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Summary

This work reports on the two-stream radiative transfer in a horizontally homogeneous tur-
bid vegetation medium assuming bi-Lambertian leaf scattering by planar model leaves.
The deduced two-stream radiative transport equations are solved analytically for various
leaf architectures considering leaf normal distribution (LND) functions from purely ver-
tical to purely horizontal leaves. These transfer models are driven by radiative energy
flux densities (EFDs) incident at the top of the vegetation (TOV) and separated into
their diffuse and direct fractions, used as upper boundary conditions. The radiance field
is treated as approximately isotropic, but its zenithal distribution can be varied by the
so-called diffusivity factor, which allows together with the incident EFDs at TOV to take
the sky conditions above the canopy into account. Simulations of the canopy reflectance
and transmittance are performed in the UV/VIS as function of the solar zenith angle
and the ratio of the direct and diffuse sky light above the canopy representing clear and
overcast sky conditions. These computations demonstrate that the radiative transfer in
vegetation is significantly influenced by this ratio and the LND of the leaves.

Zusammenfassung

Diese Arbeit berichtet über den Zweistrom-Strahlungstransfer eines horizontal homogenen
und trüben Vegetationsmediums, wobei bi-Lambertsche Streuung an als eben betrachteten
Modellblätter angenommen wird. Die abgeleiteten Zweistrom-Strahlungstransportglei-
chungen werden analytisch gelöst für verschiedene Blattarchitekturen, indem Blattnorma-
lenverteilungsfunktionen (BNV) von rein vertikalen bis rein horizontale Blätter berück-
sichtigt werden. Diese Transfermodelle werden durch Strahlungsflussdichten angetrieben,
die am Oberrand der Vegetation gegeben und in deren Direkt- und Diffusanteil aufgespal-
ten sind, wobei letztere als obere Randbedingungen fungieren. Das Strahldichtefeld wird
als nahezu isotrop angenommen, jedoch kann dessen Zenitwinkelabhängigkeit durch den
sogenannten Diffusivitätsfaktor variiert werden, der es zusammen mit den am Oberrand
einfallenden Strahlungsflussdichten erlaubt, unterschiedliche Bedingungen für das atmo-
sphärische Himmelslicht zu berücksichtigen. Es wurden Simulationen der Reflektanz und
Transmittanz des Gesamtmediums im UV/VIS als Funktion des Sonnenzenitwinkels so-
wie des Verhältnisses des Direkt- und Diffuslichts durchgeführt, stellvertretend für klare
Tage und bewölkte Situationen. Diese Berechnungen zeigen, dass der Strahlungstransfer
in Vegetation deutlich von diesem Verhältnis sowie von der BNV der Blätter abhängt.

1 Introduction

Extinction processes within vegetation take place on macroscopic leaves having sizes much
larger than the wavelength of the transported radiation, in contrast to e.g. aerosols in
the atmosphere. Therefore, the size of leaves can not be neglected in comparison to the
scale height of a vegetation stand, and the radiative transfer depends on the geometrical
structure of the canopy elements like the leaves’ shape, area, orientation, number and
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their spatial distribution as well as their optical properties. Ross (1981) and Myneni et
al. (1989) gave an introduction to the radiative transfer within turbid vegetation media,
which was the basis for the present work.
As one can imagine, vegetation is an irregular and spatially heterogeneous medium chang-
ing in time with shaded sites and gaps in the canopy. Nevertheless, several researchers
assumed canopies to be horizontally homogeneous and treated two-stream approaches
of the radiative transfer. Dickinson (1983) and Dickinson et al. (1987) introduced two-
stream methods and benchmarked their accuracy within an error of 5 % in comparison to
multi-stream models. Dickinson et al. (1990) suggested the two-stream transfer of radia-
tion for modelling the climate of the Earth. Sellers (1985) used the two-stream approach
to simulate reflectance, photosynthesis and transpiration of a vegetation canopy. Joseph
et al. (1996) discussed the two-stream approximation for parameterisations of the solar
radiation transport through vegetation as function of special leaf normal distributions
(LNDs). Recent works deal, e.g., with the application of two-stream methods for simulat-
ing photosynthesis, stomatal conductance and leaf temperatures as well as the exchange
of CO2 and water vapour within canopies (Dai et al., 2004), or they were used in remote
sensing techniques for climate modelling (Pinty et al., 2006, 2007).
In most of the works cited above standard analytical LNDs were considered (e.g. derived
by fitting measurements) for which, however, the according G-functions (Ross-Nilson func-
tions) were not calculated analytically in the most of the cases of LNDs. Therefore these
were approximated (Goudriaan, 1977; Dickinson et al., 1990; de Ridder, 1997). Since
the G-function determines the extinction coefficient of a vegetation medium, it plays the
decisive role in the light transport. The recent work will present analytical expressions of
G-functions for a big number of commonly used LNDs as well as analytical solutions of
the two-stream radiative transfer for these standard LNDs from purely vertical to purely
horizontal leaves.
Section 2 will give an overview on the radiative transfer in a horizontally homogeneous
and time independent vegetation medium and will present the two-stream approximated
transport equations and their analytical solutions. Sensitivity studies will then be dis-
cussed in section 3 with respect to the transport of diffuse radiation through deciduous
canopies. Finally, the work is summarised in Section 4.

