
Diplomarbeit

Re-pair for Trees

Leipzig, im Juni, 2010

Universität Leipzig
Fakultät für Mathematik und Informatik
Institut für Informatik

Autor: Roy Mennicke
Studiengang: Diplom-Informatik
Matrikelnummer: 9 12 15 18

Betreuer: Prof. Dr. rer. nat. habil. Markus Lohrey
Abt. Algebraische und logische Grundlagen der Informatik
Universität Leipzig, Institut für Informatik

Roy Mennicke

Re-pair for Trees

“No profit grows where no pleasure is taken; In brief, sir, study what you most affect.”

– William Shakespeare

Roy Mennicke

Re-pair for Trees

Department of Computer Science
University of Leipzig

Copyright © 2010 Roy Mennicke.

Front page line art drawing by Pearson Scott Foresman.

While every precaution has been taken in the preparation of this work, the author assumes no respon-
sibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

First printing, June 2010

Contents

Abstract 9

1 Introduction 11

2 Preliminaries 15

3 Re-Pair for Trees 23

4 Implementation Details 45

5 Succinct Coding 65

6 Experimental Results 77

Bibliography 87

Appendix A: Detailed Test Results 89

Abstract

We introduce a new linear time compression algorithm, called "Re-
pair for Trees", which compresses ordered trees over a ranked al-
phabet using linear straight-line context-free tree grammars. Such
grammars generalize straight-line context-free string grammars
and allow basic tree operations, like traversal along edges, to be
executed without prior decompression. Our algorithm can be con-
sidered as a generalization of the "Re-pair" algorithm developed
by N. Jesper Larsson and Alistair Moffat in 2000. The latter algo-
rithm is a dictionary-based compression algorithm for strings.

We also introduce a succinct coding which is specialized in fur-
ther compressing the grammars generated by our algorithm. This
is accomplished without loosing the ability do directly execute
queries on this compressed representation of the input tree. Fi-
nally, we compare the grammars and output files generated by a
prototype of the Re-pair for Trees algorithm with those of similar
compression algorithms. The obtained results show that that our
algorithm outperforms its competitors in terms of compression ra-
tio, runtime and memory usage.

1
Introduction

Motivation

Trees are nowadays a common data structure used in computer
science to represent data hierarchically. This is, for instance, evi-
denced by XML documents which are widely used after their in-
troduction in 1996. They are sequential representations of ordered
unranked trees. When processing trees it is often convenient to
hold the tree structure in memory in order to retain fast and ran-
dom access to its nodes. However, this often leads to a heavy
resource consumption in terms of memory usage due to the nec-
essary pointer structure which represents the tree structure. The
space needed to load an entire XML document into main memory
in order to access it through a DOM proxy is usually 3–8 times
larger than the size of the document itself [WLH07]. Therefore, it
is essential for very large tree structures to use a memory efficient
representation.

In [FGK03, BGK03] directed acyclic graphs (DAGs) were pro-
posed to overcome this problem. By sharing common subtrees
one is able to reduce the size of the in-memory representation by
a factor of about 10 [BGK03]. One of the most appealing properties
of this representation is that queries like the ones of the XPath lan-
guage can be directly executed on the compressed representation,
i. e., it is not necessary to completely unfold the DAG.

Later, in [BLM08] so called linear straight-line context-free tree
grammars were proposed as a more succinct representation of an
input tree. These grammars represent exactly one tree and gen-
eralize the concept of sharing common subtrees to the sharing of
repeating tree patterns. Most important, this new representation
is still queryable, i. e., queries can be evaluated without prior de-
compression. At the same time, the complexity of querying, e.g.,
using XQuery, stays the same as for DAGs [LM06].

re-pair for trees 12

However, finding the smallest linear straight-line context-free
tree grammar generating a given tree is NP-hard. Already finding
the smallest context-free string grammar for a given string is NP-
complete [CLL+05]. In [BLM08] an algorithm called BPLEX was
introduced which generates a small linear straight-line context-
free tree grammar for a given input tree. On average, the resulting
grammar is 3.5–4 times smaller than the minimal DAG (in terms
of the number of edges). An implementation of this algorithm,
which processes the underlying tree structure of XML documents,
was also provided.

Main Contribution

Our main contribution is a compression algorithm, called "Re-pair
for Trees", which is based on linear straight-line context-free tree
grammars. Our investigations show that, regarding our test data,
the grammars generated by Re-pair for Trees are always smaller
than the grammars produced by the BPLEX algorithm. In addi-
tion, our algorithm outperforms BPLEX in terms of runtime and
memory usage. Note that especially runtime was a huge draw-
back of the BPLEX implementation.

The Re-pair for Trees algorithm is a generalization of the "Re-
pair" algorithm which was developed by Larsson and Moffat in
[LM00]. The latter algorithm is an offline dictionary-based com-
pression method for strings consisting of a simple but powerful
phrase derivation method and a compact dictionary encoding. A
dictionary-based compression algorithm is an algorithm where the
input message is parsed into a sequence of phrases selected from
a dictionary. Since the reference to a phrase in the dictionary is
more compact than the phrase itself often a considerable com-
pression can be achieved. Re-pair’s dictionary is inferred offline
since it is generated by considering the whole input message and
since it is written out as a part of the compressed data so that it is
available to the decoder.

Source message:

a b c d a b c

After the replacement of (a, b):

A c d A c

Figure 1.1: The pair (a, b) is replaced
by the new symbol A.

The name Re-pair stands for "recursive pairing" and describes
the idea of the algorithm. The latter is to count the frequencies of
all pairs formed by two adjacent symbols of the source message,
replacing the most frequent pair by a new symbol (see Fig. 1.1),
updating the frequency counters of all involved pairs and repeat-
ing this process until there are no pairs occurring twice in the
source message. This compression technique allows searching the
compressed data without prior decompression.

Organization of this Work

In Chap. 3 we explain in detail the two steps of which the Re-pair
for Trees algorithm consists. We also present a complete exam-
ple of a run of our algorithm and consider the compressibility of
special types of trees depending on the maximal rank allowed for

re-pair for trees 13

a nonterminal. Chapter 4 gives an insight into our implementa-
tion of the Re-pair for Trees algorithm which is called TreeRePair.
In particular, we elaborate on its linear runtime, the internal data
structures used and its efficient in-memory representation of the
input tree. Moreover, in Chap. 5 we present a succinct coding
which is specialized in further compressing the grammars gener-
ated by the Re-pair for Trees algorithm without loosing the ability
to directly execute queries on this compressed representation of
the input tree. By using a combination of multiple Huffman cod-
ings, a run-length coding and a fixed-length coding the resulting
file sizes are always smaller than the sizes of the files generated
by competing compression algorithms when executed on our test
data. In Chap. 6 we compare the compression results of our im-
plementation of the Re-pair for Trees algorithm with several other
compression algorithms. In particular, we consider BPLEX and
"Extended-Repair". The latter algorithm is also based on the Re-
pair for strings algorithm and was independently developed at the
University of Paderborn, Germany [Kri08, BHK10].

2
Preliminaries

In the following, N denotes the set of natural numbers. We define
N>0 = N \ {0}. For a set X we denote by X∗ the set of all finite
words over X. By X × Y = {(x, y) | x ∈ X, y ∈ Y} we denote the
cartesian product of X and Y. For w = x1x2 . . . xn ∈ X∗ we define
|w| = n. The empty word is denoted by ε.

We sometimes surround an element of N by square brackets
in order to emphasize that we currently consider it a character
instead of a number. For instance, for the sequence of integers
222221 we shortly write [2]5[1] instead of 251 to clarify that we are
not dealing with the fifth power of 2.

2.1 Labeled Ordered Tree

Definition 1 (Ranked alphabet) A ranked alphabet denotes a tuple
(F , rank), where F is a finite set of function symbols and the func-
tion rank : F → N assigns to each α ∈ F its rank. Furthermore,
we define Fi = {a ∈ F | rank(α) = i}.

We fix a ranked alphabet (F , rank) in the following.

Definition 2 (F -labeled ordered tree) An F -labeled ordered tree is
a pair t = (domt, λt), where

(1) domt ⊆N∗>0 is a finite set of nodes,

(2) λt : domt → F ,

(3) if w = vv′ ∈ domt, then also v ∈ domt, and

(4) if v ∈ domt and λt(v) ∈ Fn, then vi ∈ domt if and only if
1 ≤ i ≤ n.

The node ε ∈ domt is called the root of t. By index(w), where
w = vi ∈ domt \ {ε} and i ∈ N>0, we denote the index i of the

re-pair for trees 16

node w, i. e., w is the i-th child of its parent node. Furthermore, we
define parent(w) = v. The size of t is given by the number of edges
of which it consists, i. e., we have |t| = |domt| − 1. The depth of t
is depth(t) = max{|u| | u ∈ domt}. We identify an F -labeled tree
t with a term in the usual way: if λt(ε) = α ∈ Fi, then this term
is α(t1, . . . , ti), where tj is the term associated with the subtree of
t rooted at node j, where j ∈ {1, . . . , i}. The set of all F -labeled
trees is T(F).
Example 3 In Fig. 2.1 an F -labeled ordered tree t is shown. We
have

domt = {ε, 1, 2, 3, 11, 12, 21, 22, 31, 111, 112, 121, 122,

211, 212, 221, 222} .

f

g

i

a a

i

a a

g

i

a a

i

a b

h

a

Figure 2.1: F -labeled ordered tree t

Definition 4 (Parameters) We fix a countable set Y = {y1, y2, . . .}
with Y ∩ F = ∅ of (formal context-) parameters (below we also use
a distinguished parameter z /∈ Y). The set of all F -labeled trees
with parameters from Y ⊆ Y is denoted by T(F , Y). Formally,
we consider parameters as function symbols of rank 0 and define
T(F , Y) = T(F ∪Y).

The tree t ∈ T(F , Y) is said to be linear if every parameter y ∈ Y
occurs at most once in t. By t[y1/t1, . . . , yn/tn] we denote the
tree that is obtained by replacing in t for every i ∈ {1, 2, . . . , n}
every yi-labeled leaf with ti, where t ∈ T(F , {y1, . . . , yn}) and
t1, . . . , tn ∈ T(F , Y).

Definition 5 (Context) A context is a tree C ∈ T(F ,Y ∪ {z}) in
which the distinguished parameter z appears exactly once. Instead
of C[z/t] we write briefly C[t].

Definition 6 (Tree pattern) Let t = (domt, λt) ∈ T(F , {y1, . . . , yn})
such that for every yi there exists a node v ∈ domt with λt(v) = yi.
We say that t is a tree pattern occurring in t′ ∈ T(F ,Y) if there exist
a context C ∈ T(F ,Y ∪ {z}) and trees t1, . . . , tn ∈ T(F ,Y) such
that

C
[
t[y1/t1, y2/t2, . . . , yn/tn]

]
= t′ .

2.2 SLCF Tree Grammar

For further consideration, let us fix a countable infinite set Ni of
symbols of rank i ∈N with Fi ∩Ni = ∅ and Y ∩N0 = ∅. Hence,
every finite subset N ⊆ ⋃i≥0Ni is a ranked alphabet.

Definition 7 (Context-free tree grammar) A context-free tree gram-
mar (over the ranked alphabet F) or short CF tree grammar is a triple
G = (N, P, S), where

(1) N ⊆ ⋃i≥0Ni is a finite set of nonterminals,

(2) P (the set of productions) is a finite set of pairs (A→ t), where
A ∈ N, t ∈ T(F ∪ N, {y1, . . . , yrank(A)}), t /∈ Y , each of the
parameters y1, . . . , yrank(A) appears in t, and1

1 In contrast to [LMSS09], our defini-
tion of a context-free tree grammar in-
herits productivity, i. e., t /∈ Y and each
parameter y1, . . . , yrank(A) appears in t
for every (A→ t) ∈ P. This is justified
by the fact that the grammars gener-
ated by the Re-pair for Trees algorithm
are always productive.

re-pair for trees 17

(3) S ∈ N is the start nonterminal of rank 0.

We assume that every nonterminal B ∈ N \ {S} as well as every
terminal symbol from F occurs in the right-hand side t of some
production (A→ t) ∈ P.

Let us define the derivation relation ⇒G on T(F ∪ N,Y) as
follows: s ⇒G s′ iff there exists a production (A → t) ∈ P
with rank(A) = n, a context C ∈ T(F ∪ N,Y ∪ {z}), and trees
t1, . . . , tn ∈ T(F ∪ N,Y) such that we have s = C[A(t1, . . . , tn)]

and s′ = C[t[y1/t1 · · · yn/tn]]. Let

L(G) = {t ∈ T(F) | S⇒∗G t} ⊆ T(F) .

Definition 8 (Size of a CF tree grammar) The size |G| of the CF
tree grammar G is defined by

|G| = ∑
(A→t)∈P

|t| .

That means that |G| equals the sum of the numbers of edges of the
right-hand sides of P’s productions.

Definition 9 (Restrictions on CF tree grammars) We consider the
following restrictions on context-free tree grammars:

• G is k-bounded (for k ∈N) if rank(A) ≤ k for every A ∈ N.

• G is monadic if it is 1-bounded.

• G is linear if for every (A→ t) ∈ P the term t is linear.

Definition 10 (References of a production) Let G = (N, P, S) be
a CF tree grammar. We denote the set of all nodes in the right-
hand sides of G’s productions which are labeled by the nontermi-
nal A ∈ N by refG(A), i. e.,

refG(A) = {(t, v) | ∃(B→ t) ∈ P : v ∈ domt ∧ λt(v) = A} .

Furthermore, let us define the following relation:

;G = {(A, B) ∈ N × N | (B→ t) ∈ P ∧ A occurs in t}

Definition 11 (SLCF tree grammar) A straight-line context-free tree
grammar (SLCF tree grammar) is a CF tree grammar G = (N, P, S),
where

(1) for every A ∈ N there is exactly one production (A → t) ∈ P
with left-hand side A, and

(2) the relation ;G is acyclic.

The conditions (1) and (2) ensure that L(G) contains exactly one
tree, which we denote by val(G).

re-pair for trees 18

Definition 12 (Hierarchical order) Let G be an SLCF tree gram-
mar. We call the reflexive transitive closure of ;G the hierarchical
order of G and denote it by ;∗G .

Example 13 Consider the (linear and monadic) SLCF tree gram-
mar G = (N, P, S) given by the following productions:

S→ f
(

A(a), A(b), B
)

A(y1)→ g
(
i(a, a), i(a, y1)

)
B→ h(a)

We have val(G) = t, where t ∈ T(F) is the tree from Example 3
on page 16.

SLCF tree grammars can be considered as a generalization of the
well-known DAGs (see, for instance, [LM06] for a common defi-
nition). Whereas the latter is a structure preserving compression
of a tree by sharing common subtrees (see Fig. 2.2 for a depic-
tion), SLCF tree grammars broaden this concept to the sharing of
repeated tree patterns in a tree (see Fig. 2.3). Actually, a DAG can
be considered as a 0-bounded SLCF tree grammar.

t

t′ t′

Figure 2.2: A tree t containing two oc-
currences of the very same subtree t′.

t

p

p

Figure 2.3: A tree t containing two oc-
currences of the tree pattern p.

Definition 14 (Contribution of a production) Let G = (N, P, S)
be a linear SLCF tree grammar. We define the function

savG(A) = |refG(A)| · (|t| − rank(A))− |t|

which computes for every production (A → t) ∈ P its contribu-
tion to a small representation of the tree val(G) by the linear SLCF
tree grammar G.

The value savG(A) specifies the number of edges by which the
production with left-hand side A reduces the size of the grammar
G. However, savG is not restricted to positive values. In partic-
ular, for a production (A → t) ∈ P with |refG(A)| = 1 we have
savG(A) = −rank(A). Thus, a production which is only referenced
once can be safely removed from the grammar without increasing
the size of G.

Context-free tree grammars [CDG+07] and especially SLCF tree
grammars have been thoroughly studied recently. Lohrey and
Maneth have shown in [LM06] that SLCF tree grammars in theory
can be exponentially more succinct than DAGs which already can
achieve exponential compression ratios.

Furthermore, in [LM06] various membership and complexity
problems were considered. It was shown that in many cases the
same complexity bounds hold as for DAGs. In particular, it was
pinpointed that for a given nondeterministic tree automaton A
and a linear, k-bounded SLCF tree grammar G it can be checked
in polynomial time if val(G) is accepted by A – provided that k is
a constant. This is a worth mentioning result since in the context

re-pair for trees 19

of XML, for instance, tree automata are used to type check XML
documents against an XML schema (cf. [MLMK05, Nev02]).

Moreover, this result was further improved in [LMSS09]. It was
proved that every linear SLCF tree grammar can be transformed in
polynomial time into a monadic (and linear) one. Together with
the above mentioned result from [LM06] Lohrey, Maneth and
Schmidt-Schauß were able to present a polynomial time algo-
rithm for testing if a given nondeterministic tree automaton ac-
cepts a tree given by a linear SLCF tree grammar G – no matter
what the maximum rank of all nonterminals from G is.

In [BLM08] the so called BPLEX algorithm was presented. It
produces for a given 0-bounded SLCF tree grammar G1, i. e., G1

represents a DAG, in time O(|G1|) an equivalent linear SLCF tree
grammar G2, where val(G2) = val(G1) and G2 is k-bounded (k is
an input parameter). Experiments have shown that |G2| is approx-
imately 2–3 times smaller than |G1|.

Moreover, in [LMSS09] it was proved that the evaluation prob-
lem for core XPath (the navigational part of XPath) over SLCF tree
grammars is PSPACE-complete just as this was proved earlier for
DAG-compressed trees by Frick, Grohe and Koch in [FGK03].
The evaluation problem for XPath asks whether a given node in
a given tree is selected by a given XPath expression. This result
is remarkable since with SLCF tree grammars one achieves better
compression ratios than with DAGs.

2.3 XML Terminology

Regarding XML documents, we use the official terminology intro-
duced in [BPSM+08]. Thus an XML document contains one or
more elements which are either delimited by start-tags and end-tags
or by an empty-element tag. The text between the start-tag and the
end-tag of an element is called the element’s content. An element
with no content is said to be empty. There is exactly one element,
called root, which does not appear in the content of any other ele-
ment.

<books>

<book>

<author/><title/><isbn/>

</book>

...

<book>

<author/><title/><isbn/>

</book>

 5
ti

m
es

</books>

Figure 2.4: An simplified XML docu-
ment.

Example 15 The simplified XML document from Fig. 2.4 consists
of 21 elements of the five types books, book, author, title and
isbn. The elements of type books and book are delimited by start-
and end-tags and exhibit element content. The remaining ele-
ments are empty elements delimited by empty-element tags. The
root of the XML document is the element of type books.

The name in the start- and end-tags of an element give the ele-
ment’s type. Elements can specify attributes by using name-value
pairs. Consider for instance the element

<phone prefix="012">3456</phone>

exhibiting one attribute specification with attribute name prefix

and attribute value 012.

re-pair for trees 20

books

book

author title isbn

book

author title isbn

book

author title isbn

book

author title isbn

book

author title isbn

Figure 2.5: XML document tree of the
XML document listed in Fig. 2.4

In addition to these terms we denote by XML document tree the
nested structure of elements which is left after removing all char-
acter data and attribute specifications from an XML document.

2.4 Binary Tree Model

An XML document tree can be considered as an unranked tree,
i. e., nodes with the same label possibly have a varying number of
children. Figure 2.5 shows the XML document tree of the XML
document from Example 15. In our case, the XML document tree
is a ranked tree, i. e., all nodes with the same label exhibit the same
number of children. However, the XML document might as well
have contained an element of type book exhibiting a second author

child element. In this case, we would have not obtained a ranked
tree.

In the next chapter we will learn that our Re-pair for Trees al-
gorithm operates on ranked trees only. Therefore, in general, a
transformation of an XML document tree becomes necessary. A
common way of modeling such a tree in a ranked way is to trans-
form it into a binary F -labeled ordered tree t by encoding first-
child and next-sibling relations. In fact,

• the first child element of an XML element becomes the left child
of the node representing its parent element and

• the right sibling element of another element becomes the right-
child of the node representing its left sibling (cf. Fig. 2.6).

books10

book11

author01

title01

isbn00

· · · book11

author01

title01

isbn00

4 times

book10

author01

title01

isbn00

Figure 2.6: Binary tree representa-
tion of the XML document tree from
Fig. 2.5.

Note that a node representing a leaf (resp. a last sibling) of the
XML document has no left (resp. no right) child in the binary tree
model representation. Therefore F does not consist of the element
types of the XML document but of special versions of the element
types indicating that the left, the right, both or no children are
missing. In Fig. 2.6 this is denoted by superscripts at the end
of the element types. These superscripts are listed in Table 2.1
together with their meanings.

Superscript Meaning

00 no children
10 no right child
01 no left child
11 two children

Table 2.1: The superscripts and their
meanings.

Let us point out that another way of preserving the rankedness
along with circumventing the introduction of special labels with
a lower rank is the introduction of placeholder nodes. These can
be used to indicate missing left or right children. However, our
experiments showed that our implementation of Re-pair for Trees

re-pair for trees 21

achieves slightly less competitive compression results in this set-
ting.

In [BLM08] it was stated that the binary tree model allows
access to the next-in-preorder and previous-in-preorder node in
O(depth), where depth refers to the longest path from the root of
the XML document to one of its leaves. Furthermore, in [MSV03]
it was demonstrated that XML query languages can be readily
evaluated on the binary tree model.

3
Re-Pair for Trees

In this chapter we examine the Re-pair for Trees algorithm in de-
tail. We will learn that it consists of two steps, namely, a replace-
ment step and a pruning step. Furthermore, a detailed example of
a run of our algorithm is presented. Finally, we investigate the
impact of a possible restriction on the maximal rank allowed for
nonterminals.

3.1 Definitions

In order to be able to elaborate on our Re-pair for Trees algorithm
we need the following definitions. Recall that we have fixed a
ranked alphabet F of function symbols, a set N of nonterminals
and a set Y of parameters. We define the set of triples

Π =
⋃

a∈F∪N
{a} × {1, 2, . . . , rank(a)} × (F ∪N) .

Definition 16 (Digram) A digram is a triple α = (a, i, b) ∈ Π. The
symbol a is called the parent symbol of the digram α and b is called
the child symbol of the digram α, respectively. We define

par(α) = rank(a) + rank(b)− 1 and

pat(α) = a
(
y1, . . . , yi−1, b(yi, . . . , yj−1), yj, . . . , ypar(α)

)
,

where j = i+ rank(b) and y1, y2, . . . , ypar(α) ∈ Y . Let m ∈N∪{∞}.
We further define the set

Πm = {α ∈ Π | par(α) ≤ m} .

Obviously, it holds that Π∞ = Π.

