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ABSTRACT  
 

In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its 

alloys due to their application as photoconductor materials in the new fully digital direct 

conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se 

photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 

10 V μm-1) and one of the most difficult problems related to such applications of a-Se is the 

problem of the dark current (the current in the absence of any radiation) minimization in the 

photoconductor layer.  

This PhD work has been devoted to researching the possibilities for dark current 

minimization in a-Se x-ray photoconductors devices through a systematic study of the charge 

transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se 

devices as a function of alloying, doping, deposition condition and other fabrication factors. The 

results of the studies are extensively discussed in the thesis. We have proposed a new 

technological method for dark current reduction in single and multilayered a-Se based 

photoconductor for x-ray detector applications. The new technology is based on original 

experimental findings which demonstrate that both hole transport and the dark currents in a-Se 

films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition 

process. We have shown that the new technique reduces the dark currents to approximately the 

same levels as achievable with the previously existing methods for dark current reduction. 

However, the new method is simpler to implement, and offers some potential advantages, 

especially in cases when a very high image resolution (20 lp/mm) and/or fast pixel readout (>30 

s-1) are needed.  

Using the new technology we have fabricated simple single and double (ni-like) 

photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) 

readout circuits.  Dark currents in the a-Se photoconductor layer were not a problem for detector 

operation at all tested electric fields. Compared to the currently available commercial systems for 

mammography, the prototype detectors have demonstrated an excellent imaging performance, in 

particular superior spatial resolution (20 lp/mm). Thus, the newly proposed technology for dark 

current reduction has shown a potential for commercialization.  
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1. INTRODUCTION 
 

1.1 Radiation Detection Techniques 

Here we will briefly describe and explain the physics of the different ways in which 

nuclear and other similar radiation can be indirectly sensed by us, that is, detected and measured. 

It is fair to say that the advances of the techniques for radiation detection have led to some of the 

most fundamental advances ever made in science and technology, and have revolutionized many 

branches of medicine. 

1.1.1 Brief History of Radiation Detectors 

The collection of the charge that has been created by the ionizing radiation is probably 

the most important method for the detection of such radiations [1, 2]. Ionization is the process of 

liberation of free electric charges in a medium with which the radiation interacts.  These charges, 

or at least fraction of them, can then be collected and detected by the application of an electric 

field to the medium concerned. 

The earliest device capable of detecting ionizing radiation was effectively the gold-leaf 

electroscope but historically its radiation detection capabilities were not realized until after 

radioactivity was discovered in 1896 [1]. 

  The first ionization detector was developed in 1908 by Rutherford and Geiger at 

Manchester [1]. Strictly speaking, they made a gas proportional counter, which is an ionization 

detector with internal charge amplification. Their device was capable of producing a pulse of 

charge for each particle of radiation incident on the gas inside, instead of measuring the 

integrated total charge collected as it is done for the ionization chambers. Ionization detectors 

with a solid as a working medium appeared much later due to a number of difficulties. First 

really practical counting devices, which were made from materials like silver chloride, cadmium 

sulphide, and diamond, came in the 1940s and these were followed in 1948 by the first ionization 

detectors made from liquids [1]. 

The earliest methods by which ionizing radiation was discovered and investigated 

investigated did utilize the technique described above.  Röntgen's experiments in 1895 with x-

rays produced by cathode rays showed that materials can emit visible light when struck by these 
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x-rays.  Materials such as barium platinocyanide, when brought towards the tube, gave an intense 

light emission. Obviously, this initial work did not reveal individual pulses of radiation.  This 

had to wait until 1903, when Crookes and also Elster and Geitel [1] observed zinc sulfide under 

low magnification, and found that when it was exposed to alpha-particle radiation a number of 

short-duration scintillations of light could be seen scattered across the surface, rather than a 

steady, uniform distribution of light. Rutherford and his students made many of their discoveries 

in nuclear physics by observing scintillations in this way. 

 The actual discovery of radioactivity by Becquerel in 1896 was made with photographic 

plates. Röntgen had already found that photographic emulsions responded to x-rays. In his 

investigations following the latter work, Becquerel found that blackening also happened when 

uranium salt crystals were left for a few days next to plates which were otherwise unexposed. 

Emulsions with high spatial resolution which permitted the observation of tracks of individual 

particles were developed much later in 1930 [1]. 

The first device for track visualization, however, came much earlier, and was developed 

in the years up to 1912 [1].  This was Wilson's cloud chamber in which air saturated with water 

vapor was contained inside a chamber fitted with a movable piston.  When the piston descended 

the air expanded suddenly.  This caused water droplets to condense preferentially at the 

nucleation sites (namely, ions) produced along the track of any ionizing particle passing through 

the chamber at that time. 

The introduction of electronic amplifiers and counting circuits to go with radiation 

detectors such as ionization chambers, proportional and scintilation counters from late 1920s 

onwards [1] removed many restriction of the radiation detecting experiments.  In due course 

scintillations themselves could be counted electrically when photomultipliers were introduced.  

The application of modern pulse amplification, and digital techniques, and of computers has 

continued to help the development of radiation detection equipment to levels of accuracy and 

complexity which could never have been foreseen earlier.  

1.1.2 Radiation Detector Classification  

The operation of any detector basically depends on the manner in which the radiation to 

be detected interacts with the material of the detector itself. Accordingly, the radiation detectors 

can be divided in several groups [1, 2]. 
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1.1.2.1 Ionization Detectors 

The net result of the radiation interaction in a wide category of detectors is the 

appearance of a given amount of electric charge, in the detector active volume due to the process 

of ionization. This charge alters some physical and/or chemical properties of the detector’s 

working medium and thus produces effects which can be measured. Further, ionization detectors 

can be divided into several groups, depending on the state of aggregation of their working media: 

1. Gas filled ionization detectors with typical representatives as follows:  

a. D.C ionization chambers, pulse ionization chambers 

b. Proportional counters, multi-wire proportional counters 

c. Geiger-Mueller counters 

d. Corona and spark detectors and chambers 

2. Liquid ionization detectors with applications mainly in high energy physics:  

a. Liquid ionization and proportional chambers 

b. Bubble chambers 

3. Solid state ionization detectors with typical representatives: 

a. Crystal and semiconductor detectors 

b. Photographic emulsions 

c. Solid state tack detectors 

In photographic emulsions and solid state track detectors the signal appears only after 

additional processes (development, etching) are applied to the detector. The changes in the 

detector media are permanent and such detectors exhibit very valuable event storage properties. 

1.1.2.2 Radio-Luminescent Detectors 

Every time when the alpha, beta or gamma ray strikes the working substance, known as a 

scintillator, a minute flash of light is produced. Thus the energy of the radiation is transformed 

into light and this flash of light is the output signal for those detectors. Only in rare cases such 

weak light signals can be directly observed. Usually they are further detected and amplified by 

other devices. This is most often a photomultiplier, but photodiodes, photodiode matrices, and 

charge coupled devices (CCDs) are also used.  

The radio-luminescent detectors in which the light signal appears immediately after 

(10-6-10-8 s) the act of interaction with radiation are known as scintillation detectors. The class of 
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scintillation detectors can be further divided into several groups according to the state of 

aggregation of material of the scintillator itself: gas scintillation detectors, liquid scintillation 

detectors and solid state scintillation detectors. 

In some of the radio-luminescent detectors, the light signal appears only if they are 

subjected to some additional stimulus, most often a thermal one. These are known as 

thermoluminiscent detectors TLD. The TLDs, like photographic emulsions, have event storage 

properties and that is why they are widely used for application like radiation dosimetry. They can 

be subjected to irradiation (usually x-rays or gamma rays) for several days or even several 

months. The energy of the incident radiation (some fraction of it) would be stored in the material 

of the detector.  Heating the device through a few hundred degrees liberates the stored energy in 

the form of light. The amount of light emission is normally in some proportion to the radiation 

dose received.  

1.1.2.3 Miscellaneous Detectors 

 The basic interaction with radiation for these detectors is neither ionization of the working 

media nor excitation of atoms or molecules in it that results in the emission of light. There are 

several detector types in this group [2]: 

1. Cerenkov detectors. This category of radiation detectors is based on the light that is 

emitted by a fast charged particle passing trough an optically transparent medium with 

index of refraction greater than 1. The light is emitted whenever the velocity v of a 

charged particle exceeds that of light in the medium through which it is passing. 

Detectors based on sensing the Cerenkov light are widely used in high energy physics 

experiments, but have no use for the lower energy radiation. 

2. Cryogenic microcalorimeters (Bolometers). Any substance when exposed to ionizing 

radiation will in principle show an increase in its temperature due to the energy 

absorbed from the incident particles or photons. In common conditions with ionizing 

radiation, this temperature rise is too small to be measured unless the radiation 

exposures are very high. The calorimetric methods become orders of magnitude more 

sensitive if  the temperature rise is measured in miniature samples of material 

maintained at a very low temperature. For dielectric crystals the heat capacity is 

proportional to T3, where T is the absolute temperature. Therefore, the lower the 
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temperature is, the greater will be the temperature rise per unit absorbed energy. By 

reducing the temperature to bellow 1K, it is possible to sense the momentary 

temperature rise due to a single photon or incident particle [2]. 

3. Superconducting Grain Detectors. The very small heat capacity of materials near 

absolute zero temperature can be exploited in another way to detect single particles or 

photons.  A number of materials are superconductors at very low temperatures but 

revert to "normal" conductivity if the temperature is raised.  In a very small (diameter 

of a few micrometers) grain of such a material the energy deposited by an ionizing 

particle can be sufficient to transform the grain from the superconducting to the normal 

state and thus enable the event to be detected. 

4. Activation foils. These are indirect detectors for neutrons.  The neutrons are known to 

induce radioactivity in some materials.  A sample of such a material can be exposed to 

a flux of neutrons for a period of time and then removed so that the induced 

radioactivity may be counted, using any of the conventional detectors. The measured 

radiation can then be used to deduce information about the number and/or energy 

distribution of the neutrons in the original flux.  

1.1.3 Simplified Detector Model. Basic Modes of Detector Operation 

The result of radiation interaction in most frequently used detectors is the appearance of a 

given amount of electric charge within the detector active volume [2]. A simplified detector 

model is described in [2]. Following the ideas in that work we assume that a charge Q appears 

within the detector at time t=0 due to interaction of a single particle or quantum of radiation. This 

charge is then collected to form the basic electric signal. The latter is accomplished through the 

application of an external electric field which causes positive and negative charges that have 

been created by the radiation to flow in opposite directions. The time required to fully collect the 

charge varies greatly from one detector to another. These collection times depend on the drift 

mobilities of the charge carriers and on the average distance that must be traveled before to reach 

the collection electrodes. The response of the detector to a single particle or a quantum of 

radiation will be a current that flows for a time equal to the charge collection time tc. The time 

integral over the duration of the current must be equal to the collected charge Q  
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We have assumed that the event rate is low enough, so each individual interaction gives 

rise to a current that is distinguishable from all others. The magnitude and the duration of each 

current pulse may vary depending on the type of interaction and the current pulses normaly have 

different forms. The arrival of the radiation quanta is a random process governed by Poison 

statistics, thus the time intervals between successive current pulses are also randomly distributed. 

There are three general modes of detector operation [2]. The tree modes are called pulse 

mode, current mode and mean square voltage mode (MSV mode). First two modes of operation 

have many practical applications, including in medical x-ray image detectors. The most basic 

details of these modes of operation will be given below. 

In pulse mode of operation, the measurement instrument is designed to record each 

individual quantum of radiation that interacts with the detector. In common applications the total 

charge Q is recorded since the energy deposited in the detector is directly related to Q. All 

detectors designed to measure the energy of individual radiation quanta must operate in pulse 

mode. Such applications are known under the term of radiation spectroscopy. The scintillation 

detectors used in the imaging of brain and its functions in positron emission spectroscopy (PET) 

are example for medical detectors operating in the pulse mode of operation. 

At very high event rates (such as during an x-ray imaging procedure), pulse mode of 

operation becomes practically impossible because the current pulses from successive events 

overlap in time. For such cases, the most suitable alternative measurement technique is that 

which respond to the time average taken over many individual events. This approach leads to the 

current mode of operation.  

Let us assume that detector has a fixed response time tr. The recorded signal from a 

sequence of events will be a time dependent current [2] given by  
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The response time tr is typically a fraction of a second or greater, so that the effect is to average 

out many of the fluctuations in the intervals between individual radiation interactions, and to 

record an average current. The current depends on the product of the interaction rate and the 

amount of charge created per one interaction. In the current mode, this time average of the 
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individual current bursts is recorded as the basic signal. There is a statistical uncertainty in this 

signal due to the random fluctuations in the arrival time of the event. The choice of large T will 

minimize the statistical fluctuations in the signal but will also slow the response of the detector to 

the rapid changes in the incident radiation. 

The average current is given by the product of the average event rate and the charge 

produced per event 

 q
W
ErrQIo

±

== , (1.3)

where r is the event rate; 

 q
W
EQ

±

=  - charge produced for each event; 

 E - average energy deposited per event; 

  - average energy required to produce a unit charge pair (e.g. electron-ion) and ±W

 q=1.6x10-19 C – the charge of the electron. 

For steady-state irradiation of the detector this average current can also be rewritten as 

the sum of a constant current I0 plus a time dependent fluctuating component ( )tiσ . Here ( )tiσ  is 

a random time-dependent variable that occurs as a consequence of the random nature of the 

radiation events interacting within the detector.  

The vast majority of detectors involved in the digital x-ray imaging are used in current 

mode of operation. 

1.2 X-ray Detectors for Projection Radiography 

The x-rays discovered by Wilhelm Röentgen in 1885 are probably the scientific 

discovery with the fastest practical implementation that provided medical practitioners with a 

very convenient non-invasive procedure to obtain diagnostic information. Only weeks after the 

actual discovery, x-rays have been applied for the purposes of medical imaging and diagnostics 

and led to the development of a new branch in medical sciences which is known today as 

Diagnostic Radiology (DR). DR always was and still is a dynamically developing part of 

medical practice. This rapid development is due mainly to two reasons: the constant need of high 

quality images containing as much diagnostic information as possible and the need to obtain the 

diagnostic information with as little x-ray exposure of the patient as possible. The first of these 
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two reasons is self-explanatory but the second one needs to be clarified further. X-rays like any 

other form of ionizing radiation can cause damage to the living tissue.  The first evidence that x-

rays, can cause malignant changes in the living tissue appeared soon after Röentgen’s discovery. 

After the end of World War II, studying the effect of radiation on the survivors of the atomic 

bombing of Hiroshima and Nagasaki and the data collected from experiments with mammals 

during tests with nuclear weapons, a theory was proposed, which presumes that the detrimental 

effects of radiation are proportional to the dose, and that there is no dose which can be 

considered as harmless. That theory, known as LNT (linear no-threshold), was chosen by the 

International Commission on Radiological Protection in 1959 as the basis for its rules of 

radiation protection [3] and since then it has become a pillar of  the international theory and 

practice of radiation protection. Today all examinations involving ionizing radiation must obey 

the ALARA principle, which simply means that the diagnostic information has to be obtained 

with "as low as reasonably achievable" exposure of the patient to the ionizing radiation.  

Despite the introduction of a large number of alternative imaging modalities, projection 

radiography is still one of the most commonly used techniques in the health care centers. The 

development of better detectors for that imaging modality is a topical research problem. In a 

projection radiography examination, the incident radiation is either from a point source, or it is a 

parallel beam, which will therefore cast a "shadow" of the object on the recording detector. The 

contrast in the image is due to the different amounts of absorption of the x-rays in different 

tissues and parts of object. The detector after the exposure must store the information and 

develop an image, visible for the human eye. 

Imaging detectors and techniques that are most commonly used and that are currently 

undergoing very promising development are described in the next part of this subsection. 

1.2.1 X-ray Film and X-ray Screen/Film Combination as Imaging Detectors 

The use of photographic film as an x-ray image detector dates back to the discovery of x-

rays in 1895. With little modification still remains an important technique in the present time. 

Ordinary photographic film consists of an emulsion of silver halide grains (silver bromide 

being one example) suspended in a matrix and supported with a backing of glass or cellulose 

acetate film.  The action of ionizing radiation in the emulsion is similar to that of visible light. 

Some of the grains will be "sensitized" through the interaction of the radiation with the silver 
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halide molecules.  The sensitized grains remain in this state indefinitely, thereby storing a latent 

image of the track of the ionizing particle through the emulsion.  In the subsequent development 

process, all sensitized grain are converted to metallic silver, vastly increasing the number of 

affected molecules to the point that the developed grains are visible.  Following development, the 

emulsion is fixed by dissolving away the undeveloped silver halide grains. During the final 

washing step the processing solutions are removed from the developed emulsion. Radiographic 

emulsions are typically 10-20 µm thick with grains up to 1 µm in diameter [2].  The silver halide 

concentration amounts to about 40% by weight.  In some cases the sensitivity is increased by 

applying the emulsion to both surfaces of the base film.  

This detection technique is known as "direct film radiography". The greatest advantage 

of the direct film is its high spatial resolution. Some films are capable of imaging with resolution 

several hundred lp/mm which is well out of reach for the modern digital image detectors. 

However, direct sensitivity (the efficiency) of the radiographic emulsion for x-rays is at best a 

few percent. That leads to ineffective use of the x-ray beam and invariably to higher patient 

doses.  

In almost all medical radiographic applications, additional steps are taken to enhance the 

sensitivity of the emulsions.  One method is to sandwich the film between foils made from 

materials with high atomic number.  Photoelectric or Compton interactions within these 

converter foils may then contribute secondary electrons, which add to those created within the 

emulsion itself.  Alternatively, and more commonly, is to sandwich the film between two 

intensifier screens which consist of light-emitting phosphors of high atomic number.  X-ray 

interactions within the screen create visible light through the fluorescent scintillation process, 

which then leads to additional sensitization of the emulsion.  Because emitted light rays travel in 

all directions, a compromise must be struck between sensitivity and spatial resolution in 

choosing the thickness of the screen.  In typical situations, the sensitivity of such screen/film 

combination ("indirect film") can be increased by a factor of 10 through the use of such 

intensifier screens. This comes at the expense of lower spatial resolution, which normally does 

not exceed 10-15 lp/mm. 

Today about 60% of x-ray imaging is accomplished with film/screen (indirect film) 

systems. The cassettes are loaded with film and taken to the examination room, then to the x-ray 
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equipment, and after exposure they are returned to the darkroom for the development before a 

final image can be viewed. This is time consuming and the acquired image is in analog form. 

A future digital system must conveniently eliminate that waiting time and transfer the 

present process to the digital domain. 

1.2.2 Flat-Panel X-Ray Image Detectors – The Most Promising Imaging Technology 
for Radiography 

An ideal x-ray diagnostic system would permit the instantaneous acquisition of an x-ray 

image directly in digital form with the least number of x-ray photons.  

There are various transitional digital systems based on the use of photostimuable 

phosphor plates (computed radiography CR systems), x-ray image intensifiers optically coupled 

to charge coupled device (CCD) arrays, and phosphor screens optically coupled to CCDs [5]. 

With photostimuable plate systems, the x-ray image is captured on a photostimuable plate, which 

must then be taken and scanned by a laser system in order to digitize the image information. The 

principle of operation of these detectors is very similar to the TLD described previously in 

subsection 1.1.2.2. However, this is just as time consuming as the conventional film/screen 

systems and furthermore the image quality is not as good. With x-ray image intensifier systems, 

the image is obtained instantaneously but the image quality for radiography is also poorer than 

that for film/screen cassettes. Further, the x-ray image intensifier is bulky and extremely 

expensive which limits its use to situations where the real time aspects of the image are most 

important.  The basis of optically coupled CCD systems involves the use of a structured screen 

(such as Tl activated CsI phosphor), which is able to detect x-rays, converting them to light, 

which in turn is collected by tapered optical fibers.  This reduces the image size by a factor of 2 

to 4 and matches the size of the CCD array, typically no larger than 2 x 2 cm to the required field 

of view of the clinical task. Thus, for fields of view larger than 10 x 10 cm several CCDs must be 

used together in order to obtain a detector of sufficient size for many clinical studies. 

An active matrix flat-panel imager (AMFPI) using active matrix thin film transistor 

(TFT) arrays is the most promising technology for digital X-ray imaging due to its compact size, 

rapid readout and better imaging performance compared to screen-films [6-9]. Based on the 

materials used for x-ray detection, AMFPI are divided into two main categories: direct and 

indirect conversion type. As shown in Figure 1.1, the direct detection AMFPI employs a uniform 

layer of x-ray sensitive photoconductor, most often amorphous selenium to directly convert part  
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Figure 1.1 Schematic diagram illustrating the concept of direct conversion AMFPI (left). Anrad Corporation 
SMAM a-Se based flat panel detector for digital mammography (right). The detector has an image area 17 
cm × 24 cm , detective quantum efficiency DQE of 65% at 1 lp/mm and modulation transfer function MTF of 
50% at 5 lp/mm (Courtesy of Anrad Corporation). 

 

of the energy of the incident x-rays to charge, which is subsequently electronically read out by a 

two-dimensional array of TFTs. During readout, the scanning control circuit generates pulses to 

turn on the TFTs one row at a time, and transfer image charge from the pixel to external charge 

sensitive amplifiers. These are shared by all the pixels in the same column. Each row of the 

detector typically takes ∼20 μs to read out. Hence a detector with 1000×1000 pixels can be read 

out in real-time (i.e. 30 frames/s).  

The indirect AMFPI uses a phosphor such as cesium iodide (CsI:Tl) to convert x-ray 

energy to optical photons, which are then converted to charge by integrated photodiodes at each 

pixel of the TFT array. The charge image is read out in the same fashion as in the direct 

detectors. Structured scintillators (Figure 1.2) are used to reduce the lateral spread of the light 

emitted during the scintillation events and hence to improve the spatial resolution of indirect 

AMFPI. Despite their differences, both AMFPI methods offer better image quality than screen-

films and computed radiography systems [9]. 

However, it is currently believed that the direct method has the advantages of higher 

image resolution. Additional advantage is that the direct approach requires simpler TFT array 

structure that can be manufactured in a standard facility for active matrix liquid crystal displays. 
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Figure 1.2 ESEM (environmental scanning electron microscope) micrograph of 2000 µm CsI(Tl) film[10].  
The photograph on the left side shows the central portion of the film, while the one on the right side shows the 
film surface. 

