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Abstract 

Cancer is a complex, heterogeneous disease and associated with a pluralism of distinct 

molecular events occurring on multiple layers of cell activity. It is a disease of genomic 

regulation driven by genetic and epigenetic mechanisms. Consideration of these regulatory 

levels is inevitable for understanding cancer genesis and progression. Improved high-

throughput techniques developed in the last decades enable a highly resolved view on 

these mechanisms but at the same time the technologies produce an incredible amount of 

molecular data. Hence it needs advances in computational methods to master the data.  

In this thesis we demonstrate how to cope with high-dimensional data to characterize 

molecular aspects of cancer. The main aim of this thesis is to develop and to apply bioin-

formatics methods to unravel molecular mechanisms, with special focus on gene expression 

and epigenetics, underlying cancer. Therefore, we selected two cancer entities, B-cell lym-

phoma and glioblastoma, for a more detailed, exemplary study. 

Bioinformatics methods dealing with molecular cancer data have to tackle tasks like 

data integration, dimension reduction, data compression and proper visualization. One 

effective method that fulfills the mentioned tasks is self organizing map (SOM) machine 

learning, a technique to ‘organize’ complex, multivariate data. We present an analytic 

framework based on SOMs that aims at characterizing single-omics landscapes, here ei-

ther regarding genome wide expression or methylation, to describe the heterogeneity of 

cancer on the molecular level. Molecular data of each sample is presented in terms of 

‘individual’ maps, which enable their evaluation by visual inspection. The portrayal method 

also realizes comprehensive downstream analysis tasks such as marker selection and clus-

tering of co-regulated features into modules, stratification of cases into subtypes, knowledge 

discovery, function mining and pathway analysis. Further, we describe how to detect and 

to correct outlier samples.  

In a novel combining approach all these analytic tasks of the single-omics SOM are 

embedded in a workflow to integratively analyze gene expression and DNA methylation 

data of unmatched patient cohorts. We showed that this approach provides detailed in-

sights into the transcriptome and methylome landscapes of cancer. Furthermore, we devel-

oped a new inter-omics method based on SOM machine learning for the combined analy-

sis of gene expression and DNA methylation data obtained from the same patient cohort. 

The method allows the visual inspection of the data landscapes of each sample on a per-

sonalized and class-related level, where the relative contribution of each of both data enti-

ties can be tuned either to focus on expression or methylation landscapes or on a combi-

nation of both.  

Using the single-omics SOM approach, we studied molecular subtypes of B-cell lym-

phoma based on gene expression data. The method disentangles tumor heterogeneity and 

provides suited markers for the cancer subtypes. We proposed a refined subtyping of  
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B-cell lymphoma into four subtypes, rather than a previously assumed three-group classifi-

cation. In a second application of the single-omics SOM we studied a gene expression 

data set concerning glioblastoma for which we confirmed an established four-subtype clas-

sification. Our results suggested a similar gene activation pattern as observed in the lym-

phoma study characterized by an antagonistic switching between transcriptional modes 

related to immune response and cell division. 

Our integrative study on a larger lymphoma cohort comprising additional subtypes con-

firmed previous results about the role of stemness genes during development and matura-

tion of B-cells. Their dysfunctions in lymphoma are governed by widespread epigenetic 

effects altering the promoter methylation of the involved genes, their activity status as mod-

erated by histone modifications, and also by chromatin remodeling. We identified subtype-

specific signatures that associate with epigenetic effects such as remodeling from transcrip-

tionally inactive into active chromatin states, differential promoter methylation, and the en-

richment of targets of transcription factors such as EZH2 and SUZ12. 

While studying the transcription of epigenetic modifiers in lymphoma and healthy con-

trols, we found that the expression levels of nearly all modifiers are strongly disturbed in 

lymphoma and concluded that the epigenetic machinery is highly deregulated. Our results 

suggested that Burkitt’s lymphoma and diffuse large B-cell lymphoma differ by an imbal-

ance of repressive and poised promoters, which is associated with an imbalance of the 

activity of histone- and DNA-modifying enzymes.  

Our inter-omics method was applied to a high-grade glioblastomas. Their expression 

and methylation landscapes were segmented into modes of co-expressed and co-methyl-

ated genes, which reflect underlying regulatory modes of cell activity. We found antago-

nistic methylation and gene expression changes between the IDH1 mutated and IDH1 wild 

type subtypes, which affect predominantly poised and repressed chromatin states. There-

fore we assume that these effects deregulate developmental processes either by their block-

age or by aberrant activation.  

Our methods presented in this thesis enable a holistic view on high-dimensional molec-

ular data collected in large-scale cancer studies. The examples chosen illustrate the mutual 

dependence of regulatory effects on genetic, epigenetic and transcriptomic levels. Our 

finding revealed that epigenetic deregulation in cancer must go beyond simple schemes 

using only a few modes of regulation. By applying the tools and methods described above 

to large-scale cancer cohorts we could confirm and supplement previous findings about 

underlying cancer biology.  
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1.1 CHALLENGES IN MOLECULAR CANCER MEDICINE 

Just a century ago infectious diseases like influenza, pneumonia and tuberculosis led 

the list of main causes of death. But now, according to the Federal Office of Statistics, 

cancer is the second most common cause of death after cardiovascular systems diseases 

with large impact for healthcare.  

Understanding cancer biology is vital in order to develop new and more effective treat-

ment approaches. A key characteristic for cancer is a rapid, uncontrolled growth of abnor-

mal cells potentially located at any part of the body. For many reasons cancer is a disease 

with currently limited treatment possibilities and poor prognosis: It is not a uniform, but a 

complex disease affecting multiple layers of the cellular machinery: 

Genetic layer: Since many years it is known that mutations and copy number variations 

represent a potential cause for various cancers suggesting that cancer is a genetic disease. 

For instance, gain of whole chromosome 7 and loss of chromosome 10 are indicators of 

early stage of glioblastoma (GBM) formation [1]. Also characteristic for GBM patients is 

that they carry genetic defects such as mutated IDH1 gene, often being associated with 
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abnormal DNA methylation pattern [2]. The advent of genetic techniques showed that usu-

ally a battery of mutations accompanies most cancer types. This makes clear that this dis-

ease is related rather to the accumulation of a certain ‘spectrum’ of genetic defects than to 

single defects that solely cause the disease as in case of monogenetic diseases.  

Layer of genomic regulation: The genome is regulated by epigenetic mechanisms and 

it has been found that genetic and epigenetic events are mutually dependent in tumorigen-

esis: Epigenetic deregulation may result in mutations while an altered epigenome in turn 

could be caused by mutations in genes transcribing epigenetic modifiers [3]. In case of 

lymphomagenesis, critical mutations were reported in genes such as KMT6 (alias EZH2, 

coding for an enzyme, which methylates Lys-9 and Lys-27 of histone H3) leading to a gain 

of function preferentially in diffuse large B-cell lymphomas (DLBCL) [4–6]. 

Layer of clonal evolution: Researchers attribute evolution by clonal selection as one 

reason for the genetic complexity of cancer and for failure of therapeutic treatment. With 

the help of clonal selection tumor cells are able to adapt to their environment, and to 

develop mechanisms, for example, to escape from immune response. In this way they can 

select and accumulate mutations that lead to cell proliferation and typically result in for-

mation of metastases [7]. 

 

Figure 1: Challenges in molecular cancer medicine and the resulting demands on cancer bioinfor-

matics. In the last column one can find the topics we dealt with in this thesis. 
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Pathway layer: Cells are constantly exposed to genotoxic stress, which causes for in-

stance double-strand breaks of the DNA [8]. The damage caused should either be repaired 

or trigger cell apoptosis processes via a properly working DNA damage response (DDR) 

and repair proteins. In case of a malfunctioning repair machinery or a disrupted apoptotic 

pathway (due to age or environment) the risk for development of malignant tumor in-

creases. Mutations of key DDR genes were for instance observed in DLBCL [9]. 

Taken together, research has shown that cancer is a heterogeneous disease meaning 

that one and the same type of cancer can be associated with a pluralism of distinct initial 

molecular events, leading to disturbed gene activity (see left panel of Figure 1). In conse-

quence different biological functions and disease progression are characteristic and can 

lead to distinct molecular subtypes of a cancer entity. In other words, one cancer type splits 

on molecular level into three, four or even more subtypes, which constitute in principle 

disjunctive diseases in terms of genesis and progression and often with different prognosis 

and therapy options. Hence it is crucial to explore the molecular landscape of cancer and 

to stratify it into possible subtypes, and to characterize their specifics in terms of molecular 

markers, function and clinical relevance. 

1.2 NEW GENOMIC TECHNOLOGIES AND CHALLENGES IN CANCER 

BIOINFORMATICS 

Powerful high-throughput technologies, such as microarrays and next generation se-

quencing, have been developed in the last 20 years and enabled to study diseases on 

molecular level with high resolution, especially on genomics, transcriptomics and epige-

nomics levels. This revolution in the field of data acquisition gave rise to an overwhelming 

flood of molecular data. Depending on the biological material and the high-throughput 

technology used one obtains the abundance of ten thousands of mRNA transcripts per 

sample, millions of mutations, methylation levels of hundred thousands of DNA CpG sites 

and modification levels of histone side chains of millions of nucleosomes. In recent years, 

large-scale profiling of tumors were undertaken by means of projects such as The Cancer 

Genome Atlas (TCGA) [10], The Cancer Cell Line Encyclopedia [11] or the International 

Cancer Genome Consortium (ICGC) [12], which aim at characterizing cancer on the mo-

lecular and cellular level. These studies allowed to discover the heterogeneity of the under-

lying regulatory mechanisms and to assign them to molecular cancer subtypes. Although 

the data collection process of TCGA project ended in 2013, data analysis is still ongoing, 

revealing how challenging the incredible amount of high-dimensional heterogeneous can-

cer data is with great demands on bioinformatics methods [13–16]: Researchers need 

adequate tools to extract the information content of the data in an effective and intelligent 

way. This includes algorithmic tasks such as preprocessing, filtering of the data, feature 
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selection, linkage with the functional context in order to characterize and classify the dif-

ferent cancer subtypes, integration of clinical data and data obtained from multiple omics 

realms to achieve a systems-level understanding of the heterogeneity of cancer phenotypes, 

and finally it needs proper visualization of the data landscapes (also see middle column of 

Figure 1).  

Especially, the latter task is very important because an intuitive visualization of massive 

data clearly promotes the quality control, the discovery of the intrinsic structure, functional 

data mining and finally the generation of hypotheses. We aim at adapting a holistic ‘view’ 

on the gene activation patterns rather than to consider single genes or single pathways. 

This view requires methods, which support an integrative and reductionist approach to 

disentangle the complex gene-phenotype interactions related to cancer genesis and pro-

gression.  

1.3 SELF ORGANIZING MAPS AND PORTRAYAL OF MOLECULAR 

LANDSCAPES 

One effective method that meets the requirements listed in the previous section is self 

organizing map (SOM) machine learning. SOMs are neural networks, which have been 

introduced by Kohonen [17]. First applications of SOMs on gene expression profiles were 

carried out by Törönen et al. [18] and Tamayo et al. [19]. 

A bioinformatics analysis pipeline based on SOMs has been developed by Wirth et al. 

[20], which enables a holistic view on high-dimensional molecular data collected in large-

scale studies. Already being applied to numerous high-dimensional single-omics data sets 

regarding for instance human tissues [21] or time series experiments, the SOM-based pipe-

line has proven its capabilities as a reliable tool for clustering, dimension reduction and 

visualization: The portraying method transforms the multitude of different profiles inherent 

in a multidimensional data set into a two-dimensional map. The data map obtained can 

be simply ‘read’ by visual inspection revealing the number of relevant clusters of co-regu-

lated genes in terms of disjunctive ‘spots’ and their mutual correlation structure. Further-

more, it provides a general framework for analytic tasks such as feature selection, integra-

tion of concepts of molecular function and systems tracking with individual resolution.  

In order to meet the requirements of cancer bioinformatics the single-omics SOM pipe-

line presented in chapter 3 was adjusted and supplemented by a multitude of in-house 

methods and measures like additional spot-, entropy- and variance measures, novel adap-

tions for training of DNA methylome data, gene set lists with disease specific signatures 

sets, and a list of genes coding for epigenetic modifiers allowing to systematically study 

their deregulation in cancer. 
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1.4 OBJECTIVES 

The aim of this thesis is to develop and apply SOM-based bioinformatics methods that 

enable the analysis of molecular high-throughput data collected in large cancer cohort 

studies with the special focus on epigenetic (dys-)regulation of transcription. We will un-

ravel molecular mechanisms underlying cancer in the specific case of B-cell lymphoma and 

glioblastoma as proof-of principle applications.  

Particular tasks addressed in this thesis are: 

 portrayal of complex molecular data landscapes with individual resolution, in terms 

of gene expression and DNA methylation 

 identification of suited markers for diagnosis of cancer subtypes that disentangle 

tumor heterogeneity and to discuss their relevance in terms of cancer biology 

 re-evaluation and characterization of molecular subtypes described previously and 

their mutual comparison across the cancer entities 

 joint analysis of gene expression and DNA methylation data to compare classifica-

tion schemes originating from the different data types and analysis of the mutual 

associations between them 

 the study of potential modes of epigenetic regulation in cancer subtypes under con-

sideration of chromatin states, chromatin modifying enzymes, DNA methylation and 

gene expression 

 

We will adapt SOM machine learning to these tasks and provide suited analysis tools. 

SOM represents a suitable method to achieve our goals and to face most of the challenges 

of cancer bioinformatics mentioned in section 1.1 (see also Figure 1). It already has proven 

to be efficient dealing with high-throughput data [22,23]. In this thesis the SOM pipeline 

is complemented and applied to several cancer data sets concerning gene expression and 

DNA methylation.  

This thesis is divided into four main parts: First we give a short review about biological 

background and high-throughput technologies that are used to produce data concerning 

transcriptomics and DNA methylation. Secondly, chapter 3 is devoted to methodical ques-

tions: We describe details of SOM portrayal of high-throughput data and additional tools 

addressing different data analysis tasks. Those methods are exemplified by means of a 

prostate cancer study. Thirdly, each of the application chapters (4 and 5) is subdivided 

into three parts: At first, the cancer entities (B-cell lymphoma and glioblastoma multiforme, 

respectively) are analyzed based on gene expression data. Secondly, epigenetic mecha-

nisms driving carcinogenesis are examined with regard to DNA methylation data and its 

impact on transcriptomics. Thirdly, integrative methods are presented to combine tran-

scriptomics and epigenomics. This is either realized by studying the expression of genes 

coding for epigenetic modifiers or by a novel multi-omics approach, based on SOMs, 

exemplified by a glioblastoma cohort. In the final part a summary of the results is given 

and a conclusion is drawn.  
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The central dogma of molecular biology, introduced by Francis Crick [24], combines 

three different transfer types of biological information, namely replication of DNA, tran-

scription of DNA in RNA and translation of the obtained RNA into proteins. With regard 

to the basic mechanisms it still retains its validity but in the last two decades a lot of research 

has been done revealing different levels and mechanisms so that the dogma has to be 

revised. A cascade of regulatory mechanisms and interacting molecules must be comple-

mented to the so far unidirectional central dogma from the perspective of systems  

biology [25].  
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2.1 BIOLOGICAL BACKGROUND 

2.1.1 TRANSCRIPTOMICS 

The DNA is divided into (protein-) coding and non-coding regions. In the coding seg-

ments of the DNA genes are stored. The term gene expression is used to describe the initial 

process leading to the synthesis of a gene product, usually a protein, from the information 

contained within a gene. The first step is called transcription, the process by which DNA 

is transcribed into RNA, another nucleic acid. There are several types of transcripts, named 

according to their functionality for instance mRNAs (messenger RNA), non-coding RNAs 

and small RNAs. The entirety of transcripts in a cell is called transcriptome and one of the 

main goal in transcriptomics is to quantify the expression level of the transcripts under 

certain conditions measured in terms of mRNA.  

2.1.2 EUKARYOTIC CHROMATIN STRUCTURE  

What makes the difference between for instance a hepatocyte and a skin cell if not the 

DNA sequence being the same in both cells within one organism? The answer to that 

question is expression of thousands of genes determining a cell’s function. The gene ex-

pression state during differentiation is controlled by transcriptional regulation governed by 

chromatin state. 

Understanding chromatin structure is crucial for transcriptional regulation. The structure 

of DNA is divided in four different types (see Figure 2). The primary structure is basically 

the nucleotide sequence of DNA itself, made up of the 4 bases adenine (A), thymine (T), 

cytosine (C) and guanine (G). The secondary structure, also known as -helix is formed by 

complementary base pairing of two nucleotide strands by means of hydrogen bridges. The 

spatial, helical arrangement of the double strand is termed tertiary structure and the qua-

ternary structure refers to the formation of complexes of DNA and proteins, also called 

nucleosomes. Repeating units of those nucleosomes form the chromatin to package the two 

complementary DNA strands, each consisting of approximately 3 billion nucleotides and 

distributed over 23 pairs of chromosomes, in the nucleus of every human cell. For a nucle-

osome a 147 bp long fraction of DNA is wrapped around a histone octamer consisting of 

two copies of the four core histones [26]. The linker histone represents the connection 

between 3’ and 5’ end of DNA wrapped around the histone octamer therefore stabilizing 

the nucleosome and is relevant to form higher-order chromatin. One can distinguish be-

tween two types of chromatin, namely euchromatin and heterochromatin determining the 

accessibility of the DNA. The latter is known to mediate transcriptional silencing due to its 

more condensed and closed structure while euchromatin also known as open chromatin 

contains genes being actively transcribed as a consequence to its loose packaging [26]. 
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Figure 2: Chromatin structure. Adapted from [27]. 

2.1.3 EPIGENETICS 

Epigenetics is sometimes described as a second layer that coats the DNA. The common 

definition according to today’s understanding was given by Russo as ‘the study of mitoti-

cally and/or meiotically heritable changes in gene function that cannot be explained by 

changes in DNA sequence’ [28]. It controls the chromatin structure and accessibility, de-

termines the functionality and the phenotype of a cell by turning genes on or off [26]. 

Among the most prominent epigenetic mechanisms are posttranslational modifications of 

histone tails, methylation of DNA and chromatin remodeling [29], [30]. Roadmaps Epige-

nomics (http://www.roadmapepigenomics.org/) is one of the most well-known consortia 

concerning epigenetic data as it provides more than a hundred publicly available human 

reference epigenomes. One of the objectives of the consortium is to present a platform to 

study the role of epigenetics in the genesis and progression of human diseases. 

Human cancer was firstly linked to epigenetics in 1983 when a global DNA hypometh-

ylation was observed by Feinberg et al. [31]. Through the years epigenetics also became 

a hot topic in cancer therapy. Up to now several epigenetic-related anti-cancer drugs have 

been developed and approved that basically inhibit DNA methylation or histone modifica-

tions [32]. 

2.1.3.1 DNA METHYLATION 

Methylation of the 5’ carbon of cytosine at CpG (cytosine-guanine dinucleotide) sites is 

the most studied epigenetic mark. It is assumed that due to methylation of cytosines present 

in the promoter region of genes, either binding of transcription factors (TFs) may be hin-

dered or mediators of chromatin remodeling complexes bind to those methylated cytosines, 
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which consequently promotes silencing of the downstream gene [33]. But meanwhile re-

searchers have found that this mechanism doesn’t apply to each gene concluding that 

quantitative relation of gene expression and promoter methylation is not yet fully under-

stood [34].  

Due to the asymmetric arrangement of CpG on the DNA (methylated cytosines lie diag-

onally to each other on both strands) methylation marks are stable and can be re-estab-

lished after replication and inherited to daughter strands [35]. The methylation process is 

catalyzed by two kinds of DNA methyltransferase enzymes (DNMTs). The first one is called 

de novo DNMT, represented by DNMT3A and DNMT3B, which initially methylate the 

DNA during embryonic development. The maintenance methyltransferase DNMT1 is re-

sponsible to inherit the methylation marks to the daughter strand after replication [36,37]. 

A variety of biological processes like aging, X-chromosome inactivation in females, 

development and genomic imprinting have been attributed to DNA methylation while al-

tered methylation was brought into context with complex diseases like heart disease or 

cancer [38]. Hypermethylation of the promoters of tumor suppressor genes or genes in-

volved in cell cycle or DNA repair pathways is often associated with tumorigenesis [3]. 

2.1.3.2 HISTONE MODIFICATION AND THE HISTONE CODE 

Chromatin structure and transcription are to some extend regulated by chemical modi-

fications like methylation, acetylation, phosphorylation, ubiquitylation, and sumoylation of 

the N-terminal tail of the core histones H2A, H2B, H3 and H4 [39]. Similar to DNA meth-

ylation enzymes catalyze the posttranslational modification reactions of arginine, lysine 

and serine residues at histone tails. Depending on the site and type, histone modification 

can have various effects. The most studied marks are acetylation and methylation with both 

chemical modifications having different effects on transcription: Acetylation of lysines on 

H3 or H4 generally promoting transcriptional activation due to its capability to decondense 

chromatin. The impact of methylated histone residues on expression is more diverse de-

pending on the site, the residue (arginine or lysine) and the degree of methylation (lysines 

may be mono-, di- or trimethylated) [40]. High levels of H3K4 (histone H3 at lysine 4) 

methylation in promoter regions are correlated with high transcription rates while trimethyl-

ation of H3K9 and H3K27 have been associated with transcriptional silencing. Further-

more, H3K36me3 (trimethylation of H3K36) marks are found in the bodies of actively 

transcribed genes [41]. In 2001 Jenuwein and Allis introduced the histone code hypothesis 

implying that combinations of histone modifications may evoke changes in the chromatin 

state and lead to modified regulatory mechanisms of gene expression [42].  

An aberrant activity state of histone-modifiers has also been implicated in cancer gen-

esis. For instance upregulation of EZH2 (methylates H3K9 and H3K27) has been associ-

ated with metastatic prostate cancer [43]. 
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2.1.4 CARCINOGENESIS THROUGH (EPI-)GENOMIC DYSREGULATION 

Figure 3a provides a schematic overview of central ingredients of carcinogenesis arising 

as a consequence of a modified chromatin state [44,45]: Chromatin states and also the 

more subtle activity states of gene promoters represent essential determinants of gene tran-

scription shaping cell function and the production of chromatin modifying enzymes (Figure 

3b). These enzymes model the chromatin states via writing and erasing of epigenetic marks 

attached. Such marks are then read by the chromatin (re-)modeling machinery, which po-

tentially leads to changes of chromatin structure with possible consequences for gene ex-

pression. 

 

Figure 3: Carcinogenesis through (epi-)genomic dysregulation: (a) Circuit of epigenetic regulation: 

Different chromatin states are induced by histone modifications, which in concert with DNA methyl-

ation, modulate transcription of the affected genes, resulting in the production of chromatin modifying 

enzymes, which again regulate the formation of different chromatin states. This feedback loop is 

further modulated by metabolites, which serve as cofactors. Oncogenic mutations can disbalance 

this network giving rise to malignant cellular states. (b) Writers and erasers are chromatin modifying 

enzymes that add or remove epigenetic marks, respectively. Readers recognize such marks and 

induce specific molecular ‘actions‘ (activation or repression of gene expression, writing or erasing of 

DNA or histone marks or recruitment of TFs or of DNA-repair genes). 
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The activity of chromatin modifying enzymes within this regulatory circuit represents one 

important determinant of epigenetic regulation. Mutations of genes coding epigenetic mod-

ifiers are initiating events in cancer that can induce an ‘avalanche‘ of downstream epige-

netic effects. They can start with the aberrant expression of chromatin modifying enzymes, 

which leads to aberrant epigenetic marks and then to aberrant chromatin states and finally 

to aberrant cellular activities. Mutations not directly targeting epigenetic modifiers can also 

induce analogous ‘avalanches‘ of epigenetic deregulation, if, for example, they hit TFs, 

which downstream regulate the expression of epigenetic modifiers. De-regulation of the 

epigenetic machinery can also be mediated by the metabolome, e.g. if mutations of genes, 

encoding metabolic enzymes, modify metabolites acting as inhibitors or activators of epi-

genetic enzymes. For example, mutations of the gene, which codes for isocitrate dehydro-

genase 1 (IDH1) disturb the DNA methylation machinery and induce special types of brain 

cancer by alterations of the activity of epigenetic enzymes [46]. Perturbations of chromatin-

modifying mechanisms are among the central oncogenic pathways inducing human  

cancer [47]. 

2.2 HIGH-THROUGHPUT TECHNOLOGIES 

2.2.1 GENE EXPRESSION QUANTIFICATION IN LARGE SCALE STUDIES 

Gene expression profiling is used to simultaneously measure the activity of thousands 

of genes at a particular time in healthy and diseased states [48]. It has gained great sig-

nificance in biology and biomedical research when it comes to identifying biological pro-

cesses of large scale studies. The most frequently used methods for measuring gene expres-

sion are microarrays and RNA-sequencing (RNA-Seq) [49].  

Starting in 1997, microarrays have revolutionized fields like molecular biology, medi-

cine and pharmacy. One can distinguish between commercial platforms measuring the 

gene expression of the whole genome and custom arrays, which only spot probes with the 

sequence of genes of interest [50]. Depending on the manufacturer, the protocol or rea-

gents vary, but the principle of microarrays remains the same and is called hybridization. 

Oligonucleotides with unknown sequence of length up to 70bp bind to probes of known 

sequences attached in ordered fashion on a solid surface like glass or silicon by comple-

mentary base pairing [51]. 

The workflow of RNA-Seq experiments is quite different: After isolation of RNA it is 

converted into cDNA, which is further fragmented into small pieces with all being of the 

same length [52]. So-called adapters of known sequence are ligated to the fragments. The 

fragments are then sequenced to a specific depth using a sequencing machine. At this 

point the laboratory work ends and data analysts get the sequenced reads and quality 

scores to further quantify RNA being present in a sample at a certain time.  
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Taken together, the main difference between microarrays and RNA-Seq is that for mi-

croarrays only the predefined set of probes and therefore only a limited set of genes’ 

expression can be measured, while for RNA-Seq the expression of both mRNAs, small and 

non-coding RNAs is detected not limited to specific gene loci [48]. Furthermore, structural 

variants can be discovered. However, gene expression arrays are still accepted in biosci-

ence and widely used not least because they are less expensive than RNA-Seq experiments, 

and depending on the purpose of the study researchers should decide whether to use 

microarrays or sequencing method. 

2.2.2 MEASUREMENT OF DNA METHYLATION 

Like measuring gene expression levels also for methylation there exist microarrays to 

detect DNA methylation rates and a sequencing alternative called bisulfite sequencing. 

Both methods work on the same principle of bisulfite conversion: The DNA is treated with 

sodium bisulfite, which doesn’t have an impact on the sequence except for unmethylated 

cytosine being transformed to uracil [53]. Illumina’s Infinium HumanMethylation450 Bead-

Chip arrays is the most frequently used microarray platform for measuring DNA methyla-

tion [53]. The array spots 485,512 preselected CpGs distributed over the entire genome 

covering 99% of known genes. In contrast bisulfite sequencing offers greatest genomic 

coverage but clearly exceeds the costs in comparison with microarrays. 

2.2.3 IDENTIFICATION OF HISTONE MODIFICATION SITES 

Chromatin immunoprecipitation (ChIP) is generally used to detect DNA-protein interac-

tions, for instance to identify binding sites of TFs to promoter regions of genes. This method 

is also applicable for the detection of chemical modifications of histone proteins using 

appropriate antibodies. The sequencing based technology is called ChIP-Seq, which has 

surpassed ChIP-chip being the DNA microarray based counterpart [54]. 

There are several large consortia that produce and provide genome-wide data regard-

ing genomic regulation. For example the ENCODE (ENCyclopedia Of DNA Elements) pro-

ject was launched in 2003 dedicated to the determination of all functional and regulatory 

elements of the human genome. The NIH Roadmap Epigenomics Consortium has gathered 

the so far largest collection of epigenomes, among others also in terms of ChIP-Seq data 

sets, derived from human tissues and primary cells [55]. 

Ernst et al. [56] developed a computational system based on a hidden Markov model 

called ChromHMM, which uses combinations of histone modifications to predict chromatin 

states. The Roadmap Epigenomics project provides ChromHMM based segmentation 

across 127 epigenomes of different tissue types. Later on we make use of the whole-ge-

nome segmentation into chromatin states in terms of healthy lymphoblastoid and neuronal 

progenitor cells in order to get an insight into the possible mechanisms of chromatin re-

modeling in various cancer entities. 
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Self-organizing maps (SOM) portray molecular phenotypes with individual resolution. 

We developed an analysis pipeline based on SOM machine learning, which allows the 

comprehensive study of large scale clinical data. For all SOM analyses throughout this 

thesis we used the R-package ‘oposSOM’, which is publically available from the Biocon-

ductor repository [20]. Further details concerning the SOM pipeline are provided in [57].  

 

The potency of the method is demonstrated in a selected application studying the diver-

sity of gene expression in prostate cancer progression (PCP), which has been published in: 

 

Hopp, L., Wirth, H., Fasold, M., & Binder, H. (2013). Portraying the expression land-

scapes of cancer subtypes: A glioblastoma multiforme and prostate cancer case study. 

Systems Biomedicine, 1(2). 
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3.1 DATA 

In Table 1 we compose a list of all data sets used within this thesis. Additional infor-

mation can be found in supplement section 7.1 and in the associated sections. 

Table 1: Data sets used throughout this thesis. 

cancer gene expression DNA methylation 
entity subtypes  

(sample size) 
platform, GEO acces-
sion number,  
references 

subtypes 
(sample size) 

platform, GEO acces-
sion number, refer-
ences 

prostate  
cancer  
progres-

sion (PCP) 

chapter 3 

PIN (13), PCA_low (12), 
PCA_high (20), MET 
(17) , controls: BHP (22) 

non-commercial spotted 
Human 20K Hs6 ar-
rays, GSE6099, 
Tomlins et al. [58] 

  

B-cell lym-
phoma 

section 4.1 

mBL (44), non-mBL 
(129), intermediate (48)  

Affymetrix HT HG-
U133A arrays, 
GSE4475, Hummel et 
al. [59] 

  

section 4.2 

mBL (85), non-mBL 
(287), IntL (307), FL 
(121), BCL (64), con-
trols: B-cells (17), GCB-
cells (13), lymphoma cell 
line (32), tonsils (10) 

Affymetrix HT HG-
U133A, Hummel et al. 
[59] 

DLBCL (54), mBL (18), 
IntL (16), FL (14), MCL 
(10), MM (14), con-
trols: B-cells (5), GCB-
cells (2) 

GoldenGate Methyl-
ation Cancer Panel I, 
Martin-Subero [60] 

section 4.3 

mBL (62), DLBCL (204), 
IntL (255), FL (3), BCL 
(36), controls: lymphoma 
cell lines (32), B-cells 
(17), GCB-cells (13), ton-
sils (10) 

Affymetrix HT HG-
U133A, GSE4475, 
GSE10172, 
GSE22470, 
GSE48184, 
GSE43677, Hummel et 
al. [59] 

  

glioblas-
toma multi-

forme 
(GBM) 

section 5.1 

MES (50), PN (45), 
NL(26), CL (32), control: 
NOR (11) 

Affymetrix HT HG-
U133A, Verhaak et al. 
[61] 

  

section 5.2 

MES (5), RTKI (6), RTKII 
(3), IDH (7), G43 (4), 
K27 (5), control: fetal (3) 

Affymetrix HT HG-
U133A, Sturm et al. 
[62] 

G34 (18), K27(18), 
MES (36), IDH (19), 
RTKI (23), RTKII (22), 
controls: adult (2), fe-
tus (4) 

Illumina Human 
Methylation450 
BeadChip, 
GSE36278, Sturm et 
al. [62] 

MES (50), PN (45), CL 
(32), control: NOR (10) 

Affymetrix HT HG-
U133A, Hopp et al. 
[61]  

MES (21), CL (23), PN-
IDH-mut (12), control: 
PN-IDH-wt (14) 

Affymetrix HT HG-
U133_Plus_2, 
GSE53733, Reifenber-
ger et al. [63] 

section 5.3 

MES (16), RTKI (4), RTKII 
(16), IDH (3) 

Affymetrix HT HG-
U133A, TCGA, Sturm 
et al. [62] 

MES (16), RTKI (4), 
RTKII (16), IDH (3) 

Illumina Human 
Methylation450 
BeadChip, TCGA, 
Sturm et al. [62] 
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3.2 PREPROCESSION: PREPARING THE DATA 

Gene expression 

Raw probe intensity values of gene expression Affymetrix arrays were calibrated and 

summarized into one expression value per probe set using the hook method [64,65]. For 

arrays other than Affymetrix, we downloaded already preprocessed expression data. To 

ensure comparability, expression values of the sample arrays were further quantile-normal-

ized [66], which transfers the expression states of all samples into one common distribution.  

Then the expression data E was transformed in log-scale and centralized with respect 

to the mean value of each gene n 1,…,N averaged over all samples 𝑗 = 1,…, J 

∆enj = log
10

Enj −
1

J
∑ log

10
Enj

J

j=1

 . Eq.(1) 

This definition of differential expression and differential methylation refers to the mean ex-

pression/methylation level of each gene n in the data set studied. Centralization using 

Eq.(5) emphasizes further analysis on differential values (logFC, fold change units) inde-

pendent of the respective absolute expression levels. Hence, a ∆enj of zero means that the 

gene is expressed according to its mean expression value. If not stated otherwise, we use 

the terms over- and underexpression throughout the thesis for ∆enj > 0 and ∆enj < 0, re-

spectively. For expression data we define ‘profiles’ given as data vector for each gene with 

the sample-related values as elements; 

∆en∙ = (∆en1, … ,∆enJ) Eq.(2) 

and ‘states’, given as data vector for each sample with the gene-related values as elements, 

∆e∙j = (∆e1j, … ,∆eNj). Eq.(3) 

DNA methylation 

For methylation data we used the ‘M’-scale (ratio of methylated to unmethylated) instead 

of -scale.  values are defined as the relative methylation level, which can vary between 

values of zero (no methylation) and unity (full methylation). For SOM analyses  values of 

gene n were transformed into M values 

Mnj =
βnj

1 − βnj

  , Eq.(4) 

which theoretically cover the range between minus infinity (no methylation) to plus infinity 

(full methylation). M values are statistically more valid because they avoid heteroscedastic-

ity of differential methylation values for large (𝛽 > 0.8) and small (𝛽 < 0.2)  values [67]. 

For intermediate  range (0.2 < 𝛽 < 0.8)  and M are nearly linearly correlated. Genes 

located on chromosomes (Chr) X and Y were excluded from further analyses to minimize 

gender specific effects [22]. 
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In analogy to preprocessing of expression data, differential methylation was calculated 

by taking the logarithm of methylation data und centralizing them with respect to the mean 

value of each gene n averaged over all samples 𝑗 

∆mnj = log
10

Mnj −
1

J
∑ log

10
Mnj

J

j=1

 . Eq.(5) 

A ∆mnj of zero means that the gene is methylated according to its mean methylation value. 

If not stated otherwise, we use the terms hyper- and hypomethylation for ∆mnj > 0 and 

∆mnj < 0, respectively. Methylation ‘profiles’ are given as data vectors for each gene n 

with the sample-related values as elements ∆mn∙ = (∆mn1, … ,∆mnJ) while methylation 

‘states’ are given as data vectors for each sample j with the gene-related values as elements 

∆m∙j = (∆m1j, … ,∆mNj). 

3.3 SOM TRAINING 

The preprocessed data is used to train a self-organizing map (SOM). It translates the 

high-dimensional data given as N x J matrix (N: number of genes, J: number of samples) 

into a K x J matrix (K: number of so-called metagenes) of reduced dimensionality K ≪ N 

(N ~ 104 and K ~ 103) using an unsupervised learning algorithm. The metagene profiles 

are obtained via iterative machine learning, while clustering the gene profiles on a two-

dimensional quadratic grid of √K tiles per x- and y-dimension using Euclidean distance as 

similarity measure. The final SOM consists of regions of similar metagene profiles. As the 

number of input genes N exceeds the number of nodes K in the grid, each metagene serves 

as a representative prototype of a ‘mini-cluster’ of real genes with similar profiles. It reflects 

the differential expression or methylation of the prototypic metagene compared to its pro-

file-averaged value, ∆ekj  ekj − ek∙ and ∆mkj  mkj − mk∙, where ekj and mkj are the logged 

expression and methylation values of metagene k in sample j and ek∙ and mk∙ are the re-

spective profile means, respectively.  

Please note, that for each application throughout this thesis the SOM size (K) was cho-

sen according to match the criterion of robustness of the SOM.  

3.4 SOM STAINING: PORTRAYAL 

Method 

Each samples meta-state is visualized by color coding the two-dimensional mosaic of 

metagenes according to their feature values in the respective sample. Please note that the 

assignment of the genes to metagene clusters and therefore also their position in the SOM 

is identical in all sample portraits. Hence, the coloring at a certain position in the map 

refers to the same genes in all individual portraits allowing the direct comparison of their 
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expression or methylation levels between the maps. We first normalize the metagene data 

in each state to the range [−1, +1] and then color code the obtained mosaics: The ‘logFC’-

scale linearly transforms the normalized logged fold change of metagene k in sample j, 

log FC  ∆ekj
norm and log FC  ∆mkj

norm into green to maroon for ∆ekj
norm ≥ 0 and ∆ekj

norm ≥ 0, 

and green to dark blue for ∆mkj
norm ≤ 0 and ∆mkj

norm ≤ 0. The color patterns emerge as 

smooth textures representing the fingerprint of transcriptional activity or methylation state 

of each sample, respectively.  

Average subtype-specific portraits are calculated as the mean value of each relative 

metagene measure over all phenotype portraits of one subtype, 

 ∆ekc ≡ 〈∆ekj〉j∈c and ∆mkc ≡ 〈∆mkj〉j∈c (c is the class index of each subtype) followed by 

normalization and coloring in logFC-scale. They reflect subtype-specific expression and 

methylation patterns while leveling out the heterogeneity of the individual feature states and 

outliers. Furthermore population of the metagenes and the variance of metagene profiles 

can be visualized using the same mosaic structure. Details are provided in supplement 

section 7.2. 

Example 

PCP expression data was preprocessed as given in section 3.2 and supplemental sec-

tion 7.1.1. SOM machine learning transforms the whole genome expression pattern into 

one colored mosaic image per sample. In case of PCP about four thousand single genes 

are distributed over 1,600 (40x40) tiles, each tile representing one metagene. Figure 4 

portrays the expression states of PCP. We sort these expression portraits into different 

groups according to previous classifications into progression stages ranging from benign 

prostatic hyperplasia (BHP) and prostatic intraepithelial neoplasia (PIN) to low-grade 

(PCA_low), high-grade (PCA_high), and metastatic (MET) prostate cancer [68]. Exemplary 

portraits of individual samples are shown in logFC-scale highlighting areas of strong over- 

and underexpression. 

We calculated the mean SOM-portrait (large images in Figure 4) of each class by av-

eraging the expression values of each metagene over all class members. This averaging 

cancels out individual, highly fluctuating features and this way it amplifies consistent class-

specific features. Each small mosaic exhibits a characteristic texture of the respective can-

cer sample. The expression portraits in logFC-scale reveal a handful of over- and underex-

pression spots, which selectively characterize different cancer subtypes such as BHP, PIN, 

PCA_low, PCA_high and MET prostate cancer in Figure 4. One observes either relative 

stable and consistent spot-patterns (e.g. for MET) or relatively heterogeneous and volatile 

patterns (e.g. for the PCA_high samples). 

Some spots were observed in more than one PCP-stage. As a rule of thumb the spots of 

subsequent stages, and also of the final MET- and initial BHP-stages, tend to overlap. In 

consequence, the stage-specific spot pattern ‘rotates’ along the border of the map in clock-

wise direction with progressing cancer. 
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Figure 4: SOM gallery of PCP stages. The small mosaic images refer to selected individual tumor 

samples assigned to the five PCP stages while the large images represent the respective mean por-

traits of each stage. The images use a logFC-scale, where FC denotes the fold change of the expres-

sion of each metagene with respect to its mean expression in all samples. A complete gallery of all 

sample portraits is available in supplementary material of [69]. 

In summary, SOM-imaging portrays the individual expression landscapes of each sam-

ple in terms of characteristic color textures, which enable visual inspection of subtype-spe-

cific spot-like features representing clusters of differentially expressed and co-regulated 

genes. Simple averaging over groups of samples amplifies class-specific features. 

3.5 SAMPLE SIMILARITY ANALYSIS: HETEROGENEITY 

Method 

Sample similarity analysis aims at establishing mutual relations between the phenotypes 

studied, e.g., to extract a hierarchy of similarities or to estimate mutual distances between 

the feature states. Similarity analysis compares the feature states as seen by the SOM por-

traits. It consequently uses the expression or methylation of metagenes instead of single 

genes as the basal data, which has the advantage of improving the representativeness and 

resolution of the results [23,70]. 

We applied second-level SOM analysis as proposed by Guo et al. [71] to visualize the 

similarity relations between the individual SOM-metagene patterns. We used the K meta-

gene profiles of the J samples to perform sample-wise clustering. 

