01. The daisy-chain signal propagates from
IACKIN* to IACKOUT* at each crate slot until the signal reaches the interrupter. At this
point, the interrupter places an 8-bit STATUS/ID (also known as an interrupt vector) on
the data bus, and terminates the cycle with DTACK*.

The next stage of the IACK-cycle depends on which of two types the interrupting
module belongs to:

31

1. ROAK - Release-On-AcKnowledgement. This type of interrupter de-asserts its IRQ1*-
IRQ7* line when it places its interrupt vector on the bus and drives DTACK*. That
is, its interrupt is negated in response to an IACK cycle.

2. RORA - Release-On-Register-Access. This type of interrupter only negates its inter-
rupt (i.e. de-asserts) when the handler writes to a certain register on the interrupting
module. Thus, the IRQ1*-IRQ7* lines remain asserted even at the conclusion of the
IACK cycle.

With the exception of the CBD 8210 CAMAC branch driver, all VME modules used in
the Lucid data acquisition system are RORA interrupters.

2.2.4.6 Physics Extensions to the VME64x Standards

Two special protocols were added to the VME64x specifications based on feature requests
expressed by the experimental physics community [10]. These are known as the chained

block transfer (CBLT) and multicast transfer (MCST) protocols.

1. CBLT - this mechanism allows a master to read a block of data of an indetermi-
nate size from an adjacent set of modules within the same crate, without the need to
address each module individually. Thus, one chained block transfer is sufficient to
read several modules, each containing data from a single physics event. As the mas-
ter has no a priori knowledge of which modules contain data, the CBLT mechanism
is particularly well-suited for scenarios where modules contain little data. That is,
when the physics event generates “sparse” data.

2. MCST - multicast transactions allow commands (i.e. VME bus writes) to be broad-
cast to a set of slave modules. Thus, a single issuance of a write-cycle reaches all
modules of a chosen set.

Both CBLT and MCST transaction take place in the VME A32 address space, with the
appropriate D32 address modifier.

Modules supporting these two types of transactions must be configured to respond to
a single, unique address in A32 space. This address serves as a virtual base-address for
the module-members of a VME Chain-Object. Additionally, the first and last members of
a VME Chain-Object must know their special positions in the chain, in order to be able to
initiate and terminate these special transactions.

Both CBLT and MCST transactions utilize the interrupt infrastructure of the VME
bus to pass “tokens” between members of a Chain-Object. In a CBLT operation the

32

IACKIN*/IACKOUT* daisy-chain is used by each Chain-member to indicate to its neigh-
bour that it has finished contributing its block of data, and the neighbour may begin its
transference. The last module in the chain asserts BERR* to signal the conclusion of the
CBLT. In a similar fashion, the IACK* daisy-chain is used in an MCST transfer to indicate
that a module has latched the data successfully, and the neighbouring module may now
do the same. The last module in the MCST chain asserts DTACK* to let the master know
that the broadcast transaction is complete.

One of the key additions available from the Lucid upgrade project was the CBLT/MCST
capabilities of the CAEN QDC and TDC modules. These features greatly aid in reducing
both the number and the duration of accesses to the VME backplane, hence reducing dead
time.

2.3 The PC: IOM and Workstation Platform

Figure 2.7 shows the bus topology of a typical PC motherboard. This layout is repre-
sentative of the systems used within Lucid, as both Linux user workstations and the I/O
Manager platform. After the CPU and RAM, arguably the most important components
of the PC motherboard are the Northbridge and Southbridge chipsets. Traditionally these
form the core logic of PC motherboards.

PCI Bus

Bus

CPURAM

L2
Cache

PCI
Device

PCI
Device

PCI
Device

Southbridge
Chipset

Northbridge
Chipset

PCI

Figure 2.7: PC motherboard layout.

33

The Northbridge, or memory controller hub (MCH), is responsible for routing com-
munication between the CPU, RAM, L2 cache (if present), and accelerated graphics port
(AGP). Additionally, the MCH also houses the host-to-PCI chipset and the PCI arbitration
logic.

The Southbridge, or I/O controller hub (IOCH), is itself a PCI device, interfaced
with “slow” I/O peripherals such as other PCI devices, the real-time clock (RTC), sys-
tem firmware (i.e. BIOS on the PC platform), and the hard-drive. Additionally, interrupt
and DMA (direct memory access) controllers are also incorporated into the IOCH chipset.

Traditionally, the bus linking the MCH and the IOCH has been the PCI bus, but newer
motherboards often use a proprietary solution for this interface. However, this fact is
generally transparent to most software. Given the importance of the PCI bus in the context
of the Lucid DAQ, this system is explored next.

2.4 The PCI Bus

Originally developed by the Intel corporation in the early 1990’s as a means of interfacing
external devices with the motherboards of the 8086 processor line, the Peripheral Com-
ponent Interconnect (PCI) bus was later adopted as a standard administered by the PCI
Special Interest Group (PCI SIG). This group later extended the bus’ definition to include
a standard expansion-connector for add-on boards. These expansion connectors are the
familiar PCI slots found most on modern personal computers today. While designed to be
processor-independent, the PCI bus is most prevalent on the PC architecture.

The PCI bus is a synchronous, little-endian design. Thus, data and control signals are
transferred between a master and slave, or an initiator and target in PCI jargon, on the
edges of an orchestrating clock signal. While the original specification stipulated a 33
MHz clock, 66 MHz systems are occasionally found. But, the 33 MHz implementation
still remains the most commonly found, and it is the version found in the PC hardware
used within Lucid.

2.4.1 Arbitration

Unique to each PCI slot are a set of bus request and grant signal lines, REQ* and GNT*.
An initiator wishing to use the bus asserts its REQ* line, which is received by a central
arbiter located in the Northbridge chipset. If conditions are favorable, the arbiter drives
the initiator’s GNT* line, indicating that it now owns the bus. This arbiter is required to
implement a “fair” algorithm, such as round-robin scheduling, in order to avoid bottleneck

34

or deadlock conditions.

While the arbitration process is asynchronous, and therefore consumes no bus cycles,
the arbiter’s policy as to which initiator is granted the bus is influenced by the duration
that an initiator has held the bus. Each PCI device has an associated maximum time-limit
that the device may own the bus. This limit is set by BIOS firmware and written to the
device’s configuration space registers at system boot-up.

2.4.2 Addressing

The PCI bus supports three address regions: 1) configuration space, 2) memory space, and
3) I/O space. Memory and I/O space transactions are distinguishable as such by the type
of CPU instructions used to access regions in each. That is, instructions used to access
I/O address regions differ from those used to access memory regions. Some processor
families do not implement separate instructions for access to memory or I/O space, but
the PC family does. However, devices’ use of range-limited, I/O-instruction addressable
memory is a discouraged practice.

All PCI devices are required to implement a 256-byte memory region known as the de-
vice’s Configuration Space. PCI configuration space supports device auto-configuration,
where each device may learn the location of its own resources, independent of software
intervention. The layout of this region is shown in Figure 2.8.

The Vendor and Device identification regions permit software to identify specific de-
vices and multiple instances of those devices. Of the fields set by system firmware, the
most important are the interrupt line, and the base address registers, or BAR. The inter-
rupt line value communicates interrupt routing information to device driver software. The
value in this field is the number of the interrupt pin on the system’s interrupt controller
(implemented in the IOCH chipset) to which the PCI device’s interrupt line is routed.

When a PC boots up, system firmware (BIOS) builds an address map of the system
by determining the amount of physical memory (RAM) present, and the address ranges
required for each I/O device, including those on the PCI bus. That is, a PCI device in-
dicates, by values in its BAR fields, the size and type (memory or I/O space) of address
space it requires. System firmware assigns a region with the required characteristics to
the device, reporting the assigned address of the region(s) in the BAR. In this fashion, a
PCI device is able to map its various registers into the address space of the host PC. With
the assigned region’s base-address indicated by a device’s PCI BAR, driver software may
access a device’s registers with basic load and store primitives.

PCI BIOS specifications define a set of software functions that must be implemented

35

Figure 2.8: PCI configuration space memory region. The required regions
must be provided by the PCI device, whereas the optional regions may as-
signed by the host system’s firmware. Figure from [12].

by system firmware, and made available to operating system software. These functions
provide OS drivers with access to PCI configuration space, including the ability to read/write
configuration space registers, locate devices by Vendor and Device ID, and broadcast com-
mands to all devices on a PCI bus via a “special-cycle” transaction.

2.4.3 Data Transfer

PCI utilizes a multiplexed address and data bus, AD[31:0]. That is, both data and target
addresses are sent over the same set of physical lines. Bus cycles are initiated by simulta-
neously driving FRAME* and an address onto the AD[31:0] lines at one clock edge. This
is known as the address phase of an initiator-target transaction. The next clock edge ini-
tiates one or more data phases, where data words are transferred over the AD[31:0] lines.
Taken together, the address and data phases constitute the basic PCI bus cycle.

An initiator indicates the type of data transfer it wishes to execute by driving the Com-
mand/Byte Enable lines, C/BE[3:0], on the same clock edge as the FRAME* signal: that
is, during the address phase. The 4-bit, C/BE[3:0] lines encode the transaction type, such
as memory read/write, I/O read/write, or interrupt acknowledge. During the data phase,
the C/BE[3:0] lines indicate which byte-lanes of [3:0] are valid, thus indicating whether
the data payload is 1, 2, or 4 bytes wide.

36

2.4.4 Control/Status Signals

The nature of a PCI transaction is dictated by the 4-bit, C/BE[31:0] lines asserted by
the initiator during the address phase of the transaction. In this way, memory, I/O, and
configuration space accesses are distinguishable from one another.

The PCI specifications implement notification of transaction errors via two bus lines,
PAR* and SERR*. The PAR* line signals a data phase parity error, and is therefore re-
pairable by error-correcting codes or data re-transmission, while SERR* signals an address
phase, configuration space access, or special-cycle error condition. An SERR* condition
may be correctable at the device or device driver level, or may be passed on to the oper-
ating system for further handling. Hence, this type of error is generally not transparent to
software operation.

2.4.5 Interrupts

Four bus lines, INTA*-INTD*, are routed from the PCI bus to the motherboard’s external
interrupt controller in the IOCH chipset. According to PCI specifications, single-function
devices may use only INTA* to request processor servicing [13]. The classification of a
device as being “single-function” encompasses most common PCI devices, including the
sis1100 and Ethernet controller devices used within Lucid.

Thus, single-function device interrupt requests are multiplexed over the INTA* line,
and therefore must be level-triggered to avoid interrupt losses. The multiplexing require-
ment also implies that PCI interrupts must be sharable. This imposes conditions on the
design of driver software for these devices in order to facilitate interrupt sharing.

2.5 VME-PCI Bridging Issues

VME and PCI buses share the common attribute of being processor-independent. That
is, neither bus is obligated to use a particular type of processor. However, to accomplish
any useful work, clearly some form of processor must be used. One popular solution
providing processor-based management of a VME system, is to link it and the processor
via the far more common PCI bus, which is local to the processor. The technology used to
accomplish this inter-bus coupling is known as a VME-PCI bridge device.

Any device interfacing the asynchronous VME bus with the synchronous PCI bus must
contend with several difficulties. These issues are born of fundamental differences be-
tween the two systems, including data transfer methods, byte ordering, address mapping,
and interrupt protocols.

37

The general design philosophy that should be employed when bridging the two tech-
nologies is that of decoupling via FIFO memory regions [14]. For example, using this
technique, data may be written into a FIFO from the VME-side at that bus’ maximum
rate, and read from the PCI-side of the FIFO at that bus’ maximum rate. Thus, transac-
tions on each bus are segregated: each may proceed independently in the most efficient
manner available for each bus.

Each of the four key differences outlined above will now be examined in detail.

2.5.1 Address Mapping

The PCI bus defines three memory address spaces, I/O space, memory space, and con-
figuration space, while the VME bus defines A16, A24, A32, A40, A64, and CR/CSR
address spaces. Therefore, a bridging technology must provide mechanisms for mapping
VME-accessible addresses and address-modifiers to PCI-accessible addresses, and vice
versa.

2.5.2 Byte-Ordering

Due to differences in development platform histories, PCI and VME buses differ in their
byte-ordering aspect: the PCI bus is little-endian, reflecting its historical ties to the Intel
8086 architecture, while the VME bus is big-endian, reflecting its historical support for the
Motorola 68000 processor family. Thus, a bridging technology must provide a byte-lane
swapping mechanism.

In practice, swapping could be achieved in software, but this imposes an unacceptable
overhead for all transactions that require byte-swapping. Instead of a software solution,
VME-PCI bridging hardware may provide this service using one of two techniques:

1. Data-Invariant Lane Swapping - In this method, the value of the data is preserved
by the byte-lane swapping hardware. This technique requires the bridge to know the
number of bytes involved in the transfer. However, since only software may truly
know the size of a data transfer, it must assume responsibility for properly config-
uring a bridge on each transaction, thus adding a possibly unacceptable overhead
penalty to each transfer.

2. Address-Invariant Lane Swapping - In this method, the address of each byte is pre-
served by the lane-swapping hardware of a VME-PCI bridge. Thus, each byte-lane
is “cross-routed” to the other bus architecture, such that each byte is stored at the
appropriate address on the other bus.

38

Clearly, the latter of these mechanisms is the better alternative, as the required behavior
may be implemented entirely in hardware.

2.5.3 Data Transfer

Both the VME and PCI buses permit the transfer of blocks of data in a single transaction.
However, PCI devices are only guaranteed to hold bus mastership for a pre-determined
amount of time. If a block transfer cannot complete within this time window, the PCI bus
may be allocated to another arbitrating master, causing the block transfer to abort any data
remaining to be transmitted.

The use of FIFO memories can aid in decoupling the synchronous nature of the PCI
bus from the asynchronous timing of the VME platform. Thus, it is recommended that any
bridging technology implement bi-directional FIFO buffers. That is, both read and write
buffers should be present.

2.5.4 Interrupt Protocols

VME specifications provide for seven, prioritized interrupt lines that may be simultane-
ously active, while the PCI bus routes four interrupt lines to a PC motherboard’s external
interrupt controller. As already mentioned, single-function PCI devices may only use one
of the four interrupt lines (INTA*), thus compelling PCI interrupts to be multiplexed.
Additionally, PCI specifications dictate that interrupts must be acknowledged within a
maximum number of clock cycles [13].

One solution to the problems imposed by these conditions is to again decouple the
VME interrupter from the PCI interrupt handler, and place the majority of interrupt han-
dling responsibility squarely on the bridge hardware itself [14]. Therefore, when a VME-
PCI bridge receives a VME interrupt, it should:

1. Immediately acknowledge the VME interrupter and obtain its STATUS/ID (interrupt
vector). If the interrupter is of the ROAK-type, this will silence its interrupt on the
VME bus.

2. Store the IRQ vector in a PCI-side register, and assert a PCI interrupt signal (i.e.
INTA*) to gain the attention of the CPU.

3. Respond to the PCI interrupt handler, and provide it with the vector of the interrupt-
ing module.

39

Using this algorithm, the VME interrupt acknowledgement cycle could be cleanly decou-
pled from the PCI interrupt acknowledgement cycle.

The next section will discuss the VME-PCI bridge technology used within Lucid, and
examine its measures for coping with the concerns outlined here.

2.6 The sis1100/3100 VME-PCI Interface

The bridging technology used within Lucid is a device manufactured by Struck Innovative
Systems, the sis1100/3100 VME-PCI interface. This device is composed of two modules,
connected via a Gigabit fiber channel:

1. The sis3100 is a VME module residing in the first slot of a VME crate and serves
as both the system controller (SC), and the VME-side of the lone bus master in the
DAQ.

2. The sis1100 module occupies one PCI slot in the IOM motherboard. It is, however,
composed of two cards connected by the Common Mezzanine Card (CMC) form
factor:

(a) The sis1100-CMC, which implements PCI and PC-side VME logic via a Field-
Programmable Gate Array (FPGA).

(b) The sis1100-OPT, which contains the optical communication hardware sup-
porting the PC-side of the fiber channel link.

Figure 2.9 is a block-diagram illustrating the major components and their inter-connectivity
within the sis1100/3100 device.

The interface between the custom-logic FPGA and the PCI bus is a device known as
the PLX-9054 I/O Accelerator. This device is commonly used to integrate intelligent I/O
machinery, such as network routers and switches, with a host system via PCI bus fabric.
In the case of the sis1100 application, the PLX-9054 serves to “glue” the FPGA housing
the VME and gigabit link logic with the host computer’s PCI bus, thus enabling VME bus
control through the host’s CPU.

The PLX-9054 implements several important features to address the concerns of Sec-
tion 2.5:

1. Address-invariant byte-lane swapping - thus, relieving the host processor from hav-
ing to convert VME data from big-endian format to its native little-endian format,
and vice versa.

40

Card 2

Serializer/
Deserializer

Protocol
FPGA

Link
Medium

FIFO FIFO

VME
FPGA

PLX−9054

Gigabit
Fiber Optic

Link

FIFO FIFO

VME
FPGA

I/O
FPGA

SHARC
DSP

Front Panel
I/O

SDRAM

Link
Medium

Serializer/
Deserializer

Protocol
FPGA

P
C

I B
us

sis1100

V
M

E
 B

us

Options

sis3100

Card 1

Figure 2.9: Block-diagram of the sis1100/3100 VME-PCI bridge.

2. Address translation - all VME addresses are accessible from the PCI-side of the link.
Also available are 256 MB of VME address regions, or windows. These are user-
configurable in 4 MB denominations. This permits the host processor to execute
load and store operations to these configured regions as though the addresses were
physical memory locations, local to the processor. The concept of accessing device
registers through read/write operations to memory addresses is known as memory

mapping, and it is one of the primary means by which software may interact with
hardware.

3. Read/Write FIFO’s - separate FIFO buffers for each direction of data movement
enables writes to and from the PCI and VME buses to proceed at the maximum
possible speed on each bus, independent of conditions on the other bus.

Additionally, the I/O Accelerator also contains two, independent DMA engines to support
bi-directional movement of block data with a minimum of processor intervention. Once a
DMA cycle has been initialized, no processor cycles are consumed by loading or storing
data to physical memory, hence the processor is free to attend to other tasks. This capabil-
ity is especially important in a single-processor, I/O-intensive application, as are the data
acquisition requirements of Lucid.

In terms of the way it handles VME interrupts, the sis1100/3100 interface does not

implement the recommended decoupling scheme of Section 2.5.4. Instead of relying on
hardware mechanisms to decouple the VME interrupter from the PCI-side interrupt han-

41

dler, the solution adopted by the designers of the sis1100 was to relegate interrupt vector
acquisition to the software domain.

Although there is no physically obvious reason why the suggested interrupt handling
method of Section 2.5.4 could not be implemented on this VME-PCI interface, the phys-
ical design of the device does not easily lend itself to such a solution. In particular, it is
the forced serialization/de-serialization of data across the Gigabit fiber-optic channel that
suggests a software solution to the interrupt handling problem. The benefits afforded by
the parallel architecture of the VME and PCI buses are seriously mitigated by the inclusion
of a serial medium in the data path.

The consequences of this interrupt handling scheme are felt most acutely in the soft-
ware domain and this will be examined in detail in the upcoming chapter on Lucid’s soft-
ware subsystems.

2.7 Summary

This chapter examined the physical devices used within Lucid, beginning with an overview
of the instrumentation subsystem. This entailed a description of the available services, the
components rendering those services, and their inter-relationships. The physical archi-
tecture of each of the system’s major communication buses was then described using a
framework of characteristics common to all buses. Examining each bus in the context of
this framework permits easy comparisons.

NIM, CAMAC, and VME modules form the basis of Lucid’s instrumentation subsys-
tem. Communicating with the detector and collaborating over their respective buses, these
devices provide the driving stimulus and fuel the consumption of digital information by
DAQ software.

Control and data extraction from the instrumentation subsystem is provided by a com-
mon, desktop PC interfaced to the modules by a single point of control. Linking the man-
agerial PC with the autonomous instrumentation modules is the specialized sis1100/3100
VME-PCI bridge.

The next chapter will present the design of Lucid’s software systems, including its
components, deployment topology, structure, and behavioral aspects.

42

CHAPTER 3
SOFTWARE SYSTEMS

The introduction of new hardware to upgrade the Lucid data acquisition system re-
quired extensive software support be created to take advantage of new capabilities. Thus,
for each hardware change (see Figure 1.7), corresponding alterations or additions had to
be made to Lucid’s software infrastructure:

1. IOM architecture shift - The platform shift from MVME167 to IA-32 introduced an
opportunity to migrate the I/O Manager’s real-time operating system from pSOS+
to RTEMS. The process of adapting a piece of software to operate on a platform
other than that for which it was originally designed for is known as porting. This
activity is discussed in Section 3.4.

2. IOM instrumentation interface - Software supplied with the sis1100/3100 VME-PCI
interface was designed to be executed on either a Linux or NetBSD-based operating
system. Therefore, this piece of software had to be ported to function with RTEMS.
The relevant details are discussed in Section 3.6.

3. Support for VME64x features - In addition to providing access to general read/write
operations to VME A24, A32, and CSR/ROM address spaces, routines were added
to Lucid to support the VME interrupt infrastructure, as well as BLT, CBLT, and
MCST access to modules providing those features. In order to provide user ac-
cess to the increased function-set available from the new VME hardware, changes
were also required to Lucid’s code-generation subsystem. However, because the
code-generation components are not central to the topic of data acquisition, they are
discussed in Appendix D.5.

The description of Lucid’s data acquisition software given here is expressed in part using
the visual tools provided by the Unified Modeling Language (UML). This tool graphically
conveys the structural and behavioral aspects of system components. Together, structure
and behavior constitute a model of the system under study.

Typically, UML is used to capture the design requirements of a project. The graphical
model thus produced may be used to generate the corresponding source code, which in turn

43

instantiates the product of the design. But this process may also proceed in the opposite
sense: given an existing set of source code, a graphical model may be extracted using the
notation of the UML. It is in the latter sense that the UML is used throughout this thesis:
to graphically document the as-built architecture of the Lucid data acquisition system.

The system model may be viewed through several levels of granularity: from a high,
architectural design level, where the details are coarsely defined and model components
and subsystems are described, through the mid-level of detail, known as mechanistic de-

sign, where collaborations of objects and their roles are presented, to the finest level, the
detailed-design level, where the attributes and operations of individual classes are spec-
ified [15]. The description of Lucid’s software is organized here according to these in-
creasing levels of detail.

Following a feature review of general-purpose and real time operating systems, a
component-deployment view of Lucid’s software systems is given. This architectural per-
spective illustrates the major software components, their location, and function within
the system. The discussion then turns to a detailed description of each major component
deployed to the I/O manager. This includes analyses of the addition of run-time load-
ing/linking capabilities, porting the system to RTEMS, and porting the sis1100/3100 de-
vice driver to support operation under RTEMS. Finally, mechanistic- and detailed-design
descriptions of the IOM’s data acquisition component, the IOMReader, are given.

3.1 Operating System Overview

An operating system (OS) consists of several layers of software which provide a man-
agerial role and interface between hardware resources and the applications that require
them. Programs access the services of an OS through a set of software routines avail-
able as an application program interface (API). In turn, the OS provides an environment
within which programs may execute. The relationship between an application and its host
operating system is one of mutual dependence: in isolation, each entity is useless.

At the core of an operating system is a program known as a kernel. It is the kernel
that is ultimately responsible for the management of computer resources. The kernel is
alternatively known as an executive, although the latter term is typically used in reference
to small, modular systems as would be found in a real-time operating system. In this work,
the two terms will be considered synonymous.

Figure 3.1 depicts the various software layers existing between application code and
physical devices. In this depiction, it is implicit that each layer may only directly commu-
nicate with the layer immediately above it. Thus, the kernel communicates with peripheral

44

Applications

OS services
(UI, libraries)

Kernel
(Executive)

Device
Drivers

Peripheral
Devices

Operating
System

Figure 3.1: Components and interfaces of a typical operating system.

hardware via the device driver layer, application processes make requests of the kernel via
a user interface (UI) or library, and so on.

3.1.1 General-Purpose Operating Systems

A general-purpose operating system, such as Linux, runs applications in the context of a
process. Processes are synonymous with executing programs or applications: each exe-
cuting program consists of at least one process. A process consists of an address-space
allocated by the kernel, the program’s executable code and private data, plus other system
resources and machine state required to support the program’s execution. Address-spaces
are unique to each process: unless explicitly permitted to do so, it is an error for one
process to attempt access to the address space of another.

Processes are schedulable entities: they are able to compete for, and be granted time on
a central processing unit (CPU). Typically, general-purpose OS schedulers are designed
to allocate CPU access according to a policy of fairness; no single process should be
permitted to monopolize the resources afforded by a processing unit.

However, a process is not the only type of schedulable software entity. Processes
may be composed of one or more lightweight (in terms of resource demands) executable
entities, known as threads or tasks. In this work, threads and tasks shall be considered
synonyms. Threads share the address-space of their parent-process and may communicate
with each other using less resource-intensive means than must be used for inter-process
communication (IPC). Confusingly, inter-thread and inter-process communication meth-
ods are often aggregated under the shared label of IPC. Methods available for inter-process

45

communication include asynchronous signals, message queues, and semaphores. These
techniques will be detailed in Section 3.4.

Device drivers are software modules whose purpose is to abstract away the implemen-
tation details of device control and present a well-defined, consistent interface to appli-
cations [12]. In other words, a driver maps device-specific capabilities onto an interface
common to all devices. On Unix-like systems, such as Linux or RTEMS, the device driver
API closely follows that available for file access and manipulation.

Often considered part of the OS kernel proper, a driver is OS-dependent in the sense
that application requests to access devices must transit the kernel. Hence, the driver-
kernel interface consists of those procedures exported by the kernel to provide scheduling,
file system, inter-process communication (IPC), and memory management support for
hardware devices. Further details of the kernel-driver relationship will be discussed in
Section 3.4.

3.1.2 Real-Time Operating Systems

Real-time operating systems (RTOS) are distinguishable as such because of the timing
requirements, or deadlines, they must satisfy on behalf of applications: real-time systems
must react to stimuli within rigid time constraints [16]. These types of quality of service
(QoS) requirements define the characteristics of an RTOS.

Deadlines may be categorized as being either soft or hard. A hard deadline is one that
simply cannot be missed; a late result is a system failure and may lead to catastrophic
consequences. Examples of hard real-time applications include avionic controls in aircraft
or rockets, and airbag deployment or anti-lock brake systems (ABS) in terrestrial vehicles.

At the opposite extreme, soft real-time requirements allow for some tolerance and flex-
ibility with a missed deadline: a late result may still be useful and will probably not cause
catastrophic failure. Applications with soft deadlines are characterized in a stochastic
sense; i.e. in terms of the average quality of service they provide. Examples include cable
television signal tuners and the application topic of this thesis, data acquisition systems.

In addition to characterizing the Lucid DAQ as being a soft, real-time application, por-
tions of that system may be further categorized as being an embedded system. Embedded
systems contain a CPU as part of a larger computing system and provide specialized ser-
vices not normally found on a desktop system [15]. Real-time embedded systems interact
almost entirely with other devices, and not with a human user. The I/O Manager subsys-
tem of Lucid is such an embedded device, despite its deployment on the common desktop
PC platform.

46

3.2 Component Overview

The execution environment of Lucid’s software components is shown in Figure 3.2. This
type of diagram is known in UML nomenclature as a deployment view, and is intended to
illustrate the affiliations of software components, their artifacts, the hardware nodes upon
which they reside, and the interconnection fabric between nodes.

In Figure 3.2, the I/O Manager and Workstation nodes are further annotated using
GNU-style notation (processor family-operating system): the I/O Manager is of type i386-

rtems, while the Workstation is of type i386-linux. These nodes communicate with each
other via their network interface cards (NIC) over 100 Mbps Ethernet fabric, while the
sis1100 < <device> > interfaces with the instrumentation subsystem over a fiber-optic link.
All < <device> > nodes shown here are controlled by their host processor over a PCI bus.

Note that each component has an < <artifact> > section. Artifacts are those pieces
of software physically realizing that component with which they are associated: artifacts
are typically executable objects. However, they may also denote other file-types, such as
documentation, or software libraries. Also, note that the dependency between the Client-

Side Daemons, IOMReader, and Code Generation components has been stereotyped as
< <creates> >. This stereotype conveys the idea that the Code Generation component is
responsible for the construction of its dependents.

Observe that both the Instrumentation Daemons and the IOMReader require an inter-
face provided by the Instrumentation Control component of the I/O Manager. A similar
arrangement may be found between components of the Workstation node.

In the following sections a brief description will be provided for each of the compo-
nents of Figure 3.2, organized according to the host hardware node.

3.2.1 Workstation (Linux) Components

Although it is not the focal point of this thesis, the role of the Workstation node is no
less important in the context of the Lucid data acquisition system than that fulfilled by
the I/O Manager. The full-featured Linux distribution hosted on the Workstation provides
critical services that the IOM simply cannot: permanent data storage facilities, a graphical
user environment, network infrastructure support, DAQ experiment administration, and
software development tools.

Of the items in the following list, only the Code Generation component is covered
elsewhere in this thesis in more detail than that provided here:

1. Experiment Management - This component includes the graphical user interface

47

<
<

 a
rt

ifa
ct

s
>

>

B
us

N
IC

<
<

de
vi

ce
>

>
E

th
er

ne
t

(1
00

 B
as

e−
T

) C
od

e
G

en
er

at
io

n

V
m

eB
ui

ld
R

ea
de

r,
 m

ak
e

gc
c,

 M
D

F
, E

D
F

N
IC

<
<

de
vi

ce
>

>

ne
tC

am
ac

d,
 n

et
V

m
ed

,
ne

tH
V

d

<
<

 a
rt

ifa
ct

s
>

>

si
s1

10
0.

ob
j

<
<

 a
rt

ifa
ct

s
>

>

In
st

ru
m

en
ta

tio
n

D
ae

m
on

s

si
s1

10
0

<
<

de
vi

ce
>

>
In

st
ru

m
en

ta
tio

n
<

<
su

bs
ys

te
m

>
>

G
ig

ab
it

F
ib

er
 O

pt
ic

P
C

I
B

us

N
et

w
or

k
B

oo
t−

Lo
ad

er

ne
tC

am
ac

, n
et

V
m

e
ne

tH
V

In
te

ra
ct

iv
e

In
st

ru
m

en
ta

tio
n

C
lie

nt
s

G
eS

ys
, C

ex
p

A
pp

Lo
ad

er
, t

el
ne

td

In
st

ru
m

en
ta

tio
n

C
on

tr
ol

{
i3

86
−

rt
em

s
}

I/O
 M

an
ag

er
<

<
pr

oc
es

so
r>

>
W

or
ks

ta
tio

n
<

<
pr

oc
es

so
r>

>

E
th

er
bo

ot
<

<
 a

rt
ifa

ct
s

>
>

E
xp

er
im

en
t

M
an

ag
em

en
t

gx
lu

ci
d,

 m
an

ag
er

,
fin

de
r

C
lie

nt
−

S
id

e
D

ae
m

on
s

N
et

w
or

k
S

er
vi

ce
s

D
H

C
P

, T
F

T
P

, N
T

P
 s

er
ve

rs
,

sy
sl

og
 d

ae
m

on

<
<

 c
re

at
es

 >
>

<
<

 c
re

at
es

 >
>

IO
M

 B
as

e

<
<

 a
rt

ifa
ct

s
>

>

IO
M

R
ea

de
r

<
<

 a
rt

ifa
ct

s
>

>

lib
IO

M
R

ea
de

r.
a

aE
xp

er
im

en
t.p

c3
86

{
i3

86
−

lin
ux

 }

<
<

 a
rt

ifa
ct

s
>

>

<
<

 a
rt

ifa
ct

s
>

>

R
ea

de
r,

 L
oo

ke
r

<
<

 a
rt

ifa
ct

s
>

>

<
<

 a
rt

ifa
ct

s
>

>

P
C

I

Fi
gu

re
3.

2:
D

ep
lo

ym
en

tv
ie

w
of

th
e

L
uc

id
da

ta
ac

qu
is

iti
on

sy
st

em
,i

llu
s-

tr
at

in
g

its
ha

rd
w

ar
e

no
de

s,
bu

s
co

nn
ec

tiv
ity

,
m

aj
or

so
ft

w
ar

e
co

m
po

ne
nt

s,
an

d
ar

tif
ac

ts
.

48

(GUI), gxlucid, the finder daemon for locating (possibly remote) experiments, and
the manager daemon responsible for distributing and coordinating communication
between the user interface and various client programs, such as the acquisition dae-
mons and the code-generation subsystem.

2. Code Generation - Provided with input in the form of Experiment and Module De-
scription files, and upon invocation by the manager, the VmeBuildReader process
will produce C-language source code. The source code thus produced is transformed
into executable format by the manager’s invocation of the make and gcc compiler
tools. This software will execute on the experimenter’s workstation as well as on the
I/O Manager (see Figure 3.2), thus instantiating data acquisition activities. A similar
process is also capable of producing a Looker program for data analysis. However,
that topic is beyond the scope of this thesis. Lucid’s code generation component is
treated in depth in Section D.5.

3. Instrumentation Daemons - The products of the Code Generation component are
the processes responsible for data acquisition and analysis, the Reader and Looker,
respectively. The IOMReader application is also produced for execution on the I/O
Manager, and will be examined separately in Section 3.7. The Reader is a client-
side proxy application, obtaining data produced by the IOMReader, and depositing it
in a shared-memory buffer. Data consumers, such as the Looker or GUI-clients, pull
data from the shared-memory buffer, where it may then be used in data analyses,
written to permanent storage, or further distributed to additional client software.

4. Network Services - The distributed design of the Lucid system requires several net-
work services be provided to support the operation of the I/O manager. A DHCP
server provides a network identity (IP address) to the IOM, the location and name of
the IOM’s boot-file, the TFTP server where the boot-file may be obtained, as well as
the identity of an network time protocol (NTP) server, from whom the IOM may ob-
tain information to synchronize its clock. Details of DHCP and TFTP are provided
in Section 3.3. The Linux system-logging facility, or syslog, is also used by the IOM
to automate the storage and centralization of diagnostic messages produced by it.

5. Interactive Instrumentation Applications - These are command-line utilities, pro-
viding an interface to instrumentation modules for the purpose of interactively ex-
amining and modifying hardware module settings. Although netcamac, netvme, and
nethv rely on access to routines found in Lucid’s software libraries, they are intended
to be used independent of Lucid. Although not shown in Figure 3.2, these command-

49

line clients are obviously dependent upon their complementary server applications
residing on the I/O Manager (i.e. the Instrumentation Daemons component).

