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ABSTRACT

Four trials were conducted to assess the influence ofnon-starch polysaccharides

(NSP) from dietary com (C), wheat (W) and wheat supplemented with endoxylanase (E)

on performance, the gastrointestinal tract and on the bacterial population and its

fermentation characteristics in broiler chickens. Trial one determined the difference in

GIT size, specific culturable intestinal bacteria numbers, and volatile fatty acid (VFA)

production at 42 d between C, Wand wheat diets supplemented with E either

throughout the 42 d or for 0-28 d or 29-42 d. The second trial utilized the same wheat

treatments as the first trial, but GIT and VFA measures were taken at 14,28 and 42 d

while bacterial enumeration was only done at 28 and 42 d. This experiment was

analyzed as a two-way analysis of variance with age and treatment effects. A third trial

evaluated the C, Wand E diets for differences in the amounts of total aerobic and

anaerobic bacteria cultured at 28 and 42 d. The fourth trial was a two-way analysis of

variance evaluating the effect of age and diet (C, Wand E) on performance, GIT size,

VFA production and residual NSP in the terminal ileum at 7, 14,21,28,35 and 42 d.

Performance was measured in all /four trials and digesta viscosity was measured in all

but the third trial.

Results from the first trial showed that E supplementation of wheat diets

improved performance. Viscosity was lowest for C diets. Measures of GIT size were

all smaller on C versus wheat-based diets. Ileal anaerobes tended to be higher with E

than without while caecal anaerobes were higher on unsupplemented wheat diets. VFA

production was higher for wheat versus com fed birds in the ileum. C diets and wheat

diets where E was removed at 28 d yielded the highest caecal propionic acid levels.

In the second trial, performance was also improved with E supplementation.

Viscosity was lower for E supplemented wheat-fed birds than unsupplemented birds,

except at 42 d. Full ileal weights were higher for W diets versus all others while caecal

weights were lower on this diet. Bacterial data indicated higher levels of ileal anaerobes

and some caecal anaerobes on W diets at 28 and 42 d. VFA content of the digesta, at 28

d was higher in the ileum in diets without E and the same tendency was noted for caecal
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VFA. At 42 d ileal VFA production was higher with E and caecal VFA production was

higher without E. The results from the first two trials demonstrate that while certain

anaerobic bacteria do increase in the ileum of W diets, others appear to respond to the

substrates created by E supplementation in both the ileum and the caecum. Age related

adaptation also appears to affect the response of the bacteria to E supplementation.

In the third experiment C and E birds performed equally well with W birds

having the highest gain to feed ratios after 14 d and overall. E diets resulted in the

highest numbers of caecal anaerobes with C birds having the lowest number. At 42 d,

birds had higher numbers of caecal anaerobes than at 28 d.. At 28 d, caecal aerobes were

highest on E diets (P<O.1 0) while at 42 d, caecal anaerobes were lowest on the C diet

and similar for the two wheat diets. Therefore, despite performance similarities

between C and E birds, there were definite differences in the bacteria present in the

hindgut on each diet. This is likely due to the difference in residual dietary substrate in

the hindgut of the birds fed different diets and its ability to enter the caeca. The

substrates present in the ileum of E birds may be of benefit to both the bird and to the

different cross-section of caecal bacteria present. Less NSP substrate is likely to be

available in the hindgut of C birds.

Results from the fourth trial showed that performance was equivalent across

treatments. Jejunal viscosity was highest (P<0.05) for the W diet at all ages except 7 d.

Ileal viscosity was highest in this diet at all ages. Jejunal and ileal weights as a

proportion of body weight were generally largest for W followed by E, and smallest for

C. Caecal lengths followed the same pattern but caecal weights were highest for E. Ileal

VFAs were not affected by treatment. Caecal acetic acid was highest for birds fed W

and E diets, whereas caecal pH, propionic, isobutyric, isovaleric and valeric acids were

highest for C birds. There was a significant interaction between diet and age for

propionic acid. E diets had the highest (P<O.OOI) amounts arabinose and xylose from

soluble and low molecular weight NSP present in ileal contents. As the birds aged,

proportionally more arabinose and xylose was solubilized from the W diet. The E diet

yielded higher, but relatively steady levels of soluble arabinose and xylose whereas the

C diet yielded the lowest levels and no change was seen with age. This suggests a
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bacterial adaptation to wheat NSP with age of the bird and the presence of NSP resistant

to ileal bacterial hydrolysis in C diets.

It is concluded that the higher NSP content of the wheat diets is likely associated

with the increased GIT size of the wheat-fed birds. While the NSP in these diets are

broken down by the caecal bacteria to acetate and butyrate, the com diet resulted in the

production ofpropionate and isovalerate. The latter finding suggests that undigested

starch and protein from com enter the caeca and are being fermented by bacteria in this

location. All of the differences in bacterial composition, fermentation and substrates

provide evidence for changes in dietary NSP content and structure having a significant

impact on changing the bacterial profile of the GIT of the broiler chicken.
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1.0 INTRODUCTION

Cereal grains comprise the bulk of western Canadian poultry rations, as they do

in much of Europe and Australia. Since these grains are known to contain variable

levels of anti-nutritive dietary fibre or nonstarch polysaccharides (NSP), accurate ration

formulation is often difficult. While much is known about the chemical composition of

intact dietary NSP and their physiological effects in poultry diets, less detail is available

on the physiological and microbiological effects of enzymatically degraded NSP or the

interactions between gut microflora and dietary NSP size, composition and level.

Long chain length carbohydrates (NSP) can decrease nutrient availability

through a number of mechanisms, including increased digesta viscosity and microbial

proliferation in the hindgut. At the opposite end of the spectrum, some shorter chain

length carbohydrates (specific mono and disaccharides) are poorly absorbed in the lower

small intestine, cause high osmotic potential in the digesta and, again, result in increased

microbial fermentation. It is known that certain genera of native gut microflora

negatively influence nutrient availability, while others appear to be beneficial. The

same may be said about different sized carbohydrate fractions (polysaccharides vs

oligosaccharides vs di- and monosaccharides).

There is, however, ample evidence ofperformance improvements with

enzymatic degradation of NSP. The use of endoxylanases in wheat and B-glucanases in

barley diets is common practice in feeding monogastric animals. The enzymes decrease
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digesta viscosity, improve nutrient utilization, reduce variability in the ME of cereal

grains and improve animal performance. Enzymatic hydrolysis ofNSP results in the

formation of smaller polysaccharides through depolymerization of the larger NSP. It

may also result in the release of some oligosaccharides and monosaccharides.

Some research has demonstrated that enzyme supplementation of high NSP diets

reduces the proliferation of the ileal microflora in chickens. Improved nutrient

utilization may be related to the reduction of digesta viscosity and therefore improved

nutrient flow and enzyme-substrate contact or it may also be due to the change in the

microflora. Enzyme supplementation may also increase the proliferation of some caecal

microflora, which mayor may not be beneficial to the host animal. The interactions

between the various carbohydrate fractions of different sized whole and degraded NSP

and the microbial population have not yet been clearly elucidated.

The objectives of this research were to identify the relationship between dietary

NSP and endoxylanase supplementation on numbers of specific groups of gut bacteria

and on bacterial fermentation in the distal small intestine and caeca of poultry; to

determine whether adaptation of the microflora to dietary NSP and endoxylanase

supplementation occurs with time; and, to identify differences in the size and

composition ofNSP fractions which remain in the terminal ileum as affected by dietary

NSP, endoxylanase supplementation and age, and to evaluate how this may impact gut

microflora status.
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2.0 LITERATURE REVIEW

2.1 Non-starch Polysaccharides (NSP) in Feed Ingredients

2.1.1 Components of Dietary Fibre

Non-digestible carbohydrates (NDe) are a combination of indigestible non-starch

polysaccharides (cellulose and hemicelluloses) and other carbohydrates such as pectic

substances and glycoproteins that make up plant cell walls. These products are usually

considered the major constituents of dietary fibre although some schools of thought also

include waxes, cutin, lignin and even resistant starch (Trowell et al., 1976; Baker et aI.,

1979; Theander and Aman, 1979; Brown, 1996), while still others include proteins,

phenolic esters and gums from food additives (Selvendran, 1984).

According to Englyst (1989), the principal components of dietary fibre are the

non-starch polysaccharides (NSP) of plants. In terms of animal nutrition and the

practical application of the dietary fibre concept in feedstuff utilization, the definition of

Theander and Aman (1979) is the most appropriate. Theander and Aman (1979) define

dietary fibre as "A group ofpolysaccharides and other polymers in plant material in the

diet which are neither digested by normal secretions nor absorbed in the upper

gastrointestinal tract." This applies particularly well to animal nutrition because

components of human foods such as additives are not normally a large part of animal

feeds.
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In keeping with the above definition, the carbohydrate constituents of dietary

fibre are the cell wall NDC, which include cellulose, hemicellulose and pectic

substances, as well as other non-structural plant substances (Baker et af., 1979). Of the

NSP, cellulose is predominant. Cellulose is a linear polymer of glucose with B-l,4

linkages. Hemicelluloses, on the other hand, are primarily made up of B-l,4 linked

xylose residues, sometimes with L-arabinose or D-glucuronic acid residues attached to

the main chain. Hemicelluloses may also include units of mannose, galactose, or fucose.

Other mixed-link glucans present in some plants include such polysaccharides as B­

glucans with B-l,4 linked glucoses interspersed with B-l,3 linkages (Theander and

Aman, 1979; Theander et aI., 1993). Pectic substances are a complex group of

polysaccharides in which D-galacturonic acid is a principal constituent with residues of

rhamnose, xylose, galactose, and fucose along with some uronic acids present as methyl

esters.

Lignin, is also present in cell walls and resistant to digestion in both the small

and large intestine. However, this amorphous, high molecular weight aromatic polymer

is composed of phenyl propane (Selvendran, 1984) and is not a carbohydrate.

2.1.2 Chemical Composition of Non-starch Polysaccharides (NSP)

A closer examination of the chemical structure of NSP shows that they are

composed of 11 or more of either one, or a combination of ten different monosaccharide

units connected to each other through various glycosidic linkages (Theander et af.,

1993). The number 11 is merely used to differentiate between oligosaccharides (up to
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10 units) and polysaccharides. The ten different monosaccharides can be grouped by

number of carbons as well as by the presence of a hydroxyl, methyl, or carboxyl group

on C-5 of the ring structure. The five carbon sugars (pentoses) are xylose and arabinose

and the six carbon sugars (hexoses) are mannose, glucose, and galactose. The uronic

acids are six or seven carbon structures with a carboxyl group on C-5 of the ring

structure; uronic acids include glucuronic, galacturonic and 4-0-methyl glucuronic (7 C)

acids. The deoxyhexoses are rhamnose and fucose and have a methyl group on C-5.

All of the sugars, except arabinose, occur predominantly in their pyranosidic ring

or "chair" form with xylose, mannose, glucose and galactose occurring as B-linked

pyranosidic rings and rhamnose, fucose and all three uronic acids occurring as a-linked

pyranosidic rings. Arabinose alone occurs as an a-linked furanosidic ring (Theander et

al., 1993).

The predominant NSP in cereal grains are arabinoxylans and B-glucans which

form an amorphous matrix around small but significant amounts of cellulose micro

fibrils closely associated with glucomannans (Selvendran, 1984). The relative

proportions of the major cereal grain NSP vary with species ofplant where wheat, rye

and triticale have predominantly arabinoxylans and barley and oats have mostly B­

glucans. In barley, B-(1,3), (1,4)-glucans make up 30-60 g/kg DM (Fincher and Stone,

1986). In rye, arabinoxylans are present at around 100 g/kg (Antoniou et al., 1981) and

in wheat, they are present at anywhere from 50-80 g/kg (Annison, 1990). In wheat the

arabinoxylans are largely located in the cell walls of the aleurone layer (Posner, 2000).

In corn, arabinoxylans are present at anywhere from 43-66 g/kg but are mostly located in
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the bran, not connected with the starchy endosperm and are largely insoluble (Choct and

Annison, 1990; Shelton and Lee, 2000).

The actual monosaccharide breakdown of cell wall NSP from a number of

different cereal grains were summarized by Chesson (1995) (Table 2.1).

Table 2.1 Monosaccharide composition of the cell-wall polysaccharides (NSP)
from various grains (adapted from Chesson (1995) with corn data from Shelton
and Lee (2000))

Monosaccharides (0/0 total NSP)

Source %DM

Barley 15.0

Oats 27.9

Ara

14.7

7.1

Xyl

25.1

33.7

Man

2.7

1.6

Gal

1.9

2.4

Gle

51.8

50.5

VA

3.3

4.2

Rice

Rye

Wheat

Com

2.0

13.7

10.9

n/a

21.3

22.1

20.9

23.1

34.2

37.0

33.8

37.8

4.5

4.1

n/a

5.4

4.2

4.3

7.7

42.1

28.4

33.0

n/a

6.9

3.1

3.9

2.1
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Pectic substances are a complex group of colloidal polysaccharides that may be

partially extracted with water but which sometimes require the use of chelating agents in

aqueous solution for complete extraction. This is due to the presence of calcium and

magnesium ions (Theander et al., 1989). As mentioned earlier, pectins are mostly

methyl esters of D-galacturonic acid, which are usually substituted with rhamnose

residues forming rhamnogalacturonans. Side chains of arabinose and galactose are often

present. Cereal grains have relatively low amounts ofpectic substances compared to

most dicotyledonous plants (Theander et al., 1989; Chesson, 1995) such as oilseeds. In

canola meal, for example, rhamnogalacturonans comprise the largest proportion of NSP

(Slominski and Campbell, 1990).

Proteins and phenolic compounds can be associated with polysaccharides in

cereal grain endosperm and aleurone layers. The way in which NSP are associated with

non-carbohydrate fractions in plant cell walls becomes important when the plant product

is consumed. These associations can influence the solubility of the NSP and other

factors that impact on their physicochemical properties in the bird's gastrointestinal tract

(Smits and Annison, 1996) as well as on the availability of the nutrients in the plant

product.

Oilseed meals used as protein sources in poultry diets often have substantial

levels of free sugars and their a-galactosides which cannot be digested in the avian small

intestine due to a lack of endogenous a-(1,6) galactosidase (Gitzelman and Aurichio,

1965). These oligosaccharides, called raffinose oligosaccharides or a-galactosides,
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typically have galactose residues attached through an a-(1,6) linkage to the glucose

moiety of sucrose and, depending on their degree of polymerization, can be present as

raffinose, stachyose, verbascose, or ajugose (Veldman et al., 1993). Of the raffinose

oligosaccharides, stachyose is predominant in soybean meal and canola meal while

verbascose is predominant in field peas (Bach-Knudsen and Li, 1991).

2.1.3 Physiological Implications of Non-starch Polysaccharides in Feed

Ingredients

2.1.3.1 Physical Implications of NSP

Non-starch polysaccharides can to cause physical changes in the GIT

environment. The branched nature of the water-soluble arabinoxylans gives them gel­

forming properties, allowing them to absorb water and form viscous solutions in the

digesta of poultry (Annison, 1993; Chesson, 1995). This increased digesta viscosity is

considered one of the anti-nutritional factors associated with NSP. The increased

viscosity can slow digesta passage rate (Salih et al., 1991; van der Klis and van Voorst,

1993; Almirall and Esteve-Garcia, 1994), decrease access to the feed by the digestive

enzymes of the bird (Johnson and Gee, 1981; Johnson et aI., 1984; Fengler and

Marquardt, 1988a) and cause increased endogenous secretions in the GIT (Choct and

Annison, 1992a; Angkanapom et al., 1994). In a review by Ellis et al. (1996) the author

cites studies in dogs and pigs that demonstrate that dietary soluble NSP increases gastric

viscosity thereby affecting sieving and mixing, resulting in larger sized food particles

entering the small intestine. These authors summarize that soluble NSP increases SI
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viscosity, thereby inhibiting the mixing of nutrients and enzymes by reducing the effects

of intestinal contractions, increasing the volume of intestinal secretions, and possibly

changing the pattern of digesta flow from turbulent to laminar (stream-line) flow. Other

physical effects of dietary fibre, and specifically, of NSP, include an increase in GIT

length and weight (Johnson et al., 1984; Johnson and Gee, 1986; Moss, 1989; Savory,

1992a; van der Klis and van Voorst, 1993; Jergensen et al., 1996; Smits et al., 1997).

Increased thickness of the "unstirred" water layer was observed when everted sacs of rat

jejunum were incubated with two sources of viscous NSP (guar gum and

carboxymethylcellulose (CMC)) (Johnson and Gee, 1981). An increase in the

proliferation rate of enterocytes of rats fed the same two sources of NSP was shown by

Johnson and Gee (1986). Differences in pH and osmolality are also seen with increasing

rates ofNSP inclusion in the diet. Van der Klis et al. (1993) noted a decrease in pH in

the ileum and an increase in ileal osmolality with increasing addition of

carboxymethylcellulose in the diets of broiler chickens. Research has also demonstrated

that both guar-gum and carboxymethylcellulose decrease levels of some mucosal

enzymes while response of some other enzymes is not the same for the two sources of

dietary fibre (Johnson et al., 1984; Johnson and Gee, 1986). This led the researchers to

conclude that the physical changes in the GIT that result from the feeding of dietary fibre

relate to more than just the changes in the viscosity of the digesta.

2.1.3.2 Nutritional Implications of NSP

The viscosity generating properties of soluble NSP have been shown to decrease
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the digestibility ofprotein, starch and fat (Smits and Annison, 1996) and to affect the

energy value of cereal grains. Antoniou et al. (1981) worked to characterize the

component of rye that was causing antinutritional effects and found it to be a water­

soluble, pentosan-rich fraction of the grain. Fengler and Marquardt (1988b) further

purified and characterized this component and used it in feeding trials with chicks. In

these studies, fat retention by the chicks was shown to be adversely affected by the

isolated fraction. Extractions were also made ofpurified wheat arabinoxylans, first on a

laboratory scale (Choct and Annison, 1990) and then on a larger scale (Annison et al.,

1992), were conducted to obtain material with which to evaluate different anti-nutritive

aspects of wheat pentosans in broiler chicken diets. Choct and Annison (1990) isolated

>1000 g of arabinoxylan-rich material which had the same anti-nutritive properties as

wheat. The second larger scale extraction (Annison et al., 1992) was conducted to

ensure that the material isolated in large quantities was indeed similar in structure and

properties to wheat arabinoxylans in complete feeds and foods. This was confirmed

using structural analysis and nuclear-magnetic resonance techniques. The isolated

arabinoxylans were then used in further studies to determine the negative impact of

wheat arabinoxylans on AMEn, nutrient digestibility, digesta viscosity and broiler

performance (Choct and Annison, 1992a; 1992b).

Many years of research have been spent determining that it is a combination of

the size, structure and solubility of the NSP in cereals that causes their antinutritional

activity. Initially it was thought that the low AMEn values for some Australian wheats

were attributable to poor starch digestibility and showed an improvement with increasing
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age of birds (Mollah et al., 1983; Rogel et al., 1987). Further work demonstrated

significant and highly negative correlations between AMEn and water soluble NSP

(Annison, 1991) which, in wheat and rye, consists mostly of arabinoxylans. While some

studies (Pettersson and Aman, 1989; Choct and Annison, 1992b) showed that the

significant negative effect of cereal grain pentosans and B-glucans on broiler

performance was a result of increased digesta viscosity, Choct and Annison (1992b)

confirmed that this physicochemical property of NSP, and arabinoxylans in particular, is

dependent upon the degree of polYmerization of the polysaccharide. Since degree of

polYmerization is related to molecular weight, Bedford and Classen (1992) conducted a

study evaluating enzYme dose response on molecular weight distribution ofNSP

fractions from rye and wheat in the broiler GIT. They concluded that the concentration

of a high (>500 kDa) molecular weight fraction alone was not responsible for its

viscosity generating properties, but that the sugar composition of this fraction might also

be partially responsible.

A number of years prior to this, Carre et al. (1984) went so far as to develop a

prediction equation for AMEn based on the level of water soluble cell wall material

present in a feedstuff and confirmed the accuracy of this equation through the evaluation

ofNSP digestibilities with cockerels, ducks and rats (Carre et al., 1990). These

researchers noted very little species differences in AMEn between ducks and cockerels

but large differences between the two avian species and rats. The results were said to

suggest that the main factor accounting for the variation in AMEn (or DE, for rats)

between species was the ability to digest NSP. More recent work by Austin et al.
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(1999) demonstrated that AME was even more closely related to the actual component

of arabinoxylan resistant to hydrolysis by xylanases, and to the degree of branching of

the arabinoxylan, than to the soluble NSP content of the wheats tested.

Digestibilities of fat, starch and protein in wheat were reduced when the wheats

had high levels of arabinoxylans (Choct and Annison, 1992a,b; Choct et al., 1992). Lipid

digestion, in particular, is adversely affected by dietary pentosans (Campbell et a!., 1983;

Fengler and Marquardt, 1988a) and other NSP (Smits et a!., ·1997). This was found to be

related to the microbial status of the bird and will be discussed in greater detail in

Section 2.1.3.3.

Despite starch digestibility having been found to explain about 88% of the

variability in Australian wheat AME (Rogel et al., 1987), when isolated from the wheat,

the starch was always 99.9% digestible, regardless of the AME of the wheat it was taken

from (Rogel et al., 1987). In further studies with higher AME wheats, starch

digestibility was not correlated with the level or composition of wheat NSP (Annison,

1990). It was suggested that perhaps the NSP levels in this study were not at high

enough levels to yield the anti-nutritive effects on starch digestibility. When isolated

wheat pentosans were added to poultry diets at higher levels in the experiments of Choct

and Annison (l992a,b) starch digestibility was again reduced. It was also reduced when

other sources ofNSP such as pea fibre or oat bran were used (J0rgensen et al., 1996).

Protein digestibility is also reduced by NSP addition to diets, particularly with

NSP that induce high digesta viscosity (Smits et al., 1997). The same effect was seen in

pigs fed high levels of B-glucans (Bach-Knudsen et a!., 1993). In one study with poultry,

12



Angkanapom et al. (1994) showed that the addition of low levels of wheat pentosans

decreased amino acid digestibility largely by increasing endogenous protein secretions.

In the same study, higher levels ofpentosans decreased amino acid digestibility by

impeding the breakdown of proteins and subsequent amino acid absorption, as well as

increasing endogenous secretions indicating a dose-dependent response to dietary NSP.

Other dietary ingredients have NSP that can contribute negatively to nutrient

digestibility. Many legume meals fed to poultry have high concentrations of raffinose

oligosaccharides (a-galactosides). Soybean meal has 5.6% oligosaccharides (OS), field

peas have 6.3% as (Kuo et al., 1988) and canola meal has 2.6% as (Slominski et al.,

1994). As mentioned earlier, these as cannot be broken down in the small intestine of

poultry due to a lack of endogenous a-I ,6-galactosidase (Gitzelmann and Auricchio,

1965). Their presence in the gastrointestinal tract has an effect on nutrient absorption for

two reasons. First, a-galactosides are low molecular weight water soluble compounds

which cause the digesta to have high osmotic pressure; and, secondly, they are readily

fermented by intestinal microbes (Wiggins, 1984). In mammals, the high osmotic

pressure of the digesta when a-galactosides are present causes an increase in fluid and

electrolyte levels in the hindgut leading to faster digesta passage rates. Despite the

expected and observed negative effect in at least one study with piglets (Veldman et al.,

1993) of a-galactosides on nutrient absorption, other studies have shown little direct

negative impact in poultry diets (Brenes et al., 1989; Slominski et aI., 1994; Irish et aI.,

1995). The negative performance effects elicited by some ingredients high in a­

galactosides have been suggested to be due to other factors such as high levels of pectic
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substances (Carre and Leclercq, 1985; Brenes et al., 1993) or of other ethanol soluble

materials (Slominski et al., 1994).

2.1.3.3 Microbial Implications of NSP

The increase in digesta viscosity caused by the presence ofNSP in broiler diets

has been shown to decrease digesta passage rate, thus increasing the likelihood of

microbial overgrowth in the hindgut (Annison and Choct, 1991; Salih et al., 1991;

Choct et al., 1996; Smits and Annison, 1996; Smits et al., 1998). Microbial activity

has been shown to be higher on high NSP diets as measured both by elevated production

and concentration of volatile fatty acids (VFAs), the products of microbial fermentation

ofNSP, in the hindgut (Annison et al., 1968; Choct et al., 1995; Choct et al., 1996) and

by increased numbers of anaerobic bacteria in the small intestine (Wagner and Thomas,

1978; Langhout, 1998; Smits et aI., 1998; Langhout et aI., 1999).

The decrease in fat digestibility on high NSP diets is thought to be related to

increased microbial activity. It has been shown that the negative effect of wheat

pentosans on fat digestibility is lower in caecectomized versus intact chickens (Choct et

al., 1992). It has also been shown that added fibre and the resultant increase in digesta

viscosity has no effect on fat digestibility in germ-free chicks (Smits and Annison,

1996). It is thought that increased bacterial activity in the hindgut may increase the

deconjugation of bile acids thus impairing their return to the liver for recycling into bile.

Coates et al. (1981) demonstrated both in vitro and in vivo deconjugation ofbile acids

by Enterococcus faecium isolated from chickens. Campbell et al. (1983) noted
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decreased fat retention of rye-fed poultry raised either with a conventional GI microflora

or germ-free and associated with Enterococcusfaecium compared to wheat-fed or germ­

free rye-fed birds. They also found that supplementation of the rye diet with sodium

taurocholate improved fat retention, indicating that the bacteria were decreasing the

availability of bile salts to the bird. Feighner and Dashkevicz (1988) took this premise

one step further and were able to correlate intestinal levels of bile salt hydrolases with

dietary NSP induced growth depression in poultry. These ideas were supported by Salih

et al. (1991) who observed an improvement in fat digestibility as the numbers of

Enterococcus faecium declined with age of the bird. More recently, Smits et al. (1998)

demonstrated a reduction in bile acid concentration with inclusion of a non-fermentable

dietary fibre (CMC) and this was associated with reduced lipid digestibility. They also

noted a significant increase in excreted bile salts with CMC in the diet. In addition,

Langhout (1998) demonstrated that feeding high-methylated citrus pectin (as a source of

anhydrous NSP) resulted in increased deconjugation ofbile acids in 22 day chicks.

Deconjugation of bile acids was related to the increased proliferation of anaerobic

microflora in the small intestine, which supports the previous studies.

In studies comparing conventionally reared chickens with germ-free chickens,

Muramatsu et. al. (1991) demonstrated that conventionally reared birds derived higher

metabolizable energy and had better fibre digestibility on high fibre, low energy diets

than germ-free birds. This difference disappeared when birds were fed low fibre, energy

adequate diets. Later, Muramatsu et al. (1994) conducted a study to look more closely at

the relationship between the gut microflora and energy utilization by the chicken. The
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researchers varied the level of ME intake from zero to above adequate and regressed heat

production and energy deposition on ME intake. The microbial population of the

hindgut was shown to reduce the efficiency of energy metabolism by decreasing energy

deposition relative to ME intake as compared to birds without a GI flora. In the same

study, it was also shown that birds with inadequate availability of dietary energy could

derive benefit from the presence of gut microbes through a reduction of energy losses

from heat production. The regression of heat production on ME intake was substantially

different between germ-free and conventional birds indicating a buffering effect of the

bacteria on the efficiency of energy use, depending upon energy availability. It was

suggested that part of the loss of efficiency of energy utilization was due to the GI flora

increasing energy costs by increasing the rate of energy requiring reactions such as

protein synthesis (Muramatsu et aI., 1988). It has been shown that the GIT bacteria of

birds fed diets with NSP ferment residual dietary substrates in the hindgut (Bedford,

1996a) and cause a reduction in the digestibility of dry matter, organic matter, starch,

and fat, as well as a reduction in dietary ME (Langhout et al., 2000). The bacteria were

implicated since germ-free birds fed the same diets showed no decreases in digestibility

and actually had an increase in dietary ME with added NSP. A further cause of the

reduced efficiency of energy utilization by birds with higher numbers of GIT bacteria is

attributed to their conversion of carbohydrate substrate into VFAs which are then, under

conditions of adequate energy (Muramatsu et al., 1994), largely excreted and therefore,

not of use to the bird (Choct, 1999). Choct (1999) compared the excreted VFAs from

chickens fed com and barley and noted a significantly higher amount of energy from
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VFAs lost from barley-fed birds. Bedford and Schulze (1998) review the many factors

confounding the impact ofNSP on the GIT microflora in detail.

2.2 Changes in Physiological Responses to NSP with Age

It has been determined in numerous studies that the anti-nutritive properties of

cereal grains decrease as the bird ages (Classen et al., 1985; Classen et al., 1988; Salih

et aI., 1991). At the same time, intestinal viscosity is decreased (Almirall and Esteve-

Garcia, 1994; Petersen et al., 1999) and nutrient digestibility is increased with age

(Rogel et al., 1987; Carre et aI., 1995). Speculation is that this is an effect of

gastrointestinal tract development including increased endogenous enzyme secretions

coupled with increased absorptive surface area and gut musculature and their effects on

GIT residence time (Angkanapom et aI., 1994; Smits et al., 1997, Bedford and Schulze,

1998). However, this could also be a function of increased microbial proliferation in the

GIT of NSP fed birds. Rather than a negative effect on efficiency of energy metabolism,

perhaps the gut microflora make a positive contribution through NSP hydrolysis and a

subsequent reduction in viscosity (Bedford and Morgan, 1996).

A closer look at age related differences in nutrient digestibility by Carre et al.

(1995) showed that there was very little difference between broiler chicks and adult

cockerels of a laying strain in digestibility values for NSP with low water solubility.

