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ABSTRACT 

Understanding the role of groundwater contributions to headwater rainfall-runoff processes, 

storages and transit times remains a major challenge in hydrology. Bedrock groundwater 

contributions to the stream channel can significantly augment streamflow, mediate water quality 

and control the age of water discharging from catchments. Yet, the hydroclimatic and bedrock 

characteristics that control these dynamics are not fully understood. Direct observation of bedrock 

groundwater dynamics, storages and surface water connections remain limited, challenging our 

ability to fully constrain new catchment scale models that are needed to aid future resource 

management decisions. I undertook a large field campaign at a well-studied research site in New 

Zealand. Bedrock groundwater dynamics were monitored for one year and combined with bedrock 

characterization, tritium-based age dating and hydrochemical analysis to constrain a new 

conceptual model of the headwater aquifer. Findings were used to develop a new index to identify 

the controls of bedrock permeability and landscape structure on the time scales of catchment 

storage-release processes. The three major findings of this research were firstly, that unfractured 

low-permeability bedrock underlying the research catchment limited to deep flowpaths. Minimal 

bedrock groundwater flux combined with large bedrock storage resulted in significantly older 

bedrock groundwater that contributed minimally to catchment discharge. Second, unfractured low-

permeability bedrock was a primary control on bedrock groundwater recharge seasonality. 

Groundwater movement occurred as matrix flow, requiring long durations of high catchment-

wetness for considerable recharge to occur, a condition that was only attained during cold-season 

months when evapotranspiration rates were low and catchment wetness was high. Third, 

permeability contrasts at the soil-bedrock interface and landscape structure were highly correlated 

with mean transit time for eight catchments in geologically diverse regions, suggesting that 

subsurface anisotropy is a major control on setting streamwater age. Overall, through the coupled 

analysis of the processes, patterns, storages and transit times, this research has advanced our 

understanding of the role of bedrock groundwater in headwaters. The findings presented here offer 

new insights into the function of deeper hydrologic layers and have implications for future models 

of headwater catchment function – models that need to better incorporate the influence of deep 

flowpaths and storages in groundwater-surface water and rainfall-runoff predictions.   
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Headwater, or first order catchments are the building blocks of the hydrological landscape. They 

are the main sources of water, nutrients and sediment that sustain the health of ecosystems and 

humans downstream. They contribute up to half of the mean water volume and nitrogen fluxes for 

fourth and higher-order rivers in the USA (Alexander et al., 2007) and have recently been 

associated with greater contributions to groundwater recharge than lower lying downstream 

regions (Jasechko et al., 2016). The total storage volume of a headwater catchment, in part, 

controls the length and time scales over which water is captured, stored and released from the 

landscape. These scales, in turn, are critical in setting the timing, quantity and quality of water that 

is discharged into stream channels. 

Most headwater hydrology research to date that has examined storage and release processes has 

focused on the thin veneer of soil that mantles the watershed. Early work showed that this soil 

depth was a first order control on the factors that affect runoff in headwaters (Hewlett and Hibbert, 

1967). Since then, countless studies how shown how the high permeability and porosity of soil 

acts as a primary medium of storage and flow for incoming precipitation (e.g. Pearce et al. (1986), 

Jones and Grant (1996) , Kirchner (2003)). Compared to deeper layers, the soil mantle is relatively 

easy to access and study. And in most headwater modeling exercises, the underlying bedrock has 

been assumed impermeable – further emphasizing the upper soil horizons as the zone of hydrologic 

interest.  

But what of the deeper layers? The C horizon, saprolite, weathered bedrock and fresh bedrock that 

all underlie soil do not exist in isolation from the hydrologic, geochemical and biologic processes 

that occur above. These horizons, and the critical zone in general, are now perhaps the biggest 
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focus of National Science Foundation sponsored research in the hydrological sciences  (Brantley 

et al., 2007). 

So while catchment storage is a known primary control of both discharge dynamics and subsurface 

mixing processes (Kirchner, 2009; Salve et al., 2012; Creutzfeldt et al., 2014), the changes in 

headwater storage below the soil mantle  remain poorly characterized (McNamara et al., 2011). In 

particular, the contribution of bedrock groundwater to the storage-discharge relationship is 

difficult to understand and assess, and, as a result, total catchment storage is still largely unknown 

in most research sites (Sayama et al., 2011). We are simply unable to predict, a priori, how much 

water a headwater catchment can store and then release, and we still lack clear understanding of 

the location of a headwater catchments lower boundary. While much new process discovery has 

focused on extraction of stored water by plants (Brooks et al., 2010; Overeem et al., 2013), process 

studies of deep catchment storage dynamics have received less attention and relied heavily on 

empirical approaches. Baseflow recession analysis (Wittenberg, 2003) and GRACE-based (Doell 

et al., 2014; Sproles et al., 2015) methods have provided insights into catchment scale storage-

discharge relationships. However, these black-box approaches fail to resolve internal processes, 

structures and patterns - information necessary to drive the next generation of catchment scale 

models (Rinaldo et al., 2015).  

Recent work by Birkel et al. (2011) has highlighted the complexities of catchment storages, 

identifying both active and passive components that influence differentially, discharge volumes, 

transit times and solute fluxes. Seasonal changes in catchment storage, both active and passive, 

are a direct result of storage changes in the entire catchment subsurface volume, not solely in the 

soil, indicating that the often ignored bedrock volume is contributing considerably to quantity, 

quality and timing observations made in surface water runoff measurements.  Indeed, Katsuyama 

et al. (2010) recently identified connections between stream water mean transit times and bedrock 

groundwater recharge/discharge dynamics, and Brantley et al. (2016) connected critical zone 

weathering rates and landscape formation with bedrock characteristics and bedrock groundwater 

dynamics. The influence of bedrock as an additional storage volume, with its associated flowpaths, 

mixing processes and solute loads (beyond the soil mantle) remains a great source of uncertainty. 
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A more complete description of the catchment control volume, and thus a more complete 

description of total headwater hydrologic functioning remains a key research challenge. 

Bedrock poses two major challenges to headwater process investigations: (1) the logistical 

challenges associated with gaining access into bedrock in steep, remote and often roadless terrain 

and (2), the often complex fracture-dominated flowpaths that can govern bedrock systems. Both 

of these have historically thwarted attempts to directly study flowpath dynamics, often leaving 

studies focused on bedrock spring discharge as a proxy for deeper processes (e.g. Asano et al. 

(2009), Millares et al. (2009), Katsuyama et al. (2010), Uchida and Asano (2010), Asano and 

Uchida (2012)). Additionally, where direct measurement of bedrock groundwater dynamics have 

been made, they have often been limited to the plot or hillslope scale (Anderson et al., 1997; 

Montgomery et al., 1997). Geophysical techniques offer a promising way forward (Binley, 2010), 

however, interpretation of results are often ambiguous without significant ground truthing. Recent 

advancements in mobile drilling technology, however, have made the direct observation of 

bedrock groundwater dynamics in difficult to access headwater catchments more readily available 

(Gabrielli and McDonnell, 2012).  

1.2 Research goals and thesis outline 

This thesis focuses on the Maimai watershed in New Zealand, building on the scores of 

hydrological process studies conducted at this site (for review see McGlynn et al. (2002)). The 280 

ha Maimai experimental watershed lies 15 km inland on the northwest coast of New Zealand’s 

South Island near the township of Reefton. Maimai initially came into existence in the mid-1970’s 

as a research catchment to study the hydrologic impact of different logging and harvesting 

techniques in New Zealand’s burgeoning plantation forest industry. Over the 40 years since 

Maimai’s inception it has grown to be one of the most-studied headwater catchments in hillslope 

hydrology literature. It has been described by Beven (2006, pp. 336) as the ‘quintessential wet, 

steep, forested catchment’.  
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Previous work at Maimai by Graham et al. (2010) and Gabrielli et al. (2012) suggested that 

bedrock groundwater dynamics and storage may play a larger role in streamflow generation than 

previously thought. The bedrock underlying Maimai was initially considered essentially 

impermeable (Pearce et al., 1986), leading most additional studies to focus solely on soil-based 

runoff generation processes. However, work by Woods and Rowe (1996) revealed that the rainfall-

runoff ratio of hillslope runoff from an instrumented hillslope was significantly less than that of 

the entire catchment (~15% versus 60%, respectively). This indicated (although not discussed by 

Woods and Rowe) that precipitation might be infiltrating into the hillslope bedrock, traversing 

bedrock flowpaths and re-emerging into the stream channel to augment catchment discharge. 

Further, more recent analysis identified moderately permeable bedrock just 1 order of magnitude 

lower than the lower permeability limit of the mineral soil (Graham et al., 2010), as well as large 

bedrock water table dynamics occurring on storm-event time scales (Gabrielli et al., 2012). Both 

observations directly supported a possible new conceptual model of considerable contributions of 

bedrock groundwater to Maimai’s rainfall-runoff processes. Yet,  streamwater mean transit time 

(MTT) was determined to be on the order of 4 months - among the youngest recorded streamwater 

transit times (Pearce et al., 1986; Stewart and McDonnell, 1991). These observations appeared 

contradictory because the large storage volume associated with the recently observed 

hydrologically active bedrock formation should lead to long, not short, streamwater transit times. 

Pilot work examining tritium-based bedrock groundwater age (Mike Stewart, personal 

communication, Feb 13, 2014) further exacerbated these inconsistencies, revealing much older, 

decadal-age bedrock groundwater and suggesting deeper and more complex catchment scale 

storage patterns.  

This unresolved question of how Maimai could seemingly contain both hydrologically active 

bedrock and short streamwater MTT highlighted a lack of understanding of how bedrock 

characteristics influence headwater function – even in this, one of the worlds most studied 

headwater catchments. This question ultimately shaped the overarching objectives of my PhD 

research, which aimed to mechanistically assess bedrock characteristics at the Maimai to 

understand how they influenced the timing and magnitude of bedrock groundwater recharge, 
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controlled bedrock groundwater discharge, and influenced the nature of the streamwater transit 

time.  

I organized my research into three sections – consistent with the 3 research chapters presented in 

this dissertation – each of which directly sought to answer specific questions regarding bedrock 

form, function and influence in headwater processes. Specifically: 

1. What are the bedrock groundwater dynamics, age and contributions to runoff at the Maimai 

Experimental Watershed, and how do these factors impact the time varying nature of 

streamwater transit time? [Chapter 2] 

2. How do geologic properties control the seasonality of bedrock groundwater recharge in 

headwaters? [Chapter 3] 

3. Does a simple relation exist between geologic characteristics, landscape topographic form 

and catchment mean transit time that can explain observed differences in mean transit time 

across different geologies? [Chapter 4] 

This thesis is presented in a ‘dissertation by manuscript’ style as outlined in School of Environment 

and Sustainability Graduate Student Handbook. Following this introductory chapter, Chapters 2, 

3, and 4 are structured as standalone manuscripts intended for direct submission to peer-reviewed 

journals. Chapter 5 presents the conclusions of my research, discusses linkages between the three 

manuscript chapters, and suggests avenues for future research. 

My main objective in Chapter 2 was to understand how bedrock properties controlled the storage, 

flux and age of groundwater within the bedrock, and how the spatial distributions of these 

characteristics influenced streamwater transit times under varying catchment wetness conditions. 

Although the influence of bedrock properties and the contributions of bedrock groundwater to 
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headwater processes has received continued interest over the last two decades (Wilson and 

Dietrich, 1987; Welch and Allen, 2014; Pfister et al., 2017), there exists a critical absence of direct 

whole-catchment observation. As noted above, most studies have been limited to either indirect 

bedrock spring discharge observations (Uchida and Asano, 2010; Asano and Uchida, 2012; Oda 

et al., 2013) or to direct observation limited to the plot (Masaoka et al., 2016) or hillslope scale 

(Katsura et al., 2014). Bedrock properties, however, can vary considerably throughout a single 

catchment. Therefore, to understand how these spatially diverse characteristics drive the integrated 

catchment-scale storage-release relationship that influences the time varying nature of streamwater 

transit time, we need to directly characterize how the spatial distribution of bedrock properties and 

its control on groundwater age and dynamics varies across different landscape structures 

catchment-wide.  

To achieve the objectives established for Chapter 2, I completed a large scale field campaign that 

installed 65 wells – 40 into bedrock and 25 into the soil mantle – across the 3 main landscape units 

(i.e. hillslopes, hollows and riparian zone) that make up the 4.5 ha Maimai M8 research catchment 

(the site of many previous investigations by Mosley (1979), Pearce et al. (1986), McDonnell 

(1990), and many others in recent years). Bedrock properties were characterized through downhole 

testing, and soil and bedrock water tables dynamics were monitored along with other hydrometric 

data for a full year. Tritium-based water age dating was conducted on 28 bedrock groundwater, 

soil water and streamwater samples. I developed a silica-based regression model to identify the 

relation between streamwater age and silica concentration to extend the time series analysis of 

streamwater age throughout a 1-year monitoring period. This work leveraged the rich history of 

research previously conducted at Maimai and provided significant new insights into the factors 

controlling catchment storage, streamwater age and the role of bedrock properties. I also 

contextualize the findings at Maimai to research conducted at other internationally recognized 

research catchments.  

This study was submitted in August 2017 for potential publication in Water Resources Research, 

and is currently in review: Gabrielli, C.P., McDonnell, J.J., Morgenstern, U., Stewart, M., 2017. 
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Bedrock groundwater age, water table dynamics and time varying transit time at the Maimai 

watershed. Water Resources Research. In review.  

The goal of Chapter 3 was to identify how bedrock properties, in concert with hydroclimatic 

forcing, controlled the seasonality of groundwater recharge in the bedrock aquifer. Groundwater 

is a critical resource to humanity, supplying nearly 70% of all water used for agriculture (Margat 

and Van der Gun, 2013) and making up nearly half of the global drinking water budget (Smith et 

al., 2016). Recent work has shown the critical importance of steep headwaters to global 

groundwater recharge and streamwater mean transit times (Jasechko et al., 2016). However, 

bedrock groundwater recharge in steep mountainous terrain has often been studied in the context 

of mountain block recharge (Wilson and Guan, 2004). This regional scale perspective does not 

always provide the spatial and temporal process-based understanding needed to identify how 

specific catchment properties interact to control recharge at the individual headwater scale. We 

also currently lack complete understanding of the interactions and feedbacks between the geologic 

characteristics of catchments and the timing and spatial scales of bedrock recharge and subsurface 

stormflow (Winter, 2007; Gleeson et al., 2010), a critical piece of knowledge needed to inform 

future models to protect and manage our groundwater resources.   

In Chapter 3, I used isotopic and noble gas data extracted from bedrock groundwater samples to 

identify a distinct summer-winter seasonal cycle of groundwater recharge at Maimai. I leveraged 

a long-term rainfall-runoff and air-temperature data set to compare seasonal patterns in 

hydroclimatic forcing with the observed seasonality of recharge to identify possible controls. A 

simple energy balance based empirical recharge model was constructed and an inverse modeling 

approach was taken to match observed annual recharge depth and temperature with model output. 

This knowledge was synthesized along with previous understanding of rainfall-runoff processes 

and subsurface storm flow mechanisms at Maimai to show how specific bedrock properties, as 

characterized in Chapter 2, control the basic subsurface flow regime that drives the observed 

seasonal patterns of bedrock groundwater recharge.  
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This study was submitted in Sept 2017 for potential publication in Water Resources Research, and 

is currently in review: Gabrielli, C.P., McDonnell, J.J., 2017. Geologic and hydroclimatic controls 

on the seasonality of recharge in a steep, wet headwater catchment. Water Resources Research. In 

review.  

Finally, in Chapter 4, I aimed to synthesize my understanding of the control of bedrock properties 

on the storage-release characteristics of the Maimai and of headwater catchments in general. Many 

studies have attempted to identify simple terrain-based metrics that capture relationships between 

headwater characteristics and the MTT of the water they discharge (McGlynn et al., 2003; McGuire 

et al., 2005; McNamara et al., 2011; Heidbüchel et al., 2013). But while these efforts have been 

fruitful in some locations, there lacks consistency in relationships from one research location to 

another and no single metric has been developed that is capable of capturing the variability of 

streamwater MTT observed between multiple catchments in different geologic settings. 

Identifying such an index, although simple compared to current complex particle tracking models 

(Davies et al., 2013) and storage-selection functions (Rinaldo et al., 2015), would present a simple 

means to identify how the underlying bedrock structure and landscape form controls the 

mechanisms and time scales over which the landscape redistributes water in the subsurface.  

In this final chapter, I explored how catchment topographic characteristics and soil and bedrock 

permeability contrasts reveal landscape-scale patterns of subsurface water redistribution and how 

this influences the time scales over which catchments store and release water. I expanded on a 

previously established metric known as the downslope travel distance (Jackson et al., 2014) to 

develop a new index that describes the tendency for landscapes to shed water laterally downslope 

towards the stream channel or to infiltrate water vertically to depth. I conducted a small meta-data 

analysis and applied the new index to 8 headwater catchments in 4 geologically distinct regions 

within the Pacific Rim. I tested the hypothesis that landscapes with a greater tendency to shed 

water laterally would have younger streamwater MTT. The new index was compared to previously 

established streamwater MTTs for each of the 8 catchments and showed a strong inverse 

correlation, explaining 77% of the observed variability in MTT across the 8 catchments. This work 

revealed that a simple index derived from readily available data can capture the complex 
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interconnected relationship between landscape form, geologic properties and headwater storage-

release processes. 

This study will be submitted in late 2017 for potential publication in Water Resources Research 

as: Gabrielli, C.P. and McDonnell 2017. A landscape anisotropy index to quantify the relationship 

between geology, landscape structure and water transit time through catchments. Water Resources 

Research. In prep. 
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CHAPTER 2  

BEDROCK GROUNDWATER AGE, WATER TABLE DYNAMICS AND TIME-VARYING 

TRANSIT TIME AT THE MAIMAI WATERSHED 

Status: Submitted September 2017 

Citation: Gabrielli, C.P., J.J. McDonnell, U. Morgenstern and M. Stewart (2017), Bedrock 

groundwater age, water table dynamics and time varying transit time at the Maimai watershed 

Water Resources Research, In Review. 

2.1 Abstract 

The influence of bedrock groundwater aquifers on runoff generation processes and their control of 

time-variant streamwater mean transit time (MTT) in headwater catchments is still not well 

understood. Here we present new tritium age dating and hydrogeological characterization data 

from 40 bedrock wells at the intensively-studied Maimai Experimental Watershed in New Zealand. 

We investigate the extent, dynamics and age of a 4.5 ha headwater aquifer over a 400 day period 

capturing 70 storm events to identify bedrock controls on aquifer dynamics, the aquifer flow 

domain and its influence on time varying streamwater MTT. We show that the unfractured low 

permeability hillslope bedrock hinders deep recharge, thereby regulating groundwater age, 

streamwater MTT and surface water-groundwater interaction. This establishes a 

compartmentalized bedrock groundwater storage unit with long turnover times due to minimal 

groundwater flux; groundwater ages averaged 5.7 years and varied from 0.1 to 23.5 years. 

Catchment storage is formed by two sharply contrasting and distinct hydrogeological units: 

shallow young soil storage, and deep much older bedrock groundwater. This storage pairing 

produces a bimodal seasonal streamwater MTT response where during the 8 month wet season, 

streamwater MTT was young (mean: 0.44 y) and stable (standard deviation: 0.14 y) due to high 

antecedent wetness conditions and minimal available soil storage. While during the slightly drier 
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summer season, streamwater MTT ranged between 0.37 and 2.5 y and was highly dynamic, 

fluctuating between young event-driven discharge and older baseflow conditions. 

2.2 Introduction 

Recent increases in computational power have led to stunning new simulations of groundwater 

contributions to streamflow (Ebel and Loague, 2006; Maxwell and Condon, 2016). While these 

and other simulations are inspiring, much basic process work still needs to be done to age date and 

understand bedrock groundwater flow processes in the headwaters and to quantify its link to 

streamflow. Without hard-fought field measurements, we lack the means to ground and support 

model assumptions and approaches. Basic field-based process work examining groundwater-

streamflow interactions in headwater catchments have previously been conducted in the USA 

(Frisbee et al., 2011; Salve et al., 2012; Ward et al., 2013), Europe (Haria and Shand, 2004; 

Soulsby et al., 2015) and Japan (Kosugi et al., 2011; Iwasaki et al., 2014). One iconic field site 

where little direct surface water-groundwater interaction exploration has occurred is the Maimai 

watershed in New Zealand. This is ironic, as Maimai is often viewed as an exemplar for how steep, 

wet catchments generate runoff (Mosley, 1979; Pearce et al., 1986). The Maimai catchment is 

known for its flashy and responsive hydrograph, extremely high runoff ratios and young 

streamwater discharge. For nearly 40 years it has existed as a testing ground for hypothesis testing 

in hillslope hydrology, revealing insights on the mechanisms and timing of subsurface stormflow 

(Mosley, 1979; Pearce et al., 1986; Sklash et al., 1986), on mixing and effusion of old and new 

water (McDonnell, 1990) and on the spatial and time source components of runoff generation and 

its control on streamwater chemistry (McGlynn and McDonnell, 2003; McGlynn et al., 2004). 

The implied simplicity of the hydrologic system combined with the wealth of available long term 

data has also made the Maimai an effective testbed for model structure development (Seibert et 

al., 2003). This has led to the development of soft data concepts (Seibert and McDonnell, 2003), 

virtual experiments (Weiler and McDonnell, 2004), the incorporation of lateral preferential flow 

networks into hillslope runoff models (Weiler and McDonnell, 2007) and the use of streamwater 

age and tracers in rejectionist catchment modeling (Vaché and McDonnell, 2006; Sayama and 

McDonnell, 2009).  
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But missing in the lexicon of Maimai hydrology has been an examination of the role of deep 

bedrock groundwater and its impact on flow and mean transit time of streamwater. Initial water 

balance studies concluded that the bedrock underlying Maimai was “essentially impermeable” 

(Pearce et al., 1977), a notion adopted by subsequent studies (O'Loughlin et al., 1978; McDonnell, 

1990; McGlynn et al., 2002) and cemented into the evolving perceptual rainfall-runoff model for 

nearly 40 years (despite no actual testing of the bedrock itself). The Pearce et al. (1977) water 

balance suggested that water loss to the deeper groundwater system was 100 mm/y.  Indeed, an 

extremely young streamflow age (0.4 y (Pearce et al., 1986)), combined with a flashy hydrograph 

(Mosley, 1979) and high runoff ratios supported a shallow subsurface flow conceptual model. 

However, possible inconsistencies were reported in the Maimai literature suggesting a more 

complex subsurface system below the soil mantle. Measured hillslope runoff ratios of only ~13% 

(Woods and Rowe, 1996) contrasted with a catchment scale runoff ratio of nearly 60% (Pearce et 

al., 1977) hinting at some loss of subsurface stormflow to the bedrock and potential riparian zone 

subsidies of water from these deeper hillslope segments. 

