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Abstract  
 
Non-spherical particles scatter and polarize solar radiation depending on their shape, 
size, chemical composition and orientation. In addition, such information is crucial in 
radiative transfer modeling. Therefore, in this study, the implementation of 
polarization into a three-dimensional radiative transfer model is introduced and its 
validation through benchmark results. The model is based on the statistical Monte 
Carlo method (in the forward scheme) and takes into account multiple scattering and 
the polarization states of the monochromatic radiation. It calculates column-response 
pixel-based polarized radiative densities for 3D inhomogeneous cloudy atmospheres 
and is hence best suited for use in remote sensing applications. To this end, the model 
can be used to explore the potential of remote sensing techniques which distinguish 
between spherical and non-spherical particles on the one side and coarse mode dust 
particles and ice particles on the other side.  
 
Zusammenfassung 
 
Nichtsphärische Partikel streuen und polarisieren die solare Strahlung in Abhängigkeit 
ihrer Form, chemischen Zusammensetzung sowie Orientierung. Diese Informationen 
sind zudem auch entscheidend für Strahlungstransportmodelle. Deshalb wird in dieser 
Studie die Integration der Polarisation in ein dreidimensionales 
Strahlungstransportmodel vorgestellt und anhand von Bezugswerten validiert. Das 
Model basiert auf einer statistischen Monte Carlo Methode (Vorwärtsrechnungen) und 
beachtet zudem die Mehrfachstreuprozesse sowie den Polarisationsstatus der 
monochromatischen Strahlung. Es berechnet säulenweise und pixelbasiert polarisierte 
Strahldichten einer dreidimensionalen inhomogenen wolkigen Atmosphäre und ist 
somit bestens für Anwendungen im Fernerkundungsbereich geeignet. Abschließend ist 
dieses Model dazu geeignet, das Potential von Fernerkundungstechniken zu erkennen, 
die zur Unterscheidung von sphärischen und nichtsphärischen Partikeln sowie groben 
Staubpartikeln und Eiskristallen entwickelt wurden.  
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1. Introduction  
 
Non-spherical particles are known to have a considerable impact on climate (Liou 
1986; Kaufman et al., 2002; IPCC, 2007). They scatter and change the polarization 
state of solar radiation depending on their shape, size, chemical composition and 
orientation. Even though this relationship is rather complex, its knowledge is the prior 
condition for the interpretation of remote-sensing measurements. Additionally, the 
comprehensive investigation of ground-based and airborne-based passive radiometric 
and polarized measurements require a vector radiative transfer model that accounts for 
multiple scattering and polarization. Thus, in the present study, we introduce a new 
polarized model based on the forward Monte Carlo method that exactly simulates 3D 
radiative transfer processes in arbitrary complex scattering and absorbing media (i.e. 
clouds). Validations of the code against different benchmark results are also presented. 
 
2. Methodology  
 
The three-dimensional (3D) radiative transfer model at the Institute for Marine 
Research at the University of Kiel (UNIK) is the scalar model used for the purpose of 
this study (Macke, 1994). The model is based on the statistical forward Monte Carlo 
method and its main purpose is to calculate column-response pixel-based radiative 
densities for 3D inhomogeneous cloudy atmospheres. For this study, the model has 
been extended to take into account the polarization state of the monochromatic 
radiation due to multiple scattering by randomly oriented non-spherical particles, i.e. 
coarse mode dust particles and ice particles. 
 
2.1. Model description  
 
Following the comprehensive description by Cashwell and Everett (1959), the original 
scalar MC-UNIK model is considered to be a 3D Cartesian domain with a cellular 
structure, in which individual photons are traced until they either leave the scattering 
domain or are fully absorbed. 

The 3D domain is divided into grid-boxes with indices (i, j, k) and geometrical 
dimensions along x-, y-, and z-direction. Each grid-box is characterized by a volume 
extinction coefficient β(i, j, k) a scattering phase function P(Θ, I, j, k) with scattering 
angle Θ, and a single scattering albedo ωο (see Fig. 1).  