 

At the moment AMFPIs satisfy almost completely the requirements for general radiology 

and many of the requirements for application in mammography.  Breast imaging is very difficult 

because the radiologist must be able to distinguish between several types of soft tissue with very 

similar x-ray absorption properties. The contrast in the image is low and the problem with 

scattered radiation in the breast is very serious. The smallest objects of interest are micro-

calcifications which are only about 80-100 µm in size. Such small objects are nearly “invisible” 

for all currently existing AMFPIs. In the indirect conversion flat panel detectors, the lateral light 

scatter limits the spatial resolution of these detectors to a level that is insufficient to observe the 

micro-calcifications in the breast. The pixel size in the direct conversion flat panel detectors that 

are available in the market (Figure 1.1) is 70 µm. Such pixel size theoretically might allow 

imaging of 80-100 µm objects but in practice the micro-calcifications disappear in the noise of 

the detector system. The pixel size that will make the micro-calcifications in the breast visible is 

20 μm or less [11]. Regular production of AMA with such small pixel sizes is unachievable with 

the current hydrogenated amorphous silicon technology for a number of reasons (see 

Appendix A). 
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During the last 6-8 years, an attempt is being made to develop second-generation direct 

conversion detectors for digital mammography with very high spatial resolution [13]. These 

detectors utilize charge coupled devices (CCDs) as the image readout electronic circuit and a 

photoconductor as the detector working media. This approach benefits from the higher intrinsic 

resolution of photoconductors (compared to scintillators) as well as from the higher resolution of 

the readout device (pixel sizes 20×20 µm and much smaller are readily achievable). Another 

advantage is the low readout noise that is characteristic for the CCD devices. With the current 

semiconductor technology, charge coupled devices with image areas like 11 cm by 1 cm are 

readily achievable. Typical image size of interest for mammography is 18 cm by 24 cm or 

bigger.  Such sizes are achievable, if 2-3 CCD chips are butted together to form a “slot detector”. 

The x-rays are collimated in the form of a very narrow beam incident to the detector and the 2-

dimentional image is obtained as the x-ray source – detector assembly mechanically scans the 

breast. This method is known by the name slot-scanning technique for x-ray imaging. During the 

image acquisition the CCDs are operated in Time Delayed Integration TDI mode to increase the 

sensitivity of the detector and to reduce the patient dose. 

 The disadvantage of such a technique is obvious – the presence of mechanically moving 

parts and the inefficient use of the x-ray field generated by the x-ray tube. However, the slot 

scanning method has some distinct advantages compared to the standard technology for breast 

imaging. First, the scanning mode allows dose efficient elimination of the scattered radiation and 

second it makes possible imaging with a detector of a much smaller area. Fabrication of high-

resolution detectors with a large image area is a very low yield process and hence very 

expensive. From this point of view, the CCD “slot detector” will be less expensive and will have 

a better resolution than a AMFPI. 

More detailed description of the slot scanning technique for x-ray imaging, TDI readout 

mode and pixel structures of direct conversion CCD detectors is given in Appendix A. 

Various candidate photoconductor materials, namely CdTe, CdZnTe, PbI2, HgI2 and a-

Se, have been investigated for potential applications in such high-resolution CCD detectors. 

From the latter photoconductors, a-Se has been demonstrated to exhibit the most promising 

performance [12] and was chosen as the photoconductor in an attempt to develop a high-

resolution detector for mammography based on the slot scanning technique [13]. 
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The work that will be presented later in this thesis was directly related to the research 

efforts to develop such detector. The development of the detector involved extensive research on 

the electrical properties of a-Se, which was an integral part of the thesis project.   

1.3 Direct Conversion Detectors Based on a-Se – The Dark Current Problem 

A simplified pixel structure of a direct conversion x-ray image detector is shown in 

Figure 1.3.  The x-rays arriving to the detector interact with the photoconductor layer and a 

number of electron-hole pairs are formed in this layer. The electrons and holes are separated by 

the applied electric field and collected at the detector electrodes. The amount of charge collected 

in the pixel charge storage device is proportional to the intensity of the x-rays arriving at the 

pixel. Thus the x-ray image is stored as a distribution of electric charge in the readout device. 

After the x-ray exposure, the charge collected at each pixel is measured and the final x-ray image 

is stored in the computer.  
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Figure 1.3  A simplified pixel structure of a direct conversion x-ray image detector. 

 

The charge collection process requires the application of an electric field. When an 

electric field is applied to the photoconductor, a small current will flow through it even in the 

absence of any radiation. The current through the photoconductor in the absence of x-ray 

radiation and light is called the dark current.  The dark current limits the smallest amount of x-

ray radiation that can be detected by the pixel, shrinks the dynamic range of the detector and 
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introduces noise in the x-ray image. For these reasons, the dark current has to be kept as small as 

possible.  

However, the a-Se photoconductor layer has to be operated at high electric fields. The 

main reason for a large operating field is that the photogeneration process in a-Se is field 

dependent. The electron-hole pair creation energy W± is a function of the applied electric field 

and good x-ray sensitivity can only be achieved by the application of high fields. In addition, the 

electron and hole traps that are present in a-Se impose certain limitations on the process of 

charge collection. If significant amount of charge is trapped in the a-Se film, artifacts in the 

image known as lag and ghosting can appear. 

Acceptable x-ray sensitivity and acceptable levels of lag and ghosting can be achieved 

only if high enough voltage is applied across the a-Se layer. For the reasons specified above, the 

a-Se layer is operated at high electric fields: 3-10 V µm-1. At such high fields, the dark currents 

are intolerably high (in many cases bigger than the x-ray generated signal) and special measures 

must be taken to reduce the dark current in the a-Se layer to a reasonable level.  

The exact nature of the dark current in a-Se is not fully understood. However, the dark 

current has two components; one due to the thermal generation of free carriers in the bulk of the 

a-Se film and the second one is due to carrier injection from the metal contacts into Se. Some 

initial work suggests that the magnitude of the dark currents is dominated by the charge injection 

from the metal electrodes [14]. Due to the latter reason, all the methods for dark current 

reduction at present rely on the fabrication of a thin blocking (trapping) layer between the Se 

photoconductor and the metal electrode. In some cases the trapping layer consists of a special 

insulating dielectric layer. For example, Hologics/Lorad are using this technique for dark current 

reduction in their medical x-ray image detectors. The charges injected from the metal contacts 

are trapped in the insulating layer and the current injection from the metal into a-Se is thereby 

blocked. An alternative explanation is that the insulator layer has a large bandgap so that the 

charges can not be easily injected from the electrode into the a-Se. When a dielectric is used as a 

trapping layer, the charge generated by the x-ray exposure is also trapped in the blocking layer. 

The trapping of charge is very deep and the detectors in which this technique is involved require 

a system reset procedure, for example soaking with light to eliminate the trapped charge in the 

dielectric layer. It is evident that such detectors cannot be used for real time x-ray imaging. The 

thickness of such a blocking layer must be thick enough to prevent charge tunneling through the 
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dielectric. The presence of such a thick blocking layer will have negative impact on detector 

performance for reasons that will be explained later. 

For dark current minimization, ANRAD Corporation and others have used multilayers, 

which are a structural analogue of the  pin diode structure, that are reverse biased as shown 

in Figure 1.4.  

 

 
 

Figure 1.4 The ideal a-Se multiplayer analogue of a pin structure. 

 

The p- like layer in Figure 1.4 is produced from an a-Se that has been doped to have good 

hole transport but to trap electrons; the i- like layer transports both holes and electrons, and the 

n- like layer transports electrons but traps holes. The p- like layer can also be As2Se3 film which 

is p-type. The p- like layer is connected to the negative bias terminal and the n- like layer to 

positive one. The p- and n- like layers are normally thin compared with the i- like layer, which is 

thick. Thus the x-rays are absorbed mainly in the i- like layer. P- like layer and n- like layer are 

a-Se layers that have been alloyed and doped to give those layers their characteristic electronic 

properties. The n- like layer is usually an alkali (Na) doped a-Se alloyed with a few percentages 

of As for stability. The p-like layer is usually a halogen (Cl) doped a-Se, and some As for 

stability. However, as mentioned above it can also be a-As2Se3.  The multilayer structure 

functions in the following way. Both hole and electron injection from the metal electrodes is 

blocked. The holes injected from the positive electrode are trapped in the n- like layer and the 

electrons injected by the negative electrode are trapped by the p- like layer. Due to the charge 
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trapped in these layers the electric field near the electrodes decreases. The injection currents are 

strongly dependent on the electric field at the electrodes and thus the charge injection in the 

sample is strongly reduced, which minimizes the dark current. At the same time, electrons and 

holes created in the i-like layer by the x-ray radiation will pass without trapping through the 

n- like layer and through the p- like layer respectively. There will be no loss of x-ray induced 

signal due to trapping in the blocking layers which is an advantage compared to the case when an 

insulator is used to block the current injection from the electrodes. 

The multilayer structure seems to be a more promising approach for dark current 

reduction in a-Se detector films; however it has its own disadvantages. The production of such a 

structure involves depositing 3 different layers to achieve a pin- like structure. Obviously, the 

device preparation technique is difficult and requires the right dopants in right combinations to 

produce the p- like layer, n- like layers and i- like layers. The long-term stability of such 

structures can be a problem because Na doped amorphous Se tends to crystallize. Another, 

problem with sodium is that that when high electric fields are applied to the pin- like structure, 

sodium ions will tend to drift towards the negative electrode and hence out of the n- like layer 

into the i- like layer. This will obviously change the properties of the i- like layer and can cause 

another set of problems affecting the long-term stability of the structure. The real p- like layers 

and n- like layers are not ideal and their transport properties are usually far from the ideal ones 

shown in Figure 1.4. The lifetime of the holes in the n- like layers and the electrons in the 

p- like layers is not zero. So the thickness of an efficient trapping layer is finite and must be 

greater than the average distance that the carrier travels before being deeply trapped (carrier 

Schubweg). Because the drift mobility of the holes in a-Se is much greater than that of the 

electrons, thin n- like layers are more difficult to prepare. For an n- like  biased at 5-10 Vµm-1, 

the typical thickness of the blocking layer should not be smaller than 10-15 µm. In addition, due 

to the heavy As doping, the electron transport in the n- like layer should be in general much 

worse than that in the i- like layer, so a significant amount of electrons are also lost in the n- like  

(trapping and recombination). 

In some cases, x-ray image detectors that collect electrons on the pixel electrodes can 

benefit from cheaper AMA and CCDs that are readily available.  However, in that case the 

electrons have to pass through the at least 10-15 μm thick n- like layer before reaching the pixel 

electrode. High resolution detector will have small pixel size 20 μm and less. The a-Se film of 
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200 μm is commonly used for mammographic detector applications.  This means that the aspect 

ratio (pixel size to photoconductor thickness) of such detectors will never exceed 0.1. The "small 

pixel effect" [15] becomes significant for such aspect ratios and that causes additional 

complications. The analysis of that effect [15-18] shows that the x-ray generated charges 

contribute to the signal only when they are moving in the vicinity of the pixel electrode, i.e. one 

pixel size away from the pixel electrode. The consequences of that are twofold; first, practically 

only the electrons contribute to the signal formation (radiation receiving electrode is negatively 

biased) and second, electron transport in the n- like layer becomes extremely important since 

more than 80% of the signal is formed when the electrons are moving through that layer. Alkali 

doped n- like layers, are stabilized with the addition of about 2% As. It is very well known that 

As decreases the electron mobility in a-Se by inducing a lot of shallow traps (0.4-0.6 eV from 

conduction band edge). That is highly undesirable in the case of real-time systems, and 

especially when CCD working in TDI mode is used as a readout circuit. In such cases the rows 

are shifted in the TDI direction more than 1000 times per second. At that fast readout speed, the 

low mobility of the electrons in the n- like layer may cause severe degradation of the image 

performance. In other words, it seems that it might not be possible to apply the alkali doped n- 

like layers for dark current control in a-Se based x-ray detectors with a TDI CCD readout circuit 

collecting electrons. 

 

1.4 Research Objectives 

The research work that will be described in this document was directly related to the 

investigation of the possibilities to create a high-resolution (20 lp mm-1) direct conversion digital 

x-ray detector utilizing a-Se as a photoconductor and a CCD readout circuit for applications in 

mammography.  

The main objective of the research work was to investigate the possibilities for dark 

current minimization in selenium based photoconductor structures without any significant 

deterioration in their imaging performance through systematic studies on the charge transport in 

a-Se films as a function of deposition conditions and alloying as well as through studies of dark 

currents in various single and multilayered a-Se devices.   
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In the search for the dark current reduction technique that will give comparable or better 

results than the pin- like a-Se based structures, more than 300 vacuum depositions of a-Se were 

performed and numerous metal/a-Se/metal structures were produced. Commercial metal/a-

Se/metal structures were also investigated. The experiments that were carried out can be 

classified in the main groups: 

• Investigation of charge transport in a-Se as a function of alloying 

• Investigation of charge transport in a-Se as a function of deposition conditions 

• Investigation of dark currents (I-t and I-V curves) in single and multi layered metal/a-

Se/metal structures 

• Investigation of dark currents (I-t and I-V curves) in metal/a-Se/metal structures as a 

function of the metal electrodes 

• Production of prototype x-ray image detectors utilizing the newly developed 

technique for dark current minimization. 

Based on the results of the experiments mentioned above, we have been able to propose 

and test a new technology for the fabrication of multilayer a-Se structures with low dark currents 

suitable for application in high-resolution x-ray image detectors. The new technology eliminates 

the need of doping with alkali elements to suppress the hole transport in the n- like layer and all 

associated complications that have been already described at the end of subsection 1.3. The 

newly proposed method offers several potential advantages over the existing technologies for 

dark current reduction.  The initial test results were very promising and a patent application was 

filed. 

 

1.5 Scope of the Thesis 

This chapter of the thesis has provided introductory information. The chapter started with 

a brief historical overview on the development of the methods for the detection of ionizing 

radiation. That was followed by a classification of the existing radiation detectors in several main 

groups and an introduction of a simple detector model applicable to most detectors producing an 

electrical output signal. The chapter continued with a brief description of the most commonly 

used detectors for x-ray projection imaging – screen/film cassette. The most promising 

technology for digital x-ray imaging based on the active matrix flat panel imagers of direct and 
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indirect conversion type was described next. The need of high resolution direct conversion 

detectors and a way for their practical realization were described next. Amorphous Se is the most 

promising candidate for application as photoconductor in such high resolution digital x-ray 

image detectors. For latter reasons, the ways to control the dark current to a tolerable level in a-

Se based photoconductors layers have been briefly covered together with the disadvantages 

inherent to those methods. The chapter concludes with the description of the research objectives 

and structure of the thesis. 

The remainder of this thesis is divided into five chapters. In Chapter 2, the properties of 

Se that are of significant importance for understanding the results of this work are described. 

These include: short description of the different crystalline and non crystalline forms of Se with 

some of their physical properties; description of the structural defects in a-Se; band structure of 

a-Se is described with emphasis on the density of electronic states in the band gap of that 

material. The chapter concludes with the description of the properties that make a-Se a good 

photoconductor material for x-ray image detectors. 

Chapter 3 provides description of the theory of transient photoconductivity measurements 

which is vital for proper interpretation of the results from Time-of-Flight (TOF) and Interrupted 

Field Time-of-Flight (IFTOF) experiments which were essential part of the research work. 

Chapter 4 describes the experimental procedures used to conduct the research. The 

chapter starts with the description of the fabrication process for the production of metal/a-

Se/metal devices and equipment involved in that process. The discussion is then shifted to the 

equipment and the experimental procedure used for the measurement of dark currents in metal/a-

Se/Metal structure. The TOF and IFTOF experimental setups are described next as means to 

obtain information about charge transport in the investigated a-Se films.   

Chapter 5 is devoted to the presentation of the main results from the research as well as to 

their discussion. The experiments are grouped in the same way as described in subsection 1.4 

and the discussion follows the order presented there. 

Chapter 6 presents the conclusion from the work together with the suggestions for future 

work.  
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2. PROPERTIES OF SELENIUM 
 

2.1 Structure of Selenium 

 Selenium is a member of group VI of the periodic table. The set of elements which are 

located in that group are called chalcogens. Selenium (Z = 34) has twenty eight electrons 

occupying the completed inner core shells. Two of the six electrons in the outermost shell 

occupy the 4s subshell and the other four outer electrons occupy the 4p subshell. The two 

electrons in the 4s-states form an lone pair (LP) state and do not participate in bonding.  

Chalcogen elements normally have a p-state lone pair in addition to the s-state lone pair, and 

these are both commonly referred to as non-bonding states.  This leaves two valence electrons in 

the p-states that are available for covalent bonding with other atoms to form a solid.  Therefore, 

Se atoms in a solid have a two-fold coordinated bonding configuration with an optimum bond 

angle of 105° [19]. The bonding configuration for Se in realty is quite flexible, because in the 

condensed state, under normal pressure, selenium can exist in many different allotropic forms 

[20-22]. More than four different crystalline modifications have been described and obviously at 

least 4 different liquid forms can be produced by heating the mentioned polymorphs above their 

specific melting temperatures. The non crystalline solid state forms of Se are known as 

"amorphous" (red, black and brown) and "vitreous" (produced by melt quenching). Most of the 

authors use the terms "amorphous" and "vitreous" as synonyms when referring to the non-

crystalline solid forms of Se. However, the variety in the properties of the existing non-

crystalline forms of Se requires the introduction of better terminology that avoids the confusion 

between “amorphous" and "vitreous" [21].  

 The purpose of this subsection is to provide more detailed information on the structure of 

solid state forms of selenium and especially about its non-crystalline forms. 

2.1.1 Crystalline Polymorphous Modifications of Selenium  

The summary of allotropic selenium forms and some of their characteristics is given in 

[21] and are presented in Table 2.1. Several crystal modifications are possible: trigonal Se 

(hexagonal according to some authors) constructed from Sen chains with meting point 

Tm = 217 °C; α-monoclinic consisting of Se8 rings with Tm = 144 °C; β-monoclinic consisting of 
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Se8 rings with Tm = 100 °C; γ-monoclinic constructed from Se8 rings, rhombohedric consisting 

of Se6 rings with Tm = 120 °C; orthorhombic Se possibly constructed from Se7 rings; and α- and 

β-cubic Se [21] produced in form of films. 

 

Table 2.1 Allotropic forms of Selenium as summarized in [21]. 
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The trigonal Se consists of spiral chains with the trans-configuration arrangement of 

atoms in the 4-member fragment of the chain shown in Figure 2.1.  The spiral chains with 

identity period 3 are connected in the trigonal crystal lattice with the following parameters for 

the unit cell: a=436.8 pm, c=495.8 pm. The valency angle θ is equal to 103.1degrees. The 

dihedral angleφ , characterizing the degree of the chain twisting, reaches 100.6 degrees, 

approaching to the value of the angle in the Se8 molecule [21]. Red monoclinic selenium is 

characterized by the cis-configuration in the arrangement of four sequentially bonded atoms in 

the circular molecule of Se8. The monoclinic unit cell of α- and β-selenium contains four Se8 

molecules, γ-selenium – eight [21]. α-monoclinic selenium has the following parameters for the 
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unit cell: a=905.4 pm, b=908.3 pm, and c=1160 pm. The valency angle is equal to 105.9 deg, the 

dihedral angle - 101.0 deg [20].  Data on rhombohedric Se6 are given in Table 2.1. The dihedral 

angle is 76.2±0.4 deg. The hexagonal unit cell contains 3 molecules of Se6 [22]. 

 

 

Figure 2.1 Molecular structure of several selenium allotrope forms.  The distances are given in pm.  Data 
were taken from [20], [21] and [23]. 

 

The thermodynamically stable allotropic modification of selenium is trigonal selenium. 

The monoclinic crystalline forms of Se transform into trigonal as the temperature increases. The 

beginning of such transformation is registered after heating at 70 °C for 600 min [23]. The 

rhombohedric Se transforms into trigonal at temperatures above 105°C.  

α-monoclinic Se melts at 144 °C and spontaneously transforms into trigonal selenium; β-

modification melts at temperatures higher than 100 °C [20]. The curves of the differential 

scanning calorimetry (heating rate of 10 °C/min) of rhombohedric selenium show the 

endothermic melting peak at 120 °C [22]. All these transformations are irreversible which 

demonstrates the monotropic character of the transformations. The heating of the hexagonal 
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althropic form of Se leads to its melting at 217 °C with the enthalpy of fusion as 6.23 kJ mol-1 

[20].      

2.1.2 Non Crystalline (Amorphous) Forms of Selenium 

2.1.2.1 Vitreous Selenium 

 The vitreous modification of Se can be readily produced in the form of relatively large 

samples provided that the crystallization promoting impurities can be eliminated by quench 

cooling the melt with sufficiently high rate (the critical rate is about 20 °C min-1) [20]. The glass 

transition temperature of such samples is about 40 °C. Their density is about 4.280 g cm-3. 

During the sixties it was considered that vitreous selenium was a mixture of two types of 

molecules that are connected by Van der Waals forces: polymeric spiral Sen chains like the ones 

in trigonal Se and 8-member ring molecules like the ones in monoclinic modifications of 

crystalline selenium (see Figure 2.1).  The ring to chain ratio in vitreous selenium depends on the 

temperature of the melt from which the samples were produced. That model for the structure of 

the melt and of the vitreous form of Se was based on indirect evidences.  Se has very high 

viscosity around its melting point. Close to that temperature the only stable polymorph of Se is 

the trigonal Se constructed from Sen chains. It was presumed that the chain structure is preserved 

in the melt and, by analogy with sulfur, the high viscosity of the melt was attributed to long Sen 

chain molecules (n can be as big as 104-105 [24,25]). The viscosity of liquid selenium decreases 

with increasing temperature. That experimental fact is interpreted in terms of decrease of the 

average length of Sen chain with increasing temperature. The presence of Se rings in vitreous Se 

and possibly in the melt was inferred from the partial solubility of vitreous Se in carbon sulfide 

CS2. It is known that trigonal Se does not dissolve in CS2 under all experimental conditions 

while monoclinic crystalline forms of Se dissolve completely in CS2. On the basis of such 

observations it was assumed that CS2 selectively dissolves only the Se8 ring fractions of vitreous 

Se. The first attempts to measure "ring-chain" equilibrium in the Se melt were pioneered by 

Brieglieb and date back to 1929 [21]. He prepared vitreous selenium samples by quench cooling 

the melt from 217°C and from 427 °C.  The samples produced were extracted with CS2 and it 

was found 40% Se8 rings for the samples quenched from (217°C) and only 18% for the sample 

quenched from 427°C.  However as described in [21], in 1970s it was found that IR spectra of 

vitreous Se samples produced in the way described above are not significantly different. More 
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importantly, the IR spectrum does not change after extraction with CS2. In his works, Lucovsky 

[19] has shown that vitreous selenium dissolves in CS2 only if illuminated with light having 

photon energies greater than 2.3 eV (λ < 540 nm) while α-monoclinic selenium dissolves easily 

and the dissolution speed does not depend on the presence of illumination. Briegleb does not 

comment on this fact. Lucovsky was eventually able to interpret the molecular spectra of 

vitreous selenium on the assumption of a chain structure with random distribution of cis and 

trans linkages. A section of a chain of this type is illustrated in Figure 2.1-(f). The experimental 

radial distribution function measured in different x-ray, electron and neutron diffraction 

experiments on vitreous selenium at that time coincides rather well with the curves calculated in 

accordance with the latter structural model and the existence of separate monomeric Se8 rings in 

vitreous selenium gradually became questionable. Such a conclusion was probably premature 

because at present, some researchers [26] support the understanding that based solely on 

diffraction data, it is not possible to determine if amorphous selenium consists of long chains, 

Se8 rings, or a mixture of both. 

