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ABSTRACT  

The goal of this dissertation is to demonstrate the established ultrasound based 
monitoring schemes for solid structures with the developed theoretical modeling which 
can predict the same physical behaviors that were later found in the experimental 
results. It is mainly focused on the stress effects for isotropic solid media analyzed by 
two fundamental modes of acoustic waves. The subject is also covered by an analytical 
comparison of microscopic and macroscopic approaches for the stress dependence of 
the time-of-flight of bulk and guided acoustic waves propagating in solid materials.  

The theoretical description of these effects is studied by developing mass spring lattice 
dynamic models where corrections have been done accordingly for different modes, 
including anharmonicity, normally present in the (actual) material. These models are 
helpful in understanding the different phenomena of wave propagation with stress 
effects and their results are later compared with the experimentally achieved results. 
The models are initially drawn for ideal (material) conditions and are later amended with 
anharmonicity parameters to represent the generalized propagation behaviors of 
acoustic waves.  

The dissertation further includes two signal processing and detection schemes, and an 
ultrasonic application used for structural health monitoring (SHM). The developed pulse 
compression scheme has been effectively demonstrated for data and signal processing 
of ultrasonic waves propagating through solid materials. The developed detection 
scheme has been applied and demonstrated successfully for high sensitivity of flaw 
detection in the aero plane slat tracks. The ultrasonic application is employed for 
ablation monitoring of aluminum plates by mode selective excitation and detection 
method and achieved result is the determination of appropriate mode and frequency 
range of acoustic waves for optimum sensitivity of plate thickness.  

 

 

 



 

LIST OF IMPORTANT SYMBOLS AND ABBREVIATIONS  

Most of the symbols and abbreviations are defined in the text in each chapter 
distinctively. Here in the following a general tabular overview is presented.  

 

Symbols and their 
abbreviations 

Definition Units 

SHM Structural health monitoring N/A 

TOF   /   tof Time-of-flight seconds 

MSLD Mass spring lattice dynamic N/A 

NDT Non-destructive testing N/A 

NDE Non-destructive evaluation N/A 

MHz Frequency Mega hertz 

kHz Frequency Kilo hertz 

V(ph) Phase velocity Lattice unit per TOF, Meter 
per second 

V(gr) Group velocity Lattice unit per TOF, Meter 
per second 

m Mass kg 

A0 Lowest order (frequency) 
anti-symmetric acoustic 

wave mode 

N/A 

S0 Lowest order (frequency) 
symmetric acoustic wave 

mode 

N/A 

G Torsional coefficient N/A 

α Angle of twist Radian, degree 

y Vertical displacement Lattice distance, meter 

ω Angular frequency N/A 

k Wave number N/A 

L-mode Longitudinally polarized 
mode 

N/A 

T-mode Transversely polarized 
mode 

N/A 

Al Aluminum N/A 



S Cross-sectional area N/A 

h Thickness Meter2 

I  Moment of inertia N/A 

P Extensional pulling force N/A 

ECF Elastic coupling function  nsm-1MPa-1 

MPa Pressure Mega Pascal 

FFT Fast Fourier 
Transformation 

N/A 

us Time Micro seconds 

mm Length Milli meter 

ns Time Neno seconds 

ps Time Peco seconds 

ΔTOF Differential time-of-flight Seconds 

PZT Lead Zirconate Titanate 

transducer 

N/A 

SAW Surface acoustic waves N/A 

STFT Short time Fourier 
transformation 

N/A 

AISHA-II Aircraft Integrated 

Structural Health 

Assessment-II  

N/A 
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1.   Introduction:  

The introduction chapter comprises of the following parts:  

 

1.1   Motivation  

Monitoring of the stability of manufactured solid structures of medium and large size 
over the entire lifetime is currently gaining an increasing attention. This is especially 
important for parts where degradation would lead to safety hazards. In the past and still 
today respective safety inspections are in many cases even regulated by law and are 
performed at certain intervals of time with the aid of external components for monitoring.  

Particularly in aerospace and civil engineering, failures of the primary structure may put 
human life at risk, as numerous aircraft and bridge accidents have shown dramatic way 
in the past. For example the two aircraft crashes of the Comet in 1954 due to metal 
fatigue and damage tolerance design faults [1], the crash of the Aloha Airlines Boeing 
737-200 in 1988, which was also caused by metal fatigue exacerbated by crevice 
corrosion (the plane operated in a salt water environment), the more recent crash of the 
China Airlines Boeing 747-200B in 2002 (also the result of metal fatigue, in that case 
due to inadequate maintenance after a previous incident in 1980). All of these accidents 
have demonstrated the very importance of inspection and maintenance as a human 
safety issue.  

Many different inspection and nondestructive testing (NDT) techniques are available 
and applied in the aerospace industry for many decades, most of them being developed 
in the 1960s. These conventional NDT techniques range from basic visual inspection, 
ultrasonic inspection and thermography to radiography, shearography [2] and eddy- 
current. Most of the conventional NDT- techniques are time- consuming processes that 
require meticulous scans over large areas of the structure. Moreover, the results of such 
inspections and their reliability are often strongly influenced by the human factor (e.g. 
the experience and attention of the inspector). Despite all the accidents, the economic 
factor which is related to high maintenance and inspection costs but also to time the 
structure (aircraft) is out of service, represents a significant crucial factor for the end-
user who has to decrease his direct operational costs. For commercial and military 
aircraft, it is estimated that up to 27% of the average life cycle costs are related to 
inspection and repair [3].  

Motivated by these aspects, the last two decades has shown a range of novel NDT 
techniques [4] for which the term “Structural Health Monitoring” (SHM) has been 
introduced. The main difference between SHM and the conventional NDT techniques is 
that SHM utilizes (permanently) integrated sensors which provides a continuous or on 
demand information about the state at critical high-stress locations of safety-critical 
structures. The potential of SHM arose from a number of elements such as: reduced 
inspection and maintenance costs, improved performance and safety, reduced out of 
service times, and last but not least, reduction of the influence of the human factor. The 
concept of Structural Health Monitoring can be compared to that of the human nervous 
system which also benefits from many different “sensors”, which transmit signals (e.g. 
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pain) to the main “computer”, the brain. The main components of an SHM-system can 
be classified into the following categories:  

 Sensors/actuators 

 Data acquisition 

 Signal processing 

 Materials and structures 

 Computation 

SHM is a multidisciplinary field in which researchers and engineers from different 
disciplines such as materials science, physics, computer science, mechanical 
engineering, etc. have to contribute and be involved. The development of structural 
health monitoring systems covered the following purposes:  

 Load history monitoring  

 Impact detection and localization  

 Damage identification / quantification  

For the identification of damages, different SHM approaches have been proposed in the 
past which can be classified as either global or local. Global approaches are based 
upon vibration measurements of the structure in the lower frequency range (< 50 kHz), 
for which active excitation is not required. Such global methods are typically only 
sensitive to fairly large levels of damages and may be used therefore to monitor large 
areas for locating suspect positions that may then be covered in detail by a further 
inspection technique. Since last few years, local diagnostic methods have generated 
considerable interest in the SHM community. These methods typically consider high 
frequencies; mainly within the range of 10 kHz to 1 MHz. In this context the most widely 
discussed approach is to utilize ultrasonic Lamb waves which interact with damages. 
The development of small, inexpensive and lightweight piezoelectric elements which 
can be utilized both as actuators and as sensors is a further key point in the 
development of Lamb wave based SHM techniques.  

The dissertation is based on the development of theoretical description of bulk and 
guided acoustic waves propagation through solid isotropic media with and without 
stressed conditions. The modeling based theory has been developed with the aid of 
lattice dynamics, a favorite approach used within solid state physics. The physics has 
been used here as an explaining tool of the physical phenomena going on within the 
solid structures during wave propagations. Also presented and discussed are the 
ultrasonic signal processing and detection schemes and their applications.  

 

1.2   Objectives  

The main objective of this dissertation is to make a contribution to enhance the scientific 
understanding of acoustic wave‟s propagation phenomenon through isotropic solids 
under pre-defined stressed conditions. The study has increasingly gained its interest 
due to human safety and the inter-field knowledge of physics and engineering.  

As part of physics, the main portion of this research is dedicated to develop theoretical 
models for the prediction of acoustic wave‟s behavior during propagation through solid 
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media under defined conditions (stressed, non-stressed). The developed models are 
demonstrated by dispersion relations, and their respective acousto-elastic coefficients 
are compared to the experimental results. Based on this approach, further objectives of 
this research are to develop and demonstrate ultrasonic applications. The existing and 
new signal processing and detection schemes are used here to demonstrate the 
determination and prediction of remaining health and stability of the solid structures.  

 

1.3   Organization of the dissertation  

After the introduction part in chapter 1, chapter 2 provides a brief analytical comparison 
of microscopic (discrete model) and macroscopic (continuum model) approaches for the 
stress dependence of the TOF of bulk and guided acoustic waves in solid materials.  

Chapter 3 provides a modeling theory for two fundamental lowest A0 and S0 modes of 
bulk acoustic waves and their reaction on time-of-flight upon the application of 
extensional stress. The chapter can be divided into three major parts with the theory 
consisting of mass-spring modeling treatment for longitudinal and transversal polarized 
(resembling symmetric and anti-symmetric) modes each, and a unified modeling 
treatment for longitudinally and transversely polarized modes, showing their resultant 
effects on TOF of propagating acoustic waves due to lengthwise stress.  

The chapter 4 presents a further developed shape of theoretical modeling (from the 
previous one) to demonstrate the effects of extensional stress on TOF for the lowest 
order fundamental (S0 and A0) modes for guided acoustic waves. This chapter can be 
divided into three major parts where the first part consists of description of theoretical 
model, second part with the model derived physical parameters and their respective 
comparison to a continuum model, and the third part consists of analytical treatment of 
theoretical modeling results in comparison with experimental results.  

In chapter 5, a pulse compression scheme for the determination of time-of-flight of 
ultrasound is presented and discussed. The results of developed scheme are compared 
with the traditional correlation scheme. The chapter generally consists of the scheme 
idea, scheme application, and a comparison with correlation scheme.  

In chapter 6, a movable EMAT based flaw detection scheme is developed. The specific 
wedge shaped design of EMAT is developed and fabricated with permendur alloy 
material to enhance its capability of flaw detection. The scanning results of DC9 (aero 
plane) slat track with decreasing magnitude of flaws are presented in 2D and 3D 
(waterfall representation) graphs. The conducted investigation is a development part of 
online structural health assessment technology for slat tracks. The chapter also consists 
of a comparative study of the presented scheme with the literature.  

In chapter 7, an ablation monitoring investigation of aluminum plate is presented based 
on the Lamb wave mode selective excitation and detection. Results are presented in the 
form of suitable mode and frequency range. In addition the relevance of theoretically 
and experimentally derived dispersion graphs and TOF assures the reliability of the 
given results. The conducted investigation is also a development part of online 
structural health assessment technology for wing and respective surface parts of aero 
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planes. The chapter also consists of a comparative study of the presented scheme with 
the literature.  

Chapter 8 summarizes the main results of these above mentioned chapters and makes 
a final conclusion of this research.  

 

1.4   References  
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2. Analytical comparison of microscopic and macroscopic 
approaches for the stress dependence of the time-of-flight of free 
(bulk) and guided acoustic waves in solid materials  

To explain the actual expected stress dependence of the time-of-flight (TOF) for 
acoustic waves, it is suitable to consider two basic models. This is demonstrated here 
for a microscopic model approach, the linear chain, generally employed for lattice 
dynamics, and for the continuum model approach, applied to isotropic media.  

The need to model the wave propagations in materials is due to the required theoretical 
explanation of their physical parameters (e.g. density, velocity, time-of-flight, etc.) under 
different subjected conditions (e.g. stress, heat, compression etc.). Continuum theories 
or (macroscopic) models explain quantitative variations in the material‟s elastic 
properties without any abrupt changes or discontinuities. Modeling an object as a 
continuum assumes that the substance of the object completely fills the space it 
occupies. The continuum modeling approach deals with the physical properties of solids 
and fluids which are independent of any particular co-ordinate system in which they are 
observed. These physical properties are then represented by tensors, which are 
mathematical objects that have the required property of being independent of 
coordinate system. In contrast, the discrete theories or (microscopic) models explain 
these variations using small discontinued sets of physical properties. Modeling objects 
in this way properly addresses the fact that matter is made of atoms, discontinued with 
empty space and so is not continuous; and at the same time the properties can vary 
greatly over inter-atomic distances due to the nonlinear forces acting between the 
atoms.  

The purpose of the study in this chapter is to compare analytically the resulted physical 
parameters from both of the above mentioned models (or approaches) for bulk and 
guided acoustic waves. The comparison would provide us the most suitable modeling 
approach which will be used to proceed further to our development and investigation of 
theoretical modeling of acoustic wave propagations in solid materials under variable 
conditions.  

 

2.1   Microscopic approach  

In the microscopic approach, a linear chain is treated, consisting of mass-free ideal 
springs with spring constant C. These springs are idealized according to Hooke‟s 
original definition [1]. The idealized springs connect point masses with mass m 
positioned in a linear (chain) arrangement at distance a (shown in figure 1).  
The properties of waves, in the examples given here for guided acoustic waves or from 
a quantum mechanical point of view, phonons in one dimensional atomic chain, can be 
demonstrated by the dispersion relation, equating the dependence of (angular) 

frequency  on wave number k (k-vector) respectively in the microscopic model the 
dependence of quantum energy on the also quantized (linear) momentum. In this 
scheme the phase velocity for a wave (excitation) of a given k-vector is derived from the 
quotient and the group velocity from the respective gradient (in lower dimensions: 
derivative) of the dispersion relation at position k.  
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For simplification it is assumed that the forces act along the springs instantaneously (the 
speed of light as limit velocity would such need to be infinite). For acoustic waves, 
traveling at only about 1/100 000 of the speed of light, this assumption leads only to 
small, even though in some cases not negligible deviations.  

 

 

Figure 1: Linear mass-spring chain (left) and isotropic homogeneous rod with cross-
sectional area A (right).  

 

As pointed out in the literature [2] concerning acoustic excitations with longitudinal 
(along the chain) particle velocity, the linear chain obeys the following dispersion 
relation:  

 ω = mC sin(ka/2) 

The technically relevant applications on which this article is concentrating relate to the 
microscopic model with representing atomic distances to the large wavelength limit 

(k  0). In that case group and phase velocities are equal and both are represented by  
 

 v = a mC  

The result demonstrates that for any applied stress leading to an increase of the 
velocity, this velocity will increase exactly such that the time-of-flight (Ta) to travel the 
distance „a‟ is  

 Ta = mC1  

and will therefore be independent of any variation of „a‟ due to external stress. It should 
be kept in mind that ideal springs relating to parabolic potentials for the respective 
binding forces are assumed here together with a non-relativistic simplification. Realistic 
interaction between mass points with “only” the speed of light would lead to a correction 
in time-of-flight of about 1 ps for any 0.3 mm elongation – normally too small to be 
relevant in experiments.  

Based on the experimental findings, the usually observed substantially larger rise of the 
time-of-flight under dilatational stress can therefore on the basis of this model only be 
due to nonlinear springs as introduced by potentials deviating from parabolic shape 
leading to the binding forces modeled by springs.  
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Figure 2: Lenard-Jones potential with inter-atomic distance 1 for equilibrium position.  

 

The well-known Lenard-Jones potential [3] (figure 2) used for modeling of inter-atomic 
forces can serve here to demonstrate the main features as observed in experiments for 
longitudinal polarized bulk acoustic waves, for which the linear chain model is a 
simplifying example. This will lead to a reduced spring constant under dilatation and an 
increased one for compression. As a result, the time-of-flight of acoustic waves traveling 
along the direction of the applied stress will increase for dilatational stress.  

 

2.2   Macroscopic approach  

Macroscopic modeling suitable for comparison with the linear chain model has been 
treated extensively in the literature [4]. A choice from basic models of guided acoustic 
waves travelling on rods assuming the validity of a continuum model is well suited for 
this purpose. In this approximation the involved masses are introduced as (mass) 

densities  together with respective volumes. The elastic properties of rod shaped 
materials relevant for guided waves of the lowest branch of the axial-radial mode 
serving here as relevant example (figure 3) are expressed by Young‟s modulus E.  
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Figure 3: Deformation for the lowest branch of the different modes for guided acoustic 
waves traveling in a rod. Where left is axial-radial and right is flexural mode.  

 

The velocity of the axial-radial mode in the long wavelength limit is independent of the 
actual cross-sectional sizes of the rod and exhibits vanishing dispersion [5]. Therefore it 
can be expressed equally for phase and group velocity in that limit by:  

 

 v = E  

In this model, the velocity depends exclusively on E and ρ. If E, as assumed in the 
original definition, is not depending on stress, corresponding to linear elastic behavior 
(similar as for Hooke‟s idealized spring), a variation of the speed can only be introduced 
by a variation of the density.  

 

2.3   Stress dependence of TOF in macroscopic approach  

It is evident that E will vanish when the shear modulus is zero, which is the case for a 
liquid. Even though it should be kept in mind that viscosity will lead to dynamic shear 
stiffness, here only the static case is considered, on which the original definitions of the 
mechanical properties used here are based. It is therefore implicitly implied that the 

Poisson ratio [6] (or Poisson number)  cannot have the value 0.5 for the example 
modeled here. Therefore a relative variation of the volume dV/V will be inevitably 
introduced by any applied stress. The range of the Poisson ratio of stable materials is -1 
to 0.5 with typical values for metallic alloys in the range of 0.2 to 0.3. Depending on the 
actual Poisson ratio, the density will be reduced if the solid rod is elongated by stress. 
This will lead to an increase of the velocity since the density will exhibit a relative 
decrease if the volume increases  

 d ∕  = – dV ∕ V 

Following the definition of the Poisson ratio, the relative variation of the volume can be 
related to the respective length variation (for sufficiently small variations) by  

 

 dV ∕ V = (1 – 2) /d  
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leading to d ∕  = – (1 – 2) /d  = (2 – 1) /d  

The time-of-flight (tof) will therefore under dilatational stress exhibit a relative change 
dtof ∕ tof that on one hand could be >1 since the length  will increase by d  and on the 
other hand could be <1 since the velocity of acoustic waves will increase. Therefore 
relevant changes are related (for small variations with higher order terms neglected) by  

 

 dtof ∕ tof = /d  – dv/v  [Appendix 2.1]  

 

Simply expressing that if length and velocity vary just by the same, sufficiently small 
amount in opposite direction, TOF will (approximately) not change.  

From v = E , it can be derived that for E independent of the stress, as assumed here  

 

 (v + dv)/v = )d(   

and dv/v = )d1(1   – 1  [Appendix 2.2]  

which is, as to be expected, zero for vanishing density variation. Inserting the 
expression for the density variation leads to  

 

 dv/v = /d)12(11   – 1 

which is, also as to be expected, zero for  = 0.5. With this result follows:  

 

 dtof/tof = /d  + 1 – /d)12(11    

 

This holds, under the given assumptions, for homogeneous materials with any Poisson 

ratio . For a Poisson ratio of 0.5 (even though not realistic for a solid rod but introduced 
here as a limit value) the relative variation of the time-of-flight would be determined by  

 

 dtof/tof = /d   

dtof/tof is proportional to the respective variation of the length /d  as to be expected for 
bulk waves in a liquid. Furthermore, for any practically relevant Poisson ratio between 
0.5 and 0 it is evident that dtof/tof has the same sign as /d  since for small enough 
variation (higher order terms neglected) the following holds:  

 

 dtof/tof = /d  + ( – 1/2) /d  = /d  (1/2 + )  [Appendix 2.3]  
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For the macroscopic model shown here (under the given conditions), the time-of-flight 
for acoustic waves traveling along the direction of elongation should therefore always 

rise under extensional stress for any practically relevant Poisson ratio 0.5 >  > –0.5. It 
should be pointed out here, that a further simplification with respect to the one treated 

above such that E and  are both not dependent on deformation under stress would 
lead to a further increase of the time-of-flight with elongation.  

The just treated already detailed but not yet fully realistic modeling is mainly performed 
here to point out, that simple so called “common sense” arguments like the sample is 
getting longer under stress and the ultrasound signals should therefore arrive later, are 
not only not necessarily true, they can even be opposed by well-known and easily 
accessible results if sound generated by string instruments is taken as an example. 
Therefore we turn in the next paragraphs to respectively refined modeling.  

 

2.4   Stress dependence of TOF in microscopic approach  

The basic features concerning the dispersion relations [7] for the microscopic approach 
discussed here are presented in figure 4.  

 

           

Figure 4: The graphs display the typical features of the dispersion relations [7] for 
longitudinal and transversal polarized acoustic waves (phonons) traveling on a linear 
chain (left) as also commonly treated in lattice dynamics, and dispersion relations for 
stretching phonons (right), relating to waves traveling on soft strings where restoring 
forces are provided by pull (extensional stress) only.  

 

The longitudinal phonon branches have in both cases demonstrated the shape well 
known from lattice dynamics [2], the transversal (or T-) mode exhibits an unusual 
relation with diminishing group velocity in the long wavelength limit and subsequently 
rising group velocity for diminishing wavelength. This can easily be understood by the 
relative softening of a bar supported at two positions at (axial) distance d and a central 
load with respect to this support. The bar will turn soft under lateral loads (forces) if d 
increases.  
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2.5   Difference in the stress dependence of TOF between micro- and 
macroscopic approaches  

The differences for the demonstrated results and accompanying artifacts arise on one 
hand from the inadequate definition of velocity, which is defined in s/m (units of time per 
units of length) but should be defined for the purpose of this discussion in a normalized 
way, namely in units of time per unit of the lattice or crystal respectively per distance 
between point masses (in the above microscopic linear chain model in s/a). We have 
therefore restrained here from expressing results as variations of the velocity and 
discuss the variation of the time-of-flight instead, which is also the actually observed 
variable. On the other hand the simplifying assumption that Young‟s modulus E is 
supposed to not depend on deformation to allow comparison with a microscopic model 
based on springs according to Hooke‟s law, is a not valid simplification for any available 
material. It serves here only the purpose to demonstrate which properties are needed to 
explain the experimentally observed results. A softening of the material under 
extensional stress, as to be expected from common models for the binding potentials as 
the Lenard-Jones potential, would lead to a reduced E (Young‟s modulus). This would 
even enhance the already demonstrated feature that TOF rises proportional to 
elongation.  

By comparison of the first two different models, based on a microscopic approach 
generally used as a basis for lattice dynamics, and a macroscopic approach based on a 
continuum model, which is well established for modeling on macroscopic scales, the 
valid equations (see sections 2.1 and 2.2) allow to identify the relations between the 
respective terms used to describe the material properties. This leads to the following:  

 ρEmCa 2   

and therefore  

 ρEmC   

This again seems to indicate that the result concerning the variation of the time-of-flight 
under stress should be identical, which they are not, as demonstrated above, due to 
implied additional conditions in the definition of the parameters used to describe the 
mechanical properties in the macroscopic model.  

