
Establishing Agent Staffing Levels in

Queueing Systems with Cross-trained and

Specialized Agents

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Adindu Emelogu

c©Adindu Emelogu, May/2010. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

The determination of the right number of servers in a multi-server queueing system

is one of the most important problems in applied queueing theory. The problem

becomes more complex in a system that consists of both cross-trained and special-

ized servers. Such queueing systems are readily found in the call centres (also called

contact centres) of financial institutions, telemarketing companies and other orga-

nizations that provide services to customers in multiple languages. They are also

found in computer network systems where some servers are dedicated and others are

flexible enough to handle various clients’ requests. Over-staffing of these systems

causes increased labour costs for the underutilized pool of agents on duty, while

under-staffing results in reduced revenue from lost customers and an increase in

queue times. The efficient design and analysis of these systems helps management in

making better staffing decisions. This thesis aims to develop models for establishing

agent staffing levels in organizations with cross-trained and specialized staff with a

view to minimizing cost and maintaining a desirable customer satisfaction. The work

investigates the effect of various traffic loads on the number of agents required and

the cost. It also considers how using specialized agents, flexible agents and a combi-

nation of both categories of agents affects the system. It uses a contact centre that

has agents with monolingual, bilingual and trilingual (English, French and Spanish)

capabilities to do the study.

ii

Acknowledgements

Glory be to God whose love, mercy and goodness endure forever! I use this

opportunity to thank my supervisor, Dr Winfried Grassmann, for his painstaking

guidance, financial support and genuine encouragement in the course of this research.

Without his help, I would not have been able to successfully produce this thesis.

I thank the members of my committee, Dr Eric Neufeld and Dr Grant Cheston,

whose thoughtful insights and constructive comments on this thesis were indispens-

able. In the same vein, I thank the external examiner, Dr Keith Willoughby, for

patiently reading my thesis and providing useful suggestions.

I would also like to appreciate the effort of the graduate correspondent, Ms Jan

Thompson, who was always ready to give me useful pieces of advice. My thanks

goes to all the faculty of the department for imparting a great knowledege to me,

the staff members for providing selfless service and my fellow graduate students for

making my experience in the department very memorable.

My special thanks is reserved for my dear family and friends. Their prayers, love

and support were instrumental to the accomplishment of this research.

iii

This thesis is dedicated to my lovely parents, Deacon and Mrs Stephen O. Eme-

logu.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Agent Cross-training in Queueing Systems 2
1.2 Research Goals . 4
1.3 Organization of Thesis . 5

2 Literature Review of Contact Centres and Agent Cross-training 6

3 Queueing Models and Optimization Problems 14
3.1 The Queueing Models . 14

3.1.1 Two-category customer model 14
3.1.2 Three-category customer model 15

3.2 Motivations . 16
3.3 The Optimization Problem . 17
3.4 The Optimization Model . 21
3.5 Solution Methods and Description of Tools 22

3.5.1 Möbius . 25
3.5.2 A Sample Queueing Model Solution in Möbius 27
3.5.3 Queueing Model Solution in Eqsp 30
3.5.4 Queueing Model Analytical Solution 31

4 Experiment Setup and Methodology 38
4.1 Two-Customer Category Cost Ingredients and Experiments 41

4.1.1 Two-Customer Category with Equal Arrival Rates 43
4.1.2 Two-Customer Category with Different Arrival Rates 44

4.2 Three-Customer Category Experiments 45
4.2.1 Three-Customer Category with Equal Arrival Rates 46
4.2.2 Three-Customer Category with Different Arrival Rates 47

v

5 Results 49
5.1 Two-Customer Category: Equal Arrival Rates, Equal Agent Cost and

Varying Service Rates . 49
5.2 Two-Customer Category: Different Arrival Rates, Varying Service

Rates and Equal Agent Cost . 51
5.3 Two-Customer Category: Equal Arrival Rates, Equal Service Rates

and Varying Agent Cost . 52
5.4 Two-Customer Category: Different Arrival Rates, Varying Agent Cost

and Equal Service Rates . 53
5.5 Three-Customer Category: Equal Arrival Rates, Equal Agent Cost

and Varying Service Rates . 55
5.6 Three-Customer Category: Different Arrival Rates, Varying Service

Rates and Equal Agent Cost . 58
5.7 Three-Customer Category: Equal Arrival Rates, Equal Service Rates

and Varying Agent Cost . 60
5.8 Three-Customer Category: Different Arrival Rates, Varying Agent

Cost and Equal Service Rates . 62

6 Summary, Conclusion and Future Work 64
6.1 Summary . 64
6.2 Conclusion . 65
6.3 Future Work . 66

References 67

A An M/M/c/K Solution Documentation in Möbius 69

vi

List of Tables

3.1 MES Description of an M/M/c/K Queue 30

vii

List of Figures

3.1 An M/M/c/K Atomic Model . 28
3.2 State Transition Diagram of an M/M/c/K Queue 31

4.1 The Queueing Model Framework . 40

5.1 Agent Utilization and System Cost: λA = λB, S1 = S2 50
5.2 Optimal Agent Mix: λA = λB, S1 = S2 51
5.3 Optimal System Cost: S1 = S2 . 51
5.4 Agent Utilization and System Cost: λA > λB, S1 = S2 52
5.5 Optimal Agent Mix: λA > λB, S1 = S2 53
5.6 Agent Utilization and System Cost: λA = λB, µ1 = µ2 54
5.7 Optimal Agent Mix: λA = λB, µ1 = µ2 54
5.8 Optimal System Cost: µ1 = µ2 . 54
5.9 Agent Utilization and System Cost: λA > λB, µ1 = µ2 55
5.10 Optimal Agent Mix: λA > λB, µ1 = µ2 56
5.11 Agent Utilization and System Cost: λA = λB = λC , S1 = S2 = S3 . . 58
5.12 Optimal Agent Mix: λA = λB = λC , S1 = S2 = S3 58
5.13 Optimal System Cost: S1 = S2 = S3 59
5.14 Agent Utilization and System Cost: λA > λB > λC , S1 = S2 = S3 . . 60
5.15 Optimal Agent Mix: λA > λB > λC , S1 = S2 = S3 60
5.16 Agent Utilization and System Cost: λA = λB = λC , µ1 = µ2 = µ3 . . 61
5.17 Optimal Agent Mix: λA = λB = λC , µ1 = µ2 = µ3 62
5.18 Optimal System Cost: µ1 = µ2 = µ3 62
5.19 Agent Utilization and System Cost: λA > λB > λC , µ1 = µ2 = µ3 . . 63
5.20 Optimal Agent Mix: λA > λB > λC , µ1 = µ2 = µ3 63

A.1 An M/M/c/K Atomic Model Solution Documentation 73
A.2 An M/M/c/K Performance Variables Solution Documentation 75

viii

List of Abbreviations

SAN Stochastic Activity Networks
RAN Recorded Announcement
TSF Telephone Service Factor

ix

Chapter 1

Introduction

Queueing systems arise readily in the industrial world whenever there is a con-

gestion of traffic. Congestion may result from limited server resources and irregular

client arrival patterns. There is the need to keep these systems orderly and efficient.

Queueing theory has emerged as a well developed branch of applied probability the-

ory that addresses issues in queueing systems.

The earliest systematic study of queueing systems can be credited to Danish

mathematician Agner Krarup Erlang, the father of queueing theory. The publica-

tion of his pioneering work The Theory of Probabilities and Telephone Conversation

in 1909 marked the beginning of this field of study [10]. Erlang’s work in 1917 [4]

contained formulae for loss and waiting time, which are now well known in the theory

of telephone traffic. His work paved the way for the early application of queueing the-

ory in the design and study of automatic telephone exchange in telecommunication

industry. Subsequently, and as technological and mathematical methods developed,

queueing theory began to find a wide range of applications in other areas such as

manufacturing, marketing, military, health, government and computer networks. It

is very likely that this interdisciplinary branch of knowledge which cuts across math-

ematics, statistics, operations research and computer science will continue to develop

and be used to solve most of the queueing problems arising in client-server situations.

Some examples of queueing situations are people waiting to vote in an election,

patients waiting to receive medical treatment in a hospital, cars waiting at booths

in a toll plaza, programs waiting to be processed by a digital computer, customers

waiting to place an order in the call center of a telemarketing company and packets

waiting to be transmitted to a destination in a high-speed computer communication

1

network [7]. In all the cases, customers (people and jobs) are waiting to be served by

servers or agents. The determination of the number of voting machines at elections,

number of beds in a hospital, number of booths at a toll plaza to reduce traffic delays,

number of processors to be made available in the computer and number of operators

in a telephone system are some practical examples of agent-staffing problems often

encountered in queueing systems.

In some of the systems, the customers may be heterogeneous, giving rise to more

than one category of customers. Each category will require service from a server

with the appropriate skill. There are situations where the servers are dedicated in

which case they can only serve customers from a given category. In other situations,

where some servers are cross-trained and flexible, they have the multi-skills required

to serve customers from more than one category. In a call center, for example, agents

can be trained to attend to customers in English, French or Spanish. Actually, it

might not be feasible in real life situations to cross-train all agents due to cost, quality

penalties, excessive stress and lack of flexible agents. The approach is therefore to

have a mix of specialized, partially cross-trained and fully cross-trained servers. In

this case, finding the optimal mix of these server categories to minimize cost and at

the same time ensure that many customers do not balk or spend much time waiting

in queues becomes very challenging. This thesis, therefore, aims to establish the

staffing level in queueing systems that have specialized and flexible servers.

1.1 Agent Cross-training in Queueing Systems

Cross-training is a strategy used in queueing systems to achieve flexibility of servers

in the face of variability. It involves equipping a server with more than one skill

or combining two or more servers with different skills in the same department or

team. In each case, the cross-trained server or the pooled team is able to give

service to more than one customer type. Therefore, cross-training helps to increase

the workforce agility in queueing systems. Cross-training servers helps to cope with

variability issues in the queueing system. Variability can arise from customer arrival

2

rate fluctuations, service time variation, scheduling difficulties, waiting and balking

characteristics. An increase in variability always results in a degradation of queueing

system performance. Queueing systems with variability must be buffered by some

combination of keeping customers on hold and building agent capacity. In human-

based servers, flexible workforce capacity achieved from cross-training, skill-based

routing and efficient scheduling are combined to reduce the effects of variability and

improve the performance of the queueing system. The goal of cross-training is to

reduce poor system performances like excessive congestion, poor service level, long

waits and high abandonment. Cross-training also enables workers to develop a broad

skill and experience base.

There are two basic components of cross-training architecture: the skill set design

and the agent co-ordination or routing component. The skill set design determines

how the agents are cross-trained. The agents could be specialized, overlapped (par-

tially cross-trained) and fully cross-trained (fully flexible). In our study, we will

combine the three categories.

The agent coordination component controls the scheduling mechanism and how

customers are routed to the agents. This could be first-come-first-served (FCFS),

queue/task priority, longest queue or longest wait scheduling principle. The right

scheduling mechanism reduces capacity imbalance where some workers are over-

utilized and some task-types are overstaffed. In our study, we will also combine

these scheduling mechanisms appropriately.

In a queuing system where there are n categories of customers, each requiring a

distinct type of service, there usually are various server types to meet the demands of

the customers. If we assume that some servers are specialized, some partially cross-

trained and others fully cross-trained, we will have a pool of servers where some are,

for example, monolingual, bilingual or multi-lingual in capability.

Given n customer types, the maximum number of pools of i-lingual servers pos-

sible in the system is
(
n
i

)
pools. The maximum number of pools of servers when

n customer types are involved is given as
n∑
i=1

(
n
i

)
or 2n − 1, n > 0. For exam-

ple, consider a system with 3-customer types in English, French and Spanish. We

3

can have the following pools of servers: English-servers, French-servers, Spanish-

servers, English-French-servers, English-Spanish-servers, French-Spanish-servers and

English-French-Spanish-servers. This means three pools of unilingual servers, three

pools of bi-lingual servers and one pool of trilingual servers, giving a total of seven

pools.

When the maximum number of pools of servers are used, a customer in a system

with n categories of customers has a choice of
n−1∑
i=0

(
n−1
i

)
or 2n−1 server-types for ser-

vice, n > 0. For example, consider an English customer and a system where there

are maximum number of pools of servers in four languages, English, French, Spanish

and Chinese. The customer can receive service by an English-server, English-French-

server, English-Spanish-server, English-Chinese-server, English-French-Spanish-server,

English-French-Chinese-server, English-Spanish-Chinese-server or English-French-Spanish-

Chinese-server. This gives a total of 1+3+3+1 = 8 options.

It is noted that as the number of customer categories increases in a queueing

system, the number of possible agent-pools that can be formed as well as the number

of server-type options available for customer service increases geometrically. As a

result, it may be difficult in practice, especially in human server systems, to find a

situation where all the possible pools are employed for large categories of customers.