However, in 1989, Miyamoto [22] grew a selenium crystal from the saturated solution of 

CS2 that was identified with the help of the x-ray analysis as a new allotropic rhombohedric 

modification of selenium that is constructed from Se6 rings (see Table 2.1). According to 

Miyamoto, the probability for formation of Se6 rings during the crystal growth from CS2 solution 

is very small. He thinks that these molecules came from dissolved vitreous selenium. Further, 

Miyamoto proposed a new model of vitreous selenium consisting of three types of molecules: 

Se8 ring, Se6 rings and polymeric chains. The content of each molecular component depends on 

the method of glass production.  It has to be noted that the amount of monomer (ring molecules) 

content is much lower than the one proposed from Briegleb. For example a resent Raman 

scattering study [27] have shown that the monomer content does not exceed 15% close to the 

glass transition temperature of vitreous selenium. The monomer content has week temperature 

dependence and extrapolates nicely to the dissolution data of Popov [28]. The latter author used 

CH2I2 as a solvent that dissolves only selenium rings and found that sample of vitreous selenium 

quenched from 250 °C have only about 5% rings while the content in samples quenched from 

400 °C drops to only about 1%.  

Based on part of the information presented above, Minaev [21] have drawn the 

conclusion that vitreous selenium is constructed mainly of tangles of chains consisting of 
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fragments of rings (Se8 and Se6) and fragments of chains of trigonal selenium. Separate Se8 and 

Se6 rings are also present to much lesser extend. 

2.1.2.2 Non-Vitreous, Non-Crystalline Selenium 

In his paper [21] Minaev, mentions several non-crystalline non-vitreous forms of 

“amorphous" selenium: red, black (Table 2.1) and brown, and of course a-Se produced by 

vacuum deposition technique.  Red "amorphous" selenium according to Feltz [20] can be 

prepared by direct precipitation of Se from acidic serenity solutions, for example according to 

the reactions  

 

422232

224242

SOH2SeOHSO2SeOH

NOHSeHNSeOH

+⎯→⎯++

++⎯→⎯+
 (2.1)

or by quenching Se vapors to a temperature of about 85 K. Little is known about its structure. As 

explained in the previous subsection, the solubility in CS2 can not be considered as evidence for 

the existence of ring molecular units. The enthalpy change on transition to trigonal Se at room 

temperature (298 K) is 12.5 kJ mol-1. This value is 2.5 times higher than the one connected with 

the crystallization of vitreous selenium. The higher energy content of red "amorphous" Se is 

probably due to a higher content of distorted configurations in the polymeric Sen chains such as 

cis linkages with distorted dihedral angles, which leads to ring closure to Se8 molecules in 

combination with the action of the solvent. The process is known in sulfur chemistry.  

When heated, the red "amorphous" Se transforms into black "amorphous" selenium at about 37 

°C. The conversion is endothermic with enthalpy of about 0.4 kJ mol-1 [20]. The structure of 

black "amorphous" Se has not been investigated well enough. The infrared spectra of red and 

black "amorphous" Se are almost identical [20] as shown later in Figure 2.4 .  

Vacuum evaporation produces amorphous selenium thin films, which have been 

investigate extensively in relation to their application in electrophotography in 1970s and more 

recently in x-ray medical imaging. Evaporated layers of selenium dissolve completely in CS2 and 

are red transparent if they are not too thick.  

Se vapors have complex composition. For example close to 330 °C the main constituents 

are Se6 and Se5 molecules, together with Se8, Se2, and Se7 molecules. The former two remain at 

nearly constant concentrations up to 730 °C. The fraction of Se2 and Se3 molecules increases 

with increasing temperature at the expense of larger molecules. The resulting amorphous 
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selenium layers are expected to have different structure depending on the evaporation and 

condensation conditions, such as source and substrate temperatures, evaporation rate etc. Trace 

impurities can inhibit or promote the crystallization tendencies which exist for all forms of non-

crystalline selenium, and it is often very difficult to suppress the formation of nano- and micro- 

crystalline inclusions in vacuum evaporated Se layers [29, 30]. 

Popescu [21] divides non-crystalline vacuum deposited selenium into two forms: a-Se-I 

and a-Se-II.  The first group includes samples deposited on a substrate kept at low temperatures, 

in the second group selenium produced at high temperatures and bulk vitreous selenium. 

Analyzing previous information on the structure of selenium based on IR-spectroscopy, Raman-

spectroscopy, differential thermal analysis and other methods together with his own information 

based on x-ray scattering experiments, Popescu has come to the conclusion that the non-

crystalline selenium structure consists of 8-member ring monomers and chain polymers. The 

main constituent of a-Se-II are selenium polymer chains while a-Se-I  is build predominantly 

from Se8 rings. Popescu investigated samples prepared at substrate temperatures in the range 

from 30 oC to 70 oC. The ratio "chains-rings" reached maximum at 50 oC. Further, the author has 

mentioned that the transformation of a-Se-I into a-Se-II is possible if the samples are annealed.  

Takahashi et al. have investigated the properties of highly disordered amorphous 

selenium deposited on cold substrate held at 77 K by UV photoemission spectroscopy [31]. In 

order to explain the observed spectra and their irreversible thermally induced changes, the 

authors have proposed a new structural model for a-Se. According the latter model a-Se consists 

of regular very short (about 10 atoms) chains (clusters). The dihedral angles inside each short 

chain are the same as in trigonal Se while the bond angles are slightly distorted. The clusters are 

connected to one another with dihedral angle that differs than the one in trigonal selenium. Such 

model is in relatively good agreement with the data about Se vapor presented above because at 

77 K Se molecules are immobilized almost immediately after their arrival at the surface of the 

film.  

2.1.2.3 Structure of Non Crystalline Forms of Selenium 

  The structure of all amorphous forms (noncrystalline solid forms) is not fully understood 

in spite of several decades research. One of the most recent attempts to explain the structure of 

noncrystalline forms of selenium and their transformations with temperature and time is due to 
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Minaev and his concept for the polymeric-polymorphoid structure of the glass [21].   According 

to this concept, all forms of non-crystalline selenium are constructed of copolymerized in the 

greater (vitreous Se) or lesser extent (the other noncrystalline  forms of Se) structural fragments 

of crystal lattices (polymorphoids) of trigonal, monoclinic and sometimes rhombohedric  

modifications without a long range order. Thus chain structures are formed. Some segments of 

these chains  will have the trans configuration characteristic for trigonal selenium, while other 

segments  will have the cis-configurations characteristic for Se8 and Se6 ring molecules from 

which the monoclinic and the rhombohedric modifications of selenium are built. The average 

coordination number for amorphous selenium measured for example in [32] is about 2.2. This 

means that some of the chains form “stars”, in which threefold and fourfold coordinated 

selenium atoms are located.  Besides the chain structures the non-crystalline selenium contains, 

in the greater or lesser extent, separate eight-member and six-member ring selenium molecules. 

The concentration ratio of different polymorphoids is a fundamental characteristic of 

condensed selenium.  Under factors like irradiation, pressure, temperature, time etc., the inter-

transformation takes place between the polymorphoids of different polymorphous forms and the 

ratio of the concentration of different polymorphoids is altered. It seems as if the non-

equilibrium selenium “memorizes” all inherited crystalline modifications and relaxes in the 

direction of formation of polymorphoids of the crystal modification stable under the given 

conditions.  

This concept is not well established but is capable of explaining many structural 

properties and experimental facts related to different transformations of the non-crystalline forms 

of Se including the effects of temperature and ageing [21].  

 In conclusion we have to say that the structure of a-Se is not unique. The review above 

suggests that huge variations in structure and in properties of a-Se are possible depending on the 

properties of the staring selenium material (origin, purity, preparation conditions, ageing history, 

etc.), sample preparation conditions and post-treatments of the sample (storage conditions, 

annealing, ageing, etc.).   

2.1.2.4 Structural Defects in Amorphous Selenium  

 The main reason for the structure and for the semiconductor properties of Se is its 

twofold coordination and van der Waals interactions between the molecular units (chains and 
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rings). In crystalline, in amorphous and in liquid selenium the majority of the atoms are bonded 

to two nearest neighbors. Any deviation from that bonding configuration can be considered as a 

defect in the structure of Se. Obviously, the atoms at the ends of Se chains are singly 

coordinated. These defects are the only possible under-coordinated structural defects in Se. A 

Selenium atom can form from 1 to 4 bonds in his normal valency configuration and up to 6 

bonds in its "hyper-valent" configuration (SeF6 for example). Such properties makes the 

existence of many over-coordinated defects possible and thus the average coordination number 

slightly in excess of two measured in many experimental works (see for example [32]) seems 

natural. 

The existence of structural defects in chalcogenide glasses gives rise to very interesting 

properties. There is evidence from electronic and optical phenomena that amorphous selenium 

has a significant density of gap states with Fermi level EF pinned near the center of the optical 

gap. Singly occupied defect states near EF would be expected but the absence of Electron Spin 

Resonance (ESR) signal or paramagnetism rules out their existence [33, 34].  

Among the numerous publications with regard to defects in a-Se are the models 

developed by Street and Mott [35], Kastner and Adler and Fritzsche [36] and Vanderbuilt and 

Joannopoulus [37,38] that have received most of the attention of the scientific community.  

Using the idea of Anderson [39] on defects with negative correlation energy (negative U 

defects), Street and Mott proposed the idea that the dangling bonds D0 generated naturally by 

breaking bonds homolytically can lead to charged defect centers: 

 −+ +→ DDD02 , (2.2)

where D denotes a defect without any reference to coordination or geometry. The authors have 

assumed that the reaction is exothermic by means of significant phonon contribution. 

Kastner, Adler and Fritzsche have tried to analyze the coordination environment and 

electronic structure of these defects. From the exothermic nature of the reaction in Eq. (2.2) they 

have concluded that all defects generated by homolytic bond scissions will eventually transform 

into pairs of threefold coordinated positively charged defect centers and singly coordinated 

negatively charged defect centers . In that notation C denotes Chalcogen atom, subscript and 

the superscript represent the coordination and the charge of the centre respectively. The pair 

 is known as a "valence alternation pair" or VAP. It was assumed that the lowest-energy 

+
3C

−
1C

−+ − 13 CC
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neutral defect is the three-fold coordinated atom 0
3C .  An essential feature of the proposed model 

is that even  defect will spontaneously change by the exothermic reaction to form a VAP    0
3C

 ( )−+ +→+→ 13
0
1

0
3

0
22 CCCCC . (2.3)

If in the so formed VAP  and the  atoms are near each other then a strong Coulomb 

attraction exists between them. This type of VAPs are assumed to be stable and are called 

"intimate" (non random) valence alternation pairs or IVAPS.  The defect states with lowest 

energy in the theory are either doubly occupied or unoccupied. Such defects do not carry a net 

spin. This explains the absence of dark ESR signal and why the low-temperature material is 

diamagnetic. The paramagnetic behavior at medium temperature is presumed to arise from the 

electronic excitation of  and defects to form neutral  and  defects carrying net spins. 

The unusual properties of lone-pair semiconductors, including Se, such as reversible 

photostructural changes, photoinduced diffusion, crystallization, phase separation and 

decomposition are all believed to be strongly connected to the bond switching and the chemical 

reactivity associated with the photo-excited VAPs. The VAP model has been verified by some 

molecular-dynamic simulations [

+
3C −

1C

−
1C +

3C 0
1C 0

3C

40] and more reliably by some experiments. For example, the 

ESR experiment by Kolobov et al. [41] is believed to give a direct experimental evidence for the 

existence of negative-U centers and valence alternation in amorphous selenium. The latter 

authors have observed two different kinds of electron spin resonance (ESR) signals, triclinic and 

isotropic, in amorphous Se under photoexcitation at 20 K with a concentration of up to 1020 cm-3. 

ESR signal annealing behavior suggests that isotropic centers are not stable and are converted 

into triclinic defects. The defects are identified as singly and triply coordinated Se defects. These 

results in the opinion of the authors of [41] present direct experimental evidence for negative-U 

centers and valence alternation in amorphous selenium. 

However, the average coordination number in a-Se is about 2.2 [32] and that can not be 

explained in terms of predominant VAP defects simply because the average coordination number 

of a VAP is exactly 2.  In addition, Vanderbuilt and Joannopoulus [38], by means of 

mathematical simulations, have found that the energy necessary for the creation of defects in the 

framework of VAP theory is bigger than the binding energy Eb and from the bandgap energy Eg 

for practically all VAP configurations with one exception. If the calculations are correct the 

VAPs can not be the predominant type of defects in a-Se.  

 30



On the basis of the results of Vanderbuilt and Joannopoulus, and some chemical 

evidence, Steudel [42] have suggested that the hypervalent configurations  and  

shown in 

dd CC 13 − 0
4C

Figure 2.2 are the most probable defect structures in a-Se. The subscript d denotes that 

the bond between the threefold coordinated atom and the singly coordinated atom is double. The 

existence of the defect  has not been confirmed so far, but some evidence for existence 

of  defects has been provided by molecular-dynamic simulations [

dd CC 13 −

0
4C 43] and the "footprints" of 

such fourfold coordinated defects have been found in the IR spectra of  red "amorphous" 

selenium [45]. 

Hohl and Jones [43] in their first-principle molecular-dynamic simulation have found that 

the concentration of threefold coordinated defect is 4 times bigger than the concentration of 

 

Figure 2.2 Hypervalent defect structures in a-Se as proposed by Steudel [42]. 

 

singly coordinated defect sites. According to the authors the defects of the type C3 have the 

tendency to pair and form a new defect in the structure C3-C3 as shown in Figure 2.3. Almost 

82% of the C3 defects were found in pairs C3-C3. About 12% of threefold coordinated defects 

were in VAP pairs C3-C1 and the rest 6% existed as isolated C3 sites. Some isolated C1 defects 

were found to exist together with  defects that had almost the same structure as proposed by 

Steudel. 

0
4C

The simulation methods used in this work were later criticized by Xiaodong Zhang, D.A. 

Drabold [40]. They argued that the described system is not well relaxed and have found that the 

well relaxed Hohl and Jones model contains only six defect states: two IVAPs C3-C1, one C3 and 

one C1 defect.  
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Figure 2.3 Diagrams of the defects encountered by Hohl and Jones in their molecular-dynamic simulation of 
liquid and amorphous selenium [43]. Their simulations find a new candidate for the predominant defect 
structure; a pair of threefold coordinated atoms C3-C3 and confirms the existence of fourfold coordinated 
defects C4. 

 

In our view molecular-dynamics simulations are not reliable methods for the 

determination of defect concentrations. Most of the calculations were performed on systems of 

64 atoms (on 216 atoms more recently). A single Se chain can have as much as 104-105 atoms. 

Simulation based on models containing more than ~4000 atoms are not possible at the present 

time. The results of the simulations based on models containing 64 atoms can easily became 

compromised by severe scale effects. So, the calculated equilibrium concentration of defects and 

densities of the electronic states are not very reliable. However, having in mind the bonding 

flexibility of Se and the variability of its structure and properties, probably all of the defect 

structures proposed so far can be found in a real a-Se sample.  

In support of the thoughts presented above we can mention that Dembovsky and 

Chechetkina [44], have proposed very similar defects to the ones shown in Figure 2.3 under the 

name "quasi-molecular defects".  More recently, Zyubin et al. [45] have done quantum-chemical 

simulation of different defects appearing in a-Se. The stress was placed on three types of defects 

sites: IVAPs,  and 0
4C −−−− SeSeSe 6  defect (that is actually a pair of C3 defects). The defects, 

the way in which they are formed, and their stability are shown in Figure 2.4 . The authors have 

further calculated the infrared absorption spectra for the different realizations of these defects. As 
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a result they were able to find the "footprints" of the defects in experimentally measured spectra 

of a-Se samples as shown in Figure 2.4. The positions of weak additional minima in the 

experimental transmittance spectra of "red" and "black" amorphous selenium are in good 

agreement with the most intensive vibrational frequencies of the "hypervalent defects". The 

picture is consistent with the known structure of red and black "amorphous" selenium and the 

appearance of the minimum caused by the formation of IVAPs in the structure of the black a-Se 

is expected. The small intensity of these additional absorption bands suggests low concentration 

of such defects [45]. 

 
Figure 2.4 Defects in a-Se [45]: geometry, formation, stability and their "footprints" on the experimental 
infrared spectra of red (1) and black (2) "amorphous" selenium.  

 

The defects described so far are native "atomic" defects in a-Se, i.e. deviations from the 

normal bonding configuration in Se. We have to admit that other defects can exist in a-Se related 

to the presence of different impurity atoms. Such atoms will generally have a valency that is 

 33



different than that of Se and therefore will form under and over coordinated defects in its 

structure similar to the ones described above. One very important difference however has to be 

recognized. The size of such impurity atoms can be greatly different than the size of Se atom and 

this can trigger different size effects, formation of crystallization nuclei being one example. 

It is almost impossible to produce ideal a-Se. In most cases it is impossible to totally 

suppress the formation of nano- and micro- crystal in the a-Se matrix [29].  Such crystalline 

inclusions represent another type of defect in the a-Se structure. Their concentration can be quite 

high – up to 1013-1014 cm-3 and to complicate the situation even further they can belong to one of 

the numerous crystal modifications summarized in Table 2.1. 

 In the present time, the known data are insufficient and does not allow us to conclude 

which are the predominant types of defects in a-Se. The concentration and the nature of the 

structural defects in a-Se most probably depend, on the starting Se material, on alloying and 

doping, on the sample preparation technique, on storage conditions, etc. In addition, the 

concentration of different defects changes as the sample ages. The latter partly explains why the 

properties of a-Se are so difficult to investigate. Many of the properties of a-Se are strong 

functions of a very long sample history that includes in it the history of the starting Se material. 

In most of the cases such long history dependence is impossible to be followed exactly .What is 

worse, is that in some cases, sample history is totally neglected by most researchers. This is one 

of the reasons that substantially diverse results related to different properties of a-Se have been 

published in the literature.  

 

2.2 Electronic Density of States in the Band Gap of a-Se 

Although several points of view exist in the scientific literature [46], most of the 

researchers working with amorphous and crystalline selenium tend to interpret their experimental 

results in the framework of the band model for the semiconductors. Selenium is the only material 

that exhibits "semiconducting" properties in its crystalline, amorphous and liquid (near the 

melting temperature) states. This unique behavior is related to the molecular structure of 

selenium, which generally plays a key role for liquid and amorphous semiconductors [47].  As 

described in the previous subsection, the nearest neighbor distance and bond angles turn out to be 

very similar for the above phases of selenium. The predominant two fold coordination is the 
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main reason for the semiconducting behavior of selenium as can be seen from the simple bond 

orbital model for this element. The electronic configuration of Se is 4s24p4. Two out of the 4 p-

electrons are involved in covalent intra-chain or intra-ring bonding. They form σ-type bands in 

the energy range 3-7 eV below the top of the valance band. The corresponding σ* untibonding 

states form the conduction band. The two low laying 4s electrons hardly participate in the 

bonding and the remaining two 4p electrons enter "lone pair" states which form the top portion 

of the valance band (0-3 eV below the band edge). This simple qualitative picture has been 

confirmed by calculations and photoemission experiments for crystalline, amorphous and liquid 

selenium [48, 49].  

No significant tailing of the valence band edges into the band gap was observed for both 

amorphous and liquid selenium in the vacuum photoemission studies of Nielsen and Greuter [48, 

49]. Their experiments suggest that the valance band edges are rather narrow with tailing of the 

order of ~ 0.1 eV. Such result is to be expected because; the top portion of the valence band is 

constructed from "lone pair" orbitals, which do not participate in bonding and that can 

qualitatively explain their relative "inertness" to the amount of structural disorder. The amount of 

tailing at the conduction band edge might be different for liquid and amorphous selenium and is 

expected to be bigger than the one at the valence band edge, since the conduction band in Se is 

build  by   σ* untibonding states and larger distortions are expected as a response to fluctuations 

in local bonding geometry.  

For a-Se films produced by vacuum evaporation Nielsen has estimated the upper limit of 

the density of states in the gap as 1020 eV-1cm-3 [48]. In the same work he has found that the 

density of states in the gap around the Fermi level is less than 2×1014 eV-1cm-3 and that the 

density of surface states is less than 1010 eV-1cm-3.  The last number means less than one site per 

105 surface atoms which is in agreement with the idea that the valence requirements are fulfilled 

for all the atoms in a-Se films.  

One of the most often cited models describing the density of states (DOS) in the gap of 

a-Se and being in good agreement with the data from the photoemission measurements described 

above has been proposed by Abkowitz [50] in 1988. The later model is a natural extension of 

Marshall and Owen model [51] describing the density of states in the gap of the amorphous 

As2Se3.  The main features in the density of state distribution proposed by Abkowitz are 

illustrated in Figure 2.5. In addition to the quickly decaying band tails four sets of states with 
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relatively narrow distributions on the energy scale are present in the model. The set of states 

situated close to the band edges act as shallow traps for charge carriers in a-Se.  Such set of 

shallow traps known to control the mobilities of holes and electrons in selenium through the 

process of multiple trapping and detrapping in these states. The position of the shallow trap 

peaks have been derived from the analysis of the temperature dependence of the mobility of the 

holes and electrons in time-of-flight transient photoconductivity measurements performed by 

Kasap and Juhasz [52]. The positions of the traps near the Fermi level have been determined 

from the analysis of time-resolved xerographic measurements in a-Se films. These deep sites act 

as deep traps for the charge carriers because the thermal release time from them is much longer 

than the time scale of the associated experiment. Thus, their concentration determines the 

lifetimes of charge carriers in amorphous selenium. 

Each of the four main trap levels is probably related to certain types of defects in a-Se.  

Numerous intrinsic structural defects can exist in a-Se as described in the previous subsection. 

Vast variety of extrinsic defects due to impurities and doping are also possible. The energy levels 

of both intrinsic and extrinsic defects in selenium are not known. Although many authors have 

tried to relate certain set of traps to the defects in Se such as VAP for example, the suggested 

relations up to date are mostly speculative.  

 

 
Figure 2.5 Density of electronic states in amorphous selenium proposed by Abkowitz in [50]. 
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A study of the scientific literature on a-Se before Abkowitz's paper [50] will reveal that 

many researchers have interpreted carrier transport in a-Se in terms of several relatively narrowly 

distributed or even discrete trap levels. For example, in 1967 Blakney and Grunwald [53] 

analyzing the shape of TOF transient photocurrents in a-Se films have concluded that the 

electron transport in a-Se can be interpreted in terms of 3 discrete levels of traps. The position of 

two of those levels, coincide rather well with the positions in Abkowitz's model. The third set of 

traps, according to Blackney and Grunvald positioned between the trapping levels proposed by 

Abkowitz at about 0.40-0.48 eV below the bottom of the conduction band. In 1969 Turgul Yasar 

[55], studying   the transient polarization currents in a-Se, found that the hole transport in his 

experiment is controlled by two levels of traps 0.48 and 0.8 eV above the edge of the valence 

band. In 1977 Noolandi [56] found that 3 trapping levels for holes needed to fit his experimental 

TOF data for holes with precision better than 5%. All these works suggest that an intermediate 

third level of trap exists for both holes and electrons in a-Se. These trap levels are positioned 

somewhere in between the shallow traps controlling the mobility and the deep traps controlling 

the lifetime of the carriers in Abkowitz's model.  