They also showed that the digestibility of more water soluble substances such as pectin,

u-galactosides and lactose were high in both species but were higher in the cockerels.
than in the broilers. It was concluded that the higher AMEn values for diets fed to adult
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birds were a result of a higher digestibility of fermentable carbohydrates such as a­

galactosides and of water soluble NSP.

Despite the knowledge that birds perform better on NSP-containing diets as they

. age, there is little published research specifically examining an age effect, therefore,

there is little hard evidence linking dietary NSP with what is occurring in the

gastrointestinal tract of the bird as it ages.

2.3 Normal GIT Microflora of Poultry

A review of the current literature reveals a limited number of recent works on the

identification of the bacteria of the GIT ofpoultry. A comparison of two recent reviews

supports the fact that little has been done in this area in the recent past (Mead, 1997;

Mead, 2000). The actual organisms present have been partially characterized through

years of research in the laboratory of Dr. Ella Barnes and her colleagues (Mead, 1997).

Most estimates of numbers of different genera of bacteria present in the GIT ofpoultry

are from 400-500 (Bedford and Apajalahti, 2001). Even so, it is estimated that less than

10% of the normal flora of the GI tract can be cultured using traditional methods

(Apajalahti and Bedford, 2000).

2.3.1 Development with Age

The normal microflora of the poultry digestive tract develops rapidly in the

foregut after hatch, within two weeks in the small intestine (Mead, 1997; Smith, 1965)

and much more slowly in the caeca, where it takes about 6 weeks to establish an adult

flora (Barnes et al., 1972). The slowness of caecal flora development is a reflection of
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the highly sanitized conditions in which commercial poultry are raised, without contact

with parent birds or excreta (Mead, 1997).

2.3.2 Bacteria of the Crop

The actual types ofbacteria present in the avian tract vary with the segment of

the tract under study. The crop, which has a median pH of around 4.2-5.0, is colonized

in a very thin, but fairly complete layer over its stratified, squamous epithelium

predominantly by Lactobacillus. These stabilize at around 108 CFU/g and exert both

bacteriostatic and bactericidal effects to control populations of E. coli (Fuller, 1977).

Coliforms stabilize at around 104 CFU/g and Enterococci at 105-106 CFU/g. Some

Clostridium perfringens can be found as well (Mead, 1997).

2.3.3 Bacteria of the Small Intestine

The bacteria of the SI are very limited in the duodenum due partially to high

digesta passage rates. Numbers of aerobes and facultative anaerobes are similar in

different segments of the SI with the predominant organisms being Enterococcus,

Staphylococcus, Lactobacillus, and E. coli (Salanitro et al., 1978; Mead, 1997).

Obligate anaerobes present include Eubacterium, Propionibacterium, Clostridium,

Gemminger, and Fusobacterium spp. (Mead, 1997). Strict anaerobes can make up

anywhere from 9-39% of the total number of strains isolated in the SI although high

variability between birds was noted (Salanitro et al., 1978).

2.3.4 Bacteria of the Caeca
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The caeca are the area with the most complex microflora within the avian GIT.

Strict anaerobes comprise the bulk of the bacteria and are present at around lOll CFU/g.

The predominant bacteria are gram positive anaerobic cocci (28%) including various

species of Coprococcus, Peptostreptococcus, and Enterococcus, with the remainder a

mixture of gram negative, non-sporing rods (Bacteroides spp., 20%) and gram positive,

non-sporing rods (Eubacterium spp., 16%) (Barnes et al., 1972; 1979). Gemminger

formicilis (5%), a budding bacterium, plus some budding cocci (6%), Clostridium spp.

(5%), and Bifidobacterium spp. (9%) make up the bulk of the identifiable anaerobes

(Barnes et al., 1972; 1979). Facultative anaerobes are also present in the caeca

throughout the life of the bird. Barnes et al. (1972) showed that coliforms and

lactobacilli were present at 106 to 108 CFU/g while enterococci were found at 105 to 107

CFU/g after 4 weeks of age.

Most of the major anaerobic bacteria of the caeca are saccharolytic and nearly all

ferment glucose with a surprising number also able to ferment lactose. Of interest is the

fact that most caecal strains of budding bacteria and some other genera are able to grow

on arabinoxylan (Croucher and Barnes, 1983; Mead, 1989). As mentioned earlier, many

caecal bacteria are also able to degrade uric acid (Barnes and Impey, 1974; Mead and

Adams, 1975), present in the caeca through retrograde peristalsis from the cloaca,

although essentially none have been shown to have an absolute requirement for uric acid

as a substrate (Barnes and Impey, 1974). Bacteria degrading uric acid cause large

amounts of ammonia to be produced in the caeca which is quickly utilized as a nitrogen

source by a high proportion of the caecal microflora (Karasawa et al., 1988).
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2.3.5 Negative Bacterial Impact on the Bird

In the normal intestinal tract ofpoultry the microflora exert both positive and

negative effects. Early studies with germ-free birds indicated that the presence of gut

microbes actually decreased the bird's ability to digest and absorb saturated fatty acids

(Boyd and Edwards, 1967). The work of Cole et af. (1981) also demonstrated an

increase in the apparent digestibility of lipids in germ-free versus conventionally reared

birds, but did not confirm the improved absorption of saturated fatty acids. Other studies

showed GI tract pH was lower in conventional than germ-free birds (Ford, 1974),

attributing this to the VFAs produced by the bacteria. Growth depression and increased

gut weight in the presence of bacterial challenge were also demonstrated (Coates et af.,

1981).

Early work on the growth promoting effect of antibiotics implied that the natural

gut microflora must either include species or produce substances that cause growth

depression in the host (Eyssen and De Somer, 1967). Attempts to isolate this negative

factor concentrated on the species Enterococcus faecalis (Eyssen and De Somer, 1967)

and Enterococcus faecium (Fuller et af., 1979; Houghton et af., 1981). It was shown in

these studies that the growth depression effect seen with both Enterococcus faecalis and

Enterococcus faecium was stronger when the organism was fed with a bacteria-free

filtrate made from the excreta of conventionally reared chicks. This filtrate was also

able to induce a growth depression effect when fed with bacteria other than E. faecium

even when these bacteria could not induce a significant growth depression when fed on

their own (Fuller et af., 1979). In a separate study evaluating the growth promoting
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effect of fish solubles in poultry diets it was postulated that the fish solubles somehow

caused favourable manipulation of the bird's gut microflora (Harrison and Coates,

1972). This was suggested since the feeding of fish solubles overcame the substantial

growth depression induced by feeding E. faecalis and a bacteria-free filtrate to germ-free

chicks. Fish solubles had no effect on the growth of germ-free chicks that were not fed

gut microflora but had a substantial growth promoting effect on conventionally reared

chicks (Harrison and Coates, 1972). Muramatsu et al. (1988, 1993) demonstrated that

the gut microflora have a positive effect on intestinal protein synthesis and suggested

that this was due to the effect of bacterial metabolites released into the lumen. They

noted a distinct effect of diet on this, in that a practical diet induced a greater rate of

protein synthesis than a purified diet. Increased protein synthesis requires energy which

could have, alternatively, been used for growth. In light of these observations, it is

possible that the unidentified growth depressing factor found in bacteria-free filtrates in

earlier work could have been a metabolite of intestinal bacteria.

2.3.6 Positive Bacterial Impact on the Bird

Most of the work on the positive influence of the GIT bacteria has centred on

probiotic use in poultry diets. The word "probiotic" comes from two Greek words

meaning "for life". The most common currently accepted definition for probiotic was

proposed by Fuller (1989). He states that a probiotic is "a live microbial feed

supplement which beneficially affects the host animal by improving its intestinal

microbial balance". This definition implies that the intestinal microflora can have a
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positive influence if the correct types are present. A number of relatively comprehensive

reviews have been written on probiotics in animal diets (Barrow, 1992; Fuller, 1989;

Jernigan et al., 1985; Sissons, 1989; Stavric and Kornegay, 1995). The general

consensus of all of these authors is that the theory behind probiotic use is intriguing and

full of possibilities but that until the modes of action are better understood, research will

continue to provide conflicting and inconclusive results.

Areas agreed upon to date with respect to microbial probiotics include some of

the selection criteria for evaluating probiotic organisms and products. Among the

desirable characteristics of a probiotic is the preference that the organism be indigenous

to the host animal's gastrointestinal tract (Havenaar et al., 1992). This has been

suggested due to the host and location specific nature of the normal gut microflora in

addition to the normal microflora's general beneficial properties.

Some consensus in the research community on suggested modes of action has

been reached and these are summarized in a review by Stavric and Kornegay (1995). In

order to understand the suggested modes of action it is important to note that in poultry,

there are two major potential sites of colonization where somewhat different probiotic

effects are elucidated. These two areas are the crop, where the lactobacilli colonize and

have a potential impact on nutritional and performance parameters, and the caeca, which

are the primary colonization site for a number of pathogens and where probiotic products

may prevent or reduce this colonization (Barrow, 1992).

The proposed modes of action include competition by probiotic organisms for

adhesion receptors on the gut epithelium; competition for nutrients between probiotic
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and other organisms; production of inhibitory or bactericidal substances by probiotic

organisms; and, stimulation of the immune system of the host animal. Sissons (1989), in

his review, adds that some strains of lactic acid bacteria produce an unknown metabolite

which neutralizes an enterotoxin released from some coliform bacteria. He also suggests

that probiotics may prevent toxic amine sYnthesis by pathogenic bacteria.

The strains used in probiotic preparations are, as mentioned earlier, normally of

intestinal origin. Most are lactic acid bacteria in single or multiple strain cultures.

Stavric and Kornegay (1995) state that for commercial probiotics world-wide, the most

commonly utilized genera of bacteria are Bifidobacterium, Lactobacillus, Enterococcus,

Bacillus, Bacteroides, Pediococcus, Leuconostoc, and Propionibacterium. The reasons

why Lactobacillus and Pediococcus are good candidates for probiotic preparations are

outlined in a review by Juven et al. (1991). These genera are able to colonize the

gastrointestinal tract ofpoultry and they also produce a number of compounds believed

to have either antagonistic or bactericidal effects. These compounds include lactic acid,

acetic acid (and other volatile fatty acids), hydrogen peroxide, and compounds called

bacteriocins. Bacteriocins are defined as compounds made by bacteria that have a

biologically active protein moiety and a bactericidal action (Juven et al., 1991). Some

bacteriocins are very similar to antibiotic compounds of bacterial origin making them of

considerable interest for probiotic purposes.

All of the recent reviews on microbial probiotics (Jernigan et al., 1985; Fuller,

1989; Sissons, 1989; Barrow, 1992; Stavric and Kornegay, 1995) summarize reports

showing both positive and non-existent or non-significant effects of probiotics on

24



poultry performance parameters. Effects ofprobiotics on pathogen control are generally

more positive and are usually discussed separately since the effect is in the caeca versus

the crop. The major comment of all authors is that field trials with probiotics tend to

show variable results.

An evaluation of a number of more recent studies indicates that although the

research is generally focussed on more specific effects than performance parameters, the

results are still variable. For example, Mohan et al. (1995) supplemented the diets of

layers with a 5-strain commercial probiotic and cited both a decreased incidence of thin­

shelled eggs and a decreased serum cholesterol level in layers (P<0.05). Similar work

with broilers resulted in a significant reduction in serum cholesterol level in probiotic

fed birds but with no significant performance effects after six weeks of growth (Mohan

et al., 1996). Owings et al. (1990) fed a diet supplemented with E.faecium strain M-74

as a probiotic to broilers and compared this to antibiotic or probiotic plus antibiotic

treatments. In this trial the basal diet and the diet with just the probiotic resulted in

better feed efficiency than the antibiotic or the probiotic plus antibiotic diets.

Interestingly, the antibiotic diet resulted in the worst performance. The caeca were

shown to be the area of the digestive tract with the highest level of E. faecium

colonization, a parameter that was also highest for the basal and probiotic supplemented

diets versus the antibiotic and antibiotic plus probiotic diets (Owings et al., 1990).

A substantial volume of research on competitive exclusion (or pathogen control)

by probiotics and the overall mechanisms involved was reviewed by Fischer (1999). To

summarize some of the salient points, the work of Stavric et al. (1992) has shown that
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undefined cultures with 28-50 strains ofbacteria are generally highly effective against

Salmonella typhimurium colonization when compared with the limited effectiveness or

complete lack thereof seen with pure or defined cultures with a small number of strains

of bacteria. The use of continuous flow cultures of competitive exclusion organisms

was described in the mid-nineties in a number of studies (Nisbet et aI., 1993; Corrier et

a/., 1995; Hume et al., 1995) where the bactericidal effect of undissociated VFAs,

particularly propionic acid, on caecal pathogens was demonstrated. Other groups have

also commercialized defined (Palmu and Camelin, 1997; Schneitz and Hakkinen, 1998)

and undefined (Kelly et al., 1999) cultures that are effective against Salmonella and

Clostridium (Hofacre et al., 1998).

2.3.7 Bacterial Methodology Issues

2.3.7.1 Concerns with Traditional Culturing Methods

Since the bacteria of interest in the GIT are largely anaerobic, the difficulties

with isolating and culturing the nearly 400 genera are many.The anaerobic techniques of

Hungate (1950) are used but are time-consuming and require experience and care in their

execution (Amann et al., 1995). Even with the use of strict anaerobic techniques only an

estimated 10% of the GIT bacteria of the chicken have been isolated and cultured

(Apajalahti and Bedford, 2000). To effectively culture bacteria, selective media have to

be developed and the biochemical properties of each genus and its preferred substrates

need to be determined through a series of tests. It has been stated by Apajalahti and

Bedford (2000) that the reliance of bacteria growing in complex communities, such as
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the GIT, upon growth factors provided by other bacteria and upon secretions from host

tissues limits the effectiveness of culturing community members under laboratory

conditions.

While these techniques are still in use and are very effective at defining minority

populations of pathogens in microbiology (Apajalahti and Bedford, 2000), newer

techniques permitting the more definitive identification ofbacterial genera are becoming

more and more available. The use of 16S ribosomal RNA techniques in combination

with in situ hybridization permits relatively rapid and precise identification of bacteria at

the species level in labs equipped for molecular analysis (Amann et al., 1995; Bryant,

1997). Sub-species or species of GI bacteria have been shown to change dramatically in

response to changes in dietary substrate (Bedford and Apajalahti, 2001). These

techniques have been effective in identifying phylogenetic differences not possible using

traditional culturing methods (Amann et al., 1995; Langendijk et a/., 1995; Snel et al.,

1995).

For more general community analysis, a procedure involving percent base

composition of the bacterial DNA may be used (Apajalahti et al., 1998). This procedure

relies on the adherence of certain groups of bacteria to specific % guanine and cytosine

(%G+C) ratios in their DNA. The bacteria need to be purified from the intestinal

samples and subsequently analysed for % G+C composition using a series of cesium

chloride centrifugations. The procedure, while extremely useful for monitoring dietary

effects on bacterial communities in the GIT, is very expensive and only conducted on

intestinal samples in one or two corporate laboratories.
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2.3.7.2 Volatile Fatty Acid Levels as a Measure of Bacterial Activity

While the procedures for precise identification of bacterial genera and species are

either complicated, costly, or require specialized training and equipment, there are other

ways of evaluating overall shifts in bacterial activity. One such method is a measure of

the end products of bacterial fermentation. Since anaerobic bacteria ferment

carbohydrate substrates largely to volatile fatty acids, measuring VFA levels in digesta

has been used as a means of quantifying changes in bacterial activity in the GIT of

poultry (Corrier et aI, 1990a; Choct et al., 1995, 1996, 1999; Vahjen et al., 1998, Yasar

and Forbes, 1999; Kocher et al., 2000). Numerous methods exist for VFA analysis in

intestinal samples involving processes from steam distillation (Choct et al., 1996) to

simple preparation of digesta supernatant with an internal standard and meta-phosphoric

acid (Soita, 2001). Most involve the use of gas chromatography to measure VFA

content in the samples, regardless of preparation techniques.

2.4 Gastrointestinal Tract Structure and Function

The avian GIT is somewhat unique with its pregastric compartment, the crop, an

expanded portion of the esophagus, which serves as a storage area and an area for some

microbial fermentation. The stomach is divided into a secretory, glandular stomach, the

proventriculus, and a large muscular stomach for mechanical processing, the gizzard.

The sections of the avian GIT of most interest in complex carbohydrate digestion

are post-gastric. The long, tubular small intestine has a high absorptive capa~itywith

digestive enzymes (amylase, lipase, trypsin, chymotrypsin, dipeptidases,
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aminopeptidases and carboxypeptidases) as well as buffering compounds in aqueous

solution from the pancreas being secreted in the duodenum (Duke, 1993). Bile salts are

also secreted into the duodenum for the emulsification of fats prior to their digestion.

These bile salts are normally reabsorbed in the terminal ileum along with the breakdown

products of endogenous proteins (Duke, 1993). Microbial populations are lower in the

duodenum and gradually increase in number and proportion of anaerobes distally toward

the terminal ileum (Ford, 1974; Salinitro et al., 1978).

2.4.1 Hindgut Digestion in the Chicken

While the duodenum and jejunum are the major sites of nutrient digestion and

absorption in poultry (Hurwitz et al., 1979; Riesenfeld et al., 1980), the ileal contents

still have a relatively high dry matter content (16-20%) due to undigested materials

(Bedford et al., 1991). The residual carbohydrates in the ileum are largely indigestible

fibre although these complexes of cell wall material usually include protein (Mares and

Stone, 1973; Bacic and Stone, 1981; Fengler and Marquardt, 1988b) bound within

them. In com diets the residual ileal contents include starch resistant to hydrolysis by the

bird's enzymes (Brown, 1996). Starch digestibility in the com-fed broiler although

assumed to be high because of fecal digestibility values, has, in fact, been shown to be

only 85% in the ileum (Noyand Sklan, 1995). The high rate ofpassage of digesta in the

chicken, generally from 2-4 hours (Mateos et al., 1982; van der Klis and van Voorst,

1993), means that digestive enzymes only have a minimal amount of time to act on their

substrates. Anything that hinders their ability to access the substrates is likely to
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substantially decrease nutrient digestibility (Bedford and Schulze, 1998). Dietary fibre

or NSP that do not get digested by the bird remain in the GIT and are present in the

ileum where they can be fermented by the resident microflora.

2.4.1.1 Basic Ileal Morphology and Function in Carbohydrate Digestion

The structure of the ileum is similar to the jejunum and, in fact, some researchers

do not separate the two, but prefer to call the region proximal to the Meckel's

Diverticulum the upper ileum and the region distal to this, the lower ileum (Duke, 1993).

In this document, these two regions will be termed the jejunum and the ileum,

respectively, as described by Moran (1982). There is little known about ileal motility in

poultry, although both peristalsis and segmenting contractions have been noted and

characterized in the turkey (Duke, 1993). The structure of the intestinal layers in poultry

is similar to swine but different musculature is emphasized, demonstrating the

differences in digestive function between the species. The chicken has a well-developed

luminal surface but a poorly developed muscularis mucosa and lamina propria, relative

to the pig (Moran, 1982). Poultry have a poorly developed lymphoid system and

submucosa but a very well-developed muscle layer which indicates reliance on physical

activity in the small intestine for motility and mixing of feed with digestive enzymes

(Moran, 1982). The villi in the chicken small intestine are leaf-shaped and decrease in

length from jejunum to ileum, but increase in length with age of the bird (Moran, 1982).

Microvillus length also decreases from jejunum to ileum but microvillus length actually

decreases in the ileum with age of the bird and density increases (Ferrer et al., 1995).
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Digestion and absorption of carbohydrates occurs in the enterocyte brush border

which involves the glycocalyx, the microvilli and the underlying terminal web of cell

walls, tight junctions and cytoplasmic filaments. Pancreatic enzymes start digestion but

the products that result are still too large to be absorbed, so digestion is completed by the

enzymes associated with the microvilli (such as sucrase and maltase) (Moran, 1982).

Goblet cells increase in number toward the distal end of the ileum and secrete mucin

(made of water-soluble glycoproteins) to aid in lubrication of the increasingly fibrous

digesta as it passes through the intestine (Moran, 1982). Mucin contributes to the

"unstirred water layer" which limits nutrient absorption.

The carbohydrates that remain in the ileum of the bird are still readily absorbed.

The ileal epithelium is capable of transporting glucose and other monosaccharides, but

different monosaccharides are absorbed from the G1T at different rates. This has been

measured both by ileal and excreta digestibility or AMEn of different monosaccharides

(Longstaff et a/., 1988; Schutte et al., 1992) as well as by 14C recovery in CO2, excreta,

and body tissues after supplementation with 14C-Iabelled monosaccharides and cell wall

substrates (Savory, 1992a; 1992b). Glucose is absorbed well from all S1 segments and

its rate ofpassive absorption is concentration dependent (Riesenfeld et al., 1980). Amat

et al. (1996) determined that the jejunum is the segment of the chicken small intestine

best suited for Na+-mediated uptake of hexoses while in the duodenum these sugars are

largely absorbed by passive diffusion. Hexoses are absorbed from all segments of the

small intestine by both mechanisms, although to a much lesser extent in the ileum (Amat

et al., 1996).
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Longstaff et al. (1988) determined that the relative AMEn values provided to

chicks by certain monosaccharides known to be poorly utilized were in the following

order relative to glucose:

glucose>xylose>arabinose>galacturonic acid>glucuronic acid

The dietary inclusion rate of the pentose sugars, however, had a significant effect on

their derived AMEn values with higher levels resulting in lower derived AMEn (Schutte,

1990) as well as serious negative effects on production parameters (Wagh and Waibel,

1967a; Baker, 1977; Longstaff et al., 1988; Schutte, 1990; Schutte et al., 1992). The

effect was more pronounced for arabinose than for xylose. Bogner (1961), working with

embryos and very young chicks, found that by 3 d of age, absorption of glucose was as

fast as in 14 d chicks, despite all sugars having equally slow absorption rates in the

embryo or immediately after hatch. Once the system for preferential absorption of

glucose was established at 3 d, the rates for pentose absorption, relative to glucose, were

79.70/0 for xylose and only 45.6% for arabinose. Other experiments confirmed that

xylose is absorbed faster than arabinose using both subcutaneous injection of the

monosaccharides (Wagh and Waibel, 1967a) and crop infusion (Wagh and Waibel,

1967b). The latter study demonstrated that arabinose is retained in the SI much longer

than xylose and is absorbed much more slowly. Longstaff et al. (1988) determined that

the digestibilities of monosaccharides followed the same order as AMEn with respect to

the relationship between glucose, xylose and arabinose. These observations were

confirmed by Schutte et al. (1991) and Savory (1992b) and were similar for pigs (Yule

and Fuller, 1992).
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2.4.1.2 Specific Effects of NSP on the Ileum

The consumption of elevated levels of dietary NSP has a number of effects in the

ileum and many of these were highlighted in Section 2.1.3.1. Langhout et al. (1999)

demonstrated that the viscosity generating potential of the NSP makes a big difference in

the impact of the NSP on both microflora and ileal morphology. These researchers

noted that a high-methylated citrus pectin significantly increased both the number of

goblet cells per 100 villi and the activity of sucrase-isomaltase in the ileum. Low­

methylated citrus pectin did not have a significant effect on either of these parameters

(Langhout et al., 1999).

The monosaccharide content ofNSP also has implications in ileal function.

Should the NSP be broken down to its constituent monosaccharides, absorption in the

small intestine would be slow, since arabinose and xylose are slowly absorbed relative to

glucose, and, as a result, some of the xylose and even more of the arabinose would end

up in the distal ileum as accessible microbial substrate. Savory (1992a) demonstrated

jejunal absorption of glucose to be 1.9 times faster than xylose. Further possible

evidence for this potential is seen in the work of Schutte et al. (1992) who showed that

the utilization of xylose was only 20% that of glucose and that of arabinose was 0% of

glucose. These observations seem to contradict earlier results where Schutte et al.

(1991) determined the ileal digestibilities of xylose and arabinose to be 99.8% and 74.6­

95.5% (depending upon dietary inclusion level), respectively. The 1992 study, however,

determined utilization by assuming that any pentose sugars not deposited in tissue or

excreted were utilized. This does not take into consideration the fermentation of the
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pentose sugars by the microflora present in the GIT. It is likely that ileal digestibility

values were confounded by microbial fermentation of the monosaccharides in the ileum

versus actual utilization by the bird. Suprisingly, the fecal digestibilities determined by

Longstaff et al. (1988) were not very different (97.9% for xylose and 77.9% for

arabinose) from Schutte et al. 's (1991) ileal values.

2.4.1.3 Caecal Morphology and Function in Carbohydrate Digestion

The caeca are of particular interest for investigations of gut-microbe interactions

in carbohydrate digestion. The avian caeca are outpocketings of the digestive tract

which are blind tubular sacs directed backwards along the terminal portion of the ileum

and connected to it by mesenteric tissue. The caeca are usually found as a pair, although

substantial interspecies variation exists in size, shape and in number with some species

of birds having no caeca, some with vestigial caeca and some with just one caecum

(McLelland, 1989).

The caeca arise at the ileo-caecal-colonic junction (the junction between the

small and large intestine). A muscular ring of tissue projects into the lumen of the

intestine just anterior to the caecal openings, which are narrow and lined with villi. It is

believed that this structure is related to the filtering of material during caecal filling

(Strong et al., 1989; Bjomhag, 1989). Antiperistaltic movements of the colon are

responsible for caecal filling and for the entry of urine into the caeca. This retrograde

transport of urine into the caeca, through the filtering system at the entrance, is

theoretically a means of only permitting smaller particles of digesta with large surface
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area relative to volume into the caeca so that the bacteria only have access to readily

fermentable materials (Bjornhag, 1989; Moss, 1989; Remington, 1989). The larger,

less digestible materials are separated out and rapidly excreted. The short tract ofbirds

necessitates the maintenance of a mechanism for separating the poorly fermentable from

easily fermentable digesta to permit the bird to take advantage of high levels of food

intake and rapid digesta passage rates.

The caeca can be divided into three regions based on the morphology of the

epithelium. The morphology of the epithelium of the proximal caeca is very similar to

that of the jejunum with well-developed villi, long microvilli, and large numbers of

goblet cells. The middle and distal regions of the caeca have patterns of folds and poorly

developed villi and microvilli. All factors point to the proximal region as the major site

of absorption in the caeca with the suggestion that the middle and distal segments have

a role in storage and fermentation (Sudo and Duke, 1980; Dantzer, 1989; Strong et. aI.,

1989; Ferrer et. aI., 1991). In fact much work in the eighties divulged the existence ofa

Na+-dependent, phloridzin-sensitive hexose sugar transport mechanism in the proximal

cecum with transport kinetics and capacities similar to those in the jejunum (Ferrer et al.,

1986; Planas et aI., 1986; Vinardell et al., 1986). While jejunal hexose transport rates

decline significantly between 2 and 21 d of age (Shehata et aI., 1981) this age-related

change has not been studied in the caecum. In the caecum, however, there is a distinct

decrease in hexose transport capability from the proximal to the distal end of the caecum

which corresponds to a reduction in apical cell surface area due to reduced microvilli

length (Planas et al., 1987).
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While caecal filling has been shown to be continuous (Savory and Knox, 1991),

the left and right caeca are voided 1-2 times per day in the domestic fowl (Thomas and

Skadhauge, 1988) in a simultaneous peristaltic rush starting at the distal end of each

caecum and continuing through the colon and cloaca. Caecal excreta resulting from

evacuation are distinct from regular excreta in their dark colour and paste-like

appearance. Regular caecal contractions aside from those associated with caecal

evacuation, however, are not coordinated between left and right caeca and operate in

both posterior and anterior directions (Duke et. aI., 1983). This regular contractile

activity facilitates mixing of the digesta and retrograde urine throughout their retention

time in the caeca.

Volatile fatty acids, in particular acetate, propionate, and butyrate, are the end

products of bacterial fermentation of carbohydrate (and protein) substrates. If fed to

birds, all VFAs are completely absorbed before the ileo-caecal-colonic junction. High

levels of VFAs in poultry excreta, however, are indicative of microbial production in the

hindgut (Bolton and Dewar, 1964). Further support of this is shown by a comparison of

VFA levels in the droppings of caecectomized (36.8 mmol/kg) and non-caecectomized

(91.8 mmol/kg) fowl (Annison et. aI., 1968).

VFA concentrations in poultry caeca were found by Savory and Knox (1991) to

be in the proportions 72:22: 16 of acetate, propionate, and butyrate, respectively.

Annison et al. (1968) suggest that VFA are absorbed from the caeca and metabolized in

the liver since the portal blood supply of poultry was shown to contain all of the VFAs

found in the caeca but the peripheral blood supply was only shown to have acetic and
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formic acids. A comparison between conventional and germ-free birds indicated that

peripheral blood supply levels of acetic acid were similar between the two types of birds.

The researchers (Annison et. aI., 1968) felt that this showed that acetic acid was largely

of endogenous origin rather than of microbial origin. The proportion of acetate absorbed

from the digestive tract (primarily the caeca) was, however, reported to be approximately

25% of total acetate production in the fed bird and was said to account for 3% of the

total daily energy requirements of the fowl. Gasaway (1976a, 1976b) showed that the

metabolizable energy available from VFA averaged 7.1 kcal/d which was equivalent to

about 70/0 of the daily free living energy requirement of Rock Ptarmigan and 5.7 kcal/d

or 3.8% of daily free living energy requirement of Willow Ptarmigan. Similar

calculations do not appear to have been made for domestic poultry since those made by

Annison et al. (1968), because there has been little evidence that poultry obtain energy

from caecal VFA absorption. In the one recent exception, Jergensen et al. (1996)

calculated that fermentation ofNSP from high fibre pea diets by the GIT microbes of the

chicken could contribute approximately 3-4% of the intake of ME. While Carre et al.

