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Abstract

We study the higher-derivative equations for gauge potentials of arbitrary mixed-symmetry

type obtained by setting to zero the divergences of the corresponding curvature tensors. We

show that they propagate the same reducible multiplets as the Maxwell-like second-order

equations for gauge fields subject to constrained gauge transformations. As an additional

output of our analysis, we provide a streamlined presentation of the Ricci-like case, where

the traces of the same curvature tensors are set to zero, and we present a simple algebraic

evaluation of the particle content associated with the Labastida and with the Maxwell-like

second-order equations.



1 Introduction

Higher-spin theories call for higher derivatives. While this is known to be an intrinsic fea-

ture of the interactions among such systems, as a matter of fact the same peculiarity also

manifests itself for free massless particles of spin higher than 2, due to the structure of the

corresponding curvature tensors. Free equations of motion can indeed be formulated ex-

ploiting customary, second-order differential operators, but only at the price of constraining

some of the components of the gauge parameters to vanish. As we shall stress, this feature

can be interpreted as arising from the partial gauge fixing of equations originating directly

from fully gauge invariant curvatures.

For an arbitrary GL(D)−reducible gauge potential ϕ subject to gauge transformations

of the form1

δ ϕ = d i Λ i , (1.1)

with reducible gauge parameters Λ i, two types of wave equations can be assigned. The

Labastida equations [1], together with the corresponding trace conditions on the gauge pa-

rameters, generalise Fronsdal’s equations [2] for symmetric tensors and are usually regarded

as providing the standard covariant description of the massless particles (i.e. the irreps of

the little group of the light-like momentum, O(D − 2)) formally associated with ϕ :

F := 2ϕ − d i d i ϕ +
1

2
d i d j T ij ϕ = 0 ,

T (ij Λ k) = 0 .
(1.2)

In particular, for tensors ϕ
Y

taking values in irreducible representations of GL(D), equations

(1.2) provide a description of single-particle, massless degrees of freedom. In the latter case

the gauge transformation (1.1) should be properly projected.

More recently, second-order Maxwell-like equations were proposed for arbitrary tensors

of GL(D) in [3], with gauge parameters subject to suitable differential conditions providing

1Gauge parameters are denoted with Λ i, where the lower index i stands for one missing space-time index

in the ith family. Correspondingly, the operators d i with upper index i denote exterior derivatives acting

on the ith family. The Einstein convention is enforced so that (1.1) defines a scalar quantity in family-index

space. T ij and d i denote operators computing traces and divergences, respectively, in the corresponding

families i, j = 1, . . . , s. See also Appendix A.
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somehow the counterparts of the Labastida trace constraints2:

M := 2ϕ − d i d i ϕ = 0 ,

d i d jd (i Λ j) = 0 .
(1.3)

Differently from (1.2), these equations propagate all the massless particles contained in the

associated reducible tensor of GL(D − 2), i.e. all the O(D − 2)−components contained in

the corresponding branching. Indeed, even if enforced on irreducible GL(D)−tensors ϕ
Y

,

the Maxwell-like equations (1.3) still describe a reducible spectrum, corresponding to the

multiplet of particles contained in the GL(D − 2)−tableau formally corresponding to ϕ
Y

.

Thus, for instance, for the case of symmetric tensors, together with a massless particle of

spin s the equations (1.3) also propagate additional massless particles of spin s− 2, s− 4,

and so on, down to s = 1 or to s = 0 depending on the parity of s .

All the results of our paper equally apply to both reducible and irreducible tensors of

GL(D). On general grounds, however, the choice of working with reducible tensors, while

also leading to some formal simplifications (like dispensing with the need to perform pro-

jections), is actually more natural from the string-theoretical vantage point where physical

fields emerge as coefficients of products of bosonic oscillators. Reducible higher-spin systems

have been less extensively studied in the literature. Still we regard them as being worth of

interest for a number of reasons. First, they provide an alternative option equally viable

in principle with respect to the standard irreducible higher-spin models. In addition, one

observes that discarding the requirement of irreducibility typically leads to various technical

simplifications. This is especially true for the Maxwell-like models (1.3), essentially due to

the fact that one does not need to explicitly deal with traces. Finally, the same spectrum

described by (1.3) emerges when considering free tensionless strings [5, 6, 7, 8, 9], to which

equations (1.3) are indeed directly related, as discussed in [3]. This connection in particular

provides a clear physical motivation for studying theories related to (1.3), with the perspec-

tive that proceeding along this path one could shed some light on the still rather mysterious

relation between interacting massless higher spins and strings. For other approaches to

reducible higher-spin models see e. g. [10, 11, 12].

In the present paper we shall explore how to recover equations (1.2) and (1.3) starting

from suitable curvatures, defined as tensors that are identically gauge-invariant under (1.1)

2Let us also mention, however, that presence or absence of constraints also depends on how one chooses

to parametrise the gauge symmetry of a given differential operator. For the symmetric sector of (1.3),

for instance, it was shown in [4] how to describe the same amount of gauge invariance by means of fully

unconstrained, higher-derivative and reducible gauge transformations.
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and that do not vanish when equations (1.2) or (1.3) hold. Such higher-spin curvatures were

first introduced in [13] for symmetric tensors3, and later extended in [15, 16, 17] to the general

class of gauge potentials with mixed symmetry. In particular, if ϕ
Y

is a GL(D)−irreducible

field associated with a Young tableau Y possessing s columns — in the basis with manifest

antisymmetry among indices placed along columns, whose lengths we shall denote with `1,

`2, . . . , `s — its curvature R (ϕ
Y

) is again associated with a Young tableau in GL(D), with

one additional upper row corresponding to the s curls entering its definition,

R (ϕ
Y

) := d1 . . . ds ϕ
Y
. (1.4)

Similarly, for reducible multi-form fields ϕ, taking values in tensor products of forms of

various degrees, curvatures R (ϕ) can be defined analogously as multi-forms with the same

number of factors, each corresponding to a form of degree augmented by one [18]. Thus,

if one takes the number of columns of a tableau as a possible generalisation of the concept

of spin, we see that for all gauge potentials of spin higher than 2 their curvatures contain

more than two derivatives.