 The knowledge on DOS distribution in the bandgap of a-Se until early 1990s can be 

summarized as follows. The DOS distribution in a-Se is quite shallow. This means that both the 

valence and the conduction band edges are relatively sharp. Band tailing in the bandgap is 

relatively small. The distribution of the tail states in the gap can be as narrow as 0.1 eV [48, 49] 

both near valance and the conduction band edges. At least three different discrete or relatively 

narrowly distributed set of traps are present in the gap of a-Se for both holes and electrons. The 

peaks in the DOS distribution around 0.25 eV above EV and 0.35 eV below EC (see Figure 2.5 ) 

are known to control the mobility of holes and electrons in a-Se respectively. The existence and 

positions of these shallow peaks were determined based on the interpretation of the TOF data of 

Kasap and Juhasz [52] and in more direct micro stripline experiments performed by Orlowski 

and Abkowitz [53]. Very similar mobility controlling peaks are present in [53] and [56]. The 

deep peaks near the Fermi level in Figure 2.5 control the lifetime (the deep trapping time) of the 

holes and electrons in a-Se. Their existence, amplitude and positions were confirmed by time-

resolved xerographic residual and dark depletion potential measurements in [50], transient 

polarization currents data in [55] and by the technique of thermally stimulated currents for 

example in [57]. Similar deep sets of traps are present in [53] and [56]. Finally, a number of 

 37



researchers have suggested that third set of trap exists for both holes and electrons in a-Se. These 

sets are not shown in Figure 2.5 and are missing in Abkowitz's model and have been neglected 

by the researchers for many years. According to the authors of [53, 55 and 56] these 

intermediately deep set of traps are located in the range 0.4-0.5 eV from the band edges for both 

holes and electrons.  

The knowledge about the DOS distribution in the gap of a-Se has not improved 

significantly since the end of 1980s and remains controversial even today although significant 

number of works has been published in the field during the last 7-8 years.  

 Starting in 1999 a group of researchers headed by Adriaenssens have published 

considerable number of papers on the subject; works [58-65] being only part of the cycle. These 

researchers have used their post transit photocurrent analysis PTPA technique (see section 

3.3.7.3 for details) to map the DOS distribution in the gap of a-Se. Based on that method Song 

and coworkers [58]  have rediscovered the long neglected set of traps described at the end of the 

previous paragraph. PTPA gave the following positions for the "new" peaks: 0.4-0.5 eV above 

the valence band edge and 0.55-0.65 eV below conduction band edge.  The energy positions of 

these two peaks do resemble 
4

gE
 and 

3
gE

 and that lead the authors to the idea to interpret their 

results in the framework of the standard "negative U" [39] model for a-Se [36].  The measured 

DOS distribution was explained in terms of VAP (a pair of   and ) existing in a-Se. Thus 

the first peak was related to the  defect states in a-Se and second one - to  ones. The 

picture was almost perfect except that the original model of Abkowitz (

−
1C +

3C

−
1C +

3C

Figure 2.5) had in it two 

other set of peaks at absolutely different positions, which obviously had to be related to other 

distinctly different defect types and what is more important these peaks do not fit in the standard 

negative U model of a-Se. The researchers in Adriaenssens's lab decided to overcome that last 

obstacle by questioning the existence of the peaks in Abkowitz's model, although all of those 

peaks are well out of reach of the experimental technique used by them. This gave birth to the 

speculation [58] that the set of the two shallow peaks in Figure 2.5 was entirely due to the 

misinterpretation of the experimental TOF data by Kasap and Juhasz. The basic idea was to show 

that there exists another interpretation of the experimental data that does not require the existence 

of shallow peaks superimposed on the band tails as in the Abkowitz's model. Based on the results 

of previous experiments and modeling [66-68], the authors of [58] have concluded that drift-
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mobility activation energy curves from the data of Kasap and Juhasz "should be interpreted as 

evidence for a continuous featureless distribution of tail states in which the MT (multiple 

trapping) transport takes place, with smaller field dependences indicating steeper tails, and vice 

versa". Finding explanations for the "false" appearance of the peaks near the Fermi level in 

Abkowitz's model of DOS distribution in a-Se was not so easy, because even the data in [58] 

give indication that such peaks can exist. However, the authors have done quite well suggesting 

that these peaks could appear due to "artifacts" in both the xerographic experiments of Abkowitz 

and in their own measurements.  

The DOS distribution for a-Se that originated from [58] was "refined" in several other 

papers and is presented in Figure 2.6. However, the explanation for the absence of  

 

 
 

Figure 2.6 Density of states in a-Se deduced from steady state and transient photoconductivity measurements 
by Adriaenssens's group of researchers.  The position and the width of the peaks are taken from [60,61].  The 
distribution of tail states may, to first approximation, be described by as steep exponential with a 
characteristic width of ~24 meV at the valence band and a more steeply declining functional of similar width 
at the conduction band. The full curves correspond to the energy range that is accessible in the post transit 
time-of-flight experiments. 

 
shallow and deep peaks (equivalent to the ones proposed by Abkowitz's) in the DOS distribution 

of a-Se presented in Figure 2.6  were highly speculative and naturally the model presented in the 

figure did not last for very long time. Indeed, researchers from the same group have found 

evidence for existence deep set of traps located close to the equilibrium Fermi level in a-Se 

analyzing steady state photoconductivity currents in that material at low temperatures [62]. 
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Again work published by the same group [64], discusses the existence of similar deep relatively 

discrete states in the gap of a-Se. What is more interesting in the very same work [64] they claim 

that have found evidence for existence of a discrete defect level about 0.28 eV below the 

conduction band edge of a-Se. 

Further the same group, under the influence of ideas presented by Koughia et al [69-70] 

which will be discussed later in this section, has tried to model the DOS distribution in the gap of 

a-Se near the conduction band as a sum of an exponent and three Gaussians [65]. That implies 

that three distinctly different set of electron traps (defect levels) exist in the band gap of a-Se. 

The positions of these traps were found to be 0.3 eV, 0.48 and below 0.65 eV from the 

conduction band edge. The characteristic width of the exponent in the same work was found to 

be 20 meV. 

We can summarize the developments on the DOS distribution in the bandgap of a-Se as 

follows: a-Se has relatively sharp bandgap edges compared to the rest amorphous 

semiconductors. It seems that there are at that least 5 different sets of defects positioned in the 

gap; three of them act as electron traps and two as hole traps. What is left to completely confirm 

the situation known from the end of 1980s is to prove once again that shallow hole traps exist 

~ 0.25 eV above the valence band edge. 

 Other recent works that have attempted to reveal the "real" electronic DOS distribution in 

the bandgap of a-Se are due to Koughia et al. [69-71].  The approach is very similar to the one 

described by Noolandi in [56].   It is based on an approximate numerical inversion of the Laplace 

transform of the theoretically calculated photocurrent for a given DOS distribution and 

comparing the result with the experimentally obtained photocurrent traces.  There are two main 

differences in the approaches of Noolandi and Koughia. First, Koughia is using a technique for 

the approximate inversion of the Laplace transform that is different than the one used by 

Noolandi. Second, while Noolandi is seeking DOS distribution in the form of sum of discrete 

trapping levels, Koughia is trying to represent the DOS distribution as a nearly continuous 

function; to be more precise as a sum of predefined functions (a sum of spline functions in the 

earliest work, which was changed to a sum of an exponential and several Gaussians in later 

works). The basic results of the research efforts in [69-71] are presented in Figure 2.7.  

The distribution above the Fermi level is in good agreement with the existing 

experimental data. In addition to the sharply decaying tail states, two relatively narrowly 
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distributed peaks located at 0.3 and 0.5 eV below the band edge exist in the proposed model. 

From the TOF data, only the integral concentration of the deep states (further than 0.65 eV away 

from the band edge) can be determined. Although, the exact distribution of these states can not 

be determined from the experimental data their existence is justified. 

 

 
Figure 2.7 The asymmetric DOS distribution in the gap of a-Se proposed by Koughia and coworkers [69-71]. 
The distribution above the Fermi level is very close to the one known in the late 1980s - sharp exponential tail 
with a characteristic width of 20 meV , two relatively sharp peaks at 0.3 and 0.5 eV below Ec, and a set of 
deep states situated more than 0.65 eV below Ec. Surprisingly, the distribution near the valence band edge is 
featureless and to first approximation can be presented by a single exponent for the energies starting 0.2 eV 
above Ev. A set of deep hole traps situated more than 0.55 eV above the valence band is a feature of the 
proposed distribution. 

 

However, the distribution near the valence band edge is considerably different from the 

most common views presented in the scientific literature. The distribution of the electronic states 

near the valence band edge is "flat", meaning that it has no features. Actually, 0.2 eV away from 

the band edge, the distribution can be approximated with a single exponent. Some deep states 

with integral concentration in the range 1011 - 1014 cm-3 are confirmed by the analysis of the 

experimental data though their exact distribution cannot be resolved due to the limited timescale 

of the experiments. The distribution of hole traps bares no resemblance to the models proposed 
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by Abkowitz  (Figure 2.5) and Adriaenssens (Figure 2.6). However, the calculated distribution is 

in good agreement with the DOS distribution near the valence band proposed by Naito et al. [72].  

 The DOS model proposed by Koughia and presented in Figure 2.7 correctly predicts the 

dependence of carrier mobility (μ) on temperature (T) at different electric fields (F). The 

calculated μ(1/T) curves at different fields F coincide well with the experimental data which is a 

merit of the proposed distribution. On the negative side, the distribution of electronic states near 

the valence band edge proposed by Koughia, predicts more tailing than it was experimentally 

observed in [48, 49]. The valence bands in a-Se and in trigonal allotrope of crystalline Se are 

build by lone pair orbitals and for reasons explained in the beginning of this subsection and 

acknowledged in [71] should have a lot of similarities. It is known that, in trigonal Se there exist 

three types of hole traps 0.09, 0.21 and 0.47 eV above the valence band; see [76] for example. 

The analogs for the later two levels might be with very low concentrations in a-Se but is difficult 

to imagine that their existence is totally masked by the disorder in a-Se, because a number of 

other researchers, as previously described have found some prove for their existence in a-Se.  

Only the future will show how correct is the DOS distribution of electronic states above 

the valence band proposed by Koughia and how the exact DOS distribution of a-Se will look 

like. However, there are a few general remarks on the mathematical nature of the techniques that 

are used to recover the DOS by different authors that we will like to comment below. First, there 

are several mathematical techniques which are based on approximate inversion of the Laplace 

transform of the photocurrent. For the calculation of the DOS distribution in the range 0.1-1.0 eV 

away from the band edge one will need to record and analyze TOF photocurrent ranging in time 

about 15 orders of magnitude (10-11-104 s). Recording transient photocurrent with the necessary 

precision over such huge range is on its self a challenging experimental task. Finding an 

approximate inversion of the Laplace transform that will give acceptable precision in such huge 

time range is an extremely difficult mathematical mission. Second, most of the authors usually 

acknowledge that the problem is ill-conditioned and the DOS derived “satisfies all requirements 

that define generalized solutions of so-called ill-posed problems". However, in the majority of 

the works on recovering the DOS in a-Se a proper regularization technique is never 

systematically applied, although in general most of the methods bare some elements of 

regularization. For example, in [69-71] the author searches a solution (DOS distribution) that has 

a certain predefined form (sum of splines or sum of a exponential and several Gaussians) and 
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that is known as "quasisolution" in the sense of Ivanov [73]. However, in such situations one 

never knows how well the compromise between stability and sensitivity is struck. The computed 

solution can easily be "over smoothed" (revealing less structure than the really existing one) or 

"under regularized" – showing more structure than the one that can be found in the real solution. 

Technique, like Monte Carlo simulations that is in many cases used by the authors to check the 

calculated solution is incapable of distinguishing between "over-smoothed" and "under-

regularized" solutions. Third, a problem that is often neglected is the lack of short term and long 

term experimental data that are out of reach for the particular experimental setup used to record 

the photocurrents. For example, the authors of [71] have indeed analyzed TOF data from many 

different sources, however for all these sources the short term portion (10-11 - ~10-6 s) of the TOF 

waveform is missing due to the limited instrumentation response time. Such lack of short-term 

data has been shown to lead to miscalculation of the DOS distribution function [74, 75]. In 1999 

Nagase et al. [74] have demonstrated that calculation based on Laplace transform technique 

using waveforms that  do not contain data for times shorter than 10-6 s can fail to return existing 

deeply lying (up to 0.5-0.6 eV from the band edge) peaks in the DOS. The lack of short term data 

actually explains the good agreement between the DOS distributions near the valence band 

calculated in [71] and in [72] by the use of different numerical techniques for solving the same 

set of multiple trapping equations. The analyzed photocurrents, in both works, are missing the 

short time data and according to [74] the calculated solutions will contain no peaks in the energy 

interval from 0 to 0.6 eV away from the valence band.   

The highly controversial situation with regard to the DOS distribution in the bandgap of 

amorphous selenium is direct consequence of our lack of satisfactory understanding of the 

structure of a-Se which was described in subsection 2.1. The works published after late 1990s 

although relatively big in number failed to significantly improve the understanding about DOS in 

the gap of a-Se. The most important group of reasons for that failure is the fact that most of the 

researchers failed to understand completely the underlying limitations of the problem for the 

recovery of the DOS distribution function from experimentally measured photocurrent. The DOS 

distribution function and the experimentally accessible currents are related through some sort of 

Fredholm integral equation of the first kind which can not be solved in a closed form. Finding a 

numerical solution of such integral equations is known to be an ill posed problem, in some cases 

severely ill posed problem. This term means that the solution may not exist, may not be unique 
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and may not continuously depend on the input data. Strictly speaking there is an infinite amount 

of information about the DOS distribution function that can not be recovered from the 

experimental photocurrent. The amount of information that is recoverable is limited by the signal 

to noise ratio (SNR) of the experimental data. The SNR ratio with which the current is measured 

in any of the published works probably does not exceed 20 and that is far away from being 

sufficient for high resolution analysis no matter what numerical algorithm is used to calculate 

approximately the DOS distribution function. The situation is even worse because the 

photocurrent data are incomplete.  The photocurrents can not be recorded for periods very 

shortly after the excitation, and the currents can not be reliably followed for sufficiently long 

times after the excitation due to various limitations. Thus, the low quality of the experimental 

data, limits the amount of information about the density of states that can be recovered through 

analysis of the photocurrent. This limit is fundamental and the resolution can not be improved by 

the implementation of better numerical algorithms. Through a detailed analysis that is beyond the 

scope of this work, one can show that based on the quality of the published data, the DOS 

distribution function can be recovered with precision that is quite low, probably not better than 6-

10 degrees of freedom. Any attempt to recover more information about the DOS distribution 

function can not be justified mathematically. Such low resolution is not sufficient to describe 

even the general case of 3 discrete trapping levels and so, none the DOS distributions described 

in the subsection can be strictly justified mathematically because they are trying to recover a 

structure that is well beyond the fundamental limits imposed by the quality of the experimental 

data.  The situation is even worse due to the ill posed nature of the problem. It can be shown that 

one and the same set of experimental data can be fitted by more than one combination of discrete 

trapping levels and in the same time by at least one continuous distribution of traps. Among 

those solutions the researchers involved in studying DOS distribution in various amorphous 

semiconductors will normally select the one that fits best (with smallest error) the experimental 

data. It can be demonstrated, however, that the error of the fit alone is not a sound criteria for 

selecting a solution of an ill posed problem.   

DOS distribution in the gap of a-Se is obviously a theoretical problem that requires much 

more careful studies in the future. On the positive side most problems in which a-Se is involved 

as an x-ray photoconductor can be successfully modeled in terms of only two effective trapping 

levels: one shallow that controls the mobility of the carriers and one other - a deep one that 
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defines the lifetime of the carriers under the given experimental conditions. Thus the whole 

discussion in this subsection has only theoretical significance. 

 

2.3 Amorphous Selenium as a Photoconductor 

Any material that possesses a certain amount of photoconduction can be applied as a 

radiation detector.  A material is a photoconductor if free charges can be generated in it when it 

absorbs radiation and if the generated free carriers can be transported trough that material by the 

application of an electric field to form a measurable electrical signal. Free carriers can be 

generated in amorphous selenium under irradiation with many different radiations such as light, 

x-rays, gamma rays, α- and  β- particles, and probably by other charged particles.  Both electrons 

and holes can travel in a-Se under the influence of an applied electric field. This obviously 

makes a-Se a good photoconductor and the purpose of this subsection is to provide some data 

related to the photoconductive properties of a-Se. 

2.3.1 Optical Photogeneration in Amorphous Selenium 

Any incident optical photon with sufficient energy can with certain probability excite an 

electron from the valence band into the conduction band.  The probability that absorption occurs 

is determined by the optical absorption coefficient α of the material.  This value depends on the 

incident photon energy and the magnitude of the DOS at the band edges.  The absorption is 

extremely small if the energy of the incident photon is less than the band gap of a-Se.  As the 

energy of the incident photons increases to the value of the bandgap and above, the magnitude of 

the absorption coefficient abruptly raises.   

Experimental studies have shown that shown that the optical absorption coefficient of a-Se 

exhibits an Urbach edge of the form 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛

Δ
=

E
EAE expα , (2.4)

where E is the energy of the incident photons, and A and ΔE are constants. Such behavior was 

explained following [77] in terms of optical transitions between tail states and extended states. 

The values of constants A and ΔE in this study were found to be ~7.35×10-12 cm-1 and ~ 0.058 

eV respectively. At higher photon energies, as described in [78] the absorption coefficient obeys  
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 ( )0EEE −∝α , (2.5)

where  is the optical bandgap of a-Se with a value of 2.05 eV at room temperature. 0E

A dependence following Tauc's law 

 ( )2
0EEE −∝α  (2.6)

with  has also been observed experimentally [eVE 95.10 = 79]. 

The dependence of the absorption coefficient of a-Se on the photon energy can be readily 

measured experimentally and a data set from such measurements that partly illustrates the 

dependences outlined above is shown in Figure 2.8.  

The absorption of an optical photon results in the generation of an electron-hole pair (EHP); an 

electron excited to the conduction band leaves a hole, in the valence band. These optically 

generated charge carriers can contribute to the conduction current in the presence of an electric 

field only if the electron and the hole are separated by the applied electric field before having a 

chance to recombine. The probability of successful separation is given by the quantum efficiency  
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Figure 2.8 Experimentally measured optical absorption coefficient of a-Se. The measurements were done on 
PE Lambda 900 spectrophotometer using 10 μm thick vacuum deposited a-Se film. 
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Figure 2.9 Quantum efficiency in a-Se as a function of incident photon energy at several different 
applied fields. Data were extracted from [80]. 

 

η which is another important optical parameter of semiconductor materials.   The quantum 

efficiency in a-Se has been found to exhibit a strong field dependence, even for photon energies 

well above the optical gap. 

The mechanism behind the field dependent quantum efficiency observed in a-Se can be 

explained by the Onsager theory for the dissociation of photogenerated EHPs [80].  The Onsager 

theory essentially calculates the probability that an EHP will diffuse apart for a given electric 

field F and temperature T.  The quantum efficiency shown in Figure 2.9 can be expressed as 

product of two quantities. The first one is the efficiency of the intrinsic photogeneration process 

that depends strongly on the energy of the incident photons and the second one is the probability 

that the generated EHP is separated which depends on the applied field, on the temperature and 

on the initial separation between the electron and the hole in the pair.  

2.3.2 X-ray Photogeneration in Amorphous Selenium 

The penetration and the energy deposition by high energy photons can be conveniently 

calculated using two basic quantities: the mass attenuation coefficient 
ρ
μ and mass energy-

absorption coefficient
ρ

μen .  The mass attenuation coefficient 
ρ
μ  relates the flux density of the 
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incident photon beam Φ0  to the flux density of the emerging beam Φ , when a narrow beam of  

high energy photons penetrates a material with density ρ and mass thickness x through the usual 

exponential attenuation low 

 
)exp(0 x

ρ
μ

−Φ=Φ , (2.7)

where x is the mass thickness of the material (the mass per unit area), that can be found by 

multiplying the normal thickness of the material L by its density ρ. The mass attenuation 

coefficient is proportional to the total cross section for interaction per unit atom σtot. Since the 

interaction of photons with matter can follow several different channels, the total cross section 

for interaction is a sum of the interaction cross sections for the different channels involved 
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 The interaction types accounted for in the last equation are: the atomic photo-effect, 

coherent (Rayleigh) and incoherent (Compton) scattering, electron-positron (e--e+) pair and 

triplet (2e--e+) production and photonuclear reactions. The probability for each interaction to 

occur depends on the energy of the incident photons and on the average atomic number Z of the 

attenuating material. Obviously, the x-rays involved in medical diagnostics (16-140 keV) have 

energies that are well below the thresholds for pair production and nuclear reaction processes and 

thus only the first three terms in the right hand side in last equation have non zero contributions. 

The most significant interaction channel for that energy range is the atomic photoeffect.  The 

cross section for photoeffect also depends strongly on the atomic number Z ( ) of 

the absorbing material and a good material for x-ray detection should have as high Z as possible. 

5.4
tphotoeffec Z∝σ

The mass attenuation coefficient of Se for photons with energies in the range 1 keV – 

1 MeV is plotted in Figure 2.10. The location of the K edge (12.658 keV) makes Se a very 

suitable material for the detection of x-rays used in mammography (15-22 keV).  Over the 

energy range of diagnostic x-rays 16-140 keV the value of the mass absorption coefficient 

decays more than two orders of magnitude. It is apparent from Figure 2.10 that high x-ray 

sensitivity of a-Se based detectors designed for general radiography can be achieved by 

involving 4-5 times thicker a-Se layers for x-ray detection, than the ones used in mammography 

(only 200 μm). 
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The mass energy-absorption coefficient for Se is also plotted in Figure 2.10. That 

quantity multiplied by the energy fluence of the incident photon flux will give the total energy 

deposited by the photons in the material. Note that not all photons that will interact with the 

material will deposit all their energy in the material. The initial interaction can result in the 

formation of secondary photon (Compton photons, fluorescent x-rays, annihilation gamma 

quanta, bremstramhlung photons etc.) radiations that can escape the material without further  
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Figure 2.10 Mass attenuation (μ/ρ) and mass energy-absorption (μen/ρ) coefficients of selenium for x-rays and 
gamma rays with energies in the range from 1 keV to 20 MeV. Data were  taken from National Institute of 
Standards and Technology (NIST) website (http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html on 
12/04/2006).   

 

interaction and carry some of the incident energy away. For latter reason, the values of 
ρ

μen  

shown in Figure 2.10 are somewhat lower than the corresponding values of the mass absorption 

coefficient
ρ
μ . The difference between these two quantities becomes more evident for higher 

energies of the incident photons since as the energy of the incident photon increases more and 
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more energetic secondary photons are created and the probability of them escaping the absorber 

material without further interaction also increases.  

In the case of an a-Se photoconductor and diagnostic x-rays two channels for energy loss 

have practical importance: K-fluorescence and Compton photon escape.  

The minimum amount of energy absorbed by the incident radiation that is needed to 

create a single EHP is termed EHP creation energy W0±  and determines the intrinsic sensitivity 

of the material used as a radiation detection medium. W0± is also called the ionization energy of 

the medium. The photogeneration efficiency η can be redefined as the fraction of EHPs which do 

not recombine relative to all EHPs created by an incident photon. The latter definition is better 

suited for a photogeneration process initiated by an x-ray or a gamma-ray (thousands of EHP 

created by a single photon).  