(1995) speculate on the contribution ofNSP fermentation to ME in chickens, they

caution that the process is only 50% as efficient as the provision of energy from glucose

in growing chickens.

2.4.1.4 Specific Effects of NSP on the Caeca

Little has been published on the effect ofNSP on caecal morphology ofbirds.

The research published on the effect of pentose sugars on the caeca demonstrates that
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feeding ofL-arabinose markedly increases caecal weight and length while D-xylose has

a less dramatic effect (Longstaff et aI., 1988; Schutte, 1990; Schutte et ai., 1992). In

terms of actual physical entry of larger polYmer NSP into the caeca, very little to no

research has been published in this area. Many of the bacteria present in the caeca are

capable of fermenting NSP. Although most strains were found by Mead (1989) to be

able to grow on arabinoxylan, most of the early work on caecal fermentation was to

determine cellulose digestibility and did not focus at all on hemicellulose. This work

was done first in the ptarmigan (Gasaway 1976a,b,c), the turkey (Duke et aI., 1984) and

then the fowl (Savory and Knox, 1991; Savory, 1992a). All of these researchers used

radio-labelled cellulose e4C) or glucose and xylose (Savory and Knox, 1991; Savory,

1992a) fed to or introduced into the GIT of the birds, and measured 14C02 output or

levels of 14C in plasma and tissue to determine utilization.

In terms of the effect ofNSP on caecal function, the issue of whether or not the

microflora of the avian caeca is able to digest cellulose has been a topic of discussion in

the literature for a number of years. Mead (1989) found no evidence of cellulase activity

in the caecal microflora. Other researchers, however, have conducted a variety of trials

indicating that cellulose digestion does occur in the caeca. A number of researchers

have provided indirect evidence that wild birds such as certain species of ptarmigan and

grouse have the capability to digest cellulose in the caeca (Gasaway, 1976c; Moss,

1989; Redig, 1989; Remington, 1989). In domestic birds, however, this ability has only

been demonstrated with birds preconditioned to high fibre diets (Duke et. aI., 1984;

Redig, 1989; Savory, 1992b). This would support the proposal by Moss (1989) that
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galliform birds may have digestive tracts which operate in one of two states: a low fibre

mode where bulk does not limit intake and the sizes of the caeca and small intestine do

not vary with intake, and a high fibre mode where bulk does limit intake and therefore

the sizes of the caeca and small intestine do increase past a threshold intake level and the

caeca become important to energy metabolism.

The practical determination of the effect of dietary arabinoxylans on the caeca is

difficult since most of the literature in poultry focuses on the impact of these NSP on

ileal physicochemical characteristics. While we know that changes in the ileum will

affect digesta flow and therefore will likely have an impact on substrate entry into the

caeca, little has been published in this area. The size and the solubility of the

arabinoxylans at the terminal ileum are likely the most important characteristics to have

an impact on whether the NSP gain entry to the caeca. Much of the literature states that

only small, water soluble, readily fermentable particles enter the caeca (Gasaway et aI.,

1975; Bjomhag, 1989; Moss, 1989; Remington, 1989). The small, soluble

arabinoxylans are, therefore, likely to enter the caeca, while the larger, insoluble ones

may not enter. Some support of this concept is seen in work with high viscosity diets

with added arabinoxylans fed with or without endoxylanase supplementation. The

experiments of Choct et al. (1995, 1996, 1999) clearly demonstrate increased caecal

fermentation occuring with enzyme addition. It is logically assumed that the enzyme

increases the proportion of small, soluble arabinoxylans that can enter the caeca.

Without enzyme supplementation, the ileal digesta viscosity is so high that entry into the

caeca may well be impeded by viscous conglomerations of digesta.
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The increase in proliferation of bifidobacteria in the caecum with

fructooligosaccharide (FOS) administration through the drinking water has been

demonstrated in rats and mice (Howard et aI., 1995). A trophic effect of FOS on the

colonic mucosa was also observed. Significantly increased crypt cell depth in the caeca

was observed with similar administration of xylooligosaccharides to rats and mice in the

same study. Another study evaluating the feeding of mannan oligosaccharides (MOS) to

turkey poults (Savage et aI., 1997) demonstrated increased goblet cell numbers and

villus width but decreased crypt depth. This study also was able to demonstrate

significantly (P<0.04) improved weight gain and feed efficiency with 0.1 % addition of

MOS. It was thought that the improved performance was related to changes in the

bacterial flora. It is suggested that mannose exerts an antibacterial effect by blocking

receptor sites at the gut epithelial surface (Bailey et aI., 1991). Some gut bacteria have

mannose-specific adherence appendages and hence competition for binding sites at the

intestinal brush border may occur (Sissons, 1989).

Alternative types of oligosaccharides include kestose oligosaccharides (KOS)

produced by the pyrolysis of sucrose and another, easier to produce product, sucrose

thermal oligosaccharide caramel (STOC). KOS were shown to have no effect on

performance parameters of broilers fed 10% crude kestoses and no effect on total

aerobic, coliform, total anaerobes, aerobically enumerated lactobacilli or clostridia in the

caeca (Patterson et aI., 1997). KOS did, however, increase caecal bifidobacteria 24-fold

and anaerobically enumerated lactobacilli 7-fold. STOC were also shown to increase

caecal bifidobacteria numbers but this type of OS also reduced caecal aerobes and
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coliforms and improved bird performance, particularly under stressful conditions

induced by either heat stress or vitamin/mineral deficiencies (Orban et a/., 1997).

The use of FOS in pathogen control has also been evaluated. Chambers et al.

(1997) compared crude FOS, refined FOS and some lactose derivatives and found that

Salmonella typhimurium counts were lowest for birds fed refined FOS. It was also noted

that pH and caecal density were both lower for birds fed FOS or lactose derivatives than

for the control birds however no consistent effect of pH or caecal density on Salmonella

numbers was observed. Stavric and Kornegay (1995) observed from their review of the

literature that FOS have a better effect in poultry when fed with a probiotic, particularly

with competitive exclusion cultures. This suggestion is supported by the work of Bailey

et al. (1991) where Salmonella numbers were decreased 12% (not significant) by feeding

FOS, 24% (significant) by feeding a competitive exclusion culture, and 76% by feeding

both. This same study showed that when stressed chickens were fed FOS only 25%

were colonized versus 92% colonization of stressed controls. It was suggested that

perhaps the gut alterations caused by feeding FOS might also decrease the bird's

susceptibility to stress.

2.4.1.5 Other Roles of the Caeca that Affect their Function

Of the functions attributed to the caeca that are not related to carbohydrate

digestion, the area of protein digestion or nitrogen metabolism is one of the most

extensively studied areas. In birds, uric acid is the end product of nitrogen metabolism

and is present as small spheres that can readily pass through the duct system of the
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kidneys. The retrograde peristalsis of the colon, which causes refluxing of urine into the

caeca, provides an effective mechanism for reclamation of some of the carbon and

nitrogen from urine. Uric acid is rapidly broken down by caecal microbes and the end

products include ammonia, acetate, CO2, glycine, formate, and propionate (Braun and

Campbell, 1989; Karasawa, 1989).

The ammonia from uric acid decomposition is incorporated into a-ketoglutarate

to form glutamic acid but uptake of glutamate by the epithelium has not been shown

(Braun and Campbell, 1989). Uptake of a number of other amino acids by the caecal

epithelium has been demonstrated including lysine, leucine, proline, aspartate (Obst and

Diamond, 1989), phenylalanine and valine (Moret6 and Planas, 1989) indicating that

investigation into the potential transport of glutamine is warranted.

Although ammonia is produced from uric acid by caecal bacteria (Barnes and

Impey, 1974; Mead and Adams, 1975), uric acid is not a required substrate for caecal

bacteria (Barnes and Impey, 1974). This is evident in.the fact that ammonia utilized by

the caecal microflora can also be derived from microbial breakdown of L-arginine,

glutamine amide, glutamic acid, glycine and alanine (Karasawa, 1989). Therefore, the

bacteria can obtain N from many sources, both endogenous and dietary, for their

metabolic activities.

Karasawa (1989) suggests that the ammonia produced by the ureolytic caecal

bacteria, and not utilized by other bacteria present, could be a substrate for non-essential

amino acid synthesis and may be a pathway by which dietary urea is utilized; ultimately,

for protein synthesis in poultry. In fact, Karasawa and Maeda (1995) demonstrated that
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despite the degradation ofurea to ammonia by the caecal bacteria, the N is mostly

absorbed from the caeca as protein, urea and other amino acids, rather than directly as

ammonia. Caecal nitrogen processing may be most important in protein-depleted

chickens where the caeca would playa role in conserving short supplies of nitrogen by

recycling waste nitrogen in the body. Removal of the caeca either by ligation and

washing out of the contents or by caecectomy, however, actually results in an increase in

nitrogen retention and utilization in both adult and growing 'chickens (Son and

Karasawa, 2000; Son et al., 2000).

The caeca have been shown to be the primary sites of water and electrolyte

resorption in birds (Thomas and Skadhauge, 1988; Chaplin, 1989; Goldstein, 1989;

Thomas and Skadhauge, 1989). Caecectomy significantly increases excreta moisture

content and GIT passage rate in growing chicks (Son et ai., 2000). Despite this fact,

caecectomized birds adapt well to their loss and after 3 weeks show no difference in

water intake or excreta moisture levels from control birds (Chaplin, 1989). Electrolyte

and water absorption occurs via a sodium dependent active transport system that is able

to account for virtually all of the net water uptake from the hindgut (Thomas and

Skadhauge, 1989; Grubb, 1991). Again, adaptation to normal conditions within 10-15

days of caecectomy provides evidence that the bird has considerable reserve capacity for

these functions elsewhere in the renal-gastrointestinal system (Thomas and Skadhauge,

1989). It is suggested that these particular functions of the caeca are much more crucial

in dehydrated or heat-stressed birds.

It has been known for some time that caecal bacteria synthesize a number of B-
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vitamins and that the levels of these B-vitamins in caecal contents can be quite

substantial. McNab (1973) in a review of the literature, however, reported that the bird

was unlikely to derive any benefit from this synthesis unless coprophagy was practised.

Vitamin synthesis and absorption in the caecum was not even discussed at a more recent

symposium on the function of the avian caecum (Braun and Duke, 1989).

The role of the caeca in immune function is uncertain, however a large body of

research has focussed on the role of the caeca in pathogen control. The recent emphasis

has been on the feeding of lactose as a means of lowering caecal pH in chicks inoculated

with caecal microflora in order to increase the concentrations ofbacteriostatic volatile

fatty acids in the caeca. This has been shown to decrease caecal colonization by

pathogenic strains of bacteria (Morishita et al., 1982; Comer et. aI., 1990b; Hume et.

aI., 1992; Hume et. aI., 1995).

2.5 Bacterial Fermentation of Non-starch Polysaccharides in the

Gastrointestinal Tract

In addition to age or developmental changes in microflora of the GIT, the second

most influential factor, practically speaking, is diet. Caecal microflora have seemingly

been studied more comprehensively than SI flora and appear to be less affected by minor

dietary changes, such as varying protein levels, than by more basic changes such as the

dietary fibre or NSP level of ingredients used (Mead, 1997). It has been said that the

chemical composition of the digesta is one of the major determinants of the makeup of

the GIT bacterial community (Apajalahti and Bedford, 2000). Naturally, this provision
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of substrate has a significant impact on bacterial fennentation in the GIT.

2.5.1 Fermentation of Non-starch Polysaccharides

As a site of fennentation, conditions in the avian caeca are ideal for bacterial

proliferation. The substrate is liquid, the environment is anaerobic, the pH is between

6.5 and 7.5 and the site is evacuated on a regular basis. Over 200 different strains of

bacteria have been isolated from the GIT of the chicken (Apajalahti and Bedford, 2000),

the principal organisms of which were discussed previously. The obligate anaerobes, as

mentioned, are found at levels of 1011
jg with the facultative anaerobes appearing at much

lower levels (Mead, 1989). Almost all of the bacteria present utilize glucose as a

substrate, while a smaller proportion is able to utilize lactate. Most strains were found·

by Mead (1989) to be able to grow on arabinoxylan. This is supported by the work of

Longstaff et al. (1988), Savory (1992c) and Schutte et al. (1992) all of whom

demonstrated, using either relative caecal weights or recovery of radio-label in caecal

contents, significant caecal fennentation of the monosaccharides arabinose and xylose if

included at high enough levels.

Depending upon GIT conditions and age of the bird, dietary NSP may be broken

down by bacterial enzymes when it reaches the tenninal ileum and some

monosaccharides are, therefore, likely to be present. Most monosaccharides perfused

into the fowl are absorbed before reaching the caeca but arabinose, as discussed

previously, has a relatively low rate of absorption and hence is still present in the fluid

entering the caeca. When xylose was perfused directly into GI segments, it was shown
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to be absorbed faster in the caecum than in the small intestine (Savory, 1992a).

Although much is known about the potential for absorption of pentose sugars, little has

been published on the actual amount of xylose or arabinose from dietary NSP present at

the terminal ileum and available either for absorption by the bird or fermentation by the

microflora. What is published shows that intact or partially degraded cell wall material

is still found at the end of the digestive tract of poultry (Bedford and Autio, 1996). The

quantity present and the degree of degradation of this cell wall material that takes place

depends upon the composition of the microflora in the GIT and upon the composition of

the diet being fed to the bird (Bedford, 1996b). Little is known about what proportion of

NSP gains entry into the caeca or what the characteristics of that NSP are. As outlined

previously, it is likely that the NSP has to be relatively small and largely soluble in order

to enter the caeca.

2.5.2 Fermentation of Oligosaccharides

Partially degraded NSP may be depolymerized enough to become

oligosaccharides. These are preferential substrates for some intestinal bacteria due to the

less complex structure and, therefore, the ease with which they can be degraded by the

bacteria. The use of such complex carbohydrates from soluble fibre as probiotic-like

products has gained considerable interest in recent years. The products considered of

use commercially in encouraging the preferential growth of beneficial bacteria in the

hindgut, or exerting a "prebiotic" effect, are oligosaccharides, particularly

fructooligosaccharides which are linear chains of B-D-fructofuranose units linked by
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glycosidic bonds (Monsan and Paul, 1995). These products, if added in the diet, resist

digestion in the foregut of the host animal and are able to reach the colon or caecum

where they can interact with the microflora of the hindgut and act as a substrate for

bacterial growth (Roberfroid, 1993). Other oligosaccharides that may be of value as

feed additives include a-glucooligosaccharides (isomaltooligosaccharides), a­

galactooligosaccharides, B-glycooligosaccharides, and B-xylooligosaccharides. All of

these products vary somewhat in the types of sugars present and the linkages between the

sugar moieties (Monsan and Paul, 1995) and all of them are potential breakdown

products of the NSP found in feed ingredients.

The suggested modes of action of the oligosaccharides (OS) include specific

substrate feeding, whereby some beneficial gut microbes, particularly the genus

Bifidobacterium, can specifically use as whereas the pathogenic organisms cannot

(Kohmoto et aI., 1991; Roberfroid, 1993; Howard et aI., 1995; Monsan and Paul, 1995).

It is also suggested that as feeding can: reduce the amounts of "putrefactive"

degradation products of certain amino acids in faeces and urine; induce enzyme

production by intestinal bacteria, thereby increasing the hydrolysis of insoluble

carbohydrate polymers; interact with protein receptors on microbial cells and brush

border epithelial cells, thereby interfering with pathogenic binding to these receptors;

and influence secretion of immunoglobulins, activate the immune response or preserve

systemic immunity by preventing bacterial translocation from the gut (Monsan and Paul,

1995). Very little research is available supporting these latter suggested mechanisms.
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2.5.3 Fate of the End Products of Non-starch Polysaccharide Fermentation

Gasaway (1976a, 1976b) calculated absorption rates ofVFA by measuring

disappearance from caecal contents ofptarmigan and found the absorption of butyrate to

be fastest followed by propionate and then acetate. This same order of absorption of

VFAs occurs in most mammals studied (McBee, 1989). Butyrate was also shown to

Yield the greatest metabolizable energy, followed by propionate and acetate (Gasaway,

1976b) but this was affected by time of caecal emptying. Energy produced from caecal

fermentation in ptarmigan was shown to be highest just prior to caecal emptying. The

contribution to ME from caecal fermentation was calculated, in this experiment, by

multiplYing the moles of VFA produced in the caeca per day by the respective caloric

value for the heat of combustion of each VFA.

In terms of the kinetics of absorption of VFA in the chicken caeca, Sudo and

Duke (1980) showed that propionate and butyrate were absorbed at the same rate from

the caeca and the small intestine. Acetate was actually absorbed faster in the caeca. The

researchers felt that this was consistent with the kinetics ofpassive transport of VFA.

They were somewhat surprised that VFA were absorbed as well in the caeca as the small

intestine because the small intestine has more mucosal surface area than the caeca. This

would imply that the caeca are more permeable to VFA than the small intestine and

hence the caeca may have a unique absorption system which disregards the normal

kinetics whereby VFAs are absorbed at rates proportional to chain length. The concept

of differential rates of nutrient transport is partially supported by the work of Savory

(1992a) in which it is shown that sugars are absorbed at different rates from the caeca
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versus the jejunum.

Most of the literature indicates a minimal contribution of the VFA produced in

the caeca to the nutrition of the domestic fowl under normal conditions. One further role

of the VFA has been elucidated, however, which involves VFA as a substrate for

transepithelial ion transport. This relates to the role of the avian caeca in water and

electrolyte balance. Glucose normally acts as an energy substrate for sodium ion

transport across epithelial membranes. Thomas and Skadhauge (1988), however,

demonstrated that sodium flux operates against a prevailing electrochemical potential

difference and that acetate can stimulate active Na transport. Acetate and butyrate were

shown to be equally effective in stimulating sodium transport across a membrane in vitro

regardless of which side of the membrane they were placed on (Grubb, 1991). Evidence

points to the utilization of the VFAs as substrates for ion transport rather than stimulants

thereof. Propionate did not directly inhibit sodium ion transport across the membrane

when administered, but it failed to serve as an energy substrate.

Goldstein (1989) proposed a number of possible fates of the VFA produced by

caecal microflora. He suggested that VFAs could be metabolized by caecal tissues and

thus contribute the energy necessary for active transport of other solutes thereby

enhancing the gradient for movement of sodium into the cell. This mechanism has been

demonstrated in mammals but has not yet been shown in birds. Goldstein (1989) also

suggested that transport pathways for ions and VFAs may interact through secretion of

hydrogen ions. VFAs are presumed to be passively absorbed through caecal epithelial

cell membranes and must be in their protonated form to do so. This means that the
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hydrogen ions necessary for protonation might come from hydration of CO2 produced by

microbial fermentation or from secretion of hydrogen ions into the caecal lumen via the

Na+/H+ exchange system.

2.6 Effects of Enzyme Supplementation of High NSP Feed Ingredients

Initial enzyme supplementation ofpoultry feeds was largely done with amylase

and protease products. This was logical since the observed digestibility problems were

with starch and protein. These enzyme products yielded somewhat variable results and it

was soon determined that positive performance results were being observed when the

amylase or protease products were impure and were found to have B-glucanase or

pentosanase activity (Chesson, 1987; Campbell and Bedford, 1992). Current

commercial enzyme products for use in poultry feeds are often preparations with a range

of substrate specificities. Since cereal grains often contain both B-glucans and

pentosans, enzyme preparations with both B-glucanase and pentosanase (endoxylanase)

activity, i.e. multi-enzyme systems, are likely best for optimal NSP breakdown. The B­

glucanases and xylanases used, specific for the viscosity generating NSP of cereal grains,

are largely endo-enzymes capable of randomly hydrolysing linkages within a

polysaccharide chain thus shortening the chain and reducing its gel-forming properties

(Chesson, 1987).

2.6.1 Impact of Enzymes on Bird Performance

It is well established that exogenous NSP enzymes generally yield improvements

in bird performance. The magnitude of improvement is dependent upon a number of
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factors including the target substrate, the activity or specificity of the enzyme, itself, and

the age of the bird being fed (Huyghebaert and Schoner, 1999). Potter et al. (1965)

demonstrated improvements in the feed efficiency of chicks fed barley diets

supplemented with a crude fungal enzyme preparation. An attempt was made by Rotter

et al. (1989) to correlate broiler chick response to enzyme supplementation of barley

diets with barley extract viscosity. This was found to vary with the method of

extraction, with the shear force used, and with the cultivar of barley that was fed. Pawlik

et al. (1990) using the same crude enzyme preparation in rye-fed birds, observed

improvements in both weight gain and feed efficiency over unsupplemented, rye-fed

birds. Pettersson et al. (1990) showed clear improvements in body weight, feed intake

and feed conversion ratio of broilers on barley and rye-based diets supplemented with B­

glucanase and arabinoxylanase, respectively. Veldman and Vahl (1994) demonstrated

performance improvements in wheat-fed broilers with xylan~se supplementation,

regardless of wheat type. Performance improvements with enzyme supplementation can

be greatly influenced by other dietary factors, particularly type of fat with saturated fats,

and lower initial performance parameters, resulting in greater relative improvements

with enzyme supplementation (Danicke et al., 1997b; Langhout et aI., 1997). This is

logical, since the performance of birds fed highly viscous cereal diets has been shown to

be more negatively influenced by saturated versus unsaturated fats (Antoniou et al.,

1980; Antoniou and Marquardt, 1982; Ward and Marquardt, 1983).

Much of the improvement in performance relates to reductions in digesta

viscosity. While Cowan (1995) points out that reducing viscosity below 10 cps does not
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yield additional improvements in performance, Bedford and Morgan (1996) argue that

the improvements in performance seen with enzyme supplementation are often most

significant after the digesta viscosity effect is no longer significant. The greatest relative

improvement in feed conversion ratio across 14 trials was actually seen from 21-42 d of

age (Bedford and Morgan, 1996). These researchers speculate on the possible

involvement of the established microflora of the older bird in the performance response

to enzyme supplementation. Reports of performance improvements with xylanase

supplementation of wheat diets continue to be generated (Steenfeldt et aI., 1998a).

2.6.2 Digesta Viscosity and Physical GIT Characteristics

Studies continue to demonstrate viscosity reduction in intestinal contents of birds

fed B-glucanase supplemented barley (Hesselmann and Aman, 1986; Villamide et aI.,

1997) and oat (Campbell et al., 1987) diets and arabinoxylanase supplemented rye

(Grootwassink et aI., 1989; Pettersson and Aman, 1989; Bedford et aI., 1991; Bedford

and Classen, 1992) and wheat (Bedford and Classen, 1992; van der Klis, 1993; Cowan,

1995; Morgan and Bedford, 1995; van der Klis et al., 1995; Steenfeldt et al., 1998a)

diets. Speculation also continues on whether improved performance resulting from

enzyme supplementation is due to a direct effect of viscosity reduction enabling more

ready diffusion of substrates, enzymes and other products of digestion, whether the

enzymatic degradation of NSP removes a physical barrier between digestive enzymes

and plant cell nutrients, or whether NSP breakdown prevents microbial overgrowth in

the small intestine thus allowing the bird more access to nutrients in the digesta.
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With rye diets, it has been suggested that the direct effect of xylanase

supplementation on intestinal viscosity is more important than endogenous

enzyme/substrate access (Bedford et aI., 1991). These researchers have shown in two

experiments (Bedford et al., 1991; Bedford and Classen, 1992) that enzyme

supplementation of rye diets decreases the intestinal concentration of a high molecular

weight carbohydrate fraction. This carbohydrate fraction (>500 kDa) has been shown to

correlate well with the log of intestinal viscosity and this relationship has been shown to

be similar for wheat diets suggesting that wheat and rye release high molecular weight

carbohydrates with similar viscous properties (Bedford and Classen, 1992). More

recently, Bedford and Apajalahti (2001) have demonstrated that enzyme

supplementation dramatically increases the concentration of xylo-oligomers in three

categories measured (dp<10; dp<100; anddp<500). The relative increase in the

polymers of the dp<10 size is greatest, resulting in large amounts of soluble substrate for

the resident microflora to break down and utilize.

The grain content of the diet also affects the degree of response seen to enzyme

supplementation. In wheat diets, the negative effects of viscosity on unsupplemented

diets appeared to be less in diets with 60% wheat versus those with 80% wheat, and, as a

result, the positive impact of the enzyme was less in the lower wheat content diets

(Steenfeldt et aI., 1998a). Digesta viscosity has become a standard for estimating the

contribution of viscous NSP to the performance of broiler chickens as well as the

contribution of enzyme supplementation to improving this. Gut viscosity, however, is

only a useful predictor of animal response to enzyme supplementation in birds fed
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specific highly viscous grains supplemented with viscosity-reducing enzymes under set

conditions (Choct, 2001).

2.6.3 Impact of Enzymes on Nutrient Absorption

The reduction in intestinal viscosity with appropriate enzyme supplementation

has been shown to improve starch, lipid and nitrogen digestibility in both barley

(Hesselman and Aman, 1986; Petterson et al., 1990; Rotter et a!., 1990; Friesen et al.,

1992) and wheat/rye diets (Fengler et a!., 1988; Pettersson and Aman, 1989; Pawlik et

a!., 1990; Pettersson et a!., 1990; Friesen et al., 1991; Friesen et a!., 1992; Steenfeldt et

al., 1998b). Danicke et al. (1997b), working with rye diets, observed an interaction

between dietary fat type and response to xylanase supplementation in that tallow-fed

birds responded with greater increases in fat digestibilty than soya oil-fed birds. The

same observations were made by Langhout et al. (1997) while feeding a wheat/rye diet

either with soya oil or a blended animal fat supplemented with a different xylanase

product.

Both reduced viscosity and a reduction of endogenous amino acid losses were

credited for the increased ileal amino acid digestibility of carbohydrase supplemented

wheat diets observed by Hew et a!. (1995). Van der Klis et al. (1995) demonstrated a

clear negative relationship between digesta viscosity and both dry matter and mineral

absorption in the distal jejunum and ileum. Endoxylanase supplementation of the diet

reduced digesta viscosity in wheat-based diets and enhanced apparent absorption of Ca,

Mg, Na, and K in the jejunum but only improved Mg absorption from the ileum (van der
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Klis et al., 1995).

2.6.4 Impact of Enzymes on AMEn of Cereal Grains

Enzyme supplementation of diets high in NSP has also been shown to reduce

variability in AMEn (Choct et aI., 1995, 1996; Scott et aI., 1998a, b, c, 1999) in addition

to increasing AMEn of the cereal grain used (Potter et aI., 1965; Rotter et al., 1990;

Friesen et al., 1991; Huyghebaert et aI., 1995; Steenfeldt et al., 1998b; Huyghebaert and

Schoner, 1999). Ideally, this positive effect could lead to prediction equations for AMEn

of cereal grains based on enzyme supplementation. The increases in AMEn as a result of

enzyme supplementation, however, are not consistent figures. Studies have shown the

AMEn to be increased more for high viscosity grains than for low viscosity grains of the

same species (Annison, 1993; Villamide et al., 1997; Scott et aI., 1998c). The

variability in NSP content between different feed ingredients means that enzymes of

differing activities elicit different responses. This has been shown in both protein

ingredients (Annison et al., 1995; Annison et aI., 1996; Huyghebart et aI., 1995; Hughes

et aI., 2000; Kocher et aI., 2000) and with cereal grains (Rotter et al., 1990; Annison,

1991; Choct and Annison, 1990; Huyghebaert and Schoner, 1999). In addition, the

individual structure ofNSP such as arabinoxylans can vary between varieties of wheat

(Veldman and Vahl, 1994; Austin et al., 1999). Knowledge of the NSP composition of

the feedstuffs used in a broiler ration, therefore, is important for determining optimal

enzyme supplementation. In addition, developing enzymes which are capable of

hydrolyzing the specific polysaccharide linkages which form the NSP would be of
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benefit (Chesson, 2000).

2.6.5 Impact of Enzymes on Non-starch Polysaccharide Digestibility

Hesselman and Aman (1986) found that B-glucanase supplementation of barley

diets increased the degradation of B-glucans in broiler chickens. B-glucanase

supplementation of hull-less barley diets (Jensen et al., 1998) also was shown to increase

NSP digestibility in pigs. A different NSP-degrading enzYme was shown by Haberer et

al. (1998) to increase disappearance of insoluble B-glucans in mixed diets for pigs. In

wheat-fed broilers, Steenfeldt et al. (1998b) found excreta digestibility of total NSP to

improve with enzYme supplementation. Pettersson and Aman (1989) found that

pentosanase supplementation increased digestibility of soluble and insoluble pentosans .

in wheat-fed broiler chickens. They found NSP digestibility to increase with increasing

levels of dietary enzYme. These researchers also noted that, depending upon the relative

ability of the enzYme to solubilize and degrade insoluble NSP, a given enzYme actually

has the potential to increase digesta viscosity by solubilizing more NSP than it can

degrade. This resulted in negative apparent digestibility of soluble pentosans (Pettersson

and Aman, 1989). This same phenomenon was observed by Castanon et al. (1997) on

rye and barley diets supplemented with an enzYme having xylanase and B-glucanase

activity and by Haberer et al. (1998) in pigs fed wheat and barley diets with the same

supplemented enzYme activities. In most of these studies, NSP content of both the diets

and digesta was measured by first removing starch either enZYmatically or by washing

with ethanol, or both, then hydrolyzing the NSP in concentrated sulphuric acid followed
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by derivitization of the sugars to alditol acetates which could then be measured on the

gas chromatograph (GC). In only one case were the low molecular weight sugars

(mono- and oligosaccharides) recovered from the diet and digesta by extraction with

ethanol followed by derivitization and measurement by GC (Steenfeldt et al., 1998b). It

would seem relevant, in studies evaluating the effect of enzYmes on NSP digestibility, to

measure the amount of low molecular weight sugars present in the digesta, since

enzYmatic hydrolysis ofNSP will result in an increased presence of these sugars in the

digestive tract. Whether they remain in the tract, are absorbed by the bird, or are

fermented by the resident microflora, remains to be determined.