Directions are specified by means of an azimuth and zenith angle. The azimuth 
angle φ is measured clockwise when looking upwards and the zenith angle θ is the 
angle with respect to the downward normal. Additionally, free path lengths and 
scattering directions are simulated as outlined in Marchuk et al., (1980) by random 
number processes with Lamberts law of attenuation and the scattering phase function 
as the probability density functions for the free path length and the scattering direction. 

Simulation begins with a photon entering randomly on the top layer (i, j, kmax) of 
the model domain. Each photon is characterized by a weight, whose value is set 
initially to unity. Its position is uniformly distributed with a propagation specified by 
the solar zenithal and azimuth angle (θο, φο) and direction described by the direction 
cosines: 
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𝑘𝑘𝑖𝑖𝑖𝑖𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑐𝑐𝑐𝑐𝑠𝑠 𝜑𝜑𝑜𝑜 
 
𝑘𝑘𝑖𝑖𝑖𝑖
𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑𝑜𝑜                                                                                                       (1) 

 
𝑘𝑘𝑖𝑖𝑖𝑖𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑜𝑜 
 

 
 
Fig. 1: Scheme of photon path within the 3D domain of the Monte Carlo radiative 
transfer model. 
 
 
Photons are traced from the starting point on one grid-box surface to the intersection 
with the nearest neighbour grid-box surface as illustrated in Fig. 2, as described in 
Macke et al. (1999). This procedure is repeated l times until the cumulated optical 
thickness  
 
𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 =  ∑ 𝛽𝛽𝑙𝑙 (𝑠𝑠, 𝑗𝑗,𝑘𝑘)𝑡𝑡𝑙𝑙,                                                                                                 (2) 
 
exceeds the randomly chosen (exponentially distributed) optical thickness τrand. 
𝑡𝑡𝑙𝑙  stands for the step lengths within the individual grid-boxes. Subsequently, the 
photon steps backward by 
 
𝑡𝑡𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 = (𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 −  𝜏𝜏𝑟𝑟𝑏𝑏𝑖𝑖𝑟𝑟)/𝛽𝛽(𝑠𝑠, 𝑗𝑗,𝑘𝑘),                                                                              (3) 
 
to ensure that the total photon path exactly matches the 𝜏𝜏𝑟𝑟𝑏𝑏𝑖𝑖𝑟𝑟. 
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Fig. 2: Illustration of photon tracing within a regular array of cloud boxes. 
 
 
The MC radiative transfer model directly simulates the scattering events. After 
travelling a certain path inside the domain a scattering event takes place and the new 
direction of the photon 𝑘𝑘𝑜𝑜𝑐𝑐𝑜𝑜 = (𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 ,𝑘𝑘𝑧𝑧)𝑜𝑜𝑐𝑐𝑜𝑜 is calculated by the preceding direction 
and the scattering zenith and azimuth angles described in Marchuk et al. (1980), 
Chapter 2.2. In the scalar scheme, the scattering azimuth angle is uniformly distributed 
between [0, 2π] and the scattering zenith angle is randomly chosen from the 
precalculated cumulative probability density function according to 
 
𝑆𝑆𝑖𝑖−1 < 𝑅𝑅 < 𝑆𝑆𝑖𝑖 with 𝑆𝑆𝑖𝑖 = ∑ 𝑃𝑃𝑖𝑖

𝑗𝑗=1 �𝜃𝜃𝑗𝑗�𝛥𝛥𝛥𝛥�𝜃𝜃𝑗𝑗�                                                               (4) 
 
Where 𝛥𝛥𝛥𝛥�𝜃𝜃𝑗𝑗� is the solid angle interval corresponding to a finite scattering angle 
interval [θi,min, θi,max] and R stands for a random number uniformly distributed between 
0 and 1. The exact scattering angle is then interpolated by 
 
𝜃𝜃 = 𝜃𝜃𝑖𝑖,𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑡𝑡 ∙ 𝜃𝜃𝑖𝑖,𝑐𝑐𝑏𝑏𝑥𝑥 with 𝑡𝑡 = 𝑅𝑅−𝑆𝑆𝑖𝑖−1

𝑆𝑆𝑖𝑖 −𝑆𝑆𝑖𝑖−1
 .                                                                      (5) 

 
In addition, absorption is taken into account by multiplying the initial photon weight 
by the single scattering albedo, whenever a scattering event occurs, and the surface 
contribution is calculated assuming a Lambertian surface (isotropic reflection).  