The equations obtained setting to zero the traces of the higher-spin curvatures,

T ijR (ϕ) = 0 i, j = 1, . . . , s (1.5)

can be regarded as backbone equations for gauge theories of any spin, generalising the

condition of vanishing Ricci tensor for the massless spin-2 particle. Indeed, in spite of the

different number of derivatives involved, it is always possible to relate (1.5) to the Fronsdal-

Labastida second-order equations (1.2). This was first proven for the case of irreducible

tensors ϕ
Y

in [19, 20], while we shall show in the present work how to extend the equivalence

to cover the case of reducible tensors.

Moreover, even part of Vasiliev’s system of non-linear differential equations for totally-

symmetric gauge fields [21] can be interpreted as a consistent deformation of the frame-

like counterpart of (1.5), there written as the on-shell equality between the higher-spin

curvatures and their traceless, or “Weyl”, component.

In the class of bosonic fields the only two representations that are not covered by (1.5) are

p−forms. In particular, scalar fields, being gauge invariant, can be considered as representing

their own curvature tensors, in a sense, on which one can impose the mass-shell condition

p 2 = 0. On the other hand, the basic equation for massless p−forms involves the divergence

of the corresponding field strength. While it is true that once (1.5) is imposed all divergences

3See also the earlier work [14] for on-shell SO(3, 1)−analogues of the off-shell GL(D) curvatures of [13].
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of R (ϕ) are also forced to vanish, due to the Bianchi identities that curvatures satisfy, one

might also wonder whether it makes sense to impose on higher-spin curvatures the condition

of vanishing divergence in itself, not in conjunction with the Ricci-like equation (1.5).

Thus, the main goal of this paper is to study the transversality conditions

d iR (ϕ) = 0 i, = 1, . . . , s (1.6)

together with their counterparts for irreducible tensors, d iR (ϕ
Y

) = 0, and to show their

equivalence to the second-order equations (1.3). For the class of symmetric tensors this

task was performed in [22], where it was shown that the corresponding higher-derivative

equations propagate the same reducible spectrum of massless particles as the symmetric

sector of the free tensionless string, as first conjectured in [23]. (See also [24].)

Our work can be viewed as a continuation and an extension of the Bargmann-Wigner

program, originally aimed at providing suitable wave equations for all irreducible represen-

tations of the Poincaré group in D = 4 [25]. (For a review see e.g. [26], subsection 1.8.3.)

This program was later pursued for arbitrary D and for the corresponding mixed-symmetry

representations in a number of works, e.g. [1, 27, 19, 28, 29, 20, 30, 31], while also be-

ing extended to the local Lagrangian level under various approaches — see for instance

[32, 33, 34, 35, 36, 37, 38, 39, 3] and references therein for massless bosonic particles with

mixed-symmetry on Minkowski background.

It might be worth stressing that there are two facets to this program:

(i) On the one hand, a goal is to provide proper covariant wave equations capable of

describing a given massless representation. (Irreducible or reducible, from our general

perspective.) One of the features of the original Bargmann-Wigner equations, that we

shall also stress in our approach, is that to this specific end there is no need to invoke

gauge invariance as a guiding principle in the derivation, or even to display it at all in

the resulting equations. Indeed, according to the analysis that we present in section

2, one can completely identify the representation of interest just assigning appropriate

conditions on given GL(D)−tensors R, with no need for these tensors to be identified

as curvatures for corresponding potentials4. In this first sense, the equivalence with

(1.2) and (1.3) holds at the level of the spectrum.

4Strictly speaking, however, Bargmann and Wigner actually provided wave equations directly for

SO(3, 1)-irreducible representations and never introduced any GL(4) tensor. Consequently, their equations

were not zero-trace conditions as in (1.5).
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(ii) On the other hand, one would also like to make more direct contact with the (con-

strained) gauge-invariant equations (1.2) and (1.3) exploiting the gauge potential ϕ

as the fundamental variable. As a matter of fact, the closure (“Bianchi”) condi-

tions d iR = 0, to be satisfied by the tensors R as part of the system of generalised

Bargmann-Wigner equations, do imply the possibility to solve for R in terms of s

exterior derivatives of a potential ϕ [18, 16]. In this view, the issue becomes how to

connect the resulting higher-derivative unconstrained equations to the second-order

equations (1.2) and (1.3) with constrained gauge symmetry. We discuss these aspects

in sections 3 and 4.

In relation to the second facet of our program, for the reducible Maxwell-like case of

primary interest for us here it is indeed possible to exploit the Generalised Poincaré Lemmas

[40, 18, 16, 20] (reviewed in [41]) to first connect (1.6) to an unconstrained extension of (1.3),

d iR (ϕ) = 0 ⇐⇒ M = d i d j D ij (ϕ) , (1.7)

where the terms involving D ij (ϕ) emerge from the application of the corresponding co-

homological analysis to the higher-derivative equation involving R (ϕ)5. However, in order

to completely prove equivalence with (1.3), one still ought to discuss explicitly the issue of

gauge fixing the tensors D ij (ϕ) to zero. This task, actually both for the reducible and for

the irreducible cases, involves some subtleties and it is not technically straightforward to

establish in general for tensors of arbitrary symmetry.