Improvements in NSP digestibility with enzYme supplementation can also be

seen in protein ingredients such as canola meal (Slominski and Campbell, 1990),

although the specific activity of the enzYme was not mentioned in this study. No effect

of three experimental enzYmes on NSP digestibility in one variety of lupins was

observed while a significant effect was observed with the same enzYmes on a second

variety of lupins (Kocher et al., 2000). The effects were the same for each enzYme,

despite clear differences in their specificities. This demonstrates that the structure of the

NSP in the target substrate has a substantial influence on the activity of the enzYme.

The best hydrolysis of canola and soybean meal galactooligosaccharides through

in vitro enzYme supplementation was obtained with a combination of a-galactosidase

and invertase (B-fructofuranosidase) (Slominski, 1994). In vivo experiments with

caecectomized laying hens resulted in an average 88% hydrolysis of galacto­

oligosaccharides with a similar combination of a-galactosidase (2 g/kg) and invertase (1
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g/kg) (Slominski, 1994). The same study revealed a potential problem of dietary

minerals inhibiting hydrolysis by a-galactosidase under practical poultry feeding

conditions.

Veldman et al. (1993) attempted to utilize a-galactosidases to overcome negative

digestive effects of high galactooligosaccharide diets in pigs but failed to demonstrate a

positive effect. Similarly, Irish et al. (1995) were unable to demonstrate performance

improvements in vivo of supplementing diets with a-galactosidase plus invertase despite

having observed significant in vitro reduction of soybean meal oligosaccharides. Brenes

et al. (1993) demonstrated a positive effect of enzyme supplementation on the nutritive

value of lupins but these researchers were using a blend of three enzymes with numerous

specificities including an "unknown level of a-galactosidase activity", making

interpretation of these results difficult. More recently, Hughes et al. (2000), using a

mixture of two commercially available NSP-degrading enzymes (with pectinase, a­

galactosidase, B-glucanase and endoxylanase activities) in diets with added lupin NSP,

demonstrated depolymerization of insoluble NSP which resulted in increased ileal

viscosity. No measurement was made on NSP digestibility per se.

The variability in NSP digestibility in response to enzyme supplementation seen

in the literature is not unexpected given the substantial variation in the NSP structure of

cereals (Veldman and Vahl, 1994; Austin et al., 1999; Huisman et al., 2000) and,

therefore, their viscosity generating properties, even within a species (Bedford and

Schulze, 1998).
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2.6.6 Impact of Enzymes on the Microbial Ecology of the Gastrointestinal Tract

Salih et al. (1991) showed that B-glucanase supplementation of hull-less barley

diets tended to decrease total bacterial counts in the jejunum and ileum of broilers. In

diets with added soluble arabinoxylans, Choct et al. (1995, 1996) demonstrated that

dietary xylanase decreased bacterial fermentation in the ileum but increased fermentation

in the caeca. These researchers speculated that the enzyme resulted in either reduced

viscosity resulting in better access ofNSP substrates to the caeca, or in lower molecular

weight soluble NSP entering the caeca and being rapidly fermented. Researchers

examining the impact of enzyme supplementation on specific groups of bacteria have

been few. Hock et al. (1997) found that feeding a semi-purified wheat diet

supplemented with xylanase resulted in decreased coli-aerogenic bacteria and lactobacilli

in the small intestine and no changes in any of the caecal flora evaluated. Vahjen et al.

(1998) found that xylanase supplementation of wheat-fed broilers resulted in a reduction

in luminal Lactobacillus numbers in the ileum but an increase in mucosa-associated

Lactobacillus. Both luminal and mucosa-associated ileal Gram positive cocci were

decreased in the small intestine when xylanase was fed. Follow-up work by Danicke et

al. (1999) again demonstrated that xylanase supplementation, this time in rye diets,

reduced total ileal anaerobes, enterobacteria, Gram positive cocci and enterococci, but

only when tallow was the added fat, not soybean oil.

Apajalahti and Bedford (1998), using % G+C analysis (DNA base composition),

found that supplementation of a wheat diet with a xylanase decreased clostridia,

Escherichia, Salmonella and Campylobacter and increased Bacteroides (P<O.05),
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propionibacteria, eubacteria and bifidobacteria in the caecum ofbroilers. These

researchers also noted that xylanase supplementation decreased the available substrate in

the ileum thereby decreasing ileal bacterial populations. In addition, they found that the

. enzyme resulted in significant increases in total caecal VFAs and, in particular,

propionic acid. Choct et al. (1999), using normal wheat diets (without added

arabinoxylans as were used previously), were also able to demonstrate a significant

reduction of ileal fermentation and a significant increase in caecal fermentation with

xylanase supplementation. Bedford (1996b) suggests that since caecal fermentation

increases while ileal bacterial fermentation decreases with enzyme supplementation, the

current xylanase enzymes may increase nutrient utilization by the bird, through reduction

of bacterial competition for available substrates in the S1. Support for this hypothesis

could be demonstrated by providing evidence of the difference in available NSP

substrate at the terminal ileum between unsupplemented and enzyme supplemented

wheat diets.

It is clear that, despite the large volume of research in the area of dietary NSP and

enzyme supplementation in broiler diets, the mechanisms whereby NSP and enzymes

interact with the gastrointestinal tract microflora have not been elucidated.
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3.0 INFLUENCE OF DIETARY NON-STARCH POLYSACCHARIDE AND

ENDOXYLANASE SUPPLEMENTATION ON ADAPTABILITY OF THE

GASTROINTESTINAL TRACT AND THE GASTROINTESTINAL TRACT

BACTERIA OF THE BROILER CHICKEN.

3.1 Abstract

Two experiments were conducted to examine the impact of dietary non-starch

polysaccharide (NSP), exogenous xylanase supplementation and age on the adaptability

of the broiler chicken gastrointestinal tract (GIT) and its resident bacteria. A wheat­

based diet with and without added xylanase was compared to a com-based diet in

Experiment 1 and to two additional wheat diets where the xylanase was either added or

withdrawn at 28 d in Experiment 2. Birds were sampled at 42 d for GIT lengths and

weights and collection of GIT contents for bacterial culturing and volatile fatty acid

(VFA) analysis. Experiment 2 involved all of the wheat treatments used in Experiment 1

but birds were sampled at 14, 28 and 42 d for GIT lengths and weights and collection of

GIT contents. Bacteria were cultured from 28 and 42 d samples. Birds in both

experiments had improved performance when xylanase was used in the wheat diets.

Viscosity was lowest for com diets and was significantly lower in xylanase

supplemented diets when compared to unsupplemented diets, except at 42 d. GIT

measures were all smaller on com versus wheat-based diets. Full ileal weights were
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higher for unsupplemented wheat diets versus all others while caecal weights were lower

on this treatment. In Exp. 1, ileal anaerobes tended to be higher with enzyme

supplementation at 42 d than without while caecal anaerobes were higher on

unsupplemented wheat diets. In Exp. 2, bacterial data indicated higher levels of ileal

anaerobes and some caecal anaerobes on unsupplemented diets at 28 and 42 d. Bacterial

fermentation, as measured by VFA content of the digesta, at 28 d showed higher ileal

fermentation in diets without enzyme supplementation and the same tendency was noted

for caecal fermentation. At 42 d ileal fermentation was higher with enzyme and caecal

fermentation was higher without enzyme. These results demonstrate that while certain

anaerobic bacteria do increase in the ileum of unsupplemented wheat diets, others appear

to respond to the substrates created by enzyme supplementation in both the ileum and the

caecum. Age related adaptation also appears to affect the response of the bacteria to

enzyme supplementation.

3.2 Introduction

The incorporation of exogenous enzyme products into grain-based diets for

broiler chickens is an accepted and proven method for significantly improving both

performance and litter quality. What is known of the modes of action of supplementary

enzymes has been reviewed periodically in some detail (Campbell and Bedford, 1992;

Bedford, 1995; Bedford and Schulze, 1998). While these reviews and the research

summarized therein go into detail on the implications of high levels of soluble

arabinoxylans and p-glucans increasing digesta viscosity and leading to poorer
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digestibility of nutrients (Annison, 1991; Choct and Annison, 1990, 1992a, 1992b;

Morgan and Bedford, 1995; Van der Klis et al., 1995) and slowed passage rates (Salih et

al., 1991; Danicke et al., 1997a, 1999), much of the commentary on the involvement of

. the naturally occurring bacteria of the gastrointestinal tract is educated speculation. Only

a very limited number of studies have attempted to evaluate the impact of the OIT flora

on either NSP degradation or the improvement seen with enzYme supplementation of

high non-starch polysaccharide (NSP) diets (Choct et aI., 1995, 1996; Langhout, 1998;

Vahjen et aI., 1998; Danicke et aI., 1999). The objective of the current study was,

therefore, to evaluate age and enzYme related changes in gastrointestinal tract size and in

bacterial populations and fermentation patterns in the digestive tract of wheat-fed broiler

chickens and to evaluate the relationship of these criteria on enzYme-related

improvements in performance.

3.3 Materials and Methods

3.3.1 Bird Management, Diets, Sampling and Gastrointestinal Tract Measures

3.3.1.1 Experiment 1

A total of 1500 male and female, day old broiler chickens (Petersen x Hubbard)

were randomly assigned to 3 replicate pens of each sex on each of five dietary

treatments. Cleaned and disinfected floor pens bedded with straw accommodated 50

birds each. Birds were cared for using standard management practices of the University

of Saskatchewan. Initial room temperature was 35 C and was gradually decreased to 22
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C by 35 d. This temperature was maintained to the end of the trial.

Dietary treatments included a com-based diet, a wheat based diet, and a wheat

based diet supplemented with a commercial xylanase (Avizyme 1300: xylanase activity

2700 IU/g, protease activity 800 IU/g; Finnfeeds International, Marlborough, Wiltshire,

UK, SN8 lXN). Diets were calculated to be of similar nutrient composition with 3,000

kcal/kg AME, and 22 %, 20 % and 19 % CP, respectively for the starter, grower and

finisher diets (Table 3.3.1a,b,c). Additional treatments whereby the enzyme was either

added or withdrawn at 28 d were included to evaluate the adaptability of the GIT

bacteria. The starter diet was fed from 0-14 d, the grower from 15-28 d and the finisher

from 29-42 d. Feed and water were provided ad libitum. All diets in Experiment 1 were

supplemented with virginiamycin (Pfizer Animal Health Canada, Montreal, QC) at 11

mg/kg diet as an antibiotic growth promotant. Pen weights were taken at each diet

change. Feeders were weighed to measure feed consumption. Weight gain and feed

conversion efficiency were calculated for each two week period and overall.

At 42 d of age, four birds per replicate were weighed and killed by injection with

T-61 euthanasia solution (Embutramide 200mg/mL, Hoechst Roussel Vet Canada Inc.,

Regina, SK). Intestinal tracts were excised and divided into the jejunum (from

duodenum to Meckel's Diverticulum), ileum (from Meckel's Diverticulum to the

ileocaecal junction) and paired caeca. Component lengths and full weights were taken,

the components gently rolled to extract their contents, then empty weights were taken.

The contents were pooled across the 4 birds and subjected to analysis for viscosity and

volatile fatty acids. Viscosity was measured on the supernatant ofjejunal and ileal
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contents using a Brookfield Viscometer (Model DV-III, Brookfield Engineering

Laboratories, Inc., Stoughton, MA) following the method described by Bedford and

Classen (1993). The remaining samples were frozen at -4 C for subsequent VFA

analysis.

Two additional birds per replicate from the com, wheat and wheat plus enzyme

diets were sampled separately for bacteriological evaluation. These birds were also

killed in the same manner whereupon the last 10 cm of the ileum and the right caecum

were removed, tied off and placed on ice for microbiological processing.

The experimental protocol was approved by the Animal Care Committee, and the

procedures were performed in accordance with the requirements of the Guide to the Care

and Use of Experimental Animals (Canadian Council on Animal Care, 1993).

3.3.1.2 Experiment 2

A total of 2160 day-old male broiler chickens were randomly allocated to 9

replicate pens of 60 birds for each of four dietary treatments. Dietary treatments

included a wheat based diet, and a wheat based diet supplemented with a commercial

xylanase (Avizyme 1300) and two additional treatments whereby the enzyme was either

added or withdrawn at 28 d, as used in Experiment 1. Diets were the same as the wheat

diets used in Experiement 1 (Table 3.3.1a,b,c) except that virginiamycin was not added

in an attempt to minimize any impact other than the dietary treatments on the GIT flora.

The birds were housed and cared for as in Experiment 1.
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Table 3.3.1a. Ingredient and nutrient composition of starter diets (0-14 d) used in
experiments 1 and 2

Ingredient Content (% of Diet)
Corn Wheat Wheat plus Wheat + E Wheat+E

Enzyme (E) (0-28 d) (29-42 d)
Wheat 61.7 61.5 61.5 61.7
Corn 57.8
Soybean meal 48% 35.7 30.7 30.7 30.7 30.7
Canola oil 2.0 3.28 3.33 3.33 3.28
Dicalcium 1.74 1.62 1.62 1.62 1.62
phosphate
Limestone 1.34 1.39 1.39 1.39 1.39
Sodium chloride 0.46 0.43 0.43 0.43 0.43
Vit/min premix! 0.50 0.50 0.50 0.50 0.50
Choline chloride 0.10 0.10 0.10 0.10 0.10

DL-methionine 0.27 0.19 0.19 0.19 0.19
Enzyme2 0.10 0.10
Coccidiostat3 0.10 0.10 0.10 0.10 0.10

Calculated composition:
AME (kcal/kg) 3,000 3,000 3,000 3,000 3,000
CP (%) 22.4 23.0 23.0 23.0 23.0
Ca (%) 1.0 1.0 1.0 1.0 1.0
Av. P (%) 0.45 0.45 0.45 0.45 0.45
Lysine 1.24 1.20 1.20 1.20 1.20
Methionine 0.61 0.53 0.53 0.53 0.53
1Supplied per kilogram of diet: vitamin A (retinyl acetate + retinyl palmitate), 11,000
ill; vitamin D3, 2,200 ill; vitamin E (dl-a-tocopheryl acetate), 30 ill; menadione, 2
mg; thiamine, 1.5 mg; riboflavin, 6 mg; niacin, 60 mg; pyridoxine, 4 mg; vitamin
B 12, 20 J.lg; pantothenic acid, 10 mg; folic acid, 0.6 mg; biotin, 150 J.lg; iron, 80 mg;
zinc, 80 mg; manganese, 80 mg; copper, 10 mg; iodine, 0.8 mg; and selenium, 0.3
mg.
2Avizyme 1300 (Finnfeeds International).
3Coxistac (Pfizer Canada Inc.), Note: In Experiment 1 the growth promotant Stafac 22
(Pfizer Canada Inc.) was also included at 0.05 % to provide 11 ppm virginiamycin in the
complete diet.
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Table 3.3.1b. Ingredient and nutrient composition of grower diets (15-28 d) used in
experiments 1 and 2

Ingredient Content (% of Diet)

72.0 72.0

Wheat plus Wheat + E
Enzyme (E) (0-28 d)

Wheat
Com
Soybean meal 480/0
Canola oil
Dicalcium
phosphate
Limestone
Sodium chloride
Vit/min premix l

Choline chloride
DL-methionine
L-Iysine HCL
Enzyme2

Coccidiostae

Com

63.9
29.8

2.0
1.78

1.09
0.46
0.50
0.10
0.18

0.10

Wheat

72.2

21.5
2.08
1.54

1.22
0.42
0.50
0.10
0.11
0.11

0.10

21.6
2.14
1.54

1.22
0.42
0.50
0.10
0.11
0.11
0.10
0.10

21.6
2.14
1.54

1.22
0.42
0.50
0.10
0.11
0.11
0.10
0.10

Wheat+E
(29-42 d)

72.2

21.5
2.08
1.54

1.22
0.42
0.50
0.10
0.11
0.11

0.10
Calculated composition:
AME (kcal/kg) 3,060 3,000 3,000 3,000 3,000
CP (%) 20.0 20.0 20.0 20.0 20.0
Ca (%) 0.9 0.9 0.9 0.9 0.9
Av. P (%) 0.45 0.43 0.43 0.43 0.43
Lysine 1.08 1.05 1.05 1.05 1.05
Methionine 0.49 0.41 0.41 0.41 0.41
1Supplied per kilogram of diet: vitamin A (retinyl acetate + retinyl palmitate), 11,000
ill; vitamin D3, 2,200 ill; vitamin E (dl-a-tocopheryl acetate), 30 ill; menadione, 2
mg; thiamine, 1.5 mg; riboflavin, 6 mg; niacin, 60 mg; pyridoxine, 4 mg; vitamin
B 12, 20 J-lg; pantothenic acid, 10 mg; folic acid, 0.6 mg; biotin, 150 J-lg; iron, 80 mg;
zinc, 80 mg; manganese, 80 mg; copper, 10 mg; iodine, 0.8 mg; and selenium, 0.3
mg.
2Avizyme 1300 (Finnfeeds International).
3Coxistac (Pfizer Canada Inc.), Note: In Experiment 1 the growth promotant Stafac 22
(Pfizer Canada Inc.) was also included at 0.05 % to provide 11 ppm virginiamycin in the
complete diet.
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Table 3.3.1c. Ingredient and nutrient composition of finisher (29-42 d) diets used
in experiments 1 and 2

73.8 73.9

Content (% of Diet)
Wheat plus Wheat + E
Enzyme (E) (0-28 d)

Ingredient

Wheat
Com
Soybean meal 48%
Canola oil
Dicalcium
phosphate
Limestone
Sodium chloride
Vit/min premix}
Choline chloride
DL-methionine
Enzyme2

Coccidiostat3

Celite4

Com

63.2
30.0

2.0
1.78

1.00
0.33
0.50
0.10
0.07

0.10
1.0

Wheat

73.9

19.2
2.17
1.67

0.90
0.30
0.50
0.10
0.08

0.10
1.0

19.2
2.22
1.67

0.90
0.30
0.50
0.10
0.08
0.10
0.10
1.0

19.2
2.17
1.67

0.90
0.30
0.50
0.10
0.08

0.10
1.0

Wheat + E
(29-42 d)

73.8

19.2
2.22
1.67

0.90
0.30
0.50
0.10
0.08
0.10
0.10
1.0

Calculated composition:
AME (kcal/kg) 3,037 3,000 3,000 3,000 3,000
CP (%) 20.0 19.0 19.0 19.0 19.0
Ca (%) 0.8 0.8 0.8 0.8 0.8
Av. P (%) 0.45 0.45 0.45 0.45 0.45
Lysine 1.09 0.90 0.90 0.90 0.90
Methionine 0.38 0.38 0.38 0.38 0.38
}Supplied per kilogram of diet: vitamin A (retinyl acetate + retinyl palmitate), 11,000
ill; vitamin D3, 2,200 ill; vitamin E (dl-a-tocopheryl acetate), 30 ill; menadione, 2
mg; thiamine, 1.5 mg; riboflavin, 6 mg; niacin, 60 mg; pyridoxine, 4 mg; vitamin
B12, 20 f.lg; pantothenic acid, 10 mg; folic acid, 0.6 mg; biotin, 150 f.lg; iron, 80 mg;
zinc, 80 mg; manganese, 80 mg; copper, 10 mg; iodine, 0.8 mg; and selenium, 0.3
mg.
2Avizyme 1300 (Finnfeeds International).
3Coxistac (Pfizer Canada Inc.), Note: In Experiment 1 the growth promotant Stafac 22
(Pfizer Canada Inc.) was also included at 0.05 % to provide 11 ppm virginiamycin in the
complete diet.
4As an Acid Insoluble Ash marker, in Experiment 1 only (Celite Corp., Lompac, CA
93436), For Experiment 2 compositions, add 1 % of major grain back to diet.
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Birds were killed, weighed and sampled in the same manner as Experiment 1 at

14, 28 and 42 d of age for gastrointestinal tract measures and content collection.

Intestinal segments for bacterial culturing were also collected in the same manner as

Experiment 1 except that only one bird from each of 8 replicates was sampled for

bacterial culturing at 28 and 42 d of age.

The experimental protocol was approved by the Animal Care Committee, and the

procedures were performed in accordance with the requirements of the Guide to the Care

and Use of Experimental Animals (Canadian Council on Animal Care, 1993).

3.3.2 Bacteriology

Samples of ileal and caecal contents were weighed into sterile, conical dilution

tubes with peptone water and cysteine hydrochloride in a laminar flow hood. They were

serially diluted with a solution of peptone water and cysteine hydrochloride and cultured

for aerobic enterobacteria by plating on BBL MacConkey Agar (Becton Dickinson

Microbiology Systems, Cockeysville, MD) and incubating at 37 C for 24 h. They were

also cultured for microaerophilic Lactobacillus spp. by plating on BBL LBS Agar

(Becton Dickinson Microbiology Systems, Cockeysville, MD) and incubating the plates

in anaerobic jars at 37 C for 48 h and for anaerobic Clostridium spp. and

Bifidobacterium spp. by plating on BBL Clostrisel (Becton Dickinson Microbiology

Systems, Cockeysville, MD) and Bereen's Agar and incubating in an anaerobic hood at

37 C for 48 h. The Bereen's agar was made from BBL Columbia Agar Base (Becton

Dickinson Microbiology Systems, Cockeysville, MD). Plating was done using an
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Autoplate 4000 (Spiral Biotech, Bethesda, MD) spiral diluter. Colonies on incubated

plates were counted either by hand using the Spiral Biotech sector counting method, or

using a Colony Image Analyser (Spiral Biotech, Bethesda, MD) calibrated for each type

of bacterial plate.

For Experiment 2, anaerobic caecal Bacteroides were cultured instead of aerobic

caecal enterobacteria. These were plated on Bacteroides Bile Esculin Agar and

incubated for 48 h at 37 C in an anaerobic hood.

3.3.3 Volatile Fatty Acid Analysis

Sub-samples ofjejunal (0.5 g) (Experiment 1 only), ileal (0.5 g) and caecal (0.2

g) contents were taken, vortexed with 1 ml of prepared internal standard (crotonic acid in

Experiment 1; isocaproic acid in Experiment 2) solution, and centrifuged at 15,900 x g.

Volatile fatty acids were measured on the supernatant using a gas chromatograph (GC)

(Varian Star 3400Cx with a Varian 8200Cx autosampler, Varian, Walnut Creek, CA).

The column was a glass capillary column packed with carbowax fused silica (Stabilwax­

DAS, RESTEK Corporation, Bellefonte, PA). The injector temperature on the GC was

220 C, the initial column temperature was 140 C. This temperature was held for 5

minutes, then was gradually increased to a final column temperature of 220 C. The flame

ionization detector temperature of the GC was 230 C. Results were expressed as

mmol/L and were converted to flmol/g of wet digesta content. The method used was a

modification of Corrier et al. (1990a) with the modifications being adaptations for use

with a capillary column and different internal standards, as outlined above.

70



3.3.4 Statistical Analysis

Experiment 1 was analysed as a two-way analysis of variance using the general

linear models procedure of SAS (SAS Institute, 1989) to determine significant effects of

diet and sex of the bird. Significant mean differences (P<0.05) were determined using

Duncan's multiple range test (Steel and Torrie, 1980). The bacterial data was log

transformed prior to statistical analysis. In Experiment 2, the analysis was a two-way

analysis of variance looking at age, diet and interactions. Predetermined orthogonal

contrasts were also used on the bacterial data to compare enzyme supplemented and

unsupplemented wheat diets.

3.4 Results

3.4.1 Performance

Since no treatment by sex interactions were observed, sexes were pooled and

only treatment main effects are presented for Experiment 1. In Experiment 1, the corn

treatment resulted in better bird performance than any wheat diet (Figure 3.4.1a).

Enzyme supplementation of wheat diets resulted in improved overall feed efficiency

(Table 3.4.1) over unsupplemented diets. The first experiment also demonstrated

performance improvements, equivalent to full (42 d) enzyme supplementation, with

enzyme addition as late as 28 d of age. In Experiment 2, the performance of birds with

enzyme addition at 28 d was not significantly greater than the unsupplemented birds,

whereas full (42 d) enzyme supplementation did result in superior performance (Figure

3.4.1b; Table 3.4.1). Performance ofbirds where enzyme was withdrawn at 28 d, in
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Table 3.4.1 Effect of diet on overall performance of broilers in Experiments 1 & 2

Performance Parameters at 42 d

Variables Avg Gain Avg Feed Cons. Gain to FeedI

(kg) (kg)
Diet

Com 2.393a 4.907c 0.560a

Expt 1

Wheat 2.239b 5.374a 0.492c

Wheat plus
2.241 b 5.122bc 0.510b

Enzyme
Wheat plus

2.202c 5.254ab 0.501 c
Enzyme 0-28 d
Wheat plus

2.272b 5.205ab 0.513b

Enzyme 29-42 d
Statistics
Diet *** ** ***
SEM 0.036 0.094 0.005

Diet Wheat 2.527 6.419 0.495b

Expt2
Wheat plus

2.569 6.208 0.526a

Enzyme
Wheat plus

2.528 6.244 0.502ab

Enzyme 0-28 d
Wheat plus

2.488 6.557 0.492b

Enzyme 29-42 d
Statistics
Diet NS NS *
SEM 0.013 0.112 0.005
IMortality corrected
a-c Means within columns and experiment with no common superscript differ
significantly (*=P<0.05;**=P<0.01;***=P<0.001; NS = not significant).
SEM = pooled standard error of the mean
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Figure 3.4.1a. Effect of dietary treatment on the growth rate and feed efficiency of
broiler chickens in experiment 1

73



1.2

0.9

0.6

P<O.07

0.9

~
~
~

~

bl.l
~ 0.6

=...=
~
bl.l
~

0.3

0-14

o Wheat (W)
II W + E (0-28 d)

P<O.Ol

a ab
be e

0-14

b

15-28

Age (d)

P<O.OOI

a a

15-28

29-42

[JWheat + Enzyme (E)
• W + E (29-42 d)

P<O.lO

29-42

Li Wheat (W)
II W + E (0-28 d)

Age (d)
II Wheat + Enzyme (E)
• W + E (29-42 d)

Figure 3.4.1b. Effect of dietary treatment on the growth rate and feed efficiency of
broiler chickens in Experiment 2
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both experiments, was equivalent to unsupplemented birds. There were no treatment

effects on bird mortality.

3.4.2 Viscosity

Small intestinal (SI) viscosity was measured at 42 d only in Experiment 1 and at

14, 28 and 42 d in Experiment 2. The corn diet in Experiment 1 resulted in the lowest

jejunal and ileal viscosity (Table 3.4.2). In Experiment 2, enzYme use decreased viscosity

significantly in both the jejunum and the ileum (Table 3.4.3a). There was also a

significant age effect showing a decrease in jejunal viscosity between 28 and 42 d while

the highest ileal viscosity occurred at 28 d, followed by a drop. Diet by age interactions

were significant and are shown in Table 3.4.3b. EnzYme use decreased viscosity

significantly at 14 and 28 d (Table 3.4.3b) and numerically at 42 d (Tables 3.4.2 and

3.4.3b). Treatments where enzYme was withdrawn at 28 d yielded numerically similar or

higher SI viscosities by 42 d than birds fed unsupplemented diets throughout the trial.

Those where enzYme was added at 28 d yielded SI viscosities similar to birds

supplemented throughout the experiment. The effects of the change in enzYme

supplementation were evident within a matter of hours after the diets were switched as

sampling of the birds was carried out over the course of the afternoon. The diets were

changed in the morning after bird weights and feeds consumption had been measured.

The timing of these measures, while not ideal, was necessary to ensure that GIT fill was

maintained and that feed consumption measures were accurate.

From the viscosity data (Table 3.4.3b) in Experiment 2, jejunal and ileal viscosity
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Table 3.4.2 Dietary treatment effects on viscosity and size of the gastrointestinal tract, relative to body weight, in 42 d old
broiler chickens in Experiment 1

Gastrointestinal Tract Size' and Digesta Viscosity 2

Jejunum Ileum Caecal
Variables

Viscosity Length Wt Full WtEmpty Viscosity Length Wt Full WtEmpty Length Wt Full WtEmpty

Com 1.97c 3.14b 2.17b 1.09b 2.22b 3.16b 1.67b 0.97b 1.50b 0.59c 0.38b

Wheat (W) 3.11 ab 3.51a 2.60a 1.28a 5.14a 3.56a 2.11 a 1.15a 1.66a 0.63bc 0.43ab

Wheat plus
2.67b 3.45a 2.50a 1.25a 4.24a 3.50a 2.04a 1.16a 1.72a 0.71 ab 0.47a

......:J Enzyme (E)
0'\

W+E 0-28 d 3.57a 3.62a 2.35ab 1.20a 4.27a 3.62a 1.88ab 1.09a 1.71a 0.74a 0.46a

W + E 29-42 d 3.11ab 3.45a 2.44a 1.20a 3.56ab 3.60a 1.94a 1.09a 1.68a 0.71 ab 0.44ab

Statistics

Diet ** *** ** ** ** *** ** ** *** * *

SEM 0.136 0.041 0.040 0.039 0.282 0.043 0.039 0.017 0.022 0.016 0.009

'(value/body weight) X 100.
2CpS.
a-cMeans within a column with differing superscripts are significantly different (* = P<0.05; ** = P<O.OI; *** = P<O.OOI).
SEM = pooled standard error of the mean.