In order to grant precise radiance calculations for each wavelength the so-called 
Local Estimate Method (LEM) has been applied (Collins et al., 1972; Marchuk et al., 
1980; Marshak et al., 2005). The LEM accounts the probability that the photon is 
scattered into the direction of the sensor at each scattering process. It also calculates 
the attenuation along the optical thickness (𝜏𝜏) between the scattering location and the 
detector. It is described by: 
 
𝑤𝑤 = 𝜔𝜔𝑜𝑜𝑃𝑃�𝜃𝜃𝑖𝑖𝑖𝑖𝑐𝑐,𝑟𝑟𝑑𝑑𝑜𝑜�

exp (−𝜏𝜏)
𝑐𝑐𝑜𝑜𝑐𝑐𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑

.                                                                                       (6) 

 

kin 

tback 

τcum 

τrand 
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Where 𝜃𝜃𝑖𝑖𝑖𝑖𝑐𝑐,𝑟𝑟𝑑𝑑𝑜𝑜 is the scattering angle between the incident direction and the direction 
of the detector, 𝜃𝜃𝑟𝑟𝑑𝑑𝑜𝑜 is the zenithal angle of the detector, and 𝜔𝜔𝑜𝑜 is the single scattering 
albedo. The division by 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑟𝑟𝑑𝑑𝑜𝑜  is to account for the slant area in the radiance 
definition. 

Finally, when the simulation ends, the normalized radiance is computed by: 
 
𝐼𝐼 = 𝜋𝜋 𝐸𝐸(𝑖𝑖,𝑗𝑗)

𝜇𝜇𝑜𝑜𝐹𝐹𝑜𝑜
,                                                                                                                    (7) 

 
where 𝜇𝜇𝑜𝑜𝐹𝐹𝑜𝑜 is the incoming solar flux and 𝐸𝐸 the radiance. The statistical errors of the 
fluxes and radiances are given by 1/√𝑠𝑠, where n is the number of photons (Macke et 
al. 1999). 
 
2.2. Polarized Monte Carlo model  
 
The conventional approach to handle polarization dates back to Sir George Gabriel 
Stokes. In 1952, he discovered that the polarization behaviour of the electromagnetic 
wave could be represented by real observables. This resulted in the Stokes vector, 
defined by four quantities 𝑆𝑆 = (𝐼𝐼,𝑄𝑄,𝑈𝑈,𝑉𝑉) , each of them carrying the units of 
irradiance (W/m2) (Stokes, 1852). The latter allows the Stokes vector to describe the 
intensity and the state of polarization and it can be simply included to the radiative 
transfer theory.  

The Stokes parameters are defined by the components of the electromagnetic field 
(e.g. Chandrasekhar, 1960; van de Hulst, 1957; Hansen and Travis, 1974; Liou, 2002; 
Mishchenko et al., 2002): 
 
𝐼𝐼 =  𝐸𝐸𝑙𝑙𝐸𝐸𝑙𝑙∗ + 𝐸𝐸𝑟𝑟𝐸𝐸𝑟𝑟∗,                                                                                                         (8) 
𝑄𝑄 =  𝐸𝐸𝑙𝑙𝐸𝐸𝑙𝑙∗ − 𝐸𝐸𝑟𝑟𝐸𝐸𝑟𝑟∗,                                                                                                        (9) 
𝑈𝑈 =  𝐸𝐸𝑙𝑙𝐸𝐸𝑟𝑟∗ + 𝐸𝐸𝑟𝑟𝐸𝐸𝑙𝑙∗,                                                                                                      (10) 
𝑉𝑉 = 𝑠𝑠(𝐸𝐸𝑙𝑙𝐸𝐸𝑟𝑟∗ − 𝐸𝐸𝑟𝑟𝐸𝐸𝑙𝑙∗).                                                                                                 (11) 
 
Where 𝐸𝐸𝑙𝑙  and 𝐸𝐸𝑟𝑟  are two orthogonal electric field components parallel and 
perpendicular to the direction of propagation respectively, the asterisk stands for the 
conjugate value, and 𝑠𝑠 = √−1. The first component of the Stokes vector, I, gives the 
total irradiance, Q and U describe the linear polarization and the circular polarization 
is given by V. Furthermore, the Stokes parameters are defined such that the local 
meridian plane acts as a plane of reference (Chandrasekhar, 1960) defined by the 
propagation direction (i.e. incident and scattered) of the photon and the vertical 
direction – z-axis. 