More recently, bedrock testing at Maimai has revealed bedrock saturated hydraulic conductivities 

that question initial claims of ‘impermeability’ (Graham et al., 2010), with  bedrock groundwater 

dynamics observed on storm-event time scales (Gabrielli et al., 2012). This has suggested a deeper 

hydrologically active zone than previously thought. If bedrock groundwater were active and 

contributing to runoff processes this would imply considerable stores of subsurface water and 

extended flowpath lengths and transit times, due to the extreme steepness of the topography and 

the large prism of bedrock storage. Yet Maimai stream water is some of the youngest documented 

in the isotope hydrology literature with MTT estimates on the order of only 4 months (Pearce et 

al., 1986). And to date, no direct observation of bedrock groundwater connectivity to the stream 

has been made. It is clear that despite decades of research, the mechanisms contributing to and 

controlling the rainfall-runoff response at the Maimai watershed, still remain incomplete.  

Here we present new results from an intensive field campaign that combines hydrometric, 

geochemical and tritium based analyses with groundwater monitoring to characterize the 

underlying headwater bedrock aquifer and its connection and contribution to streamflow and 
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streamwater age. We installed 40 wells down to ~9 m with a backpackable drill rig (modified from 

Gabrielli and McDonnell (2012)) and sampled for groundwater tritium concentration. We 

monitored water table dynamics for 400 days. Except for Kosugi et al. (2011), we believe that this 

is the highest density of bedrock wells ever drilled in a small headwater research catchment. We 

use the approach of Morgenstern et al. (2010) to translate tritium values into robust water ages and 

then relate this to the bedrock aquifer flow structure, groundwater dynamics and streamwater silica 

concentration to determine the controls and connections to the time-varying streamwater transit 

time. Specifically, we address the following research questions:  

i. What are the permeability characteristics of the underlying bedrock formation? 

ii. What are the spatial and temporal dynamics of bedrock groundwater recharge, 

discharge and water table position within the catchment? 

iii. How old is bedrock groundwater and how does it vary spatially? 

iv. To what extent is bedrock groundwater connected to the stream and how does this 

influence time-varying streamwater transit time? 

2.3 Study Site 

The 280 ha Maimai Experimental Watershed is located on the northwest coast of the South Island, 

New Zealand in the Tawhai State Forest (Figure 2.1; 42°05'S 171°47'E). This work focused 

specifically on the 4.5 ha sub-watershed known as M8 (the original site of work by Mosley (1979) 

and  McDonnell (1990) and subsequent papers). Elevation within M8 ranges from 251 to 348 

m.a.s.l. The landscape is highly dissected and dominated by 3 main geomorphic landscape units: 

highly convergent and divergent hillslopes, steep ephemeral hollows and a gently sloping riparian 

zone (Weiler et al., 2003). Hillslopes are short (< 100 m) and steep (range: 15° to 65°, average: 

34°). 
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Figure 2.1 Map of the Maimai Experimental Watershed and sub-catchment M8 with vicinity 
map inlay showing Maimai’s general location within the country of New Zealand. The M8 
sub-catchment also shows the location of bedrock wells and the two surface water sampling 
locations. The green bar shows the location of the M8 weir and is the reference point for 
watershed area (4.5 ha). 

Soils are thin, averaging 0.6 m deep with a range of 0.1 to 1.8 m, and highly transmissive. 

Infiltration capacity in the top 170 mm humic horizon is as high as 6100 mm/h and average 

hydraulic conductivity of the upper mineral soil is on the order of 250 mm/h (McDonnell, 1990). 
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Hillslope soils are characterized as podsolized to mottled yellow-brown earths, while wetter 

convergent hollows and riparian zones are heavily gleyed (McKie, 1978). The bedrock underlying 

the catchment is a conglomerate known as Old Man Gravel (OMG) belonging to a larger unit 

known as the Old Man Group (Bowen, 1967). The gravel (now a weakly lithified conglomerate) 

was laid down in the early Pleistocene as a thick (> 400 m) layer of glacial outwash during an 

erosional sequence in the formation of the Southern Alps (Mortimer et al., 2001). The 

conglomerate is composed primarily of well-rounded sandstone clasts (greywacke) with small 

additions of schist and granite in a compact sandy-clay matrix. The rounded clasts range in size 

from 10 to 400 mm in diameter, but are primarily less than 150 mm (Mortimer et al., 2001). Over 

the scale of a few meters the bedrock displays heterogeneity in clast size, however, over 10s to 

100s of meters the bedrock is remarkably homogeneous (Nathan et al., 1986).  

The entire M8 catchment, with the exception of the riparian zone (~ 5% of total area), was cleared 

of its native southern beech (Fuscospora spp.) and podocarp (Podocarpaceae spp.) forest in the 

1970’s and replanted with radiata pine (pinus radiata). The replanted forest was unmanaged and 

has proven susceptible to local fungal attacks and windfall, leading to low stand densities and a 

thick undergrowth of invasive and native woody and herbaceous species. Rainfall interception 

losses for the original native vegetation, which is likely similar to the current vegetation cover, 

were measured by Pearce and Rowe (1979) and equal to ~ 670 mm/y or ~ 26% of the 2600 mm 

gross annual rainfall. Rainfall is spread over ~ 150 rain-days per year with a slight seasonality 

where drier conditions prevail through mid-summer months (Jan-Mar). Storms are generally 

characterized by their low-intensity and long duration. Mean rainfall intensity is 1.2 mm/h (Rowe 

and Pearce, 1994), although intensities >30 mm/h have been observed. Single event rainfall totals 

commonly exceed 100 mm. The catchment’s low elevation and proximity to the Tasman Sea result 

in mild winters. Temperatures remain mostly above freezing, limiting snowfall occurrences to 1 

to 2 days per year with melt occurring rapidly within hours to days.  

The thin soils, high frequency of storm events and considerable precipitation maintain high soil 

water content throughout much of the year resulting in a highly responsive rainfall-runoff  regime  

(Mosley, 1979). The Maimai has been described as the ‘quintessential steep humid catchment’ 
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(McGlynn et al., 2002). Runoff ratios are among the highest of any research catchment in recorded 

literature. Mean annual runoff is 1550 mm, equal to nearly 60% of annual rainfall, and quickflow, 

as defined by Hewlett and Hibbert (1967), makes up >65% of annual runoff.  

2.4 Dataset and methods 

2.4.1 Bedrock characterization and well installation 

Forty bedrock wells were drilled and completed within the M8 catchment for water table 

observation and groundwater extraction. Wells were strategically located in key landscape 

positions to capture the three main hydrologic response units (i.e. hillslopes, hollows and riparian 

zones) that have been previously identified to control runoff generation at the Maimai (McGlynn 

and McDonnell, 2003b; Weiler et al., 2003). Fifteen wells were installed in hillslope positions, 14 

in riparian and toe-slope positions, and 11 within the gut of a previously studied ephemeral hollow 

(McDonnell, 1990; Mosley, 1979) (Figure 2.1).  

Bedrock wells were installed using a modified version of the portable bedrock drilling system 

described by Gabrielli and McDonnell (2012). Bores were drilled to a diameter of 63 mm and to 

varying depths depending on water table location (see Tables 2.1a and 2.1b for details). PVC 

casing (25.4 mm inner diameter) was installed down the length of each bore and screened across 

the lower interval. Screened length was between 0.3 and 1.0 m, dependent on the completed depth 

into bedrock. We backfilled the well annulus with clean sand to a position 0.15 m above the top 

of the screened section and a bentonite slurry filled the remainder of the bore length to the soil 

surface. In locations where soil depth was greater than 0.15 m, a soil well was co-located with each 

bedrock well. Soil wells were completed to the depth of the soil bedrock interface, screened across 

the lower 0.15 – 0.3 m dependent on soil depth, and backfilled in a manner similar to the bedrock 

bores.   

Bedrock saturated hydraulic conductivity (Ksat) was determined in the field through falling head 

slug tests in each of the 40 bedrock bores.  Slug tests were conducted by introducing a small 

volume of water instantaneously into the bore and monitoring the return of the water table to its 
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initial depth. Slug test data was analyzed by implementing the Hvorslev method (Hvorslev, 1951) 

within the Aqtesolv software package. Tests were performed 1-3 times and in locations where 

more than one slug test was conducted the average value was calculated. Individual well values 

are reported, as well as geometric mean of wells in similar landscape units.  

Bedrock porosity was measured from bedrock samples (~ 0.04 m3) cut from the surface of the 

intact bedrock formation using a concrete cutting chainsaw (Stihl GS 461). Samples were 

transported to the University of Saskatchewan where porosity was determined using a water-

displacement method. A sample was slowly saturated from the bottom up to reduce pore-space air 

entrapment and left submerged for 20 days. Saturated mass was measured and the sample was 

oven dried at 60° C until recursive weight measurements showed no additional mass loss, 

establishing the oven dry mass. Mass difference between saturated and oven-dry states was 

converted to water volume, which is presumed equal to bedrock pore space, and this value was 

divided by total sample volume to calculate porosity.   

2.4.2 Hydrometric data and bedrock groundwater dynamics and flux 

Hydrometric data was collected for streamflow, precipitation, and soil and bedrock water table 

position from Dec 11, 2014 to Jan 31, 2016, representing 416 days of monitoring. Streamflow was 

measured at the M8 catchment outlet at 10 minute intervals using a 90° V-notch. Stage height was 

converted into specific discharge using a standard rating curve for 90° sharp crested v-notch weirs 

(Rantz, 1982). Rainfall was recorded using a 0.2 mm tipping bucket rain gauge located within the 

M8 catchment 20 m downstream of the main weir in a small forest clearing (Figure 2.1).  

Soil and bedrock wells were instrumented with absolute pressure transducers (OnSet Loggers© or 

Heron Instrument©) or capacitance rods (Tru-Track© or Odyssey Instruments©) to record water 

table location and dynamics in each well at 10 minute intervals. Two dedicated pressure 

transducers were located within a research hut 100 m from the M8 outlet to record barometric 

pressure in order to correct absolute pressure readings from the deployed pressure transducers. 

Tru-Track© and Odyssey© capacitance rods had a blanking distance of 75 mm and 35 mm, 
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respectively, which prevented the observation of saturated conditions below these lower ranges 

for soil and bedrock wells instrumented with this equipment.   

We used basic metrics to quantify the spatial and temporal patterns of event-based and seasonal 

water table fluctuations for each bedrock well, and identified average values for wells clustered 

within similar landscape units. We calculated storm response, defined as millimeters of water table 

displacement per millimeter of rainfall for each storm event. We also calculated a storm 

transmissivity change metric, equal to the change in water table depth multiplied by local bedrock 

hydraulic conductivity, where the change in depth was defined as the difference in water table 

elevation between pre-storm and storm-peak levels. This value allows for a more consistent 

comparison of water table dynamics between wells in different landscape units by accounting for 

the effect of spatially varying hydraulic conductivity.  Higher values of transmissivity change are 

associated with greater groundwater flux. Additionally, Spearman Rank Correlation Coefficient 

(Rho), a nonparametric measure of statistical dependence between two variables, was used to test 

the relationship between water table fluctuations and catchment discharge.  

Potentiometric surface was used to calculate vertical head gradients between each co-located soil 

and bedrock well, establishing general spatial and temporal trends of vertical bedrock groundwater 

movement across the catchment. Analyses were conducted using a conditional interpretation 

where gradients were categorized as vertically upward or vertically downward. Due to data 

uncertainty in some well location surveys and water table records, we additionally identified 

gradients as hydrostatic if differences in potentiometric surfaces were ± 20 mm.  

2.4.3 Transit time analysis 

Tritium (3H) based MTT estimates were conducted on water samples collected during a synoptic 

sampling campaign during a low-flow period on Feb 24, 2015. Two surface water, 3 soil water 

and 23 bedrock groundwater samples were taken from locations within M8. MTT estimates were 

determined by employing a lumped parameter convolution approach as outlined in Morgenstern 

and Taylor (2009):  

(Eq. 2.1) 
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𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = � 𝑔𝑔(𝜏𝜏)𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝜆𝜆𝜆𝜆𝑑𝑑𝜏𝜏
∞

0
 

where 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) is the 3H concentration of individual samples at time t, 𝑔𝑔(𝜏𝜏) is the transit time 

distribution, 𝐶𝐶𝑖𝑖𝑖𝑖 is the 3H concentration of precipitation into the system, and 𝑒𝑒−𝜆𝜆𝜆𝜆 is the radioactive 

decay term to account for the natural decay of the tritium isotope, where the decay constant 𝜆𝜆 =

ln (2/𝑇𝑇1/2) and T1/2 = 12.32 years for 3H. 𝐶𝐶𝑖𝑖𝑖𝑖 was determined from long-term monthly tritium 

measurements made at the Kaitoke reference station near Wellington, New Zealand, 

approximately 150 km north of Maimai. We scaled rainfall input at Maimai by a factor of 1.15 

based on a standard latitude adjustment and verified this scaling factor with tritium measurements 

taken from 2 aggregated rainfall samples collected over a 10-month period at the outlet and upper 

elevations of the larger Maimai watershed that M8 is located within.  

Tritium concentrations, used to define 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜, were analyzed by the GNS Science Water Dating 

Laboratory (Lower Hutt, New Zealand) using electrolytic enrichment and liquid scintillation 

counting (Morgenstern and Taylor, 2009). Recent advancements in this method have led to further 

tritium enrichment that is now >90-fold, leading to a lower detection limit of 0.02 Tritium Units 

(TU). Calibration of the tritium enrichment for each individual sample via deuterium enrichment 

allows for a reproducibility of the tritium enrichment of better than 1%. The decay of tritium that 

remains in the New Zealand hydrologic system to levels below pre 1950 atomic bomb testing 

levels results in MTT estimates that are relatively insensitive to the model choice (i.e. 𝑔𝑔(𝜏𝜏)) when 

estimating the transit time distribution of the studied flow system – meaning model choice is no 

longer critical for accurate and unambiguous MTT estimates  (Morgenstern et al., 2010).  We used 

a uniform exponential piston flow model with 70% exponential flow within the total flow volume 

– found to be a reasonable ratio by Morgenstern et al. (2010) – to estimate 𝑔𝑔(𝑡𝑡) as follows 

(Maloszewski and Zuber, 1982):  

𝑔𝑔(𝜏𝜏) = 0      for 𝜏𝜏 < 𝜏𝜏𝑚𝑚(1 − 𝑓𝑓)   (Eq. 2.2) 

𝑔𝑔(𝜏𝜏) = (𝑓𝑓𝜏𝜏𝑚𝑚)−1𝑒𝑒𝑒𝑒𝑒𝑒 �−� 𝜆𝜆
𝑓𝑓𝜆𝜆𝑚𝑚

� + �1
𝑓𝑓
� − 1�   for 𝜏𝜏 ≥ 𝜏𝜏𝑚𝑚(1 − 𝑓𝑓)   (Eq. 2.3) 



27 

Where ƒ represents the ratio of the exponential flow volume to total flow volume, and 𝜏𝜏𝑚𝑚 is the 

MTT in years. We recognize that by convention, the age value of groundwater sampled from wells 

is referred to as “groundwater age” or “mean residence time” and reflects the mean elapsed time 

from when the water molecules entered the groundwater body to when they discharged from the 

system, in our case, when sampled from the wells (Kazemi et al., 2006).  

2.4.4 Silica analysis and catchment MTT 

To estimate time-varying streamwater transit time of catchment M8 discharge we followed an 

approach similar to Peters et al. (2014) where an empirically derived relationship between 

groundwater silica concentration, tritium-based MTT and streamwater silica concentrations is used 

to estimate streamwater MTT. Dissolution from water-rock interactions tends to increase 

groundwater silica concentrations with increased subsurface contact time (Edmunds and Smedley, 

2000; Burns et al., 2003; Katz et al., 2004; Stewart et al., 2007), allowing silica to be used as a 

proxy for MTT. We established two regression relationships; one between catchment discharge 

volume and catchment discharge silica concentration, and a second between silica concentration 

in soil and bedrock water samples and tritium-based MTT measured in those sampling locations. 

The discharge-silica relationship was developed from grab samples collected during a moderate 

sized storm event from the M8 catchment outlet at intervals which captured pre-event, event and 

recession conditions.  Water samples were collected in 250 mL HDPE bottles, filtered using 0.45 

μm cellulose acetate syringe filters and refrigerated within 24 hours of sampling. Analysis was 

conducted at the Oregon State University Collaboratory using an ion chromatograph (Dionex ICS-

1500). We applied the discharge-silica regression model to a time series of catchment runoff to 

produce an estimated streamwater silica concentration at 10 minute intervals for 1 year (Dec 25, 

2015 to Dec 24, 2016). We then applied the silica-MTT regression model to the silica time series 

to estimate streamwater MTT over the same period. This produced a 1-year time series of 

streamwater MTT covering more than 60 storm events through seasonal shifts in catchment 

wetness conditions and water balance.   

We estimated silica concentrations using a discharge value equal to the flow condition under which 

tritium samples were collected. The resulting silica concentration was applied to the silica-MTT 
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regression model and an estimated MTT was calculated. Both estimated silica and MTT values 

were compared to measured silica and tritium based streamwater MTT values in our grab samples 

as a means to test the validity of the two regression models.  

2.5 Results  

2.5.1 Bedrock characterization 

Laboratory based porosity measurements of bedrock samples taken from the upper 1 m of bedrock 

had an average value of 0.21 (n = 3, standard deviation = 0.03), and fall within the range of 

established porosities for sandstone (Freeze and Cherry, 1979). 

Variability in Ksat for all bedrock wells spanned 5 orders of magnitude from 5.42E-9 m/s to 6.99E-

5 m/s (Table 2.1a and 2.1b). Slug tests revealed spatial patterns broadly following geomorphic 

landscape units. The geometric mean hydraulic conductivity increased from hillslopes to hollows 

to the riparian zone with mean values each of 1.7E-08 m/s, 1.2E-07 m/s and 4.9E-06 m/s, 

respectively. The increase in conductivity with increasing upslope accumulated area may indicate 

that wetter zones with greater upslope area undergo greater mineral weathering resulting in more 

permeable bedrock. 

2.5.2 Bedrock groundwater position 

Tables 2.1a and 2.1b show the average depth to water table for bedrock wells within the M8 

catchment. Bedrock groundwater was present in the majority of wells over the entire study period; 

however, during an unusually dry period between Dec 2014 and February 2015, water tables 

dropped below well screens in some riparian and ephemeral hollow locations. We note that 

January, 2015 was the single driest month in 55 years of record at the Reefton meteorological 

station 5 km southeast of Maimai. 
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Water table depths ranged from 0.26 to 7.65 m below the ground surface. Generally, the water 

table was shallower in the riparian zone and at the center of the hillslope hollows and deeper in 

toe-slope and upper hillslope positions. We fit a relation between depth to water table and distance 

to stream channel with a power-law regression (R2 = 0.72) and applied this to a 1 m grid DEM of 

M8 to produce a catchment scale water table map (Figure 2.2).  Figure 2.2 shows the shallow water 

table in topographically convergent areas and a rapid deepening of the water table with distance 

from the stream channel. Estimated depth to water table ranged from 0.98 m in the near-stream 

riparian corridor to approximately 10.5 m at ridgeline. Mean, median and standard deviation of 

depth to water table over the entire catchment domain was 5.25 m, 5.43 m and 2.03 m, respectively.  
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Figure 2.2 Depth to water table for the underlying headwater bedrock aquifer based on average 
water table depths over 400 days from 36 monitored bedrock wells. Depth to water table is 
overlaid on the 3-dimensional representation of the bedrock aquifer free-water surface. The 
M8 3-dimensional DEM is included above the water table layer for visual comparison. The 
inset scatter plot shows the relationship between distance to stream and depth to water table 
(R2 = 0.72). 
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2.5.3 Bedrock groundwater dynamics 

A representative example of water table dynamics for each of the three main landscape positions 

is shown in Figure 2.3. Although there was variability within each landscape position, event based 

water table fluctuations, seasonal fluctuations, storm response and transmissivity change metrics 

all captured consistent trends delineating the three landscape units. Generally, lower-lying areas 

had greater range and variability, while dynamics became more attenuated with distance from the 

stream channel.  

 
Figure 2.3 Water table elevation data from a representative riparian (c), hollow (d), and 
hillslope (e) well, with corresponding rainfall (a) and runoff (b) time series. Box and whisker 
plots show median, and 1st and 3rd quartiles of the water table dynamics for each of the 3 
landscape positions. 
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Seasonally, maximum water table fluctuation for all wells over the monitoring period ranged from 

0.14 to 1.36 m. The greatest range in seasonal water table fluctuations was found in the shallower 

riparian and toe-slope zones. Seasonal fluctuations decreased in wells located in the center of 

hollows and decreased further in the upper hillslope positions (i.e. wells 8, 9, 11, 12). Upper 

hillslope wells displayed almost no seasonal fluctuations, with the most near-ridge well (well 12) 

fluctuating only 0.14 m cm during the study period, which included one of the driest periods on 

record.  

Average event-based water table response (measured as mm change in water table per mm of 

rainfall) for each well over the 70 monitored storm events is presented in Table 2.1a and 2.1b.  

Spatially averaged response was 3.9 mm/mm, 3.23 mm/mm and 1.96 mm/mm for riparian, hollow 

and hillslope locations, respectively. Water table response and transmissivity change captured 

similar spatial trends to those observed for average event-based and seasonal water table 

fluctuations, generally indicating greater damping with distance from the stream channel (Tables 

2.1a & 2.1b). Mean bedrock transmissivities increased progressively from hillslope to hollow to 

riparian zone by an order of magnitude for each landscape unit (3.76 x 10-8, 4.79 x 10-7, 5.35 x 10-

6 m2s-1, respectively).  

Spearman rank correlation coefficients for each well are shown in Tables 2.1a and 2.1b. Values 

decreased from the riparian zone to hollow to hillslope. Riparian zone wells were extremely 

responsive to precipitation inputs with rapid water table rises and recessions in phase with the 

storm hydrograph (Rho = 0.71). Ephemeral hollow wells responded to individual storm events but 

were slightly more delayed and attenuated than the riparian zone (Rho = 0.61), while hillslope 

wells showed an even more attenuated storm response. Water table rise and fall was not always 

attributable to specific storm events (Rho = 0.52) (Figure 2.3).  

2.5.4 Bedrock groundwater gradients 

Vertical hydraulic head gradients were measured at 19 soil and bedrock well pairs and between 3 

pairs of vertically nested bedrock wells. Figure 2.4 shows a subset of the 416 day time series (data 
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logger failure prevents full display—however, trends in the overall data do not deviate 

significantly from the subset).  

