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ABSTRACT

Emergency Management has received more and more attention in the recent years. Most

research in this field focused on evacuation of victims from dangerous places to safe places,

but little on allocation of medical resources to safe places and/or transportation tools to

the dangerous places.

This thesis studies the problem of delivering medical resources from medical centers to

the temporary aid site in a disaster-affected area to help the wounded victims. In par-

ticular, this thesis describes a new algorithm for solving this problem. As requirements

of medical resources for a disaster affected area are not known in advance, the problem

is in the so-called on-line environment. The algorithm for such a problem is also called

on-line algorithm. The evaluation criterion for such an on-line algorithm is the so-called

competitive ratio.

This thesis considers four cases of such a problem: (1) the capacity of vehicles for trans-

porting medical resources and the number of vehicles are both infinite, (2) the capacity

of vehicles is infinite but the number of vehicles is one, (3) the capacity of vehicles is

finite and the number of vehicles is infinite, (4) the capacity of vehicles is finite and the

number of vehicles is one. Algorithms for the four cases are called H1, H2, H3, and H4,
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respectively.

For all these cases, this thesis presents properties, appropriate on-line algorithms and the-

oretical analysis of these algorithms. The result of the analysis shows that H1 and H3 are

optimal based on the competitive ratio criterion while the other two have a very small gap

in terms of the optimum criterion. The thesis also presents a case study for having a sense

of the performance of H2 and demonstrating practicality of the developed algorithms.

The result of this thesis has contributions to the field of resource planning and scheduling

and has application in not only emergency management but also supply chain management

in manufacturing and construction.

iii



ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor, Professor W.J. Zhang, whose

expertise, understanding, and patience, added considerably to my graduate experience.

I would like to thank the other members of my advisory committee, Professor F.X. Wu,

Professor M. Keil, and Professor M. Gupta, for the assistance they provided during the

whole process of my graduate research.

I also would lie to thank my previous supervisor Professor X.W. Lu in the period of my

study in East China University of Science and Technology of China for his guidance.

I also wish to gratefully acknowledge the support of all my friends.

iv



TABLE OF CONTENTS

PERMISSION TO USE i

ABSTRACT ii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

ACRONYMS x

NOMENCLATURE xi

1 INTRODUCTION 1

1.1 Emergency Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Evacuation Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Allocation of Medical Resources . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Objectives and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND AND LITERATURE REVIEW 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

v



2.2.1 Analysis of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Macroscopic Models of Evacuation Problems . . . . . . . . . . . . . . . . . 12

2.4 On-line Problems and On-line Algorithms . . . . . . . . . . . . . . . . . . 14

2.5 Supply Chain Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . 15

3 PROBLEMS’ ASSUMPTIONS AND NOTATIONS 24

3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Problem Formulation and Notations . . . . . . . . . . . . . . . . . . . . . . 27

4 SOLVING PROBLEM P1 30

4.1 The Lower Bound for P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 The Upper Bound for P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 34

5 SOLVING PROBLEM P2 35

5.1 The Lower Bound for P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 The Upper Bound for P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 The Lower Bound for P2 with C=2 . . . . . . . . . . . . . . . . . . . . . . 39

5.4 The Upper Bound for P2 with C=2 . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 44

6 SOLVING PROBLEM P3 47

vi



6.1 The Lower Bound for P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 The Upper Bound for P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 53

7 SOLVING PROBLEM P4 54

7.1 The Lower Bound for P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 The Upper Bound for P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Discussion and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 59

8 APPLICATIONS 60

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.2 Simulated Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 CONCLUSIONS 66

9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

LIST OF REFERENCES 70

APPENDIX 74

vii



LIST OF TABLES

Table 2.1: Orders of Common Functions............................................................... 7

Table 2.2: Results of Several Supply Chain Scheduling Problems......................... 21

Table 8.1: Results of Algorithm H2 for Problem P2 with C = 2.......................... 62

Table 8.2: Results of Algorithm H2 for Problem P2 with C = 5.......................... 63

Table 8.3: Results of Algorithm H2 for Problem P2 with C = 12......................... 64

Table 9.1: Analytical Results of The Problems...................................................... 67

viii



LIST OF FIGURES

Fig 1.1: Great Disasters in Recent Years....................................................................... 2

Fig 2.1: Venn Diagram of complexity concepts.............................................................. 10

Fig 2.2: Supply Chain Scheduling.................................................................................. 17

Fig 3.1: Allocation of Medical Resources in Emergency Management........................... 25

Fig 4.1: The Lower Bound for P1.................................................................................. 32

Fig 5.1: The Lower Bound for P2.................................................................................. 36

Fig 5.2: The Lower Bound for P2 with C = 2............................................................... 39

Fig 5.3: Improved Lower Bound for P2 with C = 2...................................................... 45

Fig 5.4: Improved Lower Bound for P2 with C = 4...................................................... 46

Fig 6.1: The Lower Bound for P3 (1)............................................................................ 48

Fig 6.2: The Lower Bound for P3 (2)............................................................................ 49

Fig 7.1: The Lower Bound for P4.................................................................................. 56

ix



ACRONYMS

EM: Emergency Management (pp. 1)

P: polynomial-time (pp. 8)

NP: non-deterministic polynomial-time (pp. 8)

NPC: NP-complete (pp. 9)

SNPC: Strongly NP-complete (pp. 9)

ONP: Ordinary NP-hard (pp. 10)

SNP: Strongly NP-hard (pp. 10)

TSP: Traveling Salesman Problem (pp. 11)

x



NOMENCLATURE

Rj: the jth requirement (j = 1, 2, · · · , n)

rj: the release time of requirement Rj

pj: the preparation time for requirement Rj

η: a feasible schedule

opt: an off-line optimal schedule

Cj(η): the completion time for requirement Rj in schedule η

Cmax(η): max
Rj∈I

Cj(η)

ρj(η): the departure time for requirement Rj in schedule η

ρmax(η): max
Rj∈I

ρj(η)

T : the round-trip transportation time between the medical center and

the aid post

Dj(η): the return time of the vehicle delivering requirement Rj in

schedule η, that is, Dj(η) = ρj(η) + T

Dmax(η): max
Rj∈I

Dj(η)

V (x, y): there are x vehicles available, each with a capacity y, where x ∈ {1,∞},

and y ∈ {C,∞}

pmtn: the requirement preparation that is preempted and resumed later
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D: the cost of a delivery, which is a constant

TC(η): the total cost of all deliveries in schedule η, which is the number of deliveries

multiplied by D

θ: the positive root of equation θ2 + θ − 1 = 0, i.e. θ =
√
5−1
2
≈ 0.618

full batch: the number of requirements in one delivery batch equals to the capacity of vehicles

unfull batch: a batch which is not full

Z(η): the total cost of schedule η, that is Z(η) = Dmax(η) + TC(η)

U [a, b]: the Uniform distribution on interval [a, b]

P (λ): the Poisson distribution with expectation λ

N(µ, σ2): the Normal distribution with expectation µ and standard deviation σ
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CHAPTER 1

INTRODUCTION

1.1 Emergency Management

More and more attention has been paid to Emergency Management (EM) in the recent

years. The particular problem in EM studied by this thesis is to deliver medical resources

to the temporary aid site after victims are evacuated to such a site. EM has gained a

growing interest especially after 911 terrorist attacks in 2001 and hurricane in Florida

in 2005. The study in EM is much more necessary in places where natural disasters

happen frequently. No matter the terrible earthquakes in Wenchuan of Sichuan and in

Yushu of Qinghai or the fire hazard of building in Shanghai, rescue mission needs not only

to evacuate the victims from dangerous places to safe ones but also to allocate medical

resources from medical centers to the temporary aid sites where wounded victims stay.

Hamacher and Tjandra [2002] make a survey of the recent work about EM, almost all

of which were about evacuation of victims from one place (source place) to safe places

(destination places). Indeed there is little research on allocation of medical resources in

EM.
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Fig 1.1: Great Disasters in Recent Years

(http://frontpagemag.com/2010/05/31/911-sacrilege/

http://howmanyarethere.net/how-many-people-died-on-the-hurricane-katrina/

http://www.chinadaily.com.cn/china/2008-05/14/content 6682723.htm

http://penguinsabroad.blogspot.ca/2010/04/yushu-some-good-news.html)

1.2 Evacuation Operations

One can reasonably assume that there are many routes to evacuate victims given a trans-

portation system which is highly networked. Further, transportation needs tools (e.g.,

ground vehicles), and they also take a part of the transportation system. Evacuation

problems are studied in different fields such as network flow, traffic assignment and cellu-

lar automata. Mathematical models of evacuation problems are divided into two classes:

microscopic models and macroscopic models, according to [2002]. Microscopic models sim-

ulate behaviors of individual victims for experimental analysis of an evacuation schedule,

among which cellular automata simulation models and probabilistic models for pedestri-
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ans and traffic movements are widely known [Benjaafar et al. 1997, Klüpfel et al. 2000,

Nagel and Schreckenberg 1992]. However, in macroscopic models, victims are considered

as a homogenous group with their individual difference being ignored. This thesis presents

a study that falls into the category of macroscopic models.

1.3 Allocation of Medical Resources

When wounded victims are evacuated to the temporary aid site, they need medical re-

sources (drugs, medical instruments and medical personnel). Therefore, medical centers

should supply these resources to the aid site. In delivering medical resources, medical

centers need to prepare medical resources and then deliver the resources to the aid site.

In medical centers, there should be enough time to gather medical personnel, prescribe

drugs and assemble medical instruments. The number and the capacity of transportation

vehicles are variables that constrain this medical resources delivery.

The existing models for the medical resources delivery only consider known and determin-

istic situations, which is unrealistic. In reality, situations are unknown, which means that

demands on medical resources are unknown. Such situations or environments are called

on-line. Accordingly, algorithms for scheduling medical resources in an on-line environ-

ment are called on-line algorithms.

There are two attributes in the medical resources delivery: cost and time. Reduction

of cost implies fewer vehicles to be put in delivery, which may lead to a longer time.

Therefore, the nature of scheduling the medical resources delivery is a multi-objective
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optimization problem.

1.4 Objectives and Scope of the Thesis

This thesis aims to develop algorithms for scheduling medical resources delivery in EM

with a particular context that has one medical center and one aid site. The assumption

is further made that demands on medical resources are unknown. The other assumptions

are that (1) there is a need of preparation time for medical resources and (2) delivery of

medical resources is taken on a transportation network with different routes.

1.5 Organization of the Thesis

Chapter 2 gives a background and literature review on evacuation operations, allocation

of medical resources. Some basic concepts will also be discussed in this chapter.

The descriptions and the assumptions of the model will be introduced in Chapter 3. This

thesis considers four different problems, proposes algorithms to solve these problems and

analyzes these algorithms, which will be described in Chapters 4, 5, 6 and 7, respectively.

In particular, Chapter 4 considers the case that the capacity of vehicles and the number of

vehicles are both infinite. The algorithm for this case is named H1. Chapter 5 considers

the case that the capacity of vehicles is infinite but the number of vehicles is one. The

algorithm for this case is named H2. Chapter 6 considers the case that the capacity of

vehicles is finite and the number of vehicles is infinite. The algorithm for this case is

named H3. Chapter 7 considers the case that the capacity of vehicles is finite, the number

of vehicles is one and the preparation of requirements allows pmtn. The algorithm for this

4



case is named H4. In Chapter 8, a simulation experiment for H2 will be discussed.

Chapter 9 summarizes contributions of this thesis, gives the conclusion, and discusses the

future work in this field.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

As shown in Chapter 1, little work was focused on allocation of medical resources in EM.

This thesis aims to study the problems systematically. The concept of macroscopic models

in evacuation operations is applied and the so-called on-line environment or situation is

considered. The purpose of this chapter is to provide background regarding and a literature

review of macroscopic models, on-line problem and related concepts. In particular, Section

2.2 discusses primary concepts/notions related to medical resources allocation or delivery

in EM. Section 2.3 discusses macroscopic models in details. The on-line problem and

on-line algorithm are discussed in Section 2.4. In Section 2.5, the problem of supply chain

scheduling which has some similar properties as the problem of medical resources delivery

studied in this thesis.