For this reason, in section 3 we follow a different path and propose an original argument

allowing to directly establish the equivalences:

d iR = 0 ⇐⇒ M = 0 ,

T ijR = 0 ⇐⇒ F = 0 ,
(1.8)

and thus, implicitly, to also prove that the gauge fixing of the corresponding “inhomo-

geneous” unconstrained equations is indeed possible. We collect our observations on the

explicit gauge fixing in section 4.

Let us mention that, as anticipated, our results extend the scope of (1.5), previously

studied in [19, 20] for irreps ϕ
Y

of GL(D), to cover the case of GL(D)-reducible tensors

ϕ , while also yielding, as a byproduct, a relatively simple route to the degrees of freedom

count of the reducible Labastida-like and of the Maxwell-like equations (1.2) and (1.3).

5As we shall recall, for the GL(D)-irreducible case this approach was pursued in [19] and led to establish

the equivalence T ij R (ϕ
Y

) = 0 ⇐⇒ F
Y

= 1
2 Yϕ d i d j d kH ijk (ϕ

Y
). For symmetric tensors the same

unconstrained “inhomogeneous” equations were first derived from curvatures in [42].
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2 Reducible multiplets à la Bargmann-Wigner

In this section we shall discuss Bargmann-Wigner-like equations both for irreducible and

for reducible systems. By this we mean that, for given tensors in GL(D), we shall identify

the conditions to be met in order for them to describe the propagation of a single-particle

or of a multi-particle massless spectrum. In group theoretical terms, we shall show how to

select given representations of O(D − 2) or of GL(D − 2).

As anticipated, no notion of gauge equivalence emerges at this stage. While it is true

that the GL(D)−tensors we shall start with may admit an interpretation as field-strengths

for generalised gauge potentials, as we shall elaborate upon in the next sections, this in-

terpretation is not needed for the purposes of this section. In this sense, the generalised

Bargmann-Wigner equations provide a fully gauge-independent description of massless par-

ticles of any spin.

Let us first discuss eq. (1.6), representing the main object of the present work. In

the spirit of [22], we would like to prove that (1.6) accounts for the degrees of freedom of

the spectrum of massless particles contained in a given representation of GL(D − 2). To

this end, we will exploit the technique used in [20, 29]. For definiteness, we shall assume

this representation to be irreducible and thus to correspond to a specific tableau YGL(D−2).

The generalisation to multi-forms is straightforward. The general idea is to consider the

corresponding tableau in GL (D), but with one additional row on top, as in the following

example:

YGL(D−2) = −→ RGL(D) = (2.1)

and then to require R to satisfy the closure and co-closure conditions

d iR = 0 , (2.2)

d iR = 0 , (2.3)

where i = 1, . . . , s. Computing divergences of (2.2) leads to

2R = 0 , (2.4)

thus implying that the representation is massless. Going to momentum space and choosing

a frame where pµ = (p+, 0, . . . , 0) it is then possible to observe that (2.3) effectively sets to

zero all components of R with at least one “−” index in force of the equation6

p+Rµ11...µ
1
`1+1, ..., µ

i
1...−...µi`i+1, ..., µ

s
1...µ

s
`s+1

= 0 , (2.5)

6Let us recall that in the light-cone coordinates the metric is off-diagonal along the longitudinal directions.
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with indices here explicitly displayed for additional clarity. On the other hand, whenever a

given family of indices only involves purely transverse components, then R itself vanishes

tout-court. Indeed, the “Bianchi conditions” (2.2) for the ith family, whenever all indices

involved in the antisymmetrization take values along the D− 2 transverse directions except

for one single index along the “+” direction, reduce to the single equation

p+Rµ11...µ
1
`1+1, ..., j

i
1...j

i
`i+1, ..., µ

s
1...µ

s
`s+1

= 0 . (2.6)

As a result, it turns out that the only surviving components of the tensor R for p 2 = 0

are those possessing only one “+” index in each family (having two or more “+” indices

in the same family being forbidden by antisymmetry), while all other indices in the same

family taking values along the D − 2 transverse directions,

R+ j11 ...j
1
`1
, ...,+ ji1...j

i
`i
, ...,+ js1 ...j

s
`s
, (2.7)

thus proving that the equations (2.2) and (2.3) select from R the components of the irrep

of GL(D − 2) corresponding to the tableau obtained by R itself upon removing the upper

row. In these terms (2.2) and (2.3) describe the propagation of a multiplet of massless

particles, identified through the branching of the GL(D− 2)−irrep selected above in terms

of its O(D − 2) components.

The restriction to a single irrep of O(D−2), i.e. to a single massless particle, is obtained

by imposing the equations [16, 19, 29]

d iR = 0 , (2.8)

T ijR = 0 , (2.9)

for i, j = 1, . . . , s, where in particular the “Bianchi conditions”, here reproduced in (2.8),

are still part of the system, while (2.3) has been substituted by the Ricci-like equation

(2.9) enforcing the vanishing of all the traces of R . Let us remark that the transversality

conditions (2.3) are also contained in the above system, as they emerge computing traces of

(2.8) and using (2.9). One can then go through the same steps as above and conclude that

the only non-vanishing components of R correspond to p 2 = 0 and are given by the traceless

part of (2.7). This selects the irrep of O(D − 2) formally described by the same tableau

as the one identifying the GL(D − 2)−representation previously recovered exploiting the

transversality condition only.