For example, when a system consists of ten categories of customers, the number of

server pools increases dramatically to 1023. Similarly, the number of server options

available to a customer if all the pools are employed increases to 512.

1.2 Research Goals

The goal of this research is to seek a way of establishing the right staffing level in a

queueing system with a combination of specialized, partially cross-trained and fully

cross-trained agents in order to minimize cost. We propose to adapt it to a contact

center where agents can attend to customers in three languages: English, French and

Spanish. We will try to answer the following research questions in this work:

Is there any benefit to system performance of introducing cross-trained agents

4

when each of the customer categories has the same arrival rate? If yes, to what

extent?

How do uneven traffic loads of the customer categories affect the staffing level in

such queueing systems and what is the effect on cost?

1.3 Organization of Thesis

Chapter 1 gives the introduction to queueing systems and agent cross-training. Chap-

ter 2 contains a literature review on contact centers, agent cross-training and finding

the right number of servers. Chapter 3 describes our queueing models and optimiza-

tion problems. It also contains a brief description of Möbius and Eqsp which are

important tools that we will use in the study. It includes a simple sample queueing

problem and how the tools are used to measure certain system performances. Our

experiments are described in chapter 4, while chapter 5 gives the results of the ex-

periments. We give the conclusion and possible areas of interest for future work in

chapter 6.

5

Chapter 2

Literature Review of Contact Centres

and Agent Cross-training

Several studies have been done to improve the design and management of queue-

ing applications such as contact centres. A problem of particular interest is finding

the right number of servers in queueing systems. Establishing an optimal staff level in

a real-world queueing system makes such a system efficient and cost effective. Over-

staffing results in an underutilization of the agents, and a resultant increase in the

total cost of the system. On the other hand, under-staffing leads to long queues, long

waits, loss of customers and the breakdown of agents. One practice of interest asso-

ciated with queueing systems is cross training in which a staff member is equipped

to serve more than one customer type. Agent cross-training helps to improve staffing

and scheduling flexibility by making available many chances for matching agents to

customers. This also reduces the total number of agents needed to handle a given call

load. The design step in agent cross-training determines which agents are trained to

handle which customer types, whereas the control step determines which customers

are dynamically assigned to agents.

Mandelbaum [13] compiled a fairly complete list of academic publications on call

centers. There are over 200 publications, arranged chronologically within subjects,

each with its title, authors, source, full abstract and keywords.

In 1993, Stanford and Grassmann [19] presented a bilingual server system in a

queueing model featuring fully and partially qualified servers. They slightly modified

this work in [20] for a call centre providing service to a pool of customers with

distinct service requirements: some simple, which can be rendered by all servers,

6

and some specialized (available only from cross-trained servers). In this study, the

cross-trained servers are bilingual and so are able to serve customers in both the

majority and minority language groups, while the specialized ones are monolingual

and can only serve the majority language customers. The authors applied matrix

geometric solutions to determine the minimum number of bilingual servers needed to

achieve a satisfactory service for both language groups. Our work is similar to this

because it can be applied to call centres. However, ours is an extension to trilingual

server systems and uses economic optimization to derive results.

Andrews and Parsons [2] used economic optimization to establish the telephone-

agent staffing levels in a telemarketing company. Their work provided an insight into

some of the cost factors that are relevant in order-taking systems. However, they

did not study a company with a mix of dedicated and cross-trained agents. Their

model had an objective function with three expected-total-cost ingredients: (1) the

cost of lost orders, (2) the cost of queueing time, and (3) the loaded cost of direct

labour.

Andrews and Parsons found that an economically optimal level occurs at the

point where the sum of all the three factors is at a minimum, provided that the

service-level objective or the telephone service factor (TSF) is met. They used an

expected-total-cost minimization algorithm to generate a variable-TSF staffing level

as opposed to a fixed-TSF. They formulated the estimated economic impact of TSF

service levels on the expected net profit from sales during each staffing period of

thirty minutes as:

the expected lost net profit from telephone orders during staffing period = (the

expected number of calls per staffing period) * (the expected percent of calls generating

orders) * (the average value of a permanently lost order) * (the expected percent of

calls abandoned at the TSF service-level) * (the probability that a first abandonment

is permanently lost).

The abandonment rate is obtained by regressing the predicted variable, abandon-

ment rate against the independent variable, TSF which transforms TSF percentages

into corresponding abandonment rate percentages.

7

The expected queuing cost during staffing period = (the expected number of calls

per staffing period) * (the fraction of calls that went beyond a recorded announcement,

RAN) * [(the expected queue time | queue time > RAN) - RAN] * (the average cost

of connect time).

The expected labor cost during staffing period = (the number of agents on duty)

* (the average loaded-wage per staffing period).

The model assumes a given average work time for the operators during the half

hour period to identify the optimum number of telephone agents required to cover a

given number of calls expected during a half-hour staffing period. They applied their

model and expected-total-cost minimization algorithm to L.L. Bean [2], a company

that uses a total of about 900 part-time and full-time workers in its telemarketing op-

erations, to generate a half-hourly economically optimal staff levels. They found that

the overall estimated savings realized by using the variable-TSF approach instead of

the fixed-TSF approach was considerable.

Bevilacqua Masi et al [3] analyzed the performance of a virtual call center con-

sisting of a network of two stations. They defined two routing rules (external and

internal) for this network, and used matrix-geometric techniques to derive the steady-

state joint probability distribution for the number of customers at each station for

each of the routing rules. The internal-rule configuration switches a customer to an

alternate station after arrival at a primary station, based on server and other resource

availability. The external-rule configuration switches a customer to an alternate sta-

tion but only at arrival to the network contingent upon certain server availability

conditions. The routing rules give us an idea of how to schedule our clients if the spe-

cialized servers are busy and there are two cross-trained server categories available

for service.

The authors modeled the external routing rule system in such a way that an ar-

riving customer joins a preferred queue among m single-server queues. However, the

customer is re-routed to a shorter queue at arrival time if the number of customers,

N1, at the preferred queue is greater than or equal to some k, and the number of

customers, N2, at the alternate queue is less than k. In other words, if N1 > k and

8

N2 < k the call is re-routed but not if N1 > N2 > k. When N1 = k it becomes a

shortest queue rule.

In the internal routing rule system, there are s connecting lines between the

two stations allowing calls to be switched between the stations after arrival. A

customer arrives directly to either station 1 or 2 depending on the number dialed.

If all the servers in the original (primary) dialed station are busy, the automatic

call distributor places the customer in the corresponding queue and questions both

stations continuously for an idle server. The customer at the head of the queue is re-

routed to the other station if a server becomes available at the other station and the

line between the stations is available before a server becomes available at the original

station. They assumed Poisson arrivals for the calls and exponentially distributed

service times for the servers. They experimented for s = k = 1. They stated that the

internal-rule system seems to utilize servers more efficiently than the external-rule

system because of the longer time interval available for switching to the alternate

station. In the case of the external-rule, since switching occurs only at arrival time,

they concluded that there is a high probability of an idle server when a customer is

queued. They established that the expected number of calls in external-rule systems

is generally greater than that of internal-rule systems, and that for a multi-server

system, sufficient connecting lines are needed in the internal-rule scheme to yield

superior performance.

Chevalier et al [5] applied the theory of overflow analysis to derive an approxima-

tion for loss probabilities in a call center with specialized and cross-trained operators.

Their model considered a call center serving N classes of calls, where N represents

the number of different types of requests coming from customers. Each operator is

able to answer one, several or all classes of calls. The model defined the following:

the set C of all types of calls where |C| = N ; the set M of operator pools where

m ∈ M is a pool of operators that can answer a set of Cm of calls with Cm ⊆ C ;

pm = |Cm| the number of different call types the operators of pool m can answer;

Sm the number of operators in pool m and µm the mean service rate of operators

in pool m. Calls are routed to the operators on a hierarchical flow basis in which

9

calls are first directed to specialized (1-polyvalent) pool of operators. If these servers

are busy, the calls are routed to a 2-polyvalent, a 3-polyvalent pool of operators and

so on until service is obtained. If all the consecutive servers are busy, the call is

lost. They made the following assumptions for their model: each call type, c, arrives

according to a Poisson distribution with parameter λc ; the arrivals of the different

classes of calls are independent; the service time distribution is exponential with

the mean service duration for operators in pool m given as 1/µm (service rate only

depends on the pool the call is handled and there is no service rate function of the

call type); the call type is known before it enters the system, and lastly, calls do not

wait for service (if a call finds all servers busy, it is lost and cleared from the system).

Our model is very similar to the above model except that in our case, calls wait for

service in a finite buffer until the buffer is full. It is when the buffer is full that an

arriving call is lost.

They used simulation results from a call center that processes three types of

calls to evaluate the quality of the proposed loss probability approximations. They

found that when the arrival rates are high, the advantage of employing cross-trained

operators decreases. In our study, besides the loss probability analysis, we will

consider the cost to the system. We will try to find ways of mixing the staff in order

to reduce the loss probability and optimize the total cost of the system.

Shumsky [17] looked into the approximation and analysis of a call center with

flexible and specialized servers. Specifically, he presented a decomposition algorithm

that estimates the performance of a call center that has only two server categories

and two types of customers, A and B, each arriving according to a Poisson process

with rates λA and λB respectively. There are NA specialists who only serve type

A customers, and NF flexible severs who may serve either type. Regardless of the

customer type, the service times are exponentially distributed and the mean service

rates of specialist and flexible servers are µA and µF respectively. The queue dis-

cipline is such that type A customers prefer to visit A specialists, but will visit a

flexible server if all specialists are busy. Flexible servers give non preemptive pri-

ority to type B customers. The model assumes that the service time distribution

10

depends on the servers and not on the customer type. The stability conditions are

λB < NFµF and (λA + λB) < (NAµA + NFµF). The system is represented by a

two-dimensional Markov process with states (X1, X2) where X1 represents the total

number of A-customers in queue or in service with an A-specialist, and X2 represents

the sum of B-customers and the number of customers of either type in service with

a flexible server.

Instead of finding the steady state probabilities P (X1 = i,X2 = j) directly,

he divided the state space into four regions, two for each of the state space’s two

dimensions. The state space for the state variable X1 is divided into two regions

(X1 ≤ NA) and (X1 > NA). For X2, the state space is divided into regions X2 < NF

and X2 ≥ NF . They claimed that this approach reduces the computation complexity.

The following approximations form the heart of his algorithm:

P (X1 = i|X2 = j) ≈ P (X1 = i|X2 < NF), X2 < NF (2.1)

P (X1 = i|X2 = j) ≈ P (X1 = i|X2 ≥ NF), X2 ≥ NF (2.2)

P (X2 = j|X1 = i) ≈ P (X2 = j|X1 ≤ NA), X1 ≤ NA (2.3)

P (X2 = j|X1 = i) ≈ P (X2 = j|X1 > NA), X1 > NA (2.4)

He applied the model to a local utility’s telephone call center where customers

who can only see flexible servers are given priority for those servers. He compared

his approximations with matrix geometric methods in terms of the average time in

queue for the customers.

Tekin et al [21] studied the pooling strategies for call center agent cross-training.

They focused mainly on the design step in agent cross-training which determines the

agents that are trained to handle what customer types. Their model represented

a departmental structure call center where the agents are divided into groups such

that each customer is unambiguously assigned to a single department. The customer

type to department assignment is one-to-one if the agent is dedicated (specialized)

or many to one if the agent is cross-trained (flexible). They considered the impact

of pooling, namely combining two or more departments into a larger department

11

with the agents in the pooled department cross-trained to handle all of the types

of those departments. They investigated the effect of various system parameters

such as arrival rates, mean service rates, variability in service times and the number

of agents on the pooling decisions of how many departments to pool and which

departments to pool. Since it might not be feasible in real life situation to cross-

train all agents due to cost, quality penalties, excessive stress and lack of flexible

agents, they recommended partial pooling scenarios. In partial pooling systems only

some of the departments are pooled, while others continue to function as dedicated

departments.

The authors specifically considered a call center with N dedicated departments

and sought to pool k ≤ N departments into larger departments so as to minimize

the average waiting time of customers in queue. In this case, the call center services

N customer types and since the system has a departmental structure, customer type

i is served by an agent in department i, i = 1, 2, , N . They assumed that customer

type i arrives according to a Poisson process with mean λi, and requires a service

time drawn from an independent identically-distributed sequence with mean Ti and

squared coefficient of variation v2i . Department i has ci servers. Hence, they modeled

the initial system as N M/G/c queues in parallel. The pooling of the queues defined

by set K is the merging of the k = |K| departments in set K by cross-training all

servers in the pooled departments to handle all customer types in K. The interest

was in determining which k departments to pool in order to achieve the largest

reduction of average customer waiting time Wi, i = 1, 2, ..., N . They also assumed

that the original system is stable, which requires ρi = λiTi/ci < 1, i = 1, 2, ..., N .