In the following, we present the implementation of polarization in the MC model. 
To begin with, in the vector approach the scalar weight is replaced by the Stokes 
weight. The incident photon is supposed to be initially unpolarized and the 
corresponding weight is 𝑆𝑆 = (1,0,0,0).  

Another important difference in the vector scheme concerns modifications in the 
scattering description. For many scattering problems (i.e. scalar radiative transfer 
theory, and randomly oriented particles), the phase function 𝑃𝑃, which represents the 
relative angular distribution of the scattered direction (Wendisch et al., 2012), is 
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sufficient to describe thoroughly the scattering behaviour dependent only on the 
scattering angle with respect to the incident direction. However, polarization 
introduces an anisotropy on the scattering direction since it depends on the frame of 
reference. The scattering geometry is illustrated in Fig 3. For polarization problems 
(anisotropic scattering), the interaction between a photon and a particle is described by 
a 4x4 matrix, the so-called phase matrix. Considering an ensemble of randomly 
oriented particles the number of matrix elements could be reduced to six (van de Hulst, 
1980): 
 

𝑃𝑃(Θ) = �

𝑃𝑃11(Θ) 𝑃𝑃12(Θ)
𝑃𝑃12(Θ)

0
0

𝑃𝑃22(Θ)
0
0

0 0
0

𝑃𝑃33(Θ)
−𝑃𝑃34(Θ)

0
𝑃𝑃34(Θ)
𝑃𝑃44(Θ)

�,                                                       (12) 

 
 

 
 

Fig. 3: The geometry of anisotropic scattering: incident kinc and scattered ksca 
directions. i1 and i2 are the rotation  angles, and φinc and φsca are the azimuth angles of 
the incident and scattered directions respectively (Mishchenko et al., 2002). 
 
 
The latter is defined with respect to the scattering plane, determined by the incident 
and the scattering directions. In addition, it relates the Stokes parameters linked to the 
two directions, specified with respect to their reference planes (Mishchenko et al., 
2002). Hence, in order to derive the scattered Stokes vector 𝑆𝑆𝑐𝑐𝑐𝑐𝑏𝑏 = (𝐼𝐼,𝑄𝑄,𝑈𝑈,𝑉𝑉)𝑐𝑐𝑐𝑐𝑏𝑏 with 
respect to its plane of reference (plane containing the scattered and the vertical 
direction) one has to transform the incident Stokes vector 𝑆𝑆𝑖𝑖𝑖𝑖𝑐𝑐 = (𝐼𝐼,𝑄𝑄,𝑈𝑈,𝑉𝑉)𝑖𝑖𝑖𝑖𝑐𝑐 to the 
scattering plane so that the phase matrix multiplication can be carried out. Finally, the 
scattered Stokes vector is given by: 
 
𝑆𝑆𝑐𝑐𝑐𝑐𝑏𝑏 = 𝑅𝑅(𝜋𝜋 − 𝑠𝑠2)𝑃𝑃(Θ)𝑅𝑅(−𝑠𝑠1)𝑆𝑆𝑖𝑖𝑖𝑖𝑐𝑐 = 𝑍𝑍(𝜃𝜃𝑖𝑖𝑖𝑖𝑐𝑐 ,𝜑𝜑𝑖𝑖𝑖𝑖𝑐𝑐 ,𝜃𝜃𝑐𝑐𝑐𝑐𝑏𝑏 ,𝜑𝜑𝑐𝑐𝑐𝑐𝑏𝑏)𝑆𝑆𝑖𝑖𝑖𝑖𝑐𝑐,                           (13) 

kinc 

ksca 

i1 

i2 

φinc 

φsca 

z 

y 

x 
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where 𝑍𝑍 is the transformation matrix that describes the scattering procedure, 𝑠𝑠1 and 𝑠𝑠2 
are the rotation angles, the subscripts inc and sca stands for the incident 𝑘𝑘𝑖𝑖𝑖𝑖𝑐𝑐 =
(𝜃𝜃𝑖𝑖𝑖𝑖𝑐𝑐 ,𝜑𝜑𝑖𝑖𝑖𝑖𝑐𝑐)  and the scattered directions 𝑘𝑘𝑐𝑐𝑐𝑐𝑏𝑏 = (𝜃𝜃𝑐𝑐𝑐𝑐𝑏𝑏 ,𝜑𝜑𝑐𝑐𝑐𝑐𝑏𝑏)  and 𝑅𝑅(𝑠𝑠)  is the rotation 
matrix: 
 

