

A Case Study of Agent
Programmability in an Online

Learning Environment

A Thesis Submitted to the College of

Graduate Studies and Research

In Partial Fulfillment

For the Requirements for the Degree of Master of Science

 in the

Department of Computer Science

University of Saskatchewan

Saskatoon

By

Yang Cao

 Copyright Yang Cao, August, 2004. All rights reserved.

 i

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for Master of Science

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly purposed may be granted by

the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done. It

is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of nay material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or

part should be addressed to:

Head of the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan,

S7N 5A9

 ii

ABSTRACT

Software agents are well-suited to assisting users with routine, repetitive, and time-

consuming tasks in various educational environments. In order to achieve complex tasks

effectively, humans and agents sometimes need to work together. However, some issues

in human agent interaction have not been solved properly, such as delegation, trust and

privacy. The agent research community has focused on technologies for constructing

autonomous agents and techniques for collaboration among agents. Little attention has

been paid to supporting interactions between humans and agents.

The objectives of this research are to investigate how easy it might be for a user to

program his/her agent, how users behave when given the ability to program their agents,

whether access to necessary help resources can be improved, and whether such a system

can facilitate collaborative learning. Studying users’ concerns about their privacy and

how an online learning environment can be built to protect users’ privacy are also

interesting issues to us.

In this thesis two alternative systems were developed for programmable agents in which a

human user can define a set of rules to direct an agent’s activities at execution time. The

systems were built on top of a multi-agent collaborative learning environment that

enables a user to program his or her agent to communicate with other agents and to

monitor the activities of other users and their agents. These systems for end user

programmable agents were evaluated and compared. The result demonstrated that an end-

user programming environment is able to meet users’ individual needs on awareness

information, facilitate the information exchange among the users, and enhance the

communication between users within a virtual learning environment. This research

provides a platform for investigating concerns over user privacy caused by agent

programmability.

 iii

ACKNOWLEDGEMENTS

First I would like to thank my supervisor, Professor Jim Greer, for his guidance and

support throughout this study. I really appreciate the encouragements you provided in my

study, work, and life and I believe these encouragements will benefit me in the rest of my

life. Special thanks to the members of supervisory committee, Professors John Cooke,

Julita Vassileva, and the external examiner Len Proctor, for their criticism and

suggestions. Thanks as well to the entire faculty, staff and students of the Department of

Computer Science at the University of Saskatchewan who provided me with assistance

and support throughout this study.

I would also like to thank my husband Hongyu Qiao and daughter Dan Qiao for their

understanding, encouragement, and support.

Finally, thanks to the University of Saskatchewan for providing a Graduate Teaching

Fellowship to support this study.

 iv

TABLE OF CONTENTS

ABSTRACT... ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

1. INTRODUCTION... 1

1.1 I-Help.. 1

1.2 Activity Awareness.. 2

1.3 The Goals of the Thesis... 3

2. BACKGROUND ... 5

2.1 Agent-based System.. 5
2.1.1 What Is an Agent?..5
2.1.2 Why Use agents?..6

2.2 Issues in Human-Agent Interaction .. 8
2.2.1 Delegating Tasks and Authority ..8
2.2.2 Instructing Agents to Act and React...9
2.2.3 Sharing context ..10
2.2.4 Dialogue Issues..11

2.3 Approaches for Building Intelligent Agent Systems .. 12
2.3.1 Knowledge-based Approach..12
2.3.2 Machine Learning Approach...12
2.3.3 End-user Programming ...14

2.4 Agent Programmability .. 15
2.4.1 Scripting and Form Filling ..16
2.4.2 Programming by Demonstration..17

2.5 Research on Agent in Learning Environment .. 18
2.5.1 I-Help System..19
2.5.2 Awareness Issues in the Current I-Help System..24

2.6 Risk & Privacy Protection.. 24

2.7 Summary.. 26

 v

3. DESIGN OF PROGRAMMABLE AGENTS IN I-HELP 28

3.1 I-Help Architecture ... 28
3.1.1 Logic View of the System Architecture of I-Help ...29
3.1.2 Development View of I-Help ..32
3.1.3 I-Help Agents ..33
3.1.4 Communication among the Agents ..34

3.2 Design of Agent Programmability ... 35
3.2.1 How a User Programs His or Her Agent...35
3.2.2 System Architecture ...37

3.3 Functionality of the Agent Programming Environment 38
3.3.1 Example Scenarios ...39
3.3.2 User Interfaces of ARMS..40
3.3.3 User Interface of the CLIPS-based Rule Environment...43

4. IMPLEMENTATIONS OF PROGRAMMABLE AGENTS 45

4.1 ARMS Approach... 45
4.1.1 Design of Rules..45
4.1.2 Design of the Cycle Check ..48
4.1.3 Structure of ARMS ..53

4.2 CLIPS Approach... 54
4.2.1 Structure of a CLIPS/JESS rule ...54
4.2.2 Bottleneck of the Implementation ..56
4.2.3 Structure of the CLIPS-Based Agents..57
4.2.4 Creating Rules in the CLIPS-based Approach ..58

4.3 Summary.. 59

5. EVALUATIONS AND RESULTS ... 60

5.1 The Research Issues and Objectives ... 60

5.2 Case Studies Design .. 60

5.3 Usability Study on ARMS Approach.. 61
5.3.1 Experiment Procedure ..61
5.3.2 Results...62
5.3.3 Discussion ...65

5.4 Comparative Usability Study on CLIPS vs. ARMS .. 66
5.4.1 Experiment Procedure ..66
5.4.2 Results...67
5.4.3 Discussion ...70

5.5 Summary.. 73

6. CONCLUSIONS ... 74

6.1 Summary of Thesis Work .. 74

 vi

6.2 Research Contributions .. 75

6.3 Future Research .. 76

6.4 Conclusion ... 78

REFERENCES.. 79

APPENDIX A: Materials Used in the ARMS Usability Study.………………….…..86

APPENDIX B: The Questions in ARMS Usability Study…………...…………...…..92

APPENDIX C: An Interview Form for First ARMS Usability Study..……………..93

APPENDIX D: The Case Study Consent Form
for the First ARMS Usability Study…………………………....………………….…..98

APPENDIX E: Materials Used in the Comparative Study…...………………......….99

APPENDIX F: An Interview Form for Comparative Study…………………….....103

APPENDIX G: The Case Study Consent Form
for the Comparative Study…………………………....…………..….…………….…106

 vii

LIST OF FIGURES

Figure 2.1 An agent co-operates with the user on the task ... 6

Figure 2.2 I-Help Public Discussions Forum.. 20

Figure 2.3 Preferences of Asking and Offering Help .. 22

Figure 2.4 I-Help Chat Tool.. 23

Figure 3.1 The multi-agent architecture of I-Help .. 29

Figure 3.2 I-Help System Conceptual Architecture ……………………………………..30

Figure 3.3 I-Help Personal Agent Interface .. 31

Figure 3.4 DICE Subsystem Conceptual Architecture ... 32

Figure 3.5 The 5 layers of I-Help private discussion.. 33

Figure 3.6 Architecture of I-Help End User Programming Environment 37

Figure 3.7 Examples of usage of the end user environment ... 40

Figure 3.8 Rule Management Interface... 41

Figure 3.9 Condition Specification... 42

Figure 3.10 Action Specification Interface ... 43

Figure 3.11 An Interface for Login Notification Template .. 44

Figure 4.1 The situations of rule a triggers rule b ... 49

Figure 4.2 Rule Graph... 50

Figure 4.3 Rule Graph with conditional triggers………………………………………...53

Figure 4.4 Strcture of ARMS.. 54

Figure 4.5 Structure of CLIPS based Agent ... 58

Figure 4.6 A Sample Rule Template... 59

Figure 5.1 Performance for each student .. 63

 viii

LIST OF TABLES

Table 2.1 Privacy concerns of Internet users .. 25

Table 4.1 Formation of the conditions in the rule... 46

Table 5.1 Result of Questionnaire of ARMS ……………………………...……………64

Table 5.2 Result of survey on Login event ... 67

Table 5.3 Comparison on ARMS and CLIPS approach….. ... 69

Table 5.4 Results of general questions .. 70

 1

CHAPTER 1

INTRODUCTION

Software agents will soon proliferate in human organizations, education and society (Greer

et al., 2000; Johnson et al., 2000; Payne et al., 2002), helping users with information

gathering, activity scheduling, email management, and individual and collaborative learning.

An agent is known as a computer system that is situated in some environment, and that is

capable of “autonomous action in this environment in order to meet its design objectives”

(Jennings et al., 1999). The agent’s ability to play the role of a personal assistant arises

from its autonomy, reactivity, and pro-activity properties. An agent with such properties

could enter into negotiations, acting independently to help achieve the user’s goals in an

unpredictable environment, and communicate with the user. However, it is also these

properties, particularly autonomy that raises significant challenges in human-agent

interaction.

The issues in human-agent interaction may be more generally described by the following

four categories (Dickinson, 1998): delegating tasks and authority, instructing agents to

act and react, sharing context, and dialogue issues. For example, questions arise as to how

a user can successfully delegate a task to an agent, how agents acquire knowledge needed

to understand a particular task and find a way to accomplish it, and how a system can

deal with a disagreement between the user and his or her agent. Trust, user privacy and

security issues have also become concerns in the design of agent-based systems. The

agent research community has focused on technologies for constructing autonomous

agents and techniques for collaboration among agents. Little attention has been paid to

supporting interactions between human and agent.

For the purposes of this research, the focus has been on delegating tasks to an agent and

specifically within the bounds of a multi-agent learning environment named I-Help.

1.1 I-Help

The I-Help system (Greer et al., 1998) is designed to provide just in time help for

students over the Internet. It is a peer help system where the students share their

 2

knowledge with each other. There are two components in the version of I-Help used here:

the public discussion area where students share questions and answers within various

course forums, and the one-to-one discussion component where private conversations can

be conducted between pairs of people. I-Help is built on a multi-agent architecture where

each person in the learning environment is supplied with a personal agent. The personal

agents are designed to monitor their user’s activity and construct a learner model, and to

assist learners in locating useful help resources (human and electronic).

Both I-Help components have been used in computer science courses at the University of

Saskatchewan. The students found the I-Help system useful and helpful. However users

want to know what is going on in their virtual community just as they would in any real

society. For example, a user may want to know when another user logs in to the system,

and whether users have read a particular message, etc. Unfortunately, neither the WWW

nor the current I-Help system supports this degree of awareness of users' activities.

1.2 Activity Awareness

Awareness is the information about other possible collaborators who may be around,

whether they are available, what they are doing, and where they are working. In

Computer-Supported Collaborative Learning (CSCL), awareness is essential for effective

collaboration and it plays an important role in augmenting collaboration opportunities

naturally and efficiently (Gutwin et al., 1995). In the physical collaborative learning

environment, awareness allows learners to implicitly maintain information about the

others’ interactions with common problems and corresponding tasks. Ideally the learners

can see, hear and even feel the presence and actions of the other. Unfortunately these

abilities are hard to achieve in web-based learning environments.

More research has been done to support basic characteristics of group work and

awareness (Kurhila, 2002; Ogata et al., 1998; Dieberger, 1997; Munro, et al., 1999;

Wexelblat, 1999). However, a number of interesting research questions haven’t been

solved, such as whether every user should trigger an interaction history, how to deal with

different users’ needs about awareness, and how to cope with changing interests.

 3

For this thesis research, a human-agent interface was built on top of I-Help, where the

users can monitor some events happening in this learning environment by programming

their personal agents to watch for particular events or situations. A set of user activities in

the I-Help environment (event stream) could be detected by the agents, such as when any

user logs in to or logs out from the system, any user reads any message in the discussion

forum and any messages have been sent between any two users. For example, same

events might include "Nancy has just signed in to the system"; "John has posted a

question on some public discussion forum"; "George has read a posting in the public

discussion forum"; "Nancy has sent a request for help to Fred; or Nancy has just received

a message from Susan".

Exposing users' actions or activities may make the system somewhat transparent and the

users able to accomplish their respective goals more efficiently. However, while

surveillance can be used for good purposes it also can be used for bad purposes. It may

result in undesirable consequences and some users may be concerned about their privacy.

A user may also wish to know who is watching him/her, what they are watching, and how

to protect himself/herself from stalking or inappropriate surveillance.

1.3 The Goals of the Thesis

For the I-Help online learning environment to provide effective and efficient usage, users

should be able to acquire knowledge about individuals and events happening in the

system. In order to meet users’ individual needs, facilitate the information exchange

among the users, and enhance the communication between users within the virtual

learning environment, an end-user programming environment in I-Help was proposed.

Two variations for agent programmability were built on top of the I-Help system to

enable users to monitor and analyze the events happening in the I-Help system.

This research was to investigate how users behave when given the ability to program

their agents, what are the users’ concerns about their privacy, how agent-based systems

can be built to protect users’ privacy, and whether the overall performance of the system

will be affected with agent programmability.

The specific questions to be answered by this thesis were:

 4

1. How easy or hard can it be for users to program their agents?

2. Will people feel that agent programmability is helpful?

3. Will users try to destroy the system by malicious use of agents and how can one

protect the system?

4. What are the users’ concerns about their privacy?

5. Will the capability of I-Help improve with agent programmability?

6. Can agent programmability be better achieved by adding a full- fledged

programming environment (like a rule based expert system shell) to the agent

versus by adding a simpler customised and restricted rule system?

The remainder of this thesis is organized as follows: Chapter 2 provides the background

information on agent based system and learning environment. Chapter 3 describes the

design of programmable agents in the context of I-Help. The multi-agent architecture of

the I-Help system is introduced first, followed by the high level design of the agent

programmability, functionality and benefits and risks of the end user programming

environment. In chapter 4, two variations of implementation for agent programmability in

I-Help are introduced. One variation is to add to each agent in I-Help a simpler

customized rule system, which is called Agent Rule Management System (ARMS).

Another variation is implementing CLIPS (C Language Integrated Production System)

based agents that involve connecting a rule based expert system shell to each personal

agent in I-Help. Chapter 5 describes the experiments and results. Chapter 6 gives the

conclusions of this research.

 5

CHAPTER 2

BACKGROUND

This chapter explores some of the aspects of agent-based systems, issues in human agent

interaction, and some of the ways other researchers have addressed these issues. This

chapter also reviews some of agent research in learning environments. The I-Help system

that provides a platform for this research is also analysed in more detail.

2.1 Agent-based System

The idea of employing software agents to perform some computer-based tasks for users

was first introduced by Nicholas Negroponte (Negroponte, 1970) and Alan Kay (Kay,

1984). Much research has been done in the design and implementation of agents.

Examples of some agent-based systems include Meeting Schedule Agent (Kozierok and

Maes, 1993), Rcal-RETSINA Calendar Agent (Payne et al., 2002), SwiftFile (Segal and

Kephart, 2000), Yenta (Foner, 1997), and online shopping recommendation agent (Haubl

and Trifts, 2000). This section reviews some properties of an agent, and the benefits of

using agents.

2.1.1 What Is an Agent?

There is no universally accepted definition for the term agent. Actually, there is a great

deal of debate and controversy about what an agent exactly is. Wooldridge et al. describe

an agent as “a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objectives”

(Wooldridge et al., 1995). In general, an agent has at least some of the following

properties: autonomy, reactivity, pro-activity, social ability.

§ Autonomy refers to the fact that agents can act without the initiative of humans, and

they have controls over their actions and internal state.

§ Reactivity means that agents can sense their environment and respond in time to the

changes in the environment.

 6

§ Pro-activity implies that the agents not only simply respond to their environment, but

also take the initiative to pursue goal-directed behavior.

§ Social ability means that agents can interact with other agents through cooperation

and negotiation.

Some researchers, especially those working in AI, generally refer to agents using

concepts that are usually applied to humans, such as knowledge, belief, and obligation

(Shoham,1993).

2.1.2 Why Use agents?

The significant contribution of software agents is that an agent can act on the user’s

behalf while the user is doing something else, leading to a significant decrease of human

effort in routine work. This is consistent with Maes’s notion that the agent behaves as a

personal assistant which cooperates with the user on the task. The user is able to "bypass

the agent". Figure 2.1 (Maes, 1994) describes the collaborative relationship between a

user and his/her agent.

Figure 2.1 An agent co-operates with the user on the task (copyright@ACM)

 7

Computer systems now proliferate in human organizations, information technology, and

education society, helping users with information gathering, activity scheduling, email

management, entertainment, individual and collaborative learning, etc. They are being used

by distributed communities comprising people with varying abilities and needs. Direct

manipulation (Shneiderman, 1983), the current dominant metaphor of human computer

interaction, requires the user to initiate all tasks explicitly and to take care of sequences of

actions in detail. For example, when one copies a file to another folder, first one must

open a folder, copy the file, open the destination folder, paste the file, and close all

folders. With the agent metaphor, people should be able to communicate with their agents

in terms of the work or effects they want to accomplish, rather than being bothered with

the specific steps it must take to satisfy their needs. In the previous example, to ask an

agent to sort files, probably one would only need to tell the agent to copy a certain file to

certain folder. Then the agent will do the detailed work for the user.

Another advantage of using agents is that the agent can work on tedious, repetitive tasks

without losing attention and they act and react in situations more quickly than the user

could. For example, a web search agent could be tasked with watching for new

information on a web site, such as finding some new articles in a particular area for its

owner. The search agent will repeatedly visit the site, monitoring arrival of new articles,

24 hours a day, seven days a week without getting tired. Also the speed of agents’

reactions is very fast. Agents’ reaction times to new events can be measured in

milliseconds. The agents are suited to helping users to purchase goods in electronic

markets because of this feature as they monitor new events and compare available prices

quickly and without losing attention.

