ECONOMICS OF TILLAGE MANAGEMENT SYSTEMS IN NORTHEASTERN ALBERTA

K.R. Handford¹, D.W. McAndrew², R.P. Zentner¹, M. Gorda³, J. Doner³.

¹Agriculture Canada, Box 1030, Swift Current, Saskatchewan S9H 3X2 ²Agriculture Canada, Box 1408, Vegreville, Alberta T0B 4L0 ³Alberta Agriculture, Vegreville, Alberta

ABSTRACT

The economic returns and riskiness of continuous barley production using four tillage management systems were compared at five sites in three soil zones in northeastern Alberta. The study used five years of data from a tillage experiment in northeastern Alberta. The four tillage systems included conventional one (C1), which leaves 5% standing stubble, conventional two (C2), which leaves 50% standing stubble, minimum-tillage (Min), and zero-tillage (ZT). Economic calculations were based on 1992 input costs and product prices. The systems were evaluated at barley prices of \$46, \$69, and \$92 t⁻¹, calculated with and without all risk crop insurance. Over the five sites the expected net returns were generally higher for ZT at all barley prices. Income variability was usually lower for ZT and C2 depending on the site. The study concluded that use of reduced tillage management systems by producers in northeastern Alberta could increase farm-level returns and reduce the risk of financial loss, while potentially decreasing the amount of soil erosion.

INTRODUCTION

Recent events have shown that most regions in northeastern Alberta are still subject to severe wind and water erosion. Soil loss by wind erosion typically occurs during May when fields are worked intensively for seedbed preparation. However, fallow fields may be subject to wind erosion at any time during the 21 month fallow period. Water erosion events are typically a result of intense summer storms. Cropped fields will generally resist water erosion by early July, however, prior to establishment of the plant root systems, all fields are at risk.

The potential for soil erosion can be minimized by adopting conservation tillage management practices or by a reduction in the frequency of fallow (Zentner et al. 1992). The adoption of soil conservation practices by producers is dependent on short-term economic benefits or the reduction in the financial risk (Crosson et al. 1986). The agronomic/soil benefits of reduced tillage systems include reduction in soil compaction, decreased rates of loss of organic matter, and increased grain yields (Dumanski et al. 1986). Potential economic benefits of these systems are a reduction in costs associated with energy, machinery use and investment, and labour (Zentner et al. 1992).

The objective of this study was to compare crop productivity and short-term economic performance and risk of four tillage management systems for continuous barley production to determine their potential use by producers in three soil-climatic regions of northeastern Alberta.

METHODS AND MATERIALS

Agronomic Considerations

The Alberta study sites were located in the Dark Brown soil zone at Alliance, Black soil zone at Wainwright and Hairy Hill, and Grey soil zone at Plamondon, and Elk Point. Four tillage management systems (TS) were compared at each site.

Two conventional tillage systems were included as benchmarks. The first (C1) consisted of harvesting the grain, followed by chopping and spreading the residue with a flail mower. Three cultivations were then performed in a one-day

period followed by a single pass with the cultivator approximately three weeks later. Seedbed preparation involved one pass with the cultivator just prior to seeding. The second conventional tillage treatment (C2) was similar to C1, except that only one pass with the cultivator as opposed to three, was performed on the first fall tillage date. All conventional tillage was performed with a vibrashank field cultivator. The Minimum (MIN) tillage treatment consisted of the same treatment as the conventional tillage systems except that the only tillage treatment is one pass with the cultivator in the spring. As in the zero till treatment an appropriate fall herbicide is applied. Spring cultivation was done on the same dates as the seeding. The zero tillage (ZT) treatment consisted of removal of grain at harvest, followed by chopping and spreading of residue with a flail mower. A fall herbicide appropriate for weeds present was then applied. In the spring a broad spectrum herbicide was applied if required.

All plots were seeded to Leduc barley with a double disc zero till plot seeder. (Dyck and Tessier 1986). Nitrogen (46-0-0) was banded at a rate to bring total actual N (residual plus applied) to 100 kg ha⁻¹. Phosphorus (0-45-0) was seed placed at a rate of 20 kg ha⁻¹ of actual P. Due to a severe deficiency potassium (0-0-60) was applied at Elk Point and Plamondon in 1988 at a rate of 400 kg ha⁻¹ of actual K. Weeds were controlled with a variety of herbicides using recommended rates at the five sites to obtain the desired weed control. Grain yields were determined by using a small plot binder, dried at 60°C then left at room conditions to pick up moisture from the atmosphere. The approximate annual dates of spring cultivation, seeding, harvest, and fall cultivations are shown in Table 1. A variety of herbicides were used at the five sites to obtain the desired weed control.

