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ABSTRACT 

Telomeres are repeated sequences at the ends of eukaryotic chromosomes that play prominent role 

in normal aging and disease development. They are dynamic structures that normally shorten over 

the lifespan of a cell, but can be elongated in cells with high proliferative capacity. Telomere 

elongation in stem cells is an advantageous mechanism that allows them to maintain the 

regenerative capacity of tissues, however, it also allows for survival of cancer cells, thus leading 

to development of malignancies.  

Numerous studies have been conducted to explore the role of telomeres in health and disease. 

However, the majority of these studies have focused on consequences of extreme shortening of 

telomeres that lead to telomere dysfunction, replicative arrest or chromosomal instability. Very 

few studies have addressed the regulatory roles of telomeres, and the association of genomic, 

transcriptomic and epigenomic characteristics of a cell with telomere length dynamics. Scarcity of 

such studies is partially conditioned by the low-throughput nature of experimental approaches for 

telomere length measurement and the fact that they do not easily integrate with currently available 

high-throughput data.  

In this thesis, we have attempted to build algorithms, in silico pipelines and software packages to 

utilize high-throughput –omics data for telomere biology research. First, we have developed a 

software package Computel, to compute telomere length from whole genome next generation 

sequencing data. We show that it can be used to integrate telomere length dynamics into systems 

biology research. Using Computel, we have studied the association of telomere length with 

genomic variations in a healthy human population, as well as with transcriptomic and epigenomic 

features of lung cancers.  

Another aim of our study was to develop in silico models to assess the activity of telomere 

maintenance machanisms (TMM) based on gene expression data.  There are two main TMMs: one 

based on the catalytic activity of ribonucleoprotein complex telomerase, and the other based on 

recombination events between telomeric sequences. Which type of TMM gets activated in a cancer 

cell determines the aggressiveness of the tumor and the outcome of the disease. Investigation into 

TMM mechanisms is valuable not only for basic research, but also for applied medicine, since 

many anticancer therapies attempt to inhibit the TMM in cancer cells to stop their growth. 
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Therefore, studying the activation mechanisms and regulators of TMMs is of paramount 

importance for understanding cancer pathomechanisms and for treatment. Many studies have 

addressed this topic, however many aspects of TMM activation and realization still remain elusive. 

Additionally, current data-mining pipelines and functional annotation approaches of phenotype-

associated genes are not adapted for identification of TMMs. To overcome these limitations, we 

have constructed pathway networks for the two TMMs based on literature, and have developed a 

methodology for assessment of TMM pathway activities from gene expression data. We have 

described the accuracy of our TMM-based approach on a set of cancer samples with 

experimentally validated TMMs. We have also applied it to explore TMM activity states in lung 

adenocarcinoma cell lines. 

In summary, recent developments of high-throughput technologies allow for production of data on 

multiple levels of cellular organization – from genomic and transcriptiomic to epigenomic. This 

has allowed for rapid development of various directions in molecular and cellular biology. In 

contrast, telomere research, although at the heart of stem cell and cancer studies, is still conducted 

with low-throughput experimental approaches. Here, we have attempted to utilize the huge amount 

of currently accumulated multi-omics data to foster telomere research and to bring it to systems 

biology scale.  
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PREFACE 

After their discovery, telomeres have been considered as the secret to longevity and cancer 

treatment. In the few decades that followed, many scientific groups have devoted their time and 

resources to investigate telomere biology, to understand their function in health and disease, and 

to manipulate on them to cure cancers. However, despite the excitement and the boom, 

methodologies to study telomeres are still low-throughput in nature, with each study looking at 

only a few genes, proteins, epigenetic factors and chromosome conformations, and their link to 

telomeres. This contrasts to the rapid development of molecular biology fostered by the advent of 

high-throughput data generation techniques, such as microarrays and next-generation sequencing 

technologies.  The exponential growth of massive data obtained from a single tissue or form single 

cells has prompted successful comprehension of all the processes that happen in a biological 

system at once. These data also contain “undisclosed” information about telomeres and telomere 

related regulatory processes. Therefore, we have attempted to utilize this “hidden” information to 

promote telomere biology research via its integration into multi-omics systems level studies. 

The main aim of this thesis was to develop computational approaches, models and software 

packages to use high-throughput data derived from microarray and next generation sequencing 

technologies in order to analyse telomere length dynamics and telomere length maintenance 

processes at systems scale.    

In the first chapter, we have characterized the state of the art on telomere structure and function. 

We talk about the known facts on structural organization of telomeres, and have highlighted the 

knowledge gaps in their functional roles.  

In the second chapter we discuss the experimental approaches that are used for measuring telomere 

length and studying the link between it and gene expression. We try to identify the reasons that 

stand behind the relative scarcity of studies that have explored the association between telomere 

length dynamics and the genomic, transcriptomic and epigenomic features of the cells. We 

illustrate that currently accumulated large amounts of next generation sequencing data may be 

utilized more efficiently to also perform telomere biology research at the systems level. In the 

frame of this work, we have developed the software package Computel for estimation of mean 

telomere length from whole genome sequencing data. We have evaluated the accuracy of 
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Computel on synthetic data, and have compared its performance with relevant computational 

approaches and with experimental pipelines. We show that our approach is a valid substitute for 

experimental measurement of telomere length, and that it has the advantage of extracting telomere 

length information, aside from other genetic variations, from WGS data. In addition, availability 

of coupled genomic and other -omics data, allows for performing whole genome level studies to 

find associations between telomere length dynamics and transcriptomic/epigenomic features. 

Computel is thus aimed at utilization of next generation sequencing data to study telomeres at 

systems level, accounting for the global picture of processes happening in cells. 

In chapter 3, we describe a couple of studies performed using Computel. One of the studies refers 

to finding the association between genomic variations and telomere length in a healthy population 

of South Asians. We have discovered polymorphisms in ADARB2 gene, which encodes an RNA-

editing enzyme, that were associated with long telomeres. This finding and the previously reported 

link between ADARB2 and extreme longevity our making this gene a good candidate for future 

studies. In addition, we have demonstrated that the association of telomere length with age is 

population specific. In our second study, we have utilized WGS, transcriptomic and epigenomic 

datasets on lung adenocarcinoma cell lines to mine the associative relationship between telomere 

length, gene expression, and epigenetic changes. We have identified several genes that might be 

in a regulatory relationship with telomeres. 

The second and third chapters of this thesis that relate to development of Computel and its 

applications, are mainly based on the following papers:  

1. Nersisyan L, Arakelyan A: Computel: Computation of mean telomere length from 

whole-genome next-generation sequencing data. PLoS One 2015, 10. 

2. Nersisyan L: Integration of telomere length dynamics into systems biology 

framework: A review. Gene Regul Syst Bio 2016, 10. 

3. Hakobyan A, Nersisyan L, Arakelyan A: Quantitative trait association study for mean 

telomere length in the South Asian genomes. Bioinformatics 2016, 32(11). 

4. Nersisyan L, Hakobyan A, Arakelyan A: Telomere-associated gene network in lung 

adenocarcinoma. Eur Respir J 2015, 46(suppl 59). 

Chapter 4 focuses on another important phenomenon in telomere biology: the factors that lead to 

activation of telomere maintenance mechanisms (TMM). There are two main TMMs known to 
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date: one is realized through catalytic activity of a ribonucleoprotein complex telomerase, and 

other occurs via homologous recombination events between telomeric sequences, called ALT. The 

first mechanism is mainly employed by stem cells and many cancer cells. ALT has been identified 

in a fewer number of cancers. The type of TMM activated in a tumor largely determines the 

pathomechanistic characteristics and aggressiveness of the tumor. A lot is known about the TMM 

mechanisms, but more aspects still remain elusive. We have attempted to gather the accumulated 

knowledge on drivers, activators and main players in the two TMMs, and to highlight the gaps and 

topics of further investigations.  

The studies addressing TMMs, are performed at a low-throughput level: each study attempts to 

investigate the role of one or two molecular factors in these processes. A couple of studies have 

attempted to use standard data mining and functional annotation pipelines for investigation of 

TMMs. The main shortcoming of these studies is that there are currently no properly annotated 

functional categories and no computational model or framework that could validate computational 

means of TMM studies.  

In this thesis we have generated an in silico model to study the factors leading to TMM activation 

and to predict the type of TMM activation in a given sample based on its gene expression data, 

which we have described in Chapter 5. Our approach is based on literature-based curation and 

generation of TMM-related molecular pathways, and pathway activity determination from gene 

expression data with an in-house Pathway Signal Flow algorithm. Using a set of experimentally 

annotated cell lines and tumor cells, we have confirmed that our pathway based approach is able 

to accurately predict TMM activity. Most importantly, it may serve as a convenient model to 

question the role of various molecular factors (proteins, RNAs, genetic mutations, etc) and 

molecular interactions in TMMs, based on pathway extension and accuracy estimation. Finally, 

we use the newly developed approach to investigate into TMM activation states of lung 

adenocarcinoma cell lines. 

The results described in chapter 5 were presented in a poster presentation at the EMBO 

conference on “From Functional Genomics to Systems Biology” 2016, in Heidelberg, Germany. 

In summary, we have developed a number of computational approaches to utilize high-throughput 

data for telomere research. We believe that these methodologies will help to utilize existing 

massive data in a more efficient manner for telomere-related studies and will foster telomere 
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research. We have also presented a few of preliminary findings made using our software and 

algorithms.  

This work has been accomplished during the 2014-2017 years, in the Group of Bioinformatics at 

the Institute of Molecular Biology (National Academy of Sciences of Armenia), under the 

supervision of Dr. Arsen Arakelyan, and under the co-supervision of Dr. Hans Binder in the frame 

of cooperation with the Interdisciplinary Centre for Bioinformatics (IZBI) at the University of 

Leipzig, Germany. The cooperation has been realized particularly during the four months of my 

DAAD funded research stay at IZBI (91572203, July-November, 2015), and during the summer 

of 2016 (in the frames of DFG-Project for initiation of cooperation, LO 2242/1-1 (2015-16), 

BMBF MycSys (2016) and HNPCCSYS/CancerSys (2012-15) projects), as well as during the 

short term visits of Dr. Binder to Yerevan in 2015 and 2016 (the Armenian SCS MES RA 15T‐

1F150 (2015-17) and 13YR-1F0022 (2013-15) research grants). 
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THE STRUCTURE AND FUNCTIONS OF TELOMERES 

Eukaryotic chromosomes contain linear DNA, which at its beginning and the end consists of repetitions 

of short tandem G-rich repeats: these regions of chromosomes are called telomeres. These are not 

protein coding regions, but perform a variety of protective and regulatory functions in the cell. This 

chapter shortly outlines the state of the art on structural organization and functional aspects of 

telomeres, and highlights their role in age-related diseases and cancers.  

1.1 INTRODUCTION AND HISTORICAL REMARKS 

In the second half of the 20th century, L. Hayflick noticed that cultured somatic cells were able to 

divide only a limited number of times (around 60, which is also known as the Haylflick limit) [1, 

2]. Later on J. Watson and A. Olovnikov talked about the “end replication problem”, which stated 

that in each round of cell division the polymerase could not fully replicate the 5' end of the DNA 

strand, leading to a 3' overhang [1, 3]. The “end replication problem” was thought to be the reason 

for limited replicative capacity of somatic cells. Furthermore, H. Muller and B. McClintock 

discovered that broken chromosomes were highly unstable, in comparison to intact chromosomes 

with complete ends [4, 5]. Thus, they had established the protective nature of the chromosomes 

ends, which were named by Muller the telomeres (in Greek, “telos” - end, “meros” - part). Finally, 

in 1978, E. Blackburn discovered the repetitive nature of the telomeric sequence of Tetrahymena 

thermophila, which consisted of consecutive “TTGGGG” repeats [6]. The human telomeric 

sequence was later established to consist of “TTAGGG” tandem repeats [7]. Together with C. 

Greider and J. Szostak, they further discovered the mechanisms of elongation of telomeres by the 

enzyme telomerase [8] or via homologous recombination events [9]. In 2009, E. Blackburn, 

together with C. Greider and J. Szostak received a Nobel Prize in Physiology and Medicine "for 

the discovery of how chromosomes are protected by telomeres and the enzyme telomerase"  [10].  

Today, more and more experiments are conducted to discover the structural and functional roles 

of telomeres and their link to healthy aging and disease development [11]. It’s been established 

that the main role of telomeres is to protect the ends of the linear chromosomes from being 

recognized as double strand breaks and, thus, to avoid degradation or end-to-end fusions of 

chromosomes. Indeed, shortening of telomeres beyond a critical threshold leads to telomere 

dysfunction and chromosomal instability. After this, the cells either become senescent or undergo 
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malignant transformations [12]. Interestingly, stem cells and cancer cells possess machinery for 

elongation and maintenance of telomeres to be able to divide almost “infinitely” [12]. Finally, 

aside from the important role of telomere length maintenance for cell cycle regulation, it has also 

been shown that telomere length dynamics can have its distinct role in regulation of gene 

expression by yet not fully established mechanisms [13–15].  

Based on all of these findings, much of the attention of the scientific world has been switched 

towards telomere biology to understand their role in healthy development of cells, in aging, age-

related diseases and cancers. In the following sections we attempted to summarize the state of the 

art on telomere biology. 

1.2 THE STRUCTURE OF TELOMERES 

Telomeres are located at the ends of eukaryotic chromosomes and are usually composed of long 

stretches of short consecutive repeats [16]. In humans, the repeats have the TTAGGG sequence 

toward the 3' end of each strand, and normally span 3-20 kb in length. Telomeres lengths vary at 

different chromosome ends [17], and their length range depends on the species of the organism, 

the age, the tissue type and the cell state [18, 19]. The sequence pattern varies among organisms: 

in all vertebrates, including humans, telomeric repeats have the conserved sequence TTAGGG 

[20]; protozoans, plants and other animals have varying sequences (the sequences for model 

organisms are presented in Table 1). Notably, while most of the organisms have fixed repeat 

patterns of length 5-8 nt (e.g. TTAGGG), a few of them, such as Sacharomyces cerevisiae, have a 

dynamic repeat pattern, such as G(2-3)(TG)(1-6)T (Table 1). Interestingly, some species, e.g. some 

mosquitos, do not possess short telomeric repeats [21].  

Table 1. Telomeric repeat sequences in different species.  

Group Organism Telomeric repeat (5' to 3' toward the 

end) 

Vertebrates Homo Sapiens, Mus Musculus TTAGGG [20] 

Ciliate protozoa Tetrahymena thermophile TTGGGG [6] 

Higher plants Arabidopsis thaliana TTTAGGG [22] 

Insects Bombyx mori TTAGG [21] 

Roundworms 
Ascaris lumbricoides, 

Caenorhabditis elegans 

TTAGGC [23] 

Fission yeasts Schizosaccharomyces pombe TTAC(A)(C)G(1-8)  
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Budding yeasts Saccharomyces cerevisiae 

TGTGGGTGTGGTG (from RNA 

template) 

or G(2-3)(TG)(1-6)T (consensus) [24] 

The telomeres in all species normally fold in a unique way. The folding of telomeres is conditioned 

by the presence of a G-rich overhang: the 3' strand of telomeres, which is always longer than the 

C-rich strand (or C-strand). This overhang is usually 30-400 nt long in humans [25]. It folds back 

in the direction of centromeres to form a T-loop [26]. The T-loop is stabilized due to invasion of 

the 3' overhang onto the C-strands to form a displacement loop (D-loop) (Figure 1). The D-loop 

is preserved via formation of hydrogen bonds between the complementary strands. The overall 

loop is stabilized by binding of so called shelterin proteins that form a nucleoprotein complex 

called the telomeric cap [27]. Proper capping is essential for preserving the integrity of 

chromosome ends, as discussed below.  

 

Figure 1. The structure of telomeres (the picture source is [28]). Top-left: the 3' end is normally 50-500 
nt longer than the complementary strand. Top-right: the 3' overhang invasion leads to formation of the D- and 
T-loops. Bottom: the shelterin proteins bind to telomeres to cap and protect the telomeric ends.  

The shelterin proteins include telomeric repeat binding factor 1 and 2 (TNF1/2), protection of 

telomeres protein 1 (POT1), TRF1-interacting protein 2 (TIN2), TIN2- and POT1-interacting 

protein (TPP1) and repressor/activator protein 1 (RAP1). POT1 binds specifically to single 

stranded DNA (ssDNA) at the 3' overhang (and, probably, at the D-loop) [29] and TRF1 and TRF2 

bind to the double stranded DNA (dsDNA) along the telomeres [30]. TIN2 binds both to TRF1/2 
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and to TPP1-POT1 complex, thus bridging the shelterin proteins together [27]. RAP1 binds to 

TRF2 and has a role in inhibiting the processes of non-homologous end joining [27].   

Mammalian telomeres are structured into nucleosomes, as is the non-telomeric chromatin, 

although the spacing between nucleosomes may slightly vary [31]. The compact state of telomeres 

largely depends on shelterin proteins. TRF1/2 and POT1 bind to dsDNA and ssDNA respectively, 

and are bridged together with the help of TIN2. These cross bridges lead to compacted globular-

like structuring of telomeres and protect them from DNA damage response (DDR) proteins [32]. 

It has been hypothesized that short telomeres recruit less shelterin proteins and this may lead to an 

“open” telomeric state, which can attract DDR proteins and signal DNA damage response, as well 

as can recruit telomerase to elongate the telomeres [32].  

Apart from the shelterin proteins, telomeres and the regions adjacent to them (subtelomeres) are 

also enriched with “silent” epigenetic marks, including trimethylation of H3K9 and H4K20, 

hypoacetylation of H3 and H4, high levels of HP1 protein and methylation of subtelomeric DNA 

[33, 34]. The H3K9 trimethylation marks are deposited by SUV39H1 and SUV39H2 histone 

methyltransferases. They create binding sites for HP1 proteins, which in turn recruit SUV4-20H1 

and SUV4-20H1 histone methyltransferases for trimethyation of H4K20 [31, 35]. The telomeric 

heterochromatin plays a crucial role in regulation of telomere length and structural integrity, as 

well as in transcriptional activity at telomeres [31]. Proper telomeric heterochromatin formation is 

important for regulation of telomere length, as lack of H3K9 and H4K20 trimethylation leads to 

aberrant telomere lengthening [36]. On the other hand, telomere length in turn defines the 

epigenetic state of telomeres [31]. The telomeric heterochromatin states change during cellular 

differentiation and dedifferentiation [37, 38].  

1.3 THE FUNCTIONS OF TELOMERES 

1.3.1 Chromosome capping 

The functional state of the telomeres depends on proper telomere folding and binding of shelterin 

proteins. In a fully functional state, telomeres perform both protective and regulatory functions. 

First, they protect the chromosome ends from being recognized as double strand breaks by the 

cell’s DNA repair machinery. The DDR proteins recognize DNA double strand breaks and either 

attempt to fix those or trigger activation of apoptosis signaling [39]. These repair and checkpoint 
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proteins do not have inherent ability to distinguish between the chromosome ends and intra-

chromosomal double strand breaks. However, the presence of the T-loop and the shelterin complex 

protects telomeric ends from DNA-damage response machinery. Additionally, the telomere 

capping preserves the integrity of chromosomes and does not allow for end-to-end fusions [27]. 

Chromosomal instability in malignant cells is commonly associated with the loss of capping due 

to extreme shortening of telomeres [40]. 

1.3.2 Regulation of gene expression  

Besides the protective roles of telomeres, they also possess regulatory functions, although those 

have been described to a lesser extent. First, telomeres may regulate expression of nearby located 

genes via a phenomenon called Telomere Position Effect (TPE) [14, 41]. In TPE, genes located in 

subtelomeric regions near the telomeres, become reversibly silenced and this effect depends on the 

distance of the genes to the telomeres and telomere length [15]. The TPE silencing is explained by 

spreading of telomeric heterochromatin to subtelomeric regions, since telomeric heterochromatic 

marks are able to recruit chromatin modifiers, which in turn introduce heterochromatic marks at 

adjacent regions, thereby silencing nearby located genes. Therefore, the longer the telomeres, the 

stronger is their ability to recruit chromatin modifiers and the more distant is the spreading effect 

[41, 42]. Of note, epigenetic silencing of genes due to heterochromatic spreading is also observed 

in non-telomeric regions, at the edges of heterochromatin and euchromatin, and is generally known 

as position effect variegation [43]. TPE was first described in Sacharomyces cerevisiae and 

Drosophila melanogaster, using a series of experiments including repositioning of reporter genes 

from subtelomeric to distant regions and vice-versa; and examination of telomere size effect on 

gene silencing [41, 44, 45]. Later, TPE has been observed in a number of other species [46–48], 

including humans [49–52].  

TPE usually spreads a few kilobases away from the telomeres (classical TPE occurring in yeast 

via SIR proteins), or up to 20 kb (via involvement of HAST domains in yeast) [13]. TPE-like long 

distance effects (known as TPE over long distances, TPE-OLD) are also observed, but those are 

not considered as classical TPE, since their mechanism is different and is explained by looping of 

telomeres towards the centromeres  [13, 53].  
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Finally, telomeres may also regulate gene expression via specific positioning of the chromosomes 

relative to the nuclear lamina [54]. 

TPE in humans 

The role of TPE in yeast and a number of other organisms varies, with  some examples connected 

to response to nutrient deprivation or stress [55]. In these organisms telomeres are maintained at a 

relatively constant level due to telomerase activity [55]. In contrast, mammalian telomeres have 

the tendency to get shorter with age. In this context, the role of TPE in mammalian cells is not yet 

understood. For a long time, it’s been hard to study the association of gene expression with 

telomere length in humans, since microarray platforms did not contain probes for subtelomeric 

genes. In their study, Ning et al [56], have constructed special microarrays involving probes 

against subtelomeric genes and have identified the first human gene Interferon-stimulated gene 15 

(ISG15), whose expression was correlated with telomere length [56]. This gene is involved in 

immunity/stress response pathways and is located 1 Mb away from the telomeres. However, there 

are 8 genes located between ISG15 and the telomeres, and their expression was not associated with 

telomere length. This contradicts the classical TPE mechanism, which assumes that 

heterochromatin spreading may not “skip” nearby located genes to affect only distantly located 

ones [13]. Thus, the authors have suggested that the observed association could occur via long 

distance effects due to telomere looping [56]. However, they have not shown whether the 

association of ISG15 with telomeres is direct or indirect, i.e. occurring via other telomere-regulated 

(or regulating) genes. 