Groundwater gradients across the catchment were predominantly downward in all landscape 

positions indicating that the catchment is continuously recharging surface and soil water into the 

bedrock groundwater aquifer. Hillslope gradient calculations were sporadic based on the transient 

nature of saturated hillslope soils which occurred only during high antecedent conditions or during 

larger storm events. Within the ephemeral hollow, soil-bedrock well pairs showed consistent 

downward gradients across all wetness conditions and storm intensities, with the exception of the 

most downslope well pair (well 13 and associated soil well).  Transient flow reversals occurred 

during storm event peaks under high antecedent conditions, resulting in hydrostatic conditions or 

upward groundwater gradients at the base of the hollow. 
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Figure 2.4 Vertical groundwater gradients between nested soil-bedrock wells (shown by a 
single well number on the y-axis) and nested bedrock-bedrock wells (shown as two well 
numbers on the y-axis). Colored horizontal bars represent gradient direction. The white space 
within horizontal bars is indicative of dry periods when no soil-water was present in the wells, 
thus no gradient was calculated. The exception to this is the late periods wells 28 and 21 which 
were missing data due to instrument failure. Additionally, rainfall and runoff data are displayed 
for the corresponding time period.  

Riparian corridor groundwater flux was also consistently downward through the duration of the 

observation period for all well pairs under both low and high antecedent conditions and during 

inter and intra storm periods. The exception to this trend was the most downstream well pair (well 

26 and associated soil well) located 15 m upstream from the M8 weir. Under high antecedent 

conditions the hydraulic gradient remained hydrostatic between storm events and briefly switched 

upwards during rainfall periods. Under lower antecedent conditions gradients also switched to 

upward (or hydrostatic) during rainfall events, but remained downward between events.  Under 

extremely dry conditions (not shown in Figure 2.4) upward gradients prevailed, indicating bedrock 
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groundwater subsidies to baseflow (as discussed below). For this well pair (well 26), gradients 

were upward, hydrostatic and downward for 27%, 26% and 47% of the monitoring period.  

2.5.5 Tritium measurements and MTT 

A synoptic sampling of 30 locations on Feb 24, 2015 within the M8 catchment produced tritium-

based age estimates for 2 surface water samples, 3 soil water samples and 23 bedrock groundwater 

samples. The catchment was under extremely low baseflow conditions with a 30 day antecedent 

precipitation index (API) value of 25.2 mm, and a catchment discharge of 0.00075 mm/h 

corresponding to a flow exceedance probability of 99%. Table 2.2 presents tritium concentrations 

and estimated MTT for each sampling location. MTT from all bedrock wells averaged 5.3 ± 7.5 

years and ranged from less than 0.1 to 23 years (>2.50 to 0.97 TU, respectively). The three soil 

water samples taken from hillslope, toe-slope and riparian positions had MTT values less than 0.5 

years. Soil water sample 43, collected from a perennial soil seep within the instrumented hollow, 

was the youngest of all waters tested with a value of >2.50 TU. This was similar in concentration 

to recent precipitation, indicating extremely short travel times. Sample 42 from the most upstream 

portion of the riparian zone had a value of 2.15 TU, corresponding to an MTT of 0.3 years, and 

identical to the MTT for surface water collected in the same location (sample 44). Soil water 

sample 41, collected from a perennially saturated soil well at the base of a short planer hillslope 

near the catchment outlet, had a tritium concentration of 2.05 TU, corresponding to an MTT of 0.5 

years.  
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Table 2.2 Tritium units and corresponding MTT for sampled bedrock, soil and streamwater 
samples within the M8 catchment. Samples 41, 42 and 43 are soil wells, sample 44 is a stream 
sample from the same catchment location as soil well 42, and sample 45 is from the main M8 
weir. 

Well/sample 
name Landscape position 

Tritium 
Units, 

TU 
± 1 SD, 

TU  
MTT, 

y 
8 Hillslope 1.38 0.03 10.5 
12 Hillslope 1.65 0.04 6.5 
13 Hollow 2.11 0.04 0.3 
16 Hollow 2.14 0.04 0.3 
17 Hollow 2.01 0.04 0.3 
21 Hollow 1.87 0.04 1.3 
23 Hollow 1.73 0.03 5.3 
24 Riparian 1.24 0.03 13.5 
25 Riparian 1.85 0.03 2.5 
26 Riparian 1.98 0.03 0.7 
27 Riparian 2.10 0.04 0.3 
28 Riparian 2.17 0.04 0.3 
29 Riparian 2.05 0.04 0.3 
30 Riparian 2.06 0.03 0.3 
32 Riparian 2.13 0.04 0.3 
33 Riparian 2.18 0.05 0.3 
34 Riparian/Hill 0.97 0.02 23 
35 Riparian/Hill 1.01 0.03 22 
36 Riparian/Hill 1.02 0.02 22 
37 Riparian/Hill 1.72 0.03 5.5 
38 Riparian/Hill 2.16 0.04 0.3 
39 Riparian/Hill 1.72 0.03 5.3 
40 Riparian/Hill 2.17 0.04 0.3 
41  Riparian/Hill - Soil  2.05 0.04 0.5 
42  Riparian - Soil 2.15 0.04 0.3 
43  Hollow - Soil 2.50 0.05 0.1 
44 Stream – Upper Riparian 1.85 0.03 0.3 
45 Stream - Weir 2.11 0.04 2.5 

Bedrock groundwater within M8 ranged in tritium concentration from 2.18 to 0.97 TU (MTT 0.3 

to 23 y, respectively) indicating that the water in the underlying aquifer includes a wide range of 

ages representing heterogeneous flowpaths (Figure 2.5).  The bedrock groundwater MTT varied 

both spatially and with depth, revealing complex spatial patterns associated with the groundwater 

flow structure. MTT showed a weak linear relationship (R2 = 0.32) with well depth. All 
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groundwater samples older than 2.5 years were found at depths greater than 2.8 m, while the 

youngest waters were found predominantly in shallower wells. No significant correlation was 

found between groundwater MTT and depth to water table, upslope accumulated area or the 

topographic wetness index (Beven and Kirkby, 1979). 

 

Figure 2.5 Spatial distribution of bedrock groundwater, soil water and streamwater MTT 
across the M8 catchment. Bedrock and soil samples are indicated by colored circles and surface 
samples by stars. 

Generally, upper hillslope and deep riparian and toe-slope positions contained the oldest water, 

while younger water was found primarily in shallow bedrock wells within hollow and riparian 

positions.  Bedrock wells along the entire length of the ephemeral hollow generally had younger 

water. All MTT estimates for wells within the hollow were less than 1.3 y old (> 1.87 TU), with 

the exception of the most upslope well, well 23, which had an MTT of 5.3 y (1.73 TU). The 
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location, depth to water table and water table dynamics of well 23 were more characteristic of 

other hillslope wells, as opposed to hollow wells, and as such, the older groundwater at this 

location was expected.  The two upper hillslope samples (wells 8 and 12), collected at depths 

greater than 7 m, had MTTs of 6.5 and 10.5 y, respectively (1.65 and 1.38 TU, respectively) 

Riparian zone and toe-slope wells had the greatest water age range from 0.1 to 23 y (2.5 and 0.97 

TU). All toe-slope and riparian wells in the upper portion of the catchment, regardless of exact 

landscape position, contained young waters less than 0.3 y (TU > 2.01). Further downstream in 

the riparian zone, shallow wells remained young while deeper wells contained older water (> 5 y, 

TU < 1.72).  The oldest waters were found in toe-slope positions on the east side of the catchment 

within 20 m upstream and downstream of the gauged weir. These wells (24, 34, 36, 37 and 39), all 

with sampling depths greater than 3.0 m, had MTT age estimates of 23, 22, 5.5, 13.5 and 5.3 y, 

respectively. 

2.5.6 Silica analysis and time-varying streamwater MTT 

Catchment discharge versus silica concentration data and the regression model fit to this 

relationship is shown in Figure 2.6a. The regression model captured a strong linear relation 

between the log transformed values of discharge and silica (R2 = 0.98). Silica concentration 

showed a strong dilution gradient with increasing discharge. We applied this relationship to 1 year 

of catchment runoff. The estimated catchment discharge silica concentration is shown in Figure 

2.7b. Silica concentration dropped to a low of 3.14 mg/l during peak storm events and rose to a 

high of 19.4 mg/l during an extended dry period in early 2015.  

Using the relation between silica concentration and MTT (Figure 2.6b, R2 = 0.92) we estimated 

stream water MTT from the 1 year time series of silica concentration (Figure 2.7c). MTT ranged 

from 0.37 to 2.5 years. Time-weighted mean MTT was 0.62 years and volume-weighted mean was 

0.41 years. The MTT time series showed a distinct bi-modal age distribution that followed seasonal 

catchment wetness conditions and discharge volume. During the drier months of December 

through February, the catchment was in a state of older low-flow discharge punctuated by 

occasional precipitation inputs that transiently flushed young water to the stream channel. 
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Baseflow conditions quickly reestablished post storm-hydrograph peaks and MTT increased. 

Beginning in March, precipitation became more persistent, the growing season slowed and 

temperatures declined, reducing the evapotranspiration budget. Baseflow discharge increased 

between events as the catchment wetted up, available storage declined and the streamflow became 

younger. Catchment wet-up continued through April until soil water storage filled and antecedent 

wetness remained high between events, indicated by sustained levels of high runoff. This tipped 

the catchment into a state of young water discharge and streamwater MTT remained young and 

relatively stable through the remainder of the wet season. Beginning in October/November the 

catchment began to dry up as the next growing season initiated. As a result, streamwater MTT 

became much more dynamic and again fluctuated between older low-flow and young event-driven 

periods.  

 

Figure 2.6 The linear relationship between the log-transformed M8 stream specific discharge 
and log-transformed streamwater silica concentration (a), and the non-linear relationship 
between silica concentration in bedrock groundwater, soil water and streamwater samples and 
measured MTT values (b). Both plots show values for individual grab samples, the fitted 
regression model and 95% confidence interval.  
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Figure 2.7 Time series of precipitation and runoff (a), estimated streamwater silica concentration 
(b) and estimated streamwater MTT (c). The blue hashed line represents the time-weighted 
streamwater MTT (0.62 y) and the red hashed line represents the volume weighted streamwater 
MTT (0.41 y). The box plot shows median, 1st and 3rd quartiles. Whiskers are equal to the 10th and 
90th percentiles and red dots are outliers at the 5th and 95th percentiles. 

2.6 Discussion 

Our intensive hydrometric, hydrochemical and isotopic field campaign focused directly on 

characterizing the location, dynamics and age of the underlying bedrock aquifer and its 

contributions to streamflow. In so doing, our study advances the evolving perceptual model of 

hydrologic processes governing the Maimai watershed and offers insights on the control of deeper 

subsurface architecture on catchment processes for watershed conceptualizations elsewhere.  

2.6.1 Bedrock groundwater location and dynamics 

2.6.1.1 Water table position 

We found that the shape of the underlying bedrock aquifer reflected a subdued replica of the land 

surface. This was consistent with other field and modeling studies in humid regions and suggests 

a topographically controlled water table (Sanford, 2002; Winter et al., 2003; Haitjema and 
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Mitchell-Bruker, 2005). While the topographic control on water table position is not surprising 

given early descriptions of this (Todd, 1956), what was surprising was the  particularly shallow 

ridgeline water table positions in the  M8 catchment. This is in stark contrast to catchments in other 

geologic settings with similar climatic regimes (Haria and Shand, 2004; Katsura et al., 2008; Hale 

et al., 2016) and especially other watersheds where we have worked – e.g. WS 10 at the HJ 

Andrews Watershed, where ridgeline water tables were very deep and fluctuated greatly from dry 

to wet season (Harr, 1977). The depth to ridgeline water table exemplifies the complex 

interrelationship between climate, topography and geology, representing the balance point 

between recharge inputs from above and the ability of the bedrock formation to transmit water 

down-gradient (Jamieson and Freeze, 1982). In a simple sense, the Maimai’s shallow ridgeline 

water tables represent reduced groundwater flux compared to other sites with deeper water tables 

under similar recharge and geologic conditions (Fetter, 2000). Our site’s lower hydraulic 

conductivity limits flux rates, forcing the water table to rise, increasing the hydraulic gradient until 

recharge is balanced with discharge. As a metric, ridgeline water table depth, when considered 

along with the local precipitation regime, can provide insight on the landscape scale hydrologic 

activity of bedrock in terms of the extent of water movement.  This also provides some 

understanding into the relative amounts of active storage and total catchment storage and their 

links to flow and transport. For example, a high water table in a hydrologically responsive 

catchment would imply a reduced vertical groundwater flux and greater horizontal partitioning of 

precipitation inputs to shallower flowpaths, thus greater volumes of younger water contributing to 

runoff. Conversely, a high ridgeline water table in a catchment with a dampened stream response 

would indicate greater vertical recharge to depth, larger active groundwater storage and greater 

volumes of older water contributing to runoff (Tague and Grant, 2004).  

 Gleeson and Manning (2008) used 3-D numerical simulations to explore the control of recharge 

rates and hydraulic conductivity on water table location. They found that increasing the ratio of 

recharge (R) to hydraulic conductivity (K) resulted in higher water table elevations.  Indeed, the 

R/K ratio at Maimai is 0.64 (recharge 200 mm/y and bedrock hydraulic conductivity of 1.0x10-8 

m/s), equal to the highest R/K value explored by Gleeson and Manning (2008). The high R/K ratio 

that we observed at M8 is consistent with the Gleeson and Manning (2008) prediction of the 

shallow ridgeline water table at our site.  
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2.6.1.2 Water table dynamics 

Groundwater dynamics at M8 were spatially and temporally variable with some distinctions 

between the three major landscape units. The spatially variable water table dynamics revealed 

locally complex interactions between topography, aquifer characteristics, recharge source and 

timing, as well as pressure propagation through the vadose zone.  

Seasonally, water table dynamics were most variable in the riparian zone and hollow positions and 

least variable in near-ridge wells. This trend was opposite to what we expected. During drier 

summer months as the landscape drained, we expected that hillslope water table positions would 

drop significantly and the riparian water table position to remain relatively constant, as has been 

reported in hillslope studies in other humid catchments (Katsuyama et al., 2005; Kosugi et al., 

2006; Iwagami et al., 2010; Kosugi et al., 2011; Hale et al., 2016). The absence of this trend at 

Maimai, where the near-ridge water table levels showed little seasonality, is likely due to the 

geologic properties of the OMG formation, with its low hydraulic conductivity – a first order 

control on storage and groundwater movement. The scarcity of bedrock fracturing at M8  forces 

recharge to occur through the bedrock’s primary porosity, instead of through preferential fracture-

based recharge, a flow process that has been previously attributed to large and rapid water table 

fluctuations (Montgomery et al., 1997; Gleeson et al., 2009; Praamsma et al., 2009; Gabrielli et 

al., 2012). Additionally, unsaturated bedrock storage increased with distance to the ridge as the 

vadose zone overlying the aquifer thickened. This unsaturated low permeability wedge likely acts 

to smooth and buffer seasonal variations of bedrock infiltration (percolation), while also delivering 

a relatively constant rate of recharge to the free-water surface. These factors combined maintained 

the observed near-stationary hillslope water table position near the ridgeline.  

In lower lying wetter zones where bedrock water tables were shallow, more pronounced dynamics 

were observed in response to both storm and seasonal fluctuations. The thin or nonexistent 

unsaturated zone in the bedrock in this area is not able to buffer the groundwater table from storm 

event inputs. The observed increased hydraulic conductivity in the riparian zone and ephemeral 

hollows (likely a weathering feedback) caused a more pronounced decline in water tables during 

dry periods. This drove a spatially variable heterogeneous but structured groundwater drainage 
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pattern that was correlated to wetter convergent regions of the catchment with greater groundwater 

mobility. 

2.6.2 The bedrock groundwater domain: gradients, age and streamflow contributions 

Identifying the groundwater flow domain within small headwater catchments is often complex due 

to bedrock heterogeneity and considerable topographic relief that drives small-scale spatially 

variable flow paths (Kosugi et al., 2011; Salve et al., 2012; Fujimoto et al., 2014; Katsura et al., 

2014; Masaoka et al., 2016; Oshun et al., 2016). Previous catchment studies have shown the value 

of combined hydrometric and tracer analyses to constrain mechanistic runoff processes and 

develop conceptual hydrologic models that are both parsimonious and consistent with multiple 

data sets (Clark et al., 2011). Our extensive soil and bedrock well network provided the ability to 

independently identify the groundwater flow domain through hydrometric analysis (i.e. 

groundwater flow gradients) and tritium-based MTT via groundwater isochrones (Figure  2.4 

and 2.5). The two data sets identified spatially consistent groundwater recharge and discharge 

zones within the catchment confirming contributions of bedrock groundwater to catchment runoff.  

2.6.2.1 Vertical bedrock groundwater gradients 

Vertical groundwater head gradients across all hillslope positions were downward and indicated 

no bedrock groundwater discharge along the catchment hillslopes, consistent with previous studies 

at M8 (Gabrielli et al., 2012) and many hillslope bedrock groundwater observations elsewhere 

(Kosugi et al., 2011; Salve et al., 2012; Katsura et al., 2014). Interestingly, downward groundwater 

gradients within most of the wetted riparian corridor, including the ephemeral hollow, indicated 

that for the majority of the observed study period the stream channel acted as a groundwater 

recharge source (as opposed to sink) for bedrock groundwater. Although losing streams are 

common across many landscapes (Sophocleous, 2002), they are much less common in humid 

headwater regions where the riparian corridor is generally viewed as the discharge zone for deeper 

hillslope derived flowpaths (Voltz et al., 2013). This presents new implications for land use 

management at M8 and other similar riparian recharged headwater catchments, where hillslope or 

shallow riparian derived contaminants may be transported to depth more easily in these locations. 
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Upward groundwater gradients were observed at the base of the ephemeral hollow during the peak 

hours of storm events under high antecedent conditions. The specific discharge calculated using 

observed bedrock aquifer hydraulic conductivity and the well head gradient was a mere 0.5 l/h/m2. 

Even assuming uniform discharge across the entire riparian corridor (~5% of catchment area), 

bedrock groundwater contributions to catchment runoff of this rate would only deliver 0.00025 

mm/h (assuming direct connection to the stream channel), a rate too small to be measured or 

appreciably shift hydrometric or hydrochemical characteristics during event runoff periods.  

Similar event-based discharge gradients were also noted at the most downstream riparian transect, 

but likewise were too small to measurably influence storm runoff characteristics. However, 

discharging bedrock groundwater at this same location was found to appreciably contribute to 

catchment discharge under extremely low baseflow conditions in the absence of recent rainfall 

input to the stream channel. The effect of this deeper bedrock groundwater contributios to the 

stream channel on streamwater MTT is discussed in detail below.  

2.6.2.2 Bedrock groundwater MTT 

Recharge and discharge zones represent the initiation and endpoints of groundwater flowlines 

(Salvucci and Entekhabi, 1995) thus, spatial patterns of groundwater MTT should mirror spatial 

patterns of the groundwater flow domain. Indeed, we found younger waters in recharge zones and 

correspondingly older water in discharge zones (i.e. the most downstream riparian transect). 

Bedrock groundwater samples extracted from the recharging upper riparian corridor were among 

the youngest waters in the catchment, indicative of recent recharge from young overlying stream 

and soil water.  In the lower riparian zone, older bedrock groundwater was co-located with 

discharging gradients suggesting streamwater should reflect contributions from these older 

sources. Indeed, we found streamwater to be 2.5 y, having increased in age from a computed 0.3 

y only 120 m upstream. The independent agreement of groundwater head gradients with spatial 

groundwater age patterns not only provides direct source-area evidence of bedrock groundwater 

contribution to streamflow, but better informs process understanding of the catchment 

groundwater flow domain and surface water–groundwater interactions.  
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The lack of correlation between groundwater age and spatial and depth metrics is likely a result of 

the inability of one or two dimensional landscape derived metrics to fully capture the complex 

three dimensional groundwater flow structure and storage volume that sets groundwater MTT. 

This inability for simple topographic parameters to capture the groundwater age at Maimai may 

hint at why many other studies have also failed to find simple landscape derived scaling metrics 

that accurately capture stream water MTT (Tetzlaff et al., 2009). In humid catchments, storage 

volume is critical in setting the age of discharge, and the degree to which any metric acts as a proxy 

for this storage volume likely controls the strength of its correlation to catchment MTT 

(McNamara et al., 2011). In steep humid topographically driven catchments with low permeability 

bedrock, shallow flowpaths dominate and storage is small. Single or composite metrics such as 

flowpath length or gradient tend to scale with catchment MTT since landscape form acts as a 

sufficient proxy for subsurface mixing volume (McGlynn et al., 2003; McGuire et al., 2005). 

However, as bedrock permeability increases and the active mixing zone deepens, storage likewise 

increases and simple topographic metrics no longer capture this, now much larger, storage volume 

that controls catchment MTT. Instead, metrics that are a better proxy for the increased subsurface 

storage are more suited. Hale and McDonnell (2016) compared catchments with similar rainfall-

runoff regimes but with different underlying bedrock permeability. Less permeable younger 

catchments scaled with topographic characteristics, while older and more permeable catchments 

not only failed to scale with topographic characteristics but instead scaled to catchment area, 

indeed, a better proxy for the increased storage. This elegantly captured the control of bedrock 

permeability, and thus storage, on catchment streamwater age and the required shift in metrics to 

accurately reflect the increase in storage depth. In a further example, Asano and Uchida (2012) 

found that bedrock flowpath depth controlled baseflow MTT in 8 nested granite catchments. 

Geologic properties was similar across all catchments, so that the volume of bedrock storage per 

unit area was set by the flowpath depth. Accordingly, flowpath depth accurately scaled with 

subsurface storage volume and thus catchment MTT between catchments.   

At Maimai, bedrock groundwater MTT was not captured by topographic metrics likely because 

these metrics failed to capture the larger 3-dimensional flow domain and storage volume that 

controlled groundwater MTT. However, it should be pointed out that Maimai streamflow is 

dominated by shallow subsurface flowpaths, thus simple landscape derived metrics should scale 
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to streamwater MTT at this site. Indeed, this was found in earlier studies at Maimai by McGlynn 

et al. (2003). In general, as catchments shift from shallower to deeper flowpath dominance, the 

metrics that capture discharge MTT should equally shift to capture the increasing volume of 

storage, which acts as a primary control on setting mean catchment age (Pfister et al., 2017).  

2.6.3 Time-varying streamwater transit time 

Our silica-based MTT estimates demonstrate the time-varying nature of streamwater MTT at M8. 