They found that when mean service times differ greatly, pooling departments with a

high ratio of mean service times may actually result in worse performance than not

pooling, even if with very high utilization.

Grassmann [7] described useful methods of finding the right number of servers

in a deterministic model, infinite server model and the equilibrium model. The so-

called square-root formula for finding the optimal number of servers was originally

suggested by Halfin and Whitt [11]. In the deterministic model and the infinite

12

server model, Grassmann randomized the model parameter R = λ/µ where λ is the

arrival rate and µ is the service rate. This allowed him to deal with uncertain fore-

casts and queues in which the arrival rates vary over the day. In the deterministic

setting, cost is minimized if the number of servers is set to the average traffic flow,

R = λ/µ, rounded to the next higher integer. In systems involving humans where

the utilization of the human servers should not exceed a given percentage a, Grass-

mann established that the number of servers should be at least 100R/a. Linder [12]

observed that human servers cannot operate effectively at utilizations approaching

100 percent.

13

Chapter 3

Queueing Models and Optimization Prob-

lems

3.1 The Queueing Models

For the purpose of our study, we consider two queueing systems. The first model has

two categories of customers and the second model has three categories of customers.

3.1.1 Two-category customer model

Our first queueing model considers a case where there are two categories of customers:

customer type A and customer type B. The service agents are specialized or cross-

trained. The specialized agents can attend to customers from only one category.

Flexible agents can attend to customers from two categories. In other words, A-

agents can serve only category A customers, B-agents can serve only category B

customers, and A-B-agents can serve both type A and type B customers. Customers

are served on a first-come, first-served basis. An arriving customer prefers to be

served by an appropriate specialized server. If all the specialized servers are busy,

the customer will be served by a flexible server. For example, a type A customer

prefers to be served by an A-agent or an A-B agent in that order. When a flexible

server becomes available, it chooses the longest-waiting customer from the category

that has the longer queue. If the queues are equal at this time, it chooses from

each queue with equal chance. Type A customers arrive at the rate of λA and

type B customers arrive at the rate of λB. Service times depend on the server that

a customer is routed to and not on the customer type that is being served. The

14

specialized agents serve customers at the rate of µ1 and cross-trained agents serve

at the rate of µ2. All arrival times and service times are exponential. Furthermore,

there is a queue of size QA for type A customers and a queue of size QB for type B

customers. A customer that arrives when the queue is full balks and is lost.

An example of this queueing system is one where, for example, there are cus-

tomers that want service in English and customers that want service in French.

There are monolingual agents (specialized servers) who can speak either English

only or French only, and bilingual agents (cross-trained servers) who can speak both

languages. An arriving customer prefers to be served by a monolingual agent. If all

the monolingual agents that can serve him are busy, he is served by a bilingual agent.

If all the bilingual and monolingual servers are busy and the queue for their language

is not full, he waits in the queue. If the queue is full, he is lost. We investigate the

combination of specialized and cross-trained agents that will result in the optimal

performance of the system. In other words, we assess the effects (costs and benefits),

if any, of cross-trained agents on system performance measures.

3.1.2 Three-category customer model

In our second model, we introduce an extra category of customers into the system.

For example, customers that want service in Spanish. We investigate if there is

any significant improvement on system performance of introducing trilingual agents.

Here, we consider a queueing system where there are three categories of customers:

customer type A, customer type B and customer type C. The service agents are

specialized, partially flexible (partially cross-trained) or fully flexible (fully cross-

trained). The specialized agents can attend to customers from only one category.

Partially cross-trained agents can serve customers from only two categories, and fully

flexible agents can attend to customers from all three categories. In other words,

A-agents can serve only category A customers, B-agents can serve only category

B customers, C-agents can serve only category C customers, A-B-agents can serve

both type A and type B customers, A-C-agents can serve both type A and type C

customers, B-C-agents can serve both type B and type C customers, and A-B-C-

15

agents can serve all three customer types. Customers are served on a first-come,

first-served basis. An arriving customer prefers to be served by an appropriate

specialized server. If the servers are busy, the customer will be served by a partially

flexible server. If these two server categories are busy, the customer is served by

a fully flexible server. For example, a type-A customer prefers to be served by an

A-agent, an A-B/ A-C agent or an A-B-C agent in that order. When a partially

flexible server becomes available, it chooses the longest-waiting customer from the

category that has the longer queue. If the two queues are equal at this time, it

chooses from each of the queue with equal chance. When a fully cross-trained server

becomes available, it chooses the longest-waiting customer from the category that

has the longest queue. If all the queues are equal, it chooses from each queue with

equal chance. Type-A customers arrive at the rate of λA, type B customers arrive

at the rate of λB and type C customers arrive at the rate of λC . The specialized

agents serve customers at the rate of µ1, partially cross-trained agents serve at the

rate of µ2 and fully cross-trained agents serve at the rate of µ3. Service times are

server-dependent and do not depend on the type of customer that is being served.

All arrival times and service times are exponential. Furthermore, there is a QA finite

queue size for type-A customers, QB queue size for type-B customers and QC queue

size for type-C customers. Any customer that arrives when the queue is full balks

and is lost.

3.2 Motivations

The need to cope with variation issues and obtain satisfactory performance measures

in queueing systems has necessitated an increase in interest in the efficient design and

management of these systems. Contact centers proliferate in the global economy, and

are among the various queueing systems that consist of specialized and cross-trained

operators. Agent cross-training is a practice that is usually employed to improve

staffing and scheduling flexibility by making available more chances for matching

agents to customers, and reducing the total number of agents needed to handle a

16

given call load. The design step in agent cross-training determines which agents are

trained to handle which customer types, whereas the control step determines which

customers are dynamically assigned to agents.

A performance analysis tool is important in comparing the performance of various

system configurations, and it helps management in making staffing optimization

decisions. The performance of a contact center, for example, can be measured in

terms of several metrics such as the mean waiting time, the mean service time, the

loss probability, and the joint distribution of each customer type in the system.

Our model is simple enough to enable us to compute these performance measures.

Besides, theoretical tools and software exist to help us in the analysis of our model.

Furthermore, it is not difficult to modify the model to represent other systems. For

example, it can be applied to computer network systems where some servers are

dedicated and others are flexible to handle various clients’ requests.

3.3 The Optimization Problem

The basic form of optimization is to identify the alternative ways of achieving a

given objective and then to select the alternative that accomplishes the objective in

the most efficient manner, subject to constraints on the ways. The problem is to

optimize the value of an objective function, subject to any resource and/or other

constraints such as legal, input, environmental, and behavioral restrictions.

Basic economic decision analysis involves determining the action that best achieves

a desired goal or objective. This means finding the action that optimizes the value of

an objective function. For example, in a production problem, one may want to find

the combination of resources that minimizes cost. In a price-output decision-making

problem, the goal may be to determine the output level that maximizes profits. In

the case of our study, the optimization problem involves finding the combination

of agent categories that minimizes the cost of a queueing center while satisfying

some system performance requirement constraints. These constraints include not

exceeding a given level of client loss, line length and mean waiting time.

17

Mathematically, we can represent an optimization problem as:

Optimize

y = f(x1, x2, ..., xn) (3.1)

subject to

gj(x1, x2, ..., xn)


≤

=

≥

 bj j = 1, 2, ...,m (3.2)

where equation 3.1 is the objective function and equation 3.2 constitutes the set of

constraints imposed on the solution. The xi variables, x1, x2, ..., xn, represent the set

of decision variables, and y = f(x1, x2, ..., xn) is the objective function expressed in

terms of these decision variables. As indicated in equation 3.2, each constraint can

take the form of an equality (=) or an inequality (≤ or ≥) relationship. Depending

on the nature of the problem, the term optimize means either maximize or minimize

the value of the objective function. The task of maximization and minimization are

trivially related to each other, since one person’s function f could just as well be

another person’s -f.

There are various techniques for solving optimization problems. Some of them

include:

• Differential calculus

• Search methods

• Lagrange multipliers method

• Mathematical programming methods

Each method has the class of optimization problem to which it is best suited. The

simplest situation is the unconstrained optimization problem. In an unconstrained

optimization problem, no constraints are imposed on the decision variables and so

18

there is no equation 3.2 attached to the optimization problem. Two classes of prob-

lems can be identified here [16], one in which the information about the derivative of

the function to be optimized is known and one in which the derivative is not known.

For the latter, the Golden Section Search Method and the Successive Parabolic In-

terpolation Method are used when the function is a one-variable function [14]. The

Nelder-Mead (also called Downhill Simplex Method) is used for multidimensional

objective functions.

When the derivative is known, the Newton’s method, Steepest Descent (also

called the Gradient Search Method) and the Conjugate Gradient Search method can

be used.

Another form of optimization problem is one in which all the constraints of the

problem can be expressed as equality (=) relationships. In this case, it can be shown

that the optimal point must lie on the boundary of the feasible region. According

to Foulds [6], the Lagrangian multipliers method and the Jacobian method can be

used to solve this type of problem.

When the constraints in an optimization problem take the form of inequality

relationships (≤ or ≥) rather than equalities, as is often the case, mathematical

programming techniques are used to solve such class of problems. Mathematical

programming techniques include:

Linear Programming: In a linear programming problem, both the objective func-

tion and the constraint relationships are expressed as linear functions of the decision

variables.

Integer Programming: Here, some or all of the decision variables must assume

integer values.

Quadratic Programming: In quadratic programming problems, the objective

function or the set of constraints is expressed as a quadratic function of the decision

variables.

Algorithms are available for solving optimization problems that meet these re-

quirements.

There are some factors that can make optimization problems fairly complex and

19

difficult to solve, and sometimes render them unsolvable by formal optimization

procedures.

One such complicating factor is the existence of multiple decision variables in a

problem. An optimization problem that has just two decision variables can easily be

solved by graphing the constraints. As the number of decision variables increases, the

dimensionality and the complexity of analysis increase. In manufacturing industries,

relatively simple procedures exist for determining the profit-maximizing output level

for the single-product firm. However, the typical medium-size or large-size firm

often produces a large number of different products, and as a result, the profit-

maximization problem for such a firm requires a series of output decisions. This

means one output decision for each product.

Another factor that may add to the difficulty of solving a problem is the complex

nature of the relationships between the decision variables and the associated outcome.

For example, in public policy decisions on government spending for such items as

education, it is extremely difficult to determine the relationship between a given

expenditure and the benefits of increased income, employment, and productivity it

provides. No simple relationship exists among the variables. In our study, we need

to keep the objective function relatively simple and ensure that only situations where

a relationship could be established between the decision variables and the outcome

variable are considered.

A third complicating factor is the possible existence of one or more complex

constraints on the decision variables. For example, virtually every organization has

constraints imposed on its decision variables by the limited resources—such as cap-

ital, personnel, and facilities—over which it has control. In our study, there is a

finite buffer size and there is also a limit to the number of agents that could be

hired, and at the same time we want to achieve desirable system performance with

these constraints. Such constraints must be incorporated into the decision problem.

Otherwise, the optimization techniques that are applied to the problem may yield a

solution that is not feasible and is therefore unacceptable from a practical standpoint.

Another complicating factor is the presence of uncertainty or risk. Analyzing

20

decision making problems when the outcome of each action is known with certainty

is simpler than analyzing decisions involving risk and uncertainty.

3.4 The Optimization Model

For simplicity, we consider the following cost ingredients in the system:

SL, cost due to the loss of customers when the queue is full

SW , cost due to customers waiting in the queue when all the servers are busy

S1, cost of a specialized agent per time unit

S2, cost of a partially cross-trained agent per time unit

S3, cost of a fully cross-trained agent per time unit

We also define SG, cost of employing agents over the work period as

SG = S1n1 + S2n2 + S3n3 (3.3)

where ni is the number of agents used in each category of agents. Therefore, the

total system cost to be optimized is given as TC = SL + SW + SG.

We make the reasonable assumption that S1 ≤ S2 ≤ S3. This assumption is true

in real life because it is easier, for example, to find agents that can speak only one of

English, French or Spanish than those that can speak all three. We also assume that

the cost of all specialized agents are equal; that the cost of all partially cross-trained

agents are equal and that the cost of all fully cross-trained agents are equal. In order

to demonstrate this principle in our study, we assume the sample costs S1 = 10

dollars, 22 dollars for the cost per lost customer and 3 dollars for the cost of a unit

time waited in the queue by a customer.

A similar reasoning is true for the service rate of the agents. In this case, let:

Service rate of a specialized agents, µ1

Service rate of a partially cross-trained agent, µ2

Service rate of a fully flexible agent, µ3

Then, µ3 ≤ µ2 ≤ µ1. This assumption is likely to be true because due to constant

practice and specialization, a dedicated agent is likely to be faster than a flexible

21

agent. We also assume that the expected service times of all specialized agents are

equal; that the expected service time of all partially cross-trained agents are equal

and that the expected service time of all fully cross-trained agents are equal.