2 Radiative transfer in horizontally homogeneous turbid vege-
tation media and its two-stream solution

In radiative transport theories generally radiation transfer quantities (RTQs) are defined
to describe the radiative interactions and, thus, the radiation field. These are: photon
distribution function fp, absorption density function ka, scattering density function ks,
scattering function fs, extinction density function ke, emission density function fe and
phase function P . The independent variables usually are (x,y, a |b, λ, t). The vector x
is the location in space, y the direction of the radiation starting in x, a the incident and
b the exit direction of scattered radiation, λ the wavelength and t the time. A RTQ f is
named isotropic if f 6= f(y), homogeneous if f 6= f(x) and spectral if f = f(λ).
From the photon distribution function the radiance field I can be deduced by I = ch c

λ
fp,

and from this RTQ the spectral energy flux density (EFD) or irradiance,

E(x, λ, t) =

∫

S1

I(x,y, λ, t)
y3

‖y‖ do(y) =
[ W

m2 nm

]
, (1)
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through a horizontal plane at x, where y3 is the third (vertical) component of the radiation
direction y, as well as the spectral actinic flux density (AFD),

A(x, λ, t) =

∫

S1

I(x,y, λ, t) do(y) =
[ W

m2 nm

]
, (2)

are calculated. S1 is the unit sphere expressing the so-called integration over all solid
angles. In this sense the unit sr−1 has to be replaced by the unit area m−2 so that

I =
[

W
m2 nmm2

]
instead of I =

[
W

m2 nm sr

]
. Note that the solid angle Ω of an arbitrary

surface F , intersecting any ray through the origin only once, can be defined (Fischer and
Kaul, 1997) as its projection F̃ on S1 leading to the number

Ω(F ) := A(F̃ ) ≤ 4πFo

where A(·) means the area of a surface and Fo = 1 m2 is the unit area. Thus, the
integration over all solid angles means a surface integration over S1 contributing the unit
m2 to the integrand. The unit sphere can be parameterised by S1 = {ω} using the vector

ω(ϑ, ϕ) := Co




cos ϕ sin ϑ
sin ϕ sin ϑ

cos ϑ


 (3)

of the radiation direction with the spherical coordinates (ϑ, ϕ) ∈ [0, π] × [0, 2π] and the
unit length Co = 1 m. The parameterisation can be transformed using the so-called µ-
transformation according to the map ϑ = h−1

µ (µ) := cos−1(µ), which leads to

ω(h−1
µ (µ), ϕ) := Co




cos ϕ
√

1− µ2

sin ϕ
√

1− µ2

µ


 := ω̂(µ, ϕ) (4)

with µ ∈ [−1, 1] and S1 = {ω} ≡ {ω̂}. Then, the unit vector of the direct light can be
written as e

D
= ω̂(µ

D
, ϕ

D
) with the angles (µ

D
, ϕ

D
) of the direct beam where, especially,

µ
D

= 1
Co
〈e3, eD

〉 = cos ϑ
D

< 0 is the cosine of the solar zenith angle ϑ
D

> π
2

and 〈·, ·〉
is the scalar product. With the help of (3) and (4) the upper and lower half space unit
sphere S±1 can be parameterised by

S±1 = {ω̂(µ, ϕ) : (µ, ϕ) ∈ [0,±1]× [0, 2π]}
and their surface areas are A(S±1 ) = 2πFo.

To define the RTQs in vegetation a basic function is required: The dimensionless leaf
normal distribution function (LND) g

L
(x,y

L
, t) ≥ 0 is a measure for the probability that

the normal vector y
L

of a planar leaf at x and time t is confined to the upper hemisphere.
As probability density g

L
is normalised with respect to S+

1 by

1 =
1

A(S+
1 )

∫

S+
1

g
L
(x,y

L
, t) do(y

L
) =

1

2π

∫

[0, π
2
]

∫

[0,2π]

g
L
(x,ω(ϑ

L
, ϕ

L
), t) sin ϑ

L
dϕ

L
dϑ

L

to conserve the total probability of 1 ∀(x, t). The LND is assumed to be homogeneous
and independent of time, and its angular dependence is separated according to

g
L
(y

L
=ω(ϑ

L
, ϕ

L
)) = gϑ(ϑL

) gϕ(ϕ
L
) g

L
(y

L
= ω̂(µ

L
, ϕ

L
)) = gµ(µ

L
) gϕ(ϕ

L
)

in terms of the azimuth angle ϕ
L

and the zenith angle ϑ
L

of the leaf normals as well as
its cosine µ

L
= cos ϑ

L
. This introduction of the LND is common, see e.g. Ross (1981),
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Table 1: Commonly used standard LNDs as function of ϑL and µL arranged in descending order
of increasing fractions of horizontal leaves (vertical leaf normals) together with the according
GFs after equation (6) as function of µ, which are drawn in Figure 1.