The last major advantage is that the agent can adapt to changing circumstances or user

preferences. The agent is given a minimum of background knowledge, and it can acquire

the knowledge it needs by learning from its user or environment. Maes (Maes, 1994)

claims that a learning agent acquires its competence from four different sources. The

agent can gradually learn how to act in a new situation either by watching how the user

performs tasks, by considering the user’s direct and indirect feedback, by receiving

 8

explicit instructions from the user, or by learning from other more experienced agents

that perform the same tasks for other users.

2.2 Issues in Human-Agent Interaction

Section 2.1 lists some properties of software agents that enable an agent to act as a

broker. An agent with such properties could independently enter into negotiations, help

achieve the user’s goals in an unpredictable environment, and communicate effectively

with the user. However, it is also these properties, particularly autonomy and pro-activity

that raise some difficult issues for the agent interface designer. These may be more

generally described by the following groups of issues (Dickinson, 1998): delegating tasks

and authority, instructing agents to act and react, sharing context, and dialogue issues.

2.2.1 Delegating Tasks and Authority

Delegating a task to an agent means that the agent will act on the user's behalf to perform

a task that otherwise would have to be performed by the user. In more detail, it means

that the agent accepts a goal from the user, autonomously senses the environment, and

acts to pursue this goal.

A trust issue occurs when a user delegates tasks to agents. If the user doesn't know

exactly what an agent does in response to a user's goal, a user might be reluctant to

delegate a task to the agent. Milewski and Lewis (Milewski and Lewis, 1997) indicate

that delegation may not be an easy or a natural behavior for humans. Similarly,

Shneiderman (Shneiderman and Maes, 1997) raises the worry that “using agents implies

giving up all control”. Shneiderman suggests that agent promoters might shift some

attention to showing users what is happening so that they can monitor and supervise the

performance of agents. Obviously, this approach might compromise the agent's

autonomy. Delegation to agents, just like delegation to human, always involves some

risks. The risks include that the intentions could be misunderstood and the task might not

be performed correctly. But these risks do not stop us from delegating many tasks to

people that we work with, and the result is that we are able to do more by collaborating

with others (Lieberman and Selker, 2003).

 9

Authority is another issue when users delegate tasks to agents. Different users may want

to specify different degrees of authority to the agents, especially when the agent has been

given the task of negotiation. For example, in a market some users may like to give an

agent authority to decide whether to buy a product at a higher price because its higher

quality is better than buying a cheaper one. Other users may give less authority to the

agent so the users can have more control in some situations. Sometimes users may not

want the agent to have the same authority in different situations. However, the degree of

an agent’s authority may be encoded at design time by programmers, and thus it may not

be possible for a user to vary the agent’s authority at runtime.

When an agent is negotiating with other agents, the user may change his/her mind or

maybe there is a disagreement between the user and his or her agent. What can a user do

in this situation, can he/she interrupt his/her agent or cancel the negotiation? In some

cases, an agreement might be reached between the buyer agent and seller agent. If the

users don't like an agent's deal, can agents countermand the agreement? Who will be

responsible for an agent's actions and transactions? These issues are more social and

organizational than technical, but they must be solved in agent-base systems.

2.2.2 Instructing Agents to Act and React

If autonomous agents are to act on their users’ behalf, human users must give instructions

to them. The issue is how a user instructs his or her agent and how an agent understands

the domain specific knowledge.

One solution is that the domain specified knowledge (domain model) should be explicitly

or implicitly encoded into the agent’s implementation and interface so that the agent will

be able to understand and fulfill some tasks in a particular domain. However, a user may

delegate a task to an agent using some concept with which the agent is unfamiliar.

Alternatively there could be some new concept that arises. In these cases the agent can

not understand without the introduction of a new explanation. It requires the designer of

the agent to anticipate all possible aspects and interrelationships of the dialogue, and

allow sufficient expressiveness in the dialogue for a user to perform the task effectively.

Obviously such a demand is unrealistic.

 10

The agents should be able to react appropriately to new situations. This involves

characterizing the new situation, and then making a decision about what to do, or what

the user wants exactly. This knowledge also depends on input from the user, but it seems

unreasonable for a user to provide all the information needed at the beginning of the task.

For example, a mail agent which assists the user with email may learn to prioritize,

delete, forward, sort and archive mail messages on the behalf of the user. When a

message has come from a new person or with an un- interpretable subject, when the user

delegates the task to a mail agent the outcome may be unpredictable. Then how can an

agent react to it and how can the user tell the agent what to do exactly?

2.2.3 Sharing context

Human beings obtain a large amount of contextual and background information during

their daily lives. The information can help people to make decisions, such as recognizing

a situation, and deciding what to do in the current situation. Agents acting on a user's

behalf must make similar decisions, so they must possess some of this knowledge.

The contextual information consists of two parts: One part is domain-specific background

knowledge about the application and user, which are referred as the domain model and

user model respectively. The knowledge is relatively stable and usually can be entered

into the agent's knowledge base at design and implementation time. Another part is more

dynamic, and may vary in different users and situations.

For example, the word “busy” carries different context information in different

environments and different times. When in the office, “busy” may mean that one is

meeting with someone, reading some papers, writing a technical report, or talking on the

phone. However, reading magazines or talking on the phone at home might mean that one

is relaxing. Busy-ness is a property of the user's context determined by the user. It is

difficult to rigidly define this in a meaningful or convenient way. If one delegates a task

to his or her agent, such as “If I am busy, answer some emails or answer a phone for me”,

the agent may be confused about the word “busy” and need better context. The agent

should share a common context with the user in order to act properly on the user’s behalf.

The issue is how an agent can share this knowledge with his or her user dynamically.

 11

2.2.4 Dialogue Issues

There are two common categories of human-computer dialogue. The dominant category

is: human users take initiative and act as a master to issue commands and queries to the

computer, while the computer serves as a slave to perform the tasks and respond to user.

Another category is: the computer controls the structure and direction of the dialogue,

such as in tutoring system. Mixed- initiative (Novick and Sutton, 1997; Horvitz, 1999;

Boicu et al., 2000) has been gradually employed in the dialogues between human and

agent. It means that sometimes the user has control, and sometimes the computer (agent)

has control.

Besides initiative, other properties of human-agent dialogues need to be addressed, such

as: Should agents use facial expressions? What are naturalistic styles for dialogues

between human and an intelligent, social agent? What language will be used when a user

interacts with his or her agent? Does it have to be spoken or typed natural language?

Does it need to show emotional tone in dialogue? The belief that humans will be able to

interact with computers in conversational speech has long been “a favorite subject in

science fiction, reflecting persistent belief that spoken dialogue would be the most natural

and powerful user interface to computers” (Allen et al., 2001). Speech recognition and

speech synthesis technologies have been available for nearly two decades. However, due

to technical limitations, their application has been limited to a few success stories.

Meanwhile, over the same two decades, a revolution in consumer electronics and

computing devices has dramatically increased the market need for Spoken Language

Interfaces in order to simplify UI and free-up the hands and eyes. Whether

anthropomorphism is a good or bad thing has yet to be established.

Finally, culture also affects acceptable and effective dialogue structures. The difficulty

for designing international dialogue is not only language, character sets and layout, but

also the considerations of different meanings in different cultures. The very basis of the

social interface may not be easily applied in different cultures (O’Neill-Brown, 1997).

For example, facial expressions may have different meanings in different cultures or in

different countries. In most countries, nodding the head means yes and shaking the head

 12

means no, while in some countries, it has very different meaning: nodding means no and

shaking means yes.

2.3 Approaches to Building Intelligent Agent Systems

A number of researchers and observers are already concerned about agent construction

issues and working on solutions to address them. In this section, different options for

building a human-agent interface are introduced along with existing systems built using

these techniques.

2.3.1 Knowledge-based Approach

The knowledge-based approach requires designers to encode domain model and user

model in advance. In the run-time, the agent uses its knowledge to infer the user's plans

and take actions. UCEgo (Chin, 1991) is an interface agent designed according to this

approach. The system assists users with the Unix operating system.

The knowledge-based approach is suitable for an application that involves a substantial

amount of repetitive behaviour for the users. Unfortunately, since a large amount of

application-specific and domain-specific knowledge needs to be entered into the agent's

knowledge base, this requires a great deal of work from the knowledge engineer. Another

shortage of this approach is that it cannot be readily personalized to individual users’

habits and changing goals. There is also a problem with trust. The users might feel some

loss of control since they don't know the way an agent “thinks” or works.

2.3.2 Machine Learning Approach

With the machine learning approach, instead of the user or a knowledge engineer

explicitly programming the rules, an agent can acquire knowledge by watching the user’s

behaviour and detecting patterns and regularities. The agent predicts how a new situation

should be handled by finding the most similar previously seen situation. Maes (Maes,

1994) claims that a learning agent can gradually learn how to act in a new situation: by

watching the user, by considering feedback, by receiving instructions, or by learning

from other agents.

 13

The classic learning agent is the mail or news agent that learns to prioritize, delete,

forward, and notify a user of incoming mail. For example, MAXIMS (Lashkari et al.,

1994) performs all these functions by observing how a user deals with email using the

machine learning techniques. The main learning technique used by MAXIMS is memory-

based reasoning (Stanfill and Waltz, 1986). The agent memorizes all of the situation-

action pairs generated as the user performs actions. When a new situation occurs, the

agent compares the new situation with the memorized situations and tries to find close

matches. Other systems of this sort include a learning agent MAGI (Payne and Edwards,

1997), and a news-story categorizer (Gustafson ,1998).

Recently electronic profiling became popular in the area of electronic commerce. The

technique of learning user preferences in order to build a profile has been used

sporadically in autonomous agent development (Libeman, 1997). However, it deserves

individual (user) attention in developing an electronic profile. In order to reduce the

burden in completing complicated questionnaires, the Apt Decision agent (Shearin and

Liebeman, 2001) uses an alternative approach. In the rental real estate domain, users

provide a small number of criteria in the initial interaction, receive a display of sample

apartments, and then react to any feature of any apartment independently, in any order.

The agent uses interactive learning techniques to build a profile of user preferences,

which can then be saved and used in further retrievals. Because the user's actions in

specifying preferences are also used by the agent to create a profile, the result is an agent

that builds a profile without redundant or unnecessary effort on the user's part.

The agents discussed above have used learning to anticipate the intentions of an

individual user. A class of systems does just the opposite (Maes, 1994; Resnick et al.,

1994). They use “social filtering”. Some agents act as learning agents by comparing a

user’s profiles with other user’s profiles and estimating preferences on this basis. The

Ringo (Maes, 1994) music-recommendation system is one example. In this sys tem,

agents accept recommendations from the other correlated agents (their users have similar

musical tastes). For example, if user A and user B have similar musical tastes, and user A

found a song is very good which user B has not yet evaluated, then that song is

recommended to user B. Context-aware Annotation Proxy-based System (CAPS) (Sharon

 14

et al., 2002) uses collaborative filtering helping a user browsing the web that is based on

the experience of the community, i.e., members in the same organization.

The machine learning approach requires less effort from end-users, agent designers and

developers. In addition, the learning agent can easily adapt to the user and be customized

to individual preferences and habits. However, the basic learning model had several

weaknesses: the agent normally has a slow learning curve, therefore it cannot provide

useful assistance until it gets enough examples. Furthermore, the agent cannot propose

advice in truly new situations, since it would not be able to find any similar examples or

precedents.

2.3.3 End-user Programming

In the end-user programming approach, the system has "semi-autonomous agents" which

consist of a set of user-programmed rules that contain information about certain tasks. Lai

and Malone’s Object-Lens system (Lai et al., 1998) is the foundational research using

this approach. Object Lens allows users to represent information about people, tasks,

products, messages, etc. by defining and modifying templates for various objects. By

creating semi-autonomous agents, users can specify rules for automatically processing

this information according to their preference. Subsequent systems have been built on

this idea, such as SOFTBOT (Etzioni and Weld, 1994), Apple Data Detectors (Nardi et

al., 1998), and Stagecast (Smith et al., 2000), the detail of these examples can be found in

section 2.4.

The main advantage of this end-user programming approach is that the user can

understand what the agent does and how the agent does it. Although the user turns over

some control of tasks to the agent, the user can have control back whenever he or she

wants. However, it has a number of disadvantages (Lashkari et al., 1994): users have to

recognize the opportunity for delegating tasks to an agent, take the initiative to state the

rules, specify the rules in textual or graphical languages, and maintain the rules over time

as their preference changes.

 15

2.4 Agent Programmability

Many of the routine tasks which users delegate to agents involve relatively complex

sequences of behaviours, such as extracting particular information from a web site,

monitoring a news group for a recent topic, or performing some set of conditional

actions. Users will have specific requirements for their agents about the tasks and the

requirements or users' preferences could change from time to time. By analyzing the

different approaches for building agents, we found out that a simple knowledge-based

approach is not suitable for agent personalization. The agents may have inductive-

learning capabilities, however, it is not always possible for agents to perceive user’s

intent. For example, I may want to be alerted when I get an email message from my boss

with the subject "urgent" and I never have similar situation in the past. Therefore, there is

no base of examples for a learning approach to work. In addition, the users want their

intentions to take effect immediately, so there is no time for agents to accumulate

samples and find the pattern. In these cases, agents' actions cannot be learned by

observing and must explicitly be requested. The problem of these desires can be solved

directly by end-user programming of the intelligent agents.

The end-user programming approach can provide an environment for the users where

they can create specific features about which they care and serious users will work

around missing features. End-user programming is also an effective approach because it

offers significant flexibility to users and it is relatively easy for users to update the rules

when their needs change. Some of the issues in human-agent interaction, such as who

takes responsibility for the agent's behavior, how to give instruction to agents and the

degree to which users can trust their agents, can be solved.

The most commonly encountered instructable agents of this sort are the notification

agents found at many web sites. These agents typically use a form-based interface to

allow a user to enter an event that he/she wants to be notified about, such as a sale on a

particular product. When the event occurs, the agent is triggered, and notification is sent

by e-mail.

Available approaches for more end-user programming include high- level scripting

languages, forms, direct-manipulation interfaces and programming by demonstration.

 16

2.4.1 Scripting and Form Filling

The script can be seen as a kind of application programming interface (API) that allows

users to specify the agent's behavior at a certain level of abstraction. A straightforward

approach is to equip the agent with a library of manually authored scripts that determine

what the agent might do in a certain situation. At run time, the remaining task is to

choose from the library a suitable script that meets the constraints of the current situation

and at the same time helps to accomplish a given task.

Unfortunately, the problems with manually authored scripts and script libraries are: the

author has to anticipate all possible situations and tasks; the scripts must allow for

sufficient variations to avoid agents behaving in a very predictable and similar way;

furthermore, the manual scripting of presentation agents can become quite complex and

error prone because of synchronization issues. To avoid extensive script writing but,

nevertheless, to enable a rich and flexible agent behavior, one can use a generative

mechanism that composes scripts according to a set of composition rules.

The PPP (personalized plan-based presenter) Project (Andre and Rist, 1996) addressed

the automated generation of instructions for the operation of technical devices. The work

of Andre et al. (Andre et al., 1999) formalizes action sequences for composing

multimedia material and designing scripts for presenting this material to the user as

operators of a planning system. The plan operators allow users to specify spatial and

temporal layout constraints for the presentation segments corresponding to the single

acts. A planning operator refers to a complex communicative goal (for example, to

describe a technical device), whereas the expressions of the body of the operator indicate

which acts have to be executed to achieve this goal. The input of the presentation planner

might be a complex presentation goal. To accomplish this goal, the planner looks for

operators whose headers subsume it. If such an operator is found, all expressions in the

body of the operator are set up as new sub-goals.

Using a scripting language requires more effort from the end users, but programming in a

scripting language is powerful and the users can develop motivation to automate certain

tasks. A notable approach is combining the power of scripting and form filling.

SOFTBOT (Etzioni and Weld, 1994) is an example of this approach. The user interacts

 17

through a form-based interface with a planning program that takes the user's goal as input

and searches a library of action schema to generate a sequence of actions for achieving

the goal. Apple Data Detectors (Nardi et al., 1998) use the similar approach, which works

on the user's own machine helping the user to take actions on the structured information

found in everyday documents. The user making a selection from the given data achieves

the job of supplying data to the parameters of the scripts. Terveen and Murray's Agent

Manager system (Terveen and Murray, 1996) works in the domain of message

processing. Users instruct their agents to process on a particular message by specifying a

set of rule conditions and actions. Users specify rule conditions by restricting the values

of the message type, sender, recipient, subject, and the date/time of arrival. Similarly,

users select rule actions by choosing from a list of options, such as Move Message,

Forward message, Notify by paging, Notify with popup alert, etc.

2.4.2 Programming by Demonstration

Programming by demonstration (Cypher, 1993) also appears a good candidate for

instructing agents. Programming by demonstration enables a user to instruct the system to

"Watch what I do" and the system to abstract this observed action sequence in order to

make it applicable to a wider range of situations. This is similar in spirit to over-the-

shoulder learning but "not subject to the pitfalls of inductive learning".

With programming by demonstration, users do not need to learn a conventional

programming language or scripting language. A typical example of this class is Stagecast

(Smith et al., 2000), a system intended to enable its user to program a kind of videos

games. KidSim (Smith et al., 1997) is an example in the programming of animation.