3.2.2 I/O Manager Components

The I/O Manager, or IOM, lies at the heart of Lucid’s data acquisition capabilities. It is
responsible for direct communication with the hardware systems of the previous chapter,
on behalf of a remotely situated human user. The IOM serves as a proxy in this respect,
brokering transactions between the user and the DAQ hardware.

The primary role of the IOM is to execute the instructions of the experimenter, re-
sponding to periodic, asynchronous, or scaler events, as specified by an Experiment De-
scription file (EDF). The I/O Manager serves to buffer data collected from the VME and
CAMAC hardware, “smoothing” the asynchronous arrival of events and providing a struc-
tured data stream to the experimenter’s gxlucid interface.

In order to provide these services, the I/O Manager itself is comprised of several com-
ponents, each of which contributes one or more vital services (see Figure 3.2):

1. Network Boot Loader - permits a remotely located IOM to find and download its
operating environment. This component is responsible for loading the IOMBase: the
core application containing the RTEMS operating system and services essential to
all other IOM components. More details are found in Section 3.3.

2. Real-time Operating System - indicated by the i386-rtems, metadata tag attached
to the < <processor> > stereotype in Figure 3.2, this component is realized by the
RTEMS operating system. RTEMS provides priority-based, preemptive scheduling
to multi-threaded applications, networking, and file system services. RTEMS is
discussed in depth in Section 3.4.

3. IOMBase Application - serves as a foundation upon which all other RTEMS ap-
plications depend. IOMBase contains the RTEMS OS, its libraries, utilities, and
managers. This component also contains libraries supporting run-time object file
(module) loading and linking. Thus, arbitrary RTEMS applications may be launched
from it: application scope is not limited to the realm of data acquisition software.
Section 3.5 details the IOMBase application.

4. Instrumentation Control - the software interface to the VME bus instrumentation.
This component is manifest in the software artifact, sis1100.obj, an RTEMS-port
of the Linux sis1100/3100 driver and its application programming interfaces. This
driver is the subject of Section 3.6.

50

5. Instrumentation Daemons - servers providing interactive access to each of the VME,
CAMAC, and HV hardware subsystems. This component will not be covered in any
depth here.

6. IOMReader - the end-product resulting from the invocation of Lucid’s code gen-
eration component, VmeBuildReader et al, upon a target file written using the Ex-
periment Description language (EDL). The IOMReader is responsible for executing
user-code in response to Trigger and Event definitions, and hence, governs data ac-
quisition activity on the I/O Manager. This component is covered in Section 3.7.

With the exception of the Instrumentation Daemons, each of the components enumerated
above are detailed in the remaining body of this chapter.

3.3 Network Boot-Loader

There are several options available for loading an executable image onto a target machine,
including loading from a hard-drive, floppy disk, or optical media. Another option, and the
method used to load the IOMBase application, is known as network bootloading, or simply
netbooting. The primary advantage of network bootloading is, of course, that the target
machine can be remotely located. However, this type of loading introduces additional
administrative requirements that must be met.

Netbooting requires that the target machine obtain three critical pieces of information:
1) a unique network address (e.g. 192.168.0.5), 2) the location from where to obtain a
bootable operating system, and 3) a tool to load and boot the executable image. The IOM
relies on the freely available, open-source software known as Etherboot1 to satisfy its
netbooting requirements.

Etherboot itself consists several components, including the proper driver for the net-
work interface card (NIC) of the IOM, DHCP and TFTP client software plus a UDP/IP
network stack, as well as a service to load an operating system into the target’s memory
for execution.

The services of the Etherboot utility are used in this context to load the IOMBase com-
ponent, which in turn initializes the RTEMS operating system, thereby providing an exe-
cution environment for subsequently loaded components.

For the system discussed in this thesis, TFTP and DHCP servers are implemented
on the same Linux workstation hosting the Lucid software. In principle, this is not a

1Etherboot is available at http://rom-o-matic.net or http://etherboot.org.

51

requirement, nor is it required that both the TFTP and DHCP servers operate from the
same host. The configuration used here is merely one of convenience.

For test purposes, the Etherboot program was installed on a floppy disk, with the
I/O Manager’s BIOS configured to search the floppy-drive for bootable material prior
to searching elsewhere. For production use, it is recommended that the Etherboot binary
image be burned into an EEPROM, suitable for installation into the 28, or 32-pin socket
found on most network interface cards, and intended for exactly this netbooting scenario.
Note, the BIOS settings must be again adjusted to account for such a configuration.

3.3.1 Dynamic Host Configuration Protocol (DHCP)

DHCP provides the means to assign configuration parameters to networked clients, includ-
ing IP addresses, domain names, the addresses of other hosts providing further services
(such as a TFTP server), and name-value parameters to be inserted into the client’s oper-
ating system environment.

Dynamic host configuration protocol supports three modes of operation:

1. Automatic - the DHCP server allocates and assigns a permanent address to a client.

2. Dynamic - the server leases an address to a client for a pre-determined period.

3. Manual - a client’s address is determined by a network administrator and the server
simply conveys this to the client.

It is the automatic mode of operation that is utilized within the context of the Lucid DAQ.

To begin the process of obtaining a network identity, a client will broadcast a
DHCP_DISCOVER packet over its subnet. If the hardware address (MAC) of the client is
known to a DHCP server, it responds with a DHCP_OFFER packet. The client will then
reply with a DHCP_REQUEST, signifying its wish to be assigned an identity. Finally, the
server responds with a DHCP_ACK reply, containing the the client’s IP address and other
information pertaining to that client.

3.3.2 Trivial File Transfer Protocol (TFTP)

As suggested by the protocol’s name, TFTP is a simple protocol for file transfer between
clients and servers in a networked setting: only the most basic operations of reading,
writing, and error reporting are supported.

52

TFTP utilizes UDP over IP to effect file transfers of 512-byte (or less) packets. Client
requests to read/write a file will establish intention, if the request can be satisfied, file trans-
fer will commence. Each successfully transmitted packet is followed by acknowledgment
packet. Packets below the standard size are used to denote the final packet. In this fashion,
flow control and reliable transport are established over the connectionless UDP.

3.4 Real-Time Operating System: RTEMS

A 1988 study conducted by the U.S. Army Missile Command examined military software
applications found in embedded and distributed multi-processing systems. One of the
products resulting from this study was the commissioned development of an open-source,
real-time kernel, the Real-Time Executive for Multiprocessor Systems (RTEMS)[16].

RTEMS supports hard, real-time applications and is portable amongst several proces-
sor families and their associated peripheral devices. The operating system also features a
re-entrant version of the standard “C” library, support for several filesystems (IMFS, NFS,
FAT), and a port of the FreeBSD TCP/IP network stack.

The RTEMS execution environment has a flat architecture, both in terms of its address
space and processor privilege-levels. This means that application and kernel code execute
in the same address space and share complete freedom of instruction execution without re-
strictions: there is no “user-space/kernel-space” dichotomy, as is found in general-purpose
operating systems. Thus, RTEMS is a single-process, multi-threaded (SPMT) operating
system: all threads are children of a single process, sharing the same perspective of system
memory.

As noted in Section 1.4.1, RTEMS and pSOS share the common feature of imple-
menting a standards-based API, specified by the Real-Time Executive Interface Definition
(RTEID). This specification describes the services that should be offered to applications
by a real-time kernel. It is through these methods that application programmers create
threads, send messages between them, and assign scheduling algorithms.

The fact that pSOS and RTEMS share an implementation of the RTEID specification
means that system calls available in one operating system are also available in the other,
and often with similar signatures. For example, using pSOS, the directive to create a new
thread has the signature, t_create(name,priority,stack,flags,taskID), whereas under
RTEMS, the equivalent directive signature is:
rtems_task_create(name,priority,stack,modes,attributes,taskID).

Similarities in function (method) signatures were present for all OS directives, and
greatly simplified the porting of pSOS dependencies over to the RTEMS platform. Without

53

this one-to-one mapping of system calls between operating systems, the task of migrating
code from one to the other would have been a much more complex task.

The RTEMS RTEID implementation is known as the Classic, or Native, interface.
The Classic interface takes the form of system calls, or directives, partitioned into logi-
cally related sets under the domain of resource managers. Managers are not instantiable
themselves, merely serving as organizational entities, into which logically related services
are collected (i.e. an interface). Figure 3.3 illustrates the RTEMS Classic API, several
resource managers, and their relationship to the key components of the RTEMS executive.
A second API is also offered, encompassing a subset of the Portable Operating System
Interface (POSIX) specifications. However, that interface was not used in this project and
will not be covered here.

For each instance of a resource under a Manager’s domain, there is an associated object

control block. For example, creation of a new task will prompt the task manager to assign a
new task control block (TCB) for the resource. Those kernel services utilized by multiple
managers, such as scheduling and object control blocks, are provided by a component
known as the Super Core, or S-Core, in the RTEMS nomenclature. The S-Core is a largely
hardware-independent component and constitutes the nucleus of the RTEMS kernel. All
hardware dependencies are isolated to board support packages (BSP). A BSP contains
code targeting a specific processor family, the i386 PC platform for example, and those
peripheral devices associated with that architecture, such as timer, interrupt, and serial-
port controllers.

Upon creation, an object control block is endowed with a user-defined name, thereby
providing a meaningful association for the object in the application domain. More im-
portantly, object control blocks are also assigned an rtems_id tag. This identification
handle permits the Super Core to locate resource control blocks in a deterministic man-
ner: object control block look-ups proceed according to an O(1) algorithm, thus enabling
the RTEMS executive to guarantee predictable, bounded response times when locating
internal resources.

RTEMS features 17 different Managers, supporting interfaces to memory, timer, and
device control, system initialization and shutdown, and inter-thread communication. The
sampling of Managers captured in Figure 3.3 play vital roles within Lucid’s I/O Manager
subsystem and their services are detailed below.

54

Event

Board Support
Package (BSP)

Network
Protocol Stack

In−Memory
File System

(IMFS)
"C" Library

Support

S−Core
<<subsystem>>

BSD
Socket

API

Libc
API

create()
delete()
send()

broadcast()
receive()

create()
delete()
obtain()
release()

(get|set)Attributes()

create()
start()

delete()
suspend()
resume()

(get|set)Priority()
(get|set)Attributes()

send()
receive()

registerDevice()
unregisterDevice()

open()
close()
read()
write()
ioctl()

Semaphore
Manager

Message
Manager

Task

Manager

Device
Manager

RTEMS "Classic" (native) API

RTEMS Executive << system >>

Manager

Figure 3.3: RTEMS executive Super-Core, it’s major components and in-
terfaces, and several managers of the Classic API: an implementation of the
RTEID specifications.

3.4.1 Task Manager

The Task Manager interface provides a comprehensive set of directives for thread adminis-
tration, including creation and destruction, priority adjustment, and suspension/resumption.
Figure 3.4 illustrates the state set and their transitions in the RTEMS thread model. This
illustration is an example of a state diagram, the familiar finite state machine (FSM), using
the UML notation.

Internally, the RTEMS’ scheduler maintains two, priority-sorted lists of threads: those
in the ready state, and those in blocked state. The TCB attached to each thread contains
the context associated with each, including its name, current priority and state, and the
value of processor registers when the state was last preempted.

Tasks are scheduled according to a priority preemptive algorithm: the highest priority
thread in the ready state is allocated the processor. Thus, higher priority threads will
preempt those of lower priority. Processor monopolization by a single thread is quite
likely with this algorithm: it is unfair by design. This assures that the most important
thread (highest priority) may access the processor whenever required, and is clearly a
crucial attribute in a system that must be able to guarantee response times.

55

RTEMS Thread States

Dormant

Ready

Executing

Suspended

Blocked

evCreate

evUnblock

evPreem
pt

evBlock

evSuspend
ev

Res
um

e

evStart

ev
Sus

pe
nd

evDelete

evDelete

evDispatch

Figure 3.4: State diagram depicting the states and transitions of the RTEMS
thread model.

3.4.2 Event Manager

The Event Manager is a high performance, inter-task messaging system, providing a low-
overhead means of thread synchronization.

Consisting of only two operations, send() and receive(), this interface permits one
task to send an event set, which would be received by another. An rtems_event_set

is a 32-bit integer, where each bit is an event flag with a significance of the application
developer’s choosing. Threads may place themselves in the blocked state, waiting for a
sibling to send() an event set, thus “waking” the blocked thread and causing it to be
placed back on the ready-list. Also, threads may wait for any or all events in an event-set
before waking.

3.4.3 Message Manager

The RTEMS event mechanism does not permit the communication of information between
threads beyond that contained by the presence of the event itself and the 32-bit event set.
Also, that mechanism does not support the queueing of events: only the first of multiple
event-sets sent to a thread will be received.

The RTEMS Message Manager solves both of the Event Manager’s shortcomings by
providing for the administration of named message queues. Variable length messages may

56

be enqueued by one task and dequeued by another. The presence of a single message in a
queue is sufficient to awake any thread waiting on the queue, thus also providing a means
of inter-thread synchronization.

Messages may be broadcast to several queues in unison and they may also be flushed
from any queue. Messages are arranged in a queue by order of arrival (FIFO), but mes-
sages may also be marked as “urgent”, enabling a last-in, first-out (LIFO) arrangement
in the target queue. Similarly, threads waiting on the same queue will retrieve messages
according to either a FIFO or priority-based schema. This permits higher-priority tasks to
retrieve messages from a queue before their lower-priority siblings.

3.4.4 Semaphore Manager

A semaphore is a mechanism used to control access to a resource shared amongst multiple
threads. In the RTEMS implementation, a semaphore is a counting variable: assuming it is
initialized to a positive value, a thread obtaining the semaphore will cause it to decrement.
When the thread releases the semaphore, its value is incremented. Any thread attempting
to obtain a null-valued semaphore will block waiting and be added to a per-semaphore
wait-queue, ordered according to FIFO or priority policies.

Within RTEMS, semaphores of two varieties are available:

1. Binary Semaphore - coupled with several distinct behaviors, restricting the semaphore’s
values to zero or one produces a mutual exclusion semaphore, or mutex. By encom-
passing access to a resource in obtain()/release() calls to a mutex, only one
thread is permitted access at a time, thereby ensuring resource integrity.

2. Counting Semaphore - semaphores initialized to values greater than one. These are
commonly used to control access to a pool of resources, for example a group of
printers or data buffers, by initializing the semaphore to the same value as the num-
ber of resources in the pool. A thread wishing to access a resource must first obtain
the semaphore, thereby decrementing it. When the counting semaphore reaches a
null value, threads will block awaiting the resources’ availability.

Mutexes and counting semaphores possess an awareness of the notion of ownership: they
are aware of the identity of the thread that has successfully obtained them, and that thread
is said to own the semaphore. In the case of mutexes, only the owning thread may release
the semaphore. This policy is required to guarantee the concept of mutual exclusion. On
the other hand, counting semaphores may be released by any thread, thereby supporting
the role of those semaphores in synchronization schemes.

57

These two types of semaphore are also behaviorally different in their response to at-
tempts by threads to re-acquire an already owned semaphore. In the RTEMS nomencla-
ture, this scenario is known as semaphore nesting. Mutex-type semaphores permit mul-
tiple acquisitions by their owning thread, with the stipulation that each obtain must be
paired with a corresponding release in order to eventually make the mutex available for
competition from other threads. However, counting semaphore behavior is such that at-
tempts by the owning thread to re-obtain a semaphore result in that thread blocking until
another thread issues a release of that semaphore. Again, this behavior supports the use of
counting semaphores as synchronization tools.

The use of mutexes in a system that schedules threads according to a priority-preemptive
algorithm, as found in the I/O Manager, introduces certain hazards. To combat these haz-
ards, mutex semaphores may be endowed with special behaviors. These dangers and the
accepted workarounds are discussed next.

3.4.4.1 Priority Inversion

The serialization of access to resources via mutex usage creates so-called critical sections
of code. While preventing simultaneous access, this approach invalidates the concept of
absolute preemptibility: i.e. that the highest-priority thread in the ready-state will execute.
However, if the critical section’s duration is sufficiently brief, the disturbance to global
schedulability may be minimal [15].

A priority-based scheduling scheme, coupled with critical sections of code guarded by
a mutual exclusion semaphore (i.e. a mutex), may lead to a priority inversion scenario.
This situation occurs when a high-priority thread attempts to obtain a mutex currently held
by a low-priority thread and must block waiting. This situation may be further complicated
if a mid-priority task preempts the low-priority task holding the mutex. As the low-priority
thread cannot complete the critical section, and thus release the mutex, the high-priority
thread is unable to progress and may become blocked indefinitely. If the number of threads
with priorities intermediate of the high and low-priority threads is sufficiently large, this
scenario may lead to a condition known as unbounded priority inversion, where the high-
priority thread becomes delayed indefinitely.

Acceptable schema for avoiding unbounded priority inversion involves a temporarily
priority elevation for the lowest-priority task holding the resource in contention. This
approach guarantees that the holder of the mutex will be allowed to execute, and hence,
eventually release() the mutex. While several variations exist, most are based on two
algorithms known as priority ceiling and priority inheritance.

The priority ceiling algorithm elevates the priority of the low-priority thread to that

58

of the highest-priority task that may ever contend for the shared resource, whereas the
priority inheritance algorithm will assure that a low-priority task in possession of a lock
will inherit the highest priority of any task that blocks waiting for the shared resource.
Of these algorithms, priority inheritance is the more attractive, as that algorithm is de-
termined entirely at run-time and without developer intervention. On the other hand, the
priority ceiling algorithm requires the developer to manually configure the “ceiling prior-
ity”, which may change as the system evolves.

According to one paper, there are two critical aspects to be aware of when using prior-
ity inheritance within a system: 1) the algorithmic complexity required for implementation
may lead to poor worst-case temporal behavior, and 2) proper system design at the fun-
damental level may alleviate the need to use priority inheritance schema [17]. However,
given that it is generally impossible to foresee all conditions under which code will be
used, it seems prudent to use priority-inheritance where appropriate in order to protect
resources in the general case.

3.4.5 Device Manager

The RTEMS Device Manager2 provides a mechanism for dynamically registering device
drivers with the in-memory filesystem (IMFS). This permits applications to access devices
as thought they were files resident in the system. This “device-is-a-file” API is examined
in more depth in Section 3.6.

Each device must provide a DriverTable structure containing the operations which
will be mapped by RTEMS onto the appropriate filesystem access routines, open()/close(

), read()/write(), and ioctl().

Additional information that must be provided include the device’s major and minor

device numbers. The major number serves as an index into a global array of devices
maintained internally by RTEMS. The device minor number serves as an identifier of
a particular device instance, in the case of multiple like-devices sharing common driver
code.

3.5 IOMBase

So named because it forms the foundation from which arbitrary applications may be
launched, the IOMBase component is responsible for initializing several key services re-

2This manager is properly known as the I/O Manager in the RTEMS literature, but the name has been
changed here to avoid confusion with the Lucid software component of the same name.

59

quired by other components. As indicated in the deployment view (Figure 3.2), IOMBase
itself is comprised of several artifacts, two of which are software packages developed at
the Stanford Synchrotron Radiation Laboratory (SSRL)3: GeSys and Cexp. Each of these
components are discussed in turn below.

3.5.1 The Generic System (GeSys) Artifact

The Generic System artifact, or GeSys, is responsible for initializing the RTEMS run-
time environment and core services, including the network protocol stack, the TFTP-
client driver and in-memory file system (IMFS), the I/O Manager’s clock via the network
time protocol (NTP), and network-based logging via the syslog facility. Most importantly,
GeSys is also responsible for creating an environment conducive to loading and linking
object files into an executing RTEMS system.

Executable images differ from object files in that the former have had any references
to externally defined code resolved by the linker component of the compilation process,
while the latter has not yet had those references resolved. Loading additional, complete
executable images into an already executing system is not an option because of the high
likelihood of introducing duplicate code and symbols, which may result in undefined be-
havior. Thus, run-time loading of code requires object files be loaded onto the executing
system, subject to the caveat that code referenced by an object file must exist a priori on
the running system.

To satisfy this dynamic loading requirement, the GeSys build system uses special tech-
niques and tools to enforce linking code into its executable image even though the code
may not be referenced anywhere within the image. In this way, the developer can force
libraries of code into the GeSys executable that may be referenced by object files yet to

be loaded into the executing system. For example, even if the printf() function is not
used by any code within the GeSys image, forcing that code to be included in the image
allows for object files that do utilize printf() to have that link resolved when the object
is loaded. It is the developer’s responsibility to decide what libraries to include, thereby
tailoring the GeSys image according to memory-footprint or flexibility constraints.

3.5.2 The Cexp Artifact (Dynamic Linker)

Implicit in the preceding discussion is the existence of the tooling required to facilitate
both the loading of object files into the memory space of an executing RTEMS image,

3The GeSys and Cexp components are available from http://www.slac.stanford.edu/~strauman/rtems/software.html

60

as well as the linking of unresolved references required by those object files. In conjunc-
tion with the RTEMS TFTP driver, the other SSRL-developed tool used within the I/O
Manager, known as Cexp, provides the required loading and dynamic linking capabilities.

The C-expression interpreter, or Cexp, is a feature-rich library of utilities, offering
much more functionality than suggested by its name:

1. Symbol Table Management - although an application’s symbol table must be pro-
duced and made accessible to Cexp, doing so permits access to all symbols (vari-
ables and functions) in an executing program. Methods are provided by both Cexp
and GeSys for producing the system symbol table.

2. C-Expression Interpretation - more widely known as a shell, this utility permits the
interpretation and invocation of arbitrary C-language expressions. Similarly to the
bash and csh shells, popular on Linux systems, a shell may be used interactively,
via the console or a via a remote pseudo-terminal program (e.g. telnet), or the shell
may be used to autonomously parse a script and interpret its contents.

3. Object File Linking - arguably the most important feature utilized within the I/O
Manager, Cexp resolves undefined object file symbols using the system symbol ta-
ble. The newly loaded module’s symbols are then added to those maintained in the
system’s table, thus permitting Cexp to track inter-module dependencies.

The Cexp libraries are linked into the GeSys application, thus making the services enu-
merated above available within the IOMBase application. Once GeSys has completed
initialization of the RTEMS network services, it fetches the names of the system sym-
bol table (IOMBase.sym), system start-up (st.sys) and user scripts (lucid_objs.sys), from
the execution environment. At this point, Cexp is launched with IOMBase.sym and st.sys

passed in as arguments to the call, cexp_main(). Cexp then fetches the system symbol
table and start-up script via the TFTP driver. The start-up script, st.sys, defines abbrevi-
ations for several frequently used commands and instructs Cexp to load and execute the
telnet daemon module file. This permits remote, command-line access to the I/O Manager.

The user script, lucid_objs.sys, is then loaded and parsed. This script instructs Cexp
to load and initialize the object file modules containing the components, Instrumentation

Control and Instrumentation Daemons (see Figure 3.2). It is at this point that the Ap-

pLoader artifact is also retrieved and started.
AppLoader is the tool used to retrieve the name of a Server-Side DAQ application

from the Linux machine hosting a Lucid experiment session (see Figure 3.2). This net-
work application simply listens for packets containing a string matching the pattern, file-

name.pc386. When this information is received, and assuming a module of the same name

61

has not already been loaded, AppLoader directs Cexp to fetch and load the module into
the system. If a module of the same name already exists in the I/O Manager’s symbol
table, it is first unloaded prior to loading the new module of the same name.

3.6 Instrumentation Interface

The sis1100/3100 VME-PCI bridge device is a critical enabling component within the
context of the Lucid data acquisition system. It is a vital link on the data path between
instrumentation hardware and experimenter, directly responsible for moving data to and
from VME and CAMAC modules at the behest of an operator.

The original driver supplied with the device was available in forms suitable for use
with the 2.4 and 2.6 versions of the Linux kernel. Porting the Linux driver for use under
RTEMS required first identifying the Linux-dependencies in the source code, then re-
designing or re-implementing those portions, keeping in mind the requirements of, and
services offered by the RTEMS environment. Details particular to writing device drivers
for use with the Linux kernel are well documented elsewhere, and will not be discussed
here (for instance, see [12]).

The driver-kernel relationship is one of many facets and inter-dependencies. Figure
3.5 is a concurrency and resource view of the Sis1100Device object, the component
housing the functionality of the RTEMS-port of the sis1100/3100 device driver. This type
of diagram illustrates the < <active> > objects (threads or other execution contexts) and
the resources with which they interact.

While the driver provides low-level device control and logic, the kernel provides many
essential tools and services upon which drivers depend:

1. System Integration - In order for a driver to be able to fulfill its role of device con-
trol, it must be integrated, or installed into the operating system environment. This
procedure varies by operating system, but typically requires the driver to undergo
some form of registration with the kernel.

2. Bus Access - The sis1100/3100 is a PCI device, and therefore requires RTEMS to
provide methods to access the various address regions of the PCI bus architecture:
I/O, memory-mapped, and configuration spaces.

3. Interrupt Infrastructure - To avoid incurring delays while the CPU waits for events
from a peripheral, many devices utilize asynchronous signals known as interrupts to

62

Sis1100Device : Instrumentation Control

hwLock : Mutex

Device
Manager
Interface

Interrupt
Management

Interface

PCI Configuration
& Memory Region

Interface

0..256

IsrDescriptor

IsrTable

Plx9054 Sis3100
 Sis1100

vme_read()

DriverTable

11

1

FileSystem APIMmap API

LibVme API

IsrContext IsrTask

name : string
major : int
minor : int

vme_open()

vme_write()
vme_ioctl()

vme_close()

Figure 3.5: Structural diagram of the Instrumentation Control software
component, realized by the Sis1100Device class. Note, the < <active> >
objects (i.e. thread or interrupt context) are denoted by the double-barred
boxes.

gain the processor’s attention. An OS kernel is responsible for routing interrupt sig-
nals to the appropriate context, or handler, in addition to providing an infrastructure
where drivers may register a software context in which to service an interrupt, .

4. Scheduling - Device drivers may require one or more distinct execution contexts,
plus they often require the ability to schedule activities periodically, or otherwise
access the timing facilities provided by the kernel.

5. IPC - The ability to send and receive signals is fundamental to synchronization and
communication, and the Sis1100Device requires support for both synchronization
and mutual exclusion.

6. API - Unix-like operating systems, such as RTEMS, feature an application program
interface, wherein devices are abstracted as files: they may be opened, closed, read
from, and written to. While device drivers must expose their services according
to this paradigm, the OS kernel must route applications’ filesystem accesses to the
appropriate driver routine. However, devices with a complex set of features, such

63

as the Sis1100Device, may be better served by providing an alternate, more flexible
API.

Each of the items enumerated above are present in some form in Figure 3.5, and are further
detailed in the following discussion.

3.6.1 System Integration

Within RTEMS, driver registration is a two-step procedure, resulting in the integration of
the driver into both the executive and the in-memory filesystem (IMFS). By so doing, the
kernel is able to simultaneously map the driver’s routines contained in its DriverTable
onto standard C-library directives and make those services available to applications via
the filesystem node representing the driver.

An initial call using the directive, rtems_io_register_driver(), prompts instal-
lation of the driver’s DeviceTable into an array of like-structures maintained by the
RTEMS Device Manager, and known as the IODriverAddressTable. As a side-effect
of issuing this directive, a device major number is allocated for the driver based on the
next available entry in that table. The device major number serves as an index into the
IODriverAddressTable, used by the Device Manager to locate the appropriate driver
routines when applications access the driver’s filesystem node.

Having installed the driver’s DriverTable, the Device Manager will then invoke the
driver’s initialization routine from the table, if one exists. Typically, this initialization
method would allocate and configure any resources required by the driver, such as threads,
semaphores, and an interrupt service routine.

The final step to complete the driver registration process makes it accessible to appli-
cation code by creating a file, or node, in the IMFS representing the device driver itself.
Filesystem device nodes are created by invoking the directive, rtems_io_register_name(),
with arguments specifying the filesystem path, major, and minor device numbers. By
convention, device files are created in the /dev directory. In this particular case, the
Sis1100Device is accessible from the node, /dev/sis1100_x, where “x” is minor device

number, representing one of possibly multiple such devices.

3.6.2 Bus Access

Assuming that the hardware platform is equipped with a PCI bus, an operating system
kernel must provide facilities to access PCI configuration space. It is actually a require-

ment that the system’s firmware, or BIOS, provide the software necessary to access PCI

64

configuration space. Required functionality is stipulated in the PCI BIOS Specification

document, as are recommended techniques for providing those services [18].

In particular, methods must be created to permit reading and writing 8, 16, and 32-bit
data, from and to PCI devices’ configuration memory regions. This permits the OS kernel
to probe PCI configuration space, thereby discovering what devices are present, where in
I/O or memory-space their control and status registers are located, and how those devices’
are mapped to the system’s programmable interrupt controller (PIC). RTEMS provides
platform-independent access to PCI configuration space with the methods,
pci_find_device() and pci_read/write_config_byte/word/dword().

Recall from the discussion on PCI addressing (Section 2.4.2), devices on that bus
are accessed by exposing, or mapping, their status and control registers into either an
I/O or memory-mapped region of CPU-addressable space. In the Sis1100Device driver,
the sis1100, sis3100, and plx9054 devices all map their registers into separate, memory-
mapped regions.

The three, bottom-most objects of Figure 3.5, are software abstractions representing
the register-sets of the three, discrete devices comprising the VME-PCI bridge. Each of
the sis1100, sis3100, and plx9054 classes are structures reflecting the composition of
the device registers they represent. That is, each structure field overlays a corresponding
hardware register. Thus, manipulating the bits of a particular structure field will directly
manipulate the appropriate bits of the hardware register it overlays, thereby modifying or
providing information regarding the device’s behavior.

It must be noted that while RTEMS does provide platform-independent methods to ac-
cess hardware I/O-space, it offers no such methods for memory-mapped accesses. Perhaps
it is an implicit assumption that developers would simply define their own methods using
pointer-based techniques. However, a standardized, platform-independent means to affect
bus-access would eliminate the myriad implementations found in the RTEMS source by
providing a consolidated interface for driver and application usage. For example, such an
interface as is found in the bus_space and bus_dma interface of the NetBSD operating
system [19].

3.6.3 Interrupt Infrastructure

For any real-time application, the operating system facilities for providing timely response
to external stimuli assume a critical role. There are two means by which software may be
alerted to events, or state changes, originating in peripheral devices:

1. Polling - in this case, software can repeatedly inquire, or poll, the device for state

65

information. While simple in principle and implementation, polling is a wasteful
activity in terms of processor resource consumption: inquisition time may be better
spent elsewhere.

2. Interrupts - this method arranges for a capable device to issue a physical signal
indicating the presence of a change of state. This type of asynchronous messaging
is known as an interrupt, as devices must route these signals through a hardware
infrastructure whose purpose is to “interrupt” the CPU from its current processing
task.

Once interrupted, the CPU switches from its current context (thread) to a special-purpose
interrupt-context, where it will silence the hardware signal and, in general, execute an
interrupt service routine (ISR) specified beforehand by the application developer.

While interrupts are more efficient in the sense that no processing cycles are consumed
waiting for a device’s change of state, their use may complicate software design. For
example, interrupt service routines are quite restricted in the permissible set of operations
they may execute. In particular, an ISR may not issue any directive (system call) that
might cause the interrupt-context to become blocked while waiting for the availability of a
system resource: if the interrupt-context were to block, the processor would not be able to
return to the “regular” execution context, hence preventing the entire system from making
any progress.

In order to return from interrupt-context to regular-context as quickly as possible, an
ISR is typically designed to perform, as quickly as possible, only those tasks deemed es-
sential to service the interrupt. Any additional processing required to service the interrupt
is often deferred to a special thread, dedicated solely to interrupt support. For the purposes
of this thesis, this type of thread will be referred to as an interrupt service thread, or IST.

While compromising the amount of useful work that may be performed in an interrupt-
context, minimizing ISR duration yields at least two positive aspects:

1. minimizing the duration of an ISR minimizes a system’s response-time to other
possibly higher-priority interrupt signals, and

2. that period during which certain system services are forbidden has also been mini-
mized.

The isr and isrTask objects, shown in Figure 3.5, are key items in the driver-kernel
relationship. In particular, it is the isrContext object that most immediately executes
the Sis1100Driver’s response to hardware interrupts originating from VME modules,

66

changes in fiber-optic link status, and DMA completion events. To enable interrupt re-
sponse at all, the Sis1100Driver first requires an interface to the RTEMS interrupt man-
agement infrastructure.

The state of RTEMS’ interrupt infrastructure is somewhat confused, being divided
along lines according to whether a given board support package (BSP) subscribes to the
“old” or “new” exception processing models. However, both models implement an Ob-
server design pattern (see Appendix C.1): clients subscribe to be notified when a particular
interrupt is received, registering a method to be called when that event occurs.

The “old” model of exception processing utilizes an Interrupt Manager, similar to the
other service interfaces of the Classic API: applications use the directive,
rtems_interrupt_catch(), to attach an interrupt service routine to a hardware inter-
rupt vector.

Although the reasoning behind the paradigm shift is unclear, the PowerPC and i386
ports of RTEMS use the “new” exception processing API. While this API offers addi-
tional flexibility, in the sense that applications may associate functions with the actions
of ISR installation and removal, arguably the most useful feature of the “new” interrupt
API is the ability to pass an arbitrary argument to the interrupt service routine, as evident
by the ISR’s signature, rtems_isr handler(void* arg). Within the Sis1100Device,
the function argument is used to pass a pointer to the driver-object itself. In the case of
multiple sis1100 devices, this affords the driver’s ISR the ability to access the appropriate
interrupting device without having to search all such devices.

Prior to entering the interrupt service routine registered for a device, RTEMS performs
a context switch to an interrupt context. Interrupt context differs from that of a thread in
that an interrupt context is forcibly entered based on hardware signals, not according to
the invocations of the operating system scheduler, as is the case for thread context. Since
a thread may be interrupted at any time, it is the responsibility of the operating system
to persist thread state across an interrupt occurrence. Also, note that since an interrupt
context is not “returned to”, or resumed, in the same sense as thread-based contexts are,
an interrupt context cannot persist state between invocations.

Immediately upon entering the interrupt context, RTEMS executes an interrupt pro-

logue. The prologue is responsible for persisting the interrupted thread’s CPU register-
state while the interrupt servicing is in progress, as well as silencing the interrupt at the
level of the programmable interrupt controller, or PIC, situated in the SouthBridge chipset
of the PC (see Figure 2.7). Following execution of the registered ISR, the RTEMS in-
terrupt infrastructure will execute an interrupt epilogue. The epilogue is responsible for
re-enabling the interrupt at the PIC and, if necessary, invoking the RTEMS scheduler. This

67

last step is critical, as an ISR will typically issue directives to unblock a waiting thread,
which must then be scheduled for execution based on its priority.

Finally, it must be noted that the strategy of interrupt prologue, service routine, epi-

logue is not unique to RTEMS: NetBSD, FreeBSD, and Linux systems all employ a similar
design pattern.