This highlights the intricate connection between catchment wetness condition, discharge rate and 

transit time. Antecedent conditions and event precipitation drive spatially distributed landscape 

scale connectivity that controls the release of differentially aged water from differentially stored 

subsurface units to the stream channel. The integration of these varying runoff sources through 

time and space form the single time-varying mean runoff age observed at the catchment outlet 

(Soulsby et al., 2015). The bi-modal nature of streamwater MTT at M8 reflects seasonal shifts in 

environmental forcing factors, primarily precipitation and evapotranspiration, which drive 

landscape scale shifts in hydrologic connectivity (Figure 2.7). The Maimai remained under high 

antecedent wetness conditions for nearly 8 months of the year from March through October, and 

correspondingly, young shallow subsurface flow dominated runoff. Streamwater MTT remained 

near 4 months, an age that corresponds to soil-water storage residence times observed by Stewart 

and McDonnell (1991). During this extended wet period, MTT was relatively stable and age 

fluctuations were minimal despite order-of-magnitude changes in catchment discharge. Perhaps 

most significant was the persistence of young streamwater between storm events while the 

catchment drained. Elevated baseflow discharge, sourced primarily from younger soil water 

storage, dominated runoff and diluted the older bedrock groundwater discharge signal. 

During summer months, when precipitation inputs dropped slightly and evapotranspiration rates 

increased significantly, baseflow discharge decreased by almost 3 orders of magnitude compared 

to the wet season. Antecedent wetness was low and spatial connectivity of shallow soil stores to 

the stream channel declined. Streamwater MTT became highly variable. Transient connectivity of 

younger shallow flowpaths during and immediately following rain events would temporarily drive 

streamwater to much younger MTTs. But between events MTT increased considerably, reflecting 
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the contraction of younger flowpaths and the reduction of discharge volume to levels where 

contributions from older bedrock groundwater were proportionately more significant.  

Birkel et al. (2015) similarly found antecedent conditions drove hydrologic connectivity at a 

Scottish Highlands catchment, which in turn also controlled the time-varying nature of 

streamwater MTT. Interestingly, their MTT time series, established using a tracer-aided model, 

showed an almost reverse bi-modal trend from what we found at M8 (Soulsby et al., 2015). MTT 

was stable at low discharge rates and highly dynamic (and young) at high discharge rates. This 

contrast from Maimai perhaps offers end-member examples of differences in catchment MTT 

dynamics that result from differences in shallow-versus-deep proportioning of subsurface water in 

humid catchments. Greater volumes of catchment precipitation are distributed to deeper storage at 

the ‘more permeable’ Scottish catchment (with its glacial drift deposits and deep soils), and 

accordingly, runoff generation is sourced from greater contributions of this storage unit across all 

flow conditions.  During low flow, deep storage acts as the primary source of runoff generation 

and streamwater MTT reflects the age of this single storage unit, and is thus stable. At higher 

flows, although younger flowpaths are activated, they do not completely inundate the dominant 

deeper groundwater signal and the catchment MTT is controlled by the proportional mixing of the 

two (or more) storage units. This creates a highly flow dependent and highly variable streamwater 

MTT at higher flows. Whereas at Maimai, the same dynamics are observed, however, in reverse. 

That is, streamwater MTT is stable at high flow and highly variable at low flow. Redistribution of 

moisture to deep groundwater storage is minimal at Maimai and catchment runoff is predominantly 

sourced by young shallow flowpaths. At higher discharge, these shallow young flowpaths 

effectively “drown out” the bedrock groundwater signal and MTT is thus stable, reflecting only 

the single young shallow storage unit.  During low flow periods bedrock groundwater 

contributions are proportionately significant and streamwater MTT becomes highly flow 

dependent and highly variable. Although streamwater MTT is also controlled by the proportional 

mixing of the two main catchment storage units at Maimai, as in the Scottish catchments, the 

conditions under which these controls dominate are opposite.    
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2.6.4 An evolving perceptual model of Maimai hydrology 

So why have previous studies at Maimai not seen bedrock groundwater? Simply put, bedrock 

groundwater contributions to streamflow at Maimai are extremely limited. Figure 2.8 shows our 

conceptual model of the primary groundwater flowpaths and general groundwater flow domain. 

The lack of fractured bedrock, low bedrock conductivity and predominately downward hydraulic 

gradients result in a relatively isolated groundwater body that has limited connectivity to the stream 

channel. Further, the sharp permeability contrast at the soil-bedrock interface causes most 

infiltrating water to shed laterally downslope at this boundary instead of continuing vertically into 

the bedrock. This, combined with shallow soils, minimal available soil-storage and long periods 

of high antecedent wetness means that the majority of precipitation is filtered only through the soil 

profile en route to the stream channel resulting in the now well-observed high runoff ratios, large 

volumes of quickflow and young runoff observed at Maimai (Mosley, 1979; Pearce et al., 1986; 

McDonnell, 1990).  

Although bedrock groundwater storage (based on porosity and volume of saturated bedrock) is 

large at M8, the low bedrock hydraulic conductivity results in minimal groundwater flux within 

the headwater aquifer. This has the effect of driving up bedrock groundwater MTT, while 

simultaneously reducing contributions to the stream channel. So although the potential of bedrock 

groundwater to influence streamwater MTT is high because its age is much greater than that of 

other shallower storages, this is offset by the low total bedrock discharge volume – too small to 

considerably alter streamwater MTT under most runoff conditions.  This dichotomy establishes 

what is effectively a two-storage compartmentalized hydrologic system with a young, shallow and 

dominant upper domain and a much deeper and relatively isolated older groundwater body 

beneath. If bedrock groundwater contributions were to increase, say through weathering-induced 

increases in permeability, this would reduce groundwater MTT through greater flux. Interestingly, 

this drop in bedrock groundwater MTT would result in an increase in catchment MTT, as the 

greater contribution of bedrock groundwater to runoff would increase the overall age of 

streamwater.  
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 Lastly, it is necessary to address the conflicting hillslope versus catchment runoff ratios that 

initially led to the notion of a hillslope bedrock underflow runoff mechanism. Upon further 

inspection, the 110 day hillslope monitoring period conducted by Woods and Rowe (1996) at 

Maimai occurred during the summer months when high evapotranspiration budgets and reduced 

precipitation had dried up the catchment. This had the effect of increasing the necessary 

precipitation input to surpass hillslope runoff generation thresholds, and thus, many small storms 

produced no hillslope runoff. This caused the hillslope runoff ratio during this period to 

dramatically deviate from the annually averaged total catchment runoff ratio.   

Although event-scale water table dynamics were observed within the bedrock aquifer both during 

our study and previously (Gabrielli et al., 2012), they are likely an integrated response to changes 

in barometric pressure (Van der Kamp and Gale, 1983), precipitation-induced pressure 

propagation (Rasmussen, 2001), and small amounts of direct recharge to the water table. In the 

steep landscape at Maimai, increases in water table height over both storm and seasonal time scales 

do not equate to large changes in groundwater hydraulic head. For example, a mid-slope water 

table may rise 0.2 m during a large storm event, however, if this position were 30 m above the 

riparian zone, the resulting hydraulic gradient change would be only 0.7%. In unfractured low 

conductivity bedrock this would not alter considerably the groundwater flow structure, and no 

measurable increase in bedrock groundwater discharge would likely occur. Although, small rises 

in water table can produce large volumes of hillslope discharge in shallow soils due to a 

transmissivity feedback mechanism (Bishop et al., 2004), we do not expect this phenomena to 

occur within the deeper bedrock underlying Maimai. 
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Figure 2.8 Conceptual model of the bedrock groundwater flow domain through various cross 
sections of the M8 catchment. (a) shows the location of cross sections, as well as the 
approximate area of observed bedrock groundwater recharge within the magenta outline and 
the approximate area of observed bedrock groundwater discharge within the green outline. All 
cross sections show the accumulation of soil water at the soil-bedrock interface with increasing 
distance downslope which functions as the primary source of young streamflow for the 
catchment outlet. Cross section A-A’ (b) shows deeper and older contributions of bedrock 
groundwater discharge to the lower reach of the stream channel with some portion of hillslope 
recharge being lost to the larger regional groundwater system. Cross section B-B’ (c) shows 
only groundwater recharge occurring across all landscape positions in the upper portion of the 
catchment, and cross section C-C’ (d) displays the longitudinally split view of the catchment 
length. Here, upper reaches of the riparian zone contribute soil water to bedrock groundwater 
recharge and to stream discharge, while the lower reach of the riparian zone contributes both 
hillslope derived soil water and bedrock groundwater to the stream. 

Early  water balance estimates at Maimai by Pearce et al. (1977) calculated approximately 100 

mm/y loss to deeper groundwater. In a system which receives 2600 mm of rainfall annually and 
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has minimal groundwater flux, small uncertainties inherent in precipitation, discharge and 

evapotranspiration measurements can be equal to the total estimated loss to deeper groundwater. 

We are therefore cautious to place an exact value on bedrock groundwater recharge and discharge 

amounts.  However, our new analysis suggests that approximately 200 mm/y is recharged to the 

bedrock aquifer, half of which is discharged back into the catchment above the M8 weir and thus 

contributes to runoff generation processes, while the other half likely subsidizes flows at larger 

catchment scales down valley from the upper M8 headwaters (the subject of active ongoing work).  

2.7 Conclusion 

Our findings showed that despite a relatively shallow bedrock groundwater aquifer that displayed 

both event and seasonal scale water table fluctuations, bedrock groundwater contributions to 

catchment discharge at Maimai were minimal. The unfractured low-conductivity bedrock provided 

no opportunity to move considerable volumes of excess soil moisture to depth over short periods 

of time, and therefore, bedrock groundwater infiltration was controlled we hypothesize by the 

permeability of the bedrock matrix, occurring as flow through the primary porosity of the 

conglomerate bedrock. Although bedrock groundwater storage itself was considerable, the low 

recharge rate combined with stable hillslope water tables drove an annually constant discharge to 

the riparian corridor. With the exception of some transient event-scale switches in vertical 

groundwater gradient at two well locations, general gradient direction remained temporally and 

spatially constant throughout all wetness conditions. We observed all hillslope locations and mid 

and upper reaches of the riparian zone to be groundwater sinks, while a small zone of upwelling 

bedrock groundwater was identified near the catchment outlet.  

We noted a shift in the control on streamwater MTT from soil storage effusion during the 8-month 

wet season to a combined soil and bedrock storage effusion during the drier summer months. 

During the wet season, large volumes of young soil water controlled the streamwater MTT signal 

and maintained a relatively stable and young streamwater age even during inter-storm periods. 

During drier months, bedrock groundwater contributions to runoff became proportionally large 

enough to exert some control on streamwater MTT. During these intervals, stream age fluctuates 
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significantly between young and old conditions corresponding to storm and inter-storm periods 

and reflected the mixing of the two main catchment storage units.  

This work reinforces the need to maintain large-scale field-based investigations to provide new 

data sets that inform the next generation of catchment and regional scale hydrologic modeling 

(Burt and McDonnell, 2015), especially regarding differences in celerity and velocity (McDonnell 

and Beven, 2014) which differentially control the hydrograph response and transit time 

distributions.  Our work highlights the control of bedrock characteristics, specifically permeability 

in controlling catchment runoff process and in setting streamwater MTT.  

2.8 Transition statement 

Chapter 2 established the general hydrogeologic characteristics of the Old Man Gravel bedrock at 

the Maimai watershed. This chapter linked bedrock properties with the bedrock groundwater flow 

domain to identify the groundwater-surface water linkages responsible for the time-varying nature 

of streamwater discharge. It also identified general understanding of groundwater flow, storage 

and age distribution within the catchment, providing the foundational understanding of the 

underlying headwater aquifer. This understanding was then built upon in Chapter 3, which sought 

to identify the geologic control of bedrock on the timing of deep groundwater recharge. While 

bedrock permeability was identified as a critical component controlling groundwater age and 

movement in Chapter 2, Chapter 3 showed that it was also a key factor for mediating bedrock 

groundwater recharge timing.  
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CHAPTER 3 

GEOLOGIC CONTROL ON THE SEASONALITY OF RECHARGE IN THE CRITICAL 

ZONE 

Status: Submitted September 2017 

Citation: Gabrielli, C.P., J.J. McDonnell (2017), Geologic control on the seasonality of recharge 

in the critical zone. Water Resources Research, in review. 

3.1 Abstract 

The mechanisms and processes controlling the timing and magnitude of recharge to headwater 

aquifers are not fully understood. Here we study the controls of geology on the mechanisms of 

bedrock groundwater recharge and examine specifically how bedrock characteristics mediate 

seasonal patterns of deep groundwater recharge in the well-studied steep and wet Maimai 

headwater catchment in New Zealand. We found extreme seasonality in the timing of bedrock 

recharge despite almost no seasonality in annual precipitation and little seasonality in catchment 

runoff. Isotopic analysis and noble gas measurements of bedrock groundwater revealed that 

recharge occurs almost exclusively during the cold winter months. We developed a simple 

empirical recharge model that showed nearly 60% of annual recharge was produced from only 

25% of annual precipitation during the 3 peak winter recharge months. In contrast, during the 3 

peak summer months only 2.4% of annual recharge was produced from almost the same volume 

of precipitation – resulting in a 24-fold difference in recharge efficiency between peak summer 

and winter months. A comprehensive bedrock characterization of 40 bedrock wells and a new plot-

scale sprinkler and tracer experiment identified a distinct lack of bedrock fractures. The absence 

of fractures forced all bedrock recharge to occur through the low permeability bedrock matrix. We 

found that during winter months recharge was geologically mediated by the ability of the bedrock 

to transfer water to depth. During the summer period, we hypothesize that the well-documented 
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hillslope-scale preferential flow networks allow quick shedding of stormflow from the catchment 

accounting for high runoff ratios despite minimal recharge. The increased summer 

evapotranspiration flux depletes between-storm soil moisture, largely negating summer bedrock 

recharge. We found no correlation between monthly, seasonal or annual precipitation and recharge. 

This work shows that a simple and temporally stable rainfall-runoff relation can mask a highly 

seasonal and geologically controlled recharge regime. It is a cautionary tale for predictions of 

recharge scenarios based solely on precipitation and/or runoff dynamics, even in wet regions.  

3.2 Introduction 

Groundwater recharge in steep wet headwater catchments is often poorly studied and poorly 

described in the hillslope hydrology literature. That is because most of the work in the field to date 

has focused on event-scale runoff dynamics (i.e. lateral flow) through the  often thin veneer of soil 

covering steep, wet hillslopes (Hewlett and Hibbert, 1967; Harr, 1977; Mosley, 1979; Sklash and 

Farvolden, 1979). In the past two decades, process studies have begun to explore storage and 

runoff mechanisms extending much deeper into the critical zone to include saprolite and bedrock 

that underlie steep slopes (Kosugi et al., 2006). New flowpath insights (Anderson et al., 1997), 

new runoff generating mechanisms (Katsura et al., 2014), new storage release processes (Sayama 

et al., 2011) and new understanding of the time-varying controls on streamwater mean transit time 

(Katsuyama et al., 2010; Asano and Uchida, 2012; Hale and McDonnell, 2016) have all evolved 

from this consideration of the deeper system within headwaters.  

But despite the now considerable body of literature on catchment storage release and drainage of 

the headwater aquifer (Brutsaert and Nieber, 1977; Tallaksen, 1995; Kirchner, 2009; Price, 2011), 

there is comparatively little work focused on the processes and mechanisms that control recharge 

to this aquifer (e.g.  Wilson and Guan (2004)). This is in part due to the extreme difficultly and 

time-consuming nature of such characterization. Measuring the spatial patterns of soil depth, the 

characteristics of the soil-bedrock interface and the nature of below-soil saprolite, weathered and 

unweathered bedrock on steep hillslopes is a major challenge. And only a few studies have done 

this (Anderson et al., 1997; Kosugi et al., 2008). Additionally, precisely measuring and quantifying 

recharge can be complex, convoluted and contain large uncertainties (Scanlon et al., 2002). All of 
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this explains why estimates of groundwater recharge in headwater catchments have often used 

hydrograph dynamics and water balance measurements as a proxy for water that does or does not 

infiltrate into the deeper system (Lee et al., 2006; Kirchner, 2009; Price, 2011), or why many 

studies focus solely on the timing or magnitude of recharge, but lack process-based insights to the 

internal mechanisms controlling observed dynamics (Winograd et al., 1998; Gleeson and 

Manning, 2008; Smerdon et al., 2009; Welch et al., 2012; Taylor et al., 2013a). Consequently, our 

understanding of groundwater in steep, wet headwaters is skewed heavily toward general 

hydrograph-derived metrics of storage and release (Eckhardt, 2005; Hammond and Han, 2006; 

Wagener et al., 2007) with relatively few insights into the fundamental controls on groundwater 

infiltration and recharge, its spatial and temporal dynamics, the hierarchy of these controls and 

how they link to storage and release of the underlying headwater aquifer.  

Groundwater recharge in headwater catchments is vital to maintaining groundwater resources in 

lower lying areas (Winter et al., 1998), as recharge in the headwaters is often greater than lower 

relief portions of the landscape (Jasechko et al., 2016). Catchment scale modeling exercises have 

provided valuable insight into headwater recharge processes. Gleeson and Manning (2008) 

illustrated landscape scale controls on the headwater aquifer by revealing how complex 

interactions between topography, hydraulic conductivity, and recharge control partitioning of flow 

between local and regional groundwater systems. At the hillslope scale, bedrock surface 

topography, combined with soil depth and storm size, have been shown to control the formation 

and location of fill and spill features at the soil-bedrock interface (e.g. Tromp‐van Meerveld and 

McDonnell (2006)). These zones of transient saturation can act as locations of preferential deep 

recharge when they overlap regions of higher bedrock permeability (Hopp and McDonnell, 2009).  

Recent hillslope-scale irrigation experiments have begun to further elucidate the controls and 

characteristics of hillslope-scale groundwater recharge dynamics (Brooks et al., 2004; Tromp‐van 

Meerveld et al., 2007; Graham et al., 2010a; Jackson et al., 2016; van Verseveld et al., 2017). 

These studies have shown generally that bedrock properties influence subsurface stormflow 

dynamics and the hillslope and catchment scale water balance; but how bedrock characteristics 

influence the mechanisms controlling the proportion of deep recharge is still poorly understood. 
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Fracture networks within hillslope bedrock have been highlighted as important transport pathways 

capable of carrying large volumes of soil water to depth over short time intervals (Montgomery et 

al., 1997; McGuire and McDonnell, 2010). These preferential flowpaths can provide rapid and 

localized recharge to the underlying aquifer, controlling seasonal variations in recharge (Abbott et 

al., 2000), groundwater isotopic signatures (Gleeson et al., 2009) and catchment water balance 

(Iwasaki et al., 2014).  Appels et al. (2015) showed, however, that although fractures (represented 

as zones of higher bedrock permeability) were critical to modeled recharge dynamics when event-

based saturation existed at the soil-bedrock interface, slower more persistent unsaturated vertical 

flux contributed greater total volume to annual deep recharge at the hillslope scale – revealing the 

complex nature of bedrock interactions on recharge.   

Although it is clear that the soil-bedrock interface characteristics and soil moisture patterns are 

critical to recharge, many questions remain: What conditions are required to initiate bedrock 

groundwater recharge in the headwaters? What are the spatial and temporal patterns of these 

conditions? How do soil and bedrock characteristics work in concert (or in opposition) for deep 

recharge? And, how is total recharge magnitude and timing set by hydroclimatic, colluvial and 

geologic interactions?   

Here we seek answers to these questions through a coupled field and modelling based approach 

using data from the well-studied Maimai, M8 watershed in New Zealand. We remove the hillslope 

soil mantle to determine bedrock characteristics and to determine its role in redistributing water to 

depth, and we drill the critical zone down to 9 m at 40 locations across our 4.5 ha catchment to 

explore the depth and hydraulic characteristics of the unsaturated bedrock above the water table 

and below the soil-bedrock interface. Recent work by Gabrielli et al. (2017) has shown that the 

spatial extent, dynamics, and age of underlying bedrock aquifer, as well as its contribution to 

streamflow and influence of streamwater age, are controlled by bedrock permeability. We leverage 

new noble gas recharge temperature data, groundwater isotopic composition and long term 

climatic and runoff data to explore directly the hillslope-scale groundwater recharge processes at 

this steep wet site. In so doing, we connect independent data sets to establish a coherent and 

parsimonious description of catchment scale subsurface hydrologic partitioning, and further build 
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upon the long Maimai legacy and its critical role in long-term hydrologic monitoring and 

discovery. Finally, we examine the connections between seasonal climate patterns and 

groundwater hydrochemistry, age, and storage dynamics to specifically ask: 

i. How do bedrock characteristics control recharge mechanisms?  

ii. When does groundwater recharge occur on the steep hillslopes? 

iii. How does the soil mantle affect the recharge process?  

iv. How does Maimai compare to other sites? 

3.3 Study site 

The Maimai is located approximately 15 km inland from the northwest coast of the South Island 

of New Zealand (Figure 3.1; 42°05'S 171°47'E). The highly dissected landscape is defined by its 

short steep slopes, thin soils and high runoff ratios. Hillslope lengths average less than 50 m and 

average slope angle is 34° with short sections nearing 55°.  

The wet temperate coastal environment produces, on average, 2600 mm of rainfall annually with 

nearly 150 rain-days per year. Frontal systems moving in from the Tasman Sea produce long 

duration low intensity storms, with average rainfall intensities of ~1.2 mm/h, although storms have 

produced intensities upwards of 30 mm/h and it is not uncommon for total rainfall to exceed 100 

mm for single events. There is a slight seasonality in the rainfall regime with the mid-winter 

months (Jul-Aug) being the wettest and mid-summer (Jan-Feb) being the driest. The low 

catchment elevation and proximity to the coast result in only 1-2 snow days each year which melt 

within hours to days.  

The constant rainfall results in persistently high antecedent conditions and a soil mantle that 

remains within 10% of saturation for most of the year (McGlynn et al., 2002). The catchment is 

defined by its highly responsive and flashy storm hydrograph. An annual runoff ratio of ~60% is 

among the highest of any research catchment reported in literature (Anderson and McDonnell, 

2005). Approximately 1000 mm (65%) of the 1550 mm of average annual runoff leaves the 
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catchment as quickflow, as defined by the Hewlett and Hibbert (1967) separation method 

(McDonnell, 1990). 

 
Figure 3.1 M8 sub-catchment with location of bedrock and soil wells (a) Maimai Experimental 
Watershed (b) and New Zealand locational inset (c). NGT wells are those sampled for noble 
gas recharge temperature (NGT) measurements.  

Soils are thin (range: 0.1 - 1.8 m, average: 0.6 m) and broadly classified as Blackball Hill soils 

(McDonnell, 1990). They are characterized as podsolized to mottled yellow-brown earths along 

the hillslopes and ridges and gley soils within the poorly drained hollows and riparian zones. 
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Infiltration capacity in the top 170 mm humic horizon is as great as 6100 mm/hr and average 

hydraulic conductivity of the upper mineral soil is on the order of 250 mm/h (McDonnell, 1990). 