Also the guided mode traveling on a rod is a mixed mode including longitudinal and 
transverse components. Propagating transverse vibrations traveling on a linear chain 
can exist even in the absence of bending stiffness and are usually described by 
stretching phonons [8]. If a bending force constant f is present on the chain, the 
dispersion relation [7] for transverse polarized acoustic waves is represented by  

 ω = mf2 [1 – cos(ka)] 

and in the case of acoustic limit ( k  0 ) the dispersion relation gets the shape to  

 ω = mfka 22  

The group velocity for transverse polarized acoustic waves traveling under the presence 
of a bending force (but not including stretching forces) is given by  
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 v = mfk2a2  

Group and phase velocities are zero for k = 0 corresponding to λ → ∞ since restoring 
lateral forces approach zero. The group velocity is also zero at the boundary of the 

Brillion zone k = /a where standing waves are established. This case is nevertheless 
not of relevance for the applications treated here.  

If for simplicity stiff solid connections relating to an infinite spring constant are assumed 
(similar to an idealized regular chain), the length of the chain will not vary under stress 
and the relative change of the time-of-flight for transversal polarized acoustic waves 
traveling only under the influence of the bending forces, which should not depend on 
stress if defined in the here generally selected simplified way, should be zero. The 
argument is thereby similar if not even simpler, since elongation is in a perfectly rigid 
chain absent, as for the longitudinal polarized acoustic waves traveling on a chain. 
Nevertheless a non-realistic assumption has been made since (longitudinal) stress will 
lead to stiffening by providing restoring force for any lateral deformation. As known from 
the “stretching” phonons this will lead to a reduction of TOF for increasing extensional 
stress, which in the idealized case assuming also ideal bending springs (not depending 
on elongation) will alone determine the dependence of TOF on (longitudinal respectively 
extensional) stress. These to be expected effects can most easily be studied by turning 
to a macroscopic description presented here.  

For transverse polarized waves traveling on a non-stiff string a well-established 
macroscopic model is available. The dispersion relation for that case, relevant to any 
string instrument, leads to a phase and group velocity for propagating transverse 
vibrations [9] given by 

 v = μT  

with T representing the tension (axial stress) and μ representing the mass per unit 
length of the string. Since in this model the string is treated as totally stiff concerning 
tensional stress even though totally soft concerning bending, the length would not 
change under stress and conditions concerning the variation of the time-of-flight under 
tensional stress are similar as for the already discussed microscopic model for the 
transversal polarized stretching mode in the long wavelength approximation.  

Respectively for the microscopic modeling of transversal polarized acoustic waves 
traveling in shear stiff materials, the forces are normally chosen such, that they do not 
depend on distance and, as pointed out already for longitudinal polarization, the time-of-
flight will under such idealized conditions not depend on stress (at least if the just 
treated stretching modes are not included in the modeling).  

Macroscopic modeling based on a continuum approach for isotropic media leads to 
identical group and phase velocities for transversal polarization as for example also 
valid for the torsional guided mode (figure 3) and respective dispersion relations as 
given by literature [10]. The velocity of acoustic shear waves in that case is:  

 v = ρG   



Analytical comparison 

13 

where G is the shear modulus. For an idealized case with infinite stiffness concerning 
dilatation (and compression) the time-of-flight could not be influenced since variations of 
the density are not possible, if G is assumed to be independent of stress. For realistic 
and therefore finite extensional stiffness, the effects caused by deformation will also be 
influenced by a variation of the density in a similar way as already discussed above in 
the macroscopic approach for the axial-radial guided mode. It has to be stated here that 
geometric stiffening, not contained in simple modeling may influence the result and 
would contribute by a reduction of TOF under tensional stress. Furthermore anharmonic 
behavior has to be included (higher order elastic constants) which would normally lead, 
due to softening on extension, to an increase of the time-of-flight under dilatational 
stress.  

 

2.6   Summary  

The results of microscopic and macroscopic modeling (approaches) for the stress 
dependence of propagating acoustic modes in isotropic solids are compared. The 
comparison has revealed the limitations of both modeling approaches and their 
respective advantages especially at long wavelengths. The essential achievements of 
this task in addition to the already well-known anharmonic effects, contributing to the 
variations of the time-of-flight of ultrasonic waves, general principles are identified and 
highlighted. The two most important ones are that harmonic materials will not show 
stress dependencies for the time-of-flight for longitudinally polarized bulk modes and, 
even more important, geometric effects can lead to substantial stiffening for guided 
modes which is most pronounced for the anti-symmetric Lamb waves. This is 
introduced here for the first time as “geometrical stiffening”. The on first view rather 
academic result is on one hand well known for string instruments and on the other hand 
most valuable for applications, since the different dependencies allow to differentiate 
against thermal effects, which are dominantly of the anharmonic type. Since even 
changes of the sign are involved if the here identified geometrical stiffening is implied, 
rather rugged detection schemes can be based on the elementary treatment provided 
here also with respect to the literature [11].  
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3.   Developed theory for bulk acoustic waves  

The basic features of the dependence of the time-of-flight (TOF) of bulk acoustic waves 
on elongation under stress are treated and exemplified for a linear chain using lattice 
dynamics approach. The chains are constructed from point masses connected by mass-
free (lateral and torsional) springs acting instantaneously. The results achieved from this 
modeling simulating the lowest symmetric (L) and anti-symmetric (T) modes 
demonstrated analytically the expected variations in TOF due to external stress in the 
acoustic waves.  

Lattice dynamics extends the concept of crystal lattice to an array of atoms with finite 
masses that are capable of motion. This motion is not random but is a superposition of 
vibrations of atoms around their equilibrium positions due to the interaction with 
neighboring atoms. The problem of lattice dynamics is to find the normal modes of 
vibration of a crystal which in the simplest approach is represented by a linear chain. 
This is achieved by calculating the energies (or frequencies) of the phonons as a 
function of their wave vector k. The relationship between ω and k is called phonon 
dispersion relation. Dispersion relations describe the ways that wave propagation varies 
with the wavelength or frequency of a wave. The wave nature [1-2] of all traveling 
objects is the key to understand how energy and objects are transported from point to 
point in any medium. This was first observed [3] in the dispersion of waves on water for 
example by Pierre-Simon Laplace in 1776. Continuum mechanics [4] cannot provide a 
microscopic approach that can fully identify the origin of effects related to the transport 
of acoustic waves under applied stress. Therefore the lattice dynamics (modeling) 
approach is employed here to illustrate the dependencies of velocity and time-of-flight 
(TOF) on external forces causing anharmonicity. A comparison with conventional 
continuum mechanics has already been given in a preceding chapter (chapter 2) and 
publication [5].  

The here presented models have been used to demonstrate the dependence of the 
TOF on extensional stress for low frequency symmetric and anti-symmetric 
(represented by L- or longitudinal, and T- or transversal) modes respectively under 
idealized and generalized elastic conditions. This kind of modeling can support the 
understanding of the expected behavior of solid materials under variable elastic 
conditions depending on applied stress and temperature.  

 

3.1   L-mode vibrations  

The microscopic approach is used here to develop a lengthwise flexible linear chain 
mass-spring model to investigate the extensional stress effects on longitudinally 
polarized modes of bulk acoustic waves.  

The model [6] has used the TOF as a parameter to monitor the variations due to stress 
in the ultrasonic waves. The effects caused by anharmonicity (in the chain) lead to an 
increase in the monitored time-of-flight, whereas the TOF in a harmonic (or idealized) 
chain with forces transferred instantly is independent of tension.  
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3.1.1   Lattice dynamic modeling  

Consider a chain of mass-free springs connected to mass points as shown for 
equilibrium positions in figure 1. The equation of motion of total force Fn acting on the 
mass mn for this system is; as known from the literature [7]:  

 

 Fn = C∙(an+1 + an-1 – 2an) 

 m∙d2an/dt2 = C∙(an+1 + an-1 – 2an) 

 d2an/dt2 = C/m∙(an+1 + an-1 – 2an) (1) 

 

 

Figure 1: Linear chain of masses and mass-free springs with the masses mn-1, mn, mn+1 at 
(static) equilibrium positions n-1, n, and n+1 (in the absence of external forces).  

 

With t denoting the time, equation (1) is the wave equation of the system displayed in 
figure 1, in which C is the spring coefficient of any of the individual idealized mass-free 
springs, m is the mass of any of the individual point masses, a is the lattice distance 
under equilibrium condition and mn, mn+1 and mn-1 are three point masses of the chain at 
respective positions n, n +1, and n – 1. The actual mass of any of the point masses is 
m.  

A solution [appendix 3.1] of the wave equation (1) for longitudinally polarized acoustic 
waves with particle velocities oriented along the chain, under the above given conditions 
will be:  

 

 ω = 2∙(C/m)1/2∙sin(k∙a/2) (2) 

Here ω is the angular frequency and k is the wave number (related to the respective 
wave vector). 
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If the mass-spring system is now stretched by an external pair of forces acting on the 
(assumed to be far away) ends of the chain or simply by a respectively defined stress, 
the chain will expand. New equilibrium positions for the neighboring masses mn+1 and 
mn-1 with respect to the mass mn as shown in figure 2 will result.  

 

Figure 2: Linear chain of masses and mass-free springs as in figure 1 but under 
externally applied stress in (static) equilibrium condition.  

 

Since in figures 1 and 2 the (static) equilibrium condition is observed, which actually 
would take an infinite time to establish if no friction is assumed, inertial forces have 
vanished. The stress will only affect the lattice parameter a, which will adjust for 
idealized springs according to Hooke‟s law [8] with the spring coefficient C. The 
dynamics under stress for this case are treated in the following text.  

 

3.1.2   Harmonic vibrations  

The extension under stress can be determined by use of the inverse Hooke‟s law. This 
involves not only an exactly linear relation of force and dilatation but in the idealized 
case treated here also a mass-free spring that acts concerning the transfer of forces 
instantly and therefore not only beyond the speed of light but with infinite speed. To 
emphasize the linear character of the spring we denote the spring coefficient now as C l 
since the linear relation will later be replaced by more complicated functions, where a 
linear approximation would at best be a first order term. Otherwise the conditions are as 
illustrated in figures 1 and 2. A stress induced externally by two opposing pulling forces, 
with F as the amount of each, acting at the far ends of the chain (along its extension) 
leads to a lattice parameter aF that will establish under static equilibrium and is given by  

 aF = a0 + F/Cl (3) 

since according to Hooke‟s law  

 Cl = F/(aF - a0)  

with the lattice distance a0 for no pull or push applied (i.e. zero stress). 
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The dispersion relation (equation 2) for harmonic vibrations in a linear chain is modified 
under extensional stress to:  

 ωF = 2∙(Cl/m)1/2∙sin(k∙aF/2)  (4) 

A graphical representation of the stress affected dispersion relation (equation 4) is given 
in figure 3 for extensional stress.  

 

             

 

Figure 3: Graphical representation of the dispersion relation (equation 4) for springs 
following Hooke’s law. In the left graph the wave vector is normalized to the dispersion 
relation valid in the absence of tension for the range to the zone boundary including the 
results for forces leading to a doubling and tripling of the distances between point 
masses. In the right graph the dispersion relations are normalized individually to the 
wave vector at the zone boundary. The different dispersion relations under stress 
coincide in that representation, demonstrating that TOF per unit cell is constant under 
stress in the harmonic approximation.  

 

The phase and group velocities for dispersion relation (equation 4) are generally defined 
as:  

 ωF/k = V(ph)  (phase velocity) 

 dωF/dk = V(gr)  (group velocity) 

The phase velocity for a linear chain under stress is therefore  

 ωF/k = 2/k∙(Cl/m)1/2∙sin(k∙aF/2) 

 V(ph) = 2/k∙(Cl/m)1/2∙sin(k∙aF/2) (5) 

According to the definition, the group velocity is obtained from the derivative of equation 
(4) with respect to wave vector  

 dωF/dk = 2∙(Cl/m)1/2∙cos(k∙aF/2)∙(aF/2) 

 V(gr) = aF∙(Cl/m)1/2∙cos(k∙aF/2) (6) 

As we are interested here only in the long wavelength limit (k → 0), the equation (6) can 
be written as  
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 V(gr) = aF∙(Cl/m)1/2 (7) 

In the limit of k → 0, the group velocity is also represented by  

 V(gr) = aF/TOF (8) 

with 

 aF = Total lattice distance (including extended due to pulling force)  

 TOF = Total time-of-flight taken to complete the lattice distance aF  

In the long wavelength limit phase and group velocities are identical. In this limit a linear 
dispersion is valid. Equations (7) and (8) lead concerning the TOF needed to pass a 
single unit cell of the chain to  

 

 aF/TOF = aF∙(Cl/m)1/2 

 TOF = (m/Cl)
1/2 (9) 

which means the TOF will remain constant. This fact (equation 9) has also been proved 
by one of our own experimental results (figure 4) in the form of non-variations of TOF (at 
low frequencies).  

 

Figure 4: The plotted graph shows the experimental results [9] for two separate 
symmetric modes of an aluminum (1 mm thick) strip being loaded with blue line showing 
S0 mode at frequency range of 0.002 MHz to 1.5 MHz, and red line showing S0 mode at 
lower frequency range of 100 kHz to 220 kHz with circular dots as measured data points.  
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Despite the initial jump (which is due to the sudden start of loading of the material) in 
the measured data (red) line for low frequency S0 mode having a frequency range 
between 100 kHz to 220 kHz, the rest of the line shows an almost constant feature in 
TOF with increasing load on aluminum strip. The second set of data (blue) line is not 
generated in the lower frequency range (0.002 MHz to 1.5 MHz), and has shown 
respectively the different behavior upon stress, and so is not the subject of our 
discussion. The time-of-flight (TOF) to pass any fixed number of unit cells therefore 
remains constant under variable stress. This is to be expected if, as assumed, the 
springs act instantly (no relativistic correction), are free of mass and point masses are 
involved. The chain resembles a wave machine as often used to exemplify waves. In 
these devices a rather low speed can be adjusted by employing large masses and soft 
springs. In the case of wave machines the speed is usually adjusted such that the 
traveling waves can be followed by eyesight. Since the springs are here idealized as 
acting instantaneously, the lengthening of the spring cannot change the time needed to 
transfer the energy to a neighboring mass in the chain.  

If, on the other hand, one argues as usually addressed, than even for harmonic springs 
the wave speed gets faster under stress, since to determine the speed, any observed 
travel time has to be related by definition to unit length. But the speed increases for 
harmonic springs to the same degree as the lattice constant increases by the applied 
stress. Therefore for any given sample (part of the infinitely long chain observed here) 
TOF will remain constant under strain induced by stress if idealized point masses and 
instantly acting springs are involved. The argument that the arrival time will increase 
under stress since the sample (represented here by the chain) is elongated is 
misleading and not valid for the idealized conditions assumed here for a simple 
representation of harmonic behaving materials.  

Different to the modeling employed here, in reality the springs can only transfer energy 
with the speed of light. This will lead to a relativistic correction, which remains rather 
small, since the speed of acoustic waves and the speed of light (in vacuum) are typically 
5 orders of magnitude apart.  

 

3.1.3   Generalized vibrations  

Anharmonicity in materials as modeled here is represented by a nonlinear mass-spring 
system. For a nonlinear spring the conventional Hooke‟s law can be amended to 2nd, 
3rd, and nth order corrections with respect to the displacement. This is visualized here 
by splitting the acting spring into two parts, one linear (harmonic) and the other 
nonlinear as exemplified in figure 5. For simplicity only the second order correction is 
employed here in the Taylor expansion describing anharmonic springs by a modification 
of Hooke‟s law. Higher order terms can be used to describe the Lennard-Jones 
potential, usually employed to model inter-atomic forces. To identify the basic features, 
higher order corrections are left out of consideration in the presented approach, only 
generalized features are addressed.  

The modified Hooke‟s law is used here to determine the variation of the distance 
between the mass points under applied stress. Near the respective modified equilibrium 
position (under stress), the springs are treated as being locally harmonic. In that way an 
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effective spring coefficient can be derived from the derivative of the modified Hooke‟s 
law with respect to displacement. This is justified only for vanishing respectively 
sufficiently small amplitudes of the mechanical waves involved. Since the aim of this 
chapter is to illustrate the variations of the TOF of acoustic waves and not to 
demonstrate the shape of sizeable anharmonic waves deviation from the harmonic 
case, this approximation is suitable. It allows to identify the essential effects 
independent of the actually chosen degree of correction concerning the approximative 
treatment of a Lenard-Jones potential or any other law for the dependence of forces on 
elongation. It may be worth noting here that ideal gases, if used as a spring in 
connection with a piston moving in a cylinder, also do not represent a spring following 
Hooke‟s law. The force function employed here as an example for any generalized force 
function Fg is a Hooke‟s law corrected with a second order term:  

 Fg = C1∙(aF - a0) - C2/2∙(aF - a0)
2 (10) 

C1 represents the linear elasticity and C2 the nonlinear one (of first order with respect to 
nonlinearity). They are replaced and assigned here by Cl and Cnl respectively (for linear 
and nonlinear terms).  

 Fg = (aF - a0)∙Cl - (aF - a0)
2∙Cnl/2 

With ∆ = (aF - a0), this can be represented by:  

 dFg /d∆ = Cl - Cnl∙∆  

 dFg /d∆ = Cg  (11) 

Here dFg /d∆ is denoted by Cg symbolizing the local effective spring coefficient of the 
generalized anharmonic spring. This is emphasized here to demonstrate that in the limit 
of diminishing amplitudes of the mechanical waves, the approach employed for 
harmonic springs can still be used with a modified spring coefficient, if ∆ is kept 
approximately constant. Since the extension is derived from the actual spring function, it 
does not relate concerning the stress to this modified parameter of the spring as in the 
case of harmonic springs.  

 

 

Figure 5: A combined mass-spring system including both harmonic and anharmonic 
modeled effects in the equilibrium state (without extensional stress).  



Modeling of bulk acoustic waves 

22 

 

 

Figure 6: A combined mass-spring system including both harmonic and anharmonic 
modeled effects in the stretched state.  

 

    

Figure 7: The normalized linear (1st) and 2nd order (parabolic) force coefficients (left 
side) and a force function resulting from a first order term of unity and a second order 
term of only 20% of the normalized anharmonic contribution (right side). The anharmonic 
term is here represented by an upside-down parabola to approximate the usual softening 
observed in materials under extension which can be identified by the slope in the right 
graph.  

 

The anharmonic spring as displayed in figure°7 concerning the dependence of force on 
elongation can locally be represented by a spring coefficient derived from the actual 
slope. For zero elongation and oscillations with negligible small amplitudes the spring 
coefficient is given by the linear term Cl only (same as for the harmonic case). For 
elongated springs as caused by extensional stress the effective (local) spring coefficient 
Cg (derivative of the function describing the spring as displayed in figure°7) will be 
reduced for the spring assumed here which turns soft on elongation.  
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Under the given assumptions, the linear mass-spring chain can be treated for small 
deviations as caused by oscillations with diminishing amplitude by  

 aF = a0 + Fg/Cg (12) 

Here Fg and Cg are the functions already defined in equations (10) and (11). The 
dispersion relation listed in equation (2) can be amended to:  

 ωF = 2∙(Cg/m)1/2∙sin(k∙aF/2) (13) 

 

 

Figure 8: Graphical representation of the dispersion relation (equation 13) for 
anharmonic springs under variable stress. In the left graph, the wave vector is 
normalized to the dispersion relation valid in the absence of tension for the range to the 
zone boundary. Extension by external forces leads to steeper dispersion relations and an 
increase of the distance between neighboring point masses resulting in a decrease of the 
periodicity of the dispersion relation. In the right graph, the wave vectors are individually 
normalized, to show the variation in the time-of-flight needed to pass a single unit cell 
with length aF which doubles and triples with respect to the length for the unstressed 
chain.  

 

Respective results (in figure 8) are given for forces leading to a doubling and tripling of 
the distance between point masses. The rise of velocity present for doubling is reduced 
in the next step to tripling of the distance due to progressive softening. The 
anharmonicity affects the curves such that the velocity does not increase linearly with 
pulling forces (as can be observed in figure°3). The phase and group velocities under 
external stress can be written as  

 V(ph) = 2/k∙(Cg/m)1/2∙sin(k∙aF/2) (14) 

 V(gr) = aF∙(Cg/m)1/2∙cos(k∙aF/2) (15) 

For long wavelengths (k → 0), the group velocity is 

 V(gr) = aF∙(Cg/m)1/2 (16) 

and the time-of-flight in this case is 

 TOF = (m/Cg)
1/2 (17) 

The generalized model treated here in the lowest order approximation can already 
provide a valuable picture of the discussed problem. The dependence of the TOF of 
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longitudinal polarized acoustic waves in the limit of large wavelengths if treated even on 
a simple theoretical approach, can explain the TOF variations due to external pull, 
where variations can only be present if anharmonic effects are included. For springs 
softening on extension, an increase of TOF for propagation over any fixed number of 
unit cells is to be expected from the derived relations (equation 17). This is due to the 
fact that even though the velocity is at least for small enough extensions still increasing 
(figure°8, left), the lattice distance will increase to a higher degree resulting in an 
increase of the time-of-flight needed to pass one unit cell (figure°8, right). The same 
applies for any sample that is modeled in a sufficient approximation by the approach 
presented here.  

The examples employed here involve elongations beyond any feasible limit for actual 
materials other than rubber and similar materials. The force function if derived from 
Morse [10] or Lennard-Jones potential [11] would exhibit similar features concerning the 
TOF under stress but would not allow stretching on the scales used here for 
demonstration. Extensions of only 2% lead usually to breakage for materials with such 
potentials concerning the binding forces. If these more realistic cases are used for 
demonstration, such small variations would arise that the differences could not easily be 
observed in respective graphs as employed here for illustration.  

 

3.2   T-mode vibrations  

The microscopic approach is used here to develop a transversally flexible mass-spring 
model to investigate the extensional stress effects on transversally polarized modes of 
bulk acoustic waves.  

The model [9] has used the TOF as a parameter to monitor the variations due to stress 
in the ultrasonic waves. The effects caused by anharmonicity lead to an increase in the 
monitored TOF, which is modeled here in the form of force-arm‟s elongation. In the 
absence of any anharmonicity in an idealized (or harmonic) case, for transversely 
polarized acoustic waves, the TOF of the chain with forces transferred instantly will 
decrease with the increase of lengthwise tension.  

