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Summary 
 
A piecewise linear model is developed to detect climatic trends and possible structural 
changes in time series with a priori unknown number and positions of breakpoints. The 
initial noise is allowed to be interpreted by the first- and second-order autoregressive 
models. The goodness of fit of candidate models, if the residuals are accepted as nor-
mally distributed white noise, is evaluated using the Schwarz Bayesian Information 
Criterion. The uncertainties of all modeled trend parameters are estimated using the 
Monte-Carlo method. The model is applied to the mesosphere/lower thermosphere 
winds obtained at Collm (52°N, 15°E) during 1960-2007. A persistent increase after 
~1980 is observed in the annual mean zonal wind based on the primary model while 
only a weak positive trend arises in the meridional component. Major trend break-
points are identified around 1968-71 and 1976-79 in both the zonal and meridional 
winds.  
 
1. Introduction 
 
As with global change near the Earth’s surface, there is also of interest to detect 
long-term trends in the upper atmosphere and attribute them to their primary causes. 
Recently, a relatively consistent pattern of middle and upper atmosphere temperature 
trends has been presented, showing cooling in the stratosphere/mesosphere, weak trend 
around the mesopause, and cooling in the thermosphere (Laštovička et al., 2008). 
However, when dynamical parameters in the middle and upper atmosphere are 
considered, a much less clear picture is found. Now available mesosphere/lower 
thermosphere (MLT) wind time series of more than three decades indicate that wind 
trends may be interrupted, or change direction (Portnyagin et al., 2006; Jacobi et al., 
2009; Merzlyakov et al., 2009).  

These changes in trends may be analysed using statistical models. Unlike in some pio-
neer structural change trend analyses, e.g. on the turnaround and recovery of the total 
ozone column (Reinsel et al., 2002) or changes of the global surface temperature ano-
maly (Seidel and Lanzante, 2004), where the possible change dates are specified in ad-
vance, the number and times of possible trend breaks in MLT winds are a priori un-
known (Tome and Miranda, 2004), i.e., they can only be determined according to some 
basic mathematical principles that underpin the proposed model. This also increases 
the complexity and skill needed from a practical algorithm. In addition, an integral 
trend model should be able to not only detect possible trend breakpoints (BPs) and 
measure the associated partial trends but also as fully as possible account for the 
variability of an original time series. So an implicit fundamental assumption for a 
statistical model is that the ultimate modeled errors need (or can) not be explained any 
more, e.g., the residuals can be regarded as independent and identically distributed 
(i.i.d.) random variables with zero mean and common variance (Reinsel et al., 2002; 
Seidel and Lanzante, 2004). 
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A statistical model for structural change trend assessment, incorporating the methods 
proposed by Tome and Miranda (2004) and Seidel and Lanzante (2004), has been 
developed. It will be applied to analyze the climatic trends and their structural changes 
in the mid-latitude MLT wind series obtained at Collm (52°N, 15°E) during 
1960-2007.  
 
2. A piecewise linear trend model 
   
As a natural extension of the linear regression model, let us consider the following 
structural change linear regression model with m BPs T1, T2, … Tm (and thus m+1 re-
gimes or segments) applied to a time series of the length T:  
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where 00 =T , TTm =+1 . AI  denotes an indicator variable equal to one if the event A 
is true (e.g. when [ ]ii TTt ,11 +∈ − ) and zero otherwise (e.g. when [ ]ii TTt ,11 +∉ − ). A 
continuity condition at each turning point is imposed as 
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In Eq. (1), tY  is the observed dependent variable at time t , ia  and 

)1...,,2,1( += mibi  are the corresponding trend regression coefficients (i.e. inter-
cept and slope) for each segment, and tN  is the unexplained noise term often as-
sumed to be autoregressive with time lag of 1 or 2 (AR(1) or AR(2), e.g. Reinsel et al., 
2002; Seidel and Lanzante, 2004). That is, { }tN  satisfies ttt NN εϕ += −1  or 

tttt NNN εϕϕ ′++= −− 2211 , where the errors tε  ( tε ′ ) are independent random variables 
with mean 0 and common variance 2εσ  ( 2

εσ ′ ) and  
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when assuming { }tN  is a stationary random process with standard lag-one and -two 
autocorrelations 1ρ  and 2ρ . 