Site	Spring Cult.	Seeding	Harvest	1st Fall Cult.	2nd Fall Cult.	
Alliance	May 11	May 11	Aug 17	Sept 17	Oct 13	
Wainwright	May 11	May 11	Aug 18	Sept 18	Oct 9	
Hairy Hill	May 10	May 10	Aug 13	Sept 11	Oct 5	
Plamondon	May 12	May 12	Aug 13	Sept 13	Oct 9	
Elk Point	May 14	May 14	Aug 17	Sept 15	Oct 8	

Table 1. Average Annual Operation Dates

Economic Considerations

The economic performance of each TS was modelled for a complete farm unit of 285 hectares in size. Machinery operation costs were modelled using a mediumaged complement of appropriately sized machinery required to perform the field operations in a timely manner. Production costs, net returns, and net present value (NPV) were calculated for the four TS using a budgeting framework (Zentner and Campbell, 1988). Net return was defined as the income remaining after paying all cash costs (seed, fertilizer, herbicide, fuel, oil, machine repair, crop insurance premiums, and land taxes, utilities, and interest on operating capital), labour, and depreciation on buildings and machinery. The NPV were calculated using a discount rate of 5% (Doll and Orazem, 1978). NPV recognizes that returns earned in the future are worth less than money earned today. This analysis did not include income tax or land equity cost considerations. Costs for inputs and field operations (Table 2) were held constant at their 1992 levels (Alberta Agriculture, 1992, Saskatchewan Agriculture and Food, 1992). Each system, was evaluated at three barley price levels (Table 2), and with and without participation in the Canada/Alberta Crop Insurance program. Participation was assumed to be at the 70% yield coverage option, and the premiums are specific to the risk area where the test sites were located (Alberta Hail and Crop Insurance, 1992).

Table 2: Summary of Economic Parameters

Item	Price/Cost	Units
Barley	46.00 69.00 92.00	\$t-1 \$t-1 \$t-1
Fertilizer N P ₂ 0 ₅ K ₂ 0	0.50 0.55 0.22	\$kg-1 \$kg-1 \$kg-1
Herbicides Roundup 2, 4-D Amine 2, 4-D Ester Agsurf Avenge Bromox 720 Hoegrass II MCPA Amine MCPA Ester MCPA K MCPA Na Stampede Acheive Extra	9.95 3.90 6.40 6.49 8.90 12.00 12.55 4.90 5.50 4.15 3.70 9.21 45.47	L^{-1} L^{-
Machine Operation	Cash Costs ^x	Fixed Cost ^w
Cultivating Banding Seeding Spraying Swathing Combining Transport Baling Hauling Spot Spraying	3.76 3.76 10.24 1.52 4.10 3.88V 2.17V 2.13 1.86 .85	$\begin{array}{c}\\ 5.63\\ 4.66\\ 20.44\\ 2.56\\ 6.08\\ 28.70\\ 1.59\\ 4.21\\ .68\\ 1.15\end{array}$

Includes fuel, oil, machine repair, and labor.

w Includes depreciation and interest charges for machines. v Cash costs depend on grain yields. Costs are shown for yield of 1500 kg ha^{-1}

At each sites, annual net returns and NPV were compared among TS using analysis of variance for a split plot design with years as main plot and tillage method as subplot (SAS Institute Inc., 1990). Differences among treatment means were determined by Duncan's Multiple Range Test (p=0.05) (Little and Hills, 1978). Riskiness of the tillage systems were assessed using stochastic dominance analysis (Goh et al., 1989). The set of risk efficient systems for each site were established for risk neutral producers and for producers with low-, medium-, and high-risk aversion levels as defined by Zentner et al. (1992), and scaled to the appropriate farm size (Raskin and Cochran, 1986). For risk neutral individuals, their sole objective is to maximize net returns regardless of the variability of profits, while risk averse individuals are willing to give up some expected return (profit) in order to obtain a reduction in the probability of a low or negative return occurring (Zentner et al 1992).