𝑅𝑅(i) = �
1 0
0
0
0

cos 2𝑠𝑠
− sin 2𝑠𝑠 

0

0 0
sin 2𝑠𝑠
cos 2𝑠𝑠

0

0
0
1

�,                                                                             (14) 

 
The rotation angles can be computed from 𝑘𝑘𝑖𝑖𝑖𝑖𝑐𝑐 and 𝑘𝑘𝑐𝑐𝑐𝑐𝑏𝑏 using spherical trigonometry 
(Mishchenko et al., 2002): 
 
cos 𝑠𝑠1 = cos𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠−cos𝜃𝜃𝑖𝑖𝑖𝑖𝑠𝑠𝑐𝑐𝑜𝑜𝑐𝑐Θ

±sin𝜃𝜃𝑖𝑖𝑖𝑖𝑠𝑠 𝑐𝑐𝑖𝑖𝑖𝑖Θ
                                                                                         (15) 

 
cos 𝑠𝑠2 = cos𝜃𝜃𝑖𝑖𝑖𝑖𝑠𝑠−cos𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑜𝑜𝑐𝑐Θ

± sin𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑖𝑖𝑖𝑖Θ
                                                                                        (16) 

 
cos 2𝑠𝑠1,2 = 2 cos2 𝑠𝑠1,2 − 1                                                                                          (17) 
sin 2𝑠𝑠1,2 = 2 (1 − cos2 𝑠𝑠1,2)1/2 cos 𝑠𝑠1,2                                                                       (18) 
  
The sign ± depends on the difference (𝜑𝜑𝑐𝑐𝑐𝑐𝑏𝑏−𝜑𝜑𝑖𝑖𝑖𝑖𝑐𝑐), and one should take limits when 
the dominator of the above equations becomes zero.  

As we already mentioned, for polarization problems, the transformation matrix and 
not just the phase function describes the scattering behaviour. However, we use the 
phase function as the probability density function to obtain the scattering angle Θ and a 
randomly chosen angle (between 0 and 2π) to derive the scattering azimuth angle. We 
could let this happen by applying the following correction: 
 
𝑆𝑆𝑐𝑐𝑐𝑐𝑏𝑏 = 𝑃𝑃11−1 𝑍𝑍 𝑆𝑆𝑖𝑖𝑖𝑖𝑐𝑐,                                                                                                       (19) 
 
In other words, in a case of scattering event we can sample Θ from the phase function, 
but we need to replace the transformation matrix Z with a reduced matrix 𝑃𝑃11−1 ∙ 𝑍𝑍. This 
method is called biased-sampling method or importance sampling method. For further 
information about this method the reader is referred to the literature (Collins et al. 
1972; Kattawar, 1978; Marchuk et al. 1980). 
 
3. Model validation 
 
Benchmark results have been provided by plenty comparisons including Coulson et al. 
(1960), Garcia and Siewert (1986, 1989), Mishchenko (1991), de Haan et al. (1987), 
Natraj et al. (2009) among others. However, in this study we validate our polarized 
Monte Carlo radiative transfer model through Kokhanovsky et al. (2010) and Wauben 
and Hovenier (1992). 

For a Rayleigh and aerosol layer we compared our model through Kokhanovsky et 
al. (2010). The benchmark results have been generated using SCIATRAN (Rozanov et 
al., 2005, 2006) which is a software package based on the discrete ordinates method. 
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Simulations were conducted for a homogeneous plane-parallel layer assuming a cloud 
optical thickness of 0.3262, a single scattering albedo of 1, and a black underlying 
surface (the surface albedo equals to 0, i.e. ideal absorbing) for both cases.  

