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ABSTRACT 

 

Computer algorithms are routinely used to aid in the identification of biological 

patterns not easily detected with standard statistics. Currently, observed changes in 

normal patterns of feeding behavior (FB) are used to identify morbid feedlot cattle. The 

objective of this study was to use pattern classification techniques to develop algorithms 

capable of identifying morbid (M) cattle earlier than traditional pen checking methods. 

In two separate studies, individual feeding behaviour was obtained from 384 feedlot 

steers (228± 22.7 kg, initial BW) in a 226 d trial (model dataset), and 384 feedlot heifers 

(322 ± 34.7 kg, initial BW) in a 142 d trial (naive dataset). Data was collected using an 

automated feed bunk monitoring system. FB variables calculated included feeding 

duration, inter-meal interval (min., max., avg., SD and total; min/d) and feeding 

frequency (visits/d). Animal health records including the number of times treated, d in 

the hospital and d on feed were also collected. Ninety-three and 53 morbid (M) animals 

were identified in each trial respectively, and were categorized into low, moderate and 

high groups, based on severity of sickness. FB data for 68 cattle from the model dataset 

(45 classified as Moderate and 25 classified as High) was analyzed to develop an 

algorithm which would aid in identifying morbid FB. This algorithm was later tested on 

18 M animals (12 classified as Moderate and 6 as High) in the naive dataset. The pattern 

recognition procedure involved reducing data dimensionality via Principal Component 

Analysis, followed by K-means clustering and finally the development of a binary string 

to aid in the classification of M feeding behaviour. The developed procedure resulted in 

an overall classification accuracy of 84 % (82.5 and 85 % accuracy for H and M, 

respectively) for the model dataset, and 75 % overall (100 and 50 % accuracy for H and 
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M, respectively) for the naive dataset. The model predicted morbidity on average 3.3 and 

1.2 d earlier than pen checkers could for each trial respectively. The application of 

pattern recognition algorithms to FB shows value as a method of identifying morbid 

cattle in advance of overt physical signs of morbidity. 
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1. INTRODUCTION 

 

“Even the recognition of an individual whom we see every day is only possible as the 

result of an abstract idea of him formed by generalization from his appearances in the 

past.” 

Games G. Frazer 

 

The word “recognition” plays a significant role in our daily lives as it is a basic 

procedure practiced by all human beings. Many professions, businesses and enterprises 

depend on individuals or machines to correctly recognize and identify pre-defined 

objects, living organisms or behaviours. Comparing an object or situation against 

existing knowledge stored in the human mind is a complex and multi-dimensional task 

and involves information gathering and precise comparisons on various levels. For 

example, when we see a cow, we first recognize that it is an animal. Then we look at 

specifics such as its size, color, shape and position of its head in relation to its body, and 

so on. We may have seen many cows before, and learned what they ‘should’ look like. 

After assessing its attributes, we make comparisons of this animal with the existing 

images stored in our mind leading to the conclusion that it is indeed a cow. A pen 

checker in a feedlot is expected not only to recognize the type of animal correctly, but 

also its state of health. Recognizing the health status of cattle can be difficult, as it is a 

subjective procedure based on behavioural rather than physical characteristics (Broom, 

2006). Primary among these behavioural characteristics is feeding behaviour. One of the 

first indicators that an animal is sick is that it is ‘off-feed’ (Edwards, 1980). It is known 

that feeding behaviour of cattle is affected by various factors such as feed availability, 
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weather, social interactions and the health status of individuals. Appetite depression is 

one of the most important early symptoms associated with feedlot diseases and disorders 

(Blezinger, 2005; Hutcheson, 1988). A reliable method of recognizing patterns of 

feeding behaviour typical of cattle morbidity or proneness to disease would be of 

tremendous value to the feedlot industry because of the direct relationships between 

animal health and welfare, feed intake, and economic return. Establishment of such a 

knowledge base would enable pen checkers to assess observed behaviours relative to 

reliable reference standards and thereby improve the accuracy of identification of sick 

animals. 

 

This thesis discusses the use of pattern recognition techniques on cattle feeding 

behaviour, and introduces a proposed automated method to identify cattle morbidity in 

its early stages, before the physical characteristics of sickness become evident. Despite 

the potential benefit of this strategy, few attempts have been made to develop automatic 

or semi-automatic tools for post-processing of feeding behaviour data. Automation refers 

to a computerized system programmed to recognize feeding behaviour patterns 

developed from feed intake and health management data that are associated with existing 

or developing morbidity among feedlot cattle.  

 

The need to process feeding behaviour data automatically became evident after 

the introduction into commercial settings of an automated behaviour monitoring system 

(GrowSafe Systems ™, Airdrie, AB) that is based on radio frequency identification 

(RFID). At Cactus Feeders (Amarillo, TX), this system has generated datasets believed 
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to be the largest and most complete datasets on feeding behaviour of sick and healthy 

cattle in the world. 

 The collection system captures ‘true’ feedlot behaviour by cattle, free of artifacts 

introduced by human or technical intervention. The proposed model combines data 

analysis, i.e., understanding of behavioural data processing and signal recognition, with 

common pattern recognition techniques to provide insightful biologically meaningful 

solutions. By understanding and replicating the manner in which humans interpret 

feeding behaviour, the ultimate goal is to use perceptual computer models to classify 

feeding behaviour as healthy or morbid. 
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2. LITERATURE REVIEW 

 

Chapter 2 will include a review of the current management techniques 

implemented in the intensive beef production industry. Special attention will be given to 

animal health and wellfare issues, and to the method used for the early detection of 

sickness, as these approaches are still in their formative stages. The work is based on 

theories of animal behaviour, along with the employment of pattern recognition through 

artificial intelligence (AI). The development of a novel process to allow computers to 

process and analyze feeding behaviour data in a manner similar to that which is 

performed by experienced feedlot personnel is described. The process consists of several 

programs that apply AI techniques to feeding behaviour measurements that are in turn 

used to understand the behaviour and health state of individual feedlot cattle. The 

following sections highlight the motivation behind, and the objectives of the research 

depicted in this thesis. 

2.1. The Feedlot Industry 

 

The beef industry is a large contributing factor to the world in terms of 

economy, nutrition and the environment. Cattle have been consumed around the world  

for centuries, and today beef production, consumption, imports and exports continue to 

follow their recent trend of annual historic heights (FAS, 2007). 

In North America, beef cattle are born on cow-calf production farms. Cow-calf 

production is the first stage of the beef production cycle, and it is the most traditional 

phase in the cattle-beef commodity chain (MacLachlan, 2001). At this point, calves are 
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raised on pasture together with their mother and are weaned at 6 to 9 months of age, 

between 225 and 325 kg (Mathison, 1993) and transported to a feedlot.  

A feedlot is an area designated for housing and fattening cattle for the market. 

Generally, feedlots in North America are comprised of multiple pens, a centrally 

located water system (within each pen), feed bunks and resting areas. Rows of pens are 

separated by alleys used for daily tasks such as feeding, pen cleaning and animal 

handling. The number of animals housed in each pen may be as high as 300+, but pen 

sizes vary widely among feedlots. The animals in each pen are typically homogeneous 

with respect to ownership, sex, breed, and size (MacLachlan, 2001). Feedlot capacity 

varies greatly, however economies of size are motivating the shift toward larger feed 

yards (Mintert, 2003). Some of the largest operations in North America have a one-

time capacity of 25,000 head or more (MacLachlan, 2001), and achieve good 

economies of scale by reducing production cost per animal. On average, finishing 

cattle spend 120 days in the feedlot (MacLachlan, 2001), thus the turnover rate of such 

facilities is two to three times each year. Depending on breed, level of intake and diet 

composition, finished feedlot cattle range between 500 and 600 kg, gaining 

approximately 1-2 kg/d of body weight (Mathison, 1993). The health of feedlot cattle 

are heavily influenced by the experience of the feedlot management and staff. 

 

2.1.1. Feedlot Management 

Feedlot management has become a sophisticated, precise, and science-oriented 

task, and it is clear that feeding and management strategies have a decisive impact on 

cattle performance (Mintert, 2003). For example, of surveyed feedlot owners, feed bunk 
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management was considered to be a critical factor affecting feed intake and animal 

performance (Galyean, 1996). Several factors are believed to influence the nutritional 

needs of receiving cattle (Hutcheson, 1988; McEwen and Wingfield, 2003). Among 

these, the type of diet and feeding regime are of utmost importance to feedlot 

operators, as is the familiarization of the animals to their new surroundings, feed and 

feeding regime (Hutcheson et al., 1997). In most feedlots, feed is delivered in a truck 

to a feed bunk (up to three times daily), which lines the front of each pen. The 

scheduled delivery of feed rations is important, as the availability of fresh feed at each 

feeding session assures that the cattle will eat and gain weight with optimal efficiency 

(Pritchard and Bruns, 2003).  

One of the most challenging periods for feeding cattle is during the receiving 

period, a short period of time (30 – 40 d) following the arrival of cattle at the feedlot 

(Hutcheson and Cole, 1986). Receiving calves are fed a diet consisting mainly of 

forages, mixed with a small percentage of grain (70 and 30 %, respectively), with their 

rations gradually increasing in grain content (up to 90 %) (Mathison, 1993; Muir et al., 

1998). The combination of feedstuffs used in a finishing ration often changes due to 

several factors such as relative price, animal breed and the experience of the feedlot 

staff (Mathison, 1993).  

 

2.1.2. Receiving Calves 

The receiving of new cattle into the facility requires careful planning and 

management, as newly arrived calves are often tired, hungry and thirsty. Upon entry to 

the feedlot, the animals undergo management procedures which may include hot-iron 
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branding, castration, dehorning, vaccination and treatment for internal and external 

parasites (Radostits, 1996). Animals may also be mass medicated with pharmaceuticals 

such as antibiotics. For example, in the United States more than 90 % of feedlot 

operators administer vaccines and antibiotics upon arrival of young cattle at the feedlot 

(NAHMS, 1999). Performance enhancing hormone implants are also administered to 

increase average daily gain and improve feed efficiency (Roeber et al., 2000). It is 

believed that as a result of such extensive handling procedures, the animals’ 

homeostasis may be challenged and could be disturbed, resulting in stress and an 

increased susceptibility to disease (McEwen and Wingfield, 2003).  

2.1.2.1. Stress 

Homeostasis is a term that refers to to ‘being in balance.’ The inability to 

maintain homeostatic balance results in the development of stress (Sapolsky, 2000). 

Stress is defined as a non-specific response of the body to any demand from the 

environment (Selye, 1955). It is well documented that the physiological response to 

stressors varies greatly among animals, and it has been argued that this variability can 

be accounted for by differences in vulnerability to stressors. In his 2005 review paper, 

Sapolsky mentioned two types of stressors: physical and psychosocial. He defined a 

physical stressor as an external challenge to homeostasis, whereas a psychosocial 

stressor as the anticipation (justified or not) that a challenge to homeostasis looms. 

Receiving calves are exposed to both physical and psychosocial stressors upon arrival 

to the feedlot (Cole and Hutcheson, 1990; Hodgson et al., 2005; Hutcheson, 1988; 

Johnson, 1985).  
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2.1.2.2. Stressors 

Separating the calf from its mother is assumed to impose a great amount of 

stress on the calf and dam alike (Loerch and Fluharty, 1999). “Preconditioning” is a 

term used in the feedlot industry and refers to a calf management program geared 

towards reducing disease incidence, with the goal of improving the growth 

performance of freshly weaned calves (Pate and Crockett, 2002). Although 

preconditioning has been suggested to decrease weaning stress (Pate and Crockett, 

2002), it is seldom implemented because of cost and/or lack of adequate facilities 

(Macartney, 2003). Additional stressors that young calves are exposed to include 

marketing through auction barns, transportation, exposure to new environments, 

commingling with other animals, handling, and consumption of novel feed (Galyean et 

al., 1981; Galyean and Hubbert, 1995; Grandin, 1997; Hutcheson, 1988; Loerch and 

Fluharty, 1999). To gain a better appreciation of the stressors that animals routinely 

face, one only needs to consider the transport of cattle to the feedlot. Although the 

length of the trip may vary with location, in most cases the trip is divided into two 

transportation events, the first half being from the cow-calf producer to the auction 

market, followed by a second trip to the feedlot. Typically, at the auction market the 

calves are unloaded from the transport vehicle and commingled with animals from 

other sources. The mixing of cattle from different sources may expose animals to a 

variety of infectious agents. The feedlot environment after arrival may also impose 

additional stressors as the animals often have to acclimate to mud, manure, exposure to 

a new social environment and novel feed (Herskin et al., 2003; Loerch and Fluharty, 

1999). Sometimes animals are not fed for several days before reaching their final 

destination, and research has shown that despite the animals being hungry, feed intake 
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of newly arrived cattle is usually low (Cole, 1982; Cole, 1996; Hutcheson, 1988). 

Furthermore, the establishment of social and dominance order within each pen may 

also inflict problems, as animals of distinct ranks experience different patterns and 

levels of stress (Sapolsky, 2005). These findings provide strong evidence that stressors 

have a direct effect on feeding behaviour and performance, and consequently on herd 

health and efficiency (Cole, 1982; Loerch and Fluharty, 1999). Chronic stress can 

cause immunosupression, leaving the animal vulnerable to infectious agents 

(McNamara and Buchanan, 2005; Sapolsky, 2005). 

 

2.1.3. Animal Health 
 

Infectious diseases are a significant concern to the livestock industry in terms 

of animal welfare and feedlot economy (Duff and Galyean, 2007; Gardner et al., 

1999). Therefore the control of such diseases must be considered in any herd health 

management program. Feedlots deal with health-related concerns on a daily basis, and 

it is well known that newly arrived calves account for the majority of disease control and 

management issues (Duff and Galyean, 2007). The morbidity rate is generally much 

higher for calves (30 to 50 %) than for older animals (less than 30 %), (Johnson, 1985) 

as low feed intakes may compromise the animal’s immune system leading to poor 

health and growth performance (Cole, 1982; Forbes, 2003; Rivera et al., 2005). 

Subtheraputic use of antimicrobials and other various feed additives may offset some 

negative impacts of stress on health and growth (Hardy, 2002). In support of such 

practice, Phillips et al. (2004) and Rivera et al. (2005) suggest that continued use of 

antibiotics as a feed additive reduces mortality and morbidity rates at the feedlot, and 
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improve growth and feed efficiency. However, others argue that the widespread use of 

antibiotics can cause the development of antibiotic-resistant bacteria, which not only 

affects the animal but may also have implications for human health (Kumar et al., 

2005). For a more targeted discriminatory use of antibiotics, the development of a 

technique for the early identification of animals that are infected and/or prone to 

disease would be valuable (Blezinger, 2005). However, the exact diagnosis of 

subclinical infection is a major problem, as current methods rely on identification 

based on physical symptoms shown by the animal (Galyean et al., 1999; Gardner et 

al., 1999). The development of a technique that would be able to easily and promptly 

identify morbid animals would likely increase the efficacy of antibiotics, as they could 

be implemented earlier in the disease cycle. Treatment records indicate that the earlier a 

sick animal is identified, the better its chances of survival (Smith, 2005). 