It follows that, in the mostly-plus signature, the divergence of a vector is p ·A = −p+A−− p−A+ + p jA j ,

with j = 1, . . . , D − 2.
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Although we did not make use of it, one has to recall that due to the Generalised Poincaré

Lemmas, it is always possible to solve the “Bianchi conditions” (2.2) and express the tensors

R as generalised curvatures for given GL(D)−gauge potentials ϕ. (Or ϕ
Y

, in the irreducible

case.) In the next section we shall exploit this option, aiming at establishing the links

between the higher-derivative equations for ϕ resulting from (2.3) and (2.9) and the second-

order equations for the corresponding particle content (1.3) and (1.2), respectively.

3 Maxwell-like equations from curvatures

In the present section we shall consider the tensors R as generalised curvatures for cor-

responding potentials: R = R (ϕ). Their construction can be illustrated in several ways;

one possibility is to motivate their explicit form as providing the solution to the “Bianchi

conditions”

d iR = 0 , (3.1)

obtained through the Generalised Poincaré Lemmas, with the following outcome: if ϕ
Y

is

an irreducible tensor of GL(D) described by a tableau with s columns, then the general

solution to (3.1) determines its corresponding curvature as the sth derivative combination

R (ϕ
Y

) = d 1 d 2 · · · d s ϕ
Y
. (3.2)

One can then check that the tensor (3.2) is identically gauge-invariant under the YGL(D)-

projected version of (1.1), satisfies the Bianchi identities (2.2) and corresponds to the irrep

of GL(D) obtained from Y by adding an extra row on top of it, as pictorially suggested by

the following example:

ϕ
Y

= −→ R (ϕ
Y

) =

∂ ∂ ∂ ∂

(3.3)

Similarly, starting from a multi-form potential ϕ one can obtain the corresponding curvature

by computing the tensor-product of the various forms entering its definition, each being

differentiated once,

ϕ =
1...
`1

⊗
1...
`2

⊗ . . . ⊗
1...
`s

−→ R (ϕ) =

∂
1...
`1

⊗
∂
1...
`2

⊗ . . . ⊗
∂
1...
`s

(3.4)

thus obtaining an expression for R (ϕ) equivalent to (3.2).
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The tensors (3.2) appear as very natural objects in the gauge theory involving the field

ϕ, and indeed we already observed that the Ricci-like equations T ijR = 0 do play a central

role both for low-spin and for high-spin theories. Our main objective here is to connect

curvature tensors with the second-order equations for reducible multiplets (1.3). However,

since our analysis directly applies to the Labastida case as well, we shall effectively establish

the following two equivalences:

d iR (ϕ) = 0 ⇐⇒ M = 0 ,

T ijR (ϕ) = 0 ⇐⇒ F = 0 ,
(3.5)

thereby also extending the results of [19, 20] to the case of reducible GL(D)−potentials.

In the remainder of the section we shall consider multi-form fields ϕ. The restriction to

tableaux in GL(D) is essentially immediate.

The general idea of our argument is to exploit the results of the previous section and

solve for ϕ in (3.2), so as to extract information on its non-vanishing components. To this

end, let us first consider the transversality conditions

d iR (ϕ) = 0 , (3.6)

and let us recall that the surviving components in R(ϕ) are those of the form (2.7), cor-

responding to p 2 = 0. Thus, in the frame where only p+ is different from zero, we can

immediately deduce consequences for two classes of components of ϕ:

- purely transverse components:

ϕj11 ...j1`1 , ..., j
i
1...j

i
`i
, ..., js1 ...j

s
`s

=
1

(p+) s
R+ j11 ...j

1
`1
, ...,+ ji1...j

i
`i
, ...,+ js1 ...j

s
`s
. (3.7)

They are gauge invariant in the chosen frame and are not constrained by closure and

co-closure conditions on R (ϕ). Thus, they represent propagating components of ϕ in

(3.6) satisfying the D’Alembert equation;

- components with mixed transverse and “−” indices:

ϕj11 ...j1`1 , ..., j
i
1...− ...ji`i , ..., j

s
1 ...j

s
`s

=
1

(p+) s
R+ j11 ...j

1
`1
, ...,+ ji1...− ...ji`i , ...,+ js1 ...j

s
`s

= 0 . (3.8)

(“−” indices can be present in more than one family, of course.) They are also gauge

invariant, but vanish due to the co-closure conditions (3.6).

Clearly, from the equations (3.6) we cannot obtain information on the components of ϕ that

are still gauge-dependent even in the chosen frame; these are all the components possessing
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at least one index along the “+” direction, all other indices belonging to the same family

being either “−” or transverse (we shall denote them collectively by capital ’s), while staying

arbitrary for the other families:

ϕµ11...µ1`1 , ..., 
i
1...+ ...i`i

, ..., µs1...µ
s
`s
. (3.9)

This is the point where gauge invariance of the curvatures R (ϕ) under (1.1) plays its role,

since in force of the unconstrained nature of the gauge symmetry of (3.2) we are in the

position to eliminate all components of the form (3.9) performing a complete gauge fixing.

As a result, only the components identified in (3.7) represent propagating degrees of freedom,

all the others being either vanishing or pure gauge.