 

3.2.1   Lattice dynamic modeling  

The basic theoretical unit for transversely polarized acoustic mode can be visualized by 
three point masses and an extremely small torsional spring connected by two mass-free 
force-arms as shown in the figure 9. The equation of motion of total force applied on 
mass mn for this system is equal to the restoring [12] rotating force (torque). The general 
equation of rotational force in this case would be  

 

 a × Fn = – G∙α  

Here G is the torsional stiffness coefficient and α is the angle of twist from the 
equilibrium position of the spring. The direction of vector Fn (force acting on the nth 
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point mass) is perpendicular to the force-arm a, so we can write it in scalar multiplication 
form as following:  

 Fn∙a∙sin(90°) = – G∙α  

 Fn∙a = – G∙α (18) 

An important assumption taken here to develop this model is the small amplitude 
oscillations.  

 

 

Figure 9: A mass-spring coupling system used for the demonstration of lowest anti-
symmetric or (named here) T-mode vibrations.  

 

Here α is the total angle of deflection of spring from equilibrium (figure 9). In this case 
the equation of motion can be written as  

 Fn∙a = – G∙(α1 + α2) (19) 

And for small amplitude (or angle) approximations; we can write  

 Sin(α1) ≈ α1           and          Sin(α2) ≈ α2 

Where  

 Sin(α1) = (yn − yn+1) / a           and          Sin(α2) = (yn – yn-1) / a  

So in the above case; we can write  

 α1 = (yn − yn+1) / a           and          α2 = (yn – yn-1) / a  

Thus equation (19) can such be reformulated as:  

 Fn = G/a2∙(yn+1 + yn-1 − 2yn)  (20) 
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The force Fn (acting on mass mn) can be represented by Newton‟s 2nd law [13] of 
motion. Thus the wave equation (20) can be written as according to the following 
second order differential equation.  

 

 m∙d2yn/dt2 = G/a2∙(yn+1 + yn-1 − 2yn)  

 d2yn/dt2 = G/(m∙a2)∙(yn+1 + yn-1 − 2yn)  (21) 

 

A frequency dependent solution [appendix 3.2] of the above wave equation (21) can be 
given as:  

 

 ω = (2/a)∙(G/m)1/2∙sin(ka/2)  (22) 

Here ω is the angular frequency and k is the wave number (related to the respective 
wave vector). This is the required dispersion relation representing the basic transversely 
polarized acoustic mode.  

 

3.2.2   Harmonic vibrations  

Suppose the initial position of the torsional mass-spring model is such that the angles α1 
and α2 are equal (if taken from the given central vertical line). Here a0 is the primary 
(constant) length of force-arms connecting to masses mn-1 and mn+1. The sideways 
external pull in this case will affect such that the angles α1 and α2 will increase equally 
on both sides to become α3 and α4 respectively, also shown in figure 10.  

 

 

Figure 10: The mass-spring coupling system (as in figure 9) for T-mode vibrations before 
and after sideways applied pull.  

 

A stress induced externally by two opposing pulling forces with F as the amount of each 
acting at the far ends of the chain (along its direction of extension) leads to a change in 
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the effective lattice (transversely polarized) displacement function aF [appendix 3.3] that 
will establish under static equilibrium and is here denoted by  

 

 aF = a0∙cos(α3)  (23) 

Thus the dispersion relation (equation 22) for generalized vibrations of a mass-spring 
chain for transversal mode due to external pull can now be modified (by replacing a with 
aF) as following  

 

 ωF = 2/aF∙(G/m)1/2∙sin(k∙aF/2) (24) 

A graphical representation of the stress affected dispersion relation (equation 24) is 
shown (in figure 11) as following.  

 

 

Figure 11: Sideways extensional force dependent dispersion relation (equation 24) of 
normalized angular frequency where the black, red, and blue color lines represent the 
effects of single, double and triple units of extensional pulling forces applied to the 
mass-spring chain.  

 

The phase and group velocities for dispersion relation (equation 24) would become  

 

 V(ph) = (2/kaF)∙(G/m)1/2∙sin(kaF/2) (25) 

 V(gr) = (G/m)1/2∙cos(kaF/2) (26) 

As we are interested here only in the long wavelengths limit (k → 0), the equation (26) 
can be written as  
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 V(gr) = (G/m)1/2 (27) 

In the above graph (figure 11), it‟s evident that the group velocity remains almost 
constant at lower frequencies even with the application of extensional force, and it 
changes only at higher frequencies with the extensional force. In the limit of k → 0, the 
group velocity can also be represented by  

 

 V(gr) = aF/TOF (28) 

In the long wavelengths limit phase and group velocities are identical. In this limit a 
linear dispersion is valid. Thus by comparing equations (27) and (28)  

 

 aF/TOF = (G/m)1/2  

 TOF = aF∙(m/G)1/2 (29) 

As (m/G) is a constant term supposed in the model, the TOF becomes directly 
proportional to aF  

 

 TOF ≈ aF  (30) 

As lattice displacement a0 is a constant value in this model, so by applying equation 
(23) in (30), the resultant TOF can be denoted as following:  

 

 TOF ≈ cos(α3) (31) 

Here α3 is the extended angle (figure 10) due to extensional force F from its equilibrium 
position. When the angle increases due to extensional force, the resulting function value 
(equation 31) decreases which is directly proportional to the TOF. Thus equation (30) 
demonstrates that the transversely polarized acoustic modes are affected due to 
lengthwise external force such that they get faster at low frequencies.  

That result only corresponds to the lowest order mode of transversely polarized bulk 
acoustic waves resembling to the A0 mode and shows the features of variations in TOF 
due to extensional stress. The results shown here are only applicable under limitations 
given at the start of this modeling and are verified by the following experimental results 
(figure 12).  
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Figure 12: The plotted graph shows the experimental results [9] for two separate anti-
symmetric modes of an aluminum (1 mm thick) strip being loaded with blue line showing 
A1 mode at frequency range of 1 MHz to 3 MHz, and red line showing A0 mode at lower 
frequency range of 10 kHz to 220 kHz with circular dots as measured data points.  

 

After the initial jump in the measured data (red) line for A0 mode having a frequency 
range between 10 kHz to 220 kHz, the rest of the line shows an almost consistent 
declining feature in TOF with increasing load on aluminum strip. The second measured 
data (blue) line is not generated in the lower frequency range (between 1 MHz to 3 
MHz), shows a different behavior upon extensional stress and so is not the subject of 
our discussion. The extension of the rotational springs will effectively not change the 
linear displacement (assuming very small angles of deviations), but the velocity will 
increase at low frequencies (refer to figure 11) with the increase of extensional stress, 
which will ultimately result in the decrease of TOF. The argument presented here is 
restricted to the idealized (or harmonic) conditions assumed here for a simple 
representation of the solid materials.  

In reality there are factors involved which can force the material to deviate from its 
harmonic behavior, collectively called anharmonicity in the material. The next step in the 
development of this modeling is the incorporation of relativistic effects for the 
representation of anharmonicity in the material and its due reaction during the passage 
of bulk acoustic waves under variable stressed conditions.  

 

3.2.3   Generalized vibrations  

The harmonic vibrations occur when the force-arm‟s length connected to the torsional 
spring remains constant, but theoretically we can imagine the effects of anharmonicity 
due to variations in the force-arm‟s length (an extension or lengthening of the force-
arm). Here we can contribute three limited cases of force-arm‟s length variations due to 
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extensional sideways force in which the effects of anharmonicity can be studied, starting 
from the position with no extension in the force-arm‟s length, with 1st and 2nd- step 
extensions, also shown in the figure 13.  

 

 

Figure 13: A mass-spring coupling system for T-mode vibrations with the application of 
extensional force including stepwise increased anharmonic effects represented by the 
increased force-arm’s length.  

 

The generalized equation of transversally polarized lattice displacement function 
(amended from equation 23) to include modeled anharmonicity effects can be written as 
following:  

 aGF = rGF∙cos(α3) (32) 

and  

 rGF = (r0 + ∆r) (33) 

where  

 GF „Stands for GENERALIZED FUNCTION including anharmonicity‟ 

 aGF = Generalized transversely polarized displacement function  

 rGF = Generalized force-arm‟s length  

 r0 = Original force-arm‟s length without extension  

 ∆r = Increased part in the force-arm‟s length  

 

The dispersion relation of transversally polarized vibrations (denoted by equation 24) 
can now be amended to:  

 ωGF = 2/aGF∙(G/m)1/2∙sin(k∙aGF/2) (34) 

This generalized stress affected dispersion relation (34) including (modeled) 
anharmonicity can be discussed in three basic limiting cases as following:  
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Case (1):  

The 1st case, in which no anharmonicity is assumed in the material, means there would 
be no variation in the length of force-arm due to extensional force applied. The lattice 
displacement function in this case will be x2 (figure 13). The equation (32) would 
become  

 x2 = r0∙cos(α3) (35) 

If we represent this displacement function (with no increase in force-arm‟s length) by 
aGF0, then equation (35) can be written as:  

 aGF0 = r0∙cos(α3) (36) 

The amended dispersion relation (according to equation 34) in this case can be written 
as following:  

 ωGF0 = 2/aGF0∙(G/m)1/2∙sin(k∙aGF0/2) (37) 

 

 

Figure 14: A force dependent graphical representation of dispersion relation (equation 
37) without anharmonicity (the resulted graph will be the same as in figure 11). Here the 
black, red, and blue color lines represent the effects of single, double and triple units of 
extensional pulling forces respectively applied to the mass-spring chain.  

 

The resultant TOF (according to equation 29) in this specific case at lower frequencies 
(i.e. k → 0) will be  

 TOF = aGF0∙(m/G)1/2 (38) 

As the term (m/G) is assumed to be a constant value in the model, the equation (38) 
can be represented as:  

 TOF ≈ aGF0 (39) 
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The function value of aGF0 will be decreasing (according to equation 36) as the angle of 
cosine is increasing due to extensional pull. Thus equation (38) concludes that in a 
transversely polarized acoustic mode with no anharmonicity, the TOF will decrease due 
to sideways extensional force.  

 

Case (2):  

In the 2nd case, the anharmonicity is assumed to be present in the material, and the 
variation in the force-arm‟s length due to extensional force is supposed to be such that 
the lattice displacement function x3 (shown in figure 13) becomes equal to x1 i.e.  

 x3 = x1  

where  

 x3 = (r0 + ∆r1)∙cos(α3) 

If we represent this displacement function x3 by aGF1, then  

 aGF1 = (r0 + ∆r1)∙cos(α3) (40) 

The amended dispersion relation (according to equation 34) in this case can be written 
as:  

 ωGF1 = 2/aGF1∙(G/m)1/2∙sin(k∙aGF1/2) (41) 

 

 

Figure 15: A force dependent graphical representation of dispersion relation (equation 
41) with modeled anharmonicity present in the material such that the TOF remains 
constant for any extensional stress. Here all of the overlapped color lines (i.e. black, red, 
and blue) represent the effects of single, double and triple units of extensional pulling 
forces applied to the mass-spring chain.  

 



Modeling of bulk acoustic waves 

33 

The resultant TOF (according to equation 29) in this specific case at lower frequencies 
(i.e. k → 0) will be  

 TOF = aGF1∙(m/G)1/2 (42) 

 TOF ≈ aGF1 (43) 

The function value aGF1 remains constant with the simultaneous increase of deflection 
angle α3 and force-arm‟s length. The equation (42) represents the relative effect of 
anharmonicity on TOF. This means even if the extensional force should decrease the 
TOF, but due to anharmonic effect (i.e. enlargement of force-arm), the TOF is 
compensated such that it becomes the same as was before the application of 
extensional force.  

 

Case (3):  

In the 3rd case, the anharmonicity is present in the material, and the variation in the 
force-arm‟s length due to extensional force is supposed to be such that the lattice 
displacement function x4 (figure 13) becomes greater than x1 i.e.  

 x4 > x1  

where  

 x4 = (r0 + ∆r2)∙cos(α3)  

If we represent this displacement function x4 by aGF2, then  

 aGF2 = (r0 + ∆r2)∙cos(α3) (44) 

The amended dispersion relation (according to equation 34) in this case can be written 
as:  

 ωGF2 = 2/aGF2∙(G/m)1/2∙sin(k∙aGF2/2) (45) 
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Figure 16: A force dependent graphical representation of dispersion relation (equation 
45) with modeled anharmonicity present in the material such that the TOF is increased 
due to increased anharmonic effects resulting in the decrease of velocity as clear from 
the above graph. The color scheme showing black, red, and blue color lines represents 
the effects of single, double and triple units of extensional pulling forces respectively 
applied to the mass-spring chain.  

 

The resultant TOF (according to equation 29) in this specific case at lower frequencies 
(i.e. k → 0) will be  

 TOF = aGF2∙(m/G)1/2 (46) 

 TOF ≈ aGF2 (47) 

The function value aGF2 increases with the simultaneous increase of deflection angle α3 
and force-arm‟s length. The equation (46) represents the relative effect of anharmonicity 
on TOF. Even though the extensional force should decrease the TOF, but due to the 
larger anharmonic effect, the total TOF is compensated such that it becomes 
increasing.  

 

3.3   combined (L + T) -mode vibrations  

The microscopic approach is used here to develop a unified (or combined treatment) 
linear chain mass-spring model to investigate the stress effects on longitudinally and 
transversely polarized modes of bulk acoustic waves.  

The model [14] has used the TOF as a parameter to monitor the variations due to stress 
in the ultrasonic waves. The model provides a sufficient separation of longitudinal and 
directional acting restoring forces to allow a simple treatment of the relevant wave 
equations. The provided analysis could qualitatively predict the observed effects of 
extensional load on TOF for shear acoustic waves and the effects on the TOF variation 
observed for longitudinally polarized acoustic waves. The results obtained here are 
simultaneously compared with the individual models presented above and are found in 
good agreement.  

 

3.3.1   Lattice dynamic modeling  

To develop a model representing the combined treatment including longitudinal and 
transversal polarized behavior of mechanical waves upon extensional pull, an infinitely 
long chain can be represented by a point mass m at an arbitrary position n along with its 
two neighbors at n+1 and n-1 in the chain (figure 17). To get a rigidity for shear forces 
the directional forces or angle dependent torques are modeled by torsional springs 
acting on sideways directionally rigid connecting links. Springs acting freely only 
lengthwise allow a lengthening of the chain and respective longitudinally polarized 
propagating waves.  
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Figure 17: Mass-spring coupling system for a combined treatment of transversal and 
longitudinal polarized acoustic waves. F represents extensional stress applied externally 
to the linear chain. G is the stiffness coefficient of the rotational springs and represents 
the shear stiffness if only first neighbor interaction is considered; C is Hooke’s spring 
coefficient representing the lateral stiffness, and a is the lattice displacement between 
the mass points (mi; i = n, n+1, n-1,,). Any lateral displacement shown here for substantial 
dislocations will be assumed to be negligibly small in the calculations treating the model. 
The first (top) figure shows the system in equilibrium and the second (bottom) figure 
shows the same system in the stressed form such that its lattice distance a remains the 
same.  

 

The effect of angle dependent torque (n+1 − n)  is equivalent to the shear stiffness 
that brings transversal force acting at the nth element  

 G/a2∙(yn+1 + yn-1 − 2yn) (48) 
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On the other hand the springs between the elements transfer the pulling force F that in 
case of the movement of the nth element out of the equilibrium by yn creates the 
transversal restoring force  

 F/a∙(yn+1 + yn-1 − 2yn) (49) 

In addition the lattice distance a becomes dependent on the external applied tensional 
stress represented by the force F according to:  

 a = a(F) = a0 + F/C (50) 

Where C is the lateral spring coefficient as defined by Hooke‟s law and a0 is the length 
of lattice unit without external force F.  

 

3.3.2   Harmonic vibrations  

In the mass-spring lattice model (MSLM) the basic features of the dispersion graphs can 
be derived by treating a unit of the chain which, if as assumed here for simplification 
only next neighbor forces are considered, consists of a mass at a selected position and 
the two next neighbor masses connected as demonstrated in figure 17. The 
simplification relates to a combination of waves in a sideways (2D or even 3D) infinitely 
extended point mass model.  

The discrete wave equation in this case consists of inertial forces {m∙d2yn/dt2}, the 
potential forces {G/(a2)∙(yn+1 + yn-1 − 2yn)}, and restoring forces {F/(a)∙(yn+1 + yn-1 − 2yn)} 
acting on the particle mn. The equilibrium of these forces on the nth element leads to:  

 m∙d2yn/dt2 – G/(a2)∙(yn+1 + yn-1 − 2yn) – F/(a)∙(yn+1 + yn-1 − 2yn) = 0  

 d2yn/dt2 – G/(ma2)∙(yn+1 + yn-1 − 2yn) – F/(ma)∙(yn+1 + yn-1 − 2yn) = 0  

 d2yn/dt2 – [G/(ma2) + F/(ma)]∙(yn+1 + yn-1 − 2yn) = 0  

 d2yn/dt2 – [(G/a + F) / (ma)]∙(yn+1 + yn-1 − 2yn) = 0  (51) 

The wave equation derived in that way is a general second order differential equation. It 
can be shown that the solution of that equation (51) will have a form of sinusoidal 
dispersion relation, but the sensitivity of the dispersion relation to the external pull 
depends on the inter-relation between the elastic coefficients G and C involved in the 
model. By proper selection of parameters concerning the general solution [appendix 
3.4] of equation (51), the following equation is obtained:  

 ω = 2∙[(G/a + F) / (ma)]1/2∙sin(k∙a/2) (52) 

Here k represents the wave vector and lattice displacement is the function of applied 
stress such that a = a(F) = a0 + F/C.  

 

3.3.3   Generalized vibrations  

Since the small amplitude and respectively small angle approximation is involved in the 
combined treatment of longitudinal and transversal vibrations, the dependence of TOF 
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with variable factors can be treated. Below some of the representative (discrete limiting) 
cases are discussed.  

 

Case (1):  

Suppose the shear stiffness G in the material has a finite fixed value (between zero and 
infinity) and the lateral stiffness C is very high (i.e. infinite) such that the distance 
between the chain elements does not elongate under any pulling force F. Then the 
dispersion relation (52) can be expressed by:  

 ωF = 2∙( (G/a0 + F) / ma0 )
1/2∙sin(k∙a0/2) (53) 

The group and phase velocities in the limit k  0 can both be represented by V  

 V = a0∙( (G/a0 + F) / ma0 )
1/2 (54) 

The time-of-flight needed to pass the lattice distance a0 can also be given as:  

 TOFa0 = = a0∙/ V  (55) 

Evaluating equation (54) into equation (55)  

 TOFa0 = ( ma0 / (G/a0 + F) )1/2 (56) 

 

In the absence of a pulling force, the TOF will be constant as the stiffness coefficient is 
assumed here a fixed value. The presence of a pulling force will affect the TOF such 
that it will decrease for harmonic vibrations. This effect has been observed for the 
lowest anti-symmetric mode in the following experimental result which resembles the 
here treated transversely polarized acoustic modes (figure 18).  

 

 

Figure 18: Live software view showing a runtime loading of aluminum (1 mm thick) strip 
from 01:00:10 till 01:06:20 (in time scale) with a loading rate of 5.4 kg per minute. The 
anti-symmetric A0 mode with a frequency range of 10°kHz to 220°kHz has been observed 
and has shown a decreasing feature in TOF with increasing extensional load.  
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Case (2):  

Suppose there is no shear stiffness (i.e. G = zero) and the lateral stiffness C is very high 
(i.e. infinite) such that the distance between the chain elements does not change under 
any pulling force F. Then the dispersion relation (equation 52) can now be written as:  

 ωF = 2∙[F / (ma0)]
1/2∙sin(k∙a0/2) (57) 

 

 

Figure 19: The plotted graph represents the dispersion dependence on the pulling force 
for a linear mass-spring chain without any shear stiffness and infinite longitudinal 
stiffness within the normalized parameters. The respective pulling forces are shown in 
colors from red, green, blue, magenta for a single, double, triple, and quadruple units of 
lengthwise pulling forces applied to the chain.  

 

The technically relevant applications on which this chapter is concentrating relates for a 
microscopic interpretation where a represents inter-atomic distances to the large 

wavelengths limit (k  0). In that case, group and phase velocities are equal which 

allows representing both by V and is given by:  

 V = a0∙(F / ma0)
1/2 (58) 

This means that in the absence of sideways pulling forces the velocity becomes zero, 
and will increase proportionally to the square root of pulling forces applied. The derived 
equation can further be transformed as:  

 V = (F / (m/a0))
1/2 (59) 

Here (m/a0) is the linear mass density and F is the magnitude of the pair of external 
forces supplying the pull. This equation is already well known from the derivation of the 
velocity of transverse polarized mechanical waves traveling on an extensional stiff but 
concerning bending soft string [15] (idealized chain). For such a string or chain the 
velocity of mechanical waves v is given by:  
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 v = μT  (60) 

With T representing the tension (axial stress) and μ representing the mass per unit 
length of the string, this is in full accordance with the assumed simplified case treated 
above.  

The resultant TOF derived for lattice displacement a0 can then be written (from equation 
58) as following:  

 TOF = (ma0 / F)1/2 (61) 

The TOF is decreasing upon the increase of extensional forces under the condition that 
lattice is not elongating.  

 

Case (3):  

Suppose that a shear stiffness value G is present in the material (between zero and 
infinity) and also the lateral stiffness C has a value (between zero and infinity) such that 
the distance between the chain elements elongates under any pulling force F. The 
dispersion relation (equation 52) can now be written as:  

 

 ωF = 2∙((G/a + F) / (ma))1/2∙sin(ka/2) (62) 

 

Figure 20: The plotted graph represents the dispersion dependence on the pulling force 
for a linear mass-spring chain with three different values of shear stiffness and infinite 
longitudinal stiffness within the normalized parameters at long wavelengths regime. The 
effects on the TOF with respective shear stiffness values (G = 1, G = 5, G = 10) are shown 
as black, red and blue colors respectively.  

 

The group and phase velocities in the long wavelengths limit (k  0) are represented 
by:  
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 V = a∙((G/a + F) / ma)1/2 (63) 

The TOF needed to pass for the resultant lattice displacement a can be expressed by:  

 TOFa = (ma / (G/a + F))1/2 (64) 

The equation (64) formulates the resulted TOF for a combined treatment of bulk 
acoustic modes at long wavelengths propagating under defined stressed conditions in 
an extendable chain of lattice unit a.  

The graph (figure 20) clearly represents the difference of TOF behavior upon changing 
the value of shear stiffness G. The model actually can represent a combination of 
(lateral and transversal) vibrations such that the dominant part of it will dictate the TOF 
of the propagating bulk acoustic waves at longer wavelengths. For example for smaller 
shear stiffness (G = 1) and infinite longitudinal stiffness (i.e. C = ∞), the TOF is 
decreasing in nature and represents the resemblance to the results [16] obtained for 
lowest anti-symmetric propagating acoustic mode under stress. Similarly with the 
increased shear stiffness (e.g. G = 10) and infinite longitudinal stiffness (i.e. C = ∞), the 
effects on TOF compensate such that its nature with the increase of extensional stress 
becomes constant. This result resembles to the gradual loading response of lowest 
symmetric acoustic mode in which the TOF remains nearly constant.  