 

2.1.3.1. Bovine Respiratory Disease 

Bovine respiratory disease (BRD) is one of the most prominent feedlot health 

issues (Duff and Galyean, 2007; Loneragan, 2001; Pinchak et al., 2004; Smith, 1998). It 

is a disease of the respiratory tract, caused by stress, viral and bacterial infections, and 

numerous other stressors and agents such as dust, cold and fatigue (Bagley, 1997; 

Griffin, 1998; Loerch and Fluharty, 1999). BRD is of significant concern to feedlot 

operators in terms of animal welfare and economic loss (Duff and Galyean, 2007; 

Loneragan, 2001; Macartney, 2003) This condition accounts for 65-77 % of morbidity 

and 44-72 % of mortality rates in the United States (Edwards, 1996; Galyean et al., 

1999; Quimby, 2001). Approximately 65 to 80 % of BRD occurs during the first 45 days 

 10



in the feedlot (Griffin, 1998; Loneragan, 2001; Mathison, 1993; Smith, 1998). Physical 

signs of an animal having BRD include thick nasal discharge, difficulty breathing, 

discharge from eyes, red peeling muzzle and listless behaviour (Galyean et al., 1999; 

Griffin, 1998). Body temperature of individuals with BRD is also frequently elevated to 

39.4°C or above (Griffin, 2006). The normal range of cattle body temperature varies due 

to various factors such as the animal’s environment, time of day, and the activity level of 

the animal. The body temperature of healthy cattle can range within the margins of 

37.8 - 39.4 °C (Encyclopaedia Britannica, 1965), with an average of 38.6° (Academic 

American Encyclopedia, 1994). 

 

2.1.3.2. Pen checking 

Identifying feedlot disease is not an easy task, as different diseases may cause 

different clinical symptoms and behavioural differences in individual cattle (Galyean et 

al., 1999). Typically, trained pen riders scan each pen daily and visually inspect the 

animals. Animals that appear to be sick are taken to a hospital pen, where they are 

treated with antibiotics and monitored.  

Identification of BRD is subjective and not always accurate. Despite taking daily 

measures, clinical signs of disease often still go undetected (Gardner et al., 1999). For 

example, abattoir records show that 68 % of untreated animals had lung lesions at 

slaughter (a sign that the animal had respiratory disease at some point during its life) 

(Gardner et al., 1999; Wittum et al., 1996). Diseases caused by bacterial infections are 

often treated by the administration of antibiotics, but these drugs are ineffective for viral 

pathogens. In addition, the economic losses associated with the disease do not stop with 
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the cost of antibiotic treatment as extra labour is required to deal with diseased animals 

and growth performance and carcass quality are also frequently compromised (Galyean, 

1999; Larson, 2005; Loneragan, 2001; Rivera et al., 2005; Smith, 1998). Feedlots may 

be able to reduce health problems by planning a more sophisticated and unbiased health 

maintenance and disease prevention program, as visual surveillance alone is unlikely to 

be the best method of early detection of morbidity.  

 

2.1.3.3. Detection of BRD 
 

One of the key behaviours pen checkers assess to identify sick animals is 

feeding behaviour (Edwards, 1980). Generally, pen checkers make their rounds around 

feed delivery. Prior to feed delivery, Pavlov’s principle seems to occur as cattle 

anticipate feed delivery (Sowell et al., 1999). Anecdotal evidence suggests that healthy 

animals stay true to this phenomenon; whereas sick animals don’t await feed delivery 

and often do not react to the arrival of the feed truck. Hicks et al. (1989) states that 

generally the highest percentage of animals observed eating in a pen coincides with the 

time of feed delivery, thus pen checkers often suspect morbidity based on 

identification of animals that do not feed at this point in time. Because behaviour is 

such a difficult variable to measure (Parsons et al., 2004), subtle changes in feeding 

behaviour may go unnoticed until they become more severe. Frequently, the animal 

only receives medical treatment once it exhibits obvious signs of abnormal behaviour 

and signs of physical deterioration. The likelihood of successful treatment is highly 

dependent on the administration of therapeutic drugs early in the disease process. In fact, 

we now know that the time at which a treatment is first administered is a better predictor 
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of outcome than the type of drug used or any other factors examined (Blezinger, 2005). 

Paradoxically however, studies have shown that the currently used methods of treating 

cattle for BRD are not adequate to prevent production losses, and that improved methods 

of diagnosis for BRD are needed. It is speculated that with the introduction and 

hybridization of computer science and artificial intelligence with animal science, 

subtle differences in feeding behaviour could be detected using automated computer 

models. 

 

2.1.4. Feeding Behaviour 

Of the many individual animal characteristics, and environmental and 

management factors associated with altered feeding behaviour, health status is 

recognized as an important but ill-defined contributor (Broom, 2006). In the past, 

methods used to help researchers understand effects of feeding management on 

individual animal feeding behaviour have relied on the feeding and monitoring of 

individually housed animals. Unfortunately, the setup of these former methods 

influenced and modified animal feeding behaviour when compared to cattle housed 

under typical commercial conditions (Schwartzkopf-Genswein et al., 2000). As these 

individually housed animals lack social interactions, it is clear that the information 

gained under these conditions is unlikely to be relevant to a commercial feedlot. The 

ability of researchers to observe feeding patterns and their correlation with animal 

performance has been recently improved with the availability of a newly developed 

technology, an automatic feed bunk monitoring system (GrowSafe™ Systems Ltd., 

Aridrie, AB) (McAllister et al., 2000). Through the use of this equipment it is now 
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possible to accurately monitor feeding behaviour of individual animals within a group or 

pen without altering their feeding behaviour (DeVries et al., 2003; Gibb et al., 1998; 

Parsons et al., 2004; Sowell, 1998). This technology has the capacity to monitor feeding 

behaviour with a degree of sensitivity which allows the detection of feeding behaviour of 

individuals to be defined within groups of cattle. Using simple measurement techniques, 

such as feeding behaviour collected with the GrowSafe™ system and presence or 

absence of metritis post calving, Urton et al. (2005) showed that reduced time at the 

feeder can be used to identify dairy cows at risk of metritis (inflammation of the uterus, a 

disease common to cows following calving). Although a relationship between feedlot 

cattle health status and animal feeding behaviour exists (Daniels et al., 2000; 

Loforgreen, 1983; Parsons et al., 2004; Sowell, 1998), the intricacy of these connections 

remains unknown and therefore will be further studied in this project. For example, 

previous research showed that morbid and healthy cattle have different feeding 

behaviours (Blezinger, 2005; Galyean and Hubbert, 1995). Experts suggest that 

differences in feeding duration and the number of daily feeding bouts may be the key 

signs of cattle morbidity. As proof, Sowell et al. (1999) recorded severe neophobia (fear 

of new things or experiences) experienced by presumably healthy cattle during the first 

four days of the receiving period. They also found that light-weight calves that became 

sick during the first 32 days after arrival to the feedlot spent 52 % less time at the bunk 

than presumably healthy calves during the first four days after arrival. These same calves 

spent an average of 23 % less time at the feed bunk over the initial 32 days following 

arrival compared to the presumably healthy calves. These findings are consistent with 

the findings of other studies (Daniels et al., 2000; Parsons et al., 2004; Schwartkopf-

Genswein et al., 2005). It has been concluded that cattle feeding behaviour tends to 
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follow a diurnal pattern (Hicks et al., 1989; Stricklin and Kautz-Scanavy, 1984). This 

discovery was one of the motivating factors behind Quimby’s (2001) work, which led 

him to suggest that with the use of the GrowSafe™ system, potentially morbid animals 

may be identified 3-4 days earlier than calves identified via conventional observation via 

pen checkers.  

 

2.1.4.1.GrowSafe™ System 
 

The need for individual monitoring of feedlot cattle from a physiological 

perspective arises from the nature of the difficulties involved with monitoring cattle 

feeding behaviour and animal sickness within a pen. Former methods of animal feeding 

behaviour observations included tedious, labour intensive, manual methods of 

monitoring (Streeter et al., 1999). With the introduction of the GrowSafe™ System, 

detailed feeding behaviour data could now be collected automatically, 24 h a day. 

The GrowSafe™ System is modular, and consists of several components. There 

are two most common variations of the system installed in research institutions, which 

include a behaviour monitoring system and the feed intake system. Although the 

underlying concept is similar, the two systems do differ in hardware design and 

implementation, as well as data collection and processing procedures. The behaviour 

monitoring system continuously monitors individual feeding behaviour of animals 

feeding in a commercial environment. It consists of radio frequency identification 

(RFID) ear tags containing a passive transponder (Figure 2.1), a capacitor, an antenna, a 

reader panel and a personal computer for data collection. The antenna is incorporated 

into a rubber mat, which lines the interior surface of the feed bunk. When the 
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transponder (attached to an animal) comes within 50 cm of the antenna, the reader panel 

reads the unique transponder number, and sends the data to the computer where it is 

stored (McAllister et al., 2000). Scanning time is system dependent and varies from 1 to 

6.3 seconds.  

 
Figure 2.1. GrowSafe™ System 

 

The system is capable of recording an animal’s RFID number along with the time that 

the animal was present at the feed bunk (McAllister et al., 2000). This information is 

then compiled to determine the duration each animal spends at the feed bunk, and the 

number of visits made to the feed bunk. 
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2.1.4.2. Measures of Feeding Behaviour 

The introduction of such automated feeding behaviour collection systems allows 

for the direct measurement and observation of cattle feeding patterns. Detailed 

measurements taken by these systems are in turn challenging our understanding of the 

relationship between health status and feeding behaviour, leading to new theoretical 

constructs and calling old ones into question. To date, there has been little agreement as 

to which measures of feeding behaviour are most repeatable and valuable when defining 

feeding behaviour differences between healthy and morbid cattle. Tolkamp et al. (1998) 

and Keyserlingk et al. (2002) suggest that animals typically eat in a series of bouts, and 

this information is often useful to separate the times between events (transponder 

readings) into within vs. between bouts. Previous research involving feeding behaviour 

has been based on defining meals in terms of such feeding bouts (Basarab et al., 1997b; 

Schwartzkopf-Genswein et al., 1999; Sowell, 1998). Results from various bout analysis 

techniques were incorporated to specify a meal criterion for feedlot cattle as a 300s 

interval between events that separate within- and between-meal intervals (Schwartzkopf-

Genswein and McAllister, unpublished data). This same meal criterion of 300 seconds 

(where inter-meal intervals must exceed 300S for eating events to be set as 2 different 

meals) was confirmed in an additional experiment by Gibb and McAllister (1999), where 

meal length was determined by visual observation of the cattle. Sowell et al. (1999) 

concluded similar results. Measures of feeding behaviour which have been recorded 

and/or calculated in the past with the GrowSafe™ behaviour monitoring system for 

research purposes include daily feeding duration, number of meals consumed per day 

(visits) (McAllister et al., 2000), and inter-meal intervals. Further research involving 
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feeding behaviour data must be based on the clear understanding of how these measures 

are currently defined and are summarized in Table 2.1. 

Table 2. 1. Definition of feeding behaviour variables. These variables are derived  by applying 
calculations to the raw data obtained from the GrowSafeTM system. 

Term Definition 

Feeding event - 

measured in seconds or 

minutes 

The time interval between the initial detection of the animal’s 

transponder at the feed bunk and the last consecutive reading. 

Number of meals or 

visits – calculated over 

a specified length of 

time, such as hour or 

day. 

The number of time intervals between the initial detection of 

the animal’s transponder at the feed bunk and the last time the 

transponder was detected by the antennae, such that the time 

between the last two recorded readings was greater than 300 

seconds (Basarab et al., 1997b; Schwartzkopf-Genswein et al., 

1999; Sowell, 1998). 

Daily feeding duration 

(min d-1) 

The sum of meal durations during a day. A meal spanning 

midnight was partitioned based on time in each day. 

Inter-meal interval – 

measured in seconds or 

minutes  

Duration between meals. 

 

Previous research mostly resulted in feeding behaviour observations based on 

groups of animals. For example, it was observed that animals exhibit a diurnal feeding 

pattern (Streeter et al., 1999; Stricklin, 1986), as this pattern exists independent of feed 

delivery times (Schwartzkopf-Genswein, 2003). Hahn (1995) also indicated that cattle 
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feeding behaviour is influenced by weather and environmental conditions (Johnson, 

1985) such as ambient temperature, relative humidity, barometric pressure and wind 

speed. In a 32-d trial, Sowell et al. (1999) concluded that the total time spent at the feed 

bunk over a 32 d feeding period, was greater (P< 0.0001) for healthy than for morbid 

calves. Forbes (2003) noted, however, that although these patterns of group feeding 

behaviours emerge, they are a result of combined, distinct and individualistic 

behaviours. This hypothesis has not been subject to rigorous scrutiny in terms of 

experimentation, testing and peer review. 

 

2.1.4.3. Calculated Variables and Dataset Setup 

Behavioural data can be summarized in various ways, using various techniques. 

The data summarization process bundles the collected raw data into pre-defined, time-

interval data points. Summarizing large datasets can be a challenging task, often 

requiring expert advice and extensive investigation to identify procedures that are most 

appropriate for the dataset. The processing is usually assumed to be automated, and 

typically is unique to the problem. For example, in the case of cattle feeding behaviour, 

specific summaries are needed when investigating feeding patterns in order to maximize 

our understanding of differences in feeding behaviour between healthy and sick cattle. A 

compact summary of the data can be obtained by processing the data by day, where 

unique values of feeding behaviour measurements would be assessed over the duration 

of a day. As an example of the most extreme capabilities of this system, it is possible to 

summarize the data by the minute. Although this approach is very precise and would 

highlight even the smallest inter- and intraday differences in animal feeding behaviour, it 
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would require very large storage space and would be unfeasible because of data handling 

and time constraints.  

 

2.2. The Conjunction of Animal Science and Computer Science 

 

In the field of pattern recognition, the prediction of behavioural patterns over 

time is usually based on some historical knowledge of “normal” behaviour that is used 

as a standard of comparison for changes in behaviour. For example, in the case of cattle 

feeding, pen checkers often associate repeated absence of the animal from the feed bunk 

during feeding time, with poor health (Edwards, 1980). Thus, when considering a 

proposed computer model for identifying feeding behavioural anomalies within a feedlot 

pen, the challenge is to build a system that is able to consider the normal diurnal 

fluctuations in behaviour of all animals as being distinct from those behaviours that are 

indicative of morbidity. 