Note that this is a partial structural change model in the sense that the autoregressive 
parameters are assumed to be constant across regimes. The BPs T1, T2, … Tm are expli-
citly treated as unknown. Our procedure is first to estimate the unknown piecewise li-
near trend coefficients together with the times of BPs when T observations on Yt are 
available. Then the produced noise term will be tentatively interpreted, respectively, by 
the first- and second-order autoregressive models as well as that one without 
autoregression (AR(0)) when the Nt themselves can be regarded as independent ran-
dom errors with zero mean and common variance 2

Nσ . Finally, the uncertainties of all 
modeled trend parameters (including the positions of BPs) are estimated using the 
Monte-Carlo method.       

In general, the number of structural breaks m  is also unknown. However, at the 
beginning, we treat it as known (i.e. apply the procedure with different m ) and its 
determination will be treated later as a problem of model selection. The method of 
estimation considered is that based on the least-squares principle (Bai and Perron, 
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1998). For each m -partition )...,,,( 21 mTTT , the associated least-squares estimates 
of trend coefficients are obtained by minimizing the “sum of squared residuals (SSR)” 
(as in Tome and Miranda (2004), we treat slopes of line segments and intercept of the 
first segment as the independent regression coefficients and so employ an efficient 
algorithm proposed therein to create the design matrix): 
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and the estimated BPs mTTT ˆ...,,ˆ,ˆ

21  are such that 
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where the minimization is taken over all partitions )...,,,( 21 mTTT  subject to a set of 
appropriate constraints on the minimum distance between two consecutive BPs, the 
minimum length for the first and last segments and the minimum amount of trend 
change at BPs (Tome and Miranda, 2004; 2005).  

In practice, one can start with the case of zero BP (i.e. the simple linear case when Eqs 
(1) and (3) are still valid but (2) and (4) disappear naturally), up to a maximum of 

( )1≥m  BPs. For each of the 1+m  cases the following step is to augment the 
corresponding regression trend with the first- and second-order autoregressive compo-
nents. As did in Seidel and Lanzante (2004), we assess the goodness of fit of the resi-
duals (hereafter i.e. the modeled errors) to a one-dimensional (1-D) Gaussian distribu-
tion, both with removal of the AR(1) or AR(2) behavior in the noise and directly with 
the model AR(0), by using the Anderson-Darling (AD, e.g. Romeu, 2003) statistic to 
test the null hypothesis of normally distributed residuals. We eliminate from further 
consideration any model for which the null hypothesis is rejected at the 5% signific-
ance level (see Table 1A in Stephens, 1974). On the other hand, the mean and the stan-
dard lag-one and -two autocorrelations of each accepted normally distributed residual 
series are calculated to check whether it can be regarded as a realization of a white 
noise process. Only after this we, in principle, employ the standard form of the 
Schwarz Bayesian Information Criterion (BIC, Ng and Perron, 2005; Portnyagin et al., 
2006): 
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where tŶ  denotes the modeled value (vs. the residual) of the dependent variable at 
time t  and 22 += mq  for AR(0), 32 += mq  for AR(1) and 42 += mq  for AR(2) 
(Seidel and Lanzante, 2004), to select the primary/best and secondary models as those 
with the lowest and second-lowest values of BIC, provided that the residuals are ac-
cepted as 1-D normally distributed white noises. 