RESULTS AND DISCUSSION

Grain and Straw Yields

Over the five years and sites, average yields for ZT were 3729 kg ha^{-1} (Table 3). This was 8.6% higher than C1, 8.7% higher then C2 and 9.5% higher than MIN. The straw yields (Table 4) showed that ZT produced averaged 3740 kg ha⁻¹ for ZT; this was $\tilde{8}.3$ % higher than C1, 13.6% higher than C2, and 7.2% higher than MIN. In general, Wainwright was consistently the highest yielding site, followed by Alliance, Hairy Hill, Plamondon, and Elk Point.

Table 3: Grain Yield as affected by Tillage Treatment, Year and Site

Tillage		Year	Alliano	20	Wainwi	ight	Hairy	Hill	Plamo	ndon	Elk P	oint
Conventional(Conventional(Minimum Zero	1) 2)	1988 1988 1988 1988 1988	4481 4201 4255 4933	def f ef bcd	3572 3394 3523 3873	cd cde cd cd	3954 3878 4018 3965	bc bc bc bc	4508 4728 4384 4728	ab a ab a	3303 2819 3039 3185	a bc ab ab
Conventional Conventional Minimum Zero	(1) (2)	1989 1989 1989 1989 1989	2518 2647 2609 2555	ghi g g gh	3324 3604 3384 3755	de cd cde cd	4470 4459 4320 4927		4486 4287 3862 4992		3211 3109 3319 3636	
Conventional Conventional Minimum Zero	(1) (2)	1990 1990 1990 1990 1990	5256 4766 5498 5083	ab bcde a abc	5143 5352 5503 5503	ab ab a a	2733 2819 3308 3642	ef e d cd	3131 3168 3233 3604	fg fg ef de		
Conventional Conventional Minimum Zero	(1) (2)	1991 1991 1991 1991 1991	4303 4411 4438 4658	ef ef def cdef	4933 5094 5304 5245	b ab ab ab	3658 3642 3771 3308	cd cd bc d	1834 2001 1942 2437	i i h	2458 2539 2937 2996	c c ab ab
Conventional Conventional Minimum Zero	(1) (2)	1992 1992 1992 1992 1992	2044 2017 2582 4047	hi i g f	3012 2942 1931 2980	e e f e	1953 2362 1840 2587	gh fg h efg	2738 2792 1861 2555	gh gh i h	1560 1582 1151 1243	d d e de
Significance Standard Dev.			*** 640		** 527		*** 463		* 576		** 430	
Conventional Conventional Minimum Zero	(1) (1)		3722 3610 3873 4260	bc c b a	3991 4083 3932 4271	b ab b a	3357 3432 3405 3685	b ab ab a	3341 3394 3055 3663	b b c a	2630 2507 2609 2765	ab b a
Significance Standard Dev.			*** 640		*** 527		*** 463		*** 581		* 446	

ą

Table 4: Straw Yield as affected by Tillage Treatment Year and Site

Tillage		Year	Allian	ce	Wainw	right	Hairy	Hill	Plamo	ndon	Elk Point
Conventional Conventional Minimum Zero	(1) (2)	1988 1988 1988 1988	3690 3560 3660 4060	fg g fg def	4390 4220 4250 4600	de de bcd	3950 3880 3970 4030	de de de de	4510 4780 4660 4610	ab ab ab ab	2820 2640 2790 2680
Conventional Conventional Minimum Zero	(1) (2)	1989 1989 1989 1989	2360 2500 2610 3030	ijk ij hi g	3470 3710 3850 4930	f f ef ab	4810 4790 5900 5270	bc c a b	4600 4670 4670 4900	ab ab ab a	3850 3590 4010 3850
Conventional Conventional Minimum Zero	(1) (2)	1990 1990 1990 1990	5100 4620 4840 4250	a bc ab cd	4770 4890 4870 4960	abc ab ab ab	3330 3410 3660 3970	f f ef de	3350 3430 3470 4380	cde cd cd b	
Conventional Conventional Minimum Zero	(1) (2)	1991 1991 1991 1991 1991	3660 3780 3820 4220	fg efg defg cde	5150 4940 4810 4630	a ab abc bcd	4000 3940 4240 4230	de de d	2970 3220 3220 3710	e de de c	2470 2390 2710 2740
Conventional Conventional Minimum Zero	(1) (2)	1992 1992 1992 1992	2070 1960 2460 3780	jk k ij efg	2480 2640 1720 2340	g g	1670 1940 1610 2600	h h g	2380 2480 1770 2150	fg f g fg	1240 1290 920 960
Significance Standard Dev	•		*** 629		*** 558		** 528		*** 618		NS 440
Conventional Conventional Minimum Zero	(1) (2)		3380 3280 3480 3870	b b a	4070 4080 3900 4320	b b a	3550 3590 3810 4020	C C b a	3560 2720 3560 3950		2590 2480 2610 2560
Significance Standard Dev	¢		** 629		* 558		*** 528		NS 618		NS 440

Table 5: Costs of Production

The cash costs of seed (\$6.89) and miscellaneous expenses (\$8.81) which consist of land taxes and utilities are not shown.