A study conducted afterwards established the association of DUX4 expression with telomere 

length, and suggested that DUX4 might be regulated by classical TPE [52]. This gene is located 

near the end of the chromosome 4q and produces the DUX4-fl protein which is toxic to myoblasts, 

and its overexpression leads to Facioscapulohumeral muscular dystrophy (FSHD). In the genome 

of healthy individuals there are 100s of D4Z4 repeat elements located in the region between DUX4 

and the telomeres. FSHD patients, however, usually have only 1-10 repeats. These elements 

repress the expression of DUX4, and also act as insulators to block the spreading of telomeric 

heterochromatin. The authors have speculated that the loss of normal numbers of D4Z4 repeats 

leads to loss of repression by those elements, but also exposes DUX4 to silencing by TPE. As 

telomeres become shorter this silencing effect diminishes, leading to overexpression of DUX4, 



21 
 

which leads to disease progression. This may explain the delayed onset of FSHD [52]. As 

an  additional argument for TPE, the authors have also observed that the silencing also affects 

neighbouring genes (FRG2 and FRG1), but to a lesser extent, since these genes are located farther 

from the telomeres [52].  

A very recent study by Kim et al [57] has investigated the effect of TPE-OLD on expression of 

TERT in humans, which is located on the p arm of the chromosome 5, abound 1Mb away from the 

telomeres. The study has shown that the 5p telomere loops back and gets in touch with the TERT 

locus. Telomere shortening leads to distortion of the loop and to DNA hypomethylation at TERT 

promoter and nearby regions. While this results in expression of only the first TERT exon in 

healthy fibroblast, and it has a great impact on higher expression levels of the full length transcript 

during cancerogenesis [57].  

1.3.3 Telomeric transcription (TERRA) 

In addition to their structural and regulatory roles, telomeres also possess transcriptional activity. 

The C-strand of telomeres is frequently transcribed to produce telomeric repeat containing RNAs 

(TERRA) [58, 59]. TERRAs contain ‘UUAGGG’ repeats, as well as subtelomeric sequences and 

have length in the range 100 bp to 49 kb [60, 61]. The mechanisms regulating TERRA transcription 

are still not understood, however the presence of subtelomeric sequences in TERRAs suggests 

existence of transcriptional control elements at subtelomeres [60]. It is assumed that TERRAs 

perform a number of regulatory functions [62]. E.g. TERRAs usually reside in nucleus and are 

frequently found near telomeric regions of chromosomes. It is suggested that they may inhibit the 

action of telomerase by complementary binding to its RNA subunit (hTR) [61]. TERRA sequences 

are also found in association with inactive regions of the X chromosomes, suggesting a potential 

role in chromosome inactivation processes [61].  

1.3.4 Summary 

In summary, telomeres play a number of roles in the cell, including chromosome capping and 

protection from DNA damage response proteins, regulation of gene expression through 

heterochromatin spreading and 3D chromosome looping, as well as via expression of TERRA 

transcripts that have a variety of regulatory functions. While the structure of telomeres and their 
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role in preserving the chromosome integrity is studied extensively, there is still a lot to learn about 

the regulatory effects of telomeres.  

1.4 REGULATION OF TELOMERE LENGTH  

Telomere length maintenance depends on crosstalk of two antipodal processes: telomere attrition 

and elongation.  

Telomere attrition leads to gradual telomere shortening during cell replication. It is assumed that 

there are two main mechanisms contributing to the attrition rate: the incomplete replication of the 

lagging strand (the “end replication problem”) and nuclease driven end resection of the C-strand 

to generate the G-rich overhang (Figure 2) [63]. During DNA replication, the lagging strand 

synthesis proceeds through Okazaki fragments, which in humans are 100-200 nt long, and it’s 

assumed that the last RNA primer is placed at a random distance of 50-100 nt from the end of the 

lagging strand [63]. Thus, immediately after replication, the lagging strand has a nearly mature 

overhang of size ~70 nt [64]. The leading strand synthesis proceeds almost to the end of the 

template strand, but the replication apparatus disassociates from the chromosome termini prior to 

adding the final 1-2 nucleotides [65]. Approximately 1-2 h after the replication, in the S/G2 phase, 

the newly synthesized leading C-strand gets resected by nucleases to produce a G-rich overhang 

of a mature size. Finally, the C-strands of both leading and lagging daughter chromatids are 

processed to get the CCTAAC-5’ end specification [64]. All in all, the 3’ overhang is generated 

via incomplete replication of the lagging strand and post-replicative resection of the C-strand of 

both telomeric ends. Even though the incomplete replication and C-stand resections are considered 

to be the main players in telomere shortening, the actual attrition rates are higher than if only 

explained by these processes. It is therefore suggested that a number of stress-induced factors, such 

as reactive oxygen species, damage the telomeres and contribute to faster attrition [66].  
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Figure 2. The end replication problem at telomeres (the picture was taken from [63]). Top-center: 
Canonical replication at lagging and leading strands. Bottom-left: the last RNA-primer at the lagging strand is 
positioned 70–100 nucleotides (nt) away from the ends, leading to formation of the nearly mature initial 
overhang. Afterwards, nuclear resection at the 5’ strand produces the atc-5’ end. Bottom-right: telomere 
replication at the leading strand does not produce the gaps via okazaki fragments. the polymerase synthesizes 
the complimentary strand up to 1-2 nt from the end. the 5’ strand is then resected by nucleases to produce the 
3’ overhang and the atc-5’ end.  

Since telomeres are the limiting factor for proliferative capacity of the cells, continuously dividing 

cells, such as stem cells and cancer cells, employ mechanisms of telomere elongation [67]. Stem 

cells and the majority of cancer cells are expressing a nucleoprotein complex telomerase, which 

catalyzes telomere strand elongation using a special RNA template (hTR) [67]. Telomerase is 

mainly inactive in somatic cells, since its catalytic subunit, hTERT, is not expressed there. In some 

cancer cells telomere elongation may also occur in a telomerase-independent manner, via 

homologous recombination events. This mechanism is called the alternative lengthening of 

telomeres (ALT) [68]. These two mechanisms are described in detail in Chapter 4.  

 

1.5 TELOMERES, AGING, AND DISEASES 



24 
 

1.5.1 Telomeres, aging and age related diseases  

Telomere attrition rates depend on several internal and external factors, thus, telomere length is 

not constant and changes as a function of age and cell type. In contrast, telomere length at birth is 

a heritable characteristic. The study by Slagboom et al [69] has looked into variations in telomere 

lengths in the blood of between monozygotic (MZ) and dizygotic (DZ) twins and between non-

related individuals, as measured by TRF. They have determined that telomere length variability 

was the smallest in MZ twins, larger in DZ tweens and the largest in unrelated individuals. Based 

on statistical regression models they have concluded that telomere length was to a large extent 

genetically determined. Another study has performed on blood samples from a cohort of 119 Saudi 

families [70]. In this study a parent-offspring MTL regression analysis was performed, with 

adjustment for age, sex, as well as additional phenotypic characteristics, such as body mass index 

and lipid profile. The study has pointed on highly heritable nature of telomere length, as well as 

its association with the mentioned cardiometabolic parameters. Finally, Honig et al [71] have 

looked into leukocyte telomere lengths (LTL) from long lived individuals and their offspring and 

relatives. They have found that the difference in LTL between long lived individuals and their 

offspring is much smaller, than the difference between them and relatives. And the latter was much 

smaller than the variability between non-related individuals. Heritability of telomere lengths may 

be explained by the fact that telomerase is most active in germline cells, due to which their 

telomeres are maintained at a relatively constant length and passed to gametes and offspring [69]. 

Telomerase also gets activated in other stem cells, but its activity levels are not sufficient to 

completely prevent telomere shortening. Thus, as the rest of the somatic cells in the body, stem 

cells also reach replicative arrest because of telomere shortening, though at lower rates [72], which, 

in turn, fosters organismal aging [73–75]. Telomere shortening is a relatively good biomarker of 

cellular aging, however, its association with organismal aging is not straightforward. Many studies 

have used leukocyte telomere length (LTL) as a surrogate marker of organismal aging [76], and 

have shown reverse association of LTL with age, however others have failed to reveal any 

significant association, leading to the conclusion that environmental and endogenous factors other 

than proliferative attrition may contribute to telomere length dynamics [77, 78].  

1.5.2 Monogenic disorders associated with telomere dysfunction  
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A number of disorders are directly associated with mutations in components of telomerase that 

affect regenerative capacity of stem cells [79] and cause accelerated cellular aging by telomerase 

dysfunctions. These diseases are broadly defined as premature ageing syndromes. 

One of the most studied telomerase disorders is Dyskeratosis congenital (DC) [80]. It is a rare 

disorder leading to abnormalities in skin pigmentation, in nails and in oral mucosa. Complications 

of DC lead to bone marrow failure, pulmonary fibrosis and cancer. There are several known 

mutations leading to DC, with three most pathogenic ones occurring in DKC1, TERT and TERC 

genes that encode the core components of telomerase. Other cases have DC-associated mutations 

in genes encoding proteins involved in telomerase assembly, such as TINF2, NHP2 and NOP10 

[79]. All of these mutations lead to telomerase dysfunction and limited capability of stem cells to 

participate in tissue renewal in skin, oral mucosa, bones and liver. Notably, DC patients show 

disease anticipation: a phenomenon, where the disease onset happens at an earlier age in each 

subsequent generation. This is explained by telomerase dysfunction in germline cells, which leads 

to inheritance of shorter telomeres in the offspring [79]. Other severe premature aging syndromes, 

such as Aplastic anaemia [81] and Idiopathic pulmonary fibrosis [82], are also associated with 

mutations in telomerase genes.  

1.5.3 Telomeres and complex diseases  

The onset of many complex human diseases is associated with aging and is partly attributed to 

telomere shortening. On one hand, extremely short telomeres lead to telomere dysfunction and 

chromosome instability [12, 83]. On the other hand, regulatory effects of telomeres on gene 

expression, such as TPE and others (see section 1.4), may take place long before telomeres reach 

critically short values. These regulatory effects may be key factors leading to onset and progression 

of complex diseases.  

As such, a number of studies have implicated LTL as a risk and/or a prognostic marker for 

cardiovascular diseases, ischemic strokes, type 2 diabetes, and neurodegenerative diseases, 

however the direct link between telomere shortening and disease development is not established 

for all of those cases [84–89]. Additionally, telomere length is crucial for preserving replicative 

capacity and clonal exhaustion of actively dividing immune cells. Age-dependent telomere 

shortening in B and T lymphocytes has been linked to defective immune responses and 
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development of many age-related diseases. In some cases, telomere shortening in T cells has been 

linked to development of auto-immune diseases [90]. Individuals with short telomeres or those 

suffering from premature aging syndromes, have susceptibility of developing infectious diseases, 

because of telomere shortening associated decline in immune functions [91]. 

In contrast to senescence related diseases, in cancers telomere length dynamics is largely affected 

by telomere lengthening and maintenance machinery. While in healthy cells, telomere dysfunction 

normally leads to cell growth arrest and apoptosis, cancer cells overcome this crisis and continue 

to proliferate, often leading to chromosomal instability, which is a key factor for cancer onset [12, 

92]. On the other hand, further activation of telomere maintenance mechanisms is crucial for 

tumour cell survival and disease progression [12]. Therefore, the majority of cancer cells express 

telomerase [93], while others activate alternative lengthening mechanisms [94]. Activation of these 

mechanisms is a marker of aggressiveness and poor cancer prognosis [95]. Accordingly, therapies 

inhibiting these mechanisms have been shown be effective in limiting cell growth in some cancers 

[96]. Some studies are also implicated either long or short telomeres in cancer risk, depending on 

cancer type and study design [97] (see section 3.2.2).  

1.5.4 Summary 

All in all, the role of telomeres in healthy aging and development of age-related diseases and 

cancers have been undoubtedly demonstrated in numerous studies. However, even though in 

certain monogenic diseases the role of telomeres is clearly established, identification of their effect 

on the risk, onset and progression of complex diseases is a challenging task, since a wide range of 

diverse factors are involved in their pathomechanisms, with telomeres being just one of the 

contributors. Additionally, the majority of studies have concentrated on the consequences of 

extreme telomere shortening and telomere dysfunction, omitting the regulatory relationship 

between telomere length dynamics and gene expression.  

  



27 
 

 
INTEGRATION OF TELOMERE LENGTH DYNAMICS INTO -OMICS STUDIES 

Telomeres are implicated in healthy development and aging. However, the role of telomeres in 

regulation of transcriptome and epigenome and the influence of genomic factors in telomere length 

dynamics are not yet extensively analyzed. This chapter depicts the obstacles in experimental 

approaches that lead to scarcity of such studies and highlights the need of novel computational pipelines 

for systems level analysis of telomere biology.  

In this thesis, we describe the development of a software package, Computel, for computation of 

telomere length from whole genome next generation sequencing data, which allows for integration of 

telomere length into high-throughput data analysis workflows.  

2.1 STATE OF THE ART  

2.1.1 Experimental methods for telomere length measurement  

There are several experimental approaches for telomere length measurement, such as terminal 

restriction fragment analysis (TRF), quantitative PCR (qPCR), quantitative fluorescent in situ 

hybridization (qFISH), etc. [98], both for measuring mean and chromosome-specific telomere 

length.  

The first method developed for quantitative assessment of the mean telomere length was TRF. It 

is based on the ability of certain restriction enzymes to cut DNA into small fragments leavening 

telomeric parts intact. The remaining long telomeric fragments are then separated using agarose 

gel electrophoresis. The isolated fragments are analysed with Southern blot using telomere probe 

ligation [99]. Since the fragments are of non-uniform length, they appear as dispersive smears. A 

crucial factor in accuracy of the average telomere length calculation is accounting for the smear 

length and the intensity of probe binding. TRF results obtained from different experiments depend 

on various factors, such as source DNA quality and quantity, choice of restriction enzymes, gel 

density, signal intensity calculations and length adjustment [100]. Moreover, the distance of the 

farthest subtelomeric restriction site to the telomeres is estimated to be 2.5-4 kb, depending on the 

chromosome and the restriction enzyme used.  Thus, the results of different studies should be 

compared with caution and account for the difference in restriction enzymes.  Finally, TRF 

requires great amount of starting DNA and is also not capable of capturing short telomeres [98]. 
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Since TRF has been the first technique for MTL measurement, it has served as reference for further 

emerging methods and is thus considered the “gold standard”.  

The quantitative PCR approach is less elaborate compared to TRF. It is based on amplification of 

telomeric regions via telomere-specific primers. The basic assumption is that the longer the 

telomeric sequence of the source DNA, the more there are places for the primers to attach, and the 

more amplicons will be generated. Comparison of their relative quantity and that of the amplicons 

generated from single-copy gene PCR gives a T/S ratio, which is correlated with the overall 

telomeric content of the cell. One major disadvantage of this method is that it strictly depends on 

initial calibration steps, and the results derived from different experiments are difficult to compare 

[98]. Compared to TRF, qPCR is thought to be more prone to measurement errors, which are being 

addressed by further modifications and amendments [101]. A modified version of this approach, 

the monochrome multiplex qPCR, performs the single-gene and telomere amplifications in the 

same tube to reduce pipetting errors [102]. Besides measurement errors, T/S ratios obtained with 

these methods should be treated with caution accounting for possible copy number and 

chromosome number variations.  

Other methods are used less frequently and serve more specific purposes. Single telomere length 

analysis (STELA) utilizes a 3’ overhang specific linker and a subtelomeric primer to amplify 

telomeres at specific chromosome ends with PCR [103]. STELA uses subtelomeric primers of 

known lengths and known true distance from the telomeres, which makes it more accurate than 

TRF. Additionally, it estimates telomere lengths at specific chromosomes and is able to measure 

short telomeres, which is important in telomere shortening induced senescence studies and for 

accounting for the telomere length variability across chromosomes. However, sequence variability 

at most of the subtelomeric regions allows for capturing telomeres only at selected chromosome 

arms (Xp, Yp, 2p, 11q, 12q and 17p) [104]. Another limitation of STELA is that it is not able to 

capture long telomeres (more than 8 kb).  

Quantitative fluorescence in situ hybridization qFISH is used for measuring telomere lengths at 

metaphase chromosomes via ligation of telomere-specific fluorescent probes. The signal intensity 

is then compared to a standard of known telomere length [105]. This method is accurate and is 

advantageous of providing arm-specific telomere lengths. The main drawback is that cells should 
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be able to divide, and, thus, it’s not applicable to cell-cycle arrested cells. Also, because the method 

is hybridization based, it makes it difficult to quantify extremely short telomeres.   

There is a wide variety of other techniques, each aimed at overcoming limitations of the existing 

ones [98]. There have been concerns, however, about comparability of the results obtained in 

different experiments, raising the need for proper calibration of the techniques based on the “gold 

standard” reference [106, 107].  

2.1.2 The need for computational methods for telomere length measurement 
from NGS data: existing approaches  

A major limiting factor for understanding the complex picture of telomere biology in the cell is 

the lack of high-throughput data coupled with experimental results on telomere length. Only a 

limited number of studies exist, where telomere length measurement experiments have been 

coupled with high-throughput genome, transcriptome or epigenome data. Importantly, in order to 

put the data obtained from these two experiments in the same context those should be performed 

on the same samples in the same time period. This poses the necessity of computational techniques, 

which could obtain telomere length information from whole genome sequencing data. 

Next generation or massively parallel sequencing (NGS) technologies have emerged as a 

revolution in DNA and RNA sequencing, as they allow for simultaneous generation of a huge 

number of DNA and RNA short reads [108]. This, in turn, has allowed for obtaining aggregate 

information on whole exome, genome, transcriptome and epigenome of cell populations or even 

single cells [109]. Whole genome sequencing (WGS) produces short reads from the entire genome, 

while whole exome sequencing (WES) targets only the protein coding regions (1-2% of the 

genome) [110]. While WES is a relatively cheap tool, which is frequently used in variant discovery 

and molecular diagnostics, WGS allows to also obtain information about the non-coding parts of 

the genome [110]. The latter is used for various research purposes, including but not limited to 

phylogenetic analysis, variant discovery, analysis of regulatory sequences, tandem repeats, copy 

number variations, etc. Currently, a large amount of sequencing data are submitted to publicly 

available databases, such as the Sequence Read Archive (SRA) [111]. The number of entries in 

SRA grows exponentially [112], necessitating development of new algorithms and approaches to 

integrate all these data into the knowledge of global outlook of molecular processes occurring 

within cells and to perform systems-level association studies with telomere length dynamics.  
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Even though the telomeric sequences are covered by most of WGS technologies, they are masked 

from downstream analysis, because of their repetitive nature and the imposed difficulty of mapping 

telomeric reads to the reference genome. However, it’s important to use the NGS capabilities to 

full extent and capture all possible information hidden in the generated data. We, thus, have 

stressed our attention to extracting telomeric content hidden in WGS data and using this 

information for telomere biology research.  

During the last five years, a few methodologies have been developed for estimating telomere 

length from WGS data, all of which are based on capturing “telomeric” reads, which are 

presumably derived from telomeric regions of the genome. One of the pioneering works in this 

direction has been the study by Parker et al [113] on association of telomere length dynamics with 

pediatric cancers, where gain and loss of telomeric DNA has been estimated from WGS data by 

counting the number of short reads containing at least four consecutive telomeric repeats. Although 

the method they have used was not calibrated to return accurate results, they have shown that it’s 

a promising approach. Another read count based software TelSeq [114] scans for reads containing 

more than a threshold amount of “TTAGGG” repeats and compares it to the number of genomic 

reads with the same GC content. This relative count is then multiplied with a GC-normalized 

genome length constant, which gives an estimate of absolute mean telomere length [114]. This 

method provides correlation of telomere length estimates with experimental results in certain 

settings (for 100 bp long Illumina reads). A couple of studies have already utilized TelSeq to show 

that major depression is associated with shorter telomeres and increased copies of mitochondrial 

DNA [115]; and that mutations in ATRX gene associated with chromatin remodelling are linked to 

increased telomere length in diffuse glioma [116]. However, Telseq has several limitations, which 

will be discussed below in detail.  

To conclude, scarcity of telomere length studies arises from the lack of coupling between 

experimental measurement of telomere length and high-throughput data obtained from the same 

source. The vast availability of coupled whole genome, transcriptome and epigenome NGS data 

opens new opportunities for integration of telomere biology into systems level studies. The results 

obtained with recent methods and software for assessment of telomere length from whole genome 

NGS data highlight the promise of computational methodologies in fostering telomere biology 

research.  
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2.2 DEVELOPMENT OF COMPUTEL: THE TOOL FOR COMPUTATION OF 
TELOMERE LENGTH FROM WHOLE GENOME SEQUENCING DATA 

In this section we describe our methodology for computing mean telomere length from WGS data, 

which is available as a software package Computal at https://github.com/lilit-nersisyan/computel 

and described also in [117]. At the time Computel was being developed no similar software was 

around. However, during finalization of our results the paper on TelSeq was published [114], and 

we took additional time to compare the accuracy and performance of our approach with theirs. We 

have shown that Computel addresses the limitations and shortcomings of previous computational 

approaches, including TelSeq. In this thesis and a number of preceding publications we show that 

Computel is also a valid substitute for experimental methods for telomere length measurement. 

2.2.1 Methods and data 

Algorithm description and general workflow 

Computel is written in R 3.0.3 and performs command line calls to the following programs during 

execution: Bowtie 2-2.1.0, Samtools 0.1.19, and Picard tools 1.108. Computel can be called both 

from R environment and through command line, with an Rscript front-end available for Windows 

(versions v0.2 and lower) and Unix type systems. Detailed information about Computel 

installation and usage is available in its manual (see https://github.com/lilit-

nersisyan/computel/blob/0.3/Computel_v0.3_User_Manual.pdf).   

The general workflow of mean telomere length estimation by Computel is schematically 

represented in Figure 3. It consists of the following steps: (1) building a telomeric index, (2) 

mapping reads to the telomeric index, (3) coverage calculation at the telomeric index, (4) 

determination of mean coverage at reference genome (optional), (5) estimation of mean telomere 

length. Each of these steps is described in detail in the following subsections. 

https://github.com/lilit-nersisyan/computel
https://github.com/lilit-nersisyan/computel/blob/0.3/Computel_v0.3_User_Manual.pdf
https://github.com/lilit-nersisyan/computel/blob/0.3/Computel_v0.3_User_Manual.pdf
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Figure 3. Schematic representation of the Computel algorithm for mean telomere length 
estimation. Computel takes whole-genome NGS short-reads as input; maps them to the telomeric index built 
based on user-defined telomeric repeat pattern and the read length; and calculates the mean telomere length 
based on the ratio of telomeric and reference genome coverage, the number of chromosomes, and the read 
length. 