Finally, an important and unavoidable issue is the statistical significance of the esti-
mated BPs and partial trends whereas it is still an open discussion (Tome and Miranda, 
2005). For each accepted residual series (hereafter, as a 1-D normally distributed white 
noise), however, it is reasonable to assume that the residuals are i.i.d. and follow a 
common distribution ),0( 2

NN σ  for AR(0), ),0( 2
εσN  for AR(1) or ),0( 2

εσ ′N  for 
AR(2). Thus it is convenient, using the Monte-Carlo simulation approach, to estimate 
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the standard deviations of all modeled trend parameters (one can repeatedly generate 
the corresponding pseudorandom normally distributed residual series (Press et al., 
1992), add it to the modeled sequence of the dependent variable and run the first step 
of the foregoing procedure, and at last compute the sample mean and variance of all 
the fitted trend parameters).      
 
3. Application to Collm wind data 
 
The model is applied to Collm MLT zonal and meridional prevailing winds during 
1960-2007. The data evaluation and first trend analysis results have already been pre-
sented in Jacobi et al. (1997) and Jacobi and Kürschner (2006). There have been sev-
eral changes in measuring strategy, which can potentially lead to inhomogeneity in the 
time series and thus to possible artifacts in trend analysis. During the first decade of 
the measurements, data analysis has been performed manually, with smaller measuring 
density in the early years. In particular, before 1968 data have been only taken during 
the evening hours, so that these years cannot be regarded as reliable in a trend analysis. 
The switch from manual to automatic data analysis in 1972 has been accompanied by a 
very long (several years) parallel analysis, so that artifacts due to this change are 
improbable. The change from the analysis of single time series to an average over 
three measuring paths is connected with a smoothing of the time series. Therefore, 
year-to-year variability before and after 1979 may show an apparent change, which is 
not of meteorological origin. However, the analysis of long-term trends should not be 
seriously affected. 

Because we are mainly concerned about the climatic trends and their structural changes 
in the MLT winds and to avoid so-called end effects (Tome and Miranda, 2005), the 
minimum distance between adjacent BPs and the minimum length for the first and last 
segments are both set to 5 years in this study. The allowed minimum amount of trend 
change at BPs is 0.01 ms-1/year. These constraints are optimized for our problem and 
changing them moderately would not have a significant effect on the modeled results. 
To accurately estimate the standard deviations of all fitted trend parameters when using 
the Monte-Carlo method, we always generate 10000 pseudorandom series (actually 
only ~8300 series are used because ~17% of them are rejected at a 15% significance 
level through the AD test) to simulate the corresponding normally distributed i.i.d. 
residuals. Some model parameters and input/output data files are listed in Appendix A. 

The model is applied to annual mean winds, which are expected to disclose stable 
trend results, although one has to keep in mind that annual mean winds in the MLT 
have limited physical meaning.  

Fig. 1 shows annual mean zonal winds with corresponding trends added, based on 
different pure trend models with 0 BP up to 5 BPs (from bottom to top) but without 
autoregression. At first, the AD tests (hereafter at the 5% significance level) and related 
statistic calculations (see Table 1) reveal that only the models with 2 up to 5 BPs can 
produce acceptable residuals. In other words, both the simple linear assumption and the 
1-BP pure trend model (showing results similar to those obtained in Portnyagin et al. 
(2006) but with a larger variance of the break point time) have to be eliminated from fur-
ther consideration owing to the non-Gaussian distribution of their residual series and the 
large lag-one autocorrelations as well. Then from Table 2 we find that the best choice 
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according to BIC is the 2-BP pure trend model (i.e., without autoregressive component). 
It exhibits 2 major turning points, respectively, in 1971 and 1979, and after that a persis-
tently positive trend (0.22 ms-1/year) arises. Nevertheless, the large wind variability 
before the late 1970s has not yet been completely removed by annually averaging (refer 
to Fig. 3 below). This strong variability probably includes some artifacts, and in turn, it 
will “mislead” the BIC (see the right hand side of Eq. (5)) to select a simpler model 
having BPs only before ~1980. In this case, as the number of fitting parameters q  in-
creases, the second term Tq ln  will increase rapidly whereas the first term (propor-
tional to the SSR) decrease slowly (refer to Fig. 3 below), together leading to an increase 
of the value of BIC. This suggests that in reality the 3- and 4-BP pure trend models 
should also be considered as acceptable choices (we reject the 5-BP fit, which shows the 
same times of the last 4 BPs as in the 4-BP model, because of its high value of BIC). 
This provides 2 additional possible trend breaks, i.e. those in 1991 and 1998/99. These 
BPs are almost independent/quasi-stable solutions because their respective uncertainty 
intervals have no evident overlaps with those of other BPs. Or, more properly, they can 
be regarded as “minor shifts” which are superposed on a persistently increasing back-
ground wind after 1979.  