 

2.3. Artificial Intelligence (AI) 

 

With the introduction of the digital computer in the twentieth century, AI became 

a viable discipline. It is a field of computer science, concerned with the automation of 

intelligent behaviour (Luger, 2002). One of the pioneers of AI was the British 

mathematician Alan Turing, who gave the first scientific discussion of human-level 

machine intelligence. He is well known for his contributions to the theory of 

computability and several inventions. These include the Turing Machine, a simple 
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abstract computational device intended to help investigate the extent and limitations of 

what can be computed as well as the Turing Test, in which the performance of a 

presumably intelligent machine (Turing Machine) is measured and compared against 

human intelligence (Kak, 1996). Currently, there are many tasks that humans can 

perform that can not yet be performed by a computer. In contrast, some complex 

mathematical calculations and formulas that can easily be solved via a computer are too 

complicated for humans to process in a timely fashion. McCarthy (1996) argues that 

reaching human-level AI requires programs that deal with common sense informative 

circumstances, in which the phenomena to be considered in achieving a goal are not 

preset. For example, the concept of “recognition” seems simple and familiar to most 

people. Recognizing a specific object or well-defined behaviour is a task humans 

frequently and commonly perform. However, recognizing behaviour in terms of datasets 

and numerical values presents a far greater challenge for humans and can be far more 

easily accomplished through computational theory. One of the branches of AI that is 

concerned with the identification of behaviour and studies the operation and design of 

automated decision systems is pattern recognition.  

 

2.3.1. Automated decision systems 

The most salient characteristic of automated decision systems is that they 

actually make a decision. In many cases their decisions are made without any human 

intervention at all, in others – sometimes for legal or ethical reasons – they work 

alongside a human expert such as a doctor. The intention of the following sections is to 
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give an overview of how automated decision system models are created, from both a 

biological and a mathematical perspective.  

 

2.3.1.1. Pattern Recognition 

Pattern recognition is defined as the process of identifying structure in data by 

comparison to known structures (Dutta and Dutta, 2006). Today, as data are being 

collected and accumulated at a dramatic rate and the availability of large databases is 

intensifying, demands on automatic or semi-automatic pattern recognition systems are 

on the rise. Watanabe (1985) defines a pattern “as opposite of chaos; it is an entity, 

vaguely defined, that could be given a name.” For example, a pattern could be a face, 

sound signal, a fingerprint image, or feeding behaviour. The aim of pattern recognition 

systems is to associate each pattern with existing pattern classes (Dutta and Dutta, 2006). 

The key to most pattern recognition systems however, is abundant good-quality data. 

 

2.3.1.2. Data Acquisition and Quality 

 Data can be collected by various means, for example through experiments, 

observations, theory, models and simulations. In the past, data usually were presented as 

tables of numbers but presently scientific data are most often stored in databases and can 

involve numbers, text, images, diagrams, pictures, and equations. Efficient methods of 

data acquisition are fundamental to the generation of the extensive datasets that are 

required to define complex behaviours. In many cases, sensors transduce physical 

conditions into electrical signals that can be digitized and stored for subsequent 

computer analysis. Dedicated instrumentation makes it possible to collect detailed 
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observations on an immense scale, and advanced electronics and computers have 

simplified some experimental operations and made processes such as repeat 

measurements less labour intensive. The cattle-feeding behaviour information collected 

via the GrowSafe™ system is an excellent example of such an application. Although 

collected data are more precise and detailed as compared to data collected using former 

methods, data quality control must still be implemented in order for the system to be 

viable and pragmatic. Problems with data quality may stem from various sources, 

including system deficiencies, loss of signal, and malfunction of the system. In other 

words, the quality of the data often depends on the design and production process 

involved in generating the data. While most errors in data within these systems are often 

barely observable, the cumulative impact of poor data quality on final interpretation of 

the dataset can be enormous.  

 

2.3.1.3. Data Quality 

 The subject of data quality has been addressed in several research areas, 

including statistics, accounting, management, and computer science. It has been defined 

in several ways in the literature. For instance, Orr (1998) describes it as “the measure of 

the agreement between the data views presented by an information system and the same 

data in the real world”, whereas other definitions refer to a set of dimensions such as 

accuracy, completeness, consistency and timeliness (Ballou and Pazer, 1985).Wand and 

Wang (1996) explicitly give 5 dimensions for defining data quality: accuracy, 

completeness, consistency, timelessness, and reliability. Wang and Strong (1996), 

elected to select 15 different dimensions to be the most important out of an initial 179. 
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Thus, even though some dimensions are considered to be universally important, 

scientists do not agree on a single set of dimensions as being unanimously important in 

assuring data quality. Wand and Wang (1996) also suggest that the notion of data quality 

depends on the actual use of the data. In particular, what may be considered good quality 

data for a specific application may not be of adequate quality for other purposes (Ballou 

and Tayi, 1999). For instance, at the feedlot feed intake data collected on a daily basis is 

sufficient when calculating the amount of feed to be delivered by the feedtruck, whereas 

the quality of such data would prove to be poor when attempting to define the feeding 

behaviour of individual cattle within the pen throughout the day. Different users have 

different data quality requirements. Consequently, it is important to provide a design-

oriented definition of data quality that will reflect the intended use of the information 

and will lead to input datasets that are of satisfactory quality when employed in a pattern 

recognition system (Wand and Wang, 1996). 

 

2.3.1.4. Knowledge Discovery in Databases (KDD) 

Fayyad et al. (1996) describes the flourishing field of knowledge discovery in 

databases, also referred to as data mining, as a powerful method and technique for 

interpreting data. This process has been applied to many domains including astronomy, 

marketing, investment, manufacturing, fraud detection and scientific research (Fayyad et 

al., 1996). As described by Fayyad et al., (1996), KDD can be defined as a structured, 

interactive and iterative process, involving several steps with many decisions made by 

the user, namely:  

1. developing an understanding of the application domain, 
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2. creating a target dataset, 

3. data cleaning and preprocessing, 

4. data reduction and projection, 

5. matching the goals of the KDD process to a particular data-mining method, 

6. exploratory analysis and model and hypothesis selection, 

7. data mining, 

8. interpreting mined patterns and 

9. acting on the discovered knowledge. 

Items 1 – 4 and 7 will be discussed in detail, as they are most relevant to this thesis. 

 Developing an understanding of the application domain 
 

It is crucial to understand the input to any pattern recognition system and to 

know the strengths and weaknesses of the input prior to the knowledge-discovery 

process. This knowledge can be obtained from manuals, domain experts, and literature. 

In the case of cattle feeding, it is imperative for the dataset to represent a true reflection 

of cattle feeding behaviour in a typical feedlot environment as described in the Animal 

Science section of this literature review. It is also important to recognize and take note of 

errors and problems such as system malfunction during data acquisition, as some of the 

difficulties that arise in the pattern recognition process often depend on the quality and 

limitations of the input data. Understanding the sources of error and limitations and why 

they are important, is key to the development of a robust pattern recognition algorithm. 

 

 Creating a target dataset 
 

As some data collection systems result in abundant data, data mining experts 

suggest reducing the dataset in size to effectively meet the needs of the analysis. This is 
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achieved by eliminating redundant or irrelevant data and creating a sub-dataset that 

consists of information that is most intrinsically interesting and relevant to the test 

hypothesis. Just as insufficient data to a system would yield poor results, too much or 

excess information would also clog the system, and may result in poor output. Domain 

knowledge is beneficial for intelligent reduction of the dataset, as it requires the user to 

make knowledgeable decisions. 

 

Data preprocessing and data cleaning 
 

When given a poor description of an object, humans often will incorrectly 

identify it. Similarly, poor data quality can lead to incorrect interpretations no matter 

how robust the pattern recognition algorithm (Redman, 2004). As is the case with 

humans, in an automated recognition system, the process depends greatly on the quality 

of the information provided. Gaining new information and knowledge of a specific 

domain depends largely on data analysis. However, data analysis is only efficient if the 

datasets provided for analysis are error free. Often the efficiency and effectiveness of 

data analysis is hampered by data anomalies (errors), making the identification of 

existing or potential problems in poor quality datasets important in terms of data 

processing, which usually involves cleaning the data before data mining tools are 

applied. Thus, preprocessing of the data, also referred to as filtering is key to a solid and 

robust pattern recognition system (Fayyad et al., 1996). 

 During the data preprocessing phase the data are transformed into a format that is 

usually more easily and effectively processed via an analysis process such as pattern 

recognition. It seems however that there are no general guidelines as to how to determine 
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the appropriate data pre-processing techniques. Famili et al. (1997) describes a specific 

transformation (T) in terms of the raw real-world data vectors Xik and Yij:  

Yij =T(Xik)  (2.1) 

where Yij is the newly created dataset that preserves the ‘valuable information’ in Xik but 

eliminates at least one of the problems in Xik , 

i=1, . . . n where n = number of objects, 

j=1, . . . m where m = number of features after preprocessing (generally m ≠ l.) and  

k=1, . . . p where p=number of attributes/features before preprocessing. 

Famili et al. (1997) also discusses two main reasons for performing data preprocessing:  

1. to fix problems that may arise with the data and  

2. to prepare the data for analysis. 

There are several unique preprocessing techniques described by Famili et al. (1997), 

among which data cleaning/filtering is described under the data transformation section. 

There are often many problems with real-world data. Cleaning these data is a 

time consuming task, as any errors and inconsistencies in the dataset must be identified 

and then addressed. Data cleaning is a term without a precise or fixed definition, perhaps 

due to the fact that it is domain dependent and application specific (Maletic and Marcus, 

2000; Mathieu and Khalil, 1998). Current data cleaning methods do exist, and focus 

mainly on the transformation of the data and the elimination of duplicates in a dataset 

(Famili et al., 1997; Maletic and Marcus, 2000). Missing values may often impose great 

concern, as missing data resolution can be a challenge and may present compelling 

research problems such as predicting preterm birth risk patterns as described by 

Grzymala-Busse et al. (2005). The removal of unwanted information or data from the 

input is application dependent, thus the filter algorithm or method to be implemented is 
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usually unique to the project and demands extensive domain knowledge so that useful 

information is not lost (Maletic and Marcus, 2000).  

 

Data reduction and projection 
 

As machine learning aims to tackle larger, more intricate tasks, data reduction 

becomes an imperative step toward understanding and discerning distinct patterns from 

large and complex datasets. Patterns are typically described in terms of multidimensional 

data vectors, where each component is called a feature (Duda et al., 2001) . The process 

where the dimensionality of the dataset is reduced to a set of more vital features is called 

feature extraction. The objective of feature extraction is to characterize an object to be 

recognized by measurements whose values are very similar for objects in the same 

category, and very different for objects in different categories. It is a process of studying 

and deriving useful information from filtered input patterns and identifying the most 

effective subset of the original features to later use in the classification process. This 

approach leads to the smallest classification error. The methods of feature extraction and 

the extracted features are application dependent; however Blum and Langley (1997) 

classified feature-extraction techniques into three basic approaches:  

1. embedded approach: features are added or removed in response to prediction errors of 

a simple embedded classifier,  

2. filter methods: methods work independently to remove features without knowing the 

effect on the classification algorithm (Principal Component Analysis (PCA) is an 

example) and 

3. wrapper methods: evaluate candidate feature sets using a classification algorithm on 

the training data. 
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Feature extraction is often regarded as dimensionality reduction. One way to 

reduce the dimensionality of the dataset is by identifying major factors behind the 

variability of all variables, through the means of PCA (Section 2.4.1.6). 

Data mining 
 

Many theories and algorithms have been proposed and studied extensively for 

understanding and summarizing data, and deriving knowledge from data. The spectrum 

ranges from classical analysis, cluster analysis, and data analysis to recent machine 

learning, data mining, and knowledge discovery. One of the main goals of data mining is 

to provide a comprehensible description of information extracted from databases. Given 

a pattern, the act of recognition and/or classification can be divided into two broad 

categories (Scott, 2006):  

a. supervised classification – where the input pattern is recognized as a 

member of a predefined class and 

b. unsupervised classification – where the pattern is assigned to a previously 

unknown class. 

 

2.3.1.5. Classification  

Data classification is the final stage of pattern recognition. This is the stage 

where an automated system declares that the presented object belongs to a particular 

category. There are many classification methods in the field, including:  

1. member-roster concept – an input pattern is compared with sets of patterns stored 

in a classification system and placed under the matching pattern class, 
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2. common property concept – the properties of an input pattern are compared with 

properties of patterns stored in a classification system, and the pattern/object is 

placed within a class which has similar common properties and 

3. clustering concept – input patterns are presented as vectors and the relative 

proximity to representative cluster vectors is used to classify patterns within the 

target classes. If the target vectors are distinct, i.e. far apart in a geometrical 

arrangement, it is easier to classify the unknown patterns. Subtle differences in 

the classes are characterized by vectors that are nearby and more complex 

algorithms are required to classify the unknown patterns. Minimum-distance 

classification is one simple algorithm, which computes the sum of squared 

differences between the unknown pattern and the representative patterns for the 

clusters. The unknown pattern is assigned to the class that results in the least 

sum. This algorithm works best when the target patterns are easily differentiable. 

 

The conceptual boundary between feature extraction and classification is 

somewhat arbitrary; an ideal feature extractor would yield a representation that makes 

the job of the classifier trivial; conversely, an omnipotent classifier would not need the 

help of a sophisticated feature extractor. 

 

2.3.1.6. Principal Component Analysis (PCA) 

 PCA was originally introduced in 1901 by Karl Pearson – who defined it as a 

mathematical method to achieve dimensionality reduction, as it consolidates redundant 

data and condenses essential information into fewer variables (Lavine, 2005). The 
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underlying goal of PCA-based dimension reduction is described in terms of 

dimensionality reduction of the dataset as a liner transformation. This technique provides 

an optimal way of reducing dimensionality by projecting the data onto a lower 

dimensional orthogonal subspace that captures as much of the variation of the data as 

possible. PCA transforms the data to a new coordinate system such that the greatest 

variance by any projection of the data comes to lie on the first coordinate (called 

principal component (PC)), the second greatest variance on the second coordinate, and 

so on. It is well documented, that lower order PCs often contain the “most important” 

aspects of the data (Lavine, 2005). PCs are distinct, and comprise the variability of the 

dataset; and are sorted in order of significance of variance among all PCs (Lavine, 

2005). By selecting the minimum number of PCs that capture most of the variation in the 

dataset, a 'subspace' (defined as more suitable for data visualization and analysis than the 

original dataset) can be identified. It is common practice to apply a K-means clustering 

technique to the chosen PCs (Ding and He, 2004).The field of pattern recognition and 

classification outlines numerous clustering algorithms such as K-means clustering (Duda 

et al., 2001). The choice of the most appropriate method depends on the specific nature 

of the problem. Yeung and Ruzzo (2001) emphasize however, that clustering with the 

PCs rather than with the original dataset enhances cluster quality only when the right 

number of components or when the right set of PCs are chosen.  

