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ABSTRACT 
 

To maintain building air quality, fresh outdoor air is supplied to the space and stale 

indoor air is exhausted. By using an energy recovery system, heat and moisture can be 

transferred between the supply and exhaust airstreams to reduce the energy used to 

condition the supply air. The twin-tower enthalpy loop utilizes a liquid desiccant to transfer 

both heat and moisture between non-adjacent ducts in an open loop configuration. One 

problem with the open loop configuration is that the desiccant can become entrained in the 

airstreams and deposited on downstream mechanical equipment causing corrosion. The 

run-around membrane energy exchanger (RAMEE) is a novel design that utilizes a 

membrane to enclose the desiccant and prevent it from transferring to the air stream. 

 

 

The membrane used in the previous RAMEE prototypes, Propore™, was 

discontinued. Therefore, replacement membrane alternatives were obtained and evaluated 

based on the vapour diffusion resistance (VDR), liquid penetration pressure (LPP), 

modulus of elasticity (E), and price. The VDR measurements were made using the 

Permatran-W® model 101k by Mocon and the LPP and modulus measurements were 

obtained using the bulge test apparatus. The AY Tech ePTFE laminate membrane was 

selected to replace Propore™. The measured VDR, LPP and modulus for the Ay Tech. 

membrane were 97±11 s/m, >82 kPa, and 387±32 MPa respectively, exceeding/meeting the 

values measured for Propore™ (158±18 s/m, >82 kPa, and 17±2 Mpa respectively). 

 
RAMEE prototype 4 was constructed with a cross-counter flow configuration using 

the AY Tech membrane. Using the energy exchanger test facility, the effectiveness of 

prototype 4 was determined by measuring/controlling the supply and exhaust airstream 

temperatures, relative humidities, and flow rates. An electronic flow meter and an 
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electronically actuated flow control valve with a proportional controller were used to obtain 

the desired desiccant flow rate. Airstream temperatures were measured along the length of 

the exchangers and a drop then rise in temperature was observed when the latent transfer 

dominated the total energy transfer. 

 
The highest total effectiveness values measured for prototype 4, at AHRI test 

conditions, were 52±16% and 47±7% for a net transfer unit (NTU) of 12.3 and a NTU of 

5.0 respectively. The effectiveness trends obtained for prototype 4 fell between that 

observed for prototype 2 (Erb, 2007) and prototype 3 (Mahmud, 2009) due to the flow 

conditions of the prototypes. Furthermore, the effectiveness values measured for prototype 

4 agreed well with a numerical model (Hemingson, 2005) for all desiccant flow rates after 

adding coiling coils to remove the heat gained by the desiccant from the pumps. 
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CHAPTER 1 

INTRODUCTION 

To reduce occupant illnesses known as “sick building syndrome” and “building-

related illness” (ASHRAE, 2005) and caused by poor indoor air quality, it is necessary to 

supply building occupants with fresh outdoor air and exhaust the stale and/or contaminated 

indoor air.  However, typically the conditions (temperature and relative humidity) of the 

outdoor air are such that supplying them directly to the space would be detrimental to the 

comfort, productivity, and satisfaction of the occupants.  Therefore, it is necessary to alter 

the conditions of the outdoor air prior to supplying it to the space. 

During summer conditions, the outdoor air is often too hot and humid to supply 

directly to the space so it must be cooled and dehumidified.  Similarly, during winter 

conditions the outdoor air is often too cold and dry and must be heated and humidified 

prior to being supplied to the space.  Heating, cooling, humidifying, and dehumidifying 

(all referred to as conditioning) the outdoor supply air requires the use of energy.  The 

purpose of a recovery system is to reduce the auxiliary energy required to condition the 

fresh outdoor air supplied to the space.  Therefore, the addition of a heat/energy recovery 

system can reduce building energy consumption. 

1.1 Heat and Energy Recovery Systems 

Heat/energy recovery systems reduce building energy consumption by passing the 

indoor air, which is exhausted from the space (exhaust air), and the outdoor air, which is 

being supplied to the space (supply air), through a heat/energy recovery system.  After 
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passing through the recovery system, the conditions of the supply air are brought closer to 

the desired conditions, reducing the amount of heat and/or moisture to be added or 

removed from the air.  Heat exchangers can only transfer sensible heat between the supply 

and exhaust air streams.  Sensible transfer is driven by the temperature difference 

(potential) between the air streams.  Energy exchangers are capable of both sensible heat 

transfer and latent transfers.  The latent heat transfer is proportional to the vapour pressure 

gradient between the air streams.  Combining the sensible and latent transfers yields the 

total energy transfer driven by the enthalpy difference between the air streams.  Four types 

of heat/energy recovery systems are presented in Figure 1.1.  The differences between 

these systems and the previous research pertaining to them are presented in the sections to 

follow. 

 
Figure 1.1. The four major types of recovery systems currently used to reduce building 
ventilation air conditioning costs with quadrants 1 and 3 being systems that require 
adjacent ducts and quadrants 3 and 4 being systems which have both latent and sensible 
heat transfer capabilities (Larson, 2006). 
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1.1.1 Recovery Systems Performance 

An important parameter used to quantify the performance of an energy recovery 

system is effectiveness.  The three types of effectiveness are sensible, latent, and total.  for 

heat exchangers, effectiveness is the ratio of the heat that is recovered divided by the total 

transfer potential.  The sensible effectiveness is dependent on temperature differences, the 

latent effectiveness is dependent on moisture differences, and the total effectiveness is 

dependent on enthalpy differences.  If the supply and exhaust mass flow rates are equal, 

the supply effectiveness is calculated using equation (1.1) and the exhaust effectiveness is 

calculated using equation (1.2) (ASHRAE Std. 84, 1991).  If there are no heat gains or 

losses, and the system is operating at steady state, the supply effectiveness should equal 

the exhaust effectiveness.  Note: the subscripts in and out of equations (1.1) and (1.2) refer 

to the inlets and outlets of the air streams respectively. 
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where,  S  = the supply air-stream effectiveness of interest, 

 E  = the exhaust air-stream effectiveness of interest, 

 X  = T, temperature for sensible effectiveness [K], 

  = W, humidity ratio for latent effectiveness [kgW/kgDA], 

  = h, enthalpy for total effectiveness [J/kg]. 

1.1.2 Air-to-air Heat Recovery Systems 

Air-to-air recovery systems include heat wheels, heat pipes, and flat plate heat 

exchangers (shown in quadrant 1, Figure 1.1).  These systems are relatively inexpensive to 
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construct and operate and are used extensively in industry.  Due to the extensive use of 

these systems in HVAC industry, much is known about their operation and a certification 

standard (AHRI 1060, 2005) has been developed, by the HVAC equipment manufacturers, 

for measuring the effectiveness.  Many numerical models have been developed to 

accurately predict the effectiveness, outlet conditions, and other parameters of these 

recovery systems and in the sections to follow a select few of these models are discussed.   

Heat wheels are constructed of non-porous corrugated materials or a packed bed of 

aggregate material, such as aluminum or stainless steel, capable of storing only thermal 

energy (sensible).  The wheel rotates between the air-streams warming in one and cooling 

in the other thus transferring heat.  Wu et al. (2006) numerically modeled a heat wheel 

system with attention to the temperature distributions in the air-streams and wheel metal 

matrix.  The findings of the model were used to determine the optimal rotation speed.  

Skiepko and Shah (2004) compared a model similar to that developed by Wu et al. (2006) 

to experimental measurements of a 1.5 m (5 ft.) diameter heat wheel installed in a field 

application.  The field exchanger effectiveness was found to agree, within experimental 

uncertainty, with that predicted by the numerical model.   

Unlike heat wheels, heat pipe exchangers do not have any mechanical motion 

between the ducts.  Heat pipe exchangers are constructed of many self contained pipes 

filled with a refrigerant.  By natural convection the refrigerant circulates within these pipes 

transferring heat between the air streams.  By virtue of this construction, these exchangers 

create large spatial temperature distributions within the air-streams.  Johnson et al (1998) 

conducted in-situ testing of a heat pipe exchanger to determine the effectiveness of the 
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system.  An emphasis of this work was quantifying the uncertainty in the measurements 

caused by the spatial temperature distributions. 

Although air-to-air heat recovery systems are typically inexpensive, reliable, and 

capable of high sensible heat recovery, they also have their shortcomings.  These systems 

require adjacent exhaust and supply ducts and only have sensible heat transfer capabilities, 

limiting their total energy recovery capacity.  Thus, systems that do not require adjacent 

duct geometry and that are capable of transferring both sensible and latent heat transfer 

would be ideal for retrofitting applications with non-adjacent ducting. 

1.1.3 Run-around Heat Recovery Systems 

Run-around heat recovery systems were developed to address the need for heat 

recovery in applications with non-adjacent supply and exhaust ducts (see quadrant 2, 

Figure 1.1).  These systems are known as run-around liquid-to-air heat exchangers.  One 

exchanger is placed in the exhaust air stream and another is placed in the supply air stream 

and they are coupled with a working fluid (typically aqueous glycol).  The working fluid 

passes through one of the air-to-liquid exchanger coils gaining heat from that air-stream.  

The working fluid is then passed through the other air-to-liquid exchanger coil, rejecting 

heat to that air-stream.  By repeating this loop heat from one air-stream is transferred to the 

other.   

Johnson et al (1998) created a numerical model of a field run-around heat 

exchanger system with multiple coils in multiple ducts.  The model calculated the system 

life cycle cost and determined critical design parameters.  In addition, measurements of the 

multi-coil run-around system were made in the field confirming parameters predicted 

using the model.  Run-around glycol systems have been utilized in retrofitting applications 
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with non-adjacent duct geometries, but they are limited to sensible energy transfer and do 

not capitalize on the latent energy recovery potential. 

1.1.4 Air-to-air Energy Recovery Systems 

Modifications to the construction of heat wheels were made to add latent heat 

transfer to the wheels’ capabilities.  These modifications included adding a desiccant 

coating to the corrugated metal cores capable of storing moisture.  Another modification 

was to replace the aggregate metal cores with silica beads (a porous solid desiccant with 

high surface area capable of storing moisture).  The result of these modifications was the 

enthalpy or energy wheel (shown in quadrant 3, Figure 1.1) which is capable of 

transferring both sensible and latent heat.   

A silica bead core energy wheel was experimentally tested by Neti and Wolfe 

(2000).  The focus of their work was to determine the effectiveness as a function of the 

rotating speed.  Neti and Wolfe (2000) compared the experimental results to analytical 

results and found agreement only at certain operating conditions.  Nia et al. (2006) 

numerically modeled an energy wheel similar to that investigated by Neti and Wolfe’s 

(2000).  Nia et al. (2006) developed correlations used to calculate the air outlet 

temperatures and relative humidities and obtained good agreement with published 

experimental results.  Simonson et al. (1999) modeled and experimentally tested a 

desiccant coater energy wheel to determine effectiveness.  They made recommendations 

regarding the experimental methods used to determine the effectiveness with reasonable 

uncertainties.  Energy wheel exchangers demonstrate good energy recovery capabilities 

and are a relatively simple and inexpensive method for recovering both heat and moisture 

in buildings with adjacent supply and exhaust ducts. 
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Similar to energy wheels, flat plate energy exchangers (shown in quadrant 3, 

Figure 1.1) were the result of modifications to flat plate heat exchangers.  The latent heat 

transfer capability was accomplished by replacing the non-porous metal plate air-stream 

separators of flat plate heat exchangers.  The metal plate air-stream separators were 

replaced with vapour permeable membranes.  These membranes have micron-sized tubes 

or pores which allow water vapour molecules to transfer from one air-stream to the other 

while maintaining flow separation.   

A porous membrane flat plate energy exchanger was numerically modeled by 

Zhang and Jiang (1999) to predict the operating characteristics.  The outlet conditions, 

predicted using their model, were confirmed experimentally.  The energy wheel and flat 

plate energy exchangers showed increased energy recovery capabilities to the heat wheels 

and flat plate heat exchangers.  However, air-to-air energy recovery systems cannot be 

used in applications with non-adjacent supply and exhaust ducts.  Therefore, a run-around 

energy recovery system with both heat and moisture transfer capabilities was desired. 

1.1.5 Run-around Energy Recovery Systems 

The run-around energy recovery system (shown in quadrant 4, Figure 1.1) has one 

liquid-to-air energy exchanger in the supply duct and another in the exhaust duct.  The 

energy exchangers are coupled using a working fluid capable of transferring heat and 

moisture between remotely located ducts.  The twin tower enthalpy recovery loop is an 

example of a run-around energy recovery system with the added capabilities of fully 

conditioning the supply air to the desired conditions.  The loop uses a liquid desiccant (salt 

solution) circulated between two tower exchangers one in each air-stream.  The desiccant 

drips down through a packing material while air flows up through this packing material 

creating an open system configuration where the desiccant is in direct contact with the air 
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streams.  Unfortunately, the open system configuration allows entrainment of the desiccant 

into the air-stream.  Downstream from the tower exchanger the desiccant is deposited on 

mechanical equipment causing excessive corrosion.   

The run-around membrane energy exchanger (RAMEE) system is a “closed 

system” similar to the twin tower enthalpy recovery loop.   In the RAMEE the liquid 

desiccant is separated from direct contact with the air-streams using a porous membrane 

(similar to Gore-tex®).  The porous membrane eliminates the potential for entrainment of 

the liquid desiccant into the air-streams.  The pores of the membrane allow the three 

Angstrom water vapour molecules to pass through but, due to the surface tension of the 

liquid desiccant, retaining the liquid desiccant, provided the pressure does not exceed the 

break-through pressure for the membrane.  The development of the RAMEE system is the 

focus of the NSERC/Venmar CES Collaborative Research and Development Project and 

the work presented in this thesis is a small piece of this undertaking. 

1.2 The Run-Around Membrane Energy Exchanger 

At the turn of the millennium Dr. Simonson and Prof. Besant began work with 

Venmar CES Inc. on developing a RAMEE for retrofitting applications.  While 

researching this technology a patent filed in 2003, owned by Dave Thompson, for an 

“enthalpy pump” was discovered.  The enthalpy pump was similar enough to the RAMEE 

to warrant the purchase of the patent by Venmar CES Inc. in 2006.  A basic schematic the 

enthalpy pump is shown in Figure 1.2. 
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Figure 1.2. Schematic of the enthalpy pump patented by Dave Thompson (Fan, 2005). 

Similar to the twin tower enthalpy exchanger system, the RAMEE system uses two 

energy exchangers, one in the supply duct and the other in the exhaust duct.  Each 

exchanger is a liquid-to-air membrane energy exchanger (LAMEE) coupled together using 

a liquid desiccant (salt solution) as the working fluid.  Therefore, to better understand the 

operation of the RAMEE, an understanding of liquid desiccants is required. 

1.2.1 Liquid Desiccants 

As with the twin tower enthalpy loop, the RAMEE utilizes a liquid desiccant (salt 

solution) as the working fluid.  The liquid desiccant has the ability to alter the moisture 

content of air depending on the temperature and salt concentration of the desiccant and 

humidity ratio of the air.  If the humidity ratio of the air is greater than the equilibrium 

humidity ratio of the desiccant (which changes with temperature and concentration as 

shown in Figure 1.3), the desiccant will dry the air.  Similarly, if the humidity ratio of the 

air is lower than the equilibrium humidity ratio of the desiccant, the desiccant will 

humidify the air.  Figure 1.3 is the psychrometric chart with lines of constant salt (MgCl2) 

concentrations superimposed which indicate the equilibrium conditions for air in contact 
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with a MgCl2 salt solution at the specified concentrations.  Note that the lines of constant 

salt concentration are nearly parallel to the lines of constant relative humidity. 

 
Figure 1.3. Equilibrium conditions for air in contact with MgCl2 solutions with different 
salt concentrations superimposed on the psychrometric chart (Mahmud, 2009).  Also 
shown are the standard (AHRI 1060, 2005) summer and winter supply inlet (SI) and 
exhaust inlet (EI) conditions. 

1.2.2 RAMEE Numerical Model and Prototype 1 

The initial goals of the research initiative were to evaluate the feasibility of the 

RAMEE system and make design changes to improve performance.  The end goal of the 

research initiative is to produce a competitive run-around energy recovery system for non-

adjacent duct retrofitting applications.  Fan (2005) created a numerical model capable of 

predicting the temperature and water vapour distributions in cross flow LAMEE as shown 

in Figure 1.4.  Fan’s results showed promise in the use of the RAMEE system as a means 
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of energy recovery but predicted modest effectiveness’ due to the flow configuration and 

size of exchanger simulated. 

 
Figure 1.4. A portion of the LAMEE modeled by Fan to predict the RAMEE performance 
characteristics and investigate exchanger geometry (Fan, 2005). 

The first RAMEE prototype designed and build at the university is shown in Figure 

1.5 (Fan, 2005).  This prototype used a cross-flow configuration with Japanese Tyvek® as 

the porous membrane separating the desiccant from direct contact with the air-stream.  

However, upon testing, several problems with the exchangers’ design and construction 

became evident. 

 
Figure 1.5. Photograph of RAMEE Prototype 1 built and tested by Hemingson (2005) 
(Larson, 2006).  The exchangers were constructed directly adjacent as shown with a spacer 
in the headers. 
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One major problem observed with Prototype 1 was that the liquid desiccant would 

leak through the Tyvek® into the air streams.  Another problem, encountered operating at 

higher pressures, was that the Tyvek® liquid channels deflected into the air-stream, 

contacting adjacent panels, reducing the transfer area, and reducing the effectiveness.  

During testing, the operating pressure was limited to reduce these problems, which 

introduced new complications.  For example, operating at reduced pressures limited the 

desiccant flow rate and may have caused flow distribution problems. 

Based on the complications with RAMEE Prototype 1, a membrane that would 

note leak at low pressures was needed and more attention to the membrane mechanical 

properties was required.  Larson (2006) sourced a membrane called Propore™ produced 

by 3M™ Company based on the material cost, liquid penetration pressure, modulus of 

elasticity, and vapour diffusion resistance.  The new membrane had a much higher liquid 

penetration pressure but a relatively low modulus of elasticity.  To overcome the low 

elasticity of the Propore™ membrane, Larson recommended the addition of a metal screen 

to provide mechanical support on the air side of the membrane. The screen would reduce 

large bulk deflections of the membrane into the air streams but local deflections into the 

screen voids would still occur at the designed operating pressure. 

1.2.3 RAMEE Prototype 2 

Larson’s recommendations were implemented into the design of the RAMEE 

prototype 2, constructed and tested by Erb (2007).  A section view of the panels in 

prototype 2 is shown in Figure 1.6.  Each exchanger in prototype 2 had ten panels in a 

cross flow configuration.  The major differences between prototype 2 and prototype 1 was 

the addition of the outer screen, the use of Propore™ instead of Tyvek®, and the physical 

dimensions of the exchangers. 
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Figure 1.6. Section view of a single panel used to construct RAMEE Prototype 2.  The 
desiccant flows between the membranes, the outer screen provides support to the 
membranes, and the air-stream flows on the outside of the outer screen. 

Prototype 2 overcame the pressurization issues of Prototype 1, but it presented new 

challenges.  Prototype 2 had a plastic inner screen material between the membranes in the 

desiccant flow channel.  The intent of the inner screen was to ensure a uniform flow 

through the entire length of the panels and to allow the desiccant to enter and exit each 

panel without introducing an excessive flow restriction.  However, the inner screen did 

restrict the desiccant flow into the panels, possibly introducing flow mal-distributions 

problems.  To overcome the flow distribution problem, the system was operated at high 

pressures and the desiccant flow direction was reversed so that the flow direction would be 

from the bottom to the top of the exchangers.  Erb (2007) also recommended the 

construction of an apparatus capable of pressurizing the individual panels.  With this 

apparatus, sources of leakage (such as around the perimeter of the envelopes) could be 

identified and fixed prior to installing them into the exchangers. 

The effectiveness observed for prototype 2 was significantly lower than that 

predicted by Fan (2005).  Erb (2007) postulated that the flow mal-distribution caused a 

reduction in the experimentally observed effectiveness.  However,  Ahmadi (2008) and 

Erb (2009) were able to attain good agreement between the experimental effectiveness 
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values and the numerical model effectiveness values by accounting for the time delay for 

the system to reach steady state and heat gains/losses with the surroundings. 