Building a telomeric index 

The telomeric index is built using the bowtie2-build program. The index is designed in such a way 

that any read consisting of telomeric repeat patterns can map uniquely to the index. It is also 

important to take into consideration reads that contain telomeric repeats only partially: 

theoretically, we would like to also capture the reads originating from chromosome regions located 

at the junction of telomeric and immediate subtelomeric sequences. For this reason, the telomeric 

index has an additional 3'-end tail containing ambiguous nucleotide (N) bases to which any 

sequence can map (Figure 4). Note that the N-tail is attached only to the 3' end of the index, to 

minimize the number of captured reads containing interstitial telomeric repeats [118].  
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Figure 4. An example of telomeric index with reads aligned to it.  The telomeric pattern is 
“TTAGGG” (human), which gets reverse complemented in the index (“CCCTAA”) ; read length = 20 
nt; seed length (min.seed option) = 10 nt. The top read contains a non-telomeric region, which will 
be aligned to the non-telomeric tail of the index, the rest of the reads are six possible cyclic 
permutations of pure telomeric repeats.   

The pseudocode for generation of the telomeric index is presented below: 

Let pattern be the sequence of telomeric repeat pattern bases; 

Let pl be the length of the pattern; 

Let rl be the read length; 

Let min.seed be the minimum number of telomeric read bases in the mapped reads; 

Let tel.index be the sequence of the telomeric index; 

Let index.telomeric be the region of the index containing telomeric repeats; 

Let index.nontelomeric be the region of the index containing ambiguous bases {N}; 

The sequence of tel.index is computed as follows:  

length(index.telomeric) = rl + pl - 1 

count.pattern = int(length(index.telomeric)/pl)  

count.substring = length(index.telomeric)/pl % pl 

index.telomeric = concatenate(count.pattern * pattern, 

pattern[1:count.substring]) 
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index.nontelomeric = (rl – min.seed) * {N} 

tel.index = concatenate(index.telomeric, index.nontelomeric) 

tel.index sequence is supplied to the bowtie2-build program to build the index files. An example 

of tel.index sequence is given in Figure 4.  

Aligning short-reads to the telomeric index 

Paired- or single-end short-reads are aligned to the telomeric index with the program bowtie2-

align [119]. We have chosen the most appropriate short-read alignment parameters that would 

combine the maximal accuracy and speed of the alignment to the telomeric index by evaluating 

different alignment options offered by Bowtie 2 and comparing their performance.  

The alignments were performed with the Bowtie 2 preset options for --end-to-end alignment, i.e. 

--fast (F), --very-fast (VF), --sensitive (S) and --very-sensitive (VS) modes. The argument for 

"mismatches in a seed alignment" (–N), was tested for both the default value of 0 and for the value 

of 1, since setting -N to 1 increases the alignment sensitivity. Next, the -L option, which is the 

length of the seed substrings to align during multi-seed alignment, was set to one third of read 

length, but with minimum value of 6 and maximum value of 22 (this means that if one third of 

read length is less than 6, it is assigned the value of 6, and if it is more than 22, it is set to 22). 

Finally, the --n-ceil option, which is the maximum number of allowed mismatches and ‘N’ bases 

in the alignment, was set to [rl-min.seed], where rl is the short-read length and min.seed is the 

minimum number of telomeric read bases in the mapped reads. Thus, we ended up with 8 

alignment modes (F-N0, VF-N0, S-N0, VS-N0, F-N1, VF-N1, S-N1, VS-N1) and compared their 

effect on the accuracy of telomere length estimation. Eventually, the mean relative error (MRE), 

standard error (SE) of MRE, root mean squared error (RMSE), and coefficient of determination 

(R2) were calculated, separately for single and paired-end reads, and compared across alignment 

modes. 

By default, the alignment is performed with the Bowtie 2 preset options for --end-to-end 

alignment, with --very-sensitive mode, -N set to 1 (to allow mismatches in a seed alignment), and 

-L ranging between 6 and 22, which is calculated automatically, depending on read length. The 

resulting alignment is stored in a SAM file. 
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Reference genome (base) coverage calculation  

For reference genome coverage calculation, the generated SAM file is split into two SAM files 

containing mapped and unmapped reads. The SAM file containing unmapped reads is converted 

back to a FASTQ file using the Picard SamToFastq tool. Unmapped reads are then aligned to the 

reference genome with Bowtie 2 default options, sorted and used for base coverage (base.cov) 

calculation with the Samtools depth command. 

Mapping short-reads to reference genome can be time-consuming. However, without significant 

loss in accuracy (data not shown), the base coverage can be estimated as: 

base.cov = (total number of reads)*(rl)/(total genome length), 

and supplied to Computel as an argument. 

Telomeric coverage calculation and mean telomere length estimation 

The SAM file for mapped reads is sorted and the distribution of coverage per base for the telomeric 

index is calculated using the Samtools depth command. 

We have used the mean value of coverage at each base as a point estimate for coverage at telomeric 

index (tel.cov). The relative coverage at telomeric index compared to the reference genome is 

computed as rel.cov = tel.cov / base.cov. Finally, the mean telomere length (MTL) is estimated as:  

MTL = (mean(rel.cov))*(rl+pl-1) / (2*n_chr), 

where the number 2 in the denominator accounts for the two chromosome ends, and n_chr is the 

number of chromosomes in the haploid genome. The rest of the variables are explained above. 

Computel validation with synthetic data 

In order to estimate the algorithm performance, we carried out a series of telomere length 

calculations using synthetic data. For this purpose, we have taken a ~200 kb fragment of human 

reference chromosome 1 (GRCh37) from the NCBI Genome database. This fragment did not 

contain either pure or interstitial telomeric repeats [118], nor did it contain ambiguous bases. It 

was used for two purposes. First, it served as a reference genome for base coverage estimation (see 

below). Second, telomeric sequences consisting of human telomeric TTAGGG or CCCTAA 

repeats with known lengths were attached in silico to both ends of this chromosome fragment. The 

telomeric sequence lengths were randomly chosen from a normal distribution with mean 10 kb 
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and standard deviation 7 kb. The resulting sequences were used to generate artificial short-reads 

using the ART tool for Illumina sequencers [120].  

The following testing scenarios have been exploited: 

● short-reads of different lengths from the set {20, 36 , 51, 76, 100, 150 nt}; 

● short-reads with different insert sizes from the set {200, 300, 500 nt}; 

● short-reads with different coverage values from the set {0.1, 0.5, 1, 2.5, 5, 10, 30}; 

● paired-end and single-end short reads.  

The 200 nt insert size was not considered for 100 nt or 150 nt length reads; and the 300 nt insert 

size was not considered for 150 nt length reads. 

Performance comparison with TelSeq 

We compared the performance of Computel to that of TelSeq [114]. Both of the software were 

used with their default settings, unless otherwise stated.  

TelSeq computes telomeric length with the formula l= tksc, where l is mean telomere length, tk is 

the abundance of telomeric reads, s is the fraction of all reads with GC composition between 48% 

and 52%, and c is a constant for the genome length divided by the number of telomere ends [114]. 

First, we performed comparisons based on the settings for short-reads generation taken from the 

original TelSeq paper [114]. Briefly, human chromosome 1 of the GRCh37 genome assembly was 

used as a reference. Terminal sequences of 30 kb length, including N-bases and telomeric repeats, 

were removed from each end of the chromosome and replaced with the same length of telomeric 

repeats. Illumina short-reads were generated with the SimSeq tool 

(https://github.com/jstjohn/SimSeq) using the following parameters: -1 100 -2 100 --insert_size 

500 --insert_stdev 200, with coverage equal to 0.4x (498,501 reads), 2x (2,492,506 reads), or 10x 

(12,462,531 reads), and with duplication rate fixed at 5% for all coverages. Each setting was 

repeated 5 times. Mean telomere length was measured with TelSeq using exactly the same settings 

described in the original paper [114]. Because the genome length constant for telomeric GC 

content is hard-coded in the TelSeq software, we computed this parameter for chromosome 1 

(21,722,000 for chromosome 1 instead of 332,720,800 for the total genome) and recompiled 

TelSeq with the new value. The mean telomere length estimates by TelSeq were compared to 

Computel’s estimates.  
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To account for read length variation, we have repeated the settings described above, with fold 

coverage equal to 2x, and for read lengths equal to 36 nt (6,923,628 reads), 76 nt (3,279,613 reads), 

100 nt (2,492,506 reads), and 150 nt (1,661,671 reads). TelSeq k threshold was kept at default 

value of 7 for all read lengths, except for 36 nt, for which we have tested k values equal to 4, 5, 

and 6.  

Finally, we have assessed the performance of Computel and TelSeq depending on short-read 

generation algorithms. For this, we have generated 100 nt length short-reads with 0.4x (498,501 

reads), 2x (2,492,506 reads), and 10x (12,462,531 reads) coverage using another short-read 

generation tool, ART Illumina read generator, with its default parameters [120].  

Measures of telomere length estimation accuracy and statistical analysis  

The accuracy of telomere length estimation was evaluated with the following criteria:  

● Mean of relative error (MRE), and standard error (SE), where relative error of estimated 

(EL) over actual telomere length (L), is the ratio (EL-L)/L; 

● Root mean squared error (RMSE), which represents the variance of mean telomere length 

estimation error; 

● Coefficient of determination, R2, which is the estimate of quality of linear fit (goodness of 

fit) between estimated and actual mean telomere lengths. 

Paired t-tests were used for pairwise comparisons, single factor analyses were performed using 

ANOVA, and, finally, the effects of several factors on accuracy of estimation were assessed using 

multi-factor ANOVA. P values less than 0.05 were considered significant.  

Algorithm validation with experimental data  

In order to validate Computel performance with experimental data, we downloaded whole-genome 

sequencing data for paired tumor and healthy tissues of 5 neuroblastoma and 2 osteosarcoma 

patients (EGAD00001000135 and EGAD00001000159) [113]. For these samples, differences in 

telomere length between normal and tumor tissues have previously been estimated using 

quantitative real time PCR.  

We have computed telomere lengths for these datasets with Computel and Telseq and validated 

the results against experimentally obtained data, described by Parker et al [113].  
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2.2.2 Results 

Validation of Computel using synthetic data 

We have assessed the accuracy of mean telomere length estimation by Computel in a series of 

computations performed on "synthetic chromosomes" with telomeres of known length attached to 

their ends. The lengths of attached telomeres were randomly chosen from a normal distribution 

with mean 10 kb and standard deviation 7 kb. The range (min-max) of generated telomeres were 

194.5–21138 bp for single-end reads, and 387.5–24169.5 bp for paired end reads, respectively. 

The results obtained showed very strong linear correlation between actual and estimated telomere 

lengths in all the experiments, with the quality of linear fit (R2) equal to 0.95 and 0.92 for single 

and paired-end reads, respectively (Fig 3). The mean relative errors (MRE±SE) between estimated 

and actual telomere lengths were 4±0.01% for single-end reads and 7±0.01% for paired-end reads. 

 

Figure 5. Correlation between actual and estimated mean telomere lengths. S—single-end 
reads, P—paired-end reads. Estimation of mean telomere length was performed with reads 
generated from 200 kb length region of human chromosome 1, with telomeres attached to both its 
ends with lengths sampled from a normal distribution with mean 10 kb and SD 7 kb. The minimum -
maximum range of the generated telomere lengths were: 194.5–21138 bp for single-end reads, and 
387.5–24169.5 bp for paired-end reads. The read length, insert size and fold coverage ranges are 
described in the Methods.  

Next, we compared performance of telomere length estimation based on read length, coverage and 

insert size (in case of paired-end reads). We have chosen the most appropriate short-read alignment 

parameters that would combine the maximal accuracy and speed of the alignment to the telomeric 

index by evaluating different alignment options offered by Bowtie 2 and comparing their 

performance. The alignments were performed with the Bowtie 2 preset options for --end-to-end 
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alignment, i.e. --fast (F), --very-fast (VF), --sensitive (S) and --very-sensitive (VS) modes. The 

argument for "mismatches in a seed alignment" (–N), was tested for both the default value of 0 and 

for the value of 1, since setting -N to 1 increases the alignment sensitivity. Next, the -L option, 

which is the length of the seed substrings to align during multi-seed alignment, was set to one third 

of read length, but with minimum value of 6 and maximum value of 22 (this means that if one 

third of read length is less than 6, it is assigned the value of 6, and if it is more than 22, it is set to 

22). Finally, the --n-ceil option, which is the maximum number of allowed mismatches and ‘N’ 

bases in the alignment, was set to [rl-min.seed], where rl is the short-read length and min.seed is 

the minimum number of telomeric read bases in the mapped reads. Thus, we ended up with 8 

alignment modes (F-N0, VF-N0, S-N0, VS-N0, F-N1, VF-N1, S-N1, VS-N1) and compared their 

effect on the accuracy of telomere length estimation. Eventually, the mean relative error (MRE), 

standard error (SE) of MRE, root mean squared error (RMSE), and coefficient of determination 

(R2) were calculated, separately for single and paired-end reads, and compared across alignment 

modes. 

The results showed that mean telomere length estimation was more accurate for those alignment 

modes, for which mismatches were allowed in the seed (F-N1, VF-N1, S-N1, VS-N1). For VS-

N1, the MRE ± SE was -0.5 ± 0.17 % for single-end reads and -4.3 ± 0.01% for paired-end reads, 

RMSE was equal to 7% and 11%, respectively (Figure 6). Since the difference in performance 

among these four modes was very small and we were interested in higher sensitivity, we have 

chosen the VS-N1 as the default alignment option for Computel.  

 

FIGURE 6. Telomere length estimation accuracy in different alignment modes. S - single-end reads, P - 
paired-end reads. Estimation of telomere length was performed with reads generated from 200 kb length 
region of human chromosome 1, with telomeres attached to both its ends with lengths sampled from a normal 
distribution with mean and SD equal to 10 kb and 7 kb . The modes of alignment (F-N0, VF-N0, S-N0, VS-N0, F-
N1, VF-N1, S-N1, VS-N1), as well as read length, insert size and fold coverage ranges are described above. MRE 
– mean relative error between estimated and actual mean telomere lengths, RMSE – root mean squared error 
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(error variance), R2 – coefficient of determination (quality of linear fit between estimated and actual mean 
telomere lengths). 

Comparison of performance for single-end reads 

We have performed assessment of mean telomere length estimation accuracy depending on single-

end read length (rl) and fold coverage (fcov), as described in Methods, Algorithm validation with 

synthetic data section of the manuscript. According to multi-factor ANOVA test results, there were 

no significant differences in mean telomere lengths depending on read length, coverage or their 

combinations (Table 2).  

Table 2. Effects of read length and coverage on MRE of mean telomere length estimation for 
single-end reads. 

Variable Type III Sum of Squares df F Sig. 

read length (rl) 0.07 5 1.82 0.11 

fold coverage (fcov) 0.02 6 0.48 0.83 

rl-fcov interaction 0.21 30 0.95 0.54 

Error 60.79 8358.00 - - 

Total 61.41 8400.00 - - 

From 42 rl-fcov combinations, in 21 cases the relative error of length estimate was not significantly 

different from 0, and in the rest, the calculated telomere length was underestimated by 0.2% - 0.3% 

(Figure 7). Meanwhile, standard errors of MRE decreased along with the increase of fold coverage. 

Additionally, we observed decrease of relative error variance (RMSE), as well as improvement of 

linear fit (R2) with the increase in fold coverage, which is more pronounced for longer reads 

(Figure 7).  
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FIGURE 7. Performance metrics of mean telomere length estimation for single-end reads depending on 

read length and coverage.  Estimation of mean telomere length was performed with single-end reads 

generated from 200 kb length region of human chromosome 1, with telomeres attached to both its ends with 

lengths sampled from a normal distribution with mean equal to 10 kb and SD equal to 7 kb. Each read length is 

represented with one color. Dots on the first chart represent mean relative error (MRE) between estimated and 

actual mean telomere lengths; whiskers represent standard error (SE) of MRE. RMSE – root mean squared 

error (error variance), R2 – coefficient of determination (quality of linear fit between estimated and actual 

mean telomere lengths). Coverage is indicated on the x axes. 

Comparison of performance for paired-end reads 

We have performed similar series of analyses for paired-end short-reads, accounting also for insert 

size effects. Multi-factor ANOVA indicates that read length, coverage and insert size, as well as 

their pairwise interactions significantly influence mean relative error (MRE) of telomere length 

estimation in the case of paired-end reads (Table 3). 
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Table 3. Effects of read length and coverage on mean relative error of telomere length 
estimation for paired-end reads.  

Variable Type III Sum of Squares df F Sig. 

read length (rl) 1.23 5 20.13 0.00 

fold coverage (fcov) 0.18 6 2.43 0.02 

insert size (mflen) 1.24 2 50.65 0.00 

rl-fcov interaction   0.61 30 1.67 0.01 

rl-mflen interaction 0.15 7 1.75 0.09 

fcov-mflen interaction 0.46 12 3.10 0.00 

rl-fcov-mflen interaction 0.53 42 1.03 0.43 

Error 255.88 20895.00 - - 

Total 278.60 21000.00 - - 

From the 105 combinations of read length (rl), fold coverage (fcov) and insert size (mflen), in 12 

cases the relative error of length estimate was not significantly different from 0, the calculated 

telomere length was significantly overestimated in two cases (by 2% and 5.5%), and 

underestimated in the rest (by 0.3% - 5.8 %) (Figure 8). Similar to the case of single end reads, 

mean relative error (MRE) for paired-end reads decreased and quality of linear fit (R2) improved 

along with increase of fold coverage (Figure 9 and 10). For paired-end reads, telomere length 

estimation accuracy decreased with the increase in insert size (Figure 8).  
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Figure 8: Performance metrics of mean telomere length estimation for paired-end reads based on read 
length, coverage and insert size. Estimation of telomere length was performed with paired-end reads 
generated from 200 kb length region of human chromosome 1, with telomeres attached to both its ends with 
lengths sampled from a normal distribution with mean equal to 10 kb and SD equal to 7 kb. Insert sizes (200 
nt, 300 nt and 500 nt) are indicated as chart titles. Each read length is represented with one color. Dots on the 
chart represent mean relative error (MRE) between estimated and actual mean telomere lengths; whiskers 
represent standard error (SE) of MRE. Coverage is indicated on the x axis.  
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Figure 9: Root mean squared error (RMSE) of telomere length estimation for paired-end reads based 
on read length, coverage and insert size. Estimation of telomere length was performed with paired-end 
reads generated from 200 kb length region of human chromosome 1, with telomeres attached to both its ends 
with lengths sampled from a normal distribution with mean equal to 10 kb and SD equal to 7 kb. Insert sizes 
(200 nt, 300 nt and 500 nt) are indicated as chart titles.  Each read length is represented with one color. 
Coverage is indicated on the x axis. 

 

Figure 10: Quality of linear fit (R2) of telomere length estimation for paired-end reads based on read 
length, coverage and insert size. Estimation of telomere length was performed with paired-end reads 
generated from 200 kb length region of human chromosome 1, with telomeres attached to both its ends with 
lengths sampled from a normal distribution with mean equal to 10 kb and SD equal to 7 kb. Insert sizes (200 
nt, 300 nt and 500 nt) are indicated as chart titles.  Each read length is represented with one color. Coverage is 
indicated on the x axis. 
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Performance comparison with TelSeq 

We have compared the accuracy of telomere length estimation by Computel and TelSeq with short 

reads generated from 30 kb telomeric sequences attached to human chromosome 1 (see Methods 

and data for details) at 0.2x, 2x and 10x coverage. Computel was used with its default settings, 

while TelSeq source code was modified to make the computations valid for chromosome 1 (see 

Methods and data). 

The results obtained indicate that Computel outperforms TelSeq in all the cases. Moreover, TelSeq 

fails when short-read length significantly deviates from its default value (Table 4), while the 

accuracy of Computel is not changed significantly in the read length ranges examined. Finally, to 

compare Computel and Telseq performance with an alternative short-read generation algorithm, 

we also used short-reads generated by the ART Illumina tool. Comparison was performed using 

the the same settings as described above, with 100 nt read lengths and coverage values in the range 

0.2x, 2x and 10x. In this case, TelSeq significantly underestimated the actual telomere lengths, in 

contrast to Computel (Table 4). 

Table 4. Comparison of performance of Computel and TelSeq in mean telomere length estimation from 
synthetic data. 

Read length Synthetic short-read 

generation tool 

Computel mean telomere 

length estimatea 

mean ± SE, kb 

TelSeq mean telomere 

length estimatea 

mean ± SE, kb 

100 nt b SimSeq e 29.2 ±0.5 28.8 ± 0.5 

36 nt ( k = 4) c SimSeq 29.6 ± 0.4 47.2 ± 0.5 

36 nt ( k = 5) c SimSeq 29.6 ± 0.4 47.1 ± 0.5 

36 nt ( k = 6) c SimSeq 29.6 ± 0.4 7.8 ± 0.1 

76 nt SimSeq 29.8 ± 0.8 31.8 ± 0.8 

150 nt SimSeq 28.9 ± 0.7 NA d 

100 nt ART Illumina [25] 31.1 ± 0.6 24.6 ± 0.6 

a - The actual telomere length was 30 kb attached to the Chromosome 1. b – The default TelSeq read length. c - For 36 

nt read lengths, estimation of telomere length byTelSeq was performed with k (threshold of telomeric repeats in short-

reads) equal to 4, 5 or 6; For all other read lengths, the default value of k = 7 was used. d - TelSeq fails to output results 

for 150 nt read length. e – Simseq is available at https://github.com/jstjohn/SimSeq.  

Validation of computel using experimental data 

We have computed telomere lengths with whole-genome sequences of tumor (D) - normal tissue 

(N) pairs from five neuroblastoma patients, using both Computel and TelSeq, with their default 

settings. These samples have been previously analyzed by qPCR and the log fold changes of 
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telomere lengths in tumor over paired healthy tissues were published [113]. In order to compare 

those results with the estimates obtained by Computel and TelSeq, we computed absolute values 

of mean telomere lengths and converted them to log2 fold change values (Table 5). The changes 

in telomere length predicted by Computel and TelSeq were consistent with length changes 

observed by qPCR (Table 6).  

Table 5. Absolute values of MTL estimates for neuroblastoma samples by computel and telseq.  

 
Computel TelSeq 

 
Cancer 

tissue (D), 
MTL, kb  

Healthy 
tissue (N), 

MTL, kb 

log2(D/N) Cancer 
tissue (D), 

MTL, kb 

Healthy 
tissue (N), 

MTL, kb 

log2(D/N) 

SJNBL001 24.0 4.4 2.45 28.9 6.0 2.27 

SJNBL002 13.8 4.5 1.61 18.7 6.1 1.61 

SJNBL009 3.2 7.0 -1.12 4.4 9.9 -1.16 

SJNBL030 2.8 5.4 -0.95 4.0 7.9 -1.00 

SJNBL031 7.6 3.6 1.08 10.8 4.9 1.12 

Table 6. Log ratios of telomere length estimates by computel and telseq compared to qPCR 
for five neuroblastoma (D) and matched normal tissue (N) samples.  