Another method called independent component analysis (ICA) [72] was applied to the 

SOM-metagenes using the R-package ‘fastICA’. It distributes the samples in the space 

spanned by the components of minimum mutual statistical dependence. These components 
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point along the directions of maximum information content in the data, which is estimated 

by their deviation from a (non-informative) normal distribution [73]. ICA is based on the 

covariance matrix calculated in terms of Pearson correlation coefficients r between all met-

agene values of pairwise combinations of samples. The correlation matrix was visualized 

using pairwise correlation maps (PCM), maximum spanning tree- (MST) and correlation 

cluster net (CN)-representations.  

MST’s are a well-established concept in graph theory. The algorithm interprets the dis-

tance matrix as a complete graph in which the edge weights correspond to the distances. 

The MST is the spanning tree that connects all vertices of that graph with the smallest sum 

of edge weights. It thus represents effectively the ‘shortest’ distance between two nodes in 

the graph resulting in a chain-like structure. MST’s have been shown to be useful for clus-

tering and classification of cancer subtypes using microarray data [74]. For the MST cal-

culation we used the spantree function of the R-package ‘igraph’.  

A second correlation based representation is supplied by the CN. This unweighted 

graph is constructed by connecting the nodes (i.e. the samples), whose pairwise correlation 

coefficient r exceeds a given threshold (here rthreshold  0.5). This graph supplements the 

sparse MST with a more detailed and network-like overview about the sample correlation 

structure. It implies more connections as the MST and thus considers also weaker mutual 

correlations. 

Finally, we also applied the neighbor-joining algorithm (R-package ‘ape’) to represent 

similarity relations based on the Euclidean distances between the samples in terms of simi-

larity trees [75]. The distances between pairs of samples in the tree are in scale. In contrast 

to MST-representation the phylogenetic tree allows to identify ‘bush-like’ clusters and to 

estimate the degree of mutual dissimilarity between them. 

Example 

The 2nd level SOM representation of PCP is given in Figure 5a with the mean regions 

occupied by the samples of each of the different PCP-stages being illustrated by the largely 

overlapping colored polygons. The first and final stages can be well distinguished, whereas 

the intermediate stages PIN, PCA_low and PCA_high are found essentially in the same 

region of the map. Note the correspondence between the spot patterns in the mean por-

traits of the subtypes and the symmetry of their arrangement in the 2nd level SOM: The 

rotating spot-pattern of the PCP-stages transforms into an U-shaped trajectory of subsequent 

stages in the 2nd level SOM reflecting the fact that a significant part of the genes are 

similarly expressed in the final MET-stage and in the initial BHP-stage, but differently ex-

pressed in the intermediate PIN- and PCA-stages (see the spot pattern in Figure 4). 

As a complementary method, independent component analysis (ICA) was applied to 

the SOM portraits of all samples of each cancer progression stage (see Figure 5b). The 

samples are similarly distributed in ICA-space as in the 2nd level SOM.  
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Figure 5: The 2nd level SOM and ICA similarity analysis of PCP stages. (a) The 2nd level SOM 

polygon representations of PCP stages. Note that the spot pattern in the mean expression maps of 

PCP virtually rotates with progressing cancer giving rise to a U-shaped trajectory in the map (see 

arrows); (b) Three dimensional ICA . 

The PCM given in Figure 6a visualizes the correlation coefficients for all sample pair-

ings, which are arranged according to their subtype assignments (see the color bars along 

the borders of the map). Maroon and red colored tiles assign strong correlations and thus 

pairwise combinations of similar portraits and blue colored tiles assign anti-correlated por-

traits where usually overexpressed regions have switched into underexpressed ones and 

vice versa. The samples of the same tumor stage were grouped together to visualize the 

intra- and inter-class similarity of the samples (see color bars along the edges of the map). 

For example, BHP samples are predominantly anti-correlated with PIN and PCA samples 

but partly correlated with MET samples (see also the respective anti-correlated or correlated 

spot pattern of the mean portraits per class). The covariance structure of the data is visual-

ized using the MST and the CN representations shown in Figure 6b-c. Importantly, all 

similarities are based on the metagenes, which provide a better resolution than single gene-

based similarity analysis [23,71]. 

The MST and the CN of the PCP-samples (Figure 6b and c respectively) show a back-

bone-like structure reflecting the temporal progression of the respective stages of prostate 

cancer. The mutual distance among them increases with progressing cancer as a rule of 

thumb. MET-samples are however again found near BHP-samples. This finding is consistent 

with the U-shaped arrangement of the PCP-stages in 2nd level SOM (see Figure 5a), which 

suggests larger similarity between the first and final stages than between the first and inter-

mediate PCA_high- and PCA_low-stages. These similarity relations transform into star-like 

dendrograms, which are obtained using the neighbor-joining algorithm based on Euclid-

ean distance metrics (see Figure 6d). One can see that the more localized MET-subtype 

tends to aggregate into separate branches whereas the intermediate PIN- and PCA-sub-

types occupy diffuse branches.  

The different similarity plots thus provide complementary information with emphasis on 

their distribution in two dimensions (2nd level SOM), the independence of the underlying 
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features (ICA) and the strongest correlations between the samples (MST), which is further 

disentangled in the CN- and dendrogram-plots. The MST, CN, and dendrograms partly 

reveal finer details such as the compactness or fuzziness of mutual relations. On the other 

hand, the 2nd level SOM provides the direct link to the original SOM images and the ICA 

projects the similarities between the samples in scale of the mutual similarities. 

 

Figure 6: Similarity analysis of PCP. (a) The PCM visualizes the Pearson correlation coefficient of 

all pairwise combinations of sample portraits. Each subtype is characterized by a more or less pro-

nounced brown-to-red square along the diagonal line, which reflects self-similarity of samples of the 

same type. Off-diagonal brown and blue regions refer to correlated and anti-correlated SOM-spot 

pattern, respectively. (b) The MST is shown together with the mean SOM portraits of each subtype. 

(c) The CN translates the PCM into a graph structure. The nodes are given by the samples and the 

edges connect positively correlated sample pairs (r > 0.5). (d) ‘Phylogenetic’ cluster tree. 

3.6 DETECTING CO-REGULATED MODULES: ‘SPOT’ SELECTION 

Method 

The SOM algorithm arranges similar metagene profiles in neighbored tiles of the map 

whereas more different ones are located more distantly. In consequence, neighbored met-

agenes tend to be colored similarly owing to their similar values. Therefore, the obtained 

mosaic portraits show typically a smooth texture with red and blue spot-like regions refer-

ring to clusters of over- and underexpressed or hyper- and hypomethylated metagenes. 

These blurry images portray the feature landscape of each particular sample in terms of a 
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visual image. Metagenes from the same spot are co-regulated in the experimental series, 

whereas different, well-separated red spots in the same image refer to metagenes upregu-

lated in the particular sample but differently regulated in other samples because of their 

different profiles. Each spot can consequently be interpreted as a module of a group of 

metagenes (and of associated single genes) showing concerted profiles. 

We define over- (and under-) expression and hyper- (and hypo-) methylation spots by 

applying a simple 98th-percentile (and 2nd-percentile) criterion, which selects the respective 

fraction of the metagenes showing largest (or smallest) measures in each sample. Hence, 

the spots obtained are individual properties depending on the measure of the particular 

metagene in each sample. They can change their size from phenotype to phenotype and 

they can even disappear or transform from an over- into an underexpression spot and from 

hyper- into hypomethylation spot or vice versa. 

The abundance of each spot is calculated as the relative frequency of appearance of 

each spot s  A, B, … in the samples of each cancer subtype, 

xsc  
jsc
Jc

 Eq.(6) 

where Jc is the total number of samples per subtype c and msc is the number of portraits 

showing a particular spot s among those samples. The spot abundances are represented 

as stacked bar plot for each spot. The integral abundance, Xs  ∑ xscc , can be interpreted 

as the mean number of classes showing a particular spot. Its maximum value Xmax equals 

the number of classes considered. 

Example 

In the next step, we analyzed the spot patterns of PCP SOM portraits to identify differ-

ences and common properties shared between the cancer stages. Unique or more common 

spots can provide information about the functional impact of gene activities specific to 

cancer subtype. Figure 7a shows the so-called overexpression summary map of PCP, which 

collects all spots with overexpression observed in the individual PCP portraits into one mas-

ter map (see also [23]). Each distinct region of metagenes in the portraits exceeding the 

overexpression threshold defines a spot on the overexpression map, labeled by capital 

letters in Figure 7c. In total, we identified 15 such spots, ‘A’ to ‘O’, for PCP. Figure 7b 

visualizes the mean expression level across the metagenes of each spot for all samples. 

This heatmap thus provides an overview over the subtype-specific expression activity in 

each spot. For example, spot ‘C’ and partly also spot ‘H’ are selectively overexpressed in 

the BHP subtype, and spot ‘N’ in the PIN subtype, whereas spots ‘A’ and ‘M’ show sample 

specific activity, not specific to any subtype.  

Our spot selection algorithm thus identifies both rare and frequent spot patterns. In the 

next step we assessed the relative frequency xsc of each spot (see Eq.(6)). As shown in 

Figure 7d, only 6 out of 15 detected spots are relatively frequent (xsc > 0.2) and the most 
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abundant spot ‘N’ is found in about 30% to 50% of all intermediate-staged samples, how-

ever, being relatively unspecific for tumor subtypes. Ten spots are observed in MET sam-

ples, reflecting that the expression patterns of the metastatic cancer samples are highly 

diverse with spots located in nearly all regions of the map. In contrast, the PIN and BHP 

samples show only 3 and 4 spots with overexpression, respectively. Analogous results from 

analyzing spots with underexpression are in line with these observations (data not shown 

here). Spots such as ‘A’, ‘D’, ‘E’, ‘M’, and ‘O’ are very rare with xsc< 0.1. 

In order to discover covariance between the metagene expression profiles in different 

spots, we calculated pairwise correlation maps and maximum spanning trees exploring 

relationships between spots (see supplementary material of [69]). As a rule of thumb, neigh-

boring spots are strongly positively correlated and spots located in opposite corners of the 

map are often strongly anti-correlated. For example, spots ‘E,’ ‘I’, and ‘L’ are highly corre-

lated (Figure 7c, blue dashed lines), whereas the spots ‘N’ and ‘H’ are anti-correlated 

(Figure 7c, red dashed lines). 

 

Figure 7: Overexpression spot characteristics of PCP. (a) In the overexpression summary map PCP 

stages associated with particular spots are indicated. The arrow represents the appearance of over-

expression spots with cancer progression. (b) The heatmap shows the mean metagene expression 

for each spot ‘A’…’O’. (c) Construction of the overexpression spot map defining the spots used for 

further analysis. Spots are labeled by capital letters. Correlated and anti-correlated spots are indi-

cated by blue and red dashed lines, respectively. (d) The bar plot shows the fraction of samples of 

each subtype, which exhibits a given spot. The total bar length represents the overall frequency, 

while colors indicate the frequency by subtype. The average numbers of spots in the portraits of each 

subtype are given in parentheses in the top right legend. 
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3.7 FUNCTION MINING: GENE SET PROFILES AND POPULATION MAPS  

Method 

Co-regulated genes of each module can be assumed to be functionally related accord-

ing to the ‘guilt-by-association’ principle [76]. Gene set analysis aims at identifying the 

functional context of these co-regulated modules. This method estimates the enrichment of 

groups of predefined genes (so-called gene sets) in gene lists, which are obtained inde-

pendently, for example from SOM-spot analysis (see [77] for a critical review and refer-

ences cited therein). A large and diverse collection of such sets can be derived from gene 

ontology (GO) gene annotation database [78] using the biomaRt interface [79]. Particu-

larly, we included: (i) GO gene sets, composed of ‘biological process’ (BP), ‘molecular 

function’ (MF) and ‘cellular component’ (CC); (ii) canonical pathways, compiled from Bio-

carta, KEGG and Reactome; (iii) curated gene sets taken from the literature on chemical 

and genetic perturbations (‘literature sets’); (iv) tissue specific gene sets determined previ-

ously [80]; and (v) ‘special’ gene sets taken from the literature on the cancer types ad-

dressed in the particular study. 

The ‘enrichment analysis’ includes ‘overrepresentation’ analysis, ‘overexpression’ anal-

ysis, and their combination [80,81]. Overrepresentation estimates the probability to find 

members of a given set in a list, e.g., the genes included in a spot cluster, compared with 

their random appearance independent of their expression scores. We considered 

overrepresented sets with p ≤ 10-4, which ensures reasonable adjustment for false positives 

in the multiple testing problem. Contrarily, the term ‘overexpression’ defines the deviation 

between the mean expression value averaged over the set-members included in a spot-

cluster and the mean expression value of genes independent of their overrepresentation. 

The gene set Z-score (GSZ) merges both gene set overrepresentation and overexpression 

approaches. For details see [80,82].  

In addition to GSZ profiles we generated so-called gene set population maps to visual-

ize the distribution of the genes of a selected set in the SOM portraits. This population map 

color codes the number of genes taken from the set in each of the tiles of the mosaic image. 

It ranges from white (no gene) to maroon (maximum number per tile observed for the par-

ticular gene set). Recall that each gene refers to one and the same metagene in all samples 

and thus it occupies a fixed position in all SOM portraits.  

Finally we generated gene set overrepresentation heatmaps using an algorithm de-

scribed previously [80]. We merged the top three gene sets per spot in a sample. Redun-

dant gene sets were removed and represented by their minimum p-value. The resulted non-

redundant global list of gene sets was converted into the GSZ enrichment heatmaps by 

applying hierarchical clustering. 
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Example 

We applied gene set overrepresentation analysis to each spot-cluster using a collection 

of about 6000 predefined gene sets. Based on the functional context of the overrepresented 

gene sets obtained, we assign a short label to each detected spot (see Figure 8a). 

‘Inflammatory response’ and ‘cell division’, two general hallmarks of cancer, are not 

among the leading gene sets in any of the spots. The respective GSZ profiles, however, 

show that ‘inflammatory response’ is selectively activated in the BHP and MET stages, 

whereas ‘cell division’ genes are overexpressed in the MET stage only (Figure 8c and d). 

The population maps of these gene sets indicate that the respective genes accumulate in 

the regions of more than one overexpression spot. For example, larger concentrations of 

genes related to ‘cell division’ are found in spots, for which the leading biological pro-

cesses and cellular components are ‘RNAPII activity’ (spot ‘G’) and ‘ribosome’ (spot ‘N’), 

respectively, whereas genes related to ‘inflammation’ accumulate in spots assigned to ‘mi-

tochondrion’ (spots ‘J’ and ‘K’) and ‘nucleosome’ (spots ‘A’ and ‘B’) (Figure 8a). 

 

Figure 8: Gene set enrichment analysis of PCP. (a) The spot summary map shows the functional 

context of the most abundant spots (boxed labels) together with the associated stages (MET, BHP, 

PIN, PCA). (b) The overrepresentation heatmap of gene sets for the GO-term ‘biological process’ 

provides an overview. The letters on the right refer to the spots identified in (a). (c) and (d) Overex-

pression profile and map of the ‘inflammatory response’ and ‘cell division’ gene sets, respectively. 

The red dotted ellipses in the map indicate the spots of strongest enrichment. The full list of enriched 

gene sets, overrepresentation heatmaps of different gene set categories, and a gallery of the overex-

pression profiles and maps are given in supplementary material of [69]. 
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For a more general overview of overrepresented gene sets, we generated gene set 

enrichment heatmaps to survey a larger collection of biological functions potentially con-

tributing to the expression landscape. These heatmaps collect gene sets significantly 

overrepresented in the SOM portrait spots in a sample-specific fashion, and cluster them 

according to their degree of overrepresentation. Figure 8b shows the heatmap for gene 

sets associated with the GO-term ‘biological process’ and enriched in spots of the PCP 

SOM portraits. The one-way clustering separates the gene sets in agreement with their spot 

associations: For example spot ‘N’ mainly collects gene sets overexpressed in the PIN and 

also the PCA_low and PCA_high subtypes, whereas spot ‘C’ contains gene sets overex-

pressed in BHP. The heatmap also shows that gene sets from the spot ‘H’ tend to be over-

expressed in MET. Detailed inspection of the heatmap reveals that the ‘ribosome’ spot ‘N’ 

contains additional gene sets such as ‘translation’ and ‘gene expression’. These sets refer 

to different levels in the GO hierarchy, partly giving rise to overlapping groups of genes, 

which in consequence, trivially link similar expression patterns [83]. Here we neglect any 

interdependency due to such an overlap in gene sets, which may also arise across different 

GO categories and the curated gene sets from the literature. This redundancy might, how-

ever, highlight alternative aspects of annotated gene function. 

3.8 MAPPING SUBTYPE-SPECIFIC SIGNATURE SETS 

Method 

To extract subtype-specific differential expression landscapes, we calculated difference 

maps, representing each metagene k in the mean SOM portrait of each subtype c  

according to: 

diffkc  ∆ekc − sign(∆ekc)∙min(max(|∆ekc'|)c'≠c
|∆ekc|) Eq.(7) 

Eq.(7) selects specifically over- and underexpressed metagenes in a subtype. Particularly, 

diffkc > 0 (or diffkc < 0) means the expression of subtype c in metagene k exceeds (or falls 

below) the respective metagene expression in all other subtypes considered. diffkc  0 is 

obtained, if the relative expression of the metagene selected is unspecific for subtype c. 

Example 

PCP signature genes associated with different molecular concepts such as ‘gluthathione 

metabolism’ (specifically overexpressed in BHP), ‘androgen signaling’ (overexpressed in 

PIN and PCA_low), ‘protein biosynthesis’ (overexpressed in PIN and PCA), and ‘cell cycle’ 

(overexpressed in MET) were taken from publication [68]. We calculated the GSZ scores 

for those gene sets. The GSZ profiles in the left panels of Figure 9 confirm enrichment of 

expected biological pathways in the respective PCP stage and underexpression in the re-
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maining stages. The location of the considered subtype-specific gene sets in the SOM land-

scape can be found in the population map in the next panel. The red dotted circles indicate 

the highest populated regions per gene set confirming that genes from these sets 

accumulate within the subtype-specific overexpression spots extracted from the SOM-

portraits (see mean portraits).  

To extract unique, subtype-specific spot patterns, we calculated difference maps  

(Figure 9, rightmost columns). Red, blue and white colored regions refer to positive, nega-

tive and indifferent diffkc–values, respectively. The spots detected in the difference maps 

largely agree with features seen in the mean portraits of the respective subtypes. Non-

specific features, however, (such as the spot ‘N’, found in several subtypes, Figure 7b and 

d) disappear by applying Eq.(7), as expected.  

Hence, the simple tile-by-tile processing of metagene expression values identifies 

regions of class-specific over- and underexpression in the SOM-portraits. These regions are 

confirmed when compared with gene sets extracted from independent statistical analyses 

applied in the original paper. The mean and difference portraits thus provide a simple and 

intuitive aproach to localize class-specific spots in the maps. 

 

Figure 9: Stage-specific differential expression of PCP reported earlier in [58]. GSZ profiles; corre-

sponding gene set population maps; subtype mean in logFC-scale; and difference portraits. In the 

GSZ profiles, each bar represents one sample, color coded according to subtype-membership. +, -, 

/ signs above indicate over-, under- and indifferent expression, respectively. The red dashed ellipses 

in the gene set population maps indicate gene sets accumulating in distinct regions of the map, which 

to a good approximation agree with the subtype-specific spots in average and difference portraits.
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B-cells are lymphocytes that are an essential component of the adaptive immune system. 

Immature ‘naïve’ B- (NB) cells are produced in the bone marrow, which then migrate to 

germinal centers (GC) where they differentiate into mature B-lymphocytes (Figure 10). 

These GC are central to the formation of B-cell-mediated immunity: B-cells undergo immu-

noglobulin somatic hypermutation and clonal expansion via intense proliferation in the 

dark zone. Subsequently they migrate to the light zone where they transform into long-lived 

memory B-cells and terminally differentiate to plasma cells that produce high-affinity anti-

bodies. B-cell development is a multi-level process, which is driven by epigenetic regulation, 

incorporating DNA methylation and histone modifications, to induce the cell-specific gene 

expression pattern [84]. 

Dysfunction of epigenetic regulation represents a common and important feature of  

B-cell lymphomas. For example, GCB-cells are prone to instability in their cytosine DNA 

methylation patterns leading to aberrant methylation patterns in lymphoma, which display 

variable degrees of epigenetic heterogeneity [85–87]. Moreover, polycomb group (PcG) 

proteins, a subset of histone-modifying enzymes known to be crucial for B-cell maturation 

and differentiation, play a central role in malignant transformation of B-cells [88]. Genes 

de novo methylated in all lymphoma enrich in polycomb targets and share a similar stem 

cell-like epigenetic pattern [86]. Available evidence suggests that different diseases arise 

from oncogenic B-cell clones at a distinct stage of differentiation, ranging from NB-cells to 

plasma cells. These tumors of the lymphoid tissues represent one of the most heterogeneous 

malignancies owing to the wide spectrum of types of B-cells from which they can arise and 

also due to the heterogeneous microenvironment in the lymphatic organs providing a mul-

titude of different niches for tumor progression. Many B-cell malignancies derive from ger-

minal center B-cells, most likely because of the high proliferation rate of these cells and the 

high activity of mutagenic processes. This category includes diffuse large B-cell lymphomas 

(DLBCL), follicular lymphomas (FL), Burkitt’s lymphomas (BL) and mantle cell lymphoma 

(MCL). Mature B-cell malignancies in addition include leukemias derived from B-cells that 
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have passed through the GC such as B-cell chronic lymphocytic leukemia (B-CLL), which is 

a stage of small lymphocytic lymphoma. Multiple myeloma (MM) is an incurable B-cell 

neoplasia arising from malignant plasma cells, which originates in illegitimate immuno-

globulin heavy chain (IGH) switch recombinations. 

Morphologic features of lymphomas resemble lymphocytes at distinct differentiation 

stages serving as basis for their histological classification. Alternatively, the rapidly emerg-

ing information obtained from molecular high-throughput gene expression studies creates 

a series of expression-based classification schemes [59,85,89–91], which distinguish, for 

example, molecular Burkitt’s lymphoma (mBL), non-mBL, and intermediate lymphoma (IntL). 

 

Figure 10: Developmental and maturation stages of B-cells provide a wide spectrum of cell-of-origin- 

and micro-environmental conditions for different histological classes of B-cell lymphoma. Their relation 

to the histological classes is partly unclear mainly due to the absence of clear-cut borderlines between 

the molecular and histological signatures and because of transformations between the classes. Inci-

dence rates in percent of all B-cell lymphoma were taken from http://www.cancerre-

searchuk.org/cancer-info/cancerstats/types/nhl. 

This chapter is based on the following 3 scientific publications: 

Hopp, L., Lembcke, K., Binder, H., & Wirth, H. (2013). Portraying the Expression Land-

scapes of B-Cell Lymphoma- Intuitive Detection of Outlier Samples and of Molecular 

Subtypes. Biology, 2(4), 1411-1437. 

Hopp, L., Nersisyan, L., Löffler-Wirth, H., Arakelyan, A., & Binder, H. (2015). Epige-

netic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers. Genes, 6(4), 1076. 

Hopp, L., Löffler-Wirth, H., & Binder, H. (2015). Epigenetic heterogeneity of B-cell lym-

phoma: DNA-methylation, gene expression and chromatin states. Genes, 6(3), 812-

840. 
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4.1 GENE EXPRESSION LANDSCAPE OF LYMPHOMAS 

Our application of SOM machine learning to lymphoma expression data aims at char-

acterizing the heterogeneity of the genome wide expression landscapes and at describing 

the molecular cancer subtypes. Further, we describe how to detect and to correct outlier 

samples using their portraits. Finally, we propose a more detailed molecular subtype clas-

sification of the lymphoma samples. The classification of the lymphoma samples was used 

as given in Hummel et al. [59]: molecular Burkitt’s lymphoma (mBL), non-mBL and interme-

diate. For details concerning the cohort and preprocessing of the data see section 3.1 and 

supplement section 7.1.2. 

4.1.1 SOM PORTRAITS 

We applied the SOM machine learning algorithm as described in section 3.2 that 

transforms the whole genome expression pattern of the 22,283 ‘single’ genes into meta-

gene expression data of dimension K × J  2500 × 221. 

Figure 11 shows the expression portraits of selected lymphoma samples arranged ac-

cording to their previous classification into subtypes [59]. The individual portraits reveal a 

handful of clusters of co-expressed metagenes frequently observed. These over- and under-

expression spots selectively characterize the different lymphoma subtypes: Samples of the 

mBL and non-mBL subtypes are mostly characterized by spots of overexpressed metagenes 

in top-right and bottom-left corners of the map, respectively. However, many additional 

spots can be observed in the portraits, indicating additional functional modules activated 

in the respective samples. Samples of the intermediate subtype show more volatile patterns 

with overexpressed metagenes frequently tending to occupy the top-left and bottom-right 

corners of the SOM. The full gallery of the 221 SOM portraits and supporting maps are 

given in the supplementary file of [91]. 

 

Figure 11: SOM gallery of lymphoma subtypes with a resolution of 50 × 50 metagenes: The small 

mosaic images refer to selected individual tumor samples assigned to the mBL, non-mBL and interme-

diate subtypes. The larger images represent the respective mean subtype portraits. 
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In support of the observations from the individual portraits we found that the mBL and 

non-mBL subtypes are characterized by two spots in opposite corners of the map: One spot 

in the top-right corner is overexpressed and the other one in the bottom-left corner is under-

expressed in mBL samples and vice versa in non-mBL samples, revealing the antagonistic 

character of their expression patterns (see large mean subtype portraits). These subtype-

specific spots collect highly populated, highly variable and well resolved metagenes (data 

not shown here). 

4.1.2 SAMPLE DIVERSITY: THE THREE-SUBTYPE APPROACH 

We generated a PCM (Figure 12a), which visualizes the correlation of all pairwise 

combinations of sample portraits (see section 3.5). The compact red square of mBL sample 

couples reflects the strong similarity between their expression landscapes whereas the blue 

off-diagonal area formed between the mBL and non-mBL samples indicates their anti-corre-

lated expression states. Note that the pairings between non-mBL samples, although corre-

lated, reveal a much fuzzier pattern due to the more heterogeneous expression states com-

pared to the mBL subtype. The samples of the intermediate subtype either correlate with the 

mBL or non-mBL samples or with both in some cases. 

 

Figure 12: Pairwise correlation analysis of all lymphoma samples: (a) In the PCM red colors indi-

cate positive and blue colors negative correlations between the samples. (b) The correlation network: 

Mean subtype portraits are given within the figure (large maps). Outlier nodes are highlighted by 

arrows. The SOM portraits of the respective samples are shown by small maps. The red circles and 

the spot letters (as assigned in section 4.1.3) indicate the outlier spots differing from the subtype-

specific patterns (compare these individual sample portraits with the mean subtype portraits). 
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Visual inspection of the CN in Figure 12b (for details see section 3.5) shows that the 

mBL and non-mBL samples accumulate into well separated clusters whereas samples of the 

intermediate subtype heterogeneously spread over the region between these two clusters. 

Interestingly, these intermediate samples distribute along two disjunctive branches of the 

CN, which both link the mBL and non-mBL clusters. These two separate branches also 

include a fraction of the mBL and non-mBL samples (see the dark grey lines in Figure 12b 

roughly separating the clusters and branches). This distribution of the intermediate subtype 

samples reflects the heterogeneous spot characteristics of the subtypes as discussed above. 

A few samples are located far away from their subtype-specific cluster and/or from the 

majority of the other samples in the CN. Those samples are usually characterized by rare 

or unique spots as indicated in Figure 12b. We will address this issue in more detail later. 

In summary, the CN of lymphoma samples forms a ‘donut-like’ structure composed of 

alternating compact and fuzzier clusters. The former ones refer to the main subtypes and 

the latter ones to two distinct groups of samples mainly assigned to the intermediate sub-

type. The mutual correlation analysis as seen by the CN in combination with the SOM 

portraits thus provides additional information complementing other similarity analyses ap-

plied (not shown here). 

4.1.3 CLUSTERS OF CO-EXPRESSED GENES CHARACTERIZE THE SUBTYPES AND 

OUTLIER FEATURES 

We analyzed the spot patterns in order to identify specific properties of the lymphoma 

subtypes. Figure 13a shows the overexpression summary map (see [23] and section 3.6), 

collecting 23 overexpression spots labeled with capital letters ‘A’ − ‘W’ (Figure 13b). 

Recall that our spot selection algorithm neglects the abundance of each spot in the 

individual portraits and identifies both rare (e.g., observed in only one sample) and fre-

quent spot modules. The overexpression heatmap in Figure 13c visualizes the spot expres-

sion profiles. The color ranges from blue representing the lowest mean expression values, 

to red representing the highest values. The heatmap provides an overview of the degree of 

subtype-specific expression in each of the spot modules. For example, spot ‘L’ and partly 

also spot ‘K’ are selectively overexpressed in samples of the mBL subtype, while spot ‘O’ 

is characteristic for the non-mBL subtype. Contrary, more ubiquitous spots as ‘N’ as well as 

rare spots as ‘A’ or ‘G’ lack of subtype-specific overexpression. Note that frequent spots 

are usually located in the peripheral part of the map (i.e., in the corners and along the 

edges) whereas rare spots tend to accumulate in the central part. 

We use the spot information and the mean subtype portraits to assign subtype labels to 

the most prominent and specific spot modules (Figure 13a): Spots ‘L’ and ‘K’ are ascribed 

to mBL while spot ‘O’ is prominent in non-mBL samples. Those three spot modules contain 

marker genes overexpressed in the respective subtypes as validated below. Spots ‘J’ and 

‘Q’, also frequently observed in the sample portraits, are assigned to the intermediate 
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subtype. Interestingly, they constitute two alternative intermediate states located in between 

the main subtypes mBL and non-mBL as indicated by the arrows in Figure 13a. 

Please recall that the training algorithm distributes the metagenes in such a way that 

strongly correlated profiles are located at adjacent positions in the map whereas meta-

genes with anti-correlated profiles tend to occupy more distant regions, e.g., in the opposite 

corners of the map. The results of the spot correlation analysis are visualized in Figure 13b. 

One sees that, for example, the mBL marker spots ‘K’ and ‘L’ are highly correlated and 

usually appear together in the sample portraits whereas the anti-correlated overexpression 

spots ‘K’ and ‘O’ will not be observed together in the same expression portrait. 

 

Figure 13: Spot module characteristics of lymphoma: (a) The overexpression summary map of 

lymphoma. Subtypes frequently showing the respective spots are indicated. (b) The overexpression 

spot map and (c) the overexpression heatmap. For details see caption of Figure 7. (d) The underex-

pression summary map collects all underexpressed spots observed in the individual portraits. Note 

the antagonistic nature of mBL and non-mBL expression: Spots overexpressed in mBL become under-

expressed in non-mBL and vice versa (compare with panel a). 

For this data set, we also detected 11 global underexpression spots emerging as blue 

regions in the SOM portraits (see Figure 13d). Position and size of most of the detected 

underexpression spots agree with those of the overexpression spots. Hence, overexpression 

of the respective metagenes in part of the samples changes into underexpression in other 

samples. For the analyses described in this study, we therefore use only the overexpression 

spots detected without loss of essential information. Interestingly, virtually no blue underex-

pression spot was detected in the central area of the map indicating that the rare overex-

pression spots do not show this dualism. Below we will show that these spots potentially 

constitute clusters of outlier genes, the expression of which is affected by bias effects. 
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In summary, the heterogeneous expression patterns observed in the individual portraits 

can be condensed to a few major expression modules represented by over- and underex-

pression spots. This way the relevant dimension of the data set is reduced by three orders 

of magnitude from about 20,000 single genes to approximately 12 frequent spot modules. 

4.1.4 FUNCTION MINING: INFLAMMATION-VERSUS-PROLIFERATION 

According to section 3.7 we applied gene set overrepresentation analysis to each spot-

cluster taking into account a collection of more than 6,000 predefined gene sets. For each 

spot we obtained a list of gene sets ranked according to increasing p-value estimating the 

probability that genes of the set are found within the spot by chance. 

We assigned a short notation to each of the spots (see Figure 14a) putting the genes 

accumulated in the respective spot into functional context. Some spots are obviously related 

to processes associated with general hallmarks of cancer such as ‘inflammation’ and ‘cell 

division’ (spots ‘O’ and ‘K’ respectively). Panel b of Figure 14 depicts the GSZ-expression 

profiles (left part) and the population maps (right part) of those two leading gene sets. The 

profiles clearly reflect the fact that the respective processes are selectively over- or under-

expressed in a subtype-specific fashion. While ‘inflammatory response’ is activated in the 

non-mBL subtype, genes annotated to the gene set ‘cell division’ are active in the mBL 

subtype. The respective gene set population maps reveal that the associated genes accu-

mulate in the regions of spots overexpressed in the respective subtype, as expected. 

Neighboring spots of strongly correlated profiles can be assigned to related biological 

processes: The ‘cell division’ spot is surrounded by spots assigned to ‘transcription factor 

binding’, ‘chromatin’ and ‘transcription’ according to the most overrepresented gene sets 

in each of the spots. Note that, although related, these neighboring spots are usually char-

acterized by subtle differences in their expression profiles and presumably also by fine 

differences in the functional context of the overrepresented gene sets. Population maps and 

overexpression spot maps therefore represent complementary tools for discovering the func-

tional context of the expression landscapes. The results so far show that the lymphoma 

samples split into pairs of subtypes differing by the antagonistic activation of processes 

related to ‘inflammation’ and ‘immune response’ on one hand and to ‘cell division’ and 

the ‘transcriptional and translational machinery’ on the other hand (non-mBL-vs-mBL). 

To validate the subtype-specific spot patterns identified above, we included the signa-

ture set that differentiates between mBL and non-mBL subtypes provided by Hummel et al. 

[59] (see Figure 14c). As expected, genes of this set clearly accumulate in the subtype-

specific spots ‘L’ and ‘O’ assigned to mBL and non-mBL, respectively. 

Another important question is about the possible origin of the rare spots in the central 

part of the map. In Figure 14d, we show the characteristics of two gene sets related to 

tissue specific gene expression in ‘tonsils’ [23,80] and to ‘drug response’ (‘drug metabo-

lism, cytochrome P450 (CYP)’, see [92]), respectively. Their genes strongly accumulate in 

localized regions of the map agreeing with the positions of the rare spots ‘S’ and ‘G’, 
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respectively. Both gene sets are overexpressed in only few samples suggesting that the 

respective samples are outliers contaminated either with healthy tissue or affected by pa-

tient specific medication. As those effects are not related to the cancer studied they reflect 

systematic biases of the respective expression patterns. 

 

Figure 14: Functional analysis of lymphoma: (a) The functional context of the most abundant spots 

is assigned according to the topmost overexpressed gene sets in each of the spots. (b) – (d) GSZ 

profiles and population maps are shown for gene sets accumulating in the mBL and non-mBL specific 

overexpression spots as indicated by the red ellipses (panel b), for mBL-vs-non-mBL signature sets 

published previously [59] (panel c) and for sets accumulating in rare spots (panel d). 

4.1.5 DETECTION AND CORRECTION OF OUTLIERS 

Large tumor sample collections are prone to different effects not (or not directly) related 

to the expression profiles of the diseased tissue such as contaminations with healthy tissue 

(brain, blood etc.), different levels of RNA quality after extraction and wet lab preparation, 

technical biases due to day-to-day variations of hybridizations, and data recordings. More-

over, biological patient-to-patient variance is typically high and can be caused by other 

factors than the disease under study. The noisy character of the GSZ profiles and also the 

scatter of the global expression characteristics manifest this variability of the data. The 

development, selection, and appropriate application of suited methods of quality control 

aiming at identifying, understanding, and possibly also removing such effects represent a 

separate complex topic not addressed here in detail. However, our portraying approach 

offers a simple and direct option to check the whole-genome expression landscapes of the 
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individual samples by visual inspection of their molecular ‘faces’. Particularly one searches 

for conspicuous spot patterns that clearly deviate from that of the majority of samples as-

signed to the same class. 

Inspection of the CN in Figure 12b reveals a series of samples, which are located 

outside of the main network body. The portraits of these outlier samples exhibit overexpres-

sion spot patterns deviating from the subtype-specific patterns identified in terms of their 

mean SOM portraits. Particularly the spots ´G´, ´S´, and ´W´ are identified in the outlier 

sample portraits (red circles in Figure 12b; see Figure 13b for spot-letter assignments). 

Here, we exemplarily focus on spot ´S´, located in the bottom-left region of the SOM being 

strongly overexpressed in samples MPI-002, MPI-208, and MPI-213 (see Figure 12b). The 

topmost enriched gene set in this spot is the ´tonsil´-set. It was extracted as the tonsil-signa-

ture from a large expression data set of healthy human tissues previously analyzed with 

the SOM pipeline [23,80]. Enrichment of this set suggests that overexpression of spot ´S´ 

is caused by contamination of the tumor biopsy with adjacent healthy lymph node tissue. 

Panel a in the left part of Figure 15 shows the GSZ profile and the population map of 

the ´tonsil´-set. The GSZ profile reveals strong overexpression of the set in a number of 

samples independent of their subtype assignment. The corresponding genes mainly accu-

mulate in spot ´S´. Selected samples, which possess this particular spot in their portraits 

are shown in panel c. They can already be identified as potential outliers by simple visual 

inspection of the SOM portrait gallery (see supplementary material of [91]). We high-

lighted the samples in the GSZ profile (panel a) and in the CN (panel b) by arrows. Note 

however that not all of these samples protrude as clear outliers in the CN. Despite the 

strong overexpression of the contamination spot ´S´, the overall expression state of e.g. 

samples MPI-208 and MPI-213 obviously resemble those of the unbiased samples. 

In a simple correction step we removed the genes included in the outlier spot from the 

whole data set (see red circle in the population maps in Figure 15). This procedure can be 

repeated for other contamination spots identified: For example, spot ´G´ was found to be 

related to ‘drug metabolism’ (´cytochrome p450´, see Figure 14d and sample MPI-090 in 

Figure 12b), presumably due to individual medication of the patient. Spots ´V´/´W´ show 

an intense increase in expression of the ‘G-antigen-family’ for unknown reasons (samples 

MPI-060, MPI-061, and MPI-195 in Figure 12b). 

After removing strongly biased genes from the training data, we generated a new SOM. 

Note that, depending on the purpose, also re-evaluation of only parts of the analyses may 

be sufficient. The right part of Figure 15 shows the results after correction for tonsil-contam-

ination accumulated in spot ´S´. The corresponding GSZ profile shows a more uniform 

expression of the gene set after correction. The respective sample portraits now show the 

characteristic spot signatures of the respective subtypes, i.e., of mBL for MPI-002 and non-

mBL for MPI-208 and MPI-213. Especially the outlier sample MPI-002 is now located within 

the mBL cluster in the CN, such that it attains a more compact shape. 
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In summary, the combination of individual portraits, enrichment analysis and the CN 

provides a framework for easy and intuitive detection of outlier spots and samples. After 

correction, more reliable expression landscapes of the samples are obtained. 

 

Figure 15: Correction of outlier samples contaminated with healthy lymph node tissue. The left and 

right parts of the figure refer to the uncorrected and corrected data, respectively. (a) GSZ profile and 

population map of the ´tonsil´ gene set: The signature is not characteristic for one of the subtypes 

and their genes accumulate in spot ´S´ of the map. (b) Correlation network of the lymphoma data 

set. (c) SOM portraits of selected outlier samples. The arrows point to the position of these samples 

in the CN and in the GSZ profile.  

4.1.6 ALTERNATIVE SUBTYPING OF B-CELL LYMPHOMAS INTO FOUR SUBTYPES 

Our analysis so far suggests that the samples assigned to the intermediate subtype split 

up into two separate branches. These two branches are characterized by overexpression 

spots in the bottom-right (spot ‘Q’) and top-left (spot ‘J’) part of the expression portraits, 

respectively (compare the first and the second row of the intermediate sample portraits in 

Figure 11). CN analysis clearly shows two distinct sample groups forming two continuous 

transition ranges linking the compact mBL and non-mBL clusters. These transition ranges 

include samples of the intermediate and also of the mBL and non-mBL types (Figure 12b). 

These results suggest the existence of four subtypes partly differing from the classification 

into three subtypes discussed so far.  

In order to further verify this hypothesis, we applied a modified ‘prototype-guided’  

k-Means clustering of the metadata to segregate the samples into these four subtypes.  

k-Means is an algorithm, which iteratively assigns the samples to so-called cluster  

prototypes showing the minimal mutual Euclidean distance and subsequently computes new 



42 B-cell lymphomas 

 

 

 

prototypes as the centroids of the members of each cluster [93]. k-Means requires predefini-

tion of a desired cluster number, while the initial prototypes are usually chosen randomly 

or initialized from the data [94]. The SOM portraits now constitute another option to ini-

tialize the prototypes: They can be established using selected expression patterns observed 

in the portraits such as the most prominent overexpression spots. Particularly, we define 

initial prototypic expression portraits showing a selected spot pattern for each subclass 

with values max(∆ekj) for metagenes within the spot and 0 for metagenes outside. These 

prototypic spot patterns are then used to assign the samples to the respective clusters in the 

standard k-Means algorithm.  