Notation gϑ(ϑL) gµ(µL) Gµ(µ)

horizontal 1
sin ϑ

L
δ(ϑL − π

2 ) δ(µL − 0) 2
π

√
1− µ2

erectophile 3
4(1− cos 2ϑL) 3

2(1− µ2
L
) 3

16(3− µ2)

extremophile 15
14(1 + cos 4ϑL) 15

7 (4µ4
L
− 4µ2

L
+ 1) 5

28(3− µ4)

uniform 1 1 1
2

plagiophile 15
16(1− cos 4ϑL) 15

2 µ2
L
(1− µ2

L
) 5

32(3 + µ4)

spherical 2 cosϑL 2µL
4
3π

[
π
2 |µ| − |µ| cos−1(|µ|) +

√
1− µ2

]

planophile 3
2(1 + cos 2ϑL) ∗ 3µ2

L

3
8(1 + µ2)

spherical-3 4 cos3 ϑL 4µ3
L

8
5π

[
π
2 |µ| − |µ| cos−1(|µ|)

+1
3

√
1− µ2 (2 + µ2)

]

spherical-4 5 cos4 ϑL 5µ4
L

5
48(3 + 6µ2 − µ4)

spherical-5 6 cos5 ϑL 6µ5
L

12
7π

[
π
2 |µ| − |µ| cos−1(|µ|)

+ 2
15

√
1− µ2 (4 + 9

2µ2 − µ4)
]

spherical-6 7 cos6 ϑL 7µ6
L

7
128(5 + 15µ2 − 5µ4 + µ6)

vertical 1
sin ϑ

L
δ(ϑL − 0) δ(µL − 1) |µ|

∗ = 3 cos2 ϑL meaning spherical-2

Gerstl and Zardecki (1985), Myneni et al. (1987), Shultis and Myneni (1988), Joseph et
al. (1996) and Dai and Sun (2006). Then, let the LND be distributed uniformly with
respect to ϕ

L
as expressed by gϕ(ϕ

L
) :=1 leading to

∫

[0, π
2
]

gϑ(ϑ
L
) sin ϑ

L
dϑ

L
=

∫

[0,1]

gµ(µ
L
) dµ

L
= 1

where it can be shown that gµ(µ
L
) = gϑ(cos−1(µ

L
)). This assumption is also usually made

by, e.g., Nilson (1971), Gerstl and Zardecki (1985), Shultis and Myneni (1988) as well as
Dai and Sun (2006). Then idealised LNDs are defined: purely horizontal and vertical
leaf normals, the planophile (mostly vertical normals), erectophile (mainly horizontally
oriented normals), extremophile (showing maxima for both vertical and horizontal nor-
mals) and the plagiophile LND (has its maximum for leaf normals with a zenith angle
of ϑ

L
= 45◦ in contrast to the extremophile LND). In the case of a uniform LND all

leaf orientations are equally probable. Table 1 presents analytical expressions for these
LNDs, and the remaining LNDs spherical(-1), spherical-2 to sphercial-6 (interpreting
the planophile distribution as spherical-2 ) of rather horizontal leaves were introduced as
prototype LNDs which with increasing exponent n in the terms (n + 1) cosn ϑ

L
of these

spherical-n LNDs progressively approach to the purely vertical LND.
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Figure 1: Coloured: Exact analytical expressions of the GFs after equation (6) as function of
µ for the commonly used standard LNDs of Table 1. Black to light-grey: Goudriaan’s (solid),
Dickinsion’s (dashed) and de Ridder’s (dotted) parameterisations of Gµ.

Using the LND g
L
6= f(x, t) the geometry function G (Ross-Nilson function) is defined by

G(y) :=
1

A(S+
1 )

∫

S+
1

| ey · ey
L
| g

L
(y

L
) do(y

L
) (5)

with the unit vector ez := z
‖z‖ in direction of z ∈ R3. The G-function (GF) is dimensionless

as well as positive. It is the total probability that the leaves are oriented perpendicular to
the radiation direction y and, thus, a measure for extinction. Using the parameterisations
(4) one can demonstrate that the GF,

G(y = ω̂(µ, ϕ)) =: Gµ(µ) , (6)

is independent of the azimuth angle ϕ of the radiation field for all LNDs of Table 1 which
also presents the according formulas of Gµ(µ). Note that Gµ(µ) can simply be deduced
for delta distributions as LND or in the uniform case (Nilson, 1971; Gerstl and Zardecki,
1985; Verstraete, 1987; Shultis and Myneni, 1988; Pinty et al., 2006, e.g.), but, in all
other cases the | ey · ey