The bedrock underlying the catchment is known as Old Man Gravel (OMG) belonging to a larger 

formation known as the Old Man Group (Bowen, 1967) which was laid down in the early 

Pleistocene as a thick (> 400 m) layer of glacial outwash during an erosional sequence in the 

formation of the Southern Alps (Mortimer et al., 2001). The bedrock is a conglomerate composed 

primarily of sandstone clasts (greywhacke) with small additions of schist and granite in a compact 

weakly cemented sandy-clay matrix. The rounded clasts range in size from 10 to 500 mm in 

diameter, but are predominantly less than 200 mm in diameter (Mortimer et al., 2001).  

This research is focused primarily in the 4.5 ha M8 sub-catchment (Figure 1) within the Maimai. 

Landscape structure, geology, soil and runoff characteristics in the M8 are similar to that of the 

other sub-catchments within the larger Maimai Experimental Watershed (McGlynn et al., 2004). 

Total catchment relief in M8 is approximately 100 m with elevations ranging from 250 to 350 

m.a.s.l. For review of previous research at M8, see McGlynn et al. (2002). 

3.4 Data and methods 

Our study approach starts by defining bedrock characteristics and the mechanism of bedrock 

groundwater recharge through borehole testing and a plot-scale sprinkler experiment. Seasonality 

in bedrock recharge is then identified through groundwater measurements of noble gas and stable 

isotopes of water. Armed with the understanding of bedrock infiltration processes we quantify 

seasonal fluctuations in hydroclimatic forcing that drive catchment wetness conditions which 

control temporal recharge patterns. We construct a simple empirical recharge model constrained 

by known mean annual recharge magnitude and temperature to explore intra and inter-annual 

patterns of bedrock recharge timing and volume over a 13-year period.  Our findings are related to 

seasonality of various hydroclimatic metrics. We finish by running the model for an additional 1 

year period and compare results to daily soil water data to further identify linkages between 
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catchment wetness patterns, soil water dynamics, runoff characteristics, geology and the 

seasonality of recharge.   

3.4.1 Bedrock characteristics and recharge mechanisms 

3.4.1.1 Hydraulic conductivity 

Average bedrock saturated hydraulic conductivity (Ksat) was determined for 4 major landscapes 

units within the catchment: the riparian zone, toe-slopes, hillslopes and ephemeral hollows. Forty 

bedrock wells were drilled within these landscape positions and Ksat was calculated following the 

Hvorslev (1951) approach using falling-head slug test data, as outlined in Gabrielli et al. (2017).  

3.4.1.2 Sprinkler Experiment: Bedrock infiltration rate and mechanisms of recharge 

We conducted a plot scale sprinkler experiment on an exposed section of bedrock to identify the 

flow mechanisms associated with bedrock groundwater recharge and to test plot-scale bedrock 

infiltration rates. We specifically sought to distinguish between recharge by bedrock fracture flow 

and recharge by diffuse matrix flow. Fracture flow in steep headwater catchments has been shown 

to move subsurface storm flow rapidly to depth on time scales of individual storm events 

(Montgomery et al., 1997), while diffuse porous media flow is governed by the primary porosity 

of the bedrock matrix and occurs over much greater time scales. We expected these different 

mechanisms of bedrock recharge to be associated with different catchment wetness conditions and 

different hydroclimatic temporal patterns.  

The sprinkler experiment was conducted on a previously trenched and instrumented planer 

hillslope just downstream of the main M8 catchment weir (Woods and Rowe, 1996; Graham et al., 

2010b). A small landslide occurred in 2013 on the hillslope removing the overlying colluvium 

down to the soil-bedrock interface over an area of approximately 300 m2 (30 m upslope by 10 m 

across slope). We constructed a 150 mm tall cement perimeter around the landslide scar to isolate 

and collect surface runoff from within the landslide area.  
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Water was pumped from a 200 L stilling basin through a sprinkler system onto the open bedrock 

surface. Surface runoff was collected and routed back to the stilling basin creating a closed loop 

system. Once the initial bedrock surface storage was filled, bedrock infiltration and surface 

evaporation represented the only withdrawal of water from the system. To isolate bedrock 

infiltration from evaporative loss, we assumed no evaporation between the hours of 22:00 and 

06:00. A capacitance-type water level logger (Odyssey®), recording at 10 minute intervals, 

measured the drop in  water level within the stilling basin. Using the surface area of the stilling 

basin, the drop in water level was converted to a volumetric loss rate equal to the rate of water lost 

to the bedrock.  We operated the sprinkler continuously for 96 hours, providing 4 nights of 

measurements. In traditional sprinkler experiments where prescribed rainfall rates rarely exceed 

the soil infiltration capacity, large volumes of input water are required along with precise control 

of pumping and sprinkler rates. These requirements have historically made field-based sprinkler 

experiments logistically difficult to perform. However, our sites absences of soil, low bedrock 

infiltration rates, and the collection of applied sprinkler water allowed for a simple and novel 

permutation of the traditional sprinkler experiment. Because the rainfall application rate was much 

greater than bedrock infiltration, excess surface water was always present at the bedrock surface. 

This condition made it possible to relax the need for exact control or knowledge of sprinkling rates, 

considerably simplifying the field design.  

Bedrock infiltration was determined by fitting a linear regression to stilling basin water level 

measurements for each night. The slope of the line (m/h) multiplied by the surface area of the 

stilling basin (m2) equaled the volumetric loss rate of water from the system (m3/h). We averaged 

the slopes from the 4 nights to create a master slope. Finally, this average volumetric loss rate was 

divided by the wetted bedrock area (~10 m2) to determine the plot-scale bedrock infiltration rate.  

We additionally conducted tracer and hydrometric analysis to identify bedrock flow paths and 

distinguish between fracture and matrix flow. We recorded water table elevation in two bedrock 

wells, one located within the wetted area and one located just downslope, to capture rapid 

infiltration of sprinkler water to the water table. Brilliant blue dye and a salt slug (concentration of 

200 mg/L) were added to the pumped water at hour 48.  We monitored bedrock groundwater 
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electrical conductivity prior to, during, and for 120 hours after the sprinkler experiment concluded, 

to identify the breakthrough curve of infiltrating water. Finally, we destructively analyzed the 

bedrock surface at the end of the experiment to identify bedrock flowpaths. Visual observations 

were taken to quantify depth of dye penetration and degree of bedrock fracturing.  

3.4.2 Recharge seasonality 

3.4.2.1 Noble gas measurements  

Atmospheric gases are taken into solution by rainfall and soil water at concentrations proportional 

to the local environmental temperature (Lindsay, 1979), and concentrations of dissolved noble 

gases remain fixed once soil water intercepts the saturated zone. By measuring noble gas 

concentration in groundwater samples – and correcting for measured excess gas – the 

environmental temperature under which groundwater was recharged can be determined (Burnard, 

2013). This technique, known as the noble gas recharge temperature (NGT), has traditionally been 

employed in sedimentary systems for paleoclimatology studies where NGT values reflect local 

mean annual air temperature (MAAT) at the base of the vadose zone (Stute et al., 1992). However, 

recent work in two separate fractured bedrock systems has shown that NGTs can vary greatly from 

MAAT (Warrier et al., 2012; Niu et al., 2017). In these situations, NGT instead reflects 

environmental conditions during seasonally focused recharge periods and provides a means to 

directly identify seasonally selective patterns in groundwater recharge by matching NGT values 

to seasonal environmental temperature variations.  

We analyzed gas concentrations in groundwater samples taken from two bedrock wells located in 

the toe-slope and riparian zone within the lower part of the M8 catchment (Figure 3.1). Samples 

were collected under deep baseflow conditions and 3 well volumes were evacuated from each well 

prior to sampling. Dissolved Argon (Ar) and Nitrogen (N2) were measured in both samples at the 

GNS Science Stable Isotope Laboratory (Lower Hutt, New Zealand) and NGT was determined 

using the standard graphical method (Heaton and Vogel, 1981; Bohlke and Krantz, 2003).  
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3.4.2.1 Stable isotope measurements 

We used the possible existence of a seasonal contrast in isotopic composition between soil and 

bedrock groundwater to further test for seasonally selective bedrock groundwater recharge. Soil 

water mean transit time was previously established at less than 4 months for the M8 catchment 

(Stewart and McDonnell, 1991). Late summer soil-water was therefore expected to heavily reflect 

the isotopic composition of summer precipitation. Due to simple temperature driven fractionation, 

bedrock groundwater was expected to have an isotopic composition distinctly more depleted than 

late summer soil water if recharged was sourced primarily from colder winter soil water (Kendall 

and McDonnell, 2012).  

We collected soil, surface and bedrock groundwater samples for isotope analysis over 3 sampling 

periods all under summer low flow conditions. Specific sampling dates were: Jan 16, 2015, Feb 1, 

2015 and Feb 24, 2015. Streamwater was collected at the catchment weir during each sampling 

period, and different soil and bedrock wells were sampled for each of the three periods. Samples 

collected during the first two periods were stored in 30 ml glass scintillation vials and sealed with 

para-film. Samples were analyzed at the Watershed Hydrology Lab at the University of 

Saskatchewan using a Los Gatos Research liquid water isotope analyzer that utilizes high-

resolution laser absorption spectroscopy. Analytical precision was ± 0.2 ‰ for O18 and ± 1.0 ‰ 

for 2H. Samples from Feb 24, 2015 were analyzed at the GNS Science Stable Isotope Laboratory 

(Lower Hutt, New Zealand). Samples were analyzed using a GVI Isoprime mass spectrometer 

coupled with a PyrOH elemental analyzer. Analytical precision was ± 0.1 ‰ for O18 and ± 1.0 ‰ 

for 2H.  

3.4.3 Climatic and hydrologic seasonality 

To identify seasonality in climate and hydrologic metrics, we used long term rainfall-runoff 

records from the M8 subcatchment within Maimai, as well as publically available data from a 

meteorological station maintained by the New Zealand National Institute of Water and 

Atmospheric Research located in the township of Reefton, 5 km west of Maimai (Lat: -42.11578, 

Long:171.86014).   
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Daily rainfall (P) and catchment discharge (Qtot) were measured at M8 from 1975-1987. Rainfall 

was recorded using a tipping bucket rain gauge located 500 m from the M8 outlet, and M8 

discharge was recorded with a 90° v-notch weir located within M8. We also calculated baseflow 

(Qbase) using a recursive digital filter on 1-hour discharge data via the WHAT hydrograph analysis 

tool (Lim et al., 2005). Direct runoff (Qdir) was also calculated as total runoff minus baseflow (Qtot 

– Qbase). We used daily temperature records (T) from the Reefton met station to calculate potential 

evapotranspiration (PET) from 1975-87 using the Thornthwaite (1948) approach. Monthly 

averaged T, P, Qtot, Qbase, Qdir and PET over the 13-year monitoring period were used to identify 

intra and inter annual seasonal trends.  

3.4.4 Bedrock groundwater recharge model  

We constructed a simple empirical recharge model combined with a temperature-based energy 

balance to explore temporal patterns of bedrock groundwater recharge over the 13-year period 

from 1975-1987. We used inverse modeling to identify the best fitting parameter set that 

constrained model output to known observations of annual bedrock groundwater recharge depth 

and temperature, and compared the resulting temporal pattern of recharge to hydroclimatic 

variables. Finally, we modeled bedrock groundwater recharge for the year 2015 using the 

previously established parameter set and compared model output to daily soil water data to further 

elucidate the temporal linkages between catchment storage conditions, soil water states and 

bedrock recharge. 

We used this simple modeling exercise not to identify or capture exact physical processes of 

groundwater recharge or bedrock infiltration, but instead to identify how seasonal patterns of 

recharge associated with seasonal climate, storage and wetness conditions and to understand how 

bedrock characteristics may shape these associations.  

3.4.4.1 The model 

We assumed that bedrock groundwater recharge was primarily controlled by catchment wetness 

conditions. We therefore used a simple water balance approach focusing on dynamic storage 
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(DS(t)) as a proxy for catchment wetness and as the single input variable to the model. DS(t) was 

calculated as:  

𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) − 𝑄𝑄(𝑡𝑡) − 𝑃𝑃𝑃𝑃𝑇𝑇(𝑡𝑡)                  (Eq. 3.1) 

Where P is precipitation, Q is streamflow and PET is potential evapotranspiration as described 

above. DS(t) was calculated on a daily time step from 1975-1987.  

Bedrock recharge, I(t), was then calculated on a daily time step using a simple 3 parameter model, 

such that: 

𝐼𝐼(𝑡𝑡) =  �
0                         𝑖𝑖𝑓𝑓     𝐷𝐷𝐷𝐷(𝑡𝑡) < 0  

𝐾𝐾𝐾𝐾𝑎𝑎𝑡𝑡 ∗ 𝛼𝛼1                𝑖𝑖𝑓𝑓   0 < 𝐷𝐷𝐷𝐷(𝑡𝑡) <  𝛽𝛽  
𝐾𝐾𝐾𝐾𝑎𝑎𝑡𝑡 ∗ 𝛼𝛼2                𝑖𝑖𝑓𝑓     𝐷𝐷𝐷𝐷(𝑡𝑡) >  𝛽𝛽        

�            (Eq. 3.2) 

Where Ksat is equal to the sprinkler experiment derived bedrock infiltration rate, 𝛼𝛼1 and 𝛼𝛼2 are 

scaling factors such that 𝛼𝛼1 < 𝛼𝛼2 and 0 ≤ [α1, α2] ≥ 1, and ß is a threshold value delimiting between 

lower and higher rates of recharge. This simple empirical model allowed for 3 rates of bedrock 

recharge based on different catchment wetness conditions providing a limited amount of flexibility 

to more realistically capture differential rates of recharge associated with changes in catchment 

wetness conditions. All infiltration into the bedrock was assumed to reach the bedrock 

groundwater table.  

Since the focus of this modeling exercise was to identify temporal trends in bedrock infiltration 

we included a temperature-based energy balance to constrain the timing of recharge determined 

by equation 3.2. That is, it is possible that modeled recharge from equation 3.2 could equal the 

observed annual recharge depth, but timing of recharge would not match observation. Including a 

temperature-based weighting of infiltration ensured both timing and magnitude of recharge were 
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captured. To accomplish this, we calculated the mean weighted annual recharge temperature, TI, 

as: 

𝑇𝑇𝐼𝐼 = ∑ 𝐼𝐼𝑖𝑖∗𝑇𝑇𝑖𝑖
𝑦𝑦∗𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡

𝑜𝑜
𝑖𝑖=1     (Eq. 3.3) 

Where Ii is daily infiltration as calculated in equation 3.2, Ti is daily air temperature based on 

records from the Reefton met station, Itot is the total infiltration over the full time series, and y is 

the number of years modeled. This approach weighted daily recharge by the daily air temperature, 

providing a means to calculate the mean annual temperature of modeled bedrock recharge. Using 

the parameter identification processes described below, we then constrained the model output to 

known annual bedrock recharge depth and temperature.  

3.4.4.2 Parameter identification and model input filtering 

Parameter identification was conducted by varying α1 and α2 from 0 to 1.0 in 0.001 increments, 

and ß from 0.1 to the maximum value of DS(t) on an interval that produced 50 equally spaced 

steps. Model output was compared to target values of annual bedrock groundwater recharge and 

temperature. Bedrock groundwater recharge at Maimai has been reported between 100 mm 

(Pearce and McKerchar, 1979) and 200 mm annually (Gabrielli et al., 2017). We used 150 mm 

as the model target. Target mean annual groundwater recharge temperature was based on the mean 

of the two NGT values as described above.  

We evaluated the goodness of fit for each parameter set using the least squares method as our 

objective function. The least squares method minimizes residuals between modeled and target 

values. A final best-fitting parameter set was identified and seasonal variability in modeled 

recharge and hydroclimatic variables were compared. 

As an additional step in the modeling process we applied a wavelet-based low pass filter to the 

daily DS(t) time series. Temporal patterns of groundwater recharge have been commonly observed 

to follow seasonal trends across a range of geologic and climatic settings (Gee and Hillel, 1988; 
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O'Driscoll et al., 2005; Scanlon et al., 2006; Dripps and Bradbury, 2007; Jasechko et al., 2014). 

These longer-term seasonal trends are generally associated with subtle seasonal shifts in climate 

forcing that are embedded within the higher frequency daily or weekly climate patterns. In order 

to explore if longer-term patterns of recharge were driven by longer-term patterns of catchment 

wetness conditions we applied the low pass filter to the DS(t) input function using 10 different 

filter lengths to extract embedded lower frequency signals. The filtered DS(t) signal reflects 

changes in catchment wetness associated with the length of the applied filter, so that a 0-day filter 

equals the unfiltered daily DS(t) signal, while a 30-day filter corresponds to monthly variations in 

DS(t), and a 180-day filter corresponds to summer-winter seasonal variations. We specifically 

tested filter lengths of 0, 3, 6, 13, 25, 50, 100, 200, 400, and 800 days to examine how shifts in 

catchment wetness control shifts in bedrock recharge on time scales from daily, to weekly, to 

monthly to seasonally to inter-annually.  

3.4.4.3 Soil water comparison 

Finally, daily water table depth was monitored in 4 soil wells located in the riparian zone, toe-

slope, hillslope hollow and upper hillslope positions within the M8 catchment for the 2015 

calendar year. We compared soil water depth with calculated 2015 DS(t) and bedrock groundwater 

recharge to identify how patterns in catchment wetness linked to soil water storage and modeled 

recharge. 

3.5 Results 

3.5.1 Mode of recharge: Bedrock sprinkler experiment and bedrock characterization 

3.5.1.1 Bedrock Characterization 

Spatial patterns of saturated bedrock hydraulic conductivity largely followed the main geomorphic 

landscape units within the catchment. Although considerable variability existed within each 

landscape unit, mean hydraulic conductivity increased from hillslope to hollow to toe-slope to the 

riparian zone. Mean values, respectively, were 5.5 x 10-8 m/s, 7.5 x 10-7 m/s,   7.2 x 10-6 m/s and 

1.6 x 10-5 m/s (Table 3.1).  
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Table 3.1 Landscape position and mean saturated hydraulic conductivity (Ksat) values for the 
40 bedrock wells tested through falling-head slug tests. 

Landscape 
unit 

Number of 
wells 

Mean Ksat, 
m/s 

± 1 standard 
deviation, m/s 

Hillslope 13 5.5 x 10-8   8.8 x 10-8 
Hollow 10 7.5 x 10-7  1.2 x 10-6 
Toe-slope 6 7.2 x 10-6  8.0 x 10-6 
Riparian 11 1.6 x 10-5  2.0 x 10-5 

 
 

3.5.1.2 Sprinkler Experiment 

During the 96-hour sprinkler experiment an equivalent rainfall depth of 4950 mm, or 

approximately 2 years of rainfall, was applied to the 10.5 m2 open bedrock surface. Figure 3.2 

shows the water elevation time series from the stilling basin during the sprinkler experiment. 

Linear regression models fit well to water table drawdown data for each night (R2: 0.99, 0.97, 0.99, 

0.98 for nights 1-4, respectively), indicating a relatively constant rate of bedrock infiltration 

through each evening. Water loss from the stilling basin ranged from 0.70 to 3.97 l/h and averaged 

2.2 ± 1.17 l/h, corresponding to an average bedrock infiltration rate of 5.69E-08 ± 3.09E-8 m/s. 

The sprinkler-based mean bedrock infiltration rate corresponded well to the mean saturated 

hydraulic conductivity of hillslope bedrock wells tested via slug tests (Table 3.1) and also to both 

previous measurements at the site (Graham et al., 2010b; Gabrielli et al., 2012).  
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Figure 3.2 Stage height time series of sprinkler stilling basin with highlighted sections 
showing selected data from each night (a), selected stage data with fitted linear regression (b, 
c, d and e). 

Destructive analysis of the bedrock surface revealed no evidence of fracture pathways within the 

upper zone of the bedrock across the wetted and dyed area (Figure 3.3a). Dye infiltration was 

minimal overall, but did show a tendency (visually) towards preferential flow between the clast-

matrix boundaries. The embedded and isolated nature of most clasts within the matrix, however, 

prevented these preferential flowpaths from connecting to deeper zones and these flowpaths 

occurred only for clasts found within the surface layer of the bedrock (Figure 3.3b). No vertical 

penetration of dye beyond 5-10 mm was noted within the matrix of the bedrock. This is consistent 

with the 0.2 mm/h infiltration rate calculated during the experiment. Multiple surface clasts were 

split immediately after the experiment to see if any blue dye could be detected. After examining 

30 pieces from 10 sites on the slope, no visual dye penetration was observed in any sample (Figure 

3.3c). Taken together, these observations all suggest a general lack of fracturing or fracture 

flowpaths within the bedrock, inferring that bedrock recharge likely occurs exclusively as porous 

media flow through the bedrock matrix.  
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Figure 3.3 Bedrock sprinkler experiment showing brilliant blue dye staining of the bedrock 
surface and the extent of the sprinkler plot (a). Destructive testing of the bedrock surface post 
sprinkler experiment revealing minimal matrix penetration and limited preferential flow 
between the clast-matrix boundary for the surface clasts, this preferential flow did not extend 
beyond the depth of surface clasts (b). A surface clast freshly split revealing no dye penetration 
within the clast (c). 

Bedrock water table dynamics and electrical conductivity in observation wells remained 

unchanged during and for 120 hours post-experiment (data not shown), further confirming a 

general absence of rapid flowpaths through the bedrock. The lack of deviation in the water table 

and electrical conductivity values also indicated no direct recharge reached the underlying bedrock 
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water table during the observation period via matrix flow or otherwise, consistent with the 

measured Ksat and time length of the experiment. 

3.5.2 Bedrock groundwater recharge seasonality 

We identified groundwater recharge temperatures of 7.6 ± 1.5 °C for bedrock well 1, and 7.2 ± 1.8 

°C for well 2 (Figure 3.4a). These NGTs represent the mean volume-weighted annual recharge 

temperature of the sampled water. Under conditions of uniform monthly recharge, NGT would 

equal local MAAT, however, local MAAT at Maimai was 11.3 °C, nearly 4 °C warmer than 

observed recharge temperatures. What’s more, mean summer temperature from November through 

April was 14.8 °C, and mean winter temperature from May through October was 7.8 °C. The 

significantly colder NGT values that match well to mean winter air temperatures reveal a strong 

seasonal bias in bedrock groundwater recharge towards colder months indicating bedrock 

groundwater recharge is sourced primarily from cold season precipitation. 