KidSim allows children to create their own simulations in which characters move around

in a two dimensional world. They create their own characters, and they create rules that

specify how the characters are to behave and interact. Bauer et al. (Bauer et al., 2000)

also demonstrated a sample programming by demonstration (PbD) dialog aiming at

building the wrapper for Personalized Information Services (Bauer and Dengler, 1999).

The training dialog starts with the user marking the desired portion of the document.

Then the system suggests a number of actions that are expected to increase the estimated

 18

wrapper quality. The user accepts one of these suggestions or decides to do something

completely different and so forth until a seemingly good wrapper was produced.

2.5 Research on Agent in Learning Environment

Agents have become popular additions to interactive learning environments. In general, a

learning environment consists of the teachers and the fellow learners with whom the

learner interacts during the learning process; the teachers and learners can be human or

artificial companions. Besides teacher/learners, the learning environment also consists of

a set of computer-based tools that can be used by the learner (i.e. educational software,

communication tools), and the learning material that contains the topics the learner has to

learn.

Animated pedagogical agents (Johnson et al., 2000) have been used in learning

environments as artificial trainers. The pedagogical agents are animated characters that

guide and encourage learners’ study in computer-based learning environments. They

interact with learners in a manner simulating the behavior of human tutors that includes a

combination of verbal communication and nonverbal gestures. They can express both

thoughts and emotions which are significant for human teachers. These pedagogical

agents are not only knowledgeable about the topics being taught, but also have

knowledge about pedagogical strategies and how to obtain relevant information from

available resources such as the World Wide Web. One of the example pedagogical agents

is STEVE, a virtual trainer for 3D environments (Rickel and Johnson, 1999). STEVE can

answer questions, monitor students' action, and advise learners when playing the role of a

tutor as well as a learner’s teammate. It provides more humanlike assistance than

previous automated tutors could because of his animated body and interaction in the

virtual world with students (Rickel and Johnson, 2000).

AUTOTUTOR and ATLAS are two other successful tutoring systems. AUTOTUTOR

(Graesser et al., 1999) is a fully automated computer tutor that has provided guidance for

college students in a computer introductory course. AUTOTUTOR tries to comprehend

student contributions and stimulate dialogues to guide students answering deep-reasoning

 19

questions. ATLAS (VanLehn et al., 2000) is a computer tutor for college physics that

focuses on improving students’ conceptual knowledge.

As the telecommunication infrastructures and the Internet grow, they provide great

facilities for online delivering education and collaborative learning. Online learning is

defined as Internet-enabled learning or e-learning, including any use of computers and

the Internet to facilitate education (Downes, 1998). Unlike the traditional distance

learning, the success of the new online learning environment is not only just delivering

the instructional materials but also providing a collaborative learning environment in the

virtual learning community. One of the key elements for successful collaborative learning

is peer-to-peer sharing of experiences (Greer, et al., 1998; Pressley et al., 1992). This

provides a sense of belonging, a sense of feeling part of the community. In the following

subsections an example of agent based online collaborative learning environment, I-Help,

is introduced, followed by an activities awareness issue in this learning environment.

2.5.1 I-Help System

The I-Help (Greer et al., 1998) system was developed in the Advanced Research in

Intelligent Educational System Lab of the Department of Computer Science, University

of Saskatchewan, Canada. I-Help is designed to provide just in time help for students

over the Internet. It is a "peer help" system where the students share their knowledge and

exchange information with each other. That means people who receive help also give

help (Greer et al., 2000). There are two main components in the current I-Help system:

the public discussion component and the one-to-one private discussion component.

Public Discussion

Public discussion forums are also known as bulletin boards or newsgroups. In the public

discussion forums, learners can post questions, discus problems of common interest,

reply to questions posted by others, read posting and search for posting according to

author, concepts, keywords, etc. The public discussion component clusters user

discussions around the courses in which they are currently enrolled. All the students who

are taking a particular course share the same information including questions and answers

within the various course forums. Each question or response to that question is called a

 20

posting which consist of a unique posting id and author name, etc. The information about

postings and the users' activities in the Public Discussions such as when a user reads a

particular posting, when a user posts to a forum, etc. are recorded in the I-Help database.

Figure 2.2 shows an initial interface of the public discussion forum when a user logs into

the I-Help Public Discussions. Then the user will be able to perform the tasks we

described above, such as read posting or generate a new posting, etc.

Figure 2.2 I-Help Public Discussions Forum

One-to-One Private Discussion

In the one-to-one private discussion component, conversations are private and restricted

to pairs of people. When a learner asks a question, an appropriate helper is recommended

by the system. The system will match the student model with the models of other

students, to find peers who are more suitable to provide help in a timely fashion. The

helper is rated according to several factors, such as the knowledge level, availability, and

eagerness to help, etc. Once the helper is selected, the helper and the helpee can start to

 21

communicate. The dialogues may be synchronous or asynchronous and many private

discussions with different partners can proceed simultaneously.

The I-Help system is built on a multi-agent architecture where each person is augmented

with a personal agent who acts on the user's behalf to manage the offering and getting of

help. In particular, the personal agents are designed to monitor user activity, and to assist

learners in locating help resources (both human helper and electronic help resources).

Each personal agent keeps a model of its "owner" and this is used to find the best helpee-

helper matches when negotiating help with other agents (Vassileva et al., 1999). The user

model information is obtained from the learners' self-assessment of knowledge level of

the various topics, from short peer evaluations that occur at the end of a help session, and

from monitoring student activities in both parts of the I-Help system. Users' activities

which are used to measure student participation in I-Help include whether or not the

student is currently or frequently online, how often a student reads/posts a message on the

public discussion forum, and how often a student answers or replies questions/messages

in the private discussion, etc. An agent negotiates with other agents on behalf of its user

using a negotiation mechanism (Mudgal and Vassileva, 2000). The agent determines to

accept an offer or reject an offer by calculating a utility function with the following

factors: money, current goal of the user, the relationship between the users, risk attitude,

and perceived utility function and factors of the other agents (Mudgal and Vassileva,

2000).

The Matchmaker agent is an agent that facilitates finding a best helpee-helper match.

Matchmaker maintains profiles of the knowledge and some other characteristics of all the

users in the system. Each user is able to change their help preference at any time. Figure

2.3 shows how an I-Help user can tell the agent about his/her preferences of asking and

offering help. The user can specify the knowledge level for the various concepts that are

relevant to the courses, the number of discussions he/she would like to process at once,

about which topics or whom he/she will not help at all. As well the user can tell his/her

agent how much he/she wishes to be paid for offering help and how much she is willing

to pay for getting help.

 22

Figure 2.3 Preferences of Asking and Offering Help

A peer evaluation form is available for a learner to evaluate his/her partner after the help

session completes. The evaluation includes whether the helper is helpful and

knowledgeable on the topic they are working on. This information is stored in personal

agent and maintained by matchmaker who uses it in subsequent matches.

In order to illustrate the functionality of I-Help one-to-one private discussions, a scenario

is described below. Imaging a first year university student has a question and doesn't

know much about the other students. He/she can delegate the task of locating help to

his/her personal agent. The following is the sequence of events:

§ A learner provides his/her agent with the information about the question, such as

question type, topic, and content of the question, etc.

§ The agent forwards the information along with the user's help preferences to the

matchmaker.

 23

§ The matchmaker generates a ranked list of the users who are able to offer help

according to users' knowledge level, availability, helpfulness, eagerness to help,

and cognitive style, etc.

§ The learner's agent negotiates with agents of the potential helpers using its

negotiation techniques.

§ If the negotiation succeeds, the agent of the potential helper notifies its "owner"

that there is a help request waiting.

§ Once the helper accepts the request, the two users can start to communicate via a

simple chat tool (Figure 2.4).

§ After they complete their conversation, each learner is provided with an

evaluation form to evaluate their partner.

Figure 2.4 I-Help Chat Tool

 24

2.5.2 Awareness Issues in the Current I-Help System

Both I-Help prototypes have been used in computer science courses in the University of

Saskatchewan. The students found the I-Help system useful and helpful. Most students

responded that "reading postings helped their learning"; most found "answers received

useful"; many found that "answering other people's questions helped in their own

learning" (Greer et al., 2001).

I-Help users could send out help requests, read postings, or get replying from helpers.

However, the WWW techniques and current version of I-Help do not address the problem

of feeling “deaf”, “blind” and “alone” due to the lack of mechanisms to support

awareness. In the current system there is no way or efficient manner for a user to know

about other persons' presence, availability, willingness to interact, and other events

happening in the I-Help environment. However, users want to know what is going on in

their virtual community just as they would in any real society. For example, a user may

want to know when another user logs in to the system, which posting attracts most of the

people, and whether users have read a particular message, etc. These events could be

used by agents to determine which person would be a good helper and most likely answer

a question in a timely manner. Users could use this information to learn or infer about

each other in order to cooperate in the learning community. A preliminary user study on

activity awareness in I-Help demonstrates that awareness of other learners’ activities

facilitates both individual learning and collaborative learning (Cao and Greer, 2003 a).

Other research (Jermann et al., 2001; Schichter et al., 1998) also shows that in an online

environment the participants' awareness of each other's activities is a critical feature when

trying to build successful communities.

A human-agent interface should potentially be contrived to allow users to program their

agents to obtain the activities information.

2.6 Risk & Privacy Protection

We already know the benefit of awareness of others' activities from the previous section.

However, while surveillance can be used for good purposes it also can be used for bad

purposes. It may result in undesirable consequences such as "cyber-stalking" (Petherick,

 25

1999). In addition, not all the people might like the idea of everyone being able to see

everything they are doing in the system. Table 2.1 is an overview of the surveys on

privacy concerns of Internet users. The data in table 2.1 shows that the users have

concern about their privacy when they are surfing on the Internet.

Table 2.1 Privacy concerns of Internet users

What users are concerned about Percentage of Users

Being (very) concerned about threats to

their privacy when using the Internet

81% (Westin and Maurici, 1998)

87% (Cranor et al., 1999)

Being extremely or very concerned about

divulging personal information online

69% (Culnan and Milne, 2001)

74% (AARP, 2000)

Being (extremely) concerned about being

tracked online

54% (Pew Internet Project, 2000)

77% (AARP, 2000)

Privacy protection is known as "the right of individuals to control the collection, use and

dissemination of their personal information that is held by others" (EPIC, 2000). Many

countries and researchers are now developing privacy regulations and privacy protection

for electronic data and on-line activities. The Platform for Privacy Preferences Project

(P3P, 2000) is an industry standard that facilitates users to gain more control over the use

of personal information on Web sites. P3P allows Web sites to publish their privacy

policies about how a site handles personal information about its users in a machine-

readable format. P3P enables browsers to "read" the privacy policy and compare it to the

consumer's own privacy preferences. If the policy and information requested by a Web

site matches the user’s preferences then the information is sent without disturbing the

user, otherwise, the user is notified and given the opportunity to enter the requested

information or leave the site.

Privacy critics (Ackerman and Cranor, 1999) are semi-autonomous agents used in

combination with P3P sites to help users protect their private information. A critic-base

 26

environment can have hundreds of different critics where each checks on a different facet

of a problem domain and user goal. For example, one critic may check the Privacy

Consumer Group's site for additional information about this site, another critic may

double-check any human-readable text that a site provides to see whether it is the same as

the P3P policy.

In I-Help, there are following features of users' information:

§ Consist of sensitive personal information like birthday, email, password, etc.

and activity information, such as log on to the system, read a posting and so on.

§ The activity information including who logs into the system and who posts a

message, etc. was obtained by the system by tracking users’ activities. The

users will use this information when they acquire the information on other’s

activities. These activities information may be used to facilitate their individual

and collaborative learning.

A preliminary user study on activity awareness and privacy concerns in I-Help (Cao and

Greer, 2003 a) showed that surveillance of part of the users' activities is not a big concern

for most of the learners and they are willing to disclose information about themselves.

However, some users raised concerns when people other than a tutor or a friend were

watching them on certain events, such as sending messages, and reading messages.

Detailed information can be found in Chapter 5.

2.7 Summary

In this chapter, we first broadly reviewed some of the aspects of agent-based systems, the

issues in human agent interaction, and different approaches for building agents. Then

some agent research and issues in learning environment were explored and I-Help

particularly was studied in more detail.

By analyzing the methods of building agents, we found all of them have their own

strengths and weaknesses. Some approaches can easily adapt to individual preferences

but could not solve users’ changing interests very well and quickly. Others may provide

more powers for the users but require a big effort from the end users. It should be noted

 27

that the key problems in human agent interaction, namely delegating tasks & authority,

instructing agents, and privacy & security, are still unsolved.

An ideal agent based system would accomplish the following:

§ Users have control over their agents

§ Users are able to instruct their agents easily

§ Users are comfortable with their privacy and security

§ The system should easily adapt to individual preferences and changing interests

The next chapter describes the design of two agent programming extensions to I-Help

that were developed to accomplish these goals.

 28

CHAPTER 3

DESIGN OF PROGRAMMABLE AGENTS IN I-HELP

In this thesis, two alternative approaches are employed to build user agent programming

environments on top of the I-Help system. These end user programming environments in

I-Help allow users to monitor some events happening in the I-Help learning environment

by programming their personal agents. This chapter first introduces the agent platform

and multi-agent architecture of the I-Help system, followed by a high level design of the

agent programmability, functionality and benefits and risks of the end user programming

environment.

3.1 I-Help Agent Architecture

The version of the I-Help system considered in this research was developed by other

researchers in the Advanced Research in Intelligent Educational Systems (ARIES) Lab of

the Department of Computer Science, University of Saskatchewan. It was built with a

multi-agent architecture. In this architecture there are two types of agents: personal

agents and application agents, which monitor user activity and assist learners in locating

help resources (human and electronic).

Figure 3.1, adopted from (Vassileva et al., 1999), illustrates the organization of I-Help.

There is one personal agent for each user and one application agent for each type of

application. The I-Help system is implemented in Java and the agents communicate by

sending KQML-like messages via CORBA. The various agents can be hosted on the

same or different servers and simply register themselves on the CORBA name server to

communicate with each other. The following sections explore the different views of the

system architecture, the various types of I-Help agents and the communication between

agents. "4+1 views" (Kruchten, 1995) is one of the approaches used by software

engineers in analyzing and maintaining big systems. “4+1 views" explores the

architecture of the big systems from different points of view, which include logic view,

process view, physical view, development view and scenarios. In the following section,

two of "4+1"views: logical view and development view are used to explain the I-Help

architecture.

 29

 Figure 3. 1 The multi-agent architecture of I-Help

(reprinted with permission from Vassileva et al.,1999)
The grey faces represent application agents, the white ones represent personal agents.

Applications are shown as rectangular boxes.

3.1.1 Logic View of the System Architecture of I-Help

Based on knowledge of distributed systems and agent based systems and the existing I-

Help documentation and source code, we arrived at the conceptual architecture shown at

its highest level of abstraction in Figure 3.2. The diagram is drawn using the UML

standard. The four major subsystems are described in the following paragraphs:

 30

 Figure 3.2 I-Help System Conceptual Architecture

§ User Interface (the package named as Servlets):

The users interact with the system via a set of Html pages through web browsers.

The user interface is composed of static and dynamically created html pages.

Information is sent between a user and his/her personal agent via Java Servlets.

The Servlets used are: LoginIHelp, PasswordCheck, CheckMessages,

GetMessages, FindHelp, Evaluate, Knowledge, Preference, RemoveRequest,

DisplayQuestion, DiscussionList, EndDiscussion, etc.

Serlvets

DICE

Agents

Library

 31

Figure 3.3 I-Help Personal Agent Interface

For example, the LoginIHelp servlet and PasswordCheck servlet handle the login

interaction. LoginIHelp servlet gets the login id and password from the user and

sends the information to the PersonalAgent and automatically loads

PasswordCheck. PasswordCheck servlet checks whether the password was

correct. If password is correct, PasswordCheck servlet loads the main agent page

for that user (Figure 3.3), if not it returns an error message to the user.

§ Agents

The agents are the most important component in the I-Help private discussion The

detailed explanation of I-Help agents is given in section 3.1.3.

§ DICE

The DICE subsystem (Deters, 2000) is the infrastructure for providing the

environment for communications between agents and message passing between

 32

agents and Servlets. It contains four subsystems: UserProxy, Host,

Communication, and Basic. The Host is used by Agents subsystem to allocate the

agents. The UserProxy serves as a mailbox to get and store messages which will

be used by Servlets and Agents subsystems. They all need the functionality of the

Communication and Basic subsystems (See Figure 3.4).

§ Library

The Library subsystem contains routines that are used throughout the I-Help

private discussion system.

Each of the above subsystems has additional sub-subsystems hierarchically nested within

it. The relations shown in Figure 3.2 and Figure 3.4 are ‘depends-on’ relationships. For

example, the Agents subsystem depends on the DICE subsystem for communication

support or to communicate with the Servlets subsystem. All of the subsystems depend on

the Library subsystem.

Figure 3. 4 DICE Subsystem Conceptual Architecture

3.1.2 Development View of I-Help

Figure 3.5 represents the system organization of the I-Help system in five layers. Layers

1 and 2 constitute a domain- independent distributed infrastructure that is common across

the system components and shields them from variations in hardware platform, operating

system, or off-the shelf products such as the database management system. Layer 3 adds

User Proxy

Communication

Basic

Host

 33

I-Help development framework to form a domain-specific software architecture. Using

this framework a palette of functionality is built in layer 4. Layer 5 is very customer-and

product-dependent, and contains most of the user- interface and interfaces with the

external systems.