In this study spot ‘K’ initializes the new mBL-like subtype mBL*, spot ‘O’ the non-mBL-

like subtype non-mBL* and spots ‘J’ and ‘Q’ the two new intermediate subtypes intermedi-

ate A and intermediate B, respectively. Figure 16a shows the obtained four cluster cen-

troids after convergence of the k-Means algorithm. They represent the mean portraits of the 

four new subtypes mBL*, intermediate A, intermediate B and non-mBL*. Note that the mean 

portraits of the mBL* and non-mBL* subtypes closely resemble that of the initial mBL and 

non-mBL classes, respectively (compare with Figure 11). In contrast, the mean portraits of 

the new intermediate A and intermediate B subtypes clearly differ from that of the initial 

intermediate subtype and from that of the mBL* and non-mBL* patterns. 

We re-colored the CN plot according to the new subtype classification (Figure 16b). 

The mBL* and non-mBL* clusters are more compact compared to the initial mBL and non-

mBL clusters (compare with Figure 12b). The expression landscapes of the new groups 

obtained are obviously more homogeneous. The samples of the two intermediate subtypes 

accurately accumulate along the two separated branches linking the mBL* and non-mBL* 

clusters except a certain region of overlap in the center of the CN.  

In the next step, we compare the robustness of the old and new subtype cluster assign-

ments by applying the bootstrap clustering approach. Therefore, k-Means clustering is re-

peatedly applied to a subset of samples chosen randomly from the complete set of samples. 

The mean metagene expression states of the subtypes are used as initial cluster prototypes. 

The fraction of proper assignments of samples in agreement with their actual class assign-

ment then defines a robustness score of each sample: A bootstrap stability score of 1 means 

that the respective sample is always found in the correct subtype, while a score of 0.5 

means that the sample is assigned properly in only 50% of the resampling repetitions. For 

the previous classification into three subtypes, the stability scores of the intermediate and 

non-mBL subtype samples show a broad distribution with scores of 0.5 and below. The 

new four subtype classification is clearly more robust (p < 10-4, Wilcoxon signed-rank test), 

reflecting a more consistent and stable clustering of the samples (Figure 16c). Only a small 

number of relatively uncertainly assigned samples are found even in the transition ranges 

between the different clusters. 

To further validate the results of our k-Means approach by an independent method we 

applied consensus clustering [95] (see supplement section 7.3), which supported the four-

class approach. 
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Figure 16: k-Means clustering into four lymphoma subtypes: (a) Mean expression portraits of the 

four new subtypes. The grey arrows indicate the spot pattern transitions from mBL* to non-mBL* via 

intermediate A or B. (b) CN colored according to the new subtypes obtained. (c) Bootstrap stability 

score of three (left part) and four (right part) subtype classification. 

4.1.7 CHARACTERIZATION OF THE NEW SUBTYPES 

The four new subtypes are defined by their distinct expression patterns and their partic-

ular functional contexts, i.e., they represent molecular subtypes. The question arises if these 

molecular subtypes associate with selected genetic, clinical, or alternative molecular phe-

notypes collected independently [59]. Previously published patient phenotypic data was 

used to characterize the newly defined subtypes in the cohort studied [96]. These included 

data from immunohistochemical staining against CD10, BCL2, BCL6, and MUM1, data 

from interphase fluorescence in situ hybridization (FISH) for IGH, MYC, BCL6 and BCL2 

loci, overall survival, age, and gender. We calculated the frequency distribution of patients 

for each of the characteristics over the four subtypes. Table S 3 reveals associations be-

tween these characteristics and the subtypes in terms of enriched or depleted patient num-

bers (p-values are obtained from Fisher’s exact test).  

For mBL* and non-mBL* one finds analogous frequency distributions of a series of char-

acteristics as described in previous studies, e.g., the age dependency [59], the effect of 

the MYC-gene translocation [59], different immune-phenotypes [97] and the GCB-ABC-

signature [98]. Nearly 90% of the lymphoma samples assigned to the non-mBL* and to 

intermediate A & B subtypes are classified as diffuse large B-cell lymphoma (DLBCL) sug-

gesting a close similarity between these three subtypes. A series of characteristics such as 

the IG-MYC status and immune-phenotypes CD10, BCL6, and BCL2 support this result. 
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However, the new intermediate A and B subtypes also show specific properties. Inter-

estingly, the tumors with the activated B-cell (ABC) signature are clearly overrepresented in 

the intermediate A subtype, whereas the alternative germinal center B-cell (GCB) signature 

clearly depletes in this subtype. They also show differential characteristics with respect to 

the appearance of genetic aberrations (MYC translocation and immunoglobulin heavy 

chain (IGH) break) and to the BCL2 immune-phenotype: Firstly, the IG-MYC translocation 

is more frequently found in the intermediate B subtype compared with the intermediate A 

and the non-mBL* lymphoma. Secondly, intermediate A lymphomas less frequently show 

the IGH break and the BCL2+ immuno-phenotype than the other subtypes. Thirdly,  

intermediate B and non-mBL* lymphomas possess slightly enriched populations of 

t(14;18)(q32;q21) translocations, which juxtapose the BCL2 oncogene to the IGH locus. 

It turned out that each of the subtypes is characterized by different hallmarks of cancer, 

e.g., proliferation and high transcriptional and translational activity in mBL*; activated 

immune response and inflammation in non-mBL*, innate immunity in the intermediate A 

subtype and up-regulated expression of common cancer gene signatures [99] in the inter-

mediate B subtype. Generic, MYC-related poor prognosis gene signatures [100] are asso-

ciated with the mBL* and, to a lesser extent, intermediate A subtypes. Moreover, we found 

that intermediate A subtype lymphomas show expression signatures of activated B-cells and 

strong dissimilarity with expression landscapes of GCB-cells and healthy lymph node tissue 

suggesting different cell-of-origins. On the level of gene regulation, the decomposition of 

lymphoma into four subtypes obviously further diversifies into different modes, which in turn 

reflect driving effects on the genetic and epigenetic levels. The understanding of these 

molecular mechanisms thus requires the combined analysis of genetic, epigenetic and tran-

scriptional data.  

 

Figure 17: Kaplan-Meier survival curves of lymphoma of (a) the original three subtypes and (b) the 

new four subtype classifications. Tick marks indicate patients alive at the time of last follow-up. Sub-

type-specific survival curves are compared using log-rank test and the respective p-values are indi-

cated within the figures. 
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Finally, we generated Kaplan-Meier diagrams to estimate the probability of subtype-

specific overall patient survival as a function of time [101]. Figure 17a and b show the 

curves for the three and four subtype classifications, respectively. Based on the original 

definition by Hummel et al., patients with mBL lymphomas show significantly better survival 

rates as intermediate and non-mBL patients (p < 10-3 in log-rank test, see also [59]). In 

contrast, our new classification now reveals that both mBL* and non-mBL* patients show 

better survival rates than patients of the intermediate A & B subtypes. Assignment of lym-

phoma to either of the two intermediate subtypes roughly halves the survival rate. The 

diversification of lymphoma subtypes thus clearly impacts prognosis. 

A recent study also proposed new classes of B-cell lymphoma based on a correlation 

gene set analysis and using a larger patient collective [102]. This study excluded mBL 

samples from the patient cohort and divided the remaining DLBCL cases into three classes. 

Their expression signatures and phenotypic characteristics show certain similarities with 

our non-mBL*, intermediate A and B subtypes; however, they also differ in other properties, 

for example in the assignment of cell-of-origin properties and of energy metabolism signa-

tures. 

4.1.8 CONCLUSION 

We applied single omics SOM approach to patient expression data of mature aggres-

sive B-cell lymphomas to characterize the specifics of the genome-wide expression land-

scapes in different molecular subtypes of lymphoma. We presented a straightforward strat-

egy to identify outlier samples and modules, e.g., due to contaminations of tumor samples 

with healthy tissue, and to correct them. Furthermore, we found indications for a finer sub-

type classification of aggressive B-cell lymphoma into four subtypes. Samples were classi-

fied using a spot-guided and metagene-based k-Means clustering method. The robustness 

and consensus-cluster stability of the new four subtypes exceeds that of previous three class 

approaches. The functional and clinical impact of the new subtypes was discussed. The 

two intermediate subtypes of heterogeneous molecular signatures are associated with poor 

survival prognosis compared with the more homogeneous mBL* and non-mBL* subtypes.  

Our case study shows that analyzing gene expression landscapes with the tools pre-

sented here facilitates information mining in such huge data sets and eventually promotes 

our understanding of cancer biology. 
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4.2 DNA METHYLATION LANDSCAPE OF LYMPHOMAS AND ITS IMPACT 

ON TRANSCRIPTION 

In this section we focus on germinal center derived B-cell lymphoma and multiple mye-

loma. The molecular mechanisms underlying genesis, progression and also mutual trans-

formations between the subtypes is not clear in many details. Changing gene expression 

signatures are strongly linked to perturbations of epigenetic mechanisms. Understanding 

molecular mechanisms of lymphoma thus requires a combined view including gene expres-

sion, epigenetics and also genetic factors affecting B-cell biology. The lymphoma methyla-

tion samples were classified according to Martin-Subero [60] as diffuse large B-cell lym-

phoma (DLBCL), molecular Burkitt’s lymphoma (mBL), intermediate lymphoma (IntL), follicu-

lar lymphoma (FL) and mantle cell lymphoma (MCL). Further the data set contained multiple 

myeloma (MM), healthy B-cells and germinal center B-cells (GCB) as reference. As we 

attempted an integrative analysis of DNA methylation and gene expression data in this 

study and the methylation data sets comprised several subtypes exceeding those analyzed 

in 4.1, a larger cohort of gene expression samples was needed to be considered here. 

Gene expression cases taken from MMML (Molecular mechanisms of malignant lymphoma, 

described in [59]) cohort were assigned to the same classes as mentioned for methylation 

data. For details concerning the cohort and preprocessing of the data see sections 3.1  

and 7.1.3. 

4.2.1 HIGH-DIMENSIONAL DATA PORTRAYING 

Preprocessed gene-centric expression and methylation data were clustered using SOM 

machine learning. Three different SOMs were trained using (i) methylation  values (Met-

SOM), (ii) centralized  values with respect to the mean  of a gene averaged over all 

samples (DmetSOM), and (iii) centralized log-expression data (DexSOM). For each run we 

used a quadratic grid of size 50×50 to distribute the expression or methylation profiles. 

Note that genes are arranged differently in each of the SOM trainings. For comparison we 

mapped groups of selected genes in each of the SOM maps as described below.  

4.2.1.1 ABSOLUTE DNA METHYLATION PORTRAYING IDENTIFIES HYPO- AND 

HYPERMETHYLATED GENES 

Figure 18a shows the gallery of the mean DNA methylation portraits for all classes 

studied. Red and blue regions in the images refer to genes with high and low methylation 

levels of the probed CpG regions with  values near one and zero, respectively. The map 

can be segmented into regions containing genes hyper- and hypomethylated in lymphomas 

and a region with almost invariantly methylated genes in between (Figure 18b and c). 

Groups of signature genes with characteristic methylation profiles can be extracted from 

spots assigned using Arabic numbers ‘1’ – ‘6’ (Figure 18c). The methylation maps thus 
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provide genes hyper- and hypomethylated in lymphomas compared with B-cells and also 

genes with almost invariant methylation levels. For example, genes in region ‘5’ are clearly 

on high methylation level in B-cells and on lower level and thus hypomethylated in  

lymphomas. 

 

Figure 18: SOM portraying of DNA methylation landscapes of lymphomas (MetSOM). (a) SOM 

portraits of histological lymphoma classes and of controls. Red and blue colors assign regions con-

taining genes of high and low methylation levels, respectively. (b) The methylation overview map 

summarizes regions hypermethylated in any classes compared with the others in red. The methylation 

variance map identifies regions of highly variable (red) and almost invariant (blue)  values. (c) The 

methylation profiles show the mean methylation level among the samples of genes taken from the 

‘spot’ regions ‘1’ – ‘6’ assigned in the methylation overview map. Horizontal dashed lines serve as 

guide for the eye showing the mean  level of the respective spot averaged over all samples. Assign-

ments as ‘hyper-‘ or ‘hypomethylated’ refer to relative methylations compared with B-cells.  

4.2.1.2 DIFFERENTIAL METHYLATION PORTRAYING BETTER RESOLVES DIFFERENCES 

BETWEEN THE LYMPHOMA CLASSES 

In a previous work it was shown that the analysis of centralized values better resolves 

subtle differences between the samples [103]. We therefore calculated a second SOM 

using centralized methylation values (DmetSOM), where the mean  value of each gene 

averaged over all samples was subtracted from its actual  value. Centralization rather 

focuses the view on methylation changes between the samples independent of the absolute 

methylation level of the genes. In the obtained DmetSOM portraits we identified five spot-

clusters numbered ‘i’ – ‘v’, which provide differential methylation profiles reflecting specific 
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hyper- and hypomethylation of selected lymphoma classes compared with B-cells (Figure 

19a - c).  

Invariantly methylated genes accumulate in the center of the map, whereas the variable 

genes occupy different regions near the border in a profile-specific manner. Mapping of 

the methylation clusters ‘1’ – ‘6’ obtained from the MetSOM (previous subsection) into the 

DmetSOM reveals mostly a one-to-one relationship (Figure 19d). For example, spot ‘v’ 

referring to genes specifically hypomethylated in B-cell, mBL and MCL compared to DLBCL 

distributes over spot ‘1’ and, to a less degree spot ‘2’. This result simply means that most 

of the genes undergoing hypo- or hypermethylation between the different sample classes 

show predominantly an initially high or low methylation level, respectively. We therefore 

restrict our further analysis to the clusters ‘i’ – ‘v’ in the DmetSOM. 

 

Figure 19: Differential methylation portraying of lymphoma and controls (DmetSOM). See legend 

of Figure 18 for a detailed description of the panels (a) – (c). The DmetSOM better resolves differen-

tial methylation between the lymphoma classes (compare with the MetSOM in Figure 18). (d) Genes 

from methylation spots ‘1’ – ‘6’ of the MetSOM were mapped into the DmetSOM (each dot marks a 

metagene occupied by at least one gene from each of the spots ‘1’ – ‘6’, respectively). One finds 

almost a 1:1 relationship between the spots except for spot ‘6’, which ‘hides’ spot ‘ii’.  

Gene set enrichment analysis provides first ideas about the functional context of the 

genes in the spot modules (Table 2). Spots ‘i’ and ‘v’ hypermethylated in DLBCL and IntL 

enrich genes related to the ‘formation of the polycomb repressive complex’ (PRC2), which 

controls cellular development and differentiation [104]. Interestingly, genes from these 

spots are hypermethylated also in other cancers such as colorectal cancer (CRC) and high 

and low grade glioma. Vice versa, hypomethylated genes in DLBCL and IntL (spot ‘iii’) are 

also consistently hypomethylated in CRC and glioma suggesting parallels in epigenetic 
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regulation between different cancer types. Genes hypermethylated in B-cells and MM (spot 

‘iv’) are associated with ‘immune processes’, whereas genes hypermethylated in mBL and 

MCL (spot ‘ii’) enrich processes related to ‘cell proliferation’ and ‘cell cycle activity’. 

Table 2: Functional context of the differentially methylated gene clusters. 

Spots  Regulated classes Functional context: 
Dmet-
spot 

Met-
spot 

mean 
Met-level 

Dmet up1 Dmet down1 enriched gene sets2 

i 2,3 intermediate DLBCL, IntL B-cell, GCB, 
FL, MM 

CIMP high-vs-low hypermethyl-
ated; hypermethyated in pri-
mary glioblastoma [105]; hy-
permethylated_in-cancer-and-
ageing [106]; hypermethylated-
in-CRC[107]; NANOG- SUZ12-
, and EED- targets [Wang];  

ii 6 low BL, MCL DLBCL, FL MYC-targets [108]; GO_BP: 
G1/S-transition in mitotic cell 
cycle; GO_BP: cell cycle 

iii 5 high B-cell, GCB, 
mBL, FL, MCL, 
MM 

DLBCL, IntL Hypomethylated in CRC; CIMP 
high-vs-low hypomethylated 
[107]; Hypermethylated in adult 
brain [62]; Hypomethylated in 
secondary glioblastoma [105] 

iv   B-cell, MM DLBCL, IntL, 
mBL 

GO_BP: immune response; hy-
pomethylated in glioma [105]; 
GO_CC: nuclear chromatin; 
NKF-beta down in mBL [85]; 
IL21-targets down[109] 

v 1,2 low, interme-
diate 

DLBCL, IntL B-cell, GCB, 
mBL, FL, 
MCL, MM 

SUZ12-targets[110]; hypermeth-
ylated in grade 3 astrocytoma 
and grade 2 oligodendrogli-
oma [105]; hypermethylated in 
low grade glioma[111]; hyper-
methylated in CRC[107]; low 
expression TF [112] 

1 Sample classes showing high (Dmet up) or low (Dmet down) methylation levels, respectively. 
2 Enrichment of predefined gene sets in the spot-lists of genes (Dmet-spot and/or Met-spots) was 
calculated as described in [80]. Gene sets were taken from literature or from gene ontology (GO) 
categories biological process (BP) or cellular component (CC). 

Next we investigated the diversity landscape of the methylation portraits of lymphoma 

and reference samples. The calculated similarity network reveals two main clusters, which 

can be assigned to samples methylated either similarly to B-cells or to DLBCL (Figure 20). 

The essentially two main spot patterns of the mean DmetSOM portraits shown in Figure 

19a directly reflect the separation between two main sample clusters seen in Figure 20: 

The samples with DLBCL-like methylation patterns preferentially show red hypermethylation 

spots in the left part of the portraits (spots ‘i’ and ‘v’, see also Table 2), whereas the B-cell-

like methylation patterns is characterized by red hypermethylation spots in the right part of 

the map (spots ‘ii’ to ‘iv’). These patterns are strongly anti-correlated, i.e., hypermethylation 
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is opposed by hypomethylation for many genes when compared with mean methylation 

level averaged over all samples. 

The DLBCL-like methylation cluster contains most of the DLBCL (69%) and IntL (81%) 

samples but also a certain number of FL (14%), mBL (28%) and MM (14%). On the other 

hand, also the second cluster of B-cell-like methylation contains 25% of the DLBCL and 19% 

of the IntL samples. Hence, methylation of the lymphoma classes is characterized by a 

certain degree of fuzziness. The gallery of individual DmetSOM portraits shown in supple-

mentary material of [113] indicates that, e.g. two of the FL samples show clearly a DLBCL-

like methylation characteristics, whereas the majority of the FL are compatible with B-cell-

like methylation patterns. Note also that the B-cell-like methylation cluster reveals a fine 

structure, which separates MM and B-cells on one hand and mBL, GCB-cells and MCL on 

the other hand. This fine structure is related to subtle methylation differences between hy-

permethylation spots ‘ii’ – ‘iv’ (Figure 19 and Table 2). Finally note that the similarity anal-

ysis is based on a relatively small selection of less than 800 genes only, which might distort 

similarity relations if relevant groups of genes are under- or overrepresented.  

Lists of genes from the regions ‘i’ – ‘v’ are given in supplementary material of [113]. 

 

Figure 20: Similarity network of the methylation landscapes of the lymphoma samples studied. Each 

circle refers to one sample colored according to its class assignment. Two main cluster can be distin-

guished, which include samples of B-cell-like and DLBCL-like methylation. See section 3.5 for details. 

4.2.1.3 GENE EXPRESSION PORTRAYING USING EXTENDED MMML-COHORT DATA 

We characterized the heterogeneity of gene expression landscapes of lymphoma in 

detail (see [91,114]) in an analogous approach as used above for differential methylation 

data. Figure 21 summarizes the main results of the DexSOM analysis showing the mean 

SOM expression portraits of lymphoma subtypes and controls in panel a, the spot summary 

and variance maps (panel b) and the respective spot profiles (panel c). Please recall that 

for the lymphoma expression data set analyzed in section 4.1 only the subtypes mBL, non-

mBL and intermediate were considered. In the present DexSOM additional B-cell lymphoma 

subtypes and control samples were trained to ensure a joint analysis with methylation data, 

which comprises comparable subtypes. 
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Figure 21: SOM portraying of the expression landscape of lymphoma (DexSOM). See caption of 

Figure 18 for details. Expression classes were color-coded such that their color agrees with the re-

spective histological class in the methylation data set. Most of the spot modules detected can be 

clearly assigned to distinct lymphoma classes providing lists of signature genes, which are up-regu-

lated in the respective sample classes and which are associated with distinct biological functions. For 

example, mBL (spots ‘A’ – ‘D’) and DLBCL (spot ‘E’) are related first of all to genes promoting prolif-

eration and immune response, respectively. 

4.2.2 MUTUAL MAPPING OF EXPRESSION AND METHYLATION MODULES 

REVEALS POSITIVE AND NEGATIVE CORRELATIONS 

After separate SOM analysis of DNA methylation and gene expression data we linked 

both types of analyses in the next step to detect mutual relations between promoter methyl-

ation and gene expression. In a first attempt we mapped the approximately 800 genes 

considered on the methylation arrays into the gene expression landscape of lymphoma 

(DexSOM) and color-coded their methylation level (see supplementary material of [113]). 

No densely populated areas of uniquely methylated genes were found indicating a fuzzy 

relationship between co-methylated and co-expressed genes. Possibly this mutual mapping 

on gene level provides a suited approach if the methylation assay probes all genes, which 

are also considered in the expression assay.  

In the next step we considered groups of co-methylated genes separately: Genes of the 

Dmet-spots ‘i’ – ‘v’ (see Figure 19 and red circles in Figure 22a) were mapped into the 

MetSOM and DexSOM where they clearly accumulate in distinct regions as indicated by 
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the dotted red rectangles in Figure 22a. This result reflects the fact that groups of co-meth-

ylated genes are also co-expressed in a class-specific fashion as confirmed also by the 

respective methylation and expression profiles shown in the right part of Figure 22a.  

 

Figure 22: Mapping of differentially methylated genes into the lymphoma expression SOM: (a) The 

DmetSOM-gene clusters ‘i’ – ‘v’ (red circles) were mapped into the Met- and DexSOM where they 

accumulate in specific areas (red rectangles). The red arrows illustrate the mapping direction. The 

Dmet- and Dex-profiles reveal class-specific correlations between methylation and expression data, 

which are plotted in panel (b) for genes taken from each of the Dmet-spots ‘i’ – ‘v’. The class-specific 

mean methylation and expression levels of the gene groups were plotted in x and y direction, respec-

tively, each class represented by a colored dot. The error bars indicate the standard deviation of the 

sample data of each class. The dotted arrows point from the GCB-cell to the DLBCL dots thus serving 

as indicator for the slope of the mutual association between the methylation and expression data. 

Note that the clockwise arrangement of the spots ‘i’ – ‘v’ in the DmetSOM transforms into counter-

clockwise arrangement of the data cloud in the correlation plots. 
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To better resolve the mutual relations we correlate class-averaged mean methylation 

and expression levels of the gene groups taken from each of the methylation spots ‘i’ – ‘v’ 

in panel b of Figure 22. Spots ‘i’ and ‘v’ are characterized by a positive correlation: i.e. 

hypermethylation in DLBCL with respect to B- and GCB-cells is accompanied by overex-

pression in DLBCL with respect to the healthy cell controls. MM and partly FL show con-

certed coexpression with DLBCL but still similar methylation compared with B and GCB-

cells. The other lymphoma classes behave similarly however with smaller effects. Genes 

from spot ‘iii’ show a negative correlation, where differential methylation changes sign 

compared with spots ‘i’ and ‘v’ but differential expression does not. In other words, over-

expression in DLBCL is associated with hyper- (spots ‘i’ and ‘v’) and hypo- (spot ‘iii’) meth-

ylation as well. Recall that all three spots ‘i’, ‘iii’, and ‘v’ are also functionally related: They 

enrich genes differentially methylated in other cancer types and related to ‘PRC2 for-

mation’. Spot ‘ii’ (related to ‘proliferation’, see Table 2) collects genes weakly responding 

to methylation but strongly to differential expression for most of the lymphoma classes. Note 

that in mBL hypermethylation of spot ‘ii’ genes associates with underexpression of the re-

spective genes. In contrast, spot ‘iv’ (related to ‘immune response’) weakly responds to 

expression changes but strongly to differential methylation. 

We also mapped the spot-clusters of co-expressed genes extracted from the expression 

SOM into the methylation SOM to assess mutual correlations (see supplementary material 

of [113]). Most of the effects observed are weaker than for the co-methylated gene clusters 

‘i’ – ‘v’ presumably due to causal relations between promoter methylation and gene ex-

pression leading to the dilution of correlations in the opposite direction. On the other hand, 

the data clearly reveals expression changes between lymphomas and the reference B- and 

GCB-cells, which are accompanied by marked differential methylation effects in both pos-

itive and negative directions as well. 

Hence, we observe positive and negative correlations between expression and methyl-

ation changes by mapping clusters of co-methylated genes into expression space and vice 

versa. Most pronounced effects are observed between B/GCB-cells and DLBCL in corre-

spondence with the sample diversity analysis (Figure 20) but also the other lymphoma 

subtypes show gradual and specific effects roughly in the same order as illustrated in  

Figure S 1c. 

4.2.3 MAPPING OF FUNCTIONAL GENE SETS: INFLAMMATION AND 

DEVELOPMENTAL GENES ARE PRONE TO ABBERANT METHYLATION 

Next, we analyzed a series of functional gene sets in an analogous fashion as the spot 

modules in the previous subsection (Figure 23). The obtained characteristics can be 

grouped into different patterns. ‘MYC-targets’ [115] and ‘transcription factors (TF) associ-

ated with high gene expression levels’ [112] give rise to large expression differences be-

tween the lymphoma classes but almost negligible methylation effects. ‘TFs associated with 

low expression levels’ and ‘G-protein receptors’ show a similar relation between expression 
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and methylation changes where the expression levels of the lymphoma classes however 

swap their order in the correlation plot. The latter effect can be directly extracted from the 

areas of highest population densities of the genes in the DexSOM: The ‘high expression’ 

genes enrich in the lower part of the DexSOM whereas the ‘low expression genes’ prefer-

entially occupy areas near the left and right upper corners of the map (see the dotted red 

rectangles in Figure 23). The third group of ‘PRC2-related’ genes gives rise to marked class-

specific expression and methylation changes. Interestingly, the expression characteristics 

of the ‘PRC2-group’ and of the ‘low expression’ group are almost identical whereas their 

methylation characteristics differ largely in amplitude. It seems that the ‘PRC2-related’ gene 

sets specifically select genes, which change expression and methylation in a lymphoma-

specific fashion, whereas the ‘low expression’ gene sets contain genes, which show main 

effects in the expression domain only. This difference can be rationalized by the fact that 

a large fraction of these genes is affected ‘indirectly’ by downstream co-regulation of gene 

expression without alterations of promoter methylation.  

The next group of ‘age related genes’ can be interpreted as a subgroup of the ‘PRC2-

related’ and ‘low expression’ genes, which occupies essentially only the right upper region 

of the DexSOM. In the correlation plot one sees that this restriction strongly reduces the 

variance of the expression values between the lymphoma classes whereas the alterations 

of methylation are similar to the ‘PRC2-related’ gene sets. This result implies that ‘PRC2-

related’ genes are governed by more diverse regulation mechanisms of gene expression 

than the ‘age-related’ genes. Note, however, that the gene set ‘developmental regulators’ 

being part of the ‘age-related’ group also collects genes referring to the ‘formation of the 

polycomb complex’ [116]. These genes were obtained from gene expression measure-

ments whereas the ‘ageing-associated hypermethylated genes’ [117] are extracted from 

DNA methylation studies, which explains the larger response of the latter ones in the meth-

ylation dimension. 

The last ‘CIMP’-group genes accumulate in the top left region of the DexSOM. They 

consequently share similarities with the groups of ‘PCR2-related’ and ‘low expression 

genes’ whose genes also accumulate in this region of the map. The methylation effect of 

the gene sets ‘inflammatory response’ is small but more pronounced for the ‘GCIMP’-gene 

set extracted from glioma data [46]. Other ‘CIMP- and GCIMP-related’ gene sets obtained 

in colorectal and in brain cancer studies, respectively, also respond in the methylation 

dimension (data not shown, see also Table 2). 

In summary, we found two main combined methylation/expression patterns exemplified 

by the ‘high-expression’ and ‘PCR2-related’ groups, where only the latter is characterized 

by both expression and methylation changes. The latter group can be further split into 

‘CIMP-like’ and ‘age-related’ genes. 
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Figure 23: Mapping of selected functional gene sets into the lymphoma methylation and expression 

SOM (see legend of Figure 22 for assignments). Gene sets were taken from [46,110,112,115–

119]. The combined methylation-expression data groups into five different patterns as indicated by 

the brackets and the designations given at the left part of the figure. 
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4.2.4 EZH2-TARGETS STRONGLY DEREGULATE IN LYMPHOMAS 

EZH2 is the catalytic subunit of PRC2 and mediates transcriptional repression through 

its histone methyltransferase activity that trimethylates H3K27 [120,121]. EZH2 is upregu-

lated in normal GCB-cells and it is implicated in lymphomagenesis. It binds partially to the 

same targets in GCB-cells as in embryonic stem cells (ESC), which are preferentially 

H3K27me3-marked and thus transcriptional inactive [120]. EZH2 in normal GCB-cells re-

presses tumor suppressor genes, thus driving cellular proliferation. Similar to the regulatory 

state in stem cells, it prevents premature differentiation and maintains transcriptional silenc-

ing already present in NB-cells [120]. 

We analyzed EZH2-targets and H3K27me3-marked genes determined in ESC, (naïve) 

B- and GCB (centroblasts) cells obtained by means of ChIP-chip experiments [120]. The 

respective sets of genes were mapped into our different SOMs (see supplementary material 

of [113]). The methylation and expression characteristics of both EZH2-target and 

H3K27me3-marked genes in ESC, B- and GCB-cells among the systems studied here are 

very similar and closely resemble those of the ‘PRC2-related’ genes. As a result we found 

that H3K27me3-marked EZH2-targets are transcriptional repressed in healthy B- and GCB-

cells, and that repression of these targets is mostly maintained in mBL but at least partly 

turns into activation in DLBCL, IntL, FL and MM. These expression changes are paralleled 

by hypomethylation in B- and GCB-cells and in MM on one hand and hypermethylation in 

DLBCL and IntL on the other hand. Stratification of genes with respect to anti-correlation 

between expression of EZH2 and that of its targets [120] specifically selects genes from 

DexSOM spots ‘E’ and ‘F’ supporting this view because EZH2-mediated trimethylation of 

H3K27 is expected to inactivate the expression of the EZH2-target genes. Interestingly, de 

novo EZH2-targets in centroblasts compared with NB-cells reverse expression levels and to 

a less degree also methylation levels in MM, B- and GCB-cells. It was suggested that EZH2 

upregulation during the transition from NB-cells to centroblasts reactivates a stem cell-like 

repression program, which is not present in NB-cells and possibly featuring increased self-

renewal and proliferative potential [120]. 

4.2.5 CHROMATIN STATES AND THEIR POSSIBLE REMODELING 

Higher-order chromatin structure is emerging as an important regulator of gene expres-

sion. Alterations of gene expression programs can be induced by the remodeling of chro-

matin states, which for example facilitate transcription in open regions of euchromatin, but 

prevent gene expression in densely packed regions of heterochromatin. These different 

states of chromatin conformation are governed by the arrangement of nucleosomes being 

the central structural elements of DNA packing in the nucleus. In turn, the arrangement of 

nucleosomes is modulated by chemical modifications of distinct amino acids in the side 

chains of the histone units forming the nucleosomes. A whole battery of such modifications 

and their combinatorial patterns are able to tune the transcriptional activity of the affected 

genes by influencing the functional state of gene’s structural elements such as enhancers 
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and promoters, and also stages of the transcriptional process such as transcriptional elon-

gation, transition, activation, and repression [122].  

To get an insight into the possible mechanism of chromatin remodeling in lymphoma 

we make use of the chromatin states identified in GM12878 lymphoblastoid cells (LBC), 

which imitate immature lymphocytes [119]. The chromatin states were calculated from 

ChIP-Seq data of a series of histone modifications using a hidden Markov model [123] 

(see section 2.2.3 for details). We mapped the respective chromatin regions of each state 

on the human genome and collected the genes included in each of the eleven chromatin 

states into one gene set, and then mapped them into the lymphoma methylation and ex-

pression SOMs to assess their methylation and expression characteristics as described 

above (Figure S 7).  

We found close correspondence between the methylation/expression properties of 

groups of chromatin states and the groups of functional gene sets identified above: Genes 

with chromatin states strongly promoting transcription (‘active Txn’ states), namely the states 

‘active promoters’, ‘transcriptional elongation’ and ‘transcriptional transition’, ‘weak tran-

scription’ and also the state ‘weak promoters’ closely resemble the characteristics of the 

‘high expression’ gene sets shown in Figure 23. Contrarily, transcriptionally inactive states 

(‘poised promoters’ and ‘repressed promoters’) share close similarity with the ‘PCR2-re-

lated’ gene sets. The state ‘heterochromatin’ resembles the ‘low expression’ gene sets. Note 

that the ‘Txn-inactive’ states and ‘heterochromatin’ show a nearly mirror symmetrical profile 

of gene expression compared with the ‘Txn-active’ states with low expression levels in mBL 

and IntL and high levels in BCL (MM), non-mBL and FL. The state ‘strong enhancers’ forms 

a separate group, which differs from the functional gene sets considered. It’s methylation 

and expression profiles virtually agrees with that of the ‘active Txn’ states except for the 

expression level in mBL, which turns from high activity in ‘active Txn’ states into low activity 

in the ‘strong enhancer’ state and vice versa for FL. 

Interestingly, the transcriptional inactive chromatin states (and also ‘PRC2-related’ 

genes) show the largest variability of DNA methylation between the classes with lowest 

levels in healthy GCB and B-cells, intermediate levels in MM, FL and mBL, and high levels 

in DLBCL and IntL. Thus they resemble the order of overall methylation variability shown in 

Figure S 1. These methylation changes were paralleled by positively correlated alterations 

of gene expression. Genes located in ‘heterochromatin’ show virtually the same class-de-

pendence of gene expression but almost no variation in methylation. Hence, genes becom-

ing activated in ‘heterochromatin’ are obviously affected by other mechanisms not associ-

ated with methylation changes of their promoters. 

Note that the assignment of chromatin states refers to the lymphoblastoid cell line but 

not to the lymphoma classes studied here. Generally one expects that ‘Txn-active’ states 

show higher gene expression levels than ‘Txn-inactive’ states and ‘heterochromatin’. This 

trivial relation implies to use the mean transcriptional activity of the chromatin states in 

lymphoma as a measure to estimate the correspondence between the nominal chromatin 

state referring to lymphoblastoid cells and the real one in lymphoma. For an overview we 
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stratified the expression levels of the chromatin states in the different lymphoma classes into 

high, moderate and low levels based on the GSZ profiles shown in Figure S 7 and visual-

ized them in Figure 24a: The expression level observed in GCB-cells, mBL and IntL is indeed 

high in ‘Txn-active’ chromatin states and low in ‘Txn-inactive’ chromatin states. Thus the 

real expression levels agree with the nominal ones suggesting global correspondence be-

tween the chromatin states in the reference cells and that in mBL and IntL. Contrarily, the 

expression levels in BCL, FL, and non-mBL disagree with the expression levels expected for 

the nominal chromatin states. This switching of gene activity between these two groups of 

samples suggests remodeling of chromatin in BCL, FL, and also non-mBL compared with 

lymphoblastoid cells and thus also with mBL, IntL, and GCB-cells. Note also that the activity 

patterns of B-cells, tonsils and also of BCL differs from that of GCB-cells suggesting remod-

eling of chromatin between healthy (pre- and post-GC) B-cells and GCB-cells. Moreover the 

similar expression patterns of B-cells and of BCL supports the plasma cell characteristics of 

BCL differing from the characteristics of the GC-derived lymphoma subtypes.  

To assess the relation between DNA hypermethylation in lymphomas and the chromatin 

states we calculated the percentage of overlap-genes from the different chromatin states 

also found in the set ‘hypermethylated in DLBCL’ taken from [60]. The overlap of hyper-

methylated genes is only about 10% for transcriptional active states but much higher (50% 

- 90%) for transcriptional inactive states. Hence, activation of the latter states in DLBCL/non-

mBL and FL seems to be accompanied by hypermethylation of a large fraction of genes 

being inactive in lymphoblastoid cells, mBL, and IntL.  

Finally, we transferred the expression levels of selected gene sets discussed above into 

the tabular form for direct comparison with that of the chromatin states (Figure 24b). ‘MYC-

target’ genes are expressed in parallel with ‘Txn-active’ states among the systems studied. 

This agreement suggests that the ‘MYC-targets’ are found predominantly in chromatin re-

gions active in mBL, IntL, GCB-cells, the cancer cell line and lymphoblastoid cells (95% 

overlap between ‘MYC-targets’ and ‘active promoters’). In contrast, gene sets related to 

‘inflammation’ and ‘G-protein receptor activity’, both hypermethylated in DLBCL, accumu-

late in chromatin states inactive in the reference system but activated in DLBCL, IntL, FL and 

BCL.  

In summary, gene sets referring to distinct chromatin states in the reference cells show 

well distinguished expression and DNA methylation characteristics either agreeing or dis-

agreeing with the expression level expected in the nominal chromatin states. Disagreement 

indicates chromatin remodeling in IntL and non-mBL and especially in B-cells and BCL com-

pared with mBL and GCB-cells. Hence, one can distinguish three groups of samples show-

ing characteristic expression patterns of genes assigned to different chromatin states. They 

comprise (i) mBL, GCB-cells and cancer cell lines; (ii) BCL, MM, and (pre- and post-GC)  

B-cells and (iii) IntL, DLBCL, and FL. 
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Figure 24: Mean gene expression level of selected gene sets in lymphoma and reference systems: 

(a) selected chromatin states and (b) selected gene sets. The gene expression level was stratified 

into high (red), moderate (green) and low (blue) levels using the respective GSZ profiles. 

1 Chromatin states were defined in [123] with respect to the associated histone marks (see, e.g. Fig. 
1b in [123]). The most characteristic marks are in active states (e.g. active promoters): 
H3K4me3/me2, H3K27ac, H3K9ac; weak promoter: H3K4me3/me2; strong enhancer: 
H3K4me1/me2, H3K27ac, H3K9ac; weak enhancer: H3K4me1/me2; inactive states (e.g. inactive 
and poised promoters): H3K27me3, H3K4me2; heterochromatin: no mark; repetitive CNV: all 
marks. 
2 gene expression levels of the chromatin states (Figure S 7) and functional gene sets (Figure 23).  
3 assignment of lymphoma classes refers to the expression classes introduced in Figure 21. 
4 Gene sets were taken from [115] (‘MYC’), [116] (‘PRC2 developmental regulators’), [117] (‘hy-
permethylated upon ageing and cancer’), [60] (‘hypermethylated in DLBCL’), [89,124] (‘inflamma-
tion and stroma’) and GO (‘G-protein coupled receptor activity and signaling pathway’); see also 
Figure 23. 
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4.2.6 FUNCTIONAL CONTEXT OF DIFFERENTIAL METHYLATED AND EXPRESSED 

GENES 

Mutual correlation plots between the mean expression and methylation levels of the 

genes of each of the spot-modules revealed different patterns with impact for underlying 

epigenetic mechanisms of genomic regulation (Figure 25). We identified groups of genes 

mostly affected by methylation with only tiny expression changes (e.g. DmetSOM-spots ‘iii’ 

and ‘iv’ and DexSOM-spot ‘G’), vice versa, groups of genes with almost invariant methyl-

ation levels but strongly varying expression (e.g. DmetSOM-spots ‘ii’ and DexSOM-spots 

‘D’ and ‘E’), and groups with strongly positive (spots ‘i’, ‘v’ and ‘H’ and ‘J’) and negative 

(e.g. spots ‘iii’, ‘A’ and ‘I’) correlations between expression and methylation levels in the 

different sample classes. Moreover, the Dmet- and DexSOM disentangle genes systemati-

cally hyper- and hypomethylated and/or over- and underexpressed in lymphoma com-

pared with healthy B- and GCB-cells (see Figure 25). Hence, SOM portraying served as 

an effective sorting machine to extract different modes of co-regulation between expression 

and methylation mechanisms specifically characterizing lymphoma and differentiating also 

between the lymphoma subtypes. 

To assign the functional meaning to the spot modules, especially in the context of un-

derlying epigenetic mechanisms, we applied enrichment analysis using a multitude of pre-

defined gene sets related to categories such as biological function (e.g. ‘inflammation’, 

‘cell development and ageing’), targets of different TFs (e.g. ‘MYC’, ‘high and low expres-

sion TFs’) and epigenetic modulators (e.g. EZH2, SUZ12, PRC2), different chromatin states 

in reference lymphoblastoid cells and also genes differently expressed and methylated in 

other cancers (e.g. CIMP and GCIMP genes in colorectal cancer and glioma, respectively). 
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Figure 25: Integrative view on differential methylation and gene expression in lymphomas and on 

the related functional context. Spot modules of co-methylated genes were extracted from (a) the 

DmetSOM and (b) the DexSOM. The class-specific correlation plots for each spot reveal systematic 

methylation and expression changes in both maps many of them being associated with functional 

gene sets. Especially, differential methylation and expression with respect to healthy controls (B- and 

GCB-cells, see red dotted circles) as well as systematic differences between lymphoma subtypes (e.g., 

mBL, DLBCL and MM) were sorted in a systematic fashion in both SOM maps. 