The Rayleigh phase matrix was given without the depolarization factor as in Eq. 
(20), and the aerosol phase matrix was calculated using Mie theory (Mie, 1908) at 
λ=412 nm. The phase matrices are shown in Fig. 4. 
 

𝑃𝑃𝑅𝑅(Θ) = 3
4
�

1 + 𝑐𝑐𝑐𝑐𝑠𝑠2Θ 𝑐𝑐𝑐𝑐𝑠𝑠2Θ − 1
𝑐𝑐𝑐𝑐𝑠𝑠2Θ − 1

0
0

1 + 𝑐𝑐𝑐𝑐𝑠𝑠2Θ
0
0

0 0
0

2𝑐𝑐𝑐𝑐𝑠𝑠Θ
0

0
0

2𝑐𝑐𝑐𝑐𝑠𝑠Θ

� ,                                           (20) 

 
 
 

 

 
 
Fig. 4: Phase matrix elements for the aerosol case and for the Rayleigh scattering. 
 
 
In Fig. 5 we present the normalized Stokes vector for the transmitted, ST =(IT, QT, UT, 
VT), and reflected, SR =(IR, QR, UR, VR), diffuse radiation pertaining to a solar zenith 
angle of 60o, relative azimuth angles between radiance and incident directions (RRA) 
of 0o, 90o and 180o and different view zenith angles (VZA). Note here that a relative 
azimuth angle of RRA = 0o corresponds to the exact backward scattering. 
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Fig. 5: The normalized Stokes vector for the Rayleigh layer in the reflected and 
transmitted radiation (line – SCIATRAN, circles – polarized MC). The solar zenith 
angle is 60o the RRA are 0o, 90o and 180o and measured counter clock-wise. 
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Fig. 6: The same as in Fig. 5 but for the aerosol layer. 
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The relative differences of our results for the first three components of the Stokes 
vector as correlated to the benchmark results were also calculated. Where the values of 
the Stokes components tend to zero are ignored as they can lead to large values of the 
relative difference. There is an excellent agreement between the polarized MC model 
and the output from SCIATRAN for the molecular scattering. Note here that the fourth 
Stokes parameter is always zero for this case, and it disappears at relative azimuth 
angles of 0o and 180o.  Relative differences are less than 0.2% for the first Stokes 
element, and up to 2.5% for the Q and U (for the used number of photons, 107). 
Furthermore, the comparison for the aerosol layer pointed out that the polarized MC 
model produces accurate results for the first three components of the Stokes vector for 
both reflected and transmitted radiation. The relative differences are less than 1.2% for 
the first Stokes component I, and up to 1% and 5% for the Q and U respectively (for 
the used number of photons, 108). However, for the last component V we could clearly 
identify a notable noise. This is due to the fact that calculation is statistical in the 
Monte Carlo method; results are always subject to statistical uncertainty. In addition, 
in order to ameliorate such problem and correctly derive the component V, more than 
1010 photons should be selected for the simulations, which dramatically increases the 
simulation time.  

For rather irregular particles, we compared our polarized MC model against the 
tabulated values by Wauben and Hovenier (1992), retrieved by two different 
computational ways (i) a doubling/adding method (de Haan et al., 1986) and (ii) the FN 
method (Garcia et al., 1989). In this study, we will present only the results obtained for 
the atmospheric model 1 (Kuik et al., 1992), which corresponds to a homogeneous 
plane-parallel atmosphere with a layer of randomly oriented prolate spheroids with a 
refractive index 1.55 – 0.01i above an ideal absorbing surface. The comparison is 
illustrated in Fig. 7. Simulations were conducted for an incident unpolarized flux of π 
at a solar zenith angle of 53.13 degrees and two different RRA (0o and 90o). The cloud 
optical thickness and the single scattering albedo are both one. 

In the polarized Monte Carlo model the number of photons selected was 107. It 
should be noted that the third and fourth element of the Stokes vector disappears for a  
RRA=0o for both reflected and transmitted radiation. There is a very good agreement 
with the benchmark results for the parameters I, Q, U (relative differences are less than 
6%). On the other hand, the efficiency of the polarized model is not enough to 
calculate the last component V for highly irregular particles, since it could get very 
small values.  