1.2.4 RAMEE Prototype 3 and Prototype 4 

To increase the effectiveness of the RAMEE Prototype 2 a counter-flow 

configuration was considered.  However, building a purely counter-flow RAMEE seemed 

impractical, so a “cross-counter flow” configuration was used in the construction of 

prototype 3.  A schematic showing a typical flow path through these new counter-cross 

flow panels is shown in Figure 1.7.  Prototype 3 was designed by Mahmud (2009) to 

achieve a total effectiveness of 65% when operated at AHRI test conditions with an 

airflow face speed of 2.03 m/s (400 ft/min). 

 
Figure 1.7. Schematic of the quasi counter-flow panels used to construct the prototype 3 
RAMEE system (Mahmud, 2009). 

The original intent of this thesis program was to design and construct a RAMEE 

similar to Prototype 3 but sized for a field installation.  Before the construction of the field 

exchangers could begin more Propore™ was required.  Upon contacting 3M™ Company it 

was found that the product Propore™ had been discontinued so there was a need for 



 
 15 

sourcing a replacement membrane an using it in the new design.  Due to the time delay 

caused by sourcing a replacement membrane and the risks associated with installing this 

new membrane in a field exchanger, it was decided that the exchangers would no longer 

be installed in a field application.  Rather, a scaled down version of the field exchanger 

would be constructed and tested in the laboratory once a replacement membrane had been 

found.  Similar to Larson, a replacement membrane would be selected based on 

measurements of the pertinent properties (i.e. the modulus of elasticity, vapour diffusion 

resistance, and liquid penetration pressure). 

1.2.5 Membrane Alternatives 

To find a suitable replacement for Propore™, many membrane alternatives are 

considered.   Although Larson had previously determined that the Tyvek® Homewrap by 

DuPont™ was not a suitable membrane for use in the RAMEE, Tyvek® membranes were 

measured for comparison.  Furthermore, Tyvek® 1059B and 1025B were used by 

Thompson in the construction of his field “enthalpy pumps”, so the properties of these 

membranes were of interest to the numerical modelers Vali (2009) and Ahmadi (2008).   A 

list of the membranes tested with the manufacturer specified polymer, cost, pore size, and 

percent porosity is given in Table 1.1.  Some membranes are bonded to a support sub-

straight but only the actual membrane polymer is listed in Table 1.1.  The pore size is the 

average diameter of the micron-sized holes through which water vapour molecules diffuse 

thus transferring moisture.  Porosity is defined as the volume fraction of interstitial voids 

(or lack of material) per unit volume of material. 
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Table 1.1. List of the porous membranes testes with manufacturer specifications. 

Membrane Polymer
Cost

(US/ft
2
)

Pore Size

(μm)
Porosity

Propore™ Polypropylene 0.10$     <1

Tredegar VCL‐510 Polypropylene

Tredegar #2 Polypropylene

Aptra™ RKW Polypropylene 0.35$     0.2 60%

Porex® PM6M Polytetrafluoroethylene 40.00$   1‐2 35%‐45%

Porex® PM3V Polytetrafluoroethylene 40.00$   5 40%

Porex® X‐7744 Polypropylene 5.00$     7 35%‐45%

Porex® X‐4904 Polypropylene 5.00$    2 35%‐45%

Japanese Tyvek® High Density Polyethylene 0.15$    2‐15 45%

Tyvek® 1025B High Density Polyethylene 0.15$    2‐15 45%

Tyvek® 1059B High Density Polyethylene 0.15$    2‐15 45%

AY Tech Laminant Polytetrafluoroethylene 3.27$    0.3 85%  

1.3 Research Objectives and Thesis Overview 

The objective of this thesis was to source a replacement porous membrane material 

and construct RAMEE Prototype 4 for laboratory evaluation.  To accomplish this objective 

the following tasks must be accomplished: 

 Measure the thickness, liquid penetration pressure, membrane vapour diffusion 

resistance, and modulus of elasticity for each membrane alternative in Table 1.1. 

 Select a replacement membrane based on the membrane measurements combined 

with the cost information in Table 1.1. 

 Construct a test apparatus capable of leakage testing the panels of the RAMEE 

prior to installation in the exchangers. 

 Construct a RAMEE similar to Prototype 3 using the replacement membrane and 

measure the systems’ effectiveness in the laboratory. 

 Compare the results to previous experimental results and numerical simulations. 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 
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In the chapters to follow the membrane vapour diffusion resistance (VDR) is 

defined and the apparatus used to measure the membranes VDR is detailed.  These VDR 

results are placed into context by comparing to other test methods and published results.  

Also presented in this thesis is the method used to measure the membranes’ modulus of 

elasticity and a comparison is made between these findings and previously published data.  

The results of membrane thickness measurements and liquid penetration pressure 

measurements are presented and compared to manufacturer specifications and published 

results.  The test apparatus used to measure the effectiveness of the new laboratory 

RAMEE is presented and modifications made to the apparatus are noted.  The 

effectiveness results of the RAMEE are placed into context with the previous prototypes 

and compared to the numerical simulations.  Lastly, this thesis presents conclusions and 

recommendations based on the findings of the preceding work. 
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CHAPTER 2 

MEMBRANE VAPOUR DIFFUSION RESISTANCE 

The mass transfer capabilities of the RAMEE are accomplished through use of a 

porous membrane to separate the liquid desiccant from the air streams.  The membrane has 

micron sized caverns which allow water molecules to diffuse from one side of the 

membrane to the other.  The flow of water vapour through the membrane is quantified by a 

mass flux which is analogous to a heat flux.  Similarly, vapour diffusion resistance (VDR) 

is analogous to thermal diffusion resistance.  A temperature gradient creates the driving 

potential for heat transfer while a water vapour concentration gradient creates the driving 

potential for water vapour transfer.  Therefore, the mass flux of water vapour through the 

porous membranes can be calculated using equation (2.1).   

 
VR
Cm 

"  (2.1) 

where,  "m  = the water vapour transmission rate (WVTR) per unit area of  
   membrane [kg/m2s], 

 VR  = the vapour diffusion resistance (VDR) [s/m], 

 C  = the log mean vapour concentration gradient across the  
   membrane [kg/m3]. 

The Permatran-W® 101K test apparatus was used to measure the water vapour 

transmission rate (WVTR) through the membrane alternatives.  In the sections to follow, 

the Permatran-W® test method is outlined and the results are presented.  The VDR results 
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are compared to other test results and sources for discrepancies are discussed to form 

conclusions based on the VDR results. 

2.1 Significance of Membrane Vapour Diffusion Resistance 

In the RAMEE system, the total VDR consists of three contributions: the air side 

boundary layer, the membrane, and the liquid desiccant boundary layer.  Fan (2005) 

modeled RAMEE prototype 2 at AHRI summer conditions to obtain the variations in 

effectiveness with membrane VDR.  His model used two liquid-to-air membrane energy 

exchangers (LAMEE), that measured 0.3 m x 0.6 m x 0.1 m (12” x 24” x 4”), coupled with 

a MgCl2 water solution as the desiccant.  The results obtained with an airstream face 

velocity of 0.22 m/s (44 ft/min) are presented in Figure 2.1. 

 

Figure 2.1. The dependence of the RAMEE sensible effectiveness, latent effectiveness, 
and total effectiveness to the membrane VDR (Larson et al. 2006).   

As shown in Figure 2.1, Fan (2005) found that the effectiveness is sensitive to 

membrane VDR when the membrane VDR is higher than 20 s/m.  Vali (2009) and 

Ahmadi (2008) also found that the membrane VDR was significant enough to dominate 

the total VDR within the RAMEE (Approx. 80%).  Furthermore, the RAMEE systems 
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designed and tested by Erb (2007) (prototype 2) and Mahmud (2009) (prototype 3) were 

constructed using the Propore™ membrane.  For both prototypes the overall system 

effectiveness was limited by the latent transfer capabilities.  Larson (2006) measured the 

VDR of Propore™ to be 125 s/m which, as shown in Figure 2.1, is in the region where the 

effectiveness is sensitive to the membrane VDR.  Therefore, an increase in the RAMEE 

effectiveness can be achieved by replacing the Propore™ membrane with a lower VDR 

membrane. 

2.2 Water Vapour Transmission Measurement Methods 

2.2.1 Standard Cup Test ASTM E 96 

The water vapour transmission rate (WVTR) is a mass flux of water vapour 

through a porous material.  Two methods commonly used to measure the WVTR are the 

wet cup test and dry cup test, as outlined in ASTM E 96 (2000).  In the wet cup test, a cup 

is filled with water while in the dry cup test the cup is filled with a desiccant.  For both 

tests the porous material is glued to the top of the cup and the cup is placed in a chamber 

maintained at 50% RH and 23°C.  For the wet cup test, the water evaporates and is 

transferred through the porous material into the chamber.  For the dry cup test, vapour is 

transferred from the chamber through the porous material and adsorbed by the desiccant.  

The mass of the cup is measured at standard time intervals until a constant mass transfer 

per unit time (g/day) is observed.  By dividing the mass transfer by the transfer area, the 

WVTR is calculated (g/m2day). 

During both the wet and dry cup tests there is an air gap between the test material 

and the water or desiccant respectively. For relatively high VDR materials the air gap 

resistance is negligible but for low VDR materials, such as the porous membranes used in 

the RAMEE, the air gap resistance causes large uncertainties in the measurements.  To 
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reduce the experimental uncertainty in low VDR materials measurements, the wet cup test 

was modified to the inverted cup test to eliminate the air gap. 

2.2.2 The Inverted Cup Test ASTM E 96 

In the inverted cup test method the top of the membrane is exposed to liquid water 

and the bottom side of the membrane is exposed to a 50% RH air-stream at 23°C.  The test 

continues until a constant decrease in mass with time is observed indicating a steady state 

WVTR.  The WVTR is converted to a vapour diffusion resistance (VDR) using equation 

(2.1).  Some permeable materials have low liquid penetration pressures (LPP) and some 

are hygroscopic (adsorb liquid water).  Water droplets can pass through low LPP materials 

under the static head pressure induced in the inverted cup test and the hygroscopic 

materials can transfer liquid water through surface diffusion.  In either case water is not 

vapour diffusion is not the only mode of water transfer through the membrane causing a 

large bias in the observed WVTR used to calculated the VDR..   

The modified inverted cup test uses an expanded polytetrafluoroethylene (PTFE) 

membrane (guard membrane) to ensure that the measured WVTR is from diffusion only.  

The PTFE membrane has a very low VDR and a high liquid penetration resistance to 

ensure that only water vapour contacts the test membrane.  This test method is called the 

modified ASTM E96BW and is shown schematically in Figure 2.2 (a). 

2.2.3 ISO 11092 Sweating Guarded Hot Plate Test 

A method similar to the modified ASTM E9BW test is the ISO 11092 

Measurement of Thermal and Water Vapour Resistance under Steady-State Conditions 

(Sweating Guarded hot Plate Test).  In the ISO 11092 test a porous plate saturated with 

water is covered with a cellophane membrane similar to the PTFE membrane used in the 

modified ASTM E96BW test.  The cellophane membrane prevents liquid water from 
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contacting the test sample but has a low enough VDR to allow water vapour to pass 

readily.  The porous plate is maintained at 35°C by a resistive heater.  As the water 

evaporated from the plate it requires the heat of phase change.  Therefore, the power input 

into the heater is proportional to the WVTR.  The test conditions and a schematic of the 

ISO 11092 test apparatus are shown in Figure 2.2 (b). 

 

Figure 2.2. Schematic of (a) the modified ASTM E96BW with PTFE guard membrane 
and (b) ISO 11092 test appartus used for measuring the WVTR of porous membranes 
(Gibson, 2000).   

2.2.4 The Dynamic Moisture Permeation Cell 

Another method used to measure low VDR membranes is the dynamic moisture 

permeation cell (DMPC).  In the DMPC both the top and bottom sides of the membrane 

are exposed to nitrogen streams.  The nitrogen streams enter the test section with different 

vapour concentrations creating a gradient for vapour diffusion through the membrane.  An 

exploded view of the DMPC is shown in Figure 2.3 with the chamber and sample 

dimensions.  It should be noted that the nitrogen has sufficient entrance length to attain 

uniform fully developed flow and the chamber is wider than the sample ensuring that the 

side wall boundary layers do not impact the measurements. 
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Figure 2.3. Dimensions and flow configuration of the DMPC used by Gibson to conduct 
Larson’s measurements (Gibson, 2000).   

The VDR measurements presented by Larson (2006), and Larson et al (2006,) were 

conducted by Gibson (2000) using the DMPC at the US Army Research, Development, 

and Engineering Center.  Larson (2006) investigated the effect of moisture content within 

the membranes on the measured VDR.  Figure 2.4 (a) presents the VDR measured 

(Larson, 2006) for Propore™ over a range of mean relative humidity’s (RH) across the 

sample but at a fixed gradient of 50% RH.  Figure 2.4 (b) presents the VDR measurements 

of Figure 2.4 (a) with two additional RH gradients (10% and 20%) induced across the 

Propore™. 
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Figure 2.4. The VDR measurements for Propore™ for (a) variable mean relative humidity 
across the sample with a fixed gradient and (b) variable mean relative humidity across the 
sample with 10%, 20%, and 30% relative humidity gradients (Larson,2006). 

 As shown in Figure 2.4, Larson (2006) found that the VDR for Propore™ was 

insensitive to the RH gradient across the soecimen.  Larson (2006) conducted similar test 

for Tyvek® and found that the VDR for Tyvek® was also insensitive to the RH gradient 

induced across the specimen.  These membranes are non-hygroscopic materials so 

minimal water adsorption would have occurred.   The mean relative humidity would likely 

have a greater effect on the transport properties of hygroscopic materials since they absorb 

water.  The membrane alternatives presented in Table 1.1 are all non-hygroscopic 

membranes and as such should not be sensitive to the mean test RH. 

2.3 Permatran-W® Model 101k Test Apparatus 

The Permatran-W® Model 101k is an apparatus that was developed by Mocon 

based on the modified ASTM E96BW (inverted cup with a guard membrane) test 

procedure.  However, there are two major differences between the Permatran-W® and the 

inverted cup with a guard membrane test methods.  The first difference in these test 
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methods is the vapour concentration gradient used to drive vapour transfer through the test 

membrane.  The second major difference is the method used to measure the WVTR.   

The bottom side of the material being tested in the Permatran-W® is exposed to a 

dry (0% RH) high purity nitrogen stream while the modified inverted cup test method uses 

a 50% RH air stream.  In the modified inverted cup test method the cup is mounted to a 

mass balance to measure the mass of water with time.  In the Permatran-W® the mass 

flow rate and outlet RH of the nitrogen stream are measured to calculate the mass flow of 

water vapour through the membrane.  To reduce the precision uncertainty of the 

Permatran-W® six different measurement areas are tested simultaneously.  A schematic of 

a single test cell in the Permatran-W® is shown in Figure 2.5. 

 

Figure 2.5. Schematic of each test cell in the Permatran-W® showing the locations at 
which the vapour concentration is needed to calculate the bulk mean concentration 
gradient. The dimensions of the nitrogen flow chamber were measured to be: h=3.10±0.02 
mm, d1=34.97±0.05 mm, and d2=21.12±0.07 mm. 

Before entering the test cells in the Permatran-W® the high purity nitrogen is 

passes through a desiccant chamber to ensure that the nitrogen is completely dry.  The 

nitrogen then passes through a pressure regulator to reduce the nitrogen pressure to 103 

kPa (15 Psi).  The nitrogen stream is split to each of the six test cells and passed through 

valves used to balance the nitrogen flow through the test cells.  Prior to venting to 
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atmosphere,  one nitrogen stream is diverted to a CMOS semiconductor relative humidity 

sensor, through a dryer, and lastly through a mass flow meter for five minutes.  The 

measurements observed at the five minute mark are used to determine the WVTR in that 

cell.  The Permatran-W® measurement is compared to the previous measurement for that 

cell.  If the WVTR agrees within the convergence criteria of 1%, the most recent WVTR is 

recorded for that cell and the cell is removed from the measurement cycle.  This continues 

until all of the cells obtain steady WVTR measurements. 

The Permatran-W® uses the relative humidity measurement, the test temperature, 

and the atmospheric pressure measurement, to calculate the nitrogen humidity ratio using 

equations (A.2), (A.3), and (A.4) (modified for nitrogen instead of air) of Appendix A.  

The dry nitrogen flow rate is measured using a volume flow meter with an output of 

standard cubic centimeters per minute (SCCM).  Therefore, this volume flow rate is 

converted to a mass flow rate by multiplying by the density of the nitrogen at standard 

temperature (0°C) and 1 atmosphere pressure.  Using the nitrogen flow rate and the 

humidity ratio, the WVTR is calculated using equation (2.2).  The manufacturer specified 

uncertainty in the WVTR is ±10% and is used as the bias uncertainty.  

 SNV
A

Wm  "  (2.2) 

where,  "m  = the measured WVTR [gW/m2day], 

 W  = the outlet nitrogen humidity ratio [gW/gN], 

 NV  = the standard volume flow rate of nitrogen [cm3/day], 

 S  = the standard nitrogen density [1.2922x10-3gN/ cm3], 

 A  = the transfer area [0.001 m2]. 
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The WVTR measurements output by the Permatran-W® provide a relative 

comparison between the membrane alternatives. Unlike the VDR, the WVTR is dependent 

on the test conditions such as the nitrogen flow rate, flow condition, and relative humidity.  

Therefore, the VDR is a more suitable quantity for comparing results obtained using 

different test methods and conditions. 

The Permatran- W® outputs the test temperature, the test membrane WVTR, the 

calibration WVTR (measured without a test membrane), the atmospheric pressure, the 

number of cycles to reach convergence, and the standard volume flow rate.  However, 

none of the properties of the nitrogen streams are output, complicating the membrane 

VDR calculation.  The method used to interpret the Permatran-W® results/measurements 

and calculate the test membrane VDR is outlined in Appendix B. 

2.4 Water Vapour Permeability 

 In addition to the membrane VDR, the water vapour permeability is required for 

use in the computer models.  Permeability is defined as “the measure of the flow 

conductance of the matrix” (Kaviany, 1995) where the matrix is the solid constituent in the 

media.  Equation (2.3) was used (Larson, 2006) to calculate the water vapour permeability 

based on the membrane thickness and VDR measurements. 

 
6219.0




TRR
PMz

k
M

atmW
m  (2.3) 

where,  mk  = the water vapour permeability [kg/(ms)], 

 z  = the membrane thickness [m], 

 WM  = the molecular weight of water [18.02 kg/kmol], 

 atmP  = atmospheric pressure [101.3kPa], 
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 R  = the universal gas constant [8314 J/(K kmol)], 

 T  = the test temperature [296 K]. 

The thickness of the membranes was obtained using a 0.0001 mm precision micrometer.  

Twenty spatially distributed thickness measurements were made to obtain an average for 

each of the membranes.  A bias uncertainty of 0.0002 mm was assumed to account for the 

slight compression of the membranes due to the clamping pressure of the micrometer. 

2.5 Permatran-W® Results and Discussion 

2.5.1 Results of the Permatran-W® Measurements 

Using the Permatran-W® the WVTR through the membrane alternatives were 

measured.  The Permatran-W® test temperature was set to 23°C and the same sample size 

(N=6) was used for all of the samples except for the Japanese Tyvek and Propore (N=12).  

The VDR, permeability, and average thickness obtained for each membrane alternative is 

presented in Table 2.1 and are denoted by a U with the subscript of the property which it 

quantifies.  All uncertainties are given at a confidence interval of 95% in accordance with 

ANSI/ASME PTC 19.1 (1998).  The bias uncertainty quoted by Mocon was 10% of the 

WVTR measurements and the precision uncertainty was obtained using the standard 

deviation of the N measurements as per ANSI/ASME PTC 19.1 (1998).  



 

29 

Table 2.1. Summary of the results obtained for the membrane alternatives including the 

vapour diffusion resistance, vapour permeability, and thickness. 