We can consider pat(α) as the tree pattern which is represented
by the digram α. We usually denote digrams by possibly indexed
lowercase letters α, α1, α2, . . . , β, . . . of the Greek alphabet.

re-pair for trees 24

Definition 17 (Occurrence) An occurrence of the digram α ∈ Π
within the tree t = (domt, λt) ∈ T(F ∪N ,Y) is a node v ∈ domt

at which a subtree

pat(α)[y1/t1, y2/t2, . . . , ypar(α)/tpar(α)] ,

where t1, t2, . . . , tpar(α) ∈ T(F ∪ N ,Y), is rooted. The set of all
occurrences of the digram α in t is denoted by occt(α) ⊆ domt.

Definition 18 (Overlapping occurrences) Let α = (a, i, a′) ∈ Π
and β = (b, j, b′) ∈ Π. Let t ∈ T(F ∪ N ,Y). Furthermore, let
v ∈ occt(α) and w ∈ occt(β) be two occurrences. The occurrences
v and w are overlapping if one of the following equations holds:
v = w, vi = w or wj = v. We denote this by v ‖ w. Otherwise,
i. e., if v and w are not overlapping, v and w are said to be non-
overlapping (denoted by v ∦ w).

Definition 19 (Overlapping set of occurrences) Let α ∈ Π and
t ∈ T(F ∪ N ,Y). A subset σ ⊆ occt(α) is said to be overlap-
ping if there exist v, w ∈ σ such that v ‖ w holds. In contrast, σ is
non-overlapping if v ∦ w for all v, w ∈ σ.

Let α = (a, i, b) ∈ Π be a digram an let t ∈ T(F ∪N ,Y). It is easy
to see that the set occt(α) is non-overlapping if a 6= b. In contrast,
if we have a = b, the set occt(α) potentially contains overlapping
occurrences. Consider the following example:

Example 20 Let t ∈ T(F) be the tree depicted in Fig. 3.1 and let
α = (f , 2, f). We have {ε, 2, 22} ⊆ occt(α) where on the one hand ε

and 2 and on the other hand 2 and 22 are overlapping occurrences
of α.

f

t1
f

t2
f

t3
f

t4 t5

Figure 3.1: Tree t ∈ T(F) consisting of
nodes labeled by the terminal f ∈ F2
and the subtrees t1, t2, . . . , t5 ∈ T(F).
We have to deal with overlapping oc-
currences of the digram (f , 2, f).

Let α ∈ Π and t ∈ T(F ∪ N ,Y). Let σ ⊆ occt(α) be a non-
overlapping set. Furthermore, let us assume that σ ∪ {v} is over-
lapping for all v ∈ occt(α) \ σ, i. e., σ is maximal with respect to
inclusion among non-overlapping subsets. Then σ is not necessar-
ily maximal with respect to cardinality.

Example 21 Consider the tree t ∈ T(F) which is depicted in
Fig. 3.1. Let α = (f , 2, f) ∈ Π. We have occt(α) = {ε, 2, 22}.
Let σ = {2} ⊆ occt(α). The set σ is non-overlapping and σ ∪ {v}
is overlapping for all v ∈ occt(α) \ σ. However, σ is not maximal
with respect to cardinality. Consider the non-overlapping subset
σ′ = {ε, 22} ⊆ occt(α). We have |σ| < |σ′|.
Example 21 shows us that we cannot choose an arbitrary subset
σ ⊆ occt(α) which is non-overlapping and maximal with respect
to inclusion to obtain a set which is maximal with respect to cardi-
nality. Let us also point out that the set occt(α) may contain more
than one maximal (with respect to cardinality) non-overlapping
subset.

Example 22 Consider the tree f (f (f (a))) over the ranked alpha-
bet F . The sets {ε} and {1} are both maximal with respect to
cardinality.

re-pair for trees 25

1 FUNCTION next-in-postorder(t, v) // let t = (domt, λt)
2 if (v = ε) then
3 v := walk-down(t, v);
4 else
5 i := index(v) + 1;
6 v := parent(v);
7
8 if (rank(λt(v)) ≥ i) then
9 v := vi;

10 v := walk-down(t, v);
11 endif
12 endif
13 return v;
14 ENDFUNC
15
16 FUNCTION walk-down(t, v) // let t = (domt, λt)
17 while (true) do
18 if (rank(λt(v)) > 0) then
19 v := v1;
20 else
21 return v;
22 endif
23 endwhile
24 ENDFUNC

Figure 3.2: The algorithm which is
used to traverse a tree in postorder.

1 FUNCTION retrieve-occurrences(t, α) // let α = (a, i, b)
2 occt(α) := ∅; v := ε;
3 while (true) do
4 v := next-in-postorder(t, v);
5 if (v ∈ occt(α) ∧ vi /∈ occt(α)) then
6 occt(α) := occt(α) ∪ {v}
7 endif
8 if (v = ε) then
9 return occt(α);

10 endif
11 endwhile
12 ENDFUNC

Figure 3.3: The function
retrieve-occurrences which is
used to construct the set occt(α)
for a digram α ∈ Π and a tree
t ∈ T(F ∪N).

The algorithm from Fig. 3.3 computes one non-overlapping subset
of occt(α) which we denote by occt(α). Lemma 24 ascertains that
this subset is maximal with respect to cardinality.

Definition 23 (Set of non-overlapping occurrences) Let α ∈ Π be
a digram and t = (domt, λt) ∈ T(F ∪ N ,Y). By occt(α) we de-
note the subset of occt(α) which is computed by the algorithm
retrieve-occurrences(t, α) from Fig. 3.3.

With the help of the function next-in-postorder listed in Fig. 3.2
we are able to traverse the tree t in postorder. We begin by passing
the parameters t and ε and obtain the first node u ∈ domt of t in
postorder. The second node in post order is obtained by passing
the parameters t and u. This step can be repeated to traverse the
whole tree t in postorder.

For every node v which is encountered during the postorder
traversal it is checked if v is an occurrence of α and if it is non-

re-pair for trees 26

overlapping with all occurrences already contained in the current
set occt(α). If both conditions are fulfilled, the node v is added to
occt(α).

Now, let us assume that we have constructed the set occt(α)

using the function retrieve-occurrences. It is obvious that the
inclusion occt(α) ⊆ occt(α) holds. If a 6= b in α = (a, i, b) we
have occt(α) = occt(α). In the following, we show that the subset
occt(α) ⊆ occt(α) is maximal with respect to cardinality.

Lemma 24 Let α ∈ Π and t ∈ T(F ∪N ,Y). Let σ ⊆ occt(α) be non-
overlapping and maximal with respect to cardinality. Then the equation
|occt(α)| = |σ| holds.

Proof In the following we briefly write "maximal" for "maximal
with respect to cardinality". Let α = (a, i, b) ∈ Π, t ∈ T(F ∪N ,Y)
and σ as above. The graph (V, E), where

V = occt(α) ∪ {vi | v ∈ occt(α)} and

E = {(v, vi) | v ∈ occt(α)} ,

is a disjoint union of paths. Maximal non-overlapping subsets
of occt(α) exactly correspond to maximum matchings in (V, E).
Clearly, a path with an odd number of edges has a unique maxi-
mum matching, whereas a path with an even number of edges has
two maximum matchings: one containing the first edge (in direc-
tion from the root) and one containing the last edge on the path.
Intuitively, the algorithm from Fig. 3.3 finds the maximum match-
ing in (V, E) which contains for every path with an even number
of edges the last edge in direction from the root. �

Definition 25 (Replacement of a digram) Let t ∈ T(F ∪ N ,Y),
α = (a, i, b) ∈ Π and A ∈ Npar(α). By t[α/A] we denote the
tree which is obtained by replacing all occurrences from occt(α) in
the tree t by the nonterminal A (in parallel). More precisely, we
replace every subtree

pat(α)[y1/t1, y2/t2, . . . , ypar(α)/tpar(α)],

where t1, t2, . . . , tpar(α) ∈ T(F ∪ N ,Y), which is rooted at an oc-
currence v ∈ occt(α) by a new subtree A(t1, t2, . . . , tpar(α)).

Example 26 Consider the tree t ∈ T(F) which is depicted in
Fig. 3.4.1. We have occt(α) = {ε, 11, 12, 21, 22}, where α = (f , 2, f).
By replacing the digram α in t by a nonterminal A ∈ N3 we obtain
the tree t[α/A] which is depicted in Fig. 3.4.2.

Definition 27 (Most frequent digram) Let t ∈ T(F ∪N) and let
m ∈N∪ {∞}. We define

maxm(t) =


α ∈ Πm if occt(α) 6= ∅ and

∀β ∈ Πm : |occt(β)| ≤ |occt(α)|
undefined if ∀α ∈ Πm : occt(α) = ∅

re-pair for trees 27

f

f

f

f

a a

f

a a

f

f

a a

f

a a

f

f

f

a a

f

a a

f

f

a a

f

a a

Figure 3.4.1: The tree t ∈ T(F).

A

f

A

f

a a

a a

A

f

a a

a a

A

f

a a

a a

A

f

a a

a a

Figure 3.4.2: The tree t[α/A].

The function maxm : T(F ∪ N) → Π associates with every tree
t ∈ T(F ∪N) a digram α ∈ Πm which occurs in t most frequently
(with respect to all digrams from Πm). If there are multiple most
frequent digrams, we can choose any of them. In contrast, we have
maxm(t) = undefined if there is no most frequent digram. If m = ∞
there is no most frequent pair if and only if the tree t consists
of exactly one node. Now let us assume that m 6= ∞. We have
maxm(t) = undefined if and only if t consists of exactly one node
or if for all digrams α occurring in t it holds that α /∈ Πm.

In the sequel, if we do not specify the maximal rank allowed for
a nonterminal, we always assume that m = ∞. For convenience
we write max(t) instead of max∞(t), i. e., we omit the symbol ∞.

3.2 Replacement of Digrams

In this section we give an insight into the first step of our Re-pair
for Trees algorithm, namely, the replacement step. Let m ∈N∪ {∞}
be the maximal rank allowed for a nonterminal1 and let the tree

1 Regarding our implementation of the
Re-pair for Trees algorithm which is
described in Chap. 4, m is a parame-
ter which can be specified by the user.

t = (domt, λt) ∈ T(F) be the input of our algorithm.
We describe a run of the Re-pair for Trees algorithm by a se-

quence of h + 1 linear SLCF tree grammars G0,G1, . . . ,Gh, where
h ∈ N. For every i ∈ {0, 1, . . . , h} we have Gi = (Ni, Pi, Si),
(Si → ti) ∈ Pi, αi = maxm(ti) and val(Gi) = t. The grammar
G0 contains solely the start production (S0 → t0), where t0 = t.
We obtain the grammar Gi+1 by replacing the digram αi in the
right-hand side of Gi’s start production ti by a new nonterminal
Ai+1 ∈ Npar(αi)

\ Ni (0 ≤ i ≤ h− 1). We set

Ni+1 = (Ni \ {Si}) ∪ {Si+1, Ai+1} and

Pi+1 = (Pi \ {(Si → ti)}) ∪ {
(

Ai+1 → pat(αi)
)
, (Si+1 → ti+1)} ,

where ti+1 = ti[αi/Ai+1].
The computation stops if there is no digram α ∈ Πm occurring

at least twice in the start production of the current grammar, i. e.,
either |occth(maxm(th))| = 1 or maxm(th) = undefined holds. In
contrast, for all 0 ≤ i ≤ h− 1 we have |occti (maxm(ti))| > 1.

Note that the linear SLCF tree grammar Gh is almost in Chom-
sky normal form (CNF) as it is defined in [LMSS09]. By appropri-
ately transforming the right-hand side of Sh (as it is described in

re-pair for trees 28

the proof of Proposition 5 of [LMSS09]) and introducing a produc-
tion with right-hand side a(y1, . . . , yn) for every terminal a ∈ Fn

(n ∈ N) we would obtain a linear SLCF tree grammar which per-
fectly meets the requirements of the CNF.

The linear SLCF tree grammar Gh can only be considered an
intermediate result, since it potentially consists of productions
which do not contribute to a compact representation of the input
tree t. Therefore, we get rid of unprofitable productions by elim-
inating them during the so-called pruning step. The latter, which
is described in the next section, is executed directly after the re-
placement step.

3.3 Pruning the Grammar

Definition 28 (Elimination of a production) Let G = (N, P, S) be
a linear SLCF tree grammar. We eliminate a production (A → t)
from P as follows:

(1) For every reference (t′, v) ∈ refG(A) we replace the subtree
A(t1, t2, . . . , tn) rooted at v ∈ domt′ by the tree

t[y1/t1, y2/t2, . . . , yn/tn] ,

where t1, . . . , tn ∈ T(F ∪N ,Y) and n = rank(A).

(2) We update the set of productions by setting

P := P \ {(A→ t)} .

Let G = (N, P, S) be the linear SLCF tree grammar generated in
the replacement step of our algorithm, i. e., we have G = Gh. Let
n = |N| and let

ω = B1, B2, . . . , Bn−1, Bn

be a sequence of all nonterminals of N in hierarchical order, i. e.,
the following conditions hold:

(i) Bn = S

(ii) ∀1 ≤ i < j ≤ n : Bj 6;∗G Bi

Let (Bi → ti), (Bj → tj) ∈ P, where 1 ≤ i, j < n and i 6= j. If we
eliminate Bi this may have an impact on the value of savG(Bj). We
need to differentiate between two cases:

(1) Bj → Bi

tj

If Bi occurs in tj, i. e., Bi ;G Bj, then |tj| is increased because
of the elimination of Bi. At the same time, savG(Bj) goes up if
we have |refG(Bj)| > 1. The increase of |tj| is due to the fact
that we can assume that the inequality |{v ∈ domti | λti (v) /∈
Y}| ≥ 2 holds. Every production which was introduced in the
replacement step represents a digram and therefore consists
of at least two nodes labeled by the parent and child symbol,
respectively, of this digram.

re-pair for trees 29

(2) Bi → Bj
ti

If Bj occurs in ti, i. e., Bj ;G Bi, then |refG(Bj)| and therefore
savG(Bj) are possibly increased by eliminating Bi. In fact, both
values go up if |refG(Bi)| > 1.

First phase In the first phase of the pruning step, we eliminate
every production (A → t) ∈ P with |refG(A)| = 1. That way we
achieve not only a possible reduction of the size of G (because we
have savG(A) = −rank(A) for every A ∈ N referenced only once)
but we also decrement the number of nonterminals |N| each time
we eliminate such a production.

Second phase In the second phase of the pruning step we elimi-
nate all remaining inefficient productions. We consider a produc-
tion (A → t) ∈ P as inefficient if savG(A) ≤ 0. Unfortunately, this
time we have to deal with a rather complex optimization problem.
In contrast to the first phase, the decision whether to eliminate a
production (A → t) ∈ P or not does now depend on the value
savG(A). However, the latter may be increased by eliminating
other nonterminals (see the above case distinction). This forces
us to use a heuristic to decide what productions to remove next
from the grammar. In fact, after completing the first phase, we
cycle through the remaining productions in their reverse hierar-
chical order. For every (A → t) ∈ P we check if savG(A) ≤ 0. If
this proves to be true, we eliminate (A → t). That way |G| and
|N| are possibly further reduced.

The following example shows that the size of the final grammar
generated by the Re-pair for Trees algorithm may depend on the
order in which possible inefficient productions are eliminated.

Example 29 Consider the linear SLCF tree grammar G = (N, P, S),
where N = {S, A, B} and P is the following set of productions:

S→ f (A(a, a), B(A(a, a)))

A(y1, y2)→ f (B(y1), y2)

B(y1)→ f (y1, a)

Let us assume that the grammar G was generated by the replace-
ment step of our algorithm and that we now want to remove all
inefficient productions. We have savG(A) = −1 and savG(B) = 0,
i. e., the productions with left-hand sides A and B do not con-
tribute to a small representation of the input tree val(G). Let us
consider the following two cases:

(1) If we eliminate the production with left-hand side A, we ob-
tain the grammar G1 = (N1, P1, S1), where N1 = {S1, B1} and
P1 is the following set of productions:

S1 → f (f (B1(a), a), B1(f (B1(a), a)))

B1(y1)→ f (y1, a)

re-pair for trees 30

We have |G1| = 11 and savG1(B1) = 1, i. e., the production with
left-hand side B1 is not considered inefficient.

(2) In contrast, the elimination of the production with left-hand
side B yields the linear SLCF tree grammar G2 = (N2, P2, S2),
where N2 = {S2, A2} and P2 is the following set of produc-
tions:

S2 → f (A2(a, a), f (A2(a, a), a))

A2(y1, y2)→ f (f (y1, a), y2)

We also eliminate the production with left-hand side A2 since
we have savG2(A2) = 0. This leads to an updated grammar
G2 = (N2, P2, S2), where N2 = {S2} and P2 contains solely the
production

S2 → f (f (f (a, a), a), f (f (f (a, a), a), a)) .

We have |G2| = 12.

This case distinction shows that the order in which inefficient pro-
ductions are eliminated has an influence on the size of the final
grammar (since |G1| < |G2|). Let us consider the sequence A, B, S
which is the only way to enumerate the nonterminals from N in
hierarchical order. Due the fact that the above described heuristic
cycles through the productions in their reverse hierarchical order
to eliminate inefficient productions we would obtain the larger
grammar G2 if we would execute the pruning step with G as the
input grammar.

Given the above example one might expect better compression
results if the inefficient productions are eliminated in the order of
their savG -values, i. e., if we would proceed as follows: as long as
their is a production whose left-hand side has a savG -value smaller
or equal to 0 we remove a production whose left-hand side has
the smallest occurring savG -value. However, our investigations
showed that this approach leads to unappealing final grammars —
at least for our set of test input trees. The grammars generated by
this approach exhibit nearly the same number of edges but much
more nonterminals (about 50% more) compared to the grammars
obtained using the above heuristic.

Note that it is not possible to already detect digrams leading to
inefficient productions during the replacement step. For instance,
we would not act wisely if we would ignore digrams occurring
only twice and exhibiting a large number of parameters a priori.

Example 30 Imagine an input tree t ∈ T(F) comprising two in-
stances of a large tree pattern t′ ∈ T(F ,Y). Let λt′(v) 6= λt′(u)
for all v, u ∈ domt′ , u 6= v. Furthermore, let us assume that all
symbols in the tree pattern t′ are not occurring outside of this pat-
tern. For every digram α occurring in the tree pattern t′ (whose

re-pair for trees 31

digram α |occt0 (α)|
(title01, 1, isbn00) 5
(author01, 1, title01) 5
(book11, 1, author01) 4
(book11, 2, book11) 2
(book11, 2, book10) 1
(book10, 1, author01) 1
(books10, 1, book11) 1

Table 3.1.1: All digrams encountered
in the input tree t0 and their number
of non-overlapping occurrences.

digram α |occt1 (α)|
(author01, 1, A1) 5
(book11, 1, author01) 4
(book11, 2, book11) 2
(book11, 2, book10) 1
(book10, 1, author01) 1
(books10, 1, book11) 1

Table 3.1.2: All digrams encountered
in the tree t1 and their number of non-
overlapping occurrences.

digram α |occt2 (α)|
(book11, 1, A2) 4
(book11, 2, book11) 2
(book11, 2, book10) 1
(book10, 1, A2) 1
(books10, 1, book11) 1

Table 3.1.3: All digrams encountered
in the tree t2 and their number of non-
overlapping occurrences.

replacement may firstly lead to a production with a large number
of parameters) we would have |occt(α)| = 2. It becomes clear that
this great redundancy in the input tree t, which can be represented
by a production with right-hand side t′, would not be detected if
we would not carry out these initially anything but efficient seem-
ing digram replacements.

3.4 Complete Example

Let the tree depicted in Fig. 2.6 be our input tree t0 and let there be
no restrictions on the maximal rank allowed for a nonterminal. We
set G0 = (N0, P0, S0), where N0 = {S0} and P0 solely contains the
production (S0 → t0). Table 3.1.1 shows every digram α encoun-
tered in t0 along with its number of non-overlapping occurrences
|occt0(α)|. Furthermore, this table tells us that the two digrams
(title01, 1, isbn00) and (author01, 1, title01) are the most frequent di-
grams occuring in t0. We decide to replace the former digram and
therefore have max(t0) = (title01, 1, isbn00) =: α0.

books10

book11

author01

A1

· · · book11

author01

A1

4 times

book10

author01

A1

Figure 3.5: Tree t1 which evolved from
the input tree t0 in the first iteration of
our computation.

Now, in the first iteration of our computation, we generate a
new grammar G1 = (N1, P1, S1) as follows. We introduce a new
nonterminal A1 ∈ N0 and set N1 = {S1, A1}. We introduce the
new production

(
A1 → pat(α0)

)
, where pat(α0) = title01(isbn00).

Finally, we set P1 = {
(
S1 → t1

)
,
(

A1 → pat(α0)
)
}, where we have

t1 = t0[α0/A1]. The tree t1 is depicted in Fig. 3.5.
In the second iteration, during which we generate the grammar

G2 = (N2, P2, S2), we have max(t1) = (author01, 1, A1) =: α1 as it
can be seen in Table 3.1.2. Again, we introduce a new nonterminal
A2 ∈ N0 with right-hand side pat(α1), set N2 = {S2, A1, A2} and
set P = {(S2 → t2),

(
A1 → pat(α0)

)
,
(

A2 → pat(α1)
)
}, where

t2 = t1[α1/A2] (see Fig. 3.6).

books10

book11

A2

· · · book11

A2

4 times

book10

A2

Figure 3.6: Tree t2 which evolved from
the tree t1 in the second iteration of our
computation.We have max(t2) = (book11, 1, A2) =: α2 (cf. Table 3.1.3) in the

third iteration of our algorithm. This time, we need to introduce
a new nonterminal A3 ∈ N1, i. e., a nonterminal with one pa-
rameter, with right-hand side pat(α2) = book11(A2, y1). We ob-
tain the grammar G3 = (N3, P3, S3), where N3 = {S3, A1, A2, A3},
P3 = (P2 \ {(S2 → t2)}) ∪ {(S3 → t3), (A3 → pat(α2))} and
t3 = books10(A3(A3(A3(A3(book10(A2)))))) by replacing the 4 oc-

re-pair for trees 32

currences of α2.
In the fourth and last iteration the digram (A3, 1, A3) is replaced

by a new nonterminal A4 ∈ N1. Therefore, we obtain the gram-
mar G4 = (N4, P4, S4) with 10 edges and 5 nonterminals, where
we have N4 = {S4, A1, A2, A3, A4} and P4 is the following set of
productions:

S4 → books10(A4(A4(book10(A2))))

A4(y1)→ A3(A3(y1))

A3(y1)→ book11(A2, y1)

A2 → author01(A1)

A1 → title01(isbn00)

Finally, in the pruning step, we begin with merging the right-hand
side of A1 with the right-hand side of A2 since |refG4(A1)| = 1,
i. e., it is only referenced once. This yields the updated production(

A2 → author01(title01(isbn00))
)
. Furthermore, we roll back the

replacement of the digram (A3, 1, A3) due to the fact that it does
not contribute to the reduction of the total number of edges. Al-
though the production with left-hand side A4 is referenced twice
in the right-hand sides of G4 and removes redundancy this gain is
neutralized by the necessary edge to the parameter node. This is
indicated by the savG4 value of A4:

savG4(A4) = |refG4(A4)| · (|A3(A3(y1))| − rank(A4))

− |A3(A3(y1))|
= 2 · (2− 1)− 2 = 0

With these adjustments we obtain the linear SLCF tree grammar
G = (N, P, S4), where N = {S4, A2, A3} and P is the following set
of productions:

S4 → books10(A3(A3(A3(A3(book10(A2))))))

A3(y1)→ book11(A2, y1)

A2 → author01(title01(isbn00))

Compared to the grammar G4 it has the same number of edges
(namely 10) but nearly half as much nonterminals only.