 

 
Fig. 1. Time series of the annual mean zonal wind with corresponding trends added in 
turn, from bottom to top, based on different pure trend models (with 0 BP up to 5 BPs 
but without autoregression).  
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All the trend break years detected above have, within the limits of their uncertainty, 
been identified in the winter prevailing zonal wind observed over Obninsk (55°N, 
37°E) as well using a sophisticated WZ-method (Merzlyakov et al., 2009). Further-
more, the turnaround at ~1990 has been given particular attention recently in the com-
bined Collm and Obninsk winds, because it may indicate a structural change in trends 
in dynamics of the whole northern mid-latitude middle atmosphere up to the lower 
thermosphere (Portnyagin et al., 2006; Jacobi et al., 2009).          
 
  
Table 1: Mean ( µ ), standard lag-one ( 1ρ ) and -two ( 2ρ ) autocorrelations, 
AD-statistic ( *2A ) and associated significance level (α ) of normal distribution testing 
of each residual series based on different pure trend models (i.e., with m -BP trend but 
without autoregressive component) applied to the time series of annual mean zonal 
wind. The number symbols (#) indicate unacceptable residuals at the 5% significance 
level, but the corresponding statistic values are still listed for comparison. 

      m  
AR(0)         

0 1 2 3 4 5 

µ  (ms-1) .00 .00 .00 .00 .00 .00 

1ρ  .42 .35 .12 .06 .02 -.01 

2ρ  .18 .09 -.19 -.26 -.28 -.28 

*2A  .90 .83 .38 .28 .50 .61 

α  # <.05 # <.05 >.15 >.15 >.15 >.10 

 
 
Table 2: Values of BIC based on different pure trend or combination models (i.e., with 
m -BP trend plus r -order autoregressive component) applied to the time series of an-
nual mean zonal wind. The best model is identified with an asterisk (*). The number 
symbols indicate cases of unacceptable residuals, but the corresponding BIC values 
are still listed for comparison. 

      m  
r               

0 1 2 3 4 5 

0 # 108.52 # 113.39 * 100.44 104.12 108.90 115.41 

1 102.88 110.26 103.56 107.80 112.75 119.28 

2 106.35 114.16 105.17 108.02 112.66 # 119.40 
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As in the analysis for the zonal wind, the annual mean meridional wind and its candi-
date trends, based on different pure trend models, are presented in Fig. 2. From Tables 
3 and 4 we find that only the models with 2 up to 4 BPs produce acceptable residuals 
and again the best fit, according to BIC, is provided by the 2-BP pure trend model. It 
exhibits 2 major turning points, respectively, in 1968 and 1975. After that only a weak 
positive trend (0.06 ms-1/year) arises in the annual mean meridional wind, which is due 
to the different trends in different seasons (Jacobi and Kürschner, 2006). As is the case 
with the zonal wind, we suggest that in reality the 3- and 4-BP pure trend models 
should be considered as reasonable alternatives. This discloses 2 expanded trend 
breaks, i.e. those in 1981 and 2001 (while adjusts the second major BP from 1975 to 
1976), though the first one indicates a large uncertainty interval overlapping with the 
small one of the major BP in 1976. 