Figure 3. 5 The 5 layers of I-Help private discussion

3.1.3 I-Help Agents

v Personal Agents:

Personal agents are representatives of the users in I-Help. They maintain user models and

tasks to be performed. The user model contains all of the characteristics of a certain user,

such as the alias, friends, banned people lists, banned topics, email address, knowledge

profile, preferences about how the agent should negotiate for help, etc. Some

characteristics are set explicitly by the user. Some agents, such as diagnostic agents also

maintain partial user models by monitoring user activities. All interactions between a

user and the system are filtered through a personal agent. The personal agent either

interprets the task and processes the information or collaborates with an appropriate agent

to fulfill the task.

Domain
independent

Domain
specific

1 Low-level services
 Basic message passing, library, etc.

2 Support Mechanisms:
 Communication among agents

3 I-Help classes

4 I-Help functional areas:
personal agent, matchmaker, etc.

5 Human-Machine Interface
External systems

Basic elements

 Distributed Agent Platform

I-Help Framework

High level
components

User interface and Interfaces
 with external systems

 34

Each agent consists of four main classes: PersonalAgent.java, UserModel.java,

NegotiationComponent.java and AgentFace.java. The PersonalAgent.java does the

majority of the interaction between other personal agents and applications agents.

UserModel.java contains all of the characteristics of the users described above.

NegotiationComponent.java handles the negotiation with other agents for help requests.

AgentFace.java formats all of the output that goes to the user. By separating the output, it

makes it simple to replace the user interface without having to modify the agent's logic

and attributes.

v Application Agents:

Application agents manage the resources around particular applications. Some of the

most important agents are briefly discussed below.

§ The matchmaker application agent is the agent that ranks potential helpers and

performs matchmaking based on certain criteria. The set of criteria includes

willingness, availability, the user’s knowledge level, eagerness rating,

helpfulness, etc. The matchmaker acquires the user models from the personal

agents and from diagnostic agents who create partial user models.

§ The DB Agent is an application agent that handles all writes and reads operations

from the database. Whenever the agents need information or needs to update the

database they send messages to DB agent.

§ Diagnostic agents model characteristics of users in certain fields, such as

eagerness, helpness, or knowledge on some topics by means of monitoring user

activities, users' self eva luations, or other relevant information includes grade.

There are several types of diagnostic agents currently implemented and a new

diagnostic agent can be added to the system at any time.

3.1.4 Communication among the Agents

The agents in I-Help work together co-operatively to accomplish complex goals and use

local information and knowledge to manage local resources and handle requests from

peer agents. They communicate with each other using an expressive agent

communication language-- a subset of Knowledge Query and Manipulation Language

 35

(Finin et al., 1997). Common Object Request Broker Architecture --CORBA (Raj, 1998)

is used as an infrastructure that enables agents to locate one another in the distributed

environment and facilitates message passing. Before messages can be sent, each agent

must register itself on the CORBA name server so that other agents can find it. In

general, each message contains sender, receiver, subject of message, content of message,

etc. An agent makes a decision on how to process and respond to the message based on

the subject and content of the message.

CORBA was designed to be platform and language independent. Therefore, CORBA

objects can run on any platform, be located anywhere on the network, and can be written

in any language that has Interface Definition Language (IDL) mappings.

The agent platform and multi-agent architecture of I-Help was designed and implemented

by the other researchers in the ARIES lab. This thesis work extended their

implementation and made agent programmable so that the users in the I-Help can

program their personal agent to monitor others’ activities. In the next section, the design

of agent programmability is described.

3.2 Design of Agent Programmability

This section describes how a user programs his or her agent and the high level

architecture of the system.

3.2.1 How Users Program Their Agents

An end user programming environment allows users to program their agents so that the

agents can monitor certain events happening in the system and take some actions

accordingly.

Events frequently occurring in the I-Help system might include: a user has just signed in

to the system, a user has just received a message from another user, a user has sent a

request for help to a particular user, etc. For the purposes of the I-Help system, events

have been broken into seven main categories:

• Logging in/out of the system

 36

• Changing preferences

• Viewing pages

• Responding to a help request/posting messages

• Requesting information

• Updating system attributes (evaluations, prestige, etc.)

• Updating privacy settings

The user can tell his/her agent what actions to perform when these events happen. A set

of actions for the agent include:

§ Notify the owner about the event

§ Email the owner with some given subject and content

§ Send an email to other users with some given subject and content

§ Communicate with other agents on behalf of its owner.

These triggers and actions describe the kind of programming functionality a user might

wish to have available. The following example shows how a user instructs his/her agent

explicitly about what action/actions should be taken under a certain condition. The

hypothetical user, Yang, provides a rule called read-message, which is used to program

her agent to contact Sam, if Sam has logged in to the system within the past 30 minutes

and if Sam has read a particular message within the past 30 minutes.

 Rule name: read-message

 If

 User Sam logs in to the Private Discussion within the past 30 minutes and

 User Sam reads the message with message id 19291 in the Public discussion forum

within the past 30 minutes

 Then

 Notify Sam with subject: discussion and content: “…we need to talk”

 37

3.2.2 System Architecture

In order to build an environment allowing the user to program his or her agent, the

human-agent interface, Rule Supervisor Agent, Rule Management module, Rule Cycle

Detector modules were developed as well as modifications and additions made to the

personal agents and DB agent. Figure 3.6 represents a high level architecture for the I-

Help end user programmable environment. The Rule Management module, Rule Cycle

Detector modules are inside the box of Other Applications.

 Figure 3. 6 Architecture of I-Help End User Programming Environment

The main function of a PersonalAgent here is to communicate on behalf of its owner and

this is achieved by collaborating with DBAgent, RuleAgent, and other applications. The

interactions between a user and his/her agent are through a set of user interfaces including

presentation of information, option selections, and form- filling. Additional graphical

user interfaces were designed and implemented to allow the users to enter their rules or

fill the template form. For each type of event the users are able to set conditions and

actions that should be taken by the agent. Other kinds of new graphical user interfaces

and modifications to existing graphical user interfaces were designed and implemented

for displaying messages to the user, such as giving a notification signal to a user and

 38

displaying messages about events in which the user is interested. The function of each

module is briefly introduced below.

§ Each personal agent consists of a user model and a set of tasks to be performed. The

functionality of the persona l agents includes notifying the owner when specified

conditions occur, delivering messages to other users or their agents, and responding to

messages from other users or agents. The personal agent achieves these functions by

working with other agents and applications.

§ DB Agent is an application agent that handles all writes and most reads from the

database. The information about users' activities are stored and retrieved via DB

Agent.

§ RuleAgent is an agent that deals with managing the rule repository and detecting

interactions among a set of rules.

§ The interactions between a user and his/her agent are through a set of user interfaces

which are composed of static and dynamically created html pages. Information is sent

between the user and agent via Java Servlets.

§ Other applications include Rule Management module, Rule Cycle Detector, and other

Java components.

Two alternative approaches for implementing an end user programming environment

were employed in the context of I-Help agents. Detailed information on these two

approaches and the implementations is introduced in next section and Chapter 4.

3.3 Functionality of the Agent Programming Environment

The I-Help end user programming environment is a Web-based system where the users

interact with the system through normal web browsers. Two approaches were employed

to implement the agent programming environment. One approach is to add to each agent

in I-Help a simple customized rule system, which we called the Agent Rule Management

System (ARMS). Another approach is implementing CLIPS-based agents that involve

connecting the CLIPS rule-based expert system shell to each personal agent in I-Help. In

 39

this section some examples of usage of the system and related user interfaces are

described and sample user interfaces are presented.

3.3.1 Example Scenarios

Figure 3.7 presents some examples of the usage of our Agent programming system. It

illustrates how the end user programming environment enables different users to monitor

others' activities in the I-Help world.

There are three types of users and they have different intentions using the system. Figure

3.7 includes one instructor, one tutor and two students. The instructor wants to know

about common problems encountered by the students, the tutor wants to know whether

there is a new question posted, and the two students need help from the instructor and the

tutor. Each user can program his/her agent through a specific user interface about what

he/she likes to watch and what action should be taken when a particular event happens.

When these events happen, the agents will take appropriate actions according to the

preference of their owners.

The student “A” may configure a rule to program his agent to send a special notification

to the tutor within a half hour after the tutor reads his particular message in the public

discussion forum. The rule looks like:

If the tutor has read message 19765 within the past 30 minutes

then notify tutor with the subject "Can we talk?".

The student “B” might configure a rule to program her agent to notify her when the

instructor signs in to the system. The rule looks like:

If the instructor has logged in within the past 2 minutes

then notify me with the subject "The Instructor just signed in".

 40

Has the tutor
replied to my
message?!

Instructor

Tutor
Student A

Is the
instructor
online?

End User
Programming
Environment

What’s the
common
problem of
the students?

What’s the
common
problem of
the students?

Who is around?

What are they doing?
Is there a
new question
posted?

Student B

Instructor
just signs in

Figure 3. 7 Examples of usage of the end user environment

When the instructor signs in to the system, the system will inform student B. The tutor

will get a notification message with the subject "Can we talk?" after she reads message

19765. The detailed information about interfaces for editing a rule and checking

notification messages is discussed in the next section.

The users are able to generate complex rules by combining several conditions and

actions. See examples in the next section. The users can also write a rule to trigger

another rule.

3.3.2 User Interfaces of ARMS

The primary user interface for a user to program his/her agent is the rule management

interface which includes one notification signal bar named as Notify, an index frame with

the names of the existing rules, and a rule editor frame (Figure 3.8).

 41

Figure 3. 8 Rule Management Interface

The notification signal (left upper) is used to notify a user when a new notification

message is received. When a new notification message arrives, the notification signal bar

will turn blue. Figure 3.8 shows that there is a new notification message for the user. The

index frame (left part in Figure3.8) enables a user to view the names of all the existing

rules, to delete selected rules, to look at a particular rule, and to create a new rule. The

actual generation and modification of the rules are performed in the rule editor (the right

part in Figure 3.8), condition specification (Figure 3.9), and action specification

interfaces (Figure 3.10).

Each rule contains three parts as described previously. The users are able to add a new

condition to the rule by clicking on the “Add Condition” button in the rule editor and this

will open the condition specification window for the users.

Users specify rule conditions by selections on event type, the user, and other parameters

involved. Figure 3.9 shows a condition describing “User Sam has read any message

 42

within the past 2 minutes”. Users can add an action in a similar way. Figure 3.10

presents an action which notifies Tom's agent with subject discussion and content:

"Sorry, I couldn’t ……until Sep30, 2002". The conditions and actions will be displayed

as an understandable English sentence in the rule editor after they are added to the rule.

The functions of the rule editor also include the deletion of conditions /actions, and

saving function.

Figure 3. 9 Condition Specification

Once the conditions of the rule are satisfied, the agent will perform the actions specified

in the rule. The current available actions are emailing the agent’s owner and other users,

as well as notifying users or agents by placing notification messages in agents’

notification boxes. When there is a new notification message in an agent’s message box,

the agent will signal his/her owner. The user is able to check the notification messages by

clicking on the notification signal bar. This will open a window with the notification

messages displayed.

 43

Figure 3. 10 Action Specification Interface

3.3.3 User Interface of the CLIPS-based Rule Environment

The rule management interface of the CLIPS-based rule environment is similar to Figure

3.8, which includes one notification signal bar named as Notify, an index frame with the

names of the existing rules, and a rule editor frame.

There is a list of rule templates in the index frame of the rule management interface.

Similarly to the ARMS approach, each rule contains three parts: rule name, a condition

part, and an action part. A user is able to configure a rule by selecting and filling the

value in a template. Figure 3.11 is a sample rule called loginNotification. The meaning

for this template is

When a particular user logged in to the system within the past “ 2 “ minutes,

then create a login notice with the information about his / her login status and

send it to me or other users.

A user can specify who will receive the notification message when someone logs in at a

particular time by filling the blanks in the templates (see Figure 3.11). In addition to

selecting and filling the value in a template, the users are able to make complex rules by

combining several events/actions as well as to define their own rules without using any

functions provided by the system. The detailed information on how to create a rule and

the predefined functions provided by the system are described in Chapter 4.

 44

Figure 3.11 An Interface for Login Notification Template

CLIPS permits users to code arbitrary rules to make their agents act in various ways. The

full power of CLIPS would allow users to behave in ways that might compromise the

system. For this reason, we decided to limit users to making CLIPS rules through

template filling. There would be fewer syntax/run time errors when users are filling

templates than when they are coding rules for themselves. While it will be a big challenge

to track errors when users write rules completely by themselves, one approach to solve

this problem is providing users with a suitable editor/compiler of CLIPs on the client side

that enables the users to configure a set of syntactically correct rules. Another approach

is checking for syntax errors on the server side after a user submits a rule to the system

and informing the user about syntax errors.

 45

CHAPTER 4

IMPLEMENTATIONS OF PROGRAMMABLE AGENTS

In this chapter, two variations of implementation for agent programmability in I-Help are

introduced. One approach is to add to each agent in I-Help a simpler customized rule

system, which is called Agent Rule Management System (ARMS). Another approach is

implementing CLIPS-based agents that involve connecting a rule based expert system

shell to each personal agent in I-Help.

4.1 ARMS Approach

The Agent Rule Management System (ARMS) is a simple customized rule system which

allows users to instruct their agents to monitor certain events happening in the system and

take some actions accordingly. With the ARMS-based agents, the users are able to

configure rules by filling or selecting values from a set of given options in web based

user interfaces.

4.1.1 Design of the Rules

Each user can provide multiple rules for his or her agent. We have engineered the system

(Cao and Greer, 2003 b) so that rules are simple triggers. That is, all rules in the

repository of an individual agent fire independently of each other. This is achieved by

restricting the set of conditions and actions the user can elect to use in a rule.

Each rule contains a rule name, a set of conditions (If section), and a set of actions (Then

section) that an agent will perform. Each condition has three or four parameters: a user,

activity type, and other parameters specific to the activity type. Each action corresponds

to a notification - a user/agent who needs to be notified, the notification subject, and the

message content. Table 4.1 presents the various formations associated with different

types of activities.

 46

Table 4.1 Formation of the conditions in the rule

If there is more than one condition in a rule, the user can specify how the conditions are

connected. For simplicity, we decided to restrict the user from having access to full

Boolean conditions and rather to join all the conditional clauses of a rule with a single

“AND” or a single “OR”. If “AND” is used then all the conditions must be satisfied at the

same moment for the rule to succeed. If the conditions are combined by “OR”, then the

rule will be fired if any condition is met. The following are two examples of the

combination of the conditions:

e.g.1.

 If user Tom has logged into the system within the past 2 minutes

 and

 user Sam has read any message within the past 50 minutes

 then

 notify me.

e.g.2.

 If user Tom has logged into the system within the past 5 minutes

 47

 or

 Sam has logged into the system within the past 2 minutes

 or

 user John has logged into the system within the past 5 minutes

 then

 notify me”.

If a user wants to specify a rule that involves all users, unlike Object-Lens system (Lai, et

al., 1998) the rule does not need to include the names of all the users in the option list.

The user can simply select “all users” or “any user” from the given list. The agent will

find the real meanings of “all users” and “any user”.

The rules are applied in the order in which they appear in the agent’s rule set. Each rule is

restricted to fire at most once in a given context. Once fired, the rule sleeps until the time

limit of the rule expires. Each condition has a time parameter specified by the user (see

the last parameter in Table 3-1). The system generates the rule time limit according to the

time parameters of all conditions in the rule.

The following formula illustrates how the rule time limit is defined. The minimum time

parameter will be chosen as a rule time limit if the operator of the conditions is under

“AND”. In contrast, the maximum time parameter will be selected under the operator

"OR". For example, in the example 1 described above, the time parameters of the two

conditions are 2 minutes and 50 minutes. Since the logic operator is “AND”, then 2

minutes will be chosen as the rule time limit. That means the agent will check this rule

every two minutes.

 Min{Tcond1, Tcond2, …, Tcondk} if Joining-Operator r = "AND";

TimeLimit | Tr =

Max{Tcond1, Tcond2,…Tcondk} if Joining-Operator r = "OR";

 48

Although the rules are mutually independent, special configurations of rules may still

cause runaway behaviour within the system. For example, user John has a rule called rule

#1 and user Ben has a rule called rule #2. The detailed information for the rules are

illustrated below:

 rule #1:

 "if user Ben sends a message to user John, then send a message to user Ben".

 rule #2:

 "if user John sends a message to user Ben, then send a message to user John".

In this situation, if either user John or Ben sends a message to the other, there will be

infinite message passing between these two users. Even a single rule may cause a similar

problem. For example, “if user Yang has a new message, then send a message to Yang.”

will cause a self cycle.

Nardi’s studies of spreadsheets (Nardi, et al., 1998) shows that cycles involving a single

rule are rather simple to locate, however, dealing with interaction among rules is much

harder. In our system the interactions among rules are checked wherever a rule is

generated or modified. This will be explained in detail in Section 4.1.2.

A rule becomes active at once after it is created and checked for validity. Each rule has a

status to record the last check time and time limit. The system updates the current status

whenever a condition or an action is added, deleted, or the logical operator is changed.

When a rule is updated, the validity on the interactions among the rules must be

rechecked immediately.

4.1.2 Design of the Cycle Check

Whenever a user creates or updates a rule, the system will automatically try to detect

interactions among existing rules, and help users to create an effective set of rules for

their agents. This involves following chains of rule actions that result in sending

messages to agents that would trigger firing of another rule. If a cycle is detected, the

newly added rule is problematic. In order to conduct a cycle check, first we need to

define what the trigger means here.

 49

The rule A triggers rule B iff the actions of the rule A are same as

 the conditions of rule B or the action set of the rule A subsumes

 the condition set of rule B.