3.6.4 Execution Context

Within RTEMS, and with the exception of device driver interrupt service routines, driver
services execute in the context of their invoking thread. Thus, if a host thread makes a
call to a device driver causing it to issue a blocking directive, so too does the host thread
become blocked. This scenario is similar to that found on Linux or BSD-based operating
systems utilizing processor “privilege-levels”, manifest as the user-space/kernel-space di-
chotomy: single-threaded user applications invoking driver services cause a context switch
to kernel-space, where the driver code is actually executed, thus blocking the application
until the device-bound operation completes.

In some instances it becomes necessary to decouple driver context from that of the
caller. For example, additional interrupt processing may require a separate context from
which to launch operations. This is indeed the case with the Sis1100Device, in which
the isrTask thread serves as an extension to the isrContext: the thread represents a
context from which to launch interrupt-related operations that potentially may block. The
isrTask permanently waits for events issued by the isrContext. In its present config-
uration the isrTask deals with only two types of events: VME module-based interrupt
requests, and changes in the state of the PC-to-VME fiber-optic link.

In the case of VME module interrupts, additional processing is required beyond what
may be done from an isrContext: the VME interrupt acknowledgment (IACK) cycle,
and the client thread’s interrupt service routine must be executed from a thread context,
as these activities could potentially involve blocking-directives, or require significant pro-
cessing time. In addition, the IACK sequence requires the isrTask to access several
hardware registers on the sis1100 PCI module. To prevent the isrTask from interfering
with operations initiated by another thread, it must first obtain the mutex, hwLock (see
Figure 3.5). Since the mutex may be held by another thread, the process of obtaining it
may lead to the isrTask blocking.

68

3.6.5 Inter-process Communication

Internally, the Sis1100Device requires inter-process communication mechanisms in the
form of mutual exclusion and signal delivery and reception mechanisms.

The isrContext object relies on the mechanism provided by the RTEMS Event Man-
ager to send synchronizing signals to receptive objects. In particular, the activities of the
isrTask are driven by events sent from the isrContext of the Sis1100Device.

Client threads utilizing VME block transfer operations are also implicitly dependent
upon the delivery of events issued by the isrContext. In this case, the events denote
block transfer completion: the Sis1100Device has finished transmitting or receiving a
block of data via its DMA engines.

Many devices require a means of preventing state corruption incurred when multiple
threads attempt to modify data structures that must remain cohesive over the duration of
an operation. For example, when transferring data, the Sis1100Device must maintain
several hardware registers in a state particular to the transfer type, and it must maintain
that configuration over the duration of the transfer. In other words, the operation must
execute atomically: i.e. without disturbance or division.

To prevent simultaneous access to sensitive data structures, the Sis1100Device em-
ploys a mutual exclusion semaphore, or mutex. This is the hwLock object of Figure 3.5.
This mutex guards the entrance to atomic, or so-called critical regions of code within the
driver: before a thread may enter the critical region, it must first obtain the mutex, or block
waiting until it becomes available. Upon exiting the critical region, the mutex is released.
In this fashion, mutually exclusive access to atomic sections of code is strictly enforced,
thereby preventing corruption of critical data structures.

It should be noted that client code utilizing the the VME block transfer capabilities
will block waiting for completion while holding the hwLock mutex. This is generally con-
sidered a poor practice, as other threads may be indefinitely prevented from gaining access
to resources protected by the mutex. However, the nature of the sis1100/3100 device is
such that this design is unavoidable: if the thread performing DMA were to release the
mutex prior to waiting for the operation to complete, the possibility is introduced whereby
another thread may corrupt structures critical to the DMA operation in progress. It is im-
portant to also note that asynchronous, DMA-based I/O is impossible with this device, and
for the same reason: the nature of the device is such that, once a DMA-based operation is
commenced, the initiating thread must retain sole ownership of the device for the duration
of the operation.

However, to combat the possibility of indefinite postponement while the hwLock mutex

69

is held, the lock-holding thread waiting for the DMA operation to complete will only wait
up to a user-configurable maximum period before terminating the activity and releasing
the mutex for competition from other threads.

3.6.6 Application Programming Interfaces

The application-programming interface provided with the Linux/NetBSD version of the
sis1100 device driver was based on a three-layered design. This API was leveraged for
inclusion in the RTEMS version of the driver.

The lowest layer consists of a set of private routines used by the driver itself to fulfill
services such as reading, writing, interrupt management, and registration with the host
operating system. Use of these routines is transparent to applications, as they are invoked
only by the second layer of the API. This second layer is formed by those routines which
map the driver’s mechanisms into the traditional file-system API of Unix-like operating
systems. The highest API layer is formed by encompassing the file-system API in adapter
routines featuring more “user-friendly” function signatures. Each interface is detailed in
the following discussion.

3.6.6.1 File System API

This API encompasses the traditional Unix model of abstracting character-devices as a
sequence of bytes: i.e. a file. Applications first obtain a file-descriptor via the open()

system directive, which is required for all subsequent device transactions:

int fd = open(“/dev/devicename”, flags);

Using the file descriptor, an application may then set the device to begin reading/writing
from a position in the sequential byte-stream. Practically, this amounts to instructing the
driver to direct the transfer at an initial offset, or address, in VME space. For example:

off_t offset = lseek(fd, 0xFFFF0000, SEEK_SET);

By default, the sis1100 driver is configured to direct VME access to the A32/D32 address-
space, so the lseek() call, above, will enable such access beginning at the VME ad-
dress, 0xFFFF0000. Access to other address-spaces may be arranged by an appropriate
ioctl() directive prior to issuing the lseek().

Finally, the transaction itself may accomplished by providing a pointer to an ap-
propriate buffer, the number of bytes to be moved in the transfer, and finally issuing a
read()/write() call:

70

int n = read(fd, &aBuffer, numBytes);

The driver will then carry out the appropriate transfer, using the fastest method at its
disposal based on the number of bytes to be transfered: i.e. using either single-cycle, or
DMA-type accesses. This decision is based on fact that some overhead is necessary to
configure the device for DMA-transfers and hence, it may be more economical, in terms
of the duration required, for transfers of small quantities to use single-cycle VME access.
This idea is covered at length in Chapter 7 (performance measurement analyses).

3.6.6.2 LibVME API

The file system API, discussed above, becomes somewhat awkward to use in the context of
frequent and variable VME accesses: at least three separate methods must be invoked. In
an effort to combat this difficulty, another distinct library of routines was provided with the
Linux-version of the sis1100/3100 driver, and is manifest in the RTEMS-port of the driver
in the software artifact, libsis1100_api.a. Alternatively, this application programming
interface is also known as the LibVME API.

The routines of this API largely consists of adapters, or “wrappers”, around the vari-
ous ioctl() calls required to configure the driver for different access methods to VME
spaces. For example, after obtaining access rights to an instance of the driver via an
open() directive, the LibVME routine to execute a single-cycle write to A32/D16 space
is:

int error = vme_A32D16_write(fd, vmeAddress, data);

and, a block transfer from an A24/D32 device is:

error = vme_A24_BLT32_read(fd,vmeAddr,&buffer,nWords,&nWordsReturned);

where the former function takes, in addition the file descriptor returned from open()

and the VME base-address, a pointer to a buffer where returned data may be stored, the
number of words desired in the read, and returns the number of words actually read.

3.6.6.3 Memory-mapped API

As shown in the structured class diagram, Figure 3.5, the Sis1100Device features a third
interface by which applications may perform read/write accesses to the VME bus; the
memory-mapped, or Mmap API.

71

The device features a table of 64 individually-configurable memory regions, or “win-
dows”. Each of these 4 megabyte-wide windows map a region of VME address-space
into an equally sized region of the host PC’s address space. Thus, each region provides a
“window” into VME address-space, which is accessed by software using simple pointer
dereferencing operations.

In order to use this mechanism, application code must first obtain access to an instance
of the Sis1100Device using the open() system-call. Next, a routine provided in the
LibVME API is required to configure a window for use. This routine has the prototype:

int vme_set_mmap_entry(int fd, uint32_t vmeBaseAddr, uint32_t am,

uint32_t hdr, uint32_t size, uint32_t *pcBaseAddr);

where, vmeBaseAddr is the desired base-address in VME space and pcBaseAddr is a
pointer to be returned by the function, used by the application for VME address-space
accesses. Additional required parameters include the VME address modifier assigned
to the region, and the desired length of the region (up to 256 MB). The hdr parameter,
or header, is required by the sis1100 in order to fully qualify the type of transactions
permitted through the memory-mapped region. This parameter is essentially a bit-field,
whose structure may be found in the sis1100/3100 documentation.

3.6.7 Interrupt Interface

A two-tiered approach to interrupt service was implemented for the RTEMS-port of the
sis1100 device. This choice was motivated by both the virtues of such a design and also
by the requirements dictated by nature of the device itself.

In Chapter 2.6, and also in Section 3.6.3 above, attention was drawn to the design of the
sis1100 VME-PCI interface being such that the VME interrupt acknowledgment sequence
had to be relegated to the domain of software. Furthermore, the IACK sequence cannot

be performed from an interrupt-context (ISR), as the device may be in a state such that the
transactions required to perform the IACK could disrupt a transaction in progress, or even
cause the device to enter a forbidden state, or wedge. In light of these restrictions, one of
the primary functions of the Sis1100Device’s IST is to execute the VME IACK sequence
on behalf of the device driver, thereby discovering the vector identity of interrupting VME
modules.

Illustrated in Figure 3.6, the interrupt-handling facilities of the Sis1100Device are
designed according to an Observer pattern (see Appendix C): client applications regis-
ter their interest in a particular interrupt vector by registering an IsrDescriptor object

72

with the driver. The vector itself serves as an index into an array of IsrDescriptor ob-
jects, represented in Figure 3.6 by the isrTable. A key feature of these descriptors is
their execIsr() method, invoked by the IST after the appropriate interrupt has been ac-
knowledged. This is an example of the push paradigm, discussed in the previous chapter:
the interrupt service thread pushes data to descriptor object, which executes some actions
on the clients behalf.

evIrqRcvd

IsrContextIsrDescriptor IsrTaskSis1100Device

seq VME IRQ Observer

evVmeIrq

Sis1100Device

install(IsrDescriptor)
unInstall(IsrDescriptor)

publish(VmeIrqLevel:uchar)

LibVme
API

IsrDescriptor

userArg : void*
vector : char

execIsr : void(*)(vector,userArg)

Client

Client

configure()

install(IsrDescriptor)

setVmeIrq(level)

publish(level)
send(evVmeIrq)

unInstall(IsrDescriptor)

clearVmeIrq(level)

setVmeIrq(level)

clearVmeIrq(level)

execIsr()

Figure 3.6: Client-Sis1100Device interaction during instrumentation in-
terrupts. Note, the sequence shown here assumes the interrupting module is
of the ROAK variety.

Typically, the execIsr() method would simply clear the interrupting condition on
the instrumentation module, and perhaps deliver an event to a master thread for further
action. However, the execIsr() method is subject to two caveats as a result of its
location in a time-sensitive region of code. First, the method should not issue any directive
that may block, although it is certainly free to do so. Blocking at this point in the driver’s
execution sequence would delay its response to any other pending interrupts. Second, if
the interrupting VME module is of the RORA-type, the method must access the module to
silence the interrupt. If this action is not taken, the interrupt response sequence will enter
into an infinite loop, as the interrupt signal will never terminate.

73

3.7 The IOMReader Component

As portrayed in the deployment view of Figure 3.2 and discussed in Section 3.2, the
IOMReader component is the result of linking a user’s compiled Experiment Descrip-
tion file with the data collection template contained in the artifact, libIOMReader.a. The
structure and behavior of the latter artifact is the topic of this section.

Together, the IOMReader and Client-side daemons realize a variation of the Proxy
design pattern (see Appendix C), publishing event types according to an experimenter’s
specification, pushing data from the I/O Manager to Workstation, where the pull-model

of data dissemination is used by clients to obtain event data from Lucid’s Reader daemon
(see Appendix C.2).

Figure 3.7 illustrates the collaborative objects participating in this design pattern. This
figure is a snapshot of activities during an active data acquisition session, as initiated by
an experimenter from the gxlucid interface: i.e. the “Online-mode” of Lucid. Recall from
Section 1.3, when in Online-mode, data is acquired by and forwarded from the I/O Man-
ager. The Reader daemon, executing on a Linux workstation, then places DataRecords
in a shared-memory buffer, and signals interested Consumers that new data is available. In
Offline-mode, the Reader sources data from a file previously obtained during an online-
session.

ClientsProxy

Buffer
: SharedMemory

Client−side
Proxy

put(DataRecord)

get(DataRecord)

evDataAvailable

ref Acquisition Running Scenario

Server

send(DataRecord)

sd DAQ Proxy Scenario

Reader Consumer
Acquisition DataWriterDataBuffer

Server−side

Figure 3.7: Collaborative objects participating in the Proxy design pattern
implemented within Lucid.

The activities of the server-side objects are not explicitly shown in Figure 3.7. In their
stead is a reference to a distinct sequence diagram, the Acquisition Running Scenario,
denoted by the ref, or reference operator of that interaction sequence. The notational abil-
ity to decompose sequences into arbitrarily-nested fragments is a feature introduced with
the UML 2.0 specification to address issues of scalability within sequence diagrams [15].
The sd operator identifies the primary interaction fragment (i.e. DAQ Proxy Scenario),

74

whereas the ref operator names a referenced sequence diagram shown elsewhere. In this
case, the Acquisition Running Scenario is shown in Figure 3.10, and discussed in Section
3.7.2.

The implementation of a Proxy pattern here affords transparent data and event distri-
bution to Consumers, regardless of whether Lucid is used in Online or Offline mode. Thus
clients, such as the Looker, are oblivious to differences in the operating mode of Lucid.
The absence of dependency on the source of data and events permits Lucid’s users to em-
ploy a consistent interface and infrasturcure for data acquisition, as well as data analysis
activities.

Note, the IOMReader does not adhere strictly to the description of the Proxy pattern,
as detailed in Appendix C.2: a dynamic subscription mechanism is unavailable. The fact
that events may be conditionally triggered by other events complicates the addition of this
feature. In any case, clients wishing to unsubscribe from an event must simply remove
the corresponding trigger definition from the Experiment Description file, re-compile, and
reload the new IOMReader application.

3.7.1 Application Structure

Structurally, an IOMReader is a template composed of the elements shown in Figure 3.8.
This resource and concurrency view illustrates the server-side objects comprising the data
acquisition framework and Proxy pattern collaborators.

In the Online-mode, all interactions between the IOM and workstation occur over four
TCP/IP port connections governed by five threads, which are denoted by their bold outline
in Figure 3.8. These threads are described below, in order of decreasing thread-priority:

1. Logger - blocks waiting for LogMsg object arrivals to the LogQ message queue.
These messages may contain error or status conditions, and are retrieved from the
queue and forwarded to the machine designated as the I/O Manager’s log-server.
These messages are routed to gxlucid, where they are displayed for the experimenter
as well as persisted to file to aid future diagnostics.

2. Command Reader - listens on the Command Port for incoming instructions from the
experimenter’s gxlucid Online session. This thread places Command objects in the
CommandQ message queue, and notifies the Acquisition thread of the new instruc-
tions by sending it an evCmd event. The retrieved commands include orders to start,
stop, pause, or resume data acquisition activities, but may also include user-defined
directives. Thus, Command objects determine the operating state of the IOMReader
application.

75

C
om

m
an

d
R

ep
ly

P
or

t

D
at

a
P

or
t

C
om

m
an

dQ
: M

sg
Q

ue
ue

C
om

m
an

d
P

or
t

Lo
gM

es
sa

ge
P

or
t

Lo
gQ

: M
sg

Q
ue

ue

B
uf

fe
rL

oc
k

: S
em

ap
ho

re

T
im

er
Li

st
: L

in
ke

dL
is

t

D
at

aW
rit

er
{

pr
io

rit
y=

4
}

ev
P

ol
l

ev
IR

Q

Lo
gg

er

A
cq

ui
si

tio
n

C
om

m
an

d

evPeriodic

evCmd

1

1

1

1

1

2.
.*

1.
.*

*

*

*
1

1

1

IO
M

R
ea

de
r

P
ol

le
r

D
at

aR
ec

or
d

S
is

11
00

D
ev

ic
e

P
er

io
di

cE
ve

nt

Lo
gM

sg

D
at

aB
uf

fe
r

E
ve

nt
R

ec
or

d

{
pr

io
rit

y=
3

}

{
pr

io
rit

y=
5

}

{
pr

io
rit

y=
1

}

C
om

m
an

d
R

ea
de

r
{

pr
io

rit
y=

2
}

Fi
gu

re
3.

8:
A

co
nc

ur
re

nc
y

an
d

re
so

ur
ce

vi
ew

of
th

e
IO

MR
ea

de
r

co
m

po
-

ne
nt

.
Pr

io
ri

tie
s

ar
e

in
di

ca
te

d
w

ith
in

ea
ch

th
re

ad
:

nu
m

er
ic

al
ly

lo
w

er
va

lu
es

in
di

ca
te

gr
ea

te
rp

ri
or

ity
.

76

3. Acquisition - the engine driving data acquisition activity on the I/O Manager. This
thread maintains an instance of the Sis1100Device for communicating with in-
strumentation modules, and provides the execution context required to service the
operations specified in an Experiment Description File. Given its critical role, a
detailed view of the Acquistion thread is presented below, in Section 3.7.2.

4. DataWriter - transmits a stream of DataRecord objects collected by the Acquisition
thread, over the Data Port to a receptive Reader daemon on the workstation node.
When engaged in acquiring data, the interactions between the DataWriter and
Acquisition threads are the focus of activity on the IOM, and so are treated to-
gether, in depth, in Section 3.7.2.

5. Poller - the lowest priority thread in the IOMReader application. As frequently
as it is able, the Poller sends evPoll events to the Acquisition thread. Thus,
Acquisition is prompted to service those events in a continuous, polling manner.
If an IOMReader application contains no polling-events, this thread destroys itself
immediately after it has started.

Subscription to events published by the IOMReader is via the trigger-definition specified
in an Experiment Description file. For example, the EDL statement, trigger aEvent

every 0.1 seconds, registers a client’s subscription with the Acquisition thread to
execute the callback, aEvent, every tenth of a second. This mechanism permits clients
to register callbacks upon the occurrence of any of the event-types published by the
Acquisition thread.

3.7.2 The Acquisition and DataWriter Threads

Figure 3.9 illustrates the behavior of the finite state machine realized by the Acquisition
thread. Although not indicated in that figure, it is important to note that these states operate
concurrently with the state-set imposed by the RTEMS thread-model (refer to Figure 3.4).
Thus, the states presented in Figure 3.9 are actually composite states: Acquisition may
be in the states of Running-Blocked, Suspended-Blocked, Stopped-Executing, etc.

As implied by its placement at the center of the resource and concurrency view (Figure
3.8), the Acquisition thread is a key element of the IOMReader component. It is the
receptacle of Triggers and the execution context for Events specified by an Experiment
Description file. Acquisition is an event-driven FSM, responding to the following data
acquisition-related event-types (see Figures 3.8 and 3.9):

77

evTerminate

Commands

Waiting

Processing
Commands

Waiting

Waiting

Processing
Commands

Processing
Periodic Events

Processing
IRQ Events

Processing
Polling Events

evCmd evCmd

Running

Stopped Suspended

evIRQ

evEndRun

evEndRun evSuspendRun

evPoll evPeriodic

evCmd

evResumeRunevBeginRun

Initializing

Acquisition Active

Processing

Figure 3.9: Diagram of the Acquisition thread’s FSM structure and be-
havior.

1. evIRQ - triggered asynchronously from VME or CAMAC hardware interrupts, these
events are delivered by interrupt service routines registered with the Sis1100Device.

2. evPeriodic - periodically generated timeouts, where client callbacks requiring peri-
odic servicing are handled. These events may be triggered up to a maximum fre-
quency of 100 Hz.

3. evCmd - command events originating when a user manipulates various interface
widgets in the gxlucid UI, or triggered by other software events. These are the only
event-types for which Acquisition will issue a success/failure response over the
Command Reply port.

4. evPoll - polling events dispatched from the Poller thread. Because that thread runs
at the lowest priority of the thread-set comprising an IOMReader application, polling
events will be sent and handled only as quickly as permitted by the Acquisition

thread’s other obligations.

Additionally, there are four special evCmd event-types with which users may associate

78

actions to be committed. These are activated when different buttons of the gxlucid UI
are depressed (see figure 1.6), and serve to transition the Acquisition FSM between the
Stopped, Suspended, and Running states of Figure 3.9:

1. evBeginRun - the first event executed when the “play-button” of the UI is engaged.
Also, enables instrumentation interrupt-generation, if required by the Reader-file.

2. evEndRun - executed when the “stop-button” is depressed. Disables interrupts and
places Acquisition in the “stopped” state.

3. evSuspendRun - triggered when the “pause-button” is depressed. Disables interrupts
and suspends data acquisition.

4. evResumeRun - triggered when the “pause-button” is dis-engaged. Re-enables in-
strumentation interrupts and omits all expired periodic events.

Once Acquisition has been transitioned into the Running state, the majority of the
IOMReader’s activity is contained within interactions between the Acquisition and
DataWriter threads. In light of this fact, it is worthwhile to closely examine the details
of these threads’ relationship.

Figure 3.10 is a snapshot of activities on the IOMReader during a typical Online ses-
sion: the Acquisition thread is obtaining instrumentation data with VME block transfers,
formatting and storing each event in the DataBuffer, and alerting the DataWriter to the
event’s presence. Within Figure 3.10, the par operator denotes parallel, or concurrent
activities housed within its interaction fragment. In this case, the concurrent sequences
are the execution contexts of the Acquisition and DataWriter threads. Within the same
interaction fragment is the loop operator, indicating that sequences within will execute
over some number of iterations, depending upon the evaluation of the loop’s terminat-
ing condition. Here, the interaction fragment will repeat while AcquisitionState ==

Running.

Internal to the concurrent execution fragment are two additional, and closely related
operators: alt (alternative) and opt (optional). The alternative operator may be thought of
as an if...then...else conditional apparatus: only one of the alternatives, delineated
by horizontal, dashed-lines, may evaluate to true. Similarly, the optional operator is anal-
ogous to a simple if...then conditional statement: only if its guard statement evaluates
to true will the sequence fragment execute.

In addition to its primary role of gathering data from instrumentation modules, the
Acquisition thread also serves as an event builder. This activity involves assembling

79

UnLock()

Running Locked Blocked

opt

Executing

Blocked

Executing

UnLocked

alt [! isRecordFull()]

get(DataRecord)

par, loop while AcquisitionState == Running

buildEvent()

addEventToRecord()

[isBufferUnLocked()]

vmeBlockRead()

evIRQ

evDMADone

put(DataRecord)

evUnblock

[else]

sd

Acquisition DataWriterDataBuffer

Acquisition Running Scenario

send(DataRecord)

Figure 3.10: Sequence diagram of Acquisition-DataWriter thread inter-
actions.

the data obtained from each event callback into DataRecord objects: each distinct event
defined in a user’s Reader-description file may potentially require the I/O Manager to
save data acquired during the event’s execution. To ease the duties of the Acquisition

thread in this respect, each Event object (see Figure D.3) serves as its own container for
data collected during its execution. Events are self-describing in the sense they identify,
house, and describe their contents. All that remains is for the Acquisition thread to
differentiate among instances of the same event-type. This is accomplished by associating
with each Event a unique, monotonically increasing sequence number.

Event objects are themselves housed in super-structures known as DataRecords.
These objects comprise the information stream sent from the I/O Manager to the Linux
workstation, where they are distributed to data consumers. DataRecords are sourced from
the DataBuffer, a circularly-structured resource pool of DataRecord objects. This buffer

80

is shared by both the Acquisition and DataWriter threads: the former adds objects to
the buffer, while the latter removes them for transmission over the network.

Because the DataBuffer constitutes a shared resource, access to it is guarded by the
BufferLock, a counting semaphore. This semaphore is used as synchronization element,
coordinating the activities of each thread accessing the buffer. Although configured to
have a maximum value of one, the semaphore is created with an initial value of zero,
meaning the semaphore is initially “owned” by its creator, the Acquisition thread.

From Figure 3.10, the DataWriter is initially blocked, waiting to obtain the
BufferLock. When the Acquisition thread has collected a full DataRecord of Events,
it releases the semaphore, causing the RTEMS scheduler to place DataWriter on the
ready-list of threads eligible for execution. When the DataWriter is granted use of the
processor, it removes a DataRecord from the head of the circular buffer, transmits it over
the network, marks that record as being again available, and then attempts to acquire
the BufferLock again. Since that semaphore is of the counting variety, attempts by the
“owning” thread (i.e. DataWriter) to re-acquire it result in that thread blocking until
another thread again releases the semaphore.

Within the scenario portrayed in Figure 3.10, the Acquisition and DataWriter

threads are essentially the only two threads competing for the processor. Given that
Acquisition has the greater priority attribute, the DataWriter will only be allowed to
execute when Acquisition blocks itself, waiting for the delivery of events. Thus, it
becomes critical the Acquisition thread blocks at certain “scheduling points” in its ex-
ecution context in order for the DataWriter to make progress in its own context. From
Figure 3.10, Acquisition blocks itself when it issues a vmeBlockRead() directive, and
must wait for the DMA transaction to complete. Therefore, the use of VME block trans-
fers is beneficial not only in the sense of their economy of data movement, but also in the
sense that they provide a critical “scheduling point”, thereby affording the DataWriter

thread an opportunity to execute its services.

3.8 Summary

This concludes Part I of the thesis. Having examined the hardware and software compo-
nents of the Lucid data acquisition system, the discussion of Part II will focus on perfor-
mance aspects of the system. Following an introduction to the concept of dead time and
its effects, those ideas are then re-examined using the mathematical framework afforded
by queueing theory. With this analytical tool, the schema utilized to obtain performance
metrics for the Lucid DAQ is presented, followed by an analysis of those measurements.

81

CHAPTER 4

DEAD TIME

Most components of a data acquisition system have a minimum amount of time in which
two input signals may be resolved as separate events. If one input is being processed by
a device and another input arrives before the minimum required temporal separation, the
second event may be lost, or cause a pile-up effect within the device. This minimum re-
quired temporal separation of input signals is known as the dead time of a device. More
precisely, dead time may be defined as a time interval, following a registered (or a de-
tected) event, during which the counting system is insensitive to other input events [20].
The loss of, or the pile-up of events are dependent upon the timing characteristics of the
device providing service to the input signal.

In addition to the implications of the loss of input events, dead time distorts the statis-
tical distribution of the interval between input events, possibly invalidating the use of an
assumed distribution and its moments in correction calculations, as applied to the physi-
cal property under measurement. These effects are important to account for in so-called
counting experiments, where the flux of reaction particles must be precisely known. Exper-
iments like the absolute cross-section measurements performed using the Blowfish neutron
detector with the Lucid DAQ are examples of such counting experiments.

In this chapter, the effects of dead time will be examined using mathematical descrip-
tions based on two, commonly used models of dead time behavior. Also, since dead times
almost never occur in isolation in practice, the effect on measured count rates of a se-
ries arrangement of two elements will be discussed. Finally, two techniques commonly
used for the measurement of dead time in detectors and fast, electronic circuit elements is
presented.

4.1 Dead Time Models

Dead times are typically modelled as being of either of two varieties, according to the
effect produced by events that follow one another in a period of time that is less than the
resolving time of the system:

82

1. Non-extendable, or non-paralyzable - those in which events with an interarrival pe-
riod of less than the dead time of the system, τ, are lost and have no other effect
on the system. That is, the system is insensitive to the arrival of an event, less
than τ seconds after the preceding event. For example, ADC devices used in nu-
clear physics measurements typically have a conversion period on the order of tens
of microseconds, where any further input is ignored until the current conversion is
completed. Thus, the ADC device is effectively “dead” for this conversion period.

2. Extendable, or paralyzable - those in which the arrival of a subsequent event during
a dead time period extends the dead time of the system from the time of the second
event’s arrival by another period, τ. This causes a prolonged period during which
the events subsequent to the first are not recognized. Discriminators operating in
the “updating output” mode display this behavior. A device displaying paralyzable
dead time behavior may find use as a timing mechanism in certain experimental
configurations, extending an input-gate width, for example. However, in the context
of counting experiments, such as measuring the absolute cross-section of a reaction,
a device with paralyzable dead time characteristics can only be detrimental, and is
something to be avoided.

Single-channel systems characterized by paralyzable and non-paralyzable dead time re-
sponses to random-rate input signals are illustrated in Figure 4.1.

Non−paralyzable

Live

Dead

Live

Dead

τ

τ

Input Events Time

Paralyzable

Figure 4.1: Illustration of paralyzable and non-paralyzable dead time be-
havioral models. Of the six input events, the non-paralyzable system re-
solves four, while the paralyzable system resolves three. Adapted from the
figure given in [21].

83

4.2 Mathematical Description

The mathematical characteristics of non-paralyzable and paralyzable dead time systems
are described in the following sub-sections.

4.2.1 Non-Paralyzable System

To quantify the effect of a non-paralyzable system, let the average input rate seen by a
device be λin, and assume that the time interval between input events is exponentially
distributed. Then, the system will lose a fraction of input events due to dead time, τ,
producing an output rate of λout . The probability of lost events is the product λoutτ. Thus,
λin−λout = λinλoutτ is the rate of lost events, and the transfer function for such a system
is:

λout

λin
=

1
1+λinτ

(4.1)

4.2.2 Paralyzable System

By definition, the dead periods of a paralyzable system are not of fixed length, and so the
output rate may not seem as straight forward to quantify. However, the key observation
with a paralyzable system is that the output rate is equal to that portion of the input events
with interarrival times that are greater than the dead time [22]. That is,

λout = λin ·P{t > τ} (4.2)

where P{t > τ} is the probability that the interarrival time, t, will be greater than the dead
time, τ. If events arrive at random intervals, at an average rate of λ , the probability of n

events arriving within a time interval, t, follows the Poisson distribution:

P{n}=
(λt)n

n!
e−λt (4.3)

The probability density function associated with processes described by such a Poisson
distribution is given by:

p(t) = λe−λt (4.4)

where λ is the average rate of event arrivals (or, equivalently, the reciprocal of the average
period between adjacent input events). Therefore P{t > τ} may be found by integrating

84

Equation 4.4 over the region τ→ ∞ :

P{t > τ}=
Z

∞

τ

λe−λtdt = e−λτ (4.5)

Substituting the above result into Equation 5.3 will yield the average output rate for a
system with paralyzable dead time behavior:

λout = λine−λinτ (4.6)

The average output rate versus the average input rate is shown below in Figure 4.2 for
both the paralyzable and non-paralyzable dead time models. For low input rates, the two
models show almost identical behavior. However, at higher input rates, their behaviors
differ considerably: the non-paralyzable model asymptotically approaches an output rate
of τ−1, whereas the paralyzable model shows a maximum output value of (τe)−1 at input
rates of τ−1. In addition, the paralyzable model may yield the same output rate for two
values of input, depending upon which side of the maximum the input rate falls on. Care
must be exercised to ensure that the input rate measured corresponds to the input rate on
the correct side of the maximum.

Input Rate (λ
in

)

O
ut

pu
t R

at
e

(
λ ou

t)

Non-paralyzable

Paralyzable

1/τ
1/τ

1/τe

λ
out

 = λ
in

Figure 4.2: Output rate versus input rate for two systems with equally val-
ued dead time, but different models of dead time . Adapted from [21].

85

4.3 The Effects of Dead Time

Dead time losses are contributed by all elements in a detector system, from the actual
detector, to the electronics modules which process the the detector signals, to the computer
system that extracts the data produced by “upstream” elements. Each contributing element
must be analyzed to discover the extent of its effect. There is no general method available
to calculate the combined dead time effects from several system elements, and each system
presents different effects. Dead time affects three main areas of experimental data: output
count rates, event interval densities, and hence, the event counting statistics. Each of these
will be examined in turn.

4.3.1 Output Count Rates

The reduction of count rates, through the loss of input events, is perhaps the most sig-
nificant effect of dead time [22]. Original count rates for each dead time model may be
calculated from the equations given above, in Section 4.2. The uncertainties associated
with the measurement of physical quantities scale as the inverse square root of the number
of individual measurements, N: i.e. σ̄ ∝

1√
N

[23]. Thus, in order to obtain a requisite
degree of statistical uncertainty, an experimenter must make a sufficient number of mea-
surements. Since losses of data due to dead time will occur in any counting experiment,
the dead time of a data acquisition system may effectively dictate the duration of an ex-
periment.

This idea may be clarified by an example. Consider the following scenario, illustrated
in Figure 4.3: System A has dead time, τA, and System B has dead time, τB = NτA, where

DeadTime,

τ
λ out

λ out

λ in

λ in

System "A"

System "B"

Ντ

DeadTime,

Figure 4.3: Block diagram of simple systems to illustrate the effects of dead
time on output rates as a function of input rates.

N is an integer and N ≥ 1. For simplicity, both dead times are of the non-extendable type

86

and are measured in seconds. Then, the ratio of output rates for the two, hypothetical
systems will be :

λA
out

λB
out

=
λin

1+λinτA
λin

1+NλinτA

=
1+NλinτA

1+λinτA
(4.7)

The effect of this behavior is illustrated in Figure 4.4, for Systems A and B as a function
of λinτA, for several values of N, with τA equal to a unit dead time. The intuitive result of

0 2 4 6 8 10
Input Rate (Units of 1/τ)

0

2

4

6

8

10

R
at

io
 o

f
O

ut
pu

t R
at

es
: S

ys
te

m
 A

/S
ys

te
m

 B

N = 2

N = 5

N = 10

Figure 4.4: Plot of the ratio of output rates, from Equation 4.7 for Systems
A and B.

this behavior is that System B will require more time than System A to obtain an equiva-
lent number of events, in order to produce the same degree of statistical uncertainty in a
measurement. The difference in time requirements asymptotically approaches the ratio of
the dead times for the two systems. Therefore, because a greater number of measurements
results in less statistical uncertainty, and given that facility beam-time is a precious com-
modity, it is most beneficial if a given experiment can be conducted in a minimum amount
of time. For this reason, minimization of dead time for a given experiment is critical.

4.3.2 Interval Densities

Minimization of dead time alone is an incomplete solution, as dead time will affect other
experiment considerations as well. The distribution of intervals between input pulses is
one such factor influenced by dead time.

The probability density for the time interval between events is often assumed to follow
that of a Poisson process, as given above in Equation 4.4. However, introduction of a dead

87

time will perturb the interval density distribution. In particular, a dead time will cause the
density to vanish for interarrival times t < τ , such that the interval density is truncated to
allow only those events that are separated by at least the duration of the dead time [20].