RM 

(s/m)

URM

(s/m)

km

(kg/ms)

Ukm

(kg/ms)

Δz

(mm)

UΔz 

(mm)

Propore™ 301 34 8.88E-07 1.07E-07 0.22 0.009

Tredegar VCL-510 2080 271 2.22E-07 2.96E-08 0.39 0.011

Tredegar #2 11035 2034 4.02E-08 7.51E-09 0.37 0.012

Aptra™ RKW 733 74 7.20E-08 7.71E-09 0.04 0.002

Porex® PM6M 160 20 8.48E-07 1.06E-07 0.11 0.001

Porex® PM3V 109 12 1.71E-06 1.84E-07 0.16 0.001

Porex® X-7744 194 24 3.73E-06 4.61E-07 0.61 0.001

Porex® X-4904 76 8 4.14E-06 4.32E-07 0.26 0.002

Japanese Tyvek® 626 109 3.41E-07 6.37E-08 0.18 0.012

Tyvek® 1025B 466 175 3.75E-07 1.42E-07 0.15 0.008

Tyvek® 1059B 409 80 5.09E-07 1.10E-07 0.17 0.016

AY Tech ePTFE Lam 185 21 3.48E-06 4.03E-07 0.54 0.016  

For the purpose of comparison, the membrane VDRs and WVP are presented in graphical 

form in Figures 2.6 and 2.7 respectively.  It should be noted that Tredegar membranes are 

not shown in Figure 2.8 for the purpose of expanding the remaining data. 

 
Figure 2.6. Average vapour diffusion resistances (VDRs) obtained using the WVTR 

measurements from the Permatran-W®. 
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Figure 2.7. Average water vapour permeabilities (km) presented in Table 2.1 and 

obtained from the average VDRs and average thicknesses calculated using equation 

(2.19). 

2.5.2 Discussion of the Permatran-W® VDR and WVP Results 

It can be seen in Table 2.1 and Figure 2.6, that the Porex® and AY Tech. ePTFE 

Lam membranes measured VDR’s were lower than Propore™.  As shown in Figure 2.1, 

the latent effectiveness of a RAMEE constructed with Porex® or AY Tech. ePTFE Lam. 

membranes should exceed that of a RAMEE constructed with Propore™.  

Porex® X-7744 and Porex® X-4904 have the same percent porosity with average 

pore size of 7 μm and 2 μm respectively (Table 1.1).  Furthermore, the membrane 

thicknesses were measured to be 0.61 mm and 0.26 mm for the X-7744 and X-4904 

respectively.  As shown in Figure 2.6, the X-7744 had a VDR of 194 s/m, while the X-

4904 had a VDR of 76 s/m.  The manufacturer and percent porosity of these membranes 

are the same leaving pore size and thickness as the primary factors for the difference in 

VDR.  However, as shown in Figure 2.7, the water vapour permeability of these 

membranes agrees within experimental uncertainty.  The water vapour permeability is 
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normalized to a 1 m membrane thickness indicating the primary cause for the difference 

in the VDRs of these membranes is the thickness.  Furthermore, the ratio of the X-

7744/X-4904 VDRs is 2.6±0.4 and for thicknesses is 2.303±0.015 which agree within the 

uncertainty of the ratios.  Therefore, the VDR would appear to be proportional to these 

membrane thicknesses and insensitive to the pore size. 

As shown in Figure 2.6. the Porex® PM6M and Porex® PM3V membranes had 

VDRs of 160 s/m and 109 s/m respectively and do not agree within experimental 

uncertainty.  Furthermore, the PM6M and PM3V WVPs (shown in Figure 2.7) also did 

not agree within experimental uncertainties.  Therefore, unlike the Porex® X-7744 and 

X-4904, the difference in the measured VDR between the PM6M and PM3V is not due a 

difference in thickness.  The only noted difference between the PM6M and PM3V was 

their pore sizes (1-2 μm and 5 μm respectively).  However, the X-7744 and X-4904 had a 

larger difference in their pore sizes (7 μm and 2 μm respectively) and their WVPs agreed 

within experimental uncertainty.  Therefore, more information regarding the manufacture 

of the PM3M and PM3V would be required to determine the cause of this discrepancy. 

The Porex® X-7744 and the Porex® PM3V have very similar pore size (7 μm and 

5 μm respectively) and percent porosity (35-45% and 40% respectively).  Despite the 

similarities in these membranes, the X-7744 and PM3V WVPs did not agree within 

experimental uncertainty (Figure 2.7).  Similarly, the Porex® X-4904 and the Porex® 

PM6M had similar pore size (2 μm and 1-2 μm respectively) and percent porosity (35-

45% for both) but again their water vapour permeabilities did not agree within 

experimental uncertainty (Figure 2.7).  However, the PM6M and PM3V membranes are 

constructed of polytetrafluoroethylene (PTFE) while the X-7744 and X-4904 membranes 
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are constructed of polypropylene (PP).  Therefore, the difference in the observed water 

vapour permeabilities, presented in Figure 2.7, may be due to the molecular make up of 

the membranes. 

Tyvek® 1025B and 1059B were found to have lower VDR’s (466 s/m and 409 s/m 

respectively) than the Japanese Tyvek® (626 s/m) and almost agree within experimental 

uncertainty.  The Tyvek® membranes have the same construction method, material, 

manufacturer, and percent porosity.  However, unlike the Porex® X-7744 and X-4904, 

these membranes also have similar pore distributions.  The 1025B and 1059B 

thicknesses, VDRs, and water vapour permeabilities all agree within experimental 

uncertainty (as seen in Table 2.1, Figure 2.6, and Figure 2.7).  Therefore, the small 

difference in VDRs is likely due to the difference in the membrane thicknesses. 

The Tredegar VCL-510 and Tredegar #2 membranes VDRs were found to be 2080 

s/m and 11035 s/m respectively.  The Tredegar thicknesses agreed within their 

uncertainty.  Therefore, unlike the Porex® X-7744 and X-4904 and Tyvek® membranes, 

the large difference in the Tredegar membrane VDRs cannot be attributed to a difference 

in thickness.  The manufacturer did not specify the percent porosity and pore 

size/distribution of the Tredegar membranes and there is likely a large difference in these 

properties causing the difference observed in the VDRs. 

2.5.3 Comparison of the Different Test Methods 

To validate the Permatran-W® measurements and data analysis, the results were 

compared to those obtained by Larson (2006).  The VDRs of Propore™ and Japanese 

Tyvek® obtained using the Permatran-W® are compared to that obtained using the 

DMPC (Larson, 2006) in Figure 2.8.   
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Figure 2.8. Comparison of the Propore™ and Japanese Tyvek® VDRs measured using 

the Permatran-W® to those obtained by Larson (2006) using the DMPC. 

As observed in Figure 2.8, the VDRs obtained using the Permatran-W® were 

higher than those obtained using the DMPC and do not agree within experimental 

uncertainty.  To understand the source of this discrepancy, a closer look at Gibson’s 

(2000) findings is required.  Gibson (2000) conducted measurements of many fabrics and 

membranes using many different test methods and apparatuses.  Using the modified 

ASTM E96BW test apparatus, Gibson (2000) conducted two tests with the air flow 

tangential to the membrane at velocities of 0.5 m/s and 3.1 m/s and one test with 

perpendicular air flow at 6.5 m/s.  Figure 2.9 is a plot of the VDR results obtained using 

the modified ASTM E96BW compared to the VDR results obtained using the DMPC for 

the same samples. 
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Figure 2.9. Comparison of the VDR measurements obtained for five different 

membranes using the ASTM E96BW, at three different flow conditions, to that obtained 

for the same five membranes using the DMPC (Gibson, 2000). 

From Figure 2.9, it is clear that the modified ASTM E96BW measurements are 

consistently higher than the DMPC measurements regardless of the flow configuration.  

Furthermore, using the best fit shown in Figure 2.9, the points of intersection for 

Propore™ (125 s/m DMPC) and Tyvek® (415 s/m DMPC) are at 200 s/m and 540 s/m 

respectively.  Thus, the membrane VDR results obtained using the Permatran-W® are 

more comparable to the ASTM E96BW than to the DMPC results adding confidence to 

the Permatran-W® measurements.  However, the membrane VDRs should not depend on 

the test method used to determine them.  This means that the Permatran-W® and ASTM 

E96BW test methods have an upward bias, or the DMPC has a downward bias, or both.   

2.5.4 Nitrogen Leakage as a Source of Error in the Permatran-W® Results  

One potential source of bias error in the Permatran-W® measurements is leakage of 

nitrogen from the test cell.  In all of the Permatran-W® tests, the nitrogen flow rate 

decreased from the calibration value (typically around 1-2%) due to leakage.  There are 
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two contact surfaces in the Permatran-W® at which the nitrogen could have leaked.  The 

first contact surface is between the test membrane and the nitrogen chamber.  However, 

this leakage would not affect the outlet relative humidity.  The second contact surface is 

between the PTFE guard membrane and the test membrane.  If leakage occurred at this 

site, the effect would be nitrogen flow through the test membrane.  This flow would be in 

the opposite direction of the moisture diffusion, thus inhibiting the diffusion process.  

Therefore, the amount of vapour that diffused through the membrane would decrease, 

resulting in a lower nitrogen outlet relative humidity and an increase in the calculated 

VDR. 

Larson (2006) measured the VDRs for Tyvek® and Propore™ over a range of 

pressure gradients induced across the membrane.  The pressure gradient induced across 

the membrane created the potential for flow through the membrane.  The observed VDRs 

at each of the pressure gradients are presented in Figure 2.10 with the corresponding 

volume flow rates of nitrogen measured at the outlet of the bottom stream. 

 
Figure 2.10. The effect of inducing a pressure gradient across the membrane on the 

observed VDR (Larson, 2006).  Note: These water vapour diffusion resistances include 

the boundary layer resistances of the nitrogen stream. 
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As shown in Figure 2.10, the VDRs measured for Tyvek® were more sensitive to 

the induced pressure gradient than Propore™ due to the increased flow of nitrogen 

through Tyvek®.  For Propore™, the pressure gradient created little flow of nitrogen 

through the membrane and thus had little effect on the VDRs.  Therefore, it is unlikely 

that the small leakage observed in the Permatran-W® could have caused the large bias in 

the Propore™ VDR measurement.  Furthermore, the impermeability of nitrogen through 

Propore™ would suggest that the leakage likely occurred at the interface of the test 

membrane and the nitrogen chamber not through the membrane.  This location for 

leakage would have little effect on the observed VDR and as such leakage is likely not 

the cause of the bias observed in Figure 2.8. 

2.5.5 Contact Resistance as a Source of Error in the Permatran-W® Results  

Another possible source of bias in the Permatran-W® and the modified ASTM E96 

BW of Figure 2.9 is an additional resistance caused by the contact between the ePTFE 

guard film and the test film.  Gibson (2000) used the ISO 11092 test method to measure 

the VDR of various membranes for comparison to the DMPC measurements.  As shown 

schematically in Figure 2.2 (b), the ISO 11092 test method also has a cellophane film, 

similar to PTFE, in contact with the test membrane.  Therefore, if a contact resistance 

was present in the Permatran-W® and the modified ASTM E96BW, a similar bias  error 

should be present in the ISO 11092 measurements.   

Figure 2.11 presents the VDR results obtained by Gibson (2000) using the ISO 

11092 test apparatus and plots these values against the VDR results obtained using the 

DMPC. 
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Figure 2.11. Comparison of Gibson’s ISO 11092 membrane VDR results to those 
obtained using the DMPC (Gibson, 2000). 

 It can be seen in Figure 2.11 that the ISO 11092 membrane VDR measurements 

agreed well with the DMPC membrane VDR measurements.  The ISO 11092 test 

apparatus did not yield VDR results with a similar bias to that observed in the Permatran-

W® and modified ASTM E96 BW results.  Therefore, it not likely that a contact resistance 

exists in either the Permatran-W® or modified ASTM E96 BW, eliminating this as a 

source of the bias observed in the VDR results. 

2.5.6 Area Bias as a Source of Error in the Permatran-W® Results 

The bias error in the Permtran-W® VDR results may be due to the test chamber 

construction (shown in Figure 2.5).  The flow chamber diamater was measured to be 

34.97±0.05 mm equating to an area of (9.6±0.8)x10-4 m2.  The measured area agrees with 

the default area used by the Permatran-W® of 0.001 m2.  However, the nitrogen flow in 

the Permatran-W® does not enter from the sides and is not fully developed as in the 

DMPC; Rather, the flow enters the test section through 1.25 mm  ports in the bottom of the 



 
 38 

3.1 mm high cylinder.   In addition, the nitrogen inlets and outlets are angled towards one 

another as shown in Figure 2.5. Therefore, it is likely that near the edges of the test section 

the nitrogen is stagnant and the majority of the flow is bridging from the inlet to the outlet. 

The flow through a Permatran-W® test section is a complex 3D viscous flow with 

entry effects, requiring a computational fluid dynamic numerical model to capture the flow 

behaviour properly.  However, it is known that the nitrogen enters the chamber with a 

laminar Reynolds of 1500 and near the edges of the chamber there would be little to no air 

movement greatly increasing the boundary layer resistance.  The increased boundary layer 

resistance at the edges of the chamber in effect reduce the area over which the bulk of the 

mass transfer occurs.  For a fixed outlet concentration the WVTR is also fixed but 

decreasing the area will also decrease the VDR as shown in equation (2.4). 

 
m

ACRM 


  (2.4) 

A plot of the equivalent Permatran-W® Propore™ and Tyvek® resistances 

achieved by reducing the area for vapour transfer is shown in Figure 2.14 (a) and (b) 

respectively.  Also plotted in Figure 2.14 is the DMPC resistances presented by Larson 

(2006) with experiemental uncertainty. 

 
Figure 2.12. Intersection of the DMPC results (Larson, 2006) with the Permatran-W® 
results obtained by reducing the area of transfer for (a) Propore™ and (b) Tyvek®. 



 
 39 

As shown in both Figure 2.14 (a) and (b), there is an area of intersection between 

the Permatran-W® and the DMPC results.  For Propore™ (Figure 2.14 (a)) the Permatran-

W® results agree within experimental uncertainty with the DMPC results for the range of 

% Area of (32-55) %.  For Tyvek® (Figure 2.14 (b)) the Permatran-W® results agree 

within experimental uncertainty with the DMPC results for the range of Area of (50-90)%.  

Therefore, the Permatran-W® and DMPC results agree within experimental uncertainty 

for both Propore™ and Tyvek® for the range of % Area of (50-55) %.  The diamter of the 

equivalent circular 52.5% area for mass transfer is 25.9 mm which seems resonable 

considering that the distance between the nitrogen inlet and outlet is 21.0 mm.  The 

corrected VDRs and WVPs based on this new area are presented in Table 2.2. 

Table 2.2. Summary of the new results obtained for the various membranes tested based 
on a percent area of 52.5% which equals a diameter of 25.9 mm for the equivalent circular 
transfer area of 0.000525 m2. 

RM 

(s/m)
URM

(s/m)
km

(kg/ms)
Ukm

(kg/ms)
Propore™ 158 18 1.69E-06 2.04E-07

Tredegar VCL-510 1092 142 4.23E-07 5.64E-08

Tredegar #2 5793 1068 7.65E-08 1.43E-08
Aptra™ RKW 385 39 1.37E-07 1.47E-08

Porex® PM6M 84 10 1.61E-06 2.01E-07

Porex® PM3V 57 6 3.25E-06 3.51E-07

Porex® X-7744 102 13 7.10E-06 8.78E-07
Porex® X-4904 40 4 7.89E-06 8.24E-07
Japanese Tyvek® 329 57 6.50E-07 1.21E-07
Tyvek® 1025B 245 92 7.14E-07 2.70E-07
Tyvek® 1059B 215 42 9.70E-07 2.09E-07
AY Tech ePTFE Lam 97 11 6.63E-06 7.68E-07  
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2.5.7 Boundary Layer Distribution 

For high VDR membranes the mass flux will be relatively constant throughout the 

chamber.  However, for low VDR membrane the boundary layer distribution will create a 

mass flux distribution.  Three possible mass flux distributions through the test cell are 

shown in Figure 2.13.  The original distribution is representative of the assumtion made in 

the calculation of the VDRs presented in Table 2.1 and the equivalent distribution is the 

assumtion used to calculate the VDRs of Tabl2 2.1. 

 
Figure 2.13. The different distributions of mass transfer assumed to calculate the area for 
transfer in the Permatran-W® test cell. 

The Permatran-W® assumes that the mass flow is uniformly distributed throughout 

the test section and would have a mass flux distribution shown as the “original” plot in 

Figure 2.14.  By reducing the area to 52.5% and fixing the net flow of vapour, a new mass 

flux distribution through the test cell is obtained.  However, likely neither the “original” 

nor the “equivalent” distributions are accurate representations of the true distribution in the 

test cells.  The nitrogen in the test cells undergoes a rapid expansion upon entering the test 
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chamber and then exits through a sudden contraction.  Therefore, the velocity is not 

uniform throughout the test section, which would cause a variation in the convective mass 

transfer coefficient.  The variation in the convective mass transfer coefficient is reflected 

by variance in the boundary layer resistence of the nitrogen chamber and would likely 

create a mass flux distribution closer to the “proposed” distribution of Figure 2.13. 

Although the exact distribution in mass flux within the Permatran-W® test cells is 

not known, it is known that the distribution is caused by a boundary layer resistance 

distribution.  To obtain the “original” mass flux distribution in Figure 2.14 the boundary 

layer resistance would need to be uniform (500 s/m).  Therefore, varying the boundary 

layer resistance across the transfer area will result in a different membrane VDR. To vary 

the boundary layer distribution the sample area is divided into A1=52.5% (Rb1) and 

A2=47.5% (Rb2).   Rbl1 is varied from 260 s/m to 500 s/m and Rbl2 is calculated using 

equation (2.5). 

 2
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where,  1Rbl  = the boundary layer resistance for area 1 [s/m], 

 2Rbl  = the boundary layer resistance for area 2 [s/m], 

 1%A  = the first area for mass transfer (0.525), 

 2%A  = the second area for mass transfer (0.475). 

The resistive circuits used to analyze the effect of varying the boundary layer 

resistance over the transfer area are presented in Figure 2.15.  The total resistance is what 

is measured by the Permatran-W®.  Therefore, by varying the boundary layer resistances 

the effect on the total resistance and membrane resistance can be investigated. 
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Figure 2.14. Schematic detailing the resistive circuits used to determine the observed 
membrane resistance. 

As shown in Figure 2.14, the two area resistance are placed in parallel with each 

other and each consist of a membrane resistance (Rm1=(Table 2.2 VDR)*0.525, 

Rm2=(Table 2.2 VDR)*0.475) in series with the boundary layer resistances (Rbl1 and Rbl2 

respectively).  These resistances are used to calculate the equivalent total resistance (RT).  

The observed membrane resistance (RmO) is calculated by subtracting the boundary layer 

resistance in parallel with each other from the total resistance.  The observed membrane 

resistance is the theoretical resistance obtained assuming that the mass flux is uniform 

through the test cells (“original” in Figure 2.13). 

 
Figure 2.15. The observed Propore™ and Tyvek® membrane resistance using different 
boundary layer resistances where Rbl1 corresponds to A1=52.5% and Rbl2 corresponds 
A2=47.5%. 
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Figure 2.15 clearly demonstrates that if there is a variation in the boundary layer 

resistance across the transfer area will impact the observed membrane VDR (output by the 

Permatran-W®).  If the boundary layer resistance below the membrane were uniformly 

equal to 500 s/m, the uniform mass flux assumption would yield the correct membrane 

VDR.  Thus, the further the boundary layer resistances deviate from uniform the larger the 

upward bias in observed membrane resistance. 

There are an infinite number of boundary layer distributions which would yield the 

observed membrane resistances (biased) presented in Table 2.1.  For a given boundary 

layer resistances acting on A1 (Rbl1), there is a corresponding boundary layer resistance 

(Rbl2), which would cause the observed membrane VDR’s to be as presented in Table 2.1, 

if the actual membrane VDR’s were as presented in Table 2.2.  Pairs of boundary layer 

resistances are plotted in Figure 2.16 which yield a VDR of 301 s/m (Propore™, Table 

2.1) assuming the correct membrane VDR is 160 s/m (Propore™, Table 2.2). 

 

Figure 2.16. Boundary layer vapour diffusion resistances distributions which yield a fixed 
observed membrane VDR of 301 s/m while the actual membrane resistance is 160 s/m. 
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2.6 Conclusions from the Membrane Vapour Diffusion Results 

The VDR results presented in Table 2.1 are subject to many possible sources of 

error with the most significant source being the variation in boundary layer resistance in 

the Permatran-W® nitrogen stream.  To accurately use the Permatran-W® measurement to 

determine the membrane VDR’s and permeabilities, more information regarding the 

boundary layer resistance distribution is required.  However, by altering the area for 

transfer to 52.5% of the total membrane area, agreement with the DMPC results presented 

by Larson (2006) was obtained.  Although the Permatran-W® VDR results are suspect, 

they do provide a good means for comparing one membrane to another. 