The theoretical predictions concerning TOF variations of this model for both low 
frequency symmetric and anti-symmetric acoustic modes are verified by the 
experimental results shown in figure 21.  

 

 

Figure 21: The plotted graph showing the experimental results [9] at low frequencies for 
symmetric and anti-symmetric modes. The dominant feature for A0 mode with frequency 
range between 10 kHz to 220 kHz is a decline in the TOF, whereas for the S0 mode with 
frequency range between 100 kHz to 200 kHz in comparison is almost constant TOF 
observed under increasing load on the aluminum (1 mm thick) strip.  
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The developed unified mass-spring linear chain model has demonstrated individually 
and in combination the expected effects of extensional stress on longitudinal and 
transverse polarized acoustic modes in form of dispersion relations of wave velocities 
and their respective TOFs.  

 

3.4   Comparison of L-mode and T-mode vibrations  

A comparison of velocity and TOF equations for L-mode and T-mode vibrations is given 
as following:  

 

Velocity at long wavelength limit  

In the long wavelength limit (k → 0), group and phase velocities of transversally 
polarized acoustic waves (according to eq. 27) are identical and can both be given as:  

 VT = (G/m)1/2 (65) 

Similarly for longitudinal polarized acoustic waves, group and phase velocities are 
identical (according to eq. 7) in the long wavelength limit (k → 0) and can both be given 
as:  

 VL = a∙(C/m)1/2 (66) 

As we know generally the transversal velocity VT of acoustic waves [17] is two third of 
the longitudinal velocity VL of the acoustic waves. Then we can write an equation as:  

 VT = 2/3∙(VL) (67) 

Using values from equations (65) and (66) in equation (67), we get  

 (G/m)1/2 = 2/3∙a∙(C/m)1/2 (68) 

 G = 4/9∙C∙a2 (69) 

 C = 9/4∙G/a2 (70) 

The above equation gives us the value of C in terms of G.  

 

Time-of-flight (TOF) at long wavelength limit  

In the long wavelength limit (i.e. k → 0), the time-of-flight (TOFT) for transversally 
polarized acoustic waves (according to equation 29) can be defined as:  

 TOFT = a (m/G)1/2 (71) 

Using the value of G in terms of C (according to equation 69), we get  

 TOFT = 3/2∙(m/C)1/2 (72) 

Here (m/C) is a constant term for harmonic conditions,  

 TOFT = constant (73) 
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Also the time-of-flight (TOFL) for longitudinally polarized acoustic waves (according to 
equation 9) at longer wavelengths is given by:  

 TOFL = (m/C)1/2 (74) 

and this also is a constant term for harmonic conditions,  

 TOFL = constant (75) 

The result of comparison shows that the above presented (in section 3.3) mass-spring 
linear chain model can be used as a representative unified model for longitudinal and 
transversal acoustic modes within harmonic and low frequency conditions.  

 

3.5   Summary  

The mass-spring linear chain modeling has been employed here to demonstrate the 
effects of extensional force on TOF for two basic modes of acoustic waves namely 
symmetric and anti-symmetric at low frequencies (or long wavelengths). The two 
individual and a combined models have demonstrated the theoretical results in the form 
of solved dispersion relations for longitudinally and transversally polarized (resembling 
low frequency symmetric and anti-symmetric modes of) acoustic waves. Generally the 
prominent feature of the longitudinally polarized (or L-mode) acoustic waves is that the 
TOF will remain constant for harmonic (or idealized) vibrations at low frequencies under 
the influence of extensional stress. In that case anharmonic effects are needed to 
describe any observed variations in the experimentally achieved results of the TOF. 
Different to the case for longitudinal polarization, transversally polarized (or T-mode) 
acoustic waves will exhibit a variation of TOF under external stress even in the absence 
of anharmonicities. As the real materials contain anharmonicity, a further step of 
investigation is conducted to include anharmonicity factor in these models and is 
represented by generalized vibrations. The here achieved modeling results have been 
compared with the corresponding experimental results and are found in good 
agreement.  
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4.   Developed theory for guided acoustic waves  

The linear chain mass-spring model [1] has been used here to demonstrate the 
combined effects treating longitudinal and transversal modes on propagating guided 
acoustic (Lamb) waves under extensional stress for isotropic homogeneous solid-state 
media. A comparison of physical parameters between continuum and discrete models is 
performed. Also included is an analytical investigation of the theoretical modeling to the 
experimentally achieved results. The theoretical and experimental results are compared 
and discussed in detail in this chapter.  

The theoretical description employed here as linear chain model originates from lattice 
dynamics [2-5]. They can also be interpreted as mechanical lumped circuits. Since the 
chain elements relate to finite elements, the approach is also well suited for 
computational methods. The interaction of atoms is traditionally described by suitable 
potential forces. Concerning the forces relevant for the adjustment of the distance of 
neighboring atoms, the Lennard-Jones [6] and the Morse-Feshbach potentials [7] are 
historically relevant examples. The detection of variations of the time-of-flight (TOF) of 
acoustic waves for different modes propagating in solid plates is one of the numerous 
methods developed for that purpose. Different levels of sensitivity of the TOF for 
fundamental symmetric and anti-symmetric Lamb wave modes for such parameters as 
applied stress or temperature, allows the need for a selective determination of each of 
them. The modeling of lowest anti-symmetric (A0) Lamb wave mode is given preference 
due to its higher sensitivity to the external stress [8].  

The given model [1] has provided an extension of the already available literature [9-10] 
in solid state physics. The advantage of this tool over Lamb wave equations is the direct 
submission capability of stress parameters and the hereby achieved relevant dispersion 
relations, especially the monitoring of TOF of propagating guided acoustic waves with 
respect to the material (in our case aluminum alloy). Here a further extension to this 
modeling has been provided by introducing detailed analytical investigation of 
theoretical results and their comparison with experimental results.  

 

4.1   Derivation of the model  

The presented research extends a lattice dynamics based theory [2] for the modeling of 
Lamb waves in pseudo-elastic solid material to exemplify the effects caused by stress 
and anharmonicity measured with Lennard-Jones interatomic binding potential and are 
compared with the experimental findings [11].  

 

4.1.1   Lattice dynamic modeling  

Consider a one dimensional linear chain model [1] under externally applied pull (force) 
consisting of equal distanced point masses that interacts with their neighbors (figure 1).  
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Figure 1: Linear mass-spring coupling system [1] at a fixed time in a non-equilibrium 
position for a combine treatment of the longitudinal (L-mode) and transverse (T-mode) 
polarized acoustic waves. Here P represents the magnitude of a pair of pulling forces 
describing the externally applied stress. Rest of the symbols are defined in the text.  

 

Besides of the interaction by linear mass-free and sideways stiff linear springs, 
characterized by the spring constants C, also torsional springs, represented by G, are 
introduced. In the absence of external forces the position of the n-th element of the 
chain is sn = na0. In the here applied two dimensional model, the force exerted on the n-
th element of the chain consists of the components parallel to the chain (in x-direction) 
and another orthogonal to the chain (in y-direction).  

 

4.1.2   Sideways force dynamics  

Concerning the dynamics of the chain, the parallel force component between neighbors 

can be expressed as  n1n

i1,i

C

1ii,

C xxCFF  

 , where xn is the horizontal component 

of the n-th element‟s displacement. The formula for the parallel force leads to the 
discrete wave equation with the dispersion relation [2]:  

  kasinC/m2ω 2
1  (1) 

Where ω - angular frequency and k  is the wave number. At lowest frequency limit, the 

phase and group velocities are equal to C/maV  .  

 

4.1.3   Perpendicular force dynamics  

The vertically acting restoring force, related to the extensional pull P is given by:  

       P/a2yyyP/ayyP/ayyF n1n1n1nnn1n

P    (2) 

In addition to this force, at non-equilibrium state, the rotational springs with spring 

constant G supply a torque  n1nn ααGM  
, with αi denoting angular deviation of 
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inter-connecting sectors from equilibrium. It is assumed that the mechanical oscillation 
is limited to sufficiently small amplitudes. It has already been shown [1] that the 
presence of the rotational springs leads to the vertical force acting on the n-th element 
in the form:  

 






 
 

 2

2n1nn1n2nG

a

y4y6y4yy
GF  (3) 

That force depends not only on the position of the next but also on the second next 
neighbor point masses.  

 

4.1.4   Dispersion relation  

Substituting both vertical force components (equations 2 and 3) to the equation of 
motion and by solving the resultant wave equation, the dispersion relation [1] for 
transversely polarized acoustic wave is obtained as following:  

 
2ma

ka)Gcos(22cos(ka)G)8Pa(2G)6Pa(2
ω


  (4) 

The above dispersion relation allows the determination of phase and group velocity and 
consequently the TOF of propagating acoustic waves. Theoretical results derived from 
equation (4) are comparable to the lowest anti-symmetric (A0) guided acoustic mode. 

The case of linear inter-atomic dependence of P/Caa 0   on extensional force has 

already been discussed by the author in literature [9]. Here the anharmonicity derived 
from Lenard-Jones potential in the form of distance-to-force relation is introduced.  

 

4.1.5   Respective physical parameters derived from the model  

The phase V(ph)  and group V(gr)  velocities for the dispersion relation (equation 4) are 

defined as:  

kV(ph) /  







 


2ma

2Gcos(2ka)8G)cos(ka)(2Pa6G)(2Pa

k

1
V(ph)

 

And for  

/dkdV(gr) 

 

 1/2

1/22
cos(2ka)2Gcos(ka)8G)(2Pa6G)(2Pad/dk

)(ma

1
dw/dk 

 

Here m and a are non-variables, because the derivative is performed with respect to 
wave number k only  
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   sin(2ka)2G sin(ka)4G)(Pacos(2ka)2Gcos(ka)8G)(2Pa6G)(2Pa
(m)

1
V(gr)

1/2-

1/2


 

 
   2Gcos(2ka)8G)cos(ka)(2Pa6G)  (2Pam

2Gsin(2ka)4G)sin(ka)(Pa
V(gr)




  

The TOF for transit of one unit lattice a in the low frequency limit can be expressed as 
following:  

V(gr)

a
TOF   

which in our case will be  

 

 
 cos(2ka)2Gcos(ka)8G)(2Pa6G)(2Pa

sin(2ka)2Gsin(ka)4G)(Pa

ma
TOF

2






 

The above equation is a generalized formula of TOF for the guided acoustic waves 
under variable loading (or stress) conditions.  

 

4.1.6   Lennard-Jones potential and respective coefficients for 
aluminum  

The nonlinear dependence of the inter-atomic distance on the applied pulling force is 
due to the non-quadratic behavior of the atomic binding potential as discussed by 
Lennard-Jones potential [12].  
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Here ULJ is the Lennard-Jones potential function, a -inter-atomic distance between point 
masses, and rest of the symbols are defined in the following text (see section 4.3). The 
respective force (FLJ) and spring (CLJ) coefficients derived from Lennard-Jones potential 
are defined [appendix 4.1] as following:  
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 (a) (b) 

Figure 2: Interaction between aluminum atoms described by the Lennard-Jones 
potential: (a) Normalized plot of the LJ-potential, (b) Dependence of the relative spring 
coefficient (CLJ) on the inter-atomic displacement Å (in angstrom).  

 

As it is visible in the figure (2b), the relative spring coefficient (CLJ) is strongly dependent 
[13] on the inter-atomic distance. The observed change of the TOF of lowest modes 
under applied pull occurs for both following reasons: (i) due to the change of sample 
length, (ii) due to the change in material elastic constant (i.e. Young‟s modulus).  

 

4.2   Comparison of the frequency dependent physical parameters 
between continuum and discrete models  

Here a comparison of frequency dependent physical parameters is provided between 
continuum (or elastic beam) and discrete (or mass-spring linear chain) models. The 
implementation conditions for both models are taken here such that to be valid only for 
low-frequency (or long wavelength) approximations.  

 

The continuum model  

Consider a transversal deformation of an elastic beam of cross-section S described by a 
second order differential equation [14]. The equation has been obtained after 
implementation of the influence of external extensional stress (pull) in the already 
available free beam model [15]. This result in  

 4

4

2

2

2

2

x

u
EI

x

u
T

t

u
m















 (5) 
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Where m is the mass per unit length of the beam, I is the second moment of the area, E 
is the Young‟s modulus, and T is the axial pulling force. The literature [14] also has 
provided a solution of the above equation (5) in the form of phase velocity as follows:  

 
T4mEIωT

2EI
ωv

22
ph


  (6) 

This equation (6) has further been solved [appendix 4.2] and has been obtained in the 
form of angular frequency for the continuum model as following:  

 
m

EIkTk
ω

42 


 (7)

 

An error is found in the literature [1] (for equation 7) and it has been corrected in the 
presented dissertation. As in this chapter we have used the notation m as mass, a as 
the length of lattice unit, and P as pulling force, so here in equation (7) by replacing m = 
m/a, T = P, we get  

 
m/a

EIkPk
ω

42 


 (8) 

This is the resultant angular frequency (equation 8) for continuum model [14] in terms of 
extensional pulling force P.  

 

The discrete model  

The angular frequency equation obtained from discrete (or mass-spring chain) model [1] 
is given by:  

 
2ma

2Gcos(2ka)8G)cos(ka)(2Pa6G)(2Pa
ω




 (9) 

The above angular frequency equation (9) can be simplified by applying Taylor series 
expansion. By solving first three elements of suitable Taylor series for both cosines,  
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in equation (9) leads to the following angular frequency equation  
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The series has been restricted to three elements only, due to the addition of 
increasingly very small elements, which would have a very small (or negligible) effect on 
the overall value of the function. The solution [appendix 4.3] of the above equation will 
give us:  

 
am

k
12

Pa
GaPk

ω

4
2

2













 (10) 

This is the angular frequency equation in simplified form (equation 10) for discrete 
model.  

 

The comparison (between continuum and discrete models)  

The comparison of both models along with their respective angular frequency equations 
(8 and 10) can be done by equating them as following:  
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Squaring and solving [appendix 4.4] on both sides of the above equation,  

 12

Pa
GaEI

2


 (11) 

The equation (11) provides us elasticity modulus in terms of P, G and a. Also the value 
of G in this case would be  

 12

Pa
EIGa

2


  

Or  
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



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


 (12) 

This value of shear stiffness G (equation 12) is strictly limited towards diminishing inter-
atomic displacements, loads and frequencies.  

 

4.2.1   Velocity  

It is a vector quantity which specifies the angular speed of an object and the axis about 
which the object is rotating.  
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The continuum model  

In this case, the angular frequency (equation 8) obtained from continuum model [14] is:  

 
 am

EIkPk
ω

42 


 

And its phase velocity would be  
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Or  
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k

1
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42

ph




 (13) 

After simplifying equation (13), we get  

 
 am

EIkP
v

2

ph


  (14) 

As we are interested in the parameters at low frequency or long wavelength limits. So 
by applying this limit (i.e. k → 0), we get from equation (14)  

 
 am

P
vph 

 (15) 

This is the phase velocity at long wavelengths for continuum model.  

And as the group velocity by definition is  
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 (16) 

After solving [appendix 4.5] the equation (16), we arrive at  
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

 (17) 

As we are interested in the parameters at long wavelength limits. So by applying this 
limit (i.e. k → 0), we get from equation (17)  

 
)am(

P
vgr 

 (18) 

This is the group velocity at long wavelength limits for continuum model.  
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The discrete model  

The angular frequency (equation 10) obtained from discrete model [1] is:  
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And the phase velocity equation will be  
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After simplification the equation (19) would become  
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Applying the long wavelength limits (i.e. k → 0), we get from equation (20)  
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This is the phase velocity at long wavelength limits for discrete model.  

Also for discrete model the group velocity equation will be  
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After solving [appendix 4.6] the equation (22), we get  
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Applying the long wavelength limits (i.e. k → 0), we get from equation (23),  
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Or  
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 (24) 

This is the group velocity at long wavelength limits for discrete model.  

 

The comparison (between continuum and discrete models)  

The comparison of phase and group velocities for continuum and discrete models 
(equations 15, 18, 21, 24) shows their values at long wavelengths remain the same. 
This means that our assumption about phase and group velocity at long wavelengths to 
be a single accepted function, is valid!  

 

4.2.2   Time-of-flight (TOF)  

TOF is the measurement of time it takes for a particle or wave to travel a distance 
through a medium. In our case the TOF is the total time taken to cover the displacement 
unit length a. Thus  

 
Velocity

ntDisplaceme
TOF    (25) 

 gv

a
TOF 

  (26) 

Here gV  is the group velocity. Because this approximation is intended for long 

wavelengths the overall choice of either phase or group velocity has not much 
difference on the TOF results.  
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The continuum model  

The group velocity derived from continuum model (from equation 17) is:  
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Applying the long wavelength limits (i.e. k → 0),  
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Using this velocity equation (28) in TOF equation (26), we get  
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If the mass m and displacement a will remain unchanged, the TOF will decrease due to 
external pull P. This behavior of transversally polarized (resembling lowest anti-
symmetric mode of) acoustic waves has also been shown in one of our experimental 
results discussed earlier (see chapter 3, figure 18).  

 

The discrete model  

The group velocity derived from discrete model (from equation 23) is:  
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Applying the long wavelength limits (i.e. k → 0),  

 
)am(

P
vgr 

 (31) 

Using this velocity equation (31) in TOF (equation 26), we get  
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Or  

 P

am
TOF




 (32) 

This is the TOF result for discrete model.  

 

The comparison (between continuum and discrete models)  

The comparison for both models (in equations 29 and 32) has shown a complete 
similarity of results at long wavelengths.  

 

4.2.3   Momentum  

Momentum is the quantity of motion of a moving body measured as a product of its 
mass and velocity. If the momentum is represented by M, then it can be written in the 
form of following equation:  

 Momentum = mass x velocity  (33) 

 vmM   (34) 

Here m is the mass and v is the velocity of the moving particle.  

 

The continuum model  

The angular frequency (equation 8) obtained from continuum model is:  
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As the phase and group velocities have the same values at long wavelength limits (see 
section 4.2.1). Then the phase velocity equation can be used for momentum calculation. 
For convenience we denote here phase velocity vph by v, as following:  
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Using this velocity equation (35) in momentum equation (34), we have  
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Here the equation (36) gives the equation of momentum for continuum model.  

 

The discrete model  

The angular frequency (equation 10) obtained from discrete model [1] is:  
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Then the (phase) velocity equation will become,  

k

a)(m

k
12

Pa
GaPk

k

ω
v

4
2

2












 

Or  
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Using this velocity equation (37) in equation (34), the momentum for discrete model will 
be  
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Or  
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Thus the equation (38) gives us the equation of momentum for discrete model.  

 

The comparison (between continuum and discrete models)  

To compare the momenta of both models, we can equate both equations (36 and 38) as 
following:  
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After simplification finally we will arrive at  
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The identical values (comparing to equation 12) of shear stiffness G represents here the 
conservation of momentum.  

 

4.2.4   Energy  

The energy of a vibrating system in physics is called vibrational energy. As this energy 
is related to the motion of system particles, it can also be denoted by kinetic energy 
(K.E.). The relation between momentum M and energy E (which in our case would be 
kinetic energy) is given by:  
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 Energy = (Momentum)2 / (2 x mass)  (42) 
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
 (43) 

By using the definition of momentum as being the product of mass and velocity, the 
equation (43) can be written as following:  
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Here m is the mass and v is velocity of the moving particle.  

 

The continuum model  

The angular frequency (equation 8) obtained from continuum model is:  
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By denoting phase velocity as v, we have  
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Using this velocity equation (45) in energy equation (44), we will have  
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Here the equation (46) gives the equation of energy for continuum model.  
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The discrete model  

The angular frequency (equation 10) obtained from the discrete model is:  
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By denoting phase velocity as v, we have  
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Using this velocity equation (47) in energy equation (44), we will have  

2

4
2

2

k

a)(m

k
12

Pa
GaPk

m
2

1
E







































 

Or  

 































a)(m

k
12

Pa
GaPk

2k

m
E

4
2

2

2

 (48) 

Thus the equation (48) gives us the equation of energy for discrete model.  

 

The comparison (between continuum and discrete models)  

To compare the energies of both models, we can equate both equations (46 and 48) as 
following:  










































 


)am(

k
12

Pa
GaPk

2k

m

)am(

EIkPk

2k

m

4
2

2

2

42

2

 

Or  
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After simplification finally we will arrive at  

 










12

Pa
GaEI

2

 (49) 

Or  

 
EI

12

Pa
Ga

2


 (50) 

 12

Pa
EIGa

2


 

 
a

12

Pa
EI

G

2











  (51) 

The numerical calculations are performed here assuming to be used for long 
wavelength approximations only.  

 

4.2.5   Elasticity  

Elasticity is the tendency of solid materials to return to their original shape after being 
deformed. Solid objects will deform when forces are applied on them. If the material is 
elastic, the object will return to its initial shape and size when these forces are removed. 
For an elastic case in which the Hooke‟s springs in the model can be assumed 
representing elasticity of the material, the extensional pulling force P can be written as 
following:  

 P = Eε  (52) 

Here E is the modulus of elasticity and ε  is the resultant strain in the material due to 
extensional force P.  

 

The comparison (between continuum and discrete models)  

As the functions and their values will remain the same in the case of (linear or idealized) 
elasticity defined by Hooke‟s law. We can directly substitute the extensional pulling 
force P as defined by equation (52) in the derived shear stiffness function G (equation 
12) obtained by the comparison of continuum and discrete models as following:  
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After simplification,  
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As the conditions used here are elastic (according to Hooke‟s law), the symbol E can be 
replaced by Eelast and if we denote the rest of the symbols as following:  

AGa  ,           B
12

εa 2

   

Then the equation (53) can be written as:  

  BI

A
E elast




 (54) 

 

4.2.6   Viscoelasticity  

Viscoelasticity is the property of materials that exhibit both viscous and elastic 
characteristics when undergoing deformation. Viscous materials resist shear flow and 
strain linearly with time when a stress is applied. Elastic materials strain when stretched 
and quickly return to their original state once the stress is removed. Viscoelastic 
materials have elements of both of these properties and, as such, exhibit time-
dependent strain. Whereas elasticity is usually the result of bond stretching along 
crystallographic planes in an ordered solid, viscosity is the result of the diffusion of 
atoms or molecules inside an amorphous material. For a simple viscoelastic case, the 
Kelvin-Voigt model [16] can be assumed representing elasticity of the material, the 
extensional pulling force P [appendix 4.7] can be written as:  

 

ε
t

η
P 

 (55) 

Here η the viscosity factor and t is the time. The function 
t

η
 is equivalent to E in the 

Hooke‟s definition of elasticity (defined in equation 52).  
 