The average energy W± per freed EHP (EHP that escapes recombination and can be 

potentially successfully collected) is given by  

 
η

±
± = 0WW . (2.9)

The amount of energy ΔE absorbed by the material from the radiation and the electric 

charge ΔQ that can be are related by the quantity W±    through 

 

±

Δ
=Δ

W
EqQ , (2.10)

where q is the charge of the electron.  

Typically W0± increases with the bandgap Eg of the photoconductor and for crystalline 

semiconductors it follows the Klein rule [81] 

 phononsg0 8.2 ε+≈± EW , (2.11)

where εphonons is a phonon energy term that involves multiple phonons. For amorphous 

semiconductors as suggested by Que and Rowlands [82], the relaxation of conservation of 

momentum rule leads to  

 phononsg0 2.2 ε+≈± EW . (2.12)

However, W± in a-Se, as in a number of other low-mobility solids, depends both on the 

applied field F and energy E of the incident photons because the photogeneration efficiency η 

supposedly depends on both of these quantities. There have been numerous experiments, with a 
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wide range of conflicting results devoted to measuring W± in a-Se as a function of applied 

electric field and the energy of the incident photons. One of the most recent and most detailed 

experimental works is due to Blevis et al. [83]. In the latter work the authors have used various 

monoenergetic photon sources and have clearly shown that W± depends on both energy of the 

incident photons and on the applied electric field across the a-Se layer. However, even that set of 

experimental data is not complete because the dependence of W± on temperature has not been 

investigated.  

Several mechanisms have been suggested to be responsible for the field and x-ray energy 

dependence of the photogeneration efficiency η and hence W± in a-Se. Among these are 

geminate (Onsager) recombination (see for example [82]), columnar recombination [84] and 

combination of both [86]. The controversy with regard to the relative importance of proposed 

recombination mechanisms is still an ongoing research topic together with the question about the 

saturated value of the EHP creation energy W0±.  

The usual way to find W0±  from W±  versus electric field F data is to extrapolate to 

infinite electric field plotting W±  vs 1/F. Part of the data of Blevis et al. [83] replotted in that way 

is presented in Figure 2.11. Although the lines corresponding to different x-ray photon energies 

have different slopes they all converge to W0±  in the range 6-8 eV and that value is relatively 

independent from the energy of the incident photons.  Previous measurements by Kasap and 

coworkers have resulted in  for x-ray beams with average energies in the range of 32-

53 keV [

eV60 ≈±W

84].  Application of Klein rule with Eg = 2.22 eV and eV0.1eV5.0 phonons ≤≤ ε (the latter 

taken from [81]) gives eV16.7eV17.6 0 ≤≤ ±W whereas Que and Rowlands rule 

gives .  The scatter in the existing experimental data makes very difficult 

to assign any of the described models to W

eV89.5eV38.5 0 ≤≤ ±W

0± . However, it is instructive to mention that, as 

suggested in [85], there might exist a very simple explanation for eV860 −≈±W . Values in that 

range may simply represent the energy for an electron excitation from the peak in the density of 

valence band states to the peak in the density of conduction band states. More experiments, 

especially on the temperature dependence of W0±   are needed to understand the origin of the 

EHP creation energy in a-Se. 
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Figure 2.11 Electron-hole pair creation energy W± in a-Se for different applied fields and different beam 
energies. Data were selectively extracted from [83]. 

 

The EHP creation energy discussed above addresses the issues with the intrinsic 

sensitivity of a-Se as an x-ray photoconductor and can help us determine the minimum amount 

of radiation measurable by a direct conversion a-Se based x-ray detector.  Another quantity of 

interest, especially for imaging detector applications, is what is the intrinsic spatial resolution of 

a given detector material. An x-ray interacts with the detector material in one point, say atomic 

photoeffect. Most of the energy of the x-ray is thus transferred to a single electron which starts 

its trajectory inside the a-Se layer. That electron through a chain of interactions will create huge 

number (e.g. thousands) of EHPs until fully stopped in the a-Se layer.  The question that arises is 

how well localized in space is, the latter process. In other words, over what volume of the film 

are the EPHs dispersed as a result of their creation by a single x-ray photon? Obviously if the 

stopping power for charged particles, 
dx
dE , of the detector material is bigger, the photoelectron 

will be stopped over a shorter distance and the ionization track produced by a single x-ray photon 
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will be better localized in space. Thus, detector materials with higher stopping power will be 

capable of imaging with higher spatial resolution. 

A clear answer for the question for the intrinsic spatial resolution of a-Se can be readily 

given by a Monte Carlo simulation of the photoionization process in a-Se as it is done for 

example in [86]. A typical ionization track initiated by a single x-ray photon with energy of 140 

keV as simulated in the latter work is presented in Figure 2.12.  Note that all the EHPs created by 

the x-ray photon are localized in space in a volume of only approximately 8 × 8 × 8 μm. This 

result clearly illustrates the very high intrinsic spatial resolution of a-Se. For mammographic x-

ray beams, the size of the ionization track initiated by a single x-ray photon will be even better 

confined in space compared to the one shown in Figure 2.12 because the energy of the incident  

 

 

 
Figure 2.12 Sample ionization track initiated by140 keV x-ray photon in a-Se film as simulated in [86]. The 
spheres represent the initial positions where the EHPs were created. All the charge is confined in less than 8× 
8 × 8 μm which illustrates the intrinsic resolution limit of a-Se at 140 keV.  
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x-ray photons will be roughly seven times smaller. Thus the intrinsic resolution of the direct 

conversion a-Se based image detector working with such x-ray beams will be limited purely by 

the size of the pixels of the readout circuit involved, provided that a sufficiently high electric 

field is applied across the a-Se photoconductor layer to ensure the collection of all the 

photogenerated charge with negligible deep trapping. If some of the photogenerated carriers 

become trapped, then these trapped carriers can induce charges on neighboring pixels and spread 

the information, i.e. lead to a reduction in the resolution of the detector. 

2.3.3 Charge Transport in Amorphous Selenium 

As explained earlier in this chapter, most of the researchers working on a-Se have chosen 

to interpret their results within the framework of band transport formalism. Unfortunately, as 

explained in section 2.2, the distribution of electronic states in the band gap of a-Se remains 

highly controversial even today and that makes the exact treatment of the charge transport in a-

Se a very difficult task. However, for most practical cases, the electron and hole transport in a-Se 

can be treated approximately with a precision that is sufficiently high for the application of that 

material as a radiation detector in terms of only two effective trapping levels for each type of 

carrier. The first of those two trapping levels is close to the band edge and represents a set of 

shallow traps that controls the effective mobility of the carriers. The other level represents a set 

of deep traps, which controls the effective carrier lifetime (deep trapping time) and hence the 

average distance that a carrier can travel at a given electric field before being deeply trapped 

(carrier Schubweg). These two set of traps need not to be discrete sets of traps but can be a 

distribution of traps as well that satisfy the definitions of “shallow” and “deep”. 

The experimental facts that both electrons and holes can move in a-Se, that the mobility 

is thermally activated at low temperatures [52, 87], and that the mobility is shallow trap 

controlled [88] can be explained in terms of many DOS functions: discrete levels near the band 

edge [54], narrowly distributed set of traps near the band edges [56], exponentially decreasing 

band tails [66-68], superposition of a sharply decaying exponent and  a discrete or narrowly 

distributed set of states that forms a peak in the resultant DOS function [50, 65, 69-71], a 

distribution with a shape similar to the one proposed in references [71, 72] that describes the 

DOS near the valence band of a-Se, and probably by many other distributions. However, for 

practical calculations, all these possible DOS distributions near the band edge can be represented 
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by a suitably positioned single discrete effective level of shallow traps. In the presence of such a 

level of traps, the effective mobility of the carriers is known to be shallow trap controlled which 

means that the effective mobility μ of the carriers is the microscopic mobility in the extended 

states 0μ  reduced by the transport parameter θ 

 0θμμ = . (2.13)

The above equation is derived in detail in section 3.3.4.  The transport parameter depends on the 

shallow trap energy depth, on their concentration, on the temperature and applied electric field 

and has values that are less than one. The values for the microscopic mobilities for holes and 

electrons are known to be 0.3-0.4 cm2V-1s-1 and 0.1 cm2V-1s-1 respectively [52, 89, 90].  At room 

temperature, for a commercial material, and practical electric fields, the most commonly 

observed effective mobility for holes is in the range 0.09-0.16 cm2V-1s-1. For electrons, under the 

same conditions the observed effective mobility ranges from 0.001 to 0.007 cm2V-1s-1.  The 

values of the transport parameter θ  under such conditions can be calculated to be ~ 0.3-0.4 for 

holes and about one order of magnitude smaller for electrons. 

The equation that describes the effective carrier mobility at different temperatures for the 

case of a single level of traps is 
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Here Nt is the concentration of shallow traps, Nband.  is the density of states at the band edge, Et  is 

the distance from the band edge, k is Boltzmann's constant and T is the absolute temperature. The 

asymptotic behavior at sufficiently low temperatures has a clear Arhenius form. If the last 

equation is fitted to the experimental mobility vs temperature data [52] one can determine that 

the effective trapping level that controls hole mobility which is located 0.28 eV above the 

valence band edge while the one controlling the electron mobility is located approximately 0.35 

eV below conduction band edge (see Figure 2.5 Density of electronic states in amorphous 

selenium proposed by Abkowitz in [50].). 

Similarly, the exact and currently unknown distributions of deep localized states above 

and bellow the Fermi level can be replaced by discrete effective levels that would control the 

effective lifetime of the carriers. Once trapped in such a deep state, the carrier is immobilized 

and can not contribute to the conduction process until it is thermally released. Since, these traps 
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are very deep, the average release time associated with them is very long compared to the 

timescale of the usual measurements in which a-Se is involved. In other words, once the carrier 

is deeply trapped it is practically lost from the conduction process. The average time that the 

carrier exists in the sample before falling into such a deep trap (the deep trapping time) is the 

effective lifetimeτ of the carriers as observed in experiments.  The effective lifetime depends on 

the integral concentration of deep traps in the material and on their capture coefficient. Thus, the 

integral concentration of deep localized states is a very important characteristic of the material 

since it controls the carrier lifetime and through it the carrier mobility-lifetime product (carrier 

range) μτ . The latter quantity multiplied by the applied electric field gives the average length 

that a carrier is capable of traveling through the material, μτF, or the carrier Schubweg. 

Maximum detector sensitivity can be achieved when the carrier Schubweg is much larger that the 

thickness of the x-ray photoconductor material at practical applied electric fields. Due to the low 

integral concentration of deep localized states in a-Se both electrons and holes can be 

successfully collected in this material and x-ray detectors with thickness of about 1000 μm are 

commercially available.  

The current belief is that both deep and shallow localized states are due to various defects 

in the structure of a-Se that are thermodynamically stable at room temperature [91-93]. 

Experiments at Xerox in the 1980s showed that these states are derived from equilibrium defects 

[91] and, therefore, cannot be eliminated by careful preparation methods or by the purification of 

the source material.  

The effects of impurities and alloying elements on the transport properties of a-Se have 

been extensively studied. Pure a-Se is unstable and tends to crystallize over a period of time, 

which varies from months to years depending on the ambient conditions and the origin of a-Se 

[94]. It was found that the rate of crystallization could be reduced by alloying pure a-Se with 

small amounts of As (0.2%-0.5%). Since As atoms have a valency of III, they are triply bonded 

and link Se chains which increases the viscosity of the amorphous structure and prevents 

crystallization. However, the addition of As affects also the electronic transport in a-Se: the hole 

lifetime decreases while electron lifetime increases. Such changes are generally compensated for 

by adding a halogen (e.g. Cl) in the parts per million (ppm) range which improves the hole 

lifetime and deteriorates the electron lifetime. 
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A thermally stable film with balanced hole and electron transport can be achieved by 

properly adjusting the amount of As and Cl in the material. The resulting material is called 

stabilized a-Se, and the nominal composition is indicated, for example, as a-Se:0.3%As:20ppm 

Cl. The compensation effect of As and Cl on the charge transport properties of a-Se 

photoconductors is currently being studied as there are fundamental issues that have yet to be 

fully resolved [52, 95]. However depending on the properties of the starting pure selenium 

material and deposition conditions the charge transport observed in films produced from 

different stabilized a-Se alloys (0-0.7% As and 0-40 ppm Cl) demonstrate huge variations in 

their electronic transport properties as summarized in Table 2.2 . The mechanism by which 

different additives alter the electron transport in Se is not exactly known, although many 

attempts have been made to explain the changes in terms of defect forming reactions as it will be 

explained later in chapter 5.1.  

Table 2.2 Variation in the electronic transport properties for stabilized a-Se films. 

Carrier 

Type 

Mobility, 

cm2V-1s-1

Lifetime, 

μs 

 Mobility-Lifetime Product, 

cm2V-1

Schubweg at 5 V/μm, 

mm 

Holes 0.1-0.16 0.3-300 3×10-8-3.9×10-5 0.015-20 

Electrons 0.002-0.007 10-1000 2×10-8-3.5×10-6 0.01-1.8 

 

2.4 Summary 

In this chapter we have reviewed the present understanding on the most important 

properties of amorphous selenium with regard to its application as a photoconductor. The chapter 

starts with a brief description of the structure and properties of different crystalline and 

noncrystalline forms of Se. The existence of so many different crystalline forms explains why 

the structure of noncrystalline Se is very complicated and preparation method and history 

dependent. The complicated structure of the different noncrystalline forms of Se has been studied 

by all existing experimental techniques over several decades.  In spite of the advances in the 

methods for examining the structure of materials, the structure of a-Se is still not fully 

understood. 

The same applies to the exact structure of defects in a-Se, which is still highly 

controversial. Many authors believe that VAPs are the only type of thermodynamically stable 
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defects in a-Se and conveniently forget that all structural studies return an average coordination 

number of 2.1-2.2. Average coordination number of 2.1-2.2 means that the defects in the 

structure of a-Se must on average have more than twofold coordination. If all defects were VAPs 

only, the average coordination number would be exactly two.  

The explanation of the electrical properties of a-Se is within the framework of the 

multiple trapping controlled band theory of amorphous semiconductors have been briefly 

discussed. As described in the chapter, such approach can explain many experimental facts, but 

the scientific literature is still full of controversies, the DOS in the bandgap being one example.  

At the end of the chapter, the properties of a-Se as an x-ray photoconductor have been 

outlined. These include a short description of its optical and x-ray absorption properties, x-ray 

photogeneration properties and finally charge transport in stabilized amorphous selenium. 

  The unique molecular structure of Se, defines certain short range order and that gives a 

formal base for application of band theory of solids and in particular the band theory of 

amorphous semiconductors for the explanation of its properties.  However, the same molecular 

structure does not exclude other possibilities. For example, a-Se can be treated as a molecular 

semiconductor or as a polymer. Some isolated attempts of such treatments can be found in the 

literature but a more completed theory based on latter understanding is absent.  

This lack of fundamental understanding of the properties of a-Se makes the fabrication of 

devices based on that material difficult because the whole technological processes are based on 

almost empirical knowledge and on the properties of the starting Se material. Although that 

technologists have learned how to prepare a-Se films with desired electronic transport and other 

properties, this process is far removed from the exact science of single crystal semiconductors 

and involve many trial and error experiments, which places it closer to art than to an exact 

science. 
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3. THEORY OF TIME OF FLIGHT TRANSIENT 
PHOTOCONDUCTIVITY TECHNIQUE 

 

3.1 Introduction 

Transient photoconductivity technique in different variants is widely used to investigate 

different properties of amorphous semiconductors. Most of the proposed DOS distributions for a-

Se described in section 2.2 are based on different type of approximate analysis of Time-of-Flight 

(TOF) transient conductivity data. The conventional TOF technique has widely been used 

through out the study to determine mobilities and lifetimes of electron and holes in vacuum 

deposited a-Se films. This chapter is devoted to the description of the basic principles and 

mathematical theory behind the TOF transient photoconductivity technique.  

 

3.2 Time of Flight Technique – Basic Principals 

 The Time of Flight Technique (TOF)  has been pioneered by Spear and coworkers in 

1968 [96] and since then has been widely used with some modifications to study the carrier 

transport in low-mobility materials. The basic ideas behind this experimental technique are 

demonstrated in Figure 3.1.  

 The explanations that follow and the shape of the TOF waveform shown in Figure 3.1 are 

based on the assumption that the sample capacitance and the capacitance of the electronic 

circuits are very small and can be neglected. In this case the TOF signal measured across the 

sampling resistor R is directly proportional to the photocurrent that flows in the sample. This 

measurement mode is known as current mode TOF and only this type of TOF measurements will 

be discussed further in this work.   

 As illustrated in Figure 3.1, the excess charge carriers of both signs are created in equal 

concentrations, close to the upper surface of a thin specimen film. A short-duration excitation 

pulse of strongly absorbed photons or electrons is normally used for this purpose. Depending 

upon the polarity of the electric field applied across the specimen, carriers of one sign drift 

across the film, inducing a signal in the series resistor R. This signal will fall to zero when all 

carriers have completed their transit, allowing an identification of the mean carrier transit time, 
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and thus the calculation of the drift mobility. Note that carriers of either sign may, in principle, 

be examined, since the dielectric relaxation time in suitable materials is much longer than the 

transit time through the thin film. 

 

 
 

Figure 3.1 The basic principals of time of flight transient photoconductivity technique. 

 

Under the idealized conditions of an infinitely thin sheet of excess carriers drifting 

through the specimen with zero dispersion, and with suitable blocking electrodes to prevent 

undesirable re-injection of charge, the voltage induced across the sampling resistor R would fall 

abruptly to zero at a time equal to the transit time of the carriers. In practice, of course, a spread 

of arrival times always occurs due to diffusion and other effects, so that a reasonably well-

formed signal might be of the type shown in Figure 3.1. With such a pulse shape, it remains 

comparatively easy to identify a mean transit time for the excess carriers, from which average 

drift mobility may be computed by means of  

 

transit

2

average Vt
L

=μ , (3.1)

where L is the sample thickness and V is the voltage applied across the sample. 
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  Under certain conditions, the “TOF waveforms” observed in the study of amorphous 

semiconductor films can be used to determine some other characteristics of the material. These 

include carrier lifetimes (deep trapping times), carrier mobility-lifetime products, the trap 

distribution of the traps in the mobility gap, etc. The purpose of the following sections is to 

present a theoretical model of the TOF experiment and to explain how the above mentioned 

charge transport parameters can be extracted from the experimentally recorded TOF waveforms. 

 

3.3 Theory of the Time of Flight Technique 

3.3.1 Introduction 

A major advance in the study of carrier transport problems in amorphous solids was 

achieved in 1975 with the publication of the first detailed model capable of predicting the 

various features of the TOF photocurrent. Scher and Montroll [97] advanced a model based upon 

transport by hopping between isoenergetic sites with a random positional distribution (“r 

hopping”). The analysis of the transport characteristics expected for this process has proved to be 

a daunting theoretical problem, and to date no exact solution has been achieved. All existing 

treatments involve the introduction of simplifying assumptions, and the validity of these has been 

a source of continuing controversy [98]. 

 Around 1977, as described in [98], it became clear that many peculiarities of charge 

transport in amorphous films can be described in the framework of a totally different from 

physical point of view theory – the trap-limited band transport theory. All that was needed to 

achieve certain aspects of the experimental observations was to assume that localized gap states 

of the amorphous semiconductor are distributed over a sufficient range of energy. In 1977 

Noolandi has investigated analytically the problem of trap-limited band transport [56].  The main 

equation, derived in this work (Eq. (3.7) in the next subsection) is identical in form to a 

corresponding equation derived by Scher and Montroll [97] at an equivalent stage in the analysis 

of continuous time random walk. This suggests the equivalence between the multiple trapping 

band transport formalism and the Scher and Montroll hopping approach and that correspondence 

was further established by both Noolandi [56,99] and Schmidlin [100]. 
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 In the next subsection only the analysis of the transient photocurrents within the 

framework of trap-limited band transport formalism will be presented because due to its wide 

application to many amorphous semiconductors including a-Se and alloys. 

3.3.2 Trap-Limited Band Transport Formalism 

 As mentioned above, about 30 years ago Noolandi has formulated [56] the multiple 

trapping equations in the form 
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where  is the position in space, t is the time, ),,( zyxx ≡
r ),( txg r  is the local photogeneration rate, 

),( txf rr
 is the flux of mobile charge carriers, ),( txrρ  is the total concentration of carriers, 

is the concentration of free carriers, ),( txn r ),( txni
r is the concentration of carriers localized in the 

i-th sets in a group of  different sets of trap centers,  and finally,  ci and ri are respectively  the 

capture and release rates for this set of traps. The capture rates ci are calculated through detailed 

balance as  

 iii NCc t= , (3.3)

where Ni is the concentration of the traps from the i-th level and Cti is the capture coefficient for 

the traps in that set. The release rates ri were calculated as 

 )exp(
kT
Er i

i
Δ

−=ν , (3.4)

where ν is the attempt to escape frequency (the usual value assumed is  1012 s-1), ΔEi the depth of 

the i-th set of traps measured from the conduction band edge Ec  for the electron traps  or from 

the valance band edge Ev for hole traps, k is the Boltzman constant and T is the absolute 

temperature. 

Neglecting the diffusion component of the carrier flux, assuming flash or pulse 

photoexcitation with highly absorbed radiation and using small signal approximation, Noolandi 
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was able to solve the system of equations (see Eq. (3.2)) using Laplace transform technique. The 

first of these three assumptions implies that the carrier flux is given simply by  

 ),(),( 0 txnFtxf rrrr
μ= , (3.5)

where μ0 is the mobility of the carriers in the conduction band i.e. microscopic mobility and  F
r

 

is the electric field across the sample. The second assumption means that all the excess carriers 

having total charge Q0 have been created at time t = 0 in a plane that is infinitely close to the top 

electrode  (see Figure 3.1) which translates into the following equation  

 )()(),( 0 txQtxg δδ=
r . (3.6)

The third assumption means that Q0 is so small that distortion in the electric field in the 

sample by the injected charge can be neglected together with the effects from the Coulombic 

interaction between the carriers in the drifting package.   

Under such assumptions, the Laplace transform method, straightforwardly leads to an expression 

for the transform of the photocurrent in the form 
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where s is the variable of the Laplace transform, and t0 is the free carrier transit time. The free 

carier transit time t0 have its usual meaning 
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where  L is  the sample thickness.  

The function a(s) in Eq. (3.7) is defined through the following expression 
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The experimentally recorded waveforms correspond to Eq. (3.7) through an inverse 

Laplace transform, which means that, unfortunately, for most practical cases, the waveforms 

have to be evaluated numerically. This is a typical ill-posed problem, which requires the 

application of specialized regularization techniques. The results obtained on the basis of such 

analysis are usually connected with significant uncertainties and have to be used with caution. 

However, in the following subsections on the basis of some reasonable simplifying 

assumptions we will demonstrate that the TOF technique can be successfully employed to 
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investigate the carrier transport in certain solids for which some reasonable simplifying 

assumptions can be made. 