2.2 Preliminaries

2.2.1 Analysis of Algorithms

One evaluation method to algorithms is the ”run-time” of algorithms. An algorithm can be

viewed as a set of operations on ”instances”. The operation of an algorithm can be further
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decomposed into a set of basic operations such as addition, subtraction, multiplication,

division, evaluation and comparison. Let n = |I| denote the input size an algorithm needs

to operate on for an instance I and T denote run-time of the algorithm. In particular,

run-time of an algorithm is a function of the size of instances: T (n). It is noted that the

size refers to the sum of binary string lengths of an instance’s parameters.

Table 2.1: Orders of Common Functions

Notation Name

O(1) constant

O(loglogn) double logarithmic

O(logn) logarithmic

O(nc), 0 < c < 1 fractional power

O(n) linear

O(nlogn) = O(logn!) loglinear

O(n2) quadratic

O(nc), c > 1 polynomial

O(cn), c > 1 exponential

O(n!) factorial

In most cases, it is impossible to get an analytical representation of T (n), so asymptotical

bounds for T (n) are usually defined.

Definition 2.1[Knuth 1976]. Let f(n) and g(n) be two functions defined on N. T (n) =

O(f(n)) if and only if there exists a positive real number M and an integer n0 such that
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T (n) ≤ Mf(n) for all n > n0. T (n) = Ω(g(n)) if and only if there exists a positive real

number M and an integer n0 such that T (n) ≥ Mg(n) for all n > n0. T (n) = Θ(f(n)) if

and only if T (n) = O(f(n)) and T (n) = Ω(f(n)) .

As a small run-time is desired, the function f(n) such that T (n) = O(f(n)) is more

meaningful. Table 2.1 shows some common functions f(n).

2.2.2 Computational Complexity

A polynomial function of run-time is noted, as the increase of n gives an accurate sense

of the increase of run-time. Therefore, it becomes an evaluation criterion for algorithms

in algorithms development. In early years, researchers considered that all problems have

their respective polynomial run-time algorithms which means they are polynomial-time

(P) problem; but this is not true. Therefore, classification of problems in terms of the

polynomial function of run-time is made.

Definition 2.2. A decision problem is a question with yes-or-no answer depending on the

input parameters.

Definition 2.3. Decision problem DP is non-deterministic polynomial-time (NP) prob-

lem, if for an instance I of DP with yes answer, the proof of the fact that the answer is

indeed ”yes” can be proved in p(|I|) time.

To compare the intractability of two decision problems, the polynomial transformation

between decision problems is introduced below.

Definition 2.4[Karp 1972]. Decision problem DP1 is polynomially transformed to de-

cision problem DP2, if for an arbitrary instance I1 of DP1, an instance I2 of DP2 can be

8



constructed in p(|I1|) time such that the answer of I1 is yes if and only if the answer of I2

is yes.

It is noted that DP1 being polynomial transformed to DP2 means that if DP2 has a

polynomial algorithm, so does DP1. This also means DP2 is harder than DP1.

In NP problems, there is a class of problems which are harder than others.

Definition 2.5[Garey and Johnson 1979]. Decision problem DP is NP-complete if:

1. DP is NP problem,

2. Every NP problem can be polynomially transformed to DP.

NP-complete (NPC) problems are the hardest ones in NP, but there are still different

levels of intractability in them.

Definition 2.6. Decision problem DP is strongly NP-complete (NP-complete in the strong

sense, SNPC), if it remains NP-complete even all parameters of I are bounded by p(|I|).

For problems which do not belong to NP, the measurement of intractability would refer to

the definition of NP-complete, but polynomial transformation cannot be applied because

these problems may not be a decision problem. Therefore, polynomial reduction between

problems is defined below.

Definition 2.7[Rogers 1967]. Suppose that AP1 and AP2 are two problems, if AP1’s

algorithm A1 calls AP2’s algorithm A2 a polynomial number of times, then AP1 is poly-

nomially reducible to AP2.
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It can also be shown that AP2 is harder than AP1 if AP1 is polynomially reducible to

AP2.

For an algorithmic problem AP which may not be in NP, if it is polynomially reducible

to a NP-complete problem, then it is NP-hard problem. Accordingly, strongly NP-hard

problem (SNP) can be defined. A NP-hard problem which is not SNP is called ordinary

NP-hard (ONP).

The decision problems which have polynomial algorithms are in P. It is obvious that

P⊆NP, but whether P=NP is still unknown. Actually, there is a famous conjecture

P 6=NP, which means there are decision problems which do not have polynomial algo-

rithms [Gasarch 2002, Rosenberger 2012]. Fig 2.1 shows a venn diagram to illustrate the

relationship among P, NP, NPC, SNPC, ONP and SNP.

P 

NP 

NPC 

SNPC 

ONP 

SNP 

Fig 2.1: Venn Diagram of complexity concepts
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2.2.3 Approximation Algorithm

Because (1) NP-hard problems do not have polynomial algorithms unless P=NP and (2)

almost all practical problems are NP-hard; enumeration algorithms, branch and bound

algorithms and intelligent algorithms are designed for these problems. In the case where

time is more important than accuracy, the above methods may not be applicable; therefore

efficient approximation algorithms are required.

The precise definition of approximation algorithms for the minimization problem is as

follows.

Definition 2.8. Let P be a minimization problem and I be an instance of P , A(I)

be the objective function by algorithm A for I and OPT (I) be the optimal solution. If

A(I)
OPT (I) ≤ r for all I and r ≥ 1, thenA is called a r-approximation algorithm. Furthermore,

if RA = inf{r ≥ 1, A(I)
OPT (I) ≤ r, for all I}, algorithm A has approximation ratio RA.

A similar definition can be made for the maximization problem.

2.2.4 Traveling Salesman Problem

Traveling Salesman Problem (TSP) is to find the shortest route for a traveling salesman

to visits all the nodes of a given transportation network. The polynomial time approxi-

mation algorithms of TSP were studied, among which the well-known result comes from

from [Christofides 1976]. An instance of the Traveling Salesman Problem is given by a

weighted graph and an initial vertex. The goal is to find a tour, i.e., a Hamiltonian

circuit, that has a minimum length. The decision problem version of TSP is NP-hard
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because the Hamiltonian Circuit problem can be polynomial transformed to it. It has

been proved that the general TSP is not approximate within any constant unless P=NP

[Orponen and Mannila 1990]. In the metric case; however, there is an approximation al-

gorithm according to [Christofides 1976]. His algorithm gives an approximation ratio of

3/2. The situation is even more favorable in the Euclidean plane, for which Arora (1997)

gives a (1 + ε) approximation scheme.

2.3 Macroscopic Models of Evacuation Problems

In macroscopic models, victims are considered as a homogenous group and only common

characteristics of all individuals are taken into account.

Sometimes, evacuation problems are considered as static network flow problems. The

static network G is used to represent sources and destinations, and routes which are used

to evacuate people from sources to destinations. The routes may have some intermediate

points. In the static network flow models, sources, destinations and intermediate points

are considered as nodes while routes are considered as paths in graph. Using graph theory,

the whole model can be described by a node-arc incidence matrix. On source nodes are

victims being evacuated, while intermediate nodes and destination nodes are given upper

limits in victims who can stay. Arcs have attributes such as flow capacity and travel time.

Such evacuation problems include:

1. Shortest path [Fahy 1991],

2. Minimum cost network flow [Yamada 1996],

3. Quickest path [Chen and Chin 1990, Chen and Hung 1993].

12



However, the static network flow models are not sufficient to represent the evacuation

problems in practice because of the absence of time. Dynamic network GT is then intro-

duced to model evacuation operations over time. GT can be seen as the time expanded

version of the static network G and the network flows of G. There are two classes of

dynamic network models: discrete-time dynamic network and continuous-time dynamic

network.

Several discrete-time network models are introduced as follows:

1. Minimum turnstile cost [Chalmet et al. 1982, Chen and Hsueh 1998],

2. Quickest flow [Burkard et al. 1993, Fleischer 1998],

3. Universally maximum flow [Hoppe and Tardos 1994, Minieka 1973],

4. Minimum weight path (multi objectives) [Kostreva and Wiecek 1993],

5. Lexicographically minimal cost [Hamacher and Tufekci 1987],

6. Flow dependent exit capacity [Choi et al. 1984, Choi et al. 1988].

In the field of dynamic network flow problems, researchers considered the models with

constant attributes such as constant travel time and constant flows capacity. These special

models can be solved efficiently. The following continuous-time dynamic flow models are

examples:

1. Maximum flow with time dependent capacity [Anderson et al. 1982, Philpott 1990],

2. Universally maximum flow with zero travel time [Fleischer 2001b, Ogier 1988],

3. Quickest flow with constant capacity and travel time [Fleischer 2001a].
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2.4 On-line Problems and On-line Algorithms

The traditional algorithms assume that an algorithm has the complete knowledge of an

entire input. However, in practice this assumption is sometimes unrealistic. In many prac-

tical problems, the input is only partially known or totally unknown the time a schedule is

made. Problems which have this situation are called on-line problems. Accordingly, if for

a problem the complete information of the input is available at the beginning, the problem

is called the off-line problem. On-line problems arise in many areas [Albers 2003]. The

formal definition of on-line problems can be described as follows.

Definition 2.9. There is a request sequence τ = τ(t1), τ(t2), · · · , τ(tn), which must be

served by a server. At time t, no knowledge of any request τ(t′) with t′ > t is known.

There will be a cost to serve these requests and the goal of having a service schedule is to

minimize the total cost for the entire request sequence.

Algorithms for on-line problems are called on-line algorithms. According to the above

definition of on-line problems, on-line algorithms must decide how to serve the requests

τ(t′) (t′ ≤ t) without any information of the requests τ(t′′) (t′′ > t) at time t.

Suppose there are algorithms which have the complete information of an entire input of

this on-line problem. Such algorithms are called off-line algorithms. The result of an

off-line algorithm is an optimal solution. The difference of an on-line algorithm from the

optimal off-line algorithm can be used to evaluate an on-line algorithm.

Definition 2.10. Let P be a (minimization) on-line problem and I be an instance of P ,

A(I) be the objective function in algorithm A for I and OPT (I) be the off-line optimal
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result. If A(I)
OPT (I) ≤ r for all I and a r ≥ 1, A is called a r-competitive algorithm.

Furthermore, if RA = inf{r ≥ 1, A(I)
OPT (I) ≤ r, for all I}, the on-line algorithm A has the

competitive ratio RA.

For an on-line problem, how intractable it can be is first analyzed, and then algorithms for

it are designed. Measurement of the intractability of an on-line problem is the competitive

ratio of an on-line algorithm for the on-line problem.

Definition 2.11. For an on-line problem, if no on-line algorithm can achieve a competitive

ratio less than L, we say that L is the lower bound of this on-line problem.

The method to obtain a lower bound is to construct a series of instances of an on-line

problem and prove that no algorithm can achieve a competitive ratio less than L for these

instances. Construction of the instances should be in accordance with the structure of an

on-line algorithm and make L as large as possible.

For each on-line problem the optimal on-line algorithm is the one whose competitive ratio

which can be viewed as the upper bound of this on-line problem is equal to its lower

bound. It is clear that on-line algorithms are developed such that their competitive ratios

are as close to their lower bounds as possible.

2.5 Supply Chain Scheduling Problem

On-line problems for allocation of medical resources in EM are similar to on-line problems

in supply chain scheduling. It is reasonable to give comments on the literature of supply

chain scheduling.
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In a large scale manufacture (Fig. 2.2), jobs are processed on machines in an shop-flow and

delivered to customers who order them; thus production cost and delivery cost arise. To

customers who want products, both production and delivery activities are in fact relevant.