3.5 Solution Methods and Description of Tools

We give an introduction to the methods of solution that we will use in solving the

queueing problems. We also describe the basic tools of Möbius [15] and the Eqsp

package [9], which we will use in obtaining and analyzing solutions. The optimization

problem will be solved by applying cost minimization techniques using simple search

methods to select the best agent mix.

Queueing problems in particular and stochastic problems in general can be an-

alyzed by analytic methods, numerical methods and Monte Carlo simulations [8].

Analytical methods use explicit formulas to express the relationship between the

variables of a model. Simple formulas are ideal but are usually not available for

many classes of queueing problems. When analytical methods are available, they

yield an exact solution to a problem. Complex formulas that form the basis of an

algorithm may be beneficial especially if they yield simple results. However, they

may be very hard to deal with if many variables are involved.

In numerical methods, one does not need to know the underlying mathematical

theories and details involved in a complex algorithm before performing experiments.

One fixes all the input parameters of the model to certain values and calculates

probabilities, appropriate distributions and expectations of interest. The iterative

method is an approach that can be applied in numerical methods. In numerical

computational mathematics, an iterative method attempts to solve a problem (for

example, finding the root of an equation or system of equations) by finding succes-

sive approximations to the solution starting from an initial guess and improving the

solution. However, some analytical results obtained from numerical methods could

be inefficient when the desired solution requires a long time to converge. The solu-

tions obtained are only accurate to a degree of tolerance specified. In obtaining the

22

stationary probability vector from either the stochastic transition probability matrix

or from the infinitesimal generator, the only operations in which the matrices are

involved are multiplications with one or more vectors, or with preconditioners. These

operations do not alter the form of the matrix, and result in compact storage schemes

and low memory requirement. This approach is in contrast to direct methods, which

attempt to solve the problem by a finite sequence of operations, and, in the absence

of rounding errors, would deliver an exact solution (like solving a linear system of

equations Ax = b by Gaussian elimination). However, the elimination of nonzero

elements of the matrix during the reduction phase often results in the creation of

several nonzero elements in entries that previously contained zeros. The resulting

fill-in makes compact storage difficult and may require exhaustive memory usage.

Iterative methods are usually the only choice for nonlinear equations. Itera-

tive methods are often useful even for linear problems involving a large number

of variables (sometimes of the order of millions), where direct methods would be

prohibitively expensive (and in some cases impossible) even with the best available

computing power. The direct method for solving Markov chains has a computa-

tional complexity of the order O(n3), where n is the number of states. The iterative

method has an order of complexity of about O(n2), which makes a huge difference in

computational speed when large problems are involved. The sparsity of the matrices

generated by such large problems which often occur in real life makes the iterative

methods faster and more preferable than the direct method. For this reason Möbius

[15] which uses the iterative method is more efficient than Eqsp in multi-dimensional

problems.

In simulation, one randomly selects a large number of outcomes, and for each

outcome, evaluates the system response. Probabilities and other measures of inter-

est are estimated by averaging all selected outcomes. For stochastic problems that

are mathematically intractable and where there is no known mathematical formula

or underlying theory, simulation can be the last resort. Even for problems that

are mathematically tractable but whose solution may be cumbersome and time-

consuming, simulation can often provide a higher level of detail than can other

23

techniques. Simulation is the preferred method of conducting experiments which in

real life would be very risky and costly in physical and political respects. The com-

putational time complexity in simulation increases only linearly with the number of

states, making it more efficient than the numerical method when analyzing large and

complex stochastic systems.

However, it is difficult to develop cause-and-effect relationships through simu-

lation, especially when the system under consideration requires the specification of

many input parameters and involves complex interactions. The statistical analysis

of simulation results is difficult because many questions are involved. What is the ef-

fect of the starting conditions of the simulation on the final results? How many data

points should be disregarded as reflecting primarily the starting conditions and not

the long-term characteristics of the simulated system? In the course of a parametric

analysis, have we discovered a local or a global optimum set of operating conditions?

What is the statistical confidence that can be attached to the results? To reduce the

confidence interval by a factor k, one needs to increase the computational effort by a

factor of k2. Like all empirical techniques, it is easy to underestimate the resources

needed to develop, validate and run a simulation model. It is therefore expensive to

obtain very accurate results by simulation.

The models present us with a queueing problem and optimization problem. The

queueing problem will be solved using solutions to Markov chain models. The so-

lution to the queueing problem will yield such performance measures like queue

length, line length, loss probability and server utilization when various combination

of agents are used. Möbius is the available software tools that we will use. We

use Eqsp to confirm the results obtained in Möbius. Basically, each of these tools

employs analytical methods based on continuous time Markov chains (CTMC) to

obtain probability solutions. For equilibrium solutions, Möbius uses the steady-state

iteration method whereas Eqsp uses the direct method. For transient solutions they

use the randomization method (also called uniformization method).

24

3.5.1 Möbius

Möbius is a software tool developed by William Sanders and his PERFORM team at

the University of Illinois at Urbana-Champaign. Möbius is currently being applied

by a wide range of users to study the performance and dependability of systems.

It is one of the most important tools that we will be using in our study. Möbius

uses the stochastic activity network (SAN) approach which is a stochastic extension

to Petri nets, otherwise known as the generalized stochastic Petri net. Invented in

1962 by Carl Adam Petri, a Petri net is a non-timed, formal, graphical, executable,

mathematical modeling tool used for the specification and analysis of concurrent,

discrete-event dynamic systems. It consists of places, transitions and arcs that con-

nect them. Input arcs connect places with transitions, while output arcs start at a

transition and end at a place.

Using graphical primitives, stochastic activity networks provide a high-level mod-

eling formalism with which one can specify the performance and dependability of a

system. SANs consist of four primitive objects: activities, places, input gates, and

output gates .

Activities represent actions of the modeled system. There are two types of ac-

tivities: timed and instantaneous. Timed activities have durations that impact the

performance of the modeled system, such as the service time of a customer, a packet

transmission time or the time associated with a retransmission timer. Timed activ-

ities are represented graphically as thick vertical lines. Each timed activity has an

activity time distribution function associated with its duration. Activity time dis-

tribution functions can be generally distributed random variables. Each distribution

can depend on the marking of the network. For example, one distribution parameter

could be a constant multiplied by the marking of a certain place. Instantaneous

activities represent actions that complete immediately when enabled in the system.

They are represented graphically as thin vertical lines.

Places represent the state of the modeled system. Each place is represented

graphically as a circle that contains a certain number of tokens, which represents

25

the marking of the place. The set of all place markings represents the marking

of the stochastic activity network. The tokens in a place are homogeneous, and

as such, only the number of tokens in a place is known. Consequently, there is no

identification of different kinds of tokens within a place. The meaning of the marking

of a place is arbitrary. For example, the number of tokens in a place could represent

a number of objects, such as a number of tasks awaiting service. Alternately, the

number of tokens in a place could represent an object of a certain type, such as a

task with a certain priority level. This dual nature of a place marking provides a

great deal of flexibility in modeling the dynamics of a system.

Case probabilities, represented graphically as circles on the right side of an ac-

tivity, model uncertainty associated with the completion of an activity. Each case

stands for a possible outcome, such as a routing choice in a network, or a failure

mode in a faulty system. Each activity has a probability distribution, called the case

distribution, associated with its cases. This distribution can depend on the marking

of the network at the moment of completion of an activity. If no circles are shown

on an activity, one case is assumed to have a probability of one.

Input gates control the enabling of activities and define the marking changes that

will occur when an activity completes. They are represented graphically as triangles.

On one side of the triangle is a set of arcs to the places upon which the gate depends,

also called input places. Each input gate is defined with an enabling predicate and a

function. The enabling predicate is a Boolean function that controls the enabling of

the connected activity. It can be any function of the markings of the input places.

The default scenario of the input gate is when a place is directly connected to an

activity with an arc. This situation is equivalent to an input gate with a predicate

that enables the activity whenever the place has more than zero tokens along with a

function that decrements the marking of the place whenever the activity fires. When

an activity fires it means that it has taken place.

Output gates define the marking changes that will occur when activities complete.

Unlike the input gate, the output gate is only associated with a single case. An output

gate is represented graphically as a triangle with its flat side connected to an activity

26

or a case. On the other side of the triangle is a set of arcs to the places affected by

the marking changes. An output gate is defined only with a function. The function

defines the marking changes that occur when the activity completes.

There is also a default scenario for output gates. If an activity is directly con-

nected to a place, it is equivalent to an activation in which an output gate has a

function that increments the marking of the place whenever the activity is fired.

3.5.2 A Sample Queueing Model Solution in Möbius

In Möbius, the basic building blocks of a large and complex model are the atomic

models. The atomic sub-models are combined in order to construct the whole model.

After combining the sub-models, the next step is to define a set of measures of interest

on the model. Finally, the values of these measures are computed using a selected

solution method. One can also investigate how these values are affected by a change

in the model parameters. In this sub-section, we use Möbius to model a simple

M/M/c/K queueing problem. While we go through the solution, we will describe

the essential features, models and frameworks of Möbius, including:

• Atomic Models

• Composed Models

• Reward Models

• Study Models

• State space Generation Models

• Solution techniques

An M/M/c/K queue is a birth-death multi-server model in which customer ar-

rivals are Poisson, the service times are exponentially distributed and there is a finite

buffer size. Here, K stands for the maximum number of customers allowed in the

system. Therefore, K − c is the buffer size.

27

We start by building the atomic model. Möbius supports the use of SAN formal-

ism to build atomic models.

Figure 3.1: An M/M/c/K Atomic Model

Figure 3.1 is the graph of the atomic model. It consists of an input gate and an

output gate represented with triangles, a place (buffer) represented by a circle, two

thick vertical lines representing timed-activities (arrival and service) and intercon-

necting lines .

Two or more atomic models can be combined to form a composed model. A

composed model links sub-models together and allows them to interact when they

have a shared state variable. Our simple example has only one atomic model and so

a composed model is not necessary.

Reward models are used to specify performance measures on atomic and com-

posed models. Möbius implements a performance variable (PV) type of reward

model. A performance variable can be specified to be measured at an instant of

time, in steady state, be accumulated over a period of time, or be time-averaged

over a period of time. In our example, we consider steady state solutions. Our

reward performance measures of interest could be the occupancy of the system, the

utilization, the average response time and the loss probability. Once the rate and

impulse rewards are defined, we can specify the desired statistics on the measure.

The options include solving for the mean, variance, or distribution of the measure,

or for the probability that the measure will fall within a specified range.

In the study model, we assign values to the variables. During the specification

of atomic, composed, and reward models in Möbius, global variables can be used to

28

parameterize model characteristics. A global variable is a variable that is used in one

or more models, but not given a specific value. Models are solved after each global

variable is assigned a specific value. In this example, the global variables include

ArrivalRate, ServiceRate, num−server and BUF−SZ. One such assignment forms

an experiment. Experiments can be grouped together to form a study. In one

experiment, we let the maximum number that can be in the system, K = 5, an

arrival rate of 4.0 per hour, a service rate of 3.0 per hour and a server number of 3.

Two classes of solution techniques exist in Möbius: discrete event simulation and

state-based, analytical techniques. The analytical options include transient solutions

and steady-state solutions. Any model specified using Möbius may be solved using

simulation. Only the models that have exponentially distributed delays, or have no

more than one concurrently enabled deterministic delay can be solved using analytic

techniques applied to a generated state space. We prefer analytical solutions to sim-

ulations because analytical solutions give more accurate results of the performance

measures.

The first step in analytic solution with the Möbius tool is the generation of a

state space, done by the state-space generator. The state-space generator may be

employed on any Möbius model. This allows the state-space generator to be generic,

so it need not understand the semantics of a model on which it is operating. Once

the state space is generated, an analytical method is then employed to solve for the

required performance variables. In our example, K + 1 = 6 states are generated.

This means that there could be 0, 1, 2, 3, 4 or 5 customers in the system at any

point in time.

The model is finally solved using the iterative steady state solver to generate

results for the performance variables. Refer to the Appendix for the documentation

of the solution of this model.

Möbius supports two modes of discrete event simulation: transient and steady

state. In the transient mode, the simulator uses the independent replication tech-

nique to obtain statistical information about the specified reward variables. In the

steady-state mode, the simulator uses batch means with deletion of an initial tran-

29

Table 3.1: MES Description of an M/M/c/K Queue

Event Effect On Rate Condition

X1

Arrival +1 λ X1≤ K − 1

Service1 -1 µ ·X1 X1≤ c− 1

Service2 -1 µ · c X1≥ c

sient to solve for steady-state, instant-of-time variables. Estimates available during

simulation include mean, variance, interval, and distributions. Confidence intervals

are computed for all estimates. The simulator may be executed on a single worksta-

tion, or distributed on a network of workstations.