Sample qPCR  

[log2(D/N)] 

Computel*  

[log2(D/N)] 

TelSeq*  

[log2(D/N)] 

SJNBL001 GAIN [2.89] GAIN [2.45] GAIN [2.27] 

SJNBL002 GAIN [3.92] GAIN [1.61] GAIN [1.61] 

SJNBL009 LOSS [-1.92] LOSS [-1.12] LOSS [-1.16] 

SJNBL030 LOSS [-3.81] LOSS [-0.95] LOSS [-0.99] 

SJNBL031 GAIN [5.35] GAIN [1.22] GAIN [1.20] 
* - the absolute values of the mean telomer lengths for tumor and paired healthy tissue computed by Computel and 

TelSeq are presented in Table 5.  

Next we used Computel to estimate telomere lengths for two osteosarcoma samples (SJOS002 and 

SJOS004) and compared the estimates with absolute qPCR and mTRF values [113]. Computel 

length estimates were partially consistent with TelSeq estimates and qPCR results, with some 

differences for each technique (Figure 11). In two out of the four cases, Computel estimates were 

closer to qPCR values than TelSeq estimates, with TelSeq estimates being closer in the other two 

cases.  
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Figure 11. Mean telomere length estimates for osteosarcoma and matched normal tissues by qPCR, 
Computel and TelSeq. SJOS002_D, SJOS004_D - osteosarcoma tissue samples; SJOS002_N, SJOS004_N – paired 
healthy tissue samples. 

For all the cases of telomere length estimation with experimental data, TelSeq telomere length 

estimates were by 2-5 kb larger than Computel length estimates. We have hypothesized that this 

may be the result of TelSeq capturing more reads from interstitial telomeric regions, than 

Computel. In order to check this, we have retrieved reads from one of the neuroblastoma sample 

runs (SJNBL001_D-2876158223) that Computel failed to map to the telomeric index, but that 

contained more than 7 telomeric repeats and were successfully captured by TelSeq. BLAST results 

showed that some of these reads were similar to available sequences of interstitial regions in human 

reference genome. The rest of the reads, however were not aligned to any known sequence, but 

presumably did not originate from telomeric regions, as they do not have canonical telomeric 

repeat patterns.  

Additionally, we used SimSeq to generate short-reads (5x fold coverage) from subtelomeric 500 

kb sequences of human chromosomes [121], available at http://www.wistar.org/lab/harold-c-

riethman-phd/page/subtelomere-assemblies. From these short-reads, Computel mapped a total of 

65 reads to the telomeric index, while TelSeq counted 327 reads. This is consistent with the 

hypothesis that overestimation of telomere lengths in experimental data by TelSeq compared to 

Computel can be partially attributed to interstitial telomeric repeats contained in the subtelomeric 

and other regions of chromosomes.  
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2.2.3 Discussion 

Currently, large amounts of high-throughput NGS data for individual organisms are available [27]. 

Often, they contain not only WGS data, but also data from RNA-Seq, microarrays, or ChIP-Seq, 

which should make them valuable for associating telomere lengths with gene regulation. It is, 

however, difficult to calculate telomere lengths from WGS data, because a typical reference 

genome partially or completely lacks telomeric sequences, with chromosomal termini sometimes 

being denoted by runs of “N” residues. Moreover, since telomeric regions are very repetitive, 

traditional methods of alignment of short-reads to genomic sequence are typically confounded in 

this context by multiple mapping positions of the reads [23]. To overcome these limitations, we 

have developed the open-source software Computel, which functions by aligning short-reads to a 

special index, designed in such a way that only telomeric reads map to it in unique positions. 

Analyses have shown that Computel estimates mean telomere length with high accuracy, and its 

performance does not significantly depend on read length, short-read type, fold coverage and insert 

size. 

Recently, alternative approaches have been developed for telomere length estimation from WGS 

data, based on count of short-reads containing certain number of telomeric repeats [113, 114, 122]. 

In the cases of  [113] and  [122], this number was fixed at 4; in case of Telseq it can vary based on 

read length  [114]. Although TelSeq is a valuable tool, it still has some limitations that we 

attempted to address with Computel. First, TelSeq sets a threshold for telomeric repeat count, 

which makes the results of the output dependent on both the threshold and the short-read length; 

resulting in very poor performance, if read length considerably deviates from 100 nt (e.g., 36 nt or 

150 nt). Computel, on the contrary, performs similarly well for all the short-read lengths analyzed 

(from 20 nt to 150 nt). Secondly, TelSeq performs relatively well on short-read data generated 

without reading errors in sequences; however, when sequencing errors were introduced with the 

ART Illumina tool, the accuracy of TelSeq results fell considerably compared to Computel. This 

is explained by the fact that any single error in a nucleotide sequence distorts the telomeric patterns 

and affects the count of telomeric reads, while the alignment approach is less sensitive to this type 

of errors.  

An important issue concerned with NGS based telomere length estimation is the fact that there are 

interstitial telomeric repeats in other regions of chromosomes [118], and it is difficult to distinguish 
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between reads originating from these regions from true telomeric (or immediate subtelomeric) 

reads. The alignment-based approach utilized in Computel has the ability to reduce the number of 

such misclassified reads compared to TelSeq, as demonstrated with experimental data (see Results, 

Validation with experimental data). Notably, TelSeq underestimates telomere length in in silico 

experiments, where only “pure” telomeric sequences were present at chromosome ends; whereas 

with experimental data, where reads from interstitial telomeric sequences are presumably present, 

TelSeq estimates of telomere length were greater than Computel’s estimates. In addition, when 

computing telomere lengths, Computel accounts only for the parts of the reads that have been 

aligned to the telomeric part of the telomeric index (index.telomeric), thus reducing the bias 

introduced by subtelomeric repeat-rich regions.  

Finally, the hard-coded implementation of several important constants in TelSeq, such as GC-

normalized genome length, and the number of chromosomes, makes this software difficult to use 

for analysis of telomere length of other genomes for researchers with basic programming skills, 

whereas all parameters of Computel can be easily set in a single configuration.  

Performance assessment of Computel with experimental data have shown that telomere length 

estimates correlate with mean telomere length estimated with qPCR and TRF, but deviate to some 

extent (2-3 kb) in absolute values. In case of TRF, this difference can be attributed to the fact, that 

TRF also captures subtelomeric regions of chromosomes, thus overestimating telomere length by 

2.5-4 kb [98]. On the other hand, estimates of absolute telomere length by qPCR, are very prone 

to preliminary calibration steps, therefore results obtained in different experimental settings should 

be compared qualitatively, rather than quantitatively [98]. It is important to note, that existing 

experimental methods for mean telomere length assessment all have their drawbacks and 

limitations [123], and, thus, cannot serve as validation methods for computational approaches, 

such as Computel or TelSeq. In fact, the only way to assess the accuracy of any telomere length 

assessment method should be based on measurements performed on a set of “artificial 

chromosomes” synthesized with telomeres, subtelomeric regions and interstitial telomeric repeats 

of known length. To our best knowledge, no experimental or computational method, including 

“gold standard” TRF has passed such validation. That is why validity of Computel should be 

recognized in terms of correlations with other measures, and not the absolute values of mean 

telomere length estimates. 
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One of the important challenges in assessment of telomere integrity is determination of telomere 

lengths at individual chromosomes. Computel does not allow for that, since the telomeric pattern 

is not chromosome specific, and it is virtually impossible to identify the chromosome source of 

telomeric short-reads. Currently, there are no computational methods for individual telomere 

length assessment (including TelSeq), nor is it measured with TRF or qPCR experiments. There 

are few experimental techniques (qFISH [98], chemistry based methods [124]) that allow for 

obtaining telomere lengths from individual chromosomes. While the data derived from these 

experiments is important for genome stability assessment, mean telomere length has been proven 

to be informative as well, and associated with various biological phenomena, such as telomere 

position effect [13, 15], and disease association [125–128].  

Even though Computel allows for overcoming the issues described above and has relatively high 

accuracy, it also has a number of limitations. Its most important limitation is an inability to handle 

variable telomeric patterns such as those characteristic to S. cerevisiae C1-3A/TG1-3 [24]. We 

intend to address this in future versions of Computel. A second limitation is that alignment, the 

most time-consuming step in the algorithm, is performed only with Bowtie 2. In the future, we 

will also consider implementation with other short-read alignment programs, such as BWA [129] 

and SOAP [130, 131]. 

In summary, we have developed Computel, an open-source software package for estimating mean 

telomere length based on whole-genome NGS data. The overall results of performance assessment 

demonstrate that this methodology is valid for mean telomere length association studies based on 

high-throughput data. We have applied Computel to NGS data analysis to foster telomere biology 

research in healthy states and disease, some of which are described in this thesis (see Chapter 3 

and 5).  
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APPLICATIONS OF COMPUTEL: CASE STUDIES 

In this chapter, we describe the findings in telomere biology obtained by applications of Computel. We 

first describe the association of telomere length with genetic variations, age and lifestyle of a South 

Asian healthy population. Next, we investigate into the regulatory relationship between telomere length 

and genomic, transcriptomic and epigenomic characteristics of lung cancer cell lines. These studies 

demonstrate the use of our methodology in bringing telomere length studies into -omics research scale.  

3.1 QUANTITATIVE TRAIT ASSOCIATION STUDY FOR MEAN TELOMERE LENGTH 
IN THE SOUTH ASIAN GENOMES 

3.1.1 Introduction 

Identification of genetic and environmental factors impacting telomere length has been repeatedly 

addressed. From multiple loci implicated in association with telomere length, those including 

genes associated with telomerase were among the most validated ones. Codd et al. [132] conducted 

a meta-analysis of 37 684 individuals and reported seven loci associated with leukocyte mean 

telomere length (MTL), including genes coding for telomerase RNA component (TERC), 

telomerase reverse transcriptase oligonucleotide/oligosaccharide-binding fold containing 1 protein 

(OBFC1), nuclear assembly factor 1 ribonucleoprotein (NAF1), regulator of telomere elongation 

helicase (RTEL1), which are involved in telomere biology, and two other loci including ACYP2 

and ZNF208 genes. These genes, apart from ZNF208, were validated or had supportive evidence 

in a study within the COGS project [133]. 

Furthermore, Pooley et al. [133] found novel telomere length association at 3p14.4 (close to PXK), 

at 6p22.1 (ZNF311) and at 20q11.2 (BCL2L1) loci. Another study of families with exceptional 

longevity analyzed 4289 individuals, and reported two loci (17q23.2 and 10q11.21) containing 

novel candidate genes, as well as validated TERC, MYNN and OBFC1 [134]. Association of 

telomere length with SNPs is partially population specific, and until now there is no well-accepted 

genomic factor determining telomere length and telomere attrition rate. This may be partially 

attributed to population-specific genomic variations on one side, and lack of tools for measuring 

telomere length from whole genome sequencing (WGS) data, on the other.  
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In this study, we have performed a genome wide quantitative trait association study for MTL in 

South Asian population, using WGS data both for genotyping and MTL calculation. 

3.1.2 DATA AND METHODS 

The dataset 

The study was conducted on datasets produced by the South Asian Genome project [135], 

deposited in European Nucleotide Archive (http://www.ebi.ac.uk/ena/) under accession number 

PRJEB5476. We used a dataset containing 2 x 101 bp WGS reads from Illumina GAIIx at 4x 

coverage, as well as corresponding genotypes from whole blood samples of 168 individuals. The 

individuals were sampled from different age groups, religious backgrounds and language groups, 

predominantly from India (166 India, one Kenya, one East Africa). Information on age, sex, 

religion and language was available for all the study subjects.  

MTL calculation 

MTL was calculated from 4x coverage WGS reads with Computel, using its default parameters. 

MTL data are presented as mean MTL 6 SD throughout the text. MTL association with age, sex 

and religion was evaluated using linear regression. P values <0.05 were considered significant. 

Multiple correction was performed with false discovery rate estimation (FDR) with Benjamini–

Hochberg (BH) method. Statistical calculations were performed in R environment. 

Population stratification 

We have used an R package GenABEL [136] to analyze the population structure. For 

dimensionality reduction, we have performed multidimensional scaling (MDS) with 10 

components using the EIGENSTRAT algorithm [137]. 

Association analysis 

The quantitative trait association analysis for MTL was performed with Plink toolset [138]. SNPs 

with MAF  < 0.1 and HWE significance threshold  < 0.1 were excluded, which left us with 4, 106, 

441 SNPs with genotyping rates among samples >99.93%. We used a multiple linear regression 

model to assess additive effect of minor alleles (0, 1 or 2 copies) on MTL for each SNP, with 

adjustment for age, sex, religion and top four principal components derived from population 

stratification analysis. 
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3.1.3 RESULTS 

Population structure  

Principal component analysis revealed that the first component was explaining 1.68% of the 

variability in the data, and top four components were amounting to only 5%. However, data 

projection over the first and the second principal components demonstrated two distinct clusters 

along the first component. The majority of samples were descending from India, but the exact 

region of birth was unknown, thus, we tried to explore the clustering based on available subject 

details, namely language and religion (Figure 12, Table 7). Cluster 1 contained mainly Christian, 

Hindu, Muslim subjects of different languages, while cluster 2 presented predominantly Punjabi 

speaking individuals whose religion was Hindu or Sikh, implying that these individuals were 

apparently originating from Punjab region. This assumption is in agreement with the sample 

description provided by the South Asian Genome project [135]. 

 

Figure 12. MDS analysis of population stratification. Projection of samples over the first (PC1) and the 
second (PC2) principal components (four outliers excluded). (Left) Distribution of samples colored by 
language. (Right) Distribution of samples colored by the region of origin. Clusters 1 and 2 depict the separation 
by PC1 component. 
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Table 7. Distribution of 168 samples from the South Asian genome by religion and language across the most 
discriminative principal component (see Figure 12).  

Cluster 1 

Language\Religion Christian Hindu Jain Muslim Sikh Zoroastrian 

Gujarati 0 4 1 1 0 0 

Hindi 0 3 0 0 0 0 

Konkani 7 1 0 1 0 0 

Malayalam 8 6 0 1 0 0 

Marathi 0 7 0 1 0 0 

Punjabi 2 3 0 1 0 0 

Sindhi 0 0 0 0 0 0 

Tamil 1 5 0 1 0 0 

Telugu 0 1 0 0 0 0 

Urdu 0 1 0 7 0 0 

Cluster 2 

Language\Religion Christian Hindu Jain Muslim Sikh Zoroastrian 

Gujarati 0 2 0 0 0 2 

Hindi 0 13 0 0 0 0 

Konkani 0 0 0 0 0 0 

Malayalam 0 0 0 0 0 0 

Marathi 0 0 0 0 0 0 

Punjabi 0 33 0 1 51 0 

Sindhi 0 1 0 0 0 0 

Tamil 0 0 0 0 0 0 

Telugu 0 0 0 0 0 0 

Urdu 0 0 0 2 0 0 

 

MTL association with gender, age, language and religion 

The MTL was calculated for all 168 samples. The values were ranging from 3234 to 8738 bp with 

the mean MTL±SD equal to 5401±1153 bp (Figure 13). Further analyses were performed on 166 

individuals born exclusively in India. Linear regression of MTL with adjustment of age, sex and 

religion revealed no significant association with age (P = 0.23) and sex (P = 0.29), while Sikh 

religion was the only factor significantly affecting MTL (P = 0.00451). Moreover, Sikhs had 

significantly longer MTLs compared with the rest of the samples (mean difference 816.5 bp, 95% 

CI = 337.3-1295.7 bp). We then tested whether any differences in age distribution in the 

populations could account for deviations in MTL and no significant difference was found (two-

sample t-test of age for Sikh versus Hindu P =0.3711, Sikh versus the rest of samples P  = 

 0.08165). In order to account for distinct genetic background of Sikhs as compared with other 

groups, we included principal components of population stratification analysis into regression 



55 
 

model. The results showed no significant association of MTL with Sikh religion, suggesting the 

religion as an indicator for genetic diversity in studied samples (Table 8). Moreover, multinomial 

regression model showed significant association of religion with the most discriminative PC1 

component (Table 8). However, comparison of MTL in Cluster 2 revealed that Sikhs have 

significantly longer MTL (mean MTL±SD in Sikhs: 5891±1343 bp, in other samples: 5115±978 

bp, t-test P = 0.001), which suggests more complex nature of influencing factors beyond genetic 

background (Figure 13). 

 

Figure 13. Mean telomere length (MTL) distribution in the South Asians. Left: MTL histogram 
of the 168 individuals. Right:  Boxplots of MTLs in different populations of the 168 South Asian 
individuals.  

Table 8. Multinomial regression model of association of religion with the principal components of 

population stratification analysis in the individuals of the South Asian Genome.  

 
Hindu Jain Muslim Sikh Zoroastrian 

(Intercept) 0.0001 0.2710 0.0443 0.1742 0.6860 

PC1 2.31E-03 5.80E-01 1.88E-02 3.98E-07 4.77E-01 

PC2 8.00E-01 2.46E-01 5.60E-01 7.61E-01 9.96E-01 

PC3 3.73E-01 1.66E-01 9.08E-01 2.27E-01 5.09E-01 

PC4 7.33E-01 1.95E-01 6.27E-01 8.68E-01 7.84E-01 

PC5 7.21E-02 1.63E-01 2.09E-01 2.75E-02 8.20E-01 

PC6 6.87E-02 3.30E-01 2.38E-01 1.87E-02 9.84E-01 

PC7 1.93E-01 4.71E-01 7.01E-01 3.98E-02 7.30E-01 

PC8 5.15E-01 2.65E-01 9.88E-01 1.76E-01 9.54E-01 

PC9 6.63E-01 4.02E-01 4.58E-01 4.25E-01 8.86E-01 

PC10 2.89E-01 7.78E-01 5.61E-01 3.44E-01 9.75E-01 

 

In order to evaluate the bias introduced by Sikh samples in MTL-age association, we excluded 

those and rerun the regression analysis. The resulting model (MTL= -14.46×Age + 5676.76, 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw027/-/DC1
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R2=0.025, P =0.09) became consistent with previously reported association found in South Asians, 

where MTL was measured with real-time PCR [139]. 

MTL associated loci 

We analyzed 4,106,442 filtered SNPs for MTL association, with adjustment for age, sex, religion 

and top four principal components (λ=1.002, see Figure 14 for the QQ-plot of association values). 

The Manhattan plot of filtered SNPs with P<1×10−2 is presented in Figure 15. We used three 

thresholds for suggestive SNPs implicated in MTL (BH corrected P < 0.01, P < 0.05, P < 0.2), 

corresponding to 35, 42 and 51 SNPs, respectively (Table 9). The top 35 SNPs were residing in 

the third intron of ADARB2 gene (10p15.3) with unadjusted P=4.49×10−8. Alleles in this set were 

in strong linkage, with allele incidence correlation R2 = 0.87 for all SNP pairs. The strongest MTL 

association was observed in the SNP rs1500964 (P=1.26×10−9). This SNP has two documented 

alleles (C, T) with C variant being associated with longer MTL. Heterozygous individuals (CT) 

had 812 bp longer MTL’s than homozygous individuals with T allele (P=7.8×10−6). Inclusion of 

second C allele was implying an MTL increase by 572 bp, though the P value did not reach 

significance level due to small number of individuals with CC genotype (P  =  0.079). Other 

significant SNPs of ADARB2 gene had similar effects. 
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Figure 14. QQ-plot of observed versus expected p values for MTL association with SNPs in the 
South Asian genomes.  Red, green and blue dashed lines match BH corrected 0.01, 0.05 and 0.2 
thresholds. 

 
Figure 15. Manhattan plot of SNPs with MTL association in the South Asian genomes (p <10−2). 
Horizontal lines represent FDR_BH thresholds for BH corrected p values 
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The second significance threshold of BH adjusted P <0.05 extended the associated SNP list with 

another SNP from ADARB2 gene, and six SNPs from two additional regions. Five of these SNPs 

were located in 19p13.3 locus, in a close proximity to tumor necrosis factor (TNF) family and TNF 

ligand family proteins (TNFSF9, CD70, TNFSF14). 

The broader list of SNPs with BH adjusted P <0.2 was additionally encompassing SNPs from 

intergenic regions of 13q33.3, 8p23.1, loci (Table 9) and rs7643501 (P=4.937×10−7) in an intronic 

region of CACNA2D3 gene (13p14.3), which is a putative tumor suppressor [140].  

Table 9. MTL associated SNPs in the South Asian genomes. Only SNPs with BH adjusted p value 
< 0.2 are presented. 

CHR Position SNP_ID P value Adjusted P Chr_locus Gene  

chr10 1352078 rs1500964 1.26E-09 0.001621 p15.3 ADARB2  

chr10 1342493 rs11598727 2.725E-09 0.001621 p15.3 ADARB2  

chr10 1341438 rs2387646 4.637E-09 0.001621 p15.3 ADARB2  

chr10 1340620 rs3849975 4.81E-09 0.001621 p15.3 ADARB2  

chr10 1342318 rs61832043 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1341417 rs2387645 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1341262 rs2387644 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1343866 rs10794736 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1351088 rs1007147 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1341493 rs2387647 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1342033 rs12217541 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1341098 rs2387642 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1341507 rs2387648 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1341691 rs4471349 6.908E-09 0.001621 p15.3 ADARB2  

chr10 1341183 rs2387643 8.381E-09 0.001621 p15.3 ADARB2  

chr10 1340032 rs10903416 9.27E-09 0.001621 p15.3 ADARB2  

chr10 1343614 rs12570479 9.438E-09 0.001621 p15.3 ADARB2  

chr10 1343596 rs58991694 9.438E-09 0.001621 p15.3 ADARB2  

chr10 1343591 rs56718200 9.438E-09 0.001621 p15.3 ADARB2  

chr10 1343558 rs35620030 9.438E-09 0.001621 p15.3 ADARB2  

chr10 1342596 rs10903417 1.146E-08 0.001621 p15.3 ADARB2  

chr10 1344052 rs4880815 0.000000012 0.001621 p15.3 ADARB2  

chr10 1343726 rs10903420 0.000000012 0.001621 p15.3 ADARB2  

chr10 1343042 rs11593264 0.000000012 0.001621 p15.3 ADARB2  

chr10 1343198 rs11594721 0.000000012 0.001621 p15.3 ADARB2  

chr10 1341897 rs12217329 1.223E-08 0.001621 p15.3 ADARB2  

chr10 1341842 rs4417195 1.223E-08 0.001621 p15.3 ADARB2  

chr10 1341958 rs12220563 1.223E-08 0.001621 p15.3 ADARB2  

chr10 1341858 rs12220555 1.223E-08 0.001621 p15.3 ADARB2  
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chr10 1341852 rs12220554 1.223E-08 0.001621 p15.3 ADARB2  

chr10 1341914 rs12218307 1.223E-08 0.001621 p15.3 ADARB2  

chr10 1341003 rs2387641 0.000000013 0.001673 p15.3 ADARB2  

chr10 1342819 rs10903419 1.906E-08 0.002302 p15.3 ADARB2  

chr10 1342809 rs10903418 1.906E-08 0.002302 p15.3 ADARB2  

chr10 1340503 rs3849974 4.49E-08 0.005268 p15.3 ADARB2 BH p < 0.01 

chr19 6542135 rs112914484 1.913E-07 0.02182 p13.3 None  

chr19 6543496 rs8103412 2.385E-07 0.02647 p13.3 None  

chr10 1343928 rs10794737 3.211E-07 0.0347 p15.3 ADARB2  

chr13 107626059 rs2391396 3.818E-07 0.0402 q33.3 None  

chr19 6548175 rs348378 4.267E-07 0.04172 p13.3 None  

chr19 6546785 rs10407602 4.267E-07 0.04172 p13.3 None  

chr19 6547397 rs348376 4.267E-07 0.04172 p13.3 None BH p < 0.05 

chr3 54316431 rs7643501 5.855E-07 0.05591 p21.1 CACNA2D3  

chr10 1343017 rs11599315 7.291E-07 0.06805 p15.3 ADARB2  

chr10 1370899 rs11597169 0.000000972 0.0887 p15.3 ADARB2  

chr10 1339185 rs4880814 0.000001149 0.1026 p15.3 ADARB2  

chr10 1370915 rs11598750 0.000001503 0.1313 p15.3 ADARB2  

chr3 54316755 rs6799791 0.000001609 0.1376 p21.1 CACNA2D3  

chr8 8114543 rs1915986 0.000002106 0.1696 p23.1 None  

chr8 8115578 rs2945269 0.000002106 0.1696 p23.1 None  

chr8 8114141 rs2980419 0.000002106 0.1696 p23.1 None BH p < 0.2 

 

Table 10. MTL regression model for the South Asian genomes adjusted for principal 
components of population stratification analysis.  