Resource	Cl		C2		M	[N	ZT	
Category	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
				(\$ha ⁻	1)			
a) Site = Alliance Fertilizer Herbicide	50.20 40.15	4.82	50.20 40.15	4.82 6.60	50.20 52.54	4.82 8.71	50.20 54.73	4.82
Variable Cost* Labor Crop Insurance +	29.45 20.98 5.71	3.34 2.76	24.68 17.77 5.71	3.15 2.58	21.08 15.70 5.71	2.89 2.45	19.82 15.06 5.71	2.67 2.27
Interest Total Cash Cost	8.11 170.30	0.55	7.71	0.55 11.49	8.06 168.99	0.55	8.06 169.28	0.50
Total Costs	275.88	17.68	255.69	17.41	264.26	16.60	251.35	0.22 14.65
b) Site = Elk point Fertilizer	68 13	9 93	68 13	9 93	58 53	9 28	59 92	7 51
Herbicide	38.57	15.00	38.57	15.00	52.19	16.72	56.57	14.44
Variable Cost*	27.62	2.47	22.78	2.15	19.34	2.52	17.93	2.94
Crop Insurance +	19.17	1.00	15.92	1.39	13.87	1.90	13.09	L.29
Interest	8.40	0.75	8.00	0.75	8.42	0.83	8.60	0.64
Total Cash Cost	176.39	15.66	167.91	15.72	176.87	17.33	180.62	13.51
Fixed Cost** Total Costs	99.34 275.73	5.64 15.87	87.13 255.04	5.55 15.47	79.34 256.21	5.97 17.80	76.49 257.11	6.85 16.05
c) Site = Hairy Hill			47 60	2 5 6	40.00	2 21		2.50
Fertilizer Herbigide	46.40 21 41	4.60	47.60	3.56	48.80	3.31	47.60	3.56
Variable Cost*	28.19	2.26	23.84	1.89	20.12	2.26	18.73	2.39
Labor	20.00	1.91	17.15	1.60	14.88	1.92	14.14	2.05
Crop Insurance +	7.42		7.42	1 1 4	7.42	1 00	7.42	1 20
Interest Total Cash Cost	146 09	1.23 25.81	0.00	23 94	150 06	22 94	148 86	27 28
Fixed Cost **	102.63	5.14	91.76	4.30	83.06	5.15	79.72	5.72
Total Costs	248.72	30.17	231.54	27.50	233.12	27.13	228.58	32.42
d) Site = Plamondon								
Fertilizer	57.08	13.93	57.08	13.93	58.90	10.39	58.98	10.39
Variable Cost*	20.80	3.10	24.22	3.19	19.75	3.27	19.04	3.48
Labor	20.28	2.51	17.39	2.58	14.48	2.65	14.35	2.88
Crop Insurance +	6.89		6.89		6.89		6.89	
Interest	7.47	1.44	7.10	1.45	7.56	1.42	7.72	1.57
Total Cash Cost	156.83	30.26	149.18	30.36	158.74	29.81	162.19	33.05
Total Costs	260.32	35.39	241.71	35.64	240.87	35.85	242.45	39.82
e) Site = Wainwright								
Fertilizer	47.29	8.28	47.29	8.28	46.68	9.18	45.90	6.55
Variable Cost*	29.59	2.63	25.26	2.69	21.20	3.26	20.14	2.65
Labor	21.19	2.23	18.35	2.28	15.80	2.76	15.42	2.25
Crop Insurance +	8.07		8.07	-	8.07	5000 4000 0000 A000	8.07	anto ano 440 ano
Interest	8.00	0.56	7.65	0.57	7.91	0.78	8.01	0.65
Total Cash Cost	168.10	11.84	160.56	11.98	166.00	16.31	168.26	13.65
Total Costs	273.92	15.70	255.54	16.03	251.54	22.44	251.35	18.13

* Fuel, Oil and Machine Repair.