Isotopic composition of the sampled summer stream, soil and bedrock groundwater ranged from -

6.61 to 4.53 ‰ δ18O and -36.85 to -23.25 ‰ δD (Figure 3.4b). A cluster of bedrock groundwater 

samples from deep upper-hillslope wells and from identified groundwater discharge zones within 

the lower riparian corridor showed distinctly depleted isotopic compositions compared to all other 

streamwater, soil water and shallow bedrock groundwater samples. The distinct isotopic signature 

of the deeper bedrock groundwater in comparison to other catchment waters provides evidence of 

recharge to the bedrock aquifer from waters associated with precipitation outside of the summer 

season. The relative depletion of the isotopic signature further supports cold-season precipitation 

as the source of bedrock groundwater recharge.  
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Figure 3.4 Dissolved nitrogen and argon concentrations of well samples overlaid on grid 
showing atmospheric equilibrium concentration and in the presence of excess air (a), figure 
style as seen in (Heaton and Vogel, 1981). Dual isotope plot of groundwater samples from 
deep bedrock, shallow bedrock and soil wells in addition to streamwater samples and Maimai 
and New Zealand local meteoric water lines (LMWL) (b). The shaded region shows the 
distinctly more negative isotopic signature of the deep bedrock wells, suggesting bedrock 
groundwater recharge from cold-season precipitation   

3.5.3 Bedrock groundwater recharge model 

3.5.3.1 DS(t) filter and Parameter Identification 

The parameter space for the recharge model is shown in Figure 3.5 for all filter lengths of DS(t). 

A total of 50,000 parameter sets were tested for each filter length. The 100 and 200-day filtered 

DS(t) signal were the only two filter lengths, including the unfiltered DS(t) signal, which produced 

results within ± 50 mm of the target recharge depth (i.e. 150 mm) and within ± 0.5 °C of the target 

recharge temperature (i.e. 7.4 °C). All other parameter sets under all other filter lengths produced 

recharge temperatures higher than target values, and most parameter sets and filter lengths 

produced recharge depths greater than the target recharge depth.  

The best-fitting parameter set, associated with the 200-day filter, was identified with α1 = 0.03, α2 

= 0.33 and ß = 1.22 mm. Model output for this parameter set obtained a mean annual recharge of 

150 mm, and a mean annual recharge temperature of 7.4 °C averaged over the 13-year modeling 

period.  
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Figure 3.5 Mean annual recharge temperature and mean annual recharge magnitude for each 
tested parameter set for all filter lengths. Only the 200-day filter length produced parameter 
sets that captured target recharge depth and temperature (150 mm and 7.4 °C, respectively) as 
indicated in the figure by the red circle. The final parameter set was chosen using a least-
squares approach. 

Figure 3.6 shows the filtered DS(t) signal for each of the 10 filter lengths, as well as the modeled 

daily recharge calculated with the best-fitting parameter set. Although model output was rejected 

for each filter length other than the 200-day filter, we display all filter lengths in Figure 3.6 to 

highlight how changing filter lengths changed the temporal pattern of the DS(t) input signal which 

resulted in shifted temporal patterns of recharge. Figure 3.6 also shows how the low pass filter 

reduced variability and smoothed the DS(t) signal to a greater extent with increasing filter length. 

As the input signal smoothed, so too did the corresponding modeled recharge, shifting the temporal 

pattern of recharge from individual storm events or weekly wet periods (Figure 3.6a-d) to longer 

sustained monthly or seasonal episodes (Figure 3.6e-h), to inter-annual patterns (Figure 3.6i-j). 

Variability in the unfiltered DS(t) signal (Figure 3.6a) was primarily controlled by precipitation 

events, which at Maimai occur on average every 2 days. The minimal seasonality in precipitation 
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at the site translated to minimal seasonality in DS(t) and ultimately minimal seasonality in recharge 

for the unfiltered (Figure 3.6a), as well the short filtered (Figure 3.6c-d) outputs. The lack of 

seasonality resulted in the inclusion of warmer summer recharge to the annual recharge budget, 

leading to the modeled annual recharge temperature being above the target value for all filters less 

than 200 days.  

Filter lengths greater than 200 days over-smoothed the input signal, resulting in sporadic 

interannual recharge over the modeling period and mean annual recharge depth and temperature 

that were lower and higher than target values, respectively (Figure 3.6i and 3.6j). The 200-day 

filter produced a mean annual recharge depth and temperature that aligned with target values, as 

expected with the applied inverse modeling approach and results from this model output are 

discussed below (Figure 3.6h).  
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3.5.3.2 Intra-annual and inter-annual recharge patterns 

Mean monthly recharge using the 200-day filter and the identified optimal parameter set is 

displayed in Figure 3.7, along with long term mean monthly P, Qtot and PET from 1975-1987.  

Values are additionally presented in Table 3.2. Recharge followed a clear seasonal trend peaking 

at nearly 34 mm/month in July during mid-winter and dropping to near zero throughout most of 

the summer. PET followed a similar but inverse seasonal pattern, peaking during the summer and 

declining considerably during the colder winter months. Precipitation and runoff dipped slightly 

from February to April, but showed little seasonality otherwise. Sixty percent of annual recharge 

occurred during the months of June, July and August, produced from only 25% of the annual 

precipitation, and nearly 90% of annual recharge occurred during the 6 month period from May 

through October, during which 55% of annual precipitation fell.  

Interestingly, although bedrock recharge during the warm-season months accounted for only 11% 

of the annual recharge, catchment runoff from November through April (i.e. summer months) 

accounted for 38% of yearly runoff and runoff ratios for this same period were high – 53%. So 

while the catchment continued to efficiently convert rainfall to runoff during the summer period, 

almost no recharge was produced during this period, highlighting a complex seasonally shifting 

internal redistribution process.   

 
Figure 3.7 Mean monthly bedrock groundwater recharge and the 200-day filtered DS(t) input 
signal (a), as well as mean monthly precipitation (P), total catchment discharge (Qtot) and 
potential evapotranspiration (PET) (b). All monthly values are averaged from daily values 
between 1975 and 1987. 
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Figure 3.8 shows scatter plots of monthly averaged recharge versus monthly averaged P, Qtot, Qdir, 

Qbase, and PET, as well as the relationship between P and Qtot again for the period from 1975-1987. 

As expected, P and Qtot were highly correlated (R2 = 0.81), however, there was little relationship 

between P and recharge (R2 = 0.09), indicating that mean monthly rainfall totals were a poor 

predictor of monthly recharge. Monthly recharge was only moderately correlated to the different 

monthly flow statistics with an R2 of 0.43, 0.38 and 0.54 for Qtot, Qdir and Qbase, respectively. Qbase 

likely had the strongest relation to recharge as it best captured the general seasonal wetness trends 

of the catchment. Monthly recharge, however, was much more strongly correlated to monthly PET 

(R2 = 0.72), suggesting that seasonal patterns in recharge track well with seasonal patterns of 

catchment evaporation.  

 
Figure 3.8 Mean monthly recharge versus P, Qtot, Qdir, Qbase, PET (a-e), and rainfall versus 
runoff (f). All monthly values are averaged from daily values between 1975 and 1987. 

 



93 

Figure 9 shows annual recharge totals from 1975-1987 plotted against annual rainfall, Qtot, Qdir, 

Qbase and PET and DS(t) for the same period. Figure 3.9a shows that annual rainfall totals from 

1975 to 1987 were poorly correlated to annual recharge totals during the same period (R2 = 0.22), 

further supporting the lack of connection between precipitation and bedrock groundwater recharge. 

In fact, annual recharge totals lacked significant correlation with annual Qtot, Qdir, Qbase and PET 

during this same period (R2 = 0.08, 0.06, 0.12, and 0.06, respectively – Figure 3.9b-e), and were 

only moderately correlated with annual DS(t) (R2 = 0.44 – Figure 3.9f). This reveals that simple 

annually averaged hydroclimatic metrics do not capture the annual trends of bedrock recharge at 

Maimai.   

 
Figure 3.9 Modeled yearly recharge totals between 1975 and 1987 compared against yearly 
total P, Qtot, Qdir, Qbase, PET and DS(t) 0-day for the same time period. 

3.5.3.3 Soil water comparison 

Figure 3.10a shows the 2015 time series of daily mean water table depth above the soil bedrock 

interface for each of the 4 monitored soil wells. The riparian, toe-slope and hollow wells were 
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perennially saturated but showed a distinct and sustained water table rise during the winter season. 

The hillslope well had a transient water table that occurred with greater consistency during the 

winter months but which also existed during larger storms throughout the summer season. Figure 

3.10b displays the scatter plot of mean monthly water table depth for each well compared to the 

2015 modeled mean monthly bedrock recharge depths. A strong threshold-like relationship was 

observed such that below a well-specific mean water table depth little to no recharge occurred, but 

above that threshold monthly recharge increased to and sustained a constant rate, suggesting that 

the strong seasonal shift in soil water dynamics were also linked to seasonal recharge timing.  
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Figure 3.10 Depth of water table above the soil-bedrock interface for 4 wells located in 
riparian, toe-slope, hollow and hillslope positions (a). Modeled bedrock groundwater recharge 
compared to monthly mean depth of water table for each soil well (b). DS(t) for year 2015 and 
2015 daily soil water table time series both filtered with the 200-day low pass filter to compare 
seasonal patterns (c). 200-day filtered 2015 DS(t) versus filtered soil water time series (d). 
Unfiltered daily 2015 DS(t) versus unfiltered daily soil time series. 
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We passed the soil water time series for each well through the 200-day filter and compared results 

to the filtered 200-day DS(t) signal to compare seasonal patterns of soil water with seasonal 

patterns of DS(t). This comparison acted as a measure to validate if indeed, DS(t) was a good 

proxy for temporal patterns of catchment wetness.  The two signals shared similar temporal 

patterns (Figure 3.10c) and were highly correlated (Figure 3.10d), indicating the same seasonal 

variability observed in catchment wetness (i.e. DS(t)) was also present in the observed catchment 

soil water dynamics. Interestingly, the unfiltered (i.e. 0-day filter) daily water table depths for all 

wells were poorly correlated with the unfiltered DS(t) signal (Figure 3.10e), implying that on daily 

time scales, dynamic storage was a poor indicator of soil water dynamics, further impressing on 

the fact that not daily or weekly fluctuations, but rather summer-winter seasonality, imparts critical 

control on the timing of recharge.  

3.6 Discussion 

3.6.1 Geologic control on groundwater recharge 

Our results suggest complex interactions between bedrock characteristics, soil storage and 

seasonal climatic conditions at Maimai that control bedrock groundwater recharge timing and 

magnitude. Slug tests and the sprinkler experiment revealed low permeability hillslope bedrock 

void of major fracture pathways, inferring that the bedrock structure lacks significant secondary 

porosity. This fracture-free state is critical to recharge processes as all recharge must occur through 

the primary porosity only. Although the conductivity of the intact bedrock is relatively high 

compared to other intact bedrock formations (e.g. unfractured metamorphic and igneous rock: 

1x10-12 m/s (Freeze and Cherry, 1979)), the mechanism of recharge is still one of diffuse porous 

flow – orders of magnitude slower than would be the case via preferential fracture flow.  

Previous sprinkler experiments in other headwater catchments have noted the critical role of 

fracture flow in transporting water both downslope to supplement storm runoff  (Montgomery et 

al., 1997) and to-depth to recharge deeper aquifer systems (Tromp‐van Meerveld et al., 2007; 

Graham et al., 2010a). The effective permeability of these tested hillslopes was likely controlled 

by the size, distribution and interconnectedness of the fracture network (Gerke and Genuchten, 
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1993). Appels et al. (2015) noted the role of fractures as local recharge ‘hotspots’ during event 

runoff in modeled bedrock recharge at the Panola Mountain Research Watershed in Georgia, USA. 

Observations in other fractured headwater settings have shown large rises in bedrock water tables 

from both rainfall and snowmelt inputs on time scales of minutes to hours, further reinforcing 

fracture flow as a major mechanism of headwater recharge (Sukhija et al., 2003).  

At Maimai, the distinct lack of fractured bedrock offers another end member of headwater recharge 

processes and illustrates a clear example of the interactions between geology, overlying colluvium 

and water balance components in controlling the timing and magnitude of headwater recharge. At 

Maimai, since bedrock recharge only occurs slowly through the primary porosity of the bedrock 

matrix long durations of favorable recharge conditions must exist (i.e. high catchment wetness) in 

order for appreciable bedrock groundwater recharge to occur,. These favorable recharge conditions 

are in turn, seasonally controlled by long term fluctuations in climate forcing, creating a 

geologically mediated groundwater recharge system with temporal patterns that link to seasonality 

in hydroclimatic forcing.  

Gabrielli et al. (2017) identified bedrock permeability at Maimai as a first order control on bedrock 

groundwater age and on the time-varying nature of streamwater mean transit time. Bedrock 

permeability has also been identified as a key characteristic controlling the time and length scales 

over which catchments store, mix and release their waters elsewhere (Tague et al., 2008; Hale et 

al., 2016; Pfister et al., 2017). Perhaps it is no surprise then that the geologic characteristics of the 

bedrock underlying Maimai were found, in part, to control the seasonal timing of moisture 

redistribution to depth. Permeability continues to be identified as a critical distinguishing 

characteristic influencing rainfall-runoff processes in complex ways in the headwaters.  

3.6.2 Summer runoff but no summer recharge: Seasonality is crucial 

Noble gas tracer measurements representing the larger bedrock groundwater domain revealed 

recharge temperatures nearly 4°C lower than the local mean annual air temperature. This indicated 

seasonally specific recharge during colder winter months, an observation further supported by the 

distinctly more-depleted stable isotope composition of bedrock groundwater compared to other 
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catchment waters (e.g. soil water and streamflow). Although seasonality of recharge is a widely 

observed phenomena (Jasechko et al., 2014), it has been most often associated with strong intra-

annual patterns in precipitation (Descloitres et al., 2008), or in regions where late autumn rainfall 

and early spring snow melt occur concurrently with low ET demands (Abbott et al., 2000; 

O'Driscoll et al., 2005; Jasechko et al., 2017). Strong seasonality in recharge, however, has been 

rarely observed in rain dominated hydrologic systems that lack seasonal precipitation variability 

as we report here for Maimai.  

At Maimai, rainfall occurs on average every 2 days. The 2450 mm annual rainfall is distributed 

roughly evenly between winter – 55%, and summer – 45%, yet 89% of annual bedrock recharge 

takes place during the winter period from May through October, and 60% of annual recharge 

results from only 25% of the annual rainfall during peak recharge months of June, July and August. 

In contrast, during the peak summer months of December, January and February, nearly the same 

volume of precipitation produces only 2.4% of annual recharge. This results in a recharge 

efficiency (calculated as depth of recharge divided by depth of rainfall) that is nearly 24-fold higher 

in peak winter months compared to peak summer months.  

Although the magnitude and timing of precipitation has been widely shown to control groundwater 

recharge (Winograd et al., 1998; Lee et al., 1999; Keese et al., 2005; O'Driscoll et al., 2005; 

Scanlon et al., 2006; Mileham et al., 2009; Owor et al., 2009), at Maimai we found no such 

correlation. In fact, recharge was found to be uncorrelated to monthly precipitation, wet season 

precipitation, and annual precipitation totals. Instead the control of recharge shifts seasonally from 

geologic properties to PET.  

During winter months, excess moisture is abundant within the catchment, but the low permeability 

bedrock limits infiltration rates, as is commonly observed in other humid regions (Sanford, 2002). 

Although saturation at the soil-bedrock interface is frequent at Maimai, infiltration rates of the low 

permeability bedrock are quickly exceeded and a form of infiltration-excess subsurface flow 

occurs over the bedrock surface but within the soil mantle (as reported in many early studies at the 

site by Mosley (1979). Further additions of moisture are either driven laterally downslope to the 
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stream channel or fulfil unrequited soil storage (McDonnell, 1990). It is precisely because bedrock 

infiltration rates are so readily exceeded by the large quantities of rainfall that no correlation exists 

between rainfall and recharge, either monthly, seasonally or annually. Thus, in the winter the 

magnitude of recharge is limited not by the availability of water but by the ability of the geologic 

formation to transfer water to depth.  

In summer months, much greater PET rates are aligned with slightly lower rainfall totals. Under 

these conditions, the distribution of subsurface moisture shifts such that the bedrock groundwater 

recharge budget is now used up to meet ET demands, essentially eliminating bedrock groundwater 

recharge during these summer months. Although this is seen in more seasonally diverse locations 

(Scanlon et al., 2006; Jasechko et al., 2014; Jasechko et al., 2017), this was not expected at the 

Maimai where for decades it was believed that the catchment stays perpetually “wet” (McGlynn et 

al., 2002) and where “soils remain within 10% of saturation for most of the hydrologic year” 

(Mosley, 1979) and where it was believed that all rainfall events resulted in some groundwater 

recharge (Stewart and McDonnell, 1991; Vaché and McDonnell, 2006).  

 The lack of correlation between recharge magnitude and precipitation is important as most large-

scale recharge models used to inform groundwater sustainability have shown trends in recharge 

that widely track future changes in precipitation (both positively and negatively, due to competing 

feedbacks) (Taylor et al., 2013a). We show here, however, that geologic properties and seasonal 

trends in evaporation instead act as the primary control on recharge. Thus, future changes in 

precipitation at Maimai will likely have little effect on changes in groundwater recharge.   

So how can there be summer runoff but no summer recharge? Isn’t runoff an indicator of excess 

water in the catchment? Rainfall-runoff processes at Maimai directly reflect the minimal soil 

storage capacity (Stewart and McDonnell, 1991), low bedrock permeability (Gabrielli et al., 2012) 

and large quantities of annual rainfall (Pearce et al., 1977). As a result, the catchment is dominated 

by a highly efficient and extensive preferential flow system capable of delivering large quantities 

of subsurface stormflow to the stream channel over short periods of time (Mosley, 1982; 

McDonnell, 1990; Weiler et al., 2003; Graham et al., 2010b). Indeed, the Maimai is defined by 
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rainfall-runoff ratios that exceed nearly every studied headwater in the literature (Mosley, 1979; 

Pearce et al., 1986).  

 
Figure 3.11 Conceptual model of seasonal catchment water balance fluxes. The width of the 
black arrows represent the magnitude of the seasonal flux compared to annual flux for each 
metric (P, PET and Qtot), allowing for easy visual comparison of the difference between 
summer and winter water balance components.     

Figure 3.11 shows our conceptual model of seasonal recharge and the water balance flux 

components at Maimai. In the summer, rainfall-runoff ratios – while lower than winter ratios – are 

still high, 53%. This is somewhat paradoxical as high runoff ratios generally indicate abundant 

excess moisture. Yet our soil water observations show marked decline in catchment wetness 

conditions. We hypothesize that summer rainfall events activate the preferential flow network (just 

as they do in winter) on storm event time scales, thus removing most of the precipitation input 

from the catchment and limiting the degree to which soil matrix storage is replenished, contrary to 

the apparent capacity of available soil-water storage. Stewart and McDonnell (1991) specifically 

noted that rainfall bypasses the soil matrix through preferential flowpaths and recharge of the soil 

matrix occurs more slowly through diffusive processes. The increase in storage that does occur 

within the soil matrix during events is quickly depleted between events by the much greater 

summer ET rates, and soil water that would otherwise go to bedrock recharge is lost instead to 

evaporative processes. Under this scenario, the catchment experiences episodic high wetness 

conditions. But, critically, the long periods of extended wetness needed for recharge are not 

attained and thus bedrock recharge rates fall to near zero during the warmer summer season.  



101 

3.6.3 Review of the groundwater recharge model 

Our simple modeling approach to understand the timing and magnitude of recharge provided a 

coarse empirical approximation of what is otherwise an extremely complex  process (Scanlon et 

al., 2002). But its simplicity too, provides valuable insight to the importance of seasonality in a 

system which for decades at Maimai was believed to be minimal. Although the model design was 

unable to discern exact catchment conditions that lead to recharge initiation and thus the exact 

timing during which these events occurred, it was able to identify broad seasonal patterns including 

the wet-up and dry-down transitions between summer and winter seasons. It is likely that even 

during summer runoff events a small degree of recharge occurs. In addition, recharge during the 

winter months does not occur as a continuous single-rate steady-state process but instead likely 

fluctuates in concert with storm events. More complex 3-dimensional physics-based coupled 

models currently exist (e.g. Ebel and Loague (2006), Maxwell and Kollet (2008)) that would likely 

be able to capture the precise catchment conditions under which recharge occurs, providing higher 

resolution of the seasonality of recharge and a more refined conceptual model to identify the 

driving forces that control recharge timing and magnitude. 

Our model input function, DS(t), has previously been used in different model formulations  to 

identify total catchment storage and seasonal storage thresholds (Sayama et al., 2011) and to 

identify trends in catchment mean transit time and functional relationships between DS(t) and 

catchment runoff characteristic (Buttle, 2016). We used DS(t) as a daily water balance record to 

measure the general catchment wetness conditions and trends. Our modeling results revealed, 

however, the need to filter the DS(t) signal in order to achieve model fits that met observed criteria 

for recharge depth and temperature. The unfiltered daily DS(t) signal contained considerable 

variability and the simplicity of our empirical model could not differentiate between the high 

winter DS(t) values that drove recharge and the high summer DS(t) values that did not. Variability 

in the unfiltered DS(t) signal was primarily controlled by rainfall events, thus the unfiltered DS(t) 

signal lacked seasonality. In headwater catchments where fracture flow plays a more considerable 

role in recharge processes, we would expect recharge to more closely follow precipitation patterns 

since any storm event that created saturation at the soil-bedrock interface would likely contribute 
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materially to the bedrock water table. Thus, an unfiltered DS(t) signal may prove viable to model 

seasonal recharge patterns in fractured systems.  

Although modeled monthly recharge estimates were highly correlated to monthly PET values, we 

also tested PET and filtered-PET as a potential input signal for the model. Despite the same 

parameter identification scheme, we were not able achieve target recharge temperatures or depths. 

This suggests that although PET is highly correlated with recharge, the secondary processes 

associated with catchment storage and release that are captured in the DS(t) signal were critical to 

accurately capture the temporal characteristics of bedrock recharge. Indeed, available soil storage 

plays a role in moderating the rainfall-runoff response, and is inherently embedded in the DS(t) 

signal through its relationship with Qtot, which is not otherwise captured in the PET signal.  

3.6.4 What is the role of soil for groundwater recharge at Maimai? 

The thin veneer of soil at Maimai and at other headwater catchments acts to buffer rainfall inputs, 

both damping the immediate streamflow response and providing a storage compartment to retain 

moisture between events (Hopp and McDonnell, 2009). Generally, one thinks of this buffering 

capacity as a positive contribution to groundwater recharge: soils inhibit flashy runoff, allowing 

retained soil moisture to trickle charge to depth over time. Indeed, Appels et al. (2015) found that 

60% of the annual bedrock groundwater recharge budget at the Panola Mountain Research 

Watershed was derived from unsaturated flow within the soil horizon. But what if the soil were 

removed? Would bedrock recharge decrease as expected? We ask this simple question because of 

our work on the open bedrock plot within the Maimai watershed where soil was indeed removed 

and where we did see flashy runoff during storm events.  