 
Estimate Std. Error t value P Estimate Std. Error t value P 

(Intercept) 5665.73 803.72 7.05 6.24E-011 5658.42 871.53 6.49 1.39E-09 

Age -10.95 8.87 -1.23 0.219 -8.32 9.18 -0.91 0.37 

Sexmale -362.87 319.86 -1.13 0.258 -355.45 322.98 -1.10 0.27 

ReligionHindu 310.01 409.76 0.76 0.451 147.15 461.40 0.32 0.75 

ReligionJain 1040.24 1294.45 0.80 0.423 995.38 1333.50 0.75 0.46 

ReligionMuslim 1053.63 548.44 1.92 0.057 1212.13 666.72 1.82 0.07 

ReligionSikh 1128.36 453.51 2.49 0.014 832.38 535.60 1.55 0.12 

ReligionZoroastrian -364.70 1005.33 -0.36 0.717 -857.25 1210.14 -0.71 0.48 

LanguageHindi 115.12 558.97 0.21 0.837 72.85 598.09 0.12 0.90 

LanguageKonkani 212.25 686.08 0.31 0.757 534.39 754.86 0.71 0.48 

LanguageMalayalam 466.71 599.81 0.78 0.438 930.71 651.50 1.43 0.16 

LanguageMarathi 237.53 619.80 0.38 0.702 567.38 687.10 0.83 0.41 

LanguagePunjabi 46.67 510.54 0.09 0.927 -88.30 553.69 -0.16 0.87 

LanguageSindhi 752.21 1245.49 0.60 0.547 251.30 1269.21 0.20 0.84 

LanguageTamil -17.07 642.75 -0.03 0.979 450.71 705.29 0.64 0.52 

LanguageTelugu -394.20 1228.06 -0.32 0.749 -63.95 1291.19 -0.05 0.96 

LanguageUrdu -352.30 679.11 -0.52 0.605 -378.87 722.77 -0.52 0.60 
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PC1 
    

6272.26 3969.02 1.58 0.12 

PC2 
    

2764.47 2788.04 0.99 0.32 

PC3 
    

283.32 2678.58 0.11 0.92 

PC4 
    

-1235.93 2600.94 -0.48 0.64 

PC5 
    

-360.44 3087.34 -0.12 0.91 

PC6 
    

89.56 3032.34 0.03 0.98 

PC7 
    

-231.74 3200.43 -0.07 0.94 

PC8 
    

-5297.38 3157.35 -1.68 0.10 

PC9 
    

2084.04 2993.06 0.70 0.49 

PC10 
    

7017.63 3072.14 2.28 0.02 

3.1.4 Discussion 

Our findings revealed that MTL in the studied population is not correlated with age, which is in 

agreement with previously published results on South Asian population, where quantitative PCR 

was used to measure relative telomere length [139]. These results deviate from other studies on 

different populations (samples recruited from Austria, France, China and Denmark) that showed 

strong correlation of MTL with age [141–144] thus suggesting that the association might be 

population specific [145, 146]. 

Surprisingly, we have observed that Sikhs have significantly longer telomeres compared with the 

rest of the samples. The results of regression analysis with adjustment for genetic background 

suggested about possibility of complex influence of genetic background and environmental 

factors. It is worth noting that smoking, drug taking and using tobacco are banned in Sikhism, 

alcohol is rarely consumed and many Sikhs are lifelong vegetarians. Unfortunately, we could not 

assess the effects of these factors due to lack of details regarding lifestyle of sampled individuals. 

However, the impact of oxidative stress, including smoking, and lifestyle on telomere length was 

repeatedly investigated, indicating that telomere length is negatively affected by smoking, while 

the impact of healthy lifestyle is positive [147] Additional investigations are needed to assess 

whether long telomeres are characteristic to Sikh population, and are preserved due to high 

heritable nature of telomere lengths [148]. 

The genome wide association (GWA) scan of the South Asian population revealed 51 SNPs 

associated with MTL. Among these, the most significant ones were residing in ADARB2 gene. 

This is an RNA editing gene of double-stranded RNA adenosine deaminase family. [149] detected 

10 SNPs in ADARB2 gene, strongly associated with extreme longevity. Two of those SNPs, 

rs10903420 (P=1.199×10−8) and rs1007147 (P=6.908×10−9) were among the most implicated 
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SNPs in MTL, reported in our study. Additional three SNPs (rs2805562, rs884949 and rs2805535) 

had small association P values, but did not reach the significance threshold. In total, five SNPs of 

ADARB2, associated with extreme old age, are also supposedly associated with MTL. These 

findings call for further investigation aimed at understanding molecular mechanisms through 

which ADARB2 is involved in telomere length regulation and longevity. 

At this point of discussion it is worthwhile to identify several limitations of our study. The first 

and the most important limitation in GWA analysis was the small sample size, which we had access 

to. This dramatically reduced the GWA power to detect associated SNPs, thus, many functionally 

relevant SNPs did not reach the significance threshold after multiple correction. Further, we had 

limited information about the samples: BMI, smoking habits and other lifestyle details could serve 

for adjustment in the association analysis phase and give some important insights over the MTL 

aberrations. The next limitation was the inhomogeneity of the studied population. Even though 

sampled individuals were descending from South Asia, the genetic footprints of different religious 

groups were considerably diverse. 

3.1.5 Conclusion 

Here, we have presented a pilot study of GWA for MTL in South Asians, where we exploited 

WGS data for SNP information and for MTL calculation. Concordance of certain findings with 

previously published results validated our approach and demonstrated that the usage of WGS data 

can be extended to be utilized in telomere studies. This eliminates the necessity of conducting 

additional experiments for telomere length measurement, greatly facilitating further research. 

Moreover, there is large amount of already existing WGS data focused on age-related diseases and 

cancers, where telomeres play an important role, and our approach can be used to exploit available 

datasets to enrich the results with telomere length data. Our study showed that Sikhs are 

distinguished with longer telomeres compared with other religious groups from South Asia. This 

phenomenon needs further investigation in order to assess the involvement of genetic and/or 

environmental factors on telomere length dynamics. Moreover, our results suggest that not only 

telomere length, but also its association with age can be affected by ethnicity. Finally, we have 

identified that ADARB2 gene highly impacts telomere length in South Asians. Longevity-related 

nature of this gene is characterized in other populations, thus combination of this information with 
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our results calls for more investigation to understand the role of this gene in telomere regulation 

and ageing in general. 

3.2 LUNG ADENOCARCINOMA: ANALYSIS OF TELOMERE-ASSOCIATED GENES 
AND PATHWAYS IN LUNG ADENOCARCINOMA CELL LINES 

3.2.1 Introduction 

Several studies have addressed the question of how telomere length is involved in initiation and 

progression of cancers. So far the evidence has been conflicting, with some studies supporting the 

association of short telomeres in peripheral blood leukocytes (PBL) [150], some showing no 

association [151], and others implicating longer telomeres in PBL with cancer risk [152]. A few 

studies suggest that while telomere length is not associated with cancer risk, longer telomeres may 

be implicated in poor cancer prognosis [153]. The study by Rode et al has identified that 

genetically determined long telomeres are implicated in cancer mortality, and have suggested that 

the previously reported association of short telomeres with cancer mortality is the result of 

confounding factors that generally lead to increase in overall mortality rates [154]. They have 

studied mutations in TERT, TERC and OBFC1 genes to be the main determinants linked to the 

ability of cancerous cells to survive, and have established that lung cancers and melanoma are the 

main cancer types affected by these variations [154].  Importantly, all of these studies have 

measured telomere length in PBL using quantitative PCR methods. 

All in all, there is a non-trivial link between telomere length, cancer initiation, progression and 

mortality. The results of studies addressing these associations should be treated with caution: 

primarily paying attention to the tissue where the telomere length has been measured (in the tumor 

or in the blood), and also to other factors, such as the cancer type, the study design, the method for 

telomere length measurement, adjustment for confounding factors, etc. In this sense, utilization of 

NGS data give an opportunity to measure telomere length and assess genomic, transcriptomic and 

epigenomic status of cells derived from the same tumor tissue, thus, highly increasing the accuracy 

of telomere-related studies.  

In this thesis, we have addressed the association of telomere length dynamics with genetic and 

epigenetic factors in lung adenocoarcinoma cell lines using Computel. Lung adenocarcinoma is 

the most common form lung cancers, originating in the peripheral lung tissue. It is described by a 
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number of genetic alterations including mutations in TP53, CDKN2A, KRAS and EGFR genes, 

as well as global changes in epigenetic modifications and gene expression profiles [155, 156]. 

Long telomeres have recently been linked to higher risk of lung adenocarcinoma, as identified by 

a large cohort study including several other cancer types [157]. On the other hand, another study 

has linked short telomeres with poor prognosis of non-small cell lung cancers in general [158]. 

However, the exact role of telomere length dynamics in the progression and pathomechanisms of 

lung adenocarcinoma has not been extensively studied yet.   

3.2.2 Data and methods 

Data 

The data used in this study has previously been collected by Suzuki et al [159]. They had generated 

whole genome DNA-seq, RNA-seq, ChIP-seq and Bisulfite-seq data from 26 lung adenocarcinoma 

cell lines and made those publicly available at DNA Data Bank of Japan (DDBJ), as well as at 

http://dbtss.hgc.jp/. 13 of the cell lines had Japanese origin, 9 were from Caucasians, 1 Black and 

two were of unknown origin.  

Sequencing was performed using Illumina HiSeq platforms. WGS data was obtained under 10x 

coverage, with 100 bp paired-end reads (Accession numbers: DRA001859 and DRA001858). 

Gene expression data was available as an RPKM table, generated by the authors, from RNA-seq 

data (Accession numbers: DRA001846).  RNA-seq data was also available for one cell line from 

the lung of a healthy individual (SAEC, accession number: DRA002311). The ChIP-seq data was 

obtained for RNA Polymerase II, H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K36me3, 

H3K9/14ac, and H3K27ac histone marks (Accession numbers: DRA001860 and DRA002311). 

DNA methylation was analyzed by Bisulfite sequencing (Accession number: DRA001841) [159].  

Mean telomere length calculation 

Raw whole genome sequencing data was supplied to Computel v1.01 for MTL estimation. The 

program was run with its default parameters, with base coverage roughly estimated from the 

number of reads in the Fastq files (10x).  

 

Partial correlation analysis 

http://dbtss.hgc.jp/
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For assessment of direct correlation of gene expression with MTL, we have used partial correlation 

analysis with the R package GeneNet https://cran.r-

project.org/web/packages/GeneNet/index.html. Partial correlation estimates the direct correlation 

between two variables, accounting for a set of controlling variables.  It does so by estimating the 

correlation between each of the variables and the control variables, and then estimating the 

correlation between the obtained residuals. GeneNet implements the methodology of Schäfer et 

al, where they have inferred large scale gene association networks by estimating partial correlation 

for each pair of genes, accounting for the rest of the genes in the studied set [160]. After estimation 

of partial correlations, GeneNet constructs a directed network between the genes. An edge 

direction corresponds to the direction of the smaller regression coefficient, and is chosen in a way 

that it points from the node with larger standardized partial variance (less explained or independent 

variable), to that of the lower (well explained or “dependent”). This means that the direction of the 

edges imposes causality [161].  

We have taken the normalized log2 (0.1+RPKM) values and bounded those to the normalized log2 

telomere lengths of the 26 cell lines. The MTL values and the gene expression values were treated 

together, as a single set of features. We have performed pairwise partial correlation analysis by 

GeneNet and constructed a network by filtering out edges with correlation values less than 0.1. 

We have then selected the node corresponding to telomere length (MTL node), along with the 

genes directly correlated with MTL.  

Combined correlation analysis of gene expression and epigenetic modifications  

The ChIP-seq sequencing reads for RNA Polymerase II, and H3K4me1, H3K4me3, H3K9me3, 

H3K27me3, H3K36me3, H3K9/14ac, and H3K27ac histone marks were mapped to the human 

reference genome GRCh38/hg38. The ChIP and Input read counts in regions 2000 bp up- and 

downstream of the gene transcription start sites were analyzed with R package edgeR [162]. The 

ChIP and Input groups were treated as different experimental conditions. We have filtered the 

genes for which a ChIP-seq value was available for at least half of the cell lines. We have also 

filtered for the H3K27Ac, H3K36me3, H3K4me1, H3K4me3 and H3K9_14Ac histone marks, in 

order to maximize the number of selected genes. The filtering, overall, left us with 12245 genes 

and five histone marks.  

https://cran.r-project.org/web/packages/GeneNet/index.html
https://cran.r-project.org/web/packages/GeneNet/index.html
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MTL (L) association with gene expression (E), DNA methylation (M) and ChIP-seq was assessed 

with multivariate linear regression approach, accounting for the Japanese and non-Japanese (that 

was largely European) origin of the cell lines (O). The three separate linear regression models were 

set as: 

(1) L ~ M + O and M ~ L + O  

(2) L ~ E + O and E ~ L + O 

(3)  L ~ H3K27Ac + H3K36me3 + H3K4me1 + H3K4me3 +H3K9_14Ac 

In (1) and (2) regression models, we consider the dependence of telomere length on methylation 

(or gene expression), as well as the dependence of methylation (or gene expression) on telomere 

length, accounting for cell line origin. We have considered only the genes where regression was 

significant for both dependence types. Such a two-directional dependence couldn’t be considered 

in the (3) model, since the number of histone marks would impose an unreasonably big number of 

possible models.  

Based on these models, we have got three lists of genes, where MTL (L) was significantly 

associated with gene expression (E), DNA methylation (M) or histone modifications (H). We have 

then taken pairwise overlaps of these lists based on gene names. We have reasoned that if a gene’s 

expression is associated with MTL and at the same time with DNA methylation at its promoter, 

this implies a possible mechanistic link between MTL, DNA methylation and gene expression: 

MTL might regulate gene expression through DNA methylation, or differential gene expression 

governed by DNA methylation changes might regulate telomere length. A similar reasoning 

applies for the L~E and L~H lists, where an overlap would identify genes, potentially associated 

with telomere length via histone modification changes.  

3.2.3 Results 

The MTL computed from WGS data on the 26 cell lines ranged from very short (1.7 kb) to 

abnormally long ones (33 kb) (Figure 17). Most of the cell lines had MTL in the range 2-6 kb, with 

median MTL being 4.4 kb. The distribution was skewed to the right, with eight cell lines 

possessing more than 10 kb MTL.  
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Figure 16. Distribution of mean telomere lengths (MTL) in 26 lung adenocarcinoma cell lines. MTL was 
measured with Computel from WGS data. The median MTL is 4.4 kb, the minimum is 1.7 kb (H2347), and the 
maximum is 33 kb (H1703). 

The distribution of telomere lengths varied between the Japanese and Caucasian cell lines. After 

the H1703 cell line with extremely long (32 kb) telomeres was removed, the mean ± sd of the MTL 

became 8096±5707 bp for Japanese, and 4212±2606 bp for Caucasians. The mean difference of 

3884 bp between Japanese and Caucasians was significant, according to Welch t-test (p value = 

0.0454). Notably, the telomeres in the Japanese cell lines were more widely distributed compared 

to Caucasians (Figure 17). 
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Figure 17. The distribution of mean telomere lengths (MTL) in cell lines of Caucasian and Japanese 

origin. The cell line H1703 of Caucasian origin was not accounted, since it had abnormally long telomeres (33 

kb). The mean±sd for the Caucasian group was 4212±2606 bp, and 8096±5707 for the Japanese group. The 

difference between the means is statistically significant (Welch t-test p value = 0.0445).  

Partial correlation analysis on the gene expression values and MTL has revealed five genes to be 

in direct correlation with telomere length (Figure 18): PIR (p = 0.008), GPR19 (p = 0.013), FECH 

(p = 0.015), ASUN (p = 0.027), and NDUFA1 (p = 0.035). The direction of these associations in 

all the five cases was from the MTL node to the genes. This means that MTL had bigger partial 

variance compared to the target nodes, and according to Opgen-Rhein et al [161] implies that 

telomere length “regulates” the expression of these genes. 
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Figure 18. Genes directly correlated with telomere length. Top: the correlation of log2 gene expression 

values with MTL are shown: each gene has its color. Bottom: the list of genes and the p values of partial 

correlation of each gene with MTL.  

Furthermore, we have explored the nodes adjacent to the five genes in the same partial correlation 

network (Figure 19). Gene set enrichment analysis with the program DAVID 

(https://david.ncifcrf.gov/) with the genes involved in this network revealed that 7 of those (BOK, 

NDUFA1, NDUFA10, ADCY10, METAP1D, SGK1) are associated with mitochondrion and are 

involved in mitochondrial oxidation, 15 have nuclear localization, of which 7 (CITED2, EID3, 

ETS1, MAPK11, PIR, ZNF131, ZNF488) are involved in regulation of transcription. However, 

none of these enrichment clusters had significant BH corrected p-values.  

https://david.ncifcrf.gov/
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Figure 19. The directed network of partial correlations of gene expression values and MTL. The MTL 
node is highlighted with red (labeled: Telomere length). The nodes for the five genes directly correlated with 
MTL are colored in green. A adjacent nodes are colored in gray. The delta shaped targets of the edges indicate 
the direction of causality of the associations.  

The next set of analysis was aimed at identification of genes whose epigenetic modifications and 

expression were concurrently correlated with telomere length. For this, we have run multivariate 

linear regression to identify genes, for which MTL was associated with either gene expression, or 

DNA methylation, or modifications of five histone marks (H3K27Ac, H3K36me3, H3K4me1, 

H3K4me3, H3K9_14Ac). As a result, we have obtained lists of 809, 609, and 104 genes, where 

MTL was separately associated with gene expression, methylation and modification of at least one 

histone mark, respectively. Intersections of those lists revealed 20 genes that had both expression 

and methylation marks, while only two genes that had both histone modification and gene 

expression marks associated with MTL (Table 11). In order to assess the significance of these 

intersections, we have performed 1000 cycles of bootstrapping randomly permuting the telomere 

lengths and cell line origins. The p-value for the 20 genes with simultaneous MTL correlations 

with methylation and expression was 0.25, and 0.6 for the case of FAM84B, where modification 

for only one histone mark was concordantly correlated with gene expression and MTL. The only 

statistically significant result was obtained for the VPS37B gene, where the p-value for finding 

overlapping association between two histone marks, gene expression and MTL was 0.001.  
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Table 11. Estimates of MTL association with gene expresion and histone marks (TOP) or DNA 
methylation (BOTTOM). The values represtent the estimates of slope of each respective linear regression 
model. Each of the individual associations is statistically significant (p < 0.05). The overlap sizes for methylation 
and single histone marks were not statistically significant (p = 0.25, p = 0.61, respectively), and only the 
probability of the overlapping association between MTL and two histone marks and gene expression for 
VPS37B is significant (p = 0.001). Positive and negative slope estimates point on positive and negative 
correlations, respectively. 

 

3.2.4 Discussion 

Lung adenocarcinoma is a complex disease with multiple changes observed at genomic, 

transcriptomic and epigenomic levels. We have tried to apply two different methodologies to 

understand which fraction of these changes might be associated with telomere length dynamics. In 

theory, association of gene expression/epigenetic modifications with telomere length may be 

caused by regulatory effects of telomeres on gene expression (TPE, TPE-OLD); or on the contrary: 

by genes that regulate telomere maintenance and lengthening mechanisms; or it could be caused 

by a confounding factor (indirect associations), as depicted in Figure 20.  
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Figure 20. Causal links possibly leading to association of telomere length with gene expression changes. 
A single chromosome is represented, with telomeres colored in green, and the centromere with dashed line. 
Red, orange and violet rectangles point on genes or genetic loci. Such associations may take place within a single 
chromosome or between chromosomes. 

Identification of directly correlated features from high dimensional data is a challenging task. The 

main issue with standard correlation analysis followed by multiple test corrections is the effect of 

confounders that conceal the features that have direct causal relationship. We have faced the same 

challenge in studying the association of telomere length with gene expression. Here we have 

applied two approaches to tackle the issue. First, we have constructed the partial correlation 

network of MTL associated genes (Figure 19), and identified five genes, PIR, GPR19, ASUN, 

FECH and NDUFA, directly associated with MTL. The network has also revealed that the 

direction of causality was from MTL to those genes. The pirin protein (PIR) is a transcription 

factor, and is involved in apoptosis. It is known that pirin plays a role in lung diseases, and cancers, 

where it regulates epithelial to mesenchymal transition in metastasis by helping the cells to 

overcome the senescence barrier [163]. GPR19 is usually overexpressed in lung cancers, and it’s 

been shown that it accelerates G2-M cell cycle transition in lung cancer cells [164]. ASUN is a 

critical regulator of cell cycle and division [165]. FECH and NDUFA1 play a role in mitochondrial 

processes, and their function in lung cancers has not been widely investigated, however it is known 

that mitochondria are closely implicated in cellular ageing. Interestingly, several finding have also 

implicated telomere attrition with mitochondrial malfunction [166, 167].  