3.3.3 Ideal Semiconductor or Ideal Insulator 

The term “ideal” in the title of this subsection implies that the concentration of traps for 

both types of carriers is equal to zero. For this case Eq. 3.7 simplifies to 
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The last equation easily inverts to give the following form of the function describing the 

photocurrent in the sample 
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where u(t) is the unit step function  and all the other symbols have the meanings 

defined in the previous subsection. The last equation describes a rectangular current pulse with 

duration t
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 The drift mobility of the charge carriers in the sample in this simple case, can be 

determined by virtue of Eq. (3.8) or Eq. (3.1) by experimentally measuring the width of the TOF 

pulse and knowing the sample thickness L and the voltage V applied across the specimen. 

3.3.4 One Set of Shallow Monoenergetic Traps 

Now we are considering the case when only one discrete level of shallow traps is present 

in the material under investigation. The term shallow implies that such traps are situated near the 

mobility band edges. The release rate rs for such traps as defined in Eq. (3.4) will be large, so 

large that almost always during the experiment the Laplace transform variable s is much smaller 

than rs, i.e. .  sr >>s

For this case Eq. (3.9) simplifies to 
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where cs is the capture rate for the shallow traps. Substituting Eq. (3.12) in Eq. (3.7) we receive 
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The inversion of the last expression is straightforward and the photocurrent for this simple 

distribution of traps is given by 
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where the observable transit time ttransit  is given by 0
s

ss
transit t

r
crt +

= . 

Equation (3.14) resembles the formula for the photocurrent derived for the trap-free case 

(see Eq. (3.11)). The difference is that drift of the carriers through the sample is now 

characterized by the so called effective mobility μeff . The effective mobility is connected to the 

free carrier mobility μ0 through the expression given below 
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where 
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s

cr
r
+

=θ  is the mobility reduction factor. The effective carrier drift mobility is reduced 

because the carriers are delayed on their drift through the solid by multiple trapping and release 

events. This transport mechanism is referred to as shallow trap controlled transport and the scalar 

θ is known as shallow trap controlled transport factor.  

3.3.5 One Set of Deep Monoenergetic Traps 

 This case is very similar to the one presented in the previous subsection, the difference is 

that now the traps are deep hence the values for ΔEd is relatively large so that. the release rate rd 

for such traps is very small. This actually means that for almost all experimentally accessible 

times, rd  is negligibly small compared to the Laplace transform variable s , i.e. . sr <<d

With  , we can simplify Eq. sr <<d (3.9)  to 
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where cd is the capture rate for this set of deep traps. Using Eq. (3.16) we receive the following 

result for the Laplace transform of the photocurrent 
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The inverse transform applied to Eq. (3.17) gives the relation describing the photocurrent as a 

function of time 
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The photocurrent in this case has the shape of an exponential decay or a pulse with exponentially 

decaying top depending on the relative magnitude of free carrier transit time t0 and the capture 

rate cd.  In both cases the analysis of the exponential decay of an experimentally recorded TOF 

waveform will result in determining the capture rate cd  and hence the deep trapping time τd for 

the set of traps 

 

d
d c

1
=τ . (3.19) 

In many practical cases, the deep trapping time τd can be used as rough approximation of 

the carrier lifetime and then analysis based on Eq.(3.18) allows the determination of both the 

mobility μ0 and the lifetime τd of the carries. Having these values one can calculate the mobility-

lifetime product μτ and the carrier Schubweg μτF if needed. 

3.3.6 Binary Trap Distribution 

 Following the approach in the previous two subsections, we can investigate a more 

realistic case when two set of traps are present; one set of shallow traps (cs and rs) and one set of 

deep traps (cd and rd). Again assuming that  and sr >>s sr <<d  holds during the TOF experiment 

we can show that the following expression is valid for the photocurrent 
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This equation describes the photocurrent that will have the same shape as in the case when only 

deep traps are present. As intuitively expected, the effective mobility of the carriers and hence 

their transit time is determined only by the kinetics of the trapping and detrapping processes 

connected only with the presence of shallow traps. The effect of the shallow traps on the 

transport is the same as in the case when only shallow traps were present in the material - the 

carriers drift with effective mobility defined in Eq. (3.15).  

 However, the exponential decay in Eq.(3.20) that is associated with the presence of deep 

traps is influenced by the presence of the shallow trap level. The observable trapping speed is 

reduced by virtue of 
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which leads to an increase in the apparent trapping time i.e. 
 

θ
τττ d
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ss
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r
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Such behavior is also to be expected. The carriers are available for trapping into the deep traps 

only when they are free. The shallow trap controlled transport factor θ actually represents the 

relative amount of time that the carriers spend in the shallow traps during their drift through the 

sample. During their time in the shallow traps, they obviously cannot be lost for the experiment 

through deep trapping and that explains the slower exponential decay in Eq.(3.20) compared to 

the case when deep traps alone are present in the sample (Eq. (3.18)). 

The simplified analysis in the last four subsections was based on the assumptions that the 

relations  and  hold over the whole experimentally accessible range of time. 

However, over very short times after the excitation, the Laplace transform variable has huge 

values and the assumption  is not valid. As a result, the photocurrent at that time deviates 

from the one predicted by Eqs. 

srs >> srd <<

sr >>s

(3.14) and (3.20). It is obvious that some time needs to pass for 

equilibrium to be reached between trapping and de-trapping processes associated with the 

shallow trap level. During the equilibration time, the number of carriers that are trapped will be 
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greater than the number of released carriers and the photocurrent will decay with time. After the 

equilibrium is established, the photocurrent remains constant and the charge packed moves with 

an effective drift mobility μeff as predicted by Eqs. (3.14) and (3.20).  That initial decrease in the 

photocurrent that is essentially due to the thermalization of the carriers with the shallow traps is 

lost for the analysis as a result of the approximations that we have made.  

As a result of the same assumption that the behavior of the term  in Eq.srs + (3.12) is 

totally dominated by rs, we are losing another feature of the photocurrent. The latter happens at 

the moment when the time is equal to the transit time of the charge packet. At that point, the free 

carriers are collected at the bottom electrode and the equilibrium between the traps and the 

carriers is disturbed. The carriers that are in the traps now have to be released before being 

collected at the electrode. Consequently, the photocurrent will not fall abruptly to zero as 

predicted in Eq.(3.14) and Eq.(3.20) but instead will exponentially decrease to zero, as more and 

more carriers become released from the traps and almost immediately collected at the electrode. 

3.3.7 Extended Trap Distribution 

3.3.7.1 Pre- and Post- Transit Approximations for the TOF Photocurrent for Extended 
Distribution of Traps 

We will further develop the approximate analysis of Eq. (3.7) in attempt to describe the 

shapes of the top of TOF photocurrent pulse (the pre-transit portion of the photocurrent) and the 

tail of the TOF pulse (the post transit portion of the photocurrent) in the presence of extended 

distribution of traps. The main benefit of such an analysis is that together with the usual transport 

characteristics like the effective mobility and deep trapping time, one can extract reasonable 

information about the DOS in the band gap of the material. . 

For many amorphous solids it is thought that the concentration of traps in general 

diminishes as the energy changes from the edges of mobility bands towards the Fermi level. A 

common belief is that this change can be described with a monotonically decreasing function of 

energy on which, if it is necessary, one or several peaks can be superimposed. In principle any 

continuous distribution of traps can be converted into a set of discreet trap levels if the 

discretization step is small enough. So, without any serious limitation, we can represent any trap 

distribution as a set of m (m should be sufficiently large) discreet levels of traps with capture 
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rates ci and release rates ri and try to analyze the TOF waveforms in such a material using 

Eq.(3.7). 

Since the inversion of the Laplace transformed current is not always physically intuitive 

we can consider two extreme cases, as it was done for example in [101]. The first one 

corresponds to the case when ∞→s  and the behavior of the Laplace transformed current is 

dominated by the denominator of Eq. (3.7). Such an approximation is applicable for the region of 

the TOF photocurrent before the start of extraction of the carriers at the back electrode, i.e. to the 

pre-transit region. In this case Eq.(3.7) simplifies to 

 
)(

1)(~

0

0

sat
QsI ×= . (3.23)

The quantity 
)(

1
sa

can be expanded to partial fractions [100] as follows 

 
∑∑

=

−

= −
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=
m

j i

j
m

i i

i

s
A

rs
cs

sa 0

1

1

1
)(

1
α

.
(3.24)

In the last expression the constants jα  are the m+1 nonpositive roots of the equation 

 0)( =sa . (3.25)

One can define a set of positive numbers jjs α−=  and look at them as a rate constant for release 

from a set of characteristic trap levels.  If ri are ordered so as mrrr <<< ...21 , the sj can be 

ordered in the same way as ri, with each sj being slightly bigger than the corresponding rj. Each 

sj, except the largest, is also smaller than rj+1. Of course, the smallest sj is . Thus the 

characteristic trap levels with rate constant for release s

00 =s

j  are "located" intermediate between the 

real trap levels. 

Using Eq. (3.24), we can straightforwardly invert Eq. (3.23) to find an approximate 

expression for the photocurrent in the pre-transit region in a TOF experiment as 
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The last expression describes a current that is due to release of carriers which have been 

previously distributed (trapped) in these characteristic traps. The corresponding constants  can 

be found by the method of residues 

iA
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It is helpful to think that, immediately after the photoexcitation the carriers are distributed 

into a set of characteristic traps with rate constants for release si. The corresponding  then 

define free carrier components due to release from each of the characteristic traps independently. 

This is consistent with the fact that, given by Eq. 

iA

0A (3.27) is just a generalization for the familiar 

transport factor θ (see Eq. (3.15)) used to define the effective mobility for the steady state limit.  

The other extreme   is valid for the post-transit region of the TOF waveform. In the 

latter case the expression in the numerator in Eq.

0→s

(3.7) dominates the behavior of the Laplace 

transform of the photocurrent. Under that assumption, Eq. (3.7) simplifies to  
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and, similarly to the previous case, inverts to give 
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The time span in which ether Eq. (3.26) or Eq. (3.29) should be a valid approximation can be 

considered by examining the movement of the first moments )(tx  of the spatial free carrier 

distribution in a semi-infinite model. During the period when Ltx << )(0 , essentially no 

carriers will have left the sample and Eq. (3.26) will be a good approximation to Eq. (3.7). 

Once Ltx >)( , most of the carriers will exit the sample at the backside electrode and Eq. (3.29) 

should be used in that case. The condition Ltx =)(  defines the transit time [102] provided that 

the spatial distribution of free carriers is fairly symmetric.  

3.3.7.2 Exponential Distribution of Traps 

The band theory applied to amorphous semiconductors predicts that the density of 

localized states in the bandgap will decrease exponentially from the band edges towards the 

Fermi level. This is a direct consequence from the lost of the long range order and preservation 

of short term order in these semiconductors. Thus the exponential distribution of traps is of great 

importance and it is instructive to derive the expression for the TOF photocurrent in this case. 
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The exponential distribution of localized states can be described by the equation 
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where  N0 is the concentration of localized states at the band edge, 

 E is the energy distance from the band edge, and 

 E0 is the characteristic width of the exponent that characterizes the rate of the  decay of 

N(E). 

Using the relation between the release rate r and the position of the trap in the bandgap E (see 

Eq. (3.4)) we can express the density of the localized states as a function of r 
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Combining the last equation with Eq. (3.3) and assuming that capture coefficients and the 

attempt to escape frequency are the same for all traps we receive the following expression for the 

capture rate c as a function of the release rate r  
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As demonstrated in [100], the relation of the above type leads to the following expression for the 

function that is valid for the pre-transit region )(sa
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Using the last expression we can show that Eq. (3.23) simplifies to 
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The inversion of the last expression gives an approximate expression for the TOF current in the 

pre-transit region for the case of exponentially distributed traps 
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1)( E

kT

tti +−
∝ . (3.35)

The derivation of the post-transit asymptote is much easier compared to the analysis 

required to obtain the pre-transit asymptote (Eq. (3.35)). For a continuous exponential 

distribution of traps, we need to reformulate Eq. (3.29) replacing the summation in it with 
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integration as it is done in the next subsection (see the derivation of Eq. (3.38) on the next page). 

Using the reformulated equation together with Eq. (3.32) we receive 
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Evaluation of the integral in equation in Eq. (3.36) ( ( ) 0and E
kT

rti  are Laplace transform pair) 

results in the desired asymptotic expression for the current in the post-transit region 
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Equations (3.35) and (3.37) are well known and used widely when an exponential trap 

distribution has to be confirmed experimentally. 

3.3.7.3 Theory of Post Transit Photocurrent Analysis as a Method for the 
Reconstruction of the Density of Localized States in the Bandgap in Amorphous 
Semiconductors 

For times after the transit time of the charge packet, the photocurrent is increasingly 

dominated by the release of the carriers from the traps and not by the transport of carriers 

through the sample. Eq. (3.29) that applies for this case is much simpler than Eq. (3.26) and it is 

not very difficult to use Eq. (3.29) to extract information on the DOS distribution in the material 

[101]. For the case of a continuous trap distribution Eq. (3.29) is reformulated to 
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 where r1 is the release rate from the deepest traps in the distribution,  is the function 

describing the density of states in the gap (DOS), and 

)(Eg

)(Eg  is the normalized distribution  

defined by the ratio 
)0(
)(

g
Eg  in which g(0) is the density of states at the band edge.  In practice, the 

boundaries in the integral can be conveniently approximated by 0 and ∞. In this way the post-

transit photocurrent and the normalized DOS are linked via Laplace transform 

 )(~
2

)( 000 rgtQti ν
= , (3.39)

where  )(~ rg is the Laplace transform of ( )rg . 

 72



The last expression allows us to calculate the density of states from i(t) by inverting the 

Laplace transform. For experimental current traces, the inversion can be done only numerically.  

The last difficulty can be overcame by replacing the exponential waiting-time distribution for 

release by a trap at energy depth E: ))(exp()( tErEr −  by a delta function )1( −rtδ . This means 

that instead of having an average release 
)(

1)(
Er

Er =τ  all carriers trapped in traps with depth E 

become free at time
)(

1
Er

. We can then obtain 

 )ln()(
2

)( 0
000 tkTEEgtQtit νν

==× , (3.40)

where, as shown by the second relation, the energy depth of the traps and the time are related by 

the thermalization energy expression.  

The energy range over which Eq. (3.40) is valid is limited to the post transit regime only, 

i.e. when the current is dominated by extraction and not by transport of carriers through the 

sample. Since the carriers that are captured in traps at the same energy depth but at different 

places in the sample, i.e. at the front electrode or just at the back electrode will have difference in 

the arrival times of ttransit at most it is instructive to use the last equation only from  on.  transit2 t×

This requirement makes the experiments on a-Se very difficult because it has very 

shallow trap distribution and the post-transit current rapidly decreases to the level that disappears 

in the noise of the measurement.  However, there are other factors with which one should be 

careful when using post-transit technique. The derivation of the convenient and simple Eq. (3.40) 

became possible only after a number of approximations. That imposes additional limits to the 

precision with which the DOS can be recovered from experimentally measured TOF post-transit 

photocurrents.  

The fundamental limits to the precision with which DOS function can be recovered from 

analysis of TOF photocurrent were described at the end of subsection 2.2 and are related to the 

quality of the experimental data and to the amount of noise present in it. In addition, further 

limitations arise from the approximations made to derive Eq. (3.40). It is difficult to 

systematically study all the mathematical limitations that originate from the approximations but 

one consequence becomes apparent from the theory of the Fredholm integral equations of the 

first kind. Equation (3.38) is one such equation with integration kernel . The original )exp( rt−
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integration kernel in that equation was replaced with a Dirac delta function of the form ( )1−rtδ . 

From the point of view of an experimentalist such a simplification seems "innocent" as explained 

above in this subsection. For reasons explained in [103], the new equation has much lower 

information capacity than the original one. That means additional loss of sensitivity to the fine 

features in the DOS function. The result of that is loss of resolution associated with the use of the 

simplified Eq. (3.40). In other words, based on experimentally recorded photocurrents, one will 

be able to recover less information about the DOS distribution function than in the case when the 

original Eq. (3.38) is used. A number of researchers have done numerical simulations and have 

demonstrated that the replacement of the exponential function with a Dirac δ function indeed 

causes additional loss of resolution (see [106] for one example). This means that any sharp peaks 

present in the real DOS can not be recovered correctly from the analysis. Another consequence is 

that the calculated DOS can no`ct follow exponential distributions that are decreasing steeply, 

i.e. with a characteristic width of the order of kT. 

All disadvantages mentioned here together with the fact that the post transit photocurrent 

analysis is not applicable to the short term photocurrent data makes the technique applicable to 

very slowly varying DOS distributions without any sharp features superimposed on them. This 

method is not very suitable for DOS analysis in a-Se. Any application of the method to this 

material has to be done with great caution. 

3.3.7.4 Other Techniques for DOS Distribution Recovery Using the TOF Photocurrent 
Analysis 

Equation (3.26) shows that the pre-transit portion of the TOF waveform is basically a 

sum of exponentials plus eventually a DC offset; that is a monotonically decreasing function of 

time. The exact shape of pre-transit photocurrent will depend on the trap distribution and on the 

field applied across the sample. It seems that it should be possible to determine the trapping rates 

and the release rates for the different species of traps in the material from analysis of that portion 

of the photocurrent. However, such analysis is not easy and results in analytical form can be 

obtained only for a number of fairly simple cases when only a few different species of traps are 

involved. For example, Blakney and Grunwald have derived equation [104] that is very similar 

to Eq. (3.26), considering only three different trap species: one that controls the carrier mobility 

(very shallow), the second one is also relatively shallow but having release time of the order of 

carrier packet transit time, and the third one that is deep with a release time much longer than the 
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charge packet transit time. This technique was applied to a-Se and the results were briefly 

mentioned in the subsection 2.2.  

There are other techniques used to recover DOS distribution from measured TOF that do 

not exploit the simplifying assumptions on the basis of which the asymptotes for the pre- and 

post- transit photocurrents were derived (Eq. (3.26) and Eq. (3.29)). Some of them utilize 

numerical techniques to invert the Laplace transform of the photocurrent in Eq.3.7, like Noolandi 

in [ ]56  and more recently Koughia in [69,70,71]. Such techniques are not physically transparent 

and use other simplifying assumptions to deal with the inversion problem. The disadvantages 

associated, to a grater or lesser extent, with these two techniques were already discussed in 

subsection 2.2 . 

Another method for reconstruction of the DOS distribution from measured TOF 

photocurrent, again based on the Laplace transform technique to solve the transport equations 

(Eq. (3.2)) was developed by several researchers from Japan. The authors, however, do not 

attempt to invert the Laplace transform of the photocurrent in Eq. (3.7) but instead try converting 

Eq. (3.9) to a form from which the DOS distribution can be recovered [74]. The transformed 

equation is a Fredholm integral equation of the first kind and the problems associated with it 

have already been described at the end of subsection 2.2. Two approaches have been proposed 

from that group of researchers. The first one is to approximate the integration kernel of the 

equation with a suitably weighted Dirac δ function. The integral can then be solved exactly [74] 

and a simple expression similar to Eq. (3.40) can be derived at the expense of additional 

resolution loss that appears for reasons described in the previous subsection. The second 

approach suggested by the authors is to use a specialized mathematically robust numerical 

procedure known as restricted Tikhonov regularization [74] in attempts to deal with the inversion 

problem. This regularization technique is general and works well in many practical cases but 

none of the authors has pointed out why exactly this regularization scheme has been chosen 

among the many other existing ones. In the specific case, a non negative solution is being sought 

and that restriction is imposed to the Tikhonov regularization scheme somewhat artificially. 

Another problem that is not addressed very accurately is the selection of the value for the 

regularization parameter. The authors in [74] have used automated algorithm developed to select 

the value of the regularization parameter "objectively" on the basis of the quality of supplied 

input data without justifying that the algorithm will work in their specific case. Whether this 
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regularization technique will manage to return a DOS solution on the base of experimental 

photocurrents measured in a-Se film was never tested. 

The multiple trapping transport equations (Eq. (3.2)) can be solved by Fourier transform 

techniques. Such an approach is described, for example, in [105, 106] for the case of transient 

photoconductivity experiments. This experimental technique is quite different than the TOF 

experiments in its details but as justified in [74], the equations derived for transient 

photoconductivity experiments can be used to process data from TOF experiments with quite 

good precision. The application of the Fourier transform technique again results in a Fredholm 

integral equation and the associated mathematical difficulties are very similar the ones that have 

already been discussed. 

From what was said above and in subsection 2.2 we can conclude that it is extremely 

difficult to recover the DOS distribution function from experimentally measured photocurrent. 

Many limitations arise from the ill possedness of the problem. They have to be carefully 

considered when shallow distributions with a lot of structure are studied. 

 

3.4 Interrupted Field Time of Flight Technique 

The TOF technique has been applied successfully to many solids in the past several 

decades. Most of the researchers have applied the technique as it was reviewed in the previous 

part of this chapter. In some cases, the researchers have slightly altered the technique in order to 

investigate specific aspects of charge transport in certain materials. For example, the effect of 

delayed bias application (or advanced photo-excitation) has been investigated in attempt to study 

the recombination process [107]; the delayed photo-excitation has been studied to investigate the 

kinetics of space-charge formation [108]; excitation from both sides of the sample has been 

applied to study the recombination between drifting holes and electrons [109], and to complete 

the list we have to mention that the interrupted field time of flight (IFTOF) [110, 111, 112] has 

been reported as a very useful method to study the charge trapping in solids. However, in these 

initial reports the measured IFTOF waveforms were affected by the displacement currents during 

the interruption switching. This is the main reason for which the IFTOF is considered to be a 

very difficult for practical realization in photoconductivity experiment.  The first IFTOF 

apparatus capable of recording displacement current free waveforms with high enough applied 
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bias to be of practical interest for investigation of a-Se films was developed by Kasap et al. 

[113].  

The advantages of the IFTOF technique can be easily illustrated for the case when the 

charge transport can be described as in subsection 3.3.6. This is the case in which the trapping 

process can be approximated in terms of two effective trapping levels, i.e. one set of shallow 

traps that control the mobility and one set of deep traps with a negligible release rate. Once the 

carrier is trapped in such a deep trap, it is lost for the conduction process. The trapping time for 

that deep level of traps will then play an important role in the conduction process, because it will 

be the observable carrier lifetime over the time scale of the experiment. This is a realistic case, 

for example, for hole transport in a-Se which can quite successfully be approximated in terms of 

two trapping levels as described above, and it is often of interest to measure the hole deep 

trapping time (lifetime).  Using Eq. (3.22)  we can rewrite Eq. (3.20) in the following form 
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The deep trapping time effdτ  in many cases can be determined from the analysis of the 

pre-transit portion of the waveform recorded in conventional TOF experiment. However, the 

latter procedure becomes difficult in the case when  effdτ  is very long, because the top of the 

waveform will appear practically flat.  In order to apply the conventional TOF technique one has 

to study thicker samples and/or to use low electric fields. Both of these measures will lead to 

longer transit times , the carriers from the drifting packet will have time to interact with the 

deep traps and the decay of the photocurrent will become more prominent. For amorphous 

selenium however there is one important further difficulty, because the photogeneration process 

is field dependent and at low fields the TOF waveform becomes noisy and difficult to use. Under 

such conditions the IFTOF technique is very suitable for a precise determination of the deep 

trapping time. The essence of the IFTOF technique is illustrated in 

transitt

Figure 3.2.  Figure 3.2-a 

shows the conventional TOF signal as described by Eq. (3.41). Some noise is added to the 

photocurrent in attempt to mimic the behavior of a real TOF waveform. Instead of waiting for 

the charge packet to exit the sample at the back electrode, we can interrupt the motion of the 

packet inside sample by removing the external electric field. This is shown in Figure 3.2-b. The 

moment of the interruption 1t )0( transit1 tt ≤≤  for the case shown in the figure corresponds to 
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stopping the carrier packet close to the middle of the sample. There is no external field applied to 

the sample and if we neglect the diffusion and Coulombic interaction between the carriers in the 

packet we may think that carriers will stay close to the position where the field was removed. 