To this end, the comparisons proved that our model can handle multiple scattering 
with high efficiency and is able to calculate polarized radiances for all the different 
particle cases. 
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Fig. 7: The normalized Stokes vector for a layer of randomly oriented prolate 
spheroids in the reflected and transmitted radiation (circles – Wauben and Hovenier, 
crosses – polarized MC). The cosine of the solar zenith angle is 0.60 and the relative 
azimuth angles are 0o (blue markers) and 90o (red markers). 
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4. Summary and outlook 
 
The present study has described the implementation of polarization into a 3D Monte 
Carlo radiative transfer model. It employs the statistical Monte Carlo technique (in the 
forward scheme) and it is designed to calculate column-response pixel-based polarized 
radiative densities for 3D inhomogeneous cloudy atmospheres. The biased-sampling 
method introduced in this study is perhaps the fastest approach of the different 
methods to the polarized radiative transfer problem. Furthermore, in order to allow 
accurate calculations and diminish the noise of radiance estimations for highly 
asymmetric phase matrices the Local Estimate Method has been applied. 

Validations of the model output for three different cases (Rayleigh scattering, 
aerosol and randomly oriented prolate spheroids) have been carried out against 
benchmark results (Kokhanovsky et al., 2010 and Wauben et al., 1992), indicating an 
excellent agreement. All deviations found for the last component of the Stokes vector 
for the aerosol case and the layer of randomly oriented prolate spheroids can be 
explicated by the noise of the MC method in radiance calculations. Increasing the 
selected number of photons could reduce the noise. 

Further comparisons will be conducted against benchmark results for a 
homogeneous layer above a Lambertian surface (Coulson et al., 1960). Moreover, it is 
planned to perform sun-photometer-based observations of downwelling solar radiances 
polarized by Saharan dust and ice particles. The measured data sets will be used and 
interpreted by means of our polarized radiative transfer model. 
 
References 
 
Cashwell, E. D., and Everett, C. J., 1959:  A Practical Manual on the Monte Carlo Method for Random Walk 
Problems, Pergamon Press, New York, 103. 
 
Chandrasekhar, S., 1960: Radiative transfer, Dover, New York. 
 
Collins, D. G., Blättner, W. G., Wells, M. B., and Horak, H. G., 1972: Backward Monte Carlo calculations of the 
polarization characteristics of the radiation emerging from spherical-shell atmospheres, Appl. Opt., 11, 2684–
2696. 
 
Coulson, K. L., Dave, J. V., and Sekera, Z., 1960: Tables Related to Radiation Emerging from a Planetary 
Atmosphere with Rayleigh Scattering, University of California Press. 
 
de Haan, J. F., Bosma, P. B., and Hovenier, J. W., 1987: The adding method for multiple scattering calculations 
of polarized light, Astron. Astr., 183, 371–391. 
 
Garcia, R. D. M., and Siewert, C. E., 1986: A generalized spherical harmonics solution for radiative transfer 
models that include polarization effects, J. Quant. Spectrosc. Radiat. Transfer, 36(5), 401-423. 
 
Garcia, R. D. M., and Siewert, C. E., 1989: The FN method for radiative transfer models that include polarization 
effects, J. Quant. Spectrosc. Radiat. Transfer, 41(2), 117-145. 
 
Hansen, J. E., and Travis, L. D., 1974: Light scattering in planetary atmospheres, Space Sci, Rev., 16, 527-610. 
 
IPCC, 2007: Climate Change 2007, Tech. rep., Intergovernmental Panel of Global Climate Change. 
 
Kattawar, G. W., 1978: Monte Carlo methods in radiative transfer, in Multiple Light Scattering in Atmospheres, 
Oceans, Clouds and Snow, Institute for Atmospheric Optics and Remote Sensing, Short course No. 420, 
Williamsburg, Virginia. 
 

Wiss. Mitteil. Inst. f. Meteorol. Univ. Leipzig Band 52 (2014)

13



Kaufman, Y. J., Tanré, D., and Boucher, O., 2002: A satellite view of aerosols in the climate system, Nature 419, 
215-223, doi: 10.1038/nature01091. 
 