3.5 Another Example

It is very unlikely to be confronted with an XML document tree
which, in the binary tree model, is represented by a perfect bi-
nary tree2. Nevertheless we want to investigate the compression

2 A perfect binary tree is a binary tree in
which every node is either of rank 2 or
0 and all leaves are at the same level
(i. e., the paths to the root are of the
same length). In contrast, a full binary
tree has no restrictions on the level of
the leaves, i. e., the only requirement is
that every node is either of rank 2 or 0.

performance of our algorithm on this kind of trees since it is an in-
teresting aspect from a theoretical point of view. Last but not least
our undertaking is justified by the fact that the actual Re-pair for
Trees algorithm is not restricted to applications processing XML
files but can be used in other applications as well. The latter, in
turn, may exhibit ranked trees similar to full binary trees.

re-pair for trees 33

f

f

f

f

a a

f

a a

f

f

a a

f

a a

f

f

f

a a

f

a a

f

f

a a

f

a a

Figure 3.7.1: The perfect binary tree t ∈ T(F)
consisting of 15 inner nodes and 16 leaves.

A1(y1)→ f (y1, a)

A2 → A1(a)

A3(y1)→ f (y1, A2)

A4 → A3(A2)

A5(y1)→ f (y1, A4)

A6 → A5(A4)

Figure 3.7.2: Production
generated before the prun-
ing step without the start
production.

A2 → f (a, a)

A4 → f (A2, A2)

A6 → f (A4, A4)

S→ f (A6, A6)

Figure 3.7.3: The set of pro-
ductions P after executing
the pruning step.

Let t ∈ T(F) be a sufficiently large perfect binary tree of which
each inner node is labeled by a terminal f ∈ F2 and each leaf
is labeled by a terminal a ∈ F0. A run of Re-pair for Trees on t
consists of 2 · (d − 1) iterations folding the input tree beginning
at its leaves, where d = depth(t). Thus, in the first two itera-
tions, the digrams formed by the leaf nodes and their parents
are replaced. We obtain the productions A1(y1) → f (y1, a) and
A2 → A1(a) each occurring 2d−1 times. Now, we undertake fur-
ther digram replacements in a bottom up fashion. In the (2i− 1)-
th and 2i-th iteration we replace two digrams resulting in the pro-
ductions A2i−1(y1) → f (y1, A2(i−1)) and A2i → A2i−1(A2(i−1)),
respectively, where 2 ≤ i ≤ d− 1.

The production with left-hand side A2k−1 is only referenced
once for every 1 ≤ k ≤ d − 1. Therefore, in the pruning step,
for every 1 ≤ k ≤ d− 1 the production with left-hand side A2k−1

is eliminated by merging its right-hand side with the right-hand
side of the production with left-hand side A2k. In particular, the
production with left-hand side A1 is merged with the production
for A2 resulting in a production A2 → f (a, a).

Finally, we obtain a linear SLCF tree grammar with d non-
terminals — including the left-hand side of the start production
S → f (A2(d−1), A2(d−1)) — and a total of 2 · d edges. Note that
even though some of the intermediate productions exhibit param-
eters the final grammar consists only of nonterminals of rank 0.
Thus, the generated grammar is a DAG and in this particular case
the minimal DAG of the input tree.

Example 31 Let t ∈ T(F) be the perfect binary tree from Fig. 3.7.1
with 30 edges and depth(t) = 4. A run of Re-pair for Trees initially
generates the 6 productions listed in Fig. 3.7.2. After the pruning
step we finally obtain the linear SLCF tree grammar G = (N, P, S),
where N = {A2, A4, A6, S} and the set of productions P consists
of the productions from Fig. 3.7.3. The size of G is |G| = 8.

re-pair for trees 34

3.6 Unlimited Maximal Rank

It seems natural to assume that, in general, trees can be com-
pressed best by the Re-pair for Trees algorithm if there are no re-
strictions on the maximal rank of a nonterminal. However, it turns
out that there are (not so uncommon) types of trees for which the
opposite is true. Firstly, in this section, we will construct a set of
trees whose compressibility is best if there are no restrictions on
the maximal rank of a nonterminal. After that, in the succeeding
section, we will present a set of trees whose compressibility is best
when restricting the maximal rank to 1.

Let us consider the infinite set M = {t1, t2, t3, . . .} ⊆ T(F) of
trees, where for all i ∈N>0 the tree ti has the following properties:

• The tree ti is a perfect binary tree of depth 2i.

• Each inner node of ti is labeled by the terminal f ∈ F2.

• Each leaf of ti is labeled by a unique terminal from F0, i. e., there
do not exist two different leaves which are labeled by the same
symbol.

Example 32 Figure 3.8.1 shows a simplified depiction of the tree
t3 ∈ M. The inner nodes labeled by the symbol f ∈ F2 are rep-
resented by a circle filled with paint. In contrast, the leaves, of
which each is labeled by a unique symbol from F0, are depicted
by a circle which is not filled with paint.

The tree t3 is compressed by a run of our algorithm as fol-
lows. The digrams (f , 1, f) and (f , 2, f) occur equally often in
t3. It makes no difference to the size of the final grammar whether
we replace the former or the latter. Let us replace the digram
(f , 2, f) (whose occurrences are painted in green in Fig. 3.8.1) by
a nonterminal A1 ∈ N3 with right-hand side f (y1, f (y2, y3)). We
obtain the tree of the form shown in Fig. 3.8.2. After that, the di-
gram (A1, 1, f), which occurs the same number of times as (f , 2, f)
did, is replaced by the nonterminal A2 ∈ N4 with right-hand side
A1
(

f (y1, y2), y3, y4
)
. The occurrences of (A1, 1, f) are marked with

green paint in Fig. 3.8.2. The right-hand side of the nonterminal
A1 is merged with the right-hand side of A2 during the pruning
step since A1 is only referenced once. This yields the production
with left-hand side A2 and right-hand side f

(
f (y1, y2), f (y3, y4)

)
.

After the replacement of the above two digrams the right-hand
side of the start production is a 4-ary tree of depth 4 whose inner
nodes are labeled by A2 (see Fig. 3.8.3). Now, the digrams

(A2, 1, A2), (A2, 2, A2), (A2, 3, A2), (A2, 4, A2)

occur equally often. Again, the order of the digram replacements
makes no difference to the final grammar. Assuming that at first
we replace the digram (A2, 4, A2), which is marked with green
paint in Fig. 3.8.3, by a new nonterminal A3, we obtain the tree

re-pair for trees 35

Figure 3.8.1: The tree t3 ∈ M.

Figure 3.8.2: The tree t3 ∈ M after replacing the digram (f , 2, f).

Figure 3.8.3: The tree t3 ∈ M after the second iteration, i. e., after replacing the digrams (f , 2, f) and (A1, 1, f).

Figure 3.8.4: The tree which remains after replacing the digram (A2, 4, A2) in the tree from Fig. 3.8.3.

Figure 3.8.5: The tree t3 ∈ M after 6 iterations of our algorithm. We obtained a 16-ary tree whose inner nodes are labeled by the
nonterminal A6.

re-pair for trees 36

Bi−1

Bi−1

y1 y2 yr

Bi−1

yr+1 yr+2 y2·r

Bi−1

y(r−1)·r+1 y(r−1)·r+2 yr2

Figure 3.9: Right-hand side si of the
nonterminal Bi , where r = rank(Bi−1)
and i > 1.shown in Fig. 3.8.4. After that, the digrams (A3, 3, A2), (A4, 2, A2)

and (A5, 1, A2) are replaced in three additional iterations. The
above four digram replacements result in a new production

A6(y1, . . . , y16)→ A2
(

A2(y1, . . . , y4), . . . , A2(y13, . . . , y16)
)

after pruning the grammar. The remaining tree is a 16-ary tree of
depth 2 (of the form depicted in Fig. 3.8.5) whose inner nodes are
labeled by the nonterminal A6. In this tree there is no digram oc-
curring more than once. Therefore, the execution of our algorithm
stops.

Now, we want to analyze the behavior of Re-pair for Trees on a
tree from M in general. Let x ∈ N>0 and let it : N>0 → N>0 be
the following function:

it(x) =
x−1

∑
i=0

22i

Let B1, B2, B3, . . . be a sequence of nonterminals where for all i > 0
the following conditions are fulfilled:

• rank(Bi) = 22i

• si ∈ T(F ∪N ,Y) is the right-hand side of Bi

• If i = 1, we have si = f (f (y1, y2), f (y3, y4)) and if i > 1, the tree
si is of the form shown in Fig. 3.9, where r = rank(Bi−1) = 22i−1

.

Regarding the nonterminals A2 and A6 from Example 32, we have
B1 = A2 and B2 = A6, respectively. Let i ∈ {1, 2, . . . , k}. The
following two equations hold:

rank(Bi) = 22i
= 22i−1 · 22i−1

= rank(Bi−1)
2 (3.1)

|si| = rank(Bi) + rank(Bi−1) (3.2)

For convenience, we define rank(B0) = rank(f) = 2.
Now assume that we have an unlimited maximal rank allowed

for a nonterminal. After it(n) iterations on tn+1 ∈ M we have
obtained the nonterminals B1, B2, . . . , Bn. The right-hand side of
the start nonterminal is a rank(Bn)-ary tree of height 2 (see also
Example 32, where n = 2). At this point, no further replacements

re-pair for trees 37

Bn−1

y1 y2 yr−h Bn−1

yr−h+1 yr−h+2 y2r−h

Bn−1

y1+h(r−1) y2+h(r−1) yr+h(r−1)

(r − h) many h many

r many r many

Figure 3.10: Right-hand side of the
nonterminal C, where r = rank(Bn−1).

are carried out. For each of the generated nonterminals B1, . . . , Bn

we have
|refG(Bi)| = rank(Bi) + 1 , (3.3)

where i ∈ {1, 2, . . . , n} (cf. Fig. 3.9). Hence, we have

savG(Bi) = |refG(Bi)| · rank(Bi−1)− |si|
(3.2)
= |refG(Bi)| · rank(Bi−1)− rank(Bi)− rank(Bi−1)

(3.3)
= rank(Bi) · rank(Bi−1)− rank(Bi)

(3.1)
= rank(Bi−1)

3 − rank(Bi−1)
2 > 0

since rank(Bi−1) ≥ rank(B0) = 2. Therefore, none of the nontermi-
nals B1, . . . , Bn will be eliminated in the pruning step.

Now assume that the maximal rank is m ∈ N, i. e., we have
m < ∞. Choose the smallest n ∈N such that

22n
> m . (3.4)

Thus, Bn is the first nonterminal in the sequence B1, B2, . . . with a
rank bigger than m. Let us consider a run of Re-pair for Trees on
a tree tj ∈ M with j ≥ n + 1. Then, as above, the nonterminals
B1, . . . , Bn−1 will be obtained after it(n− 1) iterations (if we would
prune the corresponding grammar by now). At this point, the
right-hand side of the start production is a 22n−1

-ary tree of height
2j/2n−1 ≥ 4, where all inner nodes are labeled by the nonterminal
Bn−1. Now, we can carry out h additional digram replacements
leading to the nonterminals C1, C2, . . . , Ch ∈ N , where

h = max{l ∈N | r + l · (r− 1) ≤ m} (3.5)

and r = rank(Bn−1) = 22n−1
. We claim that

r = rank(Bn−1) > h (3.6)

holds. To see this, let us assume that r = rank(Bn−1) ≤ h. We have

m
(3.5)
≥ r + h · (r− 1) ≥ r + r · (r− 1) = r2 = 22n

.

However, this contradicts (3.4).

re-pair for trees 38

Figure 3.11: Right-hand side of the
current start production after replac-
ing the digram (A3, 3, A2).If we have h > 0, then we need to consider the following: After

the pruning step, the nonterminals C1, C2, . . . , Ch form one nonter-
minal C ∈ N with rank(C) = h · r + r − h = r + h · (r − 1) (see
Fig. 3.10). It occurs at least 22n

+ 1 = r2 + 1 many times according
to (3.3) (the nonterminal C occurs as often as Bn does after it(n)
iterations on tj in the unlimited case). Each occurrence of C re-
duces the size of the corresponding grammar by h edges and the
right-hand side of C consists of r + h · r edges (see Fig. 3.10). Now,
let us consider the sav-value of C (assuming that G is the current
grammar after it(n) + h iterations):

savG(C) = |refG(C)| · h− (r + h · r)
≥ (r2 + 1) · h− h · r− r

= (r2 − r + 1) · h− r

≥ r2 − 2r + 1

= (r− 1)2

Thus, we have savG(C) > 0, i. e., the nonterminal C is not elimi-
nated during the pruning step.

Example 33 Let us assume that the maximal rank for a nontermi-
nal is restricted to 10 in Example 32. In this case we are able to
undertake exactly one additional digram replacement in the tree
from Fig. 3.8.4 resulting in a new nonterminal A4 ∈ N10. If we re-
place the digram (A3, 3, A2), we obtain the tree shown in Fig. 3.11.
We have n = 2, h = 2 and C = A4. After the pruning step, the
right-hand side of A4 is of the form

A2(y1, y2, A2(y3, y4, y5, y6), A2(y7, y8, y9, y10)) .

We can further state that the nonterminal Bn−1 is not eliminated
since it occurs h+ 1 times in the right-hand side of C (see Fig. 3.10)
and (r − h) · |refG(C)| ≥ (r − h) · (r2 + 1) times in the right-hand
side of the current start production (below each occurrence of C
there are r − h occurrences of Bn−1 and C occurs at least r2 + 1
times). Therefore, we have

|refG(Bn−1)| ≥ h + 1 + (r− h) · (r2 + 1)

= h + 1 + r3 − hr2 + r− h

= r3 − hr2 + r + 1 .

re-pair for trees 39

Tree ti depth(ti) |ti| |G4| |G∞|
t2 4 30 26 26
t3 8 510 346 298
t4 16 131070 87386 66090

Table 3.2: Comparison of the sizes of
the final grammars.

Because of (3.6), the inequality |refG(Bn−1)| > r + 1 holds. As
shown before for the unlimited rank, in this case Bn−1 has a sav-
value bigger than 0 and therefore the nonterminals B1, B2, . . . , Bn−1

are not eliminated.
Let Gm ′ be the grammar which is obtained after it(n − 1) + h

iterations on the tree tj when restricting the maximal rank to m and
let G∞ ′ be the current grammar after it(n) iterations on tj when an
unlimited rank is allowed. We can conclude that |Gm ′| > |G∞ ′|
holds — no matter whether we have h > 0 or h = 0 — because of
the following two facts:

(1) Each occurrence of Bn saves rank(Bn−1) edges (see Fig. 3.9) and
therefore according to (3.6) more than an occurrence of C does.
The nonterminals Bn and C occur equally often. However, C
is only existent if h > 0.

(2) The nonterminals B1, B2, . . . , Bn−1 (which are existent in both
grammars, Gm ′ and G∞ ′) and the nonterminals Bn and C are
not eliminated during the pruning step.

Let Gm (G∞) be the final grammar which is generated by a run
of Re-pair for Trees on the tree tj when restricting the maximal
rank of a nonterminal to m (not restricting the maximal rank). We
have Gm = Gm ′ and |G∞| ≤ |G∞ ′|. The latter holds because with
every additional digram replacement at least one edge is absorbed
and because during the pruning step only nonterminals with a
sav-value smaller than or equal to 0 are eliminated. Therefore
|Gm| > |G∞| holds. Thus, we have shown that, in general, the
trees from M can be compressed best if there are no restrictions
on the maximal rank allowed for a nonterminal.

Example 34 Table 3.2 shows a comparison of the grammars gen-
erated by different runs of our algorithm on the trees t2, t3 and t4

from M. By G4 (G∞) we denote the final grammar which is gen-
erated when restricting the maximal rank to 4 (not restricting the
maximal rank).

3.7 Limiting the Maximal Rank

In the preceding section we investigated a set of trees whose com-
pressibility was best if we did not restrict the maximal rank of a
nonterminal. Now, we want to construct a set of trees which be-
haves contrarily, i. e., we construct trees which can be compressed
best if we limit the maximal rank of a nonterminal to 1. In order
to make it easier to quickly understand the following definition

re-pair for trees 40

we want to refer the reader to Fig. 3.12.1 which shows one of the
trees we define in the sequel.

First of all, let us define a labeling function l : N→ F0, where

l(i) =



a if i ≡ 0 mod 5

b if i ≡ 1 mod 5

c if i ≡ 2 mod 5

d if i ≡ 3 mod 5

e if i ≡ 4 mod 5

and i ∈ N. Now, we are able to define for all integers n ∈ N the
ordered tree sn = (domsn , λsn) ∈ T(F), where

domsn =

(
2n⋃

i=0

[2]i
)
∪
(

2n−1⋃
i=0

[2]i[1]

)

and

λsn(v) =


f ∈ F2 if v = [2]i, 0 ≤ i < 2n

l(i) ∈ F0 if v = [2]i[1], 0 ≤ i < 2n

l(2n) ∈ F0 if v = [2]2
n

.

Let us define U = {sn | n ∈ N, n ≥ 3}. In the following we
will show that for every run of Re-pair for Trees on a tree s ∈ U
we have |G1| < |G∞|, where G1 is the grammar generated when
allowing a maximal rank of 1 for a nonterminal and G∞ is the
resulting grammar when there is no restriction on the maximal
rank.

Let us consider a run G∞
0 ,G∞

1 , . . . ,G∞
n−1 of the Re-pair for Trees

algorithm on the tree sn with no restrictions on the maximal rank
of a nonterminal, where G∞

i = (Ni, Pi, Si), (Si → ti) is the start
production of G∞

i and i ∈ {0, 1, . . . , n− 1}. In the first iteration of
our computation the digram (f , 2, f) is the most frequent digram,
i. e., max(t0) = (f , 2, f). This is because of |occsn

(
(f , 2, f)

)
| = 2n−1

whereas for every x ∈ {a, b, c, d, e} the inequality

|occsn

(
(f , 1, x)

)
| ≤ d2n/5e

holds. Therefore, we replace the digram (f , 2, f) by a new nonter-
minal A1 and obtain G∞

1 . In every subsequent iteration i we re-
place the digram max(ti−1) = (Ai−1, 2i−1 + 1, Ai−1) by a new non-
terminal Ai, where i ∈ {2, 3, . . . , n− 1}. For every 1 ≤ i ≤ n− 1
the right-hand side of the start production of the grammar G∞

i is
given by the tree ti = (domti , λti), where

domti =

2n−i⋃
j=0

[
2i + 1

]j
 ∪

 2i⋃
k=1

2n−i−1⋃
j=0

[(
2i + 1

)]j
[k]



re-pair for trees 41

and

λti (v) =


Ai ∈ N2i+1 if v = [2i + 1]j with 0 ≤ j ≤ 2n−i − 1 ,

l(j · 2i + k− 1) if v = [2i + 1]j[k] with 0 ≤ j ≤ 2n−i − 1 and 1 ≤ k ≤ 2i ,

l(2n) if v = [2i + 1]2
n−i

.

Example 35 The Figs. 3.12.1, 3.12.2, 3.12.3 and 3.12.4 show the
right-hand sides of the start productions of the grammars G0, G1,
G2 and G3 generated by a run of our algorithm on the tree s4.

In order to argue that we have max(ti) = (Ai, 2i + 1, Ai) =: αi

for every 0 < i < n, we investigate the number of occurrences
of all digrams occurring in the right-hand side of G∞

i ’s start pro-
duction. Firstly, it is easy to verify that |occti (αi)| = 2n−i−1. In
contrast, for every 1 ≤ k ≤ 2i and x ∈ {a, b, c, d, e} the inequality
|occti

(
(Ai−1, k, x)

)
| ≤

⌊
2n−i/5

⌋
holds. This is because every power

of 2 is not divisible by 5, i. e., for every 1 ≤ k ≤ 2i and every
0 ≤ j ≤ 2n−i − 5 we have

λti ([2
i + 1]j[k]) 6= λti ([2

i + 1]j+1[k]) 6= λti ([2
i + 1]j+2[k])

6= λti ([2
i + 1]j+3[k]) 6= λti ([2

i + 1]j+4[k]) .

Due to the fact that we do not replace digrams with child symbols
a, b, c, d or e, the right-hand side of G∞

n−1’s start production has
to contain at least 2n nodes labeled by these symbols, i. e., we can
conclude that |G∞

n−1| ≥ 2n. Therefore the compression ratio cannot
be better than 50%.

In contrast, a run G1
0 ,G1

1 , . . . ,G1
k of our algorithm on sn leads to

a significantly better compression ratio when restricting the max-
imal rank to 1, where k ∈ N>0, G1

i = (Ni, Pi, Si), (Si → ti) is
the start production of G1

i and i ∈ {0, 1, . . . , k}. In the first itera-
tion we have max1(t0) 6= (f , 2, f), since a replacement of (f , 2, f)
would result in a nonterminal with a rank greater than 1. There-
fore only the digrams (f , 1, a), (f , 1, b), (f , 1, c), (f , 1, d), (f , 1, e)
and subsequent digrams can be replaced. It turns out that after
the first nine iterations the pattern f (a, f (b, f (c, f (d, f (e, . . .)))) is
represented by a new nonterminal A9 with rank(A9) = 1. The
actual order of the replacements within the first nine iterations
depends on the method used to choose a most frequent digram
when there are multiple most frequent digrams. Refer to Example
36 for one possible proceeding.