Figure 4.1 illustrates the situations when rule a triggers rule b.

Figure 4.1 The situations of rule a triggers rule b

Idea of Cycle Check

A directed graph is employed to store and check possible cycles among the rules. The

nodes in the graph present rules and the arcs between two nodes presents the relationship

between the two rules. If rule A triggers rule B then there will be an arc from node A to

node B. Figure 4.2 shows an example of rule graph. The graph contains 5 nodes that

presented 5 rules generated by user Andrew, Ben, Danny, and Ellen.

 50

Figure 4.2 Rule Graph

Cycle check is composed of two main steps: graph creation and cycle detection. A

scenario of adding a new rule to the rule repository describes the idea of cycle check

(Figure 4.2). For example, image that there are four rules in the repository initially:

Andrew has two rules: rule A and rule C, Ben has one rule named rule B, and Danny has

one rule called rule D. The following are the contents for each rule.

Rule A: If user Ellen notifies user Andrew then notify Ben.

Rule B: If user Andrew notifies user Ben then notify Ellen.

 Rule D: If user Andrew notifies user Ben then notify Danny.

Rule C: If any user login then notify Andrew.

These rules tell us that the action of rule A is same as the condition of rule B and rule D.

The arc from node A to node B is then added to the graph according to the definition of

trigger, similarly for arc A→ D. The rule C is isolated as rule does not trigger any rules or

is triggered by any other rules. We can see that there is no cycle currently. Assuming

user E configures a new rule called rule E. The detail for the rule is displayed as follow:

Rule E: If user Ben notifies user Ellen, then notify Andrew.

 51

In Figure 4.2, we can see that adding rule E results in adding two new arcs: B → E and E

→ A to the graph. These new arcs combine with original arc A → B resulting a cycle in

the graph. This indicates that rule E is problematic and either the conditions or the actions

of the rule E must be reconfigured. While rule E could be left intact if some other rule

were revised, this is not feasible in our system since the other rule may be “owned” by

some other personal agent.

Algorithm

The algorithm for the cycle detection is illustrated by a procedure cycleDetect and a

function cycleSearch:

procedure cycleDetect (Graph G)

 for each node v ∈ G do

 mark[v] ← not visited

 active [v] ← F

 pnum ← 0

 for each v ∈ G do

 if mark [v] ≠ visited then

 cycleSearch [v]

function cycleSearch (Node v)

 pnum ← pnum +1

 prenum [v] ← pnum

 mark [v] ← visited

 active [v] ← T

 for each node w adjacent to v do

 if mark[w] ≠ visited do

 52

 parent [w] ← v

 cycleSearch (w)

 else if prenum[w] < prenum [v] and active [w] then

 output ('cycle found')

 return true

active [v] ← F

 return false

These algorithms work well in cycle detecting. However there are some limitations in

cycle checking. There is no way in principle to check for all infinite loops. For example,

image that there are four rules in the repository (Figure 4.3): Andrew has a rule called

rule A, Ben has one rule named rule B, Danny has one rule called rule D, and Elaine has

a rule called rule E. The following are the contents for each rule.

 Rule A: If I receive a message from Elaine, then notify user Ben and Danny.

Rule B: If user Andrew notifies me then notify Ellen.

Rule D: If user Andrew notifies me then notify Ellen.

Rule E: If both user Ben and user Danny send message to me, then notify

Andrew.

The arcs from node E to node A (E-> A), A to D (A-> D) and A to B (A->B) should be

added to the graph according to the definition of trigger. Rule E shows that Rule B or

rule D is only partial of the trigger for rule E. We call this situation as conditional trigger.

In the current implementation we do not consider conditional triggers and these rules can

be added to rule repository. While this permits possible cycles, it was considered that

such cycles would be rare.

 53

Figure 4.3 Rule Graph with conditional triggers

4.1.3 Structure of ARMS

Figure 4.4 represents the architecture of the I-Help ARMS. Each PersonalAgent has one

RuleManagement that is a module for managing the rules for an individual user.

RuleCycleDetector is a component that does the actual work for checking the validity on

the interactions among the rules. AgentFace formats all of the information that goes from

the personal agents to their users. The proxy is served as a message queue to store

messages which will be used by servlets to display information to users. The

functionalities of Personal Agent, DB Agent, RuleAgent, and User Interface components

can be found in previous section-- 3.2.2. Personal Agent, DB Agent, and RuleAgent all

inherit from TaskBase which is a generic agent that contains generic agent

functionalities, such as message passing between agents.

B

ED

A

 54

Figure 4.4 Structure of ARMS

4.2 CLIPS Approach

As described in section 3.2.1, the users are able to instruct their agents to monitor certain

events happening in the system and take some actions accordingly. In order to evaluate

the suitability of ARMS, we built a second implementation relying on an “off the shell”

rule interpreter, CLIPS. With the CLIPS-based agents, the users instruct the agents by

writing rules in JESS (Java Expert System Shell), which is a Java implementation of

CLIPS. We made it possible for users to construct arbitrary JESS rules to control their

agents as well as to fill the rule templates, which are provided by the system.

4.2.1 Structure of a CLIPS/JESS rule

CLIPS is a productive development and delivery expert system tool which provides a

complete environment for the construction of rule-based and/or object-based expert

systems. CLIPS can be modified or tailored to meet a user's specific needs fairly easily.

CLIPS provides a cohesive tool for handling a wide variety of knowledge with support

for three different programming paradigms: rule-based, object-oriented and procedural.

Rule-based programming is one of the most commonly used techniques for developing

 55

expert systems. In this programming paradigm, rules are used to represent heuristics, or

"rules of thumb," which specify a set of actions to be performed for a given situation.

A rule is composed of an if portion and a then portion. The if portion of a rule is a series

of patterns which specify the facts (or data) which cause the rule to be applicable. The

then portion of a rule is the set of actions to be executed when the rule is applicable. The

actions of applicable rules are executed when the inference engine is instructed to begin

execution. The inference engine selects a rule and then the actions of the selected rule are

executed (which may affect the list of applicable rules by adding or removing facts). The

inference engine then selects another rule and executes its actions. This process continues

until no applicable rules remain.

JESS is a rule engine and scripting environment for CLIPS written in the Java language.

Using JESS, one can build Java applets and applications that have the capacity to

"reason" using knowledge supplied in the form of declarative rules. JESS uses the Rete

(Latin for net) algorithm to process rules, “a very efficient mechanism for solving the

difficult many-to-many matching problem” (Forgy, 1982). The Rete algorithm

remembers past test results across iterations of the rule loop. Only new facts are tested

against any rule left-hand-side (LHSs).

The following is a simple Jess rule example:

 (defrule library-rule-1

 (book (name ?X) (status late) (borrower ?Y))

 (borrower (name ?Y) (address ?Z))

 =>

 (send-late-notice ?X ?Y ?Z))

Note that this syntax is identical to the syntax used by CLIPS. This rule might be

translated into psueudo-English as follows:

 Library rule #1:

 If

 a late book exists, with name X, borrowed by someone named Y

 56

 and

 that borrower's address is known to be Z

 then

 send a late notice to Y at Z about the book X.

The book and borrower entities would be found in the knowledge base. The knowledge

base is therefore a kind of database of bits of factual knowledge about the world. Actions

like send- late-notice can be defined in user-written functions in the Jess language

(deffunctions) or in Java (Userfunctions).

4.2.2 Bottleneck of the Implementation

One of the challenges in designing and implementing CLIPS-based agents is to restrict a

rule to be fired at most once in a given context. Two possible techniques to address this

problem are briefly described in the following. In this thesis work, the first approach is

used.

§ Record the time for each rule to be checked, a rule will not be checked again until the

time limit of the rule expires. For example, the rule can be checked every two

minutes.

§ Set a context variable for each rule and every time the context variable needs to be

considered when a rule is to be fired. After the rule is fired the status of the context

variable will be changed (eg. change to false). Define another rule to reset the

context variable according to the time parameters of the conditions in the original

rule.

Each user is able to provide as many rules to their agents as they wish. In the current

system, a sample set of if clauses (events) and then clauses (actions) are available to users

as listed in section 3.2.1. There are several parameters associate with each type of event.

Users could make a simple rule by filling the value in a rule template or they could make

complex rules by combining several events/actions. If they so choose, the users are able

to define their rules from scratch without using any events/actions provided by the

system.

 57

Basically these rules are designed to be more or less independent of each other. However,

the users could configure a rule to trigger other rules. This makes it a challenge in

handling the interactions among the rules. For example, in some situations a group of

rules might trigger each other resulting in an infinite trigger loop. Therefore, the system

checks the validation on rules actions before executing them. Checking validity of rules

actions is achieved by tracking the chains of rule actions and conditions. If a cycle is

found, then the latest added rule needs to be fixed. Of course there is no way in principle

to check for all infinite loops.

4.2.3 Structure of the CLIPS-Based Agents

Figure 4.5 shows the structure of CLIP-Based agents (DB Agent and MatchMaker are not

shown in the diagram). The rules are entered from a human-agent interface and then

passed to the Personal Agent. Notification Manager serves as a coordinator that

cooperates with each Personal Agent, retrieves the event stream, and works with the

JESS Engine. A JESS Engine instance and some predefined functions are also created in

the Notification Manager class. JESS is a powerful Java scripting environment, from

which one can create Java objects and call Java methods. It serves as middleware

between Java classes and CLIPS rules. The JESS instance processes the rules using data

provided by the Event Stream. If the facts (current situations) are matched with the

conditions in the rule, then the rule will be fired and the action specified in the rule will

be executed.

 58

Figure 4.5 Structure of CLIPS based Agent

4.2.4 Creating Rules in the CLIPS-based Approach

As described in section 3.3.3 the users are able to configure a rule by selecting and filling

the value in a template as well as to make complex rules by combining several

events/actions. The system provides a set of predefined functions for the user to employ

in their rules. We implemented some Java classes and procedures/functions that are

available for users. For example, Notifyagent and Notice are two Java classes, while

createNotice and sendNotice are Java methods in these classes. The users are able to

create an instance of Java class and call the methods in that class from CLIPS rule.

Figure 4.6 is a sample rule called loginNotification that was generated by a user. In line

7, the user created an instance of a Java class Notifyagent which is similar as creating an

instance in Java:

Notifyagent nagent = new Notifyagent ();

In line 8, the user created a “Notice” object by calling a method of class Notifyagent.

The method entitled as createNotice with four parameters including a String “login”, and

three variables “?y”, “?date”, and “?time”. The interface of this method is shown below:

 public Notice CreateNotice (String type, String user, Date date, Time time)

 59

In line 9 the user called the method sendNotice in Notifyagent with two parameters: a

Notice object and the name of receiver.

The system provides a simple Java API for users’ references. Of course the users have the

option to define their own rules without using any functions provided by the system.

Figure 4.6 A Sample Rule Template

4.3 Summary

Two implementation for user programmable agents were presented in this chapter. The

ARMS approach was built as a simple and easy to use mechanism where users could add

capacity to their agents. The CLIPS approach provides a more powerful agent

programming system, but is more complex and potentially less robust because users can

more easily write buggy rules or cause infinite loops.

Line 7

Line 9
Line 8

(defrule loginNotification

(receiver ?x)

(login ?y ?date ?time ? within&: (< ?within 2 minutes))

 (name ?z)

 (test (eq ?y ?z))

 =>

(bind ?nagent (fetch Notifyagent))

 (bind ?notice (call ?nagent createNotice "login" ?y ?date ?time))

 (call ?nagent sendNotice ?notice ?x))

 60

CHAPTER 5

EVALUATIONS AND RESULTS

This chapter explains the case studies used to evaluate I-Help agent programmability.

Two experiments were conducted, including a usability experiment on the ARMS

enabled programmable agent environment and a comparative user study on the ARMS

approach versus the CLIPS approach. The result of the usability experiment and the

comparison between these two approaches were analyzed. This chapter first summarizes

the objectives this thesis seeks to address. The rest of the chapter describes the case

studies and the analysis of the results.

5.1 The Research Issues and Objectives

The research done for this Master’s thesis had several aims. In summary, the main

objectives were to investigate the following questions:

1. How easy or hard can it be for users to program their agents?

2. Will people feel that agent programmability is helpful?

3. Will users try to destroy the system by malicious use of agents and how can one

protect the system?

4. What are the users’ concerns about their privacy?

5. Will the capability of I-Help improve with agent programmability?

6. Can agent programmability be better achieved by adding a full- fledged

programming environment (like a rule based expert system shell) to the agent

versus by adding a simpler customised and restricted rule system?

5.2 Case Studies Design

v Usability Study on ARMS

An experiment on usability of the ARMS approach was conducted with human subjects,

to observe the behaviors of subjects during the experiments and analyze the questionnaire

and rules generated by the subjects in terms of:

 61

♦ Whether the users feel agent programmability is helpful

♦ How easy/hard for a user to configure a rule and how they feel the difficulty of

configuration

♦ What kind of rules they would write, what they would watch, what kind of

dangers to the system/ users would risk

♦ What were the users’ concerns on their privacy including personal information

and activity information

♦ Whether the students had better performance in a learning task with agent

programmability than no programmability support

v Comparative Usability Study On Two Approaches

One of the objectives of the second user study was to evaluate and compare the strengths

and weaknesses of the two approaches technically to see whether the agent

programmability would be better achieved by adding a full programming environment

CLIPS than a simpler customized rule system ARMS. Based on this objective, a

comparative usability study on the two approaches was conducted. A group of people

compared the two interfaces to see which interface they would like to work with, faking

the back end and not considering the usefulness of the resulting programs in terms of

smarter agent actions.

5.3 Usability Study on ARMS Approach

5.3.1 Experiment Procedure

A two-hour usage study of the ARMS system was conducted with fifteen university

students from different disciplines acting as experimental subjects. Subjects' activities

included attending a training session, using the ARMS to fulfil information seeking task,

and completing an exit questionnaire on feelings about the system and privacy concerns.

At the beginning of the training session, brief information on I-Help public discussion

and private discussion were introduced. Each subject was given a demonstration of the

 62

ARMS system, which described what kind of activities they can monitor and how to

receive notifications, how to use the system. (see Appendix A for detail).

During the experiment, three subjects were appointed as tutors (experts) and the rest were

assigned the role of information seekers. The information seekers were asked to complete

a quiz based on information they found, which required collaboration with others. The

subjects could post questions on the I-Help public discussion forum or they could get

help from other subjects through the I-Help one-to-one messaging system. They were

periodically prompted to connect (log in) or disconnect (log out) from their agent. There

were no face-to-face communications among the participants. A participant had to find

out when others were online, whether they had read his/her messages and whether they

had replied to his/her messages.

The experiment was replicated with similar tasks (see Appendix B for detail) in two

situations: with and without agent programmability. When agents were to be

programmed, the partic ipants were asked to initially create a rule set and were permitted

to edit or add rules as the experiment progressed. When programmable agents were not

available, the participants could query the system (check status of who is online and look

at tables of who read what). In each situation participants were given the same amount of

time to complete the task.

The subjects’ activity logs were recorded for later analysis. The achievement scores

(maximum 20 points) for subjects under each treatment condition were collected and

used to measure performance/ achievement.

After the participants fulfilled some tasks using the system, they were required to take

part in a structured interview session. During the interview, the author asked the subjects

for their responses to a set of questions, which included views on surveillance, privacy

concerns, and questions on using the I-Help rule management system. A copy of the

interview sheet can be found in Appendix C.

5.3.2 Results

Under the condition with agent programmability support, most of the subjects generated

2 to 4 rules and each rule took them about 1 minute to configure. We observed that most

 63

rules are appropriate for facilitating their access to the necessary resources that include

tutor and electronic resources. During the experiment no one configured a rule to

intentionally harm others or the system (i.e. denial of service attacks, etc.). A few

potential rule cycles were caught because of the careless use of “all users” and “any user”

in the rule. For example, the rule "If anyone notifies me then notify all users" causes a

cycle.

The subjects’ achievement scores are analysed in Figure 5.1. It demonstrated that 10

subjects had better achievement with agent programmability support. The mean scores of

the subjects with and without using agent programmability are 11.95 and 9.47,

respectively. There is a significant difference between the achievement under two

situations (paired t-test, t=4.24,t=3.81, P<0.01). However, there are differences in

improvement in achievement for individuals. The score increased from between 1.2 and 6

points on the 20-point scale.

Figure 5.1 Performance for each student

The results of the questionnaire filled out by the participants are summarized in Table

5.1:

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12

Student

P
er

fo
rm

an
ce

 (p
o

in
ts

)

without ARMS
with ARMS

 64

Table 5.1 Result of Questionnaire on ARMS

1. When, what, whom and whether the people like to watch others:

login, read message, and send message activities

just for curiosity

92% watch
instructor/tutor, and
knowledgeable
students.

8% watch any person None

2. How easy is it for users to program their agents (configure a rule):

easy to understand and
operate without help

easy to operate with a little
help

confusing or very hard to
operate

75% 25% None

3. Do programmable agents facilitate learners in accessing necessary resources:

very useful helpful to some extent a little helpful or useless

80% 20% None

4. How do users prefer to find out the status of events happening in the system:

program their agents
i.e. generating a set of
rules.

check by themselves for
some events (i.e. logged in).

send email asking

80% 20% None

5. How would the users like to use the system in the future:

More than before with
programmable agents

Same as before Less than before

100% None None

6. People’s privacy concerns when someone watches their activities?

When someone watches my I do not mind Depends who it is Big concern

Log in 72% 28% None

Send message 30% 50% 20%

Read message 48.3% 34.7% 16.7%

 65

5.3.3 Discussion

We believe that one reason for the improvement in achievement is that agent

programmability facilitates the subjects’ access to necessary resources (human and

electronic) and interaction among subjects in I-Help by providing information about

whether a person is available and communicative. Another reason is that people can

better attend to their work when there is agent programmability support, since they do not

need to explicitly check on events such as whether their questions are answered in the

public discussion forum or whether their messages have replies. With agent

programmability, they can program their agents to inform them when a particular event

happens. The knowledge level of the group members and their willingness to provide

help may also affect the individual's achievement.