** Depreciation

+ Crop Insurance is shown for a barley price of \$68.90 ${\rm t}^{-1}$

		Barley E	rice = \$4	$6 t^{\pm} Ba$	rley Price	∋ = \$69 t	<u>Barle</u>	y Price =	= \$92 t ⁻¹	
Rotation	CI.	Mean	S.D.	NPV	Mean	S.D.	NPV	Mean	S.D.	NPV
					(\$ ha	a ⁻¹)	Na waa kata tasa tasa tasa tasa tasa tasa			
a) Locatio	n = Alli.	ance			• •	·				
C1	Yes	-101	50	-432	- 19	81	- 78	62	112	276
C1	No	- 97	50	-416	- 14	81	- 53	69	113	310
C2	Yes	- 86	44	-369	- 7	72	- 26	71	101	316
C2	No	- 82	44	-351	- 1	72	0	79	101	351
Min	Yes	- 72	47	-310	13	78	- 58	97	108	426
Min	No	- 68	47	-293	19	78	84	105	108	460
ZT	Yes	- 51	44	-225	42	70	180	136	97	585
2.1	NO	- 4/	44	-208	48	/1	205	14	90	010
b) Locatio	n = Elk	Point	30	-662	-101	57	-/31	- 49	75	_100
Cl	No	-153	41	-654	- 99	61	-418	- 46	81	-182
C2	Yes	-139	35	-597	- 89	51	-378	- 39	67	-159
C2	No	-137	37	-590	- 87	54	-367	- 36	72	-144
Min	Yes	-136	40	-583	- 84	59	-354	- 32	78	-125
Min	No	-134	43	-572	- 81	64	-338	- 27	85	-104
ZT	Yes	-128	41	-547	- 71	62	-299	- 14	84	- 50
ΖT	No	-127	44	-543	- 70	68	-292	- 13	93	- 42
<u>c) Locatio</u>	n = Hair	y Hill								
C1	Yes	- 89	25	-386	- 17	46	- 68	55	69	250
C1	No	- 85	26	-365	- 10	47	- 37	65	70	291
C2	Yes	- 69	22	-298	5	39	25	79	58	349
C2	NO	- 64	22	-276	13	39	29	89	28	394
Min	les	- 68	20	-290	11	44 50	33 55	00	7/	302
면보다 200	Vec	- 54	25	-236	25	43	114	105	64	463
ZT	No	- 49	25	-213	33	43	148	115	64	508
d) Locatio	n = Plam	iondon	20	420	20	50	101	40	0.4	100
CI	les	-102	36	-439	- 30	59	-121	4∠ ⊑1	84	198
C1 C2	NO	- 97	27	-420	- 23	60	- 92	55	85	200
C2	No	- 76	37	-328	- /	60	6	75	86	340
Min	Yes	- 93	32	-400	- 26	55	-105	40	80	190
Min	No	- 91	34	-390	- 23	59	- 89	45	86	211
ZT	Yes	- 70	35	-299	10	59	51	89	86	402
ZT	No	- 65	35	-278	17	59	83	99	86	444
e) Locatic	n = Wain	wright								
C1	Yes	- 84	43	-368	3	69	8	90	96	384
C1	No	- 80	45	-347	10	72	39	99	99	426
C2	Yes	- 62	44	-272	27	71	112	116	98	496
C2	No	- 58	45	-251	34	73	143	125	101	538
Min	Yes	- 64	47	-277	22	79	97	108	112	470
Min	No	- 60	50	-260	28	84	121	115	118	503
ZT ZT	Ies	- 50	48	-21/	44	15	187	117	103	590
<u>ل</u> ل	NO	- 45	49	-190	1C	11	213	14/	TOP	634