Interestingly, we found pronounced similarities of the expression and methylation signa-

tures of gene sets from different categories in the lymphoma data, which indicate mutual 

relations between them. Particularly, the spot-modules can be sorted roughly into four main 

groups (see Figure 25): 

 Group 1 is enriched in PRC2- and EZH2-targets, related to transcriptionally inactive 

states in LBC and shows strong variation in expression and methylation levels being 

hypermethylated and overexpressed in lymphomas compared with the controls 

 Group 2 comprises transcriptionally active chromatin states, TFs related to highly ex-

pressed genes and MYC-targets. It promotes cell proliferation and shows strong expres-

sion changes especially between mBL on high and the controls on low levels, but virtu-

ally no differential methylation 

 Group 3 accumulates mostly in the top right part of DexSOM and contains ageing and 

developmental genes, and low expression TF genes. It overlaps with group 1 with re-
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spect to the enriched chromatin states and part of the PRC2- and EZH2-targets. Expres-

sion of these genes is down regulated in lymphomas compared with the controls but the 

methylation can differ in both directions. 

 Group 4 accumulates in the top left part of the DexSOM and contains CIMP/GCIMP 

genes, genes related to ‘inflammation and stroma’, SMARCA4-targets and another part 

of the PRC2- and EZH2-targets. These genes are strongly upregulated in DLBCL, IntL and 

partly FL, and downregulated in the controls and BL. They show moderate methylation 

changes being slightly hypermethylated in lymphomas. 

4.2.7 EPIGENETIC REGULATION IN LYMPHOMAS AS SEEN BY GENE EXPRESSION 

AND DNA METHYALTION 

Figure 26 schematically illustrates and summarizes our results in the light of B-cell and 

lymphoma biology. Healthy B-cells pass essentially three relevant compartments, the dark 

and light zone of the GC and ‘outside-of-the-GC’, which subsumes plasma, lymph node 

and also bone marrow (see also Figure 10). The associated types of B-cells can transform 

into the different lymphoma classes as illustrated by the red arrows in Figure 26a. The 

triangular shape of the scheme is motivated by the three different types of lymphoma clas-

ses, which point to similarities with GC dark zone (DZ) B-cells in terms of proliferative 

activity, GC light zone (LZ) B-cells in terms of inflammatory signatures, and pre- and post-

GCB-cells in terms of (healthy) B-cell signatures (see also [91,114]). 

The colored ‘ramps’ code for alterations in gene expression and/or methylation be-

tween the lymphoma classes, which associate with the groups of genes defined in the 

previous subsection and which were specified with respect to changing chromatin states 

(Figure 26b). Group 1 genes give rise to increasing differential expression and methylation 

between lymphomas and healthy B-cells with largest effect in DLBCL. We suggest that the 

strong alterations in gene expression manifest chromatin remodeling from PRC-repressed 

and poised chromatin states into active ones associated with hypermethylation in lympho-

mas. Hence, group 1 genes are obviously of central importance for a mechanism of lym-

phomagenesis transforming healthy GCB-cells into malignant ones. Recall that the largest 

differential effect of these genes in gene expression and methylation is observed for DLBCL. 

Along the axis linking BL and DLBCL the expression changes are counterbalanced by group 

2 genes, which strongly upregulate in BL compared with DLBCL almost without methylation 

changes. Presumably this trend is mainly caused by the activation of MYC in mBL (and also 

selected MYC-positive IntL cases), which in turn amplifies the expression of already tran-

scribed genes giving rise to a sort of hyperactivation of the transcriptional state without 

strong DNA methylation effects and chromatin remodeling. Group 3 and 4 genes mainly 

differentiate between DLBCL and MM however in opposite directions. Both groups show 

alterations in gene expression and methylation as well, and thus partly resembling  

group 1 genes in their molecular determinants. Particularly, group 1, 3, and 4 genes con-

tain PRC2- and EZH2-targets showing that repressed and poised promoter states play a 
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pivotal role in cell fate decisions of GCB-cells and in their transformation into cancerogenic 

states. 

B-cells employ epigenetic mechanisms to generate effective memory responses resem-

bling epigenetic reprogramming of stem cells upon cell fate decisions. Particularly, the 

transition from NB-cells permits GCB-cells to generate the differential response to antigenic 

challenges and to differentiate toward plasma cell fates. Deregulation of the underlying 

epigenetic determinants such as DNA methylation [125] and/or chromatin activity states 

can be assumed to potentially disturb or even to prevent normal differentiation of B-cells 

leading to malignant lymphomas. 

 

Figure 26: Epigenetic regulation scheme of lymphoma: (a) Scheme illustrating lymphoma hetero-

geneity with respect to their cell of origin and groups of affected genes. Different lymphoma subtypes 

can originate from GCB-cells located in the DZ of the GC (centroblasts), from its LZ (centrocytes) or 

from maturated plasma B-cells as indicated by the dotted red arrows. (b) Associated chromatin states 

and their remodeling due to altering histone modifications affecting transcription. The green ramp 

codes increasing expression and methylation associated with chromatin remodeling from inactive 
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and poised to active states. The orange ramp codes increasing expression without methylation 

changes either due to chromatin remodeling from hetero- to euchromatin or due to MYC hyperacti-

vation. Gene groups are specified in Figure 25. 

Many promoters in ESCs are in poised chromatin states defined by both H3K27me3 

and H3K4me3 histone marks. Those bivalent states allow the cell to either activate or main-

taining repressed the affected genes when needed for development hence ensuring robust 

differentiation [126]. In view of this basal mechanism it appears not surprisingly that biva-

lent chromatin states in the reference lymphoblastoid cells are strongly affected by expres-

sion and methylation changes observed in group 1, 3 and 4 genes. These bivalent pro-

moters possibly ensure the plasticity of the genome to switch between the functional re-

quirements in the different compartments of the GC.  

Recent studies suggest that EZH2 upregulation during the transition of NB-cell to prolif-

erating GCB-cell (centroblast) reactivates a stem cell-like repression program not present in 

NB-cells and possibly featuring increased self-renewal and proliferative potential. This pro-

gram accomplishes a proliferative function in GCB-cells, which makes them prone for ma-

lignant transformation into lymphoma [120]. PCR2-mediated repression seems to be almost 

independent of DNA methylation in normal B-cells (including proliferating centroblasts). 

However in lymphoma DNA methylation of these genes clearly changes, where many hy-

permethylated genes are targeted by PCR2 also found in stem cells [87] and centroblasts 

[120]. Methylation in the promoters of PCR2 genes can also associate with the opposite 

effect by destabilizing inactive chromatin states and thus promoting their remodeling into 

active ones, e.g. in group 3 genes in DLBCL. Our analysis suggests also the parallel re-

modeling of heterochromatin into transcriptionally active euchromatin without clear altera-

tions of the methylation of the promoters of the involved genes. 

4.2.8 CONCLUSION 

From a methodical viewpoint our study shows, that integrative SOM portraying of ex-

pression and methylation data together with function mining using a battery of gene sets 

provides detailed insights into the regulatory landscape affecting the transcriptome and 

methylome and delivers a hypothesis for epigenetic mechanisms of lymphomagenesis. Our 

analysis is based on unmatched data sets with respect to the cancer cases used. We expect 

considerably improvement of the method for matched data sets. 

Our study confirms previous results about the role of stemness genes during develop-

ment and maturation of B-cells and the dysfunction of these regulatory programs in lympho-

mas presumably locking them in more proliferative or more immune-reactive states referring 

to GCB-cell functionalities in the dark and light zone of the GC. These dysfunctions are 

governed by epigenetic effects altering the promoter methylation of the involved genes, 

their activity status as moderated by histone modifications and also by higher-order chro-

matin structures, which emerge as an important regulator of gene expression. 
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4.3 TRANSCRIPTIONAL ACTIVITY OF CHROMATIN MODIFIERS IN 

LYMPHOMAS 

Mutations affecting epigenetic and transcriptional modifiers are also frequently found 

in B-cell lymphomas [44,127]. Large-scale disruptions of DNA methylation and histone 

modification patterns are emerging hallmarks of these diseases. B-cell lymphomas represent 

a very heterogeneous cancer entity due to their complex cell of origin background. It is 

characterized by heterogeneous DNA methylation and gene expression patterns, which 

strongly vary between different lymphoma subtypes (see [67], [118] and above). These pat-

terns also indicate profound chromatin remodeling between the cancer subtypes and also 

between different stages of B-cell differentiation (see section 4.2.5). In this section, we study 

the transcriptional activity of more than 50 epigenetic modifiers in different lymphoma 

subtypes and healthy controls. We ask how the expression landscape of this disease is 

modulated by these enzymes. Furthermore different modes of epigenetic regulation are 

discussed and a review of existing knowledge about selected modifiers in the context of B-

cell and lymphoma biology is given. 

We demonstrate how the cartography of epigenetic modifiers using SOMs helps to 

interpret their behavior in terms of factors that mediate writing, erasing and/or reading of 

epigenetic marks and how they contribute to cancer genesis and progression.  

A subgroup of samples of the gene expression cohort considered in section 4.2 was 

analyzed here thus being divided into the same subtypes. For details concerning the cohort 

and preprocessing of the data see sections 3.1 and 7.1.4. 

4.3.1 TRANSCRIPTION AND DNA METHYLATION UNDER CONTROL OF 

EPIGENETIC MODIFIERS 

Mutual coupling of writer/eraser activities 

Figure 27 illustrates a part of the epigenetic mechanisms regulating gene activity in 

terms of a simple scheme. They comprise histone modifications, DNA methylation, regula-

tory interactions and feedback loops between them. We take into account here only three 

histone modifications, namely trimethylations (me3) of H3K4, H3K9, and H3K27 and DNA 

methylation of CpGs in the promoter regions of affected genes. Each modification is de-

scribed as a balance between writing and erasing reactions catalyzed by methyltransfer-

ases (for writing methylation marks to histone-lysines and DNA-CpGs) and demethylases 

(for erasing methylation marks from histone-lysines and DNA-CpGs), respectively. We will 

use the abbreviations KDM and KMT for histone lysine demethylases and methyltransferases, 

respectively, and DNDM and DNMT for DNA-CpG demethylases and methyltransferases, 

respectively. The scheme provides an idea how histone modifications couple each with 

another, with DNA methylation, and with gene activity. 
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Figure 27: Transcription and DNA (promoter-) methylation under enzymatic control: The scheme 

summarizes selected regulatory paths affecting histone- and CpG-methylation and gene expression 

via different histone and DNA methylating and demethylating enzymes. 

Gene expression and DNA methylation is regulated by the battery of enzymes, which 

either activate or inhibit transcription. For example, trimethylation of H3K4 at the promoter 

is assumed to activate transcription of the respective genes mediated by trithorax group 

proteins (TrxG). DNA methylation impacts transcription indirectly by reducing the reading 

capability of TrxG via reduced binding capability of H3K4me3-methyltransferases [128] 

and via recruitment of H3K9-KTMs [129]. Complexes containing DNA de novo methyl-

transferases (DNMT3A/B and L) are assumed to be recruited by H3K9me3 (for 

DNMT3A/B) [130] and repelled by H3K4me3 (for DNMT3L) [131]. This mechanism de-

fines a positive feedback loop of de novo DNA methylation via H3K9me3 and DNMT3A/B 

recruitment and a negative one via H3K4me3 and DNMT3L inhibition. Another positive 

feedback loop promoting DNA methylation is formed via H3K27me3 and DNMT  

recruitment [132]. 

H3K4me3 and H3K27me3 at the promoter act antagonistically, leading to transcrip-

tional activation and repression of the affected genes, respectively. They also have an 

impact on the regulation of developmental genes in fate decisions [133]. Both processes 

require reader-writer complexes, namely TrxG and polycomb group proteins (PcG) 

[134,135], respectively. The latter ones form polycomb repressive complexes (PRC), either 

PRC1 or PRC2, which act in sequential manner to stably maintain gene repression (see 

also Figure 3b). PRC2 writes H3K27me3, which is subsequently read by PRC1 creating a 

silent chromatin state. DNA methylation is also affected by the maintenance methyltrans-

ferase DNMT1 to recover methylation marks at the newly synthesized DNA strands after 

cell division. High methylation and presumably also proliferation rates of the cells require 
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high DNMT1 activities for methylation maintenance [136]. Bivalently (with H3K4me3 and 

H3K27me3) marked histones give rise to so-called poised promoters, which are ‘easy 

switchable’ between active or inactive transcriptional programs by erasing either the 

H3K27me3 or H3K4me3 marks, respectively. 

Mutations of EZH2 and MLL2 potentially induce hypermethylation 

Genome screening in patients with lymphoma have detected a series of mutations in 

genes involved in the epigenetic regulation of transcription [4,137–141] (see Table 3). 

Mutations of critical role in lymphomagenesis occur in genes, such as KMT6 (alias EZH2, 

being a K27MT) leading to a gain of function preferentially in DLBCL [4–6], and 

KMT2B/2D (alias MLL2, being a K4MT) giving rise to its loss of function in FL, as well as 

in DLBCL [142] (see red plus and blue minus signs in Figure 27 and also in the simplified 

scheme shown in Figure 28a). Our scheme suggests, in this particular case, an increase in 

DNA methylation and a decrease in gene activity based on the altered activities of these 

enzymes (see Figure 28b for illustration). Resulting hypermethylation will affect PcG- and 

TrxG-related genes as well. Indeed, net-hypermethylation of PRC2-target genes was re-

ported for DLBCL, compared with healthy B- and GCB-cells (see section 4.2.1.2). This meth-

ylation change is induced by hyper-trimethylation of H3K27 as found recently in enzyme 

activity experiments [143]. 

Epigenetics under metabolic control 

IDH1 and IDH2 (for short IDH1/2) catalyze the interconversion of isocitrate and  

-ketoglutarate (-KG alias 2-oxoglutarate). -KG is a tricarboxylic acid (TCA) cycle inter-

mediate and an essential cofactor for many enzymes, including Jumonji C (JmjC) domain 

containing KDMs such as KDM2A, 4B/C, 5C and TET-family DNDMs [144]. Cancer-asso-

ciated IDH1/2 mutations alter the enzymes such that they reduce -KG to the structurally 

similar metabolite (R)-2-hydroxyglutarate (2-HG). -KG generates nicotinamide adenine di-

nucleotide phosphate (NADPH), whereas mutant IDH1/2 converts -KG into 2-HG and 

consumes the reducing agent NADPH. 2-HG has been shown to inhibit JmjC-KDMs and 

TET-DNDMs leading to aberrant epigenetic modifications in tumor cells [145–147]. The 

inhibitory effect of 2-HG is expected to have a similar effect on our regulatory network as 

the mutations of EZH2 and MLL2 (Figure 28c). Mutations of IDH1/2 are frequent events in 

tumors such as gliomas [46,63,148] and leukemia [149]. IDH1/2 mutations are, however, 

rather scarce in lymphomas [150] and cannot account for such parallel effects. 

One can, however, hypothesize that intermediate products of the TCA-cycle, such as 

succinate and fumarate, have a similar effect on epigenetics like 2-HG thus proving a 

possible explanation of the observed effects [144] (Figure 28c). Recall that widespread 

metabolic alterations allow tumor cells to remain and proliferate in certain tumor microen-

vironments [151]. Among lymphomas, especially BL but partly also IntL are characterized 
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by high proliferative activity, strongly activated energy metabolism and mitochondrial func-

tion, which were often paralleled by activated c-MYC expression (see section 4.1.7 and 

[167]). Such massive metabolic changes suggest interference with epigenetic regulation 

via modifying enzymes responding to metabolites. Activating interaction, e.g., due to high 

abundance of -KG is expected to demethylate histone lysines and DNA CpGs and to 

activate expression, i.e., alterations not corresponding to the observed ones (Figure 28d). 

However, other intermediate products of the TCA-cycle, namely succinate and fumarate, are 

shown to counteract -KG. Their enhanced production in metabolically activated lymphoma 

subtypes possibly explains the observed trend [144] (Figure 28c). 

 

Figure 28: Effect of selected mutations of epigenetic modifiers and of TCA metabolism on CpG 

methylation and gene expression: (a) Simplified sketch of the scheme shown in Figure 27. Plus and 

minus signs indicate gain and loss of function mutations, respectively; (b) The scheme suggests that 

mutations of EZH2 and MLL2 result in DNA-hypermethylation and repression of transcription. Altera-

tions are shown by enlarged boxes and red frames; (c) Mutated IDH1 produces 2-HG that inhibits a 

series of KDMs. It results in hypermethylation and altered gene expression. The same trend is ex-

pected for increased TCA-activities with increased levels of fumarate and succinate, both inhibiting 

the same modifiers as 2-HG; (d) TCA activation with increased amounts of -KG will demethylate 

DNA and repress expression. Note that global changes of methylation are paralleled by local ones 

due to the hypothesized alterations of gene expressions: Red marks indicate promoter methylations 

in (b) – (d) recruited by PcG-repressed and/or TrxG-deactivated genes.  
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Table 3: Chromatin modifiers with possible relevance for lymphoma: An overview. 

Target Type1 Enzyme Alias Mark txn2 mut3 Dex4 Spot5 Comment6 

Writer 

Eraser 
Reader 

Me act 
rep 

LvsBc 

H3K4 W KMT2A MLL  act  − IJ TrxG:MLL complex 
KMT2B MLL2, 

KMT2D 
 act x − J loss of function in 

DLBCL/FL, TrxG:MLL 
complex 

KMT2F SETD1A  act  − (H)  
KMT2G SETD1B Me3 act  − H  

KMT3C* SMYD2 Me2/Me3 act  x (MM)  
KMT3E SMYD3 Me2/Me3 act  + (D)  
PRDM9 MSBP3, 

PFM6 
Me3 act  − (I)  

SETMAR* METNASE  act  x B  

E KDM1A* LSD1, 
AOF2 

Me1/Me2 rep  + B ‘gene body cleaner’ 

KDM5A JARID1A, 
RBBP2 

Me2/Me3 rep  x (A) JmjC, ‘gene body 
cleaner’ 

KDM5B JARID1B, 
PLU1 

 rep  − (F) JmjC 

KDM5C JARID1C, 
SMCX 

 rep  + (I) JmjC 

H3K9 W KMT1C* EHMT2, 
G9A 

Me1/Me2 rep  x (B)  

KMT1D* EHMT1, 
GLP 

Me1/Me2 rep  + (D)  

KMT1E SETDB1 Me3 rep  x (I)  
KMT6(A)* EZH2  rep + + D gain of function in 

cancer/DLBCL/FL, 
PRC2 complex 

KMT8 PRDM2, 
RIZ 

 rep  − (D) missense mutation in 
DLBCL 

E KDM1A* LSD1, 
AOF2 

 act  + B  

KDM3A JMJD1, 
TSGA 

Me1/Me2 act  − (IM) JmjC 

KDM3B JHDM2B  act  x (C) JmjC 
KDM4A* JMJD2 Me3 act  − (J) JmjC 
KDM4B JHDM3B Me3 act  − J JmjC 
KDM4C* JHDM3C Me3 act  − I JmjC 
KDM4D JMJD2D Me2/Me3 act  x (B) JmjC 
KDM7A* JHDM1D Me2 act  − H JmjC 
MINA MDIG, 

ROX 
Me3 act  + (B)  

H3K27 W KMT1C* EHMT2, 
G9A 

 rep  x (B)  

KMT1D* EHMT1, 
GLP 

 rep  + (D)  

KMT6(A)* EZH2  rep + + D gain of function in 
cancer/DLBCL/FL, 
PRC2 complex 
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KMT6B EZH1  rep  − J PRC2 complex 
WHSC1 NSD2, 

MMSET 
 rep  + D mutated in BL and 

MCL, opens chro-
matin 

E KDM6A UTX Me2/Me3 act  − (IM)  

KDM6B JMJD3 Me2/Me3 act  − J involved in inflam-
matory response, 
JmjC 

KDM7A* JHDM1D Me2 act x − H JmjC 

H3K36 E KDM2A FBXL11, 
JHDM1A 

Me2   − (H) JmjC 

KDM4A* JMJD2 Me3 rep  − (J) JmjC 

KDM4C* JHDM3C Me3 rep  − I JmjC 
KDM8 JMJD5 Me2 rep  x (B) JmjC 

W KMT2H ASH1L  act  − (I)  

KMT3A SETD2, 
SET2 

Me3 act  − J recruits MMR 

KMT3B NSD1, 
STO 

   − (J)  

KMT3C* SMYD2 Me2 act  x (MM)  

SETMAR* METNASE Me2 act  x B  

H3K79 W KMT4 DOT1L  act x x (MM) loss of function in 
lymphomas 

DNA W DNMT1   rep  + D maintenance 

DNMT3A   rep  x (D) de novo methylation 

DNMT3B   rep  + B de novo methylation 

DNMT3L   rep  + (D) induces de novo 
DNA methylation by 
recruitment or acti-
vation of DNMT3 

E TET3   act  − I  

R, E MBD2   act/ 
rep 

 − (I) mediates CpG-meth-
ylation signal 

1 Here we consider only KMTs and DNMTs as epigenetic writers and KDMs and DNDMs as erasers. 
Epigenetic readers possess effector domains and recognize and bind to modified residues. Many 
‘classical’ TFs (that ‘read’ special DNA binding motifs) are also epigenetic readers because their 
binding to DNA is also governed by epigenetic marks (see also [45,153] and Figure 3b). 
2 Expected net effect on the transcriptional activity of the affected genes. In general there is no one-
to-one relation between a certain epigenetic modifier and the change of gene expression. Combina-
tions of modifiers and their marks give rise to a large variety of options (also called chromatin code). 
Here we assign the proposed effects of chromatin marks on gene expression according to GeneCards 
(www.genecards.org). 
3 Activating/gain of function (+) or deactivating/loss of function (x) mutation observed in lymphoma. 
4 Differential expression with respect to B-cells: +…up; − …down; x…indifferent.  
5 Spot cluster: e.g., ‘A’… gene belongs to spot ‘A’; (A)…gene is found near spot ‘A’ in the map; 
spot characteristics: ‘B’, ’C’, ’D’: up in BL and down in DLBCL/FL; ‘F’: up in FL; ‘I’: up in BCL and 
MM and down in BL and partly DLBCL; ‘J’: up in B- and GCB-cells and down in lymphomas; ‘H’: up 
in B-cells, tonsils and FL, down in BL; see also section 4.2.1.3. 
6 Mutation data and assignments to lymphoma classes were taken from [4,137–140]. 

* Enzymes marked with asterisks perform multiple roles by catalyzing more than one lysine side 

chain.  
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In summary, our simple scheme predicts the activation of repressed PcG-related genes 

paralleled by DNA-hypermethylation after mutations of the genes EZH2 and/or MLL2, 

which both code for KMTs. Mutations of IDH1/2 or an increased TCA-activity are sug-

gested to have a similar effect on histone and DNA methylation. However IDH1/2 muta-

tions are scarce in lymphoma suggesting alternative mechanisms that couple metabolism 

with epigenetics. 

4.3.2 THE EXPRESSION SOM COORDINATE SYSTEM 

For results of the lymphoma gene expression SOM training see section 4.2.1.3. The 

spot map (Figure 29a, compare with Figure 21) selects defined spot areas (‘A’ – ‘J’, ‘IM’, 

and ‘MM’) representing clusters of co-expressed genes being overexpressed in a certain 

sample class. Accordingly, the map can be segmented into areas of characteristic differ-

ential expression between the lymphoma classes and healthy controls (e.g., BL_vs_DLBCL 

means that the area contains genes overexpressed in BL compared with DLBCL), see Figure 

29c. The dashed borderlines between these areas serve as guide for the eye inspection 

only. In reality, the areas are fuzzy without clear-cut borderlines. For the sake of a simple 

and clear description, we divide the map into four quadrants (Q1–Q4) and a central re-

gion (Z) (see Figure 29b). Q1 can be assigned to genes upregulated in ‘MM’ (MM_up), 

Q2 contains diverse deregulation patterns, Q3 can be assigned to genes specifically upreg-

ulated in BL (BL_up), Q4 is assigned to DLBCL_up and FL_up, and, finally, Z includes genes of 

almost invariant expression. 

 

Figure 29: Expression SOM characteristics of lymphoma: (a) The overexpression spot summary 

map shows all overexpression spots in red, which were detected in the lymphoma cohort studied 

[114]; (b) and (c) We segmented the map into areas of characteristic differential expression between 

the lymphoma classes and healthy controls: Four quadrants Q1–Q4 and a central area Z. In addition, 

we separately considered genes with invariant expression profiles, which populate the blue area in 

the variance map (Inv). 
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4.3.3 EXPRESSION CARTOGRAPHY OF EPIGENETIC MODIFIERS 

In this subsection, we aim to verify the predictions made above. Using lymphoma ex-

pression data we systematically monitor the expression levels of about 50 methylating and 

demethylating enzymes in different lymphoma subtypes and healthy controls to document 

their heterogeneity in regulating gene activity (see Table 3 for an overview). Note that the 

enzymatic activity is modulated by a series of post-transcriptional and -translational factors 

(such as posttranslational modifications, local accessibilities and concentrations of cofac-

tors), which are beyond our data. 

SOM expression map of epigenetic modifiers 

For a holistic view, we make use of SOM-portrayal method, which locates the genes 

coding the modifying enzymes into a quadratic map. The map allows to deduce the ex-

pression characteristics of a gene from its location in the map (see section 3.4). 

 

Figure 30: Mapping of writers and erasers of epigenetic methylation marks into the gene expres-

sion landscape (DexSOM) of lymphoma. The map is segmented into regions of specific differential 

expression between the lymphoma classes by dashed lines. The mode of differential expression is 

indicated in the grey boxes. Spot-clusters of differentially expressed genes are grey-colored. The map 

is further divided into four quadrants Q1–Q4 and a central region Z (see Figure 29b and c for 

segmentation of the SOM). Epigenetic modifiers are labeled as shown in the right part of the figure. 

A few genes are redundant because more than one probe set interrogate them (e.g., KDM4A, 

KDM6B, and KMT6B). The redundant probe sets are located in close proximity reflecting strongly 

correlated expression profiles (see Table 3 for assignment of the enzymes). We counted the number 

of genes and of writers and erasers of methylation marks in each of the areas. These modifiers were 

strongly enriched in Q2, on intermediate levels in Q1 and Q3 and on low levels in Q4, Inv and Z 

(see table). 
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The overview map shown in Figure 30 summarizes the location of genes encoding 

writers and erasers of histone-lysine and of DNA-CpG methylation marks listed in Table 3. 

Interestingly, the genes encoding epigenetic modifiers strongly accumulate in Q2, to a less 

degree in Q1 and Q3, but they are almost absent in Q4 (Figure 30). This asymmetric 

distribution reflects the fact that gene expression of the majority of methylating and demeth-

ylating enzymes is either up- or down-regulated in lymphomas compared with B-cells 

and/or activated in BL compared with DLBCL and FL. Enzymes up-regulated in DLBCL 

and/or FL compared with BL are however rather scarce. 

According to the histone code hypothesis numerous of histone modifications are as-

sumed to regulate gene expression of the associated genes. In Figure 30, we color coded 

the assumed effect on transcription by symbols being red for activation, blue for silencing 

and green for unknown effect. Enzymes promoting gene expression are slightly enriched 

in Q1, which contains genes down-regulated in lymphomas. Thus, activating marks in Q1 

correspond to the expression in B-cells. On the other hand, Q2 and Q3 are more puzzling, 

as those reflect no preference for activating and de-activating marks. 

DNA methylating enzymes: DNA-MTs and -DMs 

DNMTs and DNDMs accumulate in opposite corners of the map shown in Figure 31a 

(Q3 versus Q1) being up- and down-regulated, respectively, in lymphomas compared with 

B-cells. The de novo methyltransferases DNMT3A,B,L show only moderate effect also be-

tween GCB- and B-cells in agreement with previous results [125]. All of them, but especially 

DNMT3A, have a high gene activity in BL and a relatively low one in the other lymphoma 

subtypes. The maintenance methyltransferase DNMT1, on the other hand is strongly up-

regulated in lymphomas and GCB-cells showing also maximum activity in BL. In the context 

of the GCB phenotype, Shaknovich et al. [125] attributes several functions to DNMT1 like 

chromatin condensation/de-condensation, maintenance of genomic DNA methylation and 

also repair of double strand DNA break [125].  

Note that proliferative activity is extraordinarily high in BL, also requiring high activities 

of CpG methylation maintenance and DNA repair processes. Demethylases, on the other 

hand, are on highest expression levels in MM revealing a strong antagonism of DNA 

methylation and demethylation between MM and DLBCL (and BL), between BL and DLBCL 

and partly between B- and GCB-cells. Note that DNA methylation is not a simple sum of 

DNMT activities. A comparison of the epigenomes between normal and cancerous stem 

cells, and between pluripotent and differentiated states shows that the presence of at least 

two DNMTs is required for differential DNA methylation effects [154]. Moreover DNA  

(de-) methylating enzymes operate often in concert with histone modifications. 

DNA demethylases of the TET-family play an important role in fine regulation of DNA 

methylation. Their inactivation leads to the establishment of DNA hypermethylation pheno-

type [155]. TET3 locates near spot ‘I’ meaning low expression levels in DLBCL and IntL but 

relatively strong ones in MM and B-cells. This inactivation in DLBCL and IntL indeed accom-
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panies with aberrant methylation patterns partly resembling methylator phenotypes ob-

served in other cancer types such as colorectal cancer and glioma (see section 4.2.3). The 

possible role of TET-family proteins in coupling mechanisms with the TCA-metabolism will 

be discussed below. MBD2 is a methyl-CpG-reader that has been reported to be both a tran-

scriptional repressor and a DNDM [156]. In lymphoma it shows a similar expression profile 

as TET3. 

Histone K27MTs and DMs 

Figure 31b–f disentangles the KMTs and KDMs according to the position of the methyl-

ated/de-methylated lysines in the H3 subunit. Firstly, we see strong activation of 

EZH2/KMT6(A) in all lymphoma subtypes compared with B-cells (Figure 31b). A high frac-

tion of DLBCL and of grade 3 FL harbors EZH2 mutations, suggesting that these mutations 

are early events of lymphomagenesis [117]. EZH2 gain of function mutation presumably 

favors the emergence of malignant disease by suppressing anti-proliferative and differenti-

ation processes [6,88,121,157]. In GCB-cells EZH2 bivalent chromatin domains are built 

at key regulatory regions to temporarily repress GCB-cell differentiation. These physiologi-

cal effects are amplified by somatic mutations through enhanced silencing of EZH2-targets 

leading to malignant transformation into highly proliferative lymphoma types [121]. Our 

data shows that EZH2 expression in all lymphoma subtypes except for BL is decreased 

compared with GCB-cells, but it is increased compared with B-cells. 

EZH1/KMT6B, another H3K27-methyltransferase (and a homolog of EZH2) and the 

KDMs UTX/KDM6A and JMJD3/KDM6B show roughly antagonistic profiles compared 

with EZH2 as they are strongly deactivated in lymphomas. KDM6A and B play an im-

portant role in the differentiation of tissues from embryonic stem cells (ESC), where their 

deactivation impairs differentiation [158,159]. Moreover, somatic mutations of KDM6A 

have been found in a number of cancer types indicating the importance of this enzyme in 

tumorigenesis. The antagonistic changes of EZH2 and KDM6A in lymphomas suggest that 

the methyltransferase and demethylase act in a concerted fashion and shift the methylation 

equilibrium towards trimethylated H3K27, which promotes repressive transcriptional states. 

EZH1 safeguards ESC identities and maintains repression in resting cells [160]. It is 

more abundant in non-proliferative adult organs and acts transcriptionally as antagonist of 

EZH2, which de novo establishes H3K27me3 in dividing cells [161–163]. Our data thus 

supports the view that activation of EZH2 in lymphoma ‘over-represses’ suppressors of pro-

liferative programs, whereas de-activation of EZH1 ‘under-represses’ maintenance suppres-

sor of resting cells presumably thus destabilizing their state. 

WHSC1, another K27MT, changes in lymphomas in a similar way as EZH2. It is fre-

quently mutated in MCL [164] and partly also in BL [165]. It has been suggested that 

WHSC1 mutations in these lymphoma types are associated with open chromatin in their 

cell(s) of origin [165]. Note that WHSC1 and other genes located in Q3 (spot ‘D’ in the 

DexSOM) are up-regulated in BL and partly GCB-cells thus supporting this view (see also 

section 4.2.5, where we assign these genes to euchromatin states in BL). WHSC1 is also 



4.3 Transcriptional activity of chromatin modifiers in lymphomas 75 

 

 

 

activated in MM where it is thought to open chromatin structure [166]. Solely the enzyme 

KDM7A is located in Q1 (spot ‘H’) due to the fact that it is specifically activated in FL and 

MM. This enzyme de-methylates H3K27me2. 

In summary, the expression profiles of genes coding for H3K27 (de)-methylating enzymes 

reflect concerted deregulation of repressed (including also poised) genes in lymphomas. 

These genes seem to become ‘over-repressed’, which presumably results in a loss of plas-

ticity of cellular programs. In consequence, the cells become unable to return into an active 

state as required for healthy GCB-cell function. 

Histone K4MTs and DMs 

Genes encoding methyltransferases for Lys-4 accumulate in Q2 (mainly in spot ‘J’) thus 

resembling the profiles of a series of K27MTs and especially K27DMs (see Figure 31b and 

c for comparison). This region also contains KMT2B (MLL2) frequently carrying a loss of 

function mutation in about 30% of DLBCL and 90% of FL patients [142,167]. Down-regu-

lation of this gene is indeed observed in lymphomas (Figure 31c). KMT2B is assumed to 

act as a central tumor suppressor [142] and to de-activate TrxG-related genes. Another 

gene of the MLL-group, KMT2A (MLL) shows a virtually identical profile suggesting similar 

function. KMT2A is targeted by chromosomal translocations deactivating this gene on  

Chr 11q23 in lymphomas [168]. 

K4 modifying enzymes are depleted in Q3 and partly enriched in Q1 in sharp contrast 

to K27 modifiers, reflecting the partly antagonistic role of both types of modifiers in either 

promoting or repressing transcription. Only KMT3E is found in Q3 (near spot ‘D’). KMT3E 

(SMYD3) knockdown causes cell cycle arrest and induction of apoptosis [169]. Hence, it’s 

up-regulation in lymphomas and especially in BL associates with the opposite effects lead-

ing to increased proliferation and anti-apoptotic ‘cancer hallmark’ activities. 

Interestingly, the H3K4 demethylase KDM5B (alias JARID1B) is among the very few 

genes found in Q4, which contains genes specifically up-regulated in DLBCL and FL. 

KDM5B acts as ‘gene body cleaner’ of near promoters and enhancers of bivalent (i.e., 

weakly transcribed) genes by demethylating their gene bodies during ESC self-renewal and 

differentiation [170]. This mechanism ensures correct expression of the affected genes. The 

H3K4 demethylase KDM1A (alias LSD1) also demethylates H3K4me3 in gene bodies, 

however, in inactive genes. Interestingly, KDM1A is located in Q2 (spot ‘B’), which roughly 

antagonistically switches with respect to Q4 (spot ‘F’) co-expressed with KDM5B. These 

results suggest that stemness genes with bivalently marked promoters co-regulate with 

KDM5B activity because their functionality is maintained by this enzyme, while genes re-

pressed in ESC differentiation co-regulate with KDM1A activity. Proper function of these 

enzymes maintains developmental genes in their bivalent-active or repressive state.  

In summary, writers and erasers of H3K4me3 tend to show an antagonistic behavior 

compared with the respective H3K27-modifiers, which corresponds to their mostly antago-

nistic effect on transcription. Up-regulation of K4DMs and deactivation of K4MTs seems to 

lead to under-activation of tumor suppressors controlling, e.g., apoptosis and proliferation. 
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Histone K9MTs and DMs 

H3K9me3 promotes CpG-methylation and gene deactivation (Figure 27). The distribu-

tion of H3K9 (de-) methylating enzymes in the DexSOM shares similarities with that of 

H3K27me3 representing the second deactivating mark considered here (compare Figure 

31b and d). Particularly, K9MTs accumulate in Q3 (spot ‘D’) being up-regulated in lym-

phomas and especially in BL. Note that part of the modifiers (e.g., EZH2/KMT6) affect 

both H3K9 and H3K27. Interestingly, K9DMs tend to occupy a wide area in the map 

ranging from Q3 (spots ‘C’) over Q2 (especially spots ‘B’ and ‘J’) to Q1 (spot ‘I’) thus 

showing activation (Q3) and deactivation (Q1 and Q2) in lymphomas compared with  

B-cells (see also the profiles in Figure 31d). For example, KDM4D (Q3) demethylating 

H3K9me3 [171] specifically up-regulates in BL. Other members of the KDM4-family—

KDM4B (spot ‘J’), KDM4A and KDM4C (spot ‘I’)—are deactivated in lymphoma thus pre-

sumably promoting H3K9me3 and DNA CpG methylation. Contrarily, these enzymes are 

overexpressed in other cancers such as breast, colorectal, lung and prostate cancer be-

cause they are required for efficient cancer cell growth [172,173]. KDM4C shows the most 

pronounced effect among them, being active in B-cells and MM, on intermediate level in 

GCB-cells and on lowest level in DLBCL, thus suggesting a certain role in DNA-hypermeth-

ylation observed in lymphomas. The activity of this enzyme clearly anti-correlates with the 

energy metabolism possibly due to TF regulation via SREBP1 and/or intermediates of the 

TCA cycle inhibiting its activity (see below). 

Histone K36MTs and DMs 

Part of the KDM4-family also demethylates H3K36me3 thus activating expression ac-

cording to the histone code because of its role in transcriptional elongation. This dual 

function is thought to repress aberrant transcription [174]. H3K36 marks distribute over 

the gene body and perform fine tuning of expression by interacting with RNA  

Polymerase II. They also play a role in nucleosome positioning, alternative splicing and 

exon activation [175]. Interestingly, H3K36me3 is required as reading mark for DNA re-

pair proteins by acting as chromatin switch, which makes DNA accessible for double 

strand repair [176]. For example, high levels of KMT3A (SETD2) ensure accurate homolo-

gous DNA repair in human cells [177]. KMT3A expression down-regulates in lymphomas 

and especially in DLBCL (Figure 31e, Q2, spot ‘J’) suggesting reduced potential for DNA 

repair. On the other hand, the associated demethylase KDM4A counteracting KMT3A 

shows a similar expression profile indicating a more complex effect. Other members of the 

KMT3 family (KMT3B and KMT3C) co-regulate with KMT3A thus promoting H3K36me3 

demethylation in lymphomas. In summary, K36MTs and K36DMs both accumulate in Q1 

and Q2 with homogeneous expression profiles reflecting their down regulation in lympho-

mas compared with B-cells. 
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Histone K79MT 

KMT4-mediated H3K79 di- and tri-methylation is essential for embryogenesis and hem-

atopoiesis. The sole enzyme responsible for H3K79 methylation considered here is KMT4 

(DOT1L) promoting transcription by stimulating its elongation phase [178]. KMT4 is located 

in the central zone of the map (Z) near spot ‘MM’ (Figure 31f) up-regulated only in MM 

suggesting a specific role of this enzyme in this lymphoma class. DOT1L has attracted the 

interest concerning the emergence of MLL-rearranged leukemia, where mistargeting of 

DOT1L leads to aberrant H3K79 methylation [179]. 
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Figure 31: Groupwise mapping of writers and erasers of methylation marks at CpGs and lysine 

side chains of histone subunit H3 and their expression profiles: (a) DNA, (b) H3K4, (c) H3K27, (d) 

H3K9, (e) H3K36, and (f) H3K79. The symbols and their coloring are assigned in Figure 30. Modifiers 

(de-)marking more than one lysine residue are shown several times. Note the different scales of 

ordinate-axes. The length of the red scale-bar refers to a fold change (FC) between two expression 

values of one order of magnitude. 
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4.3.4 EXPRESSION CARTOGRAPHY OF CHROMATIN REMODELING COMPLEXES 

A large fraction of modifiers discussed in the previous subsection acts in concert each 

with another and forms different kinds of functional complexes together with writers. In this 

subsection we regrouped the enzymes and complemented them with relevant writer-pro-

teins in a complex-related order to discover their expression profiles in the cohort studied. 

The overview map shown in Figure 32a reveals accumulation of the complex-related genes 

(except for PRC1-related genes) in Q2 and Q3 reflecting a further narrowing of the regu-

latory space compared with the full set of modifying enzymes (compare with Figure 30a). 

Recall that Q2 (especially spot ‘J’) collects enzymes down-regulated in lymphomas, 

whereas Q3 contains genes up-regulated in lymphomas with high expression levels in BL 

and relatively low levels in DLBCL and FL. Hence, the map reflects a dual antagonism of 

activation/de-activation patterns, namely (i) up in lymphomas and down in B-cells and vice 

versa and (ii) up in BL and down in DLBCL and FL where, however, the antagonistic mode 

is almost lacking. 
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Figure 32: Map of ingredient-genes of chromatin modifying complexes: (a) overview map, (b) 

TrxG/MLL-, (c) PRC1-, (d) PRC2-, and (e) ATP-dependent chromatin remodeling SWI/SWF com-

plexes, respectively. 