Our results from this soil-free area, however, suggest that the soil layer may in fact impede bedrock 

groundwater recharge at Maimai. If hourly rainfall rates are examined from 1975-1987 and we 

remove from this data the equivalent hourly rate of bedrock infiltration (equal to hillslope Ksat 

with an assumed unit gradient), the total depth of water removed is equivalent to the depth of water 

theoretically recharged to the bedrock. We found this value averaged 385 mm/y, or 185-285 mm/y 

greater than observed bedrock recharge with the soil mantle intact. All other things being equal, 
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rather than promoting bedrock groundwater recharge, the soil mantle at Maimai appears to inhibit 

it.  

There are two factors that might conspire to explain this response. First, the low-intensity, very 

long-duration storms experienced at Maimai provide long periods of favorable recharge conditions 

which aggregate to large volumes of annual recharge. We would not expect the same result if 

rainfall episodes were concentrated to shorter time scales and higher intensities, as less bedrock 

infiltration would result from the same total rainfall. Second, observed annual recharge is less than 

what was calculated in this simple theoretical analysis because in reality, unrequited summer soil 

storage must first be replenished before excess moisture is available for recharge. The water held 

in storage within the soil mantle is then available for evaporative extraction, a factor not present 

when the soil is removed and summer rainfall would otherwise directly recharge into the bedrock.   

This simple theoretical analysis places our process-based work into a longer time series context 

and reveals the critical and complex interactions between soil storage, rainfall distribution and 

seasonal fluctuations in ET – that all conspire to induce selective seasonal recharge at the Maimai.  

3.7 Conclusion 

We showed the combined importance of geologic properties and seasonal fluctuations in PET on 

the seasonal timing of bedrock groundwater recharge. We found that the hydrologic system at 

Maimai, where little apparent seasonality in the precipitation or catchment runoff ratios exists, 

masks extreme seasonality in bedrock groundwater recharge. Our analysis of bedrock groundwater 

isotopic signatures and noble gas temperatures revealed a seasonally selective groundwater 

recharge regime that is based almost entirely on cold-season winter recharge. A simple empirical 

recharge model and extensive bedrock characterization associated with an on-bedrock sprinkler 

experiment supported the finding of the linkage between the seasonality of bedrock groundwater 

recharge and the geologic controls imposed by the bedrock structure. Our work suggests that low 

bedrock permeability directly controls the timing of bedrock recharge by regulating winter 
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recharge amounts during large excess water conditions in winter, and by inhibiting significant 

recharge during transient event-based high wetness conditions in the summer months.  

With recent work highlighting the importance of headwaters as focal recharge zones for downslope 

aquifers (Jasechko et al., 2016), our work helps to understand how hydroclimatic and geologic 

variables combine to control the nature of groundwater recharge. While future projections of 

groundwater recharge under various climate change scenarios are largely associated with changes 

in precipitation (Taylor et al., 2013a) and that precipitation intensity and magnitude control 

recharge timing and rates (Owor et al., 2009; Allen et al., 2010; Taylor et al., 2013b), our work is 

something of a cautionary tale. For such studies using precipitation to directly estimate recharge, 

the Maimai is a clear example of a headwater aquifer that shows no relationship to precipitation 

amount or timing, despite catchment runoff dynamics that indicate a clear abundance of excess 

moisture in the system year-round.  

3.8 Transition statement 

Chapter 3 built upon the bedrock aquifer characterization that was conducted and outlined in 

Chapter 2. I found that bedrock characteristics, specifically bedrock permeability and the absence 

of large fracture networks, drove a bedrock groundwater recharge situation where long durations 

of high catchment wetness were needed in order for significant bedrock groundwater recharge to 

occur. This condition was only achieved during cold winter months when precipitation was high 

and also, when evapotranspiration rates were low. This lead to a seasonally-focused recharge 

pattern that was unexpected for a catchment that showed little seasonality in either precipitation 

input or catchment discharge output. The geologically mediated recharge identified in Chapter 3, 

and the geologically mediated time-varying streamwater transit times identified in Chapter 2 both 

supported the construction of a new catchment scale geology and landform index in Chapter 4. 

This new index aimed to capture the controls of bedrock permeability and catchment topographic 

structure on the timescales over which landscapes store and release their water.  
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CHAPTER 4 

A LANDSCAPE ANISOTROPY INDEX TO QUANTIFY THE RELATIONSHIP BETWEEN 

GEOLOGY, LANDSCAPE STRUCTURE AND WATER TRANSIT TIME THROUGH 

CATCHMENTS 

4.1 Abstract 

The relationship between streamwater mean transit time (MTT), catchment geology and landscape 

structure is still poorly characterized. In catchments underlain by poorly permeable bedrock, the 

permeability contrast at the soil bedrock interface can play a key role in shunting young water 

laterally downslope towards the stream channel. In such situations MTT has been shown to relate 

to topographic metrics of slope length and inverse slope angle. In permeable bedrock situations, 

streamwater MTT has been observed to scale not with topographic parameters but with catchment 

area – where larger watersheds have older streamwater than the smaller catchments that comprise 

them. Here we present a new simple index that focuses specifically on permeability contrasts at 

the soil-bedrock interface and DEM-based physical flowpath measurements to identify broad 

landscape trends of moisture redistribution in the subsurface. We use this index to explore the 

relationship between geology, landscape structure and water transit time through the lens of 

landscape anisotropy (here defined as the relative partitioning between lateral flow and vertical 

percolation). We hypothesize that catchments with a greater tendency to shed water laterally will 

correlate with younger stream water MTT and catchments with a greater tendency to infiltrate 

water vertically will correlate with older streamwater MTT. We tested the new index at 8 

geologically diverse Pacific Rim catchments in Oregon, Japan and New Zealand. The new index 

explained 77% of the variability in measured streamwater MTT across these varied sites. These 

findings suggest that landscape anisotropy and catchment form are first-order controls on the time 

scales over which catchments store and release their water and that a simple index may usefully 

capture this relationship.  
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4.2 Introduction 

In its most basic form, the turnover time for water in a catchment follows the simple steady state 

equation T = S/Q, where T is the turnover time, S is the catchment storage and Q is catchment 

discharge (Małoszewski and Zuber, 1982; McGuire and McDonnell, 2006; Staudinger et al., 

2017). The time varying nature of catchment conditions combined with the non-linear and often 

hysteretic activation and deactivation of subsurface storage units and flowpaths, however, results 

in a much more complex and time varying turnover time (Duffy, 2010; Heidbüchel et al., 2012). 

This complex storage-release interaction and catchment turnover time variation in space and time 

has been the subject of recent active theoretical research (Hrachowitz et al., 2010; Botter et al., 

2011; Birkel et al., 2012; Heidbüchel et al., 2012). Contemporary particle tracking work (Davies 

et al., 2013; Ameli et al., 2017) and new complex storage selection functions (Harman, 2015; 

Rinaldo et al., 2015) aim to define the nonstationary nature of catchment discharge age across all 

catchment conditions. Indeed, the field has gone down a very detailed path into complex theory 

and mathematics. 

But while much uncertainty still remains in terms of how fundamental catchment properties such 

as geology, topography, vegetation cover and seasonality in climate forcing control the age of 

water leaving a catchment (McNamara et al., 2011; Heidbüchel et al., 2013; Hale and McDonnell, 

2016; Stewart et al., 2016), few studies have explored the value of simple metrics in illuminating 

the control of subsurface architecture on catchment transit times. Here, we ask if there is a parallel, 

simple track perhaps worth exploring – a search for a basic catchment scale metric that might 

capture some of the overarching controls on catchment transit time? And in so doing, convey 

insights into how landscape form and subsurface structure influences the internal catchment 

mixing dynamics that drive catchment storage-release processes. We base this on our recent work 

in geologically diverse catchments in Oregon, where McGuire et al. (2005) found landscape 

organization, specifically median flowpath length divided by slope gradient, controlled catchment 

mean transit time (MTT) – defined as the average time water spends transiting the subsurface 

before entering the stream network – in 7 nested catchments within the Oregon Cascade volcanics. 

Hale and McDonnell (2016) then tested this relationship in the Oregon Coast Range where more 

permeable meta-sedimentary bedrock resulted in no relation to topographic metrics, but instead 
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MTT was controlled by catchment area (where MTT increased as catchment area increased). These 

findings suggest that landscape-scale subsurface anisotropy appears to be a first-order control on 

how catchments store and release their water between catchments of varying geologies. Hale et al. 

(2016) further expanded on the role of bedrock permeability in setting catchment scale storage-

release patterns, identifying it as a critical catchment characteristic in setting the age distribution 

of water exiting catchments in the Oregon Coast Range. 

So how might this knowledge be incorporated into a simple index when so many model and 

theoretical approaches have been so complex? If we assume MTT as a proxy for T and start with 

the most basic form where MTT = S/Q, then decreases in S or increases in Q drive shorter MTT, 

and vice versa. Though this simplistic view is bedeviled by the complexity of interactions between 

inherent catchment properties, many field observations still come back to this ratio of storage and 

flux as a first approximation of MTT (Stewart et al., 2007). For example, catchment flux is directly 

controlled by precipitation or landscape gradient. Indeed, in different geologic and climatic 

settings both Hrachowitz et al. (2009b) and Heidbüchel et al. (2013) observed that increased 

annual precipitation amount led to shorter MTT, and in high relief landscapes, steep flow gradients 

have been found to be highly correlated with catchment transit times (Tetzlaff et al., 2009b). 

Alternatively, differences in catchment storage, predominantly manifested as differences in soil 

thickness or bedrock permeability, have also been found to control catchment MTT. Deeper more 

freely draining soils (Tetzlaff et al., 2009a; Tetzlaff et al., 2014) and greater percentages of more 

permeable bedrock (Pfister et al., 2017) both increase storage and result in longer catchment MTT.  

Many efforts have been made with varying success to find simple scaling relationships between 

terrain-based indices and catchment transit times in order to shed light on the underlying storage-

release relationship (McGlynn et al., 2003; McGuire et al., 2005; McNamara et al., 2011; Soulsby 

et al., 2011; Heidbüchel et al., 2013; Hale et al., 2016).Yet, most studies have lacked expansion 

of observation beyond their single study site or region, and none yet have found a simple terrain-

based index that encapsulates both landscape form and geologic properties and their combined 

control on storage-release processes that can explain variations in the mean age of water discharged 

from headwaters in different regions. Although Hale and McDonnell (2016) and Hale et al. (2016) 
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came close, their work stopped short of any index development. It appears that geologic anisotropy 

(defined here as permeability contrast at the soil-bedrock interface) may be the key general factor 

for setting MTT and MTT scaling relationships. Indeed, it has been observed for some time that 

strong subsurface permeability contrasts are key to the initiation of lateral subsurface flow (Hopp 

and McDonnell, 2009), a flow mechanism that drastically shifts moisture redistribution from 

vertically downward, and thus through deeper more tortuous flowpaths, to laterally and through 

shallow faster pathways (Bonell, 1993).  

Here we present a new index to capture how subsurface anisotropy controls the relative 

partitioning of water between lateral flow and vertical percolation, which builds upon work by 

Jackson et al. (2014) who developed the metric known as downslope travel distance. The Jackson 

et al. (2014) metric calculates the theoretical displacement of a parcel of water laterally downslope 

before that parcel infiltrates fully into a lower impeding horizon and was initially developed to 

calculate lateral travel distances in sequenced soil layers. Although the downslope travel distance 

calculation results in a theoretical distance, to date this distance has not been directly mapped to 

physical flowpath lengths – in a single catchment or across catchments. We modify the downslope 

travel distance to focus specifically on the soil-bedrock interface and we integrate it with DEM-

based physical flowpath measurements to construct a new landscape scale anisotropy index that 

identifies broad landscape trends of water redistribution in the subsurface. We use this index to 

explore the relationship between geology, landscape structure and water transit time through the 

lens of subsurface anisotropy.  

Specifically, we ask: 

i. How do landscape form and subsurface flow partitioning control the tendency of a 

catchment to store or shed water? 

ii.  Can this tendency towards shedding versus storage be captured by a simple index, and 

does that index capture observed variations in catchment streamwater MTT?  
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We test this new index at 8 well-studied headwater catchments in 4 geologically diverse regions 

within the Pacific Rim and compare differences in mean catchment index values with previously 

observed streamwater MTT. We focus here initially on humid temperate catchments with thin soils 

and annual precipitation that greatly exceeds evapotranspiration, and specifically where previous 

work has shown that despite similar rainfall-runoff characteristics these catchments hide different 

geologically mediated subsurface runoff generation processes, thus providing an opportunity to 

highlight the role of subsurface architecture in differentially controlling catchment function 

(McGuire et al., 2005; Katsuyama et al., 2010; Sayama et al., 2011; Gabrielli et al., 2012; Hale 

and McDonnell, 2016). 

4.3 Theory 

Downslope travel distance is calculated as:  

𝐿𝐿𝐷𝐷 =  𝐾𝐾𝑢𝑢
𝐾𝐾𝐿𝐿
∗ sin𝜃𝜃

𝑁𝑁+𝐶𝐶𝑛𝑛
𝐶𝐶𝑛𝑛

∗ 𝑁𝑁 

Where Ku is the saturated hydraulic conductivity (Ksat) of overlying soil layer, and KL is the Ksat 

of the underlying impeding layer, here the bedrock horizon. N is the normal thicknesses of the 

saturated soil lens above the bedrock horizon, Cn is the thickness of saturated bedrock, and θ  is 

the local slope angle. For a more complete description of downslope travel distance development 

and calculation see Jackson et al. (2014).  

We relate Ld to the physical landscape by dividing Ld by the flowpath length (Lf) from the point 

of measurement on the landscape to the stream channel, to create the new Anisotropy Index (AI). 

Figure 4.1 shows conceptually how the AI index functions. When AI is greater than 1, a parcel of 

water would require greater slope length to fully infiltrate into the underlying bedrock than is 

possible from the slope, and thus the parcel of water is delivered to the stream channel. Conversely, 

when AI is less than 1, a parcel of water would move vertically through the soil and fully infiltrate 

into the bedrock horizon before reaching the stream channel, and thus that parcel of water would 

(Eq. 4.1) 
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be lost to deeper storage. Applying this calculation to each grid cell within a DEM provides a 

spatially distributed assessment of how a catchment internally redistributes its water. Taken in 

aggregate, the mean AI for a catchment provides information on the general tendency of the 

landscape to shed water laterally to the stream channel or infiltrate water to depth. We hypothesize 

that catchments with a lower mean AI, and thus a greater proportion of water moving to depth 

through longer more tortuous flowpaths will tend towards longer catchment MTT, and vice versa 

(Jiang et al., 2009; Ameli et al., 2016).  

 
Figure 4.1 When the Anisotropy Index (AI) is greater than 1, the downslope travel distance 
(Ld) of a parcel of water (here represented by the red box) is greater than the flowpath length 
(Lf) that the parcel of water would travel down the hillslope to the stream channel. This results 
in the parcel of water being delivered to stream (a). When AI is less than 1, then Ld is greater 
than Lf and the parcel of water is lost instead to deep percolation. Figure adapted from Jackson 
et al. (2014). 
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4.4 Methods 

We test this new index on 8 well-studied watersheds in 4 geologically distinct regions around the 

Pacific Rim. Specifically, the M8 sub-catchment within the Maimai Experimental Watershed, New 

Zealand (McGlynn et al., 2002); catchments WS1, WS9 and WS10 at the H.J. Andrews 

Experimental Forest Long Term Ecological Research site in the Cascade range of Oregon, USA 

(Swanson and Jones, 2002); catchments NB12, NB35 and NB86 recently studied by Hale and 

McDonnell (2016) and Hale et al. (2016) within the Coast range of Oregon, USA; and finally 

catchment K at the Kiryu Experimental Watershed (KEW) in the Shiga Prefecture, Japan 

(Katsuyama et al., 2008).  

Table 4.1 Summary of catchment characteristics 

Catchment Location 
Area, 

ha 

Annual 
rainfall, 

[mm] 

Annual 
runoff, 
[mm] 

Runoff 
ratio, [-] 

Mean 
soil 

depth, 
[m] 

Elevation 
min, 

[m.a.s.l] 

Elevation 
max, 

[m.a.s.l] Geology 

M8 

Maimai 
Experimental 

Watershed, New 
Zealand 

4.5 2600a 1550a 0.60 0.6a 250 348 
Weakly 

Cemented 
conglomerateb 

WS1 
HJ Andrews, 
LTER, OR, 

USA 
96 2800c 1354d 0.48 0.9d 460 990 volcanic tuff and 

coarse brecciae 

WS9 
HJ Andrews, 
LTER, OR, 

USA 
8.5 2800c 1673d 0.60 0.9d 451 692 volcanic tuff and 

coarse brecciae 

WS10 
HJ Andrews, 
LTER, OR, 

USA 
10.2 2800c 1475c 0.53 3.0f 424 710 volcanic tuff and 

coarse brecciae 

KEW 

Kiryu 
Experimental 
Watershed, 

Japan 

5.99 1631g 936h 0.57 0.6i 178 253 Biotite Granitej 

NB12 Coast Range, 
OR, USA 12 2500c 1627 0.65 1.0c 686 1212 

Marine Derived 
silt and 

sandstonesk 

NB35 Coast Range, 
OR, USA 35 2500c 1588 0.64 1.0c 540 1212 

Marine Derived 
silt and 

sandstonesk 

NB86 Coast Range, 
OR, USA 86 2500c 1548 0.62 1.0c 426 1212 

Marine Derived 
silt and 

sandstonesk 
aMcGlynn et al. (2002), bPearce and Rowe (1979), cHale and McDonnell (2016), dhttps://andrewsforest.oregonstate.edu/, 
eSwanson and James (1975), fHarr and Ranken (1972), gKatsuyama et al. (2010), hKatsuyama et al. (2001), iKubota et al. 
(1983), jTorii (1996), kSnavely et al. (1964) 
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General catchment characteristics are presented in Table 4.1. Catchments range in area from 4.5 

ha (M8) to 86 ha (NB86), have generally shallow soils (mean: 0.9 m, SD: 0.19 m) and steep slopes 

(range: 1 - 65°, mean: 30°, SD: 11°). Precipitation is high for all catchments and with the exception 

of KEW, which receives on average 1631 mm of rainfall, all catchments receive greater than 2500 

mm of rainfall annually. Previous work has established subsurface stormflow as the main runoff 

generating mechanism for all catchments. 

Geologically, the catchments are quite diverse. M8 in New Zealand is underlain by an unfractured 

weakly cemented Early Pleistocene conglomerate composed primarily of sandstone clasts in a 

consolidated sandy matrix (Nathan, 1974). Bedrock at KEW is composed of a uniformly 

weathered Cretaceous biotite granite that is weathered in its upper layers to a saprolitic consistency 

(Torii, 1996; Katsura et al., 2006).  NB12, NB35 and NB86 in the Oregon Coast Range are 

comprised of the Eocene-aged Tyee formation which is marine-derived layered greywacke 

siltstones and sandstones (Snavely et al., 1964). While bedrock in the Oregon Cascade Range 

catchments, WS1, WS9 and WS10,  is composed of late Oligocene to early Miocene aged 

hydrothermally altered volcanic tuff and coarse breccia (Swanson and James, 1975).  

Streamwater MTT studies were conducted previously for all catchments and we refer the reader 

to that primary literature as summarized in Table 4.2. The primary methodology employed to 

determine MTT was through lumped parameter convolution modeling using stable isotopes of 

water, however, tritium analysis combined with silica regression was used at M8 (Table 4.2). MTT 

values ranged from 0.33 y (M8) to 5.0 y (NB12). Previous work also investigated a range of 

catchment attributes which were observed to scale with or act as primary controls on catchment 

MTT (Table 4.2). This includes magnitude of annual bedrock infiltration (KEW (Katsuyama et 

al., 2010)), catchment area (NB12, NB35 & NB86 (Hale and McDonnell, 2016)), median sub-

catchment size (M8 (McGlynn et al., 2003)), and flow path distance and gradient (WS9 & WS10 

(McGuire et al., 2005)).   
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Table 4.2 Summary of catchment MTT characteristics 
Catchment MTT, y MTT determination method MTT found to scale with: 

M8 0.4a Tritium and Silica Regression bMedian subcatchment area 

WS1 1.3c Stable isotopes of water and lumped-
parameter convolution modeling 

cTopographic characteristics, 
flowpath length and gradient 

WS9 1.4c Stable isotopes of water and lumped-
parameter convolution modeling 

c,dTopographic characteristics, 
flowpath length and gradient 

WS10 1.2c Stable isotopes of water and lumped-
parameter convolution modeling 

c,dTopographic characteristics, 
flowpath length and gradient 

KEW 3.8e Stable isotopes of water and lumped-
parameter convolution modeling 

eBedrock infiltration 

NB12 5.0c Stable isotopes of water and lumped-
parameter convolution modeling 

cCatchment area 

NB35 3.7c Stable isotopes of water and lumped-
parameter convolution modeling 

cCatchment area 

NB86 4.0c Stable isotopes of water and lumped-
parameter convolution modeling 

cCatchment area 

aGabrielli et al. (2017), bMcGlynn et al. (2003), cHale and McDonnell (2016), dMcGuire 
et al. (2005), eKatsuyama et al. (2010)  
 

Values for Ku and KL in Equation 4.1 were established from catchment-specific literature as shown 

in Table 4.3. The thickness of the saturated lens above the impeding bedrock boundary, N, will 

vary both spatially and temporally and can take values ranging from 0 to the full thickness of the 

soil column. For simplicity, we used a spatially constant N equal to 0.5 times the mean catchment 

soil depth for all catchments, which corresponds well to piezometric observations at Maimai 

(McDonnell, 1990) and to observations made at similar catchments near both Oregon sites (Dhakal 

and Sullivan, 2014) for median-sized and larger storms. Similarly, the saturated bedrock thickness, 

Cn, can also vary spatially throughout a catchment and temporally under different catchment 

wetness conditions. Jackson et al. (2014) noted that Cn likely takes values ranging from very thin 

(< 0.1 m) to very thick (> 10 m). For simplicity we used a spatially constant value of Cn equal to 

1.0 m. However, we tested a range of values for both N and Cn and discuss the sensitivity of these 

variations to our final results in the discussion below. Local slope, Ɵ, was calculated for each 

catchment using a 5 m grid DEM, except for NB12, NB35 and NB86 in which a 10 m grid DEM 

was used.  

Lf was calculated using the D8 flow algorithm (Jenson and Domingue, 1988) to determine 

flowpath length from each grid cell to the stream channel. Stream channels were delineated based 
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on stream initiation threshold values found in literature. AI was calculated for each DEM grid 

establishing a spatially distributed AI map for each catchment. We calculated basic statistics for 

each catchment, as well as mean AI and the percent of each catchment with an AI value greater 

than 1 (AI>1) and compared these values to observed catchment MTT.  

Table 4.3 Catchment variables used to calculate the Anisotropy Index. 