L
| term under the integral sign in (5) leads to rather complicated

expressions, so that Gµ(µ) usually had to be computed numerically (Myneni et al., 1987,
1988b,d; Joseph et al., 1996; de Ridder, 1997; Pinty and Verstraete, 1998), or the vertical
and horizontal LNDs were combined to approximate more realistic LNDs (Gerstl and
Zardecki, 1985; Simmer and Gerstl, 1985). Further, analytical expressions for G were
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approximated from measurement data (Goudriaan, 1977; Dickinson et al., 1990) and ap-
plied widely (Sellers, 1985; Kimes et al., 1987; Dickinson et al., 1987; Pinty et al., 1990;
Liangrocapart and Petrou, 2002; Dai et al., 2004). The approach of de Ridder (1997)
improved these approximations (Figure 1), which is exact for the vertical, horizontal and
uniform LND.
Here, we present the exact analytical expressions of the GF for the standard LNDs (Table
1). These are plotted in Figure 1 together with Goudriaan’s, Dickinson’s and de Ridder’s
parameterisations. Firstly, one can learn from the exact expressions (coloured curves)
that GF must satisfy G ∈ [0, 1] and the curves of GF for the non-δ-distribution LNDs
run between the GF for the two extreme LNDs of purely horizontal and purely vertical
leaf normals represented by delta distributions, which are strongly different to the param-
eterised GFs of both Goudriaan and Dickinson (black to light-grey curves). Their GFs
become negative for |µ| → 0 for purely vertical leaf normals whereas the parameterisation
of Dickinson is closer to the exact GF (yellow graph). For purely horizontal leaf normals
Goudriaan’s approach overestimates the exact GF (darkest blue curve) less than Dickin-
son’s. For erectophile and planophile leaf normal orientations the GFs of Dickinson are
better approximations than Goudriaan’s in comparison to the analytical GFs. On the
other hand, de Ridder’s GFs are more realistic and exact for the horizontal, uniform and
vertical case.
It should be stressed that the GF has a significant effect on the transported radiation and
dominates the exponentially decaying single scattering term, which the radiative transfer
equation (10) later in this section demonstrates. Thus, small deviations in G can lead to
large errors in the simulated flux densities.

A further basic quantity in order to define the RTQs and determine the radiative transfer
in vegetation is the so-called leaf area density (LAD) u

L
(x, t) ≥ 0, which is a measure for

the probability that a leaf exists spatio-temporally and specifies its total one-sided leaf
area per volume of the host medium. Thus, u

L
has the unit m2

m3 = m−1. The larger the
LAD the more probable are interactions between the incident radiation and the leaves.
Therefore, the LAD is a measure for extinction. In the present work the LAD is assumed
to be horizontally homogeneous and independent of time, so that u

L
is only a function of

the vertical coordinate x3. From the LAD the leaf area index (LAI) L can be derived by

L = h−1
L

(x3) :=

∫

[x3,H]

u
L
(s) ds ≥ 0 (7)

where x3 ∈ [0, H] with the height of the vegetation H. The dimensionless L is a strictly
monotonic increasing function with decreasing altitude and can be regarded as the vertical
distribution of the leaf area per horizontal unit area. It acts as independent variable in
the radiative transfer equation for turbid vegetation media and is, thus, the analoguous
quantity to the optical depth τ in the radiative transport theory for atmospheric media.

With the help of the previous introductions the RTQs for turbid vegetation media can be
determined occuring in a respective radiative transfer equation (RTE). The definitions of
the RTQs as given next follow the work of, e.g., Ross (1981), Shultis and Myneni (1988),
Marshak (1989), Myneni et al. (1989) as well as Marshak and Davis (2005). All quantities
are considered to be horizontally homogeneous and time independent.
The extinction coefficient is defined by

ke(x3,y) := u
L
(x3) G(y)

being anisotropic and independent of wavelength.
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The scattering function fs and scattering coefficient ks are defined as

fs(x3,y |y ′, λ) :=
u

L
(x3)

A(S+
1 )

∫

S+
1

g
L
(y

L
) γ

L
(x3,y |y ′,y

L
, λ) do(y

L
) ,

ks(x3,y, λ) :=
u

L
(x3)

A(S1)

∫

S1

Γ(x3,y |y ′, λ) do(y ′) (8)

where A(S1) = 4πFo is the surface area of S1, and the vectors a and b mean the incident
as well as the exit direction of scattered radiation in the expression a |b. Further, γ

L

is the so-called leaf scattering function (LSF) representing a measure for the probability
that radiation of the wavelength λ is scattered from direction y into direction y ′ by a leaf
having the leaf normal direction y

L
. The scattering function and scattering coefficient are

strictly related to each other,

1

A(S1)

∫

S1

fs(x3,y |y ′, λ) do(y ′) = ks(x3,y, λ).