TrxG/MLL complex 

TrxG/MLL is a reader-writer complex that leads to H3K4 trimethylation and activates 

expression [162,180]. The retinoblastoma binding protein 5 (RBBP5) and ASH2L are 

conserved subunits of the MLL complex, which form a heterodimer with intrinsic methyl-

transferase activity required for methylation of H3K4 [181,182]. Expression of both com-

pounds is high in proliferative GCB-cells and BL, and low in B-cells, MM, and partly DLBCL 
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(Figure 32b). Their profiles partly diverge from that of the KMTs showing partly antagonistic 

changes. 

PRC1 complex 

The PRC1 complex stabilizes gene repression established by PRC2 beforehand (see 

below). Main compounds are chromobox homolog (CBX)-family proteins (alias heterochro-

matin protein, HP1), which are essential for heterochromatin formation and stabilization. 

Part of them (CBX2, 4 and 8) are located in Q3 and partly Q2, whereas the others (CBX6 

and 7) are found in the opposite half of the map (Q4 and Q1) revealing either up-regula-

tion in BL and down-regulation in DLBCL and FL or vice versa, respectively (Figure 32c). 

Large amounts of CBX proteins seem to serve as reservoir for heterochromatin formation to 

bind to the nucleosomes upon request and stabilize repressive chromatin states during cell 

differentiation [183]. The antagonism of CBX expression between BL and DLBCL suggests 

chromatin remodeling between euchromatin in BL and heterochromatin in DLBCL as hy-

pothesized in section 4.2.7. CBX2 binds to genes deactivated by H3K27me3 [184]. Such 

genes accumulate in spot ‘B’ together with CBX2 indicating coregulation and particularly 

deactivation in DLBCL (see next subsection). Elevated expression of CBX7 and of BMI1 (alias 

PCGF4) in DLBCL and FL (Q4) are related to aberrant regulatory programs inducing high-

grade tumor transformation and chemotherapy resistance [88]. Other compounds of PRC1 

are polycomb group RING finger (PCGF) and polyhomeotic homolog (PHC) proteins accu-

mulating in Q1 and Q2 thus indicating down-regulation in GCB-derived lymphomas. Im-

portantly, different ingredients of PRC1 fulfill different roles in chromatin condensation and 

they bind also to different genomic loci thus defining different subgroups of PRC1 [184], 

which possibly explains the different profiles of CBX and of PCGF/PHC proteins. 

PRC2 complex 

PRC2 catalyzes methylation of H3K27me3 through its ‘enhancer of zeste’ (EZH) constit-

uents (see above). Other compounds are SUZ12 and RBBP7 both required for the estab-

lishment of specific expression programs needed for differentiation of ESCs [185]. All PRC2 

compounds studied are found in Q2 and Q3 (Figure 32d), which well correspond to the 

distribution of CBX-proteins discussed above: PRC2 genes in Q2 and Q3 are de novo and 

temporarily repressed in DLBCL by H3K27me3. Afterwards they transform into permanently 

repressed heterochromatin by CBX-PRC1 binding. Note also that SUZ12 and PRC2-targets 

strongly enrich in Q1 and Q4 (see section 4.2.6), containing genes, which antagonistically 

switch compared with Q2 and Q3 genes. This suggests that PRC2- and SUZ12-targets up-

regulate in DLBCL owing to ‘over-suppressing’ their regulators. Taken together altered, sub-

type-specific expression of PRC1 and PRC2 genes is a leitmotif in lymphomas suggesting 

significant regulatory roles of PRC1 and PRC2 in development of both normal B-lymphocyte 

and lymphomas [88].  
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SWI/SWF complex 

The SWI/SWF complex belongs to the ATP-dependent chromatin remodeling com-

plexes. They remodel chromatin (and particularly the packing of the nucleosomes) to make 

DNA accessible during transcription, replication and DNA repair [186]. Notably, the in-

gredient genes of this complex accumulate also in Q2 and Q3 (Figure 32e) together with 

PRC2 and CBX-PRC1 genes. Hence, SWI/SWF genes regulate in concert with the main 

regulatory modes differentiating BL and DLBCL and partly also lymphomas and healthy B-

cells. Most of the SWI/SWF compounds are highly expressed in BL and weakly expressed 

in DLBCL, which also supports our view of extended remodeling from open euchromatin to 

closed heterochromatin between both lymphoma subtypes (see section 4.2.5). Possibly 

euchromatin is maintained in BL by high activity of SWI/SWF-compounds and low activity 

of CBX-PRC1-compounds (see above). One of the genes coding SWI/SWF-compounds, 

SMARCA4, is frequently mutated in BL [4,137]. Our data reveals a strong overexpression 

of SMARCA4 in this subtype (Figure 32e). Targets inhibited by SMARCA4 [119] are found 

in Q4 to be down-regulated in BL (section 4.2.6). 

4.3.5 DEREGULATION OF EPIGENETIC MODIFIERS GOVERNS HETEROGENEITY 

OF LYMPHOMAS 

Dysregulation of epigenetic writer-eraser equilibria diminish plasticity of B-cells 

during maturation 

In Figure 28 we discussed different scenarios of oncogenic perturbations in terms of a 

simplified scheme of epigenetic regulation. The systematic analysis of transcriptional activ-

ities of epigenetic modifiers presented in the previous subsections now enables us to com-

pare the expected with the observed changes (Figure 33a). Compared with B-cells, the 

equilibria of histone methylation reactions shifts in direction of methylated H3K9 and 

H3K27 and demethylated H3K4 if one uses the expression data as a proxy for enzyme 

activities. These shifts suggest the increase of repressed and the decrease of active promot-

ers in lymphomas accompanied by DNA hypermethylation, i.e., similar alterations as ex-

pected for EZH2 and MLL2 mutations (compare with the scenario in Figure 28b). Hence, 

the latter mutations and the expression changes of the enzymes suggest similar effects on 

DNA methylation and gene activities. 

The diversification of lymphoma data into different subtypes and healthy controls ena-

bles a refined view, for example, on the changes of enzyme expression between different 

stages of B-cell development in the GC. For some of the enzymes (e.g., KMT6/EZH2 and 

KDM6B/JMJD3) one finds similar expression levels in GCB-cells and in part of the lym-

phoma subtypes: For example, EZH2 is silenced in resting B-cells but massively up-regu-

lated in GCB-cells, which undergo rapid proliferation and immunoglobulin affinity matura-
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tion. JMJD3 shows nearly the opposite trend being highly active in B-cells but nearly inac-

tive in GCB-cells and lymphomas. A similar, although less pronounced trend is found for 

KMD6A/UTX, another relevant K27DM [159]. 

 

Figure 33: Dysregulation of epigenetic writer-eraser equilibria: (a) The expression profiles of the 

methyltransferases and demethylases of H3K9, H3K4, H3K27 and of DNA-CpGs suggest a shift of 

expression of the affected genes towards repressed and CpG-methylated promoter states. The scheme 

is redrawn from Figure 28 and supplemented by selected expression profiles of the respective en-

zymes determined from the lymphoma cohort studied. The triangles indicate the shift of the methyla-

tion-demethylation reactions in lymphomas compared with B-cells deduced from the expression pro-

files from the respective enzymes. (b) Expression profiles of MYC and of the mean total expression 

averaged over all SOM-metagenes of all samples. Total expression is consistently activated in lympho-

mas except for MM compared with B- and GCB-cells, whereas MYC is on high level in BL and IntL 

carrying genetic activating MYC defects. 

These results reflect alterations of cellular programs during lymphocyte development, 

which are accompanied or even governed by epigenetic mechanisms. H3K27 trimethyla-

tion of PcG-targets in healthy B-cells leads to cell reprogramming [187], e.g., to transform 

NB-cells into highly proliferative GCB-cells. This reprogramming potentially also includes 

H3K4 methylation, which in concert with H3K27 methylation forms bivalent promoter do-

mains. These combined histone marks are required to poise genes for activation or deacti-

vation in response to developmental and differentiation indications [188]. The resolution 

of the bivalent domains is mediated by K4DMs and K27DMs. Mutations of MLL2 and EZH2 
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genes may both perturb this equilibrium. In consequence associated regulations go awry 

and lymphomas can emerge. Perturbations in the fine balance of GCB-cell proliferation, 

differentiation and antigen exposure are assumed to lock GCB-cells in an immature and 

proliferative state, which in collaboration with other lesions induce lymphoma. 

Comparison of the transcriptional activities of the enzymes between the lymphoma sub-

types reveals subtle differences, which suggest different types and degrees of disturbed 

equilibria. In all example profiles shown in Figure 33a one sees a monotonous increase of 

the mean enzyme expression from DLBCL over IntL to BL suggesting a continuous shift of 

the histone methylation equilibria. Previously (see section 4.2.5) we presented indications 

for pronounced chromatin remodeling between BL and DLBCL affecting first of all transfor-

mations between repressed, poised and active promoter states. These changes of promoter 

states potentially ensure alternative activation of proliferative (in BL and partly IntL), inflam-

matory, and developmental (in DLBCL and partly FL and IntL) expression programs and 

they are accompanied by aberrant DNA methylation in the promoter regions of the affected 

genes. Note that H3K4 and especially H3K27 methylation can tune not only developmental 

and ‘stemness’ genes but also inflammatory processes needed to respond to external stimuli 

[189]. These different types of genes have in common that their function requires a high 

degree of plasticity for cell fate decisions. These decisions should induce different kinds of 

functional differentiation including maturation stages of the cells, their proliferative and 

metabolic activity and also the ability for adequate immune response. 

Activation of gene expression and of TCA metabolism in lymphomas associates 

with epigenetics 

Bivalent and repressed promoters are prerequisites for the plasticity of the B-cells re-

quired during their maturation in the GC. These genes can serve as hubs in TF networks 

that switch whole cascades of downstream genes either as suppressors, activators and/or 

enhancers of their transcriptional activity. In consequence, suppression of anti-proliferative 

programs and/or activation of inflammatory processes is assumed to govern molecular 

mechanisms in lymphomas with respect to these functionalities. Increased proliferation re-

quires up-regulation of the molecular machineries required for transcription and translation. 

In addition it needs activation of the metabolism delivering the energy needed for these 

processes as indeed observed in BL and IntL [91]. 

To judge this overall balance we calculated the mean total expression level of each 

sample using the metagene expression data obtained in our SOM analysis. The mean 

sample expression clearly reveals a bimodal distribution with high expression levels in GC-

derived lymphomas on one hand and with low expression levels in healthy B- and GCB-

cells and in MM sharing similar expression signatures with B-cells (Figure 33b). This result 

clearly supports the view that malignant transformations from B- and/or GCB-cells into GC-

derived lymphomas are paralleled by the massive upregulation of the transcriptional activ-

ity in the cells. Interestingly, the profile of total expression anti-correlates with the expression 

profiles of genes located in spot ‘I’ and particularly with that of KDM4C shown in  
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Figure 34a. This result suggests that total gene expression in lymphomas and B-cells is 

related to the TCA-energy metabolic activity, which in turn couples with the expression of 

epigenetic modifiers and particularly with KDM4C demethylating H3K9me3. The low level 

of KDM4C in lymphomas (except for MM) promotes trimethylation of H3K9 and recruitment 

of DNMTs, which are on high level in lymphomas (see DNMT1 in Figure 31b). In final 

consequence, one expects increased CpG-methylation in agreement with the scheme in 

Figure 33. 

On the other hand, our data indicates subtle differences of the expression of a series of 

genes between B- and GCB-cells. Particularly, GCB-cells show higher total expression (Fig-

ure 33b) and higher activity of KEGG-TCA- and NADPH-related genes compared with B-

cells (Figure 34c). This difference is possibly governed by a shift of the H3K9-methylation 

equilibrium, which suggests also changes in DNA promoter methylation (Figure 33a) of 

genes affecting the energy metabolism. We indeed identified differential methylation pat-

terns between B- and GCB-cells, where increased methylation is found for PRC2-targets 

and repressed bivalent chromatin states in GCB-cells (see section 4.2.5). This result sug-

gests that chromatin remodeling in the GC switches the state of metabolic activity between 

GCB and B-cells. 

 

Figure 34: TCA-cycle-related epigenetic compounds: (a) Overview map and profiles of histone 

JmjC- and DNA TET-demethylases; (b) Expression profiles of genes coding for TCA-related enzymes 

and (c) Gene set enrichment profiles of GO-gene sets related to TCA. 

We considered also another possible mechanism of global activation of transcription. 

Particularly, MYC can act as a universal amplifier of gene expression by hyper-activating 

genes via transcriptional pause release [190,191]. In consequence genes once activated 

by other mechanisms can be expected to become hyper-activated due to aberrant  
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MYC-overexpression. The expression profile of MYC (Figure 31b) however considerably 

differs from that of global expression. MYC is on high level in BL and to a less degree also 

in IntL compared with DLBCL and FL, mainly due to genetic defects amplifying the MYC 

gene in BL and part of IntL. TCA metabolic activity better associates with the global transcrip-

tional level in GC-derived lymphomas, suggesting mutual relations and possible conse-

quences for epigenetics as discussed above. 

Asymmetric activation of methyl-writers and -erasers 

Our study clearly shows that the expression of nearly all enzymes considered alters 

markedly between the lymphoma subtypes. For a holistic view we make use of the fact that 

SOM cartography maps the genes in an organized way. The structure of the map provides 

information about the underlying regulatory net because the arrangement of spots reflects 

their mutual co-variance structure (Figure 29c). We assigned the location of the epigenetic 

modifiers in the map to the respective spots (see Table 3), and with a more coarse resolution 

to the quadrants Q1 to Q4. Interestingly, we found strong depletion of epigenetic modifiers 

in Q4 opposed by their enrichment in Q2 and particularly also in Q1 and Q3 (Figure 30). 

In the next step we rearranged the network of expression modules to better resolve its 

covariance structure (Figure 35). It clearly reveals a ‘backbone’ of mutually correlated mod-

ules, which sequentially connects spots from Q1 to Q3. A second backbone is formed by 

correlated spots mostly located in Q4 and partly in Z (spot ‘MM’) and Q3 (‘IM’). It forms 

an almost separated entity connected via anti-correlated edges (in red) from the first, main 

backbone. The spots and thus also the respective quadrants contain co-regulated genes 

specifically up-regulated in different subtypes as indicated in Figure 35. Importantly, almost 

each of the regulatory modes also affects a group of epigenetic modifiers. In other words, 

(de)regulation of epigenetics covers the whole transcriptional landscape of lymphoma. 

Moreover, the epigenetic modifiers enrich within the spot clusters when compared with the 

total number of genes in the spots (Fishers exact test: p  3.710−6). Hence, epigenetic 

modifiers are affected by (de-)regulatory effects with higher probability than expected by 

chance. 

The network can be decomposed into a subnet, which mainly refers to genes that an-

tagonistically switch between BL on one hand and DLBCL/FL on the other hand. Interest-

ingly, this subnet accumulates methyltransferases in Q3 that tend to repress gene expres-

sion of their target genes leading to antagonistic expression profiles in Q4 (the detailed 

assignment of enzymes to each of the spots is given in supplementary material of [192]). 

The imbalance between the gene expression of methyltransferases and demethylases be-

tween Q3 and Q4 can be rationalized partly by the requirement of maintenance methyla-

tion of DNA-CpG and histone methylation marks after cell division and DNA replication, 

which requires high activities of methyltransferases. The question whether upregulation of 

KMT and DNDM expression in the highly proliferative subtypes BL and partly IntL ensures 

maintenance of DNA and histone methylation patterns or whether it leads to progressive 

loss of methylation requires further studies. 
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Figure 35: Asymmetric activation of methyl-writers and -erasers: (a) Network of expression modules 

governing lymphoma heterogeneity. The nodes refer to the spot clusters extracted from the SOM 

analysis (for functional assignments see section 4.2.1.3). Green and red edges indicate positive and 

negative correlations with |w| > 0.3 using the weighted topological overlap correlation measure 

(see [69] for details concerning weighted topological overlap). A ‘backbone’ of correlated modules 

can be assigned to the Q1–Q3 quadrants of the SOM used to map enzyme activities. Accumulation 

of different types of modifiers and complexes in Q1–Q3 is shown in the right part. Q4 is almost 

depleted from modifiers. A detailed list of the modifiers found in each spot is given in supplementary 

material of [192]. (b) The DLBCL/BL and MM/IntL subnets explain the expression changes of three 

different groups of genes identified in section 4.2.6 (see text). 

Figure 35b illustrates this antagonism between BL and DLBCL using a triangular scheme 

of lymphocyte development and lymphoma heterogeneity. Particularly the K27MTs in Q3 

are expected to inhibit PRC2-targets, which indeed accumulate in the anti-correlated region 
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Q4. These genes were subsumed as group 1 genes in section 4.2.6, being hypermethyl-

ated and overexpressed in lymphomas compared with the controls. In addition, compounds 

of the PRC1 and SWI/SWF complexes co-regulate with these methyltransferases and their 

targets. This parallel suggests that the stabilization of repressed promoters and the open-

ing/closing of chromatin are mechanisms that change the expression patterns between BL 

and DLBCL. 

Another subnet in Figure 35a contains genes that switch between MM and IntL. It accu-

mulates methyltransferases and demethylases in Q1 that repress or activate expression. 

Most of the demethylases are JmjC-family enzymes, which are repressed by TCA products 

such as fumarate and succinate as illustrated in the right panel of Figure 35b. These deme-

thylases together with the KMTs in Q1 then either repress or activate expression of their 

targets giving rise to group 3 and group 4 genes as genes that antagonistically change 

their expression between Q1 and Q4 (see section 4.2.6). These gene groups are enriched 

in ‘developmental regulators’, genes related to ‘immune response’, ‘PRC2-targets’ and also 

‘CIMP/GCIMP’ genes hypermethylated in colon and brain cancer, respectively. 

Both subnets overlap in Q2 collecting most of the epigenetic modifiers including acti-

vating and repressing ones without clear preference (Figure 35a). This overlap region con-

tains modules that switch expression between (GC)B-cells and lymphomas. We hypothesize 

that the underlying modes regulate transcriptional programs differentiating between 

healthy B- and GCB-cells. Other enzymes localize near spots ‘H’ and ‘MM’ referring to 

early and late stages of B-cell maturation, respectively [114]. 

In summary, network analysis of the epigenetic modifiers identifies two subnets related 

to differential expression between BL and DLBCL, and between MM and IntL subtypes, 

respectively. The former subnet is governed by methyltransferases upregulated in BL and 

repressing transcription of their target genes. The latter one contains demethylases, which 

are presumably under metabolic control and which can activate and/or repress their  

targets. 

4.3.6 CONCLUSION 

Lymphomas show a very diverse pattern of transcriptional activity of histone and DNA 

methylating and demethylating enzymes and of associated reader complexes. Basic epi-

genetic functions in healthy B-cells seem to ensure a high level of plasticity for cell fate 

decisions between biological functions, such as proliferation, immune response and differ-

entiation that sequentially switch on and off during B-cell maturation in the GC. Repressed 

and poised promoter states of key regulatory genes seem to play a pivotal role in this 

process. The fine balance between histone modifications activating or repressing transcrip-

tion is governed by methylation equilibria of lysine histone side chains and of DNA CpGs. 

In lymphomas this balance becomes disturbed in a subtype-specific fashion leading to 

deregulations of functional programs, which, in final consequence, induce  

lymphomagenesis. Driver mutations directly affecting epigenetic modifiers, such as EZH2 
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and MLL2, represent one type of initial events causing malignant transformation in lympho-

cytes [142]. Another option can be seen in the massive upregulation of the energy metab-

olism in the cell and metabolic coupling with epigenetics, where metabolites act as cofac-

tors of JmjC-type demethylases. Finally, also indirect effects, e.g., if disturbed gene regula-

tions affect epigenetic modifiers with downstream consequences for the epigenome are 

possible. 

The main result of our systematic study is the finding that the expression levels of nearly 

all 50 enzymes studied markedly change between the sample-classes considered. Lym-

phoma biology apparently associates with deregulation of large parts of the epigenetic 

machinery of the cell. Preliminary results on enzymes affecting histone marks other than 

methyl groups, such as acetyl groups, support this view. Hence, understanding of epige-

netic deregulation in lymphoma must go beyond simple schemes using only a few modes 

of regulation. We showed that the systematic ‘cartography’ of epigenetic modifiers onto 

the expression landscape of a disease using SOM machine learning as the basic technique 

enables a holistic view on the heterogeneity of (de-) regulation by epigenetic modifiers. A 

comprehensive, data driven network analysis provided indications that (de-) regulation of 

epigenetic enzymes is associated with virtually all modes of transcriptional regulation iden-

tified in lymphomas. 

On the other hand, our network analysis showed that BL and DLBCL differ by the imbal-

ance of repressive and poised promoters, which is governed first of all by methyltransfer-

ases and to a less degree by demethylases. The underrepresentation of demethylases in 

this regulation has the interesting consequence that in DLBCL only a small amount of mod-

ifying enzymes becomes upregulated, whereas BL is characterized by massive activation 

of modifiers. 
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Glioblastoma multiforme (GBM), the most frequent incurable brain tumor with an aver-

age survival time of approximately one year is a heterogeneous disease due to its re-

sistance to therapeutic approaches [193]. Moreover, the molecular foundations of lower-

grade gliomas (LGGs, WHO grade II and III) remain less well characterized than those of 

their fully malignant grade IV GBM counterpart. 

Based on gene expression data derived from 200 GBM patients four subclasses termed 

Proneural, Mesenchymal, Neural and Classical were defined [61]. The Proneural class has 

been associated with mutations of PDGFRA (platelet derived growth factor receptor ) or 

IDH1 while EGFR (epidermal growth factor receptor) was found mutated in Classical and 

NF1 in Mesenchymal subtype [194]. Later on the Proneural cases have been further di-

vided into GCIMP (glioma-CpG island methylator phenotype)-positive and -negative de-

pending on their IDH1 mutation status, with the former ones showing better outcomes. 

Also for the genesis of GBM corrupt epigenetic regulation plays a crucial role. For 

instance promoters of CDKN2A, RB1, PTEN, TP53 and MGMT have been reported to show 

hypermethylation in GBM cases. Regarding DNA methylation data Sturm et al. [62] de-

fined 5 GBM classes, that showed a strong association with age of the patients: In young 

patients mutations of H3F3A (coding for histone H3.3) was reported, more precisely those 

mutations, which lead to amino acid substitutions at K27 (median age 10.5 years) or G34 

(18 years) were termed K27 or G34 subclass, respectively. They are age-wise followed by 

RTKI ‘PDGFRA’ (36 years), IDH (40 years) and RTKII ‘Classic’ (58 years) subtypes. The 

names for RTKI ‘PDGFRA’ and RTKII ‘Classic’ classes were chosen according to amplifica-

tion of PDGFRA and EGFR (compare expression subgroups), respectively. 
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This section is based on the following 3 scientific publications: 

 

Hopp, L., Wirth, H., Fasold, M., & Binder, H. (2013). Portraying the expression land-

scapes of cancer subtypes: A glioblastoma multiforme and prostate cancer case study. 

Systems Biomedicine, 1(2). 

Hopp, L., Willscher, E., Löffler-Wirth, H., & Binder, H. (2015). Function Shapes Con-

tent: DNA-Methylation Marker Genes and their Impact for Molecular Mechanisms of 

Glioma. Journal of Cancer Research Updates, 4(4), 127-148. 

Hopp, L., Löffler-Wirth, H. , Galle, J. , & Binder, H. (2017). Combined portrayal of 

gene expression and DNA methylation landscapes disentangles modes of epigenetic 

regulation in glioma. In Preparation. 

5.1 GENE EXPRESSION LANDSCAPE OF GLIOBLASTOMAS 

We apply the SOM pipeline to gene expression profiles of a glioblastoma multiforme 

cohort in order to characterize the specifics of the genome wide expression landscapes in 

different subtypes and functionally interpret those using SOM portraying, similarity analysis 

and enrichment techniques. We are furthermore interested to detect possible outliers. As 

given in Verhaak et al. [61], the 164 samples were assigned to Mesenchymal (MES), 

Proneural (PN), Neural (NL), Classical (CL) GBM-subtypes and to normal healthy brain 

(NOR) for comparison. For details concerning the cohort and preprocessing of the data 

see section 3.1 and supplement section 7.1.5. 

5.1.1 SOM PORTRAITS 

In Figure 36 a gallery of exemplary expression portraits of glioblastoma multiforme 

tumors is shown. The expression portraits in logFC-scale reveal a handful of over- and 

underexpression spots, which selectively characterize different cancer subtypes such as 

MES, PN, NL and CL subtypes of GBM. One observes either relative stable and consistent 

spot-patterns (e.g. for MES- and PN-samples) or relatively heterogeneous and volatile pat-

terns (e.g. for the CL- and NL-samples). 

Mean SOM-portraits of each class were calculated, amplifying consistent class-specific 

features. For example, the MES-GBM subtype and normal brain tissue are characterized 

by two spots in opposite corners of the map, one of which being overexpressed and the 

other one being underexpressed in MES- and vice versa in NOR-samples. These class-

specific spots collect highly populated, variable and resolved metagenes (see supplemen-

tary material of [69]). The mean portraits of the other three GBM-subtypes are more diffuse: 

The PN-, CL-, and NL-subtypes are characterized by two or three specific spots per subtype. 
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Figure 36: SOM gallery of glioblastoma multiforme subtypes: The small mosaic images refer to 

selected individual brain samples assigned to four GBM-subtypes and healthy brain tissue (normal). 

The large images represent the subtype mean SOM portraits. A complete gallery of all sample por-

traits is available in supplementary material of [69]. 

5.1.2 SAMPLE DIVERSITY ANALYSIS SUPPORTS FOUR-SUBTYPE CLASSIFICATION 

In the 2nd level SOM the samples of the four GBM subtypes accumulate in different, well 

separated regions of the map (Figure 37a and b). This result supports the specification of 

subtypes taken from ref. [61]. The ten normal brain tissue samples occupy a very narrow 

area in the top right corner of the map. Their portraits most closely resemble that of the NL 

subtype: Both mean portraits show a common overexpression spot in the bottom left corner, 

which is not present in the mean portraits of the other GBM-subtypes. 

As a complementary method, ICA was applied to the SOM portraits of all samples of 

each cancer subtype. The three dimensional and two dimensional ICA-plots of the GBM 

study are shown in Figure 37c and d, respectively. The samples are similarly distributed in 

ICA-space as in the 2nd level SOM. Additional information can be extracted from the dis-

tribution of the cancer subtypes along the independent component axes IC1, IC2, and IC3. 

The GBM-subtypes mainly arrange in the IC1/IC2-plane whereas the NOR-reference sam-

ples are separated away from most of the cancer samples in direction of IC3 axis. The 

MES- and PN-subtypes systematically differ in their IC2-coordinate whereas distinction of 

NL- and CL-subtypes in their IC1-coordinate can be observed. Hence, the former and the 

latter two subtypes are obviously characterized by two sets of genes, which change inde-

pendently between the two pairwise combinations of subtypes. These subtype-specific fea-

tures, in turn, are mostly independent of the features, which differentiate between cancer 

and normal samples along IC3. Also part of the NL-samples varies in direction of this 

component reflecting the partly similar expression pattern of NL- and NOR-samples. 
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Figure 37: 2nd level SOM and ICA similarity analysis of GBM cancer subtypes: (a) The position of 

each GBM-sample is marked by the respective 1st level SOM image. Samples of the same GBM-

subtype are connected by lines drawn to the centroid of the respective class. (b) shows essentially 

the same 2nd level SOM as in panel a. The mean regions occupied by the samples of each of the 

four subtypes are illustrated by the colored polygons. The mean SOM portraits of each GBM-subtype 

are located in the center of the respective polygon. The four GBM-subtypes occupy roughly the four 

quadrants of the map whereas the 10 normal tissue samples aggregate into one tile in the top-right 

corner of the map. (c) The three-dimensional distribution of samples is shown in the space spanned 

by the three leading independent components IC1 – IC3. (d) The projection of the GBM-subtypes 

into the IC1/IC2-plane. 

The MST- and especially the CN-plots of the GBM-subtypes (Figure 38a and b) reveal 

similarities between the subtypes, which are less evident in the 2nd level SOM: For example, 

the NL and PN subtypes share more similarities with the NOR-reference samples than the 

CL- and MES-subtypes, which on the other hand, are relatively similar. Note also that the 

PN- and MES-samples accumulate within compact clusters whereas the CL- and NL-clusters 

are fuzzier. These subtypes form a continuum between the MES- and PN-forms, which dis-

tribute along two separate branches. The CN forms a ‘donut-like’ structure composed of 

alternating compact and fuzzy clusters. The latter ones refer to intermediate NL- and CL-

subtypes ‘linking’ the MES- and PN-subtypes in the compact clusters. 

The more localized MES- and PN-subtypes in the phylogenetic cluster tree visualization 

(see Figure 38c) tend to aggregate into separate branches whereas the intermediate NL- 

and CL-subtypes again occupy diffuse branches in between. The dendrogram of GBM 

reveals that the NL-samples group along a separate branch together with the NOR-samples. 
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Figure 38: Similarity analysis of GBM: (a) The MST is shown in the left part together with mean 

SOM portraits of each subtype. (b) The middle and (c) right part show the CN and phylogenetic 

cluster tree, respectively. 

5.1.3 CLUSTERS OF CO-EXPRESSED GENES 

Recall, that the most prominent features are the over- and underexpression spots formed 

by neighbored metagenes of similar profiles, which in turn represent clusters of correlated 

and thus potentially co-regulated genes strongly over- and/or underexpressed in a subset 

of samples. Alternative options of module selections are discussed in supplementary mate-

rial of [69]. 

 

Figure 39: Overexpression spot characteristics of GBM: (a) The overexpression summary map 

collects all overexpression spots observed in the individual profiles into one map (see also section 

3.6 for details). Classes showing the respective spots are indicated in the map. (b) The overexpres-

sion spot heatmap. (c) The overexpression spot map. (d) The spot-abundance bar plot shows the 

fraction of samples of each subtype, which exhibit a given spot. For details see caption of Figure 7. 
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In the next step we analyze these spot patterns to identify differences and common 

properties shared between the cancer subtypes. Such more unique or more ubiquitous spots 

are potential candidates for extracting the functional impact of the specifics of gene activity 

in each of the cancer subtypes. Figure 39a shows the overexpression summary map of 

GBM, which collects all overexpression spots observed in the individual GBM portraits into 

one master map (see also [23]). In total, we identified 15 overexpression spots ‘A’ to ‘O’ 

in GBM, being labeled using capital letters (Figure 39c). The spot-expression heatmap in 

Figure 39b provides an overview of the subtype-specific expression in each of the spot 

clusters. For example, spots ‘G’ and partly also spot ‘F’ are selectively overexpressed in 

samples of the MES-subtype and spot ‘I’ in the NL-subtype whereas spots ‘M’ and ‘O’ are 

more ubiquitous lacking subtype-specific overexpression (see also spot-abundance bar plot 

in Figure 39d). 

5.1.4 FUNCTION MINING: AGAIN INFLAMMATION-VERSUS-PROLIFERATION 

We applied gene set overrepresentation analysis (see methods section 3.7) and as-

signed a short notation to each of the GBM-spots (see Figure 40a). Selected spots of GBM 

are obviously related to processes generally associated with cancer physiology such as 

‘inflammation’ (spot ‘F’) and ‘cell division’ (spot ‘N’). Panels c and d of Figure 40 depict 

the GSZ-expression profiles and the population maps of the gene sets ‘inflammatory re-

sponse’ and ‘cell division’ for GBM data. The profiles clearly reflect the fact that the re-

spective processes are selectively activated and de-activated in a subtype-specific fashion: 

‘Inflammatory response’ in the MES and ‘cell division’ in the PN subtype. The respective 

gene set population maps reveal that the associated genes accumulate in the regions of 

spots overexpressed in the maps of the different subtypes (compare with Figure 41). 

Figure 40b shows the heatmap for gene sets referring to the GO-term ‘biological pro-

cess’ enriched in spots of the GBM-samples. The one-way clustering separates the gene 

sets in agreement with their spot associations: For example, spot ‘F’ mainly collects gene 

sets overexpressed in the MES- and also the NL-subtype whereas the adjacent spot ‘G’ 

contains gene sets overexpressed in the MES- and CL- subtype. The heatmap also shows 

that gene sets from spot ‘K’ tend to be overexpressed in healthy brain samples and the NL- 

and PN-subtypes as well. It further assigns gene sets overexpressed in the PN-subtype to 

spot ‘N’. 

In addition to one-way clustering heatmaps, we also performed two-way clustering of 

gene sets and samples to detect inconsistencies in the class labeling of the samples. The 

resulting heatmaps for the literature gene sets (GSEA2) reveal that the cancer-related gene 

sets essentially form two clusters with strong enrichment in spots highly overexpressed in 

the MES subtype (spot ‘F’ and ‘G’) and the PN subtype (spot ‘N’), respectively. This seems 

to reflect common gene activation patterns present in different tumors associated with either 

‘inflammation’ (for MES) or ‘cell division’ (for PN). See supplementary material of [69] for 

supporting results and complementary analyses. 
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Figure 40: Gene set enrichment analysis of GBM: (a) The spot summary map. (b) The overrepre-

sentation heatmap of gene sets referring to the GO-term biological process. (c) and (d) overexpres-

sion profile and map of the gene sets ‘inflammatory response’ and ‘cell division’, respectively. See 

legend of Figure 8 for details. 

5.1.5 SUBTYPE-SPECIFIC DIFFERENTIAL EXPRESSION DISENTANGLES 

HETEROGENEITY OF TRANSCRIPTIONAL PROGRAMS 

Most of the spots observed in the studied cancer portraits appear in multiple cancer 

subtypes with non-negligible abundance (see Figure 39d). Such non-specific spots are 

mostly filtered out by calculating the mean SOM-portrait of each cancer subtype. The 

remaining overexpression spots in the mean portraits are candidates for sets of genes, 

which are specifically overexpressed in the respective subtype.  

Genes, which are specifically and significantly overexpressed in each of the four GBM 

subtypes have been determined independently using SAM (significance analysis of 

microarrays, [195]) where each subtype was compared to the other three subtypes. We 

treated the obtained signature genes as ‘gene sets’ and calculated their GSZ profiles in the 

samples studied (leftmost panel in Figure 41). The profiles in confirm the fact that, indeed, 

each signature set is specifically overexpressed in the respective subtype and underex-

pressed in the remaining three subtypes of GBM. The NL-specific signature shows 

overexpression also in the healthy brain tissue, which was not taken into account extracting 

specific signature genes in [61].  

Figure 41 also shows the overrepresentation population map for each of the signature 

sets. They clearly reveal that genes of each of the sets accumulate in the spots of subtype-
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specific overexpression, which were identified using the mean maps, and with higher 

specificity, the difference maps (for details see section 3.8).  

Hence, the mean and difference potraits allow to extract specific signature spots for 

each cancer subtype. Spot-specific significance analysis then allows extracting lists of 

signature genes from each of the spots [195]. Interestingly, the signature genes of the PN- 

and CL-subtypes distribute over more than one, mostly well separated overexpression spot. 

They obviously belong to different functional modules of co-expressed genes. 

 

Figure 41: Subtype-specific genes of GBM. From the left to the right: (i) GSZ-expression profiles of 

the subtype-specific gene sets taken from [61]; (ii) the respective gene set population maps; (iii) 

subtype-related mean and (iv) difference portraits. For details see legend of Figure 9. 

5.1.6 MAPPING GLOBAL TWO-GROUP DIFFERENTIAL EXPRESSION MASKS 

DETAILS OF GLIOMA TRANSCRIPTION 

A recent study identified 1,236 significantly differentially expressed genes in a GBM-

versus-normal brain difference analysis of TCGA samples without special emphasis on 

GBM subtypes [196]. We extracted three sets from the ranked list of these genes (425 

strongly and 426 less strongly downregulated genes and 376 upregulated ones). They 

accumulate essentially in spots ‘K’ (downregulated genes) and ‘C’ and ‘N’ (upregulated 

genes) of our SOM (see the gene set population maps in Figure 42a). This spot-pattern 

closely agrees with the strongest over- and underexpression spots observed in the images 

of normal brain tissue and in the mean portraits averaged over all GBM samples studied 
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(compare the gene set population maps and the mean portraits of normal brain and of all 

GBM samples shown in Figure 42a and b, respectively). Note however that the expression 

levels of the mean NOR- and GBM-maps are strongly antagonistic, i.e. strongly upregu-

lated spots in the NOR-portrait become strongly downregulated in the GBM-portrait and 

vice versa. This symmetry of the expression landscapes simply reflects the fact that the 

expression amplitudes of the NOR-samples largely exceed that of the GBM-samples. The 

gene sets extracted thus cover only a small part of the expression modules detected in our 

SOM analysis (Figure 42c). Especially spots of weak differential expression but of poten-

tially high impact for the different GBM subtypes remain undetected. The GSZ profiles 

reveal that the selected genes only weakly differentiate between the MES-, PN-, and CL-

subtypes (Figure 42). The profiles also show that the NL-subtype partly follows the expres-

sion pattern of normal brain. 

These results illustrate the benefits of our portraying approach: It provides a detailed 

view on the compartmentalization of the expression landscape into different modules, 

which allows their separate analysis in terms of biological function. One might easily miss 

such details when using the simple differential disease-versus-normal approach. 

 

Figure 42: Differentially down- and up-regulated genes in a GBM versus normal study: (a) GSZ 

profiles and the population maps of the genes taken from Dong et al. [196] and split into three sets. 

(b) The mean logFC and difference maps of normal brain samples (first row), and of all GBM-samples 

studied (second row). (c) Selected spots and their functional context. 
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5.1.7 CATEGORIZING THE GENE SETS: GO-TERMS, CANCER-, AND CELL TYPE- 

RELATED GENES 

Neighboring spots of strongly correlated metagene expression profiles can be assigned 

to related BPs: As shown in Figure 40, the ‘inflammation’ spot ‘F’ in GBM is close to spots 

assigned to ‘wound healing’ and ‘angiogenesis’; the ‘cell division’ spot ‘N’ is close to spot 

‘O’ labeled ‘innate immunity’, where ‘stress activated signaling’ was the most strongly 

overrepresented gene set. Note that, although related, these neighboring spots are usually 

characterized by subtle differences in their expression profiles and presumably also by fine 

differences in the functional context of the overrepresented gene sets. In Figure 43a we 

provide GSZ profiles and population maps of a series of gene sets selected from the GO-

terms ‘biological process’ (BP), ‘cellular component’ (CC) and ‘molecular function’ (MF), 

which change in concert with ‘inflammation’ and ‘cell division’. The population maps 

clearly reveal these subtle differences: For example, GSZ profiles of both ‘immune re-

sponse’ and ‘wound healing’ change together with ‘inflammation’ and accumulate in ad-

jacent but different regions of the maps. The population maps of ‘angiogenesis’ and, to a 

lesser degree, of ‘wound healing’, give rise to the overexpression of the respective GSZ 

profiles in CL, while underexpression was observed for other ‘inflammation’-like gene sets.  

 

Figure 43: GSZ profiles and population maps of a series of gene sets in GBM. (a) Selected profiles 

and population maps of gene sets acting in concert with ‘inflammatory response’ in GBM. Regions 

of overrepresentation in the maps are indicated by red dotted ellipses. The letters refer to the respec-

tive overexpression spots. (b) Enrichment of cancer sets in GBM: Sets up- and down-regulated in 

Burkitt’s lymphoma [59]. 
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The results so far show that GBM splits into subtypes differing by the antagonistic acti-

vation of BP related to ‘inflammation’ and ‘immune response’ vs. processes related to ‘cell 

division’ and ‘transcriptional and translational machinery’ (namely MES vs. PN). We ob-

served a similar separation of subtypes related to ‘inflammation’ and ‘cell division’ in  

B-cell lymphoma (BL, see section 4.1.4). In order to evaluate the degrees of similarity be-

tween both GBM and BL cancer entities in this respect, we studied the enrichment of sig-

nature gene sets derived from BL in GBM (Figure 43b): It turned out that the two signature 

gene sets up- and downregulated in the BL subtypes accumulated in spots ‘F’ and ‘N’ 

(Figure 40), which are overexpressed in the MES and the PN subtypes, respectively. This 

result suggests a more generic nature of the underlying processes related to ‘inflammation’ 

and ‘cell division’ in cancers. 

Gene sets related to ‘innate immunity’ are found overrepresented in spot ‘O’ of the 

GBM map, which is overexpressed in the CL- and PN- and partly also in MES-subtypes. 

The intermediate CL- and NL-subtypes of GBM are characterized by spots ‘A’ and ‘O’, ‘C’ 

(CL-subtype) and ‘A’, ‘I’, ‘J’, and partly ‘K’ (NL-subtype, Figure 39). The latter spot ‘K’ is 

also characteristic for healthy brain tissue. It is therefore not surprising that it contains 

overrepresented populations of gene sets related to ‘nervous processes’ such as ‘synaptic 

transmission’ and ‘neurotransmitter secretion’ (data not shown here). The NL-subtype how-

ever differs from the healthy brain tissue mainly by the appearance of spots ‘I’ and ‘J’ (see 

Figure 41), which contain overrepresented gene sets related to ‘translation’, such as  

‘ribosome’ and ‘mitochondrion’. The CL subtype-specific spot ‘C’ is assigned to ‘angiogen-

esis’, and thus it reflects a common cancer process.  