Table 6: Annual Net Returns and NPV

Production Costs for Tillage Systems

Adoption of ZT from C1 may increase or decrease cash costs depending on the cost difference of substituting tillage and labour for herbicides. The cash costs averaged 1.4% higher for ZT than for C1(Table 5), 6.0% than C2, and 1.0% higher than MIN. At the site of Alliance cash costs for C1 averaged \$170 ha-1 (range \$147 to \$182 ha⁻¹), for C2 \$162 ha⁻¹ (range \$138 to \$176 ha⁻¹), for MIN \$169 ha⁻¹ (range \$147 to \$184 ha⁻¹), and ZT \$169 ha⁻¹ (range (\$149 to \$182 ha⁻¹). Overhead costs associated with ownership decrease because of less tillage requirements for ZT to C1. In the study ZT fixed costs were 28.7%, 14.6%, and 3.4% lower then C1, C2, and MIN respectively. At Alliance these costs averaged \$106, \$94, \$85, and \$82 ha⁻¹ for C1, C2, MIN, and ZT respectively. Overall total costs (cash plus overhead) averaged 8.4% higher for C1, 0.7% higher for C2, and 0.4% for MIN than for ZT. At Alliance these costs averaged \$276, \$256, \$254, and \$251 for C1, C2, MIN, and ZT respectively.

Similar cost relationships exist at the five sites. The costs over the four tillage systems were generally highest for Alliance and progressively less for Elk Point, Wainwright, Plamondon, and Hairy Hill.

Net Returns and NPV for Tillage Systems

Annual net returns (Table 6) generally reflected the grain yield patterns. At the low barley price (\$46 t⁻¹) the tillage systems at all sites were not able to generate sufficient income to recover total costs. The potential profitability of the systems increased with barley price, with ZT consistently providing the largest profit (or smallest loss). At the medium barley price level (\$69 t⁻¹) some tillage systems became profitable at most sites, while at the high barley price (\$92 t⁻¹) all of the tillage systems were able to produce sufficient revenue to cover total costs, except at Elk Point. At Elk Point the weather was unfavourable throughout the study period such that none of the tillage systems were not able to generate profits, even at the highest barley price. The NPVs displayed similar trends as net returns, with ZT performing best, followed by C2 and MIN, and C1 consistently performing worst.

Crop Insurance Participation

Participation in the Canada/Alberta Crop Insurance Program reduced income variability as a result of the yield guaranteed. The trade-off for the reduced variability is the annual insurance premiums. At Elk Point for example, participation in all-risk crop insurance decreased the average annual income variability (S.D.) by 3% over the tillage systems and barley price. The reduction in net returns and NPV reflects added premiums, compared to the infrequency of payouts received from the insurance program.

Riskiness of Tillage Systems

When the probability distributions of the net returns were compared for producers with different risk preferences, and at the different price levels, the sets of risk efficient tillage systems were relatively small (Table 7). The ZT system was generally risk dominant at all sites, barley price, and risk aversion level. The more risk averse individuals tended to favour use of systems that included more tillage (i.e. MIN or C2) or alternatively to include crop insurance in their management decision.

The sites varied in timing of changes in tillage system or use of crop insurance over the aversion level and barley price. For example, at Alliance risk neutral and producers with low or medium risk aversion would select or prefer ZT without crop insurance (ZT^N) when barley price was low; however highly risk averse producers would select from ZT^N , ZT^W , and $C2^N$. At the medium barley price level we see a shift of the risk efficient set of ZT^N , ZT^N , $C2^N$ move from high risk averse to the medium risk averse, with the highly risk averse producer choosing $C2^N$. For the high barley price the preferences of producers are unchanged, except for the addition of minimum till without crop insurance (MIN^N) to the medium-risk averse set. At the other sites similar trends in shifts of TS to lower aversion levels and the use of crop insurance as we increase the barley price as is seen in Wainwright and Hairy Hill. At Elk Point and Plamondon changes in barley price has no effect on the choice of producers.

Aversion Level	Alliance	Elk Point	Hairy Hill	Plamondon	Wainwright
1					
a] Barley Price \$46 t ⁻¹					
Risk Neutral	N 4	N 4	Ι4	N4	N4
Low Risk Averse	N 4	I4, N4	I4	N4	N4
Medium Risk Averse	N4	I4, N4	I4	N4	N4
High Risk Averse I4,	N2, N4	I4, N4	I4, N2	N4	N4
a] Barley Price \$69 t ⁻¹					
Risk Neutral	N4	N4	N 4	N4	N4
Low Risk Averse	N4	I4, N4	N4	N4	N4
Medium Risk Averse I4,	N2, N4	I4, N4	N4	N4	I4, N4
High Risk Averse	N2	I4, N4	N 4	N4	I4
al Barlev Price \$92 t ⁻¹					
Risk Neutral	N 4	N4	N4	N4	N4
Low Risk Averse	N 4	I4, N4	N 4	N4	I4, N4
Medium Risk Averse I4,	N2, N3, N4	I4, N4	N 4	N4	14
High Risk Averse	N2	I4, N4	N4	N4	I4

Table 7: Set of Risk efficient cropping systems for risk neutral and risk adverse producers.