 
Fig. 2. Same as Fig. 1 except for the annual mean meridional wind. 

 
 
 

Wiss. Mitteil. Inst. f. Meteorol. Univ. Leipzig Band 47(2010)

43



Table 3: Same as Table 1 except for the annual mean meridional wind. 

      m  
AR(0)     

0 1 2 3 4 5 

µ  (ms-1) .00 .00 .00 .00 .00 .00 

1ρ  .48 .41 .05 -.07 -.09 -.09 

2ρ  .34 .32 .03 -.04 -.06 -.06 

*2A  1.11 .84 .55 .61 .76 .79 

α  # <.01 # <.05 >.15 >.10 >.05 # <.05 

 
Table 4: Same as Table 2 except for the annual mean meridional wind. 

      r   
m         

0 1 2 3 4 5 

0 # 99.51 # 100.98 * 85.74 87.56 93.93 # 101.44 

1 # 91.31 # 96.05 89.47 91.17 97.41 104.90 

2 # 94.19 # 97.59 93.18 95.08 101.23 108.74 

   
 
  Fig. 3 demonstrates the variations of the estimated SSR (sum of squared residuals) 
and BIC with different pure trend models applied to the annual mean zonal and merid-
ional winds, respectively. One can see that, compared with the simple linear assump-
tion and the 1-BP case, the 2-BP pure trend model leads to a drastic decrease of the 
SSR and thus to a sharp drop of the BIC. However, once the BPs assumed in the winds 
exceed 2, the SSR only decreases slowly so that the BIC turns to increase almost li-
nearly with the increasing number of BPs. Therefore the 2-BP pure trend models ob-
tain the minimum BIC. Nevertheless, as mentioned above, because the large wind 
variability before the late 1970s probably includes some artifacts and, in turn, contri-
butes to the drastic decrease of the SSR, the 3- and 4-BP pure trend models, which 
prove to produce acceptable residuals, should in principle be considered as alternative 
choices.  
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Fig. 3. Variations of the estimated SSR (solid lines) and BIC (dashed lines) with differ-
ent pure trend models (with 0 BP up to 5 BPs but without autoregression) applied, re-
spectively, to the annual mean zonal (upper panel) and meridional (lower panel) winds.  
 

 
The complete modeling results (modeled series plus residuals) of the annual mean 
zonal and meridional winds based on the primary and secondary models selected 
according to BIC (see Tables 2 and 4) are displayed in Fig. 4. One can find that the 
two fits for the zonal wind are from different (pure trend and combination) structural 
models since the secondary model has incorporated a first-order autoregressive 
component, while for the meridional component the two fits are from the same (pure 
trend) structural models. However, for the zonal wind the reference meaning of the 
secondary fit is weak because the pure linear trend assumption has proved to be 
unacceptable (Table 1) and the secondary model has a value of BIC (102.88) much 
closer to those (103.56 and 104.12) of the third and fourth models than to the BIC 
(100.44) of the primary model (Table 2). For the meridional component the reference 
meaning of the secondary fit is strong since the 3-BP pure trend model proves to pro-
duce acceptable residuals (Table 3) and the first four models have almost equally 
spaced BIC values (85.74, 87.56, 89.47 and 91.17, see Table 4). 
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(a)           (b) 

 
Fig. 4. Time series of the annual mean (a) zonal and (b) meridional winds (dashed line) 
and their complete modeling results based on the primary (2 BPs plus AR(0) in both 
cases: solid lines for the modeled series and the residuals) and secondary (linear plus 
AR(1) for (a) and 3 BPs plus AR(0) for (b): dotted lines for the modeled series and the 
residuals) models selected according to BIC. 
 