As a consequence, LSF γ
L

determines Γ via the integral relation

Γ(x3,y |y ′, λ) =
1

A(S+
1 )

∫

S+
1

g
L
(y

L
) γ

L
(x3,y |y ′,y

L
, λ) do(y

L
) , (9)

averaging the LSF over the leaf normal orientations g
L
. So, Γ is named orientation-

averaged leaf scattering function. From (8) and (9) one can deduce fs = u
L

Γ.
Leaves are usually considered as Lambertian diffusers (Myneni et al., 1988a,c,d; Dai and
Sun, 2006) and, thus, leaf scattering is described by the assumption of bi-Lambertian
scattering (Liang and Strahler, 1995; Gobron et al., 1997; Tian et al., 2007, e.g.) in terms
of

γ
L
(y |y ′,y

L
, λ) := k |α||α ′| ·

{
r

L
(λ) ∨ α α ′ < 0 reflectance

t
L
(λ) ∨ α α ′ > 0 transmittance

including the constant k, the hemispherical reflectance and transmittance of the individual
leaves r

L
(λ) and t

L
(λ) as well as the two cosines: the incidence cosine α and the exit cosine

α ′, defined by the scalar products

α( ′)(y( ′),y
L
) := 〈 y( ′)

‖y( ′)‖ ,
y

L

‖y
L
‖〉 ,

express the character of Lambertian scattering being the weaker the more the incident as
well as exit rays are inclined in direction to the leaf plane. The factor k can be obtained
taking energy conservation into account and this condition leads to the constraint

1

A(S1)

∫

S1

γ
L
(y |y ′,y

L
, λ) do(y ′) = |α(y,y

L
)| · (r

L
(λ) + t

L
(λ)).

Thereby, the amount of radiation scattered by a leaf (left side of the equation) has to be
equal to the incident fraction |α| multiplied with the hemispherically scattered portions
r

L
+ t

L
(right side) with the result of k = 4. Note that this simplyfied bi-Lambertian

scattering approach makes no difference between reflectance or transmittance at the upper
and lower face of the leaf elements, and r

L
as well as t

L
are considered to be independent

of altitude x3. Thus, Γ becomes independent of x3, too.
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Then, the single scattering albedo ωo = ks

ke
, the absorption density ka and the scattering

phase function P = fs

ks
can be calculated for a vegetation medium,

ωo(y, λ) =
G(y)−1

A(S1)

∫

S1

Γ(y |y ′, λ) do(y ′) ka(x3,y, λ) = u
L
(x3) G(y)

(
1− ωo(y, λ)

)

P (y |y ′, λ) =
Γ(y |y ′, λ)

ωo(y, λ) G(y)
=⇒ 1

A(S1)

∫

S1

P (y |y ′, λ) do(y ′) = 1.

The previously defined RTQs can be utilised to derive a radiative transfer equation (RTE).
We assume time independence, horizontal homogeneity and elastic scattering. Then, we
consider bi-Lambertian scattering and split the total radiance field J into its direct and
diffuse portions D and I. After substituting the independent vertical coordinate x3 in a
general RTE by L one obtains J(L,y, λ) = I(L,y, λ) + D(L,y, λ) δ(y − e

D
) and

y3

‖y‖
d

dL
I(L,y, λ) = G(y) I(L,y, λ)− 1

A(S1)

∫

S1

Γ(y ′ |y, λ) I(L,y ′, λ) do(y ′)

− 1

4π
Γ(e

D
|y, λ) Do(λ) exp

[
G(e

D
)

1
Co
〈e3, eD

〉 L

]
(10)

where e
D

is the direction vector of the direct (solar) radiation intruding into the vegeta-
tion from the atmosphere above, and the factor Do(λ) = D(0, e

D
, λ) means the radiance

at the top of the vegetation (TOV) with respect to the direction e
D

of the sun’s light.
The RTE (10) is fully determined via the functions γ

L
and g

L
as introduced above.

From equation (10) analytical two-stream equations can be deduced. Let

[f(y( ′))]±
( ′) :=

∫

S±1

f(y( ′)) do(y( ′)) 〈f(y( ′))〉±( ′) :=
[f(y( ′)) I(L,y( ′), λ)]±

( ′)

[I(L,y( ′), λ)]±
( ′) (11)

be average operators for an arbitrary RTQ f , being a function of the radiation directions
y( ′), with the diffuse radiance field I. The EFD and AFD from the equations (1) and (2)
can be split into their upward (+) and downward (−) parts E± as well as A± by

E(L, λ) =
[ y3

‖y‖ I(L,y, λ)
]

+

−
[
− y3

‖y‖ I(L,y, λ)
]
−

:= E+(L, λ)− E−(L, λ)

as well as

A(L, λ) = [I(L,y, λ)]
+

+ [I(L,y, λ)]− := A+(L, λ) + A−(L, λ).