N: No Crop Insurance

I: Crop Insurance

CONCLUSIONS

The use of zero tillage could be a viable alternative available to producers of northeastern Alberta as a means of decreasing costs, increasing yields and net returns, reducing the risk of financial loss, while potentially decreasing the amount of soil erosion. The results of this 5 year study showed that producers in northeastern Alberta could economically adopt zero and minimum tillage as alternatives to conventional tillage systems for a continuous barley production as product prices increase or costs decrease from their 1991-92 levels. The use of all-risk crop insurance is an effective means for producers minimize the risk of financial loss associated with adopting these new production systems.

REFERENCES

- Alberta Agriculture. Crop Protection with chemicals, herbicides, insecticides, fungicides, rodenticides, 1992. 30M, Alberta Agriculture, Edmonton, AB. 256 pp.
- Alberta Agriculture. 1992. Farm Machinery Costs as a guide to custom rates 1992. Publ 9M, Alberta Agriculture, Edmonton, AB. 18 pp.
- Alberta Hail and Crop Insurance Corporation. 1992. Premium Tables 1992 Crop year, Risk Areas 9,12,13,15,16, Lacombe, AB. 5 pp.
- Crosson, P., Hanthron, M. and Duffy, M., 1986. The economics of consevation tillage. In: M.A. Sprague and G.B. Triplett (Editors), No-Tillage and Surface Tillage Agriculture; the Tillage Revolution. Wiley, New York, pp. 409-436.
- Dyck, F.B. and Tessier, S., 1986. Zero-till drill development at the Swift Current Research Station. Can. Soc. Agric. Eng. Paper No. 86-210. CSAE, Suite 907, 151 States Street, Ottawa, Ont., 11 pp.

- Doll, J.P. and Orazem, F., 1978. Production Economics: Theory with Applications. Grid Inc., Columbus, OH, 406 pp.
- Dumanski,J.,Coote,D.R.,Luciuk, G. and Lok,C., 1986. Soil conservation in Canada. J.Water Conserv., 41(4):204-210.
- Goh, S., Shih, C.C., Cochran, M.J. and Raskin, R., 1989. A generalized stochastic dominance program for the IBM PC. South. J. Agric. Econ., 21(2):175-182.
- Little, T.M. and Hills, F.J., 1978. Agricultural Experimentation Design and Analysis. Wiley, New York, 350 pp.
- Raskin, R. and Cochran, M.J. 1986. Interpretations and transformations of scale for the Pratt-Arrow absolute risk aversion coefficient: Implications for generalized stochastic dominance. West. J. Agr. Econ. 11: 204-210.
- SAS Institute Inc., SAS/STAT user's guide, Version 6, Fourth Edition, Volume 1, Cary, N.C.: SAS Institute Inc., 1989. 943 pp.
- Saskatchewan Agriculture and Food. 1992. Farm machinery custom and rental rate guide 1992. Publ 4.5M, Saskatchewan Agriculture and Food, Regina, SK. 29 pp.
- Zentner, R.P., Brandt, S.A., Kirkland, K.J., Campbell, C.A., Sonntag, G.J., 1992. Economics of rotation and tillage systems for the Dark Brown soil zone of the Canadian Prairies. Soil and Tillage Research. (24) pp 271-284.
- Zentner, R.P., and Campbell, C.A. 1988. First 18 years of a long-term crop rotation study in southwestern Saskatchewan-yields, grain protein, and economic performance. Can. J. Plant Sci.(68) pp. 1-22.
- Zentner, R.P., Campbell, C.A., Bowren, K.E., Janzen, H.H., Tinline, R.D., Cutforth, H.W., Brandt, S.A., Lafond, G.P., and Townley-Smith, L., 1990. The long-term agronomic and economic efforts of crop rotations in western Canada. In: Proc. Soils and Crops Workshop. New Frontiers in Prairie Agriculture. University of Saskatchewan, Saskatoon, Sask., 22-23 February 1990. pp 171-179.
- Zentner, R.P., Selles, F., Campbell, C.A., Handford, K.R., and McConkey, B.G. 1992. Economics of nitrogen fertilizer management for zero till continuous spring wheat in the Brown Soil zone. Can J. Plant Sci. (In press).

342