That is to say, both the cost and delivery time of a product to customers would be charged

due to a schedule of production and/or a schedule of delivery among many other factors

(e.g., quality of production machinery). An analogy between supply chain management

and allocation of resources can be made as:

supply chain ↔ allocation of resources

product production material preparation

delivery delivery

Hall and Potts [2005] give the definition of supply chain scheduling problem and solve some

basic off-line versions. The difference of supply chain scheduling from classical schedul-

ing is that because of transportation cost, the processed jobs would not be delivered to

customers immediately, but have to wait for other jobs to form batches. Therefore, the

decision about a job is not only when to process it and which machine to process it, but

also when to deliver it and which batch to deliver it.
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Fig 2.2: Supply Chain Scheduling

When the number of customers is more than one, the supply chain scheduling problem will

involve routing which makes the problem more difficult. Chen and Vairaktarakis [2005]

studied eight basic supply chain scheduling problems, four of which have the routing

problem as their sub-problem; however, they considered the case that the number of

customers is constant and solved the routing problem by enumeration. If the number of

customers is a variable, the routing sub-problem will be strongly NP-hard as it is equivalent

to the traveling salesman problem (TSP).

Chen [2010] made a survey on the supply chain scheduling problem and modified the

three-field notation of the classical scheduling problem to be five-field notation α|β|π|δ|γ

to represent the supply chain scheduling problem. The explanation of the five fields is as

follows
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α: Machine Configuration.

1: single machine configuration, where all the jobs are precessed by a single machine.

Pm: parallel-machine configuration, where there are m identical parallel machines such

that each job needs to be processed by one of them only.

β: Restrictions and Constraints on Job Parameters.

rj: jobs have unequal release times.

on− line: jobs are released on-line.

pmtn: job processing can be preempted and resumed later.

prec: jobs have precedence constraints between them.

π: Delivery Characteristics including vehicle characteristics and delivery methods.

Vehicle characteristics:

V (x, y): there are x vehicles available, each with a capacity y; so x ∈ {1,∞}

and y ∈ {C,∞}, where the symbol ”∞” means ”enough” in the engineering

sense (this interpretation of ”∞” is valid throughout this thesis).

x = 1: a single vehicle available.

x = v: v vehicles are available, where v < n and is finite.

x =∞: enough vehicles are available such that the number of vehicles is not constraint.

y = 1: each vehicle can accommodate only one job.

y = C: each vehicle can accommodate C jobs, where C < n and is finite.

y =∞: each vehicle can accommodate any number of jobs.

Delivery methods:
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iid: each job is delivered individually and immediately after its completion.

direct: only jobs of the same customer can be delivered together in the same shipment.

routing: jobs of different customers can be delivered together in the same shipment where

vehicle routing is a part of the decision.

δ: Number of Customers

1: a single customer.

k: multiple customers, where 2 ≤ k ≤ n.

n: n customers, meaning that each job belongs to a different customer.

γ: Objective Function

Time-based:

Dmax: maximum delivery time of jobs.∑
(wj)Dj: total (weighted) delivery time of jobs.

Lmax: maximum delivery lateness of jobs.∑
(wj)Tj: total (weighted) delivery tardiness of jobs∑
(wj)Uj: (weighted) number of late jobs.

Cost-based:

TC: total trip-based transportation cost.

V C: total vehicle-based transportation cost.

PC: total production cost of the orders.

The on-line problems consider the supply chain scheduling problem in the on-line environ-

ment, where the information of the future jobs is unknown. On-line problems are more
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realistic today in the manufacturing world as the demand of market is highly dynamic

and uncertain. More specifically, suppose that there are n jobs J1, · · · ,Jn with processing

times p1, · · · , pn released online at times r1, · · · , rn, respectively, to a manufacturer which

has machines. The jobs are released by phone or email. As well, suppose at any time there

is no information about the number, release time and processing time of future jobs.

When the jobs are completed, they should be transported to the customers with vehicles

and there would be a delivery cost thus incurred. In light of the cost, delivery time and

”mass customization”, the delivery of processed jobs with respect to a particular customers

may not be immediately carried. The objective of the scheduling is to minimize both the

time and the delivery cost.

Averbakh and Xue [2007] and Averbakh [2010] studied the on-line supply chain schedul-

ing with preemption and obtained the on-line optimal result for the case of single-machine

and single-customer. When there is more than one customer, the modified algorithm was

proposed but because it scheduled the jobs without differences in the processing part, the

result was not good enough according to [Averbakh and Xue 2007, Averbakh 2010].

Table 2.2 summarizes the algorithms proposed in literature for supply chain scheduling

problems. From the table, it can be seen that there are systematic works for the off-line

problems [Hall and Potts 2005, Chen and Vairaktarakis 2005] but not for on-line prob-

lems. This thesis will deal with on-line problems under configuration of machines and

customers as the supply chain scheduling problem but with some difference in vehicle

characteristics.
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Table 2.2: Results of Several Supply Chain Scheduling Problems

Problem Complexity Algorithm

1|rj, prec|V (∞, 1), iid|n|Dmax SNP 4
3
-approximation algorithm

[Hall and Shmoys 1992]

1|rj|V (∞, 1), iid|n|Dmax SNP PTAS

[Hall and Shmoys 1992]

[Mastrolilli 2003]

1||V (v, 1), iid|n|Dmax SNP even if v = 2

Pm||V (∞, 1), iid|n|Dmax ONP 2− 2
m+1

-approximation

algorithm [Woeginger 1994]

Pm|rj|V (∞, 1), iid|n|Dmax SNP branch and bound method

[Gharbi and Haouari 2002]

Fm||V (∞, 1), iid|n|Dmax SNP asymptotically optimal heuristic

algorithm [Kaminsky 2003]

1||V (∞, c), direct|1|Dmax + TC P O(n)

[Chen and Vairaktarakis 2005]

1||V (∞,∞), direct|1|Lmax + TC P O(n3) [Hall and Potts 2005]

continued on the next page
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Table 2.2: Results of Several Supply Chain Scheduling Problems (continued)

Problem Complexity Algorithm

1|rj, pmtn|V (∞,∞), direct|1|
∑
Dj Open On-line algorithm

citeAverbakh and Xue 2007

1||V (∞, c), direct|1|
∑
Dj + TC P O(nlogn+ nc)

[Chen and Vairaktarakis 2005]

1||V (∞,∞), direct|1|
∑
Dj + TC P O(n2) [Hall and Potts 2005]

1||V (v,∞), direct|1|Lmax + TC P for fixed v O(vn3v+4)

Open for arbitrary v

1||V (∞,∞), direct|1|
∑
wjDj + TC SNP Polynomial algorithm for

special case [Ji et al. 2007]

1||V (∞,∞), direct|1|
∑
Uj + TC P O(n4) [Hall and Potts 2005]

1||V (∞, c), direct|1|
∑
Uj + TC Open

1||V (∞,∞), direct|1|
∑
wjUj + TC ONP

1||V (∞,∞), direct|1|
∑
Ej + TC P O(n2logn)

[Cheng and Kahlbacher 1993]

1||V (∞,∞), direct|1|
∑
Tj + TC ONP

continued on the next page
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Table 2.2: Results of Several Supply Chain Scheduling Problems (continued)

Problem Complexity Algorithm

1||V (v, c), direct|1|Dmax P O(nlogn) [Chen and Lee 2008]

Pm||V (∞, c), direct|1|Dmax + TC ONP 2− 1
m

-approximation algorithm

[Chen and Vairaktarakis 2005]

asymptotically optimal

1||V (1,∞), direct|1|Lmax + TC P O(n5) [Hall and Potts 2005]

1||V (1,∞), direct|1|
∑
Dj + TC P O(n4) [Hall and Potts 2005]

1||V (1, c), direct|1|
∑
Dj P O(n2) [Chen and Lee 2008]

Source : [Chen 2010]
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CHAPTER 3

PROBLEMS’ ASSUMPTIONS AND NOTATIONS

Suppose that a disaster takes place and a rescue team evacuates victims in affected areas

and settles them to a temporary aid site. Victims may get hurt during the disaster, and

they may need a great deal of medical resources to cure them. Assume that medical

centers deliver enough medical resources such as drugs, medical instruments and medical

personnel to the aid site.

The medical resources are continuously required in the whole process of EM; thus the

information of the requirements is not known at the time scheduling decisions have to be

made. Therefore, the on-line mechanism for scheduling decisions should be considered,

which means that there are different resources requirements at different moments and they

are known when they are released.

After medical centers receive demands or requirements of medical resources, the centers

may need to spend time to prepare the resources. Therefore, when a requirement of

resources is released, the decision maker should decide when to prepare the requirement

and the work force to prepare it. The constraint on the preparation is that the requirement

should be known. When a requirement is prepared, the decision maker should decide when
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to deliver it, which vehicle to load it, and which path of the transportation network to

travel through if there is more than one aid site. The constraint on the delivery is that

the deliver of the requirement should be (1) after the requirement has been prepared and

(2) there are available vehicles at that moment.

  

  

  

  

  

  

  

  

Affected Area 

  Medical Center 
  

Temporary Aid Site 

  

Fig 3.1: Allocation of Medical Resources in Emergency Management

The time that a requirement is known is called ”release time” of the requirement. The time

that a requirement is prepared is called ”completion time” of the requirement The time

that a requirement leave the medical center is called ”departure time” of the requirement.

The time that a shipment returns to the center is called ”return time” of all requirements

in the shipment. Thus, the time-based objective can be defined as a function of release

time, completion time, departure time and return time. Obviously this objective should

be minimized to make the whole process efficient.

When a vehicle delivers an requirement to its destination, there is a transportation cost
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for this delivery. Therefore, the cost-based objective would is proportional to the number

of deliveries, which further represents the utility ratio of vehicles and should also be

minimized. It is noted that the objective to minimize the time conflicts with the objective

to minimize the cost, because delivering every requirement as soon as possible means

using vehicles as many as available. The final objective of the problem may have different

representations: to minimize a weight sum of the two objectives, Pareto solutions, to

minimize one objective under the minimization of the other. The general principle to

trade-off the two objectives is: the prepared requirements should be delivered quickly

whilst the utilization ratio of vehicles is high.

3.1 Assumptions

In reality, the preparation procedure of medical resources in medical centers is very com-

plicated due to many uncertain factors. The decision maker has to prescribe drugs and

assemble medical instruments; meanwhile, relevant personnel should be informed and

gathered to the medical centers. These steps are not sequential and may interfere with

each other. Uncertain factors include uncertain availability of human workers and so on.

If there is more than one medical center, assigning the requirements to different medical

centers will be a part of the decision, which is out of the scope of this thesis. After the

preparation, the resources should be delivered by the vehicles to aid sites in affected areas,

which involves the characteristic of vehicles and transportation networks. The capacity of

vehicles and the number of vehicles will determine how to divide the resources into differ-

ent shipments, while the decision of delivery would be more complex if the delivery has to

share the transportation network with the evacuation operations. In addition, parameters
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of the network may also be stochastic, as the transportation system may be destroyed to

a certain extent in the disaster.

In this thesis, the following assumptions are made:

1. All requirements of medical resources are homogenous, which means that the prepa-

ration of requirements only considers the preparation time but ignores other factors and

every requirement only occupies the unit size of a vehicle in the delivery.

2. All requirements are independent, which means that there are no preceding con-

straints on requirements, and preparation and delivery of every requirement will be inde-

pendent of others.

3. There is only one medical center.

4. One requirement is prepared by one processor in the center at a time and one

processor prepares one requirement at a time.

5. Delivery of medical resources does not share the transportation network with evac-

uation operations.