Introducing the upward and downward diffusivity factors,

U±(L, λ) :=
〈
± y3

‖y‖
〉−1

±
∈ (1,∞) ,

one can relate the AFD and EFD by

A±(L, λ) = U±(L, λ) E±(L, λ). (12)

U± are functionals of the diffuse radiance distribution I.
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The operators (11) can now be applied to the RTE (10). Since the diffuse radiance
field I is unknown, we introduce the two-stream assumption that I let approximately
be isotropic leading to

〈f〉±( ′) =
[ f I ]±

( ′)

[ I ]±
( ′) ≈ [ f ]±

( ′)

2πFo

U+ ≈ U− := U(λ). (13)

Further, it is assumed that the bi-Lambertian leaf scattering properties r
L

and t
L

are each
equal for the both sides of a leaf. Finally, one can derive the following two-stream system
of first order ordinary differential equations with constant coefficients for the vector field
E(L, λ) = (E+(L, λ), E−(L, λ)),

d

dL
E(L, λ) =

(
α1(λ) −α2(λ)
α2(λ) −α1(λ)

)
· E(L, λ) + D(L, λ)

( −α3(λ)
α4(λ)

)
(14)

with

α1(λ) = U
(1

2
− B+

2πFo

)
⇐= B+(λ) =

1

A(S1)

[
[Γ(y ′ |y, λ)]

+

]′
+

α2(λ) = U
B−

2πFo

⇐= B−(λ) =
1

A(S1)

[
[Γ(y ′ |y, λ)]

+

]′
−

α3(λ) =
1

A(S1)
[Γ(e

D
|y, λ)]

+

α4(λ) =
1

A(S1)
[Γ(e

D
|y, λ)]−

D(L, λ) = Fo Do(λ) exp
[
G

D
L

]
⇐= G

D
=

Gµ(µ
D
)

µ
D

(µ
D

< 0) (15)

where the αi(λ) and G
D

can be calculated analytically for all LNDs of Table 1. Thus,
a class of two-stream energy flux density radiative transfer models is defined for various
canopies having leaf architectures of purely horizontal to purely vertical leaves. For the
shortwave wavelengths the solution of (14) can be written as

E(L, λ) = R+

(
1

C+

)
exp(k L) + R−

(
1

C−

)
exp(−k L) + E

D

(
D+

D−

)
exp(G

D
L) (16)

where k, R±, C±, D± and E
D

are functions depending on the wavelength λ and given by

k =
√

α2
1 − α2

2 E
D

= |µ
D
|Fo Do(λ) C± =

α2

α1 ± k

D+ =
α2 α4 + α3 (α1 + G

D
)

|µ
D
|(k2 −G2

D
)

D− =
α2 α3 + α4 (α1 −G

D
)

|µ
D
|(k2 −G2

D
)

F = (A
D

+ Ad D− −D+) E
D
exp(G

D
L

T
) K± = (1− Ad C±) exp(±k L

T
)

R− =
C+F + K+(D−E

D
− Ed)

C+K− − C−K+

R+ =
1

C+

(Ed −R−C− − E
D
D−).

The models’ input parameters are: the spectral surface albedos A
D

of the direct and Ad

of the diffuse radiation reflected isotropically into the upper hemisphere, the total LAI
L

T
= h−1

L
(0) of the canopy after equation (7), the direct and downward diffuse spectral

EFDs E
D

and Ed at TOV given as upper boundary conditions, which enables one to
consider various sky conditions above the canopy from clear to cloudy skies, further the
diffusivity factor U depending on the sky’s radiation field, too, and finally the cosine µ

D

of the solar zenith angle of the sun’s light as well as the leaf properties r
L

and t
L
.
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Using the two-stream solution (16) of the diffuse EFDs E±(L, λ) the corresponding diffuse
AFDs A±(L, λ) can be calculated with the help of the formulas (12) and (13). Since the
total downward radiation field not only consists of the diffuse portion, the direct part of
light has to be regarded leading to the total downward EFD and AFD calculated via

E−,t(L, λ) = E−(L, λ) + E
D
(λ) exp(G

D
L) ,

A−,t(L, λ) = U(λ) E−(L, λ) +
E

D
(λ)

|µ
D
| exp(G

D
L)

at an arbitrary altitude x3 = h
L
(L) within the canopy as function of the wavelength. In

order to characterise the fraction of radiation being reflected from or transmitted through
the vegetation medium the canopy reflectance (CR) Rc and transmittance (CT) Tc can
be defined,

Rc(λ) :=
E+(0, λ)

E−,t(0, λ)
=

E+(0, λ)

Ed(λ) + E
D
(λ)

Tc(λ) :=
E−,t(LT

, λ)

E−,t(0, λ)
=

E−,t(LT
, λ)

Ed(λ) + E
D
(λ)

, (17)

and will be investigated as function of the models’ input parameters in the following.
Note that equation (16) is the solution for a horizontally homogeneous vegetation medium
being homogeneous in the vertical direction, too. For vertically inhomogeneous media
(e.g. if r

L
and t

L
depend on altitude representing sunlit and shaded leaves) one can just

consider a certain number of such homogeneous layers where the according solutions have
to be coupled fulfilling continuity conditions at the layer boundaries.