3.5.3 Queueing Model Solution in Eqsp

We can as well solve the above queueing model example in Eqsp, a program developed

by Grassmann. We check if we can get the same results in Eqsp as in Möbius. We

start by describing the model as a Markovian Event System (MES). This shows us

an event, its effect on the system variables, the conditions for which the event occurs

and the rate of occurrence. We notice that more events are needed to describe the

system than are needed in Möbius. This arises from the fact that an activity in

Möbius that can occur from more than one condition is split into a number of events

in Eqsp equal to the number of conditions.

Table 3.1 shows the description of the M/M/c/K queueing model. The system

has only one variable, X1 which represents the number of customers in the system.

We set an initial restriction to this variable such that it cannot be less than zero.

There are three events associated with the system. Arrival, Service1 and Service2.

Arrival increases the state variable X1 by 1 at rate λ. The other events, Service1

and Service2 decrease X1 by 1. However, the rate at which they occur depends

on the state value of X1. In Möbius, these two events are combined into one and

the rates are specified in the rate function environment. We solved the model with

30

the parameters λ = 4, µ = 3, c = 3 and K = 5. This generated 6 states and 10

transitions. The measures we calculated were the expected value of X1, the joint

distribution and the marginal distributions. The results match the ones we obtained

when we used Möbius. Exp(X1) = 1.39213, P rob(X1 = 0) = 0.2583376, P rob(X1 =

1) = 0.3444501, P rob(X1 = 2) = 0.2296334, P rob(X1 = 3) = 0.1020593, P rob(X1 =

4) = 0.0453597, P rob(X1 = 5) = 0.0201599. However, it is not advisable to use the

Eqsp package in problems that generate large state spaces because for such problems

it implements a method that is slower than the one used by Möbius.

3.5.4 Queueing Model Analytical Solution

Mathematical formulas for calculating the steady state probabilities and other mea-

sures of interest in M/M/c/K queues have been derived in many operations research

textbooks and literature that discuss queueing models, such as in [1] and [18].

The state transition diagram of an M/M/c/K queue is given in Figure 3.2.

Figure 3.2: State Transition Diagram of an M/M/c/K Queue

In a birth-date process, the steady sate probabilities are obtained by solving the

iteration:


pn+1 = λn+µn

µn+1
pn − λn−1

µn+1
pn−1 (n ≥ 1)

p1 = λ0
µ1
p0

(3.4)

and

p2 =
λ1 + µ1

µ2

p1 −
λ0
µ2

p0 (3.5)

31

=
λ1 + µ1

µ2

λ0
µ1

p0 −
λ0
µ2

p0

=
λ1λ0
µ2µ1

p0 (3.6)

p3 =
λ2 + µ2

µ3

p2 −
λ1
µ3

p1 (3.7)

=
λ2 + µ2

µ3

λ1λ0
µ2µ1

p0 −
λ1
µ3

λ0
µ1

p0

=
λ2λ1λ0
µ3µ2µ1

p0 (3.8)

and so on.

We can see that the emerging pattern is thus:

pn =
λn−1λn−2...λ0
µnµn−1...µ1

p0, (n ≥ 1) (3.9)

= p0
n∏
i=1

λi−1
µi

(3.10)

where pi, (0 ≤ i ≤ n) is the probability of having i customers in the system.

We can state µn as follows: if there are more than c customers in the system, all

the c servers are busy and each is serving at a mean rate of µ, and the mean system

output is cµ. When there are fewer than c customers in the system, n < c, only n

of the c servers are busy and the system output will be nµ. Therefore, we can write

the statement for µn as

µn =


nµ; (0 ≤ n < c)

cµ; (c ≤ n ≤ K)

(3.11)

Noting the fact that λn = λ for all n as expressed in the coefficients,

λn =


λ; (0 ≤ n < K)

0; (n ≥ K)

(3.12)

32

, we can utilize equation 3.10 and equation 3.11 to determine the steady state prob-

abilities in an M/M/c/K queue as follows:

pn =


λn

n!µn
p0 (0 ≤ n < c)

λn

cn−cc!µn
p0 (c ≤ n ≤ K)

(3.13)

In order to get p0, we must use the boundary condition
K∑
n=0

pn = 1, which gives

p0

[
c−1∑
n=0

λn

n!µn
+

K∑
n=c

λn

cn−cc!µn

]
= 1 (3.14)

Let us define r = λ/µ, and ρ = r/c = λ/cµ, then we can rewrite the above

equation as

p0

[
c−1∑
n=0

rn

n!
+

K∑
n=c

rn

cn−cc!

]
= 1 (3.15)

Hence,

p0 =

[
c−1∑
n=0

rn

n!
+

K∑
n=c

rn

cn−cc!

]−1
(3.16)

Also, let us consider the series

K∑
n=c

rn

cn−cc!
=
rc

c!

K∑
n=c

(
r

c
)n−c (3.17)

=
rc

c!

K−c∑
i=0

(
r

c
)i (3.18)

=


rc

c!
1−ρK−c+1

(1−ρ) , (r/c = ρ 6= 1)

rc

c!
(K − c+ 1), (ρ = 1)

(3.19)

Then, we can write p0 as

33

p0 =



1/
[
c−1∑
n=0

rn

n!
+ rc

c!
(1−ρ

K−c+1

1−ρ)
]
, (r/c = ρ 6= 1)

1/
[
c−1∑
n=0

rn

n!
+ rc

c!
(K − c+ 1)

]
, (r/c = ρ = 1)

(3.20)

We can derive the measures of effectiveness for the M/M/c/K queue such as the

expected queue size, Lq, the expected line length, L the expected waiting time in

queue, Wq and the expected waiting time in line, W . In order to derive Lq, we only

consider the pn’s when all the servers are busy, n ≥ c.

By definition,

Lq =
K∑
n=c

(n− c)pn (3.21)

=
p0
c!

K∑
n=c

(n− c)rn

cn−c

=
p0(cρ)cρ

c!

K∑
n=c

(n− c)ρn−c−1

=
p0(cρ)cρ

c!

K−c∑
m=1

mρm−1

=
p0(cρ)cρ

c!

d

dρ

[
1− ρK−c+1

1− ρ

]

=
p0(cρ)cρ

c!((1− ρ)2

[
1− ρK−c+1 − (1− ρ)(K − c+ 1)ρK−c

]
(3.22)

For ρ = 1 we apply L’Hôpital’s rule twice to equation 3.22.

In order to obtain the expected line length, L, we recall equation 3.21,

Lq =
K∑
n=c

(n− c)pn

=
K∑
n=c

npn − c
K∑
n=c

pn

=
K∑
n=0

npn −
c−1∑
n=0

npn − c
K∑
n=c

pn

34

= L−
c−1∑
n=0

npn − c
(

1−
c−1∑
n=0

pn

)

= L−
c−1∑
n=0

(n− c)pn − c

Therefore,

L = Lq + c−
c−1∑
n=0

(c− n)pn (3.23)

or

L = Lq + c− p0
c−1∑
n=0

(c− n)(ρc)n

n!
(3.24)

We can use Little’s formula to obtain the expected values for waiting times, W

and Wq as follows:

W = L/λ′, λ′ = λ(1− pK)

and Wq = W − 1/µ

or Wq =Lq/µ
′

In our simple example λ = 4, µ = 3, c = 3 and K = 5. Working to 4 decimal

places, r = λ/µ = 4/3 = 1.3333, ρ = r/c = 1.3333/3 = 0.4444.

We use equation 3.20 to find p0, thus,

p0 = 1/
[
c−1∑
n=0

rn

n!
+ rc

c!
(1−ρ

K−c+1

1−ρ)
]
, since r/c = ρ 6= 1)

= 1/
[
3−1∑
n=0

1.3333n

n!
+ 1.33333

3!
(1−0.4444

5−3+1

1−0.4444)
]

= 1/
[

2∑
n=0

1.3333n

n!
+ 2.3702

6
(1−0.0878

0.5556
)
]

= 1/ [1 + 1.3333 + 0.8888 + 0.6486]

= 1/3.8707

p0 = 0.2584

We can now use equation 3.13 to find the remaining p′ns, thus

p1 = (1.3333 ∗ 0.2584)/1

p1 = 0.3445

p2 = (1.33332 ∗ 0.2584)/2!

35

p2 = 0.2297

p3 = (1.33333 ∗ 0.2584)/3!

p3 = 0.1021

p4 = (1.33334 ∗ 0.2584)/(31 ∗ 3!)

= 0.8166/18

p4 = 0.0454

p5 = (1.33335 ∗ 0.2584)/(32 ∗ 3!)

= 1.0888/54

p5 = 0.0202

These results correspond with the ones we got for Prob(X1 = 0), P rob(X1 =

1), P rob(X1 = 2), P rob(X1 = 3), P rob(X1 = 4) and Prob(X1 = 5) in Möbius and

Eqsp.

Now using equation 3.21 we can find the expected queue length, Lq.

Lq =
K∑
n=c

(n− c)pn

=
5∑

n=3
(n− 3)pn

= (0 ∗ 0.1021) + (1 ∗ 0.0454) + (2 ∗ 0.0202)

Lq = 0.0858

In order to obtain the expected line length, L, we recall equation 3.24,

L = Lq + c− p0
c−1∑
n=0

(c−n)(ρc)n
n!

= 0.0858 + 3− 0.2584(
3−1∑
n=0

(3−n)(3∗0.4444)n
n!

)

= 3.0858− 0.2584(
2∑

n=0

(3−n)(1.3332)n
n!

)

= 3.0858− 0.2584(3 + 2.6664 + 0.8887)

= 3.0858− 0.2584(6.5551)

L = 1.3920

36

Again, this corresponds with the value of Exp(X1) obtained in Möbius and Eqsp.

37

Chapter 4

Experiment Setup and Methodology

The experiments are planned to establish the optimal staffing levels and the

recommended mix of agents in systems with specialized and flexible agents. The

experiments are designed to address the following research questions:

Is there any benefit to system performance of introducing cross-trained agents?

If yes, to what extent?

In order to answer this question, we first consider a system with only specialized

agents and measure its performance and cost in terms of the cost of the hired agents

at work, lost customers and customers waiting in queue. We then remove one special-

ized agent at a time and introduce a flexible agent and compare the resulting system

performance and cost. If the system is more efficient in overall performance and cost

with the introduction of flexible agents then there is a benefit. In the two-category

customer model there are no partially cross-trained servers. A server is either spe-

cialized or fully flexible. In the three-category customer model, however, there are

partially cross-trained servers. These are agents who can speak two languages.

Since the cost of hiring a flexible agent is higher than that of hiring a specialized

agent and given that there is a limit to the total number of agents we can have at work

at any given time, we envisage that there is likely a point at which the introduction

of any more flexible agents deteriorates the efficiency of the system. We watch out

for the point at which this situation occurs. The combination of servers that yields

a comparatively low cost becomes the desired staffing level. We investigate this for

both the two-category customer model and three-category customer model.

How is the staffing level in such queueing systems affected when there is an

unevenness in the traffic load of the system? What is the effect on cost? In order to

38

answer this question, we use distinct arrival rates for each of the customer categories.

In other words, we conduct experiments where λA 6= λB 6= λC and investigate if there

is a significant effect on the system cost and agent-staffing patterns. Specifically, we

will consider the case where λA > λB > λC or λA < λB < λC .

The experiments for determining system performance measures of probability of

lost customers, mean number of customers in queue and waiting time of customers

is conducted in Möbius. Figure 4.1 shows the framework for the Stochastic Activity

Network of a three-customer category model. Möbius provides an easy way of reduc-

ing the framework to a two-customer category model when one assigns a parametric

value of zero to the arrival rate of one of the customer streams, λC = 0. Similarly,

by assigning a value of zero to the arrival rates of two of the customer streams such

that λB = 0 and λC = 0, the framework is reduced to a one-customer category

model which, obviously, is the single M/M/c/K queue model. Furthermore, it is

possible to expand the framework to study systems where there are more than three

categories of customers. In this case, one needs to appropriately introduce more

gates, places and activities properly interconnected by arcs. The agents— special-

ized, partially cross-trained and fully cross-trained are represented with circles which

are called “places” in Möbius. The thin vertical lines show instantaneous activities

which means that there is no time delay when, for example, a customer moves from

the queue to a server. Refer to pages 25 - 28 for the explanation of the graphical

symbols.

We reasonably assign labour cost to each category of agents. We also allocate

cost to each lost customer and each unit time waited in the queue by a customer. We

then calculate the total system cost, TC . Using the optimization model, we minimize

this cost.