 
4. Discussion 
 
In some cases (e.g. in the seasonal mean winds, not shown here) the initial noises must 
be further interpreted by an AR(1) or AR(2) even if based on the primary models, 
suggesting that other unidentified factors or processes may also play a role in 
determining the evolution of the mesospheric winds. So a multivariate linear regres-
sion model (Reinsel et al., 2005) would be a subsequent extension of the basic model 
in (1) to estimate the effects of other natural factors, possibly including the equatorial 
Quasi-biennial Oscillation and/or the Southern Oscillation, on the behavior of the MLT 
winds. 

Although attempting to perform the trend analyses as objectively as possible, some 
subjective decisions unavoidably remain. In particular, when incorporating an AR 
component in the piecewise linear trend model one always assumes that the initial 
noise term is a stationary random process. In addition, although the results obtained 
according to BIC may be statistically robust, there is no unique criterion to select mod-
els (Seidel and Lanzante, 2004). 

In the case of data showing large local variability in time, it is desirable to consider a 
heteroskedastic autoregressive component in our model. However, it seems difficult to 
obtain exact-meaning solutions for all unknown parameters when the form of 
heteroskedasticity of errors is also unknown, though some statistical-meaning solu-
tions can be modeled, based on the maximum likelihood principle and the use of Gibbs 
sampler, assuming a WZ-model in which the level, trend and error variance are subject 
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to synchronous structural changes (Wang and Zivot, 2000; Merzlyakov et al., 2009).  

We have also only used the annual mean data starting from 1968, i.e. those during 
1968-2007 to do the corresponding analyses, and found that the most reasonable fits 
are from the 1-, 2- and 3-BP pure trend models that produce piecewise linear trends 
resembling those shown in Figs 1 and 2 based on the 2-, 3- and 4-BP pure trend mod-
els but removing the first segments. So there are only 3 trend BPs identified in the 
zonal and meridional winds with almost same times as those last three shown in Figs 1 
and 2, while the first two BPs in 1976 and 1981 in the meridional wind (during 
1968-2007) can even be distinguished with independent uncertainty intervals. How-
ever, considering that longer data with more samples will generally produce more 
reliable modeling we only show the results using the data during 1960-2007. 
 
5. Conclusions 
 
A piecewise linear regression model is developed to detect climatic trends and possible 
structural changes in the time series with a priori unknown number and positions of 
breakpoints based on the least-squares principle. The initial noise term is allowed to be 
interpreted by the first- and second-order autoregressive models. In principle, the 
goodness of fit of candidate models, provided that the modeled residuals are accepted 
as 1-D normally distributed white noises, is evaluated using the Schwarz Bayesian 
Information Criterion. The standard deviations of all modeled trend parameters are 
estimated using the Monte-Carlo method. As an example, this piecewise linear model 
is applied to the mesosphere/lower thermosphere winds obtained at Collm (52°N, 15°E) 
during 1960-2007. The main results are as follows: 

After ~1980 a persistent increase is observed in the annual mean zonal wind based on 
the primary model selected according to BIC. During nearly the same period of time, 
however, only a weak positive trend arises in the annual mean meridional wind due to 
different trends in different seasons. 

Major trend BPs are identified in 1968/71 (maybe physically meaningless because of 
the possible data artifacts before 1968) and ~1976/79 in the annual mean meridional 
and zonal winds according to BIC. However, in view of the large wind variability be-
fore the late 1970s, the 3- and 4-BP pure trend models, which prove to produce accept-
able residuals, should in principle be considered as alternative choices. This provides 4 
additional possible minor breaks, i.e. those in 1981, 2001 and in 1991, 1998/99, 
respectively, in the meridional and zonal winds. In fact, the last three of them are al-
most independent/quasi-stable solutions, and the first one is even selected by BIC it-
self as a secondary solution although it indicates a large uncertainty interval overlap-
ping with that small of the major BP in 1976. 
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Appendix A: Model parameters and input/output data files  
 
The model is written in FORTRAN source code. Input and output files and parameters 
are described in the following. 
 