The number of free carriers decreases, because during the interruption the carriers are being 

deeply trapped with a rate cd.  After certain period of time tint  the field is reapplied and the 

carriers that were not deeply trapped will start to drift again until they are collected at the back 

electrode. The functional relation that describes the shape of the IFTOF photocurrent is 
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(3.42)

The magnitudes of the currents just before the interruption and immediately after the external 

field is reapplied are related by  
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The deep trapping time effdτ  can be easily and directly calculated from Eq. (3.43), 

because the interruption time tint is known experimental parameter and the photocurrents just 

before  and after ( ) the interruption can be measured from experimentally recorted 

IFTOF photocurrent waveform (see 

)( 1
−ti )( int1

++ tti

Figure 3.2-b). 

However, this is almost never done because it is difficult to determine accurately the 

currents before and after the interruption precisely.  The difficulties arise from the noise in the 

waveform and, more importantly, the values of the currents before and after the interruption can 

be affected from the displacement currents. A better way to determine the deep trapping time is 

illustrated in Figure 3.2-c. The ratio of the currents before and after the interruption 
)(

)(

1

int1
−

++
ti

tti is 

evaluated for about 10 different interruption times tint. Then the quantity
)(

)(

1

int1
−

++
ti

tti  is plotted as a 

function of the interruption time. As shown in Figure 3.2-c that dependence is a straight line in 

semi-logarithmic scale and the value of the deep trapping time effdτ  can be determined by simple 

regression analysis. 
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Figure 3.2  Simulation of IFTOF technique based on Equations (3.41), (3.42), and (3.43):  

a) Conventional TOF waveform with almost no decay in the pre-transit region (Eq. (3.41)); 

b) IFTOF waveform for the same applied field and the same light excitation as for the conventional TOF 
waveform (Eq. (3.42)); 

c) An experimental determination of the deep trapping time from IFTOF data. 

 

Kasap et al. in [113] have described the important advantages of the IFTOF technique 

over the conventional TOF measurements: 

a) The concentration of carriers involved in the conduction process can be studied over a 

very long time scale (t >> ttransit) until the recovered photocurrent is too small to recover 

or becomes dominated by the release of trapped carriers. This is possible for the materials 

in which the transport can be approximated in terms of two effective trapping levels; one 

shallow level that controls the mobility and one deep level that defines the effective 

lifetime of the carriers over the time scale of the experiment. Under such conditions the 
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drift mobility is constant and the ratio between the carrier concentrations before and after 

the interruption is the same as the ratio between the photocurrents before and after the 

interruption. 

b) The total trapping behavior i.e. the total trapped charge Qt vs the interruption time tint can 

be studied comparing the time integral over the photocurrent after the interruption (Figure 

3.2-b) and that over the uninterrupted photocurrent (Figure 3.2-a). It is assumed that the 

photogenerated charge by the excitation light can be kept the same over the 

measurements. 

c)  The trapping process is studied under zero applied electric field conditions; there is, 

nonetheless, a finite internal electric field due to the charge packet injected in the sample. 

d)  The effects of sample in homogeneities can be eliminated by interrupting the carrier 

packet motion at a specific position. 

e) Sample heterogeneities can be studied by interrupting the electric field when the carrier 

packet is at different locations inside the sample. 

f) The time dependence, if any, of the drift velocity can be studied by examining the 

effective transit time as a function of the interruption period tint. The effective transit time 

is defined as the difference between the mean time of arrival of the packet at the back 

electrode and the interruption time. 

g) Diffusion and dispersion of the carriers in the packet can be studied as a function of the 

interruption period tint by examining the shape of the recovered photocurrent around the 

extraction point near the back electrode.  

The IFTOF technique described above has some disadvantages as well. The main 

disadvantage is that it is difficult to implement due to the huge switching transients. The 

magnitude of the switching transients can be easily several hundred volts (for the case of a-Se) 

while the photocurrent signal is typically less than a hundred milivolts across the sampling 

resistor. Obviously, the detection of the photocurrent signal in this case is a very difficult 

technical problem. Another limitation of the IFTOF technique is that the theory described above 

is valid for the case when the transport can be studied in terms of two effective trapping levels; 

one controlling the mobility i.e. due to shallow traps, and the other defining the effective lifetime 

for the experimental timescale, due to deep traps. For the general case of materials having 

extended trap distributions, the simple analysis described in this subsection can not be applied. 
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More complicated analysis, based on Eq. (3.26)  must be applied for extended distribution of 

traps. The mathematics in this case obviously leads to multi-exponential analysis which is known 

to be very difficult problem.  

 

3.5 TOF Photoconductivity Technique - Summary 

 In this chapter the TOF transient photoconductivity technique has been described as a 

method to investigate charge transport in low mobility materials. The stress has been placed on 

describing the theory behind such experiments. The trap limited band transport formalism was 

used to mathematically describe the problem. We have demonstrated how basic transport 

parameters like effective mobility and deep trapping times can be extracted from experimentally 

recorded TOF photocurrent waveforms for the cases of several simple distributions of traps. It 

was also shown that for the case of extended trap distributions, the problem of analyzing the 

photocurrent becomes sufficiently more difficult. Two useful asymptotes for the photocurrent 

valid for the pre-transit and the post-transit parts of the TOF waveforms were introduced. A 

method to calculate DOS distribution on the basis of the post-transit photocurrents was outlined. 

Several other techniques that were proposed to solve the inverse problem were mentioned 

together with their advantages and disadvantages. 

At the end of the chapter the theory of one important modification of the conventional 

TOF technique known as interrupted field time of flight (IFTOF) technique has been discussed. 

The advantages and disadvantages of the IFTOF techniques have also been summarized. 
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4. EXPERIMEMTAL PROCEDURES AND TECHNIQUES 
 

4.1 Introduction 

This chapter provides a description of the experimental procedures that were used to 

fabricate amorphous selenium (a-Se) photoconductor layers and characterize their properties. 

The first section describes the fabrication process through which the experimental samples and 

test detectors were produced. The second section describes the experimental setup used to 

perform dark measurements on amorphous selenium thick films. The following sections provide 

details on the experimental equipment used to perform Time of Flight (TOF) and Interrupted 

Field Time of Flight (ITOF) techniques. The experimental equipment is described in details and 

the necessary theory behind IFTOF technique is also briefly presented. The final section 

describes the equipment used to expose the samples to x-rays and to study the effects induced by 

the x-rays in the sample. 

 

4.2 Fabrication of a-Se Films and a-Se Photoconductor Layers on CCD Chips 

4.2.1 Substrates and Substrate Preparation 

Production of high quality a-Se films with good long-term stability against crystallization 

requires that the films be deposited onto a substrate with a surface that is clean from oil, dust and 

other contaminants.  The photoconductor layers fabricated in the course of this work were 

deposited on glass substrates, on Al substrates and on the surface of experimental CCD chips. 

The CCD chips from the production line of DALSA Inc, were sent to our lab in special packages 

to avoid any contamination during transport. These chips needed no cleaning or any other 

processing prior to the deposition of Se on their imaging areas. 

  In cases when glass was needed as a substrate, we have used uncoated Corning 7059 type 

glass (high resistivity) or Corning 1737F glass with one surface coated with ITO (indium tin 

oxide). The glass substrates were cut to the desired size and cleaned using the procedure 

described in Table 4.1 below. Metal films were deposited on the 7059 glass surface (see 

subsection 4.2.4) to act as bottom electrodes in future metal/a-Se/metal devices.  
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Table 4.1 Procedure for cleaning glass substrates.  

Step # Step Description 

1 Clean the substrates ultrasonically in Extrain-MN01 bath (2-5 g Extrain-MN01 in 1 liter of 
deionized water) for 5-20 min. 

2 Rinse using deionized water 3-4 times. 

3 Clean the substrates ultrasonically in pure methanol for 3-5 min. 

4 Wash the substrates ultrasonically in bath of deionized water for 1-2 min. 

5 Repeat step 4 two-three times changing the water in the bath before each repetition. 

6 Wash the substrates ultrasonically in hot deionized water (60 °C) for 2-3 min. 

7 Blow dry purified compressed air to dry the substrates 

8 Keep the substrates in dust free environment at 50 °C before further use 
 

 

Table 4.2 Procedure for aluminum substrate cleaning. 

Step # Step Description 

1 Remove the protective plastic film from the polished surface 

2 Clean Substrates ultrasonically for 3-4 min in Trichloroethylene (C2HCl3) to remove 
remnants of glue and plastic 

3 Wash substrates ultrasonically in acetone for 3-4 min. 

4 Wash substrates ultrasonically in methanol for 3-4 min. 

5 Wash the substrates ultrasonically in bath of deionized water for 2-3 min. 

6 Repeat step 5 two-three times changing the water in the bath before each repetition. 

7 Wash the substrates ultrasonically in hot deionized water (60 °C) for 2-3 min. 

8 Blow dry purified compressed air to dry the substrates 

9 Keep the substrates in dust free environment at 50 °C before further use 
 

The aluminum substrates were cut to the desired size from Al sheets of thickness 1.1 mm. 

One of the surfaces of the Al sheets was polished by the manufacturer and protected by a thin 

polymer film. The amorphous selenium films were grown on the polished side of the substrate. 

The cleaning procedure for Al substrates is presented in Table 4.2 given on the previous page. 

In some cases, in order to improve the adhesion of the Se film to the Al substrates, the 

surface of the aluminum substrates was etched. This was done between step 4 and step 5 in Table 

4.2 following the procedure outlined in Table 4.3. 
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In cases where very low dark currents were required the Al substrates were oxidized in 

air at a temperature of about 350 °C for more than 2 hours. The oxidation process was applied on the 

cleaned or on cleaned and etched Al substrates. 

 

Table 4.3 Procedure for etching the surface of Al substrates. 

Step # Step Description 

1 After steps 1-4 in Table 4.2 have been performed, rinse the substrates in deionized water and 
keep them under deionized water before the next step 

2 Prepare solution of 1.5g soda ash (Na2CO3) and 1.5g sodium phosphate (NaH2PO4)  in 300 ml 
deionized water 

3 Heat the solution prepared in step 2 to 60 °C  

4 Etch the substrates immersing them in the heated solution for 20-60 s. 

5 Rinse the substrates in deionized water 

6 Immerse the substrates in concentrated nitric acid to remove the caustic residue. 

7 Rinse the substrates with deionized water 

8 Continue with step 5 in Table 4.2
 

4.2.2 Selenium Alloys Used in the Study 

 The selenium source material used in the work was provided by the ANRAD 

Corporation, Montreal, Canada and other suppliers, together with certificates describing their 

composition. The materials were pelletized by the manufacturer as shown in        Figure 4.1.  The 

pellets had the form of biconcave spheres or partial spheres. The pellet sizes were different for 

the different alloys. However the pellets were all typically smaller than 4 mm in diameter with 

masses that were less than 90 mg.  All the materials were kept in glass bottles with plastic covers 

and placed in a dark storage cabinet at room temperature (~22 °C) and normal pressure. 

Selenium materials used in the course of the study varied from high purity Se (99.999%) 

to differently alloyed Se with As and Cl. The alloying in most of the cases was done by the 

supplier with the aim to retard the crystallization of a-Se and to modify the electronic transport in 

Se to meet the desired application needs. The added As was in the range 0-0.7 wt % while the 

concentration of  Cl varied in the range 0-70 ppm.  
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       Figure 4.1 Amorphous selenium pellets. 

 

In some cases the alloying was conducted in our laboratory. The necessary materials were 

sealed in a quartz ampoule evacuated to a pressure of 2-4 × 10-5 Torr. During the synthesis, the 

ampoule was heated to a temperature in the range 500-1000 °C and held at that temperature for a 

period of time typically 24 hours long. The mixing of the melt was achieved by the rocking 

action of the furnace. After the synthesis, the ampoule was quickly immersed into water to 

quench the alloy and preserve it in amorphous (vitreous) state. Immediately before the 

evaporation the ampoule was crushed and chunks of material with a maximum mass of about 10 

g were loaded into Se evaporator to deposit the photoconductor films. 

4.2.3 Deposition of Amorphous Selenium Thick Films 

 The amorphous selenium thick films were prepared by thermal evaporation of selenium 

pellets from molybdenum boat using a modified Norton NRC 3117 vacuum system that is shown 

in Figure 4.2. The vacuum chamber is 16 inches in diameter and consists of stainless steel base 

and a steel bell jar that is about 25 inches high. The base has 16 CF flanges (2.75 inch in 

diameter) to accommodate electrical and mechanical see-through, gauges, etc.  The pumping part  
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a) General view of NCR 3117 vacuum coater 

 
 
 
 

  
b)  The assembly for preparation of Se films  
mounted inside the vacuum chamber 

Figure 4.2 Photographs of  NCR 3117 vacuum coater. 

 
of the vacuum coater is based on a two stage mechanical pump Welch 1397 (17.7 cfm) and a 

four stage 10 inch diffusion pump NRC VHS-10 (5300 l/s). All valves are manually operated. 

The pressure in the vacuum chamber is monitored by a combination of thermocouple and 

a Bayard-Apert Ion gauges. The fore-line pressure of the diffusion pump is monitored by another 

thermocouple gauge. All gauges are connected to NRC 831 gauge controller. The ultimate 

vacuum in the chamber for the current configuration of the system is about 5 × 10-7 Torr. The 

evaporation of Se was usually performed at a pressure in the range from 8 × 10-7 Torr to 4 × 10-6 

Torr depending on the evaporation conditions used (boat temperature, amount of material in the 

boat, etc.).  

The assembly for the production of Se films mounted inside the vacuum chamber of the system 

is shown in Figure 4.2 (a photograph) and its most important parts are sketched in Figure 4.3 to 

better clarify the explanations. 

The starting Se material in the form of pellets is placed inside a molybdenum boat supported by 

insulators on the Al base of the assembly.  The boat is heated by passing a current through it. The 

values of the current were typically in the range 80-150 A depending on the boat construction 

and they were sourced from a 2 kW low voltage power supply that is a part of the  
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Figure 4.3 A sketch of the evaporation assembly inside the vacuum chamber. 
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NRC 3117 system. The temperature of the boat ( Tboat in Figure 4.3) is measured by a 

thermocouple positioned into the Se melt. That temperature can be set to a desired value in the 

range 30-650 °C. An Omega temperature controller regulates the average current through the 

boat so as to keep the temperature of the molten selenium close (±1 °C) at the desired preset 

value. Most of the films were produced from Se evaporated from a melt with a temperature in the 

range 230-290 °C.   

 The a-Se films are grown on the desired areas of the substrates by deposition 

through a custom milled shadow mask (Figure 4.3). Most of the masks were machined from Al 

and only in some of the cases when Se was evaporated directly on a CCD chip the mask was 

made from Teflon to prevent scratching of the chip. A window on the bottom surface of the mask 

defines the area and the position of the Se film on the substrate (Figure 4.3). 

The mask holder supports the mask with the substrate above the boat at a distance of 16 

cm. The bottom part of the mask holder is suspended on 2 support posts and in its turn plays the 

role of mechanical support for the evaporation masks and for the substrate heater.  The biggest 

mask that can be placed into the holder is 3.25'' ×3.25'' and that limits the area of the Se film to 

slightly less than 3 by 3 inch.   The mask holder plays the important role of cooling the substrate 

as well, and that is the reason that is labeled as “substrate cooler” in Figure 4.3. Substrate cooling 

is accomplished by machining a channel in the Al body of the mask holder to pass a coolant. 

A coolant (gas or liquid) can be run through the channel, which allows the substrate 

temperature to be regulated to values below the room temperature. We have used compressed air, 

tap water and ice-water as coolant and were able to achieve substrate temperatures as low as 2 °C 

during the evaporation of the film.  The construction allows considerably lower substrate 

temperatures to be achieved if a suitable flow-through refrigerated chiller is used. 

Substrate temperatures above 25 °C were achieved by operating a 150 W electrical heater 

in direct contact with the shadow mask and the substrate as shown in Figure 4.3. After placing 

the substrate with the mask into the mask holder/cooler assembly, the heater plate is bolted to the 

mask holder to ensure good thermal contact between all these parts. The temperature of the 

heater (Theater in Figure 4.3) is controlled by a thermocouple connected to another Omega 

temperature controller. The heater operating at full power can heat the substrates to a 

temperature of about 350 °C.  Thus the temperature of the heater/cooler assembly can be set to 
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any value in the range the range 4-350 °C and can be controlled automatically with precision of  

±1 °C. Due to the small but finite thermal resistances, the real temperature of the substrate will 

be somewhat different from Theater.  That is the reason for using an additional thermocouple in 

direct contact with the shadow mask (Tmask in Figure 4.3). The temperature Tmask is recorded in 

the evaporation logbooks as a close approximation to the real substrate temperature during the 

evaporation. Amorphous selenium films were deposited at different substrate temperatures in the 

range 2-70 °C.   

A shutter (Figure 4.3) protects the substrates from Se vapors until stable evaporation 

conditions are reached (stable evaporation rate and pressure) and during the period after the final 

thickness of the film is reached and the boat with the Se melt is cooling down. The substrate 

shutter is manually operated. 

SIGMA Instruments SQM-160 rate monitor records the deposition rate and hence 

indicates the thickness of the growing a-Se film. We were interested in depositing a-Se films as 

thick as 500 μm. Such thickness is out of the range of a quartz crystal rate monitor if the sensor 

is placed in the same plane with the substrates and “observes” the evaporation directly. We have 

solved the latter problem by placing the sensor at a greater distance from the boat and monitoring 

only part of the boat surface through a pinhole as shown in Figure 4.3.  The disadvantage of the 

latter arrangement is that readings of the monitor are connected with the actual thickness of the 

film and with the real evaporation rate by a “tooling factor”, or a scaling factor, that has to be 

experimentally determined by a trial run. In most cases, the tooling factor for our arrangement 

was about 50 and the measured evaporation rates were in the range 0.5-15 μm/min. The final 

thickness of the Se film was measured after the samples were taken out of the vacuum chamber 

by a precision micrometer Sylvac 50 with accuracy of ±1.5 μm. The majority of the films had 

thickness in the range 5-350 μm. 

4.2.4  Fabrication of Metal Contacts 
 The samples for investigation of the electrical properties of a-Se films need to be 

equipped with metal electrodes. One the samples for TOF or IFTOF measurements require at 

least one of the contacts to be semi-transparent so as to allow optical excitation. 

The metal contacts on the Corning 7059 glass substrates and on the surface of the a-Se films 

were thermally evaporated or DC sputtered.   
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The contacts from precious metals such as Au or Pt were typically deposited by 

sputtering in the Hummer VI unit shown in Figure 4.4. This production process is less expensive  

 

 

 
 
METROVAC Coating Unit Type 12 
 Associated Electrical Industries LTD, SCOTLAND 
 
General Purpose Coating Unit applicable in all 
branches of vacuum coating carried out on 
laboratory basis. 
 
Supports: 
• Filament evaporation 
• Boat evaporation  
• Carbon arc evaporation 

 

 

 
HUMMER VI 
Technics Inc., Alexandria, Virginia USA 

Versatile D.C. Sputtering System for coating 
etching and cleaning of laboratory samples.  

Deposits: gold, palladium, platinum, chrome, 
copper, nickel. 

Typical thickness of the coating 75-1000 Å for 1-5 
min. 

 Very gentle coating process, eliminating the effects 
of high temperature and damages from electron 
bombardment. 

 

 
Figure 4.4 Equipment for fabrication of metal contacts. 

 

and less damaging for the Se films compared to the thermal evaporation process. Thus, for 

example, Pt evaporates at ~1800 °C which can lead to significant heating of the surface of the a-

Se film. Heating of the a-Se film above the glass transition temperature of Se, which is only 40-

50 °C can provoke crystallization and is not desirable. The amount of Pt needed for evaporation 

of one contact is much greater than the amount needed for sputtering one contact, which makes 
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the DC sputtering the less expensive process. The biggest samples that the chamber of Hammer 

VI unit can accommodate are 2.5 inch in diameter. 

Contacts from other metals like Al, Cr, Mg etc. were produced by thermal evaporation in 

a METROVAC Coating Unit Type 12 which is shown in Figure 4.4. This small vacuum coater 

has an arrangement inside the vacuum chamber similar to the one for Se evaporation shown in 

Figure 4.3. The differences are that there is no substrate heating or cooling installed and there is 

no rate monitor. The metals are evaporated from a tungsten filament (Al), or a metal plated 

tungsten rods (Cr), or a from filament heated ceramic crucible (Mg). The thickness of the coating 

is controlled by the evaporation time. The biggest substrates on which metals can be evaporated 

in the Metrovac unit are 3 × 3 inch. 

For both fabrication techniques, the area of the metal contact was defined by custom 

milled shadow mask. The bottom contacts (the ones produced on top of the glass slides) were 

rectangular in shape and area slightly less or equal to the area of the substrate. The top contacts 

(the ones produced on the top surface of the Se films) were circular in shape. Shadow masks for 

circular contacts are easier to manufacture and the contact has no sharp edges, which facilitates 

the measurements at high electric fields. The area of the top contact typically was 0.25 or 0.5 or 

1 cm2 to facilitate the conversion from current to current density. By carefully choosing carefully 

the deposition parameters and the deposition time, it was possible to produce semitransparent 

electrodes from Al, Pt and Au for TOF and IFTOF measurements.  

4.2.5 Structure of the Fabricated Metal/a-Se/Metal Devices 

 Metal/a-Se/metal samples fabricated in the course of this work in most cases had one of 

the structures shown in Figure 4.5. Most of the samples prepared to investigate the transport in 

different Se alloys had the single layer structure shown in Figure 4.5-a. Such samples are best 

suited for TOF and IFTOF experiments and for that reason at least one of the top contacts was 

semi-transparent.  In some cases, the film was produced on a glass substrate and the bottom 

contact was also transparent. In such cases photoexcitation from both sides was possible and 

hence using TOF experiments one can study how homogeneous the a-Se film is. The simple 

single layer sample structures were used also for dark current measurements. In these cases, 

several contacts from different metals were deposited on the top side of the sample. Thus, the 

influence of the metal on the metal-Se interface and on the dark currents was investigated. The 
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samples with the structure shown in Figure 4.5-b-d are multilayer structures. The blocking layers 

were produced from specially doped Se or using special preparation conditions. Consequently, 

the transport in the blocking layer is modified. In some of these blocking layers the electrons can 

drift but holes become deeply trapped before crossing the layer (n-like layers). In the other type 

of blocking layers, the hole transport holes is good but the electrons become deeply trapped (p-

like layers). The introduction of such layers aims to minimize the carrier injection from metal 

electrodes and hence the multilayered samples were used mainly for dark current investigations. 