3 Diffuse light transport in vegetation

Most of the authors assume completely isotropic radiance fields (Dickinson, 1983; Sellers,
1985). Such models can not deal with anisotropic ones within or above the medium,
e.g., the sky conditions above the canopy. Due to the diffusivity factor U(λ) occuring in
(15) as well as the direct and diffuse EFDs E

D
and Ed as upper boundary condition, our

two-stream methods can treat such situations which are defined for various LNDs (Table
1) and, thus, close the gap namely that ”effective methods to deal with cases as [...]
the distribution of incident sky radiation being anisotropic, or the leaves in the canopy
not being horizontal” are missing (Dai and Sun, 2006). Furthermore, we generalise the
treatment of the boundary conditions improving the limitations stated by Dai and Sun
(2006) that two-stream models could only describe isotropic overcast sky conditions.
In the following we will present a sensitivity study of our radiative transfer schemes as
function of the main input parameters: L

T
, µ

D
, E

D
and Ed at TOV, r

L
and t

L
, A

D
and Ad

as well as U in order to demonstrate the transport of diffuse radiation through vegetation
media for clear and overcast sky conditions.
Before doing this we have to note something about the diffusivity factor being important.
U of the atmosphere above the canopy is generally a function of solar zenith angle (SZA)
and wavelength. It depends on the vertical structure of the atmosphere containing gases
(Rayleigh scattering and absorption), aerosols (Ruggaber et al., 1993) and clouds reducing
direct light. It is influenced by the surface albedo (Cotte et al., 2004), too. Since the
presented radiative transfer models can deal with the incident direct and diffuse radiation
E

D
and Ed at TOV, which are related by the ratio

r
Dd

=
E

D

Ed

,

in order to describe realistic sky situations above the vegetation medium, we are able
to distinguish between clear sky (r

Dd
> 1) as well as cloudy sky (r

Dd
< 1) conditions.
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Therefor, U has to be determined at the bottom of the atmosphere. Following the works
of Landgraf (1998), Webb et al. (2002) and Kazadzis et al. (2004) one can conclude: For
cloudless skies characterised by r

Dd
∼ 2 the diffusivity factor shows values of ∼ 2 ranging

from 1.5 for small to 3.0 for large UV wavelengths. However, at overcast sky conditions,
represented by r

Dd
∼ 0.2 or even lower values, U is only a slight function of the wave-

length with values of ∼ 1.7. Therefore, we will use U(r
Dd

= 2.0) = 2.0 or 2.3 for clear
sky and U(r

Dd
= 0.2) = 1.7 for cloudy sky conditions. Note that this U , given for the

atmosphere above, is also assumed to be valid within the canopy in order to incorporate
the sky situations.
To study the transport of diffuse radiation we computed CR and CT after (17) for ultra-
violet (UV) and visible (VIS) wavelengths where the input parameters r

L
, t

L
, A

D
and Ad

were fixed to the representative values

r
L

= t
L

= 0.05 ,

A
D

= Ad = 0.1 (18)

within this spectral region following Bowker et al. (1985), Liangrocapart and Petrou
(2002) and Tian et al. (2007). The computations were performed considering the ratio
of direct and diffuse radiation r

Dd
as well as an incident energy of E

D
+ Ed = 1. Then,

the simulated upward and downward energy flux densities E+(L = 0) and E−,t(LT
) are

equivalent to Rc and Tc as one can deduce from (17).
Figure 2 shows CR (top) and CT (bottom) as function of the solar zenith angle in the
cases of cloudless (solid) and overcast (dashed) sky conditions above a canopy having a
total LAI of L

T
= 5.5 representing deciduous canopies as oak forests (Rauner, 1976). The

SZA ranges from ϑ
D

= 90◦ in the morning and evening (with µ
D

= 0) to ϑ
D

= 180◦ at
noon (with µ

D
= −1). First, the simulations demonstrate that the CR/CT calculated

by the RT models of the various LNDs vary stronger for clear skies (larger r
Dd

), since
the transport of direct light is strongly dominated by variations in the GFs (Table 1)
being significantly different for the several LNDs (Figure 1). The lower r

Dd
(overcast

skies), the smaller these differences of the LND models, and the vertical model represents
an asymptotic case. Second, the CR/CT decreases/increases with rising or setting sun
and CT changes over two orders of magnitude. Third, comparing clear and cloudy sky
conditions over the day the simulated CT of all models is always larger on a clouded day
in the morning and evening (µ