We further analyzed the relationship between gene sets and the cell type or tissue 

specificity in order to understand the biological meaning of the GBM subtypes. We col-

lected the gene set enrichment level from the brain transcriptome database [197] as pro-

posed before [61]. Mature cell types such as neurons, oligodendrocytes, astrocytes, and 

cultured astroglial cells may be of interest for their primary associations with tumor subtypes 

and as inherent signatures retained from progenitor cells. In agreement with earlier studies 

[61], we found subtype-specific enrichment of signatures: ‘Oligodendrocytic’ (in PN and 

NL), ‘astrocytic’ (in CL and NL), ‘neuronal’ (in NL), and ‘cultured astroglia’ (in MES and 

partly CL); see supplementary material of [69]. We also tested signatures for ‘developing 

astrocytes’ (enriched in PN and partly NL) and ‘nervous tissue’ (enriched in NL and NOR).  

Our SOM mapping and profiling of the different signature sets, however, provides a 

finer assignment to the different GBM subtypes: The ‘oligodendrocytic’, ‘neuronal’, and 

‘nervous system’ genes accumulate preferentially in spot ‘K’, which is overexpressed in 

normal brain tissue. Its key property in GBM is the antagonistic upregulation in NL and 

downregulation in CL subtypes. In contrast, the ‘astrocytic’ signature genes accumulate in 

spot ‘A’, with the corresponding upregulation in NL and CL subtypes and downregulation 

in MES and PN subtypes. Hence, the co-located spots ‘A’ and ‘K’ can be associated with 

different regulation patterns especially in NL and CL subtypes, while these can be associ-

ated with different cell types. Interestingly, the ‘astrocyte’ signature strongly resembles that 
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of the ‘aging brain_DN’ set of genes, which reduce their activity in the aging cortex [198] 

and the GO-term ‘negative regulation of cell death’. The signatures of ‘nervous tissue’ and 

‘developing astrocytes’ are enriched in spots ‘K’ and ‘O’, respectively. They similarly re-

spond in an antagonistic up-vs-down fashion in PN and MES subtypes. Note that spot ‘O’ 

was associated also with BP related to ‘cell division’ such as ‘mitosis’, ‘DNA repair’, and 

undifferentiated cancer. Finally, while the signature genes of ‘cultured astroglia’ also accu-

mulate in spot ‘O’, they are found primarily in spots ‘G’ and ‘F’, showing upregulation in 

the MES subtype and antagonistic downregulation in normal brain tissue. 

5.1.8 CONTAMINATIONS, OUTLIERS AND MISCLASSIFIED SAMPLES IN GBM 

Possible reasons for the occurrence of contaminations are given in section 4.1.5. In-

spection of the individual SOM portraits combined with similarity and gene set enrichment 

analyses provide a framework of hand-in-hand options to detect and to correct strongly 

biased samples. 

In Figure 44 we re-plotted the CN similarity plot of GBM together with selected individ-

ual portraits of samples, which are located either outside of the main clusters and/or within 

an apparently ‘false cluster’. For example, samples no. 326 and 156 originally assigned 

to the MES- and PN-subtypes are found within the ‘wrong’ area of the net near the green 

PN- and yellow MES-cluster, respectively. Comparison of the portrait of sample 156 (and 

partly 321) with the mean portraits of the MES-and PN-subtypes reveals that its expression 

landscape obviously represents a combination of both expression signatures where the 

MES-signature more heavily contributes to the mixture than the PN-signature in contradic-

tion to the original class assignment taken from [61]. Another heterogeneous group of 

samples (e.g. no. 290, 152, 358) form a set of outliers near the blue CL-cluster. Inspection 

of the respective portraits reveals that a few overexpression spots (e.g., ‘L’, ‘B’, and ‘D’) 

are obviously responsible for this behavior: They are not observed in the majority of the 

remaining CL-samples. A similar argumentation applies to outlier samples no. 326, 84 and 

87 showing strong expression of spot ‘n1’. Note also that these groups of outliers are 

mostly heterogeneous, i.e. they contain samples assigned to different subtypes.  

These ‘outlier’-spots are mostly relatively rare and unspecific for one of the GBM-sub-

types (see e.g. the abundance bar plot for spots ‘L’ and ‘D’ in Figure 39d). This result 

suggests that these features are presumably caused by contaminations of non-tumor cells 

or by treatment effects and thus they are not or not directly related to GBM. Gene set 

analysis shows, that spot ‘B’, for example, contains an enriched number of genes related 

to ‘xenobiotics’ and ‘drug metabolism’. 

Hence, misclassifications of samples can be caused by the mixing of different subtypes 

and also by outlier features, which are presumably not related to cancer, but which make 

samples of different subtypes similar. These examples demonstrate that our portraying  

approach not only detects potential outliers and misclassified samples but in addition helps  
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researchers to generate hypotheses about the origin of these effects and also to extract 

more detailed information from the data, for example, by applying spot-related functional 

analysis. 

 

Figure 44: Outliers and misclassified samples in GBM are indicated in the CN-similarity plot by 

arrows together with the respective sample portraits. The subtype-averaged mean portraits are shown 

for comparison at the left and right margins of the figure. The red circles and the letters assign the 

spots causing the partly atypical properties of the samples. 

5.1.9 CONCLUSION 

We applied the single-omics SOM method to expression profiles of glioblastoma multi-

forme to characterize the specifics of the genome wide expression landscapes in different 

subtypes of cancer. Our method simultaneously detects features, which are differentially 

expressed and correlated in their profiles in the set of samples studied. Functionally related 

genes often merge into larger aggregates, which can then be interpreted as functional 

modules. Characteristic differences between subtypes can be clearly identified and further 

analyzed using metagene profiles representing the intrinsic correlation groups.  

Summarizing, the GBM subtypes studied here can be divided into two ‘localized’ and 

two ‘intermediate’ ones. The localized subtypes are characterized by the antagonistic ac-

tivation of processes related to immune response and cell division, commonly observed 

also in other cancers. In contrast, each of the intermediate subtypes forms a heterogeneous 

continuum of expression states linking the localized subtypes. Both ‘intermediate’ subtypes 

were characterized by distinct expression patterns related to translational activity (upregu-

lated in NL) and innate immunity (upregulated in CL).  

Our case study demonstrated that analyzing gene expression landscapes in the context 

of a compendium of molecular concepts is useful in understanding cancer biology. 
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5.2 DNA METHYLATION LANDSCAPE OF GLIOBLASTOMAS 

We re-analyzed microarray DNA methylation data published in a previous study on 

pediatric and adult brain tumors and non-neoplastic controls [62] to get a detailed insight 

into the methylation landscapes of gliomas and the functional impact of sets of DNA meth-

ylation marker genes for molecular mechanisms of cancer diversity, genesis and  

progression. 

For DNA methylation the GBM adult samples were classified into five molecular sub-

types as described in Sturm et al. [62]: MES, IDH, RTKI and RTKII. The pediatric GBM split 

into two subtypes namely G34 and K27. Additionally fetal and adult controls were consid-

ered. Three expression data sets as studied in Sturm et al. [62], Hopp et al.[61] and Rei-

fenberger et al. [63] were used to establish associations with methylation data. For details 

concerning the cohort and preprocessing see section 3.1 and supplement section 7.1.6. 

5.2.1 HIGH-DIMENSIONAL DATA PORTRAYING 

For SOM analysis we used either M values (MetSOM, Eq.(4)) or centralized M values 

(DmetSOM, Eq.(5)). DmetSOM attenuates methylation changes independent of the methyl-

ation level whereas MetSOM directly considers absolute methylation levels and thus ena-

bles to distinguish highly methylated from weakly methylated genes. MetSOM has the ad-

vantage to resolve modules of co-methylated genes in more detail with higher granular-

ity [113]. For details see section 4.2.1.2. 

5.2.1.1 ABSOLUTE METHYLATION LEVELS IN GBM AND HEALTHY BRAIN (METSOM) 

In the next step, SOM data portrayal was applied to the gene-centric methylation data 

including all glioma samples and the non-neoplastic brain samples serving as reference. 

The method ‘projects’ the methylation data onto a two-dimensional grid of 40x40 pixels. 

Appropriate color-coding then visualized the methylation landscapes of each sample in 

terms of its individual methylation portrait (not shown). Figure 45a shows the gallery of 

mean portraits for all classes studied. Red and blue regions in the images refer to genes 

with high and low methylation levels of the probed CpG regions, respectively. Hence, the 

map can be segmented into regions containing genes of high and low methylation levels 

of their promoters and in regions containing genes with strongly variant and almost invar-

iant methylation levels (Figure 45b). The regions of variant and of invariant genes thus 

include regions of high and low mean methylation levels as well. 

Groups of genes with characteristic methylation profiles can be extracted from the map 

using a correlation metrics (Figure 45c). Accordingly, the methylation landscape divides 

into regions of hyper- and hypomethylated genes in almost all samples and in regions 

showing differential methylation effects between them as indicated in the figure. We cal-

culated the mean methylation level and its variance separately for each subtype using the 
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individual methylation portraits (Figure 45d). One sees that IDH, RTKII and, to a less degree 

mesenchymal tumors are globally hypermethylated with respect to the controls whereas 

G34, K27, and RTKI are globally hypomethylated. The variance of the methylation level 

reflects the coarseness of the methylation landscapes of the subtypes. The decreased vari-

ance in gliomas compared with the controls reflects smoother landscapes in the tumors with 

more balanced methylation levels between the genes on the average.  

In summary, methylation changes in gliomas comprise both, hyper- and hypomethyla-

tion in a subtype-specific fashion. SOM mapping identifies genes with different methylation 

levels and specific alterations of the methylation levels between the subtypes. 

 

Figure 45: MetSOM portrayal of the methylation landscapes of GBM subtypes: (a) SOM portraits 

of glioma subtypes and of healthy controls. (b) The methylation overview map visualizes regions of 

high (red) and low (blue) methylation levels. The methylation variance map identifies regions of genes 

showing highly variable (red) and almost invariant (blue) methylation. (c) Selected regions of the map 

show different methylation profiles among the samples. (d) Mean methylation level and variance of 

the classes studied. 
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5.2.1.2 RELATIVE (-CENTRALIZED) METHYLATION (DMETSOM) 

In the next step we trained a second SOM using centralized methylation values (Dmet-

SOM) where the mean methylation level of each gene averaged over all samples was 

subtracted from its actual methylation M value. Centralization focuses the view on methyl-

ation changes between the samples independent of the absolute methylation level of the 

genes and it improves resolution with respect to differential markers that distinguish the 

different classes [113]. The class-averaged mean DmetSOM portraits shown in Figure 46a 

are clearly more diverse than the respective MetSOM portraits shown in Figure 45a. One 

clearly identifies similar textures of the maps of non-neoplastic brain (adult and fetal) and 

mesenchymal GBM and of K27 and RTKI GBM, respectively. The similarity net in Figure 

46a more clearly visualizes the mutual similarities of individual methylation landscapes of 

the samples based on the mutual (Pearson) correlation coefficients between them, which 

were color-coded in the heatmap in Figure 46b. The classes can be roughly grouped into 

three superclusters, which we assign as ‘brain-like’ because of the only small and moderate 

methylation changes in GBM; as (hyper-) glioma CpG methylator phenotype (GCIMP) and 

as hypomethylator phenotype (CHOP) based on the global methylation drifts in GBM as 

suggested before in [62]. The brain-like and CHOP (and partly also GCIMP) groups show 

mainly anti-correlated methylation landscapes meaning that large groups of genes concert-

edly ‘switch’ their methylation levels between these groups (see the blue off-diagonal areas 

in Figure 46b).  

Note that each class forms its own cloud of samples in the similarity net, which still 

reflects its own specifics within each of the supercluster (see below). On the other hand, 

one observes a certain degree of fuzziness between the subtypes. For example, the K27 

and RTKI sample clouds partly overlap. In the supplementary material of [199] we provide 

the individual sample portraits sorted for each GBM subtype using hierarchical clustering 

trees. Part of the samples shows methylation landscapes, which can be interpreted as mix-

tures of different subtypes (e.g. of K27, RTKI, and G34) or as mixtures with healthy brain 

methylation characteristics (part of the mesenchymal and RTKII samples). The  

‘personalized’ portrayal of the samples enables the detailed assignment of these mixed 

characteristics.  

The silhouette plot in Figure 46c evaluates the robustness of class assignment for all 

samples. It reveals that the IDH, G34, RTKII, partly K27 and the controls form relatively 

robust classes whereas mesenchymal and especially RTKI are rather unambiguously as-

signed mainly due to overlapping characteristics with non-neoplastic fetal brain and G34 

GBM, respectively (see the color bar in Figure 46c, which annotates the ‘best class mem-

bership’). Note that our robustness analysis is based on gene-centric whole-genome meth-

ylation landscapes and thus it does not contradict the classification proposed in [62], which 

is based on the 8,000 most variant CpG probes. Our robustness analysis however illus-

trates the degree of fuzziness of class assignment, which reflects the mutual overlap be-

tween them and possibly also common biological factors that drive tumorigenesis.  
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Figure 46: SOM portrayal of centralized GBM methylation data (DmetSOM): (a) SOM mean por-

traits of the GBM subtypes and of the controls and similarity net of the samples studied. Samples with 

strong mutual correlation coefficients are connected by lines. The sample classes can be divided into 

three main groups as indicated. (b) The pairwise correlation heatmap visualizes the mutual correla-

tion coefficient for all pairwise combinations of samples. (c) The silhouette plot estimates the quality 

of classification of samples into methylation subtypes. Negative values indicate preference for other 

subtypes, which are assigned as color bar below. 

5.2.2 FUNCTION MINING 

The summary map in Figure 47a colors regions hypermethylated in any of the subtypes 

in red. After appropriate segmentation (methylation spot were detected analogously to 

expression modules, see methods section 3.6) we identified 12 spot-clusters each contain-

ing between nearly two-thousand and sixty single genes. Six of these spot regions labelled 

‘A’ – ‘F‘ show profiles with subtype-specific differential methylation whereas six additional 

‘satellite’ spots (‘A1’ – ‘E1’) reveal more complex profiles (Figure 47b). For example, the 

methylation profiles of GBM samples in spots ‘D’ and ‘D1’ resemble each other whereas 

methylation of the controls completely changes sign. The methylation profiles of the genes 

in most of the spots are highly correlated providing significance levels beyond p < 10-64 
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using a q2-test statistics [103,200]. Importantly, two of the satellite spots of less variant 

genes refer to high (spot ‘B1’) or low (‘E1’) methylation levels in all systems studied. In the 

following we will focus on the main spots and the latter two satellite spots. Lists of genes in 

each spot are provided in supplementary material of [199]. 

DmetSOM analysis is based on centralized M values to increase sensitivity to methyla-

tion changes relative to the mean M value of each gene. In general one however asks for 

cancer specific methylation changes relative to the healthy controls. We therefore analyzed 

difference SOM with respect to the mean methylation map of non-neoplastic brain tissue 

of adults. The differential methylation landscapes support the superclusters of brain-like, 

GCIMP and CHOP-like methylation patterns (Figure S 3). Moreover, one sees that spot 

‘A1’ is hypomethylated and spot ‘D1’ hypermethylated in all GBM compared with the 

healthy brain.  

Extended spot statistics reveals that spots ‘C’, ‘E’, and ‘F’ are highly sensitive (nearly 

each sample of the respective subtype shows this spot) and specific (virtually no other 

subtypes show this spot) as hypermethylation markers for the IDH, G34, and RTKII subtypes, 

respectively (Figure 47c). The respective areas of the map thus can be interpreted as fin-

gerprint regions as indicated in Figure 47a. The spot number distributions for each of the 

subtypes presents that most of the samples of all classes show only one or two spots (Figure 

47d). However, part of the GBM samples and especially that of the MES- and RTKI- sub-

types show up to five hypermethylation spots in parallel this way reflecting the high degree 

of fuzziness of these classes on feature level. 

Gene set enrichment analysis provides first ideas about the functional context of the 

genes in the spot modules (Table S 4). Spots ‘D’ and ‘E’ are associated with BPs already 

found in gene expression analysis of GBM such as ‘immune response’ and ‘meiosis’, re-

spectively (see section 5.1.7). For example, hypomethylation of genes from spot ‘D’ in MES 

is related to ‘immune response’. It associates with high expression levels of ‘immune re-

sponse’ genes in MES suggesting anti-correlation between DNA methylation and expres-

sion. Spots ‘C’ and ‘E’ are hypermethylated in IDH and G34, respectively. They enrich 

genes supporting the formation of the PRC2 and also functionally related genes such as 

EED- and SUZ12-targets, which control cellular development and differentiation [104]. 

These processes correlate with repressive and poised chromatin states defined by 

H3K27me3 and/or H3K4me3 histone marks in brain tissue and stem cells [201,202]. Sets 

of affected genes consequently enrich in these spots ‘C’ and ‘E’, as expected. We also find 

marker gene sets studied in previous DNA methylation and gene expression studies of 

GBM: For example, methylation markers for GBM of the GCIMP type [46] strongly enrich 

in the IDH hypermethylation spot ‘C’. Interestingly, genes from this spot are hypermethyl-

ated also in other cancers such as colorectal cancer (CIMP-type CRC) and B-cell lymphoma. 

In summary, spot-segmentation of the SOM of centralized methylation data provides 

sets of marker genes, which are specifically regulated in different glioma subtypes and 

which are well characterized in terms of previous knowledge. In the following subsections 

we will address the latter result more in detail. 
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Figure 47: Segmentation of the DmetSOM into spot modules of co-methylated genes in GBM:  

(a) The hypermethylation summary map indicates regions hypermethylated in any of the classes 

compared with any other one in red. Each of the ‘spot’ regions is labeled as indicated. Segmentation 

of the map provides defined spot regions. Their color codes the q2 significance score, which is mini-

mal for cluster ‘E1’. (b) The methylation spot profiles reveal unique hyper- or hypomethylation of 

selected classes for the six main spots labeled by capital letters. Six satellite spots show more subtle 

profiles compared with the respective main spots. (c) The spot statistics assigns the fraction of samples 

of each class that shows one of the main spots. A bar length of unity for one subtype means that all 

samples show this spot. (d) The spot number distributions show that the controls express exclusively 

one spot. Also most of the GBM samples in each subtype show only one spot. However, also GBM 

samples with three and even five spots (MES subtype) exist, reflecting the increased heterogeneity of 

their methylation landscapes.  

5.2.3 PREVIOUS KNOWLEDGE: GBM-SPECIFIC SIGNATURE SETS 

Previous DNA methylation studies on gliomas have published sets of marker genes for 

different molecular and histological subtypes [46,105,111,203,204]. We mapped them 

into the DmetSOM for analysis in terms of gene set maps and profiles (Figure 48).  



5.2 DNA methylation landscape of glioblastomas 111 

 

 

 

The genes extracted in Noushmehr et al. [46] as ‘hypermethylated and deactivated in 

GCIMP’ clearly show hypermethylation in the GCIMP IDH subtype also in our data. How-

ever one also finds increased methylation of the G34 subtype suggesting a mixture of 

mainly IDH but also of G34 signature genes. Mapping of this genes set into the DmetSOM 

indeed reveals two regions of high local densities near the signature spot ‘C’ (for IDH 

subtype) and ‘E’ (for G34 subtype).  

Christensen et al. [105] published a series of signature genes determined as hypermeth-

ylated in different groups of low grade gliomas (LGG) relatively to healthy controls includ-

ing different WHO gradings (II or III) and histological diagnoses (astrocytoma, oligoden-

droglioma, oligoastrocytoma). All our maps and profiles in Figure 48 except for one show 

mainly the IDH signature thus indicating a common methylation patterns in LGG independ-

ent of WHO grade and histological assignment. The only exception is the methylation 

signature of primary GBM, which can be interpreted as a mixture of IDH and RTKII cases 

in the respective data. Other authors found the RTKII–signature for GBM-hypermethylation 

(see the data of Martinez et al. [203] in Figure 48 and also [204]). The resulting ‘hyper-

methylation signature’ obviously strongly depends on the composition of the cohort used 

for extracting marker gene sets. This result agrees with the fact that the incidence of each 

of the three subtypes RTKII (classical), MES (mesenchymal), and IDH (proneural) in random 

adult GBM cohorts is roughly comparable [61,63]. Without stratification into these sub-

types one gets consequently a mixture of the respective signatures as observed. Note in 

this context that the signature of the MES subtype is consistently observed as ‘hypomethyl-

ated’ in GBM in a series of gene sets taken from [105,111]. Contrarily, the IDH (proneural) 

cases dominate with usually about 80% of all cases in LGGs [148]. The resulting signatures 

of different LGG strata are consequently close to that of the IDH subtype as observed. We 

will further discuss this point below in the context of expression signature genes. 

To estimate the similarity of different gene sets one usually counts the number of over-

lapping genes and represents them in terms of Venn diagrams. Note, however, that for 

example the gene set of Noushmehr et al. ‘hypermethylated in GBM’ overlaps with each 

of the ‘hypermethylated in LGG’ sets of Christensen et al. by only a few genes. The per-

centage of overlap refers to less than 10% of the total number of genes in the Noushmehr 

et al. set. On first sight this result suggests the lack of similarity between these sets. Our 

analysis using gene set mapping however provided the opposite result. We clearly found 

similar enrichment profiles and enrichment maps of the different sets. It is an important 

benefit of our method to detect similarities between different marker sets even in the case 

of a small overlap between them. Such a small overlap between different but similar sets 

can be simply rationalized by the application of conservative significance thresholds in the 

selection algorithms for marker genes. High significance levels for differential expression 

in the original data however can neglect ‘still affected’ and thus functionally related genes 

that can become significant in one but not in alternative studies. 

In summary, DNA methylation signature genes from alternative GBM studies well agree 

with our spot signatures. The IDH (proneural) methylation signature dominates in LGG 
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largely independent of WHO grade and histological diagnosis. Especially in GBM the sets 

reflect mixtures of the subtypes, which are present in the cohorts used for extraction of gene 

sets (typically IDH, classical, and mesenchymal). SOM mapping of gene sets robustly iden-

tifies similarities between different gene sets even under conditions of noisy compositions. 

Our approach outperforms overlap-measures as often used in terms of Venn diagrams. 

 

Figure 48: Mapping of methylation marker gene sets for gliomas taken from refs. 

[46,105,111,203,204]: The gene set maps show the distribution of marker genes in the DmetSOM. 

The genes accumulate in different spot areas as indicated by the red dashed frames. The GSZ profiles 

reveal subtype-specific methylation effects. Nearly all sets collecting hypermethylation marker genes 

show an IDH_UP-signature, which partly mixes with the RTKII_UP signature. Sets with very similar 

signatures are listed without showing the data. 

5.2.4 PREVIOUS KNOWLEDGE: MARKER SETS OF OTHER CANCER ENTITIES 

We previously found that GCIMP marker genes from glioma studies also differentiate 

between subtypes of B-cell lymphoma representing a completely different cancer en-

tity [113]. Vice versa, DNA methylation gene sets from previous studies for B-cell lym-

phoma [113] and for colon cancer [205] also enrich in selected spots of the DmetSOM of 

gliomas studied here (Table S 4). This result motivated us to analyze these sets more in 

detail using gene set maps and profiles as described in the previous subsection. Genes, 

hypermethylated in the CIMP-high subtype in CRC and also genes hypermethylated in 

DLBCL accumulate in spots ‘F’ and ‘C’ thus revealing mixed characteristics of the RTKII and 

IDH subtypes in gliomas (see supplement section 7.5). This agreement between different 
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cancers also extends to spots ‘A’ and ‘B’, which accumulate genes hypomethylated in G34 

gliomas, CRC and also DLBCL compared with BL, another subtype of B-cell lymphoma. 

Hence, the IDH and RTKII subtypes of GBM share similarities with the hypermethylator 

phenotypes in CRC and lymphomas. On the other hand the G34 subtype resembles the 

respective hypomethylator subtypes in lymphomas and CRC. These striking agreements 

suggest general mechanisms of aberrant DNA methylation in different cancer entities. 

5.2.5 ASSOCIATIONS BETWEEN GENE EXPRESSION AND PROMOTER 

METHYLATION 

In the next step we analyzed the association between gene expression and DNA meth-

ylation of the spot genes using matched samples taken from [62] (also see section 5.1) and 

also independent expression data [63,69] for which we matched the classes with the meth-

ylation data studied here (see Figure 49a and Table S 2). The hypermethylation spots of 

the MES (spot ‘A’), IDH (‘C’), and RTKII (‘F’) subtypes consistently reveal strong anti-corre-

lation between promoter methylation and gene expression in all three analyses. The same 

result was obtained for the G34 subtype in the matched sample data. The independent 

GBM expression data does not show this effect because it doesn’t contain pediatric cases. 

For other spots one observes the absence of systematic expression changes despite marked 

methylation effects (spot ‘C2’), positive correlations (‘B’) and also neither marked expres-

sion nor methylation effects for the hyper- and hypomethylation spots ‘B1’ and ‘E1’, respec-

tively (data not shown). 

In Figure 49b we explicitly show the expression profiles of the genes from selected 

methylation spot sets in the Verhaak-reference data set as analyzed in section 5.1. One 

clearly sees that hypermethylation of the promoters of the selected genes in a selected 

subtype accompanies strong downregulation of gene expression of these genes. Im-

portantly, the expression profiles respond in a subtype-specific fashion. This result reflects 

the important fact that the methylation classes show also class-specific expression effects 

and thus a close mutual relation between gene expression and DNA methylation.  

To further proof this relation we mapped gene expression marker sets for LGGs (WHO 

grade II and III) and GBM (grade IV) into the DmetSOM to estimate their DNA methylation 

status (see supplementary material of [199]). In general, we found strong subtype-specific 

effects thus confirming the close relation between expression and methylation. For example, 

LGGs with a co-deletion on Chr 1 and 19 as a hallmark of oligodendroglioma show the 

RTKII hypermethylation signature (see supplementary material of [199]). Grade II and III 

LGGs differ in the methylation level of RTKII and IDH signature genes on one hand and of 

G34 signature genes on the other hand. Hence, we again found a mixing between differ-

ent methylation classes in the subcohorts selected. The expression classes proposed by 

Gorovets et al. [206] for LGGs can be assigned to a brain-like_UP methylation signature 

(neuroblastic LGG), a mixed RTKII and IDH signature (early progenitor LGGs) and an 

IDH_UP signature (pre-glioblastoma, PG; see supplementary material of [199]). Note that 
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genes hypermethylated in IDH tumors (IDH_UP) are on low expression level in IDH1-mut 

tumors but on high level in IDH1-wt tumors such as PG. Hence, hypermethylation signatures 

of IDH1-mut tumors correspond to overexpression signatures of IDH1-wt tumors and vice 

versa due to the anti-correlation between expression and methylation effects.  

 

Figure 49: Correlation between GBM DNA methylation and gene expression: (a) Correlation plots 

between matched DNA methylation and gene expression data of the spot genes reveal preferentially 

anti-correlated changes as indicated by the red dotted lines, which serve as a guide for the eye. The 

matching rules for the classes are given within the figure. For details concerning the correlation plots 

see caption of Figure 22. (b) Gene expression profiles of the methylation spot sets in the GBM 

expression data analyzed in section 5.1: Hypermethylation sets (MES_UP, IDH_UP, RTKII_UP) asso-

ciate with underexpression in the respective subtype as indicated by the arrows. Note that the color 

code for the GBM subtypes was chosen from the original papers [63,69]. 

This anti-concerted assignment of methylation and expression signatures is evident also 

in the expression signatures of GBM (see supplementary material of [199]): Genes, over-

expressed in IDH1-wt tumors of the mesenchymal and/or classical subtypes are mostly 

hypermethylated in IDH1-mut, -proneural tumors. A sketchy use of terms like ‘IDH_UP-sig-
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nature’ can imply incorrect associations because ‘over’-methylation in the IDH subtype as-

sociates with ‘over’-expression of another one, namely in IDH1-wt mesenchymal and/or 

classical subtypes.  

Please note also, that deactivation of gene expression by DNA methylation of gene 

promoters represents only one possible mechanism how DNA methylation affects transcrip-

tion. Alternative mechanisms are discussed, which for example explain also correlated 

changes between gene expression and DNA methylation. For example, a methylated DNA 

sequence motif can take on a new function by creating a novel DNA binding site for 

transcriptional activators that could not be predicted from sequence information alone. 

Such mechanisms expand the functional role of DNA methylation in gene regulation, being 

capable to regulate active and repressive gene states in a site-specific manner [207].  

5.2.6 METHYLATION OF GBM SUBTYPES ASSOCIATES WITH CELLULAR 

PROGRAMS AND THEIR (DE-)ACTIVATION BY CHROMATIN REMODELING 

Functional analysis of the spot lists of genes revealed specific functional modes and 

states of gene activity, which associate with the different sets of markers and thus also with 

the methylation subtype (Table S 4). To study the biological context more in detail we 

generated one-way clustered heatmaps of gene sets referring to the GO-category BP (Fig-

ure 50a), to chromatin states of brain tissue (Figure 50b), to regulators in poorly differenti-

ated cells [208], to repressive, poised, and active histone methylation states [201] and 

also special gene sets with notably profiles (see supplementary material of [199]). 

Firstly, one finds two ‘limiting’ profiles characterized by (i) high methylation of the brain-

like classes and low methylation of CHOP-like classes and (ii) by the respective antagonistic 

CHOP-like_UP/brain-like_DN profile. The former profile comprises functions like ‘neurolog-

ical systems process’, ‘immune response’ (Figure 50a), ‘TFs associated with low expression 

levels’ in mammalian cells in general [112], ‘fatty acid metabolism’ and partly ‘transcrip-

tional active chromatin states’ (Figure 50b). These profiles are characterized by strong 

hypomethylation of G34, K27, and RTKI compared with the other GBM subtypes and also 

healthy brain. The second types of profiles (ii) are associated with high methylation levels 

of ‘cell cycle’ (Figure 50a), ‘ribosomal’, ‘mitochondrial’ genes, ‘high transcription TFs’, 

‘hypoxia’, ‘DNA repair’ and ‘ageing’, partly EZH2-targets, MYC-, NOTCH- and SOX2-

targtes (see supplementary material of [199]) and ‘heterochromatin states’ (Figure 50b) in 

brain-like classes and low methylation in CHOP. These two groups (i) and (ii) of antagonis-

tic DNA methylation are mainly responsible for the two superclusters established in the 

similarity plots (Figure 46a and b).  

Note that group (ii) associates with highly methylated genes that enrich in and near 

spot ‘E1’. Recall that high methylation levels correlate mostly with low gene activities. 

Hence, ‘high transcription TFs’ are repressed by DNA methylation in group (ii) and packed 
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into closed chromatin states whereas lower methylation levels associate with active chro-

matin states. The situation reverses in group (i), where ‘low transcription TFs’ and ‘active 

chromatin states’ become repressed by high methylation levels. 

 In between these two ‘limiting’ states one finds a third type of profiles (iii) with uniquely 

high methylation in RTKII, IDH or G34 and also mixtures of them. These states enrich inac-

tive chromatin states with repressed and/or poised promoters, developmental and tissue-

differentiation genes and PRC2-targets and related genes: Targets of EED, SUZ12 and 

EZH2, the catalytic subunit of a H3K27 methyltransferase. These results are supported by 

histone modification data, which shows that type (iii) profiles associate with repressive 

H3K27me3 and bivalent H3K27me3 and H3K4me3 marks (see supplementary material 

of [199]). This data also shows that so-called high CpG promoters are mainly involved in 

repression of these genes whereas repressed low CpG promoters associate partly with type 

(i) brain-like_UP methylation profiles.  

Interestingly, G34 tumors associate with strong hypermethylation of genes related to 

promoter opening and telomere end packing. Pediatric GBM and especially G34 tumors 

show alternative lengthening of telomeres (ALT) mediated by homologous recombination 

and supported by mutations of the ATRX gene, which mediates histone assembly in sub-

telomeric regions [194]. We found strong hypermethylation of genes encoding histones 

H1 and partly also H 2 and H3 thus suggesting aberrant expression and in final conse-

quence aberrant nucleosome assembly and aberrant telomere maintenance function.  

Hence, IDH, G34, and also RTKII are characterized by DNA methylation and thus tran-

scriptional repression of genes, which obviously suppress tumorigenesis in healthy brain. 

Hypermethylation of PRC2 repressed targets and of poised promotors is a molecular hall-

mark of many cancer types [208] including B-cell lymphomas [60,113] and CRC. This 

ubiquitous property partly explains the similar signatures of high CpG methylator pheno-

types in gliomas, colon cancer and lymphomas. This agreement is further supported by 

overlapping chromatin states in the healthy tissues: Especially genes with poised promoter 

states (TssP) agree to about 50% (of about 3000 genes) in brain tissue and colon and 

brain and lymphoblastoid cells as well. 

These results show that methylation effects associate with different chromatin states, 

which in turn enable different modes of gene activity in terms of transcriptional programs. 

Global hypermethylation of the brain-like and IDH subtypes and global hypomethylation 

of the CHOP-like subtypes associates with open chromatin states, which are either tran-

scriptional active in the RTKII and also mesenchymal subtypes or inactive in IDH and partly 

RTKII and G34 subtypes. Methylation of closed chromatin counteracts the global net meth-

ylation tendencies, i.e. it is associated with reduced methylation in the brain-like and IDH 

subtypes and increased methylation in the CHOP-like subtypes. Note that the assignment 

of chromatin states is based on healthy brain data (mid frontal lobe, mf lobe), which pre-

sumably only partly can be applied to the diseased brain. Hence, methylation effects as-

sociate with changes of the chromatin states, for example if highly methylated nominal 

active promoter states transform into inactive ones or even into heterochromatin. 
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Figure 50: Methylation heatmap of genes referring to (a) the GO-term BP and (b) genes assigned 

to different chromatin states in healthy brain (mf lobe). Colors maroon to blue indicate high to small 

methylation levels, respectively. Chromatin states were grouped into active ones (e.g. Tx, Txn, TssA), 

inactive (ReprPC, Quies, TssP) and closed/heterochromatin (Het, HetRpts, ZNF) roughly agreeing 

with the clustering of methylation patterns shown in the right part of the figure. 
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5.2.7 DISCUSSION 

SOM portrayal of marker sets resolves heterogeneity of DNA methylation across 

glioma subtypes, cancer entities and different cohorts 

Our study focused on DNA methylation data stratified with respect to molecular sub-

types of adult and pediatric GBM and healthy brain controls. Using centralized methylation 

data we identified clusters of co-methylated genes among the samples studied. The Dmet-

SOM disentangles genes systematically hyper- and hypomethylated in gliomas compared 

with healthy brain and it extracts systematic methylation differences between the glioma 

subtypes. To assign the functional meaning to the spot modules we applied enrichment 

analysis using a multitude of pre-defined gene sets related to categories such as BP (e.g. 

inflammation, cell development and ageing), targets of different transcription factors (e.g. 

MYC, NANOG-, high and low expression TFs) and epigenetic modulators (e.g. EED, 

SUZ12; PRC2, EZH2), different chromatin states in reference mf lobe tissue, genes differ-

ently methylated in other cancers (e.g. CIMP in CRC and methylation subtypes of B-cell 

lymphoma) and also of marker gene sets for differential methylation and expression be-

tween glioma subtypes obtained in independent studies. 

 

Figure 51: Overview scheme summarizing genomic hallmarks of adult and pediatric GBM sub-

types, epigenetic mechanisms, and regulatory modes of promotor methylation and gene activity ex-

tracted from our analysis. The functional context associates with the spot clusters of genes obtained 

from DmetSOM analysis. The chromatin states refer to healthy mf lobe tissue. Their assignment to the 
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regulatory modes suggests specific targets for DNA methylation: For example, transcribed states in 

healthy brain are prone to global hypermethylation in brain-like and GCIMP tumors and prone to 

global hypomethylation in CHOP-like states. The antagonistic mode of methylation affects mainly 

heterochromatin in healthy brain. Note that promoter methylation mostly anti-correlates with gene 

activity: E.g., energy metabolism becomes upregulated in brain-like and GCIMP tumors compared 

with CHOP-like ones. PRC2-, EED-, and SUZ12-targets are hypermethylated and thus transcriptionally 

repressed in RTKII, IDH, and G34 but activated in MES and K27 tumors by hypomethylation. 

Interestingly, we found pronounced subtype-specific methylation signatures of gene sets 

from different glioma studies. The signatures indicate a common scheme of aberrant gene 

regulation in LGGs and adult and pediatric GBM. The GCIMP signature is found across 

most of the glioma studies as a basal hallmark of IDH1-mut tumors. However, our analysis 

finds also mixed methylation signatures in many cases especially for histological classes, 

which often represent mixtures of different molecular subtypes. Hence, methylation signa-

tures enable the further ‘de-mixing’ of histological classes according to molecular variants. 

This result supports recent studies showing that DNA-based molecular profiling of GBMs 

distinguishes biologically distinct tumor groups and provides prognostically relevant infor-

mation beyond histological classification [148]. On the other hand, molecular profiling is 

hardly suited for reliable distinction of tumor grades due to grade-independent  

mechanisms. 

We also found pronounced correlation between gene expression and methylation sig-

natures of gliomas. It reflects coupled mechanisms of methylation and gene activity. 

Whether DNA methylation profiling provides a more robust and clinically useful platform 

for GBM subgrouping remains to be tested. The enrichment of DNA methylation signatures 

of other cancer entities in gliomas suggests general oncogenic methylation mechanisms. 

Methylation marker sets reveal molecular mechanisms of gliomas 

DNA methylation acts as an epigenetic modification in vertebrate DNA. It has become 

clear that the DNA and histone lysine methylation systems are highly interrelated and rely 

mechanistically on each other for normal chromatin function [35]. Controlling the timing 

and placement of DNA methylation in the genome is essential for normal cellular function 

and its dysfunction de-regulates cell activities. Figure 51 summarizes the main results of our 

study by relating methylation profiles, glioma subtypes, biological functions and chromatin 

states each to another.  

The global methylation profile, namely hypermethylation in brain-like and GCIMP tu-

mors and hypomethylation in pediatric GBM and RTKI, associates with the biological pro-

cesses immune response and fatty acid metabolism. This mode is counterbalanced by an-

tagonistic methylation changes, which can be assigned to cell cycle activity and energy 

metabolism. In healthy brain these modes accumulate genes from different chromatin states, 

namely transcribed states and silent heterochromatin, respectively. This result suggests that 

transcribed states in healthy brain become suppressed by DNA hypermethylation in brain-

like and GCIMP subtypes whereas silent heterochromatin becomes possibly activated due 
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to hypomethylation of the affected genes in these tumors. In contrast, methylation levels in 

the CHOP-like pediatric GBM and RTKI correspond to the chromatin states assigned in the 

healthy brain. These results suggest chromatin remodeling between brain-like and GCIMP 

on one hand and CHOP-like tumors on the other hand. In other words, global methylation 

effects seem to associate with a different chromatin organization in the methylation  

superclusters. 

These global changes were further modulated by a series of methylation effects, which 

refer to only a few or even single subtypes and thus define their specificity. We found 

hypermethylation of genes normally activated in stem cells, combined with preferential 

repression of polycomb-regulated genes (PRC2-, EED-, and SUZ12-targets) in RTKII, IDH, 

and also G34 tumors. These genes are enriched in chromatin states assigned to repressed 

and bivalent promoters with H3K27me3 or H3K27me3 and H3K4me3 marked histones, 

respectively. This methylation signature is generally found in poorly differentiated tu-

mors [208] and, for example, also in B-cell lymphoma [60,113] indicating ‘suppression of 

tumor suppressors’ associated with tissue-specific cell differentiation [201,209,210]. Inter-

estingly, targets of TFs involved in development and differentiation (OCT4, NANOG, 

SOX2) and also MYC are antagonistically methylated compared with the PRC2-targets thus 

suggesting different regulatory modes for more repressed and more active genes, respec-

tively. A similar dualism was previously suggested in terms of high and low transcription 

TFs in metazoan which associate with high and low gene expression levels of their targets, 

respectively [112]. The split between both types of TFs was recently established also in 

lymphomas [113]. The high transcription TFs show generally a low DNA methylation level 

in the brain-like and GCIMP tumors. Contrarily, low transcription TFs are associated with 

high methylation levels reflecting the expected anti-correlated activation pattern between 

methylation and gene expression. In CHOP-like tumors this relation however reverses show-

ing hypermethylation of high expression TFs and hypomethylation of low expression TFs 

and thus apparently improper expression levels in these tumors, which possibly reflects 

chromatin remodeling as discussed above. 

Also K27 tumors show enrichment of PRC2-target genes becoming however hypometh-

ylated in terms of DNA methylation and low levels of repressive H3K27me3 histone marks 

as well. We conclude that these genes are transcriptionally more active in K27 gliomas 

compared with the other subtypes in agreement with [211,212]. Hence, the Lys27 muta-

tion of H3.3 associates with the global reduction of repressive histone marks of the 

H3K27me3 type, activation of gene expression and DNA de-methylation. 