The right-hand side of G9’s start production is a degenerated
tree mainly consisting of consecutive nonterminals A9. The cor-
responding nodes — there are roughly 2n/5 of them — are then
boiled down using approximately log2(2n/5) digram replacements.
Therefore the number of total edges of the resulting grammar is
in O(n), i. e., it is of logarithmic size (the size of the input tree sn

is 2n+1 + 1). Thus, we were able to construct a set of trees which
exhibit a better compressibility when restricting the maximal rank
of a nonterminal to 1.

re-pair for trees 42

f

a
f

b
f

c
f

d
f

e
f

a
f

b
f

c

f

d
f

e
f

a
f

b
f

c
f

d
f

e
f

a
b

Figure 3.12.1: The tree s4 ∈ U which is the right-hand
side of G0’s start production.

A1

a
b

A1

c
d

A1

e
a

A1

b c
A1

d e
A1

a
b

A1

c
d

A1

e
a

b

Figure 3.12.2: The right-hand side of G1’s start production.

A2

a

b

c

d

A2

e

a

b

c

A2
d

e

a

b

A2

c

d

e

a

b

Figure 3.12.3: The right-hand side of G2’s start production.

A3

a

b

c

d

e

a

b

c

A3

d

e

a

b

c

d

e

a

b

Figure 3.12.4: The right-hand side of G3’s start production.

re-pair for trees 43

Iteration Replaced digram New nonterminal cf. Figure

1 (f , 1, a) A1 3.13.2
2 (f , 1, b) A2 3.13.3
3 (A1, 1, A2) A3 3.13.4
4 (f , 1, c) A4 3.13.5
5 (f , 1, d) A5 3.13.6
6 (A3, 1, A4) A6 3.13.7
7 (A6, 1, A5) A7 3.13.8
8 (f , 1, e) A8 3.13.9
9 (A7, 1, A8) A9 3.13.10

Table 3.3: A run of Re-pair for Trees on
the tree s4 ∈ U with a maximal nonter-
minal rank of 1.

Example 36 Let us consider a run of Re-pair for Trees on the tree
s4 ∈ U when restricting the maximal rank of a nonterminal to 1
(see Fig. 3.13.1 for a depiction of s4). Table 3.3 shows one of sev-
eral possible orders of digram replacements and the Figs. 3.13.2–
3.13.10 show how the right-hand sides of the start productions
evolve.

re-pair for trees 44

f
a

f

b
f

c
f

d
f

e
f

a
f

b
f

c

f

d
f

e
f

a
f

b
f

c
f

d
f

e
f

a
b

Figure 3.13.1: Right-hand side of S0.

A1

f

b
f

c
f

d
f

e
A1

f

b
f

c

f

d
f

e
A1

f

b
f

c
f

d
f

e
A1

b

Figure 3.13.2: Right-hand side of S1.

A1

A2

f
c

f

d
f

e
A1

A2

f
c

f

d
f

e
A1

A2

f
c

f

d
f

e
A1

b

Figure 3.13.3: Right-hand side of S2.

A3

f
c

f

d
f

e
A3

f
c

f

d
f

e
A3

f
c

f

d
f

e
A1

b

Figure 3.13.4: Right-hand side of S3.

A3

A4

f

d
f

e
A3

A4

f

d
f

e
A3

A4

f

d
f

e
A1

b

Figure 3.13.5: Right-hand side of S4.

A3

A4

A5

f
e

A3

A4

A5

f
e

A3

A4

A5

f
e

A1

b

Figure 3.13.6: Right-hand side of S5.

A6

A5

f
e

A6

A5

f
e

A6

A5

f
e

A1

b

Figure 3.13.7: Right-hand side of S6.

A7

f
e

A7

f
e

A7

f
e

A1

b

Figure 3.13.8: Right-
hand side of S7.

A7

A8

A7

A8

A7

A8

A1

b

Figure 3.13.9: Right-
hand side of S8.

A9

A9

A9

A1

b

Figure 3.13.10: Right-
hand side of S9.

4
Implementation Details

We implemented a prototype of the Re-pair for Trees algorithm,
named TreeRePair, running on XML documents. In the sequel, we
demonstrate that it produces for any XML document tree in O(|t|)
time a linear k-bounded SLCF tree grammar G, where k ∈ N is a
constant, val(G) = t and t ∈ T(F) is the binary representation of
the input tree.

There are several reasons to restrict the maximal rank to a con-
stant k. One of them is that only this way we are able to obtain
a linear-time implementation. Another reason is that for every
k-bounded linear SLCF tree grammar G generated by TreeRePair
it can be checked in polynomial time if a given tree automaton
accepts val(G) (using a result from [LM06]). Last but not least,
Sect. 3.7 on page 39 showed us that for flat XML documents lead-
ing to a right-leaning binary tree it is quite promising to restrict
the maximal rank. The latter reason is also supported by our ex-
periments with different maximal ranks on our test set of XML
documents.

On average, a maximal rank of 4 leads to the best compression
performance (cf. Sect. 6.7 on page 84). Due to this fact TreeRePair
generates 4-bounded linear SLCF tree grammars by default. This
can be adjusted by using the -max_rank switch.

4.1 Reading the Input Tree

The XML document tree of the input file can be directly trans-
formed into a binary F -labeled tree t = (domt, λt) ∈ T(F).1 The

1 Refer to Sect. 2.4 on page 20 for an
explanation of the binary tree model.XML document is parsed by a SAX-like parser calling the func-

tions start-element and end-element (see Figs. 4.1 and 4.2) of an
object taking care of the tree construction. The latter is called tree
constructor in the sequel.

re-pair for trees 46

1 FUNCTION start-element(name)
2 if (hierarchy_stack is not empty) then
3 i := index_stack.top() + 1;
4 index_stack.pop();
5 index_stack.push(i);
6
7 v := hierarchy_stack.top();
8
9 if (i = 1) then u := v1

10 else u := v2
11 endif
12
13 name_stack.push(name);
14 else
15 u := ε;
16 λt(ε) := name10;
17 endif
18
19 domt := domt ∪ {u};
20
21 index_stack.push(0);
22 hierarchy_stack.push(u);
23 ENDFUNC

Figure 4.1: The start-element function
which is called for every start-tag.

The tree constructor uses three stacks to properly encode the
SAX events. Firstly, the stack index_stack keeps track of the in-
dex2 of the current element read. The stack name-stack stores the

2 Analogously to our definition for
ranked trees: If an element is the n-
th child of its parent element, then the
index of this element is n.

element types of the elements in order to be able to update the
labeling function λt within the end-element function. Together
with the stack hierarchy_stack, which is used to maintain the
current sequence of parents within t, enough information stands
by to encode the SAX events.

To be more precise, if the parser encounters a start-tag, it ex-
tracts the element type of the element and passes it to the tree
constructor by calling the function start-element. If it is the first
call of start-element, we must be dealing with the root of the doc-
ument. Thus, the stack hierarchy_stack is empty and the else-
part beginning in line 15 is processed. First of all, the variable u is
identified with ε (and later added to the set domt). Afterwards, the
labeling function λt is updated accordingly. Since, in the binary
tree model, the root has no sibling nodes and since it is assumed
that the input tree consists of at least two nodes, it is clear that the
terminal symbol labeling the root node will have a left child but
no right child (therefore the superscript 10 in line 16).

If we consider a subsequent call of start-element, the hier-
archy stack is not empty and therefore the if-part is processed.
Firstly, the index stack is updated in the lines 3–5 and after that
the node v ∈ domt is retrieved from the hierarchy stack (line 7).
The tree node v will be the parent of the node which is added in
the following. We introduce a new node u which is later (but still
in the same call of this function) added to domt (line 19). The node
u becomes the left child of v if it represents the first child element

re-pair for trees 47

1 FUNCTION end-element
2 i := index_stack.top();
3 repeat i times
4 v := hierarchy_stack.top();
5 name := name_stack.top();
6
7 l := 0, r := 0;
8 if (v1 ∈ domt) then
9 l := 1;

10 endif
11 if (v2 ∈ domt) then
12 r := 1;
13 endif
14

15 λt(v) := namelr;
16
17 hierarchy_stack.pop();
18 name_stack.pop();
19 endrepeat
20 index_stack.pop();
21 ENDFUNC

Figure 4.2: The end-element function
which is called for every end-tag en-
countered in the input XML docu-
ment.

of the element which is represented by v. In contrast, u becomes
a right child if the current index i is greater than one, i. e., if the
element being processed is a sibling element of the element repre-
sented by v. Regarding the node u, we are unable to update the
labeling function λt at this time since we do not know if the XML
element being processed has children or sibling elements.

If an end-tag is encountered by the input parser, the function
end-element listed in Fig. 4.2 is called. Now, the index of the cur-
rent XML element is consulted in order to bubble up the sequence
of parents stored by the hierarchy stack the correct number of
times. Lastly, after processing the repeat loop, the node repre-
senting the first child element of the current XML element (the
end-tag of its last child element was just read) is on top of the
hierarchy stack. For every node v ∈ domt which is removed from
the hierarchy stack within the repeat loop the labeling function
λt is updated.

Example 37 Figure 4.3 considers the first calls to the functions
start-element() and end-element(), respectively, when parsing
the input tree from Fig. 2.5. It shows the content of the three stacks
after the body of the corresponding function has been executed,
where is denotes the index stack, hs denotes the hierarchy stack
and ns denotes the name stack. Regarding Fig. 4.3, the element
on top of the stack is always the upper element in the depiction
of the corresponding stack. If there has not been assigned a la-
bel to a node, i. e., the labeling function λ has not been updated
accordingly yet, the node is depicted in brackets.

The binary representation of the input tree can be obtained in lin-
ear runtime since the function start-element and the function
end-element, respectively, are each called only once for every node

re-pair for trees 48

of the input tree. Furthermore, the body of the repeat loop of the
latter function is executed once for every input node (except for
the root node).

Re-pair for Trees on Multiary Trees Another way of modeling an
XML document tree in a ranked way is the multiary tree model. In
contrast to the binary tree model (which we described in Sect. 2.4
on page 20), this model does not encode the input tree by a binary
tree but it turns the input tree into a ranked tree by introducing a
terminal symbol for each element type/number of children com-
bination which occurs in the input tree. Let us assume that an
element type occurs three times and that there are three different
numbers of children attach to the corresponding elements. In the
multiary tree model, there are introduced three different terminal
symbols.

During our investigations we also evaluated a TreeRePair ver-
sion based on the multiary tree model. However, this modified
version of our algorithm was outperformed by the original version
in terms of compression ratio. This is due to the nature of typical
XML documents. XML elements encountered in real-world XML
documents often exhibit a long list of children elements. There-
fore, compared to the binary tree model, a multiary tree model
representation of an XML document leads to a higher number
of different digrams occurring less often. This, in turn, reduces
TreeRePair’s ability to compress the XML document tree by the
same degree as it is possible for the binary case.

Example 38 Consider for example the XML document tree from
Fig. 2.5. The element of type books has five children elements of
type book, i. e., each of the five digrams

(books, 1, book), (books, 2, book), . . . , (books, 5, book)

occurs only once. None of these digrams is replaced by TreeRe-
Pair since a replacement is only reasonable if the corresponding
digram occurs at least twice. In contrast, the binary tree model
leads to two occurrences of the digram (book, 1, book) which can
be replaced by a new nonterminal symbol in a run of TreeRePair
(cf. Fig. 2.6).

4.2 Representing the Input Tree in Memory

In this section we show that the ranked input tree of our algorithm
can be efficiently stored as a DAG in memory. This DAG represen-
tation can be made nearly transparent to the rest of the algorithm
(cf. Sect. 4.5 on page 58).3 Thus, by default, the tree constructor of

3 Note that the DAG representation
can also be circumvented by using the
-no_dag switch. In this case the whole
binary tree with all its possible redun-
dancy is constructed in main memory.

our prototype does not only directly transform the XML document
tree into a ranked representation but also infers the correspond-
ing minimal 0-bounded SLCF tree grammar G = (N, P, S), i. e., the
minimal DAG, of the latter on the fly.

re-pair for trees 49

(1) Function call start-element(books)

0 ε

is hs ns
books10

(2) Function call start-element(book)

0 1
1 ε book

is hs ns

books10

(1)

(3) Function call start-element(author)

0 11
1 1 author

1 ε book

is hs ns

books10

(1)

(11)

(4) Function call end-element()

11
1 1 author

1 ε book

is hs ns

books10

(1)

(11)

(5) Function call start-element(title)

112
0 11 title

2 1 author

1 ε book

is hs ns

books10

(1)

(11)

(112)

(6) Function call end-element()

112
11 title

2 1 author

1 ε book

is hs ns

books10

(1)

(11)

(112)

(7) Function call start-element(isbn)

1122
112 isbn

0 11 title

3 1 author

1 ε book

is hs ns

books10

(1)

(11)

(112)

(1122)

(8) Function call end-element()

1122
112 isbn

11 title

3 1 author

1 ε book

is hs ns

books10

(1)

(11)

(112)

(1122)

(9) Function call end-element()

1
1 ε book

is hs ns

books10

(1)

author01

title01

isbn00

(10) Function call start-element(book)

12
0 1 book

2 ε book

is hs ns

books10

(1)

author01

title01

isbn00

(12)

(11) Function call start-element(book)

121
0 12 author

1 1 book

2 ε book

is hs ns

books10

(1)

author01

title01

isbn00

(12)

(121)

Figure 4.3: Content of the stacks after
each call of the start-element() and
end-element(), respectively, functions
when parsing the tree from Fig. 2.5. In
addition at each step their is a depic-
tion of the binary tree which is con-
structed so far.

re-pair for trees 50

In [BGK03] it has been demonstrated that the representation
of XML document trees based on the concept of sharing sub-
trees is highly efficient. Their experiments have shown that in
several cases the size of the DAG was less than 10% of the un-
compressed XML document tree. Therefore, the sharing of com-
mon subtrees enables us to load large XML documents trees which
would have otherwise exceeded the computation resources. In ad-
dition to that it avoids time consuming swapping and the repet-
itive re-computation of the same results concerning subtrees that
are shared.

Now, let us elaborate on how one can infer the DAG of the
ranked representation t = (domt, λt) ∈ T(F) of the XML docu-
ment tree. The tree constructor must check for every node which
is removed from the hierarchy stack in the end-element function if
the subtree rooted at this node can be shared. This can be accom-
plished by calling the function share-subtree listed in Fig. 4.4. To
gain insight into this function let us assume that we want to check
if the subtree t′ ∈ T(F) rooted at a node v ∈ domt can be shared.
If we already encountered an exact copy of t′ while reading the
input tree, all subtrees of t′ must have been shared before. Thus,
the tree t′ must be of depth 1 and all children nodes must be la-
beled by nonterminals of the DAG grammar G. Therefore, it is
only necessary to compare the labels of the root of t′ and its direct
children with those of all subtrees encountered until now. This
can be done in constant time with the help of a hash table.

Now, let us assume that we have processed an exact copy of
t′ earlier, i. e., t′ can be shared. Thus, the condition in line 3
is evaluated to true and the hash table subtrees_ht contains t′.
Hence, the else-part beginning in line 6 is processed. If there al-
ready exists a nonterminal B ∈ N with right-hand side t′ then
we set A := B. We can check this in O(1) time because with
each entry of the hash table subtrees_ht we can store a pointer
to the corresponding production. Otherwise, i. e., if there exists
no (B → t′′) ∈ P with t′ = t′′, we introduce a new nonterminal
A ∈ N0 \N with right-hand side t′ and replace the first occurrence
u of the subtree t′ by A. There can be only one earlier occurrence
of the subtree t′ since otherwise we would already have inserted
a corresponding production. Furthermore, we can guarantee con-
stant time access to u because with each entry in the hash table
subtrees_ht we can store a pointer to the corresponding first oc-
currence. Finally, we add the subtree rooted at the node parent(u)
to the hash table if all of its subtrees are shared. We do not need to
insert the subtree rooted at the node parent(v) since we will pro-
cess parent(v) in a later step (since we are traversing the input tree
in postorder). In contrast, if t′ was not encountered until now, we
add it to the hash table subtrees_ht (line 5) in order to be able to
share possible later occurrences of it.

Initially, i. e., after reading the input tree, all shared subtrees
are of depth 1. In order to reduce the number of nonterminals of

re-pair for trees 51

1 FUNCTION share-subtree(v)
2 let t′ be the subtree rooted at v;
3 if (∀1 ≤ i ≤ rank(λt(v)) : λt(vi) ∈ N0) then
4 if (subtrees_ht does not contain t′) then
5 insert t′ into subtrees_ht;
6 else
7 if (∃B ∈ N0 : (B→ t′) ∈ P) then
8 A := B;
9 else

10 choose nonterminal A ∈ N0 \ N;
11 N := N ∪ {A}; P := P ∪ {(A→ t′)};
12 let u be the node at which the first
13 occurrence of t′ is rooted;
14 replace subtree rooted at u by A;
15
16 w := parent(u);
17 if (∀1 ≤ i ≤ rank(λt(w)) : λt(wi) ∈ N0) then
18 let t′′ be the subtree rooted at w;
19 insert t′′ into subtrees_ht;
20 endif
21 endif
22
23 replace subtree rooted at v by A;
24 endif
25 endif
26 ENDFUNC

Figure 4.4: The function
share-subtree which checks for
the subtree rooted at the node
v ∈ domt if it can be shared. If this is
the case then the sharing is performed.

the DAG grammar (without increasing the number of total edges)
all productions referenced only once are eliminated. All in all,
the inferring of the DAG grammar needs linear time and can be
conveniently combined with the step of transforming the input
tree into a ranked tree.

4.3 Utilized Data Structures

The data structures we use in our implementation are similar to
those used in [LM00]. In order to be able to focus on the essentials,
we do not pay attention to the fact that, internally, the input tree
is represented by a DAG.

Let us assume that the binary input tree t = (domt, λt) ∈ T(F)
has been generated by our implementation after reading a corre-
sponding XML document tree. Hence, the tree t is the ranked
representation of the latter. In main memory, every node v ∈ domt

is represented by an object exhibiting several pointers. These al-
low constant time access to the parent and all children of the node
v and to the possible next and previous occurrences of the di-
gram α =

(
λt(v), i, λt(vi)

)
, where i ∈ {1, 2, . . . , rank(λt(v))}. The

pointers to the next and previous occurrences of α form a doubly
linked list of all the occurrences in occt(α). We call this type of list
an occurrences list (of α) in the sequel.4 The specific order of the

4 During our investigations we also im-
plemented a TreeRePair version avoid-
ing these doubly linked lists of occur-
rences. Instead, for every digram, we
used a hashed set storing pointers to
all occurrences. However, this version
had no benefits compared to the dou-
bly linked list approach but lead to
slightly longer runtimes. Considering
the memory usage, in some cases it
achieved better results while in others
a substantial increase was noticed.occurrences in an occurrences list is not relevant.

Every digram is represented by a special object. It exhibits two

re-pair for trees 52

pointers which reference the first and the last element of the cor-
responding occurrences list. Let us consider a digram α ∈ Π with
|occt(α)| = m, where m < b√nc and n = |t|. Then the corre-
sponding object exhibits two more pointers which point to the
next and previous, respectively, digram β ∈ Π with |occt(β)| = m.
These pointers form a doubly linked list of all digrams occurring
m times. We denote this type of list the m-th digram list. In con-
trast, all digrams γ ∈ Π with |occt(γ)| ≥ b

√
nc are organized in

one doubly linked list which is called the top digram list.
These doubly linked lists of digrams are again referenced by a

digram priority queue. This queue consists of b√nc entries. The i-th
entry stores a pointer to the head of the i-th digram list, where
1 ≤ i < b√nc. The b√nc-th entry references the head of the top
digram list. Refer to Sect. 4.4 on page 53 for an explanation on
why we designed the digram lists and priority queue as described
above. Lastly, there is a digram hash table storing pointers to all
occurring digrams. It allows constant time access to all digrams
and therefore constant time access to the first occurrence of each
digram.

Let us consider the following example to gain an insight into
the utilized data structures.

f

f

a f

a a

f

a f

a a

Figure 4.5: The tree t ∈ T(F) modeled
by the node objects from Fig. 4.8.

Example 39 Let us assume that the tree t = (domt, λt) ∈ T(F)
shown in Fig. 4.5 has been generated by our implementation after
reading a corresponding XML document tree. Then Fig. 4.8 shows
a simplified depiction of the data structures used to efficiently
replace the digrams in the replacement step. All non-null pointers
are represented by arrows starting in a filled circle and ending in
an empty circle. A filled circle without an outgoing arrow denotes
a null pointer.

With respect to Fig. 4.8, there is a total of 11 node objects repre-
senting tree nodes labeled by the two symbols f ∈ F2 and a ∈ F0.
An instance of a tree node v ∈ domt is represented by a tabular
box as it is shown in Fig. 4.6. Unlike depicted, in our implementa-
tion a symbol is not directly stored within the node structure but
for every unique symbol there is an object which is referenced by
the corresponding nodes. The upper left empty circle of the box
represents the memory address of the tree node instance. Thus,
every arrow representing a pointer to the latter will end in this
empty circle.

parent

children

next

previous

f

Figure 4.6: A graphical representation
of an object representing a tree node
labeled by f ∈ F .

(f , 1, a)

prev next

first last

Figure 4.7: A graphical representation
of a digram (f , 1, a) ∈ Π.

The filled circle in the first row of the tabular box represents
the pointer to the possible parent node parent(v). The pointer to
the i-th child vi of the node v is depicted by an arrow starting
at the filled circle in the i-th column of the children row, where
i ∈ {1, 2, . . . , rank(λt(v))}. Analogously, a pointer to a possible
next (previous) occurrence of the digram α =

(
λt(v), i, λt(vi)

)
is

represented by a filled circle in the i-th column of the row labeled
by next (previous, respectively), where i ∈ {1, 2, . . . , rank(λt(v))}.

Each digram (f , 1, f), (f , 2, a), (f , 2, f) and (f , 1, a) is repre-
sented by a tabular box (see Fig. 4.7). Again, unlike depicted,

re-pair for trees 53

in our implementation a symbol is not directly stored within the
digram structure but the latter contains two pointers to the ob-
jects representing a and b. The first and the last element of the
occurrences list of the digram α are referenced by the first and
last pointers of the object representing the digram α. The point-
ers prev (previous) and next are part of the |occt(α)|-th digram
list if |occt(α)| < b

√
nc and n = |t|. Otherwise they belong to the

top digram list.
The digram (f , 1, f) forms a trivial doubly linked list, namely,

the 1st digram list. The latter is referenced by the entry 1 of the
priority queue. The digram (f , 1, a) forms the (trivial) top digram
list which is referenced by the entry 3 of the priority queue. In
contrast, the digrams (f , 2, a) and (f , 2, f) each occur twice and
therefore point to each other with their next and previous point-
ers, respectively. The first element of the resulting 2nd digram list
is referenced by the entry 2 of the priority queue. The digram hash
table stores the pointers to all four occurring digrams.