6. All parameters involved in the problem are deterministic.

3.2 Problem Formulation and Notations

Suppose that there are n requirements R1, · · · ,Rn with preparation times p1, · · · , pn,

released online at times r1, · · · , rn; respectively, from the aid sites to medical centers. The

requirements are released by phone or email, so medical centers can prepare requirements

once the requirements are released. No information regarding the number, release time

and preparation time of future requirements is given. After requirements are prepared,
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they are transported to the aid sites with vehicles and there would be a delivery cost. A

schedule should specify when a requirement is prepared and when a requirement is set

off. Requirements are are also divided into several batches thus a schedule should decide

which requirements are a batch. Further, delivery may not be carried out immediately,

though all released requirements are prepared, which means that there may be a period of

waiting time for delivery. The problem of scheduling is to minimize a weighted sum of the

time-based objective function and the cost-based objective function (as mentioned before).

For the time-based objective function, the total time of the procedure is considered, that

is upto the return time of the last vehicle. The cost-based objective function is the number

of all batches multiplied by the cost of one delivery. It can be shown that the weighted

sum of the two objective functions is equivalent to the simple additive sum of the both;

see below for derivation,

w1Dmax + w2TC = w1Dmax + w2D × y

= w1(Dmax +
w2

w1

D × y)

(3.1)

where w1, w2 are weights and y is the number of batches. Thus, minimizing w1Dmax+w2TC

is equivalent to minimizing Dmax + w2

w1
D × y. As the unit delivery cost D is a constant,

let D′ = w2

w1
D and the objective function becomes Dmax + TC ′.

In this thesis four problems with single-processor and single-aid-site but different char-

acteristics of vehicles are studied. The five-field notation [Chen 2010] are employed to

describe problems as follows:

(P1) 1|rj, on− line|V (∞,∞), direct|1|Dmax + TC

The capacity of vehicles and the number of vehicles are both enough.
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(P2) 1|rj, on− line|V (∞, C), direct|1|Dmax + TC

The capacity of vehicles is finite and the number of vehicles is enough.

(P3) 1|rj, on− line|V (1,∞), direct|1|Dmax + TC

The capacity of vehicles is enough but the number of vehicles is one.

(P4) 1|rj, pmtn, on− line|V (1, C), direct|1|Dmax + TC

The capacity of vehicless is finite and the number of vehicles is one while the preemp-

tion of requirements is allowed.
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CHAPTER 4

SOLVING PROBLEM P1

In this chapter, Problem P1 is studied. Definition of Problem P1 is referred to Section 3.2.

According to the assumptions made for P1, during the delivery, lacking of vehicles will

not happen. As such, the transportation time T = 0 is assumed (a nonzero transportation

time will certainly increase the cost of a schedule but by the same amount, so it does not

affect an optimization of the schedule), leading to Dj(η) = ρj(η) for Rj ∈ I.

The optimal schedule of the off-line version of P1 is to prepare requirements without

idle time and to deliver all the requirements in one batch at the time when the last

requirement is completed. So the optimal solution is Z(opt) = Cmax(opt) + D. However,

the on-line version, i.e. P1, is much more difficult and, in fact, there is a lower bound for

the competitive ratio for all on-line algorithms.

4.1 The Lower Bound for P1

Theorem 4.1. No on-line algorithm for P1 can have competitive ratio less than 2, even

though all processing times are 0.

Proof Let us consider the performance of an arbitrary on-line algorithm H for the

following instance. The instance releases a requirement with zero preparation time at
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time r1 = 0, and if the algorithm H delivers the requirement at time ρ1 ≥ D, then there

are no requirements coming. Otherwise, the second requirement with zero preparation

time arrives at time r2 = D, and if the departure time of this requirement ρ2 ≥ 2D,

then there are no requirements coming, otherwise, the third requirement comes at time

r3 = 2D, and so on. If the algorithm H delivers the ith requirement with zero preparation

time at time ρi ≥ iD, then there are no requirements coming, or the (i+ 1)th requirement

with zero preparation time comes at time ri+1 = iD. The process is repeated until at

most N requirements have been released and delivered (see Fig 4.1).

If the instance at last has released and delivered k requirements, where k < N , then

the k requirements are delivered in k different batches and Dk = ρk ≥ kD. So the solution

value of the schedule η obtained by the algorithm H is Z(η) = Dk + kD ≥ 2kD, while the

optimal schedule delivers all the requirements in a batch at time (k − 1)D and the value

is Z(opt) = (k − 1)D + D = kD. Since Z(η)
Z(opt)

≥ 2, the competitive ratio of the algorithm

is no less than 2.
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Fig 4.1: The Lower Bound for P1

If the instance at last has released and delivered N requirements, the N requirements

are delivered in N batches and DN ≥ rN = (N−1)D. So the solution value of the schedule

η obtained by the algorithm H is Z(η) = DN + ND ≥ (2N − 1)D, while the optimal

schedule delivered all the requirements in a batch at time (N−1)D and the solution value

is Z(opt) = (N − 1)D + D = ND. As N gets infinitely large, Z(η)
Z(opt)

= (2N−1)D
ND

will tend

to 2 which means the competitive ratio of the algorithm is no less than 2. �
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4.2 The Upper Bound for P1

In the last section, the lower bound for Problem P1 was given. In this section we will

design an on-line algorithm for P1 and give competitive ratio analysis.

Algorithm H1 Requirements are scheduled on the processor without idle time. At the

time of lD where l ≥ 1, if there is no uncompleted requirement , then there must be a

batch to deliver all completed requirements; otherwise, there is no operation.

Theorem 4.2. The competitive ratio of the on-line algorithm H1 for P1 is 2.

Proof Let η be the schedule obtained by the algorithm H1 and k be the number of

batches delivered in the schedule η. As the deliveries only happen at time of lD where

l ≥ 1, we can get k ≤ ρmax(η)
D

. Meanwhile, there should be requirements completed after

ρmax(η)−D in the schedule η; otherwise there would not be the kth batch.

Z(η) = Dmax(η) + TC(η)

= ρmax(η) + kD

≤ ρmax(η) +
ρmax(η)

D
D

= 2ρmax(η)

(4.1)

However,

Z(opt) = Cmax(opt) +D

= Cmax(η) +D

≥ ρmax(η)−D +D

= ρmax(η)

(4.2)
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At last, we get Z(η)
Z(opt)

≤ 2.

According to Theorem 4.1, the competitive ratio of H1 can not be less than 2 which

completes the proof. �

4.3 Discussion and Concluding Remarks

This chapter discussed Problem P1 where both the capacity of vehicles and the number

of vehicles are infinite. At first, we constructed a series of instances and showed that no

on-line algorithm can obtain a competitive ratio less than 2 for all these instances, which

means that the lower bound of P1 is 2. Next, we designed an on-line algorithm H1 for

P1 and proved that the competitive ratio of H1 is 2. Because the competitive ratio of

the on-line algorithm H1 for P1 is equal to the lower bound of P1, we can conclude that

the algorithm H1 is on-line optimal. This on-line optimality implies that algorithm H1 is

robust for all instances of P1 and achieves the best possible solution for the worst case.
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CHAPTER 5

SOLVING PROBLEM P2

In this chapter, we study Problem P2, in which the capacity of vehicles is constrained; in

particular the capacity is a constant C (when C = 1 the problem is trival, so we always

assume C ≥ 2). Further, according to the assumption in P2, the number of vehicles is

enough, lacking of vehicles will not happen. For the same reason for Problem P1, we can

assume T = 0. This further leads to Dj(η) = ρj(η) for Rj ∈ I.

5.1 The Lower Bound for P2

Theorem 5.1. No on-line algorithm for P2 can have competitive ratio less than 2 − 1
C

,

even though all preparing times are 0.

Proof Let us consider the performance of an arbitrary on-line algorithm H for the

following instance. The instance releases a requirement with zero preparation time at

time r1 = 0, and if the algorithm H delivers the requirement at time ρ1 ≥ D, then there

is no requirement coming. Otherwise, the second requirement with zero preparation time

arrives at time r2 = D, and if the departure time of this requirement ρ2 ≥ 2D, then there

is no requirement coming, or else the third requirement comes at time r3 = 2D, and so on

(see Fig 5.1). If the algorithm H delivers the ith requirement with zero preparation time

at time ρi ≥ iD, then there is no requirement coming, or the (i + 1)th requirement with
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zero preparation time comes at time ri+1 = iD. The process is repeated until at most C

requirements have been released and delivered.
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Fig 5.1: The Lower Bound for P2

If the instance at last has released and delivered k requirements, where k < C, then we

get that the k requirements are delivered in k different batches and Dk = ρk ≥ kD. So the

solution value of the schedule η obtained by the algorithm H is Z(η) = Dk + kD ≥ 2kD,

while the optimal schedule has delivered all the requirements in a batch at time (k− 1)D

and the optimal value is Z(opt) = (k − 1)D + D = kD. The ratio of the algorithm value

and the optimal value is greater than 2.

If the instance at last has released and delivered C requirements, we can get that the

C requirements are delivered in C batches and DC ≥ rC = (C − 1)D. So the solution
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value of the schedule η obtained by the algorithm H is Z(η) = DC + CD ≥ (2C − 1)D,

while the optimal schedule has delivered all the requirements in a batch at time (C − 1)D

and the optimal value is Z(opt) = (C − 1)D + D = CD. Thus, the competitive ratio of

H cannot be less than 2− 1
C

. �

5.2 The Upper Bound for P2

In this section, we will give an upper bound for P2.

Algorithm H2 Requirements are scheduled on the processor without idle time. At the

time of lD where l ≥ 1, if there is no uncompleted requirement, then there are batches

to deliver all completed requirements; otherwise, there are some full bathes to deliver as

many completed requirements as possible.

Theorem 5.2. The competitive ratio of the on-line algorithm H2 for P2 is 2.

Proof Let η be the schedule obtained by the algorithm H2, and there are kf full batches

and ku unfull batches in the schedule η. There is at most one unfull batch at every

delivery time, so ku ≤ ρmax(η)
D

. Every unfull batch at least contains one requirement, so

kfC + ku ≤ n.

Obviously, the optimal schedule of the off-line version of P2 is to prepare the re-

quirements without idle time and to deliver all requirements at the time when the last

requirement is prepared. So the optimal value is Z(opt) = Cmax(opt) + d n
C
eD. Accord-

ing to the different value rages of d n
C
e, we analyze the ratio for the following two cases,

respectively.

Case 1: d n
C
e = 1
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If there is only one full batch in the schedule η, then TC(η) = D ≤ ρmax(η), or else

the batches in η are all unfull and TC(η) = kuD ≤ ρmax(η)
D

D = ρmax(η).

Z(η) = ρmax(η) + TC(η)

≤ 2ρmax(η)

(5.1)

With the same analysis of Theorem 4.2, we know Cmax(opt) = Cmax(η) ≥ ρmax(η)−D.

Z(opt) = Cmax(opt) + d n
C
eD

≥ ρmax(η)−D +D

= ρmax(η)

(5.2)

So, Z(η)
Z(opt)

≤ 2.

Case 2: d n
C
e ≥ 2

In this case, TC(η) = (kf + ku)D. Combining the two inequalities ku ≤ ρmax(η)
D

and kfC + ku ≤ n, we have kf + ku ≤ 1
C

(n + C−1
D
ρmax(η)), which means TC(η) ≤

n
C
D + C−1

C
ρmax(η). Therefore,

Z(η) = ρmax(η) + TC(η)

≤ 2C − 1

C
ρmax(η) +

n

C
D

≤ 2C − 1

C
Cmax(η) + (

2C − 1

C
+
n

C
)D.

(5.3)

As

2C − 1

C
+
n

C
≤ 2 + d n

C
e

≤ 2d n
C
e

(5.4)

then

Z(η) ≤ 2C − 1

C
Cmax(η) + 2d n

C
eD

≤ 2(Cmax(η) + d n
C
eD) = 2Z(opt)

(5.5)
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For a instance which only contains a requirement with zero preparation time released at

time 0, the solution of the algorithm H2 is 2D, while the off-line optimal solution is D.