D
→ 0). Around noon (µ

D
→ −1) CT is only larger for the

models with nearly horizontal leaves (near-vertical models) as in the case of a deciduous
forest. For such vegetation canopies the portion of radiation reaching the bottom is always
larger over the day for overcast relative to clear atmospheres above the canopy. However,
LNDs of nearly vertical leaves can transmit a larger fraction of incident radiation on clear
sky days around noontime. This is due to the fact that direct light is transported more
effectively in downward directions by such distributed leaves for high positions of the sun.
Moreover, the simulations demonstrate that nearly vertical/horizontal leaves contribute
less/more to the CT at midday but more/less at the beginning as well as the end of
the day, and vice versa in the case of the CR. The limiting case, that all models of the
LND produce similar CRs/CTs under both clear and overcast sky conditions, occurs for
µ

D
∼ −0.57 (a SZA of ∼ 125 ◦). This is the same value for the cosine of the radiation

angle, at which the GFs for the various LNDs are approximately equal (Figure 1).
The (top) and (bottom) plates of Figure 3 depict the CRs and CTs as function of r

Dd

for two choices of the diffusivity factor, a mean daily SZA for mid-latitudes of 140 ◦ and
L

T
= 5.5 being representative for a typical deciduous forest as before. We distinguish

clear and cloudy sky conditions by setting the following parameter ranges:

• U ∼ 2.3 and r
Dd

> 1 for clear skies

• U ∼ 1.7 and r
Dd
¿ 1 for cloudy skies.
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Figure 2: (top/bottom) CR/CT in the UV/VIS for the LNDs of Table 1 as function of µD with
constant parameters after (18) and LT = 5.5 for deciduous forests. The solid lines represent
clear sky and the dashed ones cloudy sky conditions, see the main text.

28

Wiss. Mitteil. Inst. f. Meteorol. Univ. Leipzig Band 42(2008)



Figure 3: (top/bottom) CR/CT in the UV/VIS for the LNDs of Table 1 as function of r
Dd

with
constant parameters after (18) for a SZA of 140 ◦ as well as LT = 5.5 for deciduous forests. Two
diffusivity factors were chosen for clear sky (solid) and cloudy sky (dashed) conditions.
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Compare the solid curves for large values of r
Dd

(clear sky) with the dashed ones for a
low r

Dd
(overcast): The CR is always larger under cloudy sky conditions independent

on the LND model. While the CT only shows this behaviour for nearly vertical LNDs
(horizontal leaves), the nearly horizontal LND models can lead to higher CTs for clear
atmospheres due to the enhanced transmittance of direct light. As mentioned above the
deviations of the LND models are the smaller for overcast situations the larger the diffuse
fraction of radiation is, and vice versa, they increase for clear skies, the larger the portion
of the direct light component is.

4 Conclusions and outlook

The presented work reported on two-stream radiative transfer in a horizontally homoge-
neous turbid vegetation medium. Bi-Lambertian leaf scattering was assumed with leaf
optical properties (leaf reflectance and transmittance) being equal for both sides of the
planar model leaves. Their distributions were described by leaf normal distribution (LND)
functions which were adopted to be time and spatially independent. Two-stream radia-
tive transport equations were derived and solved analytically for various leaf architectures
considering LNDs from purely vertical to purely horizontal leaves. The according models
were driven by radiative energy flux densities, incident at the top of the vegetation, sep-
arating them into their diffuse and direct portions to take the sky conditions above the
canopy into account. At the bottom of the vegetation a typical soil albedo was consid-
ered. Further, the presented formulation of the two-stream solution allows one to consider
also anisotropic radiance fields by the introduction of the diffusivity factor. Thus, more
realistic situations of vegetation media fully coupled with the overlying atmosphere can
be treated more satisfactorily than previously possible.
The presented radiative transfer models for the various LNDs were used to calculate
canopy reflectances and transmittances. It turned out that the radiation regime depends
significantly on the LND and the sky conditions above the canopy, i.e. the ratio of direct
and diffuse light. For deciduous forests with predominantly horizontal leaves the canopy
transmittance was simulated to be larger on overcast than on clear sky days.
The LNDs as well as the leaf optical properties were considered to be independent of
space, because from an experimental point of view vertically resolved canopy proper-
ties are rarely available. If necessary, however, the presented two-stream theory can
be extended to approximately account for, e.g., vertically variable LNDs or leaf optical
properties to distinguish sun and shaded leaves. Moreover, specular leaf scattering can
be taken into account. Considering vertical structures the vegetation medium must be
layered homogeneously, and the analytical solutions for each of these layers have to be
coupled fulfilling continuity conditions at the layers’ interfaces. It should be emphasised
that, as a further step, the two-stream approach can also be applied in the case of such
layered media without to forfeit significantly their computational rapidness. Such more
complex analytical models can be used, e.g., for calculations of photosynthesis and photol-
ysis processes within deciduous forests as basis for simulations of atmospheric transport
processes within the vegetation or, in a broader context, for climate modelling.
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