Table 3.4.3a Main effects of diet and age on jejunal and ileal digesta viscosity in
wheat fed broiler chickens in Experiment 2

Variables
Digesta Viscosity (cps)

Jejunal Ileal
Diet Wheat 3.90a 6..26a

Wheat plus Enzyme 2.82c 4.02c

Wheat plus Enzyme (0-28 d) 3.21 b 4.49bc

Wheat plus Enzyme (29-42 d) 3.31 b 4.82b

Age 14
(d) 28

42
Statistics

Diet *** ***
Age * ***

Diet X Age 0.06 ***
SEM 0.082 0.157

a,b ,c Means, within a column and main effect, with differing superscripts are significantly
different (* = P<0.05; *** = P <0.001)
SEM = pooled standard error of the mean.
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Table 3.4.3b Effect of xylanase supplementation and age on jejunal and ileal
digesta viscosity of broiler chickens in Experiment 2

Treatments

Gut Age Wheat Wheat Wheat Wheat P SEM
Segment (d) plus plus plus

Enzyme Enzyme Enzyme

(0-28 d) (29-42 d)

Jejunum 14 4.25a 2.78b 2.93b 3.77a ** 0.28

28 4.21 a 2.93b 3.46ab 3.28a * 0.42

42 3.23 2.75 3.25 2.89 NS 0.16

Ileum 14 6.06a
3.76b 3.63b 5.36a *** 0.42

28 8.10a
4.07b 4.77b 5.0gb *** 0.43

42 4.60 4.24 5.07 4.02 NS 0.31

a,b Means within rows with no common superscript differ significantly (* = P <0.05; ** =

P<O.Ol; *** = P<O.OOl; NS = not significant).
SEM = pooled standard error of the mean.

78



from birds fed the unsupplemented diets are lowest by 42 d of age. This is not seen in the

enzyme supplemented birds. Ileal viscosity is highest for unsupplemented, wheat-fed

birds at both 14 and 28 d.

3.4.3 Gastrointestinal Tract Measures

The gastrointestinal tracts of the birds in Experiment 1 were significantly shorter

and lighter by 42 d on the com-based diet (Table 3.4.2). Full weights, relative to body

weight, of all segments were lower on the com diet. No significant differences were

noted between wheat-based treatments except that full caecal weights were significantly

lower for the unsupplemented wheat diet than for the diet where enzyme was withdrawn

at 28 d and numerically lower than the other wheat diets.

Numeric trends of note for the wheat-based diets in Experiment 1 include a

tendency for full jejunal and ileal weights to be higher without enzyme and full caecal

weights to be higher with enzyme at 42 d. This trend is repeated in Experiment 2 and is

actually a significant treatment effect for full ileal weight (Table 3.4.4). As a result, ileal

content weights are signficantly highest for birds on the unsupplemented wheat diet and

caecal contents were lowest for this treatment. Overall, jejunal and ileal lengths were

numerically highest (P > 0.05) for the unsupplemented wheat diet. No differences in

caecal length were noted (Table 3.4.4). All relative segment lengths analyses show the

diets with changes to enzyme supplementation having lengths similar or intermediate to

the unchanged treatments.

Relative lengths and weights of all segments decreased with age in Experiment 2
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Table 3.4.4 Main effects of xylanase supplementation and age on gastrointestinal tract measures, relative to body weight, in
broiler chickens in Experiment 2

Selected Gastrointestinal Tract Measures I

Jejunum Ileum Caeca
Variables Wt Wt Wt Wt Wt Wt

Length Full Empty
Contents Length Full Empty

Contents Length Full Empty
Contents

Diet
0.21 bWheat (W) 6.98 3.33 1.82 1.51 6.62 2.68a 1.32 1.36a 2.79 0.69 0.48

Wheat +
6.67 3.19 1.79 1.40 6.32 2.46b 1.29 1.17b 2.74 0.74 0.48 0.26a

Enzyme (E)

W + E 0-28 d 6.89 3.25 1.80 1.44 6.59 2.50b 1.29 1.21 b 2.84 0.72 0.49 0.24ab

00
0

W + E 29-42 d 6.89 3.33 1.79 1.54 6.49 2.50b 1.27 1.22b 2.79 0.72 0.48 0.24ab

Age 14 12.34a 4.23a 2.41 a 1.83a 11.27a 3.19a 1.58a 1.61a 4.65a 0.79a 0.58a 0.21 b

(d)
28 5.19b 3.08b 1.60b 1.49b 5.00b 2.41 b 1.24b 1.16b 2.23b 0.70b 0.45b 0.25a

42 3.05c 2.50c 1.39c 1.11c 3.25c 2.01 c 1.05c 0.95c 1.49c 0.67c 0.41 c 0.26a

Statistics
Diet 0.06 NS NS 0.10 0.06 * NS ** NS NS NS *
Age *** *** *** *** *** *** *** *** *** *** *** **

Diet X Age NS NS NS 0.10 NS NS NS NS NS NS NS NS

SEM 0.196 0.043 0.023 0.026 0.171 0.035 0.014 0.024 0.068 0.009 0.006 0.006

I (value/body weight) X 100.
a-cMeans within a column, within a Diet or Age, with differing superscripts are significantly different (* = P<0.05; ** = P<O.OI; *** = P<O.OOI;
NS = not significant); SEM = pooled standard error of the mean.



(Table 3.4.4).

3.4.4 Bacteriology

There were no significant treatment effects on ileal bacteria in the first experiment

(analyzed only at 42 d). Enzyme supplemented, wheat-fed birds showed a numerically

higher number of ileal microaerophilic Lactobacillus spp. (P=O.09), Bifidobacterium spp.

(P=O.12) and Clostridium spp. versus com-fed and unsupplemented wheat-fed birds

(Table 3.4.5). Ileal enterobacteria were not different between treatments. In the caeca,

Lactobacillus spp. numbers were significantly lower in the com-fed versus the

unsupplemented wheat-fed birds. Clostridium spp. were numerically higher in the caeca

of unsupplemented wheat-fed birds than of either other treatment.

The bacterial data from Experiment 2 indicated no significant treatment effects

(Table 3.4.6). Pre-determined orthogonal contrasts between log transformed bacterial

numbers from unsupplemented and enzyme-supplemented wheat-fed birds did reveal

higher numbers of ileal enterobacteria as well as numerically higher caecal Bacteroides

spp. (P=O.08) and Clostridium spp. (P=O.07) at 28 d in unsupplemented wheat-fed birds

(Table 3.4.7). Caecal Lactobacillus spp. also tended (P=O.15) to be higher in these diets

at 28 d.

Only ileal enterobacteria increased from 28 to 42 d of age (Table 3.4.6). None of

the other bacteria examined were affected by age in Experiment 2. The significant age by

diet interaction is shown in Figure 3.4.2. Ileal enterobacteria increase on each treatment

between 28 and 42 d except in the case of the late enzyme addition where no change in
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Table 3.4.5 Main effects of diet on numbers of selected groups of bacteria in 42 d old broiler chickens in Experiment 1

Selected Bacterial Groups (Log loCFU/g wet Digesta)

Variables
Ileum Caeca

Enterobacteria Lactobacillus Clostridia Bifidobacteria Enterobacteria Lactobacillus Clostridia Bifidobacteria

Diet
Corn 4.7 7.97b 7.7 7.8 7.4 8.5b 8.3 7.8

Wheat 4.9 8.043b 7.6 7.6 7.2 9.23 8.8 8.2

Wheat
plus 4.8 8.563 8.1 8.3 7.0 8.93b 8.4 8.1

00 Enzyme
N Statistics

P value NS 0.09 NS 0.12 NS * NS NS

SEM 0.221 0.119 0.154 0.189 0.122 0.162 0.202 0.125

3,b Means within a column with differing superscripts are significantly different (* = P<0.05; NS = not significant).
SEM = pooled standard error of the mean.



Table 3.4.6 Main effects of xylanase supplementation and age on numbers of selected groups of bacteria in broiler chickens in
Experiment 2

Selected Bacterial Groups (Log 10 CFU/g wet Digesta)

Variables
Ileum Caeca

Enterobacteria Lactobacillus Clostridia Bifidobacteria Bacteroides Lactobacillus Clostridia Bifidobacteria

Diet Wheat 4.58 7.10 6.54 6.07 6.33a 9.13 8.94 7.15

Wheat
plus 4.51 6.90 6.44 5.68 5.65b 8.54 8.31 6.53
Enzyme
Wheat
plus

4.55 7.34 6.87 6.07 6.09ab 8.59 8.42 6.62
00 Enzyme
w 0- 28 d

Wheat
plus
Enzyme 4.73 7.34 6.94 6.03 6.33a 8.80 8.71 6.81
29-42
d

Age (d) 28 4.31 b 7.26 6.76 6.02 6.12 8.86 8.83 6.84
42 4.78a 7.07 6.63 5.89 6.09 8.67· 8.36 6.72

Statistics

Diet NS NS NS NS 0.07 NS NS NS
Age ** NS NS NS NS NS NS NS
Diet X Age * NS NS NS NS NS NS NS
SEM 0.105 0.118 0.153 0.130 0.105 0.131 0.147 0.149
a,b Means within a column, within Diet or Age, with differing superscripts are significantly different (* = P<0.05; ** = P< 0.01; NS = not
significant).
SEM = pooled standard error of the mean.



Table 3.4.7 Orthogonal contrasts between numbers of selected bacterial groups from the ileum and caecum of broiler
chickens fed wheat diets with or without xylanase supplementation in Experiment 2

Selected Bacterial Groups (Log 10 CFU/g wet Digesta)

Variables
Ileum

Enterobacteria Lactobacillus Clostridia Bifidobacteria Bacteroides

Caeca
Lactobacillus Clostridia Bifidobacteria

00
~

Age Diets
No E' 4.61 a 7.20 6.61 5.85 6.40 9.13 9.19

28 d E2 3.89b 7.33 6.90 6.19 5.82 8.60 8.47
Contrast * NS NS NS 0.08 NS 0.07
No E3 4.87 7.02 6.55 5.99 6.10 8.81 8.62

42 d E4 4.68 7.12 6.71 5.80 6.07 8.53 8.10
Contrast NS NS NS NS NS NS NS

'No E at 28 d is the combined means of the Wheat diet and the Wheat + Enzyme (29-42 d) diet.
2E at 28 d is the combined means of the Wheat + Enzyme diet and the Wheat + Enyzme (0-28 d) diet.
3No E at 42 d is the combined means of the Wheat diet and the Wheat + Enzyme (0-28 d) diet.
4E at 42 d is the combined means of the Wheat + Enzyme diet and the Wheat + Enzyme (29-42 d) diet.
a, bMeans with differing superscripts within a column and within age differ significantly (*= P<0.05; NS = non-significant).

7.00
6.67
NS
6.76
6.67
NS
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number is observed.

3.4.5 Volatile Fatty Acids

In Experiment 1, VFA analysis showed numerically lower jejunal and

significantly lower ileal acetic acid levels (Table 3.4.8) on com versus wheat

diets. There were no significant dietary effects on caecal acetic, butyric or total

VFA levels. Caecal propionic acid, however, was significantly higher in birds fed

com and the enzyme withdrawal birds than in enzyme supplemented or late

enzyme addition birds. Unsupplemented wheat diets yielded numerically higher

caecal acetic, propionic, and valeric acid than enzyme supplemented wheat diets.

The enzyme withdrawal diet yielded numerically the highest caecal acetic and

butyric acid levels as well as significantly higher caecal propionic and valeric acid

levels than the enzyme supplemented and the late enzyme addition wheat diets. Of

note is the observation that acetic acid levels were much higher in the jejunum

than in the ileum in this experiment. Caecal levels were substantially higher than

either small intestine segment.

In Experiment 2, a number of diet by age interactions were observed

(Table 3.4.9). Ileal acetic acid levels were lower, overall, than those observed in

Experiment 1. At 14 d ileal acetic acid (Figure 3.4.3) appears to be higher for the

two treatments where the enzyme supplementation changed at 28 d, lower for the

unsupplemented wheat diet and lowest for the wheat diet with enzyme

supplementation. Overall, ileal acetic acid increased to 28 d, then decreased on all
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Table 3.4.8 Effect of dietary NSP and xylanase supplementation on volatile fatty acid levels in the jejunal, ileal and caecal
digesta of 42 d broiler chickens in Experiment 1

Volatile Fatty Acid Levels (Ilmol/g wet digesta)

Variables Jejunal Ileal Caecal Caecal Caecal Caecal Total
Acetic Acetic Acetic Propionic Butyric Valerie Caecal VFA

Diet
Com 11.83 4.27b 84.22 6.08a 30.89 1.98 123.16

Wheat 17.33 8.33a 98.31 4.91 ab 30.50 1.42 135.14

00 Wheat plus
20.95 8.48a 92.04 3.45b 30.68 1.14 127.31-.J

Enzyme

Wheat plus 16.68 6.94ab 104.89 5.88a 42.27 1.98 155.02
Enzyme 0 - 28 d

Wheat plus 17.20 9.71 a 86.86 3.64b 31.34 1.30 123.14
Enzyme 0 - 42 d

Statistics

P value NS * NS * NS 0.06 NS

SEM 0.749 0.521 3.064 0.251 1.354 0.089 5.082

a,b Means within a column with differing superscripts are significantly different (* = P<0.05; NS = not significant).
SEM = pooled standard error of the mean.



Table 3.4.9 Effect of xylanase supplementation and age on volatile fatty acid levels in the ileal and caecal digesta of broiler
chickens in Experiment 2

Volatile Fatty Acid Levels (Jlmol/g wet digesta)

Ileal Caecal
Variables Acetic Propionic Butyric Valerie Total Acetic Propionic Isobutyric Butyric Isovaleric Valerie Total

Acid Acid Acid Acid VFA Acid Acid Acid Acid Acid Acid VFA

Diet Wheat 6.13 0.03b 0.01 0.02b 6.53 31.86b 1.98a 0.70 14.74 0.56 0.78 50.61 b

W+
Enzyme 3.66 3.12a 0.12 0.18a 7.36 21.76b 1.19b 0.96 12.59 0.52 0.72 37.73b

(E)

00 W+E
5.95 0.43b 0.02 0.03b 6.63 43.30a 2.12a 0.68 16.59 0.48 0.78 63.95a

00 0-28 d
W+E

6.37 0.28b 0.02 0.02b 6.90 27.69b 1.72ab 0.89 13.73 0.52 0.63 45.16b

29-42 d

Age 14 5.08b 0.02b
O.Ol

b 0.05 5.35b 22.59b 1.84a 0.33c 10.45b 0.36b 0.28c 35.85b

(d) 28 6.83a 0.38b
O.Ol

b 0.03 .7.49a 33.04a 1.28b 1.33a 15.42a 0.56a 0.80b 52.43a

42 4.42b 3.28a 0.13a 0.12 8.36a 37.83a 2.14a 0.75b 17.36a 0.64a I. lOa 59.80a

Statistics
Diet 0.07 *** NS * NS *** ** NS NS NS NS ***
Age ** *** 0.09 NS * ** ** *** *** *** *** ***

Diet X Age ** *** NS NS *** *** * *** NS NS NS **
SEM 0.391 0.305 0.022 0.023 0.465 2.213 0.110 0.077 0.689 0.025 0.046 2.769

a-c Means within a column, within a Diet or Age, with differing superscripts are significantly different (* = P<0.05; ** = P<O.OI;
*** = P<O.OOI; N-S = not significant). SEM = pooled standard error of the mean.
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diets, except for the late enzyme addition diet, where it remained more or less

constant.

Ileal propionic acid (Figure 3.4.4) increases with age on all diets with the

enzyme supplemented wheat diet resulting in much higher propionic acid levels than

all other diets at both 28 and 42 d of age.

The interaction between diet and age seen with total ileal VFA levels (Figure

3.4.5) reflects the patterns observed with ileal acetic and propionic acids, as these

make up the largest proportion of total ileal VFA. The 14 d differences are the same

as those observed with acetic acid. At 28 d, some VFA are increasing while others

are decreasing, resulting in similar total VFA for all treatments. By 42 d, treatments

with enzyme supplementation have higher total ileal VFA than those without

enzyme.

Ileal butyric and valeric acid levels were low and no interactions were

observed (Table 3.4.9). Ileal butyric acid was affected by age and was highest at 42

d, while ileal valeric acid was affected by diet and was highest for the

unsupplemented wheat diet overall.

Significant diet by age interactions were also seen for caecal acetic,

propionic, iso-butyric and total caecal VFAs (Table 3.4.9). Caecal acetic acid levels

(Figure 3.4.6) were again much lower than those measured in Experiment 1. At 14 d

there were no treatment differences. At 28 d, the enzyme withdrawal diet (Wheat +

E (0-28 d)) had significantly higher levels than the other diets. By 42 d, the two

unsupplemented diets both had significantly higher caecal acetic acid levels than the

enzyme supplemented wheat diet, with the late enzyme addition diet (Wheat + E (29
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42 d)) falling in between.

Caecal propionic acid (Figure 3.4.7) at 14 d was similar across treatments,

except for the diet where enzyme was withdrawn at 28 d. This diet had higher caecal

propionic acid levels. Caecal propionic acid levels are similar across treatments at

28 d. By 42 d, the treatments without enzyme supplementation have significantly

higher levels of caecal propionic acid than the enzyme supplemented diet, with the

late enzyme addition treatment falling in between.

Caecal iso-butyric acid (Figure 3.4.8) is again similar across treatments at 14

d, except for the late enzyme addition treatment, which has significantly higher

levels. At 28 d, caecal iso-butyric levels are similar across treatments but are higher

than 14 d levels. By 42 d, all treatments show decreased caecal iso-butyric acid

levels, except the enzyme supplemented treatment, where caecal iso-butyric acid is

significantly higher than the other treatments.

Total caecal VFAs (Figure 3.4.9) are similar across treatments at 14 d, and

show significantly higher levels for the enzyme withdrawal diet at 28 d, when the

enzyme is removed. By 42 d, the two unsupplemented treatments have significantly

higher levels of caecal VFAs than the enzyme supplemented treatment, with the late

enzyme addition treatment having intermediate levels, as seen with caecal propionic

acid (Figure 3.4.7).

For the remaining VFAs (Table 3.4.9), no effect of dietary treatment was

observed. The significant age effect in all cases was an increase in the level of each

VFA with age of the bird.
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3.5 Discussion and Conclusions

In both experiments, enzyme supplementation of wheat diets had a

significant, positive effect on performance to 42 dover unsupplemented diets. From

the results of the treatments where enzyme supplementation changed at 28 d it

appears that late addition of enzyme may be as good as enzyme supplementation

throughout the growing period, under certain conditions, as seen in Experiment 1.

Early and continuous supplementation with enzyme, however, is more likely to

guarantee a performance response if conditions are different, as seen in Experiment

2. Research has indicated that at younger ages (Veldman and Vahl, 1994; Steenfeldt

et al., 1998a) performance is improved largely as a result of improvements in

viscosity reduction. As the bird ages, the improvements in performance are often

even greater than at the younger ages despite viscosity reduction not being

significant. Bedford and Morgan (1996) summarized 14 trials in which the relative

improvement in feed conversion was greatest in 21-42 d old birds. It is suggested

that the microflora are involved in the performance improvements later in the bird's

life. Enzyme supplementation throughout the bird's life could, therefore, result in

improved performance due to improvements in the size and structure of carbohydrate

substrates, which may improve nutrient utilization by the bird through a reduction in

competition for available substrates in the small intestine (Bedford, 1996b).

In Experiment 1 the birds were healthy and the diet included a growth

promoting antibiotic, virginiamycin. In Experiment 2, the antibiotic was removed

due to its known impact on gastrointestinal microflora and its absence may well have
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altered the birds' responses to dietary treatments. In addition, an outbreak of J-virus

occurred during the second experiment, which may have immune compromised the

birds. Mortality was very high in Experiment 2 (14.3%) and despite the good

performance of the surviving birds, health status may have had an impact on the GIT

flora of all birds in this experiment.

In the current research, ileal and jejunal viscosities were elevated on the

unsupplemented diets at 14 and 28 d of age but were not significantly different from

enzyme supplemented birds by 42 d. The usefulness of the supplemented enzyme in

reducing viscosity at later ages is not as obvious since intestinal viscosity decreases

with age in broiler chickens (Petersen et al., 1999). Whether the reduction in

intestinal viscosity is actually an age effect or an acclimatization to the diet is still in

question. The current experiment provides information in that regard, since the birds

from whom enzyme was withdrawn at 28 d had numerically higher jejunal and ileal

viscosities at 42 d of age than their fully supplemented'counterparts. This suggests

that diet acclimatization plays a role in GIT adaptation. The drop in digesta viscosity

noted after 28 d for unsupplemented wheat fed birds in Experiment 2, shows

adaptation is occurring on this diet. Since bacterial development in the GIT is

related to digesta viscosity and available substrate, these changes are likely to relate

to changes in bacterial numbers and fermentation.

Much of the published literature demonstrates that soluble pentosans,

,
particularly those of high molecular weight (> 500 kDa) (Bedford and Classen,

1992), increase digesta viscosity in young broiler chicks (Choct and Annison, 1992b;

Cowan, 1995; Morgan and Bedford, 1995; Van der Klis et ai., 1995). This increase
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in digesta viscosity is thought to be one of the major factors in the anti-nutritive

properties of wheat pentosans. It is suggested that the resultant proliferation of

bacteria in the hindgut has a negative effect on digestion and absorption of nutrients

(Choct et al., 1992; Choct et al., 1995; Choct et al., 1996; Smits and Annison,

1996; Langhout, 1998). Very little research has been conducted specifically on the

influence of digesta viscosity on bacterial numbers in the GIT. That which has been

conducted has generally exaggerated the viscosity in the GIT to generate changes in

the microflora by actually affecting passage rate (Danicke et aI., 1997a, 1999). The

viscosities obtained in those studies were, however, substantially higher (30-220

jejunum; 140-810 ileum) than those generated by the wheat diets used in the current

studies (2.7-4.2 jejunum; 3.6-8.1 ileum). This would suggest that the model of high

viscosity used in many research trials is not appropriate to the understanding of the

effect of normal wheat diets on either the GIT microflora or nutrient utilization by

the bird.

While the bacterial data in both current experiments are not conclusive, there

is some indication that age and environmental conditions influence the bacterial

response to enzyme treatment. In Experiment 1, where bacteria were cultured only at

42 d, there was a tendency for some ileal anaerobic bacteria to be slightly higher in

number with enzyme supplementation than without. In the caeca, trends in the other

direction are evident. At the same age in Experiment 2, ileal Bifidobacterium trends

are more supportive of the literature in that the unsupplemented birds have slightly

higher numbers in the ileum. The differences between this and the first experiment

may be a result of the difference in antibiotic treatment between Experiments 1 and
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2. Interactions between dietary enzyme use and the use of antibiotics have

previously been reported. Antibiotic supplementation of enzyme diets was shown to

impact enzyme response positively in one case of a virginiamycin and xylanase

supplemented, wheat-based broiler diet (Schutte et aI., 1994), but negatively in a

virginiamycin and mixed-enzyme supplemented, barley-based broiler diet (Elwinger

and Teglof, 1991) and a flavomycin and mixed-enzyme supplemented, barley-based

layer diet (Vukic Vranjes and Wenk, 1996). Vukic Vranjes and Wenk (1996)

suggested that the enzymic release of smaller sized NSPs for bacterial fermentation

in birds with a mature gut flora results in increased VFA production and absorption,

presumably in the ileum and caecum, and hence, improved energy utilization.

Antibiotic supplementation, however, disrupts this flora, negating the beneficial

effect of enzyme supplementation.

Caecal bacteria in Experiment 2, for the most part, are higher without enzyme

than with and Bacteroides are significantly higher. This could be interpreted to

indicate that the relatively lower viscosities in this research versus much of the

published literature lead to substrate availability to the caecal bacteria without

enzyme. Enzyme supplementation, in this case, appears to increase ileal

fermentation leaving less substrate for caecal fermentation. This is opposite to much

of the theory of ileal bacterial overgrowth on higher viscosity, NSP diets versus low

NSP (ex. Com) or enzyme-supplemented high NSP diets (Wagner and Thomas,

1978; Choct et al., 1992; Choct et aI., 1995; Smits and Annison, 1996; Vahjen et

aI., 1998; Danicke et aI., 1999). The major difference between this and other
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published studies is lower digesta viscosities in the current research, which could

easily influence bacterial community composition (Choct et al., 1996; Smits and

Annison, 1996; Langhout, 1998).

On the whole, the use of bacterial culturing of a few genera of bacteria out of

the many hundreds that exist in the poultry GIT was not as useful a procedure as

anticipated. The reliance of bacteria growing in communities as complex as the GIT

upon host tissue secretions and upon growth factors provided by other bacteria limits

the effectiveness of traditional culturing of selected bacteria to observe responses to

diet (Apajalahti and Bedford, 2000). The response of bacterial fermentation end-

products, such as VFAs, to changes in diet and age may provide a more direct tool

for analysis (Corrier et al., 1990a; Choct et ai., 1996; Vahjen et ai., 1998; Choct et

al., 1999; Kocher et ai., 2000).

In Experiment 1, the only significant differences in VFA levels were between

com and wheat diets with com resulting in lower ileal'acetic acid, likely due to less

fermentable substrate available to the bacteria in the ileum, and higher caecal

propionic acid levels. The higher caecal propionic acid is likely due to the

fermentation of residual starch in the com (Van Soest, 1982) since ileal digestibility

of the starch in com has been shown to be as low as 85% (Noy and Sklan, 1995). It

might also be due to fermentation of com arabinoxylans which tend to favour the

production of propionic acid (Lopez et al., 1999). Little difference was observed in

.
VFA levels in Experiment 1 between enzyme and unsupplemented wheat diets.

Data from diet by age interactions for ileal VFAs in Experiment 2,

particularly propionic acid, unlike trends in the bacterial numbers, were highest with
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enzyme at 42 d. This supports the suggestion by Vukic Vranjes and Wenk (1996)

that mature birds have increased bacterial fermentation of enzyme released fibre

substrates in the small intestine. At 14 and 28 d, however, ileal VFAs were highest

without enzyme and lowest with enzyme, as discussed in the literature (Choct et aI.,

1995; Choct et aI., 1996; Vahjen et al., 1998). This suggests that the gut

microflora adapt to the physicochemical conditions in the gastrointestinal tract with

age and that bacterial fermentation patterns may reflect this better than numbers of

the selected bacterial types measured in this study.

GIT bacterial adaptation appears to occur both with age and dietary change.

Support for the diet side of this observation may be found in data from the treatments

where enzyme supplementation changed at 28 d. These birds showed rapid

responses in both viscosity and VFA levels to changes made at 28 d. This was seen

since the logistics of the experiment required the diets to be changed after the body

weights were measured each period. Sampling, however, took from that point in

time until later in the afternoon due to the large number of birds in the experiments.

Thus, the viscosity effects in birds fed the changed diets were observed within hours

of the dietary changes. The birds from whom enzyme was withdrawn had increased

levels of ileal acetic acid as we] I as significantly increased levels of caecal acetic,

butyric and total VFAs, indicating increased fermentation ofNSP substrates in both

the ileum, where a minor increase in viscosity occurred, and in the caecum, into

which the soluble NSP substrates could subsequently enter. In contrast, the birds

receiving enzyme supplementation at 28 d had lowered ileal acetic acid and total

VFA levels whereas caecal VFA. levels were not significantly affected by enzyme
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addition, indicating a possible change in the activity of the ileal flora initially adapted

to larger molecular weight NSP substrates, but now being exposed to smaller ones.

By 42 d, when viscosities were more similar between treatments, this effect

appears reversed with the enzyme withdrawal birds in both experiments showing

signs of decreased ileal fermentation as compared to enzyme supplemented levels.

Ileal acetic acid at 42 d was somewhat lowered by enzyme withdrawal in Experiment

I and ileal acetic, propionic and total VFAs were lowered in Experiment 2. By 42 d

the birds receiving late enzyme addition (28 d) increased ileal fermentation as shown

by significantly higher levels of acetic acid than any other treatment and total ileal

VFAs as high as fully supplemented birds in Experiment 2 and by numerically

highest ileal acetic acid levels in Experiment 1. Caecal fermentation patterns by 42

d showed all VFAs except iso-butyrate higher in enzyme withdrawal birds in both

experiments. Since iso-butyrate is highest in the caecum on enzyme supplemented

diets and is a product ofprotein fermentation it is possible that the enzyme, by

producing smaller, soluble NSP oligomers that could enter the caecum, helped

release proteins bound in cell wall components of wheat as suggested by Choct et al.

(1996). Other known sources of iso-butyrate production in the caeca are from uric

acid degradation (Braun and Campbell, 1989) and possibly endogenous and/or

microbial protein breakdown. Karasawa (1989) concluded that caecal amino acids

may be derived from diet, urine and endogenous proteins such as microbes, sloughed

intestinal mucosa and digestive enzymes, but does not evaluate specific VFA

production from these protein sources. Uric acid degradation is unlikely to have been

influenced by the dietary differences whereas endogenous, particularly microbial
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protein quantities, could have been impacted by enzyme supplementation.

The observed changes in fermentation pattern, both over time and with

change in enzyme status, suggest that while viscosity is high enough at the younger

ages to alter the GIT environment such that anaerobic bacteria proliferate in the

ileum of wheat-fed birds, by 42 d this effect is reversed and enzyme supplementation

actually enhances ileal bacterial fermentation. In particular, the bacterial population

of unsupplemented birds grew while they weren't on enzyme, then enzyme

supplementation at 28 d provided these bacteria with additional, easily degradable

substrate and a similar viscosity, thereby increasing ileal fermentation, as indicated

by the VFA levels for this treatment at 42 d. Apajalahti and Bedford (1998) suggest

that the ileal flora adapt to the presence of smaller xylo-oligomers generated by

enzyme hydrolysis which provide preferential substrate to certain bacteria of the

ileum. Since the bacteria do adapt, it is possible, then, that the mature (42 d) ileal

flora may be different enough that it is better able to handle the xylo-oligomers in

unsupplemented wheat diets than the potentially immature 28 d flora.