Therefore, the competitive ratio of H2 for Problem P2 is 2. �

Both the lower bound and the algorithm above for problem P2 are modified from those of

problem P1. Actually, we can have better results for some special cases discussed below.

5.3 The Lower Bound for P2 with C=2

Theorem 5.3. No on-line algorithm for P2 with C = 2 can have competitive ratio less

than 1 + θ, even though all processing times are 0.

Proof Consider instances of P2 with C = 2 as follows. Requirement R1 with zero

preparation time arrives at time r1 = 0. Suppose that an on-line algorithm H delivers

R1 at time ρ1. If ρ1 ≥ θD, there is no requirement coming and the off-line optimal

schedule will deliver the requirement R1 at time 0; thus the ratio of H satisfies that

R = ρ1+D
D
≥ θD+D

D
= 1 + θ (see Fig 5.2).

𝑟1 = 0 

𝜌1 ≥ 𝜃𝐷 

No more requirements 

𝑅 =
𝜌1 + 𝐷

𝐷
 

≥ 1 + 𝜃 

𝑟2 = 𝜃𝐷 

𝑅 ≥
𝑟2 + 2𝐷

𝑟2 + 𝐷
 

= 1 + 𝜃 

𝜌1 < 𝜃𝐷 

Fig 5.2: The Lower Bound for P2 with C = 2

If ρ1 < θD, the instance releases another requirement R2 with zero preparation time
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at time r2 = θD and the off-line optimal schedule will deliver the two requirements in

one batch at time θD, while H deliver the two requirements in different batches and the

competitive ratio satisfies that R ≥ r2+2D
θD+D

≥ θD+2D
θD+D

= 1 + D
θD+2D

= 1 + 1
θ+1

= 1 + θ. Thus,

we can conclude that the competitive ratio can not be less than 1 + θ. �

5.4 The Upper Bound for P2 with C=2

In this section we give an on-line algorithm which aims at Problem P2 with C = 2 and

show that this algorithm is on-line optimal.

Algorithm CTH Requirements are scheduled on the processor without idle time and

re-indexed by the completion time. When a requirement Rj is prepared and the delivery

rules are instituted as follows:

If there are two prepared requirements, then there is a batch to deliver them at once.

If Rj is the only prepared requirement but there are other unprepared requirements,

then do nothing.

If Rj is the only prepared requirement, there is no unprepared requirement and j is

even, then there is a batch to deliver it at once.

If Rj is the only prepared requirement, there is no unprepared requirements and j is

odd, then wait until Cj + θD and deliver it in a batch; or other requirements arrive during

the period.

Let η be the schedule obtained by the algorithm CTH, kj(η) be the number of batches to

deliver R1, · · · ,Rj. We first give a lemma about the requirements which are in a batch

alone.
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Lemma 5.1. If requirement Rj is in a batch alone in the schedule η, then we have

ρj(η) + kj(η)D

Cj(opt) + d j
2
eD
≤ 1 + θ (5.6)

Proof Noticing that Cj(opt) = Cj(η), it is equivalent to prove

ρj(η) + kj(η)D

Cj(η) + d j
2
eD
≤ 1 + θ (5.7)

Suppose that there are s requirements Rli (i = 1, 2, . . . , s) which are in a batch alone

in the schedule η, and we will use induction on i.

First, let us show that the statement of the lemma holds for the case i = 1. It is

obvious that l1 is odd and kl1(η) = l1+1
2

. Therefore,

ρl1(η) + kl1(η)D

Cl1(η) + d l1
2
eD

=
Cl1(η) + θD + l1+1

2
D

Cl1(η) + l1+1
2
D

≤ 1 +
θD

Cl1(η) + l1+1
2
D

≤ 1 +
θD

D
= 1 + θ

(5.8)

Assume now that the statement of the lemma is proven for i ≤ m (this is the induction

hypothesis), and consider the case i = m+ 1.

Case 1: lm+1 is odd

Obviously lm is even and we have ρlm+1(η) = Clm+1(η) + θD, ρlm(η) = Clm(η) and

klm+1(η) = klm(η) + lm+1−lm+1
2

From the induction hypothesis, we have that

Clm(η) + klm(η)D ≤ (1 + θ)Clm(η) + (1 + θ)
lm
2
D

⇒ klm(η)D ≤ θClm(η) + (1 + θ)
lm
2
D ≤ θClm+1(η) + (1 + θ)

lm
2
D.

(5.9)

41



Consequently, we have

ρlm+1(η) + klm+1(η)D

= Clm+1(η) + θD + klm(η)D +
lm+1 − lm + 1

2
D

≤ Clm+1(η) + θD + θClm+1(η) + (1 + θ)
lm
2
D +

lm+1 − lm + 1

2
D

≤ (1 + θ)Clm+1(η) + (1 + θ)
lm
2
D + (1 + θ)

lm+1 − lm + 1

2
D (

lm+1 − lm + 1

2
≥ 1)

= (1 + θ)(Clm+1(η) +
lm+1 + 1

2
D)

= (1 + θ)(Clm+1(η) + d lm+1

2
eD)

(5.10)

Case 2: lm+1 is even

Obviously lm is odd and we have ρlm+1(η) = Clm+1(η), ρlm(η) = Clm(η) + θD and

klm+1(η) = klm(η) + lm+1−lm+1
2

.

From the induction hypothesis, we have that

Clm(η) + θD + klm(η)D ≤ (1 + θ)Clm(η) + (1 + θ)
lm + 1

2
D (5.11)

⇒ klm(η)D ≤ θClm(η) + (1 + θ)
lm + 1

2
D − θD

= θ(Clm(η) + θD) + (1 + θ)
lm + 1

2
D − (θ2 + θ)D

= θρlm(η) + (1 + θ)
lm + 1

2
D −D

≤ θClm+1(η) + (1 + θ)
lm + 1

2
D −D

(5.12)
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Consequently, we have

ρlm+1(η) + klm+1(η)D

= Clm+1(η) + klm(η) +
lm+1 − lm + 1

2
D

≤ Clm+1(η) + θClm+1(η) + (1 + θ)
lm + 1

2
D −D +

lm+1 − lm + 1

2
D

= (1 + θ)Clm+1(η) + (1 + θ)
lm + 1

2
D +

lm+1 − lm − 1

2
D

≤ (1 + θ)Clm+1(η) + (1 + θ)
lm + 1

2
D + (1 + θ)

lm+1 − lm − 1

2
(
lm+1 − lm − 1

2
≥ 0)

= (1 + θ)(Clm+1(η) +
lm+1

2
D)

= (1 + θ)(Clm+1(η) + d lm+1

2
eD)

(5.13)

This completes the proof. �

Theorem 5.4. The competitive ratio of the on-line algorithm CTH for P2 with C = 2 is

1 + θ.

Proof Noticing that Z(opt) = Cmax(opt) + dn
2
eD = Cmax(η) + dn

2
eD.

Case 1: There is no requirement which is in a batch alone in η, then η is optimal.

Case 2: If requirement Rn is in a batch alone in η, then from Lemma 5.1 the statement

of the theorem holds obviously.

Case 3: If requirement Rn is not in a batch alone in η but there is a requirement which

is in a batch alone before, then we assume the biggest index of such requirements is m
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where n and m have the same parity. Therefore, we have

Z(η) = Dmax(η) + kn(η)D

= ρn(η) + kn(η)D

= Cn(η) + km(η)D +
n−m

2
D

= ρm(η) + km(η)D + (Cn(η)− ρm(η)) +
n−m

2
D

≤ (1 + θ)(Cm(η) + dm
2
eD) + (Cn(η)− Cm(η)) +

n−m
2

D

≤ (1 + θ)(Cm(η) + dm
2
eD) + (1 + θ)((Cn(η)− Cm(η)) +

n−m
2

D)

= (1 + θ)(Cn(η) + dn
2
eD)

= (1 + θ)Z(opt)

(5.14)

According to Theorem 5.3, the ratio of CTH can not be less than 1+θ, which completes

the proof. �

5.5 Discussion and Concluding Remarks

For Problem P2, the number of vehicles is infinite but the capacity of vehicles is a fixed

constant. The lower bound of P2 is different from that of P1. Even though we modify the

proof of lower bound for P1, we can not attain a good enough lower bound, as the fixed

capacity is a very important constraint.

Neither the lower bound nor the upper bound for P2 in the first two sections are the best.

Actually, through the study on the special case of P2 with C = 2, we can conclude that

the better lower bound and upper bound should be according to C.
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No more requirements 

𝑟1 = 0 

𝑟2 = 𝜌1 + 𝜀 

No more requirements 

𝜌1 ≥ 0.8393𝐷 

𝑅 =
𝜌1 + 𝐷

𝐷
 

≥ 1.8393 

𝜌1 < 0.8393𝐷 

𝜌2 ≥ 1.383𝐷 

𝑅 ≥
𝜌2 + 2𝐷

𝑟2 + 𝐷
 

≥ 1.8393 

𝜌2 < 1.383𝐷 

𝑟3 = 𝜌2 + 𝜀 

𝑅 ≥
𝑟3 + 2𝐷

𝑟3 + 𝐷
 

≥  1.8393 

Fig 5.3: Improved Lower Bound for P2 with C = 3

Using the similar method of Theorem 5.3, we can also get a greater lower bound of ratio

for P2 with C being a fixed constant, as 1.8393 for C = 3 (Fig 5.3), 1.9275 for C = 4 (Fig

5.4) and 1.9756 for C = 5. We can see that as C tends to infinity, the lower bound tends

to 2 which agrees with the result of Theorem 4.1. However, for a fixed C that is greater

than 2, it is hard to get an optimal on-line algorithm just like C = 2 and the algorithm

H2 is good enough for these conditions.
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𝑟1 = 0 

𝜌1 ≥ 0.9276𝐷 

No more requirements 

𝑅 =
𝜌1 + 𝐷

𝐷
 

≥ 1.9276 

𝜌1 < 0.9276𝐷 

𝑟2 = 𝜌1 + 𝜀 

𝜌2 ≥ 1.7155𝐷 

No more requirements 

𝑅 ≥
𝜌2 + 2𝐷

𝑟2 + 𝐷
 

≥ 1.9276 

𝜌2 < 1.7155𝐷 

𝑟3 = 𝜌2 + 𝜀 

No more requirements 

𝑅 ≥
𝜌3 + 3𝐷

𝑟3 + 𝐷
 

≥ 1.9276 

𝜌3 ≥ 2.2343𝐷 𝜌3 < 2.2343𝐷 

No more requirements 

𝑅 ≥
𝑟4 + 4𝐷

𝑟4 + 𝐷
 

≥ 1.9276 

𝑟4 = 𝜌3 + 𝜀 

Fig 5.4: Improved Lower Bound for P2 with C = 4
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CHAPTER 6

SOLVING PROBLEM P3

In the next two chapters, we begin to consider the cases where the number of vehicles is

one. In this situation,the same assumption T = 0 is no longer valid. The optimal schedule

of the off-line version of P3 is to prepare requirements without idle time and to deliver

all requirements in one batch at the time when the last requirement is prepared. So the

off-line optimal value is Z(opt) = Cmax(opt) + T +D.

6.1 The Lower Bound for P3

Theorem 6.1. No on-line algorithm for P3 can have competitive ratio less than max{1 +

θ, 1 +
√

D
T+D
}, even though all preparing times are 0.