 
A1: Input parameters. Only these 8 parameters need to be set appropriately before run-
ning the model. Currently this has to be done in the source code. All other parameters 
have fixed values. 

Parameter* Notation 
ITM Number of data points of the original time series. 
NTS Actual number of data points extracted from the original time series 

for the piecewise linear trend analysis. 
NEND Minimum length for the first and last segments set to avoid end ef-

fects. 
NSPACE Minimum distance between adjacent BPs. 
CSLOPE Minimum amount of trend change at BPs. 
MINCYCLE Minimum number of Monte Carlo loops set to estimate the standard 

deviations of all modeled trend parameters. 
MULTIPLE A multiplication factor set to skip Monte Carlo loop numbers be-

tween the MINCYCLE and MAXCYCLE. 
MAXCYCLE Maximum number of Monte Carlo loops set to estimate the stan-

dard deviations of all modeled trend parameters. 
* Names of variables in the source code. 
 
 
A2: Input. There is only one input file. The file contains the data in one column. 

Input Data File* Notation 

AVWINDE.DAT  Original time series. 
*Currently to be set in the source code (status='old').  
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A3: Output files. 

Output Data File* Notation 
MBPYEAR.DAT A 5*6 matrix where the non-zero elements in each column 

denote the times of BPs. 
MSR.DAT A 3*6 matrix where each column elements denote the 

minimum SSR obtained when assuming the order of 
autoregression is equal to the row index. 

MQR.DAT A 3*6 matrix where each column elements denote the 
minimum BIC obtained when assuming the order of 
autoregression is equal to the row index. 

MCOEFF.DAT A 7*6 matrix where the non-zero elements of each column 
denote the (m+2)-element fit vector {b1, b2, ..., bm+1, a1}, 
i.e. the slopes of (m+1) segments and the intercept of the 
first segment. 

MEYTS.DAT A NTS*6 matrix where each column denotes the piecewise 
linear fit of the original time series without autoregression. 

MRYTS.DAT A NTS*6 matrix where each column denotes the initial 
noise series obtained without autoregression. 

MSTATISTICS.DAT An 11*6 matrix where each column denotes the statistics 
of the initial noise series, i.e. sample mean, standard devi-
ation, lag-zero/one/two autocorrelations, standard lag-one 
(or coefficient for AR(1)) and -two autocorrelations, 
lag-one and -two coefficients for AR(2), and the AD-statis-
tic and associated significance level at which the null 
hypothesis of normally distributed residuals is not rejected. 

MARMBP.DAT The best and secondary choices of AR and BPs according 
to BIC. 

MUBPYEAR.DAT Mean times of BPs obtained via different numbers of loops 
(MCYCLE) of Monte-Carlo simulations for AR(0) 
residuals. 

STDBPYEAR.DAT Standard deviations of BPs obtained via different numbers 
of loops (MCYCLE) of Monte-Carlo simulations for 
AR(0) residuals. 

MUCOEFF.DAT Means of fit vector {b1, b2, ..., bm+1, a1} obtained via 
Monte-Carlo simulations for AR(0) residuals. 

STDCOEFF.DAT Standard deviations of fit vector {b1, b2, ..., bm+1, a1} ob-
tained via Monte-Carlo simulations for AR(0) residuals. 

MACSTDBPYEAR.DAT Similar to STDBPYEAR.DAT but obtained via MAX-
CYCLE loops of Monte-Carlo simulations. 

MACSTDCOEFF.DAT Similar to STDCOEFF.DAT but obtained via MAX-
CYCLE loops of Monte-Carlo simulations. 

*A data matrix of 6 columns in an output file (status='new') assumes the corresponding 
number of BPs is equal to the column index minus one. Data files including “1” or “2” 
in the filenames are corresponding to the file without number, but are valid for a 
combination of the model with an AR(1) or AR(2) component (e.g., MEYTS.DAT, 
ME1YTS.DAT, ME2YTS.DAT ).     
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