Kokhanovsky, A. A., Budak, V. P., Cornet, C., Duan, M., Emde, C., Katsev, I. L., Klyukov, D. A., Korkin, S. 
V., C-Labonnote, L., Mayer, B., Min, Q., Nakajima, T., Ota, Y., Prikhach, A. S., Rozanov, V. V., Yokota, T., 
Zege, E. P., 2010: Benchmark results in vector atmospheric radiative transfer, J. Quant. Spectrosc. Radiat. 
Transfer, doi: 10.1016/j.jqsrt.2010.03.005. 
 
Kuik, F., de Haan, J. F., and Hovenier, J. W., 1992: Benchmark results for single scattering by spheroids, J. 
Quant. Spectrosc. Radiat. Transfer, 47, 477–489, doi: 10.1016/0022 4073(92)90107-F. 
 
Liou, K. N., 2002: An introduction to atmospheric radiation, Academic Press, New York, ISBN: 0-12-451451-0. 
Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective, Mon. 
Weather Rev., 114, 1167-1199, doi: 10.1175/1520-0493(1986)1142.0.CO;2. 
 
Macke, A., 1994: Modellierung der optischen Eigenschaften von Cirruswolken. Ph.D thesis, Fachbereich 
Geowissenschaften der Universität Hamburg, Germany, 98 p. 
 
Macke, A., Mitchell, D.L., and Bremen, L.V., 1999: Monte Carlo Radiative Transfer Calculations for 
Inhomogeneous Mixed Phase Clouds, Phys. Chem. Earth. (IT), 24(3), 237-241, doi: 10.1016/S1464-
1909(98)00044-6. 
 
Marchuk, G. I., Mikhailov, G. A., and Nazaraliev, M. A., 1980: The Monte Carlo methods in atmospheric optics, 
Springer Series in Optical Sciences. 
 
Marshak, A., and Davis, A., 2005: 3-D Radiative Transfer in Cloudy Atmospheres, Springer, ISBN-13 978-3-
540-23958-1. 
 
Mishchenko, M. I., 1991: Reflection of polarized light by plane-parallel slabs containing randomly-oriented 
nonspherical particles, J. Quant. Spectrosc. Radiat. Transfer, 46,171-181, doi: 10.1016/0022-4073(91)90022-I 
 
Mishchenko, M. I., Travis, L., and Lacis, A., 2002: Scattering, Absorption, and Emission of Light by Small 
Particles, Cambridge University Press. 
 
Natraj, V., Li, K.-F., Yung, Y. L., 2009: Rayleigh scattering in planetary atmospheres: corrected tables through 
accurate computation of X and Y functions, Astrophys. J., 691(2): 1909–2009. 
 
Rozanov, W., Kokhanovsky, A. A., 2006: The solution of the vector radiative transfer equation using the discrete 
ordinates technique: selected applications, Atmos. Res., 79, 241–265. 
 
Rozanov, A. A., Rozanov, V. V., Buchwitz, M., Kokhanovsky, A.A., Burrows, J. P., 2005: SCIATRAN 2.0 - a 
new radiative transfer model for geophysical applications in the 175-2400nm spectral region, Adv. Space Res., 
36(5): 1015-1019. 
 
Rozanov, V. V., Kokhanovsky, A. A., 2006: The solution of the vector radiative transfer equation using the 
discrete ordinates technique: selected applications, Atmos. Res., 79, 241-265. 
 
Stokes, G. G., 1852: On the composition and resolution of streams of polarized light from different sources, 
Trans. Cambridge Philos. Soc. 9, 399-423. 
 
Van de Hulst, H. C., 1981: Light Scattering by small Particles, Dover. 
 
Wauben, W. M. F., and Hovenier, J. W., 1992: Polarized radiation of an atmosphere containing randomly-
oriented spheroids, J. Quant. Spectrosc. Radiat. Transfer, 47, 491–504, doi:10.1016/0022-4073(92)90108-G. 
 
Wendisch, M., and Yang, P., 2012: Theory of Atmospheric Radiative Transfer – A Comprehensive Introduction. 
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, ISBN: 978-3-527-40836-8. 
 

Wiss. Mitteil. Inst. f. Meteorol. Univ. Leipzig Band 52 (2014)

14