Based on the membrane VDR measurements presented in Table 2.2, it is clear that 

the previously used Propore™ and Tyvek® are not the lowest resistance membranes 

tested.  Therefore, the RAMEE performance can be improved by replacing Propore™ 

(VDR=158±18 s/m) with any of the lower VDR membranes such as the Porex® 

membranes (VDR= 40-120 s/m) or the AY. Tech ePTFE Lam. membrane (97±11 s/m).  In 

addition, the VDR of Propore™ (158±18 s/m) was measured to be lower than the Tyvek® 

1025B and 1059B membranes (245±92 s/m and 215±42 s/m respectively) used by Dave 

Thompson in the enthalpy pump system. 
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CHAPTER 3 

LIQUID PENETRATION PRESSURE AND MECHANICAL PROPERTIES 

The vapour diffusion resistance of a membrane used to construct a RAMEE is 

critical to the effectiveness of the system as discussed in Chapter 2.  In addition, the 

liquid penetration pressure must also be known to prevent the desiccant from leaking into 

the airstreams under normal operation.  The membrane strength and elasticity are also 

critical to the design of the RAMEE to prevent large deflections and/or rupture.  

Therefore, a suitable membrane cannot leak, rupture, or deflect significantly under the 

normal operating pressures of the RAMEE system.  Unfortunately, membrane properties 

are often guarded by the manufacturers, not known, or if known, cannot be directly 

compared due to the wide range of testing methods used.  Therefore, the liquid 

penetration pressure (LPP) and modulus of elasticity of each of the membrane 

alternatives needs to be measured. 

The LPP is the water pressure at which liquid water will pass through a 

membrane.  Larson (2006) measured the LPP of his membrane alternatives and 

approximated the design pressure for the RAMEE to be 33 kPa (4.8 psi).  In the 

laboratory, Mahmud (2009) observed that the operating pressures of RAMEE Prototype 3 

were below 35 kPa (5 psi).  Therefore, a membrane that does not leak below 35 kPa (5 

psi) would be suitable to replace Propore™. 

The desiccant pressures in the RAMEE stress the membrane in the transverse 

direction (in plane with the membrane) which creates a strain in this same plane.  The 
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lower the membrane modulus of elasticity, the more the membrane will deflect, creating 

variations in the RAMEE flow channels.  Variations in the RAMEE flow channels create 

flow maldistributions which decrease the RAMEE effectiveness.  Prototype 2 (Erb, 2009) 

and Prototype 3 (Mahmud, 2009), constructed using Propore™ had significant membrane 

deflections.  Therefore, the modulus of elasticity of the replacement membrane should 

exceed that of Propore™. 

In the sections to follow, the apparatuses and methods used to measure the LPP 

and determine the modulus of elasticity are described.  The results of these tests are 

presented and compared to the manufacturer specified properties and published data.  

Lastly, the sources of error in the measurements and measurement methods are discussed 

and conclusions are made. 

3.1 The Bulge Test Apparatus 

The bulge test apparatus is designed to hold a membrane sample with pressurized 

water on the bottom and atmospheric air on the top.  By varying the water pressure below 

the membrane, the LPP can be observed.  By measuring the membrane deflections with 

water pressures below the membrane, the membrane stiffness can be obtained.  

Pressurized air is connected to a sealed water reservoir that is connected to the underside 

of the membrane in the test cell.  Thus, the desired liquid penetration pressure below the 

membrane can be obtained by regulating the air pressure supplied to the reservoir.  

Larson (2006) utilized a line pressure of 344 kPa (50 Psi) with a regulator valve.  

However, this system was replaced with the Druck DPI 605 to generate more accurate 

and controllable air pressures. 

The pressure output by the Druck is close to the liquid pressure in the test cell, 

observed below the membrane using a pressure transducer.  However, slight differences 
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in these pressures would be obtained due to the static head of water, in the reservoir, 

changing throughout the tests.  The pressure transducer outputs a voltage that is linearly 

proportional to the pressure being measured.  The transducer output is amplified and 

displayed on a voltmeter.  With elevated water pressures below the membrane and 

atmospheric pressure above, the membrane will deflect.  The deflections can be measured 

using a linearly variable displacement transducer (LVDT).  The LVDT outputs a voltage 

that is linearly proportional to the position.  This voltage is also amplified and observed 

using a voltmeter.  A schematic of the bulge test apparatus is shown in Figure 3.1. 

 
Figure 3.1. Schematic of the bulge test apparatus used to measure the liquid penetration 
pressures and determine the modulus’ of elasticity of the membrane alternatives. 

The pressure transducer and the LVDT calibration procedures, and the methods 

used to obtain the measurement uncertainties, are outlined in Appendix C.1.  

Furthermore, how these measurement uncertainties impact the modulus of rigidity 

uncertainty is outlined in Appendix C.2.  Typical measurement uncertainties obtained 

using the methods outlined in Appendix C.1 are presented in Table 3.1. 

Table 3.1. Typical measurement uncertainty obtained for the pressure transducer and 
LVDT. 

Pressure Transducer 0.05 (psig) 345 (Pa)

LVDT 0.26 (mm) 0.010 (in.)  
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3.2 Liquid Penetration Measurement Method 

3.2.1 Bulge Test Apparatus Configuration 

The test cell used in the bulge test apparatus was design and built by Larson 

(2006).  Larson (2006) designed the test cell to meet the requirements of the modified 

AATCC test method 127 (2003) built in accordance with the ASTM F 903 (2004).  

However, some membranes deflect significantly during LPP testing and burst due to the 

large stresses/strains induced during testing.  These bulk deflections would likely alter the 

actual liquid penetration pressure by deforming the pores of the membranes. 

Furthermore, the stresses/strains caused by the bulk deflections are not representative of 

in situ stresses/ strains within the RAMEE.  Therefore, as shown in Figure 3.2, the same 

screen used to support the membrane within the RAMEE is used to reduce bulk 

deflections in the membrane during LPP testing. 

 

Figure 3.2. Photographs of the bulge test apparatus configured to measure the LPP.  Note 
the outer screen used to provide support to the membrane preventing significant 
deflections. 

In addition to the outer screen, a 1.58 mm (1/16”) thick stainless steel plate was 

placed between the outer screen and the membrane.  The steel plate gives even clamping 
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pressure on the gasket below the membrane, creating a seal.  The steel plate had a hole 

that is the same size as the 12.7 mm (½”) thick plastic plate placed on top of the screen to 

maintain the area for leakage to occur during testing. 

3.2.2 Measurement Methodology 

The pressurization rate is critical when measuring the LPP.  Larson (2006) held 

the pressure constant for a piece of Tyvek® and checked the membranes twice daily for 

liquid penetration.  Larson observed that for short exposure times (less than an hour) the 

observed liquid penetration pressure for Tyvek® was around 18 kPa (2.6 Psi).  However, 

when the exposure time was increased to 5 days the observed liquid penetration pressure 

was for Tyvek® was reduced to 6 kPa (0.9 Psi).  This demonstrated that the time of 

exposure to the water pressure can dramatically affected the observed LPP.  During 

normal operation, the RAMEE pressures are elevated for long durations of time.  

Therefore, testing membrane LPP’s with a slow pressurization rate will be more 

representative of the LPP’s during normal operation within the RAMEE.   

In the AATCC test method 127 (2003), the pressure is increased at a constant rate 

of 6 kPa/min (0.9 Psi/min) for the “low pressure test” and 49 kPa/min (7 Psi/min) for the 

“high pressure test”.  In the ASTM F 903 (2004) test method, the pressure is held 

constant for a specified time and a pass fail system is used.  For both test methods, the 

LPP is recorded when three water droplets are visible on the surface of the membrane.  

The LPP measurements obtained using the bulge test apparatus were made by increasing 

the liquid pressure in 3.45 kPa (0.5 Psi) intervals every minute.  Once the pressure was 

increased, the membrane surfaces were inspected for the remainder of the minute.  Once 

three water droplets were observed of approximately 0.25 mm or greater were visually 

observed, the pressure transducer voltage was recorded as the LPP. 
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3.3 Modulus of Elasticity Measurement Method and Data Analysis 

Larson (2006) utilized many test methods to measure the modulus of elasticity 

including ASTM D 882, ASTM D 4595, the secant method, energy minimization 

method, and linear fit method.  The ASTM test methods utilize the Instron tension-testing 

machine to test strips of the membrane, while the remaining methods utilized the bulge 

test apparatus.  Larson compared the results obtained using the different methods and 

concluded that the bulge test analyzed using the secant method was the “most effective 

and easily attainable elastic modulus (method)” (Larson, 2006).  Due to the number of 

membrane alternatives, and based on Larson’s recommendations, the bulge test using the 

secant method of analysis was selected to determine the membrane modulus of elasticity 

values. 

Larson (2006) measured the modulus’ for these membranes over a range of relative 

humidities and found that the relative humidity had a negligible effect on the results.  

Therefore, controlling the relative humidity was deemed unnecessary for these tests.  

Larson (2006) also investigated the effect of strain rate on the modulus’ of Tyvek® and 

Propore™.  The results of Larson’s (2006) study are presented in Figure 3.3 (a) for 

Tyvek® and Figure 3.3 (b) for Propore™. 

 
Figure 3.3. Effect of strain rate on the membrane modulus of elasticity obtained by 
Larson (2006) for (a) Tyvek® and (b) Propore™. 



 

 
 51 

 As shown in Figure 3.3, Larson (2006) found that the modulus for Tyvek® was 

sensitive to the strain rate.  To be representative of the RAMEE under normal operation a 

slow strain rate (less than 0.1 mm/mm/min) was selected. 

3.3.1 Bulge Test Apparatus Configuration 

A photograph of the bulge test cell configured to conduct modulus measurements 

is shown in Figure 3.4. The LVDT stallis is placed in the center of the membrane 

measurement area.  The LVDT voltages are converted to displacements using the 

calibration curve as shown in Appendix C.1. 

 
Figure 3.4. Photograph of the bulge test cell configured to determine the membrane 
modulus of elasticity. 
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3.3.2 Determining the Stress Strain Curves 

The modulus of elasticity of the membrane alternatives is determined from the 

LVDT and pressure transducer measurements.  The LVDT and pressure transducer 

voltages are converted to displacements and liquid pressures respectively using the 

calibration curves (see Appendix C).  The membrane samples within the bulge test cell 

are assumed to follow a spherical deflection, as shown in Figure 3.5.  Also, the 

membranes are thin (0.04-0.6 mm) and thus have negligible bending stiffness. 

 
Figure 3.5. Schematic of the membrane deflections in the bulge test apparatus.  Note: the 
deflections are assumed to be spherical (Larson et al., 2006). 

The pressure measurements are converted to tensile stresses in the θ-r plane 

(shown in Figure 3.4) using equation (3.1) (Small & Nix, 1992).  Built into equation (3.1) 

are the assumptions that the strain is in the elastic region and that the membrane 

deflections are much smaller than the bulge test cell radius. 

 
zh
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


4

2

  (3.1) 

where,    = the tensile stress induced on the membrane in the θ-r plane [Pa], 

 P  = the liquid pressure below the membrane [Pa], 

 a  = the radius of the bulge test cell [28.5±0.1 mm], 
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 h  = the membrane deflections [mm], 

 z  = the membrane thickness (see Table 2.1) [mm]. 

The θ component of the strain is also required to determine a membrane modulus of 

elasticity.  Equation (3.2) (Small & Nix, 1992) is used to convert the deflection 

measurements to θ component strains. 
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  (3.2) 

where,    = the θ component of the membrane strains [mm/mm], 

  A typical plot of the results of equations (3.1) and (3.2) is shown in Figure 3.6.  

Based on Larson’s recommendation, the secant method is used to determine the slope of 

a straight line drawn from the origin to the point of 0.1 strain as detailed in Figure 3.5. 

 
Figure 3.6. A typical membrane stress strain relationship and shows the 10% secant 
method used to determine the modulus of elasticity. 

3.4 Bulge Test Results 

3.4.1 Membrane Liquid Penetration Pressure Results 

The liquid penetration pressures (LPP) were measured for each of the membrane 

alternatives.  The maximum measurable pressure was 12 Psi (82 kPa) which exceeded the 
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desired LPP of >5 Psi (34 kPa).  The LPP was measured four times for each membrane 

alternative and the average observed pressures are presented in Table 3.2. 

Table 3.2. Liquid penetration pressure measured for the various membrane alternatives. 
Note: Due to the test trajectory the uncertainty in the LPP results is approximately 0.5 Psi 
(3 kPa). 

LPP
(psig)

LPP
(kPa)

Propore™ >12 >82
Porex® PM3V 7.2 49
Porex® X-7744 2.2 15
Porex® X-4903 1.4 9
RKW >12 >82
Tredegar #2 >12 >82
Japanese Tyvek® 2.8 19
Tyvek 1025B 2.3 16
Tyvek 1059B 2.4 17
AY Tech ePTFE Lam. >12 >82  

As shown in Table 3.2, the LPP of Propore™, Porex® PM3V, RKW, Tredegar 

#2, and the AY Tech. ePTFE Lam. Membranes all exceeded the design LPP of 34.5 kPa 

(5 psig).  The LPP measured for Tyvek® is compared to that observed by Larson (2006) 

and specified by the manufacturer in Figure 3.7.  Also contained in Figure 3.6 is a 

comparison of the Porex® PM3V membrane LPP to the manufacturer specified value. 
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Figure 3.7. Comparison of the LPP for observed for Tyvek® and Porex® to previously 
published results. 
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As shown in Figure 3.7 the Tyvek® LPP agreed within experimental uncertainty 

with both Larson’s (2006) and the manufacturer specified values.  The Porex® PM3V 

value did not agree within experimental uncertainty with the manufacturer value.  

However, the test method was not specified by the PM3V manufacturer which has a large 

effect on the result.  For Propore™, the LPP exceeded the maximum measurable pressure 

of 82 kPa (12 Psi).  Larson (2006) also found that the LPP exceeded his measurement 

capabilities of >276 kPa (40 Psi).  This supported the 3M™ specified >345 kPa (50 Psi) 

LPP.  Furthermore, AY Tech. guaranteed the ePTFE laminate LPP to exceed 34 kPa (5 

Psi) and when tested the membrane did not leak below the maximum test pressure of 82 

kPa (12 Psi).  Based on the good agreement for Tyvek® with Larson’s (2006) and the 

manufacturer specified value, the LPP’s of Table 3.1 likely conform to the AATCC test 

method 127 (2003) despite using a slower pressurization rate (3.5 kPa/min vs 6.2 

kPa/min) (0.5 Psi/min vs 0.9 Psi/min). 

3.4.2 Membrane Modulus of Elasticity Results 

 When the membranes were installed in the bulge test cell there was no pre-stress 

placed on the membranes. Large deflections were observed initially at very low pressures 

due to the initial slack in the membrane.  The large initial deflections caused an upward 

offset in the stress strain curves.  Therefore, to remove this offset the membranes were 

pre-stressed 0.5 kPa (0.07 psig).  This pressure was enough to remove any initial slack in 

the membranes and became the new zero point of the stress strain curves.  This shift 

created accurate stress strain curves that intersect at the origin.  The resulting zero offset 

stress strain curves obtained for the membranes are shown in Figure 3.8. 
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Figure 3.8. The stress strain relationships obtained for the membranes using the bulge 
test apparatus.  Note: the zero is offset to the slack removing pressure of 0.5 kPa (0.07 
psi). 

The maximum pressure that could be measured by the pressure transducer was 82 

kPa (12 Psi).  This test pressure is higher than the typical operating pressure within the 

RAMEE (34.5 kPa,5 Psi) and was sufficiently high to attain a 0.1 strain for most of the 

membranes.  However, the Japanese Tyvek® and AY Tech. ePTFE Lam. membranes 

were too stiff to obtain a 0.1 strain at the maximum test pressure.  Therefore, to obtain the 

modulus of elasticity for these membranes, using the secant method, a 0.01 strain was 

used.  The membrane modulus of elasticity results are presented in Table 3.3. 
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Table 3.3. Summary of the membrane modulus of elasticity results obtained from the 
stress strain curves of Figure 3.7 using the secant method. 

E (MPa) UE (MPa)

Propore™ 17 2
Tredegar VCL-510 54 10
Tredegar #2 45 10
Porex® PM3V 12 1
Porex® PM6M 16 1.7
RKW 35 7
Japanese Tyvek® 382 72
AY Tech ePTFE Lam. 387 32  

As presented in Table 3.3, all but the Porex® PM3V membrane modulus of 

elasticity results exceeded the desired modulus of Propore™.  The uncertainty in the 

modulus of elasticity results was determined in accordance with ASME/ANSI PTC 19.1 

(1998).  Since only four samples were taken the majority of the uncertainty was caused 

by the variations in the observed modulus of elasticity.  The details of this analysis are 

shown in Appendix C. 

To validate the modulus’ of elasticity presented in Table 3.3, the modulus’ 

obtained for Tyvek® and Propore™ are compared to those obtained by Larson (2006) in 

Figure 3.9. 

 
Figure 3.9. The measured modulus of elasticity compared to that presented by Larson 
(2006) for (a) Tyvek® and (b) Propore™. 
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As shown in Figure 3.9, the modulus’ results for both Tyvek® and Propore™ agree 

within the experimental uncertainty with those obtained by Larson (2006). 

3.5 Conclusions from the LPP and Modulus of Elasticity Results 

A suitable membrane used to replace Propore™ for use in the RAMEE should 

have a LPP higher than 34 kPa (5 Psi) and a modulus of elasticity higher than Propore™ 

(17 MPa).  Based on both the LPP’s presented in Table 3.1 and the modulus of elasticity 

results of Table 3.2, the RKW, Tredegar #2, and AY Tech. ePTFE laminate membranes 

are suitable replacements for Propore™.  However, as presented in Chapter 2, the vapour 

diffusion resistance (VDR) of a suitable membrane should be less than that obtained for 

Propore™.  Based on the VDR results, presented in Table 2.1, the LPP results, presented 

in Table 3.2, and the modulus of elasticity results, presented in Table 3.3, the only 

membrane measured that met all of the performance criteria is the AY Tech ePTFE 

laminate membrane. 
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CHAPTER 4 

RUN-AROUND MEMBRANE ENERGY EXCHANGER PERFORMANCE 
EVALUATION 

 In order to demonstrate the run-around membrane energy exchanger (RAMEE), 

the system should be tested in a building ventilation system.  However, RAMEE 

prototype 4 would be constructed with a new membrane, which introduced unknowns 

and associated risk.  Therefore, it was decided to test a laboratory model RAMEE 

prototype 4 to further investigate the performance characteristics and trouble shoot the 

new membrane.  The laboratory exchangers tested had the same height and length as the 

designed field exchangers (Note: See attached Appendix D for laboratory exchanger 

drawings), but the width was reduced from 24 in. (610 mm) to 4in (100 mm).  By scaling 

the exchangers the edge effects will be more significant in the laboratory model. 

The energy exchanger test facility was used to determine the effectiveness of 

RAMEE prototype 4 over a range of desiccant flow rates and air flow rates.  This chapter 

outlines the energy exchanger test facility, the test results obtained for RAMEE prototype 

4, and conclusions drawn from these results. 

4.1 Energy Exchanger Test Facility 

The energy exchanger test facility was designed and built by Erb (2007) to 

evaluate the performance of energy exchangers in a laboratory setting.  The energy 

exchanger test facility was designed to maintain the AHRI 1060-2005 standard testing 

conditions presented in Table 4.1. 
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Table 4.1. American Heating and Refrigeration Institute 1060-2005 standard test 
conditions. 

Supply Inlet 35 °C 50% RH
Exhaust Inlet 24 °C 50% RH
Supply Inlet 1.7 °C 80% RH
Exhaust Inlet 21 °C 50% RH

Summer

Winter
 

The following sections outline how the energy exchanger test facility is used to 

maintain the 1060-2005 test conditions and what measurements are obtained with 

associated uncertainties.  A schematic of the energy exchanger test facility is presented in 

Figure 4.1 The details of the desiccant pumping and control box shown in Figure 4.1 are 

presented schematically in Figure 4.2. 

 

Figure 4.1. Schematic of the energy exchanger test facility showing the air side 
configuration including the vacuums, orifice plates, temperature/relative humidity 
sensors, and thermocouple arrays. 
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Figure 4.2. Schematic of the energy exchanger test facility desiccant pumping and 
control loop.  The numerical legend is as follows: 1-supply air inlet, 2-supply air outlet, 
3-exhaust air inlet, 4-exhaust air outlet, 5 supply desiccant inlet, 6-supply desiccant 
outlet, 7-exhasut desiccant inlet, 8-exhaust desiccant outlet. 