Our next approach relies on the reasoning that if an identified association between gene expression 

and telomere length is conditioned by a mechanistic link, gene expression changes will most 

probably be accompanied by epigenetic changes at their promoters. For this we have looked at the 

genes whose expression and either DNA methylation or histone modifications were 

simultaneously correlated with telomere length. It should be noted that this approach aims at 

identifying genes epigenetically regulated by or regulating telomere length dynamics, and that it 
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will fail to reveal cases where an association is mediated by altered levels of a transcription factor, 

or posttranscriptional and posttranslational modifications.  

We have identified that the expression of the vacuolar protein sorting 37 homolog B (S. cerevisiae) 

(VPS37B) gene and H3K27Ac and H3K36me3 modifications at its promoter were both negatively 

correlated with MTL. This gene has previously been reported to be differentially regulated in 

aging, and to encode a protein that is a part of ESCRT-I complex, which is a regulator of telomere 

lengthening processes in yeast [168]. This makes this gene a potential target for future 

investigations in mammalian cells as well.  

The observed association of VPS37B was statistically significant, as the probability of observing 

simultaneous correlation of MTL with two histone marks and gene expression was 0.0001, 

according to bootstrapping results. The rest of the results, however, were not statistically 

significant, since overlaps of these sizes (1 for histone marks, 20 for methylations) are expected to 

be obtained by chance. However, it should be noted that the high-dimensionality and the small 

sample size of our dataset (24000 genes versus 26 samples) considerably decrease the statistical 

power of the test. Therefore, we find it reasonable to address the biological significance of the 

obtained gene lists, despite the high p-values.  

An interesting association has been identified for the PRPS1L1 gene. Its expression is positively 

correlated with MTL, while DNA methylation at its promoter is negatively correlated with MTL. 

This gene is specifically expressed in testis and its product is similar to 

phosphoribosylpyrophosphate synthetase enzyme that catalyzes conversion of nucleotides to 

mono-nucleotides [169]. A study by Giannone et al [170] has identified that PRPS1L1 protein  

interacts with TRF2, one of the shelterin proteins, which binds telomeric DNA. The effect of this 

interaction and the role of PRPS1L1 in general are still not known.  

PLXNA3 is also linked to MTL with association of its expression and DNA methylation changes. 

This gene encodes Plexin-A3 protein that participates in cytoskeletal remodeling, tumor 

progression, apoptosis and cell differentiation. It plays an important role in axon pathfinding 

during development of nervous system in zebrafish [171] and mice [172]. PLXNA3 is located only 

1.5 Mb away from the end of the q arm of chromosome X. This, and the association with telomere 
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length, makes this gene a potential target for investigation of existence of TPE-OLD mechanisms 

at this locus.  

FARSA encodes a tRNA synthetase that adds amino acids to tRNAs and plays an important role in 

mitochondrial translation processes. We have found that its expression and DNA methylation are 

also associated with MTL. Interestingly, this is the first tRNA synthetase known to be expressed 

in differentiation dependent manner. Interestingly, another tRNA synthetase, FARS2, has recently 

been identified to be in close contact with telomere end of the chromosome 6 and whose expression 

is associated with telomere length [13].  

Chromosome position analysis has revealed that a few genes in our list are located close to the 

telomeric ends (PLXNA3 – 1.5 Mb, METTL16 – 2.5 Mb from 17p, and MRPS2 – 2.8 Mb from 9q 

end). This tempts to speculate that the observed association might be caused by TPE-OLD like 

mechanisms. 

Enrichment analysis over the whole list of genes has shown that eight of them (out of 20) are 

associated with acetylation, some play role in mitochondrial protein translation and oxidative 

reactions, and some are parts of ribosomes and play a role in protein translation in the cytoplasm 

and in ER. Tissue enrichment analysis has identified that nine genes from our list are normally 

highly expressed in testis (DERL3, FEM1C, HAT1, FARSA, PRPS1L1, RPS12, SEPT6, SPATA9, 

TXNRD1). The similarity between the processes related to spermatogenesis and tumorigenesis has 

already been described [173], and it’s tempting to speculate that proliferative activity might 

concordantly be associated with expression of these genes, and changes in telomere length 

dynamics. 

Finally, enrichment analysis on transcription factor binding sites has identified 14 genes to be 

associated with XBP1 and 14 with NMYC transcription factors. XBP1 is known to promote 

expression of genes related to immune cell differentiation and ER response to stress [174]. Most 

notably, it regulates proliferation of endothelial cells and leads to angiogenesis [175]. NMYC is a 

protooncogene associated with a variety of tumors and also regulates telomerase activity [176]. 
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3.2.5 Conclusion 

Altogether, our data have revealed genes directly linked to telomere length dynamics and some 

presumably associated with telomere length via epigenetic regulatory mechanisms. A large part of 

the genes we have identified have previously been linked to either aging, or telomere biology or 

cancers. The rest of the genes have not been studied previously in that context and should be further 

investigated. Functional studies may elucidate the causality of found associations, their role in 

normal development and cell differentiation on one hand, and in lung adenocarcinoma 

development on the other hand.  
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TELOMERE LENGTH MAINTENANCE: STATE OF THE ART 

The mechanisms employed by highly proliferative cells to maintain the length of their telomeres may 

vary, but are classified into telomerase dependent and independent mechanisms. Activation of a 

particular telomere maintenance mechanism (TMM) specifies the behavior of a cell. In cancer cells, the 

TMM activity is a predictor of tumor aggressiveness and cell survival. It also predicts the cell’s response 

to anti-cancer therapies targeting TMMs.  

Here we describe the state of the art on known triggers of those mechanisms, the known players and the 

order of events leading to telomere elongation. This chapter is mainly based on literature published in 

the last decade, with a considerable amount only within the last couple of years: some papers have even 

been published in the first quarter of 2017. We mention this to highlight the importance and timeliness 

of the topic for the scientific community.  

4.1 INTRODUCTION 

The main telomere maintenance mechanism (TMM) employed by most of the stem and cancer 

cells, depends on the catalytic activity of telomerase [27, 67, 93]. However, a part of cancer cells 

elongate their telomeres via an alternative mechanism (ALT), which dependents on homologous 

recombination events between telomeric sequences [68, 94, 177, 178]. Activation and switch 

between these two TMMs is regulated by various known and unknown factors [179], which are 

described in detail in the following sections.  

4.2 TELOMERASE DEPENDENT TELOMERE MAINTENANCE MECHANISM 

Telomerase is a ribonucleoprotein complex that is able to catalytically elongate the ends of 

chromosomes. It is composed of the core catalytic subunit hTERT (encoded by TERT), the 

dyskerin protein (encoded by DKC1), and the RNA-component hTR (encoded by TERC), which 

contains a telomeric template sequence [180]. While TERC and DKC1 genes are ubiquitously 

expressed in somatic cells, TERT is often silenced [181]. Therefore, mere expression of TERT is 

often (but not always) enough to induce telomerase complex formation and, thus hTERT is 

considered as the main limiting component for telomerase assembly [181]. However, hTERT also 

possesses a number of extra-telomeric functions, such as regulation of gene expression, apoptosis, 

proliferation, cellular signaling, DNA damage response, etc., and its expression is not always 
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correlated with telomerase activity and telomere length maintenance [182]. In this sense, study of 

the whole pathway leading to assembly of the telomerase complex, and its catalytic activation is 

of considerable value. 

The hTR RNA component of telomerase is of 451 nucleotides in length and contains a telomeric 

template domain, and domains for interaction with hTERT [183]. Expression of TERC is activated 

through downregulation of p53, or up-regulation of c-Myc and through the action of sex and 

growth hormones [181]. A large part of TERC transcripts undergo degradation by nuclear and 

cytoplasmic exosomes, and a small part is processed to maturity and carried to the locations of 

telomerase complex assembly [184]. 

Dyskerin is a telomerase subunit that binds to hTR and stabilizes the telomerase complex. 

Mutations in the gene DKC1 lead to a premature aging syndrome called dyskeratosis congenital 

(see Chapter 1). Aside from its role in telomerase complex assembly, dyskerin possesses a number 

of other roles, such as rRNA processing and ribosome production [185].   

It’s important to note that while the presence of these three core components is obligatory for 

telomerase complex assembly, there may be many forms of telomerase, and other accessory 

proteins, such as WRAP53/TCAB1, pontin and reptin, participate in its formation and are 

sometimes also considered to be parts of the complex [186, 187].  

4.2.1 Expression of hTERT and its nuclear import 

Expression of hTERT is regulated by multiple factors, including transcriptional activators and 

repressors, promoter mutations, epigenetic modifications [188] and  interactions with telomeric 

regions of chromosome 5 [57]. Among the known transcriptional activators of hTERT are c-Myc, 

NF-κB, STAT and Pax proteins, and the estrogen receptor [188]. There are also transcriptional 

repressors, such as CTCF, E2F1, and hormone nuclear receptors [188].  Hypo- or hyper- 

acetylation of H3 and H4 histone marks regulate silencing and activation of TERT transcription, 

respectively, and DNA methylation at the TERT promoter is known to play a complex regulatory 

role [188]. Differentiation of pluripotent stem cells is usually accompanied with epigenetic 

modifications at the TERT promoter to induce its silencing, while the opposite process may lead 

to TERT overexpression in cancers [188]. Overall, the regulation of transcriptional activity of 

TERT is quite complex, with multiple players acting at different regulatory levels.  
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While transcriptional activity of TERT is of crucial importance, many events should follow it to 

ensure proper assembly and activity of the telomerase complex. For example, nuclear import of 

hTERT, it’s recruitment to the place of complex assembly, proper post-translational modifications 

and formation of a correct conformational state, as well as availability of the rest of the subunits 

are necessary for the complex to form, while certain post-translational modifications ensure 

enzymatic activity of hTERT in the already assembled holoenzyme [187].  

At the first place, hTERT should be recruited to the nucleus after translation. hTERT is a large 

protein (~124 kDa), which means that it cannot pass through the nuclear membrane via passive 

transport. Therefore, it gets into the nucleus via active transport, through its bipartite nuclear 

localization signal (NLS) located at residues 220-240. The NLS sequence is recognized by 

importin-α, importin-β, which regulate the process of import. Akt-mediated phosphorylation of 

S227 of hTERT leads to efficient binding of importin-α 5 to the NLS, and promotes its nuclear 

import [189]. Well known upstream activators of Akt are phosphoinositide-dependent kinase-1 

(PDK-1) [190], phosphoinositide 3-kinase (PI3K), as well as heat shock protein 90 (Hsp90) and 

protein phosphatase 2A (PP2A) [191].  

It’s also thought that importin 7 may mediate hTERT nuclear localization, possibly by an 

alternative nuclear import pathway. Molecular chaperons Hsp90 and p23 bind to hTERT and 

maintain its proper conformation for the nuclear import to take place. In contrast to this, binding 

of CHIP ubiquitin ligase and Hsp70 leads to cytoplasmic accumulation and degradation of hTERT 

[189]. Another kinase that activates telomerase via hTERT phosphorylation is protein kinase C 

(PKC). The study by Chang et al [192] suggests that PKC-mediated phosphorylation of hTERT 

promotes its binding to Hsp90, therefore leading to proper telomerase complex assembly.  

Certain proteins may also perform posttranslational modifications of hTERT that can either inhibit 

its nuclear import, or complex assembly, or enzymatic activity. An example is c-Abl protein 

tyrosine kinase, which is known to inhibit the activity of telomerase by phosphorylation of hTERT. 

However, the exact role of this modification is not yet understood [193].   

Aside from the NLS signal, hTERT also possesses a nuclear export signal (NES). Therefore, 

hTERT shuttles in and out of the nucleus. In yeast, hTERT is exported from the nucleus to the 

cytoplasm, where the assembly of the telomerase complex takes place. In humans, it is not yet 

known whether the assembly happens in the nucleus or in the cytoplasm. Studies have shown that 
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mutations in the NLS signal decrease telomerase activity, but the effect of NES mutations  still has 

to be investigated [187].  

4.2.2 hTR transcription, processing and degradation  

In contrast to TERT, TERC is not considered as a rate-limiting factor for telomerase activity, as it 

is relatively constantly expressed. However, when TERT becomes overexpressed, hTR levels may 

limit the amount of assembled complexes [194]. This has been demonstrated in a series of 

experiments in mice, where it was shown that TERT overexpression in the absence of TERC does 

not lead to telomerase activity, and even inhibits tumorigenesis [195].   

The rate of TERC transcription per se is not enough to ensure required amounts of hTR available 

for telomerase assembly: one should take into account that the amount mature hTRs depends on 

the competition between the processes of maturation and degradation of newly synthesized TERC 

transcripts. These processes are controlled by nuclear and cytoplasmic exosomes that degrade 

those nascent hTR transcripts that were marked by certain modifiers immediately after 

transcription; or by other modifiers that remove degradation marks and promote the export of hTRs 

to Cajal bodies, where they become mature [184]. Among hTR processing complexes are the 

CBCA complex (NCBP1, SRRT, NCBP2) which leads to 5’ capping, and the NEXT complex 

(RBM7, ZCCHC8, MR4) that adds oligo-A tails to hTRs [184]. CBCA and NEXT associate with 

hTR co-transcriptionally and form the CBCN complex, which recruits the nucleolar exosome 

[184]. Long hTR transcripts get degraded by the exosome (largely by its EXOSC10 component), 

while the short ones are transported to the nucleolus and partly become oligo-adenylated by the 

TRAMP complex (MTR4, ZCCHC7 and PAPD5) [184]. Oligo-adenylation also marks these 

transcripts for degradation by the exosome. A part of these transcripts escape the exosomal 

degradation due to the action of PARN, which removes oligoA tails from the hTRs [196]. 

Polymerases may add polyA tails to the hTRs, to which PABPN1 will bind to promote PARN-

directed hTR maturation [184]. The mature hTRs that are 451 nts in length are then properly folded 

and bound by dyskerin-NOP10-NHP2 complex and NAF1, which provides final protection against 

degradation [197]. This complex is recruited to Cajal bodies, where NAF1 gets replaced by GAR1 

[197].  Besides nuclear exosomes, cytoplasmic exosomes DCP2 and XRN1 are also factors that 

may degrade hTR after its export, particularly when dyskerin binding to hTR in nucleus is 

compromised [196]. 
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4.2.3 Telomerase assembly  

The assembly of telomerase is aided by ATPases Pontin and Reptin (encoded by RUVB1 and 

RUVB2) [186]. It has been shown that Pontin and Reptin affect hTR levels through their interaction 

with dyskerin, however, it has not been shown if they also interact with hTERT directly. In yeast 

the site of telomerase assembly is in the cytoplasm, in humans, however, the site is not yet 

identified [197]. It has been observed that telomerase  localizes to Cajal bodies (CB) for most of 

the cell cycle, which is driven by interactions of WRAP53/TCAB1 with hTR, but the role of CBs 

in complex assembly is not yet clear [198].  

4.2.4 Recruitment to telomeres and catalytic activity  

The localization of the assembled nucleoprotein complex to telomeres is further guided by 

interactions with shelterin proteins POT1, TPP1, TRF1 and TRF2 [186, 197]. An important role 

in recruitment of telomerase to telomeres is played by WRAP53/TCAB1, however it is not yet 

established whether WRAP53 mediates interaction of telomerase with telomeres, or it induces 

posttranslational modifications that promote telomerase-telomere interactions [187].   

The catalytic activity of the holoenzyme is also regulated by shelterin proteins [199]. For example, 

TRF1 inhibits telomerase activity, and the longer the telomeres, the more of TRF1 is recruited, 

and thus the stronger will be the inhibition. Another shelterin protein, POT1, competes with 

telomerase by binding to the single stranded 3’ telomere overhang. Similarly, other shelterin 

proteins, such as TIN2, TPP1 and TNF2 also act as negative regulators. Partly due to this 

regulatory mechanism, and for some yet undefined factors, telomerase elongates mainly the 

shortest telomeres and the mean telomere length of the cells expressing telomerase usually stays 

at a relatively constant level [200].  

 

4.2.5 Summary 

Taken together, the regulation of telomerase dependent TMM occurs at multiple levels of cellular 

activity: starting from the expression of the enzyme components, their proper processing and 

maturation, and ending with proper complex assembly, recruitment to telomeres and catalytic 
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activity. While this process is well characterized in yeast and other model organisms, its many 

aspects are still unknown in humans.  

4.3 ALTERNATIVE LENGTHENING OF TELOMERES 

A part of cancer cells keep their proliferative potential via a telomerase-independent mechanism, 

which depends on homologous recombination events, and is called alternative lengthening of 

telomeres (ALT). ALT is observed in many common tumors, but is mainly inherent to tumors of 

mesenchymal origin [201]. Activation of ALT is an indication of aggressiveness of tumors and 

poor prognosis [202]. Additionally, tumor cells may switch from telomerase positive to ALT 

phenotypes during development [203], and these two TMMs may also coexist in the same cell 

[204]. As mentioned above, researchers are attempting to target cancers with telomerase inhibiting 

therapies. In these cases, tumor cells often switch from telomerase positive to ALT phenotype 

[205]. The mechanisms leading to ALT activation are therefore of considerable interest, however, 

in spite of the significance of the topic, the existing knowledge is yet scarce. Below we describe 

the state of the art on known ALT mechanisms and the factors leading to their activation. 

4.3.1 Descriptors of ALT phenotype 

ALT positive cells are described by a number of phenotypic markers. They contain 

extrachromosomal telomeric repeat containing DNA, such as T-circles that are generated via 

resolution of telomeric T-loops by recombination enzymes, and C- and G-circles, which are largely 

single stranded circular sequences of C-terminal or G-terminal telomeric repeats, with C-circles 

being more abundant. ALT cells usually have longer mean telomere lengths: about 20 kb on 

average, as opposed to telomerase positive cells that usually have less than 10 kb of mean telomere 

length  [206]. The telomere lengths at individual chromosomes of ALT cells are highly 

heterogeneous with simultaneous presence of extremely short and extremely long telomeres, and 

the length of individual telomeres rapidly changes during proliferation. In ALT cells, there is a 

greatly elevated level of recombination events at telomeres, and, finally, a large number of PML 

(promyelocytic leukaemia) bodies containing telomeric chromatin, also called ALT associated 

PML bodies (APBs). The role of PML bodies is not well understood, but it is known that these are 

involved in senescence and DNA damage response (DDR). APBs are highly characteristic to ALT 

cells, and can be observed both attached to the chromosome ends, and to extrachromosomal 
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telomeric sequences. APBs contain recombination proteins and it is assumed that ALT associated 

recombination events happen at APB sites. Therefore, presence of APBs, as well as telomeric C-

circles are used as markers for identification of the ALT phenotype [207].  

Additionally, it is known that the majority of ALT cells have mutations in ATRX and/or DAXX 

genes; however, their role in ALT initiation is not yet identified [208]. Finally, telomerase is 

usually under-expressed in ALT cells, however the functional consequences of its down-regulation 

are also not known. 

4.3.2 (Possible) mechanisms of homologous recombination in ALT  

There is a growing experimental knowledge to understand the sequence of events happening in 

ALT and the main players involved in each event. A comprehensive review by Cesare et al [209] 

has summarized the existing knowledge on ALT regulators, and the paper by Pickett et al [210] 

has discussed involvement of these factors in particular stages of homologous recombination (HR) 

happening in ALT.  

Two possible mechanisms of telomere elongation in ALT cells are currently considered: unequal 

telomeric sister chromatid exchange (T-SCE) and HR dependent DNA replication. T-SCE events 

are generally observed with increased frequency in ALT cells and the hypothesis assumes that due 

to unequal length distribution of telomeres on sister chromatids, one of the daughters receives 

chromosomes with long telomeres and the other one with short telomeres, and thus, the first cell 

will gain proliferative capacity as a result of uneven segregation of the longer telomeres. The 

existence of a mechanism leading to such non-random segregation of long and short telomeres into 

separate daughter cells is still hypothetical [209]. The second mechanism referred to as HR 

dependent DNA replication is thought to be employed through break induced replication (BIR). In 

this case, the 3’ G strand hybridizes with another telomeric C strand of a template sequence. The 

latter may be telomeric end of another chromosome, a sister chromatid, an extra-chromosomal 

telomeric sequence (C-circles), as well as a T-loop.  The G strand is elongated up to the end of the 

template C strand, and afterwards the strands are separated  [209]. Of these two possible 

mechanisms, we will further refer to the ALT pathway in reference to the HR-dependent 

mechanism, since it’s been studied most extensively. 
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The BIR mechanism can occur intra-chromosomally, inter-chromosomally, or extra-

chromosomally, depending on the source of the telomeric template (Figure 21) [211]. The invasion 

leads to formation of a Holiday Junction (HJ), and replication mediated elongation of the invaded 

strand. The HJ is then dissolved, and the C strand of the short telomeres is elongated using the 

newly copied G-strand [210]. It is also thought that extra-chromosomal telomeric repeats, such as 

C-loops and T-loops may serve as simple templates for strand elongation (Figure 21, B) [212]. 

Moreover, the T-loop of the same chromosome may be used as a template in a rolling-based 

replication [212]. Finally, the other possibility for intra-chromosomal copying may occur through 

looping of the G-strand and its simple replication based on the C-strand (Figure 21,C) [213]. It is 

subject for further investigation to reveal which of these mechanisms takes place in ALT and to 

which extent. Here, all further discussions will be based on consideration of the classical inter-

chromosomal BIR mechanism. It is worth noting that the inter-chromosomal BIR that may occur 

through telomere copying from a sister chromatid assumes that sister chromatids may have varying 

telomere lengths (Figure 21, D). There are some studies that discuss this possibility as well [213]. 
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Figure 21. Possible mechanisms of homologous recombination in ALT (adapted from [209]). A – Inter-
chromosomal recombination happens via G-strand invasion onto homologous or a distantly located 
chromosome. B – Recombination occurs using extra-chromosomal telomeric sequences (C-circles, T-circles, 
linear telomeric sequences) as a template. C,D – Intra-chromosomal recombination is based on telomeric 
sequences in the same chromosome, such as the T-loop (C), or the sister chromatid (D). 
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HR is a complex multistep process that involves interactions between various proteins 

participating in strand invasion, template directed synthesis and resolution of recombination 

intermediates.  

The first step in the overall process is the strand invasion, which lead to formation of an HR 

specific structure known as Holiday Junction. The long-range movement of the telomeric G-strand 

to a homologous or non-homologous chromosome required for inter-chromosomal copying may 

be conditioned by Hop2-Mdn1 heterodimer interaction with RAD51 [214]. The ATR and Chk1 

lead to recruitment of Hop2 to the telomeres [215]. Noteworthy, RAD51 independent mechanisms 

have also been observed in yeast, and such a possibility is discussed in humans as well [215]. The 

telomeric DNA is protected from such invasions via shelterin proteins, particularly POT1, which 

binds to ssDNA at telomeres. RAD51 is a known promoter of DNA invasion in HR, and it is 

thought that POT1 should be replaced by RAD51, and that an intermediate step in this process is 

the loading with replication protein A (RPA) complex. The heterogeneous nuclear 

ribonucleoprotein A1 (hnRNPA1) has been shown to inhibit the replacement of POT1 with RPA. 