Proof At first, we show that 1 + θ is a lower bound for the problem P3. Requirement

R1 with zero preparation time arrives at time r1 = 0. Suppose that an on-line algorithm

H delivers R1 at time ρ1. If ρ1 ≥ θ(T + D), there is no requirement coming and the

off-line optimal schedule will deliver the requirement R1 at time 0, therefore the ratio of

H satisfies that R = ρ1+T+D
T+D

≥ θ(T+D)+T+D
T+D

= 1 + θ.
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𝑟1 = 0 

𝜌1 ≥ 𝜃(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌1 + 𝑇 + 𝐷

𝑇 + 𝐷
 

≥ 1 + 𝜃 

𝑟2 = 𝜌1+𝜀 

𝑅 ≥
𝜌1 + 2𝑇 + 2𝐷

𝑟2 + 𝑇 + 𝐷
 

≥ 1 + 𝜃 

𝜌1 < 𝜃(𝑇 + 𝐷) 

Fig 6.1: The Lower Bound for P3 (1)

If ρ1 < θ(T +D), the instance releases another requirement R2 with zero preparation

time at time r2 = ρ1 + ε (where ε is a sufficiently small number) and the off-line optimal

schedule will deliver the two requirements in one batch at time r2 (see Fig 6.1). H delivers

the two requirements in different batches and the competitive ratio satisfies that

R ≥ ρ1 + 2T + 2D

r2 + T +D

=
ρ1 + 2T + 2D

ρ1 + ε+ T +D

= 1 +
T +D − ε

ρ1 + T +D + ε

> 1 +
T +D − ε

θ(T +D) + T +D + ε
(ρ1 < θ(T +D))

= 1 +
T +D − ε

(1 + θ)(T +D) + ε

(6.1)

As ε tends to 0, the right side of the inequality tends to 1 + θ. Thus, we conclude that

the competitive ratio cannot be less than 1 + θ.

Then, we will use the similar method of Theorem 4.1 to prove the the other part of the

theorem. The instance releases a requirement with zero preparation time at time r1 = 0,

and if an on-line algorithm H delivers the requirement at time ρ1 ≥
√
D(T +D), then
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there is no requirement coming. Otherwise, the second requirement with zero preparation

time arrives at time r2 =
√
D(T +D), and if the departure time of this requirement

ρ2 ≥ 2
√
D(T +D), then there is no requirement coming, or else the third requirement

with zero preparation time comes at time r3 = 2
√
D(T +D), and so on (see Fig 6.2).

If the algorithm H delivers the ith requirement with zero preparation time at time ρi ≥

i
√
D(T +D), then there is no requirement coming, otherwise the (i+ 1)th job with zero

preparation time comes at time ri+1 = i
√
D(T +D). The process is repeated until at

most N requirements have been released and delivered.

𝑟1 = 0 

𝜌1 ≥ 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌1+𝑇+𝐷

𝑟1+𝑇+𝐷
≥1+

𝐷

𝑇+𝐷
 

0 ≤ 𝜌1 < 𝐷(𝑇 + 𝐷) 

𝑟2 = 𝐷(𝑇 + 𝐷) 

𝜌2 ≥ 2 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌2+𝑇+2𝐷

𝑟2+𝑇+𝐷
≥1+

𝐷

𝑇+𝐷
 

𝐷(𝑇 + 𝐷) ≤ 𝜌2 < 2 𝐷(𝑇 + 𝐷) 

𝑟3 = 2 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌3+𝑇+3𝐷

𝑟3+𝑇+𝐷
≥ 1+

𝐷

𝑇+𝐷
 

 

𝜌3 ≥ 3 𝐷(𝑇 + 𝐷) 2 𝐷(𝑇 + 𝐷) ≤ 𝜌3 < 3 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌4+𝑇+4𝐷

𝑟4+𝑇+𝐷
≥ 1+

𝐷

𝑇+𝐷
 

𝜌4 ≥ 4 𝐷(𝑇 + 𝐷) 

𝑟4 = 3 𝐷(𝑇 + 𝐷) 

.                           . 

.                           . 

.                           . 

.                           . 

.                           . 

.                           . 𝑟𝑁 = (𝑁 − 1) 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌𝑁+𝑇+𝑁𝐷

𝑟𝑁+𝑇+𝐷
≥1+

𝐷

𝑇+𝐷
 

 

𝜌𝑁 ≥ 𝑁 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌𝑁+𝑇+𝑁𝐷

𝑟𝑁+𝑇+𝐷
≥

𝑁−1 𝐷(𝑇+𝐷)+𝑇+𝑁𝐷

𝑁−1 𝐷(𝑇+𝐷)+𝑇+𝐷
→ 1+

𝐷

𝑇+𝐷
 

                                         (𝑁 → ∞) 

3 𝐷(𝑇 + 𝐷) ≤ 𝜌4 < 4 𝐷(𝑇 + 𝐷) 

𝑁 − 1 𝐷 𝑇 + 𝐷 ≤ 

𝜌𝑁 < 𝑁 𝐷(𝑇 + 𝐷) 

Fig 6.2: The Lower Bound for P3 (2)
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If the instance at last has released and delivered k requirements, where k < N , then we

can get that the k requirements are delivered in k different batches and ρk ≥ k
√
D(T +D).

So the objective value of the schedule η obtained by the algorithm H is Z(η) = ρk +

T + kD ≥ k(D +
√
D(T +D)) + T , while the off-line optimal schedule delivers all the

requirements in a batch at time (k − 1)
√
D(T +D) and the value is Z(opt) = (k −

1)
√
D(T +D) + T +D. Then we can get that

R ≥
k(D +

√
D(T +D)) + T

(k − 1)
√
D(T +D) + T +D

= 1 +
(k − 1)D +

√
D(T +D)

(k − 1)
√
D(T +D) + T +D

= 1 +

√
D

T +D

(6.2)

If the instance at last has released and delivered N requirements, then we can get

that the N requirements are delivered in N batches and ρN ≥ rN = (N − 1)
√
D(T +D).

So the objective value of the schedule η obtained by the algorithm H is Z(η) = ρN +

T + ND ≥ (N − 1)
√
D(T +D) + T + ND, while the off-line optimal schedule delivered

all the requirements in a batch at time (N − 1)
√
D(T +D) and the value is Z(opt) =

(N−1)
√
D(T +D)+T+D. As N gets infinitely great, the ratio will tend to

√
D(T+D)+D√
D(T+D)

=

1 +
√

D
T+D

Then we have proved the statement of this theorem. �

From Theorem 6.1, we actually get that when T > (1 + θ)D the lower bound for problem

P3 is 1 + θ, and when T ≤ (1 + θ)D the lower bound is 1 +
√

D
T+D

. Next, we will give an

algorithm which achieves the best possible solution.
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6.2 The Upper Bound for P3

Algorithm H3 Requirements are scheduled on the processor without idle time.

When T > (1+θ)D, at the time of θ(T+D)+lT where l ≥ 0, if there is no uncompleted

requirement, then there is a batch to deliver all completed requirements; otherwise, there

is no operation.

When T ≤ (1+θ)D, at the time of l
√
D(T +D) where l ≥ 1, if there is no uncompleted

requirement, then there is a batch to deliver all completed requirements; otherwise, there

is no operation.

Noticing that when T ≤ (1 + θ)D,
√
D(T +D) ≥ T , so the algorithm H3 is feasible.

Theorem 6.2. The competitive ratio of on-line algorithm H3 for P3 is max{1 + θ, 1 +√
D

T+D
}.

Proof Let η be the schedule obtained by the algorithm H3. As the algorithm has two

different cases, the proof also has two cases.

Case 1: T > (1 + θ)D

Suppose that ρmax(η) = θ(T +D) + kT .

Case 1.1: k = 0

As there is no batch after time θ(T +D), the only delivery in η happens at θ(T +D).

Therefore, Z(η) = θ(T + D) + T + D = (1 + θ)(T + D). Because the optimal value

Z(opt) ≥ T +D, the statement holds.

Case 1.2: k ≥ 1

In this case, we get that ρmax(η) = θ(T + D) + kT , and Dmax(η) = ρmax(η) + T =
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θ(T + D) + (k + 1)T . As there are at most k batches after θ(T + D), with one possible

batch at θ(T + D) the cost of delivery in η satisfies that TC(η) ≤ (k + 1)D. While

Cmax(opt) ≥ ρmax(η)− T = θ(T +D) + (k − 1)T , so we have

Z(η)

Z(opt)
≤ θ(T +D) + (k + 1)(T +D)

θ(T +D) + kT +D

= 1 +
T + kD

θ(T +D) + kT +D

(6.3)

The term

T + kD

θ(T +D) + kT +D

=
T + D

T
(kT + θ(T +D) +D − θ(T +D)−D)

θ(T +D) + kT +D

=
D

T
+
T 2 − θD(T +D)−D2

T (θ(T +D) + kT +D)

(6.4)

Because T > (1 + θ)D, T 2 − θD(T +D)−D2 > 0 and the whole term increases as k

decreases.

Thus,

Z(η)

Z(opt)
≤ 1 +

T +D

θ(T +D) + T +D

= 1 + θ

(6.5)

Case 2: T ≤ (1 + θ)D

Using the similar analysis of Theorem 4.1, we have TC(η) ≤ ρmax(η)√
D(T+D)

D and Cmax(opt) ≥
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ρmax(η)−
√
D(T +D). Therefore,

Z(η)

Z(opt)
≤

ρmax(η) + T + ρmax(η)√
D(T+D)

D

ρmax(η)−
√
D(T +D) + T +D

= 1 +
D√

D(T +D)
+
T − (1 + D√

D(T+D)
)(T +D −

√
D(T +D))

ρmax(η)−
√
D(T +D) + T +D

= 1 +
D√

D(T +D)
+
T − (T +D −

√
D(T +D) +

√
D(T +D)−D)

ρmax(η)−
√
D(T +D) + T +D

= 1 +
D√

D(T +D)

= 1 +

√
D

T +D

(6.6)

This completes the proof. �

6.3 Discussion and Concluding Remarks

For the problem in this chapter, the assumption T = 0 is not correct. Therefore, solving

P3 has to involve to two parameters D and T . Actually, the lower bound of P3 has

two parts according to different relationships between D and T . To achieve the on-line

optimality, the algorithm H3 operates to the two cases respectively, and it was proved

that the performance of it is the best for the worst case as the competitive ratio equals

the lower bound max{1 + θ, 1 +
√

D
T+D
}. In other words, H3 is robust with all possible

instances and different pairs of (T,D).
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CHAPTER 7

SOLVING PROBLEM P4

When there is only one vehicle and the capacity of the vehicle is finite, the problem changes

considerably. It is reasonable to allow in this case the preparation of medical resources

to be prepared not once but in several actions, the concept of which is called preemption.

The abbreviation pmtn is used in the five-field notation for the problem description.

The shortest remaining processing time (SRPT) rule is to prepare the requirement with the

smallest remaining preparation time among all already released uncompleted requirements

at any instant t. The SRPT rule is important to the preemption problem and it was applied

in the off-line version of P4 [Lu et al. 2008]. The off-line optimal solution prepares the

requirements with the SRPT rule. All prepared requirements are divided into batches by

the completion time. Every batch, apart from the first batch, contains exactly C jobs. A

ready batch is delivered whenver the vehicle is available.

7.1 The Lower Bound for P4

Theorem 7.1. No on-line algorithm for P4 can have competitive ratio less than max{1 +

θ, 1 +
√

D
T+D
−

√
D(T+D)

(C−1)
√
D(T+D)+T+D

}, even though all preparation times are 0.

Proof The proof of the 1+θ part is the same with Theorem 6.1. Therefore, we only need
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to prove the part of 1 +
√

D
T+D
−

√
D(T+D)

(C−1)
√
D(T+D)+T+D

. The instance releases a requirement

with zero preparation time at time r1 = 0, and if an on-line algorithm H delivers the

requirement at time ρ1 ≥
√
D(T +D), then there is no requirement coming. Otherwise,

the second requirement with zero preparation time arrives at time r2 =
√
D(T +D), and

if the departure time of this requirement ρ2 ≥ 2
√
D(T +D), then there is no requirement

coming, or else the third requirement with zero preparation time comes at time r3 =

2
√
D(T +D), and so on (see Fig 7.1). If the algorithm H delivers the ith requirement with

zero preparation time at time ρi ≥ i
√
D(T +D), then there is no requirement coming,

otherwise the (i+ 1)th job with zero preparation time comes at time ri+1 = i
√
D(T +D).