4.1.1 The Air Side Flow Path in the Energy Exchanger Test Facility 

As shown in Figure 4.1, the energy exchanger test facility uses four vacuum 

pumps to generate the airflow through the supply and exhaust exchangers.  The vacuums 

are configured in a draw/blow configuration such that the air pressure through the 

exchangers is near atmospheric.  Each vacuum is connected to the power source through 

a variable transformer.  By adjusting the variable transformers, the electrical power 

supplied to each of the four vacuums can be set to obtain the desired test airflow rate. 

The supply air inlet is drawn from an environmental chamber.  The chamber has 

both temperature and relative humidity control, which are active during testing due to the 

chamber having a volume change rate time constant of approximately once per 6 hours 

(i.e. less than test duration).  The chamber uses a refrigeration loop to maintain the 

desired temperature of the air and a steam generator to maintain elevated moisture 

contents.  The first of the four vacuums draw the air from the chamber and then pass the 
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air through a series of flow conditioners and measurement devices.  The air then enters 

the supply exchanger, where it gains or losses heat/moisture depending on the test 

conditions.  The supply outlet air stream is drawn through another series of flow 

conditioners and measurements devices by the second vacuum.  The vacuum then blows 

the supply outlet air into the laboratory which has a volume change rate time constant of 

approximately 600 hours (i.e. much longer than any test). 

The exhaust inlet air stream is drawn from the laboratory by a third vacuum.  

However, prior to the vacuum the laboratory air passes through an evaporative cooler to 

lower the temperature and increase the relative humidity.  Upon exiting the vacuum the 

air stream is blown through a series of flow conditioners and measurement devices 

similar to the supply inlet.  The air stream enters the exhaust exchanger gaining/loosing 

heat/moisture depending on the test conditions.  The exhaust outlet air is drawn through 

another series of flow conditioners and measurement devices by the fourth vacuum 

pump.  The exhaust outlet air stream is then blown into the environmental chamber 

completing the airside loop. 

The airflows are transported in the energy exchanger test facility through 2 in. 

(50.8 mm) polyvinyl chloride piping.  However, the RAMEE Prototype 4 exchangers 

have inlets/outlets measuring 12 in. (300 mm) high by 4 in. (100mm) wide.  Therefore, to 

connect the 2 in. (50.8 mm) piping to the exchangers, four round to rectangular transition 

ducts with 10° angle of expansions are used.  The 10° angle of expansion is intended to 

eliminate flow separation and helps ensure uniform inlet face velocities. 

4.1.2 Air Side Measurements in the Energy Exchanger Test Facility 

After the supply and exhaust inlet vacuums, the air stream passes through a 

similar series of conditioners and measurement devices.  First the air streams pass 
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through honeycomb flow straighteners shown in Figure 4.3.  The straighteners help 

eliminate large scale vortices in the airflow which would cause errors in the orifice plate 

pressure drop measurements. 

 
Figure 4.3. Photograph of the honeycomb flow straighteners placed before all of the 
orifice plates in the energy exchanger test facility (Erb, 2007). 

After the straightener the airflows pass through 38 mm throat diameter orifice 

plates designed and machined in accordance with ISO Standard 5167-1.  Each orifice 

plate creates pressure drops proportional to the flow rate.  The pressure drops are 

measured using pressure transducers calibrated from 0 to 1244 Pa (0 to 5 in. H20) (as 

shown in Appendix C).  The pressure drops are converted to mass flow rates using 

equation (4.1) (Erb, 2007).  Evaluating equation (4.1), for a pressure drop of 1244 Pa (5 

in. H20), equates to a maximum measureable flow rate of 0.048±0.006 kg/s (37±8 L/s = 

260±56 ft/min face velocity).  The uncertainty in the air flow rate is calculated as shown 

in Appendix C.3. 
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where,  q  = the air flow rate [m3/s], 

 dC  = the discharge coefficient [Approx. 0.61], 
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 2D  = the orifice plate diameter [0.038 m ± 0.0001 m], 

 d  = the ratio 002.0748.00508.0/038.0/ 12 DD  [m/m], 

 1D  = the pipe diameter [0.0508±0.0001 m], 

 P  = the pressure drop measured across the orifice [in. H2O], 

   = the density of the air [kg/m3]. 

Sufficiently downstream from the orifice plates, the air streams pass through flow 

mixers.  The mixers help to eliminate any non-uniform spatial distributions in 

temperature and relative humidity across the piping.  After each mixer, the air streams 

pass over a Vaisala temperature/relative humidity probe.  Each probe outputs two 

voltages, one being proportional to the temperature and the other being proportional to 

the relative humidity.  The calibration precision uncertainty in the temperature/relative 

humidity probes and orifice plate pressure transducer measurements, determined as 

shown in Appendix C and Appendix D respectively, are listed in Table 4.2. 

Table 4.2. Calibration precision uncertainty of the four temperature/relative humidity 
probes and the orifice plate pressure transducers used to determine the air mass flow rate. 

Supply Inlet Supply Outlet Exhaust Inlet Exhaust Outlet

0.30 (°C) 0.25 (°C) 0.27 (°C) 0.26 (°C)
0.8 %RH 1.0 % RH 1.0 % RH 0.7 % RH

0.037 in. H2O 0.002 in. H2O 0.001 in. H2O 0.002 in. H2O  

The last measurement taken before the air enters the supply and exhaust 

exchangers (and the first taken upon exiting) are temperatures.  Three thermocouples are 

spaced equally along the height of the exchanger, as shown in Figure 4.4, to obtain mean 
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inlet and outlet air temperatures.  The average of these three thermocouples is used to 

reduce the uncertainty of the temperature measurement. 

 
Figure 4.4. Positioning of the three thermocouples used to obtain a mean temperature 
measurement at the inlet and outlet of both the supply and exhaust exchangers. 

Once the air streams enter the exchangers, the temperature change in the air 

streams is measured along the length of the exchangers.  Four thermocouples are in the 

middle air stream channel of both exchangers and positioned as shown in Figure 4.5. 

 
Figure 4.5. Positioning of the thermocouples placed in the middle air streams within the 
exchangers to measure the temperature profile through length of the exchangers. 

All thermocouples were calibrated before installation in the exchangers as 

detailed in Appendix D.2.  The calibration precision uncertainty for the thermocouples 

was determined to be ±0.2°C yielding the mean air temperatures uncertainty to be 

±0.1°C. 

1220mm 

305mm 305mm 

108mm 

305mm 305mm 



 

 
 66 

4.1.3 The Desiccant Side of the Energy Exchanger Test Facility 

For RAMEE Prototype 4, the desiccant used as the transfer medium was an 

aqueous salt solution of magnesium chloride.  As detailed in Figure 4.2, the desiccant 

outlet of both exchanger are connected to reservoirs.  The reservoirs store excess 

desiccant when the system is idol and prevents air from being drawn into the pumps.  The 

reservoirs feed two Finish Thompson Incorporated (FTI) KC3 Magnetic Sealless 1/8 hp 

(70 W) pumps which provide the desiccant flow through the exchangers.  There are 

valves located between the pumps and the exchangers to control the flow rate and an 

inline flow measurement device to monitor the flow. 

Originally two Dwyer variable area flow meters (rotometers) were used to 

measure the desiccant flow rate.  The accuracy and smallest measurable flow rate of these 

meters was limited to 0.2 GPM (0.8 l/min) which limited the lower range testing 

capabilities.  Since the flow rate measurement would vary during each test this required 

continuous monitoring and adjustment to the flow rate.  To test at lower flow rates and 

simplify the testing procedure the rotometers were replaced with electronic flow meters 

and electronically actuated flow controllers were added. 

Omega FMG 220 Low Flow Magnetic Flow Meters are used to measure the flow 

rate of desiccant with a calibration precision uncertainty of 0.3 l/min as shown in 

Appendix D.  The desired flow rate is obtained using electronically actuated Belimo B3 

Series Characterized Control Valves.  Using the flow meter measurements the position of 

the flow valve can be continuously adjusted to attenuate to the desired flow rate.  A 

photograph of the flow meters and flow valves is presented in Figure 4.6. 
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Figure 4.6. Photograph of the desiccant electrical flow meters and electronically actuated 
flow control valves. 

The desiccant temperature and salt concentration changes through the exchangers 

are of interest.  Thermocouple wells, shown in Figure 4.47(a), are installed in both the 

supply and exhaust exchangers inlet and outlet headers (locations 5-8 of Figure 4.2).  

There are also sampling ports placed in the desiccant lines for removing samples of the 

desiccant before/after the headers as shown in Figure 4.7 (b).  Using the sampling ports, a 

sample of approximately 5 ml of desiccant can be removed with a hypodermic needle and 

syringe.  The samples are injected into a densitometer with a measurement accuracy of 

±0.00001 g/cm3.  The density measurements are used to determine the salt concentrations 

and convert the desiccant volume flow rate to a mass flow rate.  The densitometer is 

routinely calibrated by obtaining a density measurement for HPLC (0.99822 g/cm3). 

 
Figure 4.7. Photographs of a (a) thermocouple well installed in an exchanger header and 
(b) desiccant sampling port. 

Control Valve 1 Control Valve 2 

Flow Meter 2 
Flow Meter 1 
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4.2 RAMEE Prototype 4 

 To interpret the energy exchanger test results an understanding of the RAMEE 

Prototype 4 construction and operation is required.  The construction drawings for 

RAMEE Prototype 4 are given in Appendix E with material specifications given in 

Appendix F.  Each of the RAMEE exchangers contains ten panels (all the same), totaling 

twenty panels.  Each of the panels used two 1270 mm x 381mm (50” x 15”) pieces of 

membrane, two outer screens, one inner screen, four air spacers, six desiccant spacers, 

and two pieces of corrugated plastic.  The air spacers create a 6.35 mm (¼”) air gap 

between adjacent panels and the desiccant spacers create a 3.175 mm (1/8”) solution flow 

gap.  A section view of the top portion of one panel is shown in Figure 4.8. 

 

Figure 4.8. Detail of the components used to construct the RAMEE modules (Mahmud, 
2009). 

To construct the 20 panels required for RAMEE Prototype 4, 40 sheets of the AY 

Tech. ePTFE Laminate membrane were cut and punched as shown in Figure 4.9. The 
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desiccant spacers, corrugated plastic, and the inner screen are glued between two of these 

membranes forming the desiccant flow path. 

 

Figure 4.9. AY Tech. ePTFE Laminate cut to length and width with the bolt holes 
drilled. 

The components which form the desiccant flow path are configured as shown in 

Figure 4.10.  With some additional glue in the corners of the panels, a seal is formed 

around the perimeter containing the desiccant between the two layers of membrane.  

However, the corrugated plastic board allows the desiccant to flow in and out of the 

envelopes.  The desiccant flows in through the bottom piece of corrugated plastic, 

through/around the heavy felt, and out of the envelopes via the top piece of corrugated 

plastic. 

 
Figure 4.10.  The positioning of the components glued between two sheets of membrane 
to form the desiccant flow path.   

6.35 mm 

89 mm (Typ.) 

1220 mm 

380 mm 
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A total of four air side spacers are glued to the desiccant envelopes, two on the 

top (as shown in Figure 4.8) and two on the bottom.  The spacers also hold two outer 

screen pieces (one on each side) against the membrane to reduce bulk deflections into the 

air stream.  Once all of the panels were constructed they were tested for leaks using the 

pressure testing apparatus shown in Appendix G.  Pieces of C-channel extruded plastic 

were glued to the leading and trailing edge of all envelopes to reduce leakage at these 

sites.  All other small leakage sites were sealed and envelopes with large issues were 

discarded. 

Using the assembled panels and assembling the remaining exchanger components, 

as detailed in Appendix E, the exchangers shown in Figure 4.11 were constructed.  All 

mating surfaces in the headers and between the panels, which are exposed to desiccant, 

were glued to help eliminate leakage.  Furthermore, the finished exchangers, shown in 

Figure 4.11, were leakage tested prior to insulating with spray foam.  The air side gap 

along the height was ensured by placing three horizontally aligned pieces of 3.125 mm 

(1/8”) diameter acrylic rods between each of the panels and the sidewalls totaling 33 rods 

per exchanger. 

 
Figure 4.11. End and side views of an assembled exchanger used in the RAMEE 
Prototype 4.  
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4.3 Results and Discussion from the RAMEE Laboratory Testing 

The results presented in this section were collected using data acquisition 

software (Labview).  The desiccant flow control results are presented followed by air 

stream temperature changes observed through the exchangers during testing.  The 

performance at AHRI summer test conditions are presented finishing with peak 

effectiveness results. 

4.3.1 Desiccant Flow Control 

With the addition of the flow control valve and the flow meter a control strategy 

needed to be developed to attenuate to the desired flow.  It was decided to use a 

proportional feedback control strategy as shown in the schematic presented in Figure 

4.12.  The input to the control loop is the desired desiccant flow rate, or set point, and the 

output is the measured flow rate. 

 
Figure 4.12. Schematic of a proportional, integral, and derivative controller used to 
determine a control strategy that attenuated to the desired desiccant flow rate. 

Using the Ziegler-Nichols method, the coefficients for a PID controller were 

determined (Ellis, 1991).  However, the PID control strategy equated to a long transient 

time with little effect on the steady state fluctuations.  As such it was decided that a 

simple proportional controller with flow measurement feedback was sufficient for the 

relatively constant set-points.  The response obtained with this control strategy is shown 

in Figure 4.13 (a) with flow rate measurements for a fixed valve position (b) (constant 

voltage). 
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Figure 4.13. Flow results obtained using (a) a proportional control with P=0.3125 and (b) 
a constant valve voltage. 

Using the results presented in Figure 4.13, the steady-state means were calculated 

for both the supply and exhaust desiccant flow rates.  To quantify the steady state 

fluctuation, the standard deviations in the steady state responses were also calculated.  

The resulting means and standard deviations are presented in Table 4.3. 

Table 4.3. Mean steady state desiccant flow rates of the responses presented in Figure 
4.13 with the standard deviation. Note: all units are in l/min. 

Mean Std Dev. Mean Std Dev.

P=0.3125, I=0, D=0 2.01 0.07 2.00 0.06
Constant Voltage 1.93 0.05 1.95 0.03

Supply Exhaust

 

 As seen in Table 4.3, the standard deviation for both the supply and exhaust flow 

rates was reduced when a constant voltage was supplied to the control valve. This would 

indicate that the fluctuations observed in the steady portion of Figure 4.13 (a) were 

slightly magnified by the proportional control.  A mean flow rates (2.01 l/min for supply 

and 2.00 for exhaust) were obtained very close to the set point (2.0 l/min).  Due to the 
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mean flow rates (2.01 l/min for supply and 2.00 for exhaust) were obtained very close to 

the set point (2.0 l/min).  Due to the relatively constant nature of the testing flow rate set-

point, the proportional control was deemed sufficient for maintaining set point flow rates. 

4.3.2 Air Stream Temperature Change 

Using the thermocouples positioned as shown in Figure 4.5, the temperature of 

the air streams through the exchangers were monitored.  In this section, two test results 

are presented: one at a relatively high specific heat ratio (Cr* = 9.5, calculated as shown 

in Appendix A) and the other at a relatively low heat capacity ratio (Cr* = 2.5).  The 

temperature profile results are then compared and discussed. 

Specific Heat Capacity Ratio Cr* = 9.5 

Once a test had reached quisi-steady state conditions (Mahmud, 2009), data 

acquisition continued until a large statistically significant (N>30) data set was collect to 

accurately determine average values (with time) for the measurements.  Using these 

averaged values, the temperature distribution through the length of the supply and 

exhaust exchangers was determined.  The resulting air stream temperature profiles are 

presented in Figure 4.14.  The horizontal axis was normalized by the exchanger length 

such that 0 indicates the inlet and 1 indicates the outlet. 
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Figure 4.14. Air stream temperature profile measured through the length of the 
exchangers for Cr*=9.5, NTU = 12.2, Vf=106 ft/min, supply inlet of 36°C @ 44 %RH, 
and exhaust inlet of 25 °C @ 16 %RH. 

The average humidity ratios and desiccant temperatures measured across the 

exchangers, for the test results presented in Figure 4.14, are presented in Table 4.4.  Also 

shown in Table 4.4 is the absolute change measured across the exchangers (Delta). 

Table  4.4. Humidity ratios of the air streams and temperatures in the desiccant measured 
across the exchangers. 

Inlet Outlet Delta Inlet Outlet Delta

Humidy Ratio (gW/kgA) 16.4 11.6 4.8 0.6 12.0 8.4

Desiccant Temperature (°C) 27.8 29.9 2.1 31.6 27.7 9.9

Supply Exhaust

 

As shown in Figure 4.14, the air stream was cooled through the supply exchanger 

and warmed through the exhaust exchanger.  Also, as indicated by the humidity ratios 

presented in Table 4.4, the air was dried through the supply exchanger and humidified in 

the exhaust exchanger.  The resulting effectiveness values observed during this test are 

presented in Figure 4.15. 
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Figure 4.15. The resulting effectiveness values determined for the entire test duration at 
Cr*=9.5 

 The effectiveness values presented in Figure 4.15 show large periodic 

fluctuations.  These fluctuations are caused by fluctuations in the supply inlet moisture 

content (W) created by the steam generator automatically turning on and off to maintain 

the environmental chamber moisture content.  Using a mean of the supply inlet moisture 

smoothes out the effectiveness curves as presented in Figure 4.16. 
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Figure 4.16. The resulting effectiveness values determined using a mean supply inlet 
moisture content for the Cr*=9.5 test data presented in Figure 4.15. 

Specific Heat Capacity Ratio Cr* = 2.5 

Similar to the higher specific heat capacity ratio test (Cr*=9.5), the temperature 

profiles observed through the exchangers are presented in Figure 4.17.  Furthermore, the 

humidity ratios and desiccant temperatures measured across the exchangers are presented 

in Table 4.5. 

 
Figure 4.17. Air stream temperature profiles measured through the length of the 
exchangers for Cr* = 2.5, NTU = 6.3, Vf = 211 ft/min, supply inlet of 41°C @ 32 %RH, 
and exhaust inlet of 30°C @ 15%RH. 
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Table 4.5. Humidity ratio change measured in the air streams and temperature changes in 
the desiccant measured across the exchangers. 

Inlet Outlet Delta Inlet Outlet Delta

Humidy Ratio (gW/kgA) 17.7 14.1 3.6 4.1 10.1 6.0

Desiccant Temperature (°C) 27.5 35.7 8.2 36.5 25.8 10.7

Supply Exhaust

 

Figure 4.17 shows that the air stream was again cooled through the supply 

exchanger but unlike the higher Cr* test result, the exhaust air stream temperature drops 

and then rises.  As presented in Table 4.5, the air was dried through the supply exchanger 

and humidified in the exhaust exchanger.  Therefore, the direction of the sensible and 

latent transfer were both to the desiccant in the supply exchanger and from the desiccant 

in the exhaust exchanger for both of the Cr* tests.  The resulting effectiveness values 

observed during the Cr*=2.5 test are presented in Figure 4.18. 

 
Figure 4.18. The resulting effectiveness values determined during the test conducted 
using the mean supply inlet moisture content for Cr* = 2.5. 
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Comparison of the Cr* = 9.5 to the Cr* = 2.5 Results 

The results of the Cr* = 9.5 test and the Cr*=2.5 test are similar, but with one 

critical difference observed in the exhaust air stream temperature profiles.  There is a 

slight drop in the exhaust air temperature at the dimensionless length of 0.125 in Figure 

4.14 but for the most part it rises through the length of the exchanger.  However, in 

Figure 4.17, the exhaust air stream temperature drops until the middle of the exchanger, 

where it begins to rise again.  This difference is due to the differences in test conditions. 

The airflow rate in the Cr*=9.5 was 0.019 kg/s which equated to Vf = 0.538 m/s 

(106 ft/min) while for the Cr*=2.5 test the airflow rate was 0.033kg/s equating to Vf = 

1.072 m/s (211 ft/min).  Presented in Tables 4.4 and 4.5, the change in exhaust humidity 

ratio measured were 6.0 gW/kgA and 8.3 gW/kgA respectively.  This equated to a moisture 

transfer rate of 0.020 gW/s and 0.016gW/s from the desiccant to the air.   The desiccant 

flow rates were 0.022kg/s and 0.044 kg/s respectively yielding a mass flow rate ratio of 

0.9 gW/kgDes and 0.35 gW/kgDes.  Thus, nearly three times the water was being evaporated 

from the desiccant in the exhaust exchanger during the low Cr* test.  The heat of phase 

change for evaporating the water is taken from the desiccant causing evaporative cooling 

to the desiccant.  Therefore, the desiccant was cooled below the inlet temperature of the 

air causing the initial drop in the exhaust airstream temperature (see Figure 4.17). 