Let us be more precise. The gauge transformations (1.1) read, in components:

δΛ ϕµ11...µ1`1 , µ
2
1...µ

2
`2
, µ31...µ

3
`3
... = ∂µ11 Λ(1)µ12...µ

1
`1
, µ21...µ

2
`2
, µ31...µ

3
`3
...

+ ∂µ21 Λ(2)µ11...µ
1
`1
, µ22...µ

2
`2
, µ31...µ

3
`3
...

+ ∂µ31 Λ(3)µ11...µ
1
`1
, µ21...µ

2
`2
, µ32...µ

3
`3
... + . . .

(3.10)

where we treat the reducible case. We proceed with the gauge fixing as follows:

(1) One fixes ϕ+12...
1
`1
, µ21...µ

2
`2
, µ31...µ

3
`3
... to zero by using Λ(1)12...

1
`1
, µ21...µ

2
`2
, µ31...µ

3
`3
.... We note

that the indices µ2
1 . . . µ

2
`2
, µ3

1 . . . µ
3
`3
. . . are left totally unspecified, so that some of

them can be “+”;

(2) One sets ϕ11...
1
`1
,+22...

2
`2
, µ31...µ

3
`3
... to zero by using Λ(2)11...

1
`1
, 22...

2
`2
, µ31...µ

3
`3
.... Note that this

gauge fixing does not affect the previous one;

(3) One sets ϕ11...
1
`1
, 21...

2
`2
,+32...

3
`3
... to zero by using Λ(3)11...

1
`1
, 21...

2
`2
, 32...

3
`3
..., etc.

Now, all the components of the gauge field are either zero by virtue of the field equations and

gauge fixings, or are expressed in terms of the non-vanishing components of the curvature

tensor, so we have achieved a complete gauge fixing.

In the case of the Ricci-like equation T ijR = 0 two differences are to be taken into

account: first, as already mentioned, by virtue of the Bianchi identity (2.2) one can derive

the vanishing of the divergences as a consequence. Second, the surviving components of ϕ

will define a traceless tensor in the transverse indices.

We can summarise our findings in the following scheme, where one should keep in mind
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that our conclusions hold in the gauge where the components (3.9) are set to zero:

R (ϕ) = d 1 · · · d s ϕ −→ d iR (ϕ) ≡ 0 ,

d iR (ϕ) = 0 −→


ϕ...,− ... = 0 ,

ϕ...,+ ... = 0 ,

p 2 ϕ..., j ... = 0 ,

−→ ϕ purely transverse,

T ijR (ϕ) = 0 −→

d iR = 0

T ijϕ = 0
−→ ϕ transverse and traceless.

(3.11)

Similarly, if ϕ
Y

takes value in a given irrep Y of GL(D), the equations obtained setting

to zero the divergences or the traces of the curvatures (3.2) propagate only transverse

components of ϕ
Y

, corresponding to irreps of GL(D− 2) in the former case or of O(D− 2)

in the latter.

In order to make contact with the Maxwell-like equation (1.3) and with the Labastida

equation (1.2), and thus to complete our proof of the equivalences (3.5), one further step

is needed consisting in explicitly computing divergences and traces of R (ϕ), so as to show

that the following relations hold:

d iR (ϕ) = OMi (d)M,

T ijR (ϕ) = OF ij (d)F ,
(3.12)

where OMi (d) and OF ij (d) are linear and homogeneous differential operators built out of

the exterior derivatives. For instance, computing the divergence of (3.2) in the first family

we obtain

d 1R (ϕ) = d 1d
1 d 2 · · · d s ϕ,

= (2 − d 1d 1) d 2 · · · d s ϕ

= d 2 · · · d s (2 − d 1d 1)ϕ

= d 2 · · · d s (2 − d id i)ϕ ,

(3.13)

where in particular the last step holds due the vanishing of each product d k d k (no summa-

tion implicit), allowing to reconstruct the full Maxwell operator acting on ϕ. Similarly for

the second equation in (3.12), selecting for instance the trace in first and second family, one

gets [19, 20]

T 12R (ϕ) = d 3 · · · d sF . (3.14)

Equations (3.12) make clear that M = 0 and F = 0 do provide solutions to d iR = 0

and T ijR = 0. The nontrivial part of the argument, in general, is to show that there are

no other solutions, in spite of the different derivative order of the two sets of equations.
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However, after our discussion also this further step is by now almost transparent. Indeed,

it is sufficient to explicitly observe that field configurations satisfying the second set of

conditions in (3.11) automatically satisfy M = 0, due to the separate cancellation of the

two terms in (1.3). Similarly, if to the above conditions we add the tracelessness of ϕ, by

the same reasoning we can conclude that those configurations automatically satisfy F = 0,

thus establishing (3.5). The fact that the equations in the left column of (3.11) display a

bigger gauge invariance than (1.2) and (1.3), is a manifestation of the existence of a set of

equivalences slightly different from (3.5), anticipated in the introduction, involving gauge

invariant completions of the tensors M and F and from which (3.5) actually arise as the

result of a partial gauge fixing. We discuss this option in the next section.

We could even draw our conclusions about (3.5) by an alternative line of reasoning.

Indeed, for GL(D)−irreducible potentials ϕ
Y

, the linear space of solutions to the Labastida

equation (1.2) is obviously a representation of ISO(D−1, 1) since the equation is covariant.

We already observed that, in force of (3.12), the same space of solutions has to be contained

in that of the equation T ijR (ϕ
Y

) = 0 . The latter, on the other hand, according to our

analysis of section 2, actually is ISO(D − 1, 1)−irreducible, thus implying that the two

spaces have to coincide. The argument applies equally well to multi-forms, upon projecting

all the equations onto the corresponding irreducible spaces.