4.4 Complexity of the TreeRePair Algorithm

Theorem 40 For any given input tree with n edges TreeRePair produces
in time O(|t|) a k-bounded linear SLCF tree grammar G, where k ∈ N

is a constant, val(G) = t and t ∈ T(F) is the binary representation of
the input tree.

It is straightforward to come up with a linear time implementation
of the pruning step of the Re-pair for Trees algorithm (cf. Sect. 3.3
on page 28). Therefore, we just want to investigate the complexity
of the replacement step which was described in Sect. 3.2 on page
27.

With every replacement of a digram occurrence one edge of
the input tree is absorbed. Therefore, a run of TreeRePair can
consist of at most n− 1 iterations, where n is the size of the input
tree. Each replacement of an occurrence can be accomplished in
O(1) time since at most k children need to be reassigned — in
our implementation, the reassignment of a child node is just a
matter of updating two pointers.5 For every production which is

5 As already mentioned at the begin-
ning of this chapter on page 45: The
maximal rank of a nonterminal of a
grammar generated by TreeRePair is
k ∈ N. The constant k can be speci-
fied by a command line switch.

introduced during a run of our algorithm it holds that the right-
hand side t is of size |t| < 2 + k, i. e., it can be constructed in
constant time.

However, to show that the replacement step can be performed
in linear time two more aspects need to be considered. Imagine
that we are in the i-th iteration of our algorithm (and Gi−1 is the
current grammar). Let t ∈ T(F ∪ N) be the right-hand side of
Gi−1’s start production.

(1) Updating the sets of non-overlapping occurrences

In every iteration of our algorithm we need to know the num-
ber of occurrences of each digram. Only in that case we are

re-pair for trees 54

Digram Hash Table

(f , 2, f)

(f , 1, a)

(f , 1, f)

(f , 2, a)

Digram Priority Queue

1 2 ≥ 3

Doubly Linked Digrams

(f , 1, f)
prev next

first last

(f , 2, a)
prev next

first last

(f , 2, f)
prev next

first last

(f , 1, a)
prev next

first last

Tree Nodes

parent

children

next

previous

f

parent

children

next

previous

f
parent

children

next

previous

f

parent

children

next

previous

f
parent

children

next

previous

f
parent

a
parent

a

parent

a
parent

a
parent

a
parent

a

Figure 4.8: A simplified depiction of a
part of the data structures used by our
implementation.

re-pair for trees 55

1 FUNCTION retrieve-all-occs(t)
2 v := ε;
3 while (true) do
4 v := next_in_postorder(t, v);
5 if (v 6= ε) then
6 α := (λt(parent(v)), index(v), λt(v));
7 if (v /∈ occt(α)) then
8 occt(α) := occt(α) ∪ {parent(v)}
9 endif

10 else
11 return;
12 endif
13 endwhile
14 ENDFUNC

Figure 4.9: The function
retrieve-all-occs which is used to
construct the set occt(α) for every
digram α ∈ Π occurring in the tree
t ∈ T(F ∪ N). It uses the function
next-in-postorder listed in Fig. 3.2.

able to determine the most frequent digram. In addition, for
replacing the digram maxk(t), we need to know occt(maxk(t)).
How can we compute the set occt(α) for every digram α ∈ Π
without traversing the whole right-hand side of the current
start production in each iteration?

(2) Retrieving the most frequent digram

Let us assume that there is an up to date set occt(α) available
for every α ∈ Π occurring in t (in the form of occurrences lists).
How do we determine the most frequent digram in constant
time?

In the following we consider each of the above aspects in detail.

4.4.1 Updating the Sets of Non-overlapping Occurrences

Let the binary tree t = (domt, λt) ∈ T(F) be our input tree. At
the beginning of the replacement step the set occt(α) for every di-
gram α ∈ Π occurring in t is initially constructed. This is done
by parsing the tree t in a similar way as it is done in the function
retrieve-occurrences which is listed in Fig. 3.3. However, dur-
ing the traversal not only one digram is considered but for every
encountered digram α ∈ Π the set occt(α) is constructed. Figure
4.9 shows a possible function which accomplishes this task.

Therefore, in the first iteration of our computation we have up
to date sets of non-overlapping occurrences at hand. However, we
cannot afford to redo this traversal in every subsequent iteration.
In this case we would not be able to achieve a linear runtime of
our algorithm.

Fortunately, there is another way of keeping track of the sets
of non-overlapping occurrences. It relies on the fact that every
replacement of an digram occurrence v only involves those occur-
rences in the neighborhood of v which overlap with v.

Example 41 Let us consider the tree t′ = (domt′ , λt′) ∈ T(F)
which is depicted in Fig. 4.10. The occurrences which would be

re-pair for trees 56

g

g

a b c d

f

g

h

a b c

a h

a b c

b

a

f

a h

a b c

Figure 4.10: The tree t′ ∈ T(F). All
occurrences which would be absorbed
by the replacement are highlighted.

1 FUNCTION remove-absorbed-occs(t, v, j)
2 if (v 6= ε) then
3 α :=

(
λt(parent(v)), index(v), λt(v)

)
;

4 occ′t(α) := occ′t(α) \ {parent(v)};
5 endif
6
7 for (l ∈ {1, 2, . . . , rank(λt(v))}) do
8 α :=

(
λt(v), l, λt(vl)

)
;

9 occ′t(α) := occ′t(α) \ {v};
10 endfor
11
12 for (l ∈ {1, 2, . . . , rank(λt(vj))}) do
13 α :=

(
λt(vj), l, λt(vjl)

)
;

14 occ′t(α) := occ′t(α) \ {vj};
15 endfor
16 ENDFUNC

Figure 4.11: Listing of the function
remove-absorbed-occs which removes
all absorbed occurrences from the occ′t
sets.

absorbed by the replacement of the occurrence 2 ∈ domt′ of the
digram (f , 1, g) are highlighted.

For every digram α ∈ Π we set occ′t(α) := occt(α) and base all
upcoming computations on the set occ′t(α). In particular we use
them to determine the most frequent digram in each iteration.

Let us consider the i-th iteration of a run G0,G1, . . . ,Gh of Re-
pair for Trees on the input tree t ∈ T(F), where h ∈ N and
i ∈ {1, 2, . . . , h}. Then Gi−1 = (Ni−1, Pi−1, Si−1) is the current
grammar. Let ti−1 ∈ T(F) be the right-hand side of Si−1. Let
us assume that an up to date set occ′ti−1

(β) for every β ∈ Π
which is occurring in ti−1 is at hand. Further, let us assume that
max(ti−1) = (a, j, b) =: α and let v ∈ occ′ti−1

(α).
Before the actual replacement of the occurrence v we make use

of the function remove-absorbed-occs listed in Fig. 4.11. The func-
tion call remove-absorbed-occs(ti−1, v, j) removes all occurrences
which will be absorbed by the upcoming replacement from the
sets occ′ti−1

. After the replacement of v by a new node u with
λti (u) = Ai ∈ N we call the function add-new-occs (which is

re-pair for trees 57

1 FUNCTION add-new-occs(t, u)
2 if (u 6= ε) then
3 α :=

(
λt(parent(u)), index(u), λt(u)

)
;

4 occt(α)′ := occ′t(α) ∪ {parent(u)};
5 endif
6
7 for (l ∈ {1, 2, . . . , rank(λt(u))}) do
8 α :=

(
λt(u), l, λt(ul)

)
;

9 occ′t(α) := occ′t(α) ∪ {u};
10 endfor
11 ENDFUNC

Figure 4.12: Listing of the function
add-new-occs which adds all newly
created occurrences to the occ′t sets.

listed Fig. 4.12) and pass the tree ti−1 and the node u. The func-
tion add-new-occs adds all new occurrences which arose by the
introduction of u to the sets of non-overlapping occurrences. Fi-
nally, after all occurrences from occ′ti−1

(α) have been replaced, we
set occ′ti

(β) := occ′ti−1
(β) for all β ∈ Π occurring in ti.

Let α ∈ Π be a digram occurring in ti. The above computed
set occ′ti

(α) may not be equal to the actual set occti (α) as it would
be constructed by a complete postorder traversal of ti using the
function retrieve-occurrences from Fig. 3.3.

f

a f

b f

c d

Figure 4.13: Tree t′′ ∈ T(F) consisting
of nodes labeled by the terminal sym-
bols a, b, c, d, f ∈ F . We have to deal
with three overlapping occurrences of
the digram (f , 2, f).

Example 42 Consider, for instance, the tree t′′ ∈ T(F) depicted
in Fig. 4.13. Let α = (f , 2, f). In the first iteration of our algo-
rithm, we would obtain occ′t′′(α) := occt′′(α) = {2}. Now, let
us assume that we want to replace the digram (f , 1, c) (we could
easily enlarge t′′ such that (f , 1, c) is the most frequent digram
and still show the same). After performing this replacement and
especially after calling the functions remove-absorbed-occs and
add-new-occs we would have occ′t′′(α) = ∅. However, a postorder
traversal of the updated tree t′′ would result in occt′′(α) = {ε}.

All in all, the update of the sets of non-overlapping occurrences
consumes constant time per occurrence replacement. At most 2k+
1 occurrences need to be removed by the remove-absorbed-occs

function and at most k + 1 occurrences need to be added by the
function add-new-occs. An occurrence v of a digram α can be re-
moved from the occurrences list of α in constant time by setting
the next and previous pointers of the corresponding node object
to null. In addition, if v is the first (last) occurrence in the occur-
rence list of α the first (last) pointer of the object representing
the digram α needs to be updated. This can also be accomplished
in constant time by using the digram hash table. Analogously, an
occurrence can be added to an occurrences list in O(1) time.

4.4.2 Retrieving the Most Frequent Digram

We now investigate the time needed to obtain the most frequent
digram in an iteration of our algorithm. First of all, let us state
the following fact: Let m ∈ N ∪ {∞} and let G0,G1, . . . ,Gn be a

re-pair for trees 58

run of Re-pair for Trees, where n ∈ N>0, Gi = (Ni, Pi, Si) and
(Si → ti) ∈ Pi for every i ∈ {0, 1, . . . , n}. Then

|occti (maxm(ti))| ≥ |occti+1(maxm(ti+1))|

holds for every i ∈ {0, 1, . . . , n − 1}.6 For every digram α ∈ Π
6 Intuitively, we define

|occtn (maxm(tn))| = 0

if maxm(tn) = undefined.

occurring in ti it holds that |occti (α)| ≥ |occti+1(α)| and for ev-
ery digram β ∈ Π which was introduced in Gi+1 it holds that
|occti+1(β)| ≤ |occti (maxm(ti))|, where i ∈ {0, 1, . . . , n− 1}.

It is easy to see that, if the top digram list is empty, we can
obtain the most frequent digram in constant time. We just need to
walk down the remaining b√nc − 1 digram lists and choose the
first element of the first non-empty list. In every iteration, after
we have determined the most frequent digram, we remember the
first non-empty digram list in order to save ourself the needless
and time-consuming rechecking of the empty digram lists.

Now, let us assume that the top digram list, i. e., the doubly
linked list of all digrams occurring at least b√nc times, is not
empty. We need to scan all elements in it since the digrams con-
tained are not ordered by their frequency. There can be roughly
at most

√
n digrams in the top digram list. Therefore, we need

roughly O(√n) time to retrieve the most frequent digram. How-
ever, by the replacement of this digram at least b√nc edges are
absorbed. It is easy to see that, all in all, obtaining the most fre-
quent digram needs constant time on average.

In a run of TreeRePair we can replace at most n − 1 digram oc-
currences and, as shown before, the replacement of each occur-
rence, the update of the sets of non-overlapping occurrences and
the determination of the most frequent pair can be accomplished
in constant time per occurrence replacement. Thus, the whole re-
placement step can be completed in linear time.

4.5 Impact of the DAG Representation

In the preceding section, dealing with the complexity of our im-
plementation of the Re-pair for Trees algorithm, we did not pay
attention to the underlying DAG representation of the input tree.
This enabled us to concentrate on the essentials. Nevertheless, we
have to clarify the impact of this representation, particularly con-
cerning the compression performance and the runtime of our im-
plementation, since TreeRePair uses it by default. Only by starting
TreeRePair with the -no_dag switch it forgos the DAG representa-
tion and loads the whole input tree into main memory.

Definition 43 Let G = (N, P, S) be a 0-bounded SLCF tree gram-
mar. We assume without loss of generality that for every B ∈ N
it holds that B ;∗G S. Let (A → t) ∈ P, t = (domt, λt) ∈ T(F)
and v ∈ domt. We define the function unfold using the algorithm
listed in Fig. 4.14.

re-pair for trees 59

1 FUNCTION unfold(G, t, v)
2 let G = (N, P, S) and A→ t ∈ P;
3 if refG(A) 6= ∅ then
4 M := ∅;
5 for each (t′, v′) ∈ refG(A) do
6 M := M ∪ {uv | u ∈ unfold(G, t′, v′)};
7 endfor
8 else
9 M := {v};

10 endif
11 return M;
12 ENDFUNC

Figure 4.14: The algorithm which com-
putes unfold(G, t, v), where we have
t ∈ T(F ∪N) and v ∈ domt.

1 FUNCTION retrieve-all-occs-dag(t)
2 v := ε;
3 while (true) do
4 v := next_in_postorder(t, v);
5 if (v 6= ε) then
6 if (λt(v) /∈ N) then
7 α := (λt(parent(v)), index(v), λt(v));
8 if (v /∈ occ′t(α)) then

9 occ′t(α) := occ′t(α) ∪ {parent(v)};
10 endif
11 else

12 let t′ be the right-hand side of λt(v);
13 if (λt′(ε) 6= λt(parent(v)) then
14 α := (λt(parent(v)), index(v), λt′(ε));
15 occ′t(α) := occ′t(α) ∪ {parent(v)};
16 endif
17 endif
18 else
19 return;
20 endif
21 endwhile
22 ENDFUNC

Figure 4.15: The function
retrieve-all-occs listed in Fig. 4.9
adapted for the DAG case. For every
α ∈ Π the set occt(α) is initially set to
∅.

It holds that unfold(G, t, v) ⊆ domval(G) and it also holds that⋃
(A→t)∈P,

v∈domt

unfold(G, t, v) = domval(G) .

Let us consider a run G0,G1, . . . ,Gh of TreeRePair, where we have
Gi = (Ni, Pi, Si), (Si → ti) ∈ Pi, h ∈ N and i ∈ {0, 1, . . . , h}. Then,
in our implementation, ti is represented by a 0-bounded (linear)
SLCF tree grammar G i = (Ni, Pi, Si), i. e., we have val(G i) = ti, by
default.

4.5.1 Constructing the Sets of Non-overlapping Occurrences

In the first iteration of TreeRePair we need to construct the set
occt0(α) for every digram α ∈ Π occurring in t0. Our first try to
accomplish this could be a postorder traversal of all the right-hand
sides of P0’s productions using the function retrieve-all-occs

re-pair for trees 60

listed in Fig. 4.9 on page 55. However, when traversing the right-
hand sides of the DAG grammar G0 individually, we do not con-
sider occurrences spanning two productions of the DAG.

f

g

a b c

g

a b c

Figure 4.16: The tree t ∈ T(F) which
can be represented by a DAG grammar
with productions (S → f (A, A)) and
(A→ g(a, b, c)).

Example 44 Consider the DAG grammar G = (N, P, S), where
N = {S, A} and P contains the productions (S → f (A, A)) and
(A → g(a, b, c)). It is a compressed representation of the tree
t ∈ T(F) depicted in Fig. 4.16. If we would use the function
retrieve-all-occs to determine all digram occurrences in the
right-hand sides of P’s productions, we would not capture the
node ε ∈ domt which is an occurrence for both the digram (f , 1, g)
and the digram (f , 2, g).

As we have seen, it is necessary to modify the retrieve-all-occs

function slightly to also take occurrences spanning two produc-
tions into account. We use the algorithm listed in Fig. 4.15 to ob-
tain the set occ′t(α) for every right-hand side t of G0’s productions
and every digram α ∈ Π occurring in t0. After that, we set

occ′t0
(α) :=

⋃
(A→t)∈P0,
v∈occ′t(α)

unfold(G, t, v) .

We test in line 13 of the retrieve-all-occs function if α has equal
parent and child symbols. If this proves to be true, we do not
add the corresponding occurrence to occ′t(α), i. e., we do not con-
sider occurrences of a digram with equal parent and child sym-
bols spanning two productions of the DAG. If we would do so,
we would possibly register overlapping occurrences and run into
problems during a later replacement of α. Consider the following
example:

f

f

a f

a a

f

a f

a a

Figure 4.17: The tree t′ ∈ T(F) which
can be represented by a DAG grammar
with productions A1 → f (A2, A2) and
A2 → f

(
a, f (a, a)

)
.

Example 45 Consider the DAG grammar G = (N, P, A1) given by
the productions (Ai → ti) ∈ P, where i ∈ {1, 2}, t1 = f (A2, A2)

and t2 = f (a, f (a, a)). It is a compressed representation of the
tree t′ ∈ T(F) depicted in Fig. 4.17. We use the algorithm from
Fig. 4.15 to obtain the sets occ′ti

(α) for i ∈ {1, 2} and every digram
α ∈ Π occurring t′. Let us assume that we omit the check in line
13, i. e., we also consider occurrences of digrams with equal parent
and child symbols spanning two productions. The union⋃

i∈{1,2},
v∈occ′ti ((f ,2, f))

unfold(G, ti, v) = {ε, 1, 2}

contains the overlapping occurrences ε and 2 of the digram (f , 2, f).

The precaution from line 13 leads sometimes to situations in which
we replace fewer occurrences of a digram with equal parent and
child symbols as we would replace when not using the DAG rep-
resentation.

f

f

b f

a f

a f

a a

f

c f

a f

a f

a a

Figure 4.18: Tree t′′ ∈ T(F) with seven
overlapping occurrences of the digram
(f , 2, f).

Example 46 Consider the tree t′′ ∈ T(F) from Fig. 4.18 which can
be represented by the DAG grammar consisting of the two pro-
ductions (S → t1) and (A → t2), where t1 = f (f (b, A), f (c, A))

re-pair for trees 61

and t2 = f (a, f (a, f (a, a))). After careful counting one can tell
that t′′ exhibits at most four non-overlapping occurrences of the
digram α = (f , 2, f). However, if we use the above function
retrieve-all-occs-dag we only capture three of them. We ob-
tain occ′t1

(α) = {ε}, occ′t2
(α) = {2} and therefore

occ′t′′(α) =
⋃

i∈{1,2},
v∈occ′ti (α)

unfold(G, ti, v) = {ε, 122, 222} .

Even though this approach does not capture all the occurrences
which could be captured when not using the DAG representa-
tion, it still achieves a competitive compression performance on
our set of test files (cf. Sect. 6.6 on page 84). It seems that a more
involved method of dealing with digrams with equal parent and
child symbols spanning two productions would necessitate a par-
tial unfolding of the DAG. The latter, however, would certainly
result in a longer runtime.

4.5.2 Updating the Sets of Non-overlapping Occurrences

Considering the graph representation of a DAG, a tree node can
exhibit multiple parent nodes. In fact, a node has multiple parent
nodes if it is the root of the right-hand side of a production of the
corresponding DAG grammar and if this production is referenced
multiple times.

To capture all digram occurrences which are absorbed by the
replacement of a digram we need to take care of the above fact.
The remove-absorbed-occs function listed in Fig. 4.11 needs to be
adapted accordingly. Instead of removing one occurrence formed
by the node being replaced and its parent, we need to iterate
over possibly multiple parents and remove all corresponding oc-
currences. In Fig. 4.19 the function remove-absorbed-occs-dag

is listed which incorporates this necessary modification. Analo-
gously, the function add-new-occs listed in Fig. 4.12 must be mod-
ified to work properly in the DAG mode. Figure 4.20 shows an
adapted version.

It is easy to see that our linear runtime is not negatively affected
by this loop over all parents. Far from it — as mentioned earlier,
the DAG representation saves us time by avoiding repetitive re-
calculations.

4.5.3 Replacing the Digrams

The third and last scenario in which we have to take special care of
the DAG representation is when replacing an occurrence of a di-
gram α ∈ Π spanning two productions of the DAG grammar. Due
to our restriction on digrams with equal parent and child symbols
the digram α has to have different parent and child symbols. In
the following we want to use an example to describe what needs
to be done when replacing the digram α.

re-pair for trees 62

1 FUNCTION remove-absorbed-occs-dag(t, v, j)
2 if (v 6= ε) then
3 remove-occ-dag(t, parent(v), index(v));
4 else
5 let A be the right-hand side of t;
6 for each (t′, u) ∈ refG i

(A) do

7 remove-occ-dag(t′, parent(u), index(u));
8 endfor
9 endif

10
11 for (l ∈ {1, 2, . . . , rank(λt(v))}) do
12 remove-occ-dag(t, v, l);
13 endfor
14
15 for (l ∈ {1, 2, . . . , rank(λt(vj))}) do
16 remove-occ-dag(t, vj, l);
17 endfor
18 ENDFUNC
19
20 FUNCTION remove-occ-dag(t, v, j)
21 if (λt(vj) /∈ N) then
22 α :=

(
λt(v), j, λt(vj)

)
;

23 else

24 let t′ be the right-hand side of λt(vj);
25 α :=

(
λt(v), j, λt′(ε)

)
;

26 endif
27 occ′t(α) := occ′t(α) \ {v};
28 ENDFUNC

Figure 4.19: Listing of the function
remove-absorbed-occs-dag which re-
moves all absorbed occurrences from
the occ′t sets when using the DAG
mode.

1 FUNCTION add-new-occs-dag(t, v)
2 if (v 6= ε) then
3 add-occ-dag(t, parent(v), index(v));
4 else
5 let A be the right-hand side of t;
6 for each (t′, u) ∈ refG i

(A) do

7 add-occ-dag(t′, parent(u), index(u));
8 endfor
9 endif

10
11 for (l ∈ {1, 2, . . . , rank(λt(v))}) do
12 add-occ-dag(t, v, l);
13 endfor
14 ENDFUNC
15
16 FUNCTION add-occ-dag(t, v, j)
17 if (λt(vj) /∈ N) then
18 α :=

(
λt(v), j, λt(vj)

)
;

19 else

20 let t′ be the right-hand side of λt(vj);
21 α :=

(
λt(v), j, λt′(ε)

)
;

22 endif
23 occ′t(α) := occ′t(α) ∪ {v};
24 ENDFUNC

Figure 4.20: Listing of the function
add-new-occs-dag which adds all new
occurrences to the occ′t sets when us-
ing the DAG mode.

re-pair for trees 63

f

g

t1 h

t2 t3

h

t2 t3

Figure 4.21: Depiction of the F -labeled
tree t. We have t1, t2, t3 ∈ T(F).