Table 5.1 shows that surveillance of users' activities is not a big concern for most of the

subjects and they are willing to disclose information about themselves. This result may be

because of the perceived benefits of the effects of the programmable agents. During the

interview, several participants mentioned that there is not much privacy concern in an

online learning environment as long as no grade or other personal information is released.

They also indicated they would feel more comfortable about releasing more information

after experiencing the benefits of this system. This is encouraging, as the system would

not be useful if most people were interested in others’ activities but kept themselves

private. However, concerns were raised by some users when people other than a tutor or a

friend was watching them on certain events, such as send message, read message.

Allowing users to view one another's activities in the system may make the system

somewhat transparent and the users will be able to accomplish their respective goals

more efficiently. However, while surveillance can be used for good purposes it also can

be used for bad purposes. It may result in undesirable consequences and some users may

be concerned about their privacy. The result in Table 5.1 indicates that there is concern

about privacy on some events. Therefore it will be desirable to allow users to restrict who

has access to some events. It is also essential for users to know who are watching, what

they are watching, and how to protect themselves from stalking or inappropriate

surveillance.

 66

5.4 Comparative Usability Study on CLIPS vs. ARMS

5.4.1 Experiment Procedure

A one-hour comparative study on the comparisons of the CLIPS versus ARMS approach

was conducted with ten human subjects who were selected from staff from various

departments of Athabasca University and students from the University of Alberta. Some

staffs work in educational media development and some work in the computing centre.

These people have experiences with online teaching, educational technology, and online

course delivery techniques.

During the experiment, the subjects' activities included attending an introduction session,

comparing two approaches, and completing an exit questionnaire on feelings about the

system and security and privacy concerns.

In the introduction session, brief information was given on I-Help public discussion and

private discussion forums and an explanation was given on how to use the systems. Each

subject was given a demonstration of the agent programming environment in I-Help,

which described what kind of activities agents can watch, how they can respond, and how

to use the system, with both the ARMS and CLIPS user interfaces (see Appendix E for

detail).

 After the introduction, the users compared these two approaches by looking in detail at

the interfaces of the CLIPS and ARMS approaches, filling in a form about their opinions

on these two approaches, such as which approach is easy or hard to use, which is more or

less powerful, and which is more or less secure, etc. A copy of the questionnaire on

usability of the systems and the comparison is in the Appendix F.

Finally the users were required to take part in a structured interview session. During the

interview, the author asked the subjects for their responses to a set of general questions,

which included how they felt about the usefulness of the I-Help agent programming

environment and whether surveillance issue and privacy concern might prevent them

from using the system in future. The interview sheet can be found in Appendix F.

The questionnaire on system usability and the comparison as well as a record of interview

were collected for analysis.

 67

5.4.2 Results

The results of the questionnaire filled out by the participants were analysed. Table 5.2

summarises of the result on surveillance.

Table 5.2 Result of survey on surveillance

 % of users who would like to watch others’ events

Situation Login status Message reading Message sending

when I post a question
on public discussion
forum

10% 20% 20%

when I ask for help 40% 30% 30%

when I want to discuss
a question posted
online with others

70% 50% 50%

during a group
discussion

30% 40% 60%

when I want to know
when/ how long a
person is online

20% N/A N/A

 % of users who would like to watch others’ events

Message sending Whom to watch Login status Message reading
by whom to whom

instructor 40% 40% 30% 10%

tutor 30% 10% 20% N/A

the knowledgeable
students they knew

40% 10% 20% 10%

group members 40% 50% 30% 30%

any one 30% 40% 50% 20%

Participants seemed most interested in watching the events of group members or

participants with whom they actively share information. In addition, half of the

participants indicated that they would like to be notified any time someone replied to one

of their actions.

 68

Results of privacy survey questions:

A number of questions about privacy preferences were answered by the participants. The

following responses indicate that they had some concerns about others watching their

actions, but that the concerns were not too serious.

• 60 % of the participants sometimes cared about other people being aware their

login activity, 20 % never cared about it and 20% always were concerned.

• 10% of the people felt little uncomfortable when the message receiver watching

their activities of sending messages, 90% of the people felt comfortable and none

of the people felt nervous or angry.

• 10% of the participants felt nervous when the people other than the receiver

watching their activities of sending messages, 90% felt just a little bit

uncomfortable

• 40%of the participants sometimes cared about other people being aware their

reading messages activity, 30% never cared about it and 30% always were

concerned.

Result of comparison on interfaces of two approaches:

Table 5.3 summarizes the comparisons of the two approaches.

Table 5.3 Comparison on ARMS and CLIPS approach

1. How easy to program the agent (configure a rule):

 ARMS (%) CLIPS (%)
 Easy to understand /operate without help 70% 20%

 69

It's easy with a little help 30% 20%
It's confusing to understand/operate without help 0 60%
It's very hard to understand/operate even with help 0 0

2. For the tasks that are available in both approaches, the approach which the
users were preferred to use:

 ARMS(%) CLIPS (%)
Prefer to use 90% 10%

3. Which approach the users thought have more power:

 ARMS(%) CLIPS (%)
Which has more power 20% 80%

4. How do you feel the risk of the system security or your own privacy?

 ARMS(%) CLIPS (%)
This approach is less secure 20% 60%
This approach is dangerous 0 30%

Three other questions were used in comparing the two approaches and the result are

summarized as follows:

• 30% of the users would prefer to watch more events than the system currently

provided.

• 90% the participants would like to be able to generate some rules that are not

provided by the rule template. Of these, about half would like to do so using an

interface like ARMS.

• 40% of the participants felt they might be tempted to write some rules that might

cause harm to the system or other users might find worrisome.

Results of general questions on using I-Help programmable agents (Table 5.4):

 Table 5.4 Results of general questions (percentage of subjects)

How the users felt about the usefulness of programmable agents in e-learning
environment:
Very useful Helpful to some

extent
Slightly helpful Useless

 70

20% 70% 10% None

How do users prefer to find out the status of events happening in the system:

Program their
agents by creating
simple rules

Check for some
events (i.e. logged
in) by themselves

Send email asking Instruct by
complex rules

60% 30% 10% None

How would the users like to use the system in the future:

More than before Same as before Less than before

50% 50% None

Would privacy concerns prevent them from using the system:

Not at all To some extent Yes

40% 50% 10%

In the interview, the subjects indicated the following activities would be useful:

1) On-line chatting

2) Maybe for tutor or instructor to watch participation of particular student in theme

discussions

3) A privacy filter to block some users from watching you

5.4.3 Discussion
We asked similar questions on usability and privacy concerns in the comparative

experiment as the ones we did in ARMS usability study. In general the result is

encouraging. The results demonstrate that students had better performance in the situation

with awareness support. The subjects would like to watch the login, read message, and

send message activities of instructor/tutor and knowledgeable students and group

members when they need help, want to discuss a question with others, or during a group

discussion. None of the people indicated that they like to watch others just for curiosity.

People indicated that security or privacy was not a big concern and it would not prevent

 71

them from using the system. However, similarly to the survey in ARMS usability study,

concerns were raised by some users when people other than a tutor or a friend was

watching them on certain events, such as send message, read message.

The majority of users felt the I-Help programmable agents would be very useful or useful

to some extent and they would tend to use the system more than before or the same as

now if programmable agents were available. No one said that it was useless or they

would stop using it. However the some of the results of this study were not so positive as

the ones in the ARMS usability study. The following illustrate the differences between

the answers to the questions on the usefulness of the programmable agents and how this

will affect their usage in the future.

§ In the ARMS usability study, 80% of the people felt it was very useful and 20%

of the people felt it was helpful to some extent, but in the comparative study, only

20% of the people said it was very useful while 70% of people said it would be

helpful to some extent.

§ In the ARMS usability study 100% of the people said they would use the I-Help

system more with programmable agents, while in comparative study, 50% of the

people said they would use the system more than before and 50% of the people

said they would use the system same as before.

One reason for the users’ attitudes being more positive in ARMS usability study may be

because of the actual use of the system and the perceived benefits of the effects of the

programmable agents. The subjects felt that the programmable agents in ARMS provided

great opportunities in facilitating them to communicate / cooperate effectively and

efficiently. We suspect that the people might feel the programmable agents more useful if

they had actually used them to fulfil some tasks in the comparative experiment. Another

reason for the less positive result in CLIPS may be because of the complicated syntax in

configuring rules with CLIPS approach. Some of the people felt it would not be so simple

to program their agents using the CLIPS approach.

Table 5.3 shows the comparison result of the two approaches. For the question “How

easy is it to program the agent (configure a rule)”, 70% of the people chose “easy to

understand/operate without help” and 30% of the people chose “it’s easy with a little

 72

help” for ARMS approach. No one felt ARMS was confusing or hard to

understand/operate. For the CLIPS approach, the majority of people (60%) felt it was

confusing to understand/operate without help and 40% felt it would be easy to

understand/operate with little or no help. The numbers illustrate that both approaches can

be understood and operated by users, however ARMS is easier to be understood/operated

than CLIPS.

For the tasks that are available in both approaches, 90% of the subjects preferred to use

ARMS and only 10% preferred to use CLIPS. People prefer to use an interface that is

easy to understand and operate.

Fewer of the subjects (30%) had a desire to monitor more events than the system

provided. When asked to generate rules that are not in the rule template, most of the

subjects (70%) prefer to find a way using the ARMS approach or using predefined

functions in the CLIPS approach. Only 20% of the people would like to write their own

rules. This result may arise because of the complicated syntax of CLIPS and it also

depends on who the subject is. If the subjects are from computer science or have some

experiences in computer programming, they might feel CLIPS is not too hard.

When comparing which approach has more power, 80% of the subjects felt CLIPS would

be more powerful than ARMS.

An interesting observation is that compared to the answers in the first ARMS usability

study, more subjects would feel tempted to try to write some rules that could threaten the

system or surveil other users if they had the power. This may be caused by their belief in

the power of the CLIPS approach. In the interview, one user said she was very curious to

know/see the power of CLIPS, and she said “I would like to see how I can affect the

system by writing my own rules”.

The belief on the powerfulness of the CLIPS approach also raised greater concern about

system security and users’ privacy. In comparing system security and users’ privacy, the

majority of people felt that ARMS was more secure than CLIPS and no one felt that

ARMS would be dangerous. On the other hand, 30% of the people felt that the CLIPS

approach might be dangerous. In answer to the question “do privacy concerns prevent

you from using the system”, 50% of the people indicated that privacy concerns would

 73

discourage them from using the system to some extent. This number is much higher than

the corresponding response in the first ARMS usability study. Their concerns might be

caused by the belief of the powerfulness of the CLIPS and less control over other users’

agents.

In the interview, one user suggested that a user should have a privacy filter to block

certain users from watching him/her. Actually this is similar as the idea we stated in

section 5.3.3. It is desirable to allow users to restrict who has access to some events. It is

also essential for users to know and control who may be watching, what they are

watching, and how to protect themselves from stalking or inappropriate surveillance.

“Making it available for tutors or instructors to watch participation of particular student

in theme discussions will be very useful and practical in the online learning

environment”, one of the users stated in the interview. These valuable suggestions and

comments will form directions for our future research.

5.5 Summary

The results from two studies on user programmable agents were presented in this chapter.

The results show that the both the ARMS and CLIPS approaches are useful and helpful,

but they each has their own strengths. The CLIPS version was seen to be more powerful

but harder to use. The ARMS approach was considered to be easy to use and provides

sufficient functionality to the users. Subjects preferred to use the ARMS approach over

CLIPS.

 74

CHAPTER 6

CONCLUSIONS

6.1 Summary of Thesis Work

 Software agents provide great opportunities to assist users with routine, repetitive, and

time-consuming tasks in various educational environments. An agent could enter into

negotiations, acting independently to help achieve the user’s goals in an unpredictable

environment, and communicate with the user because of it’s autonomy, reactivity, and

pro-activity properties. However, it is also these properties, particularly autonomy that

raises significant challenges in human-agent interaction. This thesis explores some of the

aspects of agent-based systems and issues in human agent interaction, and develops an

end user programming environment that focus on delegating tasks to an agent. This thesis

also presents the detailed design and the implementation of the end user programming

environment within the bounds of a multi-agent learning environment named I-Help.

The I-Help system is an online learning environment that provides just in time help for

students over the internet. There are public discussion forums and private discussion

rooms for the students getting /asking questions, and sharing their knowledge. The

programmable agents were developed to facilitate the information exchange among the

users, and enhance the communication between users within the virtual learning

environment.

In this thesis two alternative systems were developed for programmable agents in which a

human user can define a set of rules to direct an agent’s activities at execution time, such

as to communicate with other agents and to monitor the activities of other users and their

agents. One of the approaches is called ARMS that is to add to each agent in I-Help a

simple customized rule system. ARMS was built as a mechanism where users could add

capacity to their agents. In order to evaluate the suitability of ARMS, we built a second

implementation, CLIPS-based agents that involve connecting a rule based expert system

shell to each personal agent in I-Help. The CLIPS approach provides a more powerful

agent programming system, but is more complex and potentially less robust because

users can more easily write buggy rules or cause infinite loops.

 75

Two experiments with human subjects were designed and conducted that included a

usability experiment on ARMS enabled programmable agent environment and a

comparative user study between the ARMS approach and the CLIPS approach. A

usability experiment on ARMS agent environment was designed to observe the behaviors

of subjects during the experiments, and to evaluate the helpfulness and difficulty of agent

programmability. A comparative study between two approaches was designed to evaluate

and compare the strengths and weaknesses of the two approaches technically to see

whether the agent programmability would be better achieved by adding a full

programming environment or a simpler customized rule system. In both experiments the

users were asked for their concerns on system security and users’ privacy.

6.2 Research Contributions

The primary research contribution of this thesis is the creation of an end user

programming environment that supports individual and collaborative learning in a

collaborative learning environment. The result of the ARMS usability study demonstrates

that: (1) Agent programmability is able to support different users’ needs and preferences

(i.e. awareness of users activity) in the I-Help world. (2) The provision of agent

programmability facilitates the participants accessing necessary resources (human and

electronic) in their collaborative learning environment. (3) Agent programmability

supports individual and collaborative learning by facilitating information exchange and

enhancing communication among students within the virtual learning environment.

The second contribution is that it provides a platform for finding an optimal solution for

human agent interaction, which especially focuses on delegating tasks, instructing agents

and trust between the human and agents. In this thesis we proposed two approaches for

building end user programming environment and let users to chose which approach has

more power, which one they prefer to employ and so on. The result of the usability study

and comparative study shows that (1) the programmable agent is an optimal solution for

delegating tasks to the agent and (2) the people prefer to use an easier way to instruct and

delegate tasks.

 76

The third contribution of this thesis is that it also provides a platform for investigating

concerns over user privacy caused by agent programmability and how an online learning

environment can be built to protect users’ privacy. The result of the survey on users’

privacy shows that people would like to expose more activity information to the public.

However different degrees of privacy concern occur in the participants on different kinds

of events in the learning environment. There is a desire that the users should have control

over their agents to protect their privacy.

Finally, this thesis has a contribution in customizing individual needs based on activity

information. The agent programmability approach solved the problems of how to deal

with different users’ needs about awareness, and how to cope with changing interests. We

predict that awareness customization will augment collaboration opportunities naturally

and efficiently in online collaborative learning and working environments.

6.3 Future Research

In the future, more work/functionality needs to be done to the I-Help agent programming

environment. Long-term plans for I-Help include making more system events available to

users, developing programmable anti-spy agents, and making I-Help programmable

agents part of other integrated online virtual communities.

v Making More System Events Available to Public

More system events need to be made available so that users could use this information to

increase their awareness of others in order to cooperate in the learning community. One

useful event might be the update on knowledge level. The update can be done by two

ways: the users update their knowledge level by themselves or the system update a user’s

knowledge level according to his/her performance factors, such as grades in relevant

courses, helpee’s feedback, and self-assessment, all contribute to a more complete model

of learner. It is important to make this information up to date, so that the students can get

accurate information about knowledgeable peers and adjust their target helpers to ask for

help in time.

 77

Another useful event for users is “when someone answer my question posted in the

public discussion forum”. In our studies, users would like to be notified as soon as their

questions are answered. A useful event for instructor or tutor might be providing a way

for them to watch participation of particular students in theme discussions.

v Developing Programmable Anti-spy Agents

By analyzing the features of the privacy concern in I-Help and related research (PISA,

2000; Kobsa, 2001, 2002; Schreck, 2000) we found several actions should be taken in

order to protect users' privacy:

§ The users in I-Help should know about the information that is collected and how

it is used. The information about their user identification, password, birthday,

email address, etc should not be exposed to other users. Some of the activities

information of the I-Help users might be shared with other users within the I-Help

scope. This should include logging into the system, reading a message, sending a

message, and so on.