The comparison (between continuum and discrete models)  

As mentioned above in the discrete model case, we can directly substitute the 
extensional pulling force P (equation 55) in the shear stiffness G (equation 12) obtained 
by the comparison of continuum and discrete models as following:  
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After simplification,  
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As the conditions used here are viscoelastic, the symbol E can be written as Ev-elast,  
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And by using the above defined (in equation 54) symbols, equation (57) gets the shape 
as following:  
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Here the equation (54) is the numerical modulus of elasticity, whereas the equation (58) 
represents the viscous effects on the same elastic modulus. Thus  
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The above comparison in the elastic and viscoelastic cases clearly represents a 
(decreasing/increasing) variation effect on modulus of elasticity E. If A, B and I values 
remain the same concerning there equivalent variations with respect to each other. The 

variation factor then is only „









t

η

‟ where 


 is a fixed viscosity factor (value), so we can 
show here analytically that with increasing time, the value of elasticity modulus E will 
change. This effect of variations was also observed in the literature [17].  

 

4.2.7   Resonance  

Frequencies at which the response amplitude is relatively maximum are known as the 
system's resonant or resonance frequencies. At these frequencies even small periodic 
driving forces can produce large amplitude oscillations, because the system stores 
vibrational energy.  

 

The continuum model  

The angular frequency (equation 8) of continuum model is:  
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As the resonant frequency resonω  is the natural frequency of vibrations without any 

external force (i.e. P = 0) involved, so the equation (59) can be written as:  
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The discrete model  

The angular frequency (equation 10) of discrete model is:  
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For no external force (P = 0), the angular frequency ω  will become resonω  
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The comparison (between continuum and discrete models)  

Comparing both resonant frequency equations (60 and 62),  
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After simplification,  
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Here G in terms of E, I, and a, is the value of shear stiffness at resonant frequency.  
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4.2.8   Impedance  

Impedance is the measurement of resistance of a structure when subjected to harmonic 
motion. It can be given by relation [18] as following:  

 
V

F
Z   (64) 

Where Z is the impedance, F the force, and V is the resultant velocity due to applied 
force.  

 

The continuum model  

The angular frequency (equation 8) of the continuum model is:  
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As the phase velocity is equal to  
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Also we know by definition the impedance Z is a ratio between force to the resultant 
velocity. So we can formulate the impedance equation using equation (66) as following:  
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The phase velocity has been used in the above equation because the approximation 
here is being conducted for long wavelengths only. And in this range the group and 
phase velocities become identical. Thus  
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This is the equation of impedance for continuum model.  
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The discrete model  

The angular frequency (from equation 10) of the discrete model is:  
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As the phase velocity is equal to  
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Applying the definition of impedance Z and using equation (68), we get the following 
relation:  
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This is the equation of impedance for discrete model.  

 

The comparison (between continuum and discrete models)  

Comparing the impedances of both models (equations 67 and 69),  
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After simplification,  
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Or  
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The condition:  

Suppose if the applied pulling force is minimum (i.e. almost equal to zero), then the 
equation (71) would become  
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As we know only a minimum force ( 0 ) is needed to move a structure at resonant 
frequency. The equation (72) is just the same result which we already have obtained in 
the resonance frequency case (equation 63) but with opposite (negative) sign. The 
opposite sign here shows that it has an opposing or resistive behaviour towards the 
motion of the structure.  

 

4.3   Analytical treatment of modeling results (in comparison with the 
experimental results)  

As according to the given lattice dynamics model [1], the dispersion relation of 
transversely polarized mechanical waves traveling along the linear mass-spring chain 
under external pull simulating the guided acoustic waves at long wavelengths limit is 
given by the following equation (original is equation 4):  

 
2ma

cos(2ka)2Gcos(ka)8G)(2Pa6G)(2Pa
ω


  (73) 

The comparison of modeling results is performed here to the results of A0 Lamb wave 
mode and the parameters used for calculations are according to our experimental 
sample dimensions given as following:  

a = {a0 + P / C}                                 (Lattice displacement function with external pull P)  

Where,  

a0 = 1 mm = 0.001 m                                        (Basic lattice unit with no external pull P)  

P = 60 N/min                                             (Pulling force applied linearly for 10 minutes  

                                                                                           to reach a maximum of 600 N)  
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Here C is the nonlinear inter-atomic spring coefficient (see section 4.1.6) acting within 
the lattice chain and is derived from Lennard-Jones potential. It is evaluated according 
to literature [19] as following:  

ε  4551 K   (Depth of the potential well)  


Al

σ  2.62 Å = 2.62 x 10-10 m     (Inter-atomic displacement where the  

                                   potential becomes zero)  

d = 20 mm = 0.02 m     (Total width of the aluminum sample)  

a0 x d = 20 x 10-6 m2     (Cross-sectional area of the aluminum sample)  

L = 38 cm = 0.38 m   (Total length of the aluminum sample)  

m = 5.4 x 10-5 kg   (Point mass value of the aluminum)  

G = 115 Nm     (Torsional stiffness value in the aluminum)  

And,  

k = Wave number  Where  
a

π
k

max
      (in units    1/m)  

 

Also the TOF (see section 4.1.5) is defined as following:  
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 (74) 

To observe the resulting acousto-elastic effects on guided acoustic waves due to 
extensional stress, here an elastic coupling function denoted by ECF [11] is defined such 
that:  

 ECF =  TOF
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Where  

 TOF = Time-of-flight calculated by equation (74)  

 P = Total pulling force applied during experiment  

 L = Total length of the sample used  

 a0∙d = Area of cross-section of the sample  
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ECF is obtained by substituting the above parameters relating to experiment in equation 
(75). The units of this function are given in terms of ns m-1

 MPa-1. A plotted graph with 
experimental and function generated data is provided in the figure 3.  

 

Figure 3: The plotted graph shown by the experimental data (red) points and model 
derived elastic coupling function (ECF) generated data (black) line.  

 

In the above graph (figure 3), the experimental data points are plotted in the low 
frequency range from 0 to 500 kHz. The developed acousto-elastic function has been 
employed here by using the derived inter-atomic Lennard-jones potential. A close match 
between experimental and function derived theoretical results has been found.  

Both results (figure 3) indicate a gradual rising at the start of frequency, increasing 
exponentially and later become almost parallel to the zero ECF scale. The corresponding 
asymptotic functions for frequencies approaching zero and infinity are derived in the 
following text. First of all, we will find a function defined for frequency at ECF = 0.  

 

4.3.1    Zero crossing (i.e. frequency value at zero ECF):  

To find the value of frequency at ECF equals to zero, the respective zone boundary or 
wave number function (ka) can be derived from equation (75) and is defined [appendix 
4.8] as following:  
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The equation (76) gives us function value in terms G, P, and a, to evaluate frequency at 
zero ECF. The value obtained from this function (equation 76) is further substituted in the 
following frequency equation (77) derived from equation (73).  
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The result found is the frequency value at zero ECF,  

 f  198.5124 kHz  (78) 

 

Figure 4: The graph drawn by the measured experimental data points and joined each 
other by thin straight lines.  

 

We can see in the graph (figure 4) that the experimental data will intersect the zero-line 
(i.e. ECF = 0) near 200 kHz, which is almost equal to the theoretically (equation 77) 
derived result (198.5124 kHz). The comparison of the function generated result to the 
experimentally measured data provides a close match which suggests the derived 
function (equation 76) can serve a generalized model for the ultrasonic guided waves to 
predict the frequency value at zero ECF.  

 

4.3.2   Horizontal asymptote (i.e. elastic coupling function for f   ∞):  

To find the horizontal asymptote with frequency approaching infinity, the respective 
wave number function (ka) can be derived from equation (75) and is defined [appendix 
4.9] as following:  

  aP12G

6aP
ka


   (79) 

The equation (79) gives us function value in terms G, P, and a, related to the horizontal 
asymptote. The value obtained from this function (equation 79) is further substituted in 
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the equation (75). Thus evaluating ECF the numerical value of horizontal asymptote is 
found to be:  

 ECF = 8.3934 nsm-1MPa-1  (80) 

 

Figure 5: The plotted graph drawn by experimental data (red) points and elastic coupling 
function (ECF) generated data (black) line. The blue line represents the horizontal 
asymptote for the infinite frequency limit.  

 

The straightening behaviour becomes more and more prominent as the graph 
approaches near the horizontal asymptote (blue line). The function ECF represents 
rather ideal conditions in the material and can produce a close match for the expected 
horizontal asymptote. The graph expresses the insensitivities of the material reaction 
towards external stress as its frequency tends to reach infinity or when it nears the 
acousto-elastic value of 8.3934 nsm-1MPa-1.  

 

4.3.3   Vertical asymptote (i.e. elastic coupling function for f   0):  

To find the vertical asymptote with frequency approaching zero, the respective wave 
number function (ka) can be derived from equation (75) and is defined [appendix 4.10] 
as following:  

 













a

2G

6

P

P
ka

  (81) 

The equation (81) gives us function value in terms G, P, and a, related to the vertical 
asymptote. The obtained value from equation (81) is further substituted in the frequency 
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equation (77) to get the frequency axis point of vertical asymptote. The numerical value 
of vertical asymptote here is found to be:  

 f  6.3158 kHz  (82) 

 

Figure 6: The plotted graph drawn by experimental data (red) points and elastic coupling 
function (ECF) generated data (black) line. The blue line represents the vertical asymptote 
for the minimum frequency limit.  

 

As shown in figure 6, the vertical asymptotic behaviour of graph will become more 
evident as it goes towards its minimum frequency scale. The graph extends itself such 
that it never reaches to zero frequency but becomes increasingly parallel to a vertical 
scale value equal to 6.3158 kHz. The result confirms that the derived wave number 
function (equation 81) can produce a closely predictable vertical asymptotic.  

For the lowest anti-symmetric (A0) mode at a specific frequency, the TOF becomes 
insensitive to the applied puling force due to the opposing interplay of the stress 
stiffening as known from strings, and softening caused by the anharmonicity of the 
binding potential. This behavior has been theoretically confirmed by the ECF graph 
(figure 5) where it shows a considerable (parabolic) variation at lower frequencies (from 
minimum to nearly 300 kHz), and lately tends to align with horizontal asymptote.  

 

4.4   Conclusive statement of the analytical treatment:  

Due to the higher sensitivity of A0 Lamb wave mode and its wider applicability for the 
structural assessment techniques, the mode is investigated theoretically and is 
compared to the experimental findings. The provided comparison has been found in 
satisfactory agreement between the measured and theoretically predicted results. Since 
a real material with experimentally measured results can include several other factors 
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involving temperature change, material defects, etc., the theoretically predicted results 
can only present a near similar possible shape, as demonstrated here.  

The comparison of results is here restricted to the range of wavelengths, where the 
discrete structure of the model is of no significant relevance. Even though numerical 
calculations on the basis of continuum mechanics have been performed to demonstrate 
the influence of externally applied tensional stress on guided ultrasonic waves traveling 
in plates concentrating on anti-symmetric Lamb waves of the lowest branch, no 
generalized treatment based on discrete modeling has so far been presented. In the 
absence of stiffness to bending, the then soft chain will show an increase in the velocity 
of transversely polarized mechanical waves that approaches, concerning the related 
elastic coupling function (ECF), even infinity for vanishing external stress. As 
demonstrated here, the situation is less dramatic for chains exhibiting a finite stiffness 
with respect to bending. Under this condition the stress induced effect will dominate the 
behavior at sufficiently long wavelengths and the TOF will rapidly diminish under rising 
external extensional stress. On the other hand, for sufficiently small wavelengths the 
behavior of the stiff chain will dominate. For sufficiently small wavelengths the guided 
acoustic waves will finally exhibit a small but positive effect concerning the dependence 
of the observed TOF on external extensional stress. This is caused by softening due to 
anharmonic effects. For longer wavelengths the stress stiffening will finally dominate the 
result for transversely polarized acoustic waves and rather large negative acousto-
elastic coefficients can be observed (figure 3).  

The current chapter has provided a further extended study in the form of its derived 
physical parameters, their comparison with continuum mechanics, and an analytical 
comparison to the experimentally achieved results. The provided advancement in the 
lattice dynamics simply can add a step further in the existing knowledge of Science 
especially in the Solid State Physics.  

 

4.5   Summary  

The developed mass-spring chain model [1] has been applied here using Lennard 
Jones potential as stiffness coefficients to demonstrate the effects of anharmonicity on 
TOF under extensional stress. Due to its more sensitive nature to the extensional 
stress, the focus is given to the fundamental anti-symmetric (A0) Lamb wave mode. The 
provided modeling has been analyzed by deriving frequency dependent physical 
parameters, and by comparing them to their relevant continuum model. A close 
matching between the results of discrete and continuum models has been found. The 
theoretical results are further verified analytically by developing elastic coupling function 
(ECF) and by comparing it with the experimental results.  
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5.   Signal processing scheme (pulse compression)  

For applications involving the determination of variations of the time-of-flight (TOF) in 
pulsed echo or transit experiments, a method [1-2] has been developed based on 
Fourier transformation with forced optimized compression of the reference signal to an 
only bandwidth limited approximation of a Dirac delta function. The respective 
transformation of time shifted response signals allows the effective separation of 
otherwise overlapping signals and the detection of differences in the time-of-flight for the 
individual components with high resolution. The developed processing scheme corrects 
for dispersion and attenuation in the electronics, the transmission lines, and the 
transducers. The method is presented and applications are demonstrated.  

A scheme [3-4] more suitable for higher precision at even lower power levels is chirped 
excitation and signal compression following the detection. This scheme used in radar-
ranging since 1944 was originally based on passive devices for compression serving 
the purpose to raise the amplitude to a level above the noise. It is also favorable for 
signal generation since the excitation energy can be distributed in time, and excessively 
high power levels unsuitable for the available components can thus be avoided. In the 
case of the application of similar techniques in acoustics, the conditions are often such 
that signal levels are sufficient for detection, such that the signals are not deeply buried 
in the noise. Compression can thus be performed digitally following the digitization of 
the detected signal. Such temporal resolution can be optimized to minimize overlaps, 
and to separate signals from different modes, echoes or flaws in applications [5-8] 
involving NDT or NDE and for ultrasonic imaging [9-11].  

For the development presented here, a special group of applications involving the 
detection of only small variations of the time-of-flight which on the other hand should be 
detected with a high resolution if compared to the involved total time-of-flight is 
addressed. Additionally optimum pulse compression close to the limits given by the 
available band width is desired to minimize temporal overlaps of signals from different 
acoustic modes or paths.  

 

5.1   The compression scheme  

Optimum compression would be achieved if the closest possible approximation to a 
Dirac delta function is obtained for the purpose addressed here. For single shot 
measurements, if not alternatively analyzed by Laplace transform methods, a 
continuous Fourier transform would be needed for analysis which is approximated here 
in the usual way by computing with the aid of Fast Fourier Transformation [12] (FFT) 
with a sufficiently large number of points respectively frequencies to obtain a suitable 
resolution. Such numerically the ultimate compression would be obtained if, following 
the compression performed with the aid of Fourier transformation, only a single point of 
the time resolved representation finally obtained would have a value different than zero 
indicating directly the time-of-flight. Since a Dirac pulse requires an unlimited bandwidth, 
this can under experimental conditions only approximately be achieved. Furthermore for 
discrete (digital) representations positions can be determined to a resolution beyond the 
limitation given by the sampling intervals. By fitting to slopes or other shaped structures 
of the signals, the signal resolution (usually between 8 and 16 bit) will also contribute to 
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the achievable temporal resolution. Under the conditions of interest here this idealized 
result will be limited by the bandwidth achievable under the given experimental 
conditions. Of primary influence is thereby the bandwidth of the ultrasonic transducers 
and the transport properties for acoustic waves in the sample in which the ultrasound is 
traveling.  

Furthermore digitizing is employed for signal acquisition and only a limited time span is 
used for processing. The selection of the respective equipment and parameters will 
define the number of available data points that can be used for FFT in the evaluation 
process including the desired compression. The suitable electronic devices can be 
identified within the limits of availability on the basis of bandwidth with the aid of the 
Nyquist-Shannon-theorem [13] and from the (in a single shot measurement) achievable 
signal-to-noise ratio concerning the number of bits desired for the resolution. Signals 
can be averaged to enhance the signal-to-noise ratio for the processed data. A basic 
feature of the spectral content of a Dirac pulse is that the spectral magnitude does not 
depend on frequency, representing a so called “white spectrum”. If the position of the 
pulse in time is zero, then the phases of all frequencies in the decomposition are 
identical to the phases of cosine functions (zero for all frequencies). A shift of the pulse 
position in time will result in a respective slope of the (strictly linear) phase dependence 
on frequency, proportional to the temporal position. The sign of the slope relates to a 
temporal position prior (positive slope) respectively past (negative slope) zero time.  

The method presented [1-2] here relies on the feature that optimum pulse compression 
is to be expected, if received signals are transformed such that within the useful 
bandwidth all magnitudes for the frequencies of the decomposition are equal (for 
simplicity here normalized to 1), and the phases as a function of frequency display a 
strictly linear dependence. To achieve that (in an unusual way as indicated in a related 
patent [14]), the magnitudes and phases related to the recorded echo in the reference 
signal are forced to one respectively zero (in that order) within the useful frequency 
ranges (as displayed in combination with an actual measurement in figure 8). Outside 
such ranges the magnitudes are forced to zero. There the phases could have any value 
but are just set in a similar way as for the relevant frequency ranges. Whereas the 
transformation such needed for magnitude correction is just a forced definition, the 
transformation employed for the phase is simply a subtraction of the phase determined 
by FFT (ideally by a continuous Fourier transform) for the initially (ideally continuous) 
measured time dependent reference signal. The phase transformation such determined 
with the aid of the reference signal serves as compression procedure for any signal for 
which a relative shift is to be determined. The range where in that process amplitudes 
are subjected to a forced definition should be selected such that for the reference and 
any temporally shifted signal the same definition is employed.  

 

5.2   Example with an artificial chirped signal  

For the results presented here, for simplicity only quasi rectangular amplitude definitions 
are employed. It has to be mentioned that, depending on the desires, any suitable 
window such as the well-established Hamming or Blackman-Harris window can be 
employed. The rectangular windowing, even though providing a narrow center lobe will, 
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on the other hand, lead to pronounced side lobes. The result of such a compression for 
an idealized, analytically defined chirp signal (figure 1) is represented in figure 2 and 
compared to the result obtained from an autocorrelation procedure.  

 

 

Figure 1: Analytically defined linear chirp pulse (from almost zero to 5 MHz) used as 
input data for the demonstration of the compression scheme (figure 2) under idealized 
conditions.  

 

 

Figure 2: Result of compression by the developed method (bottom) and result of an auto-
correlation (top) for comparison; both displayed on identical scales with normalized 
maximum amplitudes.  

 

As can be deduced from the graphs (figure 2), only a slight advantage is obtained by 
signal compression with respect to the results of (standard) correlation procedures 
concerning the width of the center lobe and the respective relative height and distance 
of the adjoining side lobes. So obviously for an ideal (received and recorded) signal, no 
significant advantage, other than the narrowing of the central peak by a factor of about 



Signal processing 

78 

0.7 (
2

2

1

 is to be expected for folding of Gaussian profiles), can be obtained by the 
developed method with respect to well established correlation procedures.  

It is the purpose of the developed compression scheme to optimize the results for non-
ideal signals, obtained at least often if not generally in applications. Among the 
distortions usually observed are dispersive effects in phase and (for resonances 
following Kramers and Kronig related) frequency dependent amplitudes. The obtainable 
advantages also including a comparison to correlation results are presented and 
discussed in combination with the experimental results for an application used for 
demonstration of the method following a short outline of the instrumentation.  

 

5.3   Instrumentation  

For the measurements presented here, commercially available equipment including a 
lap-top computer interfaced to an arbitrary function generator and synchronized 
transient recorder has been employed (figure 3). The limiter and preamplifier are 
custom designed. The software is custom developed with the aid of LabVIEW© 
(computer program).  

 

 

 

 

 

 

 

 

Figure 3: Experimental set-up used for the signal and data acquisition by computer 
controlled equipment with online evaluation.  

 

5.4   Application  

A brass sample with a length of 50 mm and 50 mm diameter is used in combination with 
a piezoelectric disc transducer with a diameter of the active part of 28 mm. For the 
signal delay, 50 Ohm coaxial cable (RG 58) is employed. An overview of the detected 
signal obtained for a chirp ranging from 500 kHz to 12 MHz is displayed in figure 4. The 
overloaded part of the signal at the beginning represents the crosstalk from excitation 
followed by the first echo. The part of that echo used for processing is indicated in the 
graph by dashed vertical lines. Three more echoes follow with the last one only partially 
displayed.  
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Figure 4: Digitized time dependent received electrical signal (oscillatory parts with 
overlapping lines connecting the measured points) with indicated range of the processed 
first echo of longitudinal polarized acoustic waves.  

 

 

Figure 5: Magnified view of the part of figure 4 containing the range of the processed first 
echo (part representing higher frequencies displayed with overlapping lines). 

 

The range of the processed first echo is displayed in more detail in figure 5. The 
measurement represented in these figures relate to the minimum electronic delay and 
room temperature. The other measurements evaluated involve only small additional 
delays and only minor changes in the signal shape not easily recognizable in an 
overview (and therefore not displayed here). All measurements presented here have 
been performed with 50 MHz sampling rate and 12 bit resolution for excitation, and 
100 MHz sampling rate and 8 bit resolution for detection with phase locked sampling 
frequencies.  

Since a linear chirp is involved, the numerically determined spectrum (figure 6) 
resembles the envelope of the time dependent signal used for evaluation (figure 5). The 
phase represented in a continuous representation shows a kink (sign change of 1st 
derivative) at a frequency where the magnitude is rather small and can in some ranges 
not necessarily be easily interpreted due to the rather small magnitudes involved, which 
may be comparable to the noise. This can lead to arbitrary phases (concerning 
multiples of 2π) in a continuous representation (of the sampled data). Such a possible 
jump is at least recognizable in the range below 1 MHz.  
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Figure 6: Illustration of the data processing concerning the reference signal with the 
determined spectral content (top, left), the determined phase (top, right) and an 
illustration of the normalized forced magnitude (bottom, left) and forced phase (bottom, 
right) serving as a basis for the determination of the transformation involved in the 
compression scheme.  

 

In figure 6 the experimentally determined frequency dependencies of magnitude and 
phase are compared to the forced amplitudes and phases used for the developed 
compression scheme. The correction function involved in the compression scheme is 
simply the phase determined for the reference measurement (top, right in figure 6) with 
opposite sign for the phase (multiplied by – 1) respectively as displayed if subtracted in 
the transformation process (and therefore not displayed in an extra graph).  