 

2.3.1.7. K-means clustering 

A cluster of objects is most commonly defined in terms of their similarity to one 

another. Similarity is usually measured by a distance function defined on pairs of data 
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points. There is a variety of ways to calculate distance, with the Euclidean distance 

calculation being the most common method (Chang, 2007; Wang, 2006). The data must 

be normalized before K-means clustering is applied, as larger scaled variables can 

dominate others, resulting in skewed results. In pattern recognition, it is common 

practice to apply K-means clustering techniques to data that have been reduced in 

dimensionality via PCA. In fact, Ding and He (2004) demonstrated that PCs are a 

continuous solution to the discrete cluster membership indicators for K-means 

clustering. The K-means algorithm is a process used to cluster objects based on given 

attributes into K partitions or clusters, such that intra-cluster variance is minimized, 

whereas inter-cluster variance is maximized. A cluster is defined as a group of objects 

with similar features (Duda et al., 2001).The goal of K-means clustering is to divide the 

data points into K clusters such that some metric relative to the centroids of the clusters 

is minimized (Chang, 2007). A centroid is defined as the mean of all data points already 

assigned to a cluster – thus each cluster has a centroid. Initially, K random points from 

the dataset are selected. These points represent initial cluster centroids. New data points 

are assigned to a cluster based on the estimation of Euclidean distances between it and 

each centroid. The new data point is assigned to the closest cluster and the new centroid, 

once the newly assigned member is taken into account, is defined as the updated mean of 

the new cluster. This procedure is iterated until the centroids no longer change, resulting 

in the separation of the original dataset into K distinct clusters (Chang, 2007). 

 

The analysis of feeding behaviour patterns from the viewpoint of determining 

abnormalities (sickness) has great bearing on the feedlot industry (Hickman et al., 2002). 

The data collected with the GrowSafe™ system is comparable to that of other data 
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received in signal processing experiments. Although the concept of signal processing is 

not novel, and has been applied in various fields such as sound, and image and character 

recognition, tailoring some of the ideas to fit cattle feeding behaviour data is original. 

 

2.4. Summary 

The objective of this work was to develop and test a classification process using 

pattern recognition techniques that would identify morbid feeding behaviour prior to the 

animal exhibiting physical signs of sickness. 
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3. IDENTIFYING CATTLE SICKNESS EARLIER THAN TRADITIONAL 

METHODS USING PATTERN RECOGNITION TECHNIQUES 

 

In Chapter 3 the development of a pattern recognition process is introduced in the 

form as presented in scientific journals. First, emphasis is given to animal health status 

definitions, followed by a precise data cleaning process. Feeding behaviour is 

summarized by processing the raw data by 4-h time intervals. Data mining and pattern 

recognition techniques were applied to the variables to conclude the health status of 

individual animals. The performance of the developed process is presented in the results 

section of this chapter. The discussion compares the work presented in this chapter to 

previously reported research. 

 

3.1. Introduction 

 

 Bovine Respiratory Disease (BRD) is one of the most prominent and 

economically important diseases of feedlot cattle (Duff and Galyean, 2007; Smith, 

1998). It is a disease of the respiratory tract, caused by stress, viral and bacterial 

infections, and numerous other stressors and agents such as dust, cold and fatigue 

(Bagley, 1997; Duff and Galyean, 2007; Griffin, 1998; Loerch and Fluharty, 1999). 

BRD is of significant concern to feedlot operators in terms of animal welfare and 

economic loss (Duff and Galyean, 2007; Loneragan, 2001), accounting for 65-77 % of 

feedlot cattle morbidities and 44-72 % of mortalities in the United States (Edwards, 
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1996; Galyean et al., 1999; Quimby, 2001). Approximately 65 to 80 % of cases of BRD 

occur in cattle during their first 45 days at the feedlot (Griffin, 1998; Mathison, 1993; 

Smith, 1998). Physical signs of BRD include thick nasal discharge, elevated 

temperature, difficulty breathing, discharge from eyes, red peeling muzzle and listless 

behaviour (Galyean et al., 1999; Griffin, 1998). 

 One of the key indicators of morbidity feedlot personnel use to identify 

potentially sick animals is animal behaviour with particular emphasis on feeding 

behaviour (Broom, 2006). Visual observation is still one of the most reliable methods of 

identifying morbidity in feedlot cattle (Duff and Galyean, 2007). However, subtle 

changes in behaviour may go unnoticed until the animal shows obvious clinical 

symptoms at an advanced stage of the disease. 

In the past, analysis of animal behaviour has been an arduous task, requiring a 

human observer to record and classify individual actions. The development of an 

automated bunk monitoring systems allows for the collection of detailed cattle feeding 

behaviour data 24 h a day on all cattle within a pen. Several studies using similar 

automated systems have reported significant differences in the feeding behaviour of 

healthy and morbid cattle. Quimby et al. (2001) found that using cumulative sums 

analysis (CUSUM; SAS institute, Inc. 1995), morbid animals could be identified up to 

4.1 days earlier than by a pen rider using visual observation as a determinate of health 

status. Daniels et al. (2000) reported that morbid calves spent 40 to 41 % fewer minutes 

per day at the feed bunk than untreated and presumably healthy calves over two 21-d 

receiving trials. All of these studies used simple linear statistics to compare feeding 

behaviour parameters such as bunk attendance duration and frequency.  
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Non-linear data mining analysis techniques such as clustering, machine learning 

procedures and algorithms have been previously used to identify patterns in biological 

data. For example, these techniques have been employed to assist radiologists to identify 

and classify types of mammary tumour lesions (Masala, 2006). Classification algorithms 

and methods such as neural networks, Bayesian networks and genetic algorithms have 

also been employed in the detection of patterns in biological data. Application of non-

linear methods on detailed feeding behaviour data may be useful in identifying different 

patterns of behaviour between healthy and morbid cattle. To date, no studies have used 

non-linear methods such as pattern recognition to analyze feeding behaviour in an 

attempt to identify morbid animals. The objective of this study was to develop an 

algorithm applying pattern recognition techniques to data on individual feeding 

behaviour to enable earlier detection of morbidity in feedlot cattle than conventional 

methods. 

3.2. Materials and Methods 

 Two groups of animals were used in this study. Data from one group was used to 

form the model dataset, whereas data from the other group formed the naive dataset. 

3.2.1 Animals (Model Dataset) 

Three hundred and eighty-four (384) non-preconditioned, predominantly British 

x Continental heifers, averaging 228 ± 22.7 kg (initial BW) were monitored over a 225 d 

feeding period in four separate feedlot pens at the Cactus Feeders feed yard in 

Amarillo,TX. The number of steers assigned per pen was adjusted to provide each 

animal with approximately 24 cm of bunk space and 14 square meters of pen space at 

the beginning of the tiral. The pens were equipped with the GrowSafe™ (Airdie, AB) 
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feed bunk monitoring system. Heifers were purchased from one of two auction markets 

(Wilson, TX and Meridian, MS) and were transported a distance of 580 or 950 km, 

respectively to the feedlot on January 19, 2002, where they were processed and held in 

receiving pens for 2 days before they were randomly allotted to their home pens. At 

processing heifers were administered Micotil ™ (Elenko, Greenfield, IN) and given a 

Synovex-H ™ (Wyeth Animal Health, Guelph, Ontario) implant and were re-implanted 

115 days later using Finiplex-H™ (Intervet Animal Health Inc., Boxmeer, The 

Netherlands). Cattle were adapted to the finishing diet (Table 3.1) using a two-ration 

system that incorporated the feeding of the basal starting diet (approximately 36 % 

roughage on DM basis) and the basal finishing diet (approximately 9 % roughage on a 

DM basis). During transition to the final finishing diet, all pens were fed three times 

daily through a series of 10 feeding phases that progressively increased the energy 

content of the diet. Cattle completed the final feeding phase and were on the finishing 

diet after approximately 45 days. After the transition period was completed all study 

pens were fed three times daily at approximately 0600, 0900 and 1300 h.  In the third 

feeding, MGA (Pfizer Animal Health) was fed to provide heifers 0.5 mg/hd/day. Basal 

diets were prepared in the feed yard mill, which was equipped with a computerized 

batching system and horizontal paddle mixer. Diets were formulated to meet or exceed 

National Research Council (1996) requirements for growing - finishing beef cattle. 

Carcass information as well as incidence of lung lesions and liver abscess were collected 

on all animals at the time of slaughter. 
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Table 3. 1. Composition of basal diets, dry matter basis for Model Dataset 

 Diet 
Item Starting Finish 
Ingredient   
Steam-flaked corn 53.1 56.4 
High-moisture corn --- 21.1 
Alfalfa hay, chopped 33.6 4.2 
Corn silage 6.6 6.7 
Animal fat --- 3.8 
Liquid starter  
supplement 

6.7 --- 

Finisher supplement --- 7.8 
   
Additivesb   
Monensin, g/ton 15.3 32.4 
Tylosin, g/ton b 0.0 9.3 
Vitamin A, IU/lb. 3,600 2,258 
Vitamin D, IU/lb. 360 226 
Vitamin E, IU/lb. 20 5 
   
Calculated Composition   
Dry matter, % 70.90 71.06 
NEm, Mcal/100 lb.  82.66 99.66 
NEg, Mcal/100 lb. 54.01 69.10 
Crude protein, % 14.00 13.50 
NPN, % 2.25 3.30 
Crude fat, % 3.44 7.46 
NDF, % 23.31 12.62 
Calcium, % 0.85 0.55 
Phosphorus, % 0.44 0.30 
Magnesium, % 0.26 0.20 
Potassium, % 1.40 0.65 
Sulfur,% 0.21 0.19 

Melengestrol Acetate (MGA) fed in third feeding of finishing diet to provide 0.5 
mg/hd/day 

 

3.2.2. GrowSafe™ System 

Individual feeding behaviour was collected with GrowSafe™ 24 h a day over the 

225 d experimental period. The GrowSafe™ system has been previously described in 

detail by (Parsons et al., 2004; Schwartzkopf-Genswein et al., 1999). The system 
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consisted of five panels in which antennae were embedded in a rubber mat that lined the 

entire length of the feed bunk of all 4 feedlot pens used in this study. As illustrated in 

Figure 3.1 each pen was monitored by more than one panel.  

 
Figure 3.1. Layout of GrowSafe™ system panels and distribution of animals in each pen. 

 
Each panel functioned independently, limiting system failure to faulty panels 

only. The raw data collected by the system consisted of the unique transponder number 

assigned to an animal, a Julian date and time stamp, and a location along the feed bunk 

where the animal was feeding. This information was later processed and summarized to 

generate new variables as later described in detail in Section 3.2.4. As the system 

hardware was exposed to harsh physical and environmental conditions, malfunctioning 

of the system did occur, resulting in some lost data. Radio frequency systems are known 

to be vulnerable to interference from a multitude of sources, such as equipment or metal 

surrounding the antennae (Schwartzkopf-Genswein et al., 1999) which may also 

contribute to error in data acquisition. 

 

3.2.2.1. Sync Chip 

In an effort to confirm the validity of the collected information, GrowSafe™ 

hardware incorporates a sync chip whose purpose is to identify when the system is not 
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functioning. The sync chip is an RFID transponder that was embedded into the 

GrowSafe™ panel in close proximity to the antennae and was integral to the data 

cleaning procedure described later in Section 3.2.6. These data were used to exclude 

feeding behaviour data collected during periods of time when system functionality was 

suboptimal. 

 

3.2.3 Health Status Classification 

Cattle were defined as morbid (M) if they were removed from their home pens 

for medical assessment and were treated on one or more occasions at any point over the 

225 d trial. Animals were removed for treatment according to the visual observation of 

experienced feedlot personnel, assessed and diagnosed by staff members and treated 

accordingly. The type of illness the cattle were being treated for was recorded, and the 

animal (depending on the severity of sickness) was moved to a hospital pen where it was 

further monitored and treated or in less severe cases the animal was returned to its home 

pen post-treatment.  

Animals removed from their home pens for sickness were given the M 

classification; dead and prematurely culled cattle were not included in the M group. 

Only cattle diagnosed with BRD at the time of treatment were used in the study. 

Animals that had not been removed for sickness and did not have any lung lesions or 

liver abscesses at slaughter were subsequently defined as healthy (H). It was assumed 

that animals having lung lesions suffered from BRD at some point during their lives. 

Cattle that were never removed for morbidity, but had lung lesions and/or liver abscesses 

at slaughter (i.e. not healthy) were categorized as having unknown (U) health status. 
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To reduce the possibility of false positive (categorizing H animals as M) and 

false negative (categorizing M animals as H) classifications, a severity index of 

morbidity was created. A unique procedure was introduced where the expert advice 

provided by animal scientists was combined with each animal’s medical record resulting 

in identifying a measure of confidence in a correct M classification defined as a 

confidence level of sickness (CLS). The procedure required that all M animals be 

divided into three subgroups based on the number of time (1, 2 or 3) that they were 

removed for treatment after observation of morbidity. From an animal’s treatment, CLS 

classifications were assigned that incorporated both the total number of removals and the 

number of days spent in hospital upon first removal only. Figure 3.2 illustrates the 

number of days spent in hospital by animals in each subgroup upon their first removal 

from the pen. The color intensity represents the number of animals falling into the 

corresponding x-y coordinates (i.e. the darker the point, the more animals). In all three 

subgroups the median number of days spent in the hospital was 3. This was assumed to 

be a consequence of the feedlot management practices and protocol required for specific 

antibiotic treatments. 
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Figure 3.2. Median number of days calves spent in the hospital, upon the first occasion they were 
removed from their home pen for medical assessment and/or treatment.  

 

From treatment histories illustrated in Figure 3.2, criteria were developed by 

which to classify the animals according to CLS the following way (Table3.2): 

1. Low: identified morbid once and spent up to 3 days in hospital after removal, 

or identified morbid twice and did not spend time in hospital upon first 

removal.  

2. Moderate: identified morbid once and spent more than 3 days in hospital after 

removal, or identified morbid twice and spent 1, 2 or 3 days in hospital upon 

 42



first removal, or identified morbid 3 or more times, and did not spend time in 

hospital upon first removal. 

3. High: identified morbid twice and spent more than 3 days in hospital upon 

first removal or identified morbid 3 of more times and spent more than one 

day in the hospital upon first removal. 

Table 3. 2. Strategy to define the level of confidence associated with having been identified as 
morbid based on number of removals from home pen and days spent in hospital upon first removal. 

Days in 

hospital upon 

first pull 

Number of removals 

 1 2 3 >3 

0 Low Low Moderate Moderate 

1, 2, or 3 Low Moderate High High 

>3 Moderate High High High 

 

3.2.4. Calculating behaviour data variables 

The following subsections describe the data processing routine (Figure 3.3) used 

prior to the application of a pattern recognition algorithm. 
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Figure 3.3. Summary of data processing routine. 

 

3.2.4.1. Processing Period 

Data collected from the animals in each pen and the five sync chips embedded 

into each of the five GrowSafe™ panels were stored in raw form in individual binary 

output files generated by the system onto a personal computer and were processed 

independently. Data from all animals and each sync chip were summarized into 4 h 

periods starting at hour 0200 on the first day of the experiment, resulting in six distinct 
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periods per day as follows: period 1 (0200-0600), period 2 (0600-1000), period 3 (1000-

1400), period 4 (1400-1800), period 5 (1800-2200), and period 6 (2200-0200). The 4 -

hour processing period was selected based on the differences of feeding and diurnal 

feeding patterns of M and H cattle, over the 5 d period before M cattle were removed 

from the pen (Figure 3.4.). 