RAD52 is a positive regulator of RAD51 loading [210].  

The second step in HR events is the strand directed synthesis. A recent paper by Dilley et al [215] 

reports that RFC1-mediated PCNA loading at the telomeric breaks recruits the polymerase δ 

through its POLD3 subunit, and RFC1-PCNA is thought to be the initial sensor of telomere 

damage. They have shown that POLD3 is critical for break induced telomere synthesis in the 

majority of ALT cells. Worth to mention, the study has also shown that the break induced telomere 

synthesis is not dependent on the ATR induced damage signaling and RAD51. ATR-Chk1 

signaling, thus, regulates telomere integrity and ALT cell survival, while RFC1-PCNA-POLD3 

independently participate in telomere synthesis [215].   

After the synthesis phase the Holiday Junctions and HR intermediates are dissolved by the BTR 

complex composed of TOP3A, BLM, RMI1and RMI2  [210]. Several proteins, such as SLX4/1 

and MUS81-EME1 complexes and GEN1, may inhibit this process via resolution of HR 

intermediates. It seems that dissolution happens mostly after telomere synthesis, while resolution 

of HR intermediates interferes with telomere synthesis thereby inhibiting ALT mediated telomere 

lengthening [210].  
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4.3.3 ALT-specific heterochromatic states  

Regulation of the ALT phenotype strictly dependents on chromatin structure and the compact state 

of telomeres. Lack of shelterin proteins and telomeric histone modifiers leads to decompaction of 

telomeres and formation of an ‘open’ chromatin state. It is assumed that this open state recruits 

recombination proteins to the accessible telomeric DNA, which is the main potent trigger of ALT 

phenotype establishment [32, 62]. Particularly, all the experiments with impaired telomeric 

chromatin, have observed large numbers of APB bodies [36, 62, 216–218].  

According to this notion, the proteins found to be regulating (or participating in) ALT are 

functionally related to one or many of the following processes: loosening of heterochromatin 

(histone (de)acetylases/(de)methylases, NuRD-ZNF827 complex), T-loop breakage through 

replacement of shelterin proteins with ALT initiators (POT1, RPA, RAD51), homologous-

recombination (SLX4-SLX1, MUS81-EME1, BTR complex), and APB formation (MRN, 

SMC5/SMC6 complexes, BRCA1, BLM). 

It has been suggested that nuclear receptors NR2C2 (TR4) and NR2F2 (COUP-TF2) bind to 

telomeric C-type variants and recruit a recently discovered protein ZNF827 [219]. ZNF827 in turn 

recruits the NuRD complex to telomeres to promote ALT via increased T-SCEs, APBs and C-

circles. A number of proposed mechanisms may act to support the ALT-promoting activity of the 

NuRD-ZNF827 complex.  First, it’s thought that NuRD is able to simultaneously interact with 

several ZNF827 proteins. If these proteins are located at telomeres of different chromosomes, this 

will lead to so called “telomeric bridge” formation, which in turn may promote telomeric strand 

migration as an initiator of HR at telomeres. Second, the NuRD-ZNF827 complex may recruit HR 

proteins, such as BRIT1 and BRCA1 to telomeres [219]. Finally, the hystone deacetylases HDAC1 

and HDAC2 that are part of the NuRD complex may contribute to deacetylation and reduced 

chromatin compaction at telomeres [219].  

The NuRD complex consists of six functional subunits, and performs a number of roles in 

regulation of replication, transcription and genomic stability. Depending on the protein 

composition of the subunits, NuRD may perform specific functions, which may have opposing 

effects, such as tumor suppressive or promoting [220].  It is not established whether the 

composition of NuRD subunits affects recruitment by the ZNF827 complex. Of note, the 

expression of some NuRD components, as reported in  [219] is not significantly different in ALT 
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positive and negative phenotypes, leading to the assumption that the recruitment of NuRD to 

telomeric sites affects ALT more (if not at all), than the general abundance of NuRD proteins.  

It has also been demonstrated that depletion of chromatin modifiers SUV39H1/H2, and 

SUV420H1/H2 which deposit the repressive H3K9me3 and H4K20me3 marks respectively, leads 

to chromatin decompaction, and formation of an ALT permissive environment [31, 36]. 

4.3.4 APB BODIES 

Promyeolocytic leukemia bodies (PML) are generally present in all somatic cells, and they grow 

in size and number as the cell undergoes senescence [221]. The PML bodies that are associated 

with telomeric sequences are frequently found in ALT cells (thus, the name: ALT associate PML 

bodies (APB)), and are considered to be the main site where HR events occur [222]. Owing to the 

increased number of APB bodies in ALT cells, those have been used as markers of ALT activity 

[207]. APB bodies are found near telomeres at chromosome ends, as well as extra-chromosomal 

telomeric repeats. In addition to the regular components of PML bodies, such as the PML, Sp100 

and shelterin proteins, APBs also contain additional components, such as RAD1, RAD9, RAD51, 

RAD52, RPA, RAD51D, BLM, WRN, RAP, BRCA1, MRE11, RAD50, and NBS1, etc [223]. 

While some of the APB components participate in HR events, the role of others in ALT in not 

known. These are the SMC5/6 complex (NSMCE2 (MMS21), SMC5, SMC6) and the MRN 

complex (NBN, RAD50 and MRE11A). The MRN complex appears in the early stages of dsDNA 

repair, and functions as a regulator of cell cycle checkpoints. In ALT cells, the MRN complex 

colocalizes with HR proteins, and depletion of this complex leads to reduced telomere length 

[224]. Overexpression of SP100 sequesters the MRN complex away from APBs and inhibits ALT 

[223]. The SMC5/6 complex proteins sumoylate telomere binding proteins such as TRF1 and 

TRF2, leading to increased APB formation at telomeres. Inhibition of SMC5/6 complex suppresses 

HR at telomeres [225]. The RecQ helicase WRN is found at APBs, however, its role in ALT is not 

established, since it’s shown to be required in some, but not all of the ALT cells [226].  

 

 

4.3.5 The role of ATRX and DAXX 
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The majority of ALT cells have loss-of-function mutations in either component of the 

ATRX/DAXX complex. There are several hypothesis of how ATRX and DAXX affect ALT, 

however their exact role has not been established yet [227]. The ATRX/DAXX complex is shown 

to deposit the histone H3.3 variant at telomeres, which may lead to repressed telomeric 

transcription and reduction of TERRA transcripts [228]. The role of H3.3 variant at telomeres is 

not clearly established, however association of ATRX/DAXX with H3.3 at telomeres has been 

shown to have stabilizing effect on telomeric heterochromatin, since the ATRX/DAXX complex 

possesses chromatin remodeling activities [229]. Finally, in mice, ATRX has been shown to reduce 

HP1α and lead to chromatin decompaction [227]. Despite the frequent mutation rate of 

ATRX/DAXX, its worth to mention that their mutations alone are not enough to initiate ALT, as 

has been shown for SV-40 hTERT immortalized cell lines [208].  

4.3.6 Telomere fragility and sister chromatid loss  

Flap structure specific endonuclease 1 (FEN1) is a canonical Okazaki fragment processing protein. 

Recently it has been shown that it plays a major role in telomere stabilization during replication, 

both at the leading, as well as the lagging strands [230]. At the lagging strand, FEN1 participates 

in replication fork progression, reinitiation and telomere stability [230]. At the leading strand, 

FEN1 cleaves the RNA:DNA hybrids that are generated during TERRA transcription. Removal of 

RNA fragments from the DNA as the replication progresses is important to limit telomere fragility 

and promote DNA repair at the leading strand  [230].  Owing to its ability to stabilize telomeres, 

FEN1 may be important for telomere lengthening in ALT cells. However, there is a controversy, 

since FEN1 inhibits TERRA RNA:DNA hybrid formation, and these hybrids are known to support 

recombination events in ALT  [230].  Studies have revealed that depletion of FEN1 leads to sister 

chromatid loss in ALT telomeres. It has been shown that FEN1 stabilizes telomeres in ALT 

positive cells. Its depletion from ALT positive cells leads to generation of telomere dysfunction 

induced loci (TIF) and end-to-end chromosome fusions. In telomerase positive cells, loss of 

telomeres at sister chromatids caused by FEN1 depletion was compensated by the action of 

telomerase [231].  

 

4.3.7 Summary 
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Taken together, the mechanism through which ALT takes plays may vary, depending on the source 

of the template telomeric sequence and the mode of replication. Numerous studies have tried to 

reveal the molecular factors involved in ALT events, and these pieces of puzzle rapidly come 

together. It is possible that many pathways exist that lead to ALT induction and realization, 

however which of them is targeted by this or that study is largely not known. Therefore, currently 

accumulated knowledge on ALT may reveal a generalized picture of all the possible mechanisms 

that lead to recombination driven telomere elongation.   
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RECONSTRUCTION OF TMM PATHWAYS 

Activation of telomere maintenance mechanisms (TMM) is one of the key processes leading to 

cancerogenesis. These mechanisms are being actively targeted by anti-cancer therapies in the recent 

years. It is thus important to understand the factors leading to activation of TMMs. While there is a 

considerable amount of experimental data on TMM, combination of data- and knowledge-driven 

approaches based on utilization of high-throughput gene expression have the potential to foster further 

developments in this direction.    

In this thesis, we have reconstructed in silico models for TMM phenotype prediction. These models 

represent pathways that include the key proteins, RNAs, and processes involved in the TMMs and the 

functional interactions between them. We have assessed the activity of these pathways based on gene 

expression data and have analysed the prediction accuracy against experimentally annotated samples. 

The results provide evidence on the validity of our model and show that it may become a useful tool in 

TMM research. 

5.1 DATA AND METHODS 

5.1.1 Datasets 

In order to construct valid TMM pathways, able to predict the TMM phenotype of a cell/tissue 

from gene expression data, we have obtained samples with experimentally validated TMM 

phenotypes, for which gene expression data was available. For this purpose, we have downloaded 

the datasets deposited by Lafferty-Whyte et al in the Gene Expression Omnibus (GEO) repository 

[232]. These datasets contain microarray gene expression profiling data for ten cell lines of 

different tissue origin, and seventeen liposarcoma tumor samples along with four human 

Mesenchymal Stem Cells (hMSC) isolated from the bone marrow of healthy individuals (GEO 

accession: GSE14533). Among the cell lines, four were ALT positive, four were telomerase 

positive, and two didn’t have any active TMM (normal cell lines). Among the liposarcoma 

samples, nine were ALT positive, as assessed by the presence of APBs, and eight were telomerase 

positive, as tested by the telomeric-repeat amplification protocol for telomerase activity detection 

[233].  



90 
 

5.1.2 Pathway construction and extension 

The pathways were constructed based on protein-protein, protein-RNA interactions that lead to 

activation of the ALT and Telomerase TMMs, curated from the literature. The pathway maps were 

built in the Cytoscape environment (http://cytoscape.org/).   

Each node in the pathway represents a gene product (protein or RNA), a protein complex, or a 

process. The edges in the pathway describe functional associations between the nodes. Those are 

of two types: activation and inhibition, depending on the effect of the source node on the 

functionality of the target node. It should be noted that the associations in the pathway refer to 

functional effects of direct protein-protein, protein-RNA interactions between the nodes: indirect 

effects or regulatory effects on expression are not considered.  

We have first constructed initial pathways based on genes with clearly established roles in either 

TMM, and assessed their ability to predict TMM phenotypes of the studied samples. We then 

extended the core pathways iteratively, by adding nodes and changing their positions in the 

pathways. We have evaluated the prediction power of the TMMs at each extension step to arrive 

at the ‘final’ pathways with best scores (Figure 22). Measures for prediction accuracy are described 

in detail below.   

5.1.3 Data preprocessing 

The gene expression values for technical replicates were averaged. The cell lines and tissue 

samples (liposarcoma tumors and hMSCs) were further processed in separate sets. For each set, 

the gene expression values were converted to fold change (FC) values by dividing the expression 

of each gene to its mean expression across the samples. The FC values were then quantile 

normalized. FC values higher than the 99% percentile were set to the value at that percentile.  

These FC values were then mapped onto pathway nodes and used for assessing pathway activity 

(pathway signal flow analysis, see below).  

5.1.4 Pathway signal flow analysis  

Assessment of pathway activity was performed using the Pathway Signal Flow (PSF) algorithm 

[234–236], with the PSFC app for Cytoscape [234] using its default parameters and the signal 

http://cytoscape.org/
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propagation rules described below. The PSF algorithm computes the strength of the signal 

propagated from the pathway inputs to the outputs through pairwise interactions between nodes, 

based on their fold change expression values. For each source-target interaction, the FC values are 

multiplied for edges of type ‘activation’ (FCsource * FCtarget) and divided for edges of type 

‘inhibition’ (1/FCsource * FCtarget). The weighted sum of multiple signals from many sources is 

assigned as the signal at the target node (the ‘proportional’ option in PSFC). The signal propagation 

starts from input nodes, spreads through the intermediate nodes and arrives at the sink nodes. In 

our case, there is a single sink node for each TMM pathway (labeled “ALT” and “Telomerase” 

respectively). The higher the initial FC value of a node, and the more activation signals it gets from 

upstream nodes, the higher will be its activity value (or PSF score), and vice versa. The PSF 

algorithm returns a single PSF score for each node in a pathway. We are, however, interested only 

in the sink nodes of each TMM pathway: the ‘Telomerase’ and the ‘ALT’ nodes. The PSF scores 

of these nodes reflect the overall activity of the pathways.  

We have upgraded PSFC to also apply functions onto protein complexes: if involvement of all the 

subunits is obligatory for the complex to function, then the minimum signal of all the subunits is 

assigned to the complex, otherwise the complex is treated with PSF default rules. Note that nodes, 

where gene expression values were not available were omitted in calculations and assigned a PSF 

value of 1.   

The PSF algorithm is calibrated in a way that if all the nodes in a pathway have FC values of 1, 

that produces unity PSF values at sink nodes. In our case, the FC value for each gene is computed 

by taking as a reference the average expression across the samples. This leads to FC values higher 

or lower than 1, depending on the differential expression of the gene across samples with different 

TMM phenotypes on one hand, and on the phenotypic composition of the studied samples on the 

other. Thus, while high PSF values indicate on higher activity of the TMM pathway, there is no 

predefined PSF threshold that classifies the pathways to be either ‘active’ or ‘inactive’.  

5.1.5 ASSESSMENT OF PREDICTION ACCURACY 

Given gene expression data of a set of samples with either ALT+, telomerase+, ALT-/telomerase- or 

ALT+/telomerase+ phenotypes, the TMM pathways  should be able to predict those based on the 

TMM pathway activities, or PSF values. Ideally, telomerase+ samples should have high PSF values 
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for the Telomerase pathway and low PSF values for the ALT pathway. ALT+ samples should score 

high on the ALT pathway, and low on the Telomerase pathway. The samples with ALT-

/telomerase- phenotypes should score low at both pathways.  

To assess the prediction power of the ALT pathway, we have computed the mean difference in 

PSF scores at the “ALT” sink between ALT+ and telomerase+, and between ALT+ and 

ALT-/Telomerase- samples. For the Telomerase pathway, the difference of mean PSF scores at the 

“Telomerase” sink node between telomerase+ and ALT+ or between telomerase+ and 

ALT-/Telomerase- samples was computed. The higher the difference, the more is the prediction 

accuracy. The significance of these mean differences was tested with Kruskal-Wallis rank sum 

test.  

As it was mentioned above, there is no PSF threshold to define if the pathway is ‘active’ or 

‘inactive’. Thus, we have used linear support vector machines (SVM), to divide the samples into 

ALThigh or ALTlow, and Telomerasehigh or Telomeraselow groups for each TMM, respectively. We 

have then plotted the samples onto a 2D space, where Telomerase PSF values were on the x axis, 

and ALT PSF values were on the y axis. The prediction accuracy was then assessed based on the 

ratio of correct versus incorrect predictions. In the datasets of cell lines, correct predictions were 

the cases were normal cell lines had ALTlow/telomeraselow values, ALT+ cell lines had  

ALThigh/telomeraselow, and telomerase+ cell lines – ALTlow/telomerasehigh values. For the 

liposarcoma and hMSCs group, correct predictions were the cases where the ALT+ liposarcoma 

tumors had ALThigh/telomeraselow values, telomerase+ tumors had ALTlow/telomerasehigh values and 

hMSCs - ALTlow/telomeraselow values. All other predictions were considered as incorrect.   

One may argue that since stem cells should possess an active TMM mechanism, 

ALTlow/telomeraselow values should not correctly predict hMSCs’ phenotype. However, no 

evidence exists for hMSCs to have either of the TMM mechanisms activated: according to some 

reports they have low (or not detectable) levels of telomerase activity [237] and no signs of ALT 

activity [238]. It should also be noted that even though it’s possible for ALT and telomerase 

dependent TMMs to coexist in the same cell [204], all the cases with ALThigh/Telomerasehigh values 

in our datasets were considered incorrect.  This is reasoned by that fact that none of the samples in 

our datasets were annotated to possess both of the phenotypes.  
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5.2 RESULTS 

5.2.1 Reconstruction of the TMM pathways 

Using currently accumulated knowledge on the mechanisms of activation and realization of 

Telomerase and ALT TMMs (described in Chapter 4), we have constructed several versions of 

ALT and Telomerase pathways. We have started with an initial pathway with well documented 

members and interactions, and iteratively added nodes and edited their positions in the pathways 

to arrive at the best predictive power. Figure 22 shows the changes in prediction accuracy metrics 

with each pathway extension step for cell lines and for liposarcoma tumors/hMSCs. The overall 

prediction accuracy of both pathways is shown with the green line, while each of the TMM’s 

power to distinguish between the phenotypes is shown by the rest of the lines (see the legend for 

details). It is seen from the figure that the final iterations have achieved high accuracy for almost 

all of the metrics together.  

 

Figure 22. Prediction accuracy dynamics of TMM pathways during pathway extensions. The 
two plots represent pathway accuracy scores for cell lines ( left) and liposarcoma tumors/hMSCs 
(right) respectively. The x-axis labels (net-*) correspond to the pathways at each extension step: 
either the Telomerase or ALT pathway is modified at each extension. Performance scores are 
represented on the y axis. The green lines correspond to the p rediction accuracy changes, as 
predicted by SVMs (see methods, Pathway performance assessment). The dark red and light red 
lines represent the average difference of the ALT pathway activity between ALT + and telomerase+ 
samples (dark red); and between ALT+ and ALT-/telomerase- samples (light red). The dark blue and 
light blue lines show the average difference of the Telomerase pathway activity between 
telomerase+ and ALT+ (dark blue); and between telomerase+ and ALT-/telomerase- samples (see 
methods, Pathway performance assessment).  
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The telomerase pathway 

The Telomerase pathway at the final iteration is depicted in Figure 23 A. The pathway consists of 

three main branches. The yellow branch includes the factors that lead to nuclear localization, 

enzymatic activation of hTERT. Of the activating factors, PI3K, PP2A and PKC are complexes 

with several possible subunit compositions. Chapter 4 describes their role in hTERT activation, 

however the exact subunit compositions that lead to such effects are not known. Therefore, the 

pathway is constructed in a way to account for the complex with the maximum activity.  Similarly, 

the Hsp90 isoform with maximum abundance is considered in the network. The yellow branch 

also contains the RUVBL1 and RUVBL2 genes that code for pontin and reptin. These proteins have 

a crucial role for telomerase complex assembly, but have been included in the yellow branch, since 

they are mainly involved in hTERT activation changes to promote complex formation.  

The brown branch involves the genes and complexes involved in hTR transcription and 

maturation, while the green one includes the factors leading to degradation of hTR transcripts. The 

amount of mature hTR transcripts depends on the interplay between these two processes.  

Finally, the blue nodes highlight the core subunits of the telomerase complex and the sink node of 

the pathway (“Telomerase”).   
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Figure 23. The Telomerase (A) and ALT (B) pathways. The “Telomerase” and “ALT” nodes are 
the targets of each pathway. In (A), the core components of the telomerase complex are colored 
blue. The rest of the colors in both plots are for enhancement of readability. Rectangular nodes 
represent genes, while oval-shaped nodes represent processes or complexes. The edges with delta 
and T shaped targets indicate activation and inhibition interactions , respectively. 
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The ALT pathway 

The ALT pathway is depicted in Figure 23 B. As is described in Chapter 4, multiple mechanisms 

exist that allow for template directed synthesis of telomeres in ALT: the template may be from 

sister chromatids (intra-chromosomal), from distantly located chromosomes (inter-chromosomal) 

and from extra-chromosomal telomeric sequences. In construction of the ALT pathway, we have 

accounted for the factors involved in inter-chromosomal break-induced repair and extra-

chromosomal template-driven mechanisms.  It is important to note, however, that our pathway 

mostly represents a generalized picture, where the mechanism that is realized by involvement of 

this or that pathway entity is not clearly indicated.  

In the ALT pathway, the yellow branch involves the main processes leading to HR in ALT. These 

processes are divided into three consecutive steps. The first step presented with the node “Step 1: 

DNA invasion by G-rich overhang” involves the factors leading to ssDNA loading with RAD51, 

which leads to invasion of the G-rich strand onto a telomeric template. It is worth noting that the 

RAD51-dependent pathway is observed in the majority, but not all of the ALT cells. The Hop2-

Mnd1 heterodimer is also not an exclusive player in ALT. It plays an essential role in some ALT 

cells by promoting strand invasion onto distantly located chromosome ends. The second step 

represents the telomere strand synthesis after strand invasion, and is presented by the node “Step 

2: template directed synthesis of telomeric DNA”. It’s been shown that this step is performed by 

DNA polymerase δ. It is reported that its POLD3 subunit, but not POLD4, is essential for this step. 

Indeed, inclusion of the POLD4 node did not improve the pathway performance and thus was 

removed. The final step is the dissolution of the Holiday Junctions after the telomere synthesis is 

finished (node “Step 3: Dissolution of HR intermediates”). An opposite process to this is the 

resolution of HR intermediates that occurs in the absence of telomere synthesis.  

The rest of the branches involve factors that promote ALT by creation of an ALT permissive 

environment or those that are positively/negatively correlated with ALT by yet unknown 

mechanisms. The green branch represents the factors leading to decompaction of chromatin and 

establishment of ALT permissive environment, such as chromatin modifiers (the SUV family), 

and the NURD-ZNF827 complex. Notably, this complex has additional roles in ALT, other than 

chromatin decompaction, as mentioned in Chapter 4. The node named “C-type variants” represents 

telomeric TCAGGG repeats that are often found in ALT and recruit nuclear receptors. This node 
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did not have an initial FC value in our calculations. However, if there were whole genome 

sequencing data along with gene expression, one could compute the abundance of C-type variants 

and use it in the PSF calculations.  