The practical implication is that the interval density perturbation caused by the pres-
ence of dead time in the signal path will invalidate any assumptions made as to the Poisson-
nature of the input signals. This may have consequences for calculations that assume a
negative-exponential interval distribution for signal properties “downstream” of the dead
time, such as mean or variance calculations used for event count-correction purposes. The
error propagated to a calculated quantity affected by dead time is often as important (or
even more so) as the magnitude of the dead time itself [22].

4.3.3 Counting Statistics

A system’s dead time preferentially filters out events occurring within a time less than τ

seconds after the preceding event. Thus, dead time has the effect of distorting the interval
distribution of incoming events from an assumed exponential distribution. Clearly, this
effect is a consequence of the dead time’s perturbation to the interval density distribution
of input signals.

The losses incurred from this filtering effect serve to modify the counting statistics to
something other than the often assumed Poisson behavior. The degree of the distortion is
insignificant for small losses (i.e. λinτ < 0.2), but serve to reduce the variance expected in
repeated measurements if the losses are not small [21]. That is, the Coefficient of Variation
(variance/mean) is no longer unity, as it would be for the case of a Poisson process, but is
in fact less than one.

4.4 Series Arrangements of Dead Times

Each channel of signal propagation in a data acquisition system typically features at least
two or more elements arranged in series, each of which contributes dead time to the sys-
tem. Clearly, it would be useful to be able to quantify the effects introduced by such a
circuit, as illustrated in Figure 4.5. In particular, a description of the expected output rate
as a function of the original input signal rate would be useful.

A tendency exists to consider only the effect of the dead time with the longest duration
. However, this may be acceptable only if the longest dead time occurs first in the signal
chain [20]. In a typical arrangement, the first element will have a shorter dead time, τ1

than a subsequent element, τ2 , in the signal propagation chain. Ordinarily, the dead time

88

λ1 τ 2λ R = T 1 T 2τ

Figure 4.5: Series arrangement of two elements with dead times τ1 and τ2,
where τ2 > τ1 . The rate of input pulses is λ , and output pulses is R.

ratio, α = τ1/τ2 , is such that 0 < α < 1 . In this scenario, the influence of τ1 may be
considered as a correction to be applied to the output count rate.

The relation between the input (λ) and output (R) count rates may be defined as the
transfer function:

T =
R
λ

= T1T2 (4.8)

where T2 is the transmission factor for τ2 in the absence of the first dead time, while T1

accounts for the perturbation due to τ1. That is, T (τ1,τ2) is a function of both dead times.

For circuit elements of non-extendable and extendable dead times, there are four pos-
sible arrangements, and T2 is given by the transfer functions expressed by Equations 4.1
and 4.6, respectively, in Section 4.2. Although the case of two, non-extendable dead times
in series presents the most complex expression of the four possible cases, it is the only
scenario of relevance to the DAQ discussed in this thesis. Defining ρ = λτ2 , then the
system’s transmission factor is given by [22]:

T = (1+ρ)

[
N

∑
k=0

xk

]−1

(4.9)

where N = b1/αc 1, and xk is the expression:

xk =
(

e−sk
k!

){
[1+(1+α)ρ− sk]sk

k + eαρsk+1
k+1

}
+(k +1)(1+αρ) [Q(k,sk+1)−Q(k,sk)]

(4.10)

with sk = max{(1− kα)ρ,0)}, and Q(n,m) = ∑
n
j=0

m j

j! e−m. Plots of the numerical solution
of Equation 4.9, expressing R = 1−T as a function of α may be found in [22].

4.5 Measurement of Dead Time

The need to apply accurate corrections to formulae influenced by dead time effects re-
quires precise knowledge of the type and numerical value of the dead time involved. A

1The symbol, bxc, denotes the floor operator: the largest integer less than or equal to x.

89

traditional approach has been the two-source method, but this technique requires radioac-
tive sources with specific properties (detectable radiation type and sufficient decay rate)
and is only capable of 5-10% precision [22]. A more contemporary technique, utilizing
dual oscillators (pulsers) of differing frequency, is both less cumbersome and much more
precise. This two-pulser technique is also discussed below.

4.5.1 Two-Source Method

In addition to the difficulties noted above, the two-source method requires knowing, a

priori, the type of dead time involved and also has strong geometrical dependencies. In
the formulae given below, a non-paralyzable dead time model is again assumed.

The basis of this technique is the idea that, given the impossibility of the knowing the
true count rate of a source, the observed count rate may be used to infer the dead time of
a circuit. Rearranging Equation 4.1 to obtain the true, input count rate, n, in relation to the
observed count rate m and the assumed constant dead time, τD :

n+ z =
m

1−mτD
(4.11)

where z is the zero-source count rate (i.e. background signals). If the product, mτD � 1,
such as in the case of a device with a small dead time, then a series expansion of Equation
4.11 yields (to first order):

n+ z≈ m(1+mτD) (4.12)

When the circuit is exposed to two sources simultaneously, it is assumed to obey the
relation, n12 = n1 +n2 + z . Therefore, given the following system of equations

n1 + z = m1 (1+m1τ)
n2 + z = m2 (1+m2τ)

n12 = n1 +n2 + z = m12 (1+m12τ)

(4.13)

the dead time of the circuit is found as [5]:

τ =
m1 +m2−m12− z

m2
12−m2

1−m2
2

(4.14)

from direct measurement of the individual-source observed count rates, the combined-
source count rate, and the background radiation rate.

However, as mentioned, this technique suffers from practical difficulties, such as source-
detector positioning, inter-source scattering effects, and an analytic form unfavorable for

90

error propagation calculations [24].

4.5.2 Two-Pulser Method

In a modern variation on the two-source method, the input pulses supplied by two de-
caying sources are replaced with a superposition of pulses from two electronic oscillators
(pulsers), of frequencies ν1 and ν2, with ν1 > ν2 (see Figure 4.6). The advantages to this
technique of dead time measurement are simplicity and accuracy: dead time may be mea-
sured to a precision of better than 10−3 in only a few minutes using little more than two
pulsers and three scaler channels [22]. In addition, variation of ν1 permits identification of
the type of dead time present for the system under test (i.e. extendable or non-extendable).

Under Test

τ
ν

1

ν
2

+ ν
sup

System

Figure 4.6: Illustration of system dead time measurement using the two-
pulser method.

If νsup is the mean frequency of the superimposed pulses after having been filtered
through a dead time, τ, then it may shown that for a non-extendable dead time:

νsup =

{
ν1 +ν2−2τν1ν2, 0 < τ < T/2
ν1, T/2≤ τ < T

(4.15)

Whereas for an extendable dead time:

νsup =

{
ν1 +ν2−2τν1ν2, 0 < τ < T

0, τ > T
(4.16)

Where T is the period given by the reciprocal frequency of the faster oscillator: i.e. T =
1/ν1 .

Referring to Figure 4.7, the region ν1 < (2τ)−1 yields a value for the dead time that
is independent of type. For the region ν1 > (2τ)−1, the observed count rate, νsup gives a
simple, graphical means of determining the type of dead time [22].

Denoting the number of registered pulses in the sampling period, t, as n1, n2, and nsup,

91

the dead time is then simply:

τ =
t
2

(
n1 +n2−nsup

n1n2

)
(4.17)

0 0.5 1

ν1 + ν2

ν1

ν1 − ν2

ν1τ

ν su
p

τ
extended

τ
non-extended

Figure 4.7: Experimental count rate, νsup , as a function of ν1 , for the
two-pulser method of dead time measurement. Both ν2 and τ are constant.
Figure adapted from [20].

4.6 Concluding Remarks

The material discussed in this chapter was presented from a nuclear physics perspective,
and consequently, the subject of data acquisition system performance was delivered in
such a way as to highlight those areas of immediate concern to the experimenter: i.e.
those areas that most directly affect accurate determination of the physical property under
measurement. Elements of system design, such as practicality and scalability have not
been addressed. Also, much of what has been presented was done with the idea of ap-
plication to the study of radioactive material decay-rate measurements. In particular, the
dead time measurement techniques discussed may be especially suited for this applica-
tion. However, much of the results presented remain applicable to counting experiments
in general.

92

The characterization of a system’s dead time as paralyzable or non-paralyzable, and
the uncertainties associated with dead time corrections are of primary concern to exper-
imentalists . Therefore, careful measurement of a system’s dead time is required to ac-
curately describe the uncertainties used in the experimenter’s rate-correction calculations.
The characterization and measurement of dead time for the Lucid data acquisition system
are the subjects of Chapter 6.

In much of the discussion of this chapter, the assumption of a constant dead time
has been implicit. While perhaps valid for the decision-logic modules present in the ini-
tial stages of a data acquisition system, this assumption cannot realistically be expected
to hold for those components that perform higher-order processing of the system’s data
stream: i.e. the computer processor(s). The temporal variability of dead time must be
accounted for to provide an accurate view of a system’s capabilities. In the next chapter,
a complementary and more general approach will be taken toward the subjects of data
loss and system performance analysis. This approach will allow for time-varying input
intervals and dead times.

93

CHAPTER 5

INTRODUCTORY QUEUEING THEORY

The branch of applied probability theory known as queueing, congestion, or traffic
theory, provides a framework with which to analyze systems that are subject to demands
for service whose frequency and duration may only be described in probabilistic terms.
Queueing theory yields a mathematical description of such systems where the times at
which requests for service and the duration of the service cannot be predicted, except in a
statistical sense [25]. These systems are driven by demands for service and the duration of
that service, both of which are generally described by probability distributions: i.e. they
are random variables.

Data acquisition systems are typically composed of several sub-systems, each of which
provides a service, or function, according to the demands made on its input terminal(s).
The system discussed in this thesis is composed of both hardware and software sub-
systems: detectors (signal generators), signal conditioning electronics, analog-to-digital
conversion modules, and general-purpose computers executing various software processes
in support of the entire system. Each of these elements responds to input stimuli by provid-
ing a “service”, which persists for some finite period. Complexity in the analysis of such
systems arises from variability in the service and input interarrival times, the problems of
resource sharing and resource allocation, and from the geometry of the interconnections,
providing data flow between each of the sub-systems [26].

Given the above complexities, computer systems, and data acquisition systems in par-
ticular, are excellent candidates for mathematical modelling using the tools afforded by
queueing theory. A mathematical description permits exploration of the relationships be-
tween the demands for service placed on a system and the delays, or losses, experienced
by the users of that system [27]. In addition, a mathematical approach permits calculation
of several quantities of interest, such as the fraction of lost input events, system utiliza-
tion and throughput, and may provide insight into areas of the system where resource
contention is strongest, with the goal of optimizing system performance.

94

5.1 Queueing Notation

Like any area of specialization, queueing theory carries with it some terminology and def-
initions that are unique to the field. These will be introduced in the following discussion.

Computer systems may be modelled as “service centers”, providing some function, or
functions, in response to the arrival of requests for service, or events. In order to describe
such a system, several characteristics of that system must be specified [28]:

1. Arrival Process: the periods between the arrival of input events (customers), or in-
terarrival times, are generally assumed to be independent and identically distributed
(IID) random variables. The so-called Poisson arrival process is the most commonly
assumed. This assumption will be used frequently in the remaining discussion un-
less explicitly stated otherwise. A Poisson process implies that the interarrival times
are IID, and obey a negative exponential distribution.

2. Service Time Distribution: the distribution of time intervals required by the server
to fully process the demands of a request for service, as initiated by the arrival of
a customer to the system (input event). Again, the most commonly assumed distri-
bution is the negative exponential distribution. The prolific use of this distribution
may be more attributable to its analytical ease of use, than its precise depiction of
service times, particularly where computer systems are concerned.

3. Number of Servers: if a service center has multiple identical servers to handle the re-
quests of customers, then those servers may be considered part of a single queueing
system, with the input load distributed amongst them in some arbitrary fashion.

4. System Capacity: this characteristic specifies the maximum number of customers
that may be present in the queueing system. The system capacity includes the num-
ber of customers waiting for service (enqueued), as well as those already receiving
service. As an example, a single-server queueing system with finite queue capacity,
B, would possess a maximum system capacity of B+1 . All real systems have finite
queue capacity, but the assumption of infinite queue capacity often results in math-
ematical simplifications, and the approximation may be justified when the system
capacity is very large.

5. Population Size: if, in its lifetime, the queueing system supports serving only a finite
number of customers, then this is indicated by the population size. Again, system
analysis may be simplified by assuming that the customer population is infinite in
size. Indeed, this is often the case for real systems.

95

6. Service Discipline: the algorithm that determines in what order the customers re-
ceive service. The most common discipline is First Come First Served (FCFS), and
this will be the discipline assumed in the remainder of the discussion, unless oth-
erwise noted. Other common service disciplines are Round Robin (RR) and Last
Come First Served (LCFS). This parameter also includes the disposition of cus-
tomers who arrive at a queueing center and find the center already occupied; typi-
cally a customer may either enter a queue to wait for service, or immediately depart
from the system. These dispostions are known as Blocked Customer Delayed (BCD)
and Blocked Customer Cleared (BCC), respectively.

Queueing theorists have developed a shorthand notation for specifying the above six pa-
rameters, known as Kendall notation. With this method, the queueing system’s six pa-
rameters are specified in the form A/S/m/B/K/SD, where each entry corresponds to one
of the above, six characteristics. Here, A is the interarrival distribution, S is the service
time distribution, m is the number of servers, B is the number of buffers (system capacity,
queueing capacity), K is the population size, and SD is the queue’s service discipline.

The statistical distributions for interarrival and service times are conventionally de-
noted by single-letter symbols. Three of the most commonly used distributions and their
symbols are shown below, followed by a simple description:

M Exponential
D Deterministic
G General

An exponential distribution denotes one characterized by a negative exponential; i.e.
a Poisson process. Deterministic distributions denote constant times with zero variance,
in the statistical sense. A general distribution is one that may not be characterized by a
(relatively) simple mathematical expression. However, a general distribution must have
a finite mean and variance. Queueing results that are valid for a general distribution are
valid for all distributions.

Conventionally, only the first three or four parameters of the Kendall notation are spec-
ified, A/S/m/B. For example, a queueing system characterized by negative exponential in-
terarrival and service time distributions, m identical servers, infinite system capacity, and
a FCFS service discipline would be indicated as a M/M/m system. An identical system
with a finite number of input buffers (queue positions), B, would similarly be expressed as
an M/M/m/B system.

96

5.2 Stochastic Processes

The analyses of queueing systems depends on the use of random variables that are func-
tions of time. Typically, these variables are used to describe discrete properties, such the
number of jobs in system or enqueued, or to describe continuous properties, such as the
job interarrival and service time distributions. Such random functions of time are known
as stochastic processes [28].

Two types of stochastic processes have already been mentioned: those whose variables
may assume any real value (continuous), and those that may assume only integer values
(discrete). Other processes commonly used in queueing theory are:

1. Markov Processes: those whose evolutionary behavior depends only the present
state of the system. That is, the future state of the system is independent of its past
states; there is no requirement of the knowledge of how long the system has been in
its current state. This is possible only if the time-evolution of the system posseses
a “memoryless”, negative-exponential distribution. Thus, the “M” used in Kendall
notation.

2. Birth-Death Processes: also known as arrival-departure processes, these are discrete-
state Markov processes whose state transitions are limited to immediately adjacent
states. For example, a system in state n may transition to state n−1, or to state n+1.

3. Poisson Process: if the times between events are independent and identically dis-
tributed (IID) according to a negative exponential distribution, the number of events
in the interval (t, t +∆t) obey a Poisson distribution, of the form:

f (n) = P{N = n}=
(λt)n

n!
e−λt (5.1)

This discrete expression yields the probability of n events occuring, given that the
average rate of events is λ. Poisson processes are often used in queueing theory
because they describe memoryless processes, such that the time of occurance of an
event is independent of the time of occcurance of the preceeding event. Application
of this principle to queueing system event interarrival times permits closed-form,
analytic solutions to be found in many cases.

97

5.3 Erlang’s Loss Equation

The rate at which physics events are processed by the Lucid DAQ governs the experi-
ment’s duration and precision. The reaction rate of a photo-nuclear physics experiment,
such as those performed at the HIGS facility, is statistical in nature, since the process is
governed partially by quantum-mechanical laws, and partially by characteristics of the ac-
celerator’s γ-ray beam. The beam-dependent factors include the pulse duration, frequency,
and intensity.

The reaction of interest may occur very infrequently, relative to the rate of uninterest-
ing background events, or noise. Thus, an acquisition system must attempt to collect as
many input events as possible, and delineate which events are interesting from those which
are merely noise. However, due to dead time considerations, some fraction of events will
be lost forever, with no chance of being processed. This effect will be felt most acutely
by the loss of the (relatively) rare “interesting” events. The end result will be an increase
in the experiment’s duration in order to obtain some requisite level of statistical precision.
In more practical terms, the increased experimental time requirements translates directly
into increased consumption of facility beam-time.

One of earliest applications of queueing theory was to the field of teletraffic engineer-
ing in the early part of the twentieth century [25]. A study was conducted to deduce the
number of operators required at a call center, such that the probability of a customer’s
call being denied service due to all operators being occupied was below some acceptable
level. This same logic may be applied to computer systems by substituting applications,
or servers, for the role of the operators, and the inputs to the applications playing the role
of the customers.

One of the results of the above study was the development of a mathematical expres-
sion that enables predictions to be made as to the proportion of calls (customers) lost as a
function of the demands made on the system. This expression is known as Erlang’s loss

formula, after the researcher who conducted the teletraffic study. The method of Erlang’s
approach is sufficiently general that it has been applied to fields as seemingly diverse as
urban resource planning and computer systems performance analysis. It will be applied
here to the analysis of the Lucid data acquisition system in particular.

The following discussion illustrates several of the principles commonly encountered
when analyzing systems using a queueing theoretic approach. In particular, the ideas of
state transitions and statistical equilibrium will be examined. This approach follows that
developed in [25].

Consider the system consisting of a fixed number of servers, m, illustrated by the state-

98

transition diagram, Figure 5.1. Let the system be in state E j, when there are j customers
receiving service in the system, where j = 0,1,2, . . . ,m. Also, let Pj be the proportion of
time that the system spends in state E j. Initially considering only “upward” state transi-
tions, if demands for service arrive at an average rate, λ, the system will experience an
average rate of transition from state E j → E j+1 of λPj, since the proportion of time spent
in state E j is Pj. Note, for the special case of j = m, the transition from Em → Em+1 is
impossible, as only m servers exist, hence the rate of this state transition is zero. This
corresponds to the situation where a customer arrives to find the queueing system fully
occupied and is denied service. In practical terms, the system has incurred dead time in
this instance. To summarize, the rate of upward state transitions, E j → E j+1, is λPj for
j = 0,1, . . . ,m−1, and is zero for the j = m case.

j = 2

λ λ λ λ

µµµµ

j = 1j = 0 j = m − 1

Figure 5.1: State transition diagram of an M/M/m/m queueing system. The
system is entirely characterized by the number of customers present in it, j.
The rate of transitions between adjacent states is denoted by the symbols on
the inter-state arcs.

The average downward state transition rate, E j+1 → E j, may be found in a similar
fashion by considering the rate at which an individual server completes service for one
customer. Letting the average rate of service completions be µ, then for the (j +1)th state,
E j+1, where the system spends a proportion of its time equal to Pj+1, downward transi-
tions, E j+1 → E j, will occur at a rate of (j+1)µPj+1 per unit time (for j = 0,1, . . . ,m−1).

Under steady-state conditions, the rate of upward state transitions may be equated to
the rate of downward transitions, thus utilizing the familiar concept of conservation of
flow. A stochastic system exhibiting such time-independence is said to be in a state of
statistical equilibrium. For the j = 0,1, . . . ,m− 1 states of the system considered above,
this equilibrium is expressed by the equation:

λPj = (j +1)µPj+1 (5.2)

Solving this equation recursively will express the Pj-th state in terms of the initial state,
P0, where the system is idle:

Pj =
(λ/µ) j

j!
P0 (5.3)

99

Utilizing Equation 5.3, P0 may be found by imposing the normalization condition that
the set of proportions, {Pj}, must sum to unity:

P0 +P1 + · · ·+Pm−1 = 1 (5.4)

P0[1+
(λ/µ)1

1!
+

(λ/µ)2

2!
+ · · ·+ (λ/µ)m−1

(m−1)!
] = 1 (5.5)

P0 =
1

∑
m
k=0

(λ/µ)k

k!

(5.6)

Expressing the ratio of average input rate to average service rate, λ/µ, as ρ, the pro-
portion of servers that are busy with j customers may now be expressed as

Pj =
ρ j

j!

∑
m
k=0

ρk

k!

(5.7)

The quantity, ρ, is known as the offered load, and constitutes a measure of the demand
placed on a queueing system. Although ρ is dimensionless, it is assigned units known as
erlangs, denoted as [erl]. Equation 5.7 is commonly known as Erlang’s loss formula, or
the Erlang B-formula and, for an M/M/m/m system, may be expressed as:

B(m,ρ) =
ρm

m!

∑
m
k=0

ρk

k!

(5.8)

This expression is plotted in Figure 5.2, for several values of service channels, m.

It can been shown that Erlang’s loss equation is valid for the case of Poisson-distributed
input processes and for all distributions of service time, provided a finite mean and vari-
ance exist [27]. That is, Equation 5.8 is valid for all M/G/m/m queueing systems. In ad-
dition, the Erlang B-formula has no restrictions on the values that ρ may assume, whereas
many queueing system models are subject to the constraint, ρ < 1.

The usefulness of Erlang’s loss formula lies in its ability to predict the fractional loss
of input events from a system service facility. Also, the relationship between input event
interarrival times and facility service times is simply and concisely accounted for in the
single parameter, ρ, the offered load to the system. The two components of the offered
load are often accessible to measurement, thus providing verification of an analytic, “paper
model”, while enabling identification of system limitations and therefore, areas where
improvements may be made.

For the case of a single server (m = 1), Equation 5.7 is evaluated below to discover the

100

0.1 1 10

Offered Load, ρ [erl]

1

10

100

L
os

t I
np

ut
 E

ve
nt

s
[%

]

m = 1

m = 2

m = 5

m = 10

Figure 5.2: Log-Log plot of Erlang’s B-formula for m = 1,2,5, and 10 ser-
vice facilities.

fraction of time during which the system is idle, the probability of state P0. This probability
may be equivalently interpreted as the fraction of input events receiving service or, as the
proportion of input events not lost. Interestingly, the expression for P0 is identical to that
found in Section 4.2, Equation 4.1, for the ratio of average output to input event rates:

P0 =
1

1+ρ
=

1

1+ λ

µ

(5.9)

5.4 The M/M/m/B Queueing Model

Having examined the M/G/m/m queueing model above, another common analytical model
and its characteristics will be briefly presented here. This is the M/M/m/B queueing sys-
tem. This model is really just the general case of the M/M/m/m model, with a finite queue
capacity, B, where B > m, for m, the number of servers in the system.

In terms of digital electronics components, a queue may be physically realized as a
memory module, or buffer, where digital information is stored for later access. An analog
electronic buffer may be realized in the form of a capacitive circuit, or a long transmission
cable. However, the storage lifetime of an analog buffer is generally far shorter in duration
than that of a digital information buffer. This characteristic typically limits the usefulness
of a transmission line as an analog signal buffer. However, capacitive circuit buffers are
used in early-stage trigger decision modules in at least one particle physics DAQ [29].

101

Within the Lucid data acquisition system, buffering is available in the Dual-Port mem-
ory of the the VME ADC and TDC modules, as well as in the RAM of the I/O Manager
and Workstation computers.

From the state-transition diagram of Figure 5.3, the steady-state probabilities of having
n “customers” present in the system is:

Pn =

{
ρn

n! P0 n = 1,2,3, . . . ,m−1
ρm

m!mn−m P0 n = m,m+1,m+2 . . . ,B
(5.10)

where the probability of an idle system, Po, may again be obtained by utilizing the nor-
malization condition, ∑Pn = 1 . The results of this calculation yield:

P0 =

(
m−1

∑
n=0

ρn

n!
+

ρm

m!

(
1− (ρ/m)B−m+1

1− (ρ/m)

))−1

(5.11)

Note that for finite capacity systems, there is no requirement that ρ < 1; the system is

2µ µm µm µm (m − 1)µ

λλλ

m − 1 m

λ

0 1

λλ

B

1µ

Figure 5.3: State-transition diagram for the M/M/m/B queueing system.

stable for all finite values of offered load.

Again, for the single-server case, where m = 1 , and a finite buffer of capacity, B

elements, the probability of finding the system in the nth-state is given by:

Pn =

{
ρn(1−ρ)
1+ρB+1 n = 0,1,2, . . . ,B

0 otherwise
(5.12)

5.5 The G/G/m Queueing Model

Few useful results exist for queueing systems of the G/G/m model. The lack of inde-
pendence between service and interarrival times leads to distributions that are no longer
“memoryless”, and the system is no longer a function of a single parameter (number of
jobs in system). The most useful results are asymptotic bounds on Wq, the average time a
job spends waiting in the queue before service commences. This result may then be used

102

with Little’s Law, which is valid in general, to provide bounds on average queue length,
sojourn time, etc [30].

5.6 Queueing Networks & Tandem Queues

Data acquisition systems are composed of numerous, interdependent hardware and soft-
ware subsystems. These systems may feature parallel and/or serial inter-connections to
support the flow of information. In general, from a queueing theoretic perspective, these
queueing networks are difficult to analytically model. These complications are a result of
having to combine the results and analytic techniques applicable to individual components
and derive conclusions which accurately describe the entire system under study. Given the
countless combinations of queueing system components, characteristics, and interconnec-
tions, there are few general results from queueing theory that are applicable exclusively to
networks of queues. However, some complexity may be alleviated if the systems possess
analytically tractable features, such as Poisson input event interarrival and service times
and infinite queue capacity [27].

Perhaps the most important simplification that may used in the analysis of networks of
queues applies to those that may be modeled as being composed of M/M/m/∞ systems:

If the arrival process to a M/M/m/∞ queueing system is Poisson with pa-
rameter λ, then under steady-state conditions (λ < mµ), the departure process
from the queueing system is also Poisson with parameter λ [27].

This property is known as the equivalence property for M/M/m/∞ queueing systems.
The implication of this result to a network consisting of N inter-connected, M/M/m/∞

queueing systems is that each of the N components may be analyzed independently, with
the aggregate behavior given by the product of the results from each individual component.

If any of the network’s queues possess only finite capacity, the equivalence property
no longer holds, and the above analytical simplification is not possible. However, the
queueing network may lend itself to an analytical solution via examination of the system’s
state-transition diagram. This approach is subject to the constraints that each queuing sys-
tem in the network possess negative exponential service time distributions and the arrival
process to the system be Poisson in nature. The technique is as follows [27]:

1. Construct a state-transition diagram illustrating all possible states and steady-state
transitions for the entire network.

103

2. Write and solve the conservation of flow equations in and out of each possible state
for the entire network.

Proceeding in this manner, the steady-state probabilities associated with each state may be
obtained. From this information, several quantities of interest may be calculated, such the
average number of jobs in the system (queue lengths) and the fraction of potential users
lost (i.e. the dead time).

As an example, consider the two-station tandem queueing facility illustrated in Fig-
ure 5.4. The input to the first station forms a Poisson process, with average rate λ . For
simplicity, both stations feature service-time distributions in the form of a negative expo-
nential function, with the identical average rate of µ . Neither station has a system capacity
greater than unity.

System 2

µµλ

System 1

Figure 5.4: Schematic of two-station tandem queueing system, with jobs
arriving at the average rate of λ , and identical average service rates, µ .

Service is provided sequentially in this system; new arrivals must visit both stations.
Jobs completing service at the first station will proceed to the second station only if the

second station is not already occupied. Therefore, the presence of a job at the second
station will block the first station from providing service to a customer newly arrived to
the system until the service at station two has been completed.

Unlike the one-dimensional queueing systems examined previously in Sections 5.3
and 5.4, this system requires two variables to describe the number of jobs (customers) in
it:

• 00 - the “Idle” state

• 10 - the first station is busy.

• 01 - the second station is busy.

• 11 - both stations are busy.

• b1 - station one is idle, but blocked from accepting a new job because of the job in
service at station two.

104

The following equations may be obtained by direct examination of Figure 5.5, and repre-
sent the “conservation of flow” for each possible state:

λP00 = µP01

λP00 +µP11 = µP10

µ(P10 +Pb1) = (µ+λ)P01

λP01 = 2µP11

µP11 = µPb1

(5.13)

where λ and µ are as previously described, and the state probabilities are given by Pi j . This
set of five equations in five unknowns may be simultaneously solved by utilizing any four
of the equations in conjuntion with the normalization condition for the state probabilities,
given below:

∑
i, j

Pi j = P00 +P10 +P01 +P11 +Pb1 = 1 (5.14)

Proceeding in this way, the steady-state probabilities, Pi j may be found and used to com-

µ

λ λµ µ

00 10 01 11 b1

µ µ

Figure 5.5: State-transition diagram for the two-element tandem queueing
system with blocking.

pute properties of interest for this tandem system. One such important property is the
portion of time that the tandem system is unable to accept new input events, or equiva-
lently, the fraction of potential users lost to the system (i.e. the system’s dead time). This
portion is simply the sum of the probabilities corresponding to states where the system
cannot accept new input [27]:

f = P10 +P11 +Pb1 =
3ρ2 +2ρ

3ρ2 +4ρ+2
(5.15)

where the traffic intensity is defined in the usual form, ρ = λ/µ . Finally, it should again
be noted that such finite-capacity queueing systems are stable in the case of ρ≥ 1 .

An analysis of the state-transition diagram representing the interaction of the two-
component, Lucid sub-system consisting of the VME analog-to-digital conversion mod-

105

ules and the I/O Manager is demonstrated in Appendix E. This analysis will illustrate
the dead time performance benefit that may be had by taking advantage of the dual-port
memory and Chain Block Transfer capabilities of the VME modules.

5.7 Concluding Remarks

Due to the fact that the Lucid DAQ was developed to handle the data acquisition require-
ments of small-to-medium sized experiments (< 1000 channels), at least some of the sim-
plifying assumptions mentioned above cannot be considered valid. However, as will be
shown, some components of the I/O Manager may be approximated and analyzed using
the state diagram technique described above. The next section will describe the Lucid
data acquisition system using some of the ideas presented in this chapter, and discuss the
equipment and procedures used to obtain performance measures.

106

CHAPTER 6

DAQ PERFORMANCE MEASUREMENTS

This chapter describes the techniques and equipment used to obtain performance met-
rics of the Lucid data acquisition system, including its dead time and those sub-intervals
of which it is composed: interrupt and software scheduling delays, and data transfer dura-
tions.

From the perspective of an experimenter, a data acquisition system’s dead time is per-
haps its most important performance metric. A statistical analysis of dead time mea-
surements provides the mean, variance, and minimum/maximum values of its probability
distribution. In turn, these values may find use in the design of data collection algorithms
and trigger configurations, or in calculations to correct counting-rates obtained during
cross-section measurements.

Although methods of measuring the dead time contributions of detectors and their
associated electronics modules have been described in Chapter 4, the focus of this chapter
is on those systems succeeding the Trigger Logic subsystem in the signal-processing chain.
In particular, the interactions between the digitization and I/O manager subsystems will be
closely scrutinized, as these interactions are fundamental to to data collection operations.
Given that detectors and trigger logic will almost certainly vary per experiment, the dead
time contributions of the Trigger Logic subsystem will not be investigated further.

Beginning with a high-level description of the signal-processing chain, the algorithm
governing the global behavior of the Lucid DAQ is utilized to develop a simple, two-state
queueing model of the system. From this model, an expression is obtained to describe the
average portion of time during which the DAQ is unable to accept new events for process-
ing. This equation depends on both the average input rate and the average time required
to process an event, thus suggesting the parameters requiring measurement. Following
this treatment, those activities occupying the majority of DAQ resources are examined
in detail. Finally, the chapter concludes with a description of the methods and resources
utilized to measure time-critical system operations.

107

6.1 DAQ Trigger System

From Figure 6.1, a positive trigger level-1 (TL1) decision drives detector signal digitiza-
tion. The TL1 event signature (see Section 2.1.1) is the logical AND of a detector signal
satisfying amplitudinal threshold requirements in coincidence with a beam timing pulse.
This TL1 signal will initiate a conversion sequence by the digitization subsystem. The
sequence of events, from detector signal generation, to a positive TL1 decision, to the
initiation of the digitization sequence, is on the order of tens of nanoseconds in duration.
In contrast, the sequence of events following a positive TL1 decision forms the “high-
level processing” component of a DAQ, with process durations that are typically orders of
magnitude longer than those of first-level trigger processes.

<< flow >>

Detector Element
<< actor >>

Rayγ −
Beam State
<< actor >>

Trigger Logic
<< subsystem >>

Data Processing
<< subsystem >>

Digitization Logic
<< subsystem >>

Affirmative
TL1 Signal

<< flow >> << flow >>

<< flow >>

Figure 6.1: Schematic of data flow through a single channel of the Lucid
DAQ.

The sequence of events comprising Lucid’s reaction to a valid TL1 signal are further
illustrated in Figure 6.2. The origin of this second stage of signal processing is marked by
the initiation of an analog-to-digital conversion sequence.

The Digitization and Data Transfer periods, as well as the Application Response La-
tency of Figure 6.2 constitute a group of operations that are fundamental to the Lucid
data acquisition system. The primary function of the DAQ may be comprised of various
combinations of these key processes and, as such, the system spends the majority of its
time executing these processes over and over in succession. Given that the dead time of
the Trigger Logic subsystem is on the order of 100 nanoseconds, while the dead time of
downstream components is on the order of tens of microseconds, the performance of Lu-
cid is ultimately governed by the duration and variability of these critical operations, each
of which are detailed below, in Section 6.2.

6.1.1 The INHIBIT Circuit

Currently, the data collection algorithm used with the Lucid/Blowfish system obtains data
on an event-by-event basis. This means that a single event satisfying the TL1 requirements
is processed and stored at the I/O manager before any other events may be accepted for

108

Dead Time

Latency

Data
Transfer
Period

IOM
Readout End
INHIBIT EndIOM

Readout Start
IOM

VMEbus IRQ
Received

VMEbus IRQ
Generated

Valid Trigger
INHIBIT Start

Digitization
Period

Application Response
Latency

Time
Interrupt

Figure 6.2: Timeline of events generating Lucid’s dead time components.
This scenario corresponds to the current, “event-by-event” acquisition algo-
rithm in use. Note, periods are not to scale.

processing: buffering of data occurs no earlier in the signal processing chain than once the
data arrive at the IOM.