The total energy transfer in the exhaust exchanger of the Cr*=2.5 test was 

dominated by latent transfer.  This equated to a latent effectiveness that was higher than 

the sensible effectiveness as shown in Figure 4.18.  This is not typically the case but will 

likely occur whenever the desiccant is undergoing a large change in concentration or the 

test conditions are such that there is little potential between the airstreams for heat 

transfer and a high potential for moisture transfer. 
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4.3.3 AHRI Summer Effectiveness 

The goal of these tests was to determine the effectiveness of RAMEE Prototype 4 

over a range of heat capacity ratios (Cr*) at AHRI summer test conditions.  The desiccant 

heat capacity, the air flow rate, and the air inlet conditions were near constant for each set 

of data.  Thus, the ratio of heat capacities is mostly proportional to the mass flow rate of 

desiccant.  By varying the mass flow rate of the desiccant, the effectiveness values of 

RAMEE prototype 4 are determined over a range of Cr*. 

Test Conditions 

The effectiveness value distributions with Cr* were determined at two different 

air flow rates with one being low and the other relatively high.  The low airflow rate 

equated to net heat transfer units (NTU) of 12.3 and a face velocity of Vf = 0.48 m/s (88 

ft/min).  The high airflow rate equated to a NTU of 5.0 and a face velocity of Vf = 1.25 

m/s (264 ft/min).  The air inlet conditions obtained during these tests are shown on the 

psychometric chart in Figure 4.19 and Figure 4.20 for the low and high airflow rate tests 

respectively. 
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Figure 4.19. The inlet conditions obtained when evaluating the RAMEE Prototype 4 
performance for NTU = 12.3, Vf = 88 ft/min (0.45 m/s). Note: The average inlet 
conditions are plotted in black and denoted as SI (supply inlet) and EI (exhaust inlet). 

 
Figure 4.20. The inlet conditions obtained when evaluating the RAMEE Prototype 4 
performance for NTU = 5.0 and Vf = 264 ft/min (1.34 m/s).  Note: The average inlet 
conditions are plotted in black and denoted as SI (supply inlet) and EI (exhaust inlet). 



 

 
 81 

 It can be seen in Figures 4.18 and 4.19 that the inlet conditions were relatively 

constant for the tests but not equal to the AHRI test conditions presented in Table 4.1.  

For the higher airflow rate more heat was produced by the vacuums causing elevated inlet 

temperatures. 

Average Effectiveness Values Compared to Numerical 

Using the average supply and exhaust inlet conditions shown in Figures 4.19 and 

the exchanger specifications in Appendix F, the numerical model (Hemingson, 2010) was 

used to determine the effectiveness of the RAMEE prototype 4.  Figures 4.21 and 4.22 

present the average sensible (S), latent (L), and total (T) effectiveness values measured 

using the energy exchanger test facility (with uncertainty).  Figure 4.21 is for the low air 

flow rate (NTU = 12.3) and Figure 4.22 is for the high air flow rate (NTU = 5). 

 
Figure 4.21. The experimentally measured RAMEE Prototype 4 effectiveness for a range 
of desiccant flow rates (heat capacity ratio) at NTU = 12.3, Vf = 88 ft/min (0.45 m/s).  
Note: the simulation results were obtained for a purely counter-flow exchanger. 
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Figure 4.22.  The experimentally determined RAMEE Prototype 4 effectiveness for a 
range of desiccant flow rates (heat capacity ratio) at NTU = 5, Vf= 264 ft/min (1.34 m/s). 

As shown in Figures 4.21, agreement between the experimental results and the 

numerical model was obtained at high and low Cr* values.  However, agreement was not 

obtained for the ratio of heat capacity rates between 2 and 3 where the numerical model 

(Hemingson, 2010) predict a peak in effectiveness.  The highest total effectiveness 

occurred at the maximum desiccant flow rates (Cr* max) and was measured to be 

(52±16)% and (47±7)% for NTU=12.3 and NTU=5.0 respectively. 

Comparison to Previous RAMEE Prototypes 

The average total effectiveness results obtained for RAMEE prototype 2 (Erb, 

2007) and prototype 3 (Mahmud, 2009) are plotted with those obtained for RAMEE 

Prototype 4 in Figure 4.23. 
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Figure 4.23. Comparison of the average total effectiveness experimentally obtained for 
RAMEE prototype 4 to those obtained for RAMEE prototype 2 (P2) (Erb, 2007) and 
RAMEE Prototype 3 (P3) (Mahmud, 2009). 

As shown in Figure 4.23, the effectiveness trend obtained for prototype 3 

(Mahmud, 2009) is higher than for prototype 4 which is higher than for prototype 3 (Erb, 

2007).  Prototype 2 (Erb, 2007) should have the lowerst effectiveness values because it 

was constructed in a cross-flow configuration, while prototype 3 (Mahmud, 2009) and 

prototype 4 used a cross-counter flow configuration.  Furthermore, prototype 3 was 

longer and less vertical than prototype 4 at 1800 mm x 200 mm (71” x 8”) vs 1220 mm x 

300 mm (48” x 12”) respectively.  Therefore, the flow would have been closer to purely 

counter-flow in the prototype 3 (Mahmud, 2009) exchangers than in the prototype 4 

exchangers equating to a higher effectiveness.  In addition, if “dead zones” (areas where 

the desiccant became stagnant) existed in the corners of the exchangers, they would have 

been smaller in the prototype 3 exchangers than an in the prototype 4 exchangers which 

would result in a higher effectiveness.  In addition, the “dead zones” were more likely 
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present in the prototype 4 exchanger due to the felt flow separator used as apposed to a 

screen material in prototype 3. 

Also shown in Figure 4.23, all of the prototypes displayed a similar trend in 

effectiveness and none of the results displayed a peak in effectiveness at lower Cr* 

values.  However, as shown in Figures 4.21, the model (Hemingson, 2010) predicted a 

peak effectiveness in the range of heat capacity rates between 2 and 3.  Mahmud (2009) 

suggested many reasons for this discrepancy including flow maldistribution, heat losses 

and heat gains, etc.  However, this is built on the assumption that the numerical model is 

correct and that the discrepancy is due to experimental errors.  Therefore, in the section to 

follow, test conditions were selected such that the numerical model predicted a large peak 

in effectiveness to investigate the cause of this discrepancy. 

4.3.4 Effectiveness Peak Test Conditions 

The test conditions selected for these tests were with one airstream cool and moist 

and the other warm and dry.  In this case the sensible and latent energy transfers are in 

the opposite direction through each exchanger, equating to a relatively small total heat 

transfer in each exchangers.  The measurements were taken at one airflow rate over a 

range of desiccant flow rates (Cr*).  It should be noted that these test conditions are not 

typical operating conditions for the RAMEE but were selected to investigate the cause of 

the discrepancy between the numerical predictions and the experimental findings.  The 

inlet conditions obtained during the tests are presented on the psychometric chart in 

Figure 4.24 as well as the average inlet conditions. 
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Figure 4.24 The inlet conditions obtained when evaluating the RAMEE Prototype 4 
performance for NTU = 8.4, Vf = 129 ft/min (0.65 m/s).  Note: The average inlet 
conditions are plotted in black and denoted as SI (supply inlet) and EI (exhaust inlet). 

Using the average values presented in Figure 4.24, the model (Hemingson, 2010) 

was used to determine the expected effectiveness over a range of desiccant flow rates 

(heat capacity rate Cr*).  The values predicted by the model are plotted with the 

experimental values in Figure 4.25. 

 
Figure 4.25. The experimentally determined effectiveness values determined for 
RAMEE Prototype 4 at NTU = 8.4, Vf = 129 ft/min (0.65 m/s).  Note: The average inlet 
conditions are plotted in black and denoted as SI (supply inlet) and EI (exhaust inlet). 
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It can be seen in Figure 4.25 that agreement between the experimental results was 

obtained over the entire test range of Cr*.  In addition, a peak was observed in the 

experimental results for both the sensible and total effectiveness.  Furthermore, additional 

measurements were taken near the peak in effectiveness and the results were repeatable.  

This was the first time the peak had been observed in the experimental results.  However, 

as previously mentioned, the total energy transfer by the exchangers was small, equating 

to a large uncertainty in the experimentally determined total effectiveness values. 

Effect of Heat Gains 

The experimental results presented in Figure 4.25 were obtained with the addition 

of a cooling coil placed in the desiccant lines.  The purpose of this coil was to remove the 

heat gained by the desiccant from the pumps.  To investigate the effect of adding the 

coiling coil, the effectiveness data obtained prior to the addition of the coiling coil is 

presented in Figure 4.26.  An average of the effectiveness values observed with the 

coiling coils is presented in Figure 4.26 for comparison. 
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Figure 4.26. The average effectiveness values obtained prior to the installation of the 
cooling compared to those obtained with the addition of the coiling coil.  Note: 
S=sensible, L=Latent, T=total, and CC= with the cooling coil. 
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It can bee seen in Figure 4.24 that the effectiveness data obtained prior to the 

installation of the cooling coil has lower sensible and total effectiveness values at Cr* = 

1.0 and 1.5.  Therefore, the results obtained prior to installing the cooling coils did not 

capture the peak in effectiveness.  This suggests that heat gains/losses in the desiccant 

may have caused the lake of peak in effectiveness to be observed in previous tests.  The 

location of the peak is at relatively low desiccant flow rates allowing more time for the 

desiccant to gain/loss heat supporting this finding.  In addition, Ahmad (2008) found that 

the heat gains/losses eliminated the peak observed in effectiveness values predicted using 

his model again supporting this finding. 

The individual exchanger effectiveness values are presented in Figure 4.27 and 

4.28 for no cooling coil and with the cooling coil respectively.  These tests were for the 

same air and desiccant flow rates equating to a Cr* = 1.5 and NTU = 8.5. 

 
Figure 4.27. Individual exchanger effectiveness with no cooling coil at Cr*=1.5 and 
NTU=8.5. 
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Figure 4.28. Individual exchanger effectiveness with the cooling coils installed at 
Cr*=1.5 and NTU=8.5. 

As shown in Figure 4.27, the difference in supply and exhaust effectiveness 

values, prior to the addition of the cooling coils, was approximately 70% for sensible, 2% 

for latent, and 225% for total.  As shown in Figure 4.28, the difference in supply and 

exhaust effectiveness values, with the cooling coils, was approximately 35% for sensible, 

14% for latent, and 125% for total.  Therefore, the addition of the cooling coils 

substantially reduced the difference between the supply and exhaust exchanger sensible 

and total effectiveness.  However, the increase in the difference in latent effectiveness 

with the coiling coils is due to the desiccant concentration being out of equilibrium and 

not the addition of the coiling coils. 

4.4 Conclusions from RAMEE Laboratory Testing 

A counter-cross flow RAMEE was constructed using AY Tech. ePTFE laminate 

membrane with a height of 305 mm (12”) and a length of 1220 mm (4’).  This RAMEE 
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prototype 4 was tested in the energy exchanger test facility.  Electronically actuated flow 

controllers and electric flow meters were added to the energy exchanger test facility to 

replace the previously used rotometers.  Based on flow measurements, it was decided that 

only a proportional controller was necessary to attenuate the control valve and obtain the 

desired flow rate. 

Temperature measurements were taken in the air streams through the length of the 

exchangers.  Typically one airstream would cool through the length of the exchanger 

while the other warmed.  However, in one case the exhaust airstream was cooled in the 

first half of the exchanger and warmed in the second half.  It was determined that the 

latent transfer was dominating the total energy transfer in the exhaust exchanger due to a 

large amount of water evaporating from the desiccant.  The desiccant was cooled below 

the inlet temperature of the airstream, creating the initial drop observed in the airstream 

temperature.  Likely, whenever the latent energy transfer dominates the total energy 

transfer in the exchanger the potential for a rise then drop or drop then rise in airstream 

temperature exists.  Furthermore, these conditions are likely to occur when the supply 

and exhaust inlet conditions are close in temperature and not in relative humidity or the 

desiccant is not at the equilibrium concentration for the operating conditions. 

The effectiveness at AHRI test conditions was measured at two airflow rates over 

a range of desiccant flow rates (Cr*).  The results agreed well with the numerical model 

(Hemingson, 2010) at high and low desiccant flow rates but did not agree well in the 

range 2<Cr*<3.  The average effectiveness trends agreed well with the previous findings 

for RAMEE prototype 2 (Erb, 2007) and RAMEE prototype  (Mahmud, 2009).  

Furthermore, prototype 2 (Mahmud) had higher experimentally determined effectiveness 
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values because it was longer with less height equating to a closer to strictly counter-flow 

configuration.  Prototype 2 had lower effectiveness values because it was constructed 

with a strictly cross-flow configuration. 

RAMEE Prototype 4 was tested at conditions selected to determine the cause of 

the discrepancy between the experimental effectiveness values and those predicted by the 

model (Hemingson, 2010).  A peak in effectiveness was observed by adding cooling coils 

to the desiccant lined in the energy exchanger test apparatus.  This suggested that heat 

gains were the cause of the lack of peak observed in previous exchanger performance 

measurements.  Furthermore, the addition of the cooling coils reduced the difference 

between the supply and exhaust effectiveness values. 

The conservation of dry air, water vapour, and energy was observed for all of the 

RAMEE prototype 4 effectiveness tests excluding the Cr*=1 data point for the no coiling 

coils results of Figure 2.26.  However, conformance to ASHRAE Standard 84 could not 

be claimed for any of the RAMEE prototype 4 tests presented due to the exhaust and 

supply effectiveness values not agreeing within experimental uncertainty. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary 

To maintain good indoor air quality, buildings need to be ventilated with fresh 

outdoor air.  However, the outdoor air often requires heating/cooling and 

humidifying/dehumidifying to obtain the desired supply air temperature and relative 

humidity.  Conditioning the air uses energy, which can be reduced using an energy 

exchanger to recover the energy in the exhaust air. 

There are many types of energy recovery systems including: heat/energy wheels, 

flat plate heat/energy exchangers, glycol run-around heat exchangers, and the twin tower 

enthalpy loop.  The twin-tower enthalpy loop utilizes a liquid desiccant to transfer both 

heat and moisture between non-adjacent ducts using an open loop configuration.  One 

problem with the open loop configuration is that the desiccant can become entrained in 

the airstreams and deposited on downstream mechanical equipment causing corrosion.  

The run-around membrane energy exchanger (RAMEE) is a novel design that utilizes a 

membrane to enclose the desiccant and prevent it from transferring to the air stream. The 

RAMEE has been the topic of several recent Masters theses at the University of 

Saskatchewan and this thesis was a continuation of this collaborative research between 

Venmar CES Inc. and the University. 

The membrane used in the previous RAMEE prototypes, Propore™, was 

discontinued.  Therefore in this research, replacement membrane alternatives were 
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obtained and evaluated based on the vapour diffusion resistance (VDR), liquid 

penetration pressure (LPP), modulus of elasticity (E), and price. 

5.1.1 Vapour Diffusion Resistance (VDR) 

 The Permatran-W® 101k test apparatus, designed by Mocon based on the 

modified inverted cup test, was used to measure the VDR of the membrane alternatives.  

The goal of the VDR measurements was to find a replacement membrane with a lower 

VDR than the previously used Propore™.  A wide range of VDRs were obtained due to a 

large variation in the membrane properties such as thickness, porosity, and pore size.  

Most importantly, some of the membranes had a lower VDR than the previously used 

Propore™ membrane, which if selected, would increase the moisture recovery 

capabilities of the RAMEE. 

The VDR measured for Propore™ and Tyvek® in the Permatran-W® were higher 

than those presented by Larson (2006), which were obtained using the dynamic moisture 

permeation cell (DMPC) test apparatus of Gibson (2000).  The cause of this discrepancy 

was investigated.  The Permatran-W® utilizes a guard film that is not presented in the 

DMPC apparatus but this was eliminated as the cause of the discrepancy.  The effects of 

nitrogen leakage during the Permatran-W® measurements were also investigated but 

again were eliminated as the cause of the discrepancy.  Using an area correction, 

agreement was obtained between the Permatran-W® and DMPC results.  The need for 

this correction was attributed to the boundary layer distribution in the nitrogen stream 

used as the moisture sink in the Permatran-W® test cell. 

5.1.2 Liquid Penetration Pressure and Modulus of Elasticity 

The liquid penetration pressure (LPP) and modulus of elasticity for each of the 

membrane alternatives were measured using a bulge test apparatus.  The goal was to find 
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a membrane that did not leak below 5 psi (34 kPa) and that exceeded the modulus of 

elasticity of Propore™ (17 MPa).  The AATCC test method 127 (2003) was used to 

measure the membrane LPP and the secant method was used to convert stress strain 

measurements to modulus’ of elasticity.  Some of the LPP measurements agreed well 

with previous studies and manufacturer specified values while others did not.  The cause 

of the discrepancy was attributed to the pressurization rate used to conduct the tests.  The 

modulus results agreed well with those obtained by Larson (2006). 

5.1.3 RAMEE Prototype 4 

Based on the VDR, LPP, and modulus results, the AY Tech. ePTFE Laminate 

was selected to replace Propore™ despite the cost being higher than the target cost of 

$0.25/ft2 set by Venmar CES.  The AY Tech. membrane had an area corrected VDR of 

97 ± 11 s/m, a LPP that exceeded the maximum test pressure of 12 Psi (82 kPa), a 387 ± 

32 MPa, and a cost of $3.27/ft2.  Using the AY Tech membrane RAMEE prototype 4 was 

build for laboratory evaluation.  Similar to prototype 3, prototype 4 utilized a cross-

counter flow configuration.  The exchangers used in prototype 4 were 4’ (1220 mm) long 

by 1’ (305 mm) high by 4” (102 mm) wide. 

5.1.4 RAMEE Prototype 4 Performance Evaluation 

The energy exchanger test facility was used to evaluate the heat and mass transfer 

capabilities of prototype 4.  The test facility provides conditioned airflow through both of 

the supply and exhaust exchangers which are coupled by liquid desiccant.  The 

temperature, relative humidity, and flow rate of the air and the temperature and 

concentration of the desiccant entering and leaving each exchanger was measured to 

determine the heat and moisture transfer rates in the RAMEE. 
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Energy Exchanger Test Facility Desiccant Flow Control 

Electronic output flow meters and electronically actuated flow valves were 

installed in the desiccant streams.  Using the flow meter measurements,  a proportional 

control strategy was devised to attenuate the control valves and achieve the desired flow 

rate. 

Air Stream Temperature Profile 

The air stream temperature profiles were monitored using thermocouples installed 

along the length of the exchangers.  In a sensible exchanger the expected results is a 

increasing air stream temperature profile in one exchanger and a corresponding 

decreasing air stream temperature profile in the other.  However, the RAMEE has 

sensible and latent transfer capabilities so an interesting temperature profile was observed 

at a supply inlet of 41°C and 32 %RH (W=17.7 gW/kgDA), and exhaust inlet of 30°C and 

15%RH (W=4.1 gW/kgDA) (Cr* = 2.5, NTU = 6.3, Vf = 211 ft/min). In this test, the 

exhaust air stream temperature decreased to 25°C in the first half of the exchanger and 

then increased to an outlet temperature of 32°C.  The drop and rise in the exhaust air 

stream temperature was attributed to the large amount of moisture evaporated out of the 

desiccant.  The heat of evaporating the water was taken from the desiccant, cooling it to a 

temperature below the air inlet temperature (30°C).  Therefore, the latent transfer 

dominated the overall energy transfer within the exchanger and caused the airstream 

temperature to first drop in through the length of the exchanger and then rise. 

RAMEE Effectiveness Values 

The effectiveness of RAMEE Prototype 4 was evaluated at AHRI summer test 

conditions at two airflow rates (NTU = 12.3 (Vf = 88 ft/min) and NTU = 5 (Vf= 264 

ft/min)) and over a range of desiccant flow rates (Cr*).  The highest total effectiveness 
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was experimentally measured to be 52±16% and 47±7% for NTU=12.3 and NTU=5.0 

respectively.  However, in both cases this maximum did not occur in the range of 

2<Cr*<3 as predicted by the numerical model of Hemingson (2010).  Instead, the 

maximum was observed at the maximum tested Cr* (9.5 and 8 respectively).  This agreed 

with the previous experimental finding for Prototype 2 (Erb, 2007) and Prototype 3 

(Mahmud, 2009). 