The orange branch involves proteins found in APB, and factors supporting or inhibiting APB 

formation.  

The brown branch involves factors that are associated with ALT activation by not yet established 

mechanisms. The ATRX/DAXX genes are mutated in the majority of ALT cells. We did not have 

genome variant data for the studied samples, and thus have considered higher expressions of these 

genes to have inhibitory effects on ALT. Availability of information on genetic variations would 

probably lead to more accurate results. We have also included hTERT in the pathway. Even though 

it does not play a direct role in ALT, its suppression or low abundance usually provokes the cells 

to escape senescence via the alternative ALT mechanism. Since addition of TERT also 

considerably improved the performance, we have kept it in the pathway. Finally, the FEN1 node 

represents that gene’s role in stabilization of telomeres and inhibition of sister chromatid loss. As 

mentioned in Chapter 4, the role of FEN1 is controversial, since it also reduces the RNA:DNA 

hybrids that are known to promote ALT. This was also seen in our simulations, as presence of 

FEN1 led to improved performance in case of cell lines, and a bit worsened it in the case of tumors. 

The role of FEN1 and its inclusion in the network, thus, needs additional testing on a larger dataset.  

5.2.2 Pathways’ prediction accuracy for cell lines 

We have computed PSF values for ALT and Telomerase TMMs using gene expression data from 

four ALT+ (SKLU, WI38-SV40, SUSM1, KMST6), four Telomerase+ (5637, C33A, HT1080,  

A2780), two normal (ALT-/Telomerase-) (IMR90, WI38) cell lines. The boxplots of PSF values 

for both TMM pathways are depicted in Figure 24. The ALT+ cell lines had significantly higher 

(mean differences = {0.7 (vs normal), 0.8 (vs telomerase+)}, p = 0.04) PSF values compared to the 

normal and telomerase+ cell lines. A similar picture is observed for the Telomerase TMM, with 

telomerase+ cell lines scoring significantly higher than ALT+ and normal ones (mean differences 

= {0.9 (vs normal), 0.9 (vs telomerase+)}, p = 0.02). Thus, in this case, the ALT and Telomerase+ 

TMMs alone are powerful enough to distinguish between ALT+ and telomerase+ cell lines from 

other phenotypic groups (Figure 24).  
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Even though using each TMM separately allows for distinguishing between ALT+ and ALT-, or 

between telomerase+ and telomerarse- phenotypes (Figure 24), the combined assessment of their 

PSF values with SVMs allowed us to distinguish between the three phenotypic groups 

simultaneously (Figure 25).  

 

 

Figure 24. Boxplots of group-wise PSF values for each TMM for cell lines. The red, green and 
blue dots represent ALT+, Normal and telomerase+ cell lines respectively. ALT+ cell lines have higher 
PSF values for the ALT TMM compared to both normal and telomerase + groups (left), while the 
Telomerase TMM shows considerably higher PSF values for telomerase + cell lines, compared to 
ALT+ and normal cell lines (right). These differences are statistically significant.   
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Figure 25. Paired PSF values for ALT and Telomerase TMMs in cell lines. The PSF values for the 
Telomerase TMM are on the x axis, and for the ALT TMM those are on the y axis. The red, green and 
blue dots correspond to ALT+, normal and telomerase+ cell lines, respectively. The horizontal and 
vertical dotted lines separate ALThigh from ALTlow, and telomerasehigh from telomerase low 
phenotypes, respectively. These lines are located based on with one-dimensional linear SVMs (see 
methods). The bottom-left quadrant is predicted to be ALT low/telomeraselow, as indicated by the “/”  
white signs. The upper-left quadrant predicts ALThigh/telomerase low phenotypes (“#” white signs), 
and the bottom-right predicts ALT low/telomerasehigh phenotypes (“+” white signs). The prediction 
accuracy, computed by the ratio of correct versus incorrect predictions,  is 1 in this case, as all the 
predictions correspond to the actual phenotypes.  

5.2.3 Pathways’ prediction accuracy for the tumors/hMSC group  

The tumor/hMSC group comprised liposarcoma tumor samples, where nine had ALT+ and eight 

had telomerase+ phenotype; and four hMSC samples were derived from the bone marrow of 

healthy individuals. We have found that the ALT+ tumors scored considerably higher on the ALT 

pathway than telomerase+ tumors, and vice-versa, telomerase+ tumors had significantly higher 

activity of the Telomerase pathway compared to ALT+ tumors. The activity of the Telomerase 

pathway was very low for hMSCs, however there was no statistical difference of ALT pathway 

activity between hMSCs and ALT+ tumors (Figure 26). 
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Figure 26. Boxplots of group-wise PSF values for each TMM for liposarcoma tumors/hMSCs. 
The red, blue and green dots represent ALT +, telomerase+ tumors and hMSCs, respectively. ALT+ 

tumors have considerably higher PSF values for the ALT TMM compared to telomerase + tumors, and 
were almost similar in the mean values to hMSCs (left), while the Telomerase TMM shows 
considerably higher PSF values for telomerase+ cell lines, compared to both ALT+ tumors and hMSCs 
(right) . All these difference, except for ALT+ versus hMSC comparison for the ALT TMM, are 
statistically significant.  

Combination of the ALT and Telomerase PSFs on a 2D-space revealed that four ALT+ tumors 

clearly clustered together with ALThigh phenotype, and six telomerase+ and one ALT+ tumors also 

showed clear clustering at the other corner of the plot (Figure 27).  hMSCs were classified as 

ALThigh/Telomeraselow but, having ALT acitivity levels very close to the ALThigh - ALTlow decision 

line, and at the same time having very low Telomerase activity values. Four ALT+ and two 

telomerase+ tumors were misclassified as having neither TMM (ALTlow/Telomeraselow). The 

overall prediction accuracy was 0.6, not accounting for hMSCs. We didn’t include these cells in 

prediction accuracy estimation, as it is not clearly established which TMM is active in these cells. 

When including these samples and considering them as ALT-/telomerase- we arrived at a lower 

prediction accuracy of 0.48.  
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Figure 27. PSF values for ALT and Telomerase TMMs in liposarcomas and hMSCs on a 2D space. 
The PSF values for the Telomerase TMM are on the x axis, and for the ALT TMM  those are on the y 
axis. The red, blue and green dots correspond to ALT+, telomerase+ tumors and hMSCs, respectively. 
The horizontal and vertical dotted lines separate ALT high from ALTlow, and telomerasehigh from 
telomeraselow phenotypes, respectively. These lines are located based on with one-dimensional 
linear SVMs (see methods). The bottom-left quadrant is predicted to be ALT low/telomerase low, as 
indicated by the “/” white signs. The upper-left quadrant predicts ALThigh/telomerase low phenotypes 
(“#” white signs), and the bottom-right predicts ALT low/telomerasehigh phenotypes (“+” white signs). 
The prediction accuracy, computed by the ratio of correct versus incorrect predictions, is 0.6 in this 
case (hMSCs). 

5.2.4 TMM DETECTION IN LUNG ADENOCARCINOMA CELL LINES 

After validation of the TMM pathways we moved on to apply those on datasets with unknown 

TMM phenotypes. We have measured the activity of the TMM pathways in the lung 

adenocarcinoma cell lines dataset described above. Using the ALT and Telomerase TMM PSF 

scores, we have performed hierarchical clustering with complete linkage and the Euclidean 

distance metric. This led to identification of four large clusters of cell lines described by different 

activities of the TMM pathways (Figure 28). The rightmost cluster (the red cluster) in the 
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dendrogram presents nine cell lines where the predominant TMM was ALT. Six cell lines with 

high Telomerase and low ALT pathway activities clustered together in one large cluster (the blue 

cluster). The SAEC cell line derived from the lung of healthy subjects had low activities at both 

TMM pathways. It resides in a small sub-cluster with another lung adenocarcinoma (Lung AC) 

cell line (RERF.LC.Ad1), and in a larger cluster with seven other Lung AC cell lines (the green 

cluster). Finally, two Lung AC cell lines showing high activity for both TMMs (PC.7 and PC.3) 

clustered together in the violet cluster.  

 

Figure 28. Clustering of lung adenocarcinoma cell lines based on ALT and Telomera se TMM 
activity values. (Left): The mapping of cell lines and clusters on a 2D coordinate space, where the 
x and y axes show the PSF values for Telomerase and ALT TMMs, respectively.  ( Right): hierarchical 
clustering dendrogram based on complete linkage and Euclidean distance defined by Telomerase 
and ALT TMM PSF values.  The clusters are colored similarly in the left and right plots. The red and 
blue clusters correspond to the ALT + and Telomerase+ predicted phenotypes, respectively. The 
violet cluster has PSF values corresponding to the ALT+/Telomerase+ phenotype. The green cluster 
has low PSF values for both TMMs. The healthy  lung cell line (SAEC) resides in this cluster, and is 
in a smaller sub-cluster with one RERF.LC.Ad1 lung adenocarcinoma cell line.  

As mentioned previously, we had also computed the mean telomere length (MTL) of the Lung AC 

cell lines using Computel (see Chapter 3 for details). We have then performed correlation analysis 

and group comparisons to identify whether MTL was associated with TMM activity, and found no 

significant association. We have also not identified a link between TMM activity and the origin of 

cell lines. It can, however, be noticed that cells with extremely long telomeres (> 15 kb) are found 

in clusters with significant activity of TMMs: PC.9 (19 kb) and ABC.1 (11kb) in the ALT+ cluster, 
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PC.3 (15 kb) in the ALT+/Telomerase+ cluster, and H1703 (33 kb) and PC.14 (16 kb) in the 

Telomerase+ cluster.  

 

Figure 29. Map of the activities of Telomerase and ALT TMMs in Lung AC cell lines and their MTLs. The 
blue circles represent Lung AC cell lines, while the green one is the healthy lung cell line (SAEC). The size of 
the circles is proportional to the MTL – except for the very long and very short ones, which were constrained 
to maximum and minimum circle sizes to enhance visibility.  The MTL for SAEC was not computed, since WGS 
data for it was not available – it was given an average circle size.  

5.2.5 COMPARISON TO FUNCTIONAL ANNOTATION ANALYSIS 

Functional annotation using over-representation (ORA) [239] or gene set enrichment analysis 

(GSEA) [240] is the usual pipeline applied to understand the phenotypic differences between two 

groups of samples under investigation. We have performed ORA on our test datasets (cell lines 

and liposarcoma group) to compare the power of that methodology to our TMM based approach. 

For this we have conducted gene-wise Kruskal-Walllis tests to obtained genes differentially 

expressed in ALT+ and Telomerase+ cell lines/tumors. Multiple test correction with Benjamini-

Hochberg method did not revealed any significantly deregulated gene nor in cell lines, neither in 

tumors. We have thus taken top 100 genes with unadjusted p values of less than 0.01, and have 

supplied them to functional annotation packages David (https://david.ncifcrf.gov/) [241, 242] and 

https://david.ncifcrf.gov/
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Webgestalt (http://webgestalt.org/) [243]. According to the results, no functional category was 

significantly enriched. Among the non-significantly enriched terms/categories, none was explicitly 

related to telomere maintenance mechanisms.  Moreover, there was only one gene (NANS) 

common between the two lists of differentially expressed genes, which means that the lists are not 

identified by ALT+ versus telomerase+ phenotypes, but possibly by other phenotypic differences 

between the two sets of cells. Finally, none of the genes included in our TMM pathways was 

present in the lists of top 100 differentially regulated genes.  

Previously, Lafferty-Whyte et al [232], had identified a set of 297 genes that were able to cluster 

ALT+ and telomerase+ cell lines and liposarcoma samples. We have obtained the list of the genes 

in this signature by request from the authors, and have submitted it to overrepresentation analysis 

by Webgestalt. According to the results, these genes were significantly enriched in GO terms 

associated with Golgi vesicle transport (GO:0048193, FDR = 0.16, 10 genes), Protein transport 

(GO:0015031, FDR = 0.16, 24 genes) and Establishment of protein localization (GO:0045184, 

FDR = 0.16, 25 genes). No category or pathway related to telomeres was enriched.  Comparison 

of the signature set with the genes involved in our TMMs revealed three common genes: TERT 

and PRKCA from the Telomerase pathway, and PRK and POLD3 from the ALT pathway. 

5.3 DISCUSSION 

Telomere maintenance and elongation mechanisms have long been investigated, and have gained 

particular attention in the last decade. Those are interesting to many labs focused on basic research 

in aging, stem cells, senescence etc., as well as to those engaged in translational research, 

particularly in development of TMM targeting anticancer therapies. While the TMM pathways are 

laborious to study experimentally, a lot of information has already been accumulated. However, 

the main obstacle for their efficient utilization is the absence of well-established and valid TMM 

models and poor utilization of the recent developments in high-throughput technologies, mainly 

because of the lack of respective computational methodologies.   

The TMM pathways we have created here were intended to serve as a computational model to 

integrate the studies of telomere maintenance mechanisms into high-throughput data analysis 

pipelines. Gene expression-based assessment of TMM activities has allowed us to predict the 

TMM phenotypes of ten cell lines with 100% accuracy. The accuracy of predicting the phenotypes 

http://webgestalt.org/
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of liposarcoma tumors and hMSCs, however, was lower: around 60%: with some misclassified 

ALT+ and Telomerase+ tumors, and with hMSCs all being classified as ALT+. The 

misclassification of liposarcoma samples may be explained by several possible reasons, such 

probable incompleteness of the TMM pathways, as well as the sensitivity/specificity of TMM 

detection assays. In liposarcoma samples, telomerase activity was measured by TRAP assay [233] 

and ALT was detected by measuring the amount of APB bodies [233]. It is worth mentioning that, 

as other PML bodies, APBs may be generated because of cellular senescence, and are not 

necessarily indicative of ALT activity in the cell [221]. It is a question of further investigations 

whether the misclassified tumor samples are, in fact, misclassified by our approach, or they are 

misclassified by the experimental assays. On the other hand, the possibility of existence of ALT 

positive and telomerase positive cells within the same tumor should also not be excluded. In other 

words, it’s possible that RNA-sequencing be performed on ALT positive cells and TMM detection 

– on telomerase+ cells derived from the same tumor, and vice versa, thus leading to the observed 

misclassification.  

The mesenchimal stem cells were classified by us as having considerable levels of ALT activity 

and very low levels of telomerase activity (Figure 27). As has already been mentioned, the 

mechanism of telomere length maintenance in hMSCs is still not established: many studies have 

identified very low or undetectable levels of telomerase activity [237], and some have performed 

ALT activity assays, but have not detected significant levels of ALT markers [238]. However, it 

is known that the majority of tumors with ALT activity originate from mesenchymal cells [201]. 

The fact that we have detected ALT activity in hMSCs tempts to speculate that mesenchymal cells 

normally have high expression levels of genes involved in the ALT pathway, which may ultimately 

foster these cells to more easily convert to ALT phenotype during malignant transformations.  

The relatively high accuracy of our TMM based approach has allowed us to use it for investigation 

of TMM activation states of the lung adenocarcinoma cell lines, where we have identified four 

groups, three of which were described by high activation levels of either ALT or Telomerase 

pathways or both, and the other group by low-to-middle activity values for both TMM pathways 

(with the healthy cell line having the lowest TMM activities in this group). We have also observed 

that even though cell lines with extremely long telomeres (> 15kb) had high activity of either ALT 

or Telomerase pathways or both, there was no general association between MTL and TMM in the 
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rest of the cell lines. The absence of association between MTL and TMM is not surprising. 

Telomerase usually gets activated when telomeres become extremely short, and it usually 

elongates the shortest telomeres among the different chromosome ends [200]. Thus, since 

extremely short telomeres are powerful triggers of telomerase activation, cells with very short 

telomeres may have very high activity of Telomerase pathway. On the other hand, constant high 

activity of telomerase caused by other factors, such as genomic variations, may induce extreme 

lengthening of telomeres. In our dataset, the H1703 cell line has extremely long telomeres (32 kb) 

with very high activity of the Telomerase and very low activity of the ALT pathway.  The same 

reasoning may be applied to the cells with ALT+ phenotype. According to a common view, cells 

may undergo phenotype switching from telomerase to ALT, when internal or external factors do 

not permit for telomerase activation [203, 226]. In such cases, telomeres shorten and reach 

extremely low values, and afterwards trigger ALT activation in the absence of telomerase-

permissive environment. At this stage there may be cells with high expression of genes related to 

ALT and with yet short telomeres. In all other cases, cells with persistent ALT activity are usually 

characterized with abnormally long telomeres at some chromosome ends, and very short telomeres 

on the rest of chromosomes. We cannot observe such length heterogeneity when measuring MTL 

only. Among the ALT+ cell lines defined by our TMMs, PC.9 had abnormally long mean telomere 

length of >19kb. One of the two cell lines (PC.3) with ALT+/Telomerase+ phenotypes (predicted 

by TMMs) also had very high MTL of > 15kb. Overall, this indicates that while mere MTL 

computation is of great value by itself, detection of the active TMM should be performed 

separately, since there is no deterministic link between those two.  

It is important to mention that the TMM activity values computed by PSF are strictly dependent 

on the phenotypic composition of the data, since the PSF algorithm takes as input the fold change 

values that are computed in reference to the mean expression value of each gene across the 

samples, as described in Methods. Thus, if the dataset we have used contained not one but more 

cell lines from healthy lungs, the predicted TMM phenotypes would probably have a different 

distribution (Figure 28).   

 

In order to compare the power of our methodology to that of functional annotation analysis, we 

have used the lists of genes showing differential expression in ALT+ versus Telomerase+ samples, 
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as well as have used the list of genes generated by the Lafferty-Whyte et al [232] based on 

regression analysis, and submitted those sets to Overrepresentation analysis (ORA).  None of the 

lists did return any functional category associated with telomere maintenance and lengthening 

mechanisms. It’s important to take into consideration that larger sample sizes might produce lists 

more related to TMM mechanisms. However, while the ORA or GSEA approaches are valuable 

and easy-to-use methods for identification of functional categories able to distinguish between 

studied groups, they have two main disadvantages that make them invalid for use in TMM 

prediction or for identification of genes related to TMM. First, the lists of differentially expressed 

genes speak not only about the phenotype of interest, but also about other factors, such as batch 

effects, sampling and random noise. Thus, functional annotation analyses on different samples 

with the same phenotypic difference will, in most of the cases, reveal inconsistent results. On the 

other hand, they strictly depend on the quality and completeness of respective functional 

categories. So far, there is no publicly available complete functional category/pathway that has 

thoroughly collected genes related to ALT or Telomerase pathways. The most relevant functional 

category is the “Regulation of telomere maintenance via telomere lengthening” term available in 

the Gene Ontology database (GO:1904356). There are  75 Homo sapiens gene annotations to this 

term. Some of those are part of our TMM pathways, however most of them are genes that regulate 

expression of TERT or other genes; some indirectly regulate telomere maintenance; and some 

genes encode shelterin or telomere-interacting proteins. Of important consideration is also the fact 

that enrichment of DEG genes in one functional category does not imply whether that category is 

activated or repressed in the studied samples: some of the genes in the category may be under- 

expressed and some may be over-expressed, which in many cases will lead to an ‘averaging out’ 

effect.  

Overall, data driven methods, such as functional annotation clustering, are powerful tools to detect 

unknown differences between two groups of samples. However, functional annotation analysis is 

not powerful in the particular case of detecting the TMM phenotypes, because of the lack of 

properly curated and annotated functional categories or pathways. Another shortcoming of data 

driven methods is their inconsistency across studies. Mining for differentially regulated genes 

between ALT+ and Telomerase+ samples will reveal varying sets of genes, as was the case in [232]. 

Moreover, the genes associated with the TMM phenotypes revealed by data driven methods are 

not necessarily involved in TMM activation pathways: they may have regulatory functions, 
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indirect effects, confounding factors and common oncogenes. The use of such gene sets, thus, does 

not provide the advantage of gaining knowledge and insight into the actual mechanisms of TMM 

pathway activation. We think that the TMM pathways constructed in this thesis and the PSF based 

computation of their activities is more valuable in this regard. 

5.4 CONCLUSION 

The TMM pathways that we have constructed allow for further extensions, in hand with 

accumulation of data and knowledge on TMM mechanisms. As new data come in, we may extend 

or modify the existing model to see whether its prediction accuracy increases. In other words, we 

have developed this methodology not only for phenotype prediction, but also for using the 

pathways to gain deeper insights into telomere maintenance mechanisms. Besides this, we have 

demonstrated that the results obtained by functional annotation analysis are inconsistent and are 

not powerful enough to identify the gene sets associated with TMMs. Thus, another major 

advantage of the pathway based approach is that the pathways are stable.  

Even though we have used here only gene expression data to assess the activities of the TMM 

pathways, other layers of information would add to the accuracy of predictions, such as genomic 

variations, abundance of telomeric repeat variants, as well as DNA methylation and histone 

modification data.  
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CONCLUSION 

Telomeres are critical players in normal developmental, regulation of cellular activities, as well as 

for initiation and progression of complex disorders, including age-related diseases and cancers. 

Telomere biology is investigated by a plethora of experimental methods in a number of model 

organisms and humans. It’s also been investigated by groups involved in translational research that 

target telomeres and telomere biology to fight cancers and aging. Despite the importance of the 

topic and the recently increasing attention towards it, the experimental methodologies for studying 

telomere biology are still laborious and of low throughput in nature. This creates a huge 

impediment for integrative analysis of telomeres that would benefit from the power of high-

throughput technologies.   

The main aim of current study was to generate computational methods and models to study 

telomere length dynamics, their association with genomic, transcriptomic and epigenomic 

characteristics of a cell, and to study the mechanisms that regulate telomere length in health and 

disease. On one side, we have developed Computel for computation of mean telomere length from 

whole genome sequencing data. It has allowed us to utilize publicly available DNA-seq data to 

compute MTL, and to couple this information with RNA-seq, Bisulfite-seq and ChIP-seq data to 

study the association of MTL with gene expression and epigenetics. On the other side, we have 

constructed a pathway based model of telomere maintenance mechanisms (TMM) that has allowed 

us to study the activation states of Telomerase dependent and alternative lengthening mechanisms 

(ALT) based on high-throughput gene expression data. Our TMM based approach is not only 

intended for prediction of TMM activities in the cells, but most importantly for using it as an 

extendable model to help gain deeper insights into the mechanisms and factors leading to TMM 

activation in cancer cells.  

Overall, we believe that these approaches are valuable for utilizing the existing multi-omics data 

to enhance understanding of telomere biology. Inclusion of additional layers of information, 

particularly in the TMM pathways, will add extra layer of accuracy and informative power to our 

models.  
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