§ The users should have control over their information. They should be able to

choose what activities they want to share with others and with whom they wish to

share the information. The research on user privacy in I-Help is underway and a

privacy server for an agent-based learning environment is being built in I-Help. In

order to protect the user’s privacy, each user will be able to set up their privacy

preference. Each personal agent maintains the information about who has the

privilege to know the owner's activities and provides this information to the

Privacy Server. When someone wants to know the others' activities in the system,

the personal agent attempts to retrieve the information from the event stream. The

Privacy Server then creates a special event stream for the agent that contains only

those events the agent has a right to see (Kettel, 2003).

§ It is desirable to allow users to restrict who has access to some events. It is also

essential for users to know and control who is watching, what they are watching,

and to protect themselves from stalking or inappropriate surveillance. One

interesting direction for our future research is the development of a programmable

 78

anti-spy agent. It will enable a user to program his/her agent to detect surveillance

activities of other agents, to notify the user, to take other actions, such as filter /

block the information.

v Integrate with Other Online Virtual Communities

The programmable agents work very well in the I-Help learning environment to help

users to become aware of system events and users’ online activity and to locate and

access help resources. It is desirable to integrate the programmable agents with other

interactive help facilities or e-learning applications, such as an instant messenger and the

course delivery system being developed at the University of Saskatchewan. The agents

will help users on acquiring system events and other users’ activities. The programmable

agents also will be useful in restricting the flow of information through the system to the

agents or applications that are looking to model the user. Agent programming techniques

can be adapted to other virtual communities.

6.4 Conclusion

This research has demonstrated that our agent programming environment is able to meet

users’ individual needs for awareness information, facilitate information exchange among

users, and enhance the communication between users within the virtual learning

environment. Two variations for agent programmability were built on top of the I-Help

system and the comparative study shows that the Agent Rule Management System

(ARMS) is a preferred solution for delegating task to the agent.

This research work also provides a platform for investigating concerns over user privacy

caused by agent programmability and how an online learning environment can be built to

protect users’ privacy. Further research should be done to make the system more useful

and secure.

 79

REFERENCES

AARP (2000). AARP National Survey on Consumer Preparedness and E-Commerce: A
Survey of Computer Users Age 45 and Older.
http://research.aarp.org/consume/ecommerce.pdf

Ackerman, M. S., and Cranor, L. (1999). “Privacy Critics: UI Components to Safeguard
Users' Privacy”, In Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI'99), 258-259.

Allen, J.F., Byron, D.K., Dzikovska, M., Ferguson, G., Galescu, L., and Stent, A.(2001)
Toward Conversational Human-Computer Interaction. AI Magazine 22(4), 27-37.

Andre, E., and Rist, T. (1996) Coping with Temporal Constraints in Multimedia
Presentation Planning. In Proceedings of the Eighth National Conference on Artificial
Intelligence, Menlo Park, Calif.: American Association for Artificial Intelligence. 142-
147.

Andre, E., Rist, T., and Muller, J. (1999). Employing AI Methods to Control the
Behavior of Animated Interface Agents. Applied Artificial Intelligence 13 (4-5), 415-
448.

Bauer, M., and Dengler, D. (1999). InfoBeans – Configuration of Personalized Services.
In Maybury, M., ed., Proceeding of the 1999 International Conference of Intelligent User
Interfaces (IUI’ 99), 153-156.

Bauer, M., Dengler, D., and Paul, G. (2000) Communication between Trainer and Agent
in Programming by Demonstration. Proceedings of the AAAI Fall Symposium 2000,
North Falmouth, Massachusetts, USA.
http://www.dfki.de/~bauer/fs2000/proceedings.html

Boicu, M., Marcu, D.m Bowman, M., and Tecuci, T (2000) A Mixed-Initiative Approach
to Teaching Agents to Do Things. Proceedings of the AAAI Fall Symposium 2000, North
Falmouth, Massachusetts, USA.
http://www.dfki.de/~bauer/fs2000/Proceedings/marcu.pdf

Cao, Y., & Greer, J (2003 a). Supporting Awareness to Facilitate Collaborative Learning
in an Online Learning Environment. Proceedings of the Computer -Supported
Collaborative Learning (CSCL 2003), Bergen, Norway. 183-187.

Cao, Y., & Greer, J. (2003b) Agent Programmability in a Multi-Agent Learning
Environment. Proceedings of the 11th International Conference on Artificial Intelligence
in Education, Sydney, Australia. 297-304.

Chin, D.(1991). Intelligent Interfaces as Agents. In Intelligent User Interfaces. J. Sullivan
and S. Tyler (eds). ACM Press, New York. 177-206.

 80

Cranor, L.F., Reagle, J., and Ackerman, M.S. (1999). Beyond Concern: Understanding
Net Users' attitudes About Online Privacy, Technical Report, TR 99.4.3, AT&T Labs -
Research. http://www.research.att.com/resources/trs/TRs/99/99.4/99.3/report.htm

Culnan, M.J., and Milne, G.R.(2001) The Culnan-Milne Survey on Consumers & Online
Privacay Notices: Summary of Responses.
http://www.ftc.gov/bcp/workshops/glb/supporting/ culnan-milne.pdf

Cypher, A. Eager (1993): Programming Repetitive Tasks by Demonstration. In Watch
What I Do: Programming by Demonstration. MIT Press, Cambridge, MA, 205-217.

Dickinson, L.(1998) Human-Agent Communication.
http://www.hpl.hp.com/techreports/98/HPL-98-130.pdf

Deters, R. (2000) Developing and deploying a multi-agent system, Proceedings of
Autonomous Agents'2000, Barcelona, Spain. 175-176.

Dieberger, A. (1997) Supporting Social Navigation on the World Wide Web.
International Journal of Human-Computer Studies, 46 (6), 805-825.

Downs, S. (1998) The future of online learning.
http://www.atl.ualberta.ca/downes/future/home.html

EPIC (2000) “Pretty Poor Privacy: An Assessment of P3P and Internet Privacy”,
“Electronic Privacy Information Center”, June 2000.
http://www.epic.org/reports/prettypoorprivacy.html

Etzioni, O., and Weld, D. A.(1994). Softbot-Based Interface to the Internet.
Communications of the ACM 37(7), 72-76.

Finin, T., Labrou, Y., and Mayfield, J.(1997) KQML as an Agent Communication
Language, MIT Press. Cambridge, MA, USA. 291-316.

Foner, L. N. (1997)Yenta: A Multi-Agent, Referral-Based Matchmaking System. In The
First International Conference on Autonomous Agents (Agents '97), Marina del Rey, CA.
301-307.

Forgy, C. (1982). Rete: A fast algorithm for the many patterns / many objects match
problem. Artificial Intelligence, 19 (1), 17-37.

Greer, J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A., and Vassileva, J.
(1998). The Intelligent HelpDesk: Supporting Peer Help in a University Course, in
B.Goettl, H.Halff, C.Redfield, V.Shute (eds.) Intelligent Tutoring Systems, Proceedings
ITS'98, San Antonio, Texas, LNCS No1452, Springer Verlag: Berlin. 494-503.

 81

Greer J., McCalla, G., Cooke, J., Collins, J., Kumar, V., Bishop, A., & Vassileva, J.
(2000). Integrating Cognitive Tools for Peer Help in Computers as Cognitive Tools: The
Next Generation, Susanne P.Lajoie (Ed.) Mahwah, NJ: Lawrence Erlbaum Publishers,
69-96.

Greer, J., McCalla, G., Vassileva, J., Deters, R., Bull, S., and Kettel, L.(2001) Lessons
Learned in Deploying a Multi-Agent Learning Support System: The I-Help Experience,
Proceedings of AIED' 2001, San Antonio, 410-421.

Graesser, A.C., Wiemer-Hastings, K., Wiemer-Hasting, P., Kreuz, R., and the Tutoring
Resarch Group.(1999) AUTOTUTOR: A Simulation of a Human Tutor. Journal of
Cognitive Systems Research 1(1), 35-51.

Gustafson, T., Schafer, J.B., and Konstan, J.(1998) Agents in Their Midst: Evaluating
User Adaptation to Agent-Assisted Interfaces. In Proceeding of the 1998 International
Conference on Intelligent User Interfaces. New York: Association of Computing
Machinery. 163-170.

Gutwin, C., Stark, G., and Greenberg, S. (1995) Support for Workspace Awareness in
Educational Groupware. Schnase, J. L., Cunnius, E.L. (eds.) Computer Support for
Collaborative Learning. Proceedings of CSCL’95. The First International Conference on
Computer Support for Collaborative Learning, New York: Lawrence Erlbaum
Associates, 147-156.

Haubl, G., and Trifts, V. (2000). Consumer decision making in online shopping
environments: The effects of interactive decision aids. Marketing Science, 19(1), 4-21.

Horvitz, E. (1999) Principles of Mixed-Initiative User Interfaces. Proceedings of CHI '99,
ACM SIGCHI Conference on Human Factors in Computing Systems, Pittsburgh, PA,
ACM Press. 159-166.

Johnson, W. L., Rickel, W., and Lester, J.C. (2000). Animated Pedagogical Agents: Face-
to-Face Interaction in Interactive Learning Environments. International Journal of
Artificial Intelligence in Education 11(1), 47-78.

Jennings, N.R., Faratin, P., Norman, T.J., OBrien, P., and Odgers, B. (1999) Autonomous
Agents for Business Process Management : in Internationa l Journal of Applied Artificial
Intelligence., 14(2),145-189.

Jermann, P., Soller, A., and Muehlenbrock, M. (2001) From mirroring to guiding: A
review of the state of art of technology for supporting collaborative learning. In
Proceedings of the First European Conference of Computer-supported Collaborative
Learning (Euro-CSCL). McLuhan Institute: University of Maastricht.
http://www.mmi.unimaas.nl/euro-cscl/Papers/197.pdf

Kay, A.(1984) Computer Software. In: Scientific American. 251(3), 41-47.

 82

Kettel, L.(2003) A Privacy Server for an Agent-based Learning Environment.
Master Thesis, Department of Computer Science, University of Saskatchewan, Canada.

Kobsa, A. (2001) Tailoring Privacy to Users' Needs (Invited Keynote). In M. Bauer, P. J.
Gmytrasiewicz and J. Vassileva, eds.: User Modeling 2001: 8th International Conference.
Berlin - Heidelberg: Springer Verlag, 303-313.
http://www.ics.uci.edu/~kobsa/papers/2001-UM01-kobsa.pdf"© Springer Verlag

Kobsa, A. (2002) Personalized Hypermedia and International Privacy. Communications
of the ACM 45(5), 64-67.
http://www.ics.uci.edu/~kobsa/papers/2002-CACM-kobsa.pdf.

Kozierok, R. and Maes, P.(1993) A Learning Interface Agent for Scheduling Meetings,
ACM SIGCHI International Workshop on Intelligent User Interfaces, ACM, Orlando,
Florida. 81-88.

Kruchten, P. (1995) Architectural Blueprints—The “4+1” View Model of Software
Architecture. IEEE Software 12(6), 42-50.

Kurhila, J., Miettinen, M., Nokelainen, P., and Tirri, H.(2002). Educo- A Collaborative
Learning Environment based on Social Navigation. in Proceedings of the E- learn 2002
Conference, Montreal, Canada, 1738-1741.

Lai, K-Y., Malone, T.W., and Yu, K-C. (1998) Object Lens: A 'spreadsheet' for
cooperative work, ACM Transactions on Office Information Systems, 6(4), 332-353.

Lashkari, Y., Metral, M., & Maes, P. (1994) Collaborative Interface Agents, AAAI’s 94,
444-449.

Lieberman, H. (1997). Autonomous Interface Agents. In Proceedings of CHI 1997, 67-
74.

Lieberman, H., and Selker, T. (2003) Agents for the User Interface, in Handbook of
Agent Technology, Jeffrey Bradshaw, ed., MIT Press.
http://web.media.mit.edu/~lieber/Publications/Agents_for_UI.pdf

Maes, P. (1994). Agents that reduce work and information overload. Communications of
the ACM 37(7), 30-40.

Milewski, A.E. and Lewis, S.H. (1997). Delegating to software agents. International
Journal of Human-Computer Studies, 46(4), 485 -500.

Mudgal, C., and Vassileva, J. (2000) Multi-agent negotiation to support an economy for
online help and tutoring, in Proceedings of ITS'2000, Springer LNCS 1839, 83-92.

 83

Munro, A.J., Sanger, D.J., and Benyon, D.R. (1999). Personal and Social Navigation of
Information Space, 1st edition. Springer: London. 284pages.

Nardi, B. A., Miller, J. R. and Wright, D. J. (1998) Collaborative, Programmable
Intelligent Agents. Communications of the ACM. 41(3), 96-104.

Negroponte, N.(1970). The Architecture Machine; Towards a More Human Environment,
MIT Press.

Novick, DG., and Sutton, S. (1997) Mixed initiative dialogue. In Proceedings of the 1997
AAAI Symposium. AAAI Press, 114-116.

Ogata, H., Matsukuma, R., and Yano, Y. (1998). Supporting Awareness for Augmenting
Participation in Collaborative Learning. Proceedings of ED-Media 98, Germany, 1040-
1045.

O’Neill-Brown, P. (1997). Setting the stage for the culturally adaptive agent. In 1997
AAAI Fall Symposium. AAAI Press, 93-97.

Payne, T. R., and Edwards, P. (1997) Interface Agents That Learn: An Investigation of
Learning Issues in a Mail Agent Interface. Applied Artificial Intelligence 11(1), 1-32.

Payne, T.R., Singh, R., and Sycara, K. (2002) Calendar Agents on the Semantic Web.
IEEE Intelligent Systems, 17(3), 84-86.

P3P (2000) Platform for Privacy Preferences project: see http://www.w3.org/P3P/

Petherick, W. (1999) Cyber-Stalking: Obsessional Pursuit and the Digital Criminal. In
The Crime Library. http://www.crimelibrary.com/criminology/cyberstalking/.

Pew Internet & American Life Project (2000). Trust and Privacy Online: Why Americans
Want to Rewrite the Rules. http:www.pewinternet.org

PISA (2000) Privacy Incorporated Software Agent project:
http://www.tno.nl/instit/fel/pisa/.

Pressley, M., Wood E., Woloshyn, V, Martin, V., King, A., and Menke, D. (1992)
Encouraging mindful use of prior knowledge: Attempting to construct explanatory
answers facilitate learning, Educational Psychologist, 27(1), 91-109.

Raj, G.S. (1998) Common Object Request Broker Architecture.
http://my.execpc.com/~gopalan/corba/corba.html

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl,J.(1994) GROUPLENS:
An Open Architecture for Collaborative Filtering of NETNEWS. In Proceedings of the

 84

ACM 1994 Conference on Computer-Supported Collaborative Work, New York:
Association of Computing Machinery, 175-186.

Rickel, J., and Johnson, W. L.(1999) Animated Agents for Procedural Training in Virtual
Reality: Perception, Cognition, and Motor Control. Applied Artificial Intelligence 13(4-
5), 343-382.

Rickel, J., and Johnson, W.L. (2000). Task-Oriented Collaboration with Embodied
Agents in Virtual Worlds. In Embodied Conversational Agents, eds.J. Cassell, J.
Sullivan, S, Prevost, and E. Churchill. Cambridge, Mass.: MIT Press, 95-122.

Schichter, J.H, Koch, M., and Xu, C. (1998) Awareness-The common link between
Groupware and community support system. Community computing and support systems:
Social interaction in networked communities. Berling:Springer-Verlag. 77-93.

Schreck, J. (2000) Security and Privacy in User Models. PhD Thesis, Department of
Mathematics and Computer Science, University of Essen, Germany.
http://www.jschreck.de/sapium/

Segal, R. and Kephart, J.O. (2000) Incremental Learning in SwiftFile. In Proceedings of
the Seventh International Conference on Machine Learning, 863-870.

Sharon, T., Lieberman, H., and Selker, T. (2002) Searching the Web with a Little Help
from Your Friends, ACM Conference on Computer-Supported Cooperative Work, New
Orleans. http://web.media.mit.edu/~lieber/Publications/Little_Help.pdf

Shearin, S., and Lieberman, H. (2001) Intelligent Profiling by Example, Proceedings of
the International Conference on Intelligent User Interfaces (IUI 2001), Sante Fe, NM.
http://web.media.mit.edu/~lieber/Lieberary/Apt-Decision/Apt-Decision.html

Shneiderman, B. (1983) Direct Manipulation: A Step Beyond Programming Languages,
IEEE Computer, 16(8), 57-69.

Shneiderman, B., and Maes, P. (1997) Direct Manipulation vs. Interface Agents.
Interactions 4 (6), 42-61.

Shoham, Y. (1993) Agent-oriented programming. Artificial Intelligence, 60(1), 51-92.

Smith, D. C., Cypher, A., and Spohrer, J. (1997) KIDSIM: Programming Agents without
a Programming Language. In software Agents, ed. J. Bradshaw, Menlo Park, California.
AAAI Press. 165-190.

Smith, D. C., Cypher, A., and Tesler, L. (2000) Novice Programming Comes of Age.
Commun. ACM 43(3), 75-81.

 85

Stanfill, C. and Waltz, D.(1986) Toward memory-based reasoning, Comm. ACM 29(12),
1212-1228.

Terveen, L.G., and Murray L.T.(1996) Helping users program their personal agents. In
proceedings of ACM CHI 96 Conference on Human Factors in Computer Systems.
Vancouver, 355-361.

Westin, A.F. and Maurici, D.(1998). E-Commerce & Privacy: What the Net Users Want,
Privacy & American Business, and PricewaterhouseCoopers LLP, New York.
http://www.pweglobal.com/gx/eng/svcs/privacy/images/E-Commerce.pdf

Wexelblat, A. (1999). Footprints: Interaction History for Digital Objects, in MIT Media
Lab. MIT: Cambridge, MA.