Aberrant hypermethylation in IDH tumors of the GCIMP type is induced mostly by the 

IDH1 mutation leading to inhibition of histone-lysine- and DNA de-methylases carrying the 

Jumonji-domain via intermediate metabolites of the citrate cycle which act as their coen-

zymes [144]. In tumors of the RTK-types epigenetic dysregulation associates also with met-

abolic reprogramming, namely with aberrant activation of the pyruvate kinase M2 (PKM2) 

isoform, a glycolytic enzyme involved in ATP generation and pyruvate production, which 

plays an essential role in tumor metabolism and growth. It also functions as a protein kinase 
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that phosphorylates and/or acetylates histones during transcription and chromatin remod-

eling with consequences for CpG methylation [213]. RTKI tumors together with K27 and 

G34 show hypermethylation of genes related to ‘pyruvate metabolism’, ‘ATP binding’, 

‘mitochondrion’, and ‘ribosome cellular components’ suggesting transcriptional down reg-

ulation of the energy metabolism and protein synthesis. Interestingly, ‘targets of EZH2’, a 

compound of PRC2 catalyzing the formation of H3K27me3, show similar methylation pro-

files, which also resemble those of genes up-regulated upon ageing and under hypoxia. 

Subtle differences between the methylation profiles ‘pyruvate metabolism’ and ‘ATP bind-

ing’/ ‘mitochondrion’ in IDH gliomas on one hand and G34 and RTKI on the other hand 

however suggest different mechanisms of metabolic control in these subtypes. 

G34 tumors show specific hypermethylation of genes associated with ‘telomere length 

maintenance’ (Reactome sets ‘packaging of telomere lengths’ and ‘pol I promoter  

opening’), ‘histone assembly’, and ‘DNA repair’ suggesting increased genomic instability 

of this subtype. G34 tumors display an ‘ALT’ (alternative lengthening of telomeres) pheno-

type presumably mediated by homologous recombination and caused by the mutation of 

the ATRX gene and possibly also by the G34 mutation of H3.3 itself [62,214]. Aberrant 

DNA repair functionality in G34 is possibly associated with DNA hypermethylation of the 

respective genes and aberrant methylation markings of H3K36me3 required for proper 

recruitment of the DNA-repair machinery [176,177,194]. Interestingly we find also strong 

hypermethylation of genes referring to ribosome and mitochondrial functions in G34 sug-

gesting a deactivation of transcriptional and energy-metabolic processes in this subtype.  

Taken together, these findings illustrate a widespread functional role of DNA methyla-

tion in gene regulation in gliomas essentially contributing to the heterogeneity of glioma 

subtypes and strongly affecting the underlying molecular mechanisms of cell function.  

5.2.8 CONCLUSION 

Sets of differential methylation genes in gliomas represent surrogate markers of molec-

ular mechanisms governing (epi-)genomic dysregulation. DNA methylation phenomena are 

complex ensuring complex tuning of gene function. Consideration of this regulatory level 

is inevitable for understanding cancer genesis and progression. It provides suited markers 

for diagnosis of glioma subtypes and disentangles tumor heterogeneity. 
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5.3 COMBINED PORTRAYAL OF GENE EXPRESSION AND DNA 

METHYLATION IN GLIOBLASTOMAS 

In this section we aim at extending the SOM portrayal method of single-omics data to 

the combined portrayal of two data types where we selected gene expression and DNA 

methylation data because of their impact for tumor biology.  

We selected TCGA data of high grade glioma as the tumor entity for combined por-

trayal because of the extended pre-work characterizing gene expression and DNA meth-

ylation data and because of established classification schemes (see, e.g., [46,61–63] and 

references cited therein). On the other hand, particular modes of gene regulation in glioma 

subtypes governed by mutations of the IDH1 gene or of receptor-tyrosine kinases (RTKs) 

need specification in terms of involved genes, affected chromatin states and co-regulated 

chromatin modifying enzymes and will be studied here. Therefore we used data obtained 

from Sturm et al. [62] with the samples being assigned to Mesenchymal (MES), RTKI  

‘PDGFRA’ (RTKI), RTKII ‘Classic’ (RTKII), and IDH molecular GBM subtypes. This data set is 

just a small subset of the samples analyzed in 5.2 as in terms of this multi-omics integration 

presented here we needed both gene expression and methylation samples collected for the 

same patients studied. For details concerning the cohort and preprocessing of the data see 

section 3.1 and supplement section 7.1.7. 

The first part of this section is devoted to methodical issues such as the modulation SOM 

algorithm, the characterization of the data landscapes obtained and the identification of 

regulatory modes of co-expressed and co-methylated genes. In the second part we focus 

on the functional interpretation of these modes and their relations to glioma key genes, to 

chromatin states in healthy brain and the transcription of selected chromatin modifying 

enzymes. The second part thus aims at providing a comprehensive view on epigenetic 

factors affecting gene activity in glioma that can be extracted from our combined analysis. 

It extends our previous integrative SOM studies on epigenetic regulation in B-cell lympho-

mas (sections 4.2 and 4.3) and DNA methylation in gliomas (section 5.2). 

5.3.1 PREPROCESSING: CENTRALIZATION AND HARMONIZATION 

As input we used gene-centered expression (Enj) and methylation (Mnj) data obtained 

from microarray experiments. Both expression and methylation data were preprocessed as 

given in section 3.2. For combined analysis expression and methylation data were trans-

formed into a unique, ‘harmonized’ scale by normalizing them with respect to the mean 

absolute value averaged over all data ∆enj
*   ∆enj/〈|∆e|〉all and ∆mnj

*   ∆mnj/〈|∆m|〉all, 

where 〈|…|〉 denotes averaging of absolute values. This harmonization makes the scales 

of expression and methylation data mutually comparable.  
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5.3.2 MODULATION SOM: PORTRAYAL OF COMBINED EXPRESSION AND 

METHYLATION STATES 

Method 

In the next step after centralization and harmonization we merged expression and meth-

ylation profiles into combined profiles 

∆dn∙
*

 = (w∙∆en∙
*  , (1 − w)∙∆mn∙

* ), Eq.(8) 

where both data were combined with different mutual weights, w, chosen from the data 

intervals w  [0,1] and (1−w)  [1,0], respectively (see Figure 52 for a schematic overview 

of the data processing pipeline). The combined profile vectors are then clustered into pro-

totypic profiles by applying SOM machine learning using our implementation ‘oposSOM’ 

[20], which was previously described in detail [21,80,91]. The metagene profiles are 

given by 

∆dk∙
*

= (w∙∆ek∙
*  , (1 − w)∙∆mk∙

* ), Eq.(9) 

with k 1,…,K (K is the number of metagenes). 

After SOM training meta- and single gene expression and methylation data are back 

transformed into their original scales for visualization and further downstream analysis, i.e. 

∆dkj
*

 → ∆ekj,∆mkj and ∆dnj
*

 → ∆enj,∆mnj, by keeping the cluster associations between meta-

genes and single genes. Accordingly, each sample studied is characterized by its state of 

metagene expression and methylation, ∆e∙j = (∆e1j,…,∆eKj) and ∆m∙j = (∆m1j,…,∆mKj), 

respectively. In analogy also each metagene is characterized by its profile of expression 

and methylation values in all the samples studied, ∆ek∙ = (∆ek1,…,∆ekj) and  

∆mk∙ = (∆mk1,…,∆mkj). The expression and methylation states are visualized by color cod-

ing the metagene values in the quadratic mosaic grid used for SOM training. This way one 

obtains two images per sample, which separately ‘portray’ its expression and methylation 

landscapes (Figure 52). Importantly, each metagene is located at the same position in both 

maps. It is associated with the same cluster of single genes because of the joint training of 

expression and methylation data. Therefore, both maps can be directly compared each 

with another, e.g. to identify regions of specific combinations of expression and methyla-

tion data. For this aim it is desirable to merge these separate expression and methylation 

portraits into one joint image, which enables to directly identify combinatorial properties 

such as genes whose down-regulated expression is associated with hypermethylation or 

vice versa. With this aim we calculate the signed square root co-variance (ScoV) for each 

metagene and each sample, 

ckj(∆e,∆m) = sign(∆ekj∆mkj)∙√∆ekj,∆mkj, Eq.(10) 

which provides the state vector c∙j =(c1j,…,cKj). It defines the covariance landscape of the 

expression and methylation data of each sample using the SOM-mosaic arrangement and 
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a suited color code. As standard we used a sample-related scale, which colors the minimum 

and maximum values of each state in dark blue and red, respectively. SOM portraits of 

expression, methylation and of combined covariance data were obtained for each sample. 

Mean expression, methylation and covariance landscapes for each subtype were obtained 

by averaging the respective metagene values over the samples of each class. 

 

Figure 52: Schematic overview of the modulation SOM method (see text). 

Application 

SOM machine learning transforms the whole gene expression and promoter methyla-

tion pattern of about twenty thousand single genes into three mosaic images per sample, 

one for methylation and expression data each and one for the covariance (ScoV) between 

them (Figure 53), each of size 40x40. The weight-factor w tunes the SOM structure from 

‘governed predominantly by co-methylation of the genes among the samples’ (w  0.001) 

to ‘governed predominantly by co-expression’ (w  0.999) via ‘governed by both’  

(w  0.5) in between. In other words, w  0.001 essentially provides the methylation 

landscape, which is modulated by the expression data whereas w  0.999 provides the 

expression landscape modulated by methylation data. An equally weighted landcape is 

obtained with w  0.5. The red and blue spots in the images assign clusters of 

overexpressed/-methylated and underexpressed/-methylated genes, respectively. The co-

variance (ScoV) map combines this data to identify clusters of concerted (red) and anti-

concerted (blue) changes of expression and methylation. Importantly, for each w the genes 

are located at the same position in each of the three maps and thus they can be directly 

compared. E.g., sample 1 (upper part of Figure 53) shows one overexpression and one 

hypomethylation spot virtually located at the same position of the expression and 



5.3 Combined portrayal of gene expression and DNA methylation in 

glioblastomas 

125 

 

 

 

methylation maps at w  0.001, which combine into a blue spot in the ScoV-map indicating 

anti-correlation between DNA promoter methylation and expression of the respective 

genes. With increasing weigth the structure of the SOM changes and becomes 

progressively governed by the expression data. The second sample was chosen from 

another GBM-subtype (IDH-subtype). The SOM portraits show an almost different spot 

structure compared with sample 1 (MES-subtype), which indicates different methylation and 

expression landscapes. The full gallery of SOM images of all samples studied is given in 

the supplementary material of [215]. 

 

Figure 53: Expression, methylation and ScoV portraits of two selected GBM samples obtained after 

SOM training using three different weight factors, which provide SOM portraits that are governed 

by the methylation data (w  0.001), expression data (w  0.999) or both (w  0.5). The circles 

indicate clusters of genes with anti-correlated methylation and expression changes. 

5.3.3 SAMPLE DIVERSITY IN METHYLATION AND EXPRESSION PORTRAITS 

To assess how SOM-transformed gene expression and methylation data reflect the di-

versity of the samples we calculated similarity networks based on the correlation coeffi-

cients between the metagene values of all pairwise combinations of samples (Figure 54). 

Methylation data well separates the samples into the four different GBM subtypes, consid-

ered. This result is expected because the subtypes were defined according to the methyla-

tion characteristics of the samples, however based on CpG-island level data and not inte-

grated promoter metagene data. Our results thus confirm this classification for promoter 

methylation data. The SOM clustering into metagene-data depends on the chosen weight 
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coefficient w giving rise to slightly varying similarity plots, which however all identify the 

subtypes properly (Figure 54). Interestingly, also the expression data provides well sepa-

rated clusters of the IDH, MES, and RTKII subtypes thus indicating associations between 

expression and methylation changes observed.  

 

Figure 54: Diversity analysis of the GBM samples was performed in terms of CNs of the expression 

and methylation SOM images for different weight factors. The dashed circles indicate clusters formed 

by samples of the different subtypes. 

5.3.4 EXPRESSION, METHYLATION AND COMBINED PORTRAITS OF GLIOMA 

SUBTYPES 

For a better description of the subtypes we calculated the mean expression, methylation 

and ScoV-portraits of each class by averaging the respective values of each metagene over 

all class members (Figure 55a). The mean ScoV-portrait of each subtype shows character-

istic blue spot patterns representing clusters of genes with anti-correlated methylation and 

expression values where either hypermethylation combines with underexpression or hypo-

methylation with overexpression (see the red and blue frames in Figure 55a, respectively). 

The most indicative spots were assigned by ‘M1’−‘M3’ in the ScoV-methylation driven land-

scape (w  0.001), ‘E1’−’E5’ in the ScoV-expression driven landscape (w  0.999) and 

‘C1’−’C3’ in the combined landscape (w  0.5). 

For example, for w  0.001 the IDH subtype is characterized by an underexpression 

spot in the top-right corner, which at the same time is hypermethylated thus resulting in a 

blue spot in the ScoV map assigned as ‘M1’. It indicates anti-correlated changes of meth-

ylation and expression of the included genes. The MES-subtype shows in both expression 

and methylation landscapes an almost mirror symmetrical pattern with regard to the RTKII 

subtype where blue regions convert into red ones and vice versa. These patterns show that 

expression and methylation levels of many genes change in an antagonistic way between 

these two subtypes. Moreover, the MES and RTKII are characterized by the spots ‘M2’ and 

‘M3’ in the ScoV-map, respectively, whereas RTKI shows a superposition of all three main 



5.3 Combined portrayal of gene expression and DNA methylation in 

glioblastomas 

127 

 

 

 

spots ‘M1’−‘M3’. For w  0.5 and w  0.999 the spot patterns vary where, e.g., ‘M1’ first 

transforms into ‘C1’ and then into ‘E1’ and ‘E2’ for the IDH subtype. The question arises 

whether these spot modules are formed by the same genes or different ones and why a 

singular spot splits into two in the different landscapes. 

 

Figure 55: Gallery of mean expression, methylation and ScoV portraits of glioma subtypes. (a) The 

small mosaic images visualize the mean expression (upper) and methylation (lower) landscapes. The 

large images are the mean ScoV-portraits. (b) Correlation plots of SOM-metagene expression and 

methylation values for different w. The variance of the data is dominated either by expression  

(w  0.001) or by methylation (w  0.999) values whereas at w  0.5 the data shows a combination 

of both modes. The colored dots are metagenes of the spots ‘M1’, ‘C1’, and ‘E1’, which are char-

acteristic for blue ScoV-spots of the IDH subtype. The grey dots show the remaining metagenes not 

included in the respective spots. 

5.3.5 BASIC AND MODULATED STRUCTURE OF THE SOM 

The landscapes and consequently also the location of spots and their number change 

after tuning the weight factor between w  0.001 and 0.999. The SOM structure is gov-

erned by both methylation and expression data, where either one is considered with major 

weight and the other one with minor weight. The major weight (e.g. w  0.999 for expres-

sion data) determines the basic structure of the landscape whereas the minor weight  
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(e.g. (1− w)  0.001 for methylation data in this map) modulates this basic structure. The 

plot of expression-vs-methylation metagene data shows that the major weight component 

determines whether methylation or expression data shows largest variance (Figure 55b,  

w  0.001 and 0.999, respectively). For w  0.5 the metagene data splits into two main 

components virtually aligning along the methylation and expression axes, respectively (Fig-

ure 55b, w  0.5). The blue colored dots mark metagenes of selected ScoV-spots, compris-

ing genes of anti-concerted methylation and expression values in the IDH subtype. The 

correlation values tend to align along a diagonal line from top left to down right in the 

quadrants, which are defined by hypermethylation and underexpression values however 

with a marked systematic deviation towards the major component for w  0.001 and 

0.999, respectively. This analysis shows that the different SOMs reflect different self-organ-

ization modes of the data with the consequence that genes with strongly variant methyla-

tion, expression or both are collected together in the spot clusters. 

 

Figure 56: Variance maps of the expression (row above) and methylation (row below) metagene 

profiles in the SOM for different weight factors w. The color sequence blue-green-red indicates in-

creasing variance from low to high. The spot structure is governed by the modulated data. The spots 

of variant/invariant combination split into different modes at w  0.5 (see arrows). 

For a more systematic view we make use of variance maps [21] shown Figure 56, 

which color code the variance of the metagene profiles in each pixel between blue (invar-

iant expression/methylation) and red (highly variant expression/methylation). The maps 

reveal two main topological characteristics: Firstly, one detects regions of genes with virtu-

ally invariant expression and variant methylation in the center of the maps for w  0.999 

(see dashed circles around the spot ‘I2’ in the right part of Figure 56) and genes with 

virtually invariant methylation and variant expression in the center of the maps for  

w  0.001 (region ‘I1’ in the left part of Figure 56). In other words, SOM training when 

governed by expression data (w  0.999) clusters genes with almost invariant expression 

profiles together, which however show still substantial variability of their methylation data. 

Vice versa, SOM training when governed by methylation data (w  0.001) clusters genes 



5.3 Combined portrayal of gene expression and DNA methylation in 

glioblastomas 

129 

 

 

 

with almost invariant methylation profiles together, which show moderate expression 

changes. Hence, the maps for w  0.001 and 0.999 identify genes in these two orthogonal 

situations. SOM training at w  0.5 provides a map structure reflecting the transition be-

tween them where the variant/invariant combinatorial clusters split into two or more  

regions (see arrows in Figure 56). 

Secondly, the SOM governed by expression data (w  0.999) locates genes with highly 

variant expression profiles along the borders of the map (right part of Figure 56) whereas 

the SOM governed by methylation data (w  0.001) locates genes with highly variant 

methylation profiles along the borders of the map (left part of Figure 56). These red regions 

of high variance get modulated by the methylation and expression data in the first and 

second case, respectively. The ScoV-spots were formed by regions of high variance of the 

modulated data. 

5.3.6 SPOT GENES OVERLAP AND SPOT ‘MELTING’ 

Next we asked for the mutual similarity between the blue negative-ScoV-spots deter-

mined for different w in terms of the fraction of overlapping genes, i.e. of genes found 

together in all pairwise combinations of spots. The pairwise spot overlap matrix was visu-

alized as a heatmap (Figure 57b) and as a spot overlap network (Figure 57a) where the 

edges connect spots of substantial overlap in the ScoV-summary maps. One sees that, for 

example, spot ‘M1’ overlaps with ‘C2’, which in turn overlaps with ‘E1’ and ‘E2’ however 

to a weaker degree. In other words, one finds mutual footprints of the genes included in 

the spot clusters between the different maps.  

 

Figure 57: Spot overlap analysis provides fractions of overlapping genes in all pairwise combina-

tions of spots. (a) and (b) spot combinations of relative large overlaps were connected to form the 

overlap network, which provides a footprint of genes between the spots in the three types of maps. 

(c) Genes aggregated in selected spots progressively ‘melt’ and ‘dissolve’ over the whole map upon 

tuning w. Metagenes occupied by at minimum one gene are indicated by dots in the maps. 
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For an alternative visualization we ‘track’ the genes of a spot selected in one of the map 

in the other maps (Figure 57c). This representation shows that the spot-structure progres-

sively ‘dissolves’ with changing w thus reflecting the alteration of self-organizing properties 

of the map. The spot clusters observed at the intermediate w  0.5 form sort of a consensus 

clusters connecting the spots observed in the two other maps at w  0.001 and w  0.999. 

Hence, tuning the basic components (methylation or expression) redistributes the genes 

and selects different genes in the spot clusters.  

5.3.7 FUNCTION MINING OF SPOTS MODULES 

The functional context of the genes included in each of the spot-clusters considered was 

studied using gene set analysis as described in section 3.7. We extracted a series of con-

sensus functional modes across the maps, which reflect the footprints of overlapping genes 

discussed above. Modes I and II are governed by genes hypermethylated and underex-

pressed in IDH and, in consequence, overexpressed in RTKII (mode I) and MES (II) subtypes 

(see the expression-vs-methylation plots in Figure 58). These modes enrich marker genes 

for GBM subtypes with non-mutated IDH1 [61,63,69]. In addition, especially mode I is 

enriched with genes located on ‘Chr 7’, which shows pronounced copy number gains as 

a hallmark of IDH1-wt gliomas [63], associated with overexpression of the respective 

genes. Here the methylation subtype RTKII [62] largely agrees with the classical  

subtype (CL) [61].  

 

Figure 58: Functional analysis of ScoV-spot modules provides distinct consensus modes, which can 

be assigned to previous knowledge. 



5.3 Combined portrayal of gene expression and DNA methylation in 

glioblastomas 

131 

 

 

 

Mode III reflects an ‘immune signature’, which is observed in tumors of the MES and CL 

subtypes whereas mode IV, although showing a similar functional context, is more specific 

for MES in terms of overexpressed and hypomethylated genes. Mode V (and partly also 

mode II) is enriched with genes located in ‘repressed’ and ‘poised’ chromatin states in 

neuronal progenitor (NP) cells and with PRC2-targets, which are found to be affected by 

aberrant DNA methylation in glioma and other cancer entities [106,113,199]. Finally, 

mode VI shows proneural characteristics enriching also genes transcriptionally active in 

‘healthy brain’. Additional important modes can be assigned to spots ‘I1’ and ‘I2’ (Figure 

56) showing either almost invariant methylation or expression, respectively. The former one 

is characterized by genes in ‘active and transcribed’ chromatin states and also ‘MYC-

targets’ related to high ‘cell cycle activity’ whereas the latter mode enriches TFs associated 

with ‘low expression’ levels [112] and genes encoding ‘G-protein coupled receptors’ with 

function in ‘olfactory transduction’ (see supplementary material of [215]). Interestingly, the 

latter mode also enriches genes found hypermethylated in the ‘CIMP phenotype of colorec-

tal cancer’ [22], which suggests susceptibility of the same genes for aberrant methylation 

patterns in different cancer entities in agreement with our previous analyses [199]. 

5.3.8 GENE SET MAPS  

Gene set analysis as applied in the previous section estimates enrichment of genes of 

a set within a spot cluster of genes. In this section we apply the complementary approach 

of gene mapping, which enables us to visually inspect the distribution of sets of genes in 

the expression landscape and thus to study their local accumulation in distinct regions of 

the map. First, we mapped sets of genes hypermethylated or overexpressed in selected 

glioma subtypes, which were taken from previous analysis (see section 5.2.2) and studies 

[46,61,199](Figure 59a, b). The former sets accumulate in distinct spot clusters of our 

methylation map (w  0.001). They can be assigned to our main consensus modes I, II, IV 

and V as defined in Figure 58 and show strong anti-correlation between promoter methyl-

ation and expression (see red dashed lines in the correlation plots). Gene sets overex-

pressed in the CL and MES subtype accumulate in our spots ‘E1’, and ‘E2’ and ‘E4’, re-

spectively, whereas genes upregulated in the PN subtype form distinct clusters near the left 

border of the expression map (w  0.999). Theses clusters were not explicitly considered 

as spot clusters here because of their moderate negative values in the ScoV-map not meet-

ing the threshold criterion for spot selection. However, the respective regions reveal areas 

of hypermethylation and underexpression in the methylation and expression maps of the 

IDH subtype (Figure 55a). Hence, gene set mapping in general confirms the results of 

expression and methylation analyses from independent studies in the data studied here. 

Moreover, maps of gene sets extracted from glioma subtypes not included in our data set 

such as pediatric and low grade glioma nevertheless form gene clusters in our data land-

scape of adult, high-grade glioma (see supplementary material of [215]) thus indicating 

functional overlap between these tumor groups without clear borderlines. Finally, genes 
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highly expressed in ‘healthy brain’ accumulate in spot ‘E5’ not evident in glioma but, inter-

estingly, show partly similarities concerning their methylation patterns with RTKII  

(spot ‘M3’). 

 

Figure 59: Maps and expression-methylation correlation plots of gene sets of selected categories. 

(a) Gene sets taken from methylation studies [46,62,199] provide genes hypermethylated in glioma 

subtypes whereas (b) gene sets taken from expression studies [21,61] provide genes overexpressed 

in the respective glioma subtypes and healthy brain. (c) Gene sets collect genes located at Chr 7 

and 10, of the GO terms, and of hallmarks of cancer [216]. The correlation plots show the mean 

expression GSZ score of each subtype as a function of the mean methylation GSZ score of each 

subtype. 

As a third group we mapped gene sets assigned to selected structural and functional 

categories (Figure 59c). Copy number gains on ‘Chr 7’ and losses on ‘Chr 10’ are genetic 

hallmarks of a large fraction of IDH1-wt glioma [63,217](see also Figure 60a below). 

Genes located on these chromosomes aggregate in distinct areas of the map, which collect 

genes over- and underexpressed in the IDH1-wt (i.e. all subtypes except IDH) gliomas thus 

reflecting a dose-response relation between copy numbers and gene expression. Interest-

ingly, the area of increased local density of ‘Chr 7’ genes partly agrees with the local 

enrichment of genes related to ‘cell cycle activity’. Hence, gains on ‘Chr 7’ in the non-IDH 

subtypes associate with increased proliferation of the cancer cells where the changes in 

gene expression largely dominate compared with DNA methylation changes. Interestingly, 
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these areas of proliferative function agree with areas of genes carrying low DNA methyla-

tion levels at their promoters, which confirms their highly activated state (see supplementary 

material of [215]). Genes related to ‘inflammation’, ‘interferon gamma response’ and also 

‘stroma’ accumulated in areas upregulated in MES accompanied by moderate methylation 

changes. In contrast, genes encoding ‘G-protein coupled receptors’ show strong methyla-

tion changes, which however are not paralleled by expression changes as indicated by 

their accumulation in spot ‘I2’. ‘PRC2-targets’ and genes with ‘poised promotors’ show a 

similar behavior (see supplementary material of [215]). 

5.3.9 MOLECULAR LANDSCAPES AND KEY GENES 

We summarized the information about differentially methylated and expressed genes 

in the different subtypes and their functional context together into SOM-maps. In this way 

molecular landscapes governed by promoter methylation, gene expression or both are 

defined as discussed above (Figure 60a). The maps reveal rough rules of thumb: (i) Meth-

ylation and expression subtypes can be assigned to distinct areas of the map where groups 

of genes show characteristic differential methylation and/or expression; (ii) these areas 

can be associated with selected functional categories such as ‘cell division’ and ‘inflamma-

tion’ specifically activated in MES together with ‘stromal signatures’; (iii) also chromosomal 

defects associate with part of these areas, e.g. gains on Chr 7 associate with overexpres-

sion of genes in CL. The fact that subtypes can be characterized by more than one group 

of genes in different regions of the map (e.g. MES) indicates an intrinsic heterogeneity in 

the subtypes not resolved by the classification of glioma used here. The consensus modes 

I - III connect areas attributed to genes (hypermethylated) in the IDH subtype in the methyl-

ation map (spot ‘M1’) with two areas (‘E1’ & ‘E2’) attributed to genes overexpressed in CL 

and MES subtypes. This ‘switching’ of subtypes trivially reflects the anti-correlation between 

promoter methylation and gene expression. A similar situation applies to the region en-

riched with Chr 10 genes: Due to the copy number loss in many IDH1-wt glioma the area 

is attributed to the PN-subtype that lacks defects at Chr 10 without reduced expression.  

Part b of Figure 60 documents the correspondence between glioma subtypes defined 

in DNA methylation and gene expression studies together with key (epi-)genetic defects, 

i.e. genes frequently mutated and/or hypermethylated in glioma [61,62]. Mapping of 

these genes into the data landscapes reveals: (i) Part of them (CDKN2A, PTEN, and 

CDKN2B) show distinct methylation differences between the subtypes suggesting that in 

addition to the mutational effect also methylation changes modify the activity of these 

genes, especially in IDH. Cell cycle dysregulation via aberrant functions of cyclin depend-

ent kinase inhibitors is a widespread mechanism in tumorigenesis leading to uncontrolled 

cell divisions [218] with impact for gliomas [219]. (ii) Other genes, especially the RTK’s 

EGFR and PDGFRA, are dominated by expression differences especially between RTKI and 

RTKII samples due to chromosomal defects and mutations, as expected [62]. MGMT shows 

expression and methylation differences between IDH and the other subtypes [220].  
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Figure 60: Molecular landscapes and key GBM genes. (a) Molecular landscapes, (b) genetic 

characteristics of the subtypes and (c) maps of key GBM genes. 

(iii) A third group of key genes manifests only tiny expression and methylation changes 

between the subtypes, which however doesn’t exclude their impact for gene regulation. 

For example, there is no doubt that mutation of IDH1, although only weakly affected in 

terms of gene expression and promoter methylation, has strong effect on genome wide 

methylation pattern in glioma. The IDH1-mutation in first instance doesn’t change the activ-

ity of the gene but instead modifies the outcome of its enzymatic action, namely it leads to 
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the production of the metabolite 2-HG instead of -KG where 2-HG inhibits the activity of 

chromatin modifying enzymes with consequences for global DNA methylation patterns (see 

below) [149,221]. Hence, IDH1 mutation serves as the main driver for the formation of 

the IDH subtype without evident methylation and/or expression changes of this gene [222]. 

5.3.10 CHROMATIN STATES 

Aberrant DNA methylation and expression levels in cancer are often related to altera-

tions of the chromatin organization compared with healthy, non-neoplastic tissue [223]. 

We analyzed sets of genes assigned to distinct chromatin states in healthy brain (mf lobe) 

and NP cells taken from [55] (see section 2.2.3) to discover systematic changes of their 

expression and methylation levels between the glioma subtypes as possible indications for 

alterations of the chromatin states in glioma. We found one cluster enriched with poised 

and repressed chromatin states in the reference tissues showing strong anti-correlation be-

tween promoter methylation and gene expression in the glioma subtypes as indicated by 

the plus and minus signs in the heatmap in Figure 61. Note that the promoter methylation 

level in MES is close to that in healthy brain see section 5.2.1.2. IDH and RTKII subtypes 

show pronounced hypermethylation of genes in these chromatin states paralleled by their 

transcriptional repression. Hypermethylation of repressed (e.g. RepPC) and poised (TssP) 

promotors is a molecular hallmark of many cancer types [208] including B-cell lymphomas 

[60,113,224], CRC [22] and melanomas [225]. This deactivation can be assumed to 

‘suppress processes that suppress’ tumor development and this way facilitate tumorigenesis. 

Compared with non-targets, genes repressed by PRC2-targets are more likely to show a 

promoter DNA hypermethylation pattern specific for cancer. This process supports a stem 

cell origin of cancer in which gene expression is long-term repressed resulting in a contin-

uous self-renewal state of the cell, possibly causing malignant transformation [226]. 

This cluster further splits into two subclusters, c1 and c2, which differ in the mutual 

degree of methylation in IDH (larger in c1) and RTKII (larger in c2) GBMs and in the 

opposite trends of methylation in the RTKI subtype (hypermethylated in c1 and hypometh-

ylated in c2) suggesting different modes of epigenetic deregulation of gene activities. The 

IDH1-mutation in IDH leads to inhibition of KDMs and DNDMs via metabolites of the TCA-

cycle (see below) whereas in RTKII one suggests reprogramming of the energy metabolism 

via histone acetyltransferases [32]. Both subclusters also differ in the types of promoters 

(repressed in c1 and poised in c2) and in the reference tissue types (NPs in c1 and mf lobe 

in c2). Hence, molecular mechanisms of DNA methylation obviously specifically affect 

genes in poised and repressed states with impact for brain development. Here, develop-

mental genes and poised promoters are more prone to hypermethylation in RTKII whereas 

repressed promoters and heterochromatin states of healthy brain are more strongly affected 

in IDH.  
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Gene SOM-maps of these chromatin states indicate a wide distribution of these genes 

despite their accumulation in distinct areas (see right part of Figure 61). Hence, the mean 

effect splits into modes that were identified as consensus modes above (Figure 58). For 

example, mode V enriches poised, repressed and PRC2 chromatin states in NP cells, which 

associate with hypermethylation in RTKII.  

Other clusters in the heatmap in Figure 61 can be attributed to active chromatin states 

or heterochromatin with either dominating effects on expression or methylation in the dif-

ferent subtypes however without pronounced anti-correlation between both expression and 

methylation levels as in c1 and c2. These anti-concerted changes between both data enti-

ties in these clusters reflect mutual interactions between gene expression and the methyla-

tion level in their promoters and they obviously associate primarily with genes in poised 

and repressed chromatin.  

 

Figure 61: Mean expression and DNA promoter methylation of sets of genes referring to different 

chromatin states in neuronal progenitors (NP) and mid frontal lobe (mf lobe) taken from [55]. Chro-

matin states were defined in [122,123]. The right part of the figure shows gene set maps of selected 

chromatin states and the respective correlations between mean expression and methylation in units 

of the GSZ-score. The clusters c1 and c2 reveal anti-correlated expression and methylation levels in 

the subtypes as indicated by the ‘+’ and ‘-‘ signs. Other clusters are dominated either by variation of 

the mean methylation (e.g. c4) or mean expression (e.g. c5 and c7) levels. 
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5.3.11 CHROMATIN MODIFIERS 

Chromatin states and DNA methylation are regulated by a large battery of chromatin 

modifying enzymes whose transcriptional activity is expected to vary between the glioma 

subtypes. We analyzed DNA methylation and gene expression of more than 30 chromatin 

modifying enzymes either directly catalyzing DNA methylation or indirectly mediating 

DNA methylation and gene expression via methylation (KMT) or demethylation (KDM) of 

selected lysine side chains of histone H3. The heatmap in Figure 62a reveals two main 

clusters of enzymes with either up- or downregulated expression in the IDH subtype mostly 

showing anti-correlated promoter methylation and predominantly low expression in MES. 

Expression of many enzymes thus seems to be modulated by DNA methylation in their 

promoter region.  

Mapping of the enzymes considered into the methylation and expression landscapes 

reveals that only a few of them locate in or near the characteristic ScoV-clusters accumulat-

ing genes with strongly anti-correlated expression and methylation profiles as discussed 

above (Figure 62b). Among them are, for example, the methyltransferases DNMT3A and 

KMT6 (alias EZH2), ensuring de-novo DNA methylation and trimethylation of H3K27, re-

spectively. Both mechanisms potentially support DNA hypermethylation and transcriptional 

deactivation where KMT6 also contributes to the formation of PRC2-repressed chromatin 

states. Co-expression of DNMT3A and KMT6 was also found in B-cell lymphoma (see sec-

tion 4.3.3), which presumably reflects their interaction as enzymatic components of the 

PRC2 [227]. Note that activity of these enzymes is reduced in IDH-glioma because of 

suggested suppression of PRC2 function in IDH. We will discuss this phenomenon below. 

An antagonistic regulation mode (methylation down and expression up in IDH) includes 

KDMs that demethylate H3K9me2/me3 and H3K27me3. Both processes co-regulate with 

genes included in the spot-cluster ‘M2’. It contains the oncogene KDM4A, overexpression 

of which associates with poor prognosis in many cancers [172]. 

The majority of enzymes however accumulates in an extended region of the map show-

ing enhanced cell division activity paralleled by a weak total DNA methylation level in all 

subtypes (see also Figure 55 and Figure 59). In contrast, another region, which associates 

with immune response functions is largely depleted from enzymes meaning that neither 

expression nor methylation of modifying enzymes strongly co-regulates with genes associ-

ated with immunity-related function. An analogous asymmetric distribution of chromatin 

modifying enzymes was reported for gene activation patterns in lymphoma (see section 

4.3.3). It was rationalized partly by the requirement of maintenance methylation of DNA 

and histone methylation marks after cell division and DNA replication. These processes 

require enhanced activities of these enzymes to re-establish the methylation state of DNA 

and histone side chains after cell division along the newly synthesized DNA. Moreover, it 

demonstrates that high transcriptional activity of these enzymes accompanies by a low 

DNA methylation level of their promoters. In summary, the enzyme machinery affecting 

DNA methylation shows aberrant expression and methylation changes between the glioma 
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subtypes, which in turn can be assumed to modify gene regulation via a multitude of feed-

back mechanisms. 

 

Figure 62: Expression and DNA-(promoter and gene body) methylation of genes encoding chro-

matin modifying enzymes: (a) The heatmap divides into clusters of enzymes over- and under-ex-

pressed in IDH showing also almost anti-correlated promoter methylation levels. For the enzymes 

TET3 and KDM4C one finds positively correlated variations of expression and methylation. (b) SOM 

maps of the chromatin modifying enzymes: Only a few of them accumulate in or near the clusters of 
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genes with strong anti-correlated expression and methylation changes (rectangular frames). Most 

genes encoding chromatin modifying enzymes accumulate in the region with moderate changes of 

expression and methylation between the subtypes and they mostly associate with an increased cell 

cycle activity. The region that associated with inflammation is almost depleted with enzymes. 

5.3.12 REGULATION OF DNA METHYLATION, CHROMATIN STATES AND GENE 

EXPRESSION 

In the previous subsections we studied promoter DNA methylation and gene expression 

in the context of chromatin states in healthy neuronal tissues and of chromatin modifying 

enzymes, which together form essential ingredients of the molecular machinery ensuring 

epigenetic regulation of cellular programs. The scheme in Figure 63a illustrates the main 

interactions between these ingredients in a simplified fashion: Promoter methylation in gli-

oma predominantly represses gene expression of the affected genes. DNA methylation 

marks are written or erased by DNMT and DNDM, respectively, whose activity thus adjusts 

the methylation level along the DNA. KMTs and KDMs adjust their methylation status and 

in consequence the activity of the affected genes according to the chromatin code [228] 

where transcriptional repression via H3K27me3 is linked with PRC2. In turn, the modifica-

tion status of the histones also affects the DNA methylation often via interactions with 

DNMTs where activating histone modifications tend to suppress promoter methylation and 

vice versa. The methylation status of the histones largely determines the chromatin state 

and its transcriptional activity.  

The dominant mechanism by which IDH1 mutations are oncogenic in IDH subtype is the 

2-HG mediated inhibition of JmjC KDMs and TET DNDMs [145] resulting in a shift of the 

methylation-demethylation equilibria towards hypermethylation of DNA and repressive 

methylation marks H3K9me3 and H3K27me3 [222]. The widespread disturbance of ex-

pression of the enzyme-machinery reported above indeed supports this but it suggests also 

additional options leading, e.g. to hypomethylation effects in IDH by repression of deme-

thylases of activating histone marks. The mutation landscape of glioma revealed a large 

number of mutations in chromatin modifying enzymes, which however, except those in 

IDH1, ATRX, and partly KMT2C (alias MLL3) and KMT2D (alias MLL2), were found in only 

less than 1% of the cases and thus rarely can be seen as drivers of tumorigenesis [217]. 

Alternative mechanisms, e.g. via tumor-induced changes of cell activity and their coupling 

with the epigenetic machinery are candidates to promote tumorigenesis. For example, in-

creased cell division activity in cancer requires adjustment of the maintenance machinery 

for methylation marks via activation of KMTs and DNMTs. Even small disturbances in this 

regulation possibly accumulate remarkable shifts in cellular programs during clonal evolu-

tion of tumor cells potentially leading to different cancer subtypes. Mechanisms of meta-

bolic coupling via different intermediate products of the TCA-cycle inhibiting KDMs poten-

tially enabling such shifts have been suggested previously [144,192]. In RTK tumors epi-
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genetic dysregulation seems to associate with metabolic reprogramming, namely with ab-

errant activation of the enzyme PKM2 [194], which plays an essential role in tumor metab-

olism and is involved in glycolysis to generate ATP and pyruvate [213]. 

 

Figure 63: Co-regulation of DNA methylation, gene expression and chromatin states: (a) Scheme 

linking DNA-promoter methylation and gene expression with the activity of epigenetic enzymes, the 

methylation state of histone lysine side chains and associated chromatin states. Mutation of IDH1/2 

leads to inhibition of demethylation reactions via metabolic coupling and in consequence to enduring 
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silence of developmental genes. (b) Summary of DNA methylation and gene expression changes of 

genes from selected chromatin states in the GBM subtypes. Net methylation and expression levels of 

chromatin states in the subtypes are indicated by the color of the boxes where IDH are consistently 

hypermethylated in all chromatin states selected. The consensus modes enrich these states but partly 

show different patterns, e.g. RTKII are hypermethylated in mode V. (c) Epigenetic regulation leading 

to aberrant activation or silencing of genes. 

Our SOM analysis revealed highest net DNA methylation levels throughout all chroma-

tin states in IDH and lowest methylation in MES with intermediate levels in RTKI and RTKII 

(Figure 63b). Strongest hypermethylation is observed in repressed and poised states of 

IDH. The combination of repressive histone marks in these states with reduced levels of 

KDMs for these marks and also of DNDMs is expected to promote the shift of the reaction 

equilibrium towards DNA methylation. In contrast, active states are obviously less prone to 

hypermethylation because the activating histone marks inhibit DNA methylation. 