Example 47 Consider the DAG grammar given by the two pro-
ductions S → f

(
g(t1, A), A

)
and A → h(t2, t3) which represents

the F -labeled tree t depicted in Fig. 4.21. Imagine that we want
to replace the sole occurrence of the digram (f , 2, h), i. e., an occur-
rence spanning two productions.7 In order to do that we mainly

7 For the sake of convenience, our ex-
ample uses a rather small tree and
we decide to replace a digram occur-
ring only once. We could easily en-
large t such that (f , 2, h) occurs multi-
ple times and still show the following.

have to complete the following three steps.

(1) We first have to introduce for every child of the node labeled
by h a new production. Thus, we obtain two new productions
B → t2 and C → t3. We can skip this step for every child
node which is already labeled by a nonterminal of the DAG
grammar.

(2) We need to update the production with left-hand side A to
A→ h(B, C).

(3) Finally, we introduce a new nonterminal D representing the
digram (f , 2, h) and update the production for S to

S→ D(g(t1, A), B, C) .

The above steps are only necessary if the production with left-
hand side A is referenced more than once. Otherwise we could
have directly connected the children of h to the newly introduced
node labeled by D and removed the production with left-hand
side A from the grammar.

Since at most k new productions need to be introduced, the re-
placement of a digram occurrence can still be accomplished in
constant time. All in all, it has become clear that even when repre-
senting the input tree of our algorithm as a DAG our implemen-
tation runs in linear time.

4.6 Technical Details on the Prototype

The source code of the TreeRePair prototype and its documenta-
tion is available at the Google Code™ open source developer site.
It can be accessed by visiting the following web page:

http://code.google.com/p/treerepair

However, the implementation should be considered to be of alpha
quality. There is still a lot of testing to be done.

We also implemented a decompressor called TreeDePair which
is contained in the TreeRePair distribution. It is not optimized in
terms of time and memory usage.

The software is licensed under the GPLv3 license which is avail-
able at

http://www.gnu.org/licenses/gpl-3.0.txt

http://code.google.com/p/treerepair
http://www.gnu.org/licenses/gpl-3.0.txt

re-pair for trees 64

It is implemented using the C++ programming language and can
be compiled at least under the Windows and Linux operating sys-
tems. For compile instructions and library requirements, see the
README.txt file in the root directory of the TreeRePair distribu-
tion.

5
Succinct Coding

In order to achieve a compact representation of the input tree of
our TreeRePair algorithm we further compress the generated lin-
ear SLCF tree grammar by a binary succinct coding. The technique
we use is loosely based on the DEFLATE algorithm described in
[Deu96]. In fact, we use a combination of a fixed-length coding,
multiple Huffman codings and a run-length coding to encode dif-
ferent aspects of the grammar (cf. Fig. 5.1).

Fixed-length coding

Super Huffman coding

Run-length coding

3 Base Huffman codings

Linear SLCF tree grammar

Figure 5.1: Hierarchy of the employed
encodings.

In spite of the fact that we obtain an extremely compact binary
representation of the generated SLCF tree grammar we are still
able to directly execute queries on it with little effort. Basically, we
only have to reconstruct the Huffman trees to be able to partially
decompress the grammar on demand.

In [MMS08] many different variants of succinct codings spe-
cialized in SLCF tree grammars were investigated. Among them
there was one encoding scheme which turned out to achieve the
best compression performance in general — at least with respect
to the set of sample SLCF tree grammars which was used in this
work. However, our experiments show that, regarding the SLCF
tree grammars generated by TreeRePair, this encoding is outper-
formed by the succinct coding which we present in this chapter.

5.1 General Remarks

In this section, we want to elaborate on the following topics: How
do we need to modify the pruning step of our algorithm to make
our succinct coding as efficient as possible? How does TreeRePair
efficiently deal with parameter nodes? How can we serialize a
Huffman tree in a compact way?

re-pair for trees 66

5.1.1 Inefficient Productions

Our experiments showed that, at least for our set of test XML
documents, we achieve better compression results in terms of the
size of the output file if we slightly modify the pruning step of
our algorithm. It turns out that our succinct coding, which we
describe in the following sections, is most efficient if we prune all
productions with a sav-value smaller than or equal to 2 (instead
of pruning all productions with a sav-value smaller than or equal
to 0 as it is described in Sect. 3.3 on page 28). However, we use
this modification only if we make the size of the output file a top
priority (by using the switch -optimize filesize). Otherwise,
when optimizing the number of edges of the final grammar (i. e.,
when using the switch -optimize edges), we stick to the original
version of the pruning step.

5.1.2 Handling of Parameter Nodes

Let G = (N, P, S) be the linear SLCF tree grammar which was
generated by a run of TreeRePair. Then, for every production
(A→ t) ∈ P it holds that yi ∈ Y labels the i-th parameter node of
t in preorder, where i ∈ {1, 2, . . . , rank(A)}. Due to this fact it is
sufficient to represent the parameter symbols y1, y2, . . . , yrank(A) ∈
Y by a single parameter symbol y ∈ Y . Let (B → t′) ∈ P be
another production and let v ∈ domt′ with λt′(v) = A. Now, let
us assume that we want to eliminate the production (A → t) and
that we use only a single parameter symbol labeling all parameter
nodes. It is clear that the i-th (in preorder) parameter node of t
must be replaced by the subtree which is rooted at the i-th child
of v.

Our implementation takes advantage of the above simplifica-
tion, i. e., it uses only one parameter symbol y for every occurring
parameter node.

5.1.3 Serializing Huffman trees

As stated in [Deu96], it is sufficient to only write out the lengths
of the generated codes to be able to reconstruct a Huffman tree at
a later date. However, this requires the decompressor to be aware
of the following.

• What symbols are encoded by the corresponding Huffman tree?

• In what order are their code lengths listed?

In our case only integers need to be encoded by Huffman cod-
ings because we will encode all symbols by integers (see Sect. 5.2
on page 67). Hence, it is obvious to use the natural order of in-
tegers to list the lengths of the generated codes. Let us assume
that n ∈ N is the biggest integer which needs to be encoded and
which was assigned a code to, respectively. We just need to loop

re-pair for trees 67

over all integers m ≤ n in their natural order and print out the cor-
responding code length for each of it. For every k < n for which
no code was assigned to we print out a code length of 0.

In order to solely rely on the code lengths there is still some-
thing which needs to be considered. We are required to assign
new codes to the integers based on the lengths of their original
codes. More precisely, the new code assignment has to fulfill the
following two requirements.

(1) All codes of the same code length exhibit lexicographically
consecutive values when ordering them in the natural order
of the integers they represent.

(2) Shorter codes lexicographically precede longer codes.

This reorganization of the Huffman codes does not affect the com-
pression performance of the coding since only codes of the same
length are swapped. The following example is based on an exam-
ple from [Deu96].

Example 48 Imagine that we want to use a Huffman coding to
encode the letters a, b, c and e which are each occurring multiple
times in a data stream. Let us assume that we obtain the Huff-
man codes listed in Table 5.1. In order to be able to store the
corresponding Huffman tree by only writing out the lengths of
the Huffman codes we need to assign new codes to the letters.
Table 5.2 shows the newly assigned codes which fulfill the above
two requirements (1) and (2).

Symbol Code

a 00
b 1
c 011
e 010

Table 5.1: Huffman coding before the
reorganization of the codes. The letters
are listed in their natural order, i. e., in
alphabetic order.

Symbol Code

a 10
b 0
c 110
e 111

Table 5.2: Huffman coding from Ta-
ble 5.1 after the reorganization of the
codes.

Now, let us assume that the decompressor expects the code
lengths to be the lengths of codes assigned to the letters of the
Latin alphabet and that these code lengths are ordered in the nat-
ural order of the letters they represent. Then, the corresponding
Huffman tree can be unambiguously represented by the following
sequence of code lengths: 2, 1, 3, 0, 3. Note that we need to insert
a code length of 0 at the position of the letter d since there is no
code assigned to the letter d.

5.2 Contents of the Output File

In this section we want to elaborate on the information which
needs to be stored in the output file of our algorithm in order
to be able to reconstruct the generated linear SLCF tree grammar
at a later date. We also want to demonstrate how this data can be
efficiently represented. However, at this time we do not pay atten-
tion to the fixed-length, run-length or Huffman codings which are
employed in a subsequent step of the encoding process. For the
sake of simplicity we consider these encodings in separate sections
of this chapter.

Let G = (N, P, S) be the linear SLCF tree grammar over F
which was generated by a run of TreeRePair. Before we are able
to compile the information which needs to be written out we need

re-pair for trees 68

to assign to every symbol from F ∪ (N \ {S}) ∪ {y} a unique in-
teger. In fact, we assign to every symbol from F a unique ID from
the set {1, 2, . . . , |F |} ⊂ N. We assign the ID |F |+ 1 to y, i. e., to
the special symbol labeling all parameter nodes in the right-hand
sides of P’s productions. Finally, we associate with every symbol
from the set of nonterminals N \ {S} a unique ID from the set of
integers {|F|+ 2, |F |+ 3, . . . , |F |+ |N|}. The IDs are assigned to
the nonterminals in such a way that the nonterminal A ∈ N \ {S}
has a higher ID than the nonterminal B ∈ N \ {S} if B ;+

G A
holds.

5.2.1 Writing out the Necessary Informations

Now, we are able to write out the information needed to recon-
struct G in four steps. Bear in mind that the values mentioned
below are not directly written to the output file but that they are
additionally encoded by a combination of multiple Huffman cod-
ings, a run-length coding and a fixed-length coding later on.

First step In the first step, we write out the number of terminal
symbols |F | and the number of introduced productions |N| − 1,
i. e., we are not counting the start production. By handing over
this information to the decompressor we avoid the insertion of
separators marking, for instance, the end of the enumeration of
elements types (which are written out in the third step).

Second step In the second step, we directly append a represen-
tation of the children characteristics of the terminal symbols. By
children characteristics we mean their rank and, concerning ter-
minal symbols of rank 1, if we are dealing with a left or a right
child.1 Due to the fact that all terminal symbols have a rank of

1 Consult Sect. 2.4 on page 20 for an
explanation on why this information is
necessary to reconstruct the input tree.

at most two, we can encode this information using two bits per
symbol. Table 5.3 lists all the bit strings we use together with a
brief description of their meanings.

Bit string Description

00 rank 0
01 rank 1, right child
10 rank 1, left child
11 rank 2

Table 5.3: The bit strings encoding the
children characteristics together with
their meaning.

We write out the children characteristics as follows: Firstly, we
print out a bit string from Table 5.3 representing a certain children
characteristic. After that we append the number of corresponding
terminal symbols and finally we enumerate their IDs. We do this
for the characteristics 00, 01 and 10. We omit the enumeration
of all terminal symbols with a rank of 2 since their IDs can be
reconstructed with the information in hand. In fact, we just need
to subtract the set of IDs of all terminal symbols with children
characteristics 00, 01 and 10 from the set of IDs of all terminal
symbols from F (which is {1, 2, . . . , |F|}).

Furthermore, it is not necessary to print out the ranks of the
nonterminals from N since these can be easily reconstructed by
counting the number of parameter nodes in the corresponding
right-hand sides. The latter are written to the output file in the
fourth step.

re-pair for trees 69

Third step In this step, we print the element types of the terminal
symbols in the ascending order of their IDs to the output file. We
do this by writing out the ASCII code of every single letter. The
individual names are terminated by the ASCII character ETX which
is assumed not to be used within the element types of the terminal
symbols.

Fourth step In this last step we serialize the productions of G in
the ascending order of the IDs of their left-hand sides. For every
production (A → t) ∈ P we just write out the IDs of the labels
of t’s nodes in preorder. We do not need to use special marker
symbols to indicate the nesting structure of the symbols and their
IDs, respectively. When parsing the output file this hierarchy can
be easily obtained by taking care of the individual ranks of the
symbols.

We can also omit the specification of the left-hand side A since
both, its ID and its rank, can be reconstructed with the information
in hand. Imagine that we are parsing the output file to reconstruct
the productions of G. If we are parsing the i-th production, the ID
of its left-hand side must be |F |+ 1 + i, where i ∈ {1, 2, . . . , |N|}.
As already mentioned, the rank of the left-hand side can be ob-
tained by counting the parameter nodes in the right-hand side
once this has been reconstructed.

Note that it is superfluous to insert separators between the rep-
resentations of the productions from P since their boundaries can
be calculated based on the ranks of the symbols. Again, imagine
that we are trying to reconstruct the productions of P by parsing
the output file of our algorithm. Let (A → t) ∈ P be the first pro-
duction we encounter. The tree t can only consist of nodes labeled
by terminal symbols, i. e., we must have t ∈ T(F).2 The ranks

2 This is due to the fact that we have
written out the productions in the as-
cending order of the IDs of their left-
hand sides. These IDs were assigned
to the nonterminals in such a way that
the nonterminal A ∈ N \ {S} has a
higher ID than B ∈ N \ {S} if B ;+

G A
holds. Therefore, the right-hand side
of (A → t), which is the first produc-
tion which was written out, does not
contain any node labeled by a nonter-
minal from N.

of all symbols from F are known since the necessary information
was written to the compressed file in the second step. Therefore,
we can easily reconstruct t by iteratively parsing the correspond-
ing IDs in the output file. While doing so we are also able to count
the number of occurrences of the symbol y ∈ Y in t. Thus, we are
aware of the value of rank(A). After that, we proceed with decod-
ing the second production (A′ → t′) ∈ P by iteratively parsing the
next IDs. We have t′ ∈ T(F ∪ {A}), i. e., the ranks of all occur-
ring symbols are known. That way all productions from P can be
reconstructed.

Example 49 In order to get a clear picture of the representation
described above we apply the previous four steps to the linear
SLCF tree grammar G = (N, P, S4) over the ranked alphabet F
from Sect. 3.4 on page 32, i. e., we have N = {S4, A2, A3} and P is

re-pair for trees 70

the following set of productions:

S4 → books10(A3(A3(A3(A3(book10(A2))))))

A3(y)→ book11(A2, y)

A2 → author01(title01(isbn00))

First of all, we assign to every symbol from F ∪ (N \ {S4}) ∪ {y}
a unique ID as it is shown in Fig. 5.2. After that we are able to
write out the grammar exactly as described above resulting in the
value sequence depicted in Fig. 5.3. We accomplish this task in
four steps:

Symbol ID

books10 1
isbn00 2
title01 3
author01 4
book10 5
book11 6
y 7
A2 8
A3 9

Figure 5.2: All symbols with the ID
assigned to them. The symbol y is
the symbol used to label the parame-
ter nodes in the right-hand sides of P’s
productions.

(1) We begin by writing out the number of terminals (6) directly
followed by the number of nonterminals minus the start non-
terminal (2) — see the values 0 and 1 in the depiction.

(2) After that the children characteristics of all terminal symbols
are written to the file. We begin by specifying all terminal
symbols of rank 0 (values 2–4). This is done by firstly writing
out the bit string 00 and the number of corresponding symbols
(1). Finally, the ID 2 of the terminal symbol isbn00, which is the
sole terminal symbol of rank 0, is listed.

Analogously, the terminal symbols with children characteris-
tics 01 and 10 are enumerated (values 5–12).

(3) Now, the element types of all terminal symbols are exported
to the output file (values 13–46). For each of them the decimal
value of each ASCII character is written out. The element type
books, for instance, is encoded by the sequence 98, 111, 111,
107, 115.

(4) Finally, the productions from P are written out in the ascend-
ing order of the IDs of their left-hand sides. Thus, the pro-
duction with left-hand side A2 is serialized as the very first
production (values 47–49). It is encoded by the unambigu-
ous sequence of IDs 4, 3, 2 representing the terminal symbols
author01, title01 and isbn00 of the right-hand side of A2 in pre-
order. Afterwards the remaining productions with left-hand
sides A3 (values 50–52) and S (values 53–59) are printed to the
output file in this order.

5.2.2 Possible Optimizations

Of course, there is still room to further reduce the data which
needs to be written to the output file. Consider, for instance, ter-
minal symbols of the same element type but different children
characteristics. In the case of our implementation, the element
type of these symbols is written to the file two or three times in
the second step. However, an optimization with respect to this

re-pair for trees 71

6
0

2
1

00
2

1
3

2
4

01
5

2
6

3
7

4
8

10
9

2
10

1
11

5
12

98
13

111
14

111
15

107
16

115
17

3
18

105
19

115
20

98
21

110
22

3
23

116
24

105
25

116
26

108
27

101
28

3
29

97
30

117
31

116
32

104
33

111
34

114
35

3
36

98
37

111
38

111
39

107
40

3
41

98
42

111
43

111
44

107
45

3
46

4
47

3
48

2
49

6
50

8
51

7
52

1
53

9
54

9
55

9
56

9
57

5
58

8
59

children characteristics

element types

productions

’b’ ’o’ ’o’

’k’ ’s’ ’ETX’ ’i’ ’s’ ’b’ ’n’ ’ETX’ ’t’ ’i’ ’t’ ’l’ ’e’ ’ETX’ ’a’ ’u’

’t’ ’h’ ’o’ ’r’ ’ETX’ ’b’ ’o’ ’o’ ’k’ ’ETX’ ’b’ ’o’ ’o’ ’k’ ’ETX’

Figure 5.3: Representation of the
grammar G from Example 49.

redundancy does only lead to marginally better compression re-
sults. This is due to the fact that typically the major part of the
output file is the enumeration of the productions.

Still regarding the second step, we could at first determine the
most frequent children characteristic and omit the enumeration
of all corresponding terminal symbols. This dynamic approach
certainly leads to a small reduction of the size of the output file
compared to always skipping the children characteristic 11.

Another aspect which confesses optimization potential are pos-
sible long lists of the parameter symbol y which emerge when
writing out the right-hand sides of productions with a higher rank.
In this case, run-length coding can lead to a better compression
performance. However, we did not further investigate this matter
since we focus on generating grammars with nonterminals with a
maximal rank of 4.

5.3 Employing Multiple Types of Encodings

Even though a Huffman tree has to be serialized for every Huff-
man coding used within our output file, we decided in favor of
using four distinct Huffman codings. We use three of them for
encoding

• the start production,

• the remaining productions, the children characteristics of the
terminal symbols and the numbers of terminals and nontermi-
nals, and finally

• the names of the terminals.

In the sequel, we call these three Huffman codings the base Huff-
man codings. The fourth Huffman coding, which we call super
Huffman coding, is used to encode the Huffman trees of the above
codings. Our tests with different numbers of Huffman codings

re-pair for trees 72

revealed that, in general, the above approach leads to the best
compression results. This is at least true for most of the XML test
documents we used.

5.3.1 Base Huffman Codings

We serialize the three base Huffman codings by writing out the
lengths of the generated codes as it is described in Sect. 5.1.3 on
page 66. However, we additionally apply a run-length coding and
the super Huffman coding to achieve a compact binary represen-
tation. In Sect. 5.3.3 on page 73 we elaborate on how exactly the
run-length coding works. We briefly call the length of a code of a
base Huffman coding a base code length in the sequel. Analogously,
we denote the lengths of the codes of the super Huffman coding
by the term super code lengths.

We output the number of base code lengths in front of every
serialized base Huffman coding, i. e., in front of every enumera-
tion of base code lengths. That way the decompressor knows how
many bits are part of this binary representation. Let us point out
that this number of code lengths is encoded using k bits instead
of using the super Huffman coding, where k ∈ N is a constant
which is fixed at compile time. We do this due to the following
fact. Let n ∈ N be the number of code lengths and let us assume
that we encode n, which is usually many times larger than the
maximum over all code lengths, using the super Huffman cod-
ing. This would result in a big gap of unused integers between
the super code lengths and n. This again would lead to a long
list of 0’s when storing the super Huffman tree by enumerating
its code lengths. In general, this leads to a reduced compression
performance compared to a fixed-length coding of n using k bits.

5.3.2 Super Huffman Coding

The super Huffman coding will also be stored by the sequence
of its code lengths. However, the relatively small set of integers
is encoded by a fixed-length coding using n ∈ N bits, where n
is the smallest possible number of bits which can be used to en-
code all super code lengths. More precisely, we serialize the super
Huffman coding in three steps:

(1) First of all, we print out the binary representation of the num-
ber n using k bits, where k ∈N is a fixed number of bits which
is specified at compile time.

(2) Let m ∈ N be the biggest base code length. We print out the
binary representation of m using k bits. With this information
the decompressor knows that the next n ·m bits make up the
list of super code lengths.

(3) Finally, the binary representations of the m many super code
lengths are written to the output file using n bits for each code

re-pair for trees 73

length. The super code lengths are printed in the natural order
of the integers which are represented by the corresponding
codes.

5.3.3 Run-length Coding of the Base Code Lengths

In this section we explain the run-length coding which is applied
to the enumerations of code lengths used to write all base Huff-
man codings to the output file. This additional encoding marks a
major contribution to the compactness of our representation. The
bigger a code length is, the more different codes of that length are
possible. At the same time a sequence of several occurrences of
the same code length within the enumeration of all code lengths
becomes more likely. In addition, our experience shows that it fre-
quently happens that there is a longer run of 0’s in the list of all
code lengths due to symbols which no codes were assigned to.

Example 50 Consider, for instance, the example from Sect. 5.3.4
and in particular the base Huffman coding C3 which is listed in
Table 5.6 on page 74. This Huffman coding does not assign codes
to the symbols 4–96. This results in a sequence of 94 zeros within
the enumeration of the code lengths of C3.

Definition 51 Let m, k ∈ N, where k ≥ blog2(m)c+ 1. In the fol-
lowing we denote by bink(m) the (0-padded) binary representation
bkbk−1 . . . b0 of m, i. e., the following holds:

m =
k

∑
i=0

bi · 2i

We encode an enumeration of code lengths using a run-length
coding as follows: Let us assume that n ∈N is the maximum code
length. Then we use the three additional integers n + 1, n + 2 and
n+ 3 to indicate certain types of runs — we call them run indicators
in the sequel. Principally, all runs with a length less than or equal
to 3 are straightly written to the output file. In contrast, a run of a
code length m ∈N exceeding this bound is encoded as follows:

• If we have m > 0, we use the run indicator n+ 1 and a bit string
with a length of 2 to indicate 4–7 repetitions of the code length
m. If k > 3 is the length of the run of m and l = k mod 7 (i. e.,
l ∈ {0, 1, . . . , 6}), then this run is encoded as follows:

– if l > 3:
m (n + 1)bin2(3)︸ ︷︷ ︸

bk/7c times

(n + 1)bin2(l − 4)

– if l ≤ 3:
m (n + 1)bin2(3)︸ ︷︷ ︸

bk/7c times

[m]l

Note that [m]l denotes l many consecutive m’s.

re-pair for trees 74

• If we have m = 0, we use the run indicator n + 2 with an ap-
pended bit string of length 3 to denote 4–11 repetitions of m.
In contrast, we use the run indicator n + 3 together with a bit
string of length 7 to encode 12–139 repeated 0’s.