Comparison with Numerical Data 

To validate the numerical model and to add validity to the previous findings, inlet 

conditions were selected to produce an exaggerated peak in effectiveness.  Although 

these test conditions caused a large uncertainty in the total effectiveness, the experimental 

results agreed well with those predicted by the model and showed a notable peak at 

Cr*~3.  However, this was only after adding coiling coils to reduce the heat gained by the 

desiccant.  Therefore, the lack of peak observed in the previous results was likely due to 

heat gains/losses in the system, which was also found by Ahmadi (2007). 

5.2 Conclusions 

The following conclusions were drawn from the work presented in this thesis. 

 Based on the vapoour diffusion resistance measurements obtained using the 

Permatran-W®, the RAMEE performance can be improved using any of the 

Porex® membranes or the AY Tech. ePTFE laminate membrane as a 

replacement for Propore™. 

 Agreement between the Permatran-W® measurements and the dynamic 

moisture transfer permeation cell (DMPC) was obtained using a correction 

factor of 0.53 to account for the distribution in the boundary layer of the 

nitrogen stream in the Permatran-W®. 
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 Based on the liquid penetration pressure and modulus of elasticity 

measurements, the RKW, Tredegar #2, and AY Tech. ePTFE laminate 

membranes are suitable replacements for Propore™. 

 Agreement was obtained between the liquid penetration pressures and modulus 

of rigidity measurements with those presented by Larson (2006). 

 The AY Tech. ePTFE Laminate membrane was sourced as the replacement for 

Propore™ and used to construct RAMEE prototype 4 for laboratory evaluation. 

 An electronic flow meter and electronically actuated control valve were added to 

the energy exchanger test facility.  A proportional gain control system was 

deemed sufficient to attenuate the desiccant to the desired flow rate. 

 The temperature profile in the air stream through exchangers were measured and 

found to be dependent on the relative magnitude of the sensible and latent 

transfers.  When the latent transfer was much larger than the sensible transfer 

and initial drop then rise in the airstream temperature was observed. 

 The measured effectiveness values for RAMEE prototype 4 agreed well with 

those predicted by the numerical model (Hemingson, 2010) at high and low 

desiccant flow rates (Cr*) but not for mid range flow rates (2< Cr*<4) at AHRI 

test conditions. 

 The measured effectiveness values for RAMEE prototype 4 showed a similar 

trend to those obtained for prototype 2 and prototype 3. 

 The measured effectiveness values for RAMEE prototype 4 were lower than 

prototype and higher than prototype 2 due to desiccant flow differences between 

the designs. 
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 The effectiveness values measured for RAMEE prototype 4 agreed with those 

predicted using the numerical model (Hemingson, 2010) for the mid-range 

desiccant flow rates with the addition of a cooling coil to remove the heat gained 

by the desiccant. 

 The conservation of dry air, water vapour, and energy was observed for all of the 

RAMEE Prototype 4 effectiveness tests excluding the Cr*= 1 data point for the 

no coiling coil results of Figure 4.26. 

 Conformance to ASHRAE Standard 84 could not be claimed for any of the 

RAMEE Prototype 4 tests presented in Chapter 4. 

5.3 Recommendations and Future Work 

 The design and construction of a run-around membrane energy exchanger 

presented many challenges.  Although great progress was made through the completion 

of the work presented in this thesis, there are still tasks that need to be completed.  These 

tasks include: 

 Determining the boundary layer resistance distribution in the Permatran-W® 

nitrogen chamber.  This will require a computational fluid dynamics model to 

accurately determine the flow through the chamber and the local convective 

coefficients. 

 Sourcing a membrane with a similar vapour diffusion resistance, liquid 

penetration pressure and mechanical properties as the AY Tech membrane, but 

meets the cost criteria of $0.25/ft2. 
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 Developing an entirely leak proof method of assembling the envelopes and 

exchangers.  This can be accomplished by utilizing a heat sealing assembly 

method and injection molding a continuous piece flow seperator. 
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APPENDIX A 

PROPERTIES CALCULATION AND UNCERTAINTY 

There are many air properties which are required when analyzing the RAMEE 

performance characteristics.  All of these properties are calculated from the temperature, 

absolute pressure, and relative humidity measurements.  Therefore, how these properties 

were calculated and how the uncertainty in the measurements propagate into these 

properties is critical.  Similarly, desiccant properties are also required and based on 

temperature and salt concentration measurements which have associated uncertainty that 

propagates into the calculated properties.  This appendix outlines how these properties are 

calculated, the propagation of the measurement uncertainties into these properties, and 

how the uncertainty in the properties propagate into the effectiveness values.  Lastly, the 

methods in ASHRAE std. 84 (1991), used to check for the conservation of heat and mass 

within the experimental uncertainties, are outlined. 

A.1 AIR AND DESSICANT PROPERTY CALCULATIONS 

When the airstream temperature is measured to be less than 273.15 K (0°C) the 

saturation vapor pressure is calculated using equation (A.1) (ASHAE, 2005). 

 





  )ln(exp 7

4
6

3
5

2
432

1
, TCTCTCTCTCC

T
CP SATV  (A.1) 

where,  SATVP ,  = the saturation vapor pressure [Pa], 

 T = the measured dry bulb temperature of the air stream [K], 

 1C  = -5674.5359, 
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 2C  = 6.3925247, 

 3C  = -9.677843*10-3, 

 4C  = 6.2215701*10-7, 

 5C  = 2.0747825*10-9, 

 6C  = -9.484024*10-13, 

 7C  = 4.1635019. 

Also, when the airstream temperature is measured to be more than 273.15 K (0°C) the 

saturation vapor pressure was calculated using equation (A.2) (ASHAE, 2005). 

 





  )ln(exp 13

3
12

2
11109

8
, TCTCTCTCC

T
CP SATV  (A.2) 

where, 8C  = -5800.2206, 

 9C  = 1.3914993, 

 10C  = -4.864023*10-2, 

 11C  = 4.1764768*10-5, 

 12C  = -1.4452093*10-8, 

 13C  = 6.5459673. 

Using the saturation vapor pressure calculated from either equation (A.1) or (A.2) and the 

relative humidity measurement the partial pressure of the water vapor was calculated using 

equation (A.3) (ASHAE, 2005). 

 RHPP SATVV ,  (A.3) 

where, RH  = the measured relative humidity of the air expressed as a fraction, 
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 VP  = the vapour pressure [Pa]. 

Using the vapour pressure calculated from equation (A.3) and the atmospheric pressure 

measured using a mercury manometer, equation (A.4) (ASHAE, 2005) was used to 

calculate the humidity ratio. 

 










V

V

PP
P

W 62198.0  (A.4) 

where,  W  = the humidity ratio [kgW/ kgDA], 

 P  = the measured atmospheric pressure [Pa]. 

To calculate the enthalpy of the air the temperature measurement, humidity ratio 

calculated from equation (A.4), and equation (A.5) (ASHAE, 2005) were used. 

  TWTh 186010501.21006 6   (A.5) 

where, h  = the mixture enthalpy [J/kgDA], 

 T  = the measured dry-bulb temperature of the air [°C]. 

The dry air density is calculated using the ideal gas law given in equation (A.6). 

 
RT
P

DA   (A.6) 

where,  DA  = the dry air density [kg/m3], 

 T  = the measured air stream dry bulb temperature [K], 

 R  = the dry air gas constant (287.06 J/kgK). 

 Also of interest when describing the operating conditions of the RAMEE are the 

air face velocities and the heat capacity rates.  The face velocity is defined as the airstream 

velocity directly prior to the inlets of the exchangers.  To calculate the face velocities 

equation (A.7) was used. 
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 AmVF 


  (A.7) 

where,  FV  = the face velocity [m/s], 

 m  = the inlet mass flow rate [kg/s],  

   = the inlet air stream density [kg/m3],  

 A  = cross sectional area of the exchanger inlet [m2]. 

After calculating the face velocity in m/s the result is multiplied by 60 s/min*3.28ft/m to 

convert to units of ft/min. 

 The heat capacity rates of the air and the desiccant is of interest in order to 

calculate the ratio of heat capacity rates.  To calculate the air heat capacity the air specific 

heat was first calculated using equation (C.8) (ASHAE, 2005). 

   Wc AP 18601006   (A.8) 

where,   APc = the heat capacity of the air [J/kgK]. 

 W  = the humidity of the air [kg/kg]. 

Using the heat capacity of the air calculated using equation (A.8), the air heat capacity rate 

can be calculated by multiplying the specific heat by the mass flow rate of air as in 

equation (A.10). 

  APAIR cmC    (A.9) 

where, AIRC  = the heat capacity rate of the air [W/K], 

 m  = the mass flow rate of dry air at the location of interest  

   [kg/s]. 

 



 107 

 The specific heat of the desiccant was also needed to calculate the desiccant heat 

capacity rate.  To calculate the desiccant heat capacity equation (A.10) was used (Zaytsev, 

1992). 
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where,  DPc  = the heat capacity of the desiccant [J/kgK], 

 DEST  = the temperature of the desiccant at the location of interest [°C], 

 SALTC  = the salt concentration of the desiccant [wt%], 

 1B to 4B  = salt dependent constants. 

Similar to for the air, the desiccant heat capacity rate is calculated using equation (A.12). 

  DPDDES CmC    (A.11) 

where, DESC  = the heat capacity rate of the desiccant [W/K], 

 Dm  = the mass flow rate of desiccant at the location of interest  

   [kg/s]. 

 

 The average between the inlet and outlet heat capacity rates of the air and 

desiccant are also required to calculate the air heat capacity rate.  The average is taken 

between the inlet and outlet on both the supply and exhaust sides.  Therefore, the general 

form used to calculate the averages was equation (A.12). 

 
2

outin
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CC
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
  (A.12) 
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where, AVGC  = the average heat capacity rate [W/K], 

 inC  = the inlet heat capacity rate [W/K], 

 outC  = the outlet heat capacity rate [W/K]. 

The average air heat capacity rates and average desiccant heat capacity rates were then 

used to calculate the heat capacity rate ratio.  To calculate the heat capacity rate ratio 

equation (C.13) is used. 

 
AVG

DES

C
C

C *  (A.13) 

where, *C  = the ratio of heat capacity rates, 

 AIRC  = the average heat capacity rate of the air on either the exhaust or 
   supply side depending on the side of interest [W/K]. 

A.2 UNCERTAINTY IN PROPERTIES 

To determine the propagation of the measurement uncertainties into the 

effectiveness values the method outlined in ASME Performance Test Code 19.1 was used.  

Also, in ANSI-ASHRAE Standard 84 tolerances in the uncertainties are presented along 

with a method for checking for the conservation of mass and energy.  According to ASME 

PTC 19.1 there are two confidence intervals which are considered when determining the 

uncertainty in all of the RAMEETA measurements and/or all calculated results.  The 

uncertainties in the RAMEETA measurements are determined from the calibration 

measurements.  The two confidence intervals considered are the 95% and the 99% 

confidence intervals.  To calculate the 95% confidence interval uncertainty equation 

(A.14) (ASME/ANSI PTC 19.1, 1998) was used. 

   2/122
95 )(tSBU   (A.14) 
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where,  95U  = the 95% confidence interval measurement uncertainty, 

 B = the measurement bias error, 

 t = the t-student distribution constant (2 for N>30), 

 S = the precision error in the measurement. 

Equation (A.15) was used to calculate the 99% confidence interval. 

 SBU 299   (A.15) 

where,  99U  = the 99% confidence interval measurement uncertainty. 

To calculate the propagation of the measurement uncertainty into the results a root-sum-

square approach was used.  Using the root-sum-square approach the uncertainty in the 

saturation vapor pressure, calculated from equation (A.1), was calculated using equation 

(A.16). 
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where,  
SATVPU

,
 = the approximate uncertainty in the saturation vapor  

   pressure [Pa], 

 TU  = the uncertainty in the temperature measurement [K]. 

Similarly, the uncertainty in the saturation vapor pressure calculated from equation (A.2) 

was calculated using equation (A.17). 
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The uncertainty in the partial pressure of vapor calculated using equation (A.3) was 

calculated using equation (A.18). 

      2/12
,

2

, RHSATVPP UPURHU
SATV

  (A.18) 
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where, 
VPU  = the uncertainty in the partial pressure of water vapor [Pa], 

 RHU  = the uncertainty in the measured relative humidity. 

The uncertainty in the humidity ratio, calculated using equation (A.4), was calculated 

using equation (A.19) 
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where,  
WPU  = the uncertainty in the partial pressure of water [Pa], 

 PU  = the uncertainty in the total pressure of the air and vapor  
   mixture [Pa]. 

The uncertainty in the enthalpy (calculated using equation (A.5)) is approximated using 

equation (A.20).  This is an approximation because equation (A.20) does not include the 

uncertainty caused by the approximation in the dry air specific enthalpy and the saturated 

water vapor specific enthalpy.  Therefore, the actual uncertainty in the enthalpy may 

slightly higher than that obtained using equation (A.20). 

       22/162/1 186010501.218601006 WTh UTUWTU   (A.20) 

where, TU  = the mixture enthalpy [J/kgDA], 

 WU  = the uncertainty in the humidity ratio [kgW/kgDA]. 

To calculate the uncertainty in the dry air density the root-sum-square of equation (A.6) 

was used to obtain equation (A.21). 
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where,  
DA

U   = the uncertainty in the dry air density [kg/m3], 



 111 

 PU  = the uncertainty in the atmospheric pressure measurement [Pa], 

 TU  = the uncertainty in the temperature measurement [K]. 

The uncertainty in the face velocity is calculated using a root-sum-square approach from 

equation (A.7) to obtain equation (A.22). 
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where,  
FVU  = the uncertainty in the face velocity [m/s], 

 mU   = the uncertainty in the inlet mass flow rate [kg/s],  

 AU  = the uncertainty in the area for air flow before the  

   exchanger [m2], 

 U  = the uncertainty in the air stream density [kg/m3]. 

The uncertainty in the face area used to calculate the face velocity uncertainty is calculated 

using equation (A.23). 

      2/122
whA hUwUU   (A.23) 

where,  AU  = the uncertainty in the area used to calculate the face  velocity [m2], 

 hU  = the uncertainty in the duct height [m], 

 wU  = the uncertainty in the duct width [m]. 

From equation (A.8) the uncertainty in the specific heat for the air was calculated using 

equation (A.24). 

   Wc UU
AP

 1860  (A.24) 
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where,  APcU = the uncertainty of the heat capacity of the air [J/kgK], 

 WU  = the uncertainty in the humidity ratio of the air [kg/kg]. 

The uncertainty in the air heat capacity rate was calculated from equation (A.9) and using 

a root-sum-square approach to obtain equation (A.25). 

        2/122
mAPcC UcUmU

APAIR    (A.25) 

where, 
AIRCU  = the uncertainty in the heat capacity rate of the air [W/K], 

 mU   = the uncertainty in the mass flow rate of air [kg/s]. 

From equation (A.10) and using a root-sum-square approach the uncertainty in the 

desiccant heat capacity is calculated using equation (A.26). 
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where,  DPcU  = the uncertainty in the desiccant heat capacity [J/kgK], 

 
DESTU  = the uncertainty in the desiccant temperature [°C], 

 
SALTCU  = the uncertainty in the desiccant salt concentration [wt%]. 

Using equation (A.11) and a root-sum-square approach the uncertainty in the air heat 

capacity rate was determined to be given by equation (A.27). 

        2/122

DDPDES mDPcDC UcUmU    (A.27) 

where, 
DESCU  = the uncertainty in the heat capacity rate of the air [W/K], 
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DmU   = the uncertainty in the mass flow rate of desiccant [kg/s]. 

The uncertainty in the average heat capacity rates were determine from equation (A.12) 

and a root sum square approach to obtain equation (A.28). 
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where, 
AVGCU  = the uncertainty in the average heat capacity rate [W/K], 

 
inCU  = the uncertainty in the inlet heat capacity rate [W/K], 

 
outCU  = the uncertainty in the outlet heat capacity rate [W/K]. 

Using equation (A.13) and the root-sum-square approach the uncertainty in the ratio of 

heat capacity rates is calculated as follows. 
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where, *CU  = the uncertainty in the ratio of heat capacity rates. 

A.3 EFFECTIVENESS AND UNCERTAINTIES 

 To evaluate the performance of the RAMEE nine effectiveness values are 

calculated.  These effectiveness values are the supply air sensible, latent, and total 

effectiveness, the exhaust air sensible, latent, and total effectiveness, and the overall 

RAMEE system sensible, latent, and total effectiveness.  The method used for calculating 

these effectiveness values is outlined in ANSI-ASHRAE Standard 84 (1991) and is similar 

to that used by Bennett (1992), Johnson et al (1998), and Erb (2009) to evaluate the 

performance of air-to-air energy exchangers.  There are two mass flow rate measurements 

taken one on each side of the exchanger.  Therefore, an average of the two measurements 

is taken to obtain a more accurate measurement of the mass flow rate through each 
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exchanger.  This average is used when calculating the effectiveness values.  The average, 

taken between the inlet and outlet mass flow rate measurements, is calculated using 

equation (A.30). 
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where,  avgm  = the average mass flow rate [kg/s], 

 im  = the inlet mass flow rate [kg/s], 

 om  = the outlet mass flow rate [kg/s]. 

The uncertainty in the average is less than the uncertainty in the individual mass flow rates 

because more information is used and is given by equation (A.31). 
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where,  
avgmU   = the uncertainty in the average mass flow rate [kg/s], 

 
imU   = the uncertainty in the inlet mass flow rate [kg/s],  

 
omU   = the uncertainty in the outlet mass flow rate [kg/s]. 

To evaluate the performance of the RAMEE the supply effectiveness values were 

calculated.  To calculate the supply effectiveness values equation (A.32) (ASHRAE std 84, 

1991) was used. 
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where, sm  = the average mass flow rate of air measured on the supply side  

   [kg/s], 

 minm  = the minimum of the supply and exhaust average mass flow rates  
   of air [kg/s], 
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 X  = T, temperature for sensible effectiveness [K], 

  = W, humidity ratio for latent effectiveness [kgW/kgDA], 

  = h, enthalpy for total effectiveness [J/kg]. 

Also, the subscripts are given below. 

 s  = the supply air side of the exchanger, 

 e  = the exhaust air side of the exchanger, 

 i  = the inlet to the respective side of the exchanger, 

 o  = the outlet of the respective side of the exchanger. 

From equation (A.32) and using a root-sum-square approach, equation (A.33) was 

obtained to determine the uncertainty in the supply effectiveness values. 
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where,  
s

U   = the uncertainty in the supply effectiveness’, 

 
smU   = the uncertainty in the supply mass flow rate [kg/s], 

 
minmU   = the uncertainty in minimum mass flow rate [kg/s], 

 
osXU

,
 = the uncertainty in the measurement of X at the supply outlet, 

 
isXU

,
 = the uncertainty in the measurement of X at the supply inlet, 

 
ieXU

,
 = the uncertainty in the measurement of X at the exhaust outlet. 

To calculate the exhaust effectiveness values an equation very similar to equation (A.32) 

was used except instead of using the average supply mass flow rate in the numerator, the 
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average exhaust mass flow rate was used.  Equation (A.34) (ASHRAE std 84, 1991) is the 

equation used to calculate the exhaust effectiveness values. 
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where,  em  = the average mass flow rate of air on the exhaust side [kg/s], 

Again similar to equation (A.33) the exhaust effectiveness values uncertainties were 

calculated using equation (A.35).  The general form of the uncertainties in the latent, 

sensible, and total effectiveness values are as follows. 
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where,  
e

U   = the uncertainty in the exhaust effectiveness’, 

 
emU   = the uncertainty in the exhaust mass flow rate [kg/s], 

 
oeXU

,
= the uncertainty in the measurement of X at the exhaust outlet. 

 At steady-state (with no external heat gains or losses), the supply and exhaust 

side effectiveness values are equal.  Therefore, the average of the supply and exhaust 

effectiveness values are also of interest in evaluating the performance of the RAMEE.  The 

supply and exhaust sensible, latent, and total effectiveness values are averaged as in 

equation (A.36). 

  seavg  
2

1  (A.36) 

where, avg  = the average effectiveness, 
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 e  = the effectiveness on the supply side of the exchanger, 

 s  = the effectiveness on the exhaust side of the exchanger. 