39

Figure 4.1: The Queueing Model Framework

40

4.1 Two-Customer Category Cost Ingredients and

Experiments

Obviously, there are various factors that can affect cost in a queueing system. The

cost arising from the loss of customers, SL, is the major cost factor in the system,

because in most establishments it is the customers that buy goods and services and

generate revenue for the firm. The revenue obtained, among other things, is used to

remunerate the agents that work in the establishment. In order for the company to

make profit, revenue should be more than the expenses incured. When a customer

is lost, the revenue that should have been generated by this customer is lost and this

is the cost of the lost customer. In this study, we let the cost of loss be 22.00 dollars

per customer lost.

Another cost ingredient that can be considered is SW , the wait cost or the cost

due to customers waiting in the queue. The wait cost can impact on the reputation

of the organization if the customers have to wait too long before receiving service.

In competitive environments, the establishment can lose clients to other competitors

due to customer dissatisfaction arising from long waits. Management usually will set

a wait time threshold to ensure that customers do not wait too long before receiving

service. In any case, the cost assigned to a customer waiting in the queue per unit

time should only be a small fraction of the cost of losing a customer per unit time.

In some circumstances where the service obtained is worth the wait, it might not be

necessary to assign a waiting cost to the system. Thus, we can assume a zero wait

time cost in such situations. Generally, the cost assigned to a customer lost per unit

time is more than the cost associated with a customer waiting in the queue per unit

time. For the purpose of this study, we assign a waiting cost of 3.00 dollars for a

unit time waited by a customer in queue.

The cost of agents is another important cost ingredient in queueing systems. It

is one of the factors that can help us to determine if cross-trained agents can be

used in such systems. The availability of cross-trained agents, their wages or cost

41

of hiring and their service rate when compared with their specialized counterparts

are important factors to consider when making agent-employment decisions. If the

cost of hiring flexible servers is excessively high and their service rate is excessively

low, using specialized servers will give lower cost and better system performance.

Conversely, if the cost of hiring a cross-trained agent and a specialized agent is

about the same or their service rates are almost equal, then there may be benefits

of employing cross-trained agents. In practice, it is most likely that the cost of

employing a cross-trained agent is higher than the cost of employing a specialized

agent, S1 ≤ S2 ≤ S3, because it is easier to find agents that can speak only one

of English, French and Spanish than those that can speak all three. Similarly, the

service rate of a specialized agent is most likely higher than that of a cross-trained

agent, µ3 ≤ µ2 ≤ µ1, because due to constant practice and specialization, a dedicated

agent is likely to be faster than a flexible agent. We note that the wages of the agents

per time unit S1, S2 and S3, should also be less than the cost of losing a customer

per time unit in an effort to ensure that the system is not running on a huge loss.

However, one can keep S1 = S2 = S3 and consider µ3 < µ2 < µ1 and check the

benefits of cross-training. This is possible because management can bargain to place

all agents on equal wage.

It is also possible to keep µ3 = µ2 = µ1 and assume S1 < S2 < S3. In this case,

the service rate of all agents are equal and cross-trained agents are more expensive

than specialized agents. Due to the difference between the cost of a cross-trained

agent and a specialized agents our guess is that there may be some points where

hiring cross-trained agents are not beneficial. We will investigate the benefits of

cross-training in this scenario.

If S1 = S2 = S3 and µ3 = µ2 = µ1, it is simple to show that the best option will

be to employ only cross-trained agents. Their flexibility and comparative low cost

will impact positively on system cost and performance. Since this scenario is trivial,

we will not investigate it.

In both the two-category customer model and the three-category customer model

our first set of experiments and analysis will be done keeping agent costs constant.

42

In the second set of experiments and analysis we will keep service rates constant.

4.1.1 Two-Customer Category with Equal Arrival Rates

In a two-customer category with equal arrival rates, we have two categories of cus-

tomers, A and B whose arrival rates λA and λB are equal. An agent in this type

of system is either specialized or fully cross-trained. Given our assumptions that

the service rates of all specialized agents are equal and the service rates of all cross-

trained agents are equal in the case of two streams of customers, we expect the

reward measures of each of the categories to give the same result when the agents

are evenly allocated to serve the two categories of customers. Where an even number

of specialized agents are used, the best allocation at such points involves balancing

them equally between the two categories.

In finding the optimal agent allocation, two decision situations come in mind.

The first situation arises when the person in charge of agent allocation is constrained

by the total number of agents available. Given that the agents available could be

specialized or cross-trained he has to find out how to combine these agents to get the

optimal cost. This is similar to finding the local optimum at the given constraint.

The second situation is when there is no constraint in the number of agents and

there is the freedom to choose. Here, he seeks to find the agent mix that will result

in the global optimal cost of the system.

Two-Customer Category: Equal Arrival Rates, Equal Agent Cost and

Varying Service Rates

In this study, the assumptions λA = λB, S1 = S2 and µ2 < µ1 hold. We set the arrival

rates λA = λB = 2.0, and the costs S1 = S2 = 10 dollars. In varying the service rates

of the cross-trained agents, we consider µ2 = 0.4µ1; µ2 = 0.5µ1; µ2 = 0.75µ1 and

µ2 = 0.9µ1 where µ1 = 2.0. Given these conditions, we guess that more cross-trained

agents will be involved in the best agent mix when µ2 = 0.9µ1 than when µ2 = 0.4µ1.

We investigate how much gain is achieved in cross-training at the other values of µ2

and find the optimal agent combination.

43

Two-Customer Category: Equal Arrival Rates, Equal Service Rates and

Varying Agent Cost

In this case, λA = λB, µ1 = µ2 and S1 < S2. We set the arrival rates λA = λB = 2.0

and the service rates µ1 = µ2 = 2.0. We study the behaviour of the system when the

cost of a cross-trained agent is higher than the cost of a specialized agent as follows:

S2 = 1.2S1; S2 = 1.5S1; S2 = 1.8S1 and S2 = 2S1 where S1 = 10 dollars. Our guess

here is that more cross-trained agents will be used for optimal allocation when S2

approaches S1, (S2 = 1.2S1) than when it is much greater than S1, (S2 = 2S1).

4.1.2 Two-Customer Category with Different Arrival Rates

The same sets of experiments above are repeated except that we keep λA > λB. We

guess that for optimality, the effective number of agents serving category A customers

should be more than those serving category B customers.

Two-Customer Category: Different Arrival Rates, Varying Service Rates

and Equal Agent Cost

In this case, λA > λB, µ2 < µ1 and S1 = S2. We set λB = 2.0, λA = 2λB, and

S1 = S2 = 10 dollars. We study the system for µ2 = 0.4µ1; µ2 = 0.5µ1; µ2 = 0.75µ1

and µ2 = 0.9µ1 with µ1 = 2.0. At any optimal solution, we suspect the possibility of

using more cross-trained agents for µ2 = 0.9µ1 than for µ2 = 0.4µ1. We investigate

how the cross-trained agents and specialized agents are mixed for optimal solutions

at the other intermediate values of µ2.

Two-Customer Category: Different Arrival Rates, Varying Agent Cost

and Equal Service Rates

Here, λA > λB, S1 < S2 and µ1 = µ2. We set λB = 2.0, λA = 2λB, and µ1 = µ2 = 2.0.

We study the system for the cost of agents: S2 = 1.2S1, S2 = 1.5S1, S2 = 1.8S1,

S2 = 2S1 where S1 = 10 dollars. Since their service rates are equal, we guess that

more cross-trained agents than specialized agents will be used to get optimal solution

44

when S2 = 1.2S1 than when S2 = 2S1. We evaluate the system for the other values

of S2.

4.2 Three-Customer Category Experiments

In the three-customer category, we introduce an extra class of customers, C, to the

two-stream model. We now have specialized agents, partially cross-trained agents

and fully cross-trained agents. The specialized agents are A-agents, B-agents, C-

agents, the partially cross-trained agents are A-B agents, A-C agents and B-C agents

while the fully cross-trained agents are A-B-C-agents. Thus, we have seven groups

of agents. The question here is whether it is really necessary to utilize the fully

cross-trained, A-B-C-agents or if the partially cross-trained agents are enough to

yield optimal cost and system performance given the agents’ costs and service rates.

In the three streams of customers, when N agents are employed in the system,

the number of experiments conducted to arrive at the optimal solution increases

exponentially when compared with the case of two stream customers. Note that

N =
3∑
i=1

ni is the total number of agents used, with n1 being the number of specialized

agents, n2 the number of partially cross-trained agents and n3 the number of fully

cross-trained agents. The increase in the number of experiments is especially true

when λA > λB > λC and µ3 < µ2 < µ1. Therefore, we devise a method to reduce

the number of experiments significantly. Starting at N = 1, we perform seven

experiments to get the optimum at this point. The seven experiments arise from
n∑
i=1

(
n
i

)
or 2n − 1 pools of agents possible in n = 3 streams of customers. Then, for

N = 2, we make the optimal solution of N = 1 our base point and conduct seven

more experiments to get the optimal solution at N = 2. These solutions mean the

best way to allocate the agents when we are constrained by the number of agents

N = 1, N = 2, and so on. We proceed in this manner until the best optimal solution

is obtained at say, N = Nopt for the given parameters. The solution at N = Nopt

gives the best way to allocate the agents when there is no limit on the availability

of agents to yield the minimum cost. Thus, given number of agent in the system,

45

N ≥ 2, we only need to know the optimal agent mix at N−1. Then we perform seven

experiments to get the optimal agent mix at N . We guess that as the capacity of the

system increases (as N increases), the number of specialized agents used decreases.

This guess is especially trivial if there is no difference in cost of employing a cross-

trained agent and a specialized agent or if there is no difference in their service rates.

We point out that it is the optimal solutions at N < Nopt that is recommended when

the scheduling staff is constrained by the number of agents available for use. When

he is free to use any number of agents the optimal solution at N = Nopt is most

advisable.

4.2.1 Three-Customer Category with Equal Arrival Rates

In a three-customer category with equal arrival rates, we have three streams of

customers, A, B and C whose arrival rates λ1, λ2 and λ3 are equal. An agent in this

type of system could be specialized, partially cross-trained or fully cross-trained.

Like in the two streams, we expect the reward measures of each of the categories to

give the same result when the agents are evenly allocated to serve the three categories

of customers. Where the number of specialized agents used is three or a multiple of

three, the best allocation at such a point involves balancing the specialized agents

equally among the three categories. The same balancing is also applicable when the

number of partially cross-trained agents is three or a multiple of three.

Three-Customer Category: Equal Arrival Rates, Equal Agent Cost and

Varying Service Rates

In this study, the assumptions λA = λB = λC , S1 = S2 = S3 and µ3 < µ2 < µ1

hold. We set the arrival rates λA = λB = λC = 2.0, and the costs S1 = S2 =

S3 = 10 dollars. In varying the service rates of the cross-trained agents, we consider

µ2 = 0.4µ1, µ3 = 0.9µ2 ; µ2 = 0.5µ1, µ3 = 0.9µ2; µ2 = 0.75µ1, µ3 = 0.9µ2, and

µ2 = 0.9µ1,µ3 = 0.9µ2 where µ1 = 2.0. We choose µ3 = 0.9µ2 because since µ2 must

be greater than µ3, we guess that if there is no gain in the use of fully cross-trained

agents at this value of µ3 then there is no advantage of using a cross-trained agent

46

at lower values of µ3.

Three-Customer Category: Equal Arrival Rates, Equal Service Rates and

Varying Agent Cost

In this case, λA = λB = λC , µ1 = µ2 = µ3 and S1 < S2 < S3. We set the arrival

rates λA = λB = λC = 2.0 and the service rates µ1 = µ2 = µ3 = 2.0. We study

the behaviour of the system when the cost of a cross-trained agent is higher than

the cost of a partially cross-trained agent and the cost of a partially cross-trained

agent is higher than that of a specialized agent as follows: S2 = 1.2S1, S3 = 1.25S2;

S2 = 1.5S1, S3 = 1.25S2; and S2 = 2S1, S3 = 1.25S2 where S1 = 10 dollars.

4.2.2 Three-Customer Category with Different Arrival Rates

The same sets of experiments above are repeated except that we keep λA > λB > λC .

We guess that for optimality, the effective number of agents serving category A

customers should be more than that serving category B customers and the number of

agents attending to category B customers should be more than that serving category

C customers.

Three-Customer Category: Different Arrival Rates, Varying Service Rates

and Equal Agent Cost

In this case, λA > λB > λC , µ3 < µ2 < µ1 and S1 = S2 = S3. We set λC = 2.0,

λB = 2λC , λA = 3λC , and S1 = S2 = S3 = 10 dollars. We study the system for

µ2 = 0.4µ1, µ3 = 0.9µ2 ; µ2 = 0.5µ1, µ3 = 0.9µ2; µ2 = 0.75µ1, µ3 = 0.9µ2, and

µ2 = 0.9µ1,µ3 = 0.9µ2 where µ1 = 2.0.