 

 
Figure 3.4. Average diurnal feeding pattern of Morbid (M) (n=10) and Healthy (H) (n=10) animals 
over a 5 d period prior to M cattle being removed from their pen. 

 

3.2.5. Pre-processing Method 

One of the initial tasks of the processing routine was to transform the raw 

information obtained from the GrowSafe™ system into a form that could be more easily 

interpreted. This was achieved by converting the raw data into text files with the 

GrowSafe™ software (Version 5.0). The resulting text files consisted of date-time 

stamps and animal identification number. The text files were then imported into custom 

software previously developed using Visual Basic 6.0 (Microsoft Corporation, 

Redmond, WA) combined with an Oracle® based database (IRAD) (Oracle Corporation, 

Redwood Shores, CA). Data were compiled into a format where the start and end of each 
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feeding observation were used to define feeding events and their duration in seconds. A 

feeding event was defined as the length of time an animal spent at the feed bunk without 

interruption. An interruption was considered the absence of an animal from the feed 

bunk for a period longer than 5.25 seconds. Several factors may have caused an 

interruption, including displacement by another pen mate, human interference or the 

animal simply taking a break from feeding. Feeding events that were separated by an 

interruption ≤300 s in length were grouped into meals. Meals were separated from each 

other by interruptions > 300 s in length as previously described by Schwartzkopf-

Genswein et al. (2002). Interruptions separating each meal were defined as inter-meal 

intervals. IRAD software was used to summarize the feeding events based on the 

previous definitions, resulting in a new dataset that contained animal transponder 

numbers, date-time stamps indicating the start of a meal, and duration of the meal in 

seconds. This information was further processed and summarized by the 6 time periods 

previously described in Section 3.2.4.1 from which an additional 11 feeding behaviour 

variables were derived. The new feeding behaviour variables were calculated from the 

two core variables, which included feeding duration (dur) and the inter-meal interval 

(int), where ∑ dur + ∑ int = length of the processing period. Variables derived included 

minimum, maximum, average, total and standard deviation of feeding durations and 

inter-meal intervals as well as the number of meals or visits made to the feed bunk and 

the number of inter-meal intervals over a 4-hour period, resulting in a total of 12 

variables. 

An algorithm used for summarizing data by time intervals was also developed to 

better understand the manner in which individual animals use the feed bunk throughout 

the day. This algorithm – developed using PL/SQL (Oracle Corporation, Redwood 
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Shores, CA) - considered all possible combinations of meal lengths and processing 

period span times. Figure 3.5 and Table 3.3 illustrate and highlight the implemented 

rules used to derive values for the previously listed feeding variables.  

 

 
Figure 3.5. Four distinct ways a feeding event may span across successive 4-h periods. Horizontal 
line segments represent animal feeding behaviour occurrence. 

 
Table 3. 3. Applied calculations of rules implemented for specific examples demonstrated in Figure 
3.5. 

 Period 1 Period 2 Period 3 
Case Duration Visits Duration Visits Duration Visits 

1 0 0 B-A 1 0 0 
2 D-C 1 0 1 0 0 
3 0 0 a-E 1 F-a 1 
4 b-G 1 c-b 1 H-c 1 

 
Four distinct cases are demonstrated: case 1 represents a meal occurring within a 

given time period (2). In this case, point A represents the beginning of the meal, and 

point B represents the end, thus the length of the meal is equal to the length of the line 

segment AB. No meals were recorded for Periods 1 and 3, and one meal was recorded 

for Period 2 (Table 3.3.). The rules for partitioning feeding bouts and visits were 

implemented in the following way: Let P1 and P2 indicate the beginning and end times 

of processing period P respectively, and let P be the set of all pis such that P1≤pi<P2. A 

data point (time point) t belongs to P if and only if t Є P. Therefore point D (from Case 

2), in fact belongs to Period 2. Although point D has no length and therefore no duration 

(in Period2), the fact that point D exists resulted in a recording of a meal event in 
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Period 2 as well as in Period 1. Mathematically, the calculations and recordings are 

correct, but biologically a meal of 0 length has little relevance. This problem was 

addressed and corrected by introducing a technique that identified such discrepancies. 

This method involved the removal of the 1-s visit that was assigned to the subsequent 

period. Case 3 demonstrates when a meal extended over the boundaries of two periods. 

Here, the meal was divided into two segments, each of which fell into Periods 2 and 3. 

The length of meal recorded for Period 2 was calculated as the length of line segment 

Ea, and the length of meal for Period 3 was aF. Case 4 demonstrates a scenario where a 

meal extends over the entire data collection period, thus a meal was recorded for each 

processing period. Period 1, 2 and 3 had meal lengths represented by line segments Gb, 

bc, and cH, respectively. It is important to note that the sum of all meals processed 

throughout any x-hour period using y-hour processing periods does not necessarily equal 

the number of meals if that same time frame was processed using a z (where x≠z) hour 

processing period. In Figure 3.5 for instance, Case 4 identifies three meals in total, over 

the sum of all three processing periods when the periods were processed individually. 

However, if the data were processed as one segment, the number of meals calculated 

would be just one. 

3.2.5.1. Inter-meal Interval 
 

Although mathematically the importance of inter-meal intervals appears 

redundant, biologically it proved to be an important variable, providing information 

about how the animals fed. To demonstrate this, consider the example illustrated in 

Figure 3.6, of three distinct feeding behaviour patterns having the same feeding duration. 

The number of visits and the number of inter-meal intervals separated examples 1 and 2 
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from example 3. However, other differences in feeding behaviour are highlighted in the 

minimum and maximum values of the inter-meal intervals, which are not the same in 

any of the three feeding scenarios presented even though duration in all three examples 

were identical (Table 3.4). 

 

 
Figure 3.6. An example of the feeding behaviour structure for three individual animals throughout a 
4-hour period. Raised values of the signal denote periods of feeding, whereas lowered values denote 
inter-meal intervals. The length of feeding duration and inter-meal intervals are represented by 
letters. Note: 2i+j = i+k+m = n+p 
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Table 3. 4. Calculated feeding behaviour parameters for each example shown in Figure 3.6. 

Example Average 
duration 

Total 
duration 

Minimum 
duration 

Maximum 
duration 

Number 
of meals 

Average 
inter-meal 

interval 

Total 
inter-meal 

interval 

Minimum 
inter-meal 

interval 

Maximum 
inter-meal 

interval 

Number 
of inter-

meal 
intervals 

1 (a+b)/2 a+b a b 2 (2i+j)/3 2i+j i j 3 

2 (a+b)/2 a+b a b 2 (2i+j)/3 2i+j i m 3 

3 (a+b) a+b a+b a+b 1 (2i+j)/2 2i+j n p 2 
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3.2.6. Data Cleaning 

As error could be introduced into the dataset due to any hardware malfunction in 

the GrowSafe™ system, the summarized data needed to be cleaned before further 

processing could be considered. 

3.2.6.1.Sources of Data Error 

Within a raw dataset the possibility of distinguishing the difference between 

system malfunctions and true animal absence (both were recoded as 0) was limited. 

Therefore, the first step in data cleaning involved removal of 0 values during those 

periods of time when the system was not functioning. System failure occurred most 

frequently in individual panels. Hardware configuration in this study was such that four 

panels covered five pens; consequently the failure of one panel affected the data quality 

of more than one pen (see Figure 3.1). The information collected by each sync chip was 

used to identify when system failures (by panel) had occurred. A program was written in 

Visual Basic 6.0 that combined processed sync chip and animal feeding behaviour data. 

This resulted in the identification of missing values in place of 0 when the system was 

not working properly. In cases where a panel spanning two distinct pens failed, data 

collected for both pens (even if neighbouring panels were functioning properly) were 

affected, and data for all affected pens were set to missing. 

 

3.2.6.2. Determining thresholds for data use based on system performance 

Under ideal conditions (100 % performance) the GrowSafe™ hardware used in 

this study would record the presence of each animal at the feed bunk every 5.25 s. 
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However, the collection system was configured to record only integer time values, thus 

an ideal scanning/recording rate of 6s was assumed. Given this read rate, a total of 2400 

sync chip readings (4 h* 3600s per h per 6 s) would be expected in a 4 h period. 

However, it was unrealistic to expect such performance with any RFID technology and 

therefore it was important to define reasonable limits for the exclusion of poor quality 

data based on system performance. Two factors were considered when evaluating 

system performance, and through this, data quality: system read rate and the length of 

time between sync chip readings. For each data collection period, the number of sync 

chip readings and the maximum length of time between two consecutive readings were 

recorded; this information was later used to define data quality thresholds. These 

thresholds were determined using a read rate rule requiring the maximum length of time 

between 2 consecutive readings to be less than 300 s. This particular length of time was 

selected with the definition of ‘meal’ in mind, in which case if the system was not 

functioning for less than 300 s the data would still be valid. However, if the system was 

malfunctioning for less than 300 s but more frequently within a period, the accumulation 

of faulty periods would yield inaccurate predictions of feeding behaviour. The incidence 

of system malfunction was defined in terms of percent sync chip availability. This was 

done by dividing the actual number of sync chip readings by the expected number of 

readings and multiplying by 100. Thus, for each individual panel, a value indicating the 

percent of data to be removed was calculated for selected percent availability values as 

illustrated in Figure 3.7. 
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Figure 3.7. GrowSafeTM panel functionality based on sync chip performance. The data not meeting 
the criteria of 2400 readings per 4 h period increases exponentially starting at 85 % sync chip 
availability. 

 

Using Figure 3.7 as a guide, it was concluded that, for data to be acceptable, a 4-

hour period should contain a minimum of 2040 sync chip data readings (85 % 

availability), given that at this point the percent of data removed increased exponentially 

in each pen. The maximum length of time between 2 consecutive readings was set to < 

300 s. This was summarized in the following formula:  

For each x2 Є {0, 1, 2, …, 100 | x2 Є N} :  

F(x1,x2)= 
Recorded value if x1<300 
“.”           otherwise 

    (3.1) 
where x1 is the time interval in seconds between two consecutive system scans and x2 is 

the minimum percent accuracy required for system robustness. If the defined data quality 

requirements for a specific period were not met, the data for that period were set to 

missing. Following the completion of this step the dataset was considered clean and 

acceptable for input into the data reduction routine. 
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3.2.7. Data Mining 

 Data mining, in general, deals with the discovery of non-trivial, hidden and 

interesting knowledge from different types of data. 

3.2.7.1. Dataset Reduction 

The dataset was reduced such that only feeding behaviour data 10 d prior to a M 

animal being removed from its home pen were used for further analysis. This decision 

was based on the fact that most animals were removed from the pen within the first 10 d 

of the trial. Extending this time period beyond 10 d would have resulted in a very small 

dataset, simply because of the lack of morbidity in the cattle population. A program was 

written in Visual Basic 6.0 to create a dataset based on this 10-d rule. The dataset was 

further reduced to include data from a sample population containing all M cattle and a 

matching number of H cattle. In this manner, a 1: 1 M to H ratio of animals was obtained 

from the original dataset such that for every M animal an H animal was selected from 

the same pen, on the same day. This approach ensured that subjects were selected under 

similar environmental and feedlot management conditions. This resulted in the 10 d of 

data captured in the dataset being unique for each healthy-sick pair in that the starting 

point was defined as the day prior to the first day M cattle were removed from their pen 

for medical assessment and treatment. The dataset was then constructed using 

information collected over 10 d prior to the point that M cattle were identified and 

removed from the pen. For incidences where the animal was first removed from the pen 

within the first 10 d of the experiment, only data from the beginning of the experiment to 

one day prior to removal of the animal from the pen were selected for that particular 

healthy-sick pair. 
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The input parameters to the Visual Basic 6.0 program for creating the dataset 

were a set of M and its pair-wise contemporary healthy animal transponder ID tags, the 

removal dates of all the M animals, and the number of days selected for analysis prior to 

the animal’s removal from the pen. The number of days selected for analysis varied from 

one day to up to 10 days, depending on when cattle were removed for morbidity. If they 

were removed prior to spending a minimum of 10 days at the feedlot, data were 

collected only for the number of days that the animals were there. The algorithm 

extracted information for the specified day for all M and H animals. Given the CLS 

classification definitions, our confidence that the M group that fell in the low category 

was not strong. For model development purposes we wanted to only include M animal 

data for which we had a high degree of confidence. Therefore, only data for animals with 

high and moderate CLS categories were included. Furthermore, to reduce data quantity 

and in an attempt to increase the accuracy of the final model, only the periods of the day 

in which the animals were most active at the feed bunk were used for subsequent 

analysis. Active feeding periods were determined by plotting the diurnal feeding 

behaviour of 10 H and 10 M animals over a 5 d period prior to being removed from their 

home pens. Figure 3.4 illustrates that peak feed bunk activity occurred between the hours 

of 0600 and1800, and therefore only Periods 2 (0600-1000), 3 (1000-1400), and 4 

(1400-1800) for each of the 10 d prior to removal from their home pen for medical 

assessment were included in the dataset, resulting in a total of 30 periods per animal 

(Figure 3.8). The number of periods was less for cattle that were removed from their pen 

within the first 10 d at the feedlot. This reduced dataset was normalized using Proc 

STDIZE in SAS (1991) to reduce any skewing caused by large variances in the data. 
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Figure 3.8. Highlighted periods represent periods included in the dataset. 

 

3.2.7.2. Principal Component Analysis (PCA) 

Due to the high dimensionality (12 variables: feeding duration, inter-meal 

interval (min., max., avg., SD and total; min/d), feeding frequency (visits/d) and number 

of inter-meal intervals) of the dataset, Principal Component Analysis (PCA) was 

employed to condense the data into fewer dimensions without excessive loss of 

information. The application of PCA to the data resulted in capturing most of the 

variability within a dataset. This allowed for the comparison of feeding patterns between 

animals as well as changes within an animal across the 30 time periods assessed. The 

first five PCs identified in the dataset cumulatively captured more than 99 % of the 

variability in the dataset. Based on these results, the first five PCs were selected to 

construct a revised dataset that was later used as input data for the clustering procedure. 

 

3.2.7.3. Clustering 

 The clustering technique used in this study was performed by the FASTCLUS 

procedure in SAS (1991).  

 One of the options of the FASTCLUS procedure allows the user to indicate the 

number of clusters the algorithm should divide the objects of the dataset into. Eight 

clustering strategies (setting the number of clusters) were examined including 2 to 9 

clusters with each consecutive run of the clustering algorithm. This resulted in 8 separate 
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and distinct output datasets for further analysis. Upon close examination of clustering 

outputs and cluster membership results, it became evident that the upper and lower limits 

of the number of cluster strategies to be used for further calculations needed to be 

defined. The average number of animals in a cluster (using a cluster strategy of 9 

clusters) was low, and therefore not a good representation of H or M animal feeding 

behaviour. Given that a minimum of two groups (i.e. H and M) were expected to emerge 

from the clustering, the lower limit was naturally defined as two. The upper limit was 

selected by consequently testing the performance of the algorithm using each cluster 

strategy, to the point where overall model performance started to decline. In this case, 6 

clusters. Consequently, the number of clusters considered changed between 2 and 6, 

inclusive. 