The size of the GIT influences overall bacterial numbers and, consequently,

the overall fermentive capacity of the GIT. While no significant differences in GIT

size were evident between enzyme supplemented and unsupplemented wheat-fed

birds in either experiment, there was a difference in GIT size between com and

wheat diets (Experiment 1). This difference in GIT size is a partial explanation for

the differences in VFA production or fermentation capacity seen between com and

wheat fed birds. The GIT is also substantially larger in 42 d versus 28 d birds with a

larger surface area for mucosal bacterial attachment and, therefore, may have
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resulted in the increased levels of total ileal VFAs from fermentation of enzyme­

generated xylo-oligomers in enzyme supplemented birds observed in Experiment 2.

While the literature suggests that caecal fermentation increases with enzyme

supplementation due to increased availability of easily degradable substrate to the

caecal bacteria (Choct et a/., 1995; 1996; Bedford 1996b; Choct et a/., 1999), in the

current experiments greater fermentation occured in the caeca without enzyme

supplementation. The diets used in the current studies yielded viscosities much lower

than other published studies and, therefore, unsupplemented diets in these

experiments resulted in degradation of soluble arabinoxylans lower in the hindgut

and release of these substrates to the caecal bacteria for fermentation. Enzyme

supplementation of the diets in the current studies resulted in the release of soluble

substrates higher in the GIT, and, therefore, resulted in ileal fermentation of these

substrates. This is particularly evident in older birds with more mature bacterial

populations that allow less substrate to enter the caeca with enzyme supplementation

than without. A comparison of the amount ofNSP remaining in the terminal ileum

between enzyme supplemented and unsupplemented birds would be useful in

determining how much NSP is degraded by bacteria and, ultimately, how much

benefit the bird is getting from the VFAs produced.

Most of the literature deals with birds from 7-21 d of age (Choct et a/., 1995;

Choct et a/., 1996; Langhout, 1998; Vahjen et a/., 1998; Danicke et al., 1999). In

the current experiments bacterial culturing was done at 28 and 42 d in consideration

of the observations made by Barnes et al. (1972) that it takes about 6 weeks to

establish an adult flora in the caecum. While Salanitro et al. (1978) observed
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dramatic changes in the GIT flora of corn/soy fed birds as young as 14 d of age, the

published literature to date does not address the adaptation seen in this study in the

GIT flora of birds on wheat diets, with and without enzyme supplementation,

between 28 and 42 d of age. From the data in Experiment 1, it is clear that the GIT

environment is very different between com and wheat-based diets and this will have

an impact on the development of the GIT bacteria. There is a lack of literature on the

development of GIT bacteria with age in domestic poultry and, particularly little on

wheat-fed birds. In addition, the differentiation between luminal and mucosally

attached bacteria may have been beneficial in more accurately correlating the VFA

responses with the bacterial population changes in this study.

In conclusion, the current study has demonstrated that the GIT itself adapts

more to the source of NSP rather than to its chemical structure since the wheat diets

in Experiment 1, whether supplemented with enzyme or not, yielded larger GIT

components than the com diet. The GIT flora adapt to the conditions created by the

presence of NSP in the diet, both to the viscosity changes by increasing in number

with increased viscosity and to substrate availability with specific bacteria and

overall fermentation, in some areas of the tract, increasing in response to the

enzyme-generated NSP substrates in the GIT. Volatile fatty acids can be used as a

measure of bacterial activity and are responsive to changes in diet NSP levels as well

as to the adaptation in the microflora that occur with age. It is suggested that the

age-related changes in bacterial development interact with the substrates provided in

the GIT by enzyme supplementation to yield the changes in fermentation seen in the

ileum of older, wheat-fed broilers.
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4.0 INFLUENCE OF DIETARY NON-STARCH POLYSACCHARIDE AND

ENDOXYLANASE SUPPLEMENTATION ON OVERALL LEVELS OF

AEROBIC AND ANAEROBIC BACTERIA IN THE ILEUM AND

CAECUM OF THE BROILER CHICKEN AT TWO AGES.

4.1 Abstract

An experiment was conducted to determine the impact of dietary NSP and

endoxylanase supplementation on aerobic and anaerobic bacteria in the hindgut of

broiler chickens. A total of 600 male broiler chicks were assigned at one d of age to

4 replicates each of 3 dietary treatments. A wheat-based diet with or without added

endoxylanase (Avizyme 1300, 1 kg/tonne) was compared to a com-based diet with a

similar nutrient composition. Bird performance was measured at 14, 28 and 42 d of

age. Birds were sampled at 28 and 42 d, and ileal and caecal samples were cultured

for total aerobes and total anaerobes. Com and enzyme supplemented wheat-fed

birds performed equally well with unsupplemented wheat-fed birds having the

highest gain to feed ratios after 14 d and overall. Enzyme supplementation of wheat

diets resulted in the highest numbers of caecal anaerobes with com-fed birds having

the lowest number. At 42 d, birds had higher numbers of caecal anaerobes than at 28

d. At 28 d, caecal aerobes were highest on enzyme-supplemented wheat diets

(P<0.10) while at 42 d, caecal anaerobes were lowest on the com diet and similar for
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the two wheat diets. Therefore, despite performance similarities between com-fed

and enzyme-supplemented, wheat-fed birds, there are definite differences in the

bacteria present in the hindgut on each diet. This is likely due to the difference in

residual dietary substrate in the hindgut of the birds fed different diets and its ability

to enter the caeca. The substrates present in the ileum of enzyme-supplemented birds

may be of benefit to both the bird, by being more easily digested, and to the different

cross-section of caecal bacteria present. Less NSP substrate is likely to be available

in the hindgut of com-fed birds.

4.2 Introduction

The use of enzymes to improve the performance of wheat-fed broilers is

common practice in the poultry industry. The concern that dietary NSP, such as that

found in wheat, causes elevation of digesta viscosity and subsequent increases in the

population of anaerobic bacteria in the small intestine is raised in a number of

research papers (Annison et al., 1968; Wagner and Thomas, 1978; Choct et al.,

1995; Choct et aI., 1996; Smits et al., 1998; Langhout, 1998; Choct et al., 1999;

Langhout et al., 1999). Enzyme use, while reducing digesta viscosity, is also

suspected of influencing the native bacterial populations in the ileum and caecum of

broiler chickens (Choct et al., 1995; Choct et al., 1996; Bedford 1996b; Vahjen et

al., 1998; Choct et a/., 1999). Research has indicated a probable negative role of

bacterial overgrowth in terms ofcompetition for substrates and decreased nutrient

digestibility (Bedford, 1996a; Langhout et al., 2000) as well as possible positive

roles such as improved gut health and exclusion of colonization by pathogens
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(Stavric et al., 1992; Nisbet et aI., 1993; Corrier et al., 1995; Hume et al., 1995;

Bedford 1996b). A previous study indicated a shift in bacterial populations with

dietary NSP, as expected, and with age (Chapter 3). That study demonstrated that

certain anaerobic bacteria increase fermentation with increased viscosity and that

ileal anaerobic bacteria increase fermentation with increasing substrate availability

from enzyme-generated NSP. Nearly all published literature on GIT microflora as

influenced by NSP and enzyme refers to birds from 0-21 d of age. The previous

study showed changes occurring at 28 d of age and later, meaning that work with

young birds cannot be extrapolated to older birds. Since that study showed only

moderate bacterial response from the small number of groups cultured, the current

study was designed to look at broader groups of bacteria to see if some of the

observed trends could be confirmed. The objective of the current study was,

therefore, to investigate changes in total aerobic and anaerobic bacteria numbers in

both the ileum and caecum of the broiler chicken fed diets differing in NSP content

and enzyme supplementation at two ages.

4.3 Materials and Methods

4.3.1 Bird Management, Diets and Sampling

A total of 600 male, day old broiler chickens (Hubbard x Petersen) were

randomly assigned to four replicate pens each of three dietary treatments. Floor pens

bedded with straw accommodated 50 birds each. Dietary treatments included a com­

based diet, a wheat based diet, and a wheat based diet supplemented with a

commercial xylanase (Avizyme 1300: Xylanase activity 2700 illig, Protease activity
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800 IU/g; Finnfeeds International, Marlborough, Wiltshire, UK, SN8 lXN). Diets

were calculated to be of similar nutrient composition with 3,000 kcal/kg AME and

22 %, 20 % and 19 % CP, respectively for the starter, grower and finisher diets

(Chapter 3, Table 3.3.1a,b,c). Virginiamycin was not added in an attempt to

minimize any impact other than the dietary treatments on the GIT flora. Feed and

water were provided ad libitum.

Birds were cared for using standard management practices of the University

of Saskatchewan. Initial room temperature was 35 C and was gradually decreased to

22 C by 35 d. This temperature was maintained to the end of the trial. The starter

diet was fed from 0-14 d, the grower from 15-28 d and the finisher from 29-42 d.

Pen weights were taken at each diet change. Feeders were weighed to calculate feed

consumption. Weight gain and feed conversion efficiency were calculated for each

two week period and overall.

At 28 and 42 d, two birds per replicate were killed by injection of T-61

euthanasia solution (Embutramide 200mgjmL, Hoechst Roussel Vet Canada Inc.,

Regina, SK). The abdominal cavities of the birds were opened and the terminal

10cm of the ileum and the left caecum were tied off with dental floss, ligated and

placed immediately on ice. These samples were taken to the laboratory for

microbiological plating on selective media.

The experimental protocol was approved by the Animal Care Committee, and

the procedures were performed in accordance with the requirements of the Guide to

the Care and Use of Experimental Animals (Canadian Council on Animal Care,

1993).
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4.3.2 Bacteriology

Samples of ileal and caecal contents were weighed into sterile, conical

dilution tubes with peptone water and cysteine hydrochloride in a laminar flow hood.

Samples were serial diluted with a solution ofpeptone water and cysteine

hydrochloride. Plating was done using an Autoplate 4000 (Spiral Biotech, Bethesda,

MD) spiral diluter. The medium in the plates was TSA Blood Agar Base (DIFCO

Laboratories, Detroit, MI) with 5% sheeps blood. Plates for total aerobes were

incubated for 24 h at 37 C under aerobic conditions and plates for total anaerobes

were incubated for 24 h at 37 C in anaerobic jars with BBL GasPak Plus (Becton

Dickinson Microbiology Systems, Cockeysville, MD) anaerobic system envelopes

with palladium catalyst. Anaerobic indicators (BBL GasPak Disposable Anaerobic

Indicators, Becton Dickinson Microbiology Systems, Sparks, MD) were placed in the

jars prior to sealing. Colonies on incubated plates were counted by hand using the

Spiral Biotech sector counting grid.

4.3.3 Statistical Analysis

The experiment was analysed as a two-way analysis of variance using the

general linear models procedure of SAS (SAS Institute, 1989) to determine

significant effects of treatment, age and interactions. Significant mean differences

(P<O.05) were determined using Duncan's multiple range test (Steel and Torrie,

1980). The bacterial data was log transformed prior to statistical analysis and

predetermined orthogonal contrasts were used to compare corn and wheat as well as

enzyme and unsupplemented wheat diets.
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4.4 Results

4.4.1 Performance

The com-fed birds grew the fastest early on (0-28 d) but were the same size

as wheat fed birds by 42 d. Birds fed unsupplemented wheat diets ate more feed

over the course of the experiment and consequently had poorer feed conversion than

either the com-fed birds or the enzyme-supplemented, wheat-fed birds (Table 4.4.1).

There were no treatment effects on bird mortality.

4.4.2 Bacteriology

Main effects of diet and age on bacterial numbers showed that only caecal anaerobes

were affected by dietary treatment with birds on the com diet having the lowest

number and those on the enzyme-supplemented wheat diet having the highest

number (P<0.06) (Table 4.4.2). The unsupplemented wheat diet resulted in numbers

of caecal anaerobes intermediate to the other two diets'. In addition, 42 d birds had

higher numbers of caecal anaerobes than 28 d birds.

When analysed by age, the only significant treatment effect on bacterial populations

was that of wheat-fed birds at 42 d having significantly greater numbers of caecal

anaerobic bacteria than com-fed birds (Figure 4.4.1). The only trend of note was at

28 d when enzyme-supplemented wheat-fed birds had higher numbers of aerobes

(P=0.10) in the caeca. This trend was gone by 42 d.
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Table 4.4.1 Effect of dietary NSP and xylanase supplementation on
performance of broiler chickens at three ages

Treatments
Parameter and P SEM

Period Com Wheat Wheat +
Enzyme

Wt. Gain
0.003

0-14d 0.3473 0.333b 0.334b *

15-28 d 1.0453 1.000b 0.992b *** 0.008

29-42 d 1.279 1.259 1.232 NS
0.018

0-42 d 2.670 2.592 2.558 NS
0.024

Feed Cons.
0.008

0-14 d 0.403 0.471 0.429 NS

15-28 d 1.617b 1.8323 1.612b ** 0.036

29-42 d 2.978 3.135 2.869 NS
0.058

0- 42 d 5.541 b 6.0133 5.577b 0.07
0.096

Gain:Feed l

0.016
0-14 d 0.923 0.866 0.852 NS

15-28 d 0.7123 0.605b 0.6783 *** 0.015

29-42 d 0.4883 0.458b 0.4903 *** 0.005

0- 42 d 0.6143 0.555b 0.601 3 *** 0.008

1Mortality corrected.
3,b Means within rows with no common superscript differ significantly
(*=P<0.05;**=P<0.01;***=P<0.001; NS = not significant).
SEM = pooled standard error of the mean.
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Table 4.4.2 Main effects of dietary NSP, xylanase supplementation and age
on numbers of total aerobes and total anaerobes in the ileum and caecum of
broiler chickens

Variables
Bacterial Counts (loglOCFU/g wet digesta)

II 1A b
Ileal Caecal Caecal

ea ero es Anaerobes Aerobes Anaerobes

Diet Com 6.95 7.08 7.53 8.32b

Wheat 6.63 7.16 7.63 8.72ab

Wheat plus
Enzyme

6.55 6.87 7.92

NS

NS
*

0.06

NS

0.147

NS

NS

NS
NS
NS

7.72
7.66

NS

NS

NS
NS
NS

7.05
7.03

NS

NS

NS
NS
NS

6.81
6.56

Age 28
(d) 42

Statistics
Diet
Age
Diet X Age
Contrasts:
Com vs Wheat (No
E)
Wheat (No E) vs
Wheat plus Enzyme
SEM 0.156 0.148 0.108
a,b Means, within a column and main effect, with differing superscripts are
significantly different (* = P<0.05; NS = not significant).
SEM = pooled standard error of the mean.
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4.5 Discussion and Conclusions

The significantly poorer perfonnance of the birds fed wheat diets without enzyme

supplementation might lead to speculation that ileal anaerobic bacterial overgrowth

is occurring. A limited number of studies (Feighner and Dashkevicz, 1988;

Bedford, 1996a; Choct et ai., 1996; Langhout et ai., 2000) have linked poorer

perfonnance of birds fed diets high in NSP with increased ileal bacterial

proliferation. Others have shown that increased bacterial fennentation in the ileum

of birds fed high NSP diets (from either wheat pentosans or highly methylated citrus

pectin) has a negative impact on nutrient digestion and absorption (Choct et ai.,

1992; Choct et ai., 1999; Langhout et ai., 2000). Improvements in bird perfonnance

occur when rye or wheat diets are supplemented with a xylanase or NSP-degrading

enzyme (Grootwassink et ai., 1989; Choct et ai., 1996). Improvements in nutrient

digestibility also occur with enzyme supplementation (Langhout et ai., 1997; Choct

et ai., 1999). In the current study, however, ileal bacteria measured as total aerobes

and total anaerobes, were not affected by dietary treatment, despite the improvements

in perfonnance seen with both enzyme supplementation and the corn-based diets.

While enzyme supplementation of the wheat diet resulted in significantly

(P<0.06) greater numbers of caecal anaerobes than the corn diet and a trend toward

higher numbers of caecal aerobes, it is necessary to analyze the data by age to

observe the trends more closely. The enzyme diet appears to result in the highest

numbers of both aerobes and anaerobes in the caeca at 28 d, while both wheat diets

have higher numbers of anaerobes by 42 d. By 42 d, aerobe numbers are similar
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across treatments. It may be that at the low digesta viscosities generated by the

wheat diets used in the current study, as seen from the data ofprevious studies

(Chapter 3, Tables 3.4.2 and 3.4.3), enzyme supplementation provides substrate

readily accessible to the caecal bacteria. At 28 d both aerobes and anaerobes flourish

in the caeca then, as the ileal flora matures and adapts to degrade the larger NSP on

the unsupplemented wheat diets, they produce higher levels of lactate (Vahjen et aI.,

1998) which provide the caecal anaerobes with substrate, allowing for their

proliferation. A similar concept was proposed by Bedford (1996b) for enzyme

supplemented diets and was said to lead to better GIT health and, potentially, better

bird performance. In the current experiment, by 42 d, both supplemented and

unsupplemented wheat diets resulted in similar levels of caecal anaerobes, likely due

to the absence of ileal viscosity differences at this age. Performance, however, is

still better on the enzyme supplemented diet which may be due to the differences in

substrate utilization described by Bedford (1996b) and Vahjen et al. (1998).

In addition, although performance was similar between the com-fed and the

enzyme-supplemented, wheat-fed birds, the bacterial profiles were different. This

may be accounted for by differences in the residual dietary substrates present in the

GIT between the diets. The com diet has a lower inherent level of NSP than either

wheat diet due to the NSP content of the major grains (Choct and Annison, 1990).

Bedford and Classen (1992) observed that both the molecular weight distribution of

residual NSP and the actual sugar composition of the NSP in the broiler GIT changes

with differing levels of dietary rye substitution for wheat and differing levels of

pentosanase supplementation. Further evidence for the presence of different
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substrates may be found in the work of Vahjen et al. (1998) who found that

xylanase-supplementation of wheat-based diets resulted in lower levels of

enterobacteria and gram-positive cocci but higher levels of tissue-associated

Lactobacillus spp. in the duodenum, jejunum and ileum of broilers up to 21 d of

age. The differences in the types and quantities of fermentation end-products in the

GIT, such as lactate and VFAs, measured by these researchers are also indicative of

differences in substrate availability. Apajalahti and Bedford (2000) have also shown

differences in the composition of the community of GIT bacteria in broiler chickens

fed wheat, rye and com-based diets which were said to be accounted for by the

differences in the substrate available to the bacteria for fermentation. While these

differences did not affect performance between the com-fed birds and the enzyme

supplemented, wheat-fed birds, they may have contributed to the poorer performance

of the unsupplemented, wheat-fed birds. In addition, using total bacterial numbers

may also cover up possible beneficial or negative effects of specific genera of

bacteria.

Dietary substrate also has an influence on overall numbers of bacteria in the

ileum of broiler chickens. Bacterial numbers have been shown to be higher on high

NSP diets by a number of researchers (Wagner and Thomas, 1978; Langhout, 1998;

Smits et al., 1998; Langhout et aI., 1999). Indirect evidence for increased bacterial

numbers in the ileum of high NSP diets through the demonstration of increased VFA

production has also been published (Annison et al., 1968; Choct et aI., 1996;

J0rgensen et at., 1996; Choct et aI., 1999). In the current study, overall numbers of

ileal and caecal aerobes and anaerobes were used to determine a general effect of
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dietary treatment on the intestinal bacteria. The differences observed in anaerobic

bacterial numbers could have an influence on performance parameters, depending

upon the types of bacteria that increase. Some anaerobic bacteria are beneficial and

can enhance performance, while others may be detrimental. Ideally, determination of

the specific genera of anaerobic bacteria that change with dietary treatment should be

determined but the culturing of selected specific genera of bacteria in previous

experiments (Chapter 3) was not adequate to demonstrate overall dietary differences.

In conclusion, despite performance similarities between com-fed and

enzyme-supplemented, wheat-fed birds, there are differences in the numbers of

bacteria present in the caecum of birds on each diet. This is likely due to the

difference in residual dietary substrate in the hindgut of the birds fed different diets.

The substrates present in the ileum of enzyme-supplemented birds may be of benefit

to both the bird, possibly through use of the end-products of bacterial fermentation,

and possibly simply by providing an environment conducive to the proliferation of

beneficial bacteria, and to the caecal bacteria present. Less NSP substrate is likely to

be available in the hindgut of com-fed birds. The unsupplemented wheat-fed birds

likely performed poorly as a result of the time required for the bacteria of the ileum

to adapt to utilizing the NSP substrates and, ultimately, providing breakdown

products to the caecal bacteria.
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5.0 INFLUENCE OF AGE, DIETARY NON-STARCH POLYSACCHARIDES

AND ENDOXYLANASE SUPPLEMENTATION ON THE

GASTROINTESTINAL TRACT, BACTERIAL FERMENTATION AND'

RESIDUAL NSP SUBSTRATES IN THE BROILER CHICKEN.

5.1 Abstract

An experiment was conducted to determine the impact of age, NSP content and

xylanase supplementation on gastrointestinal tract size, bacterial fermentation, and

residual NSP in the broiler chicken. Male broilers (840) were fed diets containing

corn (C), wheat (W) or wheat supplemented with endoxylanase (E, Avizyme 1300, 1

kg/t). Birds were sampled weekly for GIT lengths and weights and collection of GIT

contents for viscosity, volatile fatty acid (VFA) and residual NSP (total sugar)

determination. Jejunal viscosity was highest (P<0.05) for the W treatment at all ages

except 7 d. Ileal viscosity was highest in this diet at all ages. Jejunal and ileal lengths

and weights as a proportion of body weight were generally largest for W, followed

by E, and smallest for C. Caecal lengths followed the same pattern but caecal

weights were highest for E, followed by W then C. Ileal VFAs were not affected by

treatment. Caecal acetic acid was highest for birds fed the Wand E treatments,

whereas caecal pH, isobutyric, isovaleric and valerie acids were highest for corn-fed
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birds. Caecal propionic acid was highest for birds fed C, followed by W, with E

having the lowest levels. There was a significant interaction between diet and age

for propionic acid. The higher NSP content of the wheat diets likely caused the

increased GIT size of the Wand E treatments. While the NSP in Wand E treatments

are broken down by the caecal bacteria to acetate and butyrate, the C treatment

resulted in the production ofpropionate and isovalerate. The latter finding suggests

that undigested starch and protein from com enter the caeca and are being fermented

by bacteria in this location. E diets had higher amounts of soluble and low mol. wt.

NSP derived arabinose and xylose present in ileal contents (P<O.OOl) than W and C

diets. As the birds aged, proportionally more arabinose and xylose was solubilized

from the W diet. The E treatment had higher, but relatively steady levels of soluble

arabinose and xylose whereas the C treatment had the lowest levels and no change

was seen with age. This suggests a bacterial adaptation to wheat NSP with age of the

bird and the presence ofNSP resistant to ileal bacterial hydrolysis in com diets.

5.2 Introduction

The poultry feeding industry has been using enzymes to supplement wheat­

based diets for a number of years. Research on enzyme modes of action has shifted

from non-starch polysaccharide (NSP) breakdown, decreased digesta viscosity and

increased availability of or access to nutrients (Chesson, 1987; Petterson and Aman,

1989; Bedford and Classen, 1992; van der Klis et at., 1995; Steenfeldt et at.,

1998a,b), towards the interaction between the effects of decreased digesta viscosity

and the gastrointestinal tract (GIT) microflora (Choct et at., 1996; Vahjen et at.,
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1998; Danicke et al., 1999). Previous experiments in this area (Chapters 3 & 4) have

demonstrated the adaptability of the microflora to the presence of dietary NSP and

xylanase supplementation of wheat-based diets. These experiments also indicated a

possible age-related change in bacterial development that appeared to involve an

interaction with the substrates provided in the GIT by enzyme supplementation and

bacterial fermentation.

Intact NSP from wheat have been shown to increase digesta viscosity in

broiler chickens (Annison, 1993; Chesson, 1995; Choct and Annison, 1992b; Choct

et aI., 1996). With enzyme supplementation, NSP are depolymerized into smaller

molecular weight components (Petterson and Aman, 1989; Bedford et al., 1991;

Bedford and Classen, 1992; Bedford and Apajalahti, 2001). Some studies have

demonstrated the poorer absorption ofD-xylose and L-arabinose, relative to D­

glucose by chickens (Longstaff et al., 1988; Schutte, 1990; Schutte et aI., 1991) and

in pigs (Yule and Fuller, 1992; Haberer et al., 1998) therefore increasing their

availability as substrate for microbial breakdown. The release of monosaccharides

from NSP, however, is not the major, immediate effect of enzyme supplementation,

depolymerization is. While the depolymerization ofNSP is of benefit in terms of

reduced digesta viscosity and improved performance, it is, as yet, unclear what the

fate of these NSP in the chicken GIT is.

The objectives of this study were to examine the respective influences of age,

dietary NSP and endoxylanase supplementation on the size of the GIT, bacterial

fermentation within the GIT and on the size, volume and composition of residual

NSP substrates in the terminal ileum of the broiler chicken.
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5.3 Materials and Methods

5.3.1 Bird Management and Diets

A total of 840 day-old male commercial (Peterson X Arbor Acres) broiler

chicks were randomly assigned to 4 replicate pens for each of 3 dietary treatments.

Dietary treatments consisted of practically formulated starter, grower and finisher

rations based on com, wheat or wheat plus enzyme (Avizyme 1300; xylanase

activity 2700 IU/g; protease activity 800 IU/g; Finnfeeds International, Marlborough,

Wiltshire, UK, SN8 lXN) at the recommended supplementation level of 0.1 % of the

diet. The diets were calculated to provide 3000 kcallkg energy and 22 %, 21 % and

20 % crude protein for the starter, grower and finisher diets, respectively (Chapter 3,

Table 3.3.1). Virginiamycin was not added in an attempt to minimize any impact

other than the dietary treatments on the GIT flora. Feed and water were provided ad

libitum. Diets contained Celite® (Celite Corp., Lompac, CA 93436) as an acid­

insoluble ash marker. Diets were changed at 14 and 28 d of age with the starter in

crumble form and the grower and finisher diets pelleted. The high viscosity wheat

used to make the diets was not available for the finisher diets and so a commercial

feed grade wheat was used for this phase. In vitro viscosity of all diets was

measured according to the method of Bedford and Classen (1993).

Birds were cared for using standard management practices of the University

of Saskatchewan. Initial room temperature was 35 C and was gradually decreased to

22 C by 35 d. This temperature was maintained to the end of the trial. Pen weights

were taken at each diet change. Feeders were weighed to calculate feed
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consumption. Mortality was recorded daily along with weights of dead birds. Gain

to feed ratio was calculated and corrected for mortality weight gain.

The experimental protocol was approved by the Animal Care Committee, and

the procedures were performed in accordance with the requirements of the Guide to

the Care and Use of Experimental Animals (Canadian Council on Animal Care,

1993).

5.3.2 Bird Sampling and Gastrointestinal Tract Measures

Four birds per replicate were killed each week by injection with T-61

euthanasia solution (Embutramide 200mg/mL, Hoechst Roussel Vet Canada Inc.,

Regina, SK). Intestinal tracts were excised and divided into the jejunum, ileum and

paired caeca. Component lengths, and weights were taken before and after the

components were gently rolled to extract their contents. The contents were pooled

across the 4 birds and analyzed for pH, viscosity and volatile fatty acids. The pH

was measured immediately upon pooling using a portable pH meter (Model 59002­

00, Cole-Parmer Instrument Co., Niles, IL). Viscosity was measured on supernatant

from jejunal and ileal contents using a Brookfield Viscometer (Model DV-III,

Brookfield Engineering Laboratories, Inc., Stoughton, MA). The remaining samples

were frozen for subsequent VFA analysis. Samples from the terminal ileum

(halfway from the Meckel's Diverticulum to the ileo-caecal junction) of 4 additional

birds per replicate were taken for determination of dry matter, acid-insoluble ash and

residual NSP (total sugar analysis).
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5.3.3 Volatile Fatty Acid Analysis

Sub-samples ofjejunal (0.5 g), ileal (0.5 g) and caecal contents (0.2 g) were

weighed into microcentrifuge tubes, vortexed with 1 ml of prepared internal standard

(iso-caproic acid) solution, and centrifuged at 15, 900 x g. Volatile fatty acids were

measured on the supernatant using a gas chromatograph (Varian Star 3400Cx

equipped with a Varian 8200Cx autosampler, Varian, Walnut Creek, CA). The

column used was a glass capillary column packed with carbowax fused silica

(Stabilwax-DAS, RESTEK Corporation, Bellefonte, PA). The injector temperature

was 220 C, the initial column temperature was 140 C, held for 5 minutes, then

gradually increased to 220 C, and the flame ionization detector temperature was 230

C. Results were expressed as mmol/L and converted to Ilmol/g wet digesta. The

method used was a modification ofCorrier et al. (1990a) with the modifications

being adaptations for use with a capillary column and different internal standards, as

outlined above.

5.3.3.1 Non-starch Polysaccharide Analysis and Digestibility Determination

Ileal samples were taken as whole wet samples (200 mg), as soluble ileal

digesta (supernatant from 500 mg ileal digesta centrifuged at 15, 900 x g), or as the

low molecular weight portion of the soluble ileal digesta (500 ilL of supernatant

filtered through NanosepTM microconcentrators (Pall Filtron Corporation,

Northborough, MA) with a molecular weight cut-off of 100 kDa. The filtration was

conducted in a high-speed centrifuge (13,800 x g). All three fractions were subjected

to partial NSP analysis (Englyst and Hudson, 1987; Englyst, 1989) for quantification

126



of the total sugar content of the ileal digesta. The removal of starch was eliminated

from the NSP analysis to prevent loss of smaller oligosaccharides and free sugars

present in the ileal digesta which would have been present as a result of either

microbial or host enzyme degradation of dietary NSP. The analysis, therefore,

commenced with acid hydrolysis of the component NSP, followed by derivitization

to alditol acetates and quantification by gas chromatography.