Three-Customer Category: Different Arrival Rates, Varying Agent Cost

and Equal Service Rates

Here, λA > λB > λC , S1 < S2 < S3 and µ1 = µ2 = µ3. We set λC = 2.0, λB = 2λC ,

λA = 3λC , and µ1 = µ2 = µ3 = 2.0. We study the system for the cost of agents:

47

S2 = 1.2S1, S3 = 1.25S2; S2 = 1.5S1, S3 = 1.25S2; and S2 = 2S1, S3 = 1.25S2 where

S1 = 10 dollars.

48

Chapter 5

Results

We now evaluate the results obtained from each of the experiment segments.

These are the experiments using various service rate factors and cross-trained agent

cost factors.

5.1 Two-Customer Category: Equal Arrival Rates,

Equal Agent Cost and Varying Service Rates

We define the cross-trained agent service rate factor as the ratio of the service rate of

a cross-trained agent to the service rate of a specialized agent, or µ2/µ1. This ratio

is less than or equal to one. If the ratio is one, it means that a cross-trained agent is

as fast as a specialized agent. A lower-than-one ratio means that the cross-trained

agent is slower than a specialized agent. We find that for all values of this ratio, the

system cost reduces as the system capacity increases until after the optimum point,

N = Nopt, when additional increase in the number of agents increases system cost.

The system cost is the optimal at the point N = Nopt. The best cost at the various

points of N, 1 ≤ N < Nopt only reflects the optimum when we are constrained by

the number of agents allowed in the system. Even if we are not constrained by the

number of agents available for use, the best cost at N > Nopt will start to deteriorate

and can not be better than the optimal at N = Nopt. The optimal cost for lower

service rate factors is higher than the optimal cost for higher service rate factors. As

shown in Figure 5.1 and Figure 5.3 when the service rate factor is 0.4 the optimal

system cost is 44.87 dollars but when a higher service rate factor of 0.9 is used this

49

Figure 5.1: Agent Utilization and System Cost: λA = λB, S1 = S2

cost reduces to 37.55 dollars. The implication of this is that cross-trained agents

with high service rates are more flexible, more preferable and impact more positively

on system performance than ones with low service rates. The optimum number of

agents used can be read from figure 5.1. For example, for the service rate factor of

0.9, three agents are used to achieve optimal solution. For the service rate factor

of 0.4, four agents are used to achieve optimal system cost. However, the service

rate factor affects the way specialized agents and cross-trained agents are mixed

to yield the optimal system performance. Let us consider Figure 5.2. When the

service rate factor is 0.4, the use of only specialized agents (four of them) gives the

best system performance and no cross-trained agent is required. When the service

rate factor is 0.9, all the three agents used to achieve the optimal system cost are

cross-trained. This means that when the service rate factor is low fewer cross-trained

agents are involved in the agent combination that yields the best system performance.

As the service rate factor increases the number of cross-trained agents required for

optimal cost increases. The figure also shows that for a given service rate factor,

equal percentage of specialized A-agents and specialized B-agents are used when the

optimal system performance is achieved. This confirms our conjecture that there is

the need to balance the specialized agents for each of the customer categories when

the customer arrival rates are equal in the two categories.

50

Figure 5.2: Optimal Agent Mix: λA = λB, S1 = S2

Figure 5.3: Optimal System Cost: S1 = S2

5.2 Two-Customer Category: Different Arrival Rates,

Varying Service Rates and Equal Agent Cost

The system cost pattern here is similar to the pattern when the arrival rates of the

two categories of customers are equal. The higher the number of agents used in

the system, the lower the system cost until the optimum point beyond which any

additional agent used results in a higher system cost. Similarly, the optimal cost

for lower service rate factors is higher than the optimal cost for higher service rate

factors. For example, as shown in figures 5.4 and 5.3, when the service rate factor is

0.4 the optimal system cost is 59.90 dollars but when a higher service rate factor of

0.9 is used this cost reduces to about 53.51 dollars. The service rate factor also affects

the way specialized agents and cross-trained agents are mixed to yield the optimal

51

Figure 5.4: Agent Utilization and System Cost: λA > λB, S1 = S2

system performance. When the service rate factor is 0.4, the use of only specialized

agents gives the best system performance and no cross-trained agent is required as

shown in figure 5.5. When the service rate factor is 0.9, more cross-trained agents

than specialized agents are used for optimal cost. As the service rate factor increases,

the number of cross-trained agents required for optimal cost increases. Among all

the service rate factors considered, there is no case when only cross-trained agents

are used for optimal system cost. Instead, there must be the use of specialized agents

especially the ones that pertain to the category that has the higher arrival rate in

order to get a combination that yields the best system performance. Unlike the equal

arrival rate case, more specialized A-agents are used than specialized B-agents. This

is due to the fact that A customers arrival rate is higher than B customers arrival

rate. Therefore, more specialized A-agents than specialized B agents are required to

take care of the higher A customer arrivals.

5.3 Two-Customer Category: Equal Arrival Rates,

Equal Service Rates and Varying Agent Cost

We define the cross-trained agent cost factor as the ratio of the cost of a cross-trained

agent A-B per time unit to the cost of a specialized agent-A per time unit, or S2/S1.

This ratio is greater or equal to one. If it is one it means that S1 = S2. In other words,

the cost of the cross-trained agent per time unit is equal to the cost of a specialized

52

Figure 5.5: Optimal Agent Mix: λA > λB, S1 = S2

agent per time unit. A ratio greater than one means that the cross-trained agent is

more expensive than a specialized agent.

Irrespective of the cross-trained agent cost ratio that we are looking at, the system

cost decreases as the total number of agents employed increases until the optimum

cost is reached. After this point, the introduction of more agents into the system

results in an increase in the system cost. This is shown in Figures 5.6 and 5.8. We

also find that as the ratio increases, the percentage of cross-trained agents employed

for optimal system performance decreases as shown in Figure 5.7. When the ratio

is one, only cross-trained agents are used to obtain the minimum cost. It is at this

ratio that the flexibility of cross-trained agents fully comes into play and is clearly

appreciated. At the ratio of 2.0, no cross-trained agents are used. When the ratio is

1.2, a third of the agents employed for optimal system cost is cross-trained and the

remaining two-thirds are specialized and equally distributed as specialized A-agents

and specialized B-agents.

5.4 Two-Customer Category: Different Arrival Rates,

Varying Agent Cost and Equal Service Rates

When the arrival rates of the two streams of customers are different, the system cost

also reduces as more agents are employed until the optimal point after which the

use of any more agents results in an increase in cost. The optimal cost is different

53

Figure 5.6: Agent Utilization and System Cost: λA = λB, µ1 = µ2

Figure 5.7: Optimal Agent Mix: λA = λB, µ1 = µ2

Figure 5.8: Optimal System Cost: µ1 = µ2

54

Figure 5.9: Agent Utilization and System Cost: λA > λB, µ1 = µ2

for each cross-trained agent cost factor considered. In fact, the optimal cost of the

system increases as the cross-trained agent cost factor increases. For example when

the cross-trained agent cost factor is one, the optimal cost is 49.97 dollars and when

the cross-trained agent cost factor is 1.5, the optimal cost increases to 59.41 dollars

as can be seen in figures 5.9 and 5.8.

In terms of the agent distribution at optimal system cost, we find that the per-

centage of agents used that are cross-trained decreases with increase in the cross-

trained agent cost factor. A hundred percent of the agents used are cross-trained

for a cross-trained agent cost factor of 1.0 while no cross-trained agent is used at

all for cross-trained agent cost factor of 2.0. When specialized agents are used,

the allocation is biased to specialized A-agents because of the higher arrival rate of

A-customers compared with that of B-customers. We can see this in figure 5.10.

Consider the case when the cross-trained agent cost factor is 1.5. Twenty-five per-

cent of the agents is cross-trained and seventy-five percent is specialized with fifty

percent being specialized A-agents.

5.5 Three-Customer Category: Equal Arrival Rates,

Equal Agent Cost and Varying Service Rates

The partially cross-trained agent service rate factor for the three-customer category

is the ratio of the service rate of a partially cross-trained agent to the service rate

55

Figure 5.10: Optimal Agent Mix: λA > λB, µ1 = µ2

of a specialized agent, or µ2/µ1. It has the same value as the cross-trained agent

service rate factor for the two-customer category. The difference in terminology is

necessary to differentiate between the fully cross-trained agents and partially cross-

trained agents that come into play in the three-customer category. Similar to the two

customer category case, the partially cross-trained agent service rate factor is less

than or equal to one. If µ2/µ1 = 1, it means that a partially cross-trained agent is

as fast as a specialized agent. A lower-than-one ratio means that the partially cross-

trained agent is slower than a specialized agent. We keep the service rate of a fully

cross-trained agent, µ3, as a fraction of the service rate of a partially cross-trained

agent, µ2, such that µ3 = 0.9µ2. We take 0.9 because it is a service rate factor that is

reasonable and high enough for a fully cross-trained agent to make it comparable and

competitive with its partially cross-trained counterpart. This means that if the use

of a fully cross-trained agent with this service rate does not yield an optimal system

cost, then it is not efficient and should be avoided in the three customer stream.

We find that just like in the two-customer stream case, no matter the value of

the partially cross-trained agent service rate factor, the system cost reduces as the

system capacity increases until the optimum point when additional increase in the

number of agents increases system cost. The optimal point is different for various

service rate factors. The optimal system cost for lower service rate factors is higher

than the optimal cost for higher service rate factors as shown in Figures 5.11 and

5.13. For example, when the service rate factor is 0.4 the optimal system cost is

56

67.30 dollars, but when a higher service rate factor of 0.75 is used this cost reduces

to 60.40 dollars. The implication of this is that cross-trained agents with high service

rate are preferable and impact more positively on system performance.

The service rate factor affects the way specialized agents, partially cross-trained

agents and cross-trained agents are mixed to yield optimal system performance. Con-

sider figure 5.12. Similar to the two-customer category model, when the service rate

factor is 0.4, the use of only specialized agents gives the best system performance and

no partially or fully cross-trained agent is required. The specialized agents are dis-

tributed equally among type-A customers, type-B customers and type-C customers.

This is so because the arrival rates of all the three streams of customers are equal.

At service rate factors of 0.5 and 0.75, fully cross-trained agents are used in combina-

tion with specialized agents at a ratio of 2:3 to give the best system cost. Again the

specialized agents are balanced among the three customer types. That there is no

partially cross-trained agent involved in the optimal solution is not a surprise because

of the service rate of the fully cross-trained agents at µ3 = 0.9µ2 which enhances their

flexibility and competitiveness compared with the partially cross-trained agents. At

a service rate factors of 0.5, µ2 = 1.0 and µ3 = 0.9. With a service rate factor of

0.75, µ2 = 1.50 and µ3 = 1.35. If the fully cross-trained agents had a lower service

rate, their speed would reduce and this will impact negatively on their flexibility,

and probably make the partially cross-trained agents preferable.

Similar to the two customer category case where the flexibility of the cross-trained

agents significantly comes into play when the service rate factor is 0.9, we see that

no specialized agent is used for optimal cost for this service rate factor in the three

stream model. Instead, only partially cross-trained and fully cross-trained agents

are utilized, with partially cross-trained agents making up seventy-five percent of

the total agents and the fully cross-trained being twenty-five percent. Again, the

partially cross-trained are equally allocated as A-B-agents, A-C-agents and B-C-

agents. The reason is that the arrival rates, λA, λB and λC are equal.

When the service rate factor is 0.9, only cross-trained agents are used for optimal

cost. This means that when the service rate factor is low, fewer cross-trained agents

57

Figure 5.11: Agent Utilization and System Cost: λA = λB = λC ,
S1 = S2 = S3

Figure 5.12: Optimal Agent Mix: λA = λB = λC , S1 = S2 = S3

are involved in the agent combination that yields the best system performance. As

the service rate factor increases, the number of cross-trained agents required for

optimal cost increases.

5.6 Three-Customer Category: Different Arrival

Rates, Varying Service Rates and Equal Agent

Cost

As in the other cases and irrespective of the service rate factor being considered, the

system cost decreases with an increase in the number of agents employed until the

optimum point is attained. Thereafter, any additional agent used results in a higher

system cost. Similarly, the optimal cost for lower service rate factors is generally

58

Figure 5.13: Optimal System Cost: S1 = S2 = S3

higher than the optimal cost for higher service rate factors. For example, as shown

in figures 5.14 and 5.13, when the service rate factor is 0.4 the optimal system cost is

113.00 dollars, but when a higher service rate factor of 0.9 is used this cost reduces

to 99.90 dollars.

The service rate factor also affects the way specialized, partially cross-trained

and fully cross-trained agents are allocated to yield the optimal system performance.