3.2.7.4. Classification 

Classification is defined as a task where data points are assigned to predefined 

classes. In other words, classification requires supervised learning, where the input data 

must specify what is to be learned, whereas clustering is an unsupervised task, and thus 

the clusters are not specified in advance. In this study, for each n-cluster dataset (where n 

Є {2, 3, 4, 5, 6}), cluster membership was examined. Based on the percentage of M 

animals belonging to each individual cluster, clusters were labelled as morbid-clusters 

(M-cluster) or healthy-clusters (H-cluster). Three thresholds for morbid cluster 

designation were set: 45, 50 and 55 % M membership clusters, where the number of 

animals classified as morbid corresponds to percent classification for each of the 

clusters. Clusters that were not M-clusters were defined as H-clusters. The input data 

were analysed repeatedly using each definition, resulting in a total of 15 unique output 
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datasets, including: n-cluster-45, n-cluster-50 and n-cluster-55 datasets (where n Є {2, 3, 

4, 5, 6}). Initially, the 50 % threshold was selected as the central definition on the 

rationale that if more than half of animals (i.e. >50 %) were morbid, then it must be an 

M cluster. The examples described from this point forward will use a membership 

distinction of 50 %. To access the soundness of the selected 50 % threshold, cluster 

memberships of 45 % and 55 % M membership were also tested. Based on these 

parameters, all animals in each cluster were assumed to inherit the apparent health status 

designation of that particular cluster. In other words, if a cluster was defined as an M-

cluster, then all animals belonging to that cluster were assumed to have an apparent 

status of M for that time period. (Figure 3.9 and Table 3.5)  

 

H1 H2 

H3 

H4 

H5 
H6 H7 

H8 H9 

H10

H11

M1 M2 M3 M4 M5

M6

M7

M8
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M11

Cluster 1 Cluster 2 

Cluster 3 

Cluster 4 

Figure 3.9. A 4 cluster example demonstrating the distribution of healthy (H) and morbid (M) 
animals within each cluster. Cluster designation will differ, depending on the threshold used (45, 50 
or 55 %). 
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Table 3. 5. Apparent status cluster classification given the example in Figure 3.9.  

Apparent status of cluster 
Cluster % 

morbid Animal Status 45 % 
threshold 

50 % 
threshold 

55 % 
threshold 

H1-5 H M H H 1 44 M1-4 M M H H 
H6-10 H M M H 2 55 M4-10 M M M H 

3 100 M11 M M M M 

4 0 H11 H H H H 

 
In the example shown in Figure 3.9, 11 M and 11 H animals were clustered into 

4 non-overlapping groups. In Figure 3.9 clusters 3 and 4 contain only one element each, 

suggesting that these two datapoints may be outliers. This example also demonstrates 

why choosing the right number of clusters is important, and that clustering can be used 

for outlier detection. Outliers may emerge as single data points or as small clusters far 

removed from the main clusters. To do outlier detection at the same time as clustering 

the entire dataset, the sufficient use of clusters is important to represent both the main 

dataset and the outliers. As indicated in Table 3.5, 44, 55, 100 and 0 % of the M cattle 

belonged to clusters 1, 2, 3 and 4, respectively. Furthermore, at a 45 % threshold level 

definition, clusters 1, 2 and 3 were defined as M and only cluster 4 was defined as H. 

Therefore, all member(s) of clusters 1, 2 and 3 were given the apparent status of M, 

whereas the member in cluster 4 was given the apparent health status of H. Similarly, at 

a 50 % threshold level, clusters 1 and 4 were defined as H, whereas clusters 2 and 3 were 

defined as M. Thus all member(s) of clusters 1 and 4 were given the apparent status of H 

for that time period, whereas member(s) of clusters 2 and 3 were assigned an apparent 

status of M. The same rules were applied to the 55 % threshold level definition.  
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3.2.8. Pattern Recognition 

The pattern recognition process consisted of two major steps, the first being the 

creation of a string of length 30, i.e. a string comprising of 30 elements, each element 

representing a 4 h period, later referred to as a binary string. The second step defined a 

‘time window algorithm’. 

 

3.2.8.1. Creation of a Binary String 

In this experiment, a binary string (B) was defined as an arbitrary sequence of 

H’s and M’s that could be transposed into an array of 0’s and 1’s by assigning H a value 

of 1 and M a value of 0. The rationale behind the creation of this binary string was to 

develop a method of quantifying feeding behaviour for each 4 h period where data were 

observed for each M and H pair. A description of how the binary string was created is as 

follows. Each animal had feeding behaviour data that were summarized into PCs for a 10 

d (or less) period of time. The 10 d sample was broken into 30 4-h-periods (3 periods/d 

over 10 d). For future reference, let this set of data be referred to as “The dataset”. The 

dataset was then used as input for the K-means clustering algorithm. This gave rise to 5 

new and distinct clustering strategies (2,3,4,5 and 6 number of clusters), and with those 5 

new output datasets evolved; dataset-n-cluster, where n Є {2,3,4,5,6}. Furthermore, each 

of these resulting datasets were subject to 3 definitions of cluster membership: 45, 50 

and 55 % M membership clusters, resulting in 15 datasets D, such that D={dataset-n-

cluster-m | n Є {2,3,4,5,6} and m Є {45 %, 50 %, 55 % M membership}. Let d Є D (i.e. 

any given dataset from D). For all d Є D, d contained an apparent health status 

classification for each selected time period and each M animal and its contemporary H 
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pair. Thus, selection of 3 cluster membership possibilities and 5 cluster strategies 

resulted in 15 apparent health status classifications for each animal. Each apparent health 

status, concatenated over the time period of 10 d produced a binary string with a length 

of 30 for each animal. The first position was identified as period 1, then consecutively, 

the second as period 2 and so on. Period 1 was defined as the period immediately prior 

to the animal being removed from their home pen, and period 30 being 10 d prior to the 

animal being removed from its home pen (Figure 3.10.).  

To better visualize and analyze the apparent state of each animal over a 10 d 

period, the median apparent health status in pre-defined sliding windows of consecutive 

periods was calculated for each animal. A sliding window is a dynamic string, 

containing a subset of a binary string. The different window sizes considered were: 3, 5, 

7, 9, 11 and 13 4-h periods; with W set as the set of all window sizes. Window sizes 

were selected based on the rationale that a minimum of 1 day’s data (i.e. 3 periods) were 

required to be able to make a decision. Window sizes of odd length were examined in 

order to avoid a tie between H and M declared health statuses. Each one of the 15 strings 

was then examined by one of these moving windows to return a declared health status 

value for each animal under each combination of cluster strategy and threshold level. An 

upper limit value of c was determined for each window size as follows:  

c=ceiling((w+1)/2)          (3.2) 

where w Є W, to compare with a, where a is the # of M apparent status classifications 

within that particular window. (Note: the ceiling function returns the closest integer that 

is greater or higher than the input value.) For each animal and each window size, if any 

of the sliding windows returned an a value greater than c, then the animal was declared 

M; otherwise the animal was designated to have H status. In other words, the method 
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uses a sliding window technique to control the length of the period to be matched against 

c. Assume that b=[b1, …, bw], where b represents the span of the initial window covering 

the first w integers of the binary string B. The sum of all apparent M status 

classifications within w was calculated and compared to c. If the sum of all apparent M 

status classifications exceeded c, then the animal was declared M, otherwise the window 

would slide one position to the right, leaving b2, …, bw+1 for rule matching. This 

process was continued until the end of the string was reached. If the animal was not 

classified as M throughout the process, then it was assumed to be H. 
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M M
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M H

H
H

H
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M
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Animal being traced 

H M H H

Period 1 Period 2 Period 3 Period 30

 
Figure 3.10. Each period of the graph represents a 4 cluster example where each cluster is labelled 
with an apparent status as defined by a 50 % threshold level definition. The animal being traced is 
shown to inherit the apparent status of the cluster it belongs to in each period, creating the binary 
string. 
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3.2.9. Defining and Selecting a Model 

An optimal ‘model algorithm’ was defined as a ratio between actual health status, 

as indicated by whether the animal had been removed from it’s pen for sickness by the 

pen checker, versus the declared health status definitions. Three scenarios were used to 

define the best model and include:  

1. 100 % H model: 100 % H accuracy and highest percent M accuracy. Animals were 

classified into two groups, one that contained only H animals, the other group including 

the rest of the animals. The animals were assigned to each respective group such that the 

percent M accuracy in the M group was maximized, without jeopardizing the 100 % 

accuracy of the H group. 

2. 100 % M model: 100 % M accuracy and highest percent H accuracy. Animals were 

classified into two groups, one that only contained M animals, the other group including 

the rest of the animals. The animals were assigned to each respective group such that the 

percent H accuracy in the H group was maximized, without jeopardizing the 100 % 

accuracy of the M group. 

3. Overall model: Highest percent of M and highest percent of H accuracies. Animals 

were classified into two groups such that the percent accuracies of M and H animals 

were maximized in each group. 

It is important to note that 100 % H accuracy does not necessarily mean that no 

M animals were classified into that group. A 100 % H classification would include all 

healthy animals, and perhaps other M animals that behaved like H animals. However, 

within that same model, the M group would only include animals that have been 

classified as M since all healthy animals were members of the H cluster. Therefore, by 
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setting the standards of H to 100 % accuracy only a portion of the M animals would be 

classified correctly. 

3.2.10. Creating a Naive Dataset 

A common scenario in creating data mining models is to predict their accuracy 

by comparing them against a naive dataset. This prevents the problem of over-fitting 

(making the model too specific for the model dataset (Goodner et al., 2001), and gives a 

better measure of the accuracy of the generated models. 

3.2.10.1. Description of the Naive Dataset 

Three hundred and eighty-four mixed breed British x Continental feedlot steers, 

averaging 322 ± 34.7 kg, initial BW were monitored over a 142 d feeding period in the 

same four feedlot pens at the Cactus Feeders feed yard in Ararillo, TX as previously 

described for the modelling dataset. Cattle were received at the study site from sources 

in Kansas, Oklahoma and Nebraska between February 11 and February 14, 1998. From 

receipt until allotment, steers were maintained in holding pens and fed a standard 

receiving ration consisting of a moderate concentrate mixed diet plus loose, long-stem 

alfalfa hay and allowed free access to drinking water. Upon arrival, cattle were 

processed by administration of an IBR – Leptospira modified live vaccine (Vista 5 L5 

SQ, Intervet Animal Health Inc.); a 7-way clostridial bacterin-toxoid (Vision-7®, Intervet 

Animal Health Inc.); a drench containing 1,000,000 IU vitamin A and 200,000 IU 

vitamin D (Rovimix dispersible liquid, Roche Vitamins Inc.) and treated for parasites 

(Dectomax®, Pfizer Inc.). Animals were re-implanted on April 5, 1998. Cattle were fed 

three step-up diets containing 36, 29 and 18 % roughage (DM basis). Diet transitions 

were made over two days, with the lower energy diet fed at the first two feeding cycles 
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on day 1 and higher energy diet fed on the last two feeding cycles on day 2. Cattle were 

fully transitioned to the 10 % roughage finishing diet by March 7, 1998 (Table 3.6.). The 

three transition diets were fed three times daily at approximately 0600, 1030 and 1300 

hours. The finishing diet was fed twice per day at 0600 and 1300 daily. All diets were 

formulated to meet or exceed National Research Council (1996) requirements for 

growing – finishing beef cattle. Feed bunks were visually evaluated and scored for the 

amount of residual feed at approximately 0600 hours daily. Cattle were fed to appetite, 

with the amount of feed issued to each pen adjusted daily by the amount of feed, if any, 

remaining in the bunk prior to the first feeding of the day. Bunks were managed 

throughout the finishing period to minimize the amount of residual feed carried over 

from day to day. Lung lesion and liver abscess information was collected on all animals 

at the time of slaughter. 
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Table 3. 6. Ingredient and nutrient composition of transition and finishing diets used in Naive 
Dataset 

 Transition Diets Finishing Diets
Item Ration 1 Ration 2 Ration 3 LP / R / T 
First date fed 02/17/98 02/22/98 02/28/98 03/06/98 03/06/98
Last date fed 02/21/98 02/27/98 03/05/98 07/07/98 07/07/98 
Total days fed 5 6 7 123 123 
Ingredient, %       
Steam-flaked corn 47.70 56.30 50.90 53.8 53.8 
High moisture corn 0.0 0.0 14.60 19.5 19.5 
Alfalfa hay, chopped 15.70 15.90 17.20 8.1 8.1 
Cottonseed hulls 19.90 13.40 0.00 0.00 0.00
Corn silage,  0.00 0.00 4.20 4.2 4.2 
Molasses 7.10 5.40 4.00 2.0 2.0 
Animal fat 0.00 0.0 2.00 4.1 4.1 
Starter Supplement 9.10 9.00 0.00 0.0 0.0 
Finisher Supplement 0.00 0.00 7.00 8.3. 8.3. 
Micro-ingredients 0.50 0.00 0.00 0.00 0.00

Calculated Composition      
Dry matter, % 81.2 79.4 72.7 72.7 72.7 
NEm, Mcal / 100 lb 77.9 83.6 94.0 100.7 100.7 
NEg, Mcal / 100 lb 49.9 55.0 64.1 69.8 69.8 
Crude protein 13.7 13.9 13.8 13.8 13.75 
Non-protein N, %     1.80    1.80     2.70 3.17 3.17 
Crude fat, % 2.60 2.80 5.0 7.23 7.23 
NDF, % 29.2 24.7 16.6 12.81 12.81 
Calcium, % 0.67 0.64 0.72 0.66 0.66 
Phosphorus, % 0.33 0.34 0.31 0.32 0.32 
Potassium, % 1.25 1.12 1.07 0.79 0.79 
Magnesium, % 0.25 0.23 0.25 0.24 0.24 
Vitamin A, IU/lb 3,331 3,000 1,964 1,784 1,784 
Vitamin D, IU/lb   333  300    196 178 178 
Vitamin E, IU / lb  10.0 9.0 0.0 0.0 0.0 
Aureomycin, g/ton a 931 42.0 39.3 35.7 35.7 
Cattlyst, g/ton a 0.00 11.1 11.1 11.1 11.1 
Rumensin, g/ton a 0.00 20.0 24.0 -- 27.8 
Tylan, g/ton a 0.00 11.0 11.0 -- 9.0 
 a  Hand-weighed and added to the conventional rations via water slurry. 