For the Maxwell-like equations (1.3), on the other hand, a complete counting of degrees

of freedom was performed in [3]. Comparing with the results of section 2 and taking into

account (3.12) would already suffice to establish the first equivalence in (3.5).

Finally, let us also observe that the argument presented in this section, in conjunction

with our results of section 2, provides a relatively simple route to the explicit degrees of

freedom count of both eqs. (1.2) and (1.3).

4 On the gauge fixing of curvature equations

Our approach in the previous sections largely exploited the possibility to choose a preferred

Lorentz frame where the only non-vanishing component of the momentum pµ was p+,

leading to relevant technical simplifications. In this section we would like to comment on

the covariant meaning of our procedure, also in order to establish contact with the papers

[19, 20] and [23, 22, 45], of which our present work represents a natural continuation and

completion.

13



An alternative path to discussing the equivalences (3.5) would proceed in two steps. In

the first step, starting with (3.12) one would first solve covariantly the equations

OMi (d)M = 0 ,

OF ij (d)F = 0 ,
(4.1)

essentially looking for the general form of the kernels of the operators OMi (d) and OF ij (d).

Exploiting to this end the general results of [18] and [16], one can then show that for multi-

forms ϕ , a weak form of (3.5) actually holds, where on the right-hand side gauge-invariant

completions of the Maxwell-like and of the Labastida equations would appear7

d iR (ϕ) = 0 ⇐⇒ M = d i d j D ij (ϕ) ,

T ijR (ϕ) = 0 ⇐⇒ F = 1
2
d i d j d kH ijk (ϕ) ,

(4.2)

while the corresponding relations for GL(D)−irreps would involve suitable projectors Yϕ

acting on the compensator terms8 d i d j D ij (ϕ) and d i d j d kH ijk (ϕ).

Let us stress that, in force of the general discussion we put forward in section 2, the

existence of the equivalences (4.2) allows to directly conclude that the wave equations to

the r.h.s. of (4.2) do describe the correct massless representations of interest, regardless

the possibility to consistently truncate them to (1.3) and (1.2). Indeed, if we did not have

alternative arguments to confirm the particle content of the “ordinary” wave equations (1.2)

and (1.3), we should rather conclude that the equations in (4.2) are the correct ones, to the

purpose of describing given massless representations, and leave it open the issue about the

status of their constrained counterparts. Starting from (4.2), in order to fully establish the

equivalence (1.8) at the covariant level, one should discuss the possibility of eliminating the

tensors D ij (ϕ) and H ijk (ϕ) by means of a suitable partial gauge fixing. However, this very

step involves some subtleties that are not easily sorted out in the general case.

On the one hand, even without computing the explicit form of H ijk (ϕ) and D ij (ϕ) one

might infer by consistency the form of their gauge transformations

δ H ijk (ϕ) = 1
3
T (ij Λ k) ,

δ D ij (ϕ) = 1
2
d (iΛ j) .

(4.3)

However, the transformations in (4.3) are not all independent and thus would not allow a

complete elimination of the corresponding tensors H ijk and D ij in general, as if they were

7See also [43] for a related discussion in the context of quantum forms on Kahler spaces.
8It might be worth recalling that the operators entering the definitions of M and of F automatically

enforce the GL(D)−projection, in the sense that when computed on irreducible potentials ϕ
Y

, both M and

F define GL(D)−irreducible kinetic tensors [20, 37, 3].
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independent Stueckelberg fields9. (One notable exception being the case of fully symmetric

tensors [48, 3].) As originally observed in [37] for the first of (4.3), the compensators

could indeed be gauged away if one could prove (or assume, if they were to be regarded as

additional independent fields) that their structure is of the form

H ijk ∼ T (ijΘ k) , (4.4)

with Θ k s.t. δΘ k = Λ k. On the other hand, to compute in general the form of Θ k (ϕ) stem-

ming from the application of the Generalised Poincaré Lemmas to the equation T ijR(ϕ) = 0

would be technically rather involved. For the Maxwell-like case, moreover, in addition to

similar considerations one would face further subtleties related to the existence of gauge

transformations that are only effective for p 2 = 0 and that are crucial to discuss the spec-

trum of the equations (1.3)10.

While it would still be possible in principle to proceed along this path, and so to provide

a complete covariant demonstration of the equivalences (1.8), we would like to stress that

the proof that we proposed in the previous section allows not only to completely bypass the

issue of gauge fixing of the tensors H ijk (ϕ) and D ij (ϕ) in (4.2), but also to actually show,

indirectly, that such a gauge fixing is indeed possible, thus dispensing us with the need to

compute their effective form as functions of ϕ.