If k > 3 is the length of the run of 0’s and l = k mod 139 (i. e.,
l ∈ {0, 1, . . . , 138}), then this run is encoded as follows:

– if l > 11:

(n + 3)bin7(127)︸ ︷︷ ︸
bk/139c times

(n + 3)bin7(l − 12)

– if 3 < l ≤ 11:

(n + 3)bin7(127)︸ ︷︷ ︸
bk/139c times

(n + 2)bin3(l − 4)

– if l ≤ 3:
(n + 3)bin7(127)︸ ︷︷ ︸
bk/139c times

[m]l

Symbol Old code New code

0 10 10
1 1110 1110
5 1111 1111
8 110 110
9 0 0

Table 5.4: Huffman coding C1 used to
encode the start production.

Symbol Old code New code

1 1010 1100
2 01 00
3 00 01
4 111 100
5 1011 1101
6 110 101
7 1001 1110
8 1000 1111

Table 5.5: Huffman coding C2 used to
encode the productions from P \ {S},
the children characteristics, and num-
bers of terminals and nonterminals.

Symbol Old code New code

3 111 010
97 00101 11010
98 101 011

101 00100 11011
104 00111 11100
105 1001 1010
107 1101 1011
108 110011 111110
110 110010 111111
111 01 00
114 11000 11101
115 1000 1100
116 000 100
117 00110 11110

Table 5.6: Huffman coding C3 used to
encode the names of the terminal sym-
bols.

Symbol Old code New code

0 0 0
1 110000 111110
2 1101 1110
3 101 100
4 111 101
5 100 110
6 11001 11110
9 110001 111111

Table 5.7: Super Huffman coding used
to encode the code lengths of the base
Huffman codings.

Example 52 Consider the following sequence of integers:

122333 444444 555 000000000

Now, let us assume that we want to encode the above sequence
using our run-length coding. Obviously, we have n = 5. The
above run of 4’s with a length of 6 is represented by the sequence
4610 since we have n + 1 = 6 and bin2(6− 4) = 10. In contrast, the
run of 0’s with a length of 9 leads to the sequence 7101 because
it holds that n + 2 = 7 and that bin3(9− 4) = 101. All in all, we
obtain the sequence 122333 4610 555 7101.

Surprisingly, our investigations evinced that an approach which
dynamically adjusts the length of the bit strings used in the above
encoding depending on the size of the input grammar does not
lead to significantly better compression results.

5.3.4 Example

This example continues the encoding of the linear SLCF tree gram-
mar G from Example 49 on page 69. The Tables 5.4, 5.5 and 5.6
list the three base Huffman codings, called C1, C2 and C3 in the
sequel, which are calculated by our implementation. The columns
labeled Old code show the initial Huffman codes while the columns
labeled New code list the newly assigned codes after the necessary
reorganization described in Sect. 5.1.3 on page 66.

While Fig. 5.3 on page 71 shows the second part of the output
file as it is generated by a run of TreeRePair the Fig. 5.4 shows
the first part of it. The latter stores the base Huffman codings C1,
C2 and C3 together with the corresponding super Huffman cod-
ing. For the sake of clarity the corresponding values are denoted

re-pair for trees 75

3
0

10
1

1
2

6
3

4
4

3
5

3
6

3
7

5
8

0
9

0
10

6
11

10
12

2
13

4
14

0
15

0
16

0
17

4
18

0
19

0
20

3
21

1
22

9
23

0
24

4
25

2
26

2
27

3
28

4
29

3
30

4
31

4
32

118
33

0
34

0
35

0
36

3
37

9
38 101

0010

39
5

40
3

41
0

42
0

43
5

44
0

45
0

46
5

47

4
48

0
49

4
50

6
51

0
52

6
53

2
54

0
55

0
56

5
57

4
58

3
59

5
60

super Huffman coding

base Huffman coding C1 base Huffman coding C2

base Huffman coding C3

Figure 5.4: Depiction of the part of the
output file which contains the serial-
ized four Huffman codings.by their integer representation instead of by their fixed-length or

Huffman code. The Huffman coding C1 from Table 5.4, for in-
stance, is given by the sequence of code lengths ranging from
value 13 to value 22, where value 12 informs us about the length
of this sequence. Analogously, the code lengths of the Huffman
codings C2 and C3 are given by the values 24–32 and 34–60, re-
spectively. The sequence of code lengths of the Huffman coding
C3 exhibits a longer run, namely, 94 consecutive occurrences of the
code length 0. This run is encoded by the run indicator 9 = n + 3
and the bit string bin7(94 − 12) = 1010010, where n = 6 is the
maximal length of a code from C3.

The super Huffman coding listed in Table 5.7 is written to the
output file (values 2–11) using 3 bits per integer as it is stated
by the value 0 of the output file. There need to be enumerated
10 super code lengths since 10 values — the base code lengths
0, 1, . . . , 6 and the run indicators 7, 8, 9 which are used by the base
Huffman coding C3 — need to be encoded.

6
Experimental Results

In the following, we compare the compression performance of our
implementation of the Re-pair for Trees algorithm with existing al-
gorithms. Furthermore, we will check the impact of the DAG rep-
resentation of the input tree on the compression factors achieved
and we will learn about the influences of small changes to the
maximal rank allowed for a nonterminal.

6.1 XML Documents Used

The set of XML documents we used for investigating the perfor-
mance of TreeRePair consists of 23 files with different characteris-
tics (cf. Table 6.1). Most of them were used in past papers evaluat-
ing various XML compressors and therefore may be familiar to the
reader. The original files can be obtained from the sources listed in
Table 6.2. In all cases character data, attributes, comments, names-
pace information were removed from the XML files, i. e., the XML
documents consist only of start tags, end tags and empty element
tags. We do so, because, at this time, TreeRePair ignores this in-
formation and solely concentrates on the XML document tree.

6.2 Algorithms Used in Comparison

Basically, we compare our implementation of Re-pair for Trees
with two other compression algorithms based on linear SLCF tree
grammars, namely, BPLEX [BLM08] and Extended-Repair [Kri08,
BHK10]. The former is a sliding-window based linear time ap-
proximation algorithm. It searches bottom-up in a fixed window
for repeating tree patterns. The size of the sliding window, the
maximal pattern size and the maximal rank of a nonterminal can
be specified as input parameters. One of the main drawbacks of

re-pair for trees 78

XML document File size (kb) # Edges Depth # Element types Source

1998statistics 349 28 305 5 46 1
catalog-01 4 219 225 193 7 50 9
catalog-02 44 656 2 390 230 7 53 9
dictionary-01 1 737 277 071 7 24 9
dictionary-02 17 128 2 731 763 7 24 9
dblp 117 822 10 802 123 5 35 2
EnWikiNew 4 843 404 651 4 20 3
EnWikiQuote 3 134 262 954 4 20 3
EnWikiSource 13 457 1 133 534 4 20 3
EnWikiVersity 5 887 495 838 4 20 3
EnWikTionary 99 201 8 385 133 4 20 3
EXI-Array 5 347 226 522 9 47 5
EXI-factbook 1 214 55 452 4 199 5
EXI-Invoice 266 15 074 6 52 5
EXI-Telecomp 3 700 177 633 6 39 5
EXI-weblog 1 104 93 434 2 12 5
JST_gene.chr1 4 202 216 400 6 26 8
JST_snp.chr1 13 795 655 945 7 42 8
medline02n0328 51 751 2 866 079 6 78 6
NCBI_gene.chr1 6 862 360 349 6 50 8
NCBI_snp.chr1 63 941 3 642 224 3 15 8
sprot39.dat 111 175 10 903 567 5 48 7
treebank 19 551 2 447 726 36 251 4

Table 6.1: Characteristics of the XML
documents used in our tests. The val-
ues in the "Source"-column match the
source IDs in Table 6.2. The depth
of an XML document tree specifies
the length (number of edges) of the
longest path from the root of the tree
to a leaf.

re-pair for trees 79

ID Source

1 http://www.cafeconleche.org/examples

2 http://dblp.uni-trier.de/xml

3 http://download.wikipedia.org/backup-index.html

4 http://www.cs.washington.edu/research/xmldatasets

5 http://www.w3.org/XML/EXI

6 http://www.ncbi.nlm.nih.gov/pubmed

7 http://expasy.org/sprot

8 http://snp.ims.u-tokyo.ac.jp

9 http://softbase.uwaterloo.ca/~ddbms/projects/xbench

Table 6.2: Sources of the XML docu-
ments from Table 6.1.

BPLEX is that there exists only a slowly running implementation
of it.

In contrast, Extended-Repair (which we sometimes call E-Repair
in the sequel) is an algorithm developed by Christoph Krislin
from the University of Paderborn, Germany as part of his Diplo-
marbeit [Kri08, BHK10]. This algorithm is, just like our Re-pair
for Trees algorithm, based on the Re-pair algorithm introduced in
[LM00]. However, it was independently developed and exhibits
some fundamental differences to our algorithm. One of the main
differences is that the Extended-Repair algorithm at first generates
a DAG of the input tree and then processes each part of it individ-
ually, i. e., it generates multiple grammars which are combined in
the end. The individual parts of the input tree are called "repair
packets". The maximal size of each packet can be specified by an
input parameter (default is 20 000 edges). The author of [Kri08]
points out that this packet-based behavior may have a negative
impact on the compression performance of the Extended-Repair
algorithm. Our own investigations concerning a TreeRePair ver-
sion running on the DAG of the input tree instead of on the whole
tree support this point of view.

The author of Extended-Repair shows that in the case of the
XML document NCBI_snp.chr1 the avoidance of breaking down
the input tree into packets (by choosing the maximum packet size
large enough) results in a much more competitive compression
result. However, our experiments show that at the same time the
memory requirements and the runtime of the Extended-Repair al-
gorithm rise drastically. Note that, regarding our algorithm, the
DAG representation is merely used to save memory resources and
is almost completely transparent to the overlying digram replace-
ment process (cf. Sect. 4.5 on page 58).

6.3 Testing Environment

Our experiments were done on a computer with an Intel® Core™
2 Duo CPU T9400 processor, four gigabytes of RAM and the Linux
operating system. Every algorithm was executed on a single pro-
cessor core, i. e., no algorithm was able to make use of multi-
processing. TreeRePair and BPLEX were compiled with the gcc-

http://www.cafeconleche.org/examples
http://dblp.uni-trier.de/xml
http://download.wikipedia.org/backup-index.html
http://www.cs.washington.edu/research/xmldatasets
http://www.w3.org/XML/EXI
http://www.ncbi.nlm.nih.gov/pubmed
http://expasy.org/sprot
http://snp.ims.u-tokyo.ac.jp
http://softbase.uwaterloo.ca/~ddbms/projects/xbench

re-pair for trees 80

TreeRePair BPLEX E-Repair mDAG bin. mDAG

Edges (%) 2.9 3.4 4.1 12.8 18.3
NTs 4 753 13 660 6 522 2 075 5 320

Time (sec) 10 322 63 - -
Mem (MB) 47 536 401 - -
File size (%) 0.46 0.71 0.61 - -

Table 6.3: Average values of the char-
acteristics of the generated grammars
and of the corresponding runs of the
algorithms.

compiler using the -O3 (compile time optimizations) and -m32 (i. e.,
we generated them as 32bit-applications) switches. We were not
able to compile the succ-tool of the BPLEX distribution with com-
pile time optimizations (i. e., using the -O3 switch). This tool is
used to apply a succinct coding to a grammar generated by the
BPLEX algorithm. However, this should not have a great influence
on the runtime measured for BPLEX since the succ-tool usually
executes quite fast compared to the runtime of the actual BPLEX
algorithm. In contrast, Extended-Repair is an application writ-
ten in Java™ for which we only had the bytecode at hand, i. e.,
we did not have access to the source code of it. We executed
Extended-Repair using the Java SE Runtime Environment™ in ver-
sion 1.6.0_15.

During the execution of the algorithms we always measured
their memory usage. We accomplished this by constantly polling
the VmRSS-value which is printed out by executing the command
cat /proc/<pid>/status, where <pid> is the process ID assigned
to the algorithm. In the first second of the execution of an algo-
rithm this value was checked every ten milliseconds and after that
the frequency was slowly reduced to one second.

Every time we executed BPLEX we used its default input pa-
rameters, namely, window size: 20 000, maximal pattern size: 20,
maximal rank: 10. In order to be able to test BPLEX together with
every file of our set of test XML documents we needed to explicitly
allow large stack sizes using the standard tool ulimit.

6.4 Comparison of the Generated Grammars

In this section, we compare the final grammars generated by the
algorithms TreeRePair, BPLEX and Extended-Repair. All algo-
rithms were instructed to minimize the number of edges of the
generated grammar. For TreeRePair, we achieved this behavior
by specifying the -optimize edges input parameter. Regarding
Extended-Repair, we used the supplied ConfEdges.xml configura-
tion file which is supposed to make Extended-Repair minimize
the number of edges. The BPLEX algorithm was executed with
its default input parameter values and no changes were made to
the generated grammar (besides pruning nonterminals which are
referenced only once by using the supplied gprint tool).

re-pair for trees 81

TreeRePair BPLEX E-Repair XMill gzip bzip2

File size (%) 0.45 0.57 0.61 0.47 1.36 0.58

Time (sec) 10 329 167 119 < 1 16
Mem (MB) 47 536 399 7 - 7
Edges (%) 3.0 3.9 4.1 - - -
NTs 2 642 2 796 7 003 - - -

Table 6.4: Average values of the char-
acteristics of the runs of the three al-
gorithms when making a small size of
the output file top priority.

Table 6.3 shows the average values of the essential characteris-
tics of the final grammars generated by the three competing al-
gorithms. The first row shows the average compression factors in
terms of the number of edges in percent. The edge compression
factor is computed as follows: if t ∈ T(F) is the binary represen-
tation of the input tree and G is the final grammar, we obtain the
edge compression factor by computing |G|/|t| · 100. The second row
shows the average number of nonterminals of the final grammars.
For the sake of completeness, the average runtimes (in seconds),
the average memory usages (in megabytes) and the average file
size compression factors are also listed. The compression factor in
terms of file size specifies the ratio between the size of the input
file and the file size of the succinct coding of the final grammar in
percent.

We also added two columns to Table 6.3 showing the average
number of edges and the average number of nonterminals of the
minimal DAGs of the input trees (mDAG) and the minimal DAGs
of the binary representations of the input trees (bin. mDAG).

As it can be seen, on average, TreeRePair generates the smallest
linear SLCF tree grammars (in terms of the number of edges) com-
pared to the other two algorithms. At the same time, its grammars
exhibit a small number of nonterminals. It outperforms BPLEX
and Extended-Repair in terms of runtime and memory usage. The
speed and moderate requirements on main memory are a result
of the transparent DAG representation of the input tree and the
many optimizations we made to the source code of TreeRePair
during our investigations.

Figure 6.1 on page 83 gives an impression on how each of the
three algorithms performs on the individual XML documents in
terms of the size of the final grammar in edges. For each file,
the algorithm which generates the largest grammar is set to 100%.
In Appendix A.1 on page 89 there is a detailed table listing all
relevant characteristics of the runs of the algorithms on the set of
test XML documents.

6.5 Comparison of Output File Sizes

In this section, we concentrate on the sizes of the files generated by
the runs of the algorithms on our set of test XML documents. In

re-pair for trees 82

fact, we execute each algorithm in a mode in which the size of the
resulting file is made a top priority. For TreeRePair, we achieve
this by specifying the input parameter -optimize filesize and
for Extended-Repair, we get such a behavior by using the supplied
ConfSize.xml configuration file and the -s 4 switch. The latter
chooses a certain succinct coding of the Extended-Repair distribu-
tion which is supposed to generate very small representations of
the generated grammar. Regarding BPLEX, we first apply the sup-
plied gprint-tool using the parameters --prune and --threshold

14. After that we use the succ-tool of the BPLEX distribution
together with the parameter --type 68 to generate a Huffman
coding-based succinct coding of the corresponding grammar. In
[MMS08] it is stated that this approach leads to the best compres-
sion performance of BPLEX in general (in terms of file size).

In addition to the above three algorithms, we also consider
the compression results produced by gzip, bzip21 and XMill 0.8

1 For more information about the gzip
algorithm, see http://www.gzip.org.
For bzip2, see http://www.bzip.org.

[LS00]. We include them in our comparison to make it easier to get
a handle for common compression rates and runtimes. The first
two algorithms are widely used general purpose file compressors
which, of course, produce a non-queryable compressed represen-
tation of the input file. In contrast, XMill is a compressor special-
ized in compressing the structure and, in particular, the character
data of XML documents. In fact, it mainly concentrates on how
to group the character data of an XML document in such a way
that it can be efficiently compressed by general purpose compres-
sors like gzip. Since its implementation does not exhibit a special
"only consider the structure of the XML document" mode, it may
be unfair to directly compare its compression results with those
of TreeRePair, BPLEX or Extended-Repair. However, we included
its compression results, which we obtained using its default input
parameters, because we were interested in its performance in this
setting.

Table 6.4 shows the average sizes of the output files generated
by the six algorithms mentioned above. For the sake of complete-
ness, the average runtime, the average memory usage, the aver-
age number of edges and the average number of nonterminals are
also listed. Again, TreeRePair outperforms BPLEX and Extended-
Repair regarding all considered characteristics. Surprisingly, its
queryable output files are even smaller than the non-queryable
ones produced by the highly optimized gzip and bzip2 algorithms.
However, gzip (but interestingly not bzip2) runs much faster than
TreeRePair on our test data.

Figure 6.2 gives an impression on how each of the six algo-
rithms performs on the individual XML documents in terms of
the size of the generated output file. For each file, the algorithm
which generates the biggest output file is set to 100%. In Ap-
pendix A.2 on page 93 there is a detailed table listing all relevant
characteristics of the runs of the algorithms on our set of test XML
documents.

http://www.gzip.org
http://www.bzip.org

re-pair for trees 83

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

1998statistics
catalog-01
catalog-02
dblp

dictionary-01
dictionary-02
EnW

ikiN
ew

EnW
ikiQ

uote
EnW

ikiSource
EnW

ikiVersity
EnW

ikTionary
EXI-Array
EXI-factbook
EXI-Invoice
EXI-Telecom

p
EXI-w

eblog
JST_gene.chr1
JST_snp.chr1
m

edline02n0328
N

C
BI_gene.chr1

N
C

BI_snp.chr1
sprot39.dat
treebank

TreeRePair Bplex Repair

Figure 6.1: Comparison of the number
of edges of the final grammars.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
1998statistics
catalog-01
catalog-02
dblp

dictionary-01
dictionary-02
EnW

ikiN
ew

EnW
ikiQ

uote
EnW

ikiSource
EnW

ikiVersity
EnW

ikTionary
EXI-Array
EXI-factbook
EXI-Invoice
EXI-Telecom

p
EXI-w

eblog
JST_gene.chr1
JST_snp.chr1
m

edline02n0328
N

C
BI_gene.chr1

N
C

BI_snp.chr1
sprot39.dat
treebank

TreeRePair
Bplex

Repair
bzip2

gzip
XMill

Figure 6.2: Comparison of the sizes of
the output files.

re-pair for trees 84

with DAG without DAG

Edges (%) 2.86 2.84
NTs 4 753 4 620
File size (%) 0.463 0.459
Time (sec) 9.8 11.2
Mem (MB) 47 188

Table 6.5: Average values of the char-
acteristics of the runs of TreeRePair
with and without the DAG represen-
tation of the input tree.

Max. rank 0 1 2 3 4 5 6

Edges (%) 55.02 3.29 2.92 2.89 2.86 2.89 2.89
NTs 1 265 5 539 4 712 4 916 4 753 4 956 4 958
File size (%) 2.12 0.51 0.47 0.47 0.46 0.47 0.46
Time (sec) 7.0 8.4 9.3 9.5 9.6 9.8 9.8
Mem (MB) 44 44 45 47 47 47 47

Table 6.6: Average values of the char-
acteristics of the runs of TreeRePair
with different maximal ranks allowed
for a nonterminal.

6.6 Results without DAG Representation

Table 6.5 shows a comparison between the compression results of
TreeRePair when using and when not using, respectively, the DAG
representation described in Sect. 4.2 on page 48. The left column
shows the values obtained when executing TreeRePair with its
default parameters in edge optimization mode, i. e., we are only
using the -optimize edges switch since our algorithm uses the
DAG representation by default. In contrast, the right column is
a result of running TreeRePair with the -no_dag and -optimize

edges switches. Again, in Appendix A.3 on page 97, there is a
detailed table listing all relevant characteristics of the runs of the
two TreeRePair configurations on each test XML document.

Regarding the differences between the compression results of
TreeRePair and the ones of the competing algorithms, it can be
said that the DAG representation only has a minor impact on the
compression performance of our algorithm. However, we can state
that it drastically reduces the memory demands of TreeRePair —
it slashes the memory consumption by a factor of 4. Interestingly,
even without the DAG representation, TreeRePair uses only half
as much main memory as Extended-Repair does (cf. Table 6.3).
Furthermore, the DAG representation leads to a faster compres-
sion speed since it saves repetitive recalculations concerning equal
subtrees.

6.7 Results with Different Maximal Ranks

We executed TreeRePair using the -optimize edges (i. e., we en-
abled the edge optimization mode) and the -max_rank switches.
Each time, we specified a different maximal rank for a nontermi-
nal in order to get an insight into the influence of it concerning
the compression performance. Table 6.6 shows that, regarding our
set of test XML documents, a maximal rank of 4 leads to the best

re-pair for trees 85

compression results on average.
At the same time, we can see that even when restricting the

maximal rank to 1 TreeRePair performs better than BPLEX and
Extended-Repair (cf. Table 6.3). The fact that large maximal ranks
can lead to a worse compression ratio can be explained by the trees
from Sect. 3.7 on page 39. Note that the trees from this section
are basically long lists. Although this is not the case for our test
trees, their shape is nevertheless similar to a list structure. In any
case, its quite distinct from the shape of a full binary tree, where
an unlimited maximal rank leads to the best compression ratio
(cf. Sect. 3.6 on page 34).

Bibliography

[BGK03] Peter Buneman, Martin Grohe, and Christoph Koch.
Path queries on compressed XML. In VLDB 2003: Pro-
ceedings of the 29th international conference on very large
data bases, pages 141–152. VLDB Endowment, 2003.

[BHK10] Stefan Böttcher, Rita Hartel, and Christoph Krislin.
CluX: Clustering XML sub-trees. In ICEIS 2010: Pro-
ceedings of the 12th International Conference on Enterprise
Information Systems, 2010.

[BLM08] Giorgio Busatto, Markus Lohrey, and Sebastian
Maneth. Efficient memory representation of XML
document trees. Information Systems, 33(4-5):456 – 474,
2008.