 

3.2.11. Applying the Model Algorithm to the Naive Dataset 

Based on CLS classification, a subset of thirteen M:H pairs were identified from 

the naive dataset. Raw feeding behaviour data were summarized into behaviour data 
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variables as described in Section 3.2.4. The algorithm described in Sections 3.2.5 and 

3.2.6 were used to clean the data. Dataset reduction, data normalization and PCA 

routines (Sections 3.2.7.1, 3.2.7.2) were also applied resulting in a dataset consisting of 

animal IDs and the first 5 PCs derived by PCA analysis for each of the 30 4-h processing 

periods. The Euclidean Distance Formula (Duda et al., 2001) was used as previously 

described to assign animals to one of the pre-defined clusters at which point the animal 

inherited the apparent health status of that cluster. Consequently, each animal was given 

an apparent health status for each one of the 30 processing periods as described in the 

Classification Section (3.2.7.4). The method of creating the binary string, as described in 

Section 3.2.8, was used to create a binary string representing animal health status, the 

sliding window technique was implemented to state the declared health status of each 

animal from the naive dataset. Declared results were then compared with the actual 

health status of the animal. Results of the comparison were stated in terms of percent 

accuracies.  

 

3.2.12. Descriptive Statistics 

 Descriptive statistical methods were applied at two points within this study. First, 

the Mixed Liner Models Procedure (SAS, 1991) was used to calculate least squares 

means of a 2X2 factorial design of animals removed or not removed from their home 

pens by pen checkers, with or without lung lesions at slaughter. The Means Procedure 

(SAS, 1991) was also implemented to derive simple statistical information such as the 

percentage of animals with lung lesion that were never removed from their home pens 

by the pen checker. Finally, differences and similarities between the model and naive 
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Datasets were defined by calculating correlation coefficients between all variables 

present in each dataset using the Correlation Procedure (SAS, 1991). 

 

3.3. Results 

 

3.3.1. Animal Data and Descriptive Statistics  

Out of the 384 animals used for the model dataset, 16 animals were rejected from 

the study and were sent prematurely for slaughter, 9 animals died, 93 were removed by 

the pen checker, and the remainder (n=267) were classified as ‘Other’ as they did not fit 

into the 3 categories previously described (Table 3.7). 

Table 3. 7. Summary of the number of animals falling into removed (animals that have been 
removed from their home pen for medical assessment), dead, reject or other categories within the 
model dataset. 

Total number of animals 
(n=384) 

 Reject 
(n=16) 

Dead 
(n=9) 

Removed 
(n=93) 

Other a 
(n=267) 

 Removed 
(n=15) 

not 
Removed 

(n=1) 

Removed 
(n=3) 

not 
Removed 

(n=6) 
  

Lung Lesions 1 0 0 0 17 28 

no Lung 
Lesions 14 1 3 6 76 239 

a The category ‘Other’ includes all healthy animals as well as animals with liver 
abscesses that were never removed from their home pens for morbidity by a pen checker 
for treatment. 
 

Table 3.8 shows how the number of animals related to the number of days an 

animal had been on feed before it was removed by a pen checker for exhibiting signs of 

morbidity for the first time. The largest noteworthy difference between the model and 
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naive Datasets is the total percentage of M animals in each CLS category. In the model 

dataset, 75 % of M animals were categorized as having moderate or high CLS, whereas 

in the naive dataset only 33 % of M animals fell into either of these categories. Animals 

that were removed from their home pens for the first time for morbidity by the pen 

checker within the first 14 d on feed accounted for 75 % and 83 % of the model and 

naive Datasets, respectively. From this group of animals, only 28 % were categorized as 

having low confidence level of sickness in the model dataset, compared to 70 % in the 

naive dataset. 

Table 3. 8. Percentage of the total number (n) of animals assigned to the high (Hi), moderate (Mo) 
and low (Lo) Confidence Level of Sickness categories in both the model and naive Datasets. 

Model Dataset (n=93) Naive Dataset (n=53) Days 
on 

Feed 
% Removed 
as Morbid CLS categories % Removed 

as Morbid CLS categories 

Lo: 28 % (n=18) Lo: 70 % (n=31) 
Mo: 46 % (n=32) Mo: 16 % (n=7) 1 to 14 75 % (n=70) 
Hi: 26 % (n=20) 

83 % (n=44) 
Hi: 14 % (n=6) 

Lo: 12 % (n=1) Lo: 0 %(n=0) 
Mo: 44 % (n=4) Mo: 100 % (n=2) 15 to 

28 10 % (n=9) 
Hi: 44 % (n=4) 

4 % (n=2) 
Hi: 0 % (n=0) 

Lo: 29 % (n=4) Lo: 57 % (n=4) 
Mo: 64 % (n=9) Mo: 43 % (n=3) 29 + 15 % (n=14) 
Hi: 7 % (n=1) 

13 % (n=7) 
Hi: 0 % (n=0) 

 
Differences in the feeding behaviour of two distinct experimental groups are 

shown in Table 3.9. All feeding behaviour variables with the exception of bunk 

attendance frequency and maximum inter-meal interval were higher (P<0.005) in the 

naive dataset than the model dataset with the exception of maximum inter-meal interval 

and bunk attendance frequency which were greater in the model dataset.  
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Table 3. 9. Comparison of feeding behaviour variable (mean ± SE) summaries between the model 
and naive Datasets summarized by 4-hour periods. 

 

A,B within a row, values followed by different letters differ (P<0.005). 

Variable Model Dataset Naive Dataset 

Average meal duration (min) 9.39 ± 0.02 A 9.74 ± 0.02 B 

Total meal duration (min) 16.74 ± 0.03 A 16.85 ± 0.03 B 

Minimum meal duration (min) 7.07 ± 0.02 A 7.48 ± 0.02 B 

Maximum meal duration (min) 12.10 ± 0.02 A 12.38 ± 0.02 B 

Bunk attendance (visits) 1.28 ± 0.002 A 1.22 ± 0.002 B 

Average inter-meal interval (min) 147.19 ± 0.10 A 148.38 ± 0.14 B 

Minimum inter-meal interval (min) 115.67 ± 0.14 A 117.88 ± 0.19 B 

Maximum inter-meal interval (min) 185.53 ± 0.07 A 184.87 ± 0.09 B 

3.3.2. Clustering 

 The choice of number of clusters is an important sub-problem of clustering. 

Figure 3.11 demonstrates the percent accuracies of each of the three models. The highest 

100% M model performance accuracy was 58 % in a 4 cluster situation. The 100 % M 

model performed the best when the 5 cluster strategy was used, reaching an accuracy of 

68 %. This accuracy declined to approximately 55 % when the 6-cluster strategy was 

applied. The overall model performed comparably well through cluster strategies 3 to 6. 

The percent accuracy of the overall model increased 5 % between cluster strategies 3 to 

5, but a reduction of 6 % accuracy was observed between the 5th and 6th cluster 

strategies. 
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Figure 3.11. Ultimate classification accuracies of the three models (100% H, 100% M, and Overall 
models) using 2 to 6 cluster strategies on the model dataset. 

 

As shown in Figure 3.11 the percent accuracies of all three models started to 

decline when the input data were divided into more than 5 clusters. As a result, the 

pattern recognition process was not applied to cluster strategies with cluster numbers 

greater than 6.  

 

3.3.3. Models 

A total of 126 models (6 cluster sizes, 3 thresholds and 7 window sizes) were 

applied to the model dataset. Figure 3.12 shows the performances of all models in terms 

of percent H and percent M accuracies.  
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Figure 3.12. Model dataset results. Healthy and Morbid percent accuracies are indicated by each 
data point representing each unique (combination of number of clusters, cluster classification 
threshold levels and window size) classification model. Numbers 1 and 2 indicate the top two 100 % 
H models, numbers 3 and 4 indicate the top two 100 % M models and numbers 5 and 6 highlight the 
top two overall models. 

 

As per model definitions described in this study in Section 3.2.9, the particulars 

of each top two models derived from the model dataset are summarized in Table 3.10. 

The optimal 100 % H model (indicated as # 1 in Figure 3.12) predicted 40 % of the M 

animals. These animals were categorised as M between 1 to 5 d (on average of 3.7 d) 

earlier than visual observation by a pen checker (Table 3.10). The second optimal 100 % 

H model (#2) only predicted 15 % of the sick animals correctly, but up to 7 d, and on 

average 4.7 d earlier than the time when the pen checker removed the animals for 

sickness (Table 3.10). In contrast, the top two 100 % M models (#3) predicted H 

comparably. The algorithms were able to predict the M animals up to 6, (average of 3.5) 

d earlier (Table 3.10), and with 67.5 % accuracy with the 100 % M model , and 7, 

(average of 4.5) d earlier (Table 3.10) and with an accuracy of 55 % with the second 100 

% M model (#4). Both of the top two overall models (#s 5and 6) predicted H animals 
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with a 82.5 % accuracy, and M with 85 and 83 % accuracies, with an average of 3.3 and 

5 d earlier than a pen checker, respectively (Table 3.10). 
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Table 3. 10. Model summaries for morbid and healthy cattle as well as average early prediction number of days within the model and naive Datasets 

Model Dataset Naive Dataset 

  Predicted early (d)   Predicted early (d) 
Model type Cluster 

size 
Threshold 

level 
Window 

size 

%H %M Min Mean Max %H %M Min  Mean Max 
1 3 55 % 15 100 40 1 3.7 5 100 0 n/a n/a n/a 100% 

H 2 2 55 % 9 100 15 0 4.7 7 100 0 n/a n/a n/a 
3 5 50 % 11 67.5 100 1 3.5 6 58.3 67 2 1.6 6 100 % 

M 4 6 50 % 9 55 100 1 4.5 7 25 75 1 2.25 6 
5 4 50 % 11 82.5 85 0 3.3 6 100 50 1 1.2 2 

Overall 6 5 55 % 7 82.5 83 0 5 7 83.3 58.3 1 1.4 6 
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3.3.4. Naive Dataset 
 

The model results derived from Figure 3.12 were compared to results obtained by 

applying the model algorithm to the naive dataset (Table 3.10). None of the 100 % H 

models were able to predict morbidity with all animals being predicted as H. However, 

the best 100 %M (#3) (Figure 3.13) model predicted 58.3 % of the H and 67 % of the M 

animals  on average 1.6, and up to 6 d earlier than traditional methods (Table 3.10). The 

second 100 % M model (#4)  (Figure 3.13) predicted 25 % of the H and 75 % of the M 

correctly, on average 2.25, and up to 6 d earlier than the pen checker (Table 3.10). The 

overall model (#5) predicted the H animals with 100 % accuracy, whereas the M cattle 

were only predicted with 50 % accuracy (Figure 3.13). When model (#6) was mapped 

onto the naive dataset (i.e. the set of rules and procedures developed using the model 

dataset were applied to the naive dataset), the result was a prediction of 83.3 % accuracy 

for H cattle and 58.3 % accuracy for M cattle (Figure 3.13). Even though H and M 

animals were represented equally in the naive dataset, it is unknown why H was still 

predicted more accurately in both overall models. One possibility may be that the 

parameters of the algorithm developed in this study were set such that it allowed for 

more H animals to be classified as M. 
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Figure 3.13. Naive dataset model results. Healthy and Morbid percent accuracies of each unique 
model after each individual animal from the naive dataset has been classified using the classification 
algorithm derived using the model dataset. Numbers 3 – 6 indicate the accuracies at which the best 
performing models highlighted in Figure 3.12 performed using the naive dataset. 

 

3.4. Discussion 

3.4.1. The Datasets 
 

To support the theory that current methods of sickness detection are not optimal, 

findings derived in this study (Table 3.5) indicate that 63 % of the animals with lung 

lesions in the model dataset were never identified as being removed from the pen for 

illness. This is not necessarily due to pen checker error as it is possible for animals to 

develop lesions without exhibiting clinical symptoms, or the lesions may have formed in 

the lungs prior to the arrival of the cattle at the feedlot. Contrary to this, the concept that 

most animals become sick within a short period after arrival to the feedlot (Griffin, 1998; 

Mathison, 1993; Smith, 1998) is strongly supported by data in both the model and naive 

Datasets.  
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Differences in feeding behaviour were observed between the 2 trials used in this 

study. These differences indicate that even under similar feedlot management conditions, 

feeding behaviour between groups of cattle can vary. These differences may be 

attributed to several factors including weather, source of cattle, length of transport to the 

feedlot, type of feed, sex, animal interactions, etc.   

3.4.2. Modelling Strategy 
 

The goal of this study was to develop an algorithm that could identify patterns of 

morbid feeding behaviour prior to being detected by a pen rider. One of the key steps in 

developing this model was the categorization of animals into CLS categories. Use of 

only the moderate and high CLS categories increased confidence levels to indicate that 

the modeling of “truly sick” and healthy animals was captured. The modeling strategy 

used in this study allowed the algorithm to deal with ‘normal’ fluctuations of feeding 

behaviour. This was achieved by setting certain boundaries and threshold levels in these 

boundaries and then testing them. The idea was to allow M animals to behave as H and 

H animals to behave as M animals a fraction of the time, on the fundamental assumption 

that healthy cattle would at times have feeding behaviour patterns that were similar to M 

cattle. Ultimately, it is important that the algorithm be robust enough to be used on any 

feeding behaviour dataset collected at a commercial feed yard. Consequently, the 

algorithm should be useful in predicting M animals sooner at a multitude of different 

feedlot locations, housing a variety of different breeds and applying numerous 

management strategies under varying environmental conditions across years. Therefore, 

an important part of the modeling strategy was to test the algorithm developed on the 
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model dataset with a naive dataset. Each specific output of the model will be discussed 

in more detail in the following sections. 

 

3.4.2.1.Number of Clusters 
 

Olofsson (1999) found that cattle classified as “dominant” increased their feeding 

duration when bunk space was reduced from 90 cm to 23cm per animal, whereas 

animals that were classified as ‘subordinate’ altered their intake pattern as well as fed 

more often during the less preferred hours of the day. In a study conducted by Hickman 

et al. (2002) it was concluded that cattle that exhibited the highest average daily gain and 

were the most feed efficient, also had the greatest variation in daily feeding patterns. The 

above findings support that many factors contribute to variation in feeding behaviour 

that may result in grouping or clustering individuals based on several factors 

concurrently. Schwartzkopf-Genswein et al. (2003) stated that cattle feeding behaviours 

are inherent and not easily altered. This suggests that even though the onset of morbidity 

in cattle may alter feeding behaviour, innate behaviours such as reaction to 

environmental factors may still dominate or override these more suble behaviours, 

causing animals to cluster into two or more groups, irrespective of their health status. 

Defining the number of such clusters and which variables would be the driving force in 

defining these clusters was a challenge not only because the data were variable, but also 

because of the nature of the data and the clustering method used. Dy and Brodley (2004) 

also describe the challenge of clustering when the number of clusters to be formed is 

unknown. Ultimately, data are sometimes informative for clustering points in a sample 
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and at times do not contain much information in terms of parameters that define a cluster 

(McCullagh and Yang, 2006).  