Following the just outlined determination of the transformation procedure, which was 
also adjusted concerning the used frequency range to the results of the (following) 
measurements involved in the differential measurement scheme, the data collected for 
additional delays is evaluated.  

First the numerical results for processing of the data obtained in a measurement, 
otherwise identical to the one acting as reference, but with an additional electronic delay 
introduced by a different inserted delay cable (figure 3) are analyzed according to the 
developed scheme. Correction of the detected phase by the phase transformation 
defined above delivers in that case (at least at first glance) a rather complicated 
structure represented in figure 7. Due to non-realistic phase tracking in the region of 
smaller signals, the center part exhibits a slope relating to earlier arrival whereas in the 
region of sufficiently large signals about equal slopes, relating to a delayed arrival, are 
displayed. Identifiable are also regions with mixed slopes respectively fluctuating 
phases relating to frequencies with rather small signal magnitude.  
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Figure 7: Numerically determined phase in continuous representation for the data 
measured with additional cable delay corrected by the transformation based on the 
determined phase of the reference signal.  

 

This result (figure 7) is displayed to demonstrate that, even though the delay can also 
be determined from the slope of the phase, special efforts are needed in that case, to 
identify the ranges where a reliable continuous representation can be achieved. The 
developed compression scheme is not depending on continuous representations 
employed here only for display.  

 

5.5   Results  

Following the developed procedure, a time dependent compressed signal is derived 
numerically from the transformed phase and defined magnitude by inverse-FFT from 
the recorded data for the measurements involving a variation of the time-of-flight 
(additional delay). The results are displayed in figure 8 (left). First the evaluation 
scheme is applied to the data of reference measurement itself to demonstrate the result 
for an unaltered position and subsequently zero differential delay concerning the 
scheme of the method. To allow comparison on similar scales, the results for the 
following measurements involving additionally delayed signals are displaced by the 
differential delay time (ΔTOF; table 1). The individual delay times are determined in the 
final step of the procedure by fitting of a Gaussian function to the primary peak of the 
measured data (figure 9, table 1).  
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Figure 8: Results of compression (left) and of correlation (right) for comparison with 
reference signal (top), signal for extra cable delay (middle) and for a signal delayed by 
heating (bottom). The time scales are each shifted by the respective finally determined 
(table 1) differential delay times.  

 

As a first application, a delay is introduced by an extra length of cable, for which only a 
small minor change in the pulse shape due to dispersion in the cable is to be expected.  

Alternatively a delay is introduced by a temperature rise of the sample, relating to a 
scenario typical for ultrasonic application involving the need for differential schemes. 
Mainly since the temperature variation influences the resonance frequencies of the 
employed transducer, the shape of the compressed signal shows recognizable 
differences from that obtained for the reference itself. The width of the main lobe and 
the relative height of the larger (right) side lobe with respect to the main lobe remain 
nevertheless almost unaltered.  

 
 

 

Figure 9: Center peak and fitted Gaussian curve for the processed reference signal (left), 
the signal obtained with additional cable delay (center), and the signal shifted by 
(moderate) heating of the sample (right) with a time scale for which the zero position 
relates to the expectation value for a signal not delayed with respect to the reference 
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signal. In all graphs the squares represent measured data points and the lines Gaussian 
functions fitted to the data for the displayed points.  

 

 ΔTOF for the reference signal  - 0.1 ns ± 0.2 ns  

The results listed below are corrected for the extra delay (ΔTOF) determined (above) for 
the reference signal.  

 ΔTOF for the signal delayed by a cable 97.8 ns ± 0.4 ns 

 ΔTOF for the thermally delayed signal 55.9 ns ± 0.7 ns  

Table 1: Results for the determination of the differential time-of-flight (ΔTOF) referenced 
to the expectation value by the developed compression scheme obtained by fitting of a 
Gaussian function to the center peak (figure 9).  

 

The comparison with respective results obtained by correlation exhibits the advantages 
of the developed compression scheme for chirped signals. The width of the center lobe 
and the relative height of the side lobes are both favorable for the developed scheme. 
The dominant disadvantage of the correlation scheme is the large side lobes, which for 
variations of the transducer and of the transport properties beyond the level already 
visible for the delay caused by heating, can lead to a mix up of the peaks (jump of the 
global maximum to a former side peak). In the application exemplified here, this would 
lead to an error of more than 200 ns (figure 9).  

A larger number of processed points concerning FFT can further enhance the resolution 
until sufficient over-sampling is involved. Due to limitations of the involved online 
processing, this is not the case for the results displayed here. Furthermore the 
resolution is derived in the presented examples from a least square deviation to a fitted 
Gaussian function. Since concerning the shape a forced fit is used for an experimental 
result where this shape is not to be expected, a systematic error is involved. This can be 
rectified by adaptive fitting. If (with forced fitting) the resolution is determined from 
subsequent measurements under otherwise identical conditions, standard deviations in 
the regime of a few picoseconds can be achieved. For the signal delay with respect to 
excitation of about 30 µs observed here, the ultimate so far reached resolution of about 
5 ps (with the sample employed here) represents an uncertainty of 1 in 6×106 with 
respect to the total delay.  

 

5.6   Summary  

A pulse compression scheme suitable for differential measurements concerning the 
time-of-flight of ultrasound echo or transit signals based on Fast Fourier Transformation 
has been demonstrated. The scheme takes care of corrections of phase and amplitudes 
for optimum pulse compression in applications where small variations of time-of-flight 
are involved. It provides an almost ideal pulse compression of the chirped ultrasonic 
signals. The resolution obtainable with this method can reach and surpass the 
limitations of the time references installed in standard equipment (of about 1 in 106). In 
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applications aiming at high precision, equipment relating to established time standards 
should be employed. The advantage of the presented method has been exemplified by 
a comparison between compression and correlation scheme.  
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6.   Flaw detection scheme (for aero plane slat tracks)  

Here presented is a scheme of signal detection of defects including small dimensional 
wear and corrosion in slat tracks with the aid of combined ultrasonic and electro-
magnetic acoustic transducers (EMATs). The detection scheme relies on the creation of 
images using the drive needed for operation during scanning. The images are line 
scans with a second dimension relating to the frequency and parameters leading to 
different contrast. Among those are differential time-of-flight (TOF) monitoring with 
respect to a fixed transducer and respectively by using a movable EMAT [1]. The 
scheme is suitable for in-flight and on-ground monitoring of the structural health of aero 
plane‟s slat tracks.  

The propagation of ultrasound waves in materials is of particular interest for the non-
destructive characterization of materials [2-3]. This problem has been investigated for 
over a century in mechanics of deformable solid materials [4-5] and has been applied 
for practical applications. Various theoretical models [6-7] have been proposed for the 
propagation understanding of surface and guided acoustic waves in isotropic and 
anisotropic materials. Lamb, Rayleigh and other guided acoustic waves are of prime 
importance for detection of small changes in the structure of material. For non-inductive 
plate metals a popular technique in non-destructive testing (NDT) is the mode-selected 
Lamb wave approach [8] where one specific mode is preferably excited and studied for 
relative changes with respect to the applied conditions.  

Due to the specific design and material nature of slat tracks a combined monitoring with 
fixed and movable non-contact transducers in combination for scanned inductive 
monitoring is employed here for integral and local monitoring including in-flight 
inspection sensitive to possibly reduced structural health and for inspection of cracks 
and excessive wear.  

 

6.1   The detection scheme  

Irregularities at and near the surface can favorably be detected by surface acoustic 
waves (Rayleigh waves, SAW) if the depth is not substantially smaller than ¼ of the 
wavelength employed. There are two different regimes for monitoring:  

1st: Employment of excitations with a rather small wavelength, limited nevertheless by 
the necessity to use sufficiently low frequencies or sufficiently small distances of 
propagation to avoid excessive attenuation as to be expected especially from the 
grease used for lubrication. The small wavelength assures high sensitivity for small 
cracks.  

2nd: Relatively long wavelength but small enough for proper guidance (conditions) with 
high sensitivity for variations of the local wave propagation velocity with respectively 
favorably relaxed conditions for distortion by lubricants at the surfaces.  

Both methods rely on the assumption, that the defects to be monitored originate at 
accessible surfaces, sufficiently planar to allow scanned monitoring. Method 1 is 
especially suited for small distance monitoring with two closely spaced EMATs 
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(contained in one sensor head). Method 2 is best suited for monitoring with one 
movable EMAT and one or a pair of fixed transducers.  

The here employed detection scheme is based on 2nd method. The involved fixed 
transducers are positioned at the ends (relating to maximum extension). The movable 
EMAT is connected to a sliding mechanical motor. For positioning at both ends, high 
sensitivity load detection can be additionally employed also during flight. The ratio of 
actual load (detected by conventional devices like accelerometers or piezo-resistive 
sensors) and monitored stress induced variations of the time-of-flight of ultrasound, can 
be employed for integral inspection of the mechanical stability and structural health of 
the entire slat track. This method, even though not capable to determine the position of 
possible flaws, is also sensitive to internal cracks and cracks not originating at surfaces 
suitable for scanned monitoring. Based on novel developments implemented here, 
different modes can be employed for temperature compensation and detection of long 
term deteriorations (corrosion, wear, creep etc.). This is achieved on the basis of wide 
band excitation and detection scheme including an improved EMAT design and pulse 
compression technique [9] in combination with correlation methods for data processing 
with high temporal resolution (typically at least 10-4 of the time for one oscillation of the 
employed guided waves).  

 

6.2   Improved EMAT design and instrumentation  

The most important part in this detection scheme is the specific design of the movable 
EMAT which has been developed on the basis of demanded task to get an increased 
magnetic induction at the pointed location for even a very minute scratch on the surface 
of sample material. The developed EMAT has been employed here to detect smaller 
dimensional flaws including wear and corrosion preset on the surface of aging aero 
plane‟s slat tracks. The following figure (1) shows the details of the EMAT dimensions, 
material and its assembly.  
 

 

Figure 1:°Schematic design [1] of the EMAT which consists of two wedge (L 30mm x W 
23mm x T 6.5mm) shaped disks of permendur alloy (1J22) material. These disks have 
been assembled along with strong permanent magnets (6Pieces: L 10mm x W 5mm x T 
2mm) and a current inducing coil.  
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An EMAT induces ultrasonic waves into a test object with two interacting magnetic 
fields. A high intensity field generated by electrical coils is applied together with a stable 
field provided by permanent magnets to generate the wave on the surface of the 
observed material traveling along the monitored sample (slat track, figure 2).  

 

Figure 2:°The developed movable EMAT employed for scanning the slat track shown 
without assembly to mechanical motor drive.  

 

 

Figure 3:°The instruments used in experimental set-up with connections including digital 
oscilloscope (TiePie HS3) and power amplifier.  
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A basic principle of experimental set-up used in our detection scheme is shown in the 
following schematic diagram (figure°4).  

 

 

Figure 4:°The schematic diagram of experimental set-up for generation and detection of 
guided ultrasonic signals with a movable EMAT and fixed transducer (PZT).  

 

 

 

Figure 5:°The complete set-up employed for scanning the slat track during experiment 
where the listed instruments are as following: 1. Computer with two monitor screens, 2. 
Computer controlled electric motor, 3. Power amplifier, 4. HS3 digital oscilloscope, 5. 
Movable EMAT, 6. Slat track of DC9 airplane, 7. Fixed transducer.  

1 

2 4 3 

7 
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Even though an EMAT can equally well be used for detection, it is advantageous in this 
mixed double ended scheme employing also a piezoelectric transducer to use the 
EMAT for excitation and generation of signals. The relatively low efficiency can such be 
counteracted by sufficiently large signals whereas respective amplification needed 
alternatively for detection would be limited by thermal noise. The high sensitivity 
employed with the aid of respective low noise preamplifiers and the high suppression of 
crosstalk achieved by coaxial wiring and respective shielding in part with tri-axial design, 
assures operation with a rather moderate effective power during excitation of 0.75 W at 
a duty cycle of only 0.05% which results in an average power of only 0.2 mW of which 
even only a minor fraction (typically 1%) is converted into ultrasound by the EMAT. This 
is in a positive way quite unusual for detection schemes based on EMATs and 
supportive for any in-flight monitoring. Additionally a rolling system is included to 
position and drive the EMAT. The software, which can operate in real-time, allows to 
record data and images as displayed in figure 5.  

 

6.3   Application  

The operation is based on dedicated LabView® software [10] assuring a high degree of 
universality and adaptation for future demands. The handling can on one hand be 
based on manual operation supported by respectively selectable windows for interactive 
selection of operation. On the other hand fully automatic recording with predefined 
settings and all required information for the desired mode of operation can be 
performed. This mode of operation allows among other applications in-flight monitoring 
including issuing of monitoring information which can include information on critical 
conditions if an adequately threshold is defined. Interactive operation is demonstrated 
displaying some of the windows of the respective menu (figure 5).  

The sample under investigation is a DC9 (aero plane) slat track made up of grade 5 
titanium with dimensions (L 580 mm x W 30 mm x T 50 mm). A motor drive positioned 
EMAT has been used to excite the signals with a frequency range of 10 kHz to 300 kHz 
and each line scan step of 1 mm apart. The flaw (wear and corrosion) on the surface of 
slat track and the fixed wide band transducer at far end are shown in the figures (6, 7) 
respectively.  

 

 

Figure 6:°Optical image of wear and corrosion (near center) on the surface of titanium 
built slat track of a DC9 aero-plane.  
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Figure 7:°Mounting of the stationary (piezoelectric SAW) transducer at the far end of DC9 

slat track during experiment.  

 

A digital oscilloscope (TiePie HS3) is used to generate acoustic signals of varying 
frequencies controlled through (LabView) software program. The signal generated by 
the movable transmitting EMAT propagates through the slat track (sample) and is 
received by the (wide band) fixed transducer at far end of the sample. It is then 
amplified by a low noise preamplifier, digitized by the same oscilloscope unit displaying 
on computer monitor screen as a function of time (as well as a function of frequency). 
The signal strength for both time history and frequency spectrum is displayed in Volts. 
The variation of signal strength vs. time is called time history (or transient curve), and 
the variation of the signal amplitude vs. frequency is called the spectral plots. During the 
raw data collection every time step has been averaged by the program for at least 1024 
times before being recorded to give a consistent value. The data now is ready to be 
analyzed, processed or viewed for live monitoring as according to the demand.  

Defective region in our case is a wear (and some corrosion) on the surface of the slat 
track. The aim of this detection scheme is to get increased sensitivity which can detect 
the flaws of very small dimension. The resultant differential TOF variations of recorded 
signal transient are shown in the following figure (8).  

 

Figure 8:°The detection of differential TOF for SAW on a DC9 titanium slat track during 

experiment [1]. A deviation of TOF can be observed at 17:20:30 on time scale over a total 
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scanned surface of 50 mm. The here calculated SAW velocity is 2990 m/s and is very 

close to the literature [11] value of 3000 m/s.  

 

If the recorded signal is reflected by the defect or transmitted through the defect and 
then reflected back by the sample end then it should be affected by the defect. The 
graph (figure 8) shows some dependence of TOF on the dimensions of defect. 
However, it is difficult to estimate the defect size from these small variations of TOF. A 
better estimation of the defect size can be obtained through Fourier transformations of 
the transient signals with and without damages, and their respective comparisons. But 
because these methods are already well established and are in place so it‟s not the part 
of present investigation.  

 

6.4   Results  

The deviation in the slop of differential time-of-flight in the employed software clearly 
represents the effective detection capability of the method. But a further sensitivity test 
of the employed method has been performed by inducing a very small dimension wear 
(flaw) on the surface of the sample under investigation. The previous wear (or flaw at 
150 mm) was relatively of high intensity than the new one on the same slat track 
surface (figure 9).  

 

 

Figure 9: Optical image of DC9 Slat track with both flaws on the surface including 
magnified images of small dimension (right) and medium dimension (left) shown 
separately.  
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The result of transit signal obtained by scanned EMAT generation and detection is 
displayed in figure°10. A waterfall representation showing the discontinuity at both 
positions from starting point of scanning has confirmed the successful detection of the 
flaws and detection scheme‟s applicability in the structural health monitoring. The flaws 
are recognizable without any refined signal processing simply by eyesight.  

 

 

Figure 10:°3D representation of scanned monitoring [1] showing two areas with broken 
continuity (or interference) marked by red circular cloud. The numerical data also shows 
a difference of 95 mm between two discontinuities which confirms the original space gap 
between flaws on the surface of DC9 slat track.  

 

The phenomena of discontinuity of signals due to flaw in the waterfall representation 
can be explained as: if the recorded signal is dominated by the guided waves 
propagating through the smooth section then its magnitude should be reduced because 
a defect creates an obstruction to the propagating energy.  

 

6.5   Comparison with literature  

There are a number of methods and techniques available in the literature for 
mechanical flaw detection in the vital structural and body parts of aero-planes (including 
slat tracks). For example Mr. H. Boukabache has employed a set of piezoelectric 
sensors network to demonstrate [12] the feasibility of flaw detection. The technique is 
vulnerable for application during flight especially during landing and take-off times due 
to the sensors network limitations towards excessive stress generated at that time. Mr. 
V. Giurgiutiu has demonstrated [13] the capability of embedded piezoelectric wafer 
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active sensors (PWAS) for flaw detection in aeronautical parts and structures. He 
demonstrated S0, A0 Lamb wave modes to be most effective for crack and corrosion 
detection respectively in the metal (and composite) sheets. Again the limitation in this 
technology is the vulnerability of sensors set-up to the mounting stress generated during 
landing or take off times. Mr. I. Pitropakis and his colleagues used [14] the electrical 
crack gauges to monitor flaws in the metallic parts including the slat tracks. With this 
method the flaws can be monitored when they reach a minimum level of size. This 
characteristic can also be considered as a limiting factor for this technology as it may 
not be able to detect the start of a crack or small dimensional wear or corrosion on the 
surface of slat tracks. Most of the structural monitoring technologies provided in the 
literature employed for health assessment of aero-plane‟s body and wing parts are 
based on piezo-electric transducers and related sensor networks. These transducers 
are glued to the metal sheets / parts and are vulnerable to the excessive pressures and 
variation of temperatures during flight.  

The here employed non-contact movable EMAT detection technology has the increased 
ability of countering these effects. For slat tracks manufactured from magnetic 
materials, magnetically polarized areas at or near the two ends of the devices can be 
favorably used for the planned application. This avoids any need to glue or fixate by 
other means transducers such that ultrasound can be coupled effectively. The involved 
rapidly alternating forces can such be supplied in a non-contact scheme via magnetic 
fields by nearby electrically driven coils mounted by conventional methods. This method 
is especially suited for operation under harsh environmental conditions. EMATs are 
similarly rugged devices as inductive pick-ups used for example regularly for monitoring 
of the wheel rotational speed for electronically controlled brake systems (Antilock 
Braking System, ABS) in passenger cars and trucks. The scheme can generate a two or 
three dimensional image with multi-contrast features and flaw can be distinguishable 
without any need for refined signal processing simply by eyesight. As marked in figure 
10 by circular red clouds at the positions of 55 mm and 140 mm, both flaws are safely 
detected as clearly identifiable by the discontinuity of the signals in waterfall 
representation.  

 

6.6   Summary  

An inductive monitoring scheme with a (or pair of) fixed transducer and improved 
movable EMAT has been developed for monitoring of the reduced structural health of 
slat tracks. The locally resolved monitoring relies for imaging of flaws on the provided 
drives for activation of the slats. It can be used on ground for periodical rapid inspection 
but also during flight for quasi-continuous structural health and load monitoring. The 
developed scheme has successfully shown the ability of its sensitive detection of small 
dimensional flaws on the surface of slat tracks with a temporal resolution of 10-4 of the 
time per oscillation of the propagating guided waves. The scheme can be a selection of 
choice for a future early warning system installed on the aircrafts to provide on-board 
information for the reliability of their structures even during flight. The developed system 
itself was a part of research [15] for safe air travel supported by European Commission.  
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7.   Ultrasonic application (for ablation monitoring of aluminum plate)  

A thickness monitoring investigation of aluminum plate is presented here based on the 
Lamb wave mode selective excitation and detection [1]. The study has its importance 
due to the increased demand of structural health monitoring (SHM) of the aging 
aircrafts, and the concern of their surface / structural parts affected by erosion, 
corrosion, and abrasion etc. with the passage of time. Guided symmetric and anti-
symmetric Lamb wave modes selected from the corresponding theoretical dispersion 
relations of material are excited and studied during gradual thickness reduction of 
aluminum plate. Results [2] are presented in the form of suitable mode and frequency 
range. In addition the relevance of theoretically and experimentally derived dispersion 
graphs and times-of-flight (TOF) assures the reliability of the results presented here.  

The demand to increase the workable life of metallic structures, vehicles, and aircrafts is 
gaining popularity not only due to tough competition in markets, but also due to the 
large costs associated with new purchases. For aircrafts, many of their structural parts 
consist of composite laminates. Under cyclic loading, delaminations do occur, 
compromising the strength of the composite material, causing the material layers to act 
independently. These delaminations can have catastrophic consequences when they 
occur especially in load bearing structures. There are many techniques available for 
detection of delaminations [3-5]. At the same time surface parts are affected due to 
harsh environmental conditions and do face corrosion and abrasion. These conditions 
reduce the effective thickness of the metal plate and create ablation. The ablated 
structural part also creates a potential danger of integrity especially in commercial 
transporting structures (e.g. aeroplanes and ships). There are a number of techniques 
in literature [6-8] developed for a sensitive monitoring of metallic (alloys and 
composites) ablation, however not all can be applied in practical situations. For an 
aircraft, a suitable scheme must be selected to be able to perform on-ground and in-
flight positions simultaneously with optimum result.  

An attractive ultrasonic structural health monitoring scheme is the use of guided Lamb 
waves [9-12]. The main advantage of Lamb waves is that they interrogate the entire 
thickness of the specimen along the line joining the transmitter and the receiver, hence, 
making them very useful for large area scanning. Another advantage is their ability to 
propagate on the surface with less loss of energy. In the current investigation TOF of 
the Lamb waves has been measured in 5 mm, 3 mm, and 1 mm thick aluminum plate 
during its three stages of ablation. The progressive ablation phenomena can determine 
the projected safety level of the material being used.  

 

7.1   The ablation scheme  

The basic concept of the scheme applied here can most easily be explained under 
simplifying symmetric conditions: Any ablation will lead to a reduction of the effective 
thickness of the original material skin. This is illustrated here (figure 1) under the 
assumption that the material plate has an ablation in the center and is such separated 
into two identical plates. For example if the fundamental symmetric and anti-symmetric 
Lamb wave modes undergo ablation such that it leads to a decrease of the effective 
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thickness by a factor of 1/2, the result with parallel propagation of the ultrasonic modes 
in each fragment can be represented as indicated in figure 1.  
 