In order to prevent the DAQ from responding to subsequent events that may perturb
the processing of a current event, a so-called INHIBIT (INH) circuit, illustrated in Figure
6.3, is used. This circuit inserts a latch mechanism into the signal propagation path such
that the circuit elements succeeding the latch are prohibited from responding to successive
input signals until the latch is explicitly reset. In the case of the Lucid DAQ, the latch is
set upon a valid first-level trigger (TL1) decision, and reset by a software-controlled pulse
at the conclusion of event processing, as indicated in Figure 6.2.

OscillatorBUSY

Threshold &
Coincidence

Signals

Trigger
(TL1)

CLEAR

Clock

Latch

Set

Clear

Out
Scaler

OUT
GATE

Figure 6.3: Typical first-level trigger logic, incorporating an INHIBIT cir-
cuit and dead time measurement facility. Figure adapted from [24].

There are at least two ancillary benefits to utilizing the INHIBIT circuit, as it has been
described above:

109

1. Inclusion of an INHIBIT circuit forces the downstream elements of the DAQ to
conform to the behavioral model of a system with non-paralyzable dead time. Thus,
although this design imposes a dead time larger than that due to any constituent
element, any uncertainty in the type of dead time has been eliminated.

2. The INHIBIT circuit (INH) may be used to provide a simple means of measuring
dead time during online acquisition sessions [24]. As shown in the schematic of
Figure 6.3, the inhibit signal can be utilized to gate a clock signal off and on. The
ratio of the gated clock counts to that of ungated (i.e. free-running) clock counts
yields the fraction of time during which the DAQ is “dead”.

Finally, note the duration of the dead time for a system utilizing such an INHIBIT circuit is
governed by characteristics of the system responsible for resetting the latch. In the case of
Lucid, the duration of event-processing software operations downstream of the INH circuit
determines the system’s dead time, since the latch may be reset only at their conclusion.

6.1.2 Queueing Model

An INHIBIT circuit permits treatment of the DAQ as a simple, two-state system: the
acquisition system may only be in either an “Idle”, or “Busy” state (see Figure 6.4). Using
the ideas of Section 5.3, queueing analysis may be used to model the DAQ as an Erlang
Loss system, described using Kendall notation as an M/G/1/1 queueing center.

µ

(j = 0)
Busy
(j = 1)

λ

Idle

Figure 6.4: State-transition diagram of the M/G/1/1 queueing model for the
Lucid’s I/O manager, with two states, j = 0,1.

This model assumes that input events arrive at the system according to a negative
exponential distribution, at an average rate of λ (i.e. the input process is Poisson). The
average service rate, µ, equal to the reciprocal of the dead time, µ = 1/τ, is modelled as
following a general distribution. A general distribution is realistically applicable in this
case, as the dead time is effectively bound by the duration required by the IOM to process
a single valid TL1 event in its entirety. Hence, the duration of this interval is dominated
by software processes, which may not lend themselves to a simple, analytic form. The

110

service time distribution is dictated by the current use of the “event-by-event” processing
algorithm. That is, the service times are an artifact of not buffering event data in devices
preceding the IOM in the event-processing chain.

Utilizing results from queueing theory, that portion of time during which an Erlang
Loss system is BUSY is expressed by the Erlang B-formula for a single server:

B(m = 1,ρ) =
ρ

1+ρ
(6.1)

where the traffic intensity, ρ , is given by the product of the average rate of event arrivals
(TL1 signals), λ , and the average dead time, τ , such that ρ = λτ . It may be shown
that, for the case of an Erlang Loss system, the portion of time that the system is busy is
equivalent to that portion of events that are denied service and hence, lost from the system
[31].

An unfortunate source of confusion among users of data acquisition systems stems
from the usage of the term, “dead time”. It is often quoted as a percentage, which is
clearly a dimensionless quantity. When expressed as a percentage, “dead time” refers to
that portion of time during which a DAQ is incapable of processing further events, and
not to the period of time required by the DAQ to process a single event. That is, the
former quantity is a “duty cycle”, corresponding to the BUSY/IDLE cycle, while the latter
quantity is an actual time period.

6.2 Dead Time Component Intervals

The following section describes those sub-intervals contributing to Lucid’s dead time.
These factors come into play only after an affirmative level-one trigger signal has been
produced, as portrayed in the sequence diagram, Figure 6.2. It may be helpful to retain
this definition of latency throughout the following discussion:

latency: “the period of apparent inactivity between the time a stimulus is pre-
sented and the moment a response occurs” [32].

6.2.1 Digitization Period

This period is simply the duration required by a VME module to complete an analog-to-
digital conversion sequence and store the data in an internal buffer. This information may
be provided in the manufacturer’s user-manual for a particular module. For example, in

111

the case of the CAEN v775 family of QDC and TDC modules presently used with the Lu-
cid DAQ, the quoted value is 7 µs for the concurrent digitization of all 32 channels [33].
This duration was verified by observing, on an oscilloscope, the state of modules’ BUSY
signals, available via their front-panel CONTROL connectors. For all VME modules con-
sidered in this thesis, the digitization period is of constant duration.

6.2.2 Interrupt Latency

This is defined here as the period of time originating with the issuance of an interrupt-
generating signal from a VME (or CAMAC) module, and terminating when the appro-
priate Interrupt Service Routine (ISR) is dispatched at the IOM by the RTEMS operating
system.

Once a device on the VME bus asserts an interrupt request (IRQ), the VME System
Controller module (the sis3100) sends a signal across the fiber-optic link to the I/O man-
ager. This signal causes the CPU, upon completion of the current instruction, to suspend
execution of the current thread, save that thread’s context, and then invoke the software
routine associated with the numeric interrupt vector it has received. Note, at this point
the identity of the module generating the IRQ is unknown: the interrupt vector contains
no additional information. It is the responsibility of software to perform such actions as
necessary to obtain the identity of the VME module generating the IRQ. That process con-
stitutes the VME interrupt acknowledge sequence (IACK) discussed in Section 3.6.7. For
the timing measurements presented in this thesis, the IACK sequence is not considered a
component of the interrupt latency, in order to comply with the conventional definition of
the term as given above.

6.2.3 Context Switch Delay

Switching thread context is an operation fundamental to all multi-tasking computer oper-
ating systems. The delays incurred during a context switch consist of the period of time
required by the operating system to determine and schedule the next thread to allot the
processor to, record the state information of the presently executing thread, and restore the
state information of the thread scheduled for execution [34]. The duration and distribu-
tion of this period is governed by characteristics of the operating system and the speed of
the processor on which the OS is running. In particular, real-time operating systems are
designed to have deterministic context switch and scheduling delays.

112

6.2.4 Application Response Latency

The results of schedulability testing performed on real-time operating systems almost in-
variably quote separate results for interrupt latencies and context switch delays. In reality,
the response time of an OS to external stimuli is dependent upon the execution character-
istics of both parameters in succession. While knowledge of each parameter’s distribution
and extent in isolation from one another may be valuable, it does not depict a realistic view
of a system’s real-time response characteristics.

Interrupt latency and context switch delays are linked by virtue of a commonly ac-
cepted practice for programming low-level ISR code: the ISR must not issue any operating

system directive (system call) that may block waiting on the availability of a resource. This
restriction exists because an ISR executes without context: state information is not main-
tained from one invocation to the next. Thus, interrupt service routines are quite limited
in the actions they may perform. In fact, it is standard practice for a real-time applica-
tion ISR to perform only the minimum operations required to service the interrupt and
then defer further processing to a thread dedicated to such action. Typically, an ISR will
simply disable interrupts at the device issuing the IRQ (Interrupt Request), then invoke
a system directive causing the OS kernel to schedule a thread for execution to provide
further processing. Thus, the inter-dependence of interrupt latency and context switching
delay.

Minimizing the actions, and therefore the duration, of an interrupt service routine
serves two purposes, as discussed in Section 3.6.3:

1. The system is able to respond more quickly to other, possibly higher-priority inter-
rupts that may be generated and require service, and

2. The flow of execution is able to enter the context of a thread as quickly as possible,
where there are no restrictions on the system directives that may be issued. Thus, the
duration of the period when restrictions on system calls exists has been minimized.

One metric, the RTCore Index, is defined as “...the worst-case latency experienced by a
periodic task on a heavily loaded system, including the interrupt latency, the overhead of
the scheduling code, and the cost of a context switch...” [35]. This metric provides a
measure of the latency originating with a periodic event and terminating upon entrance to
the application thread which handles the event occurrence. Using the RTCore Index as a
guideline, a more general metric is proposed here:

The Application Response Latency is that measured on a heavily loaded sys-
tem for the period originating with the occurrence of a hardware interrupt

113

request and terminating upon entrance to application code dedicated to the
handling of that event.

This idea is applied to the I/O manager by designating the originating event to be the
generation of an IRQ signal by a VMEbus module and the terminating event to be the en-
trance to an application routine which handles the generated IRQ. Defined in this way, the
interrupt latency, scheduling and context switch delays, and the VME Interrupt Acknowl-
edgment sequence (IACK) are all accounted for in the time-budget of the Application
Response Latency.

6.2.5 Data Transfer Period

The direction and volume of data flow in an acquisition system is highly asymmetric, as
the system’s purpose would dictate. The movement of digitized data, from their place of
origin, to a storage or manipulation location, constitutes a time-intensive process. This
process becomes more expensive with an increase in the number of information channels,
channel occupancy ratio, and digital resolution.

For the DAQ under study, digital information is transfered from the Instrumentation
subsystem to the IOM, where it is buffered and assembled into Lucid’s proprietary data
format. The IOM then forwards the complete events over Ethernet media to the Worksta-
tion PC, where the data may then be graphically displayed, analyzed “online”, or written
to permanent storage for “offline” analyses at the user’s convenience. In contrast, the
quantity of data written to the VME and CAMAC modules is generally small relative to
the volume that is transfered to the Workstation for storage.

Data transfer rates, from VME modules to the I/O manager, are dependent upon several
factors. One of the most important dependencies, but one that is often overlooked, is
the transfer rate capabilities of the VME device itself: modules of one type may simply
transfer data faster than modules of another type. Other factors affecting the data transfer
rate are the type of VME access mode (e.g. single-cycle or block transfer), the byte-width
of the data access, and the volume of data produced, per module, per transfer. Clearly,
these factors will influence any benchmark figures produced for VME data transfer rates,
and so must be properly accounted for.

6.3 Test Apparatus and Algorithms

Two distinct series of measurements were made to obtain performance figures for the Lu-
cid data acquisition system. The first set of tests were performed at the DFELL facility,

114

Duke University. The primary purpose of these tests was to measure the dead time char-
acteristics of the acquisition system under realistic, but controlled settings. Secondary
attributes of the system under study included the data rates from the VMEbus modules to
the IOM and between the IOM and Workstation computers over Ethernet media.

A second set of measurements was performed at the University of Saskatchewan, fo-
cusing on the low-level components comprising the VMEbus-IOM interaction. This test-
ing studied the dead time contribution from system attributes that are intrinsic to the timing
requirements of VME-PC communication, and exist independent of any Lucid software
process. In particular, the timing characteristics between a single VMEbus module and the
VME-PCI driver software executing on the RTEMS-controlled IOM were studied. Perfor-
mance metrics obtained include interrupt and context switch latencies.

The following sections will illustrate the reasoning, algorithms, and equipment used to
carry out each of the measurements described above. Before providing a detailed descrip-
tion of both series of measurements, the timing mechanisms used throughout the testing
will be discussed.

6.3.1 Timing Mechanisms

All measurements discussed over the next several sections require the determination of
time intervals. These intervals encompass the events of interest and must be accurately
determined to yield meaningful results. Therefore, accurate methods of measuring the
event periods are required. Two mechanisms were used to provide measurements of the
event intervals: one timing mechanism used a clock system external to the IOM, while the
other made use of a device intrinsic to all Pentium and later-model Intel processors. Each
of these devices is described in more detail below.

6.3.1.1 CAMAC Clock

All clocks are composed of two essential elements: a stable oscillator, and a counter to
measure the number of pulses from the oscillator [36]. Using this idea, a simple clock was
constructed from two CAMAC modules; a SAL clock module (oscillator) and a Kinetic
Systems KS3615 24-bit scaler (counter) module.

The SAL clock module features four output channels, adjustable from 5 MHz to 150
Hz, and four output channels at a fixed rate of 1 kHz. In all measurements described below,
the SAL clock was configured to emit pulses at 5 MHz, for maximum resolution. Each
output channel is individually inhibitable, thereby providing a means to gate the clocks on
and off. Feeding an oscillator output into a scaler channel forms a simple clock, which may

115

be activated without software intervention. This feature is necessary to measure intervals
which are initiated by events beyond the control of software, such as the arrival of a GATE
signal to the VME digitization modules.

6.3.1.2 Software Clock

In addition to the information provided by the CAMAC clock system, the duration of
certain software events were monitored using the the Time Stamp Counter (TSC) register
available on all Pentium and later model Intel processors [37]. The TSC is a 64-bit counter
that increments at the CPU clock frequency and permits inexpensive access via the single
assembly code mnemonic, rdtsc. This single instruction will fetch the 64-bit counter value
and store the result in a pair of 32-bit, general-purpose, on-CPU registers, edx and eax,
containing the upper and lower 4-bytes of the counter value, respectively.

Encapsulating software events in calls to read the TSC provides timestamps to delin-
eate the start and finish of that event. The difference between adjacent timestamps is then
directly proportional to the duration of that event, ∆tn = αc(ti− ti−1) , with the constant of
proportionality, αc , being the conversion factor required to transform the number of TSC
“ticks” into standard units of time or frequency.

Reading and saving the TSC value was accomplished via the following “C” language
macro, utilizing inline-assembly code:

#define rdtscll(value)

asm volatile(“rdtsc” : “=A” (value))

This simple construct takes a user-supplied, unsigned 64-bit integer and returns the TSC
value in it.

6.3.1.3 Clock Conversion Factors

Both of the timing mechanisms described above simply read the number of “ticks” ac-
cumulated by a counter. A reference clock is necessary to convert the number of “ticks”
produced from one counter, say the TSC, into a time interval. For example, recording the
number of TSC ticks after one second has passed will yield the conversion factor for that
device, αT SC

[tichs
second

]
. This factor is required to assign physical dimension to the measure-

ment of an interval, since the number of clock “ticks” is the dimensionless quantity that
is actually measured. The reference clock used here was the i8254 timer chip, a standard
component of the modern PC architecture, typically used by the OS to generate periodic
interrupts, thus forming the timing structure for the operating system [38]. These periodic

116

interrupts determine the time-resolution of the operating system: time-dependent opera-
tions may be performed with no finer granularity than that dictated by the periodicity of
these interrupts.

The conversion factors for both devices were obtained by similar methods: a periodic
thread was invoked on the RTEMS system to record the number of counts each “clock”
contained after a period of one second, as determined by the “reference” clock (i8254
timer). This measurement was repeated over several thousand iterations for each clock
system.

6.3.2 Dead Time Measurements

This series of measurements were conducted in early August of 2004, at the Duke Free
Electron Laser Laboratory (DFELL), situated at Duke University in Durham, North Car-
olina. The goal was to evaluate the distribution and extent of dead time due to the most
frequent operation of the IOM processor: responding to an interrupt request (IRQ) gener-
ated by a VME module. This event indicates that valid data may be available for extraction
from the digitization modules. Referring to Figure 6.2, this period is denoted with the la-
bel, “Dead Time”, beginning with the arrival of a GATE signal to the VME ADC modules,
and ending with the conclusion of the extraction of the event’s data from the modules. As
indicated by the event time-line, the period is comprised of several sub-events. Mea-
surement of these sub-intervals will be discussed in their appropriate sections. Next, the
methods and the equipment used to measure Lucid’s dead time will be discussed.

6.3.2.1 Apparatus

The IOM processor in use at the HIGS facility is a 2.4 GHz Pentium 4, with 256 MB of
RAM, running the RTEMS operating system. This machine is coupled to the Workstation
processor via a point-to-point, 100 Mbps Ethernet connection, and coupled to the VME
crate via the fiber-optic link of the sis1100 VME-PCI interface. The Workstation processor
is a 866 MHz Pentium III, with 256 MB of RAM. This computer executes the Lucid
application under the control of a Linux operating system.

The quantity and type of VME modules utilized for these tests were the same as those
that would be used during actual experiments. Module type and physical layout within the
crate are shown in Figure 6.5. Three CAMAC modules were also utilized, but are not indi-
cated in this diagram. These consisted of two scaler modules (i.e. counters) and one SAL
clock module. As these CAMAC modules are accessed infrequently, their contribution to
the system dead time is negligible.

117

Branch Driver
CAMACSis3100

VME System
Controller

v513 I/O Module

v775 TDC

v775 TDC v792 QDC (short GATE)

v792 QDC (long GATE)

v792 QDC (short GATE)

v792 QDC (long GATE)

v792 QDC (short GATE)

v792 QDC (long GATE)

v862 QDC

CBD8210

v775 TDC

Figure 6.5: Module type and configuration within the VME crate, as used
throughout performance testing of the Lucid DAQ, while at the DFELL fa-
cility.

The input signals to the system under test were produced by the Blowfish detector
array in response to the ambient radiation signals present in the experiment vault at the
DFELL. Variation in the average signal rate was controlled by manipulating the threshold
voltage at the CFDs (constant fraction discriminators), thus permitting greater or fewer
numbers of detector pulses to enter the electronics system. Average input signal rates
were generated over the range from approximately 1 kHz to 25 kHz.

Utilizing a radiation source to generate the input signal was important for three rea-
sons:

1. A signal distributed in time according to a negative exponential function contains
the least amount of information, or conversely, the maximum entropy, and hence is
“the most random” signal possible [30]. Thus, using an input signal of this type to
drive the data acquisition system affords exploration of behavioral characteristics at
the boundaries of its capabilities.

2. This produces a realistic perspective of system performance, given that this type of
input signal is expected from accelerator-induced nuclear reactions, such as those
produced by the HIGS facility.

3. Many of the analytic results from queueing theory are formulated based on the as-

118

sumption that the input process is a Poisson stream. Therefore, exposing the system
under study to this form of input signal is crucial when comparing an analytical
model of system behavior to experimental measurements. This is of particular im-
portance given that the M/G/1/1 queueing model developed in Section 6.1.2 requires
a Poisson input process.

No experiment has ever successfully disproved the theory that single-channel, nuclear
decay is a Poisson process [21]. Thus, there is also some sense of security that the input
signal being used to drive the DAQ is of a known, quantifiable nature.

6.3.2.2 Methodology

Interrupts were generated on the falling edge (NIM logic sense) of a CFD output that was
fed into the STROBE input of a CAEN v513 Input/Output module. One channel of this
I/O module was configured to act as a software-driven output. In conjunction with the
STROBE signal (STB), used to gate the SAL Clock ON, the output channel was used
to gate the clock signal OFF. Refer to Figures 6.6 and 6.7 for hardware geometry and
signal details. This hardware timing mechanism served to measure the sum of the intervals

Latch

Software

v513 I/O
Module

FAN
IN/OUT

FAN
IN/OUT

Detector
Signal

FAN
IN/OUT

To VME
GATE
Inputs

5 MHz CLK

CH 0 (OUT)

CH 0 (INH)

CH 0
(IRQ Period)

Hex Scaler

CH 0

STBOUT

INH

IN
CFD

Set

Reset
Out

From

Figure 6.6: Schematic of hardware and control signals used at the DFELL
facility to measure the dead time contributed by the “Digitization” and “Ap-
plication Response Latency” portrayed in Figure 6.2.

denoted in Figure 6.2 as the Digitization Period and the Application Response Latency.
The duration of the data transfer from the VME modules to the IOM was recorded using

119

the TSC mechanism discussed in Section 6.3.1.2. Figure 6.7 illustrates the details of signal
timing, corresponding to the schematic of Figure 6.6.

Referring to Figure 6.7, the dead time was computed from the sum of two intervals:

τ = τ1 + τ2 (6.2)

where, τ1 is the “Digitization plus Application Response Period” , and τ2 is the “Data
Transfer Period”. τ1 was measured using the hardware timer of Section 6.3.1.1, and τ2 was
measured using the IOM’s Time Stamp Counter register. The dead time was measured for
100,000 input events, or for a duration of one minute, whichever resulted in the maximum
number of recorded events.

In order to minimize the impact of the load accrued by reading out the CAMAC scaler
module containing the interrupt-timing information, the scaler was allowed to accumulate
counts for 1000 “Data Transfer Period” events before being read. That is, the hardware-
timed data was averaged over a period corresponding to 1000 interrupt events. Hence,
second order and higher statistical moments were not available for this period. However,
this information was obtained in later testing (see Section 6.3.3).

Dead Time

Off

On
STROBE

Digitization + System
Response Period

INHIBITCLK

Data Transfer
Period

I/O Register
Channel 0

Global (CFD)
INHIBIT

Figure 6.7: Signal timing diagram of events comprising the dead time mea-
surements performed at the DFELL. Periods are not to scale.

Two additional scaler channels were used to measure the total number of CAMAC
clock ticks and input trigger pulses. This data was sampled at 2 Hz, again in an effort to
minimize instrumentation loading effects on the system under test.

Chain block transfers (A24/D32 CBLT) were utilized to transport data from the VME
modules to the IOM. Module data occupancy was set at 3 or 32 four-byte data words
per module, and was alternated between runs for a given input signal rate. Three data
words per module was chosen as depictive of worst-case module occupancy conditions,

120

whereas thirty-two words per module corresponds to the maximum possible quantity of
data generated per GATE signal. The latter quantity might only be generated during the
relatively infrequent event of monitoring the VME digitization modules’ DC-bias levels,
which are also known as pedestal values.

It is advantageous to minimize the quantity of data written to disk during an online data
acquisition session; less data written to the hard drive results in a less frequent requirement
to transfer data to optical media for permanent storage. Due to the heavy resource require-
ments of the DVD writer hardware and software, it is not possible to record data to that
medium “on the fly”: i.e. in real-time, as the data is being acquired. Hence, data acqui-
sition must be suspended while data previously recorded to hard disk is written to DVD.
Assuming an online data acquisition rate of 2.5 MBps, enough data to fill 4.7 GB DVD-
R may be obtained in approximately a half-hour. Given that the duration to record that
quantity of data to DVD is of the same order as the time to acquire it, this process may
become a considerable source of system dead time. This problem may be mitigated by the
addition of a subsystem dedicated to the task of writing acquired data to optical media.

Past experiments have utilized data compression software (gzip) to achieve compres-
sion ratios of approximately 10:1. The perturbative effects due to the usage of compression
software on the Lucid host were also investigated during this portion of system measure-
ments. Due to Lucid’s dependence upon the TCP/IP stack, any software process used by
Lucid, including the Looker and Writer processes, may trigger TCP’s rate-control mech-
anism. This control mechanism has the potential to throttle the flow of data from IOM to
Workstation, which in turn may cause the IOM data buffer to saturate, as it is prevented
from draining. This situation will cause suspension of data acquisition while the full buffer
cannot drain, hence becoming an additional source of dead time.

6.3.3 Dead Time Component Measurements

These measurements were performed in the fall of 2004 at the U of S, with the purpose
of determining of the extent and distribution of the periods comprising the “Dead Time”
interval of Figure 6.2. Each of these periods will vary from one invocation to the next,
with the exception of the digitization period of the VME modules, which is constant for the
particular modules used. The source of variation in the periods is due to scheduling “jitter”
present in the software/hardware interaction, as the RTEMS kernel allocates execution
time on its CPU to the various competing software entities in response to external events.

121

6.3.3.1 Apparatus

The equipment utilized here consisted of identical Pentium III machines in the roles of
IOM and Workstation processors, each featuring 256 MB of RAM and a CPU clock fre-
quency of 450 MHz, running RTEMS and Linux operating systems, respectively. The
system under test was the interaction between an interrupt-generating CAEN v513 VME
I/O module and the IOM processor, whereas the Linux machine served the role of an I/O
traffic-generator. See Figure 6.8.

6.3.3.2 Methodology

The concept and techniques for this aspect of testing were taken from ideas presented in
[34]. The underlying concept is to measure the interrupt latency, context switch delay,
and the overall Application Response Latency experienced by a high-priority thread on
a real-time operating system while that system is subjected to heavy loading in the form
of competition for resources incited by lower-priority threads. Worst-case latencies may
thus be obtained, providing a measure of the determinism present in the system under
test. By definition, a hard real-time system must provide guaranteed bounds on latencies
incurred when a high-priority task is scheduled from an ISR, regardless of the amount of

low-priority load. Although the Lucid data acquisition system does not strictly conform
to the description of a hard real-time system, knowledge of worst-case latencies is still
valuable, as these define the limitations of the system’s capabilities.

Given the practical impossibility of achieving “worst-case” conditions, due to the large
number of possible system states in a computer system, a probabilistic approach was taken:
by repeatedly measuring latencies on a heavily loaded system, the maximum recorded de-
lay was assumed to correspond to the poorest response of the system under test. It should
be noted that the performance of the system under test is determined by the combined
effects of a system of components and hence, should not be interpreted as indicative of the
capabilities any single component in isolation.

Together with the sis1100 driver’s interrupt service routine, the main body of the test
software consisted of three threads, isrTask, triggerTask, and chargenEcho task, listed in
order of decreasing priority. These threads are illustrated in the interaction fragment, La-

tency Measurement Scenario, of Figure 6.9. The RTEMS networking stack and Ethernet
driver occupied additional threads, and were identically assigned the lowest priority in the
system.

The software initialization procedure consisted of configuring the CAEN v513 I/O
module to generate interrupts whenever its input-register was written to within trigger-

122

: VME I/O Module
LInux Workstation

: PC
I/O Manager

: PC

ref Low−Priority Workload Scenario

ref Latency Measurement Scenario

par, loop while numIterations−−

sd Latency Testing Scenario

v513

Figure 6.8: Overview of latency measurements.

quiescent

: VME I/O Module

triggerDesc
: IsrDescriptor

t 0getTimeStamp()

 1t t 0updateHisto(irqLatency,)−

 1tgetTimeStamp()

t 2getTimeStamp()

 1tt 2)updateHisto(ctxtLatency, −

 3tgetTimeStamp()

sd Latency Measurement Scenario

 3t t 0

setBit(IrqON)

IRQ

Loading=TRUE

numIterations−−

send(evIRQ)

irqAcknowledge()

irqVector

execute(irqVector)

setBit(IrqOFF)
send(evWakeUp)

recv(evWakeUp)

updateHisto(appLatency,)−

TriggerTaskIsrContext IsrTask

quiescent

blocked

executing

ready

blocked

executing

interrupting

v513

Figure 6.9: Sequence of events during latency measurements.

123

Task, registering the application’s interrupt response routine with isrTask (as described in
Section 3.6.7), connecting the chargenEcho thread to the Linux server, and readying a port
for serial communication over the RS-232 medium.

A timing diagram illustrating the above software events and thread interactions is
shown in Figure 6.10. Referring to this figure, histograms of latencies were produced
for the following timestamp differences:

∆t1 = t1− t0 , Interrupt Latency
∆t2 = t2− t1 , Context Switch Delay
∆t3 = t3− t0 , Application Response Latency

Context Switch Delay

Ready

tr
ig

ge
rT

as
k

Blocked

Executing

Ready

is
rT

as
k

Blocked

Executing

t 0

t 1

 3t

t 2

Ready

ch
ar

ge
nE

ch
o

Time

sd

Blocked

Executing

Measurement Context Interactions

is
rC

on
te

xt

Quiescent

Executing

Trigger IRQ,

IRQ Received,

Application Response Latency

Interrupt Latency

Context Switch

IACK,

Context Switch,

Figure 6.10: Timing diagram of thread interactions and state-transitions
during the dead time component measurements. Time stamps were obtained
at the points indicated in the figure as, t0→3 , using the TSC register of the
IOM .

124

Once the triggerTask instructs the VME I/O module to generate an IRQ, it obtains
timestamp, t0 , and blocks waiting for a software event from the callback registered with
isrTask. When the interrupt service routine is invoked by RTEMS, the Time Stamp Reg-
ister is read again, yielding t1 . The difference, ∆t1 = t1− t0 , proportional to the interrupt
latency, is stored in a histogram structure. The interrupt service routine then unblocks
isrTask, which, being the highest-priority thread, is scheduled for execution when the ISR
returns. Immediately upon entry to this thread, the TSC is read again, giving t2 and the
difference corresponding to the ISR duration plus context switch and scheduling delays,
∆t2 = t2−t1 . The duration of the ISR’s execution is assumed negligible and is neglected in
the remaining time-budget. The isrTask then carries out the VME interrupt acknowledge
sequence (IACK) in order to obtain the identity of the interrupting module. Upon success-
ful completion of the IACK sequence, the registered callback obtains the final timestamp
of the test sequence, t3 , providing the Application Response Latency, ∆t3 = t3− t0 . At
this point, a software event is sent to triggerTask, unblocking it, and the entire test se-
quence begins again. Note, only when triggerTask and isrTask are blocked waiting may
chargenEcho execute.

Loading effects were provided by the low-priority thread, chargenEcho, executing I/O
operations on behalf of the IOM processor. These I/O operations consisted of reading
data produced by a TCP/IP character-generator server running on the Linux host, and
echoing that data back to the host over an RS-232 serial communication medium (see
Figure 6.11). The character-generator server simply produces a stream of client data in
the form a repeating pattern of seventy-two ASCII characters [39]. The client thread
(chargenEcho) reads a random number of characters from the Ethernet link, between 1
and 72 bytes, and writes the data to the serial interface. Randomizing the volume of input
data written and read introduces a degree of variability to the time structure of the I/O
loading thread.

In addition to the load imposed by chargenEcho, the IOM was also subjected to “ping
flooding” by the Linux host. This technique exercises the RTEMS networking stack by
eliciting an ICMP ECHO_REPLY packet in response to an ECHO_REQUEST gener-
ated via the ping utility, a standard program on many Linux distributions [40]. Spec-
ifying, ping -f hostname, from the Linux command-line will issue ECHO-REQUEST
packets as quickly as ECHO_REPLY packets are received, or at 100 Hz, whichever is
greater. Statistics of the ICMP request/reply session are reported upon program (i.e. ping)
termination.

At the conclusion of a specified number of iterations (several million), the test data
was transferred to the Linux machine via TFTP for analysis and plotting.

125

send(nChars)

ICMP ECHO_REQUEST

ICMP ECHO_REPLY

Flood−Ping Scenariosd

par, loop while Loading == TRUE

Low−Priority Workload Scenariosd

Character−Echo Scenariosd

chargenEcho chargenServer minicom rtemsNetTask ping

send(nChars)

recv(nChars)

Figure 6.11: Behavior of the character-echo and ping-flood workload.

6.3.4 Data Transfer Rate Measurements

This component of the system performance measurements is perhaps the most concep-
tually straight forward. As suggested by the section title, the rate of data transfer was
measured between the VME modules and the IOM, and between the IOM and Worksta-
tion processors. The former test consisted of examining several of the methods possible for
data transport across the VME backplane, while the latter testing involved measurement
of data rates on the Ethernet link connecting the two processors.

6.3.4.1 Apparatus

The equipment used to determine data rates between the VME bus and the IOM consisted
of the same components as described in Section 6.3.2. Measurements of the Ethernet
traffic rate between the RTEMS and Linux hosts were recorded simultaneously with the
dead time information.

6.3.4.2 Methodology

Several of the available VME data transfer mechanisms were tested, as suggested in [41].
The data transfer methods included memory-mapped read access, as well as 32 and 64-bit
block transfers from individual modules. In addition, the chain block transfer functionality
of the CAEN digitization modules was also tested for 32-bit data widths. Throughput for

126

these data access methods was determined by the same technique as that utilized in Section
6.3.1.2. That is, time stamps were obtained from the TSC register to delineate the start
and finish of the read routines. The difference of these time stamps provides the duration
required to transfer the specified number of bytes from the VME modules to the IOM .

During the testing of Section 6.3.2, data rates were recorded using Lucid’s built-in
variable, Lucidbytes, which maintains a running tally of the number of bytes of data re-
ceived from the IOM. In this way, it was possible to determine the data rate generated by
the acquisition process as a function of input trigger rate.

6.4 Summary

This chapter began with a high-level description of the Lucid DAQ and showed that it
may be logically decomposed into three major pieces: the first-level trigger system (TL1),
the digitization modules and IOM processor, and the Workstation processor executing
the Lucid software application. Although the performance of the TL1 system was not
measured, its impact is propagated to the downstream elements of the DAQ through the
influence of the INHIBIT circuit. This circuit, in concert with the “event-by-event” global
acquisition algorithm, permits application of a simple queueing model to the digitization
and IOM components of the Lucid DAQ. In this model, the system may be in only one of
two states: BUSY or IDLE. From this description, the input event-loss probability of the
DAQ is provided by Erlang’s B-formula for the single server queueing system.

Next, the composition of the dead time was examined, revealing that the sequence of
events comprising the dead time form fundamental, time-critical operations for the acqui-
sition system. The particular sequence illustrated in Figure 6.2 is dependent upon the algo-
rithm governing the acquisition process, but the same components of the sequence would
be present within most data acquisition schemes. Following that, the timing mechanisms
utilized in the measurement of Lucid’s dead time were described. Finally, a description
of the system performance measurements was given, including an account of the method-
ology and equipment that was used. In the next chapter, the results of the measurements
described here will be presented.

127

CHAPTER 7

DATA ANALYSIS

Data obtained from the measurements described in the previous chapter are analyzed and
presented here. These measurements include:

1. CAMAC and TSC clock calibrations,

2. The experiments performed using the photo-nuclear physics equipment at DFELL:

(a) input signal distributions

(b) dead time and its major components: Application Response Latency and read-
out duration

(c) Erlang-losses

(d) Ethernet bandwidth requirements produced by the IOM-to-Workstation data
stream

3. A detailed examination of the fundamental processes comprising the I/O Manager’s
operation. These tests sought to measure the IOM’s capabilities in isolation from
Lucid application code, and they include measurements of:

(a) interrupt, context-switch, and Application Response Latency latencies

(b) VME-to-IOM data transfer duration as a function of software method and data
volume.

For the latter items, 3(a) and 3(b), several relevant results from other researchers are shown
for relative comparison to the results presented here.

In the following, it is important to note that systematic uncertainties have not been
factored into the data analyses: the calculated uncertainties are statistical only.

128

7.1 Timing Mechanism Calibration

Recall from Section 6.3.1, the devices used to measure the duration of hardware and soft-
ware events of interest are simple counters, which increment in response to periodic input
pulses. In order to convert the dimensionless number of accumulated pulses into a proper
time, they must be acquired over a known period of time. This was accomplished by per-
mitting each counter to accumulate pulses for a period of one second, as determined by
the hardware/software timing system of the IOM. At the conclusion of each one second
interval, the number of counts accumulated by the timing mechanism was recorded. This
process was repeated over half-hour and twenty-four hour intervals for the CAMAC and
TSC timing systems, respectively. The factors necessary to convert the number of counter
“ticks” into a proper time interval were thus obtained.