 Various methods of clustering cattle into M or H outcome categories were tested 

in this study. Defining an upper limit for the number of cluster strategies tested with the 

pattern recognition algorithm was important. Clustering too few groups would conceal 

variability by lumping dissimilar behaviours together, while clustering into too many 

groups would have introduced confusion and perhaps masked similarities. McCullagh 

and Yang (2006) stated that two distinct interpretations are possible when it comes to 

cluster numbers in a finite dataset. One interpretation is related to the number of clusters 

in the sample and the other with the number of clusters in the population. With cattle 

feeding behaviour data, increasing the number of clusters in the dataset created more 

defined clusters. A similar strategy was reported by Still and Birch (2004) who indicated 

that a fixed sample size has an endpoint beyond which the number of clusters does not 

resolve more relevant information. A heuristic method (problem solving by experimental 

and trial-and-error method) combined with common sense logic was used in this study to 

determine the optimum number of clusters. 

 When the number of clusters ranged from 2 to 9, specific clusters were found to 

represent a large percentage of M or H animals, whereas other clusters included equal 

number of animals from each group. As a consequence, the idea of establishing 

threshold levels based on cluster membership arose. This definition assisted in 

classifying clusters and therefore animals into H or M categories. 
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3.4.2.2. Threshold Levels 

 The health status of an individual animal was defined by the cluster in which it 

fell. However, within any cluster the number of individuals that were M or H could vary 

substantially (i.e. the members of that cluster were not all M or all H). Because no 

previous work has been done on identifying appropriate threshold levels for this type of 

data, the selection of 45, 50 and 55 percent of M cluster membership was used for 

testing and to limit testing to a finite number of possibilities. The rationale behind 

choosing this strategy was to test at which definition a cluster most closely resembled 

the feeding behaviour associated with a given health status. Threshold levels above 50 % 

were found to be more important than below 50 %, implying that setting higher 

threshold levels may be better when using the algorithm developed in this study in 

predicting morbidity. Logically, the higher threshold level we set, the better the 

algorithm would perform. However, setting the threshold too high may limit the 

usefulness of the algorithm, as there may not be any clusters that would meet such 

requirements, resulting in classifying all animals as H. In other words, there is an 

optimal point after which time the algorithm would fail. Future work needs to be done to 

determine the maximum fraction of M cluster membership that would optimize 

classification accuracies. 

3.4.2.3. Window size 
 The main purpose of choosing different sizes of windows when analyzing the 

binary string created for each animal based on clustering and threshold levels was to 

determine the appropriate time frame required to make a decision of whether or not the 

animal was M or H. The second purpose was to allow the algorithm to have some 

flexibility in terms of how many times an H animal was allowed to “feed” like an M 
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animal before it was labeled as M. For example, a window size of 3 meant that data for a 

minimum of 3 periods were necessary, and an H animal was allowed to “feed” like an M 

animal a maximum of one time before it was labeled M. 

 Table 3.8 indicates that window sizes larger than 7 were optimal, because 

anything less than 7 was not used in any of the best performing models that most 

accurately predicted morbidity. This is not surprising, as a window size of 7 indicates 

that the animal is allowed to exhibit an M pattern at most 4 times out of 7 periods (i.e. 2 

days and 4 hours). This window size is not to be compared to the length of time a pen 

checker requires to make a decision. Even though the observation period required by the 

system to make a decision is much longer than what a pen checker would require, the 

algorithm described here was able to make the decision earlier (i.e. before overt clinical 

signs of morbidity are displayed by the cattle) than a pen checker.  

3.4.3. Model for Early Detection of Morbidity and its Application 
 

Several studies have supported the observation made in this study that sick and 

healthy cattle exhibit different feeding and drinking behaviours. For example, Basarab et 

al. (1997a) found a decrease in time spent at the water trough up to 3 d before an animal 

was observed to be sick, predicting the onset of respiratory disease with 81.5 % 

accuracy. The same authors also reported that morbid steers treated for BRD spent 23.7 

% less (P<0.001) time at the water trough than healthy steers. Schwartkopf-Genswein et 

al. (2005) reported that steers diagnosed with BRD throughout a 227d trial spent 81 

minutes per day at the feed bunk, compared to 104 minutes per day spent by H animals. 

Similarly, Sowell (1998), showed that on average H steers spent 30 % more time 

(P<0.001) at the feed bunk than sick steers. In a second study, Sowell et al. (1999) 
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reported no difference (P>0.10) in duration at the water trough between healthy and sick 

steers, suggesting that time at the feed bunk may be a better indicator of cattle health 

status. Urton et al. (2005) found that cows diagnosed with metritis had 29 % lower 

feeding durations after calving than those that did not. Most importantly however was 

the difference in pre-calving feeding durations between healthy and metritic cows even 

though no differences were observed in intake, suggesting that feeding behaviour can be 

a more sensitive indicator of disease than measures of individual feed intake. 

Results presented here are consistent with those reported by Hill et al. (2006) 

using neural networks to identify M and H animals on the same datasets as used in this 

trial. Hill et al. (2006) classified M cattle with 76, 74, and 78 % accuracies 2, 4, and 6 

days before removal from the pen, respectively. For the naive dataset the classification 

accuracies were 73, 75 and 76 % at 2, 4, and 6 d prior to the removal of cattle form the 

pen, respectively. The most important variables in Hill’s study that contributed to each 

model were minimum feeding duration, minimum inter-meal interval and days on feed 

for the model dataset, and minimum inter-meal interval, minimum feeding duration and 

total feeding duration for the naive dataset. Datasets in this study were reduced in 

dimensionality via PCA prior to clustering, thus we could not identify the specific 

feeding behaviour variables that accounted for the most variation between M an H 

feeding behaviours. Results found in this study were comparable to those reported by 

Quimby (2001) who used CUSUM to successfully predict animal morbidity with an 

overall accuracy of 86 %, 4.5 d in advance of the animal being removed for treatment. 

The model presented in this thesis predicted M with a mean accuracy of 82.5 %, on 

average 5 d and up to 7 d earlier than traditional methods. These similarities existed 

despite the fact that Quimby (2001) did not use a severity of sickness for the animals 
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removed from their home pens for treatment as was done here with the CLS 

classification strategy. Defining CLS was a very important part of this study because it 

was impossible to control or monitor the accuracy of which pen checkers can assess 

morbidity. The only way to make a definitive diagnosis is by direct culture of a specific 

pathogen and following post-mortem assessment. Because this is not routinely done at 

commercial feedlots, an alternate indicator was employed, which was the number of 

times the animal was removed from the pen for perceived illness by the pen checker and 

the number of days it spent in the hospital pen after it was first identified as morbid.  

The main difference between Quimby’s technique and the one used in this study 

is that the developed procedure allows the user to choose the type of model and the type 

of accuracy they would prefer. For example, consider model numbers 5 and 6 from 

Table 3.8. In both cases we were able to isolate a group of animals that contained all M 

animals. The remaining group contained 67.5 and 55 % of H animals in model # 5 and 6 

respectively, suggesting that the producer would be able to save the cost of treatment on 

the H group of animals. The algorithm presented throughout this thesis is a prototype. 

There is room for improving the accuracy of the models, and given the nature in which 

the algorithm was developed, each component of the model could be further scrutinized 

in hopes of improving overall model performance. 

With the exception of Hill et al. (2006), all previous studies cited used linear 

statistical methods calculated on a group basis as the fundamental principle of early 

detection of sickness. In contrast, the algorithm developed in this study used non-linear 

data analysis techniques where individual animal feeding behaviour data were used 

instead of group averaged variables. One other major difference between this study and 

those cited include testing the developed procedure on a naive dataset. As emphasized 
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by numerous pattern recognition experts, testing is the last, but very crucial and 

fundamental part of the pattern recognition and method development process (Duda et 

al., 2001). 

 In this research, the accentuation of overall trends is just as important as 

considering the exceptions to these trends. These trends, however can only be studied, 

given the input parameters and input data are reliable and of good quality, a factor that is 

of great importance to pattern recognition systems. The discovery of such trends also 

relies on the size of the dataset. Despite that in this study the algorithm was developed 

and tested with a relatively small sample size, the trials were run separately, and the 

model and naive Datasets were different, the developed procedure performed better than 

expected with impressive accuracies of 83 % for M and H classification in the model 

dataset, and 83 and 58 % H and M classification in the naive dataset. The accuracies of 

prediction in both datasets could be improved by making the modeling dataset larger, 

and more diverse in terms of where the data was collected. Such improvements would 

make the model more robust and should be incorporated in future research. 

 Kastelic (2006) described four possible outcomes of a diagnostic test: true 

positive (disease positive, test positive), false positive (disease negative, test positive), 

true negative (disease negative, test negative), false negative (disease positive, test 

negative). Model definitions derived in this study were based on these. The 100 % H 

model isolated the true negatives, whereas the 100 % M model identified only true 

positives.  

 Depending on the use in a commercial setting, a feedlot may want to select the 

model that predicts morbidity earlier with less accuracy, or later with more accuracy, as 

is the case with choosing model #6 instead of #5 described in Table 3.5. 
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3.5. Conclusion 

The primary goals of this project were:  

1. From an animal science perspective, to identify morbid cattle feeding behaviour 

earlier than traditional methods. 

2.  From a computer science perspective, to develop an algorithm to detect early 

morbidity from feeding behaviour patterns of individual animals. Further, this 

project could help to bridge the gap between animal science and computer 

science, thereby encouraging future multidisciplinary research of this type.  

AI technology is used in various fields by numerous companies across the world, such as 

banks, cell phone companies and search engines. Pattern recognition methods and 

algorithms are often used in solving every day issues such as fraud detection, voice 

recognition and even data organization. Beyond business, programs like Artificial 

Intelligence in Medicine (2007) help doctors diagnose and treat patients, while vision 

recognition programs such as Poseidon (2005) are used to scan beaches and pools to 

alert lifeguards of individuals in the water that are exhibiting behaviours associated with 

drowning. The link between computer science and other disciplines is not always clear, 

and defining the problem in the scope of both disciplines can be complicated.  

 What differentiates the work presented in this thesis from similar previous 

research is that the approach and application of the AI techniques discussed in this thesis 

to date have not been considered as a solution for problems associated with cattle health. 

Using examples and guidance provided by research conducted in other fields such as the 

ones previously mentioned, a technique was developed to assist in finding answers to 
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this specific problem, thereby introducing a new spectrum of analysis techniques to the 

field of animal science. 

Although this technique could aid in the early detection of illness in feedlot 

cattle, its use in a commercial setting is limited by several factors. One initial challenge 

was the size of the datasets generated by the GrowSafe™ system. For example, over the 

course of the entire study used to collect data for the model dataset, over 1.2 * 109 data 

points were collected, a substantial amount of information to process for any system. 

The advantage of having such detailed data is that we were able to determine and 

summarize feeding behaviour variables with confidence, and could highlight the 

variation between and within the feeding behaviour patterns of individual animals. 

However, the disadvantage of large datasets is that they are difficult to manage in terms 

of disc space and processing time. One way to decrease the size of the datasets generated 

by the GrowSafe™ system would be to reduce the read rate of the system. For example, 

if the read rate was changed from 6 to 10 s, the number of records expected per hour 

would decrease from 600 to 360 records, respectively. However, a reduction in read rate 

would mean also a reduction in accuracy when calculating the duration an animal was at 

the feed bunk. Under non-experimental conditions, a sophisticated and efficient data 

processing system would be required to summarize and store live incoming data 

instantaneously. The development of such a process has not been discussed in this thesis. 

Another challenge with processing live stream data is that the data need to first 

be cleaned as described in Section 3.2.6 of this thesis. The data cleaning routine requires 

for all data to be collected throughout the entire processing period, prior to the data 

being evaluated. This forces the data processing time to be extended and raises the issue 

of cleaning the data as it is being collected. Data cleaning is an essential part of the 
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entire system and cannot be omitted as it may significantly affect the overall outcome of 

the classification process and it ensures that the quality of the input data is high. One of 

the key factors of the cleaning process was the ability to differentiate a true zero reading 

in the data (the animal was not present at the feed bunk) from system failure zero. The 

fact that occasionally the system would malfunction or a power outage or shut down 

would occur imposed a challenge, as the system does not identify technical difficulties 

thereby potentially confounding the data. The other key factor for data cleaning was the 

development of a method that recognized when data did not meet our selected definition 

of good quality. This was achieved by a labour intensive process, where accuracy levels 

from 0 to 100 % in intervals of 5 % were considered to generate the output shown in 

Figure 3.7. Ideally, this procedure should be implemented with every GrowSafe™ 

system, and periodically repeated to ensure that the system is not deteriorating over time. 

The possible automatic implementation of such a system is beyond the scope of this 

degree, but should be considered in future work. Throughout the development of the data 

cleaning procedure, the importance of writing software that was dynamic and modular 

became evident. By designing and writing custom software that recognizes data not 

meeting expected criteria, we have not only achieved a solution for this particular 

research project, but we’ve developed a method that could be applied to any dataset 

generated by any GrowSafe™ system. 

 The introduction of CLS categories and the use of a naive dataset to test the 

model developed in this study were key and unique elements of the overall algorithm 

development process. If this algorithm aids in the classification of any number of morbid 

animals, even one day earlier than a pen checker, it may be an economic benefit, because 
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early identified animals typically have an increased chance of survival and respond to 

treatment more quickly. 

Even though the datasets were not considered similar, it was possible to predict 

morbidity with an average of 75 % accuracy using the top overall model. One approach 

to attempt to increase the overall accuracy of all models would be to increase the size 

and variability of the model dataset. This could be achieved by collecting more data over 

time at various feedlots. In the case of this project, it would have been possible to 

combine data collected from each study, then randomly select 20 % of the data to be put 

aside as training data, and develop the model based on the remaining 80 % of data. 

Future work should include increasing the size of the model dataset, which would also 

increase the variability of the model dataset that may result in a more robust and accurate 

model. Unfortunately, data of this kind and of this magnitude are rare. One way to 

collect more data is too install the GrowSafe™ system at various feedlots. However, cost 

seems to be the limiting factor of expanding the use of the system, as it competes with 

the need for other essential equipment such as feed trucks, feed mill, personnel, etc. 

Currently, as research in early detection of morbidity based on feeding behaviour 

(collected with the GrowSafe™ system) is in its formative stages, its use in this regard is 

limited for commercial feedlots. Researchers would need more data to support the 

findings of this study, and increase the accuracy of the algorithm developed which may 

strengthen the result found in this study. 

This study provides a bridge between the disciplines of Animal Science and 

Computer Science by identifying a valid method that can be applied in further research. 

The application of pattern recognition algorithms to feeding behaviour shows great value 

as a method of identifying morbid cattle in advance of overt physical signs of morbidity. 
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The widespread adoption of the proposed algorithms in a commercial setting would 

prove to be an asset to researchers and producers alike. However, at this time, substantial 

work is required for this method to have value to the commercial feedlot industry. An 

integrated system that would automatically clean and process GrowSafe™ data, then 

identify morbid cattle would be required for this method to become a useful commercial 

tool. 
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