             

 

             

Figure 1: Expected deformation and particle velocity (arrows) of the A0- (top) and S0- 
(bottom) mode before (left) and after (right) ablation process. Whereas the A0-mode 
needs, concerning the illustrated properties, no adjustment to the split-condition, the S0-
mode on each fragment has to undergo re-adjustment to symmetrical conditions as 
illustrated here only for the intact sample.  

 

In the case of a single ablation parallel to the surfaces the fractions are then „a‟ and „1-a‟ 
for any „a‟ between 0 and 1. Rather small „a‟ close to 0 represents in close 
approximation surface ablation with total removal of the thin component, which will, 
even if assumed to be still in place, not contribute significantly to the transport 
properties used for monitoring. Ablations parallel to the direction of propagation can be 
resembled to abrasion and corrosion, and can be detected, since the transit signal will 
vanish or be significantly reduced for resultant effective thickness.  

 

7.2   Instrumentation  

An essential ingredient for high resolution thickness monitoring with guided ultrasonic 
waves is the mode selective generation and detection scheme [1] with broad band 
transducers (figures 2, 3). A schematic diagram of the experimental set-up is shown in 
the following figure (4).  
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Figure 2: Design and installation of two piezoelectric vertical polarized discs including 
electrical contacting (U1, U2) of broad band mode selective transducer [13-14].  

 

 

 

Figure 3: The schematic diagram [2] representing aluminum plate with broad band 
transducers, ablated area and respective dimensions.  

 

The dimensions of the broad band transducers employed are 20 mm X 10 mm X 1 mm 
(Length X Width X Thickness). These transducers consist of piezoelectric sintered 
heterogeneous ceramic materials manufactured from modified Lead Zirconate Titanate 
(PZT) and Barium Titanate material. The dimensions of the aluminum (density = 2700 
Kg/m3, Young‟s modulus = 70 GPa) plate sample are 1000 mm X 20 mm X 5 mm. The 
length of ablated part is 386 mm from the edges of sender to receiver transducers. Two 
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wedges of 9 degree have been induced on both sides of the aluminum plate near 
transducers to provide a better propagation of Lamb waves through the ablated area 
(figure 3). The non-ablated lengths of aluminum plate near sender and receiver 
transducers towards respective extreme plate edges are 308 mm and 306 mm 
respectively. The aluminum plate was placed on Styrofoam to maintain the level and 
stress-free boundary environment. The entire set-up was secured in a thermal chamber 
to avoid any change in TOF due to variation in temperature. Two broad band 
transducers were attached on two sides of the aluminum plate for the generation and 
detection of Lamb waves by using two piezoelectric vertical polarized discs on each 
side (figure 3).  

To develop high frequency broad band transducer [13-14], two silver line electrodes 
were rigidly attached to the piezoelectric discs at a distance one-fourth of its length from 
the direction of propagation of the wave. During excitation the PZT causes vibration 
inducing wave propagation on the surface of plate sample. The narrow thickness of the 
electrodes produces the higher frequency [14] response. The one-fourth distance of 
electrode from the edge of the transducers ensures the separation of lateral resonance 
from the thickness resonance of the PZT and facilitates the maximum travel of energy in 
the direction of Lamb waves.  

 

 

Figure 4: The schematic diagram for signal generation and detection demonstrating the 
actual implementation of scheme [2].  

 

For mode selective signal generation, an inverting unity gain amplifier is employed for 
selective reversal of the signal phase supplied to one of the two opposing sender 
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transducer discs. For signal detection, two transient recorder channels (figure 4) are 
used with additive or subtractive processing including fine adjustment for relative delay 
and sensitivity. The operation of the broad band transducers (figure 2) applied here to 
generate Lamb waves have already been discussed in detail in the literature [13-14].  

 

7.3   Application  

A set of symmetric and anti-symmetric Lamb wave modes are generated and detected 
to observe the related effects of gradual reduction of effective thickness of the aluminum 
plate. Theoretical group velocity dispersion curves for respective Lamb wave modes are 
generated by a software named disperse [15] for specific material, and dimensions. The 
achieved data is converted into TOF data by dividing it to the total length of the sample. 
A comparison of symmetric and anti-symmetric Lamb wave modes for different 
thicknesses of aluminum plate has already been provided in the literature [3, 16] and 
suggested a low frequency range would be sufficient for this investigation. The data 
plotting is limited up to 2 MHz and the respective results are analyzed.  

For signal processing the Fast Fourier Transformation (FFT) on symmetric and anti-
symmetric transient responses was performed to identify the dominant frequencies and 
Lamb modes of the guided acoustic waves. The frequency spectra indicate the multiple 
modes of dispersion. However global FFT will lead to a loss of temporal resolution. To 
overcome this effect, Short-Time Fourier Transformation (STFT) was performed on 
symmetric and anti-symmetric transient responses to generate from the experimental 
results the dispersion relations for the sample material under investigation. In STFT the 
entire time domain signal is broken down into short time period intervals. The short 
signals are selected with a Hanning window and FFT is performed subsequently. With 
the aid of the determined individual Fourier spectra the dispersion relations are 
displayed in spectrograms. By STFT the resolution of either time or frequency will be 
limited as pointed out for the general case by Heisenberg‟s uncertainty principle. The 
time-frequency information depends on the size of the window. A wider window will 
provide higher frequency resolution but the time resolution will be reduced and vice 
versa.  

 

7.4   Results  

Numerical data for theoretical dispersion curves of Lamb waves for 5 mm, 3 mm, and 1 
mm thick aluminum plate is generated by disperse (software). The experimentally 
obtained dispersion spectrograms of symmetric and anti-symmetric Lamb wave modes 
are superimposed on the theoretically obtained dispersion curves for the corresponding 
thicknesses of the aluminum plate.  

 

a).   Anti-symmetric modes  

The following spectrograms represent the frequencies and corresponding TOF for anti-
symmetric modes in the range of 1 kHz to 2 MHz (figures 5, 6, 7).  
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Figure 5: Anti-symmetric Lamb wave modes propagation in 5 mm thick aluminum plate 
with the theoretical results as shown by color continuous lines while the experimental 
results [2] are represented by contour plots. The coloring intensity represents the 
intensity of energy the modes possess in the respective frequency range. The color lines 
representing the modes are: A0 = Maroon line, A1 = Olive line, A2 = Green line.  

 

 

In figure 5, we can see from theoretical and experimental superimposed dispersion 
graphs that a strong (anti-symmetric) A0 mode has been generated by broad band 
transducers between 0.3 MHz to 1.4 MHz frequency range. This energy contribution is 
also shared by A1 and A2 modes, where the frequency range for A1 mode is from 0.3 
MHz to 0.8 MHz, and for A2 mode is from 1 MHz to 1.4 MHz. The experimental 
spectrogram shows strong shared contributions of A1 mode along with A0 mode at 0.7 
MHz, and A2 mode along with A0 mode at 1.1 MHz. In this graph (figure 5), the A0 
mode has been found more dominant towards propagating Lamb wave energy 
contributions in 5 mm thick aluminum plate.  
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Figure 6: Anti-symmetric Lamb wave modes propagation in 3 mm thick aluminum plate 
with the theoretical results as shown by color continuous lines while the experimental 
results [2] are represented by contour plots. The coloring intensity represents the 
intensity of energy the modes possess in the respective frequency range. The color lines 
representing the modes are: A0 = Maroon line, A1 = Olive line.  

 

 

In figure 6 the aluminum plate has been ablated to 3 mm thickness. The graph shows 
the strong energy between frequency ranges of 0.4 MHz to 1.4 MHz which is shared by 
A0 and A1 modes. It is clearly visible from the graph that most of the energy 
contribution comes from A0 mode and the A1 mode provides only small contribution 
while A2 mode is completely absent in this range. This graph analysis provides A0 
mode as more energy carrying mode and more suitable for ablation monitoring of 
aluminum plates.  
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Figure 7: Anti-symmetric Lamb wave modes propagation in 1 mm thick aluminum plate 
with the theoretical results as shown by color continuous lines while the experimental 
results [2] are represented by contour plots. The coloring intensity represents the 
intensity of energy the modes possess in the respective frequency range. The color lines 
representing the modes are: A0 = Maroon line.  

 

 

In figure 7 the aluminum plate has been further ablated to 1 mm thickness. The graph 
shows the relatively stronger energy between frequency range of 0.7 MHz to 1.4 MHz 
which is only contributed by A0 mode. The A1 and A2 modes are not even visible in this 
frequency range. This graph (figure 7) analysis also proves the more sensitive nature of 
A0 mode for aluminum ablation monitoring.  

 
 

b).   Symmetric modes  

The following spectrograms represent the frequencies and corresponding TOF for 
symmetric modes in the range of 1 kHz to 2 MHz (figures 8, 9, 10).  
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Figure 8: Symmetric Lamb wave modes propagation in 5 mm thick aluminum plate with 
the theoretical results as shown by color continuous lines while the experimental results 
[2] are represented by contour plots. The coloring intensity represents the intensity of 
energy the modes possess in the respective frequency range. The color lines 
representing the modes are: S0 = Dark Blue line, S1 = Dark Green line, S2 = Red line.  

 

 

In figure 8, we can see three strong energy contributions from three symmetric (S0, S1, 
S2) modes. Only the S0 Lamb mode energy contribution between frequency range of 
0.1 MHz to 0.4 MHz is found to be more (or nearest) matching to the theoretical 
dispersion curves. Relatively less match-able energy contributions from S0 mode 
shared with S1 and S2 modes are found near 0.6 MHz and 0.65 MHz respectively. The 
two stronger energy contributions found between 0.8 MHz to 1.2 MHz are, however not 
match-able to theoretical dispersion curves and therefore are not taken into 
consideration. The analysis of this graph (figure 8) suggests S0 mode a better option for 
ablation monitoring of aluminum amongst other symmetric modes.  
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Figure 9: Symmetric Lamb wave modes propagation in 3 mm thick aluminum plate with 
the theoretical results as shown by color continuous lines while the experimental results 
[2] are represented by contour plots. The coloring intensity represents the intensity of 
energy the modes possess in the respective frequency range. The color lines 
representing the modes are: S0 = Dark Blue line, S1 = Dark Green line.  

 

 

In figure 9 the aluminum plate has been ablated to 3 mm thickness. The graph shows a 
strong energy contribution between frequency range of 0.1 MHz to 0.4 MHz provided by 
the S0 mode only. Also a relatively lesser energy contribution has been found by S0 
mode between the frequency range of 0.65 MHz to 0.85 MHz. A weak shared energy 
contribution of S0 and S1 modes is found near 1 MHz but is negligible in its effect and is 
not consider for analysis. This graph (figure 9) shows the S0 mode as more suitable 
option for aluminum ablation monitoring.  
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Figure 10: Symmetric Lamb wave modes propagation in 1 mm thick aluminum plate with 
the theoretical results as shown by color continuous lines while the experimental results 
[2] are represented by contour plots. The coloring intensity represents the intensity of 
energy the modes possess in the respective frequency range. The color lines 
representing the modes are: S0 = Dark Blue line.  

 

 

In figure 10 the aluminum plate has been further ablated to 1 mm thickness. The graph 
shows a strong energy contribution between the frequency range of 0.1 MHz to 0.4 MHz 
provided by the S0 mode only. There is another visibly less strong energy contribution 
in this graph between 1 MHz to 1.2 MHz but is not match-able with theoretical 
dispersion curves and so is not considered for further analysis. This graph (figure 10) 
also shows the S0 mode as more sensitive to the gradual thickness reduction 
monitoring of aluminum plate comparing to other symmetric modes.  

 

 

c).   Comparison of the spectrograms of symmetric and anti-symmetric modes  

During the progressive ablation process of the aluminum plate (5 mm, 3 mm, 1 mm), 
experimental in combination with the theoretically derived symmetric and anti-symmetric 
modes are analyzed and the following facts are found during this investigation.  
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 In both cases the fundamental symmetric (S0) and anti-symmetric (A0) modes 
are found more reliable for ablation monitoring of aluminum plate.  

 The best frequency range for anti-symmetric modes during ablation monitoring 
has been found between 0.7 MHz to 1.4 MHz.  

 The best frequency range for symmetric modes during ablation monitoring has 
been found between 0.1 MHz to 0.4 MHz.  

 There are some strong energy contributions found in the symmetric experimental 
graphs which could not be explained through theoretical dispersion graphs. The 
most possible reason is the side boundary effects of propagating Lamb waves at 
low frequencies.  

 The anti-symmetric mode experimental dispersion graphs are more match-able 
with their corresponding theoretical dispersion graphs especially for strong 
energy contributions.  

 These spectrograms reveal that anti-symmetric A0 mode has more variation of 
energy than the symmetric S0 mode representing its more sensitive nature 
towards thickness variation, and can be better result giving in case of application 
for ablation monitoring of aluminum plates.  

This comparison of symmetric and anti-symmetric Lamb modes with progressive 
ablation of aluminum plate has provided (anti-symmetric) A0 mode as the most suitable 
mode with in the frequency range of 0.7 MHz to 1.4 MHz.  

 

7.5   Comparison with literature  

Some of the literature produced for sensitive ablation monitoring of aluminum plates is 
related to Laser detection based techniques [17-19]. These techniques even though are 
quite sensitive to ablation process, involve metal processing (e.g. evaporation, laser 
induced plasma) and in some cases other than the dry conditions, which are not 
suitable in our case for online structural health monitoring. Another closely related 
application to ablation monitoring of aluminum plates (or their composites) is the 
delamination monitoring. There are a number of applications provided in the literature 
for delamination monitoring [3, 20-22] of aluminum plates. As delamination is a process 
of two or more than two layers of material dis-joining, which in most cases are joined by 
a gluing fluid, the dynamics of delamination cannot be directly compared with ablation 
process due to gluing material or gap between laminated layers involved. The 
presented study proves the suitability of the applied (mode selective generation and 
detection) technique for ablation monitoring of aluminum plates relating to the SHM of 
aircraft surface / structural parts.  

 

7.6   Summary  

In this chapter the ablation of aluminum plates has been investigated [2] by employing 
selective symmetric and anti-symmetric Lamb wave modes. The mode selective 
generation and detection scheme [1] has been chosen due to its dry contact suitability 
for aircrafts, and can be employed simultaneously on-ground and in-flight positions. The 
frequencies and modes are selected from the respective theoretical dispersion relations 
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of the material and thickness. The ablation detection is performed on the basis TOF 
measurement of Lamb waves. The experimentally obtained spectrograms consist of 
energy contour plots and are superimposed on theoretical dispersion graphs. A careful 
analysis of symmetric and anti-symmetric modes of various frequency ranges has 
revealed the S0 and A0 modes to be the most sensitive in nature. The observation is 
based on the variation of mode‟s energy due to ablation process in the respective 
(experimental) spectrograms in combination with theoretical dispersion graphs. A final 
comparison of both fundamental (S0 and A0) Lamb wave modes has suggested A0 
mode within the frequency range of 0.7 MHz to 1.4 MHz, to be the most suitable for 
ablation monitoring in aluminum plates, for a maximum thickness of 5 mm. The 
presented investigation has direct applications in SHM of large metallic alloy and 
composite structures (bridges, pipe lines) and has been financed by AISHA II [23].  
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8.1    Structural health stability and stress monitoring by ultrasound  

Structural Health Monitoring (SHM) has gained increasingly higher importance in recent 
decades, particularly in the aerospace industry and civil engineering. Various SHM 
systems have already been developed for numerous potential applications. Despite all 
of these significant recent advancements, there still is a need of scientific understanding 
and of the development of new applications, which was the motivation of this research. 
The presented dissertation has been the effort to provide an extended scientific insight 
to this multi-disciplinary field.  

The main focus of this dissertation lies in theoretical modeling of the acoustic wave 
propagation in isotropic solid media under defined stressed conditions, also including 
the ultrasonic signal processing and detection schemes and respective applications.  

All contributions are individually addressed, discussed and their conclusions are 
summarized in each of the respective chapters. This chapter has been placed to briefly 
summarize all of these contributions to make a conclusive statement:  

 

8.2   Summary of the performed work  

The dissertation can generally be divided into two main sections. The first section is 
mainly theoretical and starts with an analytical comparison of microscopic (discrete 
model) and macroscopic (continuum model) approaches for the stress dependence of 
the time-of-flight (TOF) of bulk and guided acoustic waves in solid materials. The 
discrete modeling is given preference on the basis of its better capability to explain the 
stress dependence of acoustic waves in the anharmonic conditions.  

The physics behind the acoustic wave‟s propagation through solids under stressed 
conditions is simulated by employing mass spring lattice dynamic (MSLD) modeling. 
This approach is used here to exemplify the nature of the effects involved in stress or 
load detection. The effects caused by anharmonicity are also included to present a 
generalized modeling solution. The two linear chain mass-spring (discrete) models for 
longitudinal -(resembling S0) and transversal -(resembling A0) polarized acoustic 
modes are presented to demonstrate their individual responses upon external stress. 
Whereas the unified discrete model can demonstrate the variations in the velocity and 
TOF of bulk acoustic waves with and without external pull at long wavelengths for a 
combined treatment of both of the fundamental mode‟s propagation. Generally the 
prominent feature of the longitudinally polarized acoustic modes is that the TOF will 
remain constant for idealized (material) conditions at low frequencies under the 
influence of extensional stress and under the same conditions a decrease in TOF is 
resulted for transversely polarized acoustic modes.  

Similarly, an upgraded model (with next neighbor mass-spring coupling) is used to 
simulate the guided acoustic wave‟s propagation in isotropic solid media demonstrating 
the combined effects of longitudinal and transversal polarized modes under extensional 
stress. The anharmonicity factor has been added by employing Lennard-Jones binding 
potential dependent lattice function. Due to its more sensitive nature to the extensional 
stress, the focus is given to the fundamental anti-symmetric (A0) Lamb wave mode. The 
provided modeling has been analyzed by deriving frequency dependent physical 
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parameters and comparing them to their relevant continuum model. A close matching 
between the results of discrete and continuum models has been found. The theoretical 
results are further verified analytically by developing an elastic coupling function and 
comparing it with the experimental results.  

The second section consists of two ultrasonic signal processing and detection schemes, 
and an ultrasonic monitoring application of ablation process. The first one is a pulse 
compression scheme for the determination of differential measurements of the time-of-
flight of ultrasound. The scheme takes care of corrections of phase and amplitudes for 
optimum pulse compression in applications where small variations of time-of-flight are 
involved. It can provide an almost ideal pulse compression of the chirped ultrasonic 
signals. The resolution obtainable with this method can reach and surpass the 
limitations of the time references installed in standard equipment (of about 1 in 106). 
The comparison with respective results obtained by correlation scheme exhibits the 
advantages of the developed compression scheme for chirped signals. The width of the 
center lobe and the relative height of the side lobes are both favorable for the developed 
scheme. The dominant disadvantages of the correlation scheme are the large side 
lobes, which can lead to a mix up of the peaks (jump of the global maximum to a former 
side peak), and in the application presented here, this would lead to an error of more 
than 200 ns.  

The developed detection scheme is based on the inductive monitoring of wedge shaped 
movable EMAT in combination with a (or pair of) fixed transducer primarily designed for 
aero plane slat tracks. The specific shape and fabrication of EMAT with permender alloy 
maximizes its local detection capability. The monitoring relies for imaging of flaws on the 
provided drives by activation of the slat tracks. It can be used, not only on ground for 
periodical rapid inspection, but also during flight for quasi-continuous structural health 
and load monitoring. The developed scheme has successfully shown the ability of its 
sensitive detection of small dimensional flaws with a temporal resolution of 10-4 of the 
time per oscillation of the propagating guided waves.  

The ultrasonic application consists of an ablation monitoring of aluminum plate by 
employing mode selective generation and detection scheme. This scheme has been 
chosen due to its dry contact suitability for aircrafts. Guided symmetric and anti-
symmetric Lamb wave modes selected from the corresponding theoretical dispersion 
relations of material are excited and recorded during gradual thickness reduction of 
aluminum plate. The experimentally obtained spectrograms are superimposed on 
theoretical dispersion graphs. In addition the relevance of theoretically and 
experimentally derived dispersion graphs and times-of-flight assures the reliability of the 
results presented here. A careful analysis has suggested the fundamental anti-
symmetric (A0) Lamb wave mode within the frequency range of 0.7 MHz to 1.4 MHz, to 
be the most suitable for ablation monitoring in aluminum plates, for a maximum 
thickness of 5 mm. The presented study has its importance due to the increased 
demand of structural health monitoring of the aging aircrafts affected by erosion, 
corrosion, and abrasion etc. with the passage of time.  
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8.3   Contributions to the advancement of the state of the art  

The main contributions of this dissertation to the advancement of the state of the art are 
briefly listed as following:  

• Development and implementation of a generalized lattice dynamic modeling based 
theory for acoustic waves propagation in isotropic solid materials under defined 
stressed conditions  

• Demonstration of the applicability of this theory for the prediction of reaction of two 
fundamental symmetric and anti-symmetric modes of acoustic waves in 
homogeneous solid materials under defined stressed conditions  

• Development and implementation of novel ultrasonic signal and data processing 
technique  

• Development and implementation of in-flight structural health acoustic monitoring 
techniques  
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9.   Appendices:  

Following are some of the solved equations used in the dissertation. They are chapter 
wise organized:  

 

Appendix 2.1 (Derivation for dt/t = dl/l - dv/v)  

By definition in the absence of acceleration 

      v = l/t  

and therefore after deformation, where all values have changed by a respective “d”  

     t = l/v  

and t+dt = (l+dl) / (v+dv)  

From this result:  

 (t+dt)/t = ((l+dl)/l) / ((v+dv)/v)  

 1+dt/t = (1+dl/l) / (1+dv/v)  

 1+dt/t = (1+dl/l) / (1+dv/v) 

Multiply “top” and “bottom” of right side with (1-dv/v)  

 1+dt/t = (1+dl/l) (1-dv/v) / (1+dv/v) (1-dv/v)  

 1+dt/t = (1+dl/l-dv/v-dldv/lv) / (1-dv2/v2)  

Neglect now higher order (in “d”) terms since (these are exceedingly small) differential 
expression are involved. This leads (in the approximation for sufficiently small 
variations) to: 

 1+dt/t = (1+dl/l-dv/v) / (1)  

 1+dt/t = 1+dl/l-dv/v  

 dt/t = (1+dl/l-dv/v)-1  

and finally to: 

 dt/t = dl/l - dv/v  

 

Appendix 2.2 (Derivation for dv/v)  

From  

 v = √(E/ ρ) 

Valid for axial-radial polarized waves in long wavelength (much larger as diameter) 
approximation can be derived (for that case) that for constant E as assumed here 
(neglecting variations of E due to external stress): 

 (v + dv)/v = √(E/(ρ + dρ) / √(E/ ρ) = √(ρ/(ρ + dρ))  

 1 + dv/v = √(1/(1 + dρ/ ρ)) = 1/√(1 + dρ/ρ)  
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and       dv/v = [1/√(1 + dρ/ρ)] –1  

 

Appendix 2.3 (Derivation for dt/t)  

For further analysis a simplification is useful (hopefully?): As we already have the 
equation 

 dtof/tof = dl/l + 1 – 1 / √(1 + (2 – 1) dl/l)  

Where we can write the term,  

    1 / √(1 + (2 – 1) dl/l) = 1 / √(1 + 2( – 0.5) dl/l + ( – 0.5)2 (dl/l)2)  

 is approximately valid since only higher order term has been added (which has almost 
no addition numerically so to speak). Now, since the root is solvable:  

     1 / √(1 + (2 – 1) dl/l) = 1 / (1 + ( – 0.5) dl/l)  

and with this approximation, (hopefully?) valid for small enough second order terms: 

 dtof/tof = dl/l + 1 – 1 / 1 + ( – 1/2) dl/l 

           = (dl/l + 1) – [1 / (1 + ( – 1/2) dl/l)]  

           = {(dl/l + 1) (1 + ( – 1/2) dl/l) – 1} / (1 + ( – 1/2) dl/l)  

with higher order terms neglected: 

  = {dl/l + 1 + ( – 1/2) dl/l – 1} / (1 + ( – 1/2) dl/l)  

Multiply the top and bottom with (1 – ( – 1/2) dl/l)  

  = {dl/l + 1 + ( – 1/2) dl/l – 1} (1 – ( – 1/2) dl/l) / next line  

 (1 + ( – 1/2) dl/l) (1 – ( – 1/2) dl/l)  

again with higher order terms neglected: 

  = {dl/l + 1 + ( – 1/2) dl/l – 1} (1 – ( – 1/2) dl/l) / 1 

  = {dl/l + 1 + ( – 1/2) dl/l – 1} (1 – ( – 1/2) dl/l) 

And finally (for higher order terms neglected, which is equivalent to: “for small enough 
dl/l”, which is indeed realistic for any practical case): 

           = (dl/l – 0) + (1 – ( – 1/2) dl/l) + (( – 1/2) dl/l – 0) – 1 + ( – 1/2) dl/l 

           = dl/l + 1 – ( – 1/2) dl/l + ( – 1/2) dl/l – 1 + ( – 1/2) dl/l 

  = dl/l + ( – 1/2) dl/l  

 So in respect for time-of-flight: 

  dtof/tof = dl/l + ( – 1/2) dl/l 

 dtof/tof = (1/2 + ) dl/l 

Or 

  dtof/tof = 0.5 dl/l +  dl/l  
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Appendix 3.1 (Differential wave equation and its solution)  

Wave equation  

The equation of motion [according to Kittle book: Introduction to solid state physics] of 
total force Fn applied on mass mn for any system is equal to the amount of displacement 
caused. So the general equation of force would be  

 Fn = C∙(yn+1 + yn-1 − 2yn) (1) 

Here C is the force constant as according to Hooks law (equation). Also yn+1, yn-1, and yn 
are the relative displacements at positions n+1, n-1 and n respectively.  