The number of pulses per period was determined either from a sum of pulses per
period, or from the difference between adjacent timestamps, for the SAL clock and the
TSC measurements respectively. From this data, key statistical parameters were calculated
in the usual manner:

x =
1
N

N−1

∑
i=0

xi (7.1)

σx =

√√√√ 1
N−1

N−1

∑
i=0

(xi− x)2 (7.2)

σx =
σx√

N
(7.3)

where x , σx , and σx are the average, standard deviation, and standard deviation of the
mean (SDOM), respectively, of the number of pulses per sampling period. The results of
these calculations are summarized in Table 7.1 for each clock device.

Conversion Factor x̄ ±σx̄

SAL Clock, α−1
s 4989040 20

Pentium III TSC, α
−1
3 451029600 1

Pentium IV TSC, α
−1
4 2394192114 138

Table 7.1: Clock conversion factors and their uncertainties. Units are
ticks/second.

For both of the clock systems discussed here, uncertainty due to oscillator drift has

129

been assumed negligible. That is, the oscillator components of the two clock systems have
been treated as being ideal. This permits attributing variation in the counts per sampling
period as being due solely to variations in the scheduling of the software mechanism re-
sponsible for obtaining the number of pulses. This variability is apparent in the plots of
Figure 7.1, each of which is a histogram of the number of oscillator pulses recorded per
one second sampling interval, for each clock mechanism.

The inverse of the “tick rates” for each of the clock systems were utilized throughout
the remaining analyses to convert the dimensionless number of ticks into properly dimen-
sioned periods describing the events of interest. These conversion factors are summarized
in Table 7.1, along with the means, x , and their uncertainties (SDOM), σx .

4.80 4.90 5.00 5.10 5.20

10
0

10
1

10
2

10
3

10
4

10
5

4.510292 4.510296 4.510300

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
um

be
r

of
 O

cc
ur

re
nc

es

2.393 2.394 2.395

Counts per Second

10
0

10
1

10
2

10
3

10
4

10
5

x 10
6

x 10
9

x 10
8

Figure 7.1: Histograms of SAL clock and time-stamp counter (TSC) fre-
quency measurements. Top: CAMAC SAL clock, Middle: 450 MHz Pen-
tium III PC, and Bottom: 2.4 GHz Pentium 4 PC.

130

7.2 DFELL Results

These measurements were performed to quantify the dead time incurred by the Lucid data
acquisition system when it is subjected to realistic loading conditions, as would occur
during an actual experiment. Loading was implemented by triggering a logic pulse from
constant fraction discriminators in response to above-threshold analog signals generated
by the Blowfish PMT array as it detects the decay products of a radioactive source. This
hardware-level signal (TL1) may, in turn, cause a VME module to generate an interrupt
request, thereby invoking a readout response from the IOM and accumulating dead time.
Refer to Figure 6.6 for an illustration of the hardware and control signals used during this
phase of testing.

Data-taking sessions were organized sequentially according to their run number, with
each run further characterized by the presence or absence of several conditions to which
the Lucid DAQ is sensitive:

1. The mean frequency of digital output pulses generated by constant fraction discrim-
inators in response to analog input. These are the events that drive the DAQ.

2. The occupancy ratio of the VME digitization modules: they were configured to
produce either 3 or 32 channels of input per input event, per module, on a per-run
basis (see Section 6.3.2.2).

3. The operation of compression software (i.e. gzip) on the Lucid host. This software
was expected to negatively affect the acquisition process by triggering the network
stack’s (TCP) rate-control mechanism, thus throttling the Ethernet data stream pro-
duced by the IOM, prior to its being written to permanent storage.

Given their impelling role in the data acquisition process, the time distribution of input
events will be examined next.

7.2.1 Input Pulse Distributions

In order to produce input signals to drive this series of measurements, detector elements
of the Blowfish array were exposed to the background-radiation signals present in the de-
tector vault at the DFELL. This signal is radiated by surfaces at that location that have
become “activated” due to γ-ray bombardment over long periods of time. Although not at
physically hazardous levels, the rate of radioactive decays present in the detector vault is
substantially greater than the average level of background radiation. The rate at which

131

Blowfish produces signals was then enhanced and adjusted by altering (lowering) the
threshold-voltages of the CFD modules connected to the photomultiplier tubes.

As discussed in Section 6.3.2.1, demonstrating the Poisson-nature of the input signals
was important these reasons:

1. Poisson-distributed events are the “most random” type of input signal possible and
hence, are an effective stressor of the system under study.

2. Queueing models of DAQ behavior lend themselves well to analytical methods if
the input process is distributed in time according to a negative exponential function.

3. Accelerator-induced nuclear reactions are stochastic processes known to approxi-
mate a Poisson distribution. Thus, Poisson input processes form a realistic impetus
to the system under test.

One method of obtaining a quantitative measure of the agreement between a measured
distribution and an analytical distribution is to perform a chi-squared (χ2) test. The χ2 test
provides the means to evaluate how similar a measured quantity is to an assumed form.

In this instance, the number of pulses generated by the CFDs and counted by a CA-
MAC scaler module (LeCroy 2551) were assumed to obey Poisson statistics. Using a form
of χ2-test known as a reduced chi-squared, or χ2

r , the “goodness of fit” of this assumption
may be analyzed using the equation:

χ
2
r =

1
N−2

N

∑
k=1

(
Mk−E

σk

)2

(7.4)

where Mk = mk
Tk

is the number of CFD pulses (hence, the number of decays) recorded in the
kth sampling interval of duration T, E = 1

N ∑
N
k=1 Mk is the number of CFD pulses averaged

over the entire run of N samples, and σk =
√

Mk
Tk

is the uncertainty in the number of CFD
pulses per sampling interval, assuming the counts follow a Poisson distribution.

The output of this test is a single scaler value, indicating how well the distribution
of measured data agrees with the assumption of a Poisson distribution: results near unity
indicate that the errors between the empirical data and the model are randomly distributed.
Results differing significantly from unity indicate problems fitting the model to the data,
problems with the analysis, or both. The results of performing a reduced-χ2 test for the
data of each run are plotted in Figure 7.2.

While the majority of data points are clustered around χ2 ≈ 1 , validating the assump-
tion of a Poisson input signal for those data points, approximately one dozen of the 63

132

150 160 170 180 190 200 210 220 230

Run Number

0

10

20

30

40

50

χ2
(R

ed
uc

ed
)

3 Channels -- w/o gzip
32 Channels -- w/o gzip
3 Channels -- with gzip
32 Channels -- with gzip

Run 228

Run 227

Figure 7.2: Reduced -χ2 of input pulses. The run numbers are indicative of
the sequence of data recording.

data points (most prevalent at the higher run numbers) possess reduced chi-squared values
that differ considerably from the ideal value of unity.

Recall from the measurement description provided in Section 6.3.1, that the CFD and
SAL-clock pulses were both accumulated in the same CAMAC scaler module and that
both values were recorded every Tk = 0.5 seconds over each run’s duration. Examples of
the raw scaler data thus obtained are illustrated in Figure 7.3, for runs 227 and 228, which
possess chi-squared values differing from unity by the greatest margin.

Figure 7.3 indicates abrupt deviations from the mean on both channels of the CAMAC
scaler. Note the lack of correlation between irregularities present in each channel: if these
features were the result of the IOM software being delayed in extracting the values from
the scaler, it could be expected that both channels would feature correlated deviations
from the norm in proportion to the period that readout was delayed. As this feature is not
present, it may be tentatively concluded that the output processes, data extraction by the
IOM, was not responsible for the data sets’ irregularities. Hence, either the input processes
are not well-behaved, or the scaler is miscounting/mis-storing the data.

It is interesting to note that phenomena similar to the effect seen on the scaler channel
was also documented during earlier measurements carried out by another member of the
same research group as this author [42]. Although unconfirmed, it is suspected that the
input signal level “threshold” setting on the CF8000 discriminator may have been adjusted
to an unstable setting and/or temperature and fatigue effects may have caused the count-

133

0 50 100

Sample Index (0.5 s/Sample)

0

2500

5000

7500

10000

12500

15000

Sc
al

er
 C

ou
nt

Run 228
Run 227

Channel 2: SAL Clock

Channel 1: CFD

Figure 7.3: Raw scaler counts of input pulses for runs 227 and 228. Note,
the SAL clock values have been scaled down by a factor of 103 to fit on the
same plot.

rate shift seen in the CFD channel. This effect would be orthogonal to any miscounting
artifacts produced by the CAMAC scaler device.

7.2.2 Dead Time Measurements

Recall from Section 6.2, the dead time incurred via the event-by-event data readout algo-
rithm may be considered as being composed of the sum of two subintervals:

1. Application Response Latency - the period originating with the arrival of a suc-
cessful TL1 signal and terminating upon the activation of the software application
intended to service that event.

2. Readout Duration - simply that period required to move digitized event data from
the buffers of the VME modules to a buffer on the IOM.

The average dead time of N×M such events, τ , may be calculated using Equation 7.1 and
the fact that the average of a sum is equivalent to the sum of the averages:

τ = τ1 + τ2 = τ1 + τ2 (7.5)

τ1 =
1

NM

(
α
−1
s

N

∑
i=1

M

∑
j=1

τi j

)
(7.6)

134

τ2 =
1

NM

(
α
−1
4

NM

∑
j=1

τ j

)
(7.7)

σ
2
τ̄ = σ

2
τ̄1

+σ
2
τ̄2

(7.8)

where τ1 and τ2 are the averages of the Application Response Latency and the readout
duration, respectively, and the clock conversion factors (the α’s) are as denoted in Table
7.1. Application of these calculations to the data gathered at DFELL is shown in Figure
7.4, where the solid lines indicate the result of applying weighted-average calculations to
data sets delineated by the number of channels of data read out per module (i.e. either 3
or 32 channels). The weighted average of a set of data and their uncertainties, x̄i±σi , is
given by [23]:

x̄w =

N

∑
i=1

wix̄i

N

∑
i=1

wi

(7.9)

where the “weights”, wi , are simply the inverse squares of the uncertainties associated
with the measurement:

wi =
1

σ2
i

(7.10)

and the uncertainty in the weighted-average itself, σw , is

σw =

(
N

∑
i=1

wi

)− 1
2

(7.11)

The final result of applying this statistical analyses is a dead time of 50.9 µs for the 3-
channel data, and 92.9 µs for the 32-channel data, with null uncertainties within experi-
mental precision.

A note must be made here regarding the uncertainty calculation, σ1, for the average
Application Response Latency, τ̄1. Recall from Section 6.3.2.2, in order for the measuring
process to be reasonably unobtrusive to the workload itself, the clock counts for N = 1000
of these events were allowed to accumulate on a scaler channel before readout. Thus,
measurements of individual event durations were unavailable for use in calculating the
standard deviation of the distribution, as in Equation 7.2 above: only the distribution of
the averages was available. However, it may be shown that an estimate of the distribution’s
standard deviation may still be obtained from the distribution of the averages [43]. This

135

5000 10000 15000 20000 25000

Average Trigger Rate [Hz]

0

25

50

75

100

125

150

175

200

A
ve

ra
ge

 D
ea

d
T

im
e

[µ
s]

3 Channels -- w/o gzip
32 Channels -- w/o gzip
3 Channels -- with gzip
32 Channels -- with gzip

Figure 7.4: Average dead time, τ̄, as a function of average trigger rate, λ.
The solid lines indicate the results of the weighted-average calculations.

results in the uncertainty being expressible as:

σ1 =
√

Nσe (7.12)

where σe is the standard deviation of the distribution of averages. That is, σe is a product
of applying the following statistical considerations to the Application Response Latency
measurements, based on the available information and the perturbation constraint:

τ̄ j =
1
N

N

∑
i=1

τi (7.13)

τ̄x =
1
M

M

∑
j=1

τ̄ j =
1

MN

MN

∑
i=1

τi (7.14)

σ
2
e =

1
M

M

∑
j=1

(
τ̄ j− τ̄x

)2 (7.15)

where τ̄ j is the data read out from the CAMAC scaler averaged over N = 1000 events, τ̄x

is simply the mean of the sum of previous means, τ̄ j , and σe is the standard deviation of
the distribution of means, τ̄ j .

It must also be noted that 32-channel data-set in which compression software (gzip)
was utilized was truncated after approximately 7 kHz input rate due to the adverse impact
on system performance (see Section 7.2.3).

136

7.2.2.1 Application Response Latency and Readout Duration

Of the various means by which the Lucid DAQ may incur dead time, responding to
hardware-generated requests for service is the most frequent and arguably the most time-
critical. This section presents an analysis of the individual contributions to dead time due
to Application Response Latency and data readout duration.

Plotted in Figure 7.5 are the results of applying Equations 7.6 and 7.7 to the dead time
measurement data accumulated at DFELL. Again, the solid lines represent the weighted-
averages of the data sets: 20.0 µs for the Application Response Latency, and 72.1 µs and
31.1 µs for the 32-channel and 3-channel readout rate cases, respectively. The uncertainties
associated with these values is zero within experimental precision.

5000 10000 15000 20000 25000
0

50

100

150

A
ve

ra
ge

 A
pp

lic
at

io
n

R
es

po
ns

e
L

at
en

cy
 [

µs
]

3 Channels -- w/o gzip
32 Channels -- w/o gzip
3 Channels -- with gzip
32 Channels -- with gzip

5000 10000 15000 20000 25000

Average Input Rate [Hz]

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 R
ea

do
ut

 D
ur

at
io

n
[µ

s]

3 Channels -- w/o gzip
32 Channels -- w/o gzip
3 Channels -- with gzip
32 Channels -- with gzip

Figure 7.5: Application Response Latency (top) and Readout duration (bot-
tom), as functions of the average input trigger rate. The solid lines indicate
the weighted average for each data set.

Note the correlation between the outlying data points in the dead time plot, Figure 7.4,

137

and the outliers in the Application Response Latency plot of Figure 7.5. Also, note the
lack of such outliers in the Readout duration plot of Figure 7.5, thus indicating that some
process is prolonging the IOM’s average response time.

It is be hypothesized that these outliers are due to an unfavorable combination of fac-
tors. First, note that these points correspond only to those data sets where the VME mod-
ules were configured to produce 32 channels of data per module, per event, and the Lucid
host was executing compression software (gzip), in real-time, on the incoming network
data stream prior to committing it to backing store. Next, recall the fact that the Appli-
cation Response Latency period is initiated by a hardware signal, and terminated by a
software-initiated signal. Thus, if the software process was occasionally delayed in pro-
viding the signal to delineate the end of that period, the average length of the period would
be extended in proportion to the frequency and length of those delays.

If the gzip program on the Lucid host cannot process the incoming data stream from
Lucid, this will cause Linux kernel’s tcp receive window to become full, in turn triggering
TCP’s data-flow control mechanism. In this case, the Lucid host will transparently sig-
nal the networking stack of the IOM, indicating that the socket to which VmeReader is
attached can temporarily accept no more data. This will prevent the IOM from making
progress in draining its DataBuffer. If this buffer should reach its “high-water mark”, the
Acquisition thread will suspend its operations, becoming delayed in providing the end-of-
Application-Response-signal.

There is evidence to support these ideas in the form of the results seen for the average
data rate as observed by the VmeReader process on the Lucid host. The results of those
measurement are presented below, in Section 7.2.3.

7.2.2.2 Erlang Losses

Applying the average dead time and input event rates found in Sections 7.2.1 and 7.2.2
to the Erlang-B equation reveals the event-loss characteristics as a function of input event
arrival rate. The Erlang-B equation and its associated uncertainty for the m = 1 case are re-
expressed here, where the over-score notation has been dropped from those terms denoting
mean values:

B(ρ = λτ, m = 1) =
ρ

ρ+1
(7.16)

σ
2
B =

(
τ

(ρ+1)2 σλ

)2

+

(
λ

(ρ+1)2 στ

)2

(7.17)

Equations 7.16 and 7.17 were applied to the data of each run, yielding the data points of
Figure 7.6. The solid curves in the figure were obtained by using the weighted-average

138

0 5000 10000 15000 20000 25000

Average Trigger Rate [Hz]

0

10

20

30

40

50

60

70

E
rl

an
g

L
os

se
s

[%
]

3 Channels -- w/o gzip
32 Channels -- w/o gzip
3 Channels -- with gzip
32 Channels -- with gzip

Figure 7.6: Erlang loss as a function of input trigger rate. The solid curves
represent the results of using the dead time weighted averages obtained in
Section 7.2.2 in the Erlang-B equation, B(ρ = λτ, m = 1) .

values for dead time found in Section 7.2.2.
In light of these results, the DAQ might be further characterized as a type of “filter”,

with respect to the effect it has on an input information flow. In this sense, one can define
its cut-off frequency, or “-3 dB point”, as being the average input-event rate for which
the DAQ loses 1/2 of all events. Referring to Figure 7.6, these cut-off frequencies oc-
cur at approximately 10.5 kHz and 20 kHz for the 32-channel and 3-channel test cases,
respectively.

Comparing Figure 7.6 to the analytical model of Lucid, developed in Section 6.1.2 for
the event-by-event data acquisition mode, it may be deduced that the model is a sound
representation of the DAQ’s behavior in this mode of use.

7.2.3 VmeReader Data Rate

These measurements examined the Ethernet data rate produced by the IOM. Rather than
instrument the IOM to directly measure this property and risk contributing an artificial
workload, two intrinsic features of the Looker process on the Lucid workstation were used
to monitor this information.

The Looker makes several of its internal variables available for programmer use. Two
of these were used to monitor the rate of the IOM-produced data stream:

1. LUCIDbytes - a running-sum of the bytes accumulated from the data stream, per

139

run.

2. LUCIDtime - a time-stamp, as returned by the time() system call. This is applied to
the lh_time field of a LucidRecord structure by the VmeReader when it adds a new
record to the shared-memory pool, accessible by the Looker and Writer consumer
processes.

Using these variables in an offline-analysis session, the average data rate per run was
calculated as:

R =
Total bytes per run

endrun time− startrun time
=

N
t1− t0

=
N
∆t

(7.18)

σ
2
R =

(
∂R
∂N

σN

)2

+
(

∂R
∂(∆t)

σ∆t

)2

=

(
N

(σt1 +σt0)

(∆t)2

)2

(7.19)

where σN = 0 and, due to the one second granularity of the time() system call, the uncer-
tainty of the run duration is simply σ∆t = 2 [s]. Application of these two equations to the
data gathered at DFELL results in the plot shown as Figure 7.7.

0 5000 10000 15000 20000 25000

Average Trigger Rate [Hz]

0

2

4

6

8

A
ve

ra
ge

 D
at

a
R

at
e

[M
B

/s
]

3 Channels -- w/o gzip
32 Channels -- w/o gzip
3 Channels -- with gzip
32 Channels -- with gzip

Figure 7.7: Average Ethernet data rate seen by the Reader process. Note the
apparent “plateau effect” due to compression software affecting the Ethernet
data stream.

Ideally, the duration of each test run should be nearly the same for the Workstation as
it is for the IOM. However, the effect of gzip on the data stream prior to its commitment
to permanent storage is readily apparent in Figure 7.7. The effected data points in this plot
are illustrated by the solid, red connecting line. The rate at which this “plateau effect”

140

occurs is dependent upon several factors, such as Workstation CPU and front-side bus
rates, the type of compression software (i.e. gzip, bzip, compress, etc.) and the tuning
options utilized, and even the operating system itself.

7.3 Dead Time Component Results

These measurements are a more detailed study of the processes contributing to the DAQ’s
dead time. In these tests, the focus is on the IOM processes in isolation. That is, in the
absence of any IOMReader executable. Although a Linux workstation was used to store
test data produced by the IOM and also to provide an artificial workload, Lucid played no
role in these tests.

The following timing characteristics comprising the dead time of the IOM were mea-
sured:

1. IRQ latency - the period originating with the issuance of an interrupt request (IRQ)
signal from a CAEN v513 digital I/O module and terminating when the correspond-
ing interrupt service routine (ISR) is dispatched by the IOM.

2. Context Switch delay - the period of time required to schedule the next thread to
run, save the context of the currently executing thread, load the context of the new
thread, and begin execution of the new thread.

3. Application Response Latency - formally defined in Section 6.2.4 as the period orig-
inating with occurrence of the hardware issued IRQ and ending upon entrance to
user application code dedicated to servicing that event. This period encompasses
the two previous periods, plus the duration of the VME IACK sequence carried out
by the sis1100 driver code.

4. Data Transfer rates - the memory-mapped (mmap), block transfer (BLT), and chain
block transfer (CBLT) readout rates from CAEN VME modules to the IOM, via the
sis100 VME-PCI interface.

While these are all fundamental operations of the IOM, the first three may constitute fun-
damental operations for any I/O-driven computing system.

Section 7.3.1 presents the results of measuring 1, 2, and 3, as previously detailed in
Section 6.3.3, as well as reporting results for comparison from the paper that inspired the
methodology of those measurements. Section 7.3.2 presents the VME-to-IOM readout
rate data, in addition to results for comparison from research examining similar data using
several VME-PCI interfaces on a Linux host.

141

7.3.1 IOM Latencies

The probability distributions of the interrupt, context switch, and Application Response
Latency measurements, described in Section 6.3.3, are shown as semi-log plots in Figures
7.8 and 7.9. Table 7.2 summarizes the statistical parameters for each distribution.

5 10 15 20

10
0

10
2

10
4

10
6

5 10 15 20

10
0

10
2

10
4

10
6

10
8

C
ou

nt
s

0 10 20 30 40

Duration [µs]

10
0

10
2

10
4

10
6

Figure 7.8: Latency distributions for an otherwise idle IOM system. From
top to bottom: interrupt, context switch, Application Response latencies.

142

10 20 30 40

10
0

10
2

10
4

10
6

10 20 30

10
0

10
2

10
4

10
6

C
ou

nt
s

0 10 20 30 40 50

Duration [µs]

10
0

10
2

10
4

10
6

Figure 7.9: Latency distributions for the IOM under heavy loading by low-
priority I/O tasks. From top to bottom: interrupt, context switch, and Appli-
cation Response latencies.

143

Parameter
Idle System

max (avg ±σ)
Loaded System
max (avg ±σ)

Interrupt Latency 14.7 (7.3±0.4) 33.4 (7.5±1.0)
Context Switch Delay 18.2 (3.0±0.2) 29.1 (3.3±1.3)

Application Response Latency 32.3 (16.5±0.4) 43.7 (17.5±2.6)

Table 7.2: RTEMS IOM latency timing results. All times are in units of µs.

Although the general shape of the distributions is consistent between the idle and
loaded systems, the effect of loading is readily apparent in Figure 7.9, as the distribu-
tions appear to be “smeared” towards greater time values. This is logical, as one might
intuitively expect the loaded system to take more time, on average, to accomplish the same
set of tasks that it performed when idle. There are simply more tasks competing for pro-
cessor time and therefore, the probability is proportionally greater that the code path to
schedule and execute a thread will be prolonged. Similar reasoning accounts for the scal-
ing of the parameters’ maximum values, which are approximately an order of magnitude
greater than their mean. The Application Response Latencies are an exception to this, as
their maximum values are approximately twice the mean value.

By way of comparison, results obtained for a similar RTEMS system and measurement
algorithm are summarized in Table 7.3 [34].

Parameter
Idle System

max (avg ±σ)
Loaded System
max (avg ±σ)

Interrupt Latency 15.1 (1.3±0.1) 20.5 (2.9±1.8)
Context Switch Delay 16.4 (2.2±0.1) 51.3 (3.7±2.0)

Table 7.3: Latency measurements for a PowerPC-based RTEMS system
[34]. All times are in units of µs.

In that paper, the system under test was a MVME2306 PowerPC 604, with a CPU
clock frequency of 300 MHz running the RTEMS operating system with its native API.
The results obtained in this thesis for the 450 MHz PC fall within a similar numeric range.

It should be noted that the IRQ source in “Open Source Real Time Operating Systems
Overview” was an on-board timer, whereas the source used in the tests of this thesis was
an external device: a CAEN v513 module connected to the IOM via the sis1100 VME-
PCI bridge and gigabit optical fiber. After all, the objective of this test was not to test the
latency of RTEMS on the pc386 BSP, but to test the latency of the system in a global sense,
using the same equipment as would be utilized in a nuclear physics experiment.

As a final note for comparison, measurements of the scheduler latency of Linux re-
ported in one research paper (conceptually equivalent to the context switch latency, de-

144

fined here) indicate that while the average result was within one order of magnitude to that
found for RTEMS in this thesis, the worst-case latencies differ from the average by ap-
proximately three orders of magnitude [44]. Similar results were found in other studies of
Linux’s scheduling capabilities [8] [45]. These findings suggest that the quality of service
(QoS) achievable for a data acquisition system application under Linux may be consider-
ably less than what is possible by using a real-time executive for a similar application.

7.3.2 VME to IOM Data Transfer Rates

These tests are a measure of data transfer duration as a function of transfer size and tech-
nique. Studying the duration of the software methods controlling the VME-to-PC transfer
of data reveals two pieces of information:

1. the minimum duration of the method. This may be thought of as the minimum
“cost” of invoking a particular read method.

2. the rate of data transfer from the VME module(s) to the PC, as determined by the
VME access type (CBLT, etc.) and byte-width.

The former data indicates the minimum execution time of a particular “read” method,
and hence, it’s applicability in scenarios where time-constraints exist, while the latter is
simply a measure of the bandwidth used to transfer data between the CAEN VME modules
and the IOM. Both are important parameters to know when designing software for an
experiment.

Figure 7.10 portrays A24/D32 memory-mapped accesses (simple pointer de-referencing
operations in the C programming language). Figure 7.11 illustrates A24/D32 and A24/D64
block transfers from a CAEN v862 QDC module, as well as A32/D32 chain block trans-
fers from the chain of modules described in Section 6.3.2.1. All data points in these plots
are statistical averages, calculated in the sense of Equation 7.1, and the solid lines are the
result of applying linear regression analysis (i.e. the method of least squares) to those
data points. The equations resulting from the linear regression analysis are also shown
in each plot accompanying their appropriate data set. The information determined from
these analyses are summarized in Table 7.4.

Based on the results of this analysis, it is now possible to determine the DMA threshold

for the IOM system. This may be defined as the minimum amount of data that must be
present for read out such that it becomes more efficient to use BLT/DMA operations,
rather than single-cycle VMEbus accesses. The existence of this threshold is due to the
fact that memory-mapped, single-cycle VME accesses are both atomic and deterministic,

145

0 5000 10000 15000

Transfer Size [Bytes]

0

5000

10000

T
ra

ns
fe

r
D

ur
at

io
n

[µ
s]

Mmap Read - A24/D32

y = 0.771x - 0.192 [µs]

Figure 7.10: Duration of memory-mapped (mmap) read versus transfer
size. Readout was performed from a single VME module, a v862 QDC.

Method
Rate

[MB/s]
Min. Setup Time

[µs]
Mmap – D32 1.3 -0.2±0.3
BLT – D32 18.2 18.2±0.4
BLT – D64 25.5 18.8±0.1

CBLT – D32 17.9 24.1±0.0

Table 7.4: VME-to-IOM data transfer rates.

while block transfers possess neither of those qualities. In their present implementation,
the block transfer software methods are synchronous, and hence will block while waiting
for data.

The DMA threshold may be calculated by equating the linear regression D32 BLT and
CBLT equations to the D32 mmap equation and taking the mean of the resulting values.
This operation produces a value of 30 bytes, or approximately 8, 4-byte data words. Note,
this result holds only for the combination of the RTEMS version of the sis1100 VME-PCI
device driver and the particular VME modules utilized in this portion of testing.

It is interesting to note that version 2.02 of the Linux/NetBSD driver distributed for
use with the sis1100 interface defines a similar threshold, with the exception being that
software sets a default threshold value of 24 words, or 192 bytes. This discrepancy may
be attributable to the hardware used during that testing, or to the greater overhead incurred
as a result of operating within the Linux and NetBSD kernels, or to a combination of the

146

0 100 k 200 k 300 k 400 k 500 k
0

5 k

10 k

15 k

20 k

25 k

30 k

BLT - A24/D32
BLT - A24/D64

0 200 400 600 800

Transfer Size [Bytes]

10

20

30

40

50

60

70

T
ra

ns
fe

r
D

ur
at

io
n

[µ
s]

CBLT - A32/D32

y = 0.055x + 18.232 [µs]

y = 0.039x + 18.827 [µs]

y = 0.056x + 24.149 [µs]

Figure 7.11: Block transfer (BLT) duration as a function of transfer size.
Top: BLT duration from a single CAEN v862 module. Bottom: Chain
Block Transfer (CBLT) duration for a VME Chain consisting of 7 QDC and
3 TDC modules.

two factors.

The results obtained for this section of testing may be compared to those found in
one unpublished report, whose subject was performance measurements of several different
VME-PCI bridge devices operating under Linux 2.2.12 on a dual-CPU, 400 MHz Pentium
II platform [41]. Such a comparison serves as a measure of the performance of the sis1100
VME-PCI interface under RTEMS, relative to other systems with similar functionality.

Although the report’s author did not test the interrupt subsystems of the various inter-
faces, and a precise description of the timing mechanism was also missing, performance
figures for readout rates from a VME RAM module were available, and it is these results
which have been compiled in Table 7.5. Three interfaces were tested in that report, but
the results of only two are shown here, as tests of the omitted device shared no points of

147

comparison in common with the measurements of this section of the thesis.

Method
National Instruments
VME-PCI 8026 kit

SBS Bit 3
Model 617 Adapter

Mmap - D32 2.1 MBps 1.5 MBps
BLT - D32
Setup Time

11.5 MBps
50 µs

22.5 MBps
150 µs

BLT - D64
Setup Time

13.6 MBps
50 µs

N/A

Table 7.5: Performance figures for several VME-PCI bridge devices on a
Red Hat Linux system [41].

7.4 Summary

This chapter presented an analysis of the data obtained by the methods described in Chap-
ter 6, providing several performance metrics of the Lucid data acquisition system, includ-
ing dead time, event-loss and data transfer rates, and IOM latencies.

An investigation of the timing mechanisms used to measure the duration of events of
interest produced several conversion factors necessary to transform unitless pulse counts
into properly dimensioned periods. These conversion factors were utilized in each of the
remaining experiments.

A study of the data gathered using the experimental apparatus at the Duke Free-
Electron Laser laboratory generated values for several important DAQ parameters. Al-
though it was discovered from the analysis of data gathered at Duke Universiy that portions
of input event inter-arrival time data could not be definitively catagorized as originating
from Poisson processes, the behavior of the DAQ was found adhere to a simple, analytical
model of an Erlang-loss system with queueing parameters M/G/1/1.

It was also found that the independent conditions of real-time compression software
use and the IOM’s production of large data volumes may seriously compromise the quality
of service of data acquisition.

Data analysis of IOM latencies and VME-to-IOM data transfer rates indicate that the
performance of the IOM in these areas is comparable to figures produced elsewhere using
similar equipment and measurement strategies.

148

CHAPTER 8

SUMMARY AND CONCLUDING REMARKS

8.1 The Upgrade Project

Contemporary particle-physics measurements rely on automated data acquisition systems
(DAQ) to process information generated by experiment-specific detectors. Given the prob-
abilistic nature of the data involved, numerous measurements must be obtained in order
to achieve a satisfactory level of statistical uncertainty. If experimental events of interest
occur relatively infrequently, the duration required to perform an experiment may become
prohibitively lengthy. The same prohibitive duration might also arise if the DAQ is unable
to acquire data at a rate sufficient to produce the necessary level of statistical uncertainty.

The data acquisition system known as Lucid, developed and employed by U of S re-
searchers, was the subject of a comprehensive upgrade project described herein. The intent
of these upgrades was to capitalize on increased input event rates, such as those expected
from increases in γ-ray flux produced by enhancements to the High Intensity Gamma-
Source facility where the U of S researchers travel to conduct experiments.

Responsibility for the digitization of analog detector signals was largely displaced
from the domain of CAMAC to VME modules. This change reduced data conversion
times from 60 µs to less than 10 µs, while providing approximately twice the channels-
per-module density available with the CAMAC systems at hand. This hardware change
also introduced an increase in theoretical maximum data transfer rates across the back-
planes of the CAMAC and VME crates from 3 MB/s to 40 MB/s, respectively.

Zero/overflow suppression is an operational characteristic of the VME modules em-
ployed in this phase of the Lucid upgrade project. This feature optionally excludes con-
verted data values falling outside an adjustable range, thereby eliminating the processing
time requred to achieve the same effect. This also reduces the volume of data transferred
from the modules to downstream, DAQ processors.

Another beneficial feature gained by the migration from CAMAC to VME is support
for configuring a group of contiguous modules to respond to accesses as though the group
were a single, virtual module. In this configuration, the virtual module supports both

149

chained block read-outs (CBLT) and multicast writes (MCST). A CBLT read access to
the virtual module causes all members of the group to respond in sequence with their
available data, while a single MCST write will be propageted sequentially to all modules
in the group. This capability provides an economical means of VME bus access, as the
bus master need conduct only a single transaction to access all members of “the chain.”

From its origin in the VME digitization modules, data is transferred to a processing
node denoted here as the I/O Manager. In this role, the previous incarnation of Lucid
featured a 40 MHz MVME-167 single-board computer embedded in the VME back-plane.
This system accessed modules on the back-plane via an ASIC, the VMEChip2, which was
unable to perform block transfers from VME slave modules to the host system’s memory.

The post-upgrade system now utilizes the common desktop PC platform, the x86 archi-
tecture, to host the I/O Manager software. The production system has a 2.4 GHz Pentium 4
CPU, and is coupled to the VME hardware by a VME-PCI interface (sis1100) produced by
Struck Innovative Systems. The sis1100 interface consists of two modules communicat-
ing over a gigabit fiber optic link: one module resides on the PCI bus of the I/O Manager,
while the other sits on the VME bus. The sis1100 is capable of block transfer as well as
single-cycle VME bus transactions, and it is able to perform them at rates of 18 MB/s and
1.3 MB/s, respectively.

The advent of new hardware and its new capabilities demanded the addition of soft-
ware to support them. As a first step in the modification of Lucid’s software components,
the real-time operating system of the I/O Manager was shifted from a commercial prod-
uct, pSOS+, to the open-source freely available Real-Time Executive for Multi-processor
Systems (RTEMS). The choice of RTEMS was motivated by several reasons: 1) substan-
tial “in-house” experience was available, 2) prior negative experiences with the vendor
of pSOS+, 3) zero purchase price and complete access to all source code, 4) a responsive
user community was available for consultation, and 5) the presence of features unavailable
with pSOS+, such as runtime (dynamic) loading and linking.