The process is repeated until at most C requirements have been released and delivered.

If the instance at last has released and delivered k requirements, where k < C, then we

can get that the k requirements are delivered in k different batches and ρk ≥ k
√
D(T +D).

So the objective value of the schedule η obtained by the algorithm H is Z(η) = ρk +

T + kD ≥ k(D +
√
D(T +D)) + T , while the off-line optimal schedule delivers all the

requirements in a batch at time (k − 1)
√
D(T +D) and the value is Z(opt) = (k −

1)
√
D(T +D) + T +D. Then we can get that

R ≥
k(D +

√
D(T +D)) + T

(k − 1)
√
D(T +D) + T +D

= 1 +
(k − 1)D +

√
D(T +D)

(k − 1)
√
D(T +D) + T +D

= 1 +

√
D

T +D

(7.1)
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𝑟1 = 0 

𝜌1 ≥ 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌1+𝑇+𝐷

𝑟1+𝑇+𝐷
≥1+

𝐷

𝑇+𝐷
 

0 ≤ 𝜌1 < 𝐷(𝑇 + 𝐷) 

𝑟2 = 𝐷(𝑇 + 𝐷) 

𝜌2 ≥ 2 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌2+𝑇+2𝐷

𝑟2+𝑇+𝐷
≥1+

𝐷

𝑇+𝐷
 

𝐷(𝑇 + 𝐷) ≤ 𝜌2 < 2 𝐷(𝑇 + 𝐷) 

𝑟3 = 2 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌3+𝑇+3𝐷

𝑟3+𝑇+𝐷
≥ 1+

𝐷

𝑇+𝐷
 

 

𝜌3 ≥ 3 𝐷(𝑇 + 𝐷) 2 𝐷(𝑇 + 𝐷) ≤ 𝜌3 < 3 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌4+𝑇+4𝐷

𝑟4+𝑇+𝐷
≥ 1+

𝐷

𝑇+𝐷
 

𝜌4 ≥ 4 𝐷(𝑇 + 𝐷) 

𝑟4 = 3 𝐷(𝑇 + 𝐷) 

.                           . 

.                           . 

.                           . 

.                           . 

.                           . 

.                           . 
𝑟𝐶 = (𝐶 − 1) 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌𝐶+𝑇+𝐶𝐷

𝑟𝐶+𝑇+𝐷
≥1+

𝐷

𝑇+𝐷
 

 

𝜌𝐶 ≥ 𝐶 𝐷(𝑇 + 𝐷) 

No more requirements 

𝑅 =
𝜌𝐶+𝑇+𝑁𝐷

𝑟𝐶+𝑇+𝐷
≥

𝐶−1 𝐷 𝑇+𝐷 +𝑇+𝐶𝐷

𝐶−1 𝐷 𝑇+𝐷 +𝑇+𝐷
 

=1+
𝐷

𝑇+𝐷
−

𝐷 𝑇+𝐷

𝐶−1 𝐷 𝑇+𝐷 +𝑇+𝐷
 

3 𝐷(𝑇 + 𝐷) ≤ 𝜌4 < 4 𝐷(𝑇 + 𝐷) 

𝐶 − 1 𝐷 𝑇 + 𝐷 ≤ 

𝜌𝐶 < 𝐶 𝐷(𝑇 + 𝐷) 

Fig 7.1: The Lower Bound for P4

If the instance at last has released and delivered C requirements, we can get that the

C requirements are delivered in C batches and ρC ≥ rC = (C−1)
√
D(T +D). So the ob-

jective value of the schedule η obtained by the algorithm H is Z(η) = ρC+T +CD ≥ (C−

1)
√
D(T +D)+T +CD, while the off-line optimal schedule delivered all the requirements

in a batch at time (C − 1)
√
D(T +D) and the value is Z(opt) = (C − 1)

√
D(T +D) +

T +D. Thus the competitive ratio is at least 1 +
√

D
T+D
−

√
D(T+D)

(C−1)
√
D(T+D)+T+D

. �
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7.2 The Upper Bound for P4

Next, we modify H3 to give an algorithm for P4 which has competitive ratio of max{1 +

θ, 1 +
√

D
T+D
}.

Algorithm H4 Requirements are scheduled on the machine with the SRPT rule.

When T > (1 + θ)D, at the time of θ(T + D) + lT where l ≥ 0, there is a batch to

deliver as many completed requirements as possible.

When T ≤ (1 + θ)D, at the time of l
√
D(T +D) where l ≥ 1, there is a batch to

deliver as many completed requirements as possible.

Theorem 7.2. The competitive ratio of the on-line algorithm H4 for P4 is max{1+θ, 1+√
D

T+D
}.

Proof Let η be the schedule obtained by the algorithm H4. As the algorithm has two

different cases, the proof also have two cases.

Case 1: T > (1 + θ)D

Suppose there are k periods of T in the schedule η after time θ(T +D).

Case 1.1: k = 0

As there are no batches after time θ(T+D), the only delivery in η happens at θ(T+D).

Therefore, Z(η) = θ(T +D) +T +D = (1 + θ)(T +D). Because the off-line optimal value

Z(opt) ≥ T +D, the statement holds.

Case 1.2: k ≥ 1

Suppose ν is the last delivery time before ρmax(η) = θ(T +D) + kT when there is an

unfull batch. If there is always a full batch at all the deliver times before ρmax(σ), then
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ν = 0. Let m be the number of full batches between ν and ρmax(η), so there are m + 1

batches after time ν, which means ρmax(η) ≤ ν + (m+ 1)T (θ(T +D) < T ).

As π also prepares the requirements with SRPT rule, there are more than mC re-

quirements completed after ν. Therefore, Dmax(opt) ≥ ν + (m + 1)T ≥ ρmax(η) and

TC(opt) ≥ (m+ 1)D.

Z(η)

Z(opt)
≤ θ(T +D) + (k + 1)(T +D)

θ(T +D) + kT + (m+ 1)D

≤ θ(T +D) + (k + 1)(T +D)

θ(T +D) + kT +D

≤ 1 + θ

(7.2)

Case 2: T ≤ (1 + θ)D

In the following, we will use the similar analysis for case 1.2 to get our result. Suppose

that ν is the last delivery time before ρmax(η) when there is an unfull batch. Let m be

the number of full batches between ν and ρmax(η), so there are m + 1 batches after time

ν, that means ρmax(η) = ν + (m + 1)
√
D(T +D). While Dmax(opt) ≥ ν + (m + 1)T =

ρmax(η) + (m+ 1)(T −
√
D(T +D)) and TC(opt) ≥ (m+ 1)D.

Z(η)

Z(opt)
≤

ρmax(η) + T + ρmax(η)√
D(T+D)

D

ρmax(η) + (m+ 1)(T +D −
√
D(T +D))

= 1 +
D√

D(T +D)
+
T − (1 + D√

D(T+D)
)(m+ 1)(T +D −

√
D(T +D))

ρmax(η) + (m+ 1)(T +D −
√
D(T +D))

≤ 1 +
D√

D(T +D)

= 1 +

√
D

T +D

(7.3)

�
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7.3 Discussion and Concluding Remarks

When there are constraints on both the capacity of vehicles and the number of vehicles, the

problem becomes more difficult. Problem P4 allows the requirements to be interrupted and

restart later; otherwise even the off-line version of P4 is strongly NP-hard. We modified

the lower bound of P3 to reach the lower bound of P4 and designed the corresponding

algorithm H4; however, there is still a gap between the competitive ratio of this algorithm

and the lower bound. This situation is similar to that with H2. To get better results, we

need to improve both the lower bound and the algorithm in terms of C. When C is large,

the original lower bound will approach the competitive ratio of H4; which represents the

robustness of H4.
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CHAPTER 8

APPLICATIONS

8.1 Introduction

In the preceding chapters, four problems of allocating medical resources in EM were pro-

posed and algorithms for these problems were developed. For each algorithm, analysis

of competitive ratio and lower bound were carried out. This analysis shows that the al-

gorithms are robust. The analysis has also shown that some of the four problems are

optimal.

All the four algorithms have a polynomial function of run-time performance. This is even

true for Problem P4. In the algorithm for P4, the SRPT rule interrupts the preparation

of every requirement at most n times. The time of scheduling is a low order polynomial of

n (O(n) for H1, H2, H3 or O(n2) for H4). For the delivery operation, the batches depart

at the time the multiple of D (T ,
√
D(T +D)), thus the number of departure points

is at most max{n, max{rj}+
∑
pj

D
(
max{rj}+

∑
pj

T
,
max{rj}+

∑
pj√

D(T+D)
)}, which is also a polynomial

function.

Chapter will present a simulated experiment to demonstrate the run-time performance of

the algorithm (H2 for P2 in particular) in normal instances or scenarios and illustrate

60



how the algorithms are used in practice.

8.2 Simulated Experiment

The hypothetic example meets the problem definition of P2. Characteristics of the example

problem are as follows:

1. The release of requirements follows poisson distribution, i.e., rj − rj−1 ∼ P (λ) for

j = 1, 2, · · · , n where r0 = 0.

2. The preparation time of requirements follows pj ∼ U(0, b).

3. The delivery cost follows D ∼ N(µ, σ2).

Referring back to Chapter 5, we consider the capacity C = 2, C = 5, C = 12 for H2. And

all the results are average of 100 program runs. We assume that the cost of one shipment is

much stable, so we choose µ = 20 and σ = 1 for D. The implementation of the algorithm

was done in Matlab environment (see Appendix). Table 8.1 shows the result of H2 with

C = 2

From Table 8.1, it can be seen that the competitive ratio does not exceed 1.23. In most

cases, the algorithm value is very close to the optimal value of off-line version of P2. The

worst case happens when λ = 20 and b = 8, i.e., the average time interval of requirement

release is almost equal to the unit delivery cost D (D ∼ N(20, 1)), and the preparation

time is not very long. This case is consistent with the proof of competitive ratio in Theo-

rem 5.2 in Chapter 5 where the requirements with zero preparation time release with the

period of D. The result can be explained. When the requirement release has low frequency

and the preparation time is not long, at every delivery point of H2 many requirements

61



are delivered in unfull batches while the off-line optimal schedule could wait to deliver as

many requirements as possible in full batches.

Table 8.1: Results of Algorithm H2 for Problem P2 with C = 2

Parameters Z(η) Z(opt) Competitive Ratio Run-time

λ = 3, b = 8, n = 100 1412.98 1401.90 1.0079 0.000310s

λ = 3, b = 8, n = 1000 14003.71 13992.78 1.0008 0.004719s

λ = 10, b = 8, n = 100 2133.67 2000.24 1.0668 0.000129s

λ = 10, b = 8, n = 1000 21153.30 20026.18 1.0564 0.004015s

λ = 20, b = 8, n = 100 3685.01 3008.62 1.2249 0.000133s

λ = 20, b = 8, n = 1000 36511.09 29927.65 1.2201 0.003968s

λ = 50, b = 8, n = 100 7012.19 5999.90 1.1687 0.000131s

λ = 50, b = 8, n = 1000 70054.60 60015.05 1.1672 0.003966s

λ = 20, b = 30, n = 100 3186.93 3019.67 1.0554 0.000130s

λ = 20, b = 30, n = 1000 31620.73 30020.82 1.0533 0.003943s

Further, the period of the requirement release in this case approximates to the unit delivery

cost, the time-based objective function and the cost-based objective function may account

for a similar weight and approach the worst competitive ratio in Theorem 5.2 in Chapter
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5. When there are significant differences between the release period and the unit delivery

cost, the competitive ratio will be much better (λ = 3, 10, 50). In addition, when the

release period approximates to the unit delivery cost but the preparation times is long

(λ = 20, b = 30), the results will come near to those off-line optimal schedules. It is clear

that both the two conditions (i.e., particular preparation time and requirement release

period) are necessary for the worst case.