Whole ileal samples were also subjected to dry matter (AOAC, 1990) and

acid-insoluble ash analyses. Diets and digesta were analyzed for acid insoluble ash

marker using a modification of the method of Vogtmann et at. (1975). Samples (1-2

g) were weighed into 16x125 mm disposable borosilicate tubes, ashed at 500 C for

24 h or until contents were reduced to white ash. This was followed by slowly

adding 5 ml of 4N HCl and vortexing, covering the tubes with glass marbles and

heating in an oven at 120 C for one h before centrifuging at 2500 x g for 10 min.

The supernatant was then removed and samples washed repeatedly with 5 ml water

(with vortexing and centrifugation as described above). Samples were then dried at

80 C overnight, followed by ashing at 500 C overnight. The percent acid insoluble

ash was calculated as (total ashed wt - tube wt) / (original - tube wt). The acid­

insoluble ash marker was used to calculate dry matter and NSP (or total sugar)

digestibility.

5.3.4 Statistical Analysis

The experiment was analyzed as a two-way analysis of variance using the

general linear models procedure of SAS (SAS Institute, 1989) to determine
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significant effects of treatment, age and interactions. Significant mean differences

(P<0.05) were determined using Duncan's multiple range test (Steel and Torrie,

1980).

5.4 Results

5.4.1 Bird Performance and Digesta Viscosity

All birds performed well with no treatment differences in gain, except at 14 d

where com-fed birds had higher gain than the two wheat-fed treatments (Table

5.4.1). Feed consumption, at 14 d, was highest for the wheat-fed birds, lowest for

the com-fed birds, and intermediate for the enzyme-supplemented, wheat-fed birds.

There were no treatment differences at any other age. Gain to feed ratio was again

only affected by treatment at 14 d where com-fed birds outperformed both wheat-fed

treatments. This trend was evident across all ages. There were no treatment effects

on bird mortality.

Digesta viscosities were lowest for birds fed the com and enzyme­

supplemented wheat diets at most ages (Table 5.4.2) except at 35 d where both

jejunal and ileal viscosity were similar between the two wheat-based diets, and at 42

d where the com treatment was lowest, the wheat plus enzyme treatment

intermediate, and the wheat treatment was highest. There was no effect of diet on

ileal digesta dry matter content (Table 5.4.3). Age, however, did significantly

influence ileal dry matter with 28 and 35 d birds having higher ileal dry matter

content than 42 d birds. Analysis of diet in vitro viscosity showed that all
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Table 5.4.1 Effect of dietary NSP and enzyme supplementation on body
weight gain, feed consumption and gain to feed ratio in broiler chickens

Treatments

Parameter p SEM
and Period Corn Wheat Wheat plus

Enzyme

Weight Gain
0-14 d 0.356a 0.328b 0.332b ** 0.005

15-28 d 1.007 1.008 1.008 NS 0.003

29--42 d 1.265 1.364 1.272 NS 0.048

0-42 d 2.627 2.700 2.612 NS 0.050

Feed Consumption
0-14 d 0.569b 0.600a 0.590ab * 0.006

15-28 d 1.393 1.425 1.455 NS 0.032

29--42 d 4.494 4.389 4.411 NS 0.096

0- 42 d 9.190 8.552 8.984 NS 0.218

Gain:Feed l

0-14 d 0.766a 0.678b 0.691 b *** 0.012

15-28 d 0.965 0.932 0.919 NS 0.023

29--42 d 0.508 0.494 0.482 NS 0.008

0- 42 d 0.703 0.658 0.660 NS 0.010

I Mortality corrected.

a,b Means within rows with no common superscript differ significantly (* = P~0.05;

** = PSO.01; *** = PSO.001; NS = not significant).

SEM = pooled standard error of the mean.
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three starter diets had similar, low viscosities with the com diet having the lowest

extract viscosity in the grower and finisher phases (Table 5.4.4). The highest

viscosity was seen in the unsupplemented wheat grower diet. The enzyme had a

significant effect on in vitro viscosity only in the grower diets.

5.4.2 Gastrointestinal Tract Measures

A common trend was seen for ileal and jejunal measurements as a proportion of body

weight (Table 5.4.5). The ranking of sizes was wheat> wheat plus enzyme> com,

although the significance of these differences varied. Values for com-fed birds were

consistently smaller than for those fed wheat while the wheat plus enzyme treatment

values were intermediate. A similar ranking was seen for caecal length, but in

contrast, caecal weight measurements were largest for the wheat plus enzyme

treatment followed by the wheat and com treatments, in diminishing order. A similar

order was found for caecal content weight. For all measures, the relative size

decreased with age of the bird.

Significant diet by age interactions were seen for both full and empty jejunal

weights, and empty caecal weights. In the jejunum, the wheat diet yielded heavier

weights from 0-21 d after which the enzyme supplemented diet resulted in equally

heavy jejunal weights with com diets having the lightest components (Table 5.4.6).

In the caecum, at 14 and 21 d, the enzyme diet resulted in the heaviest empty weights

with wheat and com being similar until 35 d when enzyme and com treatmel}ts

yielded the heaviest weights and unsupplemented wheat resulted in lighter weights.
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Table 5.4.2 Effects of diet and age on jejunal and ileal digesta supernatant
viscosity (cps) in broiler chickens

Treatments
Gut Age P SEM

Segment (d) Com Wheat Wheat plus
Enzyme

Jejunum 7
1.98 2.31 2.13 NS 0.086

14
1.91 b 4.09a 2.35ab * 0.403

21 1.84b 6.79a 3.12b *** 0.671

28 1.77b 6.29a 2.79b *** 0.624

35 2.14b 2.98a 2.59a ** 0.126

42 1.85c 3.32a 2.58b *** 0.197

Ileum 7
2.08b 2.31 ab 0.08 0.2133.16a

14 2.11 b 5.12a 2.80b ** 0.478

21 2.38b 16.45a 4.95b ** 2.278

28 3.08b 8.53a 3.78b ** 0.856

35 2.83b 3.69ab 4.46a 0.08 0.306

42 2.55b 4.51 a 2.82b * 0.339

a,b,c Means within rows with no common superscript differ significantly (* = P <0.05;
** = PSO.Ol; *** = PSO.001; NS = not significant).
SEM = pooled standard error of the mean.
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Table 5.4.3 Effect of diet and age on ileal digesta dry matter content in broiler
chickens

Variables

Diet Com

Wheat

Wheat plus Enzyme

Ileal Digesta Dry Matter Content (0/0)

28.78

29.63

26.35

Age
(d)

Statistics

7
14
21
28
35
42

27.68ab

28.22ab

26.53ab

32.90a

31.31 a

22.88b

Diet NS
Age *

Diet X Age NS
SEM 0.92

a,b Means within a column, within a main effect, with no common superscript differ
significantly

(* =P:::;0.05; ** =P:::;O.OI; NS = not significant).

SEM = pooled standard error of the mean.
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Table 5.4.4 Effect of major dietary grain on in vitro extract viscosity (cps) of
diets

Period

Corn

Treatments

Wheat Wheat plus
Enzyme

p SEM

Starter 2.50 2.79 2.85 NS 0.07

Grower 2.35c 3.80a 2.96b *** 0.19

Finisher 2.14b 2.88a 3.21 a *** 0.15

a,b,c Means within rows with no common superscript differ significantly (*** =

P~O.OO1; NS = not significant).

SEM = pooled standard error of the mean.
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Table 5.4.5 Main effects of diet and age on size and fill of the gastrointestinal tract

Gastrointestinal Tract Size and Fill (as a proportion of body weight»)
Jejunum Ileum Caeca

Variables Full Empty Full Empty Full Empty
Length

Wt Wt
Contents Length

Wt Wt
Contents Length

Wt Wt
Contents

Diet Corn
9.56b 3.22b 1.93b 1.30b 9.40b 2.62c 1.43b 1.19b 3.S0b 0.73b 0.46b 0.27

Wheat
10.19a 3.46a 2.04a 1.42a 10.12a 2.93a 1.57a 1.36a 4.09a 0.77ab 0.47b 0.30

Wheat
plus

9.S4ab 3.30b 1.97b 1.33ab 9.76ab 2.77b 1.53a 1.24b 4.01 a 0.S2a 0.49a 0.32
....... Enzyme
V.)

~

Age 7 27.10a 5.13a 3.02a 2.12a 26.57a 4.67a 2.47a 2.19a 10.56a 1.20a 0.69a 0.52a

(d) 14 13.50b 3.77b 2.35b 1.42b 12.90b 2.97b 1.71 b 1.26b 5.07b 0.7Sb 0.53b 0.25b

21 7.54c 3.34c I.S6c I.4Sb 7.67c 2.72c 1.39c 1.33b 3.03c 0.70bc 0.44c 0.27b

2S 4.72d 2.S6d 1.76d 1.11 c 4.95d 2.31 d 1.2Sd 1.06c 2.20d 0.70bc 0.42cd 0.2Sb

35 3.60e 2.57e 1.53e 1.04cd 3.70e 2.05e 1.12e 0.92d 1.65e 0.64cd 0.39de 0.25b

42 2.72f 2.29f 1.37f 0.92d 2.79f 1.91 e 1.11 e O.Sl d 1.30f 0.60d 0.3Se 0.23b

Statistics

Diet ** ** ** * ** *** *** *** ** ** ** 0.06

Age *** *** *** *** *** *** *** *** *** *** *** ***
Diet x Age NS ** * NS NS NS NS NS NS NS * NS

SEM 0.50S 0.063 0.036 0.031 0.493 0.061 0.031 0.032 0.191 0.017 O.OOS 0.011
'(value/body weight) X 100.

a-f Means within a column, within a main effect, with differing superscripts are significantly different (* = PSO.05; ** = PSO.Ol; ** =PSO.OOl;
NS = not significant); SEM = pooled standard error of the mean.



5.4.3 Volatile Fatty Acid Analysis

Volatile fatty acid data indicate very little dietary treatment influence on jejunal and

ileal volatile fatty acid levels (Table 504.7). Com diets yielded the lowest levels of

jejunal isovaleric acid while com and enzyme-supplemented diets yielded the lowest

levels ofjejunal valeric and ileal isobutyric acids. Unsupplemented wheat diets

resulted in the highest levels of these VFAs. Ileal pH was highest for the com diet'

and similar for the two wheat diets. In the jejunum, pH was higher at 7 and 14 d

compared to later in the experiment. Jejunal VFA levels all peaked at 21 d whereas

in the ileum, VFAs were highest at 7 d. The pH of the ileum was lowest at 14 d and

highest at 42 d. There were no significant interactions whereas caecal pH,

isobutyric, isovaleric and valeric acids were all significantly higher for birds fed the

com than either wheat diet. Only with propionic acid did enzyme supplemented

birds differ from both com and wheat-fed birds with com diets resulting in the

highest propionic acid levels, unsupplemented wheat diets being intermediate and

enzyme supplemented diets yielding the lowest level of propionic acid. Age had no

effect on caecal pH but did influence VFA level. For acetic, propionic, butyric,

valeric and total caecal VFAs, levels peaked at 28 d. For isobutyric and isovaleric,

levels were also numerically highest at 28 d. For all individual VFAs, levels were

lowest at 7 d with 14 d levels being either statistically similar or slightly higher than

7 d levels. The diet by age interaction was only significant for propionic acid and it

is shown in Figure 504.1. Propionic acid level for enzyme supplemented wheat diets
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Table 5.4.6 Effect of age and dietary treatment on weights of selected
gastrointestinal tract components (as a percentage of bird body weight)

Treatments
GIT Age Corn Wheat Wheat plus p SEM

Measure! (d) Enzyme
Full 7 5.06 5.23 5.11 NS 0.080

Jejunal 14 3.88a 4.00a 3.43b * 0.090
Weight 21 3.28ab 3.58a 3.17b * 0.072

28 2.66 2.95 2.98 0.09 0.067
35 2.27b 2.62a 2.83a *** 0.061
42 2.19 2.39 2.28 NS 0.048

Empty 7 3.03 3.09 2.94 NS 0.048
Jejunal 14 2.38ab 2.47a 2.20b 0.06 0.048
Weight 21 1.83 1.95 1.79 NS 0.036

28 1.64b 1.81a 1.82a * 0.030
35 1.42b 1.52b 1.67a ** 0.031
42 1.26b 1.43a 1.41 a ** 0.025

Empty 7 0.69 0.71 0.66 NS 0.016
Caecal 14 0.51 b 0.52ab 0.58a * 0.012
Weight 21 0.39b 0.44ab 0.48a ** 0.011

28 0.40 0.41 0.44 NS 0.126
35 0.41 a 0.35b 0.41 a * 0.012
42 0.35 0.37 0.40 0.09 0.010

I(value/body weight) X 100.

a,b Means within rows with no common superscript differ significantly (* = P~O.05;

** = P~O.Ol; NS = not significant).

SEM = pooled standard error of the mean.
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Table 5.4.7 Effect of age and dietary treatment on pH and volatile fatty acid levels (p.1mol/g wet digesta) in the jejunal and ileal
digesta of broiler chickens

Jejunum Ileum

pH Acetic Propionic
Iso-

Valeric
Total

pH Acetic Propionic
Iso- Iso- Total

valerie VFA butyric valerie VFA

Diet
Oo45b 0.07b O.OOObCom 6.07 11.90 0.96 13.54 7.21a 11.05 0.74 0.24 12.13

Wheat 6.09 12.26 1.05 0.56a 0.14a 14.19 6.97b 9.95 0.69 0.026a 0.26 11.01

...... Wheatw
-.....J

plus 6.12 12.00 1.00 0.53a 0.10ab 13.79 6.85b 11.83 0.84 0.003b 0.29 13.06
Enzyme

Age 7 6.14ab 10.95b 0.84b 0.57ab 0.09bc 12.62b 7.16ab 12.79 0.95a 0.04a Oo4la 14.29
(d) 14 6.26a 12.51b 1.04b Oo49bcd 0.04c 14.26b 6.73c 10.28 0.65bc O.OOb 0.31 ab 11.35

21 6.03b 14.91a 1.30a 0.66a 0.21a 17.24a 6.88bc 11.59 0.90ab 0.01 ab 0.15b 12.73
28 6.00b 11.90b 0.96b 0.54bc 0.13b 13.78b 7.01 abc 11.54 0.81 ab 0.01 ab 0.29ab 12.76
35 6.07b 11.07b 0.97b Oo4Od 0.11 bc 12.65b 7.01 abc 10044 0.75abc O.OOb 0.26ab 11.50
42 6.05b 10.97b 0.89b Oo43cd 0.06bc 12.50b 7.27a 9.07 0.50c O.OOb 0.18b 9.83

Statistics

Diet NS NS NS * * NS ** NS NS ** NS NS
Age * *** ** *** *** *** * 0.10 ** * ** 0.08

Diet X Age 0.09 NS NS NS NS NS NS NS NS NS NS NS
SEM 0.027 0.319 0.037 0.019 0.012 0.368 0.052 0.408 0.039 0.004 0.022 00461

a-d Means within a column, within a main effect, with differing superscripts are significantly different (* = P~O.05; ** = P~O.Ol; *** = P~O.OOl;

NS = not significant). SEM = pooled standard error of the mean.



Table 5.4.8 Effect of diet and age on pH and volatile fatty acid levels (pmol/g wet digesta) in the caecum of broiler
chickens

Caeca

Variables pH Acetic Propionic Iso-butyric Butyric
Iso-

Valeric Total VFA
valerie

Diet Com 5.88a 78.22b 6.77a 0.70a 27.63 1.19a 1.61a 116.12

Wheat 5.69b 86.19a 4.09b 0.53b 25.07 0.88b 1.14b 117.90

Wheat
plus 5.57b 85.29a 3.37c 0.47b 27.11 0.92b 1.08b 118.25

~
Enzyme

v.>
00

Age 7 5.83 65.88d 2.52e 0.67 19.22c 1.06 O.ll d 89.47 d
(d) 14 5.57 75.98c 3.51 d 0.44 17.79c 1.05 0.69c 99.46d

21 5.73 93.21 ab 5.91b 0.53 28.08b 0.98 1.41b 130.11b

28 5.78 98.48a 6.91 a 0.68 38.60a 1.05 1.95a 147.65a

35 5.78 84.78bc 4.81 c 0.53 30.04b 0.85 1.79a 122.81 bc

42 5.58 81.09c 4.79c 0.55 25.88b 0.99 1.72a 115.02c

Statistics

Diet ** * *** ** NS *** *** NS
Age NS *** *** NS *** NS *** ***

Diet X Age NS NS *** NS NS NS NS NS
SEM 0.04 1.92 0.30 0.03 1.10 0.03 0.09 2.95

a-eMeans within a column, within a main effect, with differing superscripts are significantly different (* = P~0.05;

** = P~O.O 1; *** = P~O.OO 1; NS = not significant).

SEM = pooled standard error of the mean.



from 14 through 42 d of age. It was also higher than the unsupplemented wheat diet

from 14 d but at 28 d the propionic acid level from this diet peaked at a high value

before decreasing back to the level of the enzyme diet for the remainder of the

production cycle. At the peak, the propionic acid level was not different than for the

corn treatment.

5.4.4 Ileal Residual NSP Analysis

Residual NSP in the digesta of the terminal ileum were affected by diet

(Table 5.4.9). Total arabinose and xylose were highest in ileal samples from enzyme

supplemented diets with unsupplemented wheat diets having levels of residual

arabinose that were similar to com diets but levels of residual xylose that were

significantly higher than corn. Mannose followed a similar pattern to xylose while

galactose was highest in corn-fed birds, intermediate in the enzyme birds, and lowest

in the unsupplemented birds. Residual glucose was significantly higher in birds fed

both wheat diets than those fed corn. Residual arabinose and xylose were highest at

42 d while residual glucose was highest at 28 d. The interaction means, shown for

arabinose and xylose only in Figure 5.4.2, indicate that except at 14 d where the

wheat diet shows a dramatic increase in the presence of residual arabinose and

xylose in the terminal ileum, all diets result in similar levels of residual arabinose

with xylose being somewhat lower from the corn diet.
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Table 5.4.9 Effect of diet and age on residual NSPs in terminal ileal digesta

Total NSPs (% of Dry Matter)
Variables Arabinose Xylose Mannose Galactose Glucose

Diet Corn 6.26b 6.13c 0.98c 7.94a 8.07b

Wheat 6.07b 7.63b 1.21b 5.22c 14.82a

Wheat
plus 7.14a 8.88a 1.43a 6.45b 16.12a

Enzyme

Age 7 5.43b 5.88c 1.08 6.37 10.38bc

(d) 14 6.65b 7.21 bc 1.33 7.35 9.31c

21 6.28b 6.81 bc 1.27 5.97 14.61b
28 5.91b 6.84bc 1.43 6.93 20.38a

35 6.16b 7.77b 1.01 5.66 10.69bc

42 8.51a 10.81a 1.13 6.95 12.64bc

Statistics

Diet * *** *** *** ***
Age *** *** 0.06 NS ***

Diet X Age NS NS NS NS *
SEM 0.21 0.31 0.05 0.24 0.86

a-cMeans within a column, within a main effect, with differing superscripts are
significantly different (* = P:S0.05; ** =P:SO.Ol; ***. = P:SO.OOl; NS = not
significant).

SEM = pooled standard error of the mean.
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For soluble residual NSP, enzyme diets had the highest residual arabinose

and xylose, followed by wheat, with com diets yielding the lowest soluble arabinose

and xylose levels (Table 5.4.10). Soluble mannose residues were highest in birds fed

both wheat diets versus com, while soluble glucose residues in the ileum of enzyme­

supplemented birds were similar to unsupplemented wheat-fed birds but significantly

higher than for com-fed birds. Soluble arabinose residues were higher at 42 d than at

7-28 d while soluble xylose residues at 42 d were only significantly higher than 7 d

levels. No other soluble residual sugars were affected by age. Interaction means for

soluble arabinose and xylose (Figure 5.4.3) indicate that while both sugars have high

levels at all ages from the enzyme diet and low levels from the com diet, the levels of

soluble arabinose and xylose for the unsupplemented wheat diet increase with age of

the bird.

The analysis of the low molecular weight, soluble, residual NSP shows that

arabinose, xylose and mannose are highest in the ileum of enzyme-supplemented

birds with wheat and com-fed birds being similar (Table 5.4.11). Galactose is

highest for com-fed birds with the two wheat diets being similar. Age only affects

residual arabinose and xylose levels with the levels of low molecular weight, soluble

arabinose and xylose increasing steadily with age of the bird. The significant

interaction means, shown in Figure 5.4.4, indicate that this is primarily due to the

enzyme supplemented wheat diet.
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Table 5.4.10 Effect of diet and age on residual soluble NSPs from the
supernatant from the terminal ileal digesta of broiler chickens

Soluble NSPs (% of Dry Matter)
Variables Arabinose Xylose Mannose Galactose Glucose

Diet Com 0.59c 0.33c 0.74b 3.18 4.42b

Wheat 1.04b 1.28b 0.96a 2.47 5.81 ab

Wheat
plus 1.50a 1.97a 1.07a 2.85 6.88a

Enzyme

Age 7 0.77b 0.80b 0.79 2.47 5.98ab

(d) 14 1.02b 1. 18ab 0.97 2.95 3.83c

21 0.97b 1. 15ab 1.10 3.03 6.73a

28 1.00b 1.23ab 1.00 2.94 7.31a

35 1.10ab 1.24ab 0.73 2.40 4.29c

42 1.41a 1.56a 0.96 3.20 6.09ab

Statistics

Diet *** *** * 0.08 **
Age * * NS NS **

Diet X Age NS NS NS NS NS
SEM 0.07 0.10 0.04 0.12 0.34

a-cMeans within a column, within a main effect, with differing superscripts are
significantly different (* =PSO.05; ** =PSO.O 1; ***" = PSO.OO 1; NS = not
significant).
SEM = pooled standard error of the mean.
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Table 5.4.11 Effect of diet and age on residual low molecular weight «100
kDa), soluble NSPs from the filtered supernatant from the terminal ileal digesta
of broiler chickens

Low Molecular Weight, Soluble NSPs (% of Dry Matter)
Variables Arabinose Xylose Mannose Galactose Glucose

Diet Com 0.22b 0.14b 0.64b 2.69a 5.27

Wheat 0.20b 0.26b 0.63b 1.73b 5.27

Wheat
plus O.SOa 0.80a 0.79a 2.1Sb 6.34
Enzyme

Age 7 0.15c 0.16c 0.59 1.72 5.10
(d) 14 0.28bc 0.36b 0.74 2.34 6.17

21 0.28bc 0.39b 0.73 2.18 5.76
28 0.29bc OAOab 0.69 2.09 5.73
35 0.38ab OA7ab 0.59 2.21 4.50
42 OA5a 0.60a 0.76 2.61 6.50

Statistics

Diet *** *** * *** NS
Age ** ** NS NS NS

Diet X Age * * NS NS NS
SEM 0.03 0.05 0.03 0.10 0.27

a-cMeans within a column, within a main effect, with differing superscripts are
significantly different (* = P:S0.05; ** =P:SO.Ol; *** = P:SO.OOl; NS = not
significant).

SEM = pooled standard error of the mean.
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Arabinose to xylose ratio was affected by diet in all fractions analyzed (Table

504.12). The com diet always provided the highest ratio with the two wheat diets

being similar in the whole ileal contents but with the enzYme-supplemented diet

resulting in a significantly lower arabinose to xylose ratio in the soluble and low

molecular weight soluble fractions of ileal contents.

The interaction (Figure 5A.5a) shows that for com diets, there is an increase

in arabinose to xylose ratio at 21 d, followed by a decrease. Interestingly, in soluble

ileal digesta supernatant, there is a different pattern. When the interaction is plotted

(Figure 5A.5b), the two wheat diets appear to have fairly similar arabinose to xylose

ratios with age, while the com diet provided a substantial drop at 21 to 28 d followed

by an increase at 35 to 42 d. The low molecular weight fraction of the ileal digesta

supernatant interaction (Figure 5A.5c) shows that while the wheat diet decreases

slightly with age, and the enzYme-supplemented diet stays fairly constant, the com

diet results in a substantial increase in arabinose to xylose ratio with age. All of this

follows an initial drop from 7 - 14 d in com and wheat diets. This could not be

shown for com as the amounts of arabinose and xylose in the low molecular weight

soluble supernatant were so small that the arabinose to xylose ratio at 7 d yielded

positive infinity.

There were no treatment effects on dry matter digestibility or on arabinose, or

glucose digestibility (Table 504.13). Xylose digestibility was different between the

two wheat diets and the com diet. Arabinose and xylose digestibility values were

negligible, however, so any differences seen may have been artifacts. Age did affect

digestibility coefficients with dry matter, arabinose, xylose, and glucose all showing
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Table 5.4.12 Effect of diet and age on arabinose to xylose ratio in total, soluble
and low molecular weight, soluble terminal ileal fractions from broiler chickens

Variables

Diet Com

Wheat

Wheat plus
Enzyme

Age (d) 7
14
21
28
35
42

Arabinose to Xylose Ratio

Whole Ileal Soluble Ileal
Low Molecular
Weight, Soluble

Contents Supernatant
Ileal Supernatant

1.04a 1.808 1.608

0.80b 0.83b 0.78b

0.81b 0.76c 0.62c

0.93a 1.248 0.50b

0.93a 1.12b 0.96a

0.94a 1.02c 0.92a

0.89b 1.01c 0.96a

0.81c 1.18ab 1.01a

0.80c 1.20a 1.14a

Statistics
Diet *** *** ***
Age *** *** *

Diet X Age * *** *
SEM 0.02 0.06 0.06

a-cMeans within a column, within a main effect, with differing superscripts are
significantly different (* = P:S0.05; ** = P:SO.Ol; *** = P:S0.001; NS = not
significant).

SEM = pooled standard error of the mean.
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Table 5.4.13 Effect of diet and age on ileal dry matter digestibility and sugar
disappearance

Nutrients (Ileal DigestibilitY)
Variables Dry Matter Arabinose Xylose Glucose

Diet Com 50.76 -6.08 -5.83a 40.80

Wheat 44.91 -6.37 -8.03b 35.03

Wheat
plus 53.65 -6.63 -8.18b 36.55
Enzyme

Age 7 44.24b _6.75abc _7.20ab 31.87c

(d) 14 47.90ab _7.53bc _8.10bc 35.09bc

21 58.23a -4.18a -4.24a 42.74ab

28 43.49b _5.73ab _6.62ab 28.95c

35 46.45ab _5.42ab _6.94ab 44.47a

42 58.34a -8.56c -10.98c 41.61 ab

Statistics

Diet NS NS 0.06 NS
Age * * ** **

Diet X Age NS NS NS 0.11
SEM 1.79 0.38 0.49 1.41

a-cMeans within a column, within a main effect, with differing superscripts

are significantly different (* =PsO.05; ** =PSO.Ol; *** = PSO.001; NS = not
significant).

SEM = pooled standard error of the mean.
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an increase in digestibility at 21 d of age. This was followed, in the case of

arabinose and xylose, by further decreases, but in the case of dry matter and glucose,

by a drop at 28 d, then increases after 35 d.

5.5 Discussion and Conclusions

Performance in the current experiment was excellent across treatments and

no enzYme effect on performance was observed. The production response to enzYme

supplementation is commonly low when the control or unsupplemented birds have

good performance (Willingham et at., 1960; Scott et al., 1998c). The wheat used in

the starter and grower diets was replaced by blended feed grade wheat for the finisher

phase. Different varieties of wheat have been shown to contain different levels of

arabinoxylans and to produce different types of branched oligosaccharides after

enzYmatic hydrolysis with endo-xylanases (Austin et al., 1999). The structure and

relative quantities of the latter oligosaccharides playa significant role in determining

the original branched structure of the arabinoxylan and, hence, their viscosity

generating properties (Austin et al., 1999). This simple difference in wheat variety

may have affected the late cycle data in this experiment. However, the overall in

vitro viscosity was similar for both the grower and finisher diets so it is unlikely that

the change in wheat sample was a major factor. In addition, total sugar analysis of

the diets indicated slightly higher levels of arabinose and xylose in the finisher diets,

relative to the grower diets, which is likely due to the relatively greater amount of

wheat used in these diets rather than any major difference in NSP quantity or

composition.
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Despite the lack of performance effect, there was a consistent decrease in

viscosity as a result of enzyme supplementation, demonstrating that the enzyme was

effective. On all diets, viscosity was consistently higher in the ileum than the

jejunum. This is logical since the concentration of arabinoxylans in the GIT will

increase as the digesta moves down the tract and more absorption of nutrients takes

place. An increase in dry matter will also concentrate arabinoxylans and this also

occurs with progression down the GIT. This creates an interesting relationship

between water content and digesta viscosity.

Dietary effects on viscosity were as expected. Com diets resulted in

consistently low digesta viscosities. Wheat diets supplemented with xylanase

resulted in viscosities slightly, but rarely significantly, higher than com.

Unsupplemented wheat diets resulted in the highest viscosities, although the enzyme

supplemented diets were similar to wheat at 7 and 35 d.

Age has an interesting effect on viscosity in this experiment with the com

diet being largely unaffected by age. The com and enzyme-supplemented wheat

diets show slight increases in digesta viscosity with increasing concentration of grain

in the diets, from starter (57.8% com; 61.7% wheat) through grower (63.9% com;

72.20/0 wheat) to finisher (63.2% com; 73.9% wheat). The unsupplemented wheat

diet, however, resulted in a dramatic increase in digesta viscosity with age, peaking

at 21 d, dropping, but remaining significantly higher than the other two diets to 28 d

,
before decreasing to levels similar to enzyme supplemented diets at 35 and 42 d.