Let us also comment on the issue of double-trace constraints present in the Fronsdal-

Labastida theory [2, 1]. The trace constraints on the gauge parameters in (1.2) imply that

some combination of double traces of ϕ are gauge invariant. Still, one needs to get rid of

them on-shell, so as to avoid the propagation of unwanted degrees of freedom. The solution

to this issue usually considered in the literature is to assume that those gauge-invariant

combinations have to vanish identically:

T (ij T kl) ϕ ≡ 0 . (4.5)

However, as first mentioned in [44] for the case of symmetric tensors, the non-Lagrangian

equations F = 0 are indeed strong enough to imply by themselves the vanishing of double

traces, so that there is no need to enforce (4.5) as independent conditions whenever the

equations F = 0 hold11. For mixed-symmetry fields the same issue was discussed in section

2.1.2 of [3], where it was observed that the Bianchi identities satisfied by F allow to conclude

9See Appendix B for an explicit example.
10See section 3.1.2 of [3].
11The reason is the existence of the “contracted Bianchi identity” ∂ · F − 1

2 ∂F
′ ≡ − 3

2 ∂
3 ϕ ′′, where F ′

and ϕ ′′ denote the trace of F and the double trace of ϕ, respectively.
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that weaker double-trace constraints would indeed suffice to keep consistency, as long as (1.2)

hold.12

Here we are in the position of completing the argument and of actually concluding that

even for arbitrary mixed-symmetry fields the Labastida equations (1.2) are strong enough

to imply (4.5) among their consequences. This result stems from our analysis performed in

sections 3 and 4. Indeed, the second equivalence in (3.5) also implies that the double traces

(4.5) are to vanish on shell (otherwise the equation F = 0 would propagate more degrees of

freedom than its geometric counterpart T ijR = 0), as also manifest in the gauge where the

components (3.9) are set to zero.

This being said, the double-trace constraints are necessary if one wishes to derive (1.2)

as a consequence of a variational equation. Already for symmetric tensors indeed it is

possible to show that, in the absence of auxiliary fields, the gauge-invariant equations of

motion derived from the Fronsdal Lagrangian13 cannot be strong enough to enforce (4.5)

by themselves. For this reason, in order to maintain consistency, in the sense of deriving

F = 0 from the Lagrangian equations, one has to perform the variation of the action over

a space of fields constrained as in (4.5) [46].

For the Maxwell-like equations (1.3) a similar issue arises, since the differential conditions

on the gauge parameters imply that a number of double divergences of ϕ are gauge-invariant,

thus posing a problem concerning their elimination. We refer the reader to [3], where the

issue is discussed in detail, and only mention here that the Maxwell-like operator in (1.3) dis-

plays enough gauge symmetry so as to remove all components of the double divergences that

are not set to zero by the equations of motion themselves. With hindsight, the arguments

we present in this work also provide an alternative proof to the same effect.

5 Conclusions

In this paper we discussed the higher-spin equations obtained setting to zero the divergences

or the traces of curvature tensors of arbitrary symmetry types.

12In the mixed-symmetry case, one could think of applying the Generalised Poincaré Lemma to the Bianchi

identity d i F − 1
2 d

j Tij F ≡ − 1
12 d

jd kd l T (ij T kl) ϕ [37], so as to directly derive (4.5) from (1.2). However,

setting to zero the right-hand side of this identity is not a cocycle condition to which the Generalised

Poincaré Lemma can be applied.
13Assuming traceless gauge parameters the Fronsdal Lagrangian, written as a sum of bilinears in the

potential ϕ, is gauge invariant regardless the field being or not doubly-traceless.
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Transversality conditions emerge as consequences of the Bianchi identities whenever cur-

vatures are imposed to be traceless, as needed to the goal of describing the propagation of

individual particles with a given spin. What we showed in this work, following the results of

[22] for the case of symmetric tensors, is that even imposing transversality conditions alone

leads to a consistent description of massless particles, propagating in this case in reducible

multiplets organized as representations of GL(D − 2).

A notable feature of the derivation lies in the equivalence, up to a suitable partial gauge

fixing, between the higher-derivative equations obtained setting the divergences of the cur-

vatures to zero and the second-order wave equations for the same gauge potentials given

in (1.3). One possible key to interpret such an unexpected property lies in our analysis of

section 2. There we showed how to extract the particle content of closure and transversal-

ity conditions with no need to interpret the tensors under scrutiny as curvatures for gauge

potentials. In this approach the resulting wave equations are standard, second-order ones

(albeit for different tensors) and in this sense one could expect that their content does

not change when the same tensors are solved for as higher-derivative curvatures for gauge

potentials.

One drawback of equations (1.5) and (1.6) is that they are intrinsically non-Lagrangian,

while standard actions for the same particle content typically do not involve curvatures

and do not display full gauge invariance [2, 1, 3]. Lagrangians involving curvature tensors

analogous to (3.2), on the other hand, typically involve non-local terms [42, 20, 47, 23]. At

least in some cases, the latter can be interpreted as due to the integration over unphysical

field components needed off-shell to enforce full gauge invariance [44, 23]. In this sense, the

way non-localities appear closely resembles the emergence of non-local terms in the Polyakov

action after the integration over the pure-gauge (even at the quantum level, in the critical

dimension) Liouville mode [49].

Our analysis covers all possible types of bosonic massless particles with finite spin in

arbitrary dimension D, covariantly described in terms of the “standard” representation

for gauge fields first proposed by Labastida. On the other hand, we did not discuss the

infinitely-many different GL(D)−irreducible field representations arising upon dualisations

[50, 51], which might represent a possible direction to explore. More generally, it would be

interesting to study the issue of duality from the perspective of reducible particle models.