We disentangled these overall patterns into selected consensus modes, which are char-

acterized by concerted alterations of methylation and expression levels among the subtypes 

(Figure 58). Modes I-IV roughly agree with these overall trends (Figure 63b). In contrast, 

mode V shows inverse methylation and expression changes, namely strong hypermethyla-

tion in RTKII and hypomethylation in IDH. This mode is enriched in a subset of poised 

chromatin states including PRC2-targets and developmental genes, which suggests their 

transcriptional deactivation in RTKII and activation in IDH. Interestingly, we found increased 

promoter methylation and reduced expression of genes encoding the enzymes DNMT3A 

and KMT6 in IDH, which suggests suppression of repression by PRC2 and thus activation 

of PRC2-targets in IDH and the opposite trend in RTKII as indeed observed. In other words, 

deactivation of PRC2 promoting enzymes by DNA hypermethylation of their promoters is 

expected to activate developmental genes targeted by PRC2, a mechanism that potentially 

shapes aberrant cellular programs in the emerging tumor cells (Figure 63c). Contrarily, 

high activity of PRC2 promoting enzymes in the other subtypes and especially in RTKII 

represses associated genes and, in combination with the hypermethylation of their promot-

ers, will enhance their repression and lead to enduring silencing and the blockage of cel-

lular-differentiation. In general, PRC2-targets are more likely to show a promoter DNA hy-

permethylation pattern specific for cancer compared with non-targets. This process supports 

a stem cell origin of cancer in which gene expression is long-term repressed resulting in a 

continuous self-renewal state of the cell, possibly causing malignant transformation [226]. 

5.3.13 GENE BODY DNA METHYLATION 

We restricted DNA methylation analysis to the promoter region of the genes. Part of 

the enzymes such as KDM4C and KDM3A (alias SETD2)/B de-methylate H3K36me3, a 

histone modification required for transcriptional elongation, DNA-repair, and efficient nu-

cleotide synthesis and DNA-replication [177,229]. It acts rather along the body of the 

genes and not in their promoter region. To account for this we calculated the integral 
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methylation level of all probed CpGs along the body of each gene. For chromatin modify-

ing enzymes we found that the methylation of the gene body mostly differs from the meth-

ylation pattern of the respective promoter region (Figure 62a): Particularly, gene bodies in 

RTKI are consistently hypomethylated and in IDH almost consistently hypermethylated indi-

cating that methylation patterns of the gene body are less diverse than that of the promoter 

region. Moreover, differential methylation of the gene body shows no pronounced anti-

correlation with gene expression as found for promoter methylation in glioma. We mapped 

gene body methylation into the SOM calculated using promoter methylation values (see 

supplementary material of [215]). We found that gene body data only weakly maps onto 

the promoter methylation landscape thus revealing almost disjunctive methylation patterns. 

The SOM modulation method offers one option to study relations between them. 

5.3.14 CONCLUSION 

DNA methylation of CpGs in gene promoters and gene expression are mutually- 

dependent effects that both regulate activity of cellular programs. We presented a new 

method based on SOM machine learning that enables an integrative view on gene expres-

sion and DNA methylation data. The method ‘portraits’ the expression and methylation 

landscapes for each sample and cancer subtype and thus allows their visual inspection on 

a personalized and class-related basis. The relative contribution of each of both data enti-

ties can be tuned either to focus on expression or methylation landscapes or on a combi-

nation of both. We applied the method to gene expression and promoter methylation data 

of gliomas, a tumor entity, which classifies into a series of molecular subtypes differing in 

DNA methylation and gene expression as well. Expression and methylation landscapes 

were segmented into modules of co-expressed and co-methylated genes, which reflects 

underlying regulatory modes of cell activity. Expression and methylation modules are typi-

cally anti-correlated suggesting a common functional background. We also found modes 

of co-expressed genes without co-methylation effect and vice versa. We identified different 

modes of combined gene expression and DNA methylation changes between the subtypes, 

assigned their functional context in terms of activated cellular programs, and related them 

to chromatin states in healthy brain and to the expression of selected chromatin modifying 

enzymes with consequences for DNA methylation and gene expression. Interestingly, we 

found antagonistic methylation and gene expression changes between the IDH (IDH1-mut 

proneural) and RTKII (classical) subtypes, which affect predominantly poised and repressed 

chromatin states in healthy brain tissue. These effects deregulate developmental processes 

either by their blockage or by aberrant activation leading to inappropriate cellular func-

tions. The examples chosen illustrated that integral analysis of gene expression, DNA meth-

ylation and, in final consequence, also genetic defects is required to disentangle molecular 

factors of complex diseases. 



  

 

 

 

6 Summary and Conclusion 

The fundamental subject of this thesis was to develop and to apply bioinformatics meth-

ods based on SOM machine learning in order to unravel molecular mechanisms underlying 

cancer in the specific case of lymphoma and glioblastoma with special focus on gene 

expression and epigenetic mechanisms affecting gene activities. Methodical challenges 

were hereby (i) the high diversity of cancer on the molecular level that requires appropriate 

computational methods for stratification and visual evaluation of the data landscapes for 

each individual case, for example to identify their individual specifics; (ii) the extraction of 

suited features that characterize the subtypes and the respective functional context requir-

ing strategies beyond a case-control two group comparison and the evaluation and con-

sideration of weak effect sizes; (iii) the integration of different data types such as transcrip-

tome and (DNA-) methylome data and their joint analysis, to extract mutual associations 

as candidates for possible causal effects important in the context of genomic regulation 

and particularly of its dysfunction promoting tumorigenesis. 

We demonstrated that our SOM portrayal method well meets these requirements and 

enables the detailed molecular characterization of cancer. Particularly, the method pro-

vides a holistic view on high-dimensional data collected in large-scale studies. The portray-

ing method transforms the multitude of different modes inherent in a multidimensional data 

set into a two-dimensional map for each sample. This map can be simply ‘read’ by visual 

inspection revealing relevant clusters of co-regulated genes and their functional context by 

applying knowledge mining. Importantly, features were selected using the concept of 

‘spots‘ based on the assumption of co-regulation, which is more sensitive than the concept 

of maximum differential effect size. Furthermore those spots enable finer identification of 

functional modules. We demonstrated that SOM portrayal provides a general framework 

for analytic tasks such as feature selection, integration of concepts of molecular function 

and systems tracking with individual resolution. Furthermore, the method has proven its 
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value to detect contaminations, which we observed for gene expression studies. We pre-

sented a workflow that suggests a way to cope with contaminated samples caused by 

either inaccurate biopsies or variations in the sample preparation process. This method 

enables one to correct the data without need for exclusion of affected samples, which 

would mean a loss of valuable information. 

We illustrated the potency of this method by analyzing the transcriptome and DNA-

methylome landscapes of B-cell lymphoma and glioma. Particular objectives in these studies 

were: (i) the re-evaluation and characterization of molecular subtypes described previously 

and their mutual comparison across the cancer entities; (ii) the joint analysis of gene ex-

pression and DNA methylation data to compare classification schemes originating from 

the different data types and to analyze mutual associations between them; (iii) the study of 

potential modes of epigenetic regulation in the cancer subtypes under consideration of 

chromatin states, chromatin-modifying enzymes, DNA methylation and gene expression.  

Regarding a big cohort study of mature aggressive B-cell lymphoma patients we rean-

alyzed previously published gene expression microarray data and proposed a more de-

tailed molecular subtype classification of the samples. It turned out that each of the newly 

defined subtypes is characterized by different hallmarks of cancer, e.g., proliferation and 

high transcriptional and translational activity in mBL*, activated immune response and in-

flammation in non-mBL*, innate immunity in the intermediate A subtype and up-regulated 

expression of common cancer gene signatures in the intermediate B subtype. Furthermore 

we found that the survival prognosis for the two intermediate subtypes is even worse com-

pared with the more homogeneous mBL* and non-mBL* subtypes. 

The gene expression study of glioblastoma revealed that the GBM subtypes can be 

divided into two ‘localized’ and two ‘intermediate’ ones. The localized subtypes MES and 

PN were characterized by the antagonistic activation of processes related to immune re-

sponse and cell division, respectively. In contrast, each of the ‘intermediate’ subtypes 

formed a heterogeneous continuum of expression states linking the ‘localized’ subtypes. In 

general, we observed a similar separation of subtypes related to inflammation and cell 

division in both B-cell lymphoma and glioma, which suggests a more generic nature of the 

underlying processes related to molecular hallmarks of cancer such as inflammation and 

cell division.  

It is generally known that epigenetics regulates gene expression and that changes in 

the epigenome may lead to carcinogenesis. We examined epigenetic mechanisms driving 

tumorigenesis and particularly the possible role of chromatin remodeling in the transfor-

mations from healthy into malignant B-cells and from healthy brain tissue into malignant 

tissue. With the help of our integrative method based on correlation of both gene expres-

sion and DNA methylation data measured in lymphoma cohorts we found groups of genes 

showing characteristic expression and methylation signatures among the subtypes studied. 

These signatures are associated with epigenetic effects such as remodeling from transcrip-

tionally inactive into active chromatin states, differential promoter methylation and the en-

richment of targets of transcription factors such as EZH2 and SUZ12.  
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We also applied our methods to DNA methylation data of brain cancer in order to 

extract sets of differentially methylated genes, to demonstrate their functional impact and 

to discuss their relevance in terms of glioma biology. We showed that the intrinsic structure 

of this methylation data is compatible with a multitude of signature sets extracted from 

independent cohorts including DNA methylation and gene expression data thus reflecting 

their common biological background. We showed that the specifics of biological functions 

of different glioma subtypes shape the content of these marker sets. In turn, including not 

only standard functional information according, e.g. to different gene ontology terms but 

also chromatin states of the healthy brain enabled us to study epigenetic mechanisms of 

glioma progression and the associated interplay between gene activity and methylation. 

The enrichment of DNA methylation signatures of other cancer entities in gliomas suggests 

general oncogenic mechanisms of aberrant DNA methylation. 

Furthermore, we systematically studied the expression of more than 50 genes that code 

for histone and DNA (de)methylating enzymes in lymphomas and healthy controls. As a 

main result, we found that the expression levels of nearly all enzyme encoding genes be-

come markedly disturbed in lymphomas, suggesting deregulation of large parts of the epi-

genetic machinery. We discussed the effect of DNA promoter methylation and of transcrip-

tional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. Also 

for glioma the chromatin modifiers showed similar deregulation as observed for lympho-

mas. Therefore we concluded that the expression of many enzymes seems to be modulated 

by DNA methylation in their promoter region. We found that the enzyme machinery affect-

ing DNA methylation shows aberrant expression and methylation changes between the 

glioma subtypes, which in turn can be assumed to modify gene regulation via a multitude 

of feed-back mechanisms. 

Last but not least we presented an inter-omics approach demonstrated on matched gli-

oblastoma cases of gene expression and promoter DNA methylation data. Both omics-

profiles were trained together with various weighting factors. This method allows for direct 

comparison of matched individual single-omics portraits and for extraction of co-regulated 

gene modules showing concerted, anti-concerted or single-omics driven changes of 

expression and methylation. 

A couple of open questions remain not addressed in this thesis. For example for both 

B-cell lymphoma and glioma we studied the expression of genes coding for epigenetic 

enzymes but the role of the enzymes should rather be estimated based on their chemical 

activities than only on their expression levels. Also the list of enzymes considered has to be 

extended beyond methylation to include also other histone modifications, such as acetyla-

tion, ubiquitylation, and others, for which one can expect also massive deregulation effects 

in cancer. In addition meta-analyses including different cancer entities are required to iden-

tify more ubiquitous and more specific modes of epigenetic regulation. Another point is 

that the understanding of molecular mechanisms of cancer requires integrative analysis of 

omics data including not only gene expression and DNA methylation but also, e.g., muta-

tions, chromatin states and proteomic data. Although in this dissertation the method of joint 
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analysis was applied to transcriptomics and epigenomics data, in particular gene expres-

sion and DNA methylation, it is not restricted only to those but can be adapted to other 

omics. Nonetheless, this thesis contributed to the research of cancer entities like B-cell lym-

phoma and glioblastoma and previous findings about their underlying biology have not 

only been confirmed but also supplemented by our analyses. 



  

 

 

 

7 Supplement 

7.1 MATERIAL AND PREPROCESSING DETAILS 

7.1.1 PCP GENE EXPRESSION DATA 

Prostate cancer progression (PCP) microarray data are available under GEO accession 

number GSE6099 (104 non-commercial spotted Human 20K Hs6 arrays). The original 

study [58] addressed the molecular mechanisms associated with gene expression changes 

in the course of prostate cancer progression using laser capture microdissection by means 

of 84 samples from 44 individuals. The samples used were assigned to five stages of 

cancer progression ranging from benign prostatic hyperplasia (BHP, 22 samples) and pros-

tatic intraepithelial neoplasia (PIN, 13) to low-grade (PCA_low, Gleason score 3, 12 sam-

ples), high-grade (PCA_high, Gleason score 4–5, 20 samples), and metastatic (MET, 17) 

prostate cancer.  

7.1.2 LYMPHOMA GENE EXPRESSION DATA 

Microarray data of lymphoma are available under GEO accession number GSE4475 

(data from 221 Affymetrix HT HG-U133A arrays). This study used biopsy specimens of 

mature aggressive B-cell lymphoma with a tumor content of at least 70 percent. The classi-

fication of lymphoma samples into different subtypes is used as provided by Hummel et al. 

[59]: Of all 221 lymphomas, 44 were assigned to the mBL (molecular Burkitt’s lymphoma) 

signature and 129 to non-mBL signature. 48 cases form an intermediate group, represent-

ing the transition zone between the mBL and non-mBL groups. The expression data was 

preprocessed as given in section 3.2. 
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7.1.3 LYMPHOMA DNA METHYLATION AND GENE EXPRESSION 

DNA methylation data 

Microarray-derived DNA methylation rates of 1,410 CpGs (GoldenGate Methylation 

Cancer Panel I; Illumina, San Diego, CA) of in total 133 samples obtained from hemato-

logical neoplasms and reference systems were taken from [60]. The CpGs were located in 

the range from -1500 bp to +500 bp around the TSS of 768 genes thus serving as markers 

for their promoter methylation. Methylation data was given in units of beta values estimat-

ing the level of methylation between values of zero (no methylation) and unity (full methyl-

ation) for each promoter. Differential methylation defines the difference between beta val-

ues of two states, e.g. between lymphoma and healthy B-cells, where hyper- and hypo-

methylation assigns positive and negative differences (delta beta values), respectively. In-

tegral differential methylation was calculated as mean differential methylation separately 

averaged over all positive and negative delta beta values. Please take into account that for 

SOM analysis of differential methylation (DmetSOM) we used centralized methylation 

data, which are calculated as the difference between the beta value of a given promoter 

in a given sample and its mean value averaged over all samples studied. 

For B-cells we find a bimodal shape of the frequency distribution of  values among the 

genes studied with maxima near zero (completely de-methylated CpG sites) and unity (com-

pletely methylated, see Figure S 1a). The respective distributions of  values in lymphoma 

are characterized by a wide loss of this bimodality where especially the fraction of highly 

methylated genes with  values near unity markedly decreases. Accordingly, the distribu-

tions of  value alterations of the genes in the different systems compared with their meth-

ylation in B-cells are tailed to both, positive and negative values reflecting hypo- and hy-

permethylation of the respective genes (Figure S 1b).  

The integral hyper- and hypomethylation of all genes considered reveals the progres-

sively increasing disturbance of DNA methylation in lymphoma being largest in DLBCL and 

IntL, but being relatively small in MM, FL, MCL and also mBL (Figure S 1c). This trend 

agrees with the results of previous studies reporting the gain of epigenetic heterogeneity 

(in terms of differential methylation with respect to the reference state of healthy B-cells) 

with progressive aggressiveness of lymphoma being largest in DLBCL [230,231]. Except 

for MCL, we find a global hypermethylation of the genes in lymphoma compared with B-

cells (Figure S 1d). On the other hand, the variance of  values in each of the samples 

strongly decreases in lymphoma mainly due to the decrease or even loss of bimodality 

reported above (Figure S 1e). In summary, methylation changes in lymphoma comprise 

both, hyper- and hypomethylation effects leading to a loss of bimodality of promoter meth-

ylation with maxima at low and high  values and to more balanced methylation land-

scapes, where promoter regions tend to become methylated on intermediate --levels. 
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Figure S 1: DNA methylation summary characteristics of lymphoma and of healthy B- and GCB-

cells. (a) The frequency distribution of the promoter methylation  values of B-cells shows two maxima 

referring to almost not- and completely methylated promoters, respectively. (b) and (c) The distribu-

tions of  values lose this bimodality to a large degree in lymphoma, where weakly and intermedi-

ately methylated genes become hypermethylated and highly methylated genes become hypomethyl-

ated compared with healthy B-cells. (d) The total methylation level increases and (e) the variability 

of methylation among the genes in each of the samples decreases. 

Gene expression data 

Expression data were taken from the MMML (Molecular mechanisms of malignant lym-

phoma) cohort described in [59] comprising 936 samples. Lymphoma samples were clas-

sified into five molecular subtypes as described above and [122]: mBL (85 samples), non-

mBL (287), IntL (307), FL (121), and B-cell-like lymphoma (BCL, 64). According to patho-

logical diagnosis, the molecular subtypes refer predominantly to BL (mBL), DLBCL (non-mBL) 

and MM (BCL). Further the cohort contains B-cells (17), GCB-cells (13), a lymphoma cell 

line (32) and tonsils (10) as reference. The microarray expression data (Affymetrix HT HG-

U133A) were processed as described previously (see section 3.2). The B-cells subsume 

naïve pre- and mature post-GCB-cells, which show virtually indistinguishable gene expres-

sion patterns. The GCB-cells are centroblasts with strongly activated proliferative cellular 

programs. 
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7.1.4 LYMPHOMA GENE EXPRESSION DATA FOR PORTRAYAL OF CHROMATIN 

MODIFIERS 

A subgroup (632 samples) of the publically available gene expression data (GEO ac-

cession numbers GSE4475, GSE10172, GSE22470, GSE48184, GSE43677) considered 

in section 4.2 were taken [59]. The cohort contains 62 mBL (BL), 204 DLBCL (non-mBL), 

255 IntL, 3 FL, 36 BCL samples and 17 healthy B-cells, 13 GCB-cells, 32 lymphoma cancer 

cell lines and 10 tonsil samples as control.  

7.1.5 GBM GENE EXPRESSION DATA 

A public available cancer data set of a patient cohort study regarding glioblastoma 

multiforme (GBM) was analyzed. Microarray data are available on ‘The Cancer Genome 

Atlas’ (TCGA) data portal (http://tcga-data.nci.nih.gov/tcga/). We downloaded level 1 

data of 153 GBM and 10 normal brain tissue specimen hybridized on Affymetrix HT HG-

U133A arrays comprising raw intensities of 22.777 single genes. We used the classifica-

tion of tumor subtypes given in [61]: The samples were assigned to Mesenchymal (MES, 

50 samples), Proneural (PN, 45), Neural (NL, 26), Classical (CL, 32) GBM-subtypes and 

to normal healthy brain (11) for comparison. The latter specimens were taken from adjacent 

brain tissue of GBM patients. The expression data was preprocessed as given in section 

3.2. 

7.1.6 GBM DNA METHYLATION DATA 

DNA Methylation data 

DNA methylation data of 136 GBM and 6 control samples were taken from ref. 

[60,62] (available under GEO Series accession number GSE36278). The data refer to 

pediatric and adult GBM and to non-neoplastic cerebellum specimen as controls  

(Table S 1). GBM samples were classified according to the methylation clusters identified 

in [62]. Accordingly, the pediatric GBM split into two subtypes carrying mutations of the 

H3F3A gene, which affect two different amino acids of histone H3.3, namely G34 or K27, 

respectively. The adult GBM were classified into four subtypes labeled according to corre-

lations with genetic defects. These genetic hallmarks constitute mutations of the IDH1 gene 

(‘IDH’ subtype) and focal copy number (CN) amplifications of the PDGFRA (‘RTKI’ subtype) 

or EGFR (‘RTKII’ subtype) gene both coding receptor tyrosine kinases (RTK). The RTKII cases 

are called ‘classical’ because they enrich combined gain of CNs at Chr 7 and loss of CNs 

at Chr 10 both representing a hallmark of IDH1 wild type GBM [62]. The ‘mesenchymal’ 

subtype shows a lower incidence of GBM typical CN alterations.  

Microarray-derived DNA methylation data (Illumina HumanMethylation450 BeadChip) 

of the 136 GBM and 6 control samples were taken in terms of  values of 485,512 CpGs. 

Methylation levels were estimated in a gene centric way by averaging the CpG-related  
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values over genomic regions of the promoters of each gene ranging from 1500 bp up-

stream the transcription start site (TSS) to the TSS (Figure S 2). The methylation data was 

further preprocessed as given in section 3.2. 

Table S 1: DNA methylation data set (Sturm et al. [62]). 

subtype n  genetic hallmark1 expression  

subtype2 

adult 2 control   
fetus 4 control   

MES(enchymal) 36 adult GBM  mesenchymal 
RTKII (classical) 22 adult GBM CDKN2A (CN loss), EGFR 

(CN amplification) 
classical  

RTKI (PDGFRA) 23 adult GBM PDGFRA (CN amplification)  
IDH 19 adult GBM IDH1 (mut) proneural 

G34 18 pediatric GBM H3F3A/ G34 (mut)  
K27 18 pediatric GBM H3F3A/ K27 (mut)  

1 See, e.g., [194] for an overview. 
2 According to [61]. 

On average, CpG-related  value reveal a smoothly decaying methylation level up-

stream of the TSS of the genes and relatively noisy methylation in their first exon  

(Figure S 2a). The frequency distribution of gene centric  values shows a typical bimodal 

shape with maxima near zero (completely de-methylated CpG sites) and unity (completely 

methylated CpG sites, see Figure S 2b). The distribution of the IDH-subtype clearly reveals 

a trend towards global hypermethylation: The fraction of weakly methylated genes de-

creases while the fraction of highly methylated genes increases compared with the distri-

butions in the healthy controls. On the other hand the distribution of the G34-subtype shows 

the opposite effect and thus a trend towards global hypomethylation (see the arrows in  

Figure S 2b). 

 

Figure S 2: Global  methylation characteristics: (a) Mean methylation level as a function of the 

genomic position relative to the TSS. CpG- values were averaged over all genes for each subtype 



152 Supplement 

 

 

 

(the colors were assigned in b); (b) frequency distribution of  values for the GBM subtypes and 

controls. The arrows serve as a guide for the eye to indicate methylation changes leading to global 

hyper- or hypomethylation in IDH- and G34-type GBM compared with healthy controls. 

 

Figure S 3: Differential methylation analysis with respect to adult healthy brain. (a) Difference 

MetSOM portraits (metagene-methylation data are subtracted pixelwise) show subtype-specific hy-

permethylation in GBM. (b) Difference DmetSOM portraits reveal global hyper- and hypomethylation 

in spots ‘F’ and ‘A1’, respectively.  

Gene expression data 

Three expression data sets were used to establish associations with methylation data 

(see Table S 2). Microarray expression data of 30 matched samples and 3 unmatched 

fetal controls were taken from [62]. They comprise the same subtypes as the methylation 

data. A second set of expression data was taken from [61] and processed and analyzed 

previously (see section 5.1 and [69]). This data comprises healthy brain, mesenchymal, 

classical, proneural and neural GBM, which were matched with the classes of the methyl-

ation data. The third data set was taken from [63]. It consists of GBM with mesenchymal, 

classical, proneural with IDH1/2-mutational and proneural with IDH1/2-wild type  

characteristics. 

Table S 2: Gene expression data of GBM. 

methylation 
classes 

Sturm et al. [62] 
matched samples 

Hopp et al.[61]  
matched classes 

Reifenberger et al. [63] 
matched classes 

adult  healthy (n=10) proneural IDH1-wt (n=14) 
fetal fetal (n=3)   
MES mesenchymal (5) mesenchymal (50) mesenchymal (21) 
RTKII RTKII (3) classical (32) classical (23) 
RTKI RTKI (6)   
IDH IDH (7) proneural (45) proneural IDH1-mut (12) 
G34 G43 (4)   
K27 K27 (5)   
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7.1.7 GBM MATCHED GENE EXPRESSION AND DNA METHYLATION DATA 

Gene expression data 

Microarray based gene expression (Affymetrix HT HG-U133A arrays) and DNA meth-

ylation (Illumina 450K arrays) data are available on ‘The Cancer Genome Atlas’ (TCGA) 

data portal (http://tcga-data.nci.nih.gov/tcga/). We downloaded data of glioblastoma 

multiforme (GBM) batch 111 containing specimen of 39 patients. We used the classifica-

tion of tumor subtypes given in [62]: According to distinct DNA methylation clusters the 

samples were assigned to Mesenchymal (MES, 16 samples), RTKI ‘PDGFRA’ (RTKI, 4), RTKII 

‘Classic’ (RTKII, 16), and IDH (3) molecular GBM subtypes. We used level 1 (raw data) 

gene expression data.  

DNA Methylation data 

We used level 3 CpG-related DNA methylation data ( values) matched to the same 

patients as considered for gene expression data. CpG DNA methylation data were 

mapped to the promoter region of each gene ranging from 2kb upstream up to 200bp 

downstream of the transcription start site (TSS) of each gene using RefSeq mRNA annota-

tion and averaged to get one methylation  value for each gene promoter available.  

7.2 SUPPORTING MAPS AND METAGENE VARIABILITY 

Method 

Additional information, such as the population (number of single genes per metagene 

mini-cluster) and the variance of metagene expression profiles can be visualized using the 

same mosaic structure as in the expression and methylation portraits. The additional infor-

mation is then color coded using proper scales. For example the variance map visualizes 

the variance of the metagenes in each of the tiles, 

vark  
1

M − 1
∑ (∆ekj − ∆ek∙)

2
  

j

1

M − 1
∑∆ekj

2

j

 
Eq.(11) 

with ∆ek∙ 0. We also calculate the orthogonal variability of the metagene expression land-

scape of each SOM image, 

varj  ∑
1

K − 1
∑ (∆ekj − ∆e∙j)

2

kk

 
Eq.(12) 

where ∆e∙j  0 is the mean differential expression averaged over all metagenes of  

sample j. 
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Example 

SOM-machine learning scales the difference between the expression profiles of adja-

cent metagenes inversely to their population, i.e., adjacent metagene profiles become more 

similar for highly populated metagenes. This way the method tends to distribute the single 

genes over as much as possible tiles.  

The population map of PCP shown in Figure S 4a reveals that the single genes distribute 

inhomogeneously among the tiles of the mosaic. Highly populated metagenes (see yellow 

and red tiles) predominantly group along the edges of the map whereas only a few genes 

were distributed to the central area. Tiles in the central area refer to genes with virtually 

invariant expression in all samples studied. These invariant genes give rise to the dark blue 

spot in the central area of the variance map (Figure S 4b). Both, invariant and empty 

metagenes carry essentially no specific information as classification markers in transcrip-

tional profiling. Hence, the tiles occupied by empty and invariant genes form regions not 

suited for differential expression analysis between the cancer progression stages studied.  

The more variant and higher populated metagenes reveal an underlying spot-like pat-

tern preferentially along the boundaries of the map (red areas), which agrees with the over- 

and underexpression spots detected in the SOM mosaics of individual samples.  

 

Figure S 4: Supporting maps characterizing the SOM trained for PCP: (a) The population map 

visualizes the number of single genes per metagene cluster. Highly populated metagenes accumulate 

along the edges (red tiles). (b) The metagene variance map color codes the variance of the metagene 

profiles. Virtually invariant metagene profiles form the central blue spot whereas highly variant ones 

are found in the peripheral regions of the map. 

7.3 CONSENSUS CLUSTERING OF B-CELL LYMPHOMA 

Consensus clustering aims at reaching a consensus on the number of classes in the data 

and at judging reliability of the class assignment of the samples. We applied the R-package 

‘ConsensusClusterPlus’ [232] for portioning the samples into c classes using hierarchical 

clustering with c ranging from two to six. For each c, one obtains a consensus matrix, 

reflecting the fraction of common class memberships for all pairwise combinations of sam-

ples estimated in a series of resampling runs (details are given in [95]). 
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Figure S 5a − c shows the heatmaps of the consensus matrix for two to four classes, 

respectively. Pairs of samples, robustly assigned to the same cluster, accumulate within one 

of the blue squares along the diagonal of the heatmap. The two-class approach basically 

divides the samples into an mBL-like and a non-mBL-like cluster (Figure S 5a). The three-

class approach essentially splits the samples into the mBL/intermediate/non-mBL subtype 

structure as proposed in [59] (Figure S 5b). The four-class consensus clustering resembles 

our new subtype classification with the two intermediate subtypes (Figure S 5c). The five- 

and six-cluster approaches virtually do not change this result: The additional fifth and sixth 

clusters collect only one and three outlier samples, respectively (data not shown). 

 

Figure S 5: Consensus clustering: (a) − (c) Cluster-heatmaps of the consensus matrices for class 

numbers ranging from two to four, respectively. Pairs of samples frequently found in one joint class 

accumulate in the blue regions along the diagonal of the map. (d) Cumulative distribution function 

(CDF) for class numbers ranging from two to six. 

The cumulative distribution function (CDF) aggregates the consensus values up to a cer-

tain fractional co-occurrence of sample pairs. The CDF thus reflects the ‘degree of hetero-

geneity’ of a consensus matrix using one curve such that clusterings with different c can be 

directly compared with the purpose to identify the optimal class number [95]. The incre-

mental change between CDF curves with increasing c serves as a measure to judge whether 

increasing the class number leads to a marked increase of cluster’s stability or not. The 

obtained CDFs in Figure S 5d support the four-class approach: The CDF converges for  

c > 3 showing only small incremental changes with further increasing c. Note that the 

increment between c  4 and 5 is caused by a single-sample cluster.  
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7.4 PHENOTYPIC CHARACTERIZATION OF NEW LYMPHOMA SUBTYPES 

Table S 3: Phenotypic and molecular characterization of the four new subtypes (data taken from 

[96]). Percentages refer to the total number of samples. Parameters are not available for all samples. 

P-values are calculated using Fisher’s exact test. 

Characteristic   Lymphoma subtype p-value 

   mBL* 
interme-
diate A 

interme-
diate B 

non-
mBL*  

Total number of patients 221 62 (28%) 42 (19%) 44 (20%) 73 (33%)  
Age <20 y 32 (14%) 26 (42%) 0 (0%) 1 (2%) 5 (7%) <0.001 

 21–65 y 92 (42%) 27 (44%) 14 (33%) 22 (50%) 29 (40%)  

 >66 y 95 (43%) 9 (15%) 27 (64%) 20 (45%) 39 (53%)  
Gender male 127 (57%) 40 (65%) 26 (62%) 23 (52%) 38 (52%) 0.44 

 female 91 (41%) 22 (35%) 15 (36%) 20 (45%) 34 (47%)  
Diagnosis BL 15 (7%) 15 (24%) 0 (0%) 0 (0%) 0 (0%) <0.001 

 Atypical BL 20 (9%) 16 (26%) 3 (7%) 0 (0%) 1 (1%)  

 DLBCL 164 (74%) 24 (39%) 37 (88%) 38 (86%) 65 (89%)   
Mature aggressive 
BL, unclassifiable 18 (8%) 5 (8%) 2 (5%) 5 (11%) 6 (8%) 

 

Ann Arbor I or II 72 (33%) 25 (40%) 9 (21%) 15 (34%) 23 (32%) 0.37 

stage III or IV 82 (37%) 19 (31%) 15 (36%) 22 (50%) 26 (36%)  
Response to  Complete remission 68 (31%) 27 (44%) 8 (19%) 10 (23%) 23 (32%) 0.40 

treatment Complete remis- 
sion, unconfirmed 18 (8%) 4 (6%) 2 (5%) 6 (14%) 6 (8%)  

 No change 2 (1%) 0 (0%) 0 (0%) 1 (2%) 1 (1%)  

 Partial response 16 (7%) 1 (2%) 3 (7%) 5 (11%) 7 (10%)  

 Progress 24 (11%) 7 (11%) 4 (10%) 7 (16%) 6 (8%)  
Molecular mBL 44 (20%) 44 (71%) 0 (0%) 0 (0%) 0 (0%) <0.001 

classification intermediate 48 (22%) 18 (29%) 11 (26%) 10 (23%) 9 (12%)  
Hummel [59] non-mBL 129 (58%) 0 (0%) 31 (74%) 34 (77%) 64 (88%)  
GCB-ABC ABC 58 (26%) 2 (3%) 26 (62%) 15 (34%) 15 (21%) <0.001 

classification GCB 120 (54%) 53 (85%) 10 (24%) 18 (41%) 39 (53%)  
Wright [98] unclassified 43 (19%) 7 (11%) 6 (14%) 11 (25%) 19 (26%)  
Translocations IG-MYC 60 (27%) 49 (79%) 1 (2%) 6 (14%) 4 (5%) <0.001 

MYC translo- non-IG-MYC 15 (7%) 6 (10%) 5 (12%) 2 (5%) 2 (3%)  
cation neg 144 (65%) 7 (11%) 36 (86%) 35 (80%) 66 (90%)  
BCL6 Break pos 37 (17%) 2 (3%) 9 (21%) 11 (25%) 15 (21%) 0.002 

 neg 179 (81%) 59 (95%) 32 (76%) 31 (70%) 57 (78%)  
IGH Break pos 115 (52%) 53 (85%) 11 (26%) 23 (52%) 28 (38%) <0.001 

 neg 103 (47%) 9 (15%) 30 (71%) 20 (45%) 44 (60%)  
t(14;18) trans- pos 25 (11%) 5 (8%) 2 (5%) 6 (14%) 12 (16%) 0.19 

location neg 193 (87%) 57 (92%) 40 (95%) 37 (84%) 59 (81%)  
Immunohisto- CD10   low 114 (52%) 3 (5%) 33 (79%) 26 (59%) 52 (71%) <0.001 

chemistry high 96 (43%) 56 (90%) 6 (14%) 14 (32%) 20 (27%)  

 BCL2    low 62 (28%) 38 (61%) 2 (5%) 7 (16%) 15 (21%) <0.001 

 high 153 (69%) 22 (35%) 39 (93%) 35 (80%) 57 (78%)  

 BCL6    low 34 (15%) 5 (8%) 9 (21%) 7 (16%) 13 (18%) 0.21 

 high 168 (76%) 52 (84%) 29 (69%) 32 (73%) 55 (75%)  

 MUM1 low 66 (30%) 29 (47%) 7 (17%) 8 (18%) 22 (30%) 0.001 

 high 139 (63%) 27 (44%) 33 (79%) 32 (73%) 47 (64%)  

 KI67    low 125 (57%) 17 (27%) 26 (62%) 26 (59%) 56 (77%) <0.001 

 high 89 (40%) 44 (71%) 15 (36%) 14 (32%) 16 (22%)  
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7.5 MARKER SETS OF B-CELL LYMPHOMAS AND COLORECTAL CANCER 

DIFFERENTIATE ALSO BETWEEN GLIOMA CLASSES 

 

Figure S 6: Mapping of methylation-signature gene sets of B-cell lymphoma and of colorectal cancer 

into the DmetSOM of glioma. The gene sets were determined using SOM spot analysis in recent 

studies on DNA methylation data in [113] and [205], respectively. The red frames indicate regions 

of increased local densities of genes. The profiles indicate subtype-specific hyper- (and hypomethyl-

ation) in glioma.  

 



158 Supplement 

 

 

 

7.6 CHROMATIN STATES IN LYMPHOMAS 

 

Figure S 7: Mapping of genes referring to different chromatin states as determined in lymphoblas-

toid cells using ChIP-Seq and a Hidden Markov model [122,123]. According to the methylation and 

expression characteristics in the lymphoma data set these gene sets can be grouped into five types. 
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7.7 FUNCTION MINING OF GBM METHYLATION SPOT MODULES 

Table S 4: Sets of methylation marker genes and their functional context. 

Spot 
 

UP DN Functional context: Enriched gene sets1 top 10 genes2 

A MES  olfactory receptor activity (MF); G-protein 
coupled receptor signaling pathway (BP), 
neurological systems process (BP), colon 
cancer: CIMP_methylation_DN, CIMP_ex-
pression_UP [205] 

ANGPTL1, BCAN, 
LAMA4, APOC1, TUT1, 
FADS1, OR4C46, 
OR11H6, CDH19, 
GDF5OS,  

B  G34 extracellular region (CC); keratin filament 
(CC); colon cancer: CIMP_methyla-
tion_DN [205] 

PRR33, VIP, FGF17, 
EMB, USP44, CCR7, 
HOXB1, LHX5, PRKCD, 
C1orf64 

C IDH  hallmark epithelial mesenchymal transition 
(cancer), GCIMP_signature genes: silenced_ 
by_methylation [46]; colon cancer: CIMP_ 
methylation_UP [205]; Christensen_ methyl-
ated_in_LGG [105]; Ben-
porath_H3K27me3_ in_ES [208]; brain de-
velopment (BP), Meissner_brain_HCP_with-
H3K4me3_and_ H3K27me3 [233], Ver-
haak_classical_expression_UP [69]  

MT3, SPATA6L, 
OSBPL1A, TCEA2, 
MEOX2, ZNF3, 
L3MBTL4, KIAA0101, 
TMEM106A, PLLP 

D controls MES immune response (BP), cytokine mediated 
signaling pathway (BP)  

TLR4, RTN4, NR2F2, 
VIM, TMEM140, NMI, 
PAXIP1−AS2, DHRS4, 
CISD2, TM4SF18 

E G34  EED-targets, SUZ12-targets, PRC2-targets, 
H3K27me3 [208]; RNA-PolI_opening (Reac-
tome); meiosis and telomere maintenance 
(Reactome) 

INHBB, MORN3, NAB2, 
PCDH10, FGGY, 
LMCD1, DPYSL3, 
RASD1, MANF, IGFBP7  

F RTKII  EED-targets, SUZ12-targets, PRC2-targets, 
H3K27me3 [208]; H3K27me3 in HCP 
[201]; Brain HCP with H3K27me3, with 
H3K4me3 and H3K27me3 [233], develop-
mental regulators [116] 

PCDHAC1, ZSCAN1, 
GALNT9, ROBO2, 
CEP126, POPDC3, 
EXO5, GRIN3A, 
HSPA1L, KCNB2 

A1 controls, 
MES 

G34 Olfactory receptor activity (MF), neurologi-
cal system process (BP), keratinization (BP) 

RPRD2, DPP10, FBLIM1, 
OR51B4, OR8J3, STX3, 
ACSM1, OR6Y1, 
SPTA1, CYB5R2  

B1  high 
methyl-
ation 

Hallmark bile acid metabolism, Sensory per-
ception of taste (BP), cell-cell junction (CC) 

ANKRD7, COX7A2, 
RGS21, LINC01588, 
KRTAP21−3, NUPR1L, 
RNASEH2C, HRH4,  
C5 SLC13A4  

C1 IDH G34 SUZ12-targets, PRC2-targets [208] PTGER4, PAX7, IRX4, 
ACVR1C, OTX1, TTI2, 
TMEM61, SPIN1, 
MOXD1, SLC6A5 
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C2 G34 control, 
MES, 
K27 

Cell adhesion (BP), calcium ion binding 
(MF), EED-targets, PRC2-targets, SUZ12-tar-
gets [208], ES_WITH_H3K27ME3 [233] 

HOXC9, FMN1, 
ATP8B1, ST6GAL1, 
EVX2, SFTA3, TBX5, 
GJA3, GAD2, PAX5 

D1 IDH control, 
MES 

Nervous system development (BP), hemo-
philic cell adhesion (BP), LINDVALL_IMMOR-
TALIZED_BY_TERT_UP 

PAX6, FOXB2, VSX1, 
MKX, COBL, MTA3, 
PDGFA, ST8SIA4, 
SH3BP4, C9orf135 

E1  low  
methyl-
ation 

KIM_MYC-targets [108] EPM2AIP1, ZNF300, 
KCNH6, SLC35G1, 
ZNF580, AUNIP, DLL3, 
TSHZ3, ZNF311, MIB1  

1 Enrichment of predefined gene sets in the spot-lists of genes was calculated as described in [80]. 
Gene sets were taken from literature or from gene ontology (GO) categories biological process (BP) 

or cellular component (CC). Only gene sets with GSZ-enrichment p < 10-5 were taken into account. 
2 Genes are ranked with decreasing correlation coefficient with the spot profile. Full gene lists to-
gether with significance measures (p-values of correlation and differential t-tests and false discovery 
rates) are given in supplementary material of [199]. The lists contain also genes not included in the 
functional gene sets. 
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CHOP CpG hypomethylator phenotype 
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DNDM DNA demethylase 

DNMT DNA methyltransferase 

DZ Dark zone 
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GO Gene ontology 
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ICA Independent component analysis 

ICGC International Cancer Genome Consortium 

IntL Intermediate lymphoma  

JmjC Jumonji C 
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MF Molecular function 

mf lobe Mid frontal lobe  

MM Multiple myeloma 

MMML Molecular mechanisms of malignant lymphoma 

MST Maximum spanning tree 

NB Naïve B-cell 

NL Neural 
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NP Neuronal progenitors  

PCA_high High-grade prostate cancer 

PCA_low Low-grade prostate cancer 

PcG Polycomb group  

PCM Pairwise correlation maps  

PCP Prostate cancer progression 

PIN Prostatic intraepithelial neoplasia 

PN Proneural 

PRC Polycomb repressive complex 

RepPC Repressive polycomb complex 

RNA Ribonucleic acid 

RTK Receptor tyrosine kinases  

ScoV Signed square root co-variance  

SOM Self organizing maps  

TCA Tricarboxylic acid  

TCGA The Cancer Genome Atlas 

TF Transcription factor 

TrxG Trithorax group 

TSS Transcription start site 

TssA Active promoter 

TssP poised promoter 

TxTrans Transcribed genes 

ZNF Zink fingers 
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