The effort to convert pSOS-dependent code to RTEMS was greatly eased due to the
programming interface they shared in common, the Real-Time Executive Interface Defini-
tion (RTEID). Although the function names differed between the two real-time operating
systems, equivalent functions were available across both. Thus, porting code from pSOS+
to RTEMS was often as simple as directly substituting a pSOS+ function with the RTEMS
equivalent.

Device driver source code supplied with the sis1100 bridge device supported only the
Linux operating system and therefore had to be extensively modified to work from an
RTEMS platform. This work was of considerably more complexity than that involved in

150

porting the I/O Manager software from pSOS+ to RTEMS, requiring driver modifications
in the areas of operating system integration and driver initialization, PCI bus access meth-
ods, interrupt handling, execution context, and inter-process communication. However,
the highest level API from the original Linux driver was retained and even expanded upon
in this phase of the Lucid upgrade project.

System descriptions provided in Chapters 1-3 proceeded from the highest levels of
architectural abstraction, Lucid’s use cases and sub-systems, through to the mid-level, or
mechanistic design, where the collaborative roles of software objects are described, and
finally down to the detailed design level where individual software components are layed
out.

This thesis contributes to the vocabulary of the Lucid data acquisition system by
providing documentation, design descriptions, and terminology for sub-systems where
previously there had been none. In the past, components such as the I/O Manager and
IOMReader application lacked any concrete identity, or clear statement of the function-
ality they provide. As mentioned in the discussion of design patterns (see Appendix C),
the importance of providing a common vocabulary is critical for discussion of the system
under study.

8.2 DAQ Modeling and Performance Measurements

The perspective and techniques afforded by Queueing theory were applied to mathemat-
ically model Lucid’s “event-by-event” data acquisition scheme as an M/G/1/1 queueing
system. Results of this model were demonstrated to be reconcilable and equivalent with
the traditional concept of dead time, long familiar to experimental physicists.

The dead time of a data acquisition system was defined to be (see Chapter 4),

“...a time interval following a registered (or detected) event, during which
the counting system is insensitive to other input events”.

Dead time causes a loss of input events, thereby extending experiment duration, as well
as distorting the statistical distribution of input event inter-arrival times. Thus, dead time
is a key property of data acquisition systems that should be both minimized and well
characterized.

The dead time, its constituent sub-intervals, and the data transfer rate properties of Lu-
cid were measured in a series of tests conducted under realistic conditions and workloads.
Lucid’s dead time was found to be comprised of three main sub-intervals: 1) the VME

151

module digitization period, 2) the Application Response Latency, and 3) the VME-to-I/O
Manager data transfer duration.

The Application Response Latency is a performance metric contributed by this work
and defined as (see Section 6.2.4),

“...that measured on a heavily loaded system for the period originating
with the occurrence of a hardware interrupt request and terminating upon en-
trance to application code dedicated to the handling of that event”.

In this way, the definition encompasses interrupt latency, context switch delays, and the
cost of performing a VME interrupt-acknowledge sequence.

Measurement results for the average Application Response Latency, data transfer du-
ration, and dead time are listed in Table 8.1 for data volumes representative of worst-case
experimental conditions.

Parameter
3 channels

module·event(
∼ 0.15 kB

event

) 32 channels
module·event(
∼ 1.0 kB

event

)
Application Response Latency 20.0 µs 20.0 µs

Readout Duration 31.2 µs 72.1 µs
Dead Time 50.9 µs 92.9 µs

-3 dB input-frequency 20 kHz 10.5 kHz
Avg. Output Bandwidth
@ -3 dB input-frequency

2.7 MBps
@ 20 kHz

5.9 MBps
@ 10.5 kHz

Table 8.1: Summary of IOM performance data measured at DFELL.

Also listed in Table 8.1 are figures for a “-3 dB” input rate and the average Ethernet
bandwidth usage at those frequencies. In analogy with a filter “corner” frequency, the “-3
dB” point corresponds to that input event frequency at which Lucid will lose one-half of
all events.

Given the detrimental effect observed in this testing phase due to the use of compres-
sion software on the real-time data stream, its use on raw, Ethernet data rates above 1.5
MB/s cannot be recommended, or minimally, it should be used with a cautious eye towards
the rate of information flow from the IOM to the user’s Workstation.

The “event-by-event” data collection policy presently employed with the Lucid DAQ
places the responsibility for clearing the TL1 INHIBIT signal with the I/O Manager. Thus,
the dead time incurred for events triggered at the TL1 level is largely governed by the du-
ration of software processes. The negative impact of this policy may be mitigated by dis-
placing to hardware the responsibility for removing the INHIBIT condition (see Appendix
E).

152

In order to study in finer detail the sub-intervals of Lucid’s dead time, another series
of measurements was conducted targeting those periods comprising the Application Re-
sponse Latency. The interrupt latency, context switch delay, and Application Response
Latency were quantified independant from any Lucid-specific code. The results of these
tests are summarized in Table 7.2, reproduced here in Table 8.2 for ease of viewing. These

Parameter
Idle System

max (avg ±σ)
Loaded System
max (avg ±σ)

Interrupt Latency 14.7 (7.3±0.4) 33.4 (7.5±1.0)
Context Switch Delay 18.2 (3.0±0.2) 29.1 (3.3±1.3)

Application Response Latency 32.3 (16.5±0.4) 43.7 (17.5±2.6)

Table 8.2: RTEMS IOM latency timing results. All times are in units of µs.

results were found to be numerically comparable to published figures obtained using sim-
ilar hardware.

The VME-PC data transfer rates were measured for a variety of read-methods and
data widths, the results of which are listed in Table 7.4, also reproduced here in Table
8.3. These tests revealed not only the maximum rate of transfer obtainable, but also the
minimum time required to employ each read-out technique. The values obtained here
compared favorably to those found in an unpublished work exploring similar systems.

The data listed in this table also permits calculation of a “DMA-threshold”: the volume
of data required such that it is more economical to perform a DMA-based block transfer
than single-cycle read accesses. This “threshold” was found to be approximately 8, 4-byte
words.

Method
Rate

[MB/s]
Min. Setup Time

[µs]
Mmap – D32 1.3 -0.2±0.3
BLT – D32 18.2 18.2±0.4
BLT – D64 25.5 18.8±0.1

CBLT – D32 17.9 24.1±0.0

Table 8.3: VME-to-IOM data transfer rates.

Based on the results of these tests, it may be concluded that the combination of com-
mon, desktop hardware and open-source RTOS can be used to realize an acceptable quality
of service for the Lucid data acquisition system.

153

8.3 Ideas for Future Investigation

8.3.1 IOM API Changes

Code which utilizes an API based upon the ORKID/RTEID specs may not be made to exe-
cute on general purpose systems such as Linux, thus precluding the use of those systems as
both development and testing platforms. What is needed is a kernel API common to both
the development and deployment platforms. The POSIX API satisfies this requirement.

The RTEMS implementation of the POSIX API consists of “wrappers” around the
Classic API, thus providing an inexpensive means (in terms of execution time) to develop
software capable of executing on both Linux workstations and RTEMS targets. That is,
software may be developed, tested, and debugged on the host workstation prior to deploy-
ment and final testing on the intended RTEMS target platform.

8.3.2 Modifications to Sis1100 Device Driver

The ability to attach user-defined callbacks to special events, such as link-loss and link-
reacquisition, would be a useful feature, and provide additional robustness to the instru-
mentation interface.

Providing a VME API as described in a CERN technical report for the ATLAS detector
may aid portability across different platforms and applications [46]. As it now exists,
libVME is largely compliant with the services outlined in the CERN document, and would
require mainly cosmetic refactoring to achieve full compliance.

8.3.3 Acquisition-DataWriter Interaction

Instead of the current semaphore-based synchronization scheme, the interaction between
the
Acquisition and DataWriter threads may be better suited to a message-queue-based
system. This configuration would simply consist of having Acquisition send messages
to the queue, on which the DataWriter would block-waiting for activity. The messages
would be drawn from a fixed-sized, resource pool and need only consist of a pointer to
the next DataRecord to be transferred to the Lucid host. If the pool of messages becomes
exhausted, this would force Acquisition to block, while DataWriter consumes and
frees resources necessary for Acquisition to resume execution.

154

REFERENCES

[1] J. Park and S. MacKay, Practical Data Acquisition for Instrumentation and Control

Systems. Elsevier, first ed., 2003.

[2] T. A. Collaboration, “Atlas detector and physics performance,” tech. rep., ATLAS
Collaboration, 1999.

[3] H. R. Weller, “The higs facility: A free-electron laser generated gamma-ray beam
for research in nuclear physics,” Modern Physics Letters A, vol. 18, pp. 1569–1590,
2003.

[4] P. C. Johns and et al, “Medical x-ray imaging with scattered photons,” in Opto-

Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, The
International Society for Optical Engineering, 2002.

[5] R. K. Bock and et al, Data Analysis Techniques for High-Energy Physics. Cambridge
University Press, second ed., 2000.

[6] D. Murray, “Data acquisition and analysis systems.” SAL Internal Report: Comput-
ers and Control System, 1988.

[7] D. Murray, “Lucid: A unix-based data acquisition and analysis system for nuclear
physics,” in IEEE Seventh Conference Real-Time ’91 on Computer Applications in

Nuclear, Particle, and Plasma Physics, IEEE Nuclear and Plasma Physics Society,
1991.

[8] L. Abeni, “A measurement-based analysis of the real-time performance of linux,” in
IEEE Real-Time Embedded Technology and Applications Symposium (RTAS), (San
Jose, California), September 2002.

[9] W. E. Norum, “An improved data acquisition system at the saskatchewan accelerator
laboratory,” IEEE Transactions on Nuclear Science, vol. 41, pp. 52–54, 1994.

[10] W. D. Peterson, The VMEbus Handbook. VMEbus International Trade Association,
fourth ed., 1997.

[11] D. H. R. Larsen, “Camac: A modular standard,” U.S. NIM Committee: CAMAC

Tutorial Articles, pp. 9–14, 1976.

[12] A. Rubini and J. Corbet, Linux Device Drivers. O’Reilly & Associates Inc, sec-
ond ed., 2001.

155

[13] The PCI Special Interest Group, PCI Local Bus Specification, 1995. Revision 2.1.

[14] R. J. O’Conner, “Interfacing vmebus to pcibus,” VMEbus Systems Magazine, pp. 1–4,
1996.

[15] B. P. Douglass, Real Time UML: Advances in the UML for Real-Time Systems.
Addison-Wesley, third ed., 2004.

[16] OAR Corp, RTEMS Applications C User’s Guide, 2005.

[17] V. Yodaiken, “Against priority inheritance,” tech. rep., FSMLabs, 2002.

[18] The PCI Special Interest Group, PCI BIOS Specification, 1994. Revision 2.1.

[19] J. Thorpe, “A machine-independent dma framework for netbsd,” in USENIX Confer-

ence, USENIX, 1998.

[20] J. W. Muller, “Particle counting in radioactivity measurements,” tech. rep., Interna-
tional Commission of Radiation Units and Measurements, 1995.

[21] G. F. Knoll, Radiation Detection and Measurement. Wiley Inc, third ed., 2000.

[22] J. W. Muller, “Dead-time problems,” Nuclear Instruments and Methods, vol. 112,
pp. 47–57, 1973.

[23] J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physi-

cal Measurements. University Science Books, second ed., 1997.

[24] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments. Springer-
Verlag, second ed., 1994.

[25] R. B. Cooper, Introduction to Queueing Theory. North Holland Inc, second ed.,
1981.

[26] L. Kleinrock, Queueing Systems Volume II: Computer Applications. Wiley Inc,
first ed., 1976.

[27] R. C. Larson and A. R. Odoni, Urban Operations Research. Prentice-Hall, first ed.,
1981.

[28] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Ex-

perimental Design, Measurement, Simulation and Modelling. Wiley Inc, first ed.,
1991.

156

[29] D. M. Gingrich and et al, “A pipeline controller for the atlas calorimeter,” in Elec-

tronics for Particle Physics Conference, LeCroy Corporation, 1997.

[30] D. Gross and C. M. Harris, Fundamentals of Queueing Theory. Wiley Inc, third ed.,
1998.

[31] L. Kleinrock, Queueing Systems Volume I: Theory. Wiley Inc, first ed., 1975.

[32] Merriam-Webster Inc., Merriam-Webster’s Dictionary, 2002.

[33] CAEN Nuclear Instrumentation, Technical Information Manual: Mod. V792 series

32 Channel QDCs, 2003. Revision 9.

[34] T. Straumann, “Open source real time operating systems overview,” in 8th Interna-

tional Conference on Accelerator and Large Experimental Physics Control Systems,
(San Jose, California), 2001.

[35] FSM Labs Inc, The RTCore Index, 2005. Online document: available at
http://www.fsmlabs.com/the-rtcore-index.html.

[36] Hewlett Packard, Application Note 1289: The Science of Timekeeping, 1997.

[37] Intel Corporation, The IA-32 Intel Architecture Software Developer’s Manual Volume

3: System Programming Guide, 2002.

[38] Intel Corporation, 82C54 CHMOS Programmable Interval Timer, 1994.

[39] J. Postel, RFC 864: Character Generator Protocol. Network Working Group, 1983.

[40] J. Postel, RFC 792: Internet Control Message Protocol (ICMP). Network Working
Group, 1981.

[41] K. Schossmaier, “Assessment of vme-pci interfaces with linux drivers.” CERN Inter-
nal Note: ALICE DAQ, July 2000.

[42] J. Ives, “Simulation and measurement of the response of the blowfish detector to
low-energy neutrons,” Master’s thesis, University of Saskatchewan, 2003.

[43] R. Igarashi, Private communication, August 2005.

[44] C. Williams, Linux Scheduler Latency. Red Hat Inc, 2002. Online document: avail-
able at http://www.linuxdevices.com/files/article027/rhrtpaper.pdf.

157

[45] A. Goel, “Supporting time-sensitive applications on general-purpose operating sys-
tems,” in Fifth USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI), (Boston, MA), December 2002.

[46] R. Spiwoks and et al, VMEbus Application Program Interface, 2001.

[47] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Inc, first ed., 1996.

[48] T. W. Pratt and M. V. Zelkowitz, Programming Languages: Design and Implemen-

tation. Prentice-Hall Inc, third ed., 1996.

[49] D. Watson, High-Level Languages and Their Compilers. Addison-Wesley, first ed.,
1989.

[50] M. E. Lesk, “Lex - a lexical analyzer generator,” tech. rep., Computing Science Tech-
nical Report 39, Bell Laboratories, 1975.

[51] S. C. Johnson, “Yacc: Yet another compiler compiler,” tech. rep., Computing Science
Technical Report 32, Bell Laboratories, 1975.

[52] A. D. Frari, Lucid and Vme Modules. U of S Subatomic Physics Institute, first ed.,
2003. SPIR-122.

[53] R. Igarashi, A. D. Frari, D. Chabot, and T. Regier, Lucid: User’s Guide. Subatomic
Physics Institute, University of Saskatchewan, third ed., 2004. D. Murray, W.E.
Norum, T. Wilson, G. Wright (First & Second Ed).

[54] D. C. Nygren, “Effective vmebus memory mapping,” Communication System Design

Magazine, pp. 36–42, 1999.

158

APPENDIX A
SOFTWARE ACCESSIBILITY

Source code and/or binaries for the software developed as part of the work contained
herein may be obtained by directing requests to:

daron.chabot@usask.ca

or,

daron@nucleus.usask.ca

159

APPENDIX B
EDL-GENERATED SOFTWARE: MYEXPERIMENT.R

See EDL source code in Section 1.3.2.

/* myExperiment.frontend.h */
/*
* Event ‘ReadADC’ (0) is triggered:
* every 0.1 seconds
*/
#define NReadADC 0
struct EReadADC {

unsigned long size;
unsigned long VmyADC[34];
char pad0[2];
unsigned short eventnumber;

};
#ifdef FRONTEND_PROCESSOR
/*
* VME Variable Declarations
*/
struct runtime_data VMEmyADC_rt = { 5, 0xffffffff, -1, -1, 0, 0, 1, NULL};
char* VMEmyADC_lamclear_params = NULL;
char* VMEmyADC_lamdisable_params = NULL;
char* VMEmyADC_lamenable_params = NULL;
char* VMEmyADC_read_sort_params = NULL;
char* VMEmyADC_clear_params = NULL;
char* VMEmyADC_init_params = NULL;
char* VMEmyADC_thresholds_params = NULL;
char* VMEmyADC_compressionfilter_params = NULL;
char* VMEmyADC_blockwrite_params = NULL;
char* VMEmyADC_blockread_params = NULL;
/*
* Event Function Prototypes
*/
static void EReadADC(void);
/*
* Maximum event size
*/
unsigned int MaxEventSize = 144;
#endif /* FRONTEND_PROCESSOR */

160

/* myExperiment.frontend.c */
#include <stdlib.h> /* for malloc & free */
#include <string.h>
#include <linac_rtems.h>
#include <sis1100_api.h>
#include <lucidformat.h>
#include <vmereader.h>
#include <vmecomm.h>
#include <vme.h>
#include <functions.h>
#define FRONTEND_PROCESSOR
#include "myExperiment.frontend.h"
/*
* Data buffer management
*/
extern char *Dataptr;
extern char *DataRecordLimit;
/* File descriptor used to access sis1100 */
extern int devfd;
extern rtems_id AcquisitionTaskId;
extern unsigned int VmeBaseAddr_A24;
extern unsigned int VmeBaseAddr_CSR;
extern unsigned int VmeBaseAddr_A32;
/*
* This is code for
* the ‘ReadADC’ (0) event.
*/
void
EReadADC (void)
{

struct EReadADC *dp = (struct EReadADC *)Dataptr;
dp->size = sizeof *dp - sizeof dp->size;
caen_blockread(dp->VmyADC,sizeof(dp->VmyADC),NULL);
dp->eventnumber = NReadADC;
Dataptr += sizeof *dp;
if (Dataptr > DataRecordLimit)

SendDataRecord();
}
/*
* LUCID timed event information
*/
static struct Timer TimerTable[] = {

{ EReadADC, 100000UL, NULL },
};
struct Timer *TimerTableBase = TimerTable;

161

/*
* No CAMAC LAM’s used in this experiment.
*/
/*
* No interrupts are used in experiment.
*/
unsigned int vme_irq_mask = 0x0;
/*
* LUCID Initialization
*/
void
InitializeLucid (void)
{

/* Cause a VME hardware reset. */
if (vmesysreset(devfd) < 0)

LogFatal("SIS1100: VME system reset failed.\n");
caen_v792_init(NULL,0, &VMEmyADC_rt,VMEmyADC_init_params);

}
/*
* Routine to cause a
* Begin Run trigger.
*/
void
StartRun (void)
{
}
/*
* Routine to cause a
* End Run trigger.
*/
void
StopRun (void)
{
}
/*
* Routine to cause a
* Resume Run trigger.
*/
void
ResumeRun (void)
{
}
/*
* Routine to cause a
* Suspend Run trigger.

162

*/
void
SuspendRun (void)
{
}
/*
* Events which are to be performed upon user command.
*/
void
UserCommand (int code)
{
/*
* No user defined commands.
*/
}

163

APPENDIX C
DESIGN PATTERNS

A design pattern is a description of communicating objects and classes that are cus-
tomized to solve a general design problem in a particular context [47]. Design patterns
are described by a cooperative group of software objects, their structure and behavior, and
their communication protocol. The roles and interaction of these objects form a collab-
oration, realizing a solution in a specific problem domain. To contrast the notion of a
design pattern with that of an algorithm, note that an algorithm is a solution to a computa-
tional problem, whereas a design pattern is a solution to a software engineering, or design
problem [15].

A design pattern is comprised of four important aspects [47]:

1. Pattern name - The importance of creating and applying descriptive, meaningful
names to software features cannot be overstated. Creating a common vocabulary
permits the succinct exchange of abstract concepts amongst designers, developers,
and users.

2. Problem description - This is also known as the problem-space, and it represents the
domain of the design pattern’s applicability. The problem description may include
context and pre-conditions required in order to implement a pattern.

3. Solution - This describes the components of the design, their communication, re-
sponsibilities, and collaboration roles. The pattern itself is not a solution, but a
template from which a solution may be generated: a pattern provides a description
of a design problem and how an abstract collaboration of software elements solves
it.

4. Consequences - the pros & cons of the design pattern’s application to the problem-
space. As optimization and design always involves some form of compromise, the
suitability of a particular design pattern must necessarily be weighted by considera-
tion of the advantages and disadvantages afforded by its use.

Utilizing these points, the following discussion will illustrate the details of two design
patterns which play important role’s within the Lucid data acquisition system.

Note that in the following discussion, either, or both of two paradigms may be at work
to distribute data from source to destination:

1. The “push” model - data is forced upon, or pushed, from the source to destination,
upon state change. This model combines control and data flow: the source of the
data determines when and to whom it is delivered.

2. The “pull” model - in this paradigm, clients are responsible for extracting, or pulling
data from the source for their own use. This model decouples data flow from the
flow of control, as the data source bears no responsibility for its distribution.

164

C.1 Observer Pattern

Also known as the publish-subscribe pattern, the Observer design pattern targets the prob-
lem of disseminating information from a single source, or server, to multiple clients. In
other words, this pattern describes a form of demultiplexer, providing a subscription mech-
anism whereby clients register their intent to be notified upon the occurrence of some event
of interest.

The structure and behavior of the collaborating roles involved in the realization of the
Observer pattern are shown in Figure C.1.

Subject

Observer Transactionssd

subscribe()
unsubscribe()

publish()

A : Observer B: Observer Subject

process()

subscribe()
subscribe()

aEvent

publish()

process()

unsubscribe()

1*

process(data)

Observer

Figure C.1: Structure and behavior of objects participating in an Observer
pattern: (top) collaborating classes, (bottom) sequence diagram of collabo-
rator transactions.

The key aspects enumerated in the previous section are provided next, outlining the
problems addressed, the solution proposed, and the consequences associated with an im-
plementation of the Observer pattern.

C.1.1 Problem Description
An unknown number of clients require timely notification upon the occurrence of some
event. These events of interest might typically occur according to some well-defined pol-
icy, for example periodically, asynchronously, or upon a change in the value of some data.
Furthermore, clients will generally execute some actions in response to the event.

C.1.2 Solution Description
Clients (observers) are dynamically coupled to the event publisher (subject) via a sub-
scription mechanism. This mechanism is implementation specific, but may be as simple
having the subject add its subscribers to a list.

When the event of interest occurs, the subject notifies the observers via a publication
mechanism. Again, this is implementation specific, but if the subject maintains a simple

165

list of observers, as mentioned above, the publication operation may be as simple as walk-
ing the list and invoking each observer’s process() method. The process() method
is more commonly known as a callback.

C.1.3 Consequences
The Observer pattern simplifies the administrative task of distributing event notification
from a single source to multiple interested parties. The dynamic subscription policy per-
mits runtime flexibility, as the subject need not concern itself with the identity of its clients.
Another feature of this design is that information flow is uni-directional, from subject to
client only. Also, centralization of event publication from a single entity avoids replicating
the event delivery machinery in each client.

However, as the subject has no control over the content of client callback methods, any
client may cause excessive delay of subsequent event publication if its callback requires
a lengthy processing duration. This concern becomes of critical importance when the
Observer pattern is utilized in a real-time/reactive system, where excessive delay may lead
to system failure.

C.2 Proxy Pattern

The Proxy design pattern is very closely related to the Observer pattern, with the major
difference being that the former decouples the subject from its clientele by means of a
surrogate object, the Proxy. This agent hides the implementation details of the subject
from its clients, and vice versa. The subject publishes data to a proxy, where it is then
distributed to the interested parties.

Figure C.2 shows the objects and their roles within the collaboration of elements form-
ing a Proxy design pattern. The ServerSideProxy and ClientSideProxy objects both
inherit from the abstract base class, BaseProxy. The UML notation for indicating inheri-
tance is the closed-arrowhead, which points to the “parent” class.

C.2.1 Problem Description
One or more clients or consumers require timely notification of events of interest to them.
For example, these events may be the availability of new data for processing, or some
periodic occurrence. Note, this is the same problem addressed by the Observer pattern.
However, the Proxy pattern explicitly addresses the situation where clients may be ex-
pected to subscribe to both local and remote information publishers. In this case, the use
of a mediating agent, or proxy, permits transparent separation of client and server, shroud-
ing the implementation details of one from the other.

C.2.2 Solution Description
By routing observer-subject messages through a third-party agent, the communication
end-points need not know the implementation details of one another. This allows

166

Subject

sd Proxy Transactions

BaseProxy

subscribe()
unsubscribe()

ClientSideProxy

Proxy
Client−Side Server−Side

Proxy

 *

1 * 1 1

publish()

1

send(aData)

subscribe()
subscribe()

subscribe()

evArrive

send()

publish()

process(data)

process()

process()

process()

A : Observer B : Observer

Observer

 Subject

ServerSideProxy

Figure C.2: Proxy design pattern.

ClientSideProxy and ServerSideProxy to occupy different address spaces, or even be
physically remote from one another: communication details are encapsulated in the proxy
objects, as implicit in the structural component of Figure C.2.

The largely one-way information flow from subject to observer is reflected in terms of
the instance multiplicity evident in this figure: the Proxy pattern requires one
ClientSideProxy instance per published event, per address space, and one instance each
of the ServerSideProxy and Subject.

C.2.3 Consequences
Isolating the Client-Server communication details in broker objects simplifies client con-
struction, as the same source code may be used whether the server is local or remote; only
changes to the communication mechanisms of the client-side and server-side proxies are
required.

Inter-address space information flow is minimized to a large extent through employ-
ment of this pattern, as traffic flows only on event publication, and then only from
ServerSideProxy to ClientSideProxy; all other communication channels are local to
that particular address space (i.e. server-side, or client-side).

167

APPENDIX D
LUCID’S CODE GENERATION SUBSYSTEM

The data acquisition behavior of the I/O Manager is determined by user-provided in-
structions specified in a high-level programming language known as the Experiment De-
scription Language (EDL). Once users have provided the instructions they wish the I/O
Manager to perform in the form of an EDL text-file, Lucid’s code generation machinery
is then invoked using the build-dialog of the gxluxid user interface (see Figure 1.6). The
product of this process is an executable image, which is loaded onto and run by the IOM.

However, the generation of an executable image is only the final step in the sequence of
operations required to produce a machine-executable program. This series of operations
is known as compiling, and the software component responsible for these operations is
known as a compiler.

Compilers are designed to construct executable images for a specific environment, as
defined by a particular operating system, hardware architecture pair. They also constrained
in the sense that compilers target specific programming languages, such as C or C++.
Thus, a compiler must dissect its input to determine the grammatical validity, according
to the formal specifications of a particular language.

Beginning with an examination of two categories of grammar frequently encountered
in compiler technology, the following discussion presents an overview of a generic compi-
lation process, concluding with a study of tools commonly used in compiler construction.

D.1 Backus-Naur Form Grammar

Written languages, programming languages included, are expressed using a finite set of
symbols, or alphabet. The categories of permissible symbol arrangements (words) define
the syntax of a language, while the set of allowable syntactic sequences (sentences) are
governed by the grammar of that language.

A Backus-Naur form (BNF) grammar is composed of a set of productions, or BNF-
rules, defining a programming language. These provide mathematical rules defining the
set of character strings permissible within a target language. Perhaps most importantly,
BNF-rules introduce a notation for production specification. As an example of this nota-
tion, consider the production:

< letter >→ A | B |C (D.1)

This rule defines a language composed of the single characters, ’A’, ’B’, or ’C’, and is
read as, “A letter is either an ’A’, ’B’, or a ’C’. In this context, the term letter is known as a
syntactic category, or non-terminal, and constitutes a label for the simple language defined
by the above rule; non-terminals may be decomposed into more fundamental structures.
The characters to the right of the → symbol are known as terminal symbols, and may not
be decomposed further: they are the fundamental syntactic elements of a language. Note,
the | symbol denotes alternatives, as in a logical OR operation, and in some instances may

168

be indicated with a ∨ symbol, the alternation operator.
A non-terminal defined by a BNF-rule may itself be recursively used in that rule, thus

implying repetition. For example:

< word >→< letter >< letter > |< word > (D.2)

Using the preceding concepts, a programming language may be formally specified as
the set of syntactic categories (non-terminals) and the terminal symbols of which they’re
composed [48]. A complete BNF grammar is a set of productions defining a hierarchy
of sub-languages, leading to a root-level non-terminal. In the case of a programming
language, that root-level syntactic category is generally <program>, which is the entire
set of characters comprising a source-code file written in the target language.

The hierarchical decomposition of a source-code file, from the root non-terminal, down
through the fundamental terminal symbols, implies that a syntactic analysis of it will pro-
duce a tree structure because of the structure imposed by the BNF-productions. Within
this parse-tree, the root-node is the non-terminal designating the entire language (e.g.
<program>), each branch is a non-terminal designating the content of the sub-tree below
it, and each leaf is a terminal lexical item.

The utility of BNF grammars lie in their simplicity. However, this simplicity requires
that common syntactic constructs such as optional, alternative, and repeated elements are
specified using an inelegant representation. Extensions to BNF provide notation to de-
scribe these common elements, including: 1) optional elements are indicated by enclosing
them in square brackets, [· · ·] , 2) alternatives are indicated with the ’|’ symbol as pre-
viously discussed, and 3) arbitrary sequences of element instances may be indicated by
enclosing the element in braces, followed by an asterisk, {· · ·}∗.

Backus-Naur form grammars are not without their shortcomings. Contextual depen-
dencies are one aspect of syntax that cannot be addressed by a BNF production. For
example, the restriction common to many programming languages that “the same variable
identifier may be declared only once in the same block”, cannot be expressed using a BNF
production.

D.2 Regular Grammars and Regular Expressions

Regular grammars are a special case of a BNF-grammar, and have productions of the
form:

< non− terminal >→< terminal >< non− terminal >|< terminal > (D.3)

Also equivalent to regular grammars are regular expressions. These are defined recursively
as follows [48]:

1. Individual terminal symbols are regular expressions.

2. If α and β are regular expressions, then so are α∨β , αβ , (α), and α∗.

3. Nothing else is a regular expression.

169

where α∨ β represents the alternatives, α or β, αβ is the concatenation of the regular
expressions α and β, and α∗ signifies zero or more repetitions of α, also known as the
Kleene closure of α .

D.3 Compiler Processing Overview

The process of translating source code into an executable program may be logically de-
composed into two activities: 1) analysis of the input source-file, and 2) synthesis of
an executable, or object program. The UML activity diagram of Figure D.1 depicts the
source-code translation process of a typical compiler.

Lexical
Analysis

"Tokenized"
Data

Syntactic
Analysis

Code
Generation

Symbol
Table

Reference
Linking

Compile Source Code

Model

File

Object

Program
Source

Executable

Libraries

Image

Machine

Object

Figure D.1: Activity diagram of a generalized source-code compiler.

Activity diagrams may be thought of as the UML solution to the ubiquitous flowchart,
and are typically employed to model the progression of actions performed by software
objects: i.e. they express algorithmic activities. Boxes are used to denote objects (i.e.
the typical UML class/object figure), while activities, or actions are indicated by round-
cornered boxes. Thus, in Figure D.1, the Source Program node serves as an input pa-
rameter to the Lexical Analysis activity, while the Executable Image and/or Object
File serve as output nodes. The small, solid dot at the top of the diagram is a pseudo-
state, denoting the point of initiation for the activity flow. Similarly, the encircled dot near
the figure’s bottom is a terminal pseudo-state, indicating the activity’s conclusion.

170

D.3.1 Source-Code Analysis
Although programmers typically structure their source-code documents according to the
logical grouping suggested by the data structures and operations acting on those structures,
compilers know nothing of this artificial structure and must therefore decompose and ex-
amine the source-file, symbol-by-symbol, in order to process it. Source-code analysis
typically involves these phases [48]:

1. Lexical Analysis - the first step in translation is to examine the sequence of symbols
comprising the source-file, and identify those symbols which form the elementary
pieces of the programming language. For example, these elementary symbols may
include keywords, numbers, mathematical operators, expression delimiters, or com-
ments. This process is performed by a lexical analyzer, or scanner, which generates
tokens, or lexical items, as it discovers them (see Figure D.1). It is the duty of the
scanner to identify each lexical item it encounters, and then to attach a type-identity
tag to those tokens. This tag is used in subsequent phases of the translation process.

2. Syntactic Analysis - utilizing the lexical items and their tags produced in the previ-
ous stage by the scanner, the function of a syntax analyzer, or parser, is to identify
the larger-scale features of a program’s structure: statements, expressions, decla-
rations, etc. Syntactic analysis usually proceeds in concert with semantic analysis:
only after the syntactic analyzer identifies a sequence of lexical items forming a syn-
tactic unit (e.g. an expression, or function-call) may a semantic analyzer process the
result and determine if the unit is correct in the current context. Communication be-
tween syntactic and semantic analyzers is commonly via a stack data structure: the
syntactic analyzer pushes lexical items onto the stack as it encounters and processes
them, while the semantic analyzer pops them off of the stack as they are processed
and found to be correct.

3. Semantic Analysis - this procedural element forms the link between the analysis and
synthesis stages of source-code translation. The processing performed at this stage
is dependent upon language and application specifics, but may include activities
such as:

(a) Symbol-Table Maintenance - a symbol-table is a crucial data structure in all
compiler software [49]. Typically, it contains an entry for each unique identi-
fier obtained from the lexical and syntactic analysis of the source program. Be-
yond just the identifier itself, the symbol-table may retain information on iden-
tifier type (variable, array name, etc.), variable type (integer, double, string,
etc.), identifier value, and other data used in subsequent phases of source-code
translation.

(b) Insertion of Implicit Information - information in the source-file that may be
unspecified by a programmer must be made explicit in the low-level object
program. For example, some C-language compilers permit the return-type of a
function to be left unspecified, implying a return-type of int as the compiler-
supplied default.

171

(c) Error Detection - syntactic and semantic analyzers must be made to respond
correctly to improperly formed programs, in addition to properly-structured
source files. For example, a lexical item that is incorrect for the context in
which it appears must be identified as an error, and the compiler’s user notified
with a meaningful message containing the location and symptom of the error.

(d) Compile-Time Operations - although not a feature of all programming lan-
guages, compile-time operations, such as macro expansion and conditional-
compilation, are usually processed during the semantic analysis phase of pro-
gram translation.