Petersen et al. (1999) similarly evaluated digesta viscosity in broilers fed wheat and

barley diets continuously for various age intervals from either 15 or 20 d to 35 or 45
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d. Their research resulted in similar ileal viscosities for continuous wheat-fed birds

of a similar age to those in the current experiment. While they did not collect data

from the early ages used in the current experiment, and therefore did not observe the

initial increase in digesta viscosity seen at 21 d, their research did show a reduction

of viscosity with age for continuous wheat and barley-fed birds, similar to that seen

in the current experiment. They speculated that this decrease in viscosity was likely

an adaptation of the microflora in either composition or number, to the presence of

the NSP in the diets and a resultant increase in the solubilization of the NSP. The

NSP data from the current experiment also support this supposition in that the

unsupplemented wheat diet was associated with increased solubilization of both

arabinose and xylose with increasing age of the bird. The initial increase in viscosity

at 21 d in wheat-fed birds could be due to microbial adaptation resulting in increased

solubilization of arabinoxylans but not to very low molecular weight, absorbable

compounds. Therefore, as the birds age, either more microbial enzyme is produced,

resulting in hydrolysis exceeding release, or, alternatively, the microbes could be

adapting and producing different enzymes with different activities, giving the same

overall effect.

The small intestine generally increased in size, relative to body weight, with

consumption of wheat diets versus com. In the case of full SI weights and ileal

content weights, the unsupplemented wheat diet resulted in more NSP in the G1T

and, therefore, heavier weights. Overall, SI measures, both full and empty, are

higher for wheat diets likely due to the presence of larger molecular weight and

differently structured polysaccharides than those in the com diet (Austin et aI., 1999;
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Huisman et aI., 2000). There was no dietary effect on dry matter digestibility in the

current study, so the G1T size difference between treatments was not an effect of

lower digestibility diets leading to larger G1T size. The simple presence ofNSP in

the G1T has been shown to result in such morphological changes as increased weight

and length of S1 segments (Johnson and Gee, 1986; J0rgensen et aI., 1996). This

could be a result ofphysiological adaptations to increase nutrient absorption either

due to the viscous environment (Johnson and Gee, 1981; Johnson and Gee, 1986;

Choct and Annison, 1992a) or to competition between the G1 bacteria and the bird

itself. In germ-free (GF) chickens, Langhout et al. (2000) found that added NSP (in

this case, highly methylated citrus pectin) increased caecal weight, including

contents, over com diets with no added NSP, but did not have an effect on the G1T

itself, as no bacteria were present to ferment them. The presence of bacteria in the

conventional birds in this study increased digesta viscosity over that of the GF birds

leading to speculation that a bacterial end product may be involved in the increase in

G1T size seen with bacterial fermentation. Fecal digestibility of dry matter, organic

matter, crude fat and starch, as well as N retention, were all reduced by NSP addition

in conventional birds, but were unaffected by NSP addition in GF birds. ME of

conventional birds was reduced by the presence of added NSP whereas in GF birds,

ME of diets with added NSP was increased. Langhout et al. (2000) speculate that

changes in the metabolic activity of the G1T microflora, induced by dietary NSP,

such as the production of amines, ammonia and other toxins, can have an impact on

mucosal morphology and, therefore, nutrient absorption. A difference in small

intestinal villus morphology was noted by Langhout et al. (2000) with added NSP
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reducing numbers of zigzag patterns and ridge-shaped villi and increasing the

number of tongue-shaped villi. The actual weights of all GIT components, including

contents, were higher in conventional versus GF birds.

In the current study, caecal weights, both full and empty, and caecal lengths

are greater from enzyme supplemented, wheat-fed birds than unsupplemented wheat­

fed birds. It is of interest that while caecal contents, relative to body weight, are not

affected by diet, they do increase with age. This is supportive of the notion that the

bacteria of the hindgut develop with age and, therefore, caecal fermentation increases

with age on all diets. The increased caecal size with enzyme supplementation is

likely a result of increased access to the caeca by low-molecular weight, soluble NSP

resulting from enzyme degradation. The NSP data corroborate this in that enzyme

supplementation resulted in significantly higher proportions of arabinose and xylose

from total, soluble and low molecular weight soluble fractions of the digesta at the

terminal ileum. When calculations are made to present soluble and low molecular

weight arabinose and xylose as a percentage of total ileal arabinose and xylose, the

enzyme-supplemented diets still have significantly higher levels than either of the

other diets allowing for increased caecal access by these substrates. In some research

there is a significant increase in caecal VFA levels with enzyme supplementation as

a result of bacterial fermentation of these substrates (Choct et al., 1995, 1996, 1999).

In Choct and coworkers' research, caecal fermentation was increased by enzyme

supplementation and was presented on the basis of total VFA content of the caecal

digesta. The VFA data from the current experiment does not demonstrate any

measurable increase in caecal fermentation with enzyme supplementation of the
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wheat diets. Analyzing the current experiment on the same basis as Choct and

coworkers' experiments (Table 5.4.14) does not change the fact that, in this case,

enzyme did not increase overall caecal fermentation.

In the current experiment VFA levels in the small intestine were not affected by

enzyme addition. The viscosity differences in the current experiment, while

significant, were not enough to induce measurable decreases in bacterial

fermentation in the ileum, with enzyme addition, as was seen by Vahjen et al. (1998)

and by Choct et al. (1996, 1999) in birds aged 7-24 d. Earlier work reported in this

thesis (Chapter 3) demonstrated that enzyme supplementation increased acetic,

propionic and total VFAs in the ileum, particularly at later ages (42 d). The research

ofVahjen et al. (1998) demonstrated decreases in some ileal VFA levels with

enzyme addition at early ages. Vahjen et ai. (1998) also noted that unsupplemented

wheat-fed birds produced more lactic acid in the ileum than xylanase-supplemented

birds. At the same time, xylanase-supplemented birds produced more butyric acid

than unsupplemented controls. An important observation from this published

research is the gradual increase with age in lactic acid production in the ileum of

xylanase-supplemented birds, which, as indicated by Hume et ai. (1995), can provide

caecal bacteria with an intermediate substrate for propionic acid production.

Langhout et al. (2000) also found elevated lactic acid levels in the chicken ileum

with NSP supplementation, while no other differences in VFA levels were observed.

Therefore, despite no major VFA differences being observed with enzyme

supplementation, there could still have been changes occurring. Lactic acid levels,

however, were not measured in the current experiment.
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Table 5.4.14 Effect of diet and age on total volatile fatty acid levels (p.tmol) in the caeca of broiler chickens

Caeca
Variables Acetic Propionic Iso-butyric Butyric Iso-valerie Valerie Total VFA

Diet Corn 258.79 22.91 a 2.25a 90.98 3.70 6.32a 384.96

Wheat 288.41 15.13b 1.75ab 91.04 2.84 4.90b 404.07

Wheat plus
292.21 12.19b 1.49b 101.16 2.85 4.61 b 414.51

Enzyme

Age 7 52.69d 2.00c 0.53b 15.24c 0.85c 0.09d 71.39d

- (d) 14 74.47d 3.36c OA1 b 17.49c 1.00c 0.67d 97.40d

0\ 21 196.44c 11.47b 1.00b 59.63b 1.97c 2.75c 273.25c
0

28 400.14b 27.34a 2.71 a 155.25a 4.13b 7.77b 597.34b

35 435.17b 25.62a 2.76a 151.93a 4.37b 9.27b 629.12ab

42 519.90a 30.67a 3.57a 166.83a 6.47a 11.12a 738.57a

Statistics

Diet NS *** * NS 0.07 ** NS
Age *** *** *** *** *** *** ***

Diet X Age NS ** NS NS NS 0.07 NS
SEM 24.14 1.75 0.19 8.71 0.29 0.57 34.91

a-eMeans within a column, within a main effect, with differing superscripts are significantly different (* = P:::0.05;

** = P:::O.O 1; *** = P:::O.OO 1; NS = not significant).

SEM = pooled standard error of the mean.



The caecal VFA data provide evidence of differential fermentation of residual

substrates. In the wheat diets, there was no dramatic effect of enzyme addition on VFA

production. In the case of propionic acid production, enzyme supplementation seemed

to have no effect whereas propionic acid levels increased to 28 d on the unsupplemented

wheat diet. This is in agreement with Choct et al. (1999), who did not notice a

difference in the molar proportion ofpropionic acid, or any other VFAs, with enzyme

supplementation. The increase noted with age for this treatment might be indicative of

the adaptation of the resident flora to the substrate by increasing the proportion of

propionic acid producers, as proposed by Apajalahti and Bedford (1998). This concept

is also supported by previous work in this thesis (Chapter 3) where higher caecal

propionic acid levels were seen with unsupplemented than xylanase-supplemented diets.

The propionic acid levels seen in the current study are, however, contradictory to the

theory of Apajalahti and Morgan, as explained by Bedford (1996) that propionic acid

results from the fermentation of small molecular weight oligosaccharides released from

NSP that would not normally have been available to the caecal microbes in the absence

of the enzyme. Further work by Apajalahti and Bedford (1998) actually demonstrated

an increase in the proportion ofpropionic acid produced in the caeca ofxylanase­

supplemented, wheat-fed birds over unsupplemented birds. The reasons for this

difference are not clear but probably relate to substrate availability, wheat arabinoxylan

composition and GIT conditions such as pH and viscosity. The work of Apajalahti and

Bedford (2000) does suggest that wheat diets, in general, tend to favour the growth of

propionic acid bacteria.
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For the most part, research indicates that the addition of viscosity generating

dietary NSP causes increases in butyric acid production, usually at the expense of acetic

acid, in the caecum of rats (Key and Mathers, 1993a), rabbits (Jehl and Gidenne, 1996;

Gidenne et al., 1998), and in the ileum of wheat-fed chickens (Vahjen et al., 1998» The

addition of xylanases to wheat based, viscosity generating poultry diets tended to lower

ileal VFA levels (Choct et aI., 1995, 1996, 1999), shifting production to the caecum,

which is logical since the low molecular weight, soluble NSP substrates prevalent in the

ileum of enzyme-treated birds can reach the caeca unimpeded by viscous digesta. This

concept is supported by the NSP data of the current experiment.

Of interest is the significant increase in propionic acid production in the caeca of

com-fed birds, particularly from 21 d of age. Higher levels ofpropionic acid in the

caeca of com-fed birds were also seen in Experiment 1 of Chapter 3 of this thesis where

VFA were only measured at 42 d. Propionic acid can be SYnthesized from a number of

sources. Research has documented the fact that increased concentrate feeding leads to

an increase in propionic acid production by the rumen bacteria as well as by the bacteria

of the hindgut of non-ruminants (van Soest, 1982). This propionic acid results mainly

from bacterial fermentation of starch as well as protein, amino acids, and to some

degree, fibre. Arabinose from the fibre in cooked haricot beans has been shown to be

correlated well with caecal propionic acid production in rats (Key and Mathers, 1993b).

In addition, rats fed 100 g/kg of arabinoxylans isolated from com displayed significant

caecal hypertrophy, as well as an accumulation of VFA, particularly propionic acid

(Lopez et aI., 1999). The end-products of fermentation of any given carbohydrate
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substrate depend largely on the microbial species present which is a function of

environment as well as the adaptation to the dietary ingredients being fed. Differences in

fermentation between the com and wheat-based diets in the current experiment may be a

result of the differences in the composition of the bacterial community as well as the

residual substrates available to these bacteria. Apajalahti and Bedford (2000) have

demonstrated, using % G + C DNA base composition analysis, that the major groups of

bacteria present in the caeca differed between com, wheat and rye-based diets. It is

possible that the GJ bacteria present in the com-fed birds have a higher proportion of

propionic acid producers, although these researchers have suggested that wheat diets

stimulate the growth of these bacteria. Propionic acid is also produced by anaerobic

bacteria from lactic acid provided to them indirectly from carbohydrate fermentation by

facultatively anaerobic bacteria (Hume et aI., 1995). It is possible that the com diet

stimulates growth of these bacteria.

Alternatively, the high level of propionic acid could be from a different

substrate. The ileal digestibility of the starch in com has been shown to be as low as

85% (Noyand Sklan, 1995). This leads to speculation that the high level of caecal

propionic acid in the com-fed birds, relative to the wheat-fed birds, might be a result of

bacterial fermentation of residual starch, itself released by bacterial degradation of the

insoluble arabinoxylans in the cell walls of com. Ruminant research in this area has

repeatedly shown higher levels of propionic acid in the rumen with increasing levels of

starch from grains (Van Soest, 1982; Pylot et al., 2000). The significantly higher levels

of isobutyric and isovaleric acids are possible indicators of bacterial fermentation of
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residual protein encapsulating starch in the com-fed birds (Cummings and Macfarlane,

1991). Huisman et al. (2000) found that the composition of water-unextractable solids

isolated from com kernels contained 7% protein and 8% starch, in addition to 57% NSP

of a highly substituted, endo-xylanase resistant nature. This concept is supported by the

current research where no increase in arabinose or xylose solubility occurred with age in

com-fed birds.

The NSP data from the current experiment indicate an adaptation of the ileal

bacteria to the NSP substrate in the wheat diets and a resultant increase in their capacity

for fibre degradation. The constant level of soluble arabinose and xylose present in the

ileum of com-fed birds and the fairly steady, higher level of soluble arabinose and

xylose in the digesta of enzyme-supplemented birds indicate little adaptation to fibre

degradation of the bacteria on these diets. The higher levels of residual NSP in the

enzyme-supplemented birds would appear to be indicative of higher nutrient

digestibility of this diet (resulting in more of the undigestible material being left

behind). Although others have shown this to be true, the dry matter digestibility in the

current experiment was only numerically higher for the enzyme-supplemented diet. The

bacteria in the GIT of birds on the enzyme diet likely do adapt to the substrates provided

but in different ways not detected by the methodology of the current experiment. The

steady increase in solubilization of the arabinose and xylose in the terminal ileal

contents of the wheat-fed birds, however, provide evidence of bacterial adaptation.

Total arabinose and xylose levels remain relatively constant but soluble arabinose and

xylose levels increase with age of the bird. This has not been demonstrated prior to this
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experiment.

The analysis of the low molecular weight (:s100 kDa) fraction of the ileal digesta

supernatant yielded explainable main effects. This fraction was highest from birds fed

the enzyme-supplemented wheat diet. Similarly, others have shown that xylanase

supplementation of wheat diets increases the amount of a number of smaller molecular

weight fractions ofNSP over unsupplemented wheat diets (Bedford and Classen, 1992;

Apajalahti and Bedford, 1998; Bedford and Apajalahti, 2001). The increase in

arabinose and xylose in this fraction with age, although not previously demonstrated, is

logical since the bacteria of the GIT are thought to increase with age and the overall

capacity of the GIT gets larger with age allowing for greater bacterial fermentation and

breakdown of large NSP into lower molecular weight polymers. This data has not

clearly shown whether there is an actual increase in total bacterial numbers with age or

whether there is simply a change in the balance of bacterial groups present in response

to the dietary substrates provided. One could argue that the increases in smaller

molecular weight arabinose and xylose with age could also be due to microbial

adaptation to increased hydrolysis of soluble NSP to the smaller molecular weight

fraction, or to improved enzyme efficacy, or even simply to an increase in the soluble

fraction providing more substrate for bacterial hydrolysis to the smaller molecular

weight fraction.

The interactions between diet and age are more complex. The amount of

arabinose and xylose in the low molecular weight fractions of ileal supernatant from

birds fed the enzyme supplemented diet is different from that of the remaining diets
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because of the ongoing enzymatic hydrolysis of the arabinoxylans. This is entirely

expected as a result of enzyme activity. It is likely that the bacteria develop in response

to substrate (Apajalahti and Bedford, 1998) and, over time, are able to hydrolyze some

of the NSP present. It is of interest that on each diet, the birds reach a point where either

absorption or degradation of smaller NSP catches up to hydrolysis of larger NSP and the

increase in low molecular weight NSP levels off. This happens at a different age for

each diet. In enzyme-supplemented birds, this happens at 14 d, in com-fed birds at 21 d,

and in wheat-fed birds at 28 d. Since the substrate structure in each case would be

different due to differences in arabinoxylan structure and enzymatic degradation (Austin

et al., 1999; Huisman et al., 2000) it is likely that the rate at which the GIT bacteria

hydrolyze the NSP in each diet would be different. For the com diet, despite a major

increase in total arabinoxylans, the structure of the arabinoxylan is very resistant to

hydrolysis (Huisman et al., 2000). As a result there is little increase in either soluble

NSP or low molecular weight, soluble NSP with age. For both unsupplemented and

enzyme supplemented wheat diets, there are similar levels of total arabinoxylans at all

ages. With unsupplemented wheat diets, soluble NSP increases with microbial

adaptation, as discussed previously, but there is only a minor increase in the low

molecular weight fraction of arabinoxylans. This suggests that the bacteria hydrolyze

cell wall material to make it more soluble. Initially the rate of solubilization is higher

than the rate of hydrolysis to smaller molecular weight fractions so viscosity increases.

Later on, the bacteria reduce digesta viscosity by breaking the cell wall material down

more, but these bacteria still don't have the ability to hydrolyze as much material into
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the low molecular weight fraction « 100 kDa) as the exogenous enzyme does (Figure

5.4.4).

This difference in hydrolysis is evident when a comparison is made of the

arabinose to xylose ratio (A:X) in the different ileal digesta fractions for the com diet as

compared with the two wheat diets. The major difference seen between com and the

wheat diets is due largely to the differences in NSP structure between the two grains.

The com diet is also higher in soybean meal, which has a higher level of arabinose, but

since the level of soybean meal increases in the diets with age and the arabinose to

xylose ratio in ileal digesta does not increase on the com diet with age, it is not likely

that the soybean meal is a major factor in the difference between com and wheat diets.

For the wheat diets, the arabinose to xylose ratio in ileal digesta is almost identical, as

expected. Very little difference is seen in this ratio for the soluble fraction of the

digesta, indicating that a certain portion of the arabinoxylan present in wheat is soluble

without enzyme and this fraction would be hydrolyzed regardless of enzyme

supplementation. The only notable difference in arabinose to xylose ratio is seen with

the low molecular weight fraction where enzyme supplementation appears to result in

smaller molecular weight arabinoxylans with fewer arabinose substitutions on them.

This could be due to the enzyme having side activities which could cleave arabinose

residues off the arabinoxylans leaving better access to xylose-xylose bonds for the

endoxylanase, and, as a result, more small molecular weight arabinoxylans. These low

molecular weight compounds could have a prebiotic effect in the GIT and be one of the

reasons for enzymes sometimes yielding positive performance effects in older broiler
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chickens even when there is no effect of the enzyme on digesta viscosity.

The major finding from the current study involves the change in level of soluble,

residual NSP with age of the bird on unsupplemented wheat diets. Since levels of

arabinose and xylose in whole ileal samples do not change with age, and are fairly

constant with age on both the com and the enzyme diet, but levels of soluble arabinose

and xylose increase with age on the unsupplemented wheat diet, it is likely that the

bacterial flora adapt to the presence of high molecular weight NSP and adjust their

community composition to be able to solubilize this material. There are no other studies

in the literature examining this change in ileal digesta composition with age. The

research supporting this hypothesis includes studies which demonstrate that time is

required for complete physical adaptation of the GIT to diets high in fibre, anywhere

from 1 week to 1 month in rats (Brunsgaard et al., 1995) and from 4-8 weeks in

galliforme birds (Redig, 1989). Other research that shows clear distinctions between the

bacteria present on unsupplemented versus enzyme-supplemented wheat diets (Vahjen

et aI., 1998; Danicke et aI., 1999; Apajalahti and Bedford, 1998) and fermentation

differences between the two types of diet (Choct et al., 1996, 1999) also support this

theory. This adaptation in bacterial flora is likely a partial explanation for improvements

seen in performance and digesta viscosity with age of birds fed wheat diets. In addition,

it explains some of the reduced efficacy of xylanase supplementation on digesta

viscosity in broilers at later ages while still allowing for the existence of a positive,

prebiotic effect of the low molecular weight products of enzyme hydrolysis even when

viscosity is no longer an issue.
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In conclusion, there appears to be an age effect on both viscosity and bacterial

solubilization of dietary NSP resulting in different substrates remaining at the terminal

ileum of the broiler chicken, relating to the diet fed. Further research would best be

directed at more detailed evaluation of the NSP compounds at the terminal ileum and

determining which of these enter the caeca. In addition, more exact evaluation of the

source of some of the differences in caecal VFA production would be of interest.
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6.0 GENERAL DISCUSSION

Some of the implications of dietary NSP and enzyme supplementation on the GIT

bacteria of the broiler chicken have been elucidated in the current studies. The

effectiveness of enzyme-supplementation has been shown to depend, to some extent, on

the performance level of the birds. This is not a new concept as others have indicated

that response of birds to enzyme supplementation depends on the amount of room for

improvement. Low AME grains or those resulting in poorer bird performance will

generally give a much greater response in AME or performance to enzyme

supplementation than high AME or higher performance yielding grains (Willingham et

aI., 1960; Scott et al., 1998c; Rosen, 2001).

While the bacterial and fermentation data from the experiments described in

Chapter 3 at first glance appear to contradict ~uch of the literature, by indicating

increased ileal fermentation with enzyme and decreased caecal fermentation under the

same conditions, this may be a true age-related bacterial adaptation. The discrepancies

may be explained by the different ages of the birds used in the current study, compared

with those described in the literature. The bacterial data collected and analysed in the

current studies were taken from birds that were 28 and 42 d of age whereas much of the

published literature discusses bacterial culturing on birds from 7-21 d of age (Choct et

aI., 1995; Choct et a/., 1996; Langhout, 1998; Vahjen et al., 1998; Danicke et a/.,

1999). In addition, the digesta viscosities generated by the diets used in the current

170



studies are lower and more representative of actual poultry diets than many published

studies, which has an impact on the extent of bacterial overgrowth in the ileum and the

changes that occur with age (Choct et al., 1996; Danicke et al. 1997a,b; 1999;

Langhout et al., 1999). In the Langhout et al. (1999) study, the treatment with low

methylated citrus pectin (LMC, as an added source of fermentable NSP) did not elevate

digesta viscosity as much as the high methylated citrus pectin (HMC) and,

consequently, did not result in significantly different bacterial levels from the com­

based control diet. Viscosities resulting from the addition of LMC were significantly

higher than those of the com-fed control and were similar to the wheat-fed birds in the

current study, as were the viscosities observed by Vahjen et al. (1998), who fed diets

similar to those used in the current study. Vahjen et al. (1998) observed that bacterial

proliferation in the ileum was reduced with xylanase supplementation of wheat diets in

birds at 7 and 14 d but not significantly by 21 and 28 d of age. The later ages confirm

the observations made that endoxylanase supplementation of wheat diets had little effect

on bacteria at 28 d of age and thereafter in the current studies.

Traditional culturing methods are useful for determining the effect of dietary

changes on specific groups of bacteria, but need to be carried out with great care in a

microbiology laboratory to allow for the most accurate results within the limitations of

the technique (Hungate, 1950; Amann et aI., 1995). These techniques also only provide

access to a very small proportion of the total bacterial community present, even if

carried out perfectly. Ideally, due to some of these limitations, DNA-based analyses

would be of use to complement traditional culturing. For bacterial groups, the %G+C
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DNA base composition analysis is effective and accurate (Apajalahti and Bedford,

1998; Apajalahti et al., 1998; Bedford and Apajalahti, 2001). If actual sub-species or

species differences are important, as they have been shown to be with complex changes

occurring in response to changes in dietary substrate (Bedford and Apajalahti, 2000),

then more precise techniques using 16S ribosomal RNA and in situ hybridization are

required. These techniques have been effective in identifying phylogenetic differences

not possible using traditional culturing methods (Amann et al., 1995; Langendijk et a/.,

1995; Snel et a/., 1995).

For the purposes of the current studies, the use of VFA levels in the intestinal

contents of the birds as a measure of bacterial activity provided useful information on

the effect of dietary NSP, enzyme supplementation and age on the GIT microflora. The

bacterial data of the first three experiments (Chapters 3 & 4) combined with the VFA

data in the first two experiments (Chapter 3), overall, indicated that, although

performance response to enzyme-supplementation was as expected, bacteria at 42 d

proliferated in the caecum without enzyme and in the ileum with enzyme

supplementation. At 28 d the findings were more similar to literature findings (Choct et

al., 1996; Vahjen et al., 1998; Choct et aI., 1999) with ileal bacterial activity being

higher without enzyme. The change between 28 and 42 d is due to a suspected

development of the GIT flora with age and adaptation to the dietary NSP substrate

provided by the ration. Bedford and Classen (1992) observed that both the molecular

weight distribution of residual NSP and the actual sugar composition of the NSP in the

broiler GIT changes with differing levels of dietary rye substitution for wheat and
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differing levels of enzyme supplementation. Vahjen et al. (1998) showed that xylanase­

supplementation of wheat-based diets resulted in lower levels of enterobacteria and

gram-positive cocci but higher levels of tissue-associated Lactobacillus spp. in broilers

up to 21 d. These researchers also noted a difference in the types and quantities of

fermentation end-products in the GIT, indicative of differences in substrate availability.

The differences in the composition of the GIT bacterial communities in broiler chickens

fed wheat, rye and com-based diets seen by Apajalahti and Bedford (2000) were said to

be due to the differences in substrate available to the bacteria for fermentation. Some of

the ileal microflora are suspected of adapting to and preferentially utilizing

depolymerized xylo-oligomers generated by enzyme activity (Apajalahti and Bedford,

1998). It is logical to speculate that the 42 d flora, through adaptation to available

substrate, may be different enough from the immature 28 d flora, that it can better

handle the larger xylo-oligomers in the unsupplemented wheat diets.

In addition, the GIT data (Chapters 3 and 5) reveals that, while no differences in

GIT size exist between enzyme-supplemented and unsupplemented wheat diets, there is

substantial development with age. Therefore, the mature ileal flora may also, simply as

a result of greater fermentative capacity, be capable of generating more VFAs. Again,

there are no available published results examining the effect of dietary NSP and enzyme

on the GIT bacteria between ages 28 and 42 d.

The results of the final experiment (Chapter 5) clearly demonstrate bacterial

adaptation to be occurring. This is evident because the residual NSP substrates present

in the terminal ileum are significantly affected by dietary treatment and, in the case of
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the unsupplemented, wheat-fed birds, change with age, indicating both dietary

differences in substrate and adaptation of the bacteria to the available substrate over

time. This is logical since Barnes et al. (1972) determined that it takes about 6 weeks to

establish an adult caecal flora in chickens. Duke et al. (1984) found that turkeys

preconditioned to high fibre diets appeared to adapt and to be able to digest fibre by 15

weeks of age. Redig (1989) suggests that poultry require from 4-8 weeks to adapt to a

high fibre diet. The current studies all provided evidence of microfloral adaptation to

diet between 4 and 6 weeks of age. Since little has been published in recent years on

bacterial development in the GIT of poultry (Mead, 2000), this observation merits

further study.

Further evidence of the substrate differences can be seen from the differences in

fermentation end-products in the caecum. The bacteria of the hindgut produced much

higher levels of propionic acid on the com diet than on either wheat diet. This

demonstrates the difference in the amount and type of soluble substrate entering the

caeca in birds on different diets. Com has a somewhat lower amount of NSP but the

NSP present is largely insoluble (Shelton and Lee, 2000) and is highly resistant to

hydrolysis. Due to the relatively high digestibility of nutrients in the com diet and the

rapid rate of passage of digesta in birds, any starch bound in this resistant NSP would

not be released until it was hydrolysed by the more stable caecal bacteria of the bird.

This would result in the production ofpropionic acid either directly from starch

fermentation or indirectly via lactic acid production (Hume et al., 1995). Apajalahti and

Bedford (1998) demonstrated differences in caecal bacterial community composition
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between birds fed com and wheat. They suggested these differences might be due to

differences in substrate availability between the diets. This is supported by the

differences seen in arabinose and xylose levels in the ileum of the com versus the

wheat-fed birds.

The performance improvements seen both with enzyme supplementation of

wheat diets and with com-based versus unsupplemented wheat diets (Chapters 3 & 4)

provide further evidence for the substrate scenario. Bacteria were shown to be different

on the diets, despite equivalent performance, indicating substrate availability

differences. Langhout (1998) concludes that differences in the quality of feedstuffs high

in NSPs may be related to the structure and composition of the water-soluble NSP

fractions that would affect the fermentability of the NSPs. Austin et al. (1999) provide

concrete evidence for this difference in fermentability in the degree of branching of the

arabinoxylans and the relative amount ofaxylanase-resistant fraction of NSP.

Langhout et al. (1999) also demonstrate that the negative effect of water soluble NSP on

broiler performance and nutrient digestibility is largely due to the affect this fraction has

on the GIT microflora.

The current research has, therefore, demonstrated that the GIT microflora of

birds fed diets of differing NSP contents (com versus wheat), adapt to the type and to

the size ofNSP present. Enzyme supplementation affects this adaptation. Birds fed

unsupplemented wheat diets develop a flora that, around 28d of age, becomes able to

solubilize insoluble arabinoxylans, as well as degrade the soluble arabinoxylans to

lower molecular weight polymers. Birds fed com diets appear to be unable to degrade
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all of the carbohydrate, including starch, in their diet which may be bound in the highly

resistant arabinoxylans of the com kernel, and which, therefore are degraded by the

microflora of the caeca, releasing propionic acid. All of this information points to the

possibility of providing exogenous enzymes in the diet of birds which can either

hydrolyze NSP high enough in the GIT to provide absorbable substrates to the bird in

the upper tract or, further down the GIT to provide substrates of benefit to the desirable

microbial population of the caecum, encouraging gut health and discouraging

colonization by pathogens.
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