Vanlehn, K., Freedman, R., Jordan, P., Murray, C., Osan, R., Ringenberg, M., Rose, C.
P., Schulze, K., Shelby, R., Treacy, D., Weinstein, A., and Wintersgill, M. (2000). Fading
and Deepening: The Next Steps for ANDES and Other Model-Tracing Tutors. In
Intelligent Tutoring systems: Fifth International Conference, ITS 2000, eds. G.Gauthier,
C. Frasson, and K. Vanlehn,. Berlin: Springer-Verlag. 474-483.

Vassileva, J. Greer, G. McCalla, R. Deters, D. Zapata, C. Mudgal, S. Grant (1999) A
Multi-Agent Approach to the Design of Peer-Help Environments, in Proceedings of
AIED'99, Le Mans, France, 38-45.

 86

Appendix A: Materials used in the ARMS Usability Study

In this document, brief information on I-Help public discussion and private discussion is

introduced, followed by a demonstration of the ARMS system, which describes what

kind of activities the users can monitor and how to receive notifications, how to use the

system, and so on.

A User Study on I-Help Programmable Agents, Surveillance and
Privacy in Online Learning Environment

1. I-Help one-to-one discussion:

The I-Help one-to-one discussion system is a "peer help" system where the students share

their knowledge with each other. In this system users are represented by "personal

agents". The "personal agents" are designed to monitor their users' activity in this online

learning environment, and to assist learners in locating help resources (human and

electronic).

2. Objective of the study:

For I-Help online learning environment to provide effective and efficient usage, users

should be able to acquire the knowledge about individuals and the events happening in

the system. In order to meet users’ individual needs, facilitate the information exchange

among the users, and enhance the communication between users within the virtual

learning environment, an end-user programming environment ARMS (Agent Rule

Management System) in I-Help is proposed. The I-Help ARMS allows users to monitor

and analyze the events happening in the I-Help system by programming their agents. The

agent acts on the user’s behalf to execute a rule once the conditions of the rule are

satisfied.

This research is to investigate how users behave when given the ability of programming

their agents, what are the users’ concerns about their privacy and how agent-based

systems can be built to protect users’ privacy, and whether the overall performance of the

system will be affected with agent programmability.

 87

The specific questions to be answered by this study are:

§ How easy for users to program their agents?

§ Will people feel helpful of agent programmability?

§ Will users try to destroy the system and how to protect the system?

§ What are the users’ concerns about their privacy?

§ Will I-Help capability improve with agent programmability?

3. How and what to Surveil?

With the I-Help programmable agents environment, a user is able to configure a simple

“rule” to program his or her agent to communicate with other agents and to monitor the

activities of other users and their agents. A rule will be similar as the one in Figure 1.

The following activities in this online environment are available for all users to watch:

• Login: when someone login to the I-Help one-to-one discussion

• Logout: when someone log our from the I-Help one-to-one discussion

• ReadMessage: when someone read a message posted on the public discussion

forum

• SendMessage: when a person sends a message to another person within I-Help

one-to-one

 88

Figure 1. Rule Management Interface

Each rule contains a rule name, a set of conditions (If section), and a set of actions (Then

section). Each condition has three or four parts: a user, activity type, and other parameters

involved while each action has notification type, a user which need to be notified,

notification subject, and content. The number of parameters and the context for

parameters will vary from different activity types. Table 1 presents the various

formations associated with different type of activities.

Table1. Formation of the cond itions in the rule

 89

A user can generate and modify a rule through a set of domain specific user interfaces.

For example, the right section of the Figure 2 shows an example rule named read-

message:

Rule name: read-message

If

User Sam reads the message with message identity 19291 within the past 60 minutes and

User Sam logs in to the system within the past 5 minutes

Then

Notify Sam with subject: discussion and content: “…we need to talk”

Email Yang with subject: read-message and content: “…Sam is ready to talk now…”

4. System Demonstration

The I-Help Agent Rule Management System currently works in the I-Help system

helping users to monitor system events and others’ activities and to respond according to

users’ preferences.

The primary user interface for a user to program his/her agent is the rule management

interface which includes one notification signal bar named as Notify, an index frame with

the names of the existing rules, and a rule editor frame (Figure 2).

 90

 Figure 2: Rule Management Interface

The notification signal (left upper) is used to notify a user when a new notification

message is received. When a new notification message arrives the notification signal bar

will turn blue. Figure 2 shows that there is a new notification message for the user. The

index frame (left part in Figure2) enables a user to view the names of all the existing

rules, to delete selected rules, to look at a particular rule, and to create a new rule. The

actual generation and modification of the rule are performed in the rule editor (the right

part in Figure 2), condition specification (Figure 3), and action specification interfaces

(Figure4).

 Figure 3: Condition Specification

Rule
editor

Notification
bar

Index
frame

 91

Each rule contains three parts as described previously. The users are able to add a new

condition to the rule by clicking on the “Add Condition” button in the rule editor and this

will open the condition specification window for the users.

Users specify rule conditions by selections on event type, the user, and other parameters

involved. Figure 3 shows a condition describing “User Sam has read any message within

the past 2 minutes”. Users can add an action in a similar way. Figure 4 presents an action

which notifies Tom’s agent with subject discussion and content: “Sorry, I couldn’t

……until Sep30, 2002”. The conditions and actions will be displayed as an

understandable English sentence in the rule editor after they are added to the rule. The

functions of the rule editor also include the deletion of conditions /actions, and saving

function.

Figure 4: Action Specification Interface

 92

Appendix B: The Questions in ARMS Usability Study

1. What is tutor George’s favorite website?

2. Find the author for the article “Searching the Web with a Little Help from Your
Friends”

3. What is the tutor Jennifer’s favorite color?

4. Type a specific paragraph of a given newspaper

5. Schedule your group’s meeting time

6. When is the time for meeting with tutor Eric?

7. One of the tutors or students knows a secrete answer to this question, what is the
secrete answer?

8. Write a paragraph to describe the students in the class. One sentence is written for each
student. Ask them what they would like to write for themselves or you can find it
somewhere in the public discussion forum.

9. How many times people read the posting identity 1929 on public discussion forum?

10. Find the article “Intelligent Profiling by Example” online and find the page number
for the phrase “profile expansion”.

 93

Appendix C: An Interview Form for First ARMS Usability Study
This document consists of a set of questions that were asked in the interview for first

ARMS usability study, which includes views on surveillance, privacy concerns, and

general questions on using the I-Help rule management system.

A User Study on I-Help Programmable Agents, Surveillance and
Privacy in Online Learning Environment

Surveillance :

Login event:

1. In which situation you like to watch login event?

a. I just post a question on public discussion forum

b. I want to ask for help

c. Want to discuss a question posted online with others

d. Group discussion for group project

e. Want to know when/ how long a person is online

2. Whom do you prefer to watch?

a. instructor

b. tutor

c. knowledgeable students I know

d. group members

e. any one

Logout event:

1. In which situation you like to watch logout event?

a. I just post a question on public discussion forum

b. I want to ask for help

c. Want to discuss a question posted online with others

d. Group discussion for group project

e. Want to know when/ how long a person is online

 94

2.Whom do you prefer to watch?

f. instructor
g. tutor
h. knowledgeable students I know
i. group members
j. any one

Read Message:

1. In which situation you like to watch read message event?

a. I just post a question on public discussion forum

b. I want to ask for help

c. Want to discuss a question with others

d. Group discussion for group project

2. Whom do you prefer to watch?

a. instructor

b. tutor

c. knowledgeable students I know

d. group members

e. any one

Send Message:

1. In which situation you like to watch send message event?

a. I just post a question on public discussion forum

b. I want to ask for help

c. Want to discuss a question with others

d. Group discussion for group project

2. The message is sent by whom:

e. instructor

f. tutor

g. knowledgeable students I know

h. group members

i. any one

 95

3. The message is sent to whom:

j. instructor

k. tutor

l. knowledgeable students I know

m. group members

n. any one

Privacy:

1. Do you like other people know when you log in to the system?

a. not at all

b. sometimes

c. always

2. Do you care who watch your activities of sending messages?

2.1 if the receiver watches you:

a. comfortable

b. little bit uncomfortable

c. nervous

d. angry

1.2 if some person other than receiver watch you:

a. comfortable

b. little bit uncomfortable

c. nervous

d. angry

2. Do you care who serviel your activities of reading messages?

a. not at all

b. sometimes

c. always

 96

General questions on using the rule management system

1. Which way do you prefer when you want to know some events happening in the system?

a. Check by myself for some events such as whether a person log in to the system.

b. Send email directly for some events such as whether a person read a question or

not.

c. Program my agent by generating a set of simple rules.

d. Instruct my agent by complex rules.

2. How easy to program your agent(configure a rule) ?

a. Easy to understand /operate without help

b. It’s easy with a little help

c. It’s confusing to understand/operate without help

d. It’s very hard to understand/operate even with help

3. Do you feel it is useful in e-learning environment?

a. Very useful

b. It is helpful in some extent

c. Little helpful

d. Useless

3. What other activities will be useful?

4. How will you use the system when you have ability to program your agent? Why?

(despite privacy concern)
a. More than before

b. Same as before

c. Less than before

Because:

 97

5. Will privacy concern prevent you from using the system?
a. Yes

b. in some extent

c. no at all

 98

 Appendix D: The Case Study Consent Form

A User Study on I-Help Programmable Agents, Surveillance and
Privacy in Online Learning Environment

The I-Help one-to-one discussion system is a “peer help” system where the students share
their knowledge with each other. The aim of this research is to provide an end-user
programming environment in I-Help that facilitates the information exchange among the
users, and enhances the communication between users within the virtual learning
environment. This user study is to investigate whether such a system can facilitate
collaborative learning, how users behave when given the ability of programming their
agents, and what are the users’ concerns about the system security and their privacy

You will be asked to evaluate the feasibility of end user programmable agents and
privacy and security of the system. The experiment included attending an introduction
session, using the ARMS to fulfil a learning task, completing an exit questionnaire on
feelings about the system and security and privacy concerns. The amount of time
required for the entire experiment around 2 hours. Your test results will be used for
evaluation of the I-Help end user programming environment, and for no other purpose.
Test results will be kept confidential and your name will not be used for any purpose
during the study: alias will be used instead.

Subject Consent:

I agree to be a subject for the I-Help end user programming environments study,
according to the conditions described above.

Name:

Address:

Phone:

Email:

Signature: Date:

Ethic approval: BSC #2001-198

 99

Appendix E: Materials used in the Comparative Study

In this document, brief information on I-Help public discussion and private discussion is

introduced, followed by demonstrations of the ARMS the CLIPS systems, which describe

what kind of activities the users can monitor and how to response, how to use each

system respectively, with both the ARMS and CLIPS user interfaces .

A Comparative Study on Two approaches (the ARMS vs. CLIPS)

of I-Help Agent Programming Environments

1. I-Help one-to-one discussion:
[text presented identical as show in Appendix A]

2. Objective of the study:

For I-Help online learning environment to provide effective and efficient usage, users

should be able to acquire the knowledge about individuals and the events happening in

the system. In order to meet users’ individual needs, facilitate the information exchange

among the users, and enhance the communication between users within the virtual

learning environment, an end-user programming environment in I-Help is proposed. The

I-Help programmable agent environment allows users to monitor and analyze the events

happening in the I-Help system by programming their agents. The agent acts on the

user’s behalf to execute a rule once the conditions of the rule are satisfied.

This research is to investigate how users behave when given the ability of programming

their agents, what are the users’ concerns about the system security and their privacy and

whether the overall performance of the system will be affected with agent

programmability.

The specific questions to be answered by this study are:

§ How easy for users to program their agents?

§ Will people feel that agent programmability is helpful?

§ Will users try to destroy the system and how to protect the system?

 100

§ What are the users’ concerns about system security and their privacy?

§ Can agent programmability be better achieved by adding a full- fledged

programming environment (like a rule based expert system shell) to the agent

versus by adding a simpler customised and restricted rule system?

3.How and what to watch?
 [text presented identical as show in Appendix A]

4. User Interfaces

The primary user interface for a user to program his/her agent is the rule management

interface which includes one notification signal bar named as Notify, an index frame with

the names of the existing rules, and a rule editor frame (Figure 1).

 Figure 1.Rule Management Interface

The notification signal (left upper) is used to notify a user when a new notification

message is received. When a new notification message arrives the notification signal bar

will turn blue. Figure 1 shows that there is a new notification message for the user. The

index frame (left part in Figure1) enables a user to view the names of all the existing

rules, to delete selected rules, to look at a particular rule, and to create a new rule. The

actual generation and modification of the rule are performed in the rule editor. There are

two different approaches for users to edit a rule by using two sets of interfaces.

Notification
bar

Index
frame

Rule
editor

 101

4.1 ARMS interfaces

[text and figures presented identical as show in Appendix A]

4.2 CLIPS interfaces
There is a list of rule templates in the index frame of the rule management interface.

Similar as ARMS approach, each rule contains three parts: rule name, a condition part,

and an action part. A user is able to configure a rule by selecting and filling the value in a

template. Figure 2 is a sample rule called loginNotification. The meaning for this

template is

When a particular user logged in to the system within the past “ 2 “ minutes,

then create a login notice with the information about his / her login status and

send it to me or other users.

Figure 2. An Interface for Login Notification Template

A user can specify who will receive the notification message when someone logs in at a

particular time by filling the blanks in the templates (see Figure 2). In addition to

selecting and filling the value in a template, the users are able to make complex rules by

 102

combining several event s/actions. The system provides a simple Java API for users’

references on some predefined functions so that users can write a rule like the example

below. Of course the users have the option to define their own rules without using any

functions provided by the system.

(defrule loginNotification

(receiver ?x)

(login ?y ?date ?time ? within&: (< ?within 2 minutes))

 (name ?z)

 (test (eq ?y ?z))

 =>

(bind ?nagent (fetch Notifyagent))

 (bind ?notice (call ?nagent createNotice “login” ?y ?date ?time))

 (call ?nagent sendNotice ?notice ?x))

 103

Appendix F: An Interview Form for Comparative Study
This document consists of a set of questions that were asked in the interview for the

comparative study, which includes views on surveillance, privacy concerns, comparison

on interfaces of two approaches, and general questions on using the I-Help rule

management system.

Questionnaire for Comparative User Study on Two Approaches

Surveillance :

[text presented identical as shown in Appendix C]

Comparison on interfaces of two approaches:

1. How easy to program your agent (configure a rule)?

1) ARMS approach:

a. Easy to understand /operate without help

b. It's easy with a little help

c. It's confusing to understand/operate without help

d. It's very hard to understand/operate even with help

2) CLIPS approach:

a. Easy to understand /operate without help

b. It's easy with a little help

c. It's confusing to understand/operate without help

d. It's very hard to understand/operate even with help

2. For the tasks that are available in both approaches, you prefer to use which
approach:

a. ARMS approach

 104

b. CLIPS approach

3. Which approach you think have more power:

a. ARMS approach
b. CLIPS approach

4. Have you ever had an intention to watch more events than the system provided

currently?

a. yes

b. no

5. Will you like to generate some rules that are not in the rule template? And how?

a. Yes, try to find a way using ARMS approach

b. Yes, find a way using predefined functions in CLIPS approach

c. Yes, try to write my own rules

d. No

6. If you have the power, will you try to write some rules that will damage the
system or other users?

a. no
b. maybe have a try

7. How do you feel the risk of the system security or your own privacy?

a. ARMS is less secure

b. CLIPS is less secure

c. ARMS is dangerous

d. CLIPS is dangerous

 105

 General questions on using the rule management system

1. Which way do you prefer when you want to know some events happening in the system?
a. Check by myself for some events such as whether a person log in to the system.

b. Send email directly for some events such as whether a person read a question or

not.

c. Program my agent by generating a set of simple rules.

d. Instruct my agent by complex rules.

2. Do you feel it is useful in e-learning environment?
a. Very useful

b. It is helpful in some extent

c. Little helpful

d. Useless

3. What other activities will be useful?

4. How will you use the system when you have ability to program your agent? Why?
 (despite privacy concern)

a. More than before

b. Same as before

c. Less than before

Because:

5. Will privacy concern prevent you from using the system?

a. Yes

b. in some extent

c. no at all

 106

Appendix G: The Case Study Consent Form

A comparative study
on two approaches of I-Help end user programming environments

The I-Help one-to-one discussion system is a "peer help" system where the students share
their knowledge with each other. The aim of this research is to provide an end-user
programming environment in I-Help that facilitates the information exchange among the
users, and enhances the communication between users within the virtual learning
environment. This user study is to investigate how users behave when given the ability of
programming their agents, what are the users’ concerns about the system security and
their privacy and whether agent programmability be better achieved by adding a full-
fledged programming environment (like a rule based expert system shell) to the agent
versus by adding a simpler customized and restricted rule system.

You will be asked to evaluate the feasibility of end user programmable agents and
compare two approaches of I-Help end user programming environments. The experiment
included attending an introduction session, comparing two approaches, and completing
an exit questionnaire on feelings about the system and security and privacy concerns.
The amount of time required for the entire experiment will not exceed an hour. Your test
results will be used for evaluation of the I-Help end user programming environment, and
for no other purpose. Test results will be kept confidential and your name will not be
used for any purpose during the study: alias will be used instead.

Subject Consent:

I agree to be a subject for the I-Help end user programming environments comparative
study, according to the conditions described above.

Name:

Address:

Phone:

Email:

Signature: Date:

 Ethic approval: BSC #2001-198