The force Fn can be represented by Newton‟s 2nd law of motion. So  

 Fn = m∙a (2) 

Where m is the mass and a is the acceleration. As acceleration can be written as the 2nd 
derivative of displacement y as following 

 Fn = m∙d2yn/dt2  (3) 

 m∙d2yn/dt2 = C∙(yn+1 + yn-1 − 2yn) (4) 

 d2yn/dt2 = C/m∙(yn+1 + yn-1 − 2yn) (5) 

 d2yn/dt2 – C/m∙(yn+1 + yn-1 − 2yn) = 0 (6) 

This is a second order differential equation. 

 

Solution of the wave equation  

We can have a time dependent solution of yn with exp(−iωt). Such that  

 d2yn/dt2 = − ω2yn (7) 

Also for any (longitudinal or transversal) displacement y, the solution of this travelling 
wave would be of the form  

 y(n±1) = y∙exp{i(n±1)ka} (8) 

where k is the wave vector and a is the spacing between the planes. Using equations 
(7) and (8) in eq. (5), we get  

 −ω2∙{y∙exp(inka)} = C/m∙[ y∙exp{i(n+1)ka} + y∙exp{i(n−1)ka}− 2y∙exp{i(n)ka}]  

 −ω2 = C/m∙[ exp{(+i)ka} + exp{(−i)ka} − 2 ]  

 −ω2 = C/m∙[ exp(ika) + exp(−ika) − 2] (9) 

As we know from exponential identity 

 exp(ib) + exp(−ib) = 2cos(b) 

Then the equation (9) can be written as  

 −ω2 = C/m∙[2cos(ka) − 2] 
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 ω2 = 2 C/m∙[1 − cos(ka) ] (10) 

Also known from cosines‟ identity 

 1 – cos(b) = 2sin2(b/2) 

Then the equation (10) becomes 

 ω2 = 4 C/m∙{sin2(ka/2)}  

 ω = 2∙(C/m)1/2∙sin(ka/2) (11) 

This is the solution (equation 11) and achieved dispersion relation for three atoms 
system. Here ω is the angular frequency of the system.  

 

Appendix 3.2 (Differential wave equation and its solution for transverse vibrations)  

Wave equation  

The equation of motion of total force applied on mass mn for this system is equal to the 
restoring rotating force (torque). So the general equation of rotational force would be  

 

 a × F = – G∙α 

As the force vector is perpendicular to the force-arm, so we can write it in scalar 
multiplication form as  

 

 F∙a = – G∙α (12) 

 

 

Figure 1: Mass spring coupling system for transversal or T-mode vibrations 
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Here G is the rotational stiffness, a is the length of rotating force arm and α is the total 
angle of deflection. Now for our case, this equation will be  

 F∙a = – G∙(α1 + α2) (13) 

 F∙a = – G∙{ (yn − yn+1) / a + (yn – yn-1) / a } 

Here  

 α1 = (yn − yn+1) / a           and          α2 = (yn – yn-1) / a 

The reason is, we are taking small amplitude approximations, and for small angles  

 sin (α) ~ α  

 F∙a = – G/a∙( yn − yn+1 + yn – yn-1 ) 

 F = G/a2∙(yn+1 + yn-1 − 2yn) (14) 

Here force F is the linear component which can be represented by Newton‟s 2nd law of 
motion. Thus  

 m∙d2yn/dt2 = G/a2∙(yn+1 + yn-1 − 2yn) 

 d2yn/dt2 = G/ma2∙(yn+1 + yn-1 − 2yn) (15) 

 d2yn/dt2 – G/ma2∙(yn+1 + yn-1 − 2yn) = 0 (16) 

This is the required wave equation (equation 16) for our above elaborated case, which 
is a second order differential equation.  

 

Solution of the wave equation  

We can have a time dependent solution of yn with exp(−iωt). Such that  

 d2yn/dt2 = − ω2yn (17) 

Also for a transversal displacement y, the solution of this travelling wave is of the form 

 y(n±1) = y∙exp{i(n±1)ka} (18) 

where k is the wave vector. Using equations (17) and (18) in eq. (15), we get 

 −ω2∙{y∙exp(inka)} = G/ma2∙[ y∙exp{i(n+1)ka} + y∙exp{i(n−1)ka}− 2y∙exp{i(n)ka}] 

 −ω2 = G/ma2∙[ exp{(+i)ka} + exp{(−i)ka} − 2 ] 

 −ω2 = G/ma2∙[ exp(ika) + exp(−ika) − 2] (19) 

As we know from exponential identity  

 exp(ib) + exp(−ib) = 2cos(b) 

Then the equation (8) can be written as  

 −ω2 = G / ma2∙[2cos(ka) − 2] 

 ω2 = 2 G / ma2∙[1 − cos(ka) ] (20) 
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Also known from cosines‟ identity 

 1 – cos(b) = 2sin2(b/2) 

Then the equation (9) becomes  

 ω2 = 4 G/ma2∙{sin2(ka/2)} 

 ω = (2/a)∙(G/m)1/2∙sin(ka/2) (21) 

This is the required dispersion relation (equation 21) for transversal mode. As G and m 
are assumed as constant values. Then the variable parameter here is a.  

 

Appendix 3.3 (Transversely polarized lattice displacement function aF)  

For the determination of force dependent transversal displacement function, we treat 
only one side (as the angle‟s variation happens to be the same on both sides due to 
extensional stress) of this mass spring model which includes masses mn and mn+1. The 
following figure provides further explanation:  

 

 

Figure 2: Single sided view of (figure 10, chapter 3) T-mode mass spring coupling 
system.  

 

The deflection angle α1 will increase from its previous position to α3 due to external pull. 
The following will hold for the angles:  

 α3 ≥ α1 

With the definition of ∆α being the increase (of angle) due external pull:  

 ∆α = α3 - α1  

One can derive the effective transversal displacement function due to extensional force 
(from the above given figure) as following:  

 aF = a0∙cos(α3)  (22) 
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This is our required transversely polarized lattice displacement function (equation 22) 
depending on external pulling force.  

 

Appendix 3.4 (Differential wave equation and its solution)  

Wave equation  

The equation of motion of total force Fn applied on mass mn for any system is equal to 
the amount of displacement caused. So the general equation of force would be  

 Fn = C∙(yn+1 + yn-1 − 2yn) (23) 

Here C is the force constant. Also yn+1, yn-1, and yn are the relative displacements at 
positions n+1, n-1 and n respectively.  

Now in our case the force constant is a generalized function equal to „[(G/a + F) / (a)]‟ 
having lateral and transversal components. So equation (23) can be written as  

 Fn = [(G/a + F) / (a)]∙(yn+1 + yn-1 − 2yn) (24) 

Here the force Fn can be represented by Newton‟s 2nd law of motion. So  

 Fn = m∙a (25) 

Where m is the mass and a is the acceleration. As acceleration can be written as the 
2nd derivative of displacement y as following  

 Fn = m∙d2yn/dt2  (26) 

Using the values of equation (26) in equation (24), we get  

 m∙d2yn/dt2 = [(G/a + F) / (a)]∙(yn+1 + yn-1 − 2yn)  

 d2yn/dt2 = [(G/a + F) / (ma)]∙(yn+1 + yn-1 − 2yn)  (27) 

 d2yn/dt2 − [(G/a + F) / (ma)]∙(yn+1 + yn-1 − 2yn) = 0  (28) 

This is a second order differential equation (28).  

 

Solution of the wave equation  

We can have a time dependent solution of yn with exp(−iωt). Such that  

 d2yn/dt2 = − ω2yn (29) 

Also for any displacement y, the solution of this travelling wave would be of the form  

 y(n±1) = y∙exp{i(n±1)ka} (30) 

where k is the wave vector and a is the spacing between the planes. Using equations 
(29) and (30) in eq. (27), we get  

 

−ω2∙{y∙exp(inka)} = [(G/a + F) / (ma)]∙[y∙exp{i(n+1)ka} + y∙exp{i(n−1)ka} − 2y∙exp{i(n)ka}]  

 −ω2 = [(G/a + F) / (ma)]∙[ exp{(+i)ka} + exp{(−i)ka} − 2 ]  
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 −ω2 = [(G/a + F) / (ma)]∙[ exp(ika) + exp(−ika) − 2] (31) 

As we know from exponential identity 

 exp(ib) + exp(−ib) = 2cos(b) 

Then the equation (31) can be written as  

 −ω2 = [(G/a + F) / (ma)]∙[2cos(ka) − 2] 

 ω2 = 2 [(G/a + F) / (ma)]∙[1 − cos(ka) ] (32) 

Also known from cosines‟ identity 

 1 – cos(b) = 2sin2(b/2) 

Then the equation (32) becomes  

 ω2 = 4 [(G/a + F) / (ma)]∙{sin2(ka/2)} (33) 

 ω = 2∙[(G/a + F) / (ma)]1/2∙sin(ka/2) (34) 

This is the solution (equation 34) and achieved dispersion relation for three atoms 
system. Here ω is the angular frequency of the system.  

 

Appendix 4.1  

According to the Lennard-Jones formula, the interatomic binding potential (a)ULJ  can 

be defined as following:  
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Differentiating equation (1) with respect to displacement „a‟ will give us:  
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As we know the derivative of potential is equal to force (a)FLJ , then the above 

equation can be written as:  
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Further differentiating the force FLJ (a) will result in the following equation:  
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The derivative of this nonlinear variable force is represented here by CLJ (a),  
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This is the nonlinear interatomic force coefficient (simulating the spring constant in the 
mass-spring lattice model) acting within the lattice and has been derived from Lennard-
Jones binding potential directly.  

 

Appendix 4.2  

If the equation of phase velocity vph is  
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As we know the phase velocity vph can also be written as  

 k
ωvph 

 (5)
 

So the above definition (equation 5) can be used (in equation 4) as following  
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Here   is the angular frequency and k is the wave number. So by squaring on both 

sides of the above equation  
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Squaring on sides of the above equation again will give us  
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This equation (6) is the angular frequency for (literature derived) continuum model.  

 

Appendix 4.3  

The angular frequency equation obtained after the implementation of the first three 
elements of suitable Taylor series is,  
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This equation (7) is the angular frequency for (linear chain) discrete model.  

 

Appendix 4.4  

The comparison for both (models) frequency equations is done by equating them  
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Squaring and solving on both sides of the above equation,  
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The equation (8) provides us elasticity modulus in terms of P, G and a.  

 

Appendix 4.5  

Here the group velocity by equation is  
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Appendix 4.6  

Here the group velocity by equation is  
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Appendix 4.7 (Viscoelastic case)  

One of the basic viscoelastic models, namely Kelvin-Voigt viscoelastic model has been 
chosen here to represent the basic viscoelastic effects present in the material including 
extensional stress.  

 

 
Figure 1: Schematic diagram of Kelvin–Voigt model  

 
The Kelvin-Voigt model is given priority over Maxwell‟s model due to its better 
explanation (i.e. asymptotic) of creep behaviour in the material due to extensional 
stress. The standard equation for this model is  
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dt

(t)d
η(t)Eσ(t)


  (11) 

 
Where E is the modulus of elasticity (young‟s modulus), σ  the applied stress,   

resultant strain in the material, depending on time t, and η  is the viscosity factor.  

For the condition applied in our case, a constantly applied stress 0σ , the differential 

equation (11) can be solved for total strain as following  
 

dt

(t)d
(t)

E0 








 

 

 (t)
E

dt

(t)d 0 









 (12) 

By applying integration on this above equation (12), will provide us  
 

 

t
η

E

1
0 eC

E

σ
ε(t)




 (13) 

Here C1 is the constant of integration and can be found by using initial condition in 

which the stress is happening instantaneously i.e. t = 0 in equation (13). The strain (t)  

in this case will also be zero because there was no strain in the material at the start. So  
 

 
0

1
0 eC

E

σ
0   

As we know the value of 1e0  , then  
 

 
E

σ
C 0

1   (14) 

Using the above value (equation 14) of C1 in equation (13), the total strain would be  

 

t
η

E

00 e
E

σ

E

σ
ε(t)




 

 

 














 t
η

E

0 e1
E

σ
ε(t)

 (15) 

The exponential term in equation (15) can be solved by using Maclaurin series as 
following  
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 3!

x

2!

x
x1e

32
x 

       and so on      for all x 

 
We will only use first two terms of the above series as the value of each increasing term 
has a very minimum effect on the overall result of the series. So in our case the 
following equation can be used  
 

 x1ex   (16) 

 
Using the definition of equation (16) in equation (15), we will get  
 

 

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

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






 t
η

E
11

E

σ
ε(t) 0

 

 

 t



 0(t)  (17) 

 

In terms of stress 0 , the equation (17) can be written as  

 

 ε(t)
t

η
σ0   (18) 

 
The stress equation (18) deduced from Kelvin-Voigt model can represent a simple 
viscoelastic case (in which the Hooke‟s springs and dampers are connected in parallel 
representing the viscoelasticity of the material), where the extensional pulling force P 
can be written as  

 

 ε(t)
t

η
σP 0   (19) 

Here ε(t)  is the strain in the material, depending on time t, and if we exclude in our 

following notation the (time dependence) sign t in equation (19), the extensional stress 
P can be denoted as  
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 ε
t

η
P   (20) 

Where η  is the viscosity factor, and t is the time. Here the function 
t

η
 is equivalent to 

E in the Hooke‟s definition of linear elasticity.  
 

Appendix 4.8  

To find the frequency value at zero ECF (elastic coupling function), the function can be 
obtained by solving the following equation:  

 

 

 TOF

.da

L.P

1
E

0

CF












 (21) 

All of the symbols including the TOF are defined in the fourth chapter text (see 4.3 
Analytical treatment). As according to the given condition the value of ECF is zero, so the 
above equation (21) can be written as:  

 

 TOF

.da

L.P

1
0

0













 

This means  

  TOF0    

Equating the TOF (i.e. equation 74 in chapter 4) equals to zero. The following equation 
will arise:  

 
 cos(2ka)2Gcos(ka)8G)(2Pa6G)(2Pa

sin(2ka)2Gsin(ka)4G)(Pa

ma
0

2






 

 

 
 cos(2ka)2Gcos(ka)8G)(2Pa6G)(2Pa0 

  (22) 

 

Squaring on both sides of equation (22), we get  

 0 = (2Pa + 6G) − (2Pa + 8G)∙cos(ka) + 2G∙cos(2ka)  

 (2Pa + 6G) − (2Pa + 8G)∙cos(ka) + 2G∙cos(2ka) = 0  (23)  

As according to cosine trigonometric identity,  
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 cos(2x) = 2cos2(x) − 1  (24)  

Using the trigonometric identity of equation (24) in equation (23), we get  

 (2Pa + 6G) − (2Pa + 8G)∙cos(ka) + 2G∙{2cos2(ka) − 1} = 0  

 (2Pa + 6G) − (2Pa + 8G)∙cos(ka) + 4G∙cos2(ka) – 2G = 0  

 (2Pa + 8G)∙cos(ka) – 4G∙cos2(ka) = (2Pa + 6G) – 2G  

 (2Pa + 8G)∙cos(ka) – 4G∙cos2(ka) = (2Pa + 4G)  (25)  

Using logarithmic transformations in equation (25) and by solving it, we will arrive at:  

 

  
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










8G)(2Pa

(4G)4G)(2Pa
lncosec(ka)ln

  (26)  

Applying antilogarithm on both sides of equation (26), we get  

 

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










8G)(2Pa

(4G)4G)(2Pa
cosec(ka)

  (27)  

Applying cosec-1 on both sides of equation (27), we get  
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
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


 

8G)(2Pa

(4G)4G)(2Pa
cosec(ka) 1

  (28)  

Also we know   cosec-1 = cosine,  

Thus the equation (28) will become  

 














8G)(2Pa

(4G)4G)(2Pa
cos(ka)

  (29)  

This equation (29) gives us a zone boundary wave function (ka) in terms G, P, and a to 
evaluate frequency at minimum value of elastic coupling function (i.e. at zero ECF).  

 

Appendix 4.9  

To find the horizontal asymptote with frequency approaching infinity, we start with the 
equation of elastic coupling function as following:  

 

 TOF

.da

L.P

1
E

0

CF












 (30) 

Substituting the value of TOF (equation 74, chapter 4) in the above equation (30),  
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)}2G.sin(2ka)4G).sin(ka{(Pa
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.

.da
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E
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0

CF

 (31) 

 

Here the equation (31) can only be solved for ka = 0∞, if we expand the 
trigonometric functions by Taylor series:  

 3!

(x)
(x)sin(x)

3


               and            2!

(x)
1cos(x)

2

    (32)  

The higher degrees of Taylor series are neglected due to negligible effect on the overall 
value of the expansion. By substituting the above equation (32) in equation (31) and by 
solving it, we will arrive at:  
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22
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CF

  (33)  

The equation (33) is now in the function form of „ka‟ and can also be written as 
following:  

 a)function(k

1
E

CF


  (34)  

Here the a)function(k  comparing with equation (33) can be written as following:  

 maP

(ka)
a

2G
(ka)

6

P
P

.da

L.P
a)function(k

22

0








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









  (35)  

We know the condition for frequency → ∞ corresponds to the horizontal asymptote for 
which the condition of elastic coupling function will be  
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0E
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  (36)  

 Or  
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  (37)  

This means (comparing equations 35 and 37)  
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  (39)  

The equation (39) can be expanded by binomial theorem (suitable for –ve power 
integers) according to the following formula:  

  (a + b)n = (a)n∙(1 + b/a)n  (40)  

Where  

   n = -ve integer                   and                      -1 < b/a < +1  
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 

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

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


 ...(b/a)
3!

2)1)(nn(n
(b/a)

2!

1)n(n
n(b/a)1(a)b)(a 32nn

  (41)  

 

Here the equation (41) is an infinite series but we can limit up to first degree as (b/a)2, 
(b/a)3, (b/a)4,,,, are becoming increasingly very small values as compared to rest of the 
series and have very negligible effect on the value of whole series. So it can be written 
(and shortened) as  

 

 
 n(b/a)1(a)b)(a nn 

  (42) 

Thus the equation (39) can be written in the form of equation (42) as following:  
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      Where                     -1 < 





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
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
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P
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 < +1               

 

By solving equation (43), we get  
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1
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P

1 22

2


  

By further solving the above equation, we will arrive at:  

 

 
 aP12G

6aP
(ka)




  (44)  

 

This equation (44) gives us a zone boundary wave function (ka) in terms G, P, and a 
related to the horizontal asymptote.  
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Appendix 4.10  

To find the vertical asymptote with frequency approaching zero, we start with the 
equation of elastic coupling function as following:  

 

 

 TOF
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E
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CF
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By substituting the value of TOF (equation 74, in chapter 4) in the above equation (45),  
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Here this equation (46) can only be solved for ka = 0∞, if we expand the 
trigonometric functions by Taylor series:  

 3!

(x)
(x)sin(x)

3


               and            2!

(x)
1cos(x)

2

    (47)  

 

The higher degrees of Taylor series are neglected due to negligible effect on the overall 
value of the expansion. By substituting the above equation (47) in equation (46) and by 
solving it, we will arrive at:  
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The equation (48) is now in the function form of „ka‟ and can be denoted as following:  
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Here the a)function(k  comparing with equation (48) can be written as:  
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We know the condition for frequency → 0 corresponds to the vertical asymptote for 
which the condition of elastic coupling function will be  
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CF
E

   or  
0

1
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Also we know that  

 

 a)function(k
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CF
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  (52) 

This means by comparing equations (50, 51 and 52), we will get  

 

 
0a)function(k 

  (53) 

Substituting the value of „function(ka)‟ from equation (50) in equation (53), we get  
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Further solving the above equation (54), we will arrive at:  
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This equation (55) gives us a zone boundary wave function (ka) in terms G, P, and a 
related to the vertical asymptote.  
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