Reducible systems of fermionic massless particles were considered in [7, 8, 9, 11, 10, 23] for

symmetric spinor-tensors. Fermions with mixed symmetry were discussed in [52] and first

given a full Lagrangian formulation in [53]. See also [54, 55]. However, the generalization
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of (1.6) to the case of fermions does not appear to be straightforward: while setting to

zero a single γ−trace of fermionic curvatures provides a counterpart of (1.5), and as such

selects the polarisations of a single particle [56], computing their divergences would more

directly connect to less natural second-order wave equations. We leave to future work a more

accurate analysis of this issue, as well as of the (A)dS deformation of the results illustrated

in the present work.
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A Notation and conventions

The basic objects in our work are tensors in GL(D), either reducible or irreducible. As

a rule, we denote the former with ϕ and the latter with ϕ
Y

, hinting to the possibility of

associating with a given irrep a corresponding Young tableau Y . Generally speaking, such

tensors possess a number of “families” of indices with explicit symmetry or anti-symmetry

properties within each family, depending on the chosen basis. Thus, one refers to reducible

GL(D)−tensors as multi-symmetric tensors whenever the various families correspond to

tensor-products of symmetric tensors

ϕ ≡ ϕ(µ1···µ`1 ), (ν1··· ν`2 ), ··· = 1 · · ·`1 ⊗ 1 · · ·`2 ⊗ . . . , (A.1)
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with parentheses to signify symmetrisation with no additional overall factors, or, differently,

to multi-forms in case the reducible GL(D)−representation arises from products of forms

of various degrees

ϕ ≡ ϕ[µ1···µ`1 ], [ν1··· ν`2 ], ··· =
1...
`1

⊗
1...
`2

⊗ . . . , (A.2)

with antisymmetrization of indices (with no overall factors) denoted by square brackets.

Similarly, irreducible tensors in GL(D) can be described in terms of Young diagrams, e.g.

ϕ
Y

= , (A.3)

where either manifest symmetry along rows or manifest antisymmetry along columns can

be enforced. Irreps contained in the tensor product (A.1) will be of the first type, while the

Young tableaux providing the decomposition of the multiform (A.2) will be of the second

type. Both conventions are widely used in the literature and they turn out to display

specific advantages or drawbacks depending on the problem under consideration. We refer

the reader to the appendices of [37, 57] for more details on the symmetric convention and

to that of [20] for the multi-forms and the use of the antisymmetric basis. In particular, in

order to construct and to study the properties of generalised curvatures the antisymmetric

convention turns out to be more convenient, so that in this paper our tensors are always

meant to be multiforms in the reducible case, or anyway to display explicit antisymmetry

along columns in the irreducible case. However, in Appendix B we exploit multi-symmetric

tensors to provide an example of gauge-invariant combination of traces of compensators

arising from the second of (4.3).

In order to keep our formulas readable usually we do not display space-time indices, while

we introduce family indices denoted by small-case Latin letters. We are thus able to identify

tensors carrying a different number of indices in some sets as compared to the basic field

ϕ, while also keeping track of index-reshuffling among different families, according to the

position (up or down) of the family index.

For instance, the gauge parameters are denoted by Λ i, with a lower index i to indicate

that they carry one index less than the gauge field ϕ in the ith family. Differently, an exterior

derivative carrying a space-time index to be anti-symmetrised with indices belonging to the

ith group is denoted by the usual symbol d in conjunction with an upper index i:

d i ϕ := ∂ [µi1| ϕ ··· , |µi2 ···µi`i+1] , ··· , (A.4)

where the antisymmetrization involves the minimal number of terms, with no overall factors.

The Einstein convention for summing over pairs of indices is used throughout. A notable
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example is the gauge transformation (1.1) of ϕ ,

δ ϕ = d i Λ i , (A.5)

given by a sum of exterior derivatives, each for any of the families of ϕ.

In a similar spirit, for a divergence contracting an index in the ith group we use the

notation

d i ϕ := ∂ λ ϕ ··· , λ µi1 ···µi`i−1 , ··· , (A.6)

while traces, contracting one index in family i with one index in family j (with i 6= j in the

antisymmetric convention), are denoted by

Tij ϕ := ϕ...,
λ
µi2 ... µ

i
`i
, ..., λ µj2... µ

j
`j
, ... . (A.7)

In order to manipulate the various formulae efficiently one has to keep in mind a few relations

(for more details, see [20]) relevant for instance in computing (3.13):

d i d
j = (−1)δij d jd i + 2 δji , (A.8)

d i d j = (−1)δij d jd i , (A.9)

[T ij , d
k ] = 2 δ k(i d j) . (A.10)

B A gauge-invariant combination of compensators

Consider a {4, 3} multi-symmetric tensor field ϕ = ⊗ . Its gauge transformation

involves two reducible parameters Λ 1 = ⊗ and Λ 2 = ⊗ , and in explicit

notation would look

δ ϕµ1µ2µ3µ4, ν1ν2ν3 = ∂ (µ1 Λ(1)
µ2µ3µ4), ν1ν2ν3 + ∂ (ν1| Λ

(2)
µ1µ2µ3µ4,| ν2ν3) . (B.1)

Correspondingly, in the unconstrained extension of the Labastida equation for ϕ there would

appear four possible compensator structures H 111, H 112, H 122, H 222, s.t.

δH 111 = T 11 Λ 1 ,

δH 112 =
1

3
(2T 12 Λ1 + T 11 Λ 2) ,

δH 122 =
1

3
(T 22 Λ1 + 2T 12 Λ 2) ,

δH 222 = T 22 Λ 2 .

(B.2)
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Out of these structures one could construct the scalar quantity (all indices contracted)

G 1111,222 = T 11 T 22H 112 −
2

3
T 12 T 22H 111 −

1

3
T 11 T 11H 222 , (B.3)

s.t. δ G 1111,222 ≡ 0. The existence of such a gauge-invariant combination implies the absence

of enough gauge freedom allowing to remove all the fields H ijk, if they were to be considered

as independent.
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