Using a root-sum-square the uncertainty in the average effectiveness was calculated from 

equation (A.37). 

      2/122

2

1
seavg

UUU    (A.37) 

where, 
avg

U   = the uncertainty of the average effectiveness,  

 
e

U   = the uncertainty of the effectiveness on the supply side of the 

exchanger, 

 
s

U   = the uncertainty of the effectiveness on the exhaust side of the 

exchanger. 

A.4 CONSERVATION WITHIN UNCERTAINTY CHECKS 

 For the RAMEETA measurements to be valid, leakage from the system was 

minimized to help ensure the conservation of mass through the system.  To check for the 

conservation of dry air, the inequality in equation (A.38) (ASHRAE std 84, 1991) was 

used.  If the inequality was not satisfied the system was checked for leaks and the data was 

discarded. 

 moi Ummm    (A.38) 

where, m  = the difference between the measured inlet and outlet mass  
   flow rate of air at the side of interest of the RAMEE  
   (exhaust or supply) [kgDA/s] 

 im  = the mass flow rate of air measured at the inlet at the  

   side of interest of the exchanger [kgDA /s], 

 om  = the mass flow rate of air measured at the outlet of the  
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   side of interest of the exchanger [kgDA /s], 

 mU   = the uncertainty in the difference between the mass flow  

   rate in and out of the side of interest of the exchanger [kgDA /s]. 

The uncertainty in the mass flow rate difference was calculated using a root-sum-square 

approach and is given in equation (A.39). 
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where, 
imU   = the uncertainty in the measured inlet air mass flow rate [kgDA /s], 

 
omU   = the uncertainty in the measured outlet air mass flow rate [kgDA /s]. 

 Also required to ensure the validity of the experimental measurements was the 

conservation of water vapor.  The criterion for the conservation of water vapor used is 

given in equation (A.40) (ASHRAE std 84, 1991). 

     Wmoeoeieieososisis UWmWmWmWmWm   ,,,,,,,,  (A.40) 

where, Wm = the net difference between the mass flow rate of  
   water in and out of the exchanger [kgW/s], 

 WmU   = the uncertainty in the net difference between the mass  

   flow rate of water in and out of the exchanger [kgW/s], 

 m  = the mass flow rate of air [kgDA /s], 

 W  = the humidity ratio [kgW/kgDA], 

The uncertainty in the net difference between the mass flow rate in, and out of the 

exchanger was calculated using equation (A.41). 
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where, mU   = the uncertainty in the mass flow rate of air [kgDA /s], 

 WU  = the uncertainty in the humidity ratio [kgW/kgDA]. 

 Another conservation principle which was checked to ensure the validity of the 

measurements, was the conservation of energy.  Equation (A.42) (ASHRAE std 84, 1991) 

was used to check that energy is conserved through the system. 

     hmoeoeieieososisis Uhmhmhmhmhm   ,,,,,,,,  (A.42) 

where, hm  = the net difference between the energy in and out of the  
   exchanger [W], 

 hmU   = the uncertainty in the net difference between the energy  

   in and out of the exchanger [W], 

 m  = the mass flow rate of air [kgDA /s], 

 h  = the enthalpy [J/kgDA]. 

The uncertainty in the net difference between the mass flow rates in and out of the 

exchanger was calculated using equation (A.43). 
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where, mU   = the uncertainty in the mass flow rate of air [kgDA /s], 

 hU  = the uncertainty in the enthalpy [J/kgDA]. 

 The effectiveness values must agree within the uncertainty in the difference.  

Equations (A.44), (A.45), and (A.46) are the inequalities used to check for consistency in 

the supply and exhaust effectiveness values. 

 
s

Uessss   ,, , (A.44) 
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l

Uelsll   ,, , (A.45) 

 
t

Uetstt   ,, , (A.46) 

where, s  = the difference in the sensible effectiveness on the supply and exhaust 

sides of the heat exchanger, 

 l  = the difference in the latent effectiveness on the supply and exhaust 

sides of the exchanger, 

 t  = the difference in the total effectiveness on the supply and exhaust 

sides of the exchanger, 

 
s

U   = the uncertainty in the difference between the supply sensible 

effectiveness and the exhaust sensible effectiveness values, 

 
l

U   = the uncertainty in the difference between the supply latent 

effectiveness and the exhaust latent effectiveness values, 

 
t

U   = the uncertainty in the difference between the supply total 

effectiveness and the exhaust total effectiveness values. 

The uncertainty in the differences between the exhaust effectiveness values and the supply 

effectiveness values were calculated using equations (A.47), (A.48), and (A.49). 

      2/122
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 For the test to claim conformance to ANSI-ASHRAE Standard 84 (1991) the 

experimental uncertainties must be sufficiently small so that inequalities (A.50) to (A.54) 

are satisfied.  Equation (A.50) is a criterion used to check for the conservation of air 

through the system.  If the inequality is not satisfied the experimental uncertainties are too 

large and/or the system has significant leakage. 
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where, 1m  = the mass flow rate measured at the supply inlet [kg/s], 

 2m  = the mass flow rate measured at the supply outlet [kg/s], 

 3m  = the mass flow rate measured at the exhaust inlet [kg/s], 

 4m  = the mass flow rate measured at the exhaust outlet [kg/s], 

 1Const = 1 for field tests and 2 for laboratory testing. 

Equation (A.51) (ASHRAE std 84, 1991) was used to check for the conservation of air on 

the supply side of the exchanger. 
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Similarly, to check for the conservation of air on the exhaust side of the exchanger the 

inequality in equation (A.52) (ASHRAE std 84, 1991) was used. 
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An additional check was done to ensure that water vapour was conserved within 

experimental uncertainty.  The criteria used to ensure the conservation of water vapor 

within experimental uncertainty is given in equation (A.53) (ASHRAE std 84, 1991). 
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where, 1W  = the humidity at the supply air inlet [kg/kg], 

 2W  = the humidity at the supply air outlet [kg/kg], 

 3W  = the humidity at the exhaust air inlet [kg/kg], 

 4W  = the humidity at the exhaust air outlet [kg/kg]. 

To check that energy is conserved within experimental uncertainty, equation (A.54) 

(ASHRAE std 84, 1991) was used. 
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where, 1h  = the enthalpy at the supply air inlet [kJ/kg], 

 2h  = the humidity at the supply air outlet [kJ/kg], 

 3h  = the humidity at the exhaust air inlet [kJ/kg], 

 4h  = the humidity at the exhaust air outlet [kJ/kg]. 
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APPENDIX B 

PERMATRAN MEASUREMENT ANALYSIS 

Prior to measuring the membranes, the cell calibration WVTR is measured in order 

to determine the calibration VDR.  The calibration VDR includes the nitrogen boundary 

layer VDR, the desiccant boundary layer VDR, and the guard membrane VDR.  Therefore, 

by installing the test membrane the total VDR is equal to the calibration VDR plus the 

membrane VDR is series.  All of the measured WVTR are normalized to a 100% RH 

concentration gradient.  Therefore, when equating the total resistance to the membrane 

resistance in series with the calibration resistance the concentration gradient cancels 

leaving only the mass fluxes as shown in equation (B.1). 

 
MCALT

MCALT m
C

m
C

m
CRRR

""" 








  

 
1

"

1

"

1
"













CALM
T mm

m


  (B.1) 

where,  YR  = the total VDR in the Permatran [s/m], 

 CALR  = the calibration VDR [s/m], 

 MR  = the membrane VDR [s/m], 

 TOTm"  = the total WVTR [g/m2day], 

 CALm"  = the calibration WVTR [g/m2day], 

 Mm"  = the theoretical membrane WVTR [g/m2day]. 



 124 

B.1 Conversion from WVTR to VDR 

To convert the WVTR output by the Permatran to VDR, the outlet vapour 

concentration needed to be known.  However, the WVTR were calculated by the 

Permatran based on the outlet vapour concentration.  Therefore, equation (B.2) (Gibson, 

2000) was used to back calculate the outlet concentration. 
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 (B.2) 

where,  m  = vapour mass flow rate through the sample [kg/s], 

 "m  = vapour transmission rate through the sample [kg/m2s], 

 Q  = the volume flow rate of nitrogen at the test temperature [m3/s], 

 2C  = the outlet nitrogen vapour concentration [kg/m3], 

 1C  = the inlet nitrogen vapour concentration [kg/m3], 

 A  = the transfer area [m2]. 

 The WVTR, the inlet nitrogen vapour concentration (C1=0 kg/m3, dry), and the 

volume flow of nitrogen were output by the Permatran.  Therefore, rearranging equation 

(B.2) and canceling the inlet nitrogen vapour concentration yields the outlet vapour 

concentration. 
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The volume flow rate of nitrogen was output by the Permatran software in units of SCCM 

(standard cubic centimeters per minute).  Using the ideal gas law, the standard volume 

flow rate can be substituted for the actual flow rate yielding equation (B.4). 
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where,    = nitrogen density at the test temperature (23°C) [1.1919 kg/m3], 

 S  = nitrogen density at the standard temp. (0°C) [1.2922 kg/m3], 

 SQ  = nitrogen volume flow rate at the standard temp. (0°C) [m3/s]. 

The outlet vapour concentration was then combined with the vapour transmission 

rate to calculate the VDR as shown in equation (B.5) (Gibson, 2000). 
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CR
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  (B.5) 

where,  R  = the vapour diffusion resistance between the reservoir and the  

   nitrogen stream [s/m], 

 C  = log mean concentration gradient between the water reservoir and  

   the nitrogen stream throughout the test cells [kg/m3]. 

The log mean concentration gradient is the average vapour concentration to which the 

membrane is exposed which creates the driving potential for the flow of vapour through 

the membrane.  To calculate the log mean concentration gradient equation (B.6) was used 

(Gibson, 2000). 
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where,  aC  = the vapour concentration difference between the reservoir and  

   the nitrogen stream at the inlet of the test cell [kg/m3]. 

 bC  = the vapour concentration difference between the reservoir and  

   the nitrogen stream at the outlet of the test cell [kg/m3]. 

The inlet and outlet concentration gradients are defined in equations (B.7) and 

(B.8).  The subscripts refer to the locations 1 through 4 shown on Figure 2.5.  The vapour 
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concentration in the reservoir is maintained at the saturation vapour concentration of water 

in air at the test temperature (23°C). 

 13 CCCa   (B.7) 

 24 CCCb   (B.8) 

The nitrogen inlet concentration (C1) is zero and the outlet concentration (C2) is as 

calculated using equation (B.4).  Substituting equations (B.7) and (B.8) into (B.6) yields 

the log mean concentration gradient. 
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Substituting equation (B.9) into (B.5), and solving for the VDR, yields equation (B.10). 

 

"ln
23

3

2

m
CC

C
CR











  (B.10) 

B.2 Interpreting the WVTR Measurements 

From equation (B.4), the outlet vapour concentration during calibration could be 

calculated from equation (B.11). 
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where,  CALC2  = the calibration outlet nitrogen vapour concentration [kg/m3]. 

However, using equation (B.11) yielded calibration outlet vapour concentrations higher 

than the maximum attainable (C3).  This was because the WVTR were normalized to a 

100% RH gradient.  Therefore, the actual WVTR had to be calculated from the normalized 
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values.  According to Mocon, the normalized WVTR are calculated as shown in equation 

(B.12). 
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where,  Nm"  = the normalized WVTR output by the Permatran [gW/m2day]. 

 Am"  = the actual WVTR observed in the Permatran [gW/m2day]. 

Therefore, substituting in the definition of RH and solving for the outlet vapour 

concentration yielded equation (B.13). 
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Substituting equation (B.4) for the actual WVTR into equation (B.13) yielded equation 

(B.14).   
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Using equation (B.14) the calibration outlet vapour concentrations (C2) were now 

close to the 60% RH.  Substituting the calibration outlet nitrogen concentration and 

calibration WVTR into equation (B.10) yielded equation (B.15). 
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Finally, by substituting the calibration resistances obtained using equation (B.15) 

and the total resistance obtained using equation (B.10), the test membrane resistance was 

calculated using equation (B.16). 

 CALTM RRR   (B.16) 
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 APPENDIX C 

UNCERTAINTY IN THE MODULUS OF ELASTICITY 

The uncertainty in the modulus of elasticity is dependent on the uncertainty in the 

deflection measurements and the uncertainty in the pressure measurements.  These 

uncertainties are dependent on the calibration process.  As such, the methods used to 

calibrate these instruments and to determine the associated uncertainties are outlined in 

this Appendix.  How these uncertainties were propagated into the modulus results is also 

outlined in this Appendix. 

C.1 Calibration Uncertainty 

The linearly variable displacement transducer (LVDT) and pressure transducer 

were calibrated, a precision uncertainty is introduced from calibration.  Typical calibration 

curves for the pressure transducer and the LVDT are shown in Figures (C.1) and (C.2) 

respectively.  Figure C.1 was obtained by stepping the pressure up using a Druck as the 

reference standard (uncertainty of 6.9 Pa (0.001 psi)) and recording the voltage output by 

the pressure transducer.  Similarly, Figure C.2 was obtained by stepping through positions 

using a linear caliper as the reference standard (associated uncertainty of 0.02mm) and 

recording the voltage output of the LVDT. 
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Figure C.1. Typical pressure transducer calibration curve with best fit equation shown. 

 
Figure C.2. Typical LVDT calibration curve with best fit equation shown. 

A regression analysis, as outlined by ASME PTC 19.1, was used to determine the 

precision uncertainty introduced by using the best fit equations shown in Figures C.1 and 

C.2.  The standard error of estimate (SEE) was calculated as shown in equation (C.1).  By 
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multiplying the SEE by the appropriate t-student distribution value, the precision 

uncertainty in the measurement is calculated as in equation (C.2). 
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where,  SEE  = the standard error of estimate introduced by using a best fit,  

 KBFy ,  = the value obtained using the best fit equation at the calibration  

   point k,  

 KRSy ,  = the reference standard measurement at calibration point k, 

 N  = the number of calibration points, 

 C  = the number of constants in the calibration curve (2 for linear). 

 tSEEPBF   (C.2) 

where,  BFP  = the best fit precision uncertainty in the calibrated measurement,  

 t  = the t-student distribution value at 95% confidence and N-1  

   degrees of freedom. 

The total measurement uncertainty was obtained using a root sum square with the 

calibration device uncertainty.  However, the total measurement uncertainty was always 

dominated by the best fit precision uncertainty due to the relatively high accuracy and high 

precision of the reference standards. 

C.2 Determining the Uncertainty in the Modulus of Elasticity 

The uncertainty in the modulus of elasticity caused by the pressure and 

displacement measurement uncertainties is calculated using the propagation of error as 

outlined by ASME PTC 19.1 (1998).  The stress and strain in the membrane are calculated 
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using equations (3.1) and (3.2) respectively. The uncertainty in the stresses and strains 

depend on the uncertainties in the pressure and displacement measurements as shown in 

equations (C.3) and (C.4) respectively. 
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where,  U  = the uncertainty in the tensile stress induced on the membrane in  

   the θ-r plane [Pa], 

 PU  = the uncertainty in the liquid pressure below the membrane [Pa], 

 aU  = the uncertainty in the radius of the bulge test cell [mm], 

 hU  = the uncertainty in the membrane deflections [mm], 

 zU   = the uncertainty in the membrane thickness [mm]. 
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where,  


U  = the uncertainty in the θ component of the membrane strains  

   [mm/mm]. 

After offsetting the zero for the pre-strain in the membranes the first point higher 

than the 0.1 strain is used to determine the modulus of elasticity.  The modulus is 

calculated using equation (C.5) and thus the uncertainty in this modulus is calculated from 

equation (C.6). 

 



E  (C.5) 
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where,  E  = the modulus of elasticity [MPa], 

 EU  = the uncertainty in the modulus of elasticity [MPa]. 

 For each membrane four sets of data were taken to reduce the statistical uncertainty 

in the modulus of elasticity.  Therefore, the total uncertainty in the modulus of elasticity is 

calculated using equation (A.14) with a sample size of 4. 

C.3 Determining the Uncertainty in the Air Flow Rate 

Using the root sum square method outlined by ASME PTC 19.1 (1998), the 

uncertainty in the air volume flow rate, calculated using equation (4.1), is calculated using 

equation (C.7).  This equation assumes no uncertainty in the discharge coefficient. 
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APPENDIX D 

MASS FLOW METER, TEMPERATURE, AND RELATIVE HUMIDTY, 
CALIBRATION PROCEDURES 

The mass flow rates of the desiccant within the energy exchanger test facility are 

measured using mass flow metres.  In addition, there are many relative humidity and 

temperature measurements taken within the energy exchanger test facility.  Therefore, all 

of these sensors required calibration.  In this Appendix, the processes used to calibrate 

these sensors and determine their associated measurement uncertainties are outlined. 

D.1 Calibration of the Mass Flow Meter 

To generate the calibration curve for the mass flow meters five desiccant flow rates 

were used.  The flows were generated using a pump from the energy exchanger test 

facility and varying the position of the control valve.  A stopwatch was started and the 

flow was diverted into a bucket.  Once the bucket was near full the flow was removed and 

the time was stopped.  By weighing the bucket and measuring the desiccant density using 

the densitometer the flow rate was calculated.  During the test the voltage was recorded 

more than 30 times and an average was determined.  The resulting calibration curve is 

shown in Figure D.1 with the best fit equation. 



 134 

-1

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4

Fl
ow

 R
at

e 
(L

/m
in

)

Voltage (V)
 

Figure D.1. The calibration curve obtained for a desiccant mass flow meter. 

Using the regression analysis method outlined in Appendix C.1, the measurement 

uncertainty for the flow meter was obtained to be 0.3 L/min.  

D.2 Temperature Measurement Device Calibration 

The first step in calibrating the temperature devices was to decide on the 

appropriate range of measurement.  A dry block with a programmable temperature profile 

(±0.01°C) was used to generate the reference standard test trajectory as shown in Figure 

D.2.  The temperature measurements obtained for the calibration test trajectory is also 

plotted in Figure D.2. 
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Figure D.2. Typical temperature response for the temperature/RH sensor to the reference 
standard temperature profile. 

 The temperature/RH sensors are relatively large, unlike thermocouples, requiring a 

few minutes to react to a change in the reference temperature.  The steady state 

temperature measurements at each of the calibration temperatures were used to obtain 

averages for each reference temperature.  These averages were then plotted against the 

reference temperatures to obtain a calibration curve as shown in Figure D.3. 
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Figure D.3. Average of the steady temperature measurements plotted against the reference 
standard temperature. 
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 Using the calibration curve presented in Figure D.3 and the regression analysis of 

Appendix C.1, the sensor measurement uncertainty is obtained. 

D.3 Relative Humidity Measurement Device Calibration 

 The calibration process for the relative humidity sensors is analogous to the 

temperature sensors. However, instead of using a dry block to generate reference 

temperature, a relative humidity chamber is used.  Similar to the temperature calibration 

process, a sample of the calibration data obtained for the relative humidity calibration test 

trajectory is shown in Figure D.4.  Again, by obtaining a mean of the steady state relative 

humidity measurements at each of the calibration set points the calibration curve for the 

sensor is generated as shown in Figure D.5.  Lastly, using the regression analysis outlined 

in Appendix C.1, the uncertainty in the relative humidity measurement is obtained. 

 

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

R
el

at
iv

e 
H

um
id

ity
(%

)

Time (min)

RH Measurement Reference Standard

 
Figure D.4. Typical relative humidity response for the temperature/RH sensor to the 
reference standard relative humidity profile. 
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RHR= 0.9909RHM - 1.4624
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Figure D.5. Average of the steady relative humidity measurements plotted against the 
reference standard relative humidity. 
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APPENDIX E 

RAMEE PROTOTYPE 4 CONSTRUCTION DRAWINGS 
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APPENDIX F 

RAMEE PROTOTYPE 4 SPECIFICATION 

The specifications for the membrane used to construct RAMEE prototype 4 are given in 

Table F.1.  All other materials used in the construction of RAMEE prototype 4 are given 

in Table F.2.  The components listed in Table F.2 were built as shown in Appendix E and 

assembled as shown in Chapter 4. 

 

Table F.1. Specifications for the membrane used in RAMEE prototype 4. 
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Table F.2. All other materials used to construct RAMEE prototype 4. 
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APPENDIX G 

PRESSURE TESING APPARATUS DRAWINGS 
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