[BPSM+08] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen,
Eve Maler, and François Yergeau. Extensible markup
language (XML) 1.0. W3c recommendation, XML
Core Working Group, World Wide Web Consortium,
November 2008.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata, 2007.

[CLL+05] Moses Charikar, Eric Lehman, April Lehman, Ding
Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and abhi shelat. The smallest grammar problem. IEEE
Trans. Inform. Theory, 51(7):2554–2576, 2005.

[Deu96] P. Deutsch. DEFLATE compressed data format spec-
ification version 1.3. http://tools.ietf.org/html/

rfc1951, 1996.

[FGK03] Markus Frick, Martin Grohe, and Christoph Koch.
Query evaluation on compressed trees (extended ab-
stract). In LICS ’03: Proceedings of the 18th Annual IEEE
Symposium on Logic in Computer Science, pages 188–
197. IEEE Computer Society Press, 2003.

[Kri08] Christoph Krislin. Optimierung grammatik-basierter
XML-Kompression. Diplomarbeit, Faculty for Electri-

http://www.grappa.univ-lille3.fr/tata
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1951

re-pair for trees 88

cal Engineering, Computer Science and Mathematics,
University of Paderborn (Germany), 2008.

[LM00] N. Jesper Larsson and Alistair Moffat. Off-line
dictionary-based compression. Proceedings of the IEEE,
88(11):1722–1732, 2000.

[LM06] Markus Lohrey and Sebastian Maneth. The com-
plexity of tree automata and XPath on grammar-
compressed trees. Theoretical Computer Science,
363(2):196 – 210, 2006. Implementation and Appli-
cation of Automata, 10th International Conference on
Implementation and Application of Automata (CIAA
2005).

[LMSS09] Markus Lohrey, Sebastian Maneth, and Manfred
Schmidt-Schauss. Parameter reduction in grammar-
compressed trees. In Proceedings of FOSSACS 2009,
number 5504 in Lecture Notes in Computer Science,
pages 212–226. Springer, 2009.

[LS00] H. Liefke and D. Suciu. XMill: an efficient compressor
for XML data. In Proceedings of the 2000 ACM SIG-
MOD international conference on Management of data,
page 164. ACM, 2000.

[MLMK05] Makoto Murata, Dongwon Lee, Murali Mani, and
Kohsuke Kawaguchi. Taxonomy of XML schema lan-
guages using formal language theory. ACM Transac-
tions on Internet Technology, 5(4):660–704, 2005.

[MMS08] Sebastian Maneth, Nikolay Mihaylov, and Sherif Sakr.
XML tree structure compression. International Work-
shop on Database and Expert Systems Applications, pages
243–247, 2008.

[MSV03] Tova Milo, Dan Suciu, and Victor Vianu. Typecheck-
ing for XML transformers. Journal of Computer and
System Sciences, 66(1):66 – 97, 2003.

[Nev02] Frank Neven. Automata theory for XML researchers.
SIGMOD Record, 31(3):39–46, 2002.

[WLH07] Fangju Wang, Jing Li, and Hooman Homayounfar. A
space efficient XML DOM parser. Data & Knowledge
Engineering, 60(1):185 – 207, 2007.

Appendix A
Detailed Test Results

A.1 Optimization of Total Number of Edges

Algorithm Edges File size #NTs Time Mem (MB)

1998statistics
TreeRePair 1.68% 0.20% 54 100ms 1
BPLEX 1.80% 0.34% 168 1.813s 295
E-Repair 1.69% 0.24% 37 7.518s 114
bin. mDAG 8.49% - 31 - -
mDAG 4.87% - 15 - -

catalog-01
TreeRePair 1.69% 0.10% 400 887ms 2
BPLEX 2.22% 0.22% 1251 6.548s 315
E-Repair 1.63% 0.12% 291 9.975s 279
bin. mDAG 3.10% - 520 - -
mDAG 3.80% - 506 - -

catalog-02
TreeRePair 1.11% 0.07% 965 9.409s 10
BPLEX 1.38% 0.11% 3045 30s 512
E-Repair 1.52% 0.11% 1499 42s 511
bin. mDAG 2.22% - 805 - -
mDAG 1.39% - 792 - -

dblp
TreeRePair 3.89% 0.59% 25250 43s 227
BPLEX 4.27% 0.73% 38712 57m 42s 1644
E-Repair 5.65% 0.68% 30430 4m 34s 510
bin. mDAG 19.36% - 6592 - -
mDAG 11.11% - 3378 - -

dictionary-01
TreeRePair 7.72% 1.54% 1676 1.010s 9
BPLEX 8.43% 2.37% 3994 44s 323
E-Repair 8.71% 1.83% 1248 16s 433
bin. mDAG 27.99% - 2058 - -
mDAG 21.07% - 448 - -

re-pair for trees 90

Algorithm Edges File size #NTs Time Mem (MB)

dictionary-02
TreeRePair 5.92% 1.38% 9757 11s 69
BPLEX 6.58% 1.95% 23209 6m 12s 587
E-Repair 8.52% 1.83% 11672 1m 40s 494
bin. mDAG 24.93% - 16281 - -
mDAG 19.96% - 2414 - -

EnWikiNew
TreeRePair 2.29% 0.21% 667 1.585s 8
BPLEX 2.40% 0.30% 1369 35s 337
E-Repair 2.42% 0.24% 476 12s 347
bin. mDAG 17.31% - 23 - -
mDAG 8.67% - 29 - -

EnWikiQuote
TreeRePair 2.42% 0.21% 452 1.158s 7
BPLEX 2.56% 0.31% 985 25s 321
E-Repair 2.58% 0.26% 323 9.924s 290
bin. mDAG 18.14% - 19 - -
mDAG 9.09% - 25 - -

EnWikiSource
TreeRePair 1.10% 0.10% 861 4.927s 26
BPLEX 1.28% 0.16% 1895 1m 9s 418
E-Repair 1.82% 0.18% 1106 23s 500
bin. mDAG 17.52% - 19 - -
mDAG 8.77% - 24 - -

EnWikiVersity
TreeRePair 1.44% 0.13% 525 2.107s 12
BPLEX 1.53% 0.18% 1043 34s 347
E-Repair 1.61% 0.15% 423 12s 437
bin. mDAG 17.60% - 19 - -
mDAG 8.81% - 24 - -

EnWikTionary
TreeRePair 0.97% 0.11% 4535 36s 183
BPLEX 1.09% 0.14% 6402 8m 58s 1287
E-Repair 1.48% 0.15% 6315 1m 33s 540
bin. mDAG 17.32% - 26 - -
mDAG 8.66% - 30 - -

EXI-Array
TreeRePair 0.41% 0.03% 123 1.281s 14
BPLEX 0.65% 0.06% 383 42s 322
E-Repair 0.53% 0.05% 142 8.017s 320
bin. mDAG 56.51% - 8 - -
mDAG 42.20% - 13 - -

re-pair for trees 91

Algorithm Edges File size #NTs Time Mem (MB)

EXI-factbook
TreeRePair 2.35% 0.31% 145 271ms 2
BPLEX 4.11% 0.77% 1423 5.138s 298
E-Repair 2.58% 0.31% 146 11s 408
bin. mDAG 9.16% - 236 - -
mDAG 8.07% - 293 - -

EXI-Invoice
TreeRePair 0.68% 0.21% 14 74ms 1
BPLEX 0.62% 0.30% 40 1.483s 293
E-Repair 0.93% 0.24% 20 4.689s 119
bin. mDAG 13.74% - 6 - -
mDAG 7.12% - 15 - -

EXI-Telecomp
TreeRePair 0.07% 0.01% 21 780ms 3
BPLEX 0.06% 0.02% 47 9.684s 310
E-Repair 0.08% 0.02% 21 11s 452
bin. mDAG 11.15% - 10 - -
mDAG 5.59% - 15 - -

EXI-weblog
TreeRePair 0.06% 0.01% 13 324ms 3
BPLEX 0.04% 0.01% 24 9.097s 303
E-Repair 0.05% 0.02% 11 7.868s 279
bin. mDAG 18.19% - 2 - -
mDAG 9.10% - 2 - -

JST_gene.chr1
TreeRePair 1.84% 0.10% 354 874ms 3
BPLEX 2.19% 0.19% 1113 11s 315
E-Repair 2.99% 0.17% 126 8.006s 233
bin. mDAG 6.75% - 114 - -
mDAG 4.24% - 76 - -

JST_snp.chr1
TreeRePair 1.51% 0.09% 856 3.150s 8
BPLEX 2.15% 0.21% 4193 31s 360
E-Repair 1.54% 0.10% 634 15s 445
bin. mDAG 6.20% - 282 - -
mDAG 3.59% - 242 - -

medline02n0328
TreeRePair 4.13% 0.35% 9064 16s 79
BPLEX 5.17% 0.62% 33976 5m 52s 574
E-Repair 6.73% 0.54% 13010 1m 32s 479
bin. mDAG 25.84% - 20013 - -
mDAG 22.80% - 3960 - -

re-pair for trees 92

Algorithm Edges File size #NTs Time Mem (MB)

NCBI_gene.chr1
TreeRePair 1.37% 0.09% 504 1.374s 4
BPLEX 2.38% 0.28% 3631 14s 327
E-Repair 1.68% 0.11% 328 10s 308
bin. mDAG 3.98% - 605 - -
mDAG 4.45% - 436 - -

NCBI_snp.chr1
TreeRePair < 0.01% < 0.01% 17 15s 80
BPLEX < 0.01% < 0.01% 23 2m 6s 770
E-Repair 0.03% 0.01% 291 37s 504
bin. mDAG 22.22% - 2 - -
mDAG 11.11% - 2 - -

sprot39.dat
TreeRePair 2.30% 0.38% 20224 43s 178
BPLEX 3.16% 0.79% 111167 14m 41s 1446
E-Repair 4.27% 0.59% 33102 3m 48s 499
bin. mDAG 13.18% - 31116 - -
mDAG 16.07% - 10243 - -

treebank
TreeRePair 20.72% 4.41% 32857 22s 164
BPLEX 23.29% 6.16% 76109 21m 27s 645
E-Repair 34.85% 6.03% 48358 6m 50s 526
bin. mDAG 59.42% - 43586 - -
mDAG 53.75% - 24746 - -

re-pair for trees 93

A.2 Optimization of File Size

Algorithm Edges File size #NTs Time Mem (MB)

1998statistics
TreeRePair 1.77% 0.20% 35 109ms 1
BPLEX 2.19% 0.25% 27 2.018s 295
E-Repair 1.68% 0.24% 37 4.578s 108
bzip2 - 0.29% - 229ms 4
gzip - 0.81% - 8ms -
XMill - 0.24% - 2.728s 2

catalog-01
TreeRePair 1.76% 0.10% 279 898ms 2
BPLEX 2.23% 0.14% 342 6.834s 315
E-Repair 2.77% 0.19% 236 11s 349
bzip2 - 0.24% - 2.701s 8
gzip - 0.85% - 51ms -
XMill - 0.11% - 12s 2

catalog-02
TreeRePair 1.12% 0.07% 770 10s 10
BPLEX 1.27% 0.08% 948 32s 512
E-Repair 1.49% 0.12% 1692 47s 521
bzip2 - 0.23% - 28s 8
gzip - 0.81% - 450ms -
XMill - 0.09% - 1m 58s 12

dblp
TreeRePair 4.03% 0.58% 14533 43s 227
BPLEX 4.52% 0.65% 11693 61m 15s 1644
E-Repair 5.52% 0.68% 35125 42m 48s 516
bzip2 - 0.56% - 1m 11s 8
gzip - 1.30% - 1.230s -
XMill - 0.53% - 11m 36s 15

dictionary-01
TreeRePair 8.08% 1.47% 930 1.117s 9
BPLEX 9.67% 1.85% 1044 46s 323
E-Repair 8.51% 1.81% 1428 19s 462
bzip2 - 1.52% - 1.313s 7
gzip - 3.07% - 39ms -
XMill - 1.49% - 17s 2

dictionary-02
TreeRePair 6.15% 1.32% 5024 11s 69
BPLEX 7.56% 1.63% 5424 6m 12s 587
E-Repair 8.30% 1.81% 13698 1m 57s 475
bzip2 - 1.52% - 15s 7
gzip - 3.05% - 279ms -
XMill - 1.49% - 2m 41s 13

re-pair for trees 94

Algorithm Edges File size #NTs Time Mem (MB)

EnWikiNew
TreeRePair 2.38% 0.20% 390 1.721s 8
BPLEX 2.63% 0.23% 335 35s 337
E-Repair 2.42% 0.24% 476 12s 369
bzip2 - 0.26% - 2.999s 8
gzip - 0.90% - 57ms -
XMill - 0.23% - 23s 2

EnWikiQuote
TreeRePair 2.51% 0.20% 274 1.195s 7
BPLEX 2.81% 0.23% 236 25s 321
E-Repair 2.58% 0.26% 323 10s 268
bzip2 - 0.28% - 2.013s 8
gzip - 0.93% - 36ms -
XMill - 0.24% - 15s 2

EnWikiSource
TreeRePair 1.14% 0.10% 515 5.025s 26
BPLEX 1.40% 0.13% 535 1m 10s 418
E-Repair 1.82% 0.18% 1127 23s 488
bzip2 - 0.16% - 8.742s 8
gzip - 0.63% - 131ms -
XMill - 0.12% - 1m 4s 9

EnWikiVersity
TreeRePair 1.50% 0.12% 303 2.244s 12
BPLEX 1.70% 0.15% 287 36s 347
E-Repair 1.61% 0.15% 423 13s 415
bzip2 - 0.19% - 3.698s 8
gzip - 0.69% - 59ms -
XMill - 0.15% - 28s 2

EnWikTionary
TreeRePair 1.00% 0.11% 2575 37s 183
BPLEX 1.15% 0.13% 2062 9m 13s 1287
E-Repair 1.48% 0.15% 6314 1m 40s 526
bzip2 - 0.17% - 57s 8
gzip - 0.68% - 938ms -
XMill - 0.13% - 7m 25s 15

EXI-Array
TreeRePair 0.44% 0.03% 75 1.393s 14
BPLEX 0.77% 0.05% 124 43s 322
E-Repair 0.51% 0.05% 155 7.833s 312
bzip2 - 0.05% - 3.250s 8
gzip - 0.37% - 67ms -
XMill - 0.03% - 10s 6

re-pair for trees 95

Algorithm Edges File size #NTs Time Mem (MB)

EXI-factbook
TreeRePair 2.51% 0.31% 99 356ms 2
BPLEX 6.44% 0.58% 170 5.333s 298
E-Repair 2.59% 0.31% 151 12s 438
bzip2 - 0.78% - 854ms 8
gzip - 1.10% - 17ms -
XMill - 0.29% - 5.248s 1

EXI-Invoice
TreeRePair 0.72% 0.21% 11 147ms 2
BPLEX 0.78% 0.28% 8 1.406s 293
E-Repair 0.91% 0.24% 21 4.320s 113
bzip2 - 0.30% - 191ms 3
gzip - 0.64% - 7ms -
XMill - 0.26% - 1.256s 2

EXI-Telecomp
TreeRePair 0.08% 0.01% 12 829ms 3
BPLEX 0.07% 0.02% 15 9.548s 310
E-Repair 0.08% 0.02% 24 13s 450
bzip2 - 0.09% - 2.363s 8
gzip - 0.45% - 36ms -
XMill - 0.02% - 11s 2

EXI-weblog
TreeRePair 0.06% 0.01% 9 400ms 3
BPLEX 0.05% 0.01% 12 9.004s 303
E-Repair 0.05% 0.02% 12 7.942s 288
bzip2 - 0.06% - 720ms 8
gzip - 0.40% - 14ms -
XMill - 0.02% - 8.342s 2

JST_gene.chr1
TreeRePair 1.91% 0.10% 227 906ms 3
BPLEX 2.42% 0.13% 211 11s 315
E-Repair 2.99% 0.17% 128 9.947s 211
bzip2 - 0.14% - 2.599s 8
gzip - 0.67% - 43ms -
XMill - 0.10% - 14s 2

JST_snp.chr1
TreeRePair 1.58% 0.08% 537 3.213s 8
BPLEX 2.45% 0.14% 569 32s 360
E-Repair 1.51% 0.10% 673 15s 453
bzip2 - 0.18% - 9.251s 8
gzip - 0.79% - 149ms -
XMill - 0.09% - 40s 8

re-pair for trees 96

Algorithm Edges File size #NTs Time Mem (MB)

medline02n0328
TreeRePair 4.32% 0.34% 4923 16s 79
BPLEX 6.47% 0.46% 6717 5m 45s 574
E-Repair 6.71% 0.54% 13243 1m 38s 477
bzip2 - 0.49% - 31s 7
gzip - 1.26% - 544ms -
XMill - 0.34% - 2m 13s 13

NCBI_gene.chr1
TreeRePair 1.43% 0.09% 354 1.442s 4
BPLEX 3.00% 0.16% 464 14s 327
E-Repair 1.66% 0.11% 342 10s 265
bzip2 - 0.15% - 4.110s 8
gzip - 0.71% - 65ms -
XMill - 0.08% - 21s 8

NCBI_snp.chr1
TreeRePair < 0.01% < 0.01% 11 15s 80
BPLEX < 0.01% < 0.01% 15 2m 6s 770
E-Repair 0.03% 0.01% 292 33s 465
bzip2 - 0.03% - 40s 8
gzip - 0.39% - 578ms -
XMill - 0.00% - 3m 45s 14

sprot39.dat
TreeRePair 2.41% 0.37% 11699 43s 178
BPLEX 4.33% 0.53% 11783 13m 43s 1446
E-Repair 4.25% 0.59% 33700 3m 59s 497
bzip2 - 0.45% - 1m 11s 8
gzip - 1.20% - 1.122s -
XMill - 0.36% - 9m 52s 15

treebank
TreeRePair 21.59% 4.28% 17186 22s 164
BPLEX 26.21% 5.37% 21302 21m 36s 646
E-Repair 34.53% 6.01% 51470 7m 44s 514
bzip2 - 5.26% - 6.407s 7
gzip - 9.65% - 843ms -
XMill - 4.51% - 1m 36s 12

re-pair for trees 97

A.3 Without Using DAG Representation

Algorithm Edges File size #NTs Time Mem (MB)

1998statistics
Without DAG 1.62% 0.20% 53 121ms 4
With DAG 1.68% 0.20% 54 214ms 1

catalog-01
Without DAG 1.69% 0.10% 400 1.381s 20
With DAG 1.69% 0.10% 400 1.022s 3

catalog-02
Without DAG 1.11% 0.07% 967 15s 199
With DAG 1.11% 0.07% 965 9.584s 10

dblp
Without DAG 3.89% 0.59% 25039 55s 1015
With DAG 3.89% 0.59% 25250 44s 227

dictionary-01
Without DAG 7.63% 1.51% 1622 1.238s 25
With DAG 7.72% 1.54% 1676 1.044s 9

dictionary-02
Without DAG 5.88% 1.36% 9390 12s 238
With DAG 5.92% 1.38% 9757 11s 69

EnWikiNew
Without DAG 2.28% 0.21% 656 2.042s 37
With DAG 2.29% 0.21% 667 1.732s 8

EnWikiQuote
Without DAG 2.41% 0.21% 458 1.320s 24
With DAG 2.42% 0.21% 452 1.223s 7

EnWikiSource
Without DAG 1.09% 0.10% 863 5.652s 101
With DAG 1.10% 0.10% 861 5.087s 26

EnWikiVersity
Without DAG 1.43% 0.13% 522 2.472s 45
With DAG 1.44% 0.13% 525 2.229s 12

EnWikTionary
Without DAG 0.97% 0.11% 4539 42s 743
With DAG 0.97% 0.11% 4535 38s 183

EXI-Array
Without DAG 0.40% 0.03% 122 1.378s 21
With DAG 0.41% 0.03% 123 1.394s 14

EXI-factbook
Without DAG 2.34% 0.31% 144 331ms 6
With DAG 2.35% 0.31% 145 330ms 2

re-pair for trees 98

Algorithm Edges File size #NTs Time Mem (MB)

EXI-Invoice
Without DAG 0.61% 0.21% 12 85ms 3
With DAG 0.68% 0.21% 14 124ms 1

EXI-Telecomp
Without DAG 0.06% 0.01% 17 1.132s 17
With DAG 0.07% 0.01% 21 850ms 3

EXI-weblog
Without DAG 0.05% 0.01% 10 607ms 10
With DAG 0.06% 0.01% 13 400ms 3

JST_gene.chr1
Without DAG 1.73% 0.09% 299 1.365s 21
With DAG 1.84% 0.10% 354 910ms 3

JST_snp.chr1
Without DAG 1.50% 0.09% 841 4.187s 59
With DAG 1.51% 0.09% 856 3.287s 8

medline02n0328
Without DAG 4.11% 0.34% 8524 17s 235
With DAG 4.13% 0.35% 9064 17s 79

NCBI_gene.chr1
Without DAG 1.37% 0.09% 486 1.959s 32
With DAG 1.37% 0.09% 504 1.498s 4

NCBI_snp.chr1
Without DAG < 0.01% < 0.01% 13 18s 337
With DAG < 0.01% < 0.01% 17 15s 80

sprot39.dat
Without DAG 2.31% 0.37% 18516 55s 936
With DAG 2.30% 0.38% 20224 44s 178

treebank
Without DAG 20.71% 4.41% 32786 14s 215
With DAG 20.72% 4.41% 32857 22s 164

Eidesstattliche Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebe-
nen Quellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche oder sinngemäße Zitate als
solche gekennzeichnet. Mir ist bekannt, dass Zuwiderhandlung auch nachträglich zur Aberkennung
des Abschlusses führen kann.

Ort, Datum Unterschrift

	Abstract
	Introduction
	Preliminaries
	Labeled Ordered Tree
	SLCF Tree Grammar
	XML Terminology
	Binary Tree Model

	Re-Pair for Trees
	Definitions
	Replacement of Digrams
	Pruning the Grammar
	Complete Example
	Another Example
	Unlimited Maximal Rank
	Limiting the Maximal Rank

	Implementation Details
	Reading the Input Tree
	Representing the Input Tree in Memory
	Utilized Data Structures
	Complexity of the TreeRePair Algorithm
	Impact of the DAG Representation
	Technical Details on the Prototype

	Succinct Coding
	General Remarks
	Contents of the Output File
	Employing Multiple Types of Encodings

	Experimental Results
	XML Documents Used
	Algorithms Used in Comparison
	Testing Environment
	Comparison of the Generated Grammars
	Comparison of Output File Sizes
	Results without DAG Representation
	Results with Different Maximal Ranks

	Bibliography
	Detailed Test Results
	Optimization of Total Number of Edges
	Optimization of File Size
	Without Using DAG Representation