Table 8.2: Results of Algorithm H2 for Problem P2 with C = 5

Parameters Z(η) Z(opt) Competitive Ratio Run-time

λ = 3, b = 8, n = 100 810.38 799.80 1.0147 0.000121s

λ = 3, b = 8, n = 1000 7977.87 7968.00 1.0013 0.004034s

λ = 10, b = 8, n = 100 1717.80 1403.34 1.2286 0.000123s

λ = 10, b = 8, n = 1000 16973.00 13977.36 1.2139 0.004099s

λ = 20, b = 8, n = 100 3548.58 2403.15 1.4771 0.000124s

λ = 20, b = 8, n = 1000 35268.61 23973.75 1.4736 0.004039s

λ = 50, b = 8, n = 100 7012.25 5401.65 1.2989 0.000126s

λ = 50, b = 8, n = 1000 69976.00 53986.18 1.2961 0.004103s

λ = 20, b = 30, n = 100 2730.44 2417.48 1.1305 0.000126s

λ = 20, b = 30, n = 1000 26843.49 24048.93 1.1154 0.004012s

The run-time for n = 1000 never exceeds 0.005 seconds and the run-time for n = 100 is
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much shorter, so the efficiency of H2 is high.

Table 8.3: Results of Algorithm H2 for Problem P2 with C = 12

Parameters Z(η) Z(opt) Competitive Ratio Run-time

λ = 3, b = 8, n = 100 597.14 587.55 1.0163 0.000128s

λ = 3, b = 8, n = 1000 5682.74 5672.69 1.0018 0.004035s

λ = 10, b = 8, n = 100 1626.08 1180.69 1.3772 0.000131s

λ = 10, b = 8, n = 1000 16062.67 11674.61 1.3759 0.004053s

λ = 20, b = 8, n = 100 3556.84 2184.58 1.6281 0.000130s

λ = 20, b = 8, n = 1000 35339.65 21679.14 1.6301 0.004072s

λ = 50, b = 8, n = 100 7016.41 5183.73 1.3535 0.000130s

λ = 50, b = 8, n = 1000 70043.07 51666.43 1.3557 0.004063s

λ = 20, b = 30, n = 100 2565.48 2195.61 1.1682 0.000140s

λ = 20, b = 30, n = 1000 25216.13 21696.36 1.1622 0.004022s

The results of Table 8.2 and Table 8.3 support the conclusions drawn from Table 8.1.

However, it should be noted that from the three tables the competitive ratio increases

as the capacity of vehicle C increases. This may imply that H2 will deliver more unfull

batches at delivery points as C increases, while the off-line optimal schedule delivers fewer

batches instead. The result about C may also imply that a better performance H2 can

be designed in terms of C value, which agrees with the discussion in Chapter 5.

64



8.3 Concluding Remarks

In this chapter, we presented a simulate experiment for algorithm H2 for different in-

stances. The following conclusions may be drawn from the discussion:

(1) The worst case happens when two conditions are satisfied: (a) the release period

approximates to the unit delivery cost, and (b) the preparation time of requirements are

short (which may rarely appear in reality).

(2) For the worst case, the proof of Theorem 5.2 in Chapter 5 has given an upper

bound, for the competitive ratio of H2 which is close to the lower bound. Therefore, the

algorithm H2 is also robust for worst case.

(3) There ia an assurance that the four algorithms designed in this thesis may perform

well for normal instances, and have robustness for the worst case owing to their similar

structures of problems and algorithms.
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CHAPTER 9

CONCLUSIONS

9.1 Overview

Allocation of medical resources in EM is an important task in EM. In reality, a safe place

may not be a hospital; therefore medical resources need to be delivered to the safe place to

treat victims. Allocation of medical resources is similar to allocation of jobs in manufac-

turing systems such as supply chain systems. There have been many studies on allocation

of jobs in supply chain systems or scheduling in supply chain systems as opposed to little

work in EM. This thesis was therefore developed in the context of scheduling in supply

chain systems. Through a comprehensive analysis of literature in supply chain systems,

four new on-line problems were defined. Algorithms were developed for these problems,

including analysis of algorithms based on the competitive ratio.

An entire process of allocating medical resources involves three activities: data collection

from affected areas, preparation of medical resources in the medical centers, and delivery

of medical resources in a network transportation system. This thesis only addressed the

latter two activities but considered that future information is not available while schedul-

ing. Such a scheduling problem is called on-line problem. Further, the two activities

(preparation and delivery) were jointly considered in the sense the total cost and time of
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both the resource preparation and delivery are optimized. The methodology the thesis

took to tackle the problems is: (1) taking the competitive ratio as a measure of the algo-

rithms; (2) constructing instances for determining the lower bound of algorithms for the

problems; (3) analyzing the gap between the competitive ratio and the lower bound to

give the implication of the run-time performance of the algorithms.

The following conclusions can be drawn from the thesis:

(1) All the four algorithms have polynomial run-time functions. Table 9.1 gives a

summary of the performances of the algorithms.

(2) Capacity limit for vehicles is a critical characteristics, which is responsible for the

gap between the competitive ratio and lower bound.

(3) Run-times of the algorithms for normal situations are practically adequate. For

P2, the algorithm H2 takes 0.005s for the number of requirements n = 1000.

Table 9.1: Analytical Results of The Problems

P1 P2 P2 (C = 2) P3 P4

Lower Bound 2 2− 1
C

√
5+1
2

max{
√
5+1
2
, max{

√
5+1
2
, 1 +

√
D

T+D

1 +
√

D
T+D
} −

√
D(T+D)

(C−1)
√
D(T+D)+T+D

}

Upper Bound 2 2
√
5+1
2

max{
√
5+1
2
, max{

√
5+1
2
, 1 +

√
D

T+D
}

1 +
√

D
T+D
}

Evaluation optimal gap optimal optimal gap

run-time O(n) O(n) O(n) O(n) O(n2)
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9.2 Contribution

This thesis has made contributions in the field of resources scheduling in an environment

where demands on resources are unknown at the time decisions have to be taken. In

particular, four new problems are defined and algorithms for them are developed. These

algorithms are robust and efficient in terms of the competitive ratio measure and the lower

bound. In particular, for P1 and P3, the algorithms (H1 and H3) can achieve the optimal

result in terms of the competitive ratio and lower bound. For P2, its special case can

achieve the optimal result. For P4, it has been found the larger the C parameter is, the

better the result is.

Evacuation management in EM is an important operation management problem. The state

of arts of solving this problem is such that evacuation of victims from dangerous places

to safe places has been studied in literature without consideration of medical resources

and transportation tools. This thesis has advanced the state of arts of EM by addressing

the problem of allocation medical resources. The scope of the problems studied is in

scheduling decisions for two operations: preparation and delivery of medical resources.

Although these decisions are a part of whole decisions in EM, they are practically useful

to facilitate that part of decisions more accurately and quickly so that human decision

resource can be more allocated on those parts where computer models have yet to be

developed.
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9.3 Future Work

First, study on optimal algorithms for P4 with some special case is interesting. This is

possible as the optimal algorithm for P2 with C = 2 has been successfully developed.

Second, the four problems all assumed a single-processor in medical centers and there was

only one aid site where medical resources are sent to. Further work on the cases where

there are multiple processors and many aid sites is worthwhile.

Third, the assumptions underlying the present study may be relaxed to be more in line

with real situations. For example, there should be more than one medical center to supply

medical resources.
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APPENDIX

PROGRAM FOR H2

The program in Appendix is to an implementation of the algorithm H2. It consists of three

functions (running on MATLAB 2008 and later version): Alg P2, Req data, and Test.

The main function is Alg P2(Req, D, C), in which Req is the information of requirements,

D is the unit delivery cost, and C is the capacity of vehicle. Function Req data(lambda,

b, n) is used to generate requirements where lambda (λ) is the expectation of poisson

distribution, b is the upper bound of uniform distribution, and n is the number of re-

quirements. A brief description for each function is introduced at the beginning of each

function module.

% Program for algorithm H2

% MATLAB M-file

% August 2012

% Main function Alg P2(Req, D, C)

% – Req is the information of requirements

% – D is the unit delivery cost

% – C is the capacity of vehicle

function [Z alg,Z opt,ratio]=Alg P2(Req,D,C)

% Input — Req: the requirement data (release time and preparing time)

% — D: the unit delivery cost

% — C: the capacity of vehicle

% Output — Z alg: the value of algorithm H2

% — Z opt: the off-line optimal value

% — ratio: competitive ratio

Req no=size(Req,1);

74



n=size(Req,1);

C max=0;

D max=0;

TC=0;

Next Delivery=D;

Complete no=0;

while(Req no∼=0)

if C max < Req(1,1)

if Next Delivery < Req(1,1)

TC=TC+ceil(Complete no/C)*D;

Complete no=0;

D max=Next Delivery;

Next Delivery=ceil(Req(1,1)/D)*D;

end

C max=Req(1,1);

end

while C max + Req(1,2) > Next Delivery

TC=TC+floor(Complete no/C)*D;

Complete no=Complete no-floor(Complete no/C)*C;

D max=Next Delivery;

Next Delivery=Next Delivery+D;

end

C max=C max + Req(1,2);

Complete no=Complete no+1;

Req=Req(2:Req no,:);

Req no=Req no-1;

if Req no==0

TC=TC+ceil(Complete no/C)*D;

D max=Next Delivery;

end

end

Z alg=D max+TC;

Z opt=C max+ceil(n/C)*D;

75



ratio=Z alg/Z opt;

function Req=Req data(lambda,b,n)

% Input — lambda: the expectation of poisson distribution

% — b: the upper bound of uniform distribution

% — n: the number of requirements

% Output — Req: the release time and preparing time of requirements

Pos=poissrnd(lambda,n,1);

Release=zeros(n,1);

Release(1)=Pos(1);

for i=2:n

Release(i)=Release(i-1)+Pos(i);

end

Prepare=b*rand(n,1);

Req=[Release,Prepare];

function Summary=Test(lambda,b,n,C)

% Input — the parameters of the above two functions

% Output — Summary: results of 100 running

Summary=[];

for i=1:100

Req=Req data(lambda,b,n);

D=normrnd(20,1);

if D<=0

D=1;

end

tic;

[Z alg,Z opt,ratio]=Alg P2(Req,D,C);

t=toc; % time counting

Summary=[Summary;Z alg,Z opt,ratio,t];

end

76


	PERMISSION TO USE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	NOMENCLATURE
	INTRODUCTION
	Emergency Management
	Evacuation Operations
	Allocation of Medical Resources
	Objectives and Scope of the Thesis
	Organization of the Thesis

	BACKGROUND AND LITERATURE REVIEW
	Introduction
	Preliminaries
	Analysis of Algorithms
	Computational Complexity
	Approximation Algorithm
	Traveling Salesman Problem

	Macroscopic Models of Evacuation Problems
	On-line Problems and On-line Algorithms
	Supply Chain Scheduling Problem

	PROBLEMS' ASSUMPTIONS AND NOTATIONS
	Assumptions
	Problem Formulation and Notations

	SOLVING PROBLEM P1
	The Lower Bound for P1
	The Upper Bound for P1
	Discussion and Concluding Remarks

	SOLVING PROBLEM P2
	The Lower Bound for P2
	The Upper Bound for P2
	The Lower Bound for P2 with C=2
	The Upper Bound for P2 with C=2
	Discussion and Concluding Remarks

	SOLVING PROBLEM P3
	The Lower Bound for P3
	The Upper Bound for P3
	Discussion and Concluding Remarks

	SOLVING PROBLEM P4
	The Lower Bound for P4
	The Upper Bound for P4
	Discussion and Concluding Remarks

	APPLICATIONS
	Introduction
	Simulated Experiment
	Concluding Remarks

	CONCLUSIONS
	Overview
	Contribution
	Future Work

	LIST OF REFERENCES
	APPENDIX