Catchment 
Soil Ksat, 
Ku [m/s]  

Bedrock Ksat, 
KL [m/s] 

aSoil saturated 
thickness depth: N, [m] 

Bedrock saturated 
thickness: Cn, [m] 

Slope range, Ɵ, 
[°] 

M8 6.94E-05b 9.90E-08c 0.3 1.0 2 - 51 

WS1 1.00E-04d 1.42E-07e 0.5 1.0 1 - 69 

WS9 1.00E-04d 1.42E-07e 0.5 1.0 4 - 45 

WS10 1.00E-04d 1.42E-07e 1.5 1.0 1 - 45 

KEW 4.70E-04f 1.00E-06g 0.3 1.0 1 - 41 

NB12 2.78E-04h 4.70E-07i 0.5 1.0 1 - 44 

NB35 2.78E-04h 4.70E-07i 0.5 1.0 1 - 44 

NB86 2.78E-04h 4.70E-07i 0.5 1.0 1 - 46 
aDepth of saturation was set equal to 0.5 times mean soil depth as reported in the listed literature 
in table 4.2. 
bMcKie (1978), cGabrielli et al. (2017) dRanken (1974), eGraham et al. (2010), fOhte et al. 
(1989), gKatsura et al. (2006), hHale and McDonnell (2016) 
mValues based on nearby bedrock groundwater studies at the CB1 ridge (Montgomery et al., 
2002) which were noted to have similar bedrock characteristics by Hale and McDonnell (2016) 
 

4.5 Results 

Table 4.4 presents mean values of Lf, LD, AI, and AI>1 for each of the 8 studied catchments. Mean 

catchment AI ranged from 0.3 ± 0.6 at NB86 to 8.0 ± 6.8 at M8. The 3 Oregon Coast Range 

catchments, NB12, NB36 and NB86, had the lowest mean AI as a result of a lower permeability 

contrast at the soil-bedrock interface and long hillslope lengths which correspond with shorter 

downslope travels distances and longer flowpath lengths. This suggests that water redistribution 

at these sites tends to be vertically downward into the bedrock horizon. Catchment M8 had the 

highest mean AI. The high soil-bedrock permeability contrast resulted in large downslope 

distances and when combined with the short physical slope lengths AI values were high. 
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Table 4.4 Mean flowpath length (Lf), mean downslope travel distance (Ld), mean AI, and 
percent AI>1. 

Catchment 
Lf mean 

[m] 
Lf ± SD 

[m] 
Ld mean 

[m] 
± SD 
[m] 

AI mean 
[-] 

 ± SD   
[-] 

Percent AI >1 
[%] 

M8 25 22 98 15 8.0 6.8 1 
WS1 121 34 122 76 3.8 6.3 34 
WS9 119 22 126 76 3.8 6.4 35 
WS10 100 49 228 64 6.9 11.5 8 
KEW 26 12 38 16 3.3 2.7 18 
NB12 254 12 32 151 0.4 0.8 92 
NB35 256 12 54 195 0.4 0.6 92 
NB86 287 12 56 214 0.3 0.6 93 

 

Figure 4.2 shows the spatial distribution of each of these variables for 4 of the 8 catchments – one 

each from the 4 geologic regions. Generally, catchments M8, WS1 and KEW had much higher AI 

in areas directly surrounding the stream channel. Values quickly dropped with distance upslope. 

Figure 4.2e shows the spatial distribution of AI>1, distinguishing between grid cell values greater 

or less than 1.  At M8, AI>1 is present only in ridgeline locations, while at NB86 the inverse pattern 

was observed, and values were less than 1 across the majority of the catchment except directly 

along the stream channel. These two catchments provide bookend examples of landscape 

structures that tend to shed water (M8) versus infiltrate water (NB86).  

We compared catchment MTT to catchment mean Lf, mean flow path length divided by gradient 

(Lf/G), catchment area, mean Ld, mean AI and AI>1 (Figure 4.3).  Both mean Lf and mean Lf/G 

explained about half of the variance observed in catchment MTT between the 8 catchments (R2: 

0.45 and 0.48, p < 0.01 and 0.02, respectively), while catchment area showed no correlation to 

MTT (R2 = 0.01, p < 0.85). Mean Ld had a slightly stronger relation with MTT than Lf or Lf/G, but 

still only explained slightly more than half of the variability observed in MTT. Mean AI, however, 

was strongly correlated to catchment MTT and explained nearly 80% of the observed variation in 

age (R2 = 0.77, p < 0.01). 
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Figure 4.2 Catchment examples from the 4 different geologic settings. This figure shows, from 
left to right for each catchment, the sequence of analysis to calculate AI. The final graphic (far 
right) for each site shows the binary form of AI. 

Since distributed field observations of soil and/or bedrock saturated thickness (N and Cn) are the 

most difficult data sets to obtain for this analysis, and thus the most likely to contain large degrees 

of uncertainty due to estimation, we varied both N and Cn through a range of values and observed 

the sensitivity of the relationship between catchment mean AI and MTT through changes in the 

coefficient of determination (i.e. R2). We varied N from 0.01 to 1 times the mean catchment soil 

depth, and Cn from 0.1 m to 10 m. Overall, the range in R2 varied from 0.56 to 0.84 indicating the 

AI index still had a strong relation with catchment MTT even if estimates of either parameter 

contained considerable uncertainty (Figure 4.4).  
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Figure 4.3 Relationship between the AI and catchment MTT for the 8 studied catchments. The 
solid line shows the liner regression relationship between the two variables and the associated 
coefficient of determination. Note, catchment legend markers shown in (d) are consistent 
through all plots.   

 
Figure 4.4 Coefficient of determination (R2) values for the regression fit between catchment 
mean AI and MTT through a range of saturated soil depths (N) and saturated bedrock depths 
(Cn). 
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4.6 Discussion 

4.6.1 On the value of the new index 

While many studies have found landscape derived metrics at single sites that scale to MTT 

(McGlynn et al., 2003; McGuire et al., 2005; Rodgers et al., 2005; Tetzlaff et al., 2009a; 

Katsuyama et al., 2010; McNamara et al., 2011; Buttle, 2016; Hale and McDonnell, 2016), we are 

unaware of any metric which successfully combines internal catchment structure with 

topographically based data to capture the observed variability in catchment discharge MTT across 

multiple geologically diverse sites. Our simple landscape anisotropy index builds on the Jackson 

et al. (2014) downslope travel distance index and combines simple field-measureable data with 

topographic DEM analysis into a single new composite index that captures the general tendencies 

of how catchments capture, store and release their subsurface water. As the propensity to shed 

water laterally within a catchment increases (due to greater anisotropy at the soil-bedrock interface 

and/or shorter slopes lengths), greater relative volumes of water transit the subsurface domain 

through shallower faster flowpaths, resulting in shorter MTT, and vice versa. Although 

streamwater MTT is highly complex and varies considerably in time with catchment storage 

conditions (Maloszewski and Zuber, 1982; Morgenstern et al., 2010; Heidbüchel et al., 2012; 

Tetzlaff et al., 2014; Harman, 2015), the general tendencies of subsurface storage and flow within 

a catchment are still reflected by their MTT values. Our results show a clear and significant 

relationship between mean AI and catchment MTT for 8 catchments in 4 geological settings, 

highlighting the first order control of subsurface anisotropy and catchment form on storage-release 

processes.  

4.6.2 On the meaning of the anisotropy index 

The AI index offers two levels of information: first through its spatially distributed pattern at the 

grid-scale within each catchment, and second through the aggregated catchment-scale value. At 

the grid-scale, an individual grid value less than 1 indicates that a parcel of water originating from 

that grid cell will fully infiltrate into the underlying bedrock before reaching the stream channel. 

A grid-scale value greater than 1 indicates lateral movement of water to the stream and provides 

spatial information on variable source areas that contribute more extensively to the stream channel 
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(Walter et al., 2000; Jackson et al., 2014). It is worth noting, however, that for grid values greater 

than 1, ‘transmission losses’ to the bedrock horizon still occur as the parcel of water transits the 

hillslope. A grid value nearer to 1 implies greater transmission losses than a grid value further from 

1, providing a means to compare the degree to which catchments shunt water to depth. This is 

captured by the difference in regression fit between AI>1 and MTT versus the regression fit 

between mean AI and MTT (Figure 4.3e versus 4.3f, respectively). The binary form of AI does 

not account for contributions to deeper infiltration from grid cells with values greater than 1, when 

in fact these locations would contribute some portion of water to depth, which explains the only 

moderate correlation with MTT. However, mean AI captures this partial infiltration and thus more 

completely captures the general catchment flux trends. Consequently, the correlation between 

mean AI and MTT is much stronger across the tested catchments.  

While many of the individual catchments studied in this work have shown clear MTT scaling 

relationships with different topographic or landscape-based metrics (McGlynn et al., 2003; 

McGuire et al., 2005; Hale and McDonnell, 2016), these metrics are not necessarily transferable 

between catchments in different geologic regions. This implies that the local metrics like area, 

slope gradient, and flowpath distance still do not capture the full range of possible controls on 

MTT generally. Our new anisotropy index for the first time captures between-region variability in 

MTT and provides strong evidence that it also captures the underlying relationships governing 

subsurface storage and release. This transcends single catchments finding and shows – at least for 

the environments tested here – that AI is able to subsume the previously identified dominant factors 

that mediate MTT at each individual catchment into a single value that captures broader controls 

on the relationship between geology, landscape structure and catchment transit time.  

So why does the AI outperform topographic metrics? In catchments with more than one major 

subsurface storage unit, bedrock permeability and thus subsurface anisotropy, acts as a first-order 

control on the depth of active flowpaths. In turn, depth of active flowpaths controls total mixing 

volume and the general flux rates of catchment storage such that shallow flowpaths tend to be 

faster and therefore younger (McGlynn et al., 2003; Hrachowitz et al., 2009a), while deeper 

flowpaths implicate larger storage and slower groundwater movement and tend to be older 
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(McNamara et al., 2011; Asano and Uchida, 2012). The AI identifies how MTT varies between 

catchments with different subsurface structures, while topographic metrics capture how MTT 

varies within catchments of generally similar geologic charateriestics. In this manner, AI does not 

outperform topographic metrics, so much as it may be able to predict which metrics within a 

similar geologic unit scale with local catchment MTT. For example, catchments with similar 

geologic characteristics and a high AI would generally be associated with high permeability 

contrasts, shallow flowpaths and thus young transits times which would likely scale to topographic 

metrics such as flowpath length or gradient. While the inverse would be true of catchments with 

low AI values in which MTT would scale with catchment area or depth of active flowpaths.  

4.6.3 Beyond the initial Pacific Rim testing 

While our index in no way replaces (nor do we  argue against) on going work with  particle tracking 

models (Davies et al., 2011; Ameli et al., 2017) and storage selection functions (Klaus et al., 2015; 

Kim et al., 2016) this parallel learning track, with its simple approach, perhaps warrants further 

examination elsewhere. For ungauged catchments without MTT information the AI index – with 

its ease of calculation and modest data requirements – offers an opportunity to explore how 

underlying bedrock structure and landscape form might shape the distribution of water ages 

discharged from catchments in various settings. This could be a useful hypothesis generating tool 

for field work and catchment modeling where such soft data exists (Seibert and McDonnell, 2002); 

especially in instances where theoretically, mathematically and computationally intensive transit 

time models would be difficult to run.  

Clearly, more testing needs to be done. The 8 catchments tested in this study – while diverse 

geologically – are similar with respect to their high annual rainfall, high rainfall-runoff ratios and 

thin soils. Groundwater recharge at these sites would be categorized as lithologically limited 

(Sanford, 2002), that is, deep infiltration is constrained by the ability of the subsurface to move 

water to depth, as opposed to water availability. We need to test this index at drier sites. We expect 

that climates with less precipitation or a higher evaporative index may be less likely to show similar 

trends with MTT, as the redistribution of moisture to depth would be controlled to a greater extent 

by factors other than geology. Additionally, for example, the well-known Scottish catchments of 
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Rodgers et al. (2005) or Tetzlaff et al. (2009a) and Ecuador sites of Mosquera et al. (2016) may 

reveal a different relation with the AI index due to peculiarities of soil drainage class, despite 

similar total rainfall patterns to the catchments tested here. Although we suspect this index may be 

limited to lithologically controlled groundwater systems, a larger analysis covering a wider array 

of catchment geologies, soil covers and climates would be required to determine the full extent of 

these limitations, and in so doing may shed light on alternative controls of MTT in different 

environments.  

Lastly, while promising, our sensitivity analyses suggest that the index, while simple, may be 

partially limited by the availability of spatially robust soil and bedrock data sets or the ability to 

appropriately constrain effective catchment-scale hydraulic conductivity parameters. However, we 

showed strong correlations between catchment MTT and mean AI through a range of different Cn 

and N values indicating a general lack of sensitivity to uncertainty in these values. This also 

suggests that the soil-to-bedrock permeability contrast is indeed the most critical component of the 

anisotropy index and its relation to catchment MTT – something that hillslope hydrological models 

have shown repeatedly for subsurface stormflow generation (Hopp and McDonnell, 2009; Jackson 

et al., 2016). 

Further analyses may consider using spatially distributed soil thickness data where available. 

Additionally, where we used a spatially constant saturated soil thickness for this current analysis, 

it may be possible to incorporate a spatially distributed data set using proxy relationships between 

topographic indices, such as the topographic wetness index, and soil moisture (Woods and 

Sivapalan, 1997; Sayama and McDonnell, 2009) to construct a more precise spatially distributed 

catchment map of AI. Further, this analysis may also be scaled to leverage recently established 

continental-scale permeability mapping (Gleeson et al., 2011) in an effort to predict large scale 

MTT trends which could provide a baseline for hypothesis testing to identify if landscapes follow 

or do not follow trends outlined by this index.  
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4.7 Summary 

We show proof of concept for a new index that builds on recent work by Jackson et al. (2014) to 

quantify the relationship between geology, landscape structure and water transit time. The 

anisotropy index successfully captures landscape scale water redistribution characteristics. We 

tested this relationship for 8 catchments in 4 geologic settings and found a strong positive 

correlation between mean catchment AI and catchment streamwater MTT that explained 77% of 

the variance in MTT. This suggests that permeability contrasts at the soil-bedrock interface in 

combination with hillslope flowpath length, act to control catchment scale storage characteristics 

which may account for the observed gross variability in catchment MTT.  

4.8 Transition statement 

Chapter 3 built upon the general control of bedrock characteristics in hydrologic functioning identified 

in Chapter 2, and found that bedrock properties, in concert with seasonality of evapotranspiration, 

controlled the timing of bedrock groundwater recharge. Both studies identified bedrock permeability 

as critical in controlling water redistribution in the subsurface at Maimai, which in turn controlled the 

nature of the recharge-discharge relationship of the bedrock groundwater aquifer. These findings 

provided the context of Chapter 4, in which I expanded beyond the Maimai catchment to construct a 

new catchment-scale index that captured the link between permeability contrasts at the soil-bedrock 

interface, landscape form and streamwater mean transit time at various geologically distinct 

catchments within the Pacific Rim.    
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The central questions addressed by my PhD research was, what is the role of bedrock groundwater 

in controlling the processes, patterns, storage and transit time through a headwater catchment? My 

coupled water table monitoring, water chemistry analysis, tritium age dating and streamflow 

measurements assessed, mechanistically, the role of the low permeability bedrock on the rainfall-

runoff regime and identified the processes, patterns, storages and transit times associated with 

bedrock groundwater contributions to the Maimai headwater catchment.  Although by volume 

bedrock storage was considerable, the low permeability formation prevented rapid bedrock 

groundwater flow, limiting overall flux rates and contributions to the stream channel. Lack of 

bedrock fracturing was also critical to the nature of the flow regime and drove diffuse porous 

groundwater flow, a much slower flow system than fracture-flow. This created a highly anisotropic 

catchment scale flow regime defined by fast shallow soil-based flowpaths overlying a slow and 

deeper groundwater system with a considerable unsaturated bedrock zone that damped hillslope 

groundwater storm response and acted as a considerable storage unit.  The ages of these stored 

waters likewise followed the vertically layered pattern associated with the flow regime: young 

water in the soil and shallow bedrock layers; older water with depth. Limited total and available 

storage in the thin soils combined with large annual rainfall totals maintained short soil water 

residence times of weeks to months, while large bedrock storage volumes and minimal annual 

groundwater recharge considerably lengthened deeper turn-over times, resulting in groundwater 

ages on the order of 1-2 decades. 

The slow movement of the bedrock aquifer limited its volumetric contributions to the stream 

channel. Although it was an order of magnitude older than the younger soil-based storage, the 

large relative volume of younger soil water discharging from the catchment swamped the bedrock 

groundwater age signal throughout most of the year, except in the driest of times. This drove a 

time-varying streamwater transit time that was extremely young during storm runoff, young for 
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much of the hydrograph recession period and only old, in a relative sense, during infrequent 

extended summer periods without rainfall.  

Noble gas and excess air measurements accompanying the groundwater tritium analysis revealed 

mean annual recharge temperatures that aligned with mean winter air temperature, not mean 

annual air temperature, suggesting a seasonally focused recharge regime.  Further analysis 

revealed the critical role of bedrock structure – in combination with evapotranspiration – in this 

seasonal pattern. The Maimai catchment did experience a dry season during summer months, 

however, this was relative and mean monthly precipitation remained considerable. Additionally, 

storm runoff ratios also remained high during this period, implying an excess of available moisture 

in the catchment – enough to drive a high, 40% summer rainfall-runoff ratio. But despite the 

summer runoff, Maimai experienced essentially no summer recharge. This apparent contradiction 

was resolved through assessment of a long term data set and an energy balance recharge model. 

The lack of fractures within the bedrock and associated matrix flow dominance limited the volume 

of event-based groundwater recharge. Instead, recharge was controlled primarily by long term 

wetness conditions. During winter months, when the low evapotranspiration rates limited soil 

water extraction between storm events, the catchment remained wet and the slow trickle charge of 

bedrock groundwater recharge occurred. During summer, although storm events regularly 

introduced additional moisture into the system, the shallow soils and highly networked preferential 

flowpaths quickly shed this water as stormflow. Between storm events, the much higher 

evapotranspiration rates wicked additional moisture from the soil. Ultimately, the soil water that 

would have otherwise moved vertically downward into the bedrock as recharge instead moved 

vertically up through the canopy, and summer bedrock groundwater recharge was volumetrically 

inconsequential. Although seasonal recharge is common in many climate regimes across the world, 

the lack of seasonality in both the input signal (P) and output signal (Q) at Maimai masked the 

recharge seasonality. This highlights the importance of continued field-based research to inform 

and identify hydrologic processes that may otherwise be overlooked or assumed based on poor 

characterization of internal processes.  
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Where Chapter 2 and Chapter 3 focused specifically on bedrock groundwater processes at Maimai, 

Chapter 4 aimed to distill the basic understanding of the control of bedrock characteristics on 

catchment scale hydrologic processes. Specifically it highlighted the controls on the storage-

release relationship across the headwater landscape and how these translate into varied 

streamwater mean transit time at geologically diverse sites. Previous studies have shown the 

importance of bedrock permeability in controlling catchment residence time dynamics (Hale and 

McDonnell, 2016; Pfister et al., 2017), however, a simple index to capture these controls across 

different catchment geologies had not yet been developed. A simple hypothesis was tested: 

catchments with longer hillslope lengths and a lower permeability contrast between at soil bedrock 

interface would tend towards greater mean transit times, and vice versa. A small meta-analysis 

was conducted of 8 catchments in 4 geologically diverse regions which had streamwater MTT 

established by previous studies. Indeed, the new anisotropy index developed in Chapter 4 was able 

to explain the variability in observed MTT at the 8 catchments based on geologic characteristics 

and landscape structure. As such, it offers a simple, data-driven approach to understand how 

bedrock properties, in part, control the redistribution tendencies and storage-release relationships 

that set the time scales of water transiting through the landscape. This new index and its presented 

application provide a promising new approach to evaluate headwaters. There is considerable 

potential to expand upon this index and apply it to larger landscapes across more varied 

hydroclimatic settings to further improve our understanding of the role of bedrock properties in 

controlling headwater hydrologic processes.    

The results of this PhD research have advanced our understanding of runoff generation and 

catchment storage-release processes through the lens of bedrock characteristics and the 

contribution of bedrock groundwater to hydrologic functioning in headwaters. Through an 

extensive field campaign coupled with analysis of the processes, patterns, storage and transit times, 

I have demonstrated the critical role of bedrock characteristics, specifically permeability, in 

controlling the redistribution of water in the subsurface and its link to catchment scale hydrologic 

behavior.  

 



150 

Notwithstanding these advancements, much work remains to be done to shed light on the patterns 

and processes linked with the deeper geologic properties underlying most of our headwater basins. 

Specifically, connecting catchment hydrologists with the methods and expertise of groundwater 

hydrologists and hydrogeologists seems an obvious path forward.  From basic drilling technology 

to mapping the subsurface, studies must probe to greater depths to understand and redefine the 

headwater catchment boundary. In keeping with the Critical Zone Observatory philosophy (Lin, 

2010), new approaches must be adopted and developed to keep pace with ever more challenging 

questions.  

Catchment hydrologists are often burdened by the uniqueness of individual catchments and their 

inability to transfer observations and knowledge from one scale to another and one region to 

another. This problem, in many ways, is magnified when considering bedrock groundwater 

movement within individual catchments. Single bedrock fractures may transport the majority of a 

hillslope’s bedrock flow, which in turn may considerably alter streamwater chemistry, age and 

baseflow volume within an entire catchment. Yet defining effective characteristics for that bedrock 

zone, or that hillslope or the entire catchment based on measurements from single fractures can be 

impossibly difficult. Secondly, and conversely, topographically based watershed divides at the 

land surface are often at odds with the area contributing to the underlying aquifer system. This can 

add significant complexity to calculating specific water balance components or to modeling 

specific catchments processes when stream discharge at the catchment outlet is used as the 

reference. Managing both the randomness and heterogeneity of the small scale while also 

appreciating the integrated response of the larger scale is not new (Blöschl and Sivapalan, 1995), 

but it remains highly pertinent for bedrock groundwater studies, especially in dual porosity fracture 

flow systems. Particle tracking models (e.g. Davies et al. (2011) and Ameli et al. (2017)) are 

presenting researchers with new methods to view and study the subsurface domain and as bedrock 

horizons are included, more complex field campaigns will be required to both ground truth these 

models, as well as provide the basic data sets to run them. 

Finally, the explicit recognition of the deeper storage zones represented by weathered and 

unweathered rock in headwater catchments has significance to the biogeochemical-ecological-
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geomorphological  connection that shapes landscape evolution (Welch and Allen, 2014; Brantley 

et al., 2016; Riebe et al., 2017) . The continued meshing of disciplines will likely usher in more 

directed studies of bedrock and bedrock groundwater less for simple mass-balance and storage 

inquires, but more towards understanding how weathering fronts, bedrock structure and biologic 

development are connected by subsurface water redistribution. 
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