D.3.2 Executable Object Synthesis
The second major phase of source-code compilation is the synthesis of an executable pro-
gram, or image. Utilizing the output produced by the semantic analyzer, this phase in-
cludes the operations of code generation and, optionally, code optimization. Also, depend-
ing on whether or not sub-programs are translated separately, or if references to previously
compiled libraries of executable code are present, a final linking and loading stage may be
required to complete the program’s transformation. Each of these phases are examined in
the following:

1. Optimization - the output of a semantic analyzer typically a representation of the
executable image in some intermediate format. Prior to supplying this intermediate
form to the code-generation phase of the translator, optimization may be performed
to enhance either execution speed or memory requirements, or both. However, even
if optimization capabilities are present within a compiler, this phase of translation is
almost always optional, being activated only at the user’s discretion.

2. Code Generation - following semantic analysis and the optional optimization phase,
the next step in the translation process is code synthesis, or code generation. As the
name suggests, it is at this stage that properly formatted code is output, based on
the information produced from all previous operations of the compilation process.
The code generated may be assembly-language statements, machine-code, or some
other format suitable for execution on a CPU, or for further processing. The product
of this stage is known as an object file.

3. Linking and Loading - if sub-programs were separately compiled, or there are un-
resolved references to code contained in external libraries, these issues are resolved
at this stage of the translation process. Individual sub-programs are coalesced and,
in the case of statically linked images, externally-referenced executable code is lo-
cated and bound into the final, executable product. Another form external-reference
linking may be used to produce a dynamically linked image, where references are
resolved at the program’s run-time. However, this type of image will not be covered
here.

During these phases the compiler will consult its machine model: an internally maintained
software representation of the target hardware architecture it is generating instructions for.

172

This model may be thought of as a virtual image of the target CPU, permitting the compiler
to track the occupation of registers and other resource usage. In this way, the compiler is
able to monitor and mitigate resource conflicts, as well as optimize the generated object
code for the target architecture.

D.4 Compiler Tooling

Compiler designers recognized that several stages in the translation process could benefit
from the development of automated tools to handle aspects that were likely to be found
in any compiler suite. Lex, a lexical analyzer generator, and Yacc, a parser generator, are
two popular tools developed for compiler construction.

Originally developed for use on a commercial operating system, the utility and pop-
ularity of these software tools drove software developers to create open-source versions,
known as Flex and Bison, as alternatives to Lex and Yacc, respectively.

D.4.1 Flex
The role of a lexical analyzer is to examine source-code, producing lexical items (tokens)
based on syntactic structures recognized in the input stream. Input to the Flex program
consists of a user-specified configuration file containing regular expressions which define
the basic syntactic items of a language, as well as actions to be taken upon recognition of
those syntactic items in the input content [50].

Upon activation, Flex will utilize the configuration file as an instruction set to produce
a lexical analyzer, or scanner. Configuration files are composed of three sections, delimited
by %% symbols:

... definitions ...
%%
... rules ...
%%
... subroutines ...

Of these sections, only the rules section is not optional. Thus, a simple example of a
lexical analyzer for identifying words and numbers has the configuration file of the form:

%{ #include <stdio.h> %}
%%
[0-9]+ printf(“NUMBER\n”);
[a-zA-Z][a-zA-Z0-9]* printf(“WORD\n”);
%%

Fed with this configuration input, Flex will produce a lexical analyzer, which will emit the
string, “NUMBER”, whenever it encounters one or more of the characters, “0” through
“9”, and “WORD” whenever it encounters a letter followed by zero or more letters or
digits.

173

In practice, the output actions specified above would typically be configured to emit a
token upon encountering a regular expression match, instead of merely printing a string.
Tokens identify syntactic items, and must be produced when Flex is utilized with its com-
panion syntax analyzer generator, Bison.

D.4.2 Bison
From Figure D.1, the phase of translation immediately succeeding lexical analysis is that
of parsing, or syntactic analysis. Bison is an open-source syntax analyzer generator, and
is designed to be used in concert with Flex such that together, the two components form
the source-code analysis engine for a compiler [51].

Provided with input in the form of a configuration file defining a set of grammar rules,
Bison will produce a parser program, suitable for inclusion as a component in a compiler
application. The Bison input configuration file is of a similar structure to that used by
Flex, consisting of definitions, rules, and subroutine sections. In this case, the rules section
defines BNF grammar rules and the actions to be performed when source input matches
those rules. For example, the BNF grammar rule

< sum >→< number > + < number > (D.4)

may be expressed in Bison as:

sum: NUMBER PLUS NUMBER
{ printf(“The sum is %d\n”, $1+$3); };

This parser would require a Flex scanner configured to emit tokens upon recognizing the
NUMBER and PLUS terminal syntactic elements:

%%
[0-9]+ yylval=atoi(yytext); return NUMBER;
\+ return PLUS;
%%

In the Bison configuration fragment above, the $1 and $3 notation is used to extract the
numeric values of the first and third arguments, respectively (i.e. NUMBER and NUM-
BER). Given an input string of the form, “2+2“, the parser’s output would be, “The sum
is 4”.

Section D.5 will examine the roles of Flex and Bison within Lucid’s code generation
software component.

D.5 Lucid’s Code Generation Component

This section will examine Lucid’s code generation system. In particular, it will present
the work performed to augment that system with additional functionality including sup-
port for generic VME-based interrupts, block transfers, CBLT and MCST operations, as

174

well as automating instrumentation resource management. This work is built on the core
infrastructure described in [52].

Lucid’s code generation component is a type of compiler: using the source-code anal-
ysis tools described in Section D.4, this compiler parses Experiment Description files
(EDF), generating source-code in the C programming language. In turn, this C-code is
translated to machine executable format using the open-source GNU C-compiler suite,
gcc.

Similarly, Module Description files (MDF) are also syntactically analyzed as part of
this process. These files are persistent-storage devices, containing operational attributes of
the various CAMAC and VME modules used in concert with the Lucid DAQ. MDF entries
comprise the library of instrumentation modules that Lucid knows how to communicate
with.

The software artifact responsible for generating C-code based on the information con-
tained in Module and Experiment Description files is known as the VmeBuildReader (see
deployment diagram, Figure 3.2). VmeBuildReader is responsible for generating two,
cooperative executables:

1. Server-Side DAQ Application - this image is formed when code generated by com-
piling a user’s EDF is linked with the IOMReader library, libIOMReader.a. The ob-
ject module thus produced, aExperiment.pc386 in Figure D.2, is then downloaded
to and executed by the I/O Manager. This module forms the Subject of a Proxy de-
sign pattern, publishing event-types specified by Trigger definitions and executing
client callbacks given by Event object definitions, as specified within the EDF. The
IOMReader is detailed in Section 3.7, where the proxy collaboration members are
depicted in Figure 3.7.

2. Client-Side DAQ Application - this executable forms the client-side proxy object of
a Proxy design pattern. In that role, this component maintains direct communication
with the IOMReader, and is responsible for placing data acquired by the I/O Man-
ager into a shared-memory buffer, then signaling data consumers when that data is
ready for their retrieval. Additional details of this application will not be provided
here, but they may be found in [53].

Figure D.2 is an activity diagram illustrating VmeBuildReader’s production of a server-
side data acquisition application, aExperiment.pc386, from the user-provided Experiment
Description file, aExperiment.r, and the instrumentation equipment Module Description
files, vme.modules and camac.modules. As the complement to this diagrammatic represen-
tation of software behavior, Figure D.3 reveals the aggregate structure of VmeBuildReader,
exposing important internal objects and their relationships.

In addition to the UML activity diagram features already discussed (see Section D),
Figure D.2 introduces two new elements, forks and joins, indicated by the thick bars.
A fork represents a division of activity flow, whereas a join indicates a coalescence of
activities. In both cases, the actions on the outgoing-side may not commence until all
input activities have arrived at the fork or join.

From Figure D.2, note that the final products produced by VmeBuildReader are the
C-language header and source files, aExperiment.frontend.h and aExperiment.frontend.c.

175

Create
Module

Templates

Compile
"C"

Source

External
Reference

Linking

Generate IOMReader

aExperiment.frontend.o

Module
Template

List

aExperiment.frontend.c

Compile
EDL

Source

aExperiment.frontend.h

MDF

aExperiment.pc386

EDF

libIOMReader.pc386

{ aExperiment.r }
MDF

{ camac.modules }

{ vme.modules }

Figure D.2: Activity diagram depicting the creation of an IOMReader ap-
plication from a user’s Experiment Description file, aExperiment.r.

The “.frontend” suffix implies these files are destined for the I/O Manager. Conversely, a
lack of such suffix denotes files that will form an executable for use on the host worksta-
tion. After those files are created, standard compiler tools (gcc et al) are used to form the
image, aExperiment.pc386.

D.5.1 An Example EDF: aExperiment.r
Consider the contents of a sample Experiment Description file, aExperiment.r :

#Module definitions
define Adc1 “792” S(5) lam(96) level(7)
define Adc2 “792” S(6)
define Adc3 “792” S(7)
define theChain chain “Adc1,Adc2,Adc3”

176

VmeBuildReader

ModuleList : LinkedList

Commands : LinkedList

SymTabList : LinkedList

<< artifacts >>

Flex, scanner.l

Lexical
Analyzer

Syntactic
Analyzer

<< artifacts >>

Bison, grammar.y

Module
Description

File

vme.modules
camac.modules

<< artifacts >>

Experiment
Description

File

<< artifact >>

aExperiment.r

MDFParser EDFParser

type : enum
value : Object

left : Node
right : Node

Node

name : String
aliases : String[]
dataSize : ulong
arraySize : ulong

Module

name : String
type : enum
size : ulong

savedVars : SymTab[]

SymTab

ifLevel : ulong
padNumber : ulong

nDeclarations : ulong
subEvents : Event[]

Event

type : enum
source : String

nTriggers : ulong
trigPeriod : ulong
lamMod : Module
cmdNum : ulong

Trigger

branch : uchar
crate : uchar

station : uchar
hiaddr : uchar
loaddr : uchar

CamacModule

slot : uchar
addr : ulong
lam : uchar
level : uchar

mapsize : ulong
maxNEvents : ulong

VmeModule

chainLen : uchar
members : VmeModule[]

VmeChain

name : String
type : enum
fcn : (*)(...)

Command

<< creates >> << creates >>

1

*

1

1

*

*

Figure D.3: Structured class diagram of the VmeBuildReader artifact.

#Trigger definitions
trigger readChain every Adc1 lam

#Event definitions
event readChain:

blockread and save theChain

The Module, Trigger, and Event definitions of this example will be used in the remaining
discussion to illustrate the processes by which the VmeBuildReader program generates
the server-side data acquisition application of Figure D.2, aExperiment.pc386.

Three VME modules of type “792” are defined above, corresponding to CAEN v792
charge-integrating, analog to digital converters (ADC). As implied in Figure D.2, the at-
tributes of this type of instrumentation module are provided in the MDF file, “vme.modules”.
The geographic, or “slot” position of each module within the VME crate is given using the
S(x) notation, while module Adc1 is to be configured to produce an IRQ vector of 96 at the

177

interrupt-level of 7 using the lam(96) and level(7) syntax. Referring to an interrupt as a
LAM (Look-at-Me) is a legacy notation retained from the period when CAMAC modules
were the sole source of instrumentation-based interrupts within the Lucid DAQ.

The final definition, above, uses the chain syntactic element, introduced as part of the
work of this thesis. This terminal lexical item permits experimenters to take advantage of
VME chained-block transfers (CBLT) and multi-cast writes (MCST), as discussed in the
previous chapter (see Section 2.2.4.6). Here, theChain is a VmeChain object, consisting of
all three of the ADC modules previously defined. From the inheritance hierarchy portrayed
in Figure D.3, note that VmeChain objects are a type of VmeModule, which in turn are a
type of Module.

The lone Trigger statement specifies that the actions defined within the Event, readChain,
will occur with each interrupt raised by the Adc1 module. The blockread terminal syn-
tactic item, also introduced via the work of this thesis, will cause code to be generated
which will perform a block transfer of data collected by members of theChain. This
data will then be saved and transmitted from the IOM to the experimenter’s workstation,
according to the policy discussed in Section 3.7.

D.5.2 The MDF Compiler
As illustrated in Figure D.2, the first activity performed by VmeBuildReader is a syn-
tactic analysis of the information contained in those files comprising Lucid’s module de-
scription database, vme.modules and camac.modules. The result of this analysis is the
creation of the ModuleList object, depicted in Figure D.3. This object is a linked-list
of all the Module types described by the module definition databases, and serves as a
module-template cache, consulted by VmeBuildReader as it encounters module defini-
tion statements in the EDF, aExperiment.r.

Module Description files are simply plain-text documents describing the operational
attributes of instrumentation modules in a machine-parsable format. That is, the language
used to describe modules was designed to permit lexical and syntactic analyses using Lex
and Yacc.

Maintaining module information centrally, and expressing it in a machine-parsable
format, relieves Lucid’s users from having to know the operational details of the various
instrumentation devices used in experiments. At the same time, this technique affords the
ability to allocate instrumentation resources, such as module address ranges and interrupt
vectors, with a minimum of user intervention. The logic utilized by VmeBuildReader to
provide this autonomy is further discussed in Section D.5.3.

As an example of the content and structure within a module description file, consider
the following excerpt from the VME module description file, vme.modules, typically cre-
ated and maintained by Lucid’s administrator:

module “CAEN 792 32-channel charge ADC”
“792”
“caen792”

readsize is 34 by 32 by 1
mapsize is 65536

178

geoaddr is 0x1002 A24 D16 rw geo
statusregister is 0x100e A24 D16 ro geo
databuffer is 0x0000 A24 D32 ro
blockread is function caen_v792_blockread
lamenable is function caen_v792_lam_enable

Module, mapsize, and function are examples of terminal syntactic elements, or keywords,
defined using regular-expressions within the Flex input specification file, vmescanner.l.
The module keyword denotes the start of a module definition, followed immediately by
quoted strings representing formal names and aliases, by which a module of this type
may be referenced in user’s experiment description file. Following the alias section are
the readsize and mapsize keywords, denoting data storage and VME bus address range
requirements, respectively.

Geoaddr, statusregister, and databuffer are descriptive labels for module registers
housing the functionality suggested by their names. From left to right, the register’s offset
from the module’s base-address (0x1002), address space (A24), data-width (D16), and
access permissions (read/write (rw)) are all provided to fully describe where and how to
access the register’s content.

The final two entries in the above excerpt indicate that the blockread and lamenable
keywords are associated with the caen_v792_blockread and caen_v792_lam_enable pro-
cedures (functions), respectively. When these keywords are encountered in a user’s Reader
description file, Lucid’s compiler subsystem will insert the appropriate routines in the
generated code. Using this method, arbitrary software routines may be constructed for
insertion into the code-stream to handle critical module operations requiring more sophis-
tication than may be achieved using single-cycle VME access methods.

An excerpt of the production-definition section of the MDF parser, vmegrammar.y, is
shown here:

modulefile: moduledefinitions;
moduledefinitions: /* empty rule */

| moduledefinitions moduledefinition;
moduledefinition: module name aliases statements commands

{ installmodule(mod, true); } ;
module: MODULE

{ yyerrok; } ;
name: QSTRING

{ mod = newmodule($1); } ;
aliases: /* empty rule */

| aliases QSTRING
{ mod->addAlias($2); } ;

statements: statement
| statements statement;

statement: READSIZE IS NUMBER BY NUMBER BY NUMBER
{ mod->arraysize = $3*$7;

mod->datasize = $5;

179

mod->maxNEvents = $7;
} ;
| MAPSIZE IS NUMBER
{ mod->mapsize = $3; };

commands: command
| commands command;

command: STRING IS FUNCTION STRING
{ makecommand(mod,3,$1,$4,0,0); } ;

Note the root, non-terminal element of the module-definition grammar, modulefile. The
remaining productions serve to systematically and hierarchically identify the grammatical
structure of the lexical items identified by the scanner.

As the tokenized input is matched against each regular grammar production, a VmeModule
object is created and populated according to the actions taken when a match to the rule
is encountered (see Figure D.3). A description of the key steps enciphered in the above
grammatical productions is list here:

1. The non-terminal, moduledefinition, allocates a new VmeModule object and set its
canonical name to the initial quoted string specified in the MDF. For example,
“CAEN 792 32-channel charge ADC”.

2. Upon encountering other quoted strings following the first, each is added to the
VmeModule’s list of aliases. These are simply easy-to-use names with which an
experimenter may use when assigning module-types to variables used in a Reader-
Description file.

3. The statements non-terminal is decomposed and physical attributes of that module
type are added to the VmeModule object, including the maximum amount of storage
required when reading a module’s data and the amount and type of VME address
space consumed (i.e. its mapsize).

4. Finally, each command non-terminal element is resolved into its constituents, result-
ing in a Command object being created according to the variety found. Each Command
object created is stored in a list associated with the parent VmeModule object, and
specifies one of three types of commands: single-cycle VME read/write operations,
bit set/clear operations, or procedural functions.

The final result of the lexical and syntactic analyses of the module description file is a list
of VmeModule objects defining the identities, attributes, and commands available for use
in Reader-description files (see Figure D.2). This list is consulted by a second source-code
analyzer used within Lucid to produce executables for use on both workstations and the
I/O Manager

D.5.3 The EDL Compiler
Following the creation of the ModuleList object, the second phase of EDF compiling
proceeds with the production of C-code. The configuration for the lexical analyzer of

180

this phase is generated by Flex using the file, scanner.l. Upon examining the content
of aExperiment.r, this scanner’s primary job is to identify and generate tokens for the
various syntactic elements of its input, including the approximately 60 keywords present
within the Experiment Description language. Examples of these keywords include the
non-terminal items define, chain, blockread, trigger, event and lam.

Upon recognizing these elements, the scanner will replace their occurrence in its out-
put with tokens: unique representations of the syntactic elements. EDF variables are
treated specially in that a symbol-table object, or Stab object is allocated for each variable
defined by the scanner. See Figure D.3 for the UML depiction of an Stab object. These
objects are critical elements within Lucid’s compiler technology, constituting a record of
variable identity, type, and storage requirements.

The EDL lexical analyzer is configured to associate each syntactic element it recog-
nizes with one of four, elemental object types, three of which are indicated in Figure D.3:

1. Stab - a symbol-table object is allocated for every variable or module defined in a
Reader file.

2. Node - represents character strings and expression trees.

3. Trigger - used to represent information related to trigger definitions. For example,
the action (event) to be executed and the cause of the trigger (periodic, interrupt,
etc.).

4. Integer - used to represent terminal lexical items such as blockread, and, save, de-
fine, etc.

As alluded to in the previous section, instrumentation software resources are allocated ac-
cording to a machine model, internally maintained by VmeBuildReader. When the EDL
compiler encounters a module definition such as, define Adc2 “792” S(6), it records
that module’s base address. Equipped with this information and the range of addresses
consumed by modules of that species (retrieved from the ModuleList template), Vme-
BuildReader is able to detect and alert users of address-space conflicts at compile-time,
rather than at run-time. Using a similar methodology, interrupt level and vector conflicts
are also averted.

Figure D.4 is a representation of the perspective of VME address space maintained
and referenced by VmeBuildReader. Modules are allocated address ranges according to
the strategy discussed here, an adaptation of ideas found in the literature [54].

The A24 space of Figure D.4 contains the address range reserved for CAMAC modules.
This range extends from 0x00800000 to 0x00BFFFFF, consuming approximately 4 MB of
the 16 MB available in the A24 plane. The remaining regions of this plane may be utilized
by VME modules.

Wherever possible, use is made of the geographic addressing capability afforded by
the VME64x specifications. The relevant address space is the 24-bit addressable CSR/CR
space in Figure D.4. Geographic addressing simplifies the assignment of module base-
addresses, as modules supporting this feature are able to autonomously discover and assign
themselves an address based on their slot-position within the VME crate.

181

Modifier

CAMAC
Space

Data
Size

CSR/CR
Space A24

Space

Consecutive
Occupied

Crate Slots

A32
Space

}

Width

Address

D16

}

Address

D32

A24

AM=0x09

AM=0x2F AM=0x39

A32

Figure D.4: The model of VME address spaces used by Lucid’s code gen-
eration component.

In Lucid’s present configuration, the A32 space is occupied only by VME modules
participating in CBLT and/or MCST operations. According to the VME64x standard,
those types of transactions must occur in A32 space. From Section 2.2.4.6, a group of
contiguously positioned VME modules may be configured to respond, as a single unit, to
read/write requests targeted at a virtual base-address in A32 space. A “chain-object” so
configured behaves as though it were logically a single module.

VmeBuildReader will automatically generate a VmeChain object, its virtual address,
and the initialization instructions required for the configuration of each chain-definition
encountered in an EDF. Because VmeChain objects are a type of Module (see Figure D.3),
actions such as reading and writing a Module also make contextual sense when applied
to the former. Thus, no special syntax is required in VmeBuildReader’s treatment of
activities targeting VmeChain objects.

182

APPENDIX E
MULTI-HIT MODE DAQ OPERATION

Recall that the data collection policy employed with the Lucid DAQ is “event-by-
event”: above-threshold detector pulses are digitized then extracted by the I/O Manager,
readying the system for a new event. This algorithm advances sequentially; at no point
are multiple events allowed to accumulate in the digitization hardware. The following
discussion examines a parallelized data collection algorithm referred to here as multi-hit
mode. Multi-hit mode is first explored from a queueing model approach, followed by a
comparison of model predictions with experimental data.

E.1 Queueing Model

Consider the two-station, tandem queueing system portrayed in Figure E.1. The rate of
input events is governed according to a negative exponential (Poisson) distribution, arriv-
ing at Station 1 with the average rate of λ. This station has a capacity of one, servicing
each event at the average rate of µ1, with the service times also following the Poisson
distribution. Events arriving at Station 1 while it is occupied are lost (Erlang system).

1 2µ1λ

Station 1 Station 2

N 2 µ

Figure E.1: Illustration of the 2-station, tandem queueing system.

After being serviced at the first station, events must proceed to Station 2 where they
are serviced at an average rate of µ2, also governed by a Poisson distribution. Station 2 has
a finite queue capacity, N, where events may reside prior to their treatment at this station.
If an event departing Station 1 encounters N−1 enqueued events at the second station, the
tandem system will turn away further input until the situation is relieved. The particular
policy invoked in this case is to block input from the system until the entire set of events
has been serviced and left the system. The average service rate of this policy is µ3, again
following a negative exponential time distribution. The state diagram of this system is
shown in Figure E.2.

Following the example presented in Section 5.6, one may obtain the steady-state con-
servation of flow equations for each state portrayed in Figure E.2:

0 = πP (E.1)

where π is the vector of state probabilities and P is the matrix of state-transition probabil-
ities, pi j. This tandem system is also subject to the constraint that the state probabilities
must sum to unity:

1 = πe (E.2)

183

λ

1,0

0,0 0,1

1,1

0,2

1,2

0,N−2

1,N−2

0,N−1

1,N−1

0,N

µ 1

µ 2

µ 2 µ 2

µ 2 µ 2

µ 2

µ 3

µ 1 µ 1 µ 1λ λ λ λ

Figure E.2: State diagram of the tandem queueing system described here.

where e is the unit vector.
This system of linear equations lends itself to a solution suggested by a technique from

the queueing theory literature [30]. From this solution one may extract the probability
of input event loss, which is simply the sum of the state probabilities where events are
prohibited from entering the system:

N−1

∑
j=0

π1, j +π0,N (E.3)

E.2 Physical Model

The queueing model previously described was physically realized using standard compo-
nents of the Lucid DAQ. Measurements made with this system provide a means of testing
tandem model predictions against a physical implementation of that system.

Input events were provided in the form of photo-mulitiplier tube pulses generated by
plastic-scintillator response to radiation products emanating from a point source (ruthenium-
106). The pulse generation rate was controlled by varying the position of the radioactive
source and the gain-voltage applied to the PMT. In this fashion, input event rates of up to
approximately 45 kHz were generated. These signals correspond to the model parameter,
λ .

The first station of the model corresponds to the digitization stage of CAEN VME
modules (v792), arranged in a chain configuration. The duration of digitization is repre-
sented by the model parameter, µ−1

1 . The multi-event, dual-port FIFO buffers of the VME
modules provide the model queue of Station 2, while the station’s service was provided in
the form of data read-out by the I/O Manager.

In the measuements described here, the “virtual module” of the VME chain object was
comprised of three, v792 modules configured to digitize three channels of data per input
trigger. The chain object was additionally configured to generate an interrupt upon the
data FIFO becoming full (i.e. after 32 events). This condition is reflected by the 0,N state
of the queueing model.

The data extraction algorithm differs from that typically employed with Lucid: instead

184

of reacting to interrupts generated when a single event has been digitized and stored by
the VME modules, the IOM was configured to continuously poll the virtual chain module
to learn when one or more digitized events were ready for read-out from the FIFO. If an
event was ready for extraction, the I/O Manager performed a single chain block transfer
(CBLT). The duration required to perform this CBLT corresponds to the model parameter,
µ−1

2 .
Upon receiving the “FIFO-full” interrupt, the IOM altered its read-out policy such

that all events were extracted from each module of the chain using three, sequential block
transfer operations. This mechanism is much more economical than performing N chained
block transfers. The duration of this sequential read-out operation corresponds to model
parameter, µ−1

3 .
The front panel signals available from the v792 modules were used to gate a 5 MHz

oscillator signal fed into one channel of a CAMAC scaler module. A second channel of
the scaler was used to record the uninhibited number of oscillator pulses. The ratio of
gated to ungated pulses provides a measure of the duration during which the system was
prevented from responding to input event signals. Additionally, a third scaler channel was
utilized to register the number of pulses emitted from the PMT-scintillator detector. The
contents of all three scaler channels were recorded once per second for each test duration
of 100 seconds over a range of average input event rates up to 45 kHz.

E.3 Analyses and Results

Solving the linear equation system of the queueing model requires that the average service
and input event rates (durations) be provided. The average input event rate was allowed
to vary over the range 0-100 kHz, while the values used for the average service durations
were as follows:

1. µ−1
1 = 7.25µs , the digitization period of the CAEN v792 modules as measured by

oscilloscope.

2. µ−1
2 = 27.5µs , the readout period required to perform a CBLT of three digitized

events from the three-module VME chain.

3. µ−1
3 = 162.2µs , the readout period required to perform three, sequential block trans-

fers of N = 32 digitized events from each of the three v792 modules used.

Values provided for µ−1
2 and µ−1

3 were calculated using data obtained from Chapter 7.
In Figure E.3 are several curves demonstrating the fraction of lost input events (Er-

lang losses) as a function of average input event rate (λ). Computation of Equation E.3
produced the plot’s red line for the tandem queue model with the average service time
parameters described above, while data collected from the experimental system is repre-
sented by the individual points spanning (approximately) the first 43 kHz of input rate.

For comparison, curves are also present showing the Erlang losses for each station of
the theoretical tandem system taken in isolation. That is, the green and blue curves repre-
sent the losses experienced by M/M/1/1 and M/M/1/32 queueing stations, respectively.

185

0 20 40 60 80 100

Input Rate [kHz]

0

0.2

0.4

0.6

0.8

E
rl

an
gi

an
 L

os
se

s

Tandem Model (theoretical)
Tandem Model (physical)
Station 2 Isolated
Station 1 Isolated
50.9 [µs] Dead Time

Figure E.3: Plot of model calculations and experimental results.

Finally, the Erlang losses are also plotted (black curve) for an M/M/1/1 system with
an average service time of 50.9µs . This curve was reproduced using data obtained in
Chapter 7, and represents the typical behavior seen with the Lucid DAQ as influenced by
its “event-by-event” data acquisition algorithm.

Figure E.3 indicates that, for average input event rates less than 50 kHz, the dead
time of this tandem system is largely governed by the service time of the first queueing
station. This observation stands in contrast to the findings of Chapter 7, where it was
found that the dead time of the DAQ was dominated by the duration of processes executed
by the I/O Manager. However, it should be reiterated here that the greater dead time
found in previous measurements was due to a combination of the “event-by-event” data
extraction policy and the duration of IOM activities. The advantage gained by introducing
a level of concurrency to the data acquisition algorithm is readily apparent in the form of
significantly decreased dead time at the cost of increased complexity.

186

	Permission to Use
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Data Acquisition Systems
	1.2 Background
	1.2.1 HIS Facility
	1.2.2 The Blowfish Neutron Detector
	1.2.3 Input Event Rates

	1.3 Lucid
	1.3.1 Physical Subsystems
	1.3.2 The User's Perspective: a usage example

	1.4 Lucid Upgrade Project
	1.4.1 DAQ Component Upgrades
	1.4.2 DAQ Performance

	1.5 Thesis Overview

	2 DAQ Hardware Systems
	2.1 Instrumentation Subsystems
	2.1.1 Trigger Logic
	2.1.2 Digitization Logic
	2.1.3 Detector High Voltage (HV) System

	2.2 Instrumentation Components
	2.2.1 Electrical Bus Systems
	2.2.2 NIM
	2.2.3 CAMAC
	2.2.3.1 Arbitration
	2.2.3.2 Addressing
	2.2.3.3 Data Transfer
	2.2.3.4 Control/Status Signals
	2.2.3.5 Interrupts
	2.2.3.6 Concluding Remarks

	2.2.4 The VME Bus
	2.2.4.1 Arbitration
	2.2.4.2 Addressing
	2.2.4.3 Data Transfer
	2.2.4.4 Control/Status Signals
	2.2.4.5 Interrupts
	2.2.4.6 Physics Extensions to the VME64x Standards

	2.3 The PC: IOM and Workstation Platform
	2.4 The PCI Bus
	2.4.1 Arbitration
	2.4.2 Addressing
	2.4.3 Data Transfer
	2.4.4 Control/Status Signals
	2.4.5 Interrupts

	2.5 VME-PCI Bridging Issues
	2.5.1 Address Mapping
	2.5.2 Byte-Ordering
	2.5.3 Data Transfer
	2.5.4 Interrupt Protocols

	2.6 The sis1100/3100 VME-PCI Interface
	2.7 Summary

	3 Software Systems
	3.1 Operating System Overview
	3.1.1 General-Purpose Operating Systems
	3.1.2 Real-Time Operating Systems

	3.2 Component Overview
	3.2.1 Workstation (Linux) Components
	3.2.2 I/O Manager Components

	3.3 Network Boot-Loader
	3.3.1 Dynamic Host Configuration Protocol (DHCP)
	3.3.2 Trivial File Transfer Protocol (TFTP)

	3.4 Real-Time Operating System: RTEMS
	3.4.1 Task Manager
	3.4.2 Event Manager
	3.4.3 Message Manager
	3.4.4 Semaphore Manager
	3.4.4.1 Priority Inversion

	3.4.5 Device Manager

	3.5 IOMBase
	3.5.1 The Generic System (GeSys) Artifact
	3.5.2 The Cexp Artifact (Dynamic Linker)

	3.6 Instrumentation Interface
	3.6.1 System Integration
	3.6.2 Bus Access
	3.6.3 Interrupt Infrastructure
	3.6.4 Execution Context
	3.6.5 Inter-process Communication
	3.6.6 Application Programming Interfaces
	3.6.6.1 File System API
	3.6.6.2 LibVME API
	3.6.6.3 Memory-mapped API

	3.6.7 Interrupt Interface

	3.7 The IOMReader Component
	3.7.1 Application Structure
	3.7.2 The Acquisition and DataWriter Threads

	3.8 Summary

	4 Dead Time
	4.1 Dead Time Models
	4.2 Mathematical Description
	4.2.1 Non-Paralyzable System
	4.2.2 Paralyzable System

	4.3 The Effects of Dead Time
	4.3.1 Output Count Rates
	4.3.2 Interval Densities
	4.3.3 Counting Statistics

	4.4 Series Arrangements of Dead Times
	4.5 Measurement of Dead Time
	4.5.1 Two-Source Method
	4.5.2 Two-Pulser Method

	4.6 Concluding Remarks

	5 Introductory Queueing Theory
	5.1 Queueing Notation
	5.2 Stochastic Processes
	5.3 Erlang's Loss Equation
	5.4 The M/M/m/B Queueing Model
	5.5 The G/G/m Queueing Model
	5.6 Queueing Networks & Tandem Queues
	5.7 Concluding Remarks

	6 DAQ Performance Measurements
	6.1 DAQ Trigger System
	6.1.1 The INHIBIT Circuit
	6.1.2 Queueing Model

	6.2 Dead Time Component Intervals
	6.2.1 Digitization Period
	6.2.2 Interrupt Latency
	6.2.3 Context Switch Delay
	6.2.4 Application Response Latency
	6.2.5 Data Transfer Period

	6.3 Test Apparatus and Algorithms
	6.3.1 Timing Mechanisms
	6.3.1.1 CAMAC Clock
	6.3.1.2 Software Clock
	6.3.1.3 Clock Conversion Factors

	6.3.2 Dead Time Measurements
	6.3.2.1 Apparatus
	6.3.2.2 Methodology

	6.3.3 Dead Time Component Measurements
	6.3.3.1 Apparatus
	6.3.3.2 Methodology

	6.3.4 Data Transfer Rate Measurements
	6.3.4.1 Apparatus
	6.3.4.2 Methodology

	6.4 Summary

	7 Data Analysis
	7.1 Timing Mechanism Calibration
	7.2 DFELL Results
	7.2.1 Input Pulse Distributions
	7.2.2 Dead Time Measurements
	7.2.2.1 Application Response Latency and Readout Duration
	7.2.2.2 Erlang Losses

	7.2.3 VmeReader Data Rate

	7.3 Dead Time Component Results
	7.3.1 IOM Latencies
	7.3.2 VME to IOM Data Transfer Rates

	7.4 Summary

	8 Summary and Concluding Remarks
	8.1 The Upgrade Project
	8.2 DAQ Modeling and Performance Measurements
	8.3 Ideas for Future Investigation
	8.3.1 IOM API Changes
	8.3.2 Modifications to Sis1100 Device Driver
	8.3.3 Acquisition-DataWriter Interaction

	References
	Appendices
	A Software Accessibility
	B EDL-Generated Software: myExperiment.r
	C Design Patterns
	C.1 Observer Pattern
	C.1.1 Problem Description
	C.1.2 Solution Description
	C.1.3 Consequences

	C.2 Proxy Pattern
	C.2.1 Problem Description
	C.2.2 Solution Description
	C.2.3 Consequences

	D Lucid's Code Generation Subsystem
	D.1 Backus-Naur Form Grammar
	D.2 Regular Grammars and Regular Expressions
	D.3 Compiler Processing Overview
	D.3.1 Source-Code Analysis
	D.3.2 Executable Object Synthesis

	D.4 Compiler Tooling
	D.4.1 Flex
	D.4.2 Bison

	D.5 Lucid's Code Generation Component
	D.5.1 An Example EDF: aExperiment.r
	D.5.2 The MDF Compiler
	D.5.3 The EDL Compiler

	E Multi-Hit Mode DAQ Operation
	E.1 Queueing Model
	E.2 Physical Model
	E.3 Analyses and Results