Consider figure 5.15. When the service rate factor is 0.4 or 0.5, the use of only

specialized agents gives the best system performance and no partially or fully cross-

trained agent is utilized. The level of each of the categories of the specialized agents

used is such that nA ≥ nB ≥ nC , where nA is the number of specialized A-agents

utilized. As the factor increases, the level of specialized agents used decreases and

there is a tendency of requiring more partially cross-trained or fully cross-trained

agents for optimality. An important observation which follows a pattern from the

two customer stream case is that there is no case when there is no specialized agent

used, especially the specialized A-agents. This can be explained from the fact that

A-customers have the highest arrival rate among the three streams of customers. A

particular case of interest, though, is when the factor is 0.75. Here, all the three

categories of agent, specialized, partially cross-trained and fully cross-trained are

utilized. The allocation of the specialized agents is such that nA ≥ nB ≥ nC . The

bivalent agents are utilized at a level such that nAB ≥ nAC ≥ nBC where nAB is the

number of A-B-agents used. At a service rate factor is 0.9, it is strange to note that

no fully cross-trained agent should be used for optimal system cost. The explanation

59

Figure 5.14: Agent Utilization and System Cost: λA > λB > λC ,
S1 = S2 = S3

Figure 5.15: Optimal Agent Mix: λA > λB > λC , S1 = S2 = S3

we can give here is that the preference of bivalent agent for service over a trivalent

agent by a customer supersedes the effect of the flexibility of a trivalent agent given

their service rates in this circumstance. Therefore, it is in this situation that the use

of fully cross-trained agents in the three-customer category makes no sense. Instead,

it is sufficient to utilize partially cross-trained agents in their place.

5.7 Three-Customer Category: Equal Arrival Rates,

Equal Service Rates and Varying Agent Cost

We also define the partially cross-trained agent cost factor as the ratio of the cost of

a partially cross-trained agent A-B per time unit to the cost of a specialized agent-A

per time unit, or S2/S1. This ratio is greater or equal to one. If it is equal to one

60

Figure 5.16: Agent Utilization and System Cost: λA = λB = λC ,
µ1 = µ2 = µ3

it means that the cost of a bivalent agent per time unit is equal to the cost of a

univalent agent per time unit. A ratio greater than one means that the bivalent

agent is more expensive than the univalent agent. For the trivalent agents we choose

a cost per unit time of S3 = 1.25S2. A cost factor of 1.25 is reasonably low enough

for a fully cross-trained agent to enhance their flexibility and make them competitive

with their bivalent counterparts.

As with all the cases, given a partially cross-trained agent cost factor, the system

cost decreases as the system capacity increases until the optimum cost is reached.

After this point, the introduction of more agents into the system results in an increase

in the system cost. As the agent cost factor increases, the optimal cost increases.

For example, for an agent cost factor of 1.20 the optimal system cost is 59.10 dollars,

while the optimal system cost increases to 64.80 dollars for a an agent cost of 1.50.

This is depicted in figures 5.16 and 5.18. We also find that as the ratio increases,

the level of cross-trained agents employed for optimal system performance decreases

and the level of specialized agents utilized increases as shown in figure 5.17. When

the ratio is one, only fully cross-trained agents are used to obtain the minimum cost.

It is at this ratio that the flexibility of the trivalent agents is most obvious in the

three-customer stream model. At the ratio of 2.0, no cross-trained agents are used.

Again, because λA = λB = λC , any time specialized agents are used in the agent

mix, the best performance occurs when the allocation is kept at nA = nB = nC if

the number of specialized agent used is three or a multiple of three, and close to

61

Figure 5.17: Optimal Agent Mix: λA = λB = λC , µ1 = µ2 = µ3

Figure 5.18: Optimal System Cost: µ1 = µ2 = µ3

nA = nB = nC otherwise. The same reason explains the need to keep the level of

the partially cross-trained agents close to nAB = nAC = nBC when they are used to

achieve the optimal system cost.

5.8 Three-Customer Category: Different Arrival

Rates, Varying Agent Cost and Equal Service

Rates

When the arrival rates of the three streams of customers are different, the system

cost also reduces as more agents are employed until the optimal point after which the

use of any more agents results in an increase in cost. The optimal cost is different

for each partially cross-trained agent cost factor considered. It increases as the cost

62

Figure 5.19: Agent Utilization and System Cost: λA > λB > λC ,
µ1 = µ2 = µ3

Figure 5.20: Optimal Agent Mix: λA > λB > λC , µ1 = µ2 = µ3

factor increases. For example, when the cost factor is 1.20, the optimal cost is 106.00

dollars, and when the cost factor is 1.5, the optimal cost increases to 115.00 dollars

as can be seen in Figures 5.18 and 5.19.

In terms of the agent distribution at optimal system cost, we find that the number

of bivalent and trivalent agents decrease as the agent cost factor increases as shown

in Figure 5.20. Conversely, the number of specialized agents used increases with an

increase in the cost factor. At a cost factor of 2.00, hundred percent of all agents used

are specialized. At both cost factors of 1.20 and 1.50 partially cross-trained servers

instead of fully cross-trained servers are used together with specialized servers for

optimum performance. At any point when they are used for best performance, the

allocation of univalent servers follows the scheme: nA ≥ nB ≥ nC . The bivalent

agents are allocated at a level such that nAB ≥ nAC ≥ nBC as shown in figure 5.20.

63

Chapter 6

Summary, Conclusion and Future Work

We present the summary of this thesis and its conclusion in this chapter.

6.1 Summary

The general goal of this research is to estimate the staffing levels in queueing systems

with specialized and flexible agents. It focuses on finding the combination of these

agents that results in an efficient system performance and optimal cost.

Chapter 1 focuses on the introduction to queueing systems and agent cross-

training. Chapter 2 contains a literature review on contact centers, agent cross-

training and finding the right number of servers. The two queueing system models

that are studied are presented in chapter 3. One model has two streams of cus-

tomers and the other has three streams. Chapter 3 also contains a brief description

of Möbius and Eqsp tools, and uses both tools to solve a simple sample M/M/c/K

queueing problem. The general framework is built for the three-category customer

model, since it is easy to modify the framework to study the two-stream by assign-

ing zero to the arrival rate of one of the three streams. By reducing the framework

further to a one-category customer M/M/c/K model and comparing the results ob-

tained from its use, we test the validity of the tools and our model framework in

computing the necessary system performance measures.

In chapter 4, we itemize the questions that the thesis seeks to answer and plan the

numerical experiments that are conducted to answer those questions. The numerical

experiments to obtain the system performance measures of the queueing systems are

done in Möbius. The system performance measures include loss probabilities and

64

the mean number of customers in the queues.

This thesis introduces two parameters which we called service rate factor and

agent cost factor. The service rate factor compares the service rate of a cross-trained

agent with the service rate of a specialized agent. On the other hand, the agent

cost factor compares the cost of a cross-trained agent with the cost of a specialized

agent. By varying these factors, we explore the extent to which specialized agents

and flexible agents are mixed in achieving optimal system cost.

Chapter 5 deals with the analysis and evaluation of the results obtained from the

experiments and attempts to answer the research questions posed in chapter 4.

6.2 Conclusion

Finding the right number of servers as well as the best ways to combine these servers

when some of them are multi-skilled continues to be of importance in the study of

queueing systems. The results from this thesis lead us to the following conclusions:

The cross-trained agent service rate factor and cross-trained agent cost factor are

necessary in determining whether cross-trained agents are used to generate optimal

system performance. They give us an idea of how fast or slow and how costly the

cross-trained agents are compared with their specialized counterparts. The higher

their service rate factors and the lower their cost factors, the more they are involved

in achieving the best system cost. Instead of using an expensive and slow cross-

trained server even though there is an advantage of flexibility, a less expensive and

fast specialized server which could give a better system performance should be uti-

lized. The advantages derived from cross-training are undermined if the cross-trained

servers are too slow and/or too expensive.

In the two-category customer model with equal arrival rates, an attempt should

be made to keep the number of the specialized agents for each category equal in order

to get the optimum system cost. When the arrival rates are distinct, the mix should

be such that the stream with the higher arrival rate is allocated more specialized

agents.

65

In the three-category customer model with equal arrival rates, the best system

cost is achieved by attempting to allocate equal number of specialized agents for

each of the three categories. When they are used, the partially cross-trained agents

should also be allocated equally such that nAB = nAC = nBC . When their arrival

rates are different with λA > λB > λC , the allocations which aim at nA ≥ nB ≥ nC

and nAB ≥ nAC ≥ nBC yield the best solution.

6.3 Future Work

There are aspects of these thesis that need to be studied in the future. In our study,

the service times are agent-dependent. One can investigate what happens when

the customers have different service time requirements. This will be challenging in

Möbius which, at present, supports only homogeneous tokens and does not have a

way of differentiating one token from the other at a ‘place’. There should be a way of

capturing when a multivalent server is serving a customer from a particular category

in a customer-dependent service time model.

Establishing staffing levels in queueing systems that have specialized and multi-

skilled servers where priority is given to certain customers over others will be inter-

esting, as well. Future work can also be done to extend the application to larger

service centers which may have higher-than-three customer category models. Ap-

proximations to get the analytical solutions of these types of queueing models can

also be studied.

Finally, sensitivity analysis of the waiting time cost and other costs on the optimal

decisions can be investigated.

66

References

[1] Allen, A. O., (1990): Probability, Statistics, and Queueing Theory with Computer
Science Applications, San Diego. Academic Press, Inc.

[2] Andrews, B., Parsons, H., (1993): Establishing Telephone-Agent Staffing Levels
through Economic Optimization, Interfaces, Vol. 23(2), 14-20

[3] Bevilacqua Masi, D. M., Fischer, M. J., Harris, C. M., (2001): Computation of
Steady-State Probabilities for Resource-Sharing Call-Center Queueing Systems,
Stochastic Models, Vol. 17(2), 191-214

[4] Brockmeyer, E., Halstrom, H. L., Jensen, A., (1960): The life and works of A K
Erlang, Acta Polytech. Scandinav. 287

[5] Chevalier, P., Tabordon, N., (2003): Overflow Analysis and Cross-trained
Servers, Int. J. Production Economics, Vol. 85, 47-60

[6] Foulds, L. R., (1981): Optimization Techniques: An Introduction, New York.
Springer-Verlag

[7] Grassmann, W. K., (1988): Finding the Right Number of Servers in Real-World
Queuing Systems, Interfaces, Vol. 18, 94-104

[8] Grassmann, W. K., (2000): Computational Probability, Norwell, Massachusetts.
Kluwer Academic Publishers

[9] Grassmann, W. K., (2005): Eqsp: A Software for Calculating the Equilibrium So-
lutions of Systems. Available from http://www.cs.usask.ca/classes496/t2/eqsp.c
(accessed June 8, 2006)

[10] Groebner, D. F., Shannon, P. W., (1992): Introduction to Management Science,
New York, New York. Macmillan Publishing Company

[11] Halfin, S., Whitt, W., (1981): Heavy Traffic Limits of Queues with Many Ex-
ponential Servers, Operations Research, Vol. 29, 567-588

[12] Linder, R. W., (1969): The Development of Manpower and Facilities Planning
Methods for Airline Telephone Reservation Offices, Operational Research Quar-
terly, Vol. 20, 3-21

[13] Mandelbaum, A., (2004). Call centers (centres): Research
bibliography with abstracts. Electronically available from
http://ie.technion.ac.il/serveng/References/ccbib.pdf (accessed April 20,
2006).

67

[14] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., (1989):
Numerical Recipes: The Art of Scientific Computing, Cambridge, New York.
Cambridge University Press

[15] Sanders, W.H., (2006). Möbius: A Model-based environment for validation
of system reliability, availability, security and performance. Available from
http://www.mobius.uiuc.edu/papers.html (accessed June 11, 2006)

[16] Sauer, T. D., (2006): Numerical Analysis, Boston. Pearson Addison Wesley

[17] Shumsky, R. A., (2004): Approximation and Analysis of a Call Center with
Flexible and Specialized Servers, OR Spectrum, Vol. 26, 307-330

[18] Smith, D. K., (2002): Calculation of Steady-State Probabilities of M/M Queues:
Further Approaches, Journal of Applied Mathematics and Decision Sciences, Vol.
6(1), 4350

[19] Stanford, D. A., Grassmann, W. K., (1993): Bilingual Server System: A Queue-
ing Model Featuring Fully and Partially Qualified Servers, INFOR, Vol. 31, 261-
277

[20] Stanford, D. A., Grassmann, W. K., (2000): Bilingual Server Call Centres,
Fields Institute Communication, Vol. 28, 31-47

[21] Tekin, E., Hopp, W. J., Van Oyen, M. P., (2009): Pooling Strategies for Call
Center Agent Cross-training, IIE Transactions, Vol.41, 546-561

68

Appendix A

An M/M/c/K Solution Documentation in

Möbius

69

70

71

72

Figure A.1: An M/M/c/K Atomic Model Solution Documentation

73

74

Figure A.2: An M/M/c/K Performance Variables Solution Documen-
tation

75