 

 

Figure 4.5  Structure of the samples used in the course of the work: a) simple single layer metal/a-Se/metal 

device; b) double layer metal/a-Se/metal device with blocking layer on top of the structure;  c) double layer 

metal/a-Se/metal device with blocking layer on bottom of the structure; d) metal/a-Se/metal structure with 

two blocking layers; e) a photograph of two samples – the top sample is a single layer a-Se on aluminum 

substrate (Al/a-Se/Au) and the bottom one is again single layer Se deposited on glass coated with ITO 

substrate (ITO/a-Se/Pt structure). 

 

Figure 4.5-e shows a photograph of two real single layer samples. The bottom sample is 

produced on top of 2.5'' × 2.5'' glass/ITO substrate. The thickness of Se is about 500 μm. The top 
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semitransparent contact is made from Au and has an area of 0.25 cm2. The smaller sample is 

produced on oxidized Al substrate and has a Pt top contact with the same area. 

 

4.3 Thermal Analysis 

Differential scanning calorimetry (DSC) was routinely used for investigation, selection, 

comparison and performance evaluation of a-Se materials and films involved in the research. The 

proprties of greatest importance for us were the glass transition, the crystallization, the melting, 

and the material stability. 

The instruments DSC 2910 and DSC Q100 (Figure 4.6) used to perform these 

measurements are from the product line of TA Instruments, New Castle, USA. 

 

 

Figure 4.6 Model Q100, TA Instruments is a versatile research-grade DSC with capabilities to run modulated 
DSC experiments and built in  TZEROTM technology. 
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4.4 Dark Currents Measurements 

The measurement of I-V characteristics is a simple experiment that requires basically two 

pieces of equipment. These are a power supply that acts as a source of all the voltages needed 

during the experiment and an ammeter capable of measuring all the currents in the range of 

interest. A few complications arise in the case when I-V measurements are performed on a-Se 

films. Due to the very high resistivity of a-Se, the dark currents in metal/a-Se/metal devices are 

very low and a sensitive electrometer should be used as an instrument for such current 

measurements. In the x-ray detectors, the a-Se layer is operated at very high fields – in some 

cases more than 10 V/μm. In order to apply such fields to the thickest samples of interest (~500 

μm), the voltage source should be capable of supplying a bias in the range from 0 to  ±5000 V.  

The HV power supply and the electrometer, which were used for the dark current 

measurements in the course of this work, together with their basic technical characteristics are 

shown in Figure 4.7. For reasons that will be explained below, the dark current experiments on 

a-Se films can be very long. Computer control of the experiments is essential in this case to the 

measurements can be recorded accurately and also to make them more convenient for the  

 

 

 

6512 Model Programmable Electrometer , Keithley 
• Current Range: <2 fA to 20 mA  
• Resistance Range: 100mohms to 200Gohms  
• Voltage Range: 10µV to 200V  
• Coulomb Range: 10 fC to 20 nC  
• 5 fA of input bias Current  
• <1mV of burden Voltage  
• Built-in V-ohm Guard Switch  
• Built-in IEEE-488 Interface 
 

 
 

 
 

 
PS350 Model HV Power Supply, Stanford Research Systems, Inc 
• Up to 5 kV with 1 V resolution, 25 Watts output power 
• 0.001% Regulation, 0.05% Accuracy, low output ripple 
• Dual polarity, programmable limits and trips 
• Built-in IEEE-488 Interface 

Figure 4.7 Photographs and the basic technical characteristics of the two major pieces of equipment in the 
dark current experiment. 
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Figure 4.8 Diagram of the experimental setup for dark current I-t and I-V measurements on metal/a-Se/metal 
sample. 

 
operator. For such reasons, both instruments were chosen to have built-in interfaces (IEEE-488) 

which ensures a relatively easy connectivity to a personal computer. 

Measurements of the dark current-voltage characteristics, ordinarily a simple experiment, 

in the case of metal/a-Se/metal samples are complicated by long-term transients [14]. In most 

cases, the current would decay by several orders of magnitude over hours after application the 

bias voltage. Since the transient indicates that the electronic state of the sample is changing, the 
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main difficulty is assuring the sample returns to the same state at the start of each measurement. 

This can be accomplished by resting the samples in short circuit for a sufficiently long period (24 

hours) at the start of each experiment and at least twice the time that the previous bias was 

applied during the measurements. 

The measurements of the dark current-voltage characteristics in this case have to be 

accomplished in the following order. The lowest voltage of the range of interest is applied to the 

sample. The current is followed for the desired time Δt (usually 20 min or more). The sample is 

rested for a period of time 2×Δt. The next voltage is applied, the current is followed for the same 

period and then the sample is rested again, and so on until the highest voltage of interest is 

reached. 

The current-voltage characteristics can then be obtained by taking a cut at a particular 

time through a set of transients for a given pair of electrodes as demonstrated in Figure 4.8 which 

shows a block diagram of a computer controlled experiment that was built to perform dark 

current measurements in a-Se photoconductor structures. 

Noise from the power supply capacitively coupled through the sample becomes 

troublesome for currents on the order of 10-13 A. 

 

4.5 Experimental System for TOF Measurements 

 The experimental setup needed to perform TOF measurements is relatively simple in 

contrast to the theory of these measurement presented in section 3 . The block diagram of the 

equipment used in the course of this work is presented in Figure 4.9   

A 60 MHz, 1 GS/s Tektronix TDS1002 oscilloscope is used to capture the TOF 

waveform and convert it into digital form. The built in interfaces RS-232 and IEEE-488 allow 

easy transfer of the data to a personal computer for storage and further processing. 

The HV power supply used in our experiments is an EG&G ORTEC model 556H-P. It 

has been designed originally as a power source for photomultiplier tubes and for that reason it is 

capable of producing a relatively high current (up to 10 mA) in  the whole range of the output 

voltages (±3000 V) with very low ripple (less than 10 mV). The unit has overload and short 

circuit protection and all together is very suitable for the purposes of the TOF photoconductivity 

measurements. 
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Figure 4.9 Block diagram of the experimental system for TOF transient photoconductivity measurements  

 

The source of excitation light has to provide very short pulse of light that is strongly 

absorbed in the material under investigation, so that the requirements defined by Eq. (3.6) are 

satisfied as close as it is possible. We have used two types of light sources; guided discharge 

xenon flash lamp and N2 laser.  A guided discharge xenon flash lamp with modified trigger 

socket is capable of producing very short light pulses. In our setup the duration of the light pulse 

generated by the lamp is less than 200 ns. The Xe lamp produces broad spectrum light and the 

spectral region around 400 nm is filtered by a band pass optical filter and then coupled to an 

optical fiber bundle. The nitrogen laser used with the TOF system is model LN103, Laser 

Photonics. This is a transverse excitation N2 laser capable of light pulses as short as 200-300 ps. 

The wavelength of the emitted radiation is 337.1 nm. The laser is coupled to 1mm core quartz 

fiber to allow easy excitation of the samples. The light intensity for both sources can be scaled 

down with a set of neutral density filters to meet the weak excitation requirement under all 

experimental conditions. Both light sources are capable of providing a synchronization signal 

derived from the generated light to trigger the oscilloscope at the instance of the flash (see Figure 

4.9) with essentially no jitter, which is extremely important when photocurrents need to be 

measured over short timescales. 
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During the measurement, the sample is placed on an insulating platform in the sample 

box (Figure 4.9) and its electrodes are connected to the system by means of spring contacts. The 

HV relay applies the bias across the sample only when a photocurrent waveform has to be 

collected. Thus, the sample is under bias for a very short time and space charge built-up due to 

carrier injection from the contacts is minimized.  The protection relay connects the sample to the 

amplifier with some delay after the application of the bias voltage. The delay is sufficiently long 

to protect the amplifier from the displacement currents when the bias is switched on, and, more 

importantly, from catastrophic failures associated with sample break down as a result of the 

application of a high voltage. The resistor R in Figure 4.9 has a value that is much smaller than 

the resistance of the sample and at the same time it is big enough to avoid the unnecessary 

loading of the HV power supply. With the HV relay opened, both contacts of the sample are 

grounded; one through the resistor and the other through the normally closed contact of the 

protection relay. The latter ensures proper conditions for resting the sample between the 

experiments. The capacitor C in Figure 4.9 creates an AC conduction path for the photocurrent 

and thus improves the signal quality significantly. In addition, it is sufficiently large to keep the 

voltage across the sample relatively constant during the TOF photocurrent measurements.  

The sampling resistor RS in Figure 4.9 converts the photocurrent to voltage which is then 

amplified about 10 times by the signal amplifier. The operator can select between 12 different 

logarithmically spaced values of RS in the range 50 Ω to 200 kΩ by means of a rotary switch. 

The amplifier is built around OPA567; a 1.6 GHz, low-noise, FET-input operational amplifier 

and is configured to drive properly the 50 Ω coaxial line that feeds the amplified signal to the 

oscilloscope. The very high gain bandwidth product of the amplifier has been chosen to 

minimize the effects of the amplifier limited bandwidth on the measured signal because 

"paradoxically, knowledge of the short-time transient photoresponse can be vital in the 

estimation, via a Fourier transform, of the density of deep-lying states" [75]. The same applies 

when Laplace transform technique is used [74].  

The sample box in Figure 4.9 shields the sample from the ambient light and from electro-

magnetic interference (EMI). 

The measurement of a photocurrent waveform is started and controlled by a custom built 

trigger generator (Figure 4.9). During a typical measuring sequence, the generator will trigger the 

HV relay, the protection relay, the optical source, and the oscilloscope (if not triggered optically 
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by the light source) at appropriate instants of time so as to record a TOF waveform. All 

triggering signals are TTL signals, except the one that triggers the light source. A powerful 

electric discharge takes place in the optical source every time when it is triggered which 

produces strong EMI as well as high frequency feedback transients in the associated electronic 

circuits (e.g. the xenon trigger circuit, HV supply etc.). Their influence on the signal is 

minimized by triggering the light source through an optical link  

 

4.6 Experimental Setup for Interrupted Field Time-of-Flight Measurements 
In chapter 3.4 we have described the basic principles and the theory of the interrupted 

field time-of-flight (IFTOF) technique. As already discussed in chapter 3.4 the most significant 

difficulty associated with the practical application of IFTOF technique are the large displacement 

currents that appear in the moments of removal and reapplication of the external electric field 

across the sample. 

In the present research we have used an IFTOF setup that relies on a grounded bridge 

network as a method for elimination of the displacement current signal although many other 

approaches are possible [113-116].  The advantage of this technique is that a grounded voltage 

supply may be used to bias the sample to allow for good EMI shielding.  The IFTOF apparatus 

together with the concept of the bridge circuit is illustrated in Figure 4.10 and is described in 

detail in [117].  The application and removal of the high voltage bias produces a displacement 

current signal in both branches of the bridge.  If the air variable capacitor C is adjusted so that it 

is equal to the sample capacitance, then the displacement currents in the two bridge resistors will 

be the same and can be eliminated by performing a differential measurement across the bridge. 

The differential amplifier will detect the photocurrent signal because it appears in only one 

branch of the bridge.  

The two voltage limiting circuits built on the diodes D1-D4 protect the differential 

amplifier from entering saturation by limiting the displacement current signal to less than 0.8 V.   

The remaining common mode signal can be easily rejected by carefully matching the values of 

the resistors in the bridge and by using an amplifier that has CMMR better than 60dB.  
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The differential amplifier is build around a high CMMR video amplifierAD830 

(GBP = 80MHz, CMMR = 60 dB at 60MHz), configured as unity gain differential amplifier. The 

output stage uses fast operational amplifier (AD827) configured as non- inverting amplifier with  

 

 
 

Figure 4.10 IFTOF apparatus using grounded bridge network to eliminate the displacement current signal. 

 
a gain of 16 dB. The latter stage has cable driving capability and the gain of 16 dB is sufficient to 

raise the signal above the noise background of the digital oscilloscope.   

A precision, normally open CMOS analog SPST switch from Maxim (MAX318) was 

placed across the inputs of the amplifier to protect the signal electronics from the high voltage 

transients during switching. The switch was selected for its low charge injection (~10 pC).  The 

protection switch is controlled by the trigger generator through a small circuit labeled 

"Protection" (Figure 4.10). 

The HV switch functions as a single pole double-throw (SPDT) switch with the output 

normally connected to ground through as shown in Figure 4.10. The switch is built using two fast 

switching n-channel IRFBG30 HEXFETs in a totem pole configuration [117] and is capable of 

switching voltages up to 1kV with rise and fall times that are less than 0.2 μs. The HEXFETs are 

driven by two HCPL-3120 optocouplers, which also serve to isolate the control circuitry from 
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the high voltage output of the switch. One TTL signal supplied by the trigger generator controls 

the HV switch.  

 

 

Figure 4.11 A set of typical electron and hole TOF and IFTOF waveform recorded with the IFTOF apparatus 
described in the subsection and example regression analysis that result in the determination of carrier 
lifetime. The a-Se films is 224 µm thick and is deposited from Se:0.2%As alloy. The set of graphs was taken 
from [117]. 

 

The trigger signals for the IFTOF system were generated using a Computer Boards PCI-

CTR05 counter board installed in the PCI extension slot of the personal computer (Figure 4.10).  
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The heart of the counter board is an AMD 9513 counter/timer chip that contains five 16 bit 

up/down counters.  The custom trigger generator code was written in C++ and was integrated 

into the TOF/IFTOF user interface software.  

The high voltage power supply and the source of the optical excitation have already been 

described in subsection 4.5.  The experiment is controlled by a personal computer through 

custom written software that initializes the trigger generator and starts the desired measuring 

sequence. Communications with the digital oscilloscope (Tektronix TDS210 in this case) use the 

built in that devices IEEE 488.2 interface.   

A typical IFTOF experiment captures two waveforms. The moment of the interruption t1 

and the desired interruption period tint are first set and the bridge is actuated without any 

photoexcitation but with an applied bias, to collect the baseline signal. The bridge is then 

automatically re-excited after a short pause, this time with photoexcitation, to capture and upload 

the photocurrent signal.  A software routine subtracts the two signals and the resulting waveform 

is displayed and stored for further processing. 

A set of typical electron and hole TOF and IFTOF waveform recorded the IFTOF 

apparatus described in this subsection are shown in Figure 4.11. In the same figure we have 

illustrated an example regression analysis that result in the determination of electron and hole 

lifetime.  

  

4.7 X-Ray Measurements 

 Several types of x-ray measurements were attempted during the course of this work. Most 

of them were designed to measure the x-ray sensitivity of certain metal/a-Se/metal detectors and 

to investigate how that sensitivity changes under different experimental conditions. Other x-ray 

measurements were performed to study the effects that the exposure to x-rays induces in the 

sample; for example the effect that the x-ray exposure has on the dark current through the 

sample, the effect that the x-rays have on the carrier transport in a-Se films, etc. 

    Two intraoral dental systems were used as a source of x-ray radiation for all the 

measurements: Gendex, GX-1000 and Siemens, Heliodent. Each of these systems contains 

relatively small x-ray tube with tungsten anodes and 2.5 mm and 2 mm internal Al filtration  
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Figure 4.12 Schematic diagram of a computer controlled experiment for x-ray measurements on 
metal/a-Se/metal devices. 
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respectively. The Siemens tube operates at fixed voltage of 57 kVp and fixed tube current of 7 

mA. The Gendex system is more flexible. The tube current can be set to 10 mA or to 15 mA by 

the operator, while the tube voltage can be varied continuously in the range 50 – 100 kVp. The 

exposure duration for both systems is controlled by timers and can be set to different values in 

the range 3/60 s to 5 s. 

The magnitude of the x-ray exposure for a given set of conditions was measured using a 

Keithley 96035 ionization chamber connected to a Keithley 35050 dosimeter. The dosimeter 

produces a voltage reading that is proportional to the x-ray exposure. The proportionality factor 

was determined by a standard calibration procedure that was performed at the Cancer Center at 

the Royal University Hospital, University of Saskatchewan. 

 The biological protection was ensured by mounting the x-ray heads in special lead 

shielded (5 mm lead) cabinets. The Gendex x-ray system was used together with the IFTOF 

apparatus shown in Figure 4.10 while the Siemens system was used in the experimental setup 

shown in Figure 4.12.  

 The x-ray sensitivity (the charge collected per unit area per unit exposure) was measured 

by placing the Keithley 6512 electrometer (see Figure 4.12) into Coulomb mode. The current 

through the electrometer in that mode is integrated and the charge collected during the x-ray 

exposure is measured and then the result is transferred to the computer. The computer then 

calculates the sensitivity for the conditions of the experiment (x-ray exposure, electric field, etc.). 

The latter method is applicable if the collected charge is below 20 nC. If the collected charge was 

bigger than 20 nC a different technique was used.  The x-ray current induced in the sample was 

captured on a digital oscilloscope Tektronix, TDS-210 connected to the current preamplifier 

output of the Keithley 6512 electrometer as shown in Figure 4.12. The current waveform was 

transferred to the computer after the exposure. The charge collected during the exposure was 

then calculated by the software running on the computer that integrates the x-ray induced 

photocurrent to finally yield a value for the x-ray sensitivity under the given experimental 

conditions. All x-ray sensitivity results were corrected for the dark current running through the 

sample during the measurements. 

 As explained above, the experimental setup shown in Figure 4.12 allows the 

instantaneous x-ray induced current in the sample to be directly recorded on the oscilloscope. For 

long exposures, the average x–ray induced current can be measured directly by the electrometer 
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working in the current mode. That mode of operation allows the changes in the dark current in 

the samples after the end of the x-ray exposure to be conveniently followed and recorded on the 

personal computer for analysis. 

 The whole experiment is computer controlled, by custom written software.   

 

4.8 Summary 

 This chapter provides an outline of the various experimental methods used in the course 

of present research. The techniques for the preparation of different metal/a-Se/metal samples and 

devices were described in detail in the beginning of the chapter. The apparatus and the 

methodology for measuring of dark current I-t and I-V characteristics on metal/a-Se/metal 

samples were also described. The experimental techniques take into account the long transients 

that follow the application of the voltage across the a-Se samples. The experimental 

implementation of TOF and IFTOF techniques for the investigation of carrier mobility, lifetime 

and mobility-lifetime products were described later in the chapter. Finally the equipment used for 

various x-ray measurements was briefly discussed together with the technique used to measure 

the x-ray sensitivity of metal/a-Se/metal samples.   
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5. RESULTS AND DISCUSSION 
 

5.1 Effects of Alloying and Doping on Charge Transport in Vacuum Deposited 
Amorphous Selenium Films 

5.1.1 Introduction 

Electronic transport in a given vacuum deposited a-Se film depends on the properties of 

the selenium alloy used for the fabrication of the film and on the set of deposition conditions 

under which it was prepared. Under standard industrial conditions, the most important deposition 

conditions are kept constant during the film fabrication. These include the base vacuum, 

temperature of the molten Se, substrate to source distance, deposition rate, substrate temperature, 

deposition time, etc. If the fabrication conditions are kept constant, the only way to control the 

transport in fabricated a-Se films is by suitably alloying and doping the material used for film 

fabrication. Fabrication of a-Se based pin- like structures for example relies on the evaporation 

of at least three layers with totally different transport properties as explained in subsection 1.3. A 

key to control the charge transport in a-Se film under fixed preparation conditions is to suitably 

alloy the starting Se material by adding certain elements that will promote or suppress the 

transport of one or both types of carriers in the film. At the same time, the long term stability (the 

resistance against crystallization) of the film should not be harmed by the additive used to alter 

the charge transport properties. The latter, together with the huge variations in the properties of 

the starting pure Se material, makes the alloying process very difficult and motivates a 

systematic study of the effects of alloying and doping on the charge transport in vacuum 

deposited a-Se. Results from such experiments will be described in this subsection. The stress of 

the study was placed on the influence of As and Cl which are currently the most widely used 

additives in the industry at the moment. 

In the past, the effects of different additives had been studied by either xerographic 

measurements or by conventional TOF experiments. Xerographic experiments involve 

measuring the first residual potential that results from the complete photo discharge of an 

electrostatically charged a-Se film. Such experiments can only provide a value for mobility-

lifetime product μτ of the carriers. These values are strongly dependent on the actual model used 

 106



to interpret first residual potential decay [118, 119], hence μτ  values determined by this 

technique  tend to be only estimates. In addition, for most of the films it is difficult to charge the 

surface of the a-Se film to high negative voltages, which makes the measuring of μτ  for 

electrons difficult. In conventional TOF measurements, one relies on decreasing the electric field 

until the carrier transit time (
F
Lt

μ
=transit , see subsection 3.2) is comparable with the lifetime τ 

and the photocurrent decays exponentially with a time constant  τ that represents the deep 

trapping time, i.e., the lifetime. This method was described in subsections 3.3.5 and 3.3.6, and 

used previously to measure µ and τ  in stabilized a-Se [120, 121]. There are various problems 

with this technique as well. First, in a-Se alloys, photogeneration depends on the field and if we 

reduce the field too much we effectively extinguish the photocurrent. Long lifetimes, therefore, 

cannot be measured reliably. Secondly, the composition of alloyed a-Se is not completely 

uniform across the film, which means that the shape of the photocurrent will be influenced by 

this fractionation effect. Further, any net bulk space charge in the sample due to trapped carriers 

will result in a nonuniform field profile F(x) which will lead to a photocurrent shape i(t) that 

depends on this field profile rather than on trapping. Thus, the determination of τ from the shape 

i(t) of the conventional TOF photocurrent under certain conditions becomes unreliable. 

  In IFTOF experiments, on the other hand, the drift of photo injected carriers is suddenly 

halted at a time t1 corresponding to a particular location x1, usually near the middle of the sample, 

by removing the field (see section 3.4). The carriers then gradually become trapped at position 

x1, and the concentration of free carriers decreases exponentially with a time constant τ equal to 

the lifetime (the deep trapping time). When the field is reapplied at a time t2, the carriers begin to 

drift again and give rise to a photocurrent i(t2) that is less than the photocurrent i(t1) at time t1 just 

before the interruption. The lifetime τ is obtained from the slope of the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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)(ln

1

2

ti
ti  vs. ( )12 tt −  plot 

as described in subsection 3.4. This technique has been widely used by Kasap and coworkers to 

obtain accurate measurements of τ for both electrons and holes in a wide range of a-Se alloys 

[122].  

All the results from mobility and lifetime measurements that will be described further in 

this chapter were obtained using a combination of TOF and IFTOF techniques to achieve higher 

precision in lifetime determination.  
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5.1.2 Effects of Arsenic and Chlorine Additions on Charge Transport in Se:As:Cl 
Alloys 

The usual way in which the influence of As and Cl additions on the charge transport in 

a-Se films is being investigated involves three steps. The first step is preparation set of alloys 

containing different amounts of As and Cl based on one and the same pure Se material. The 

second step is the fabrication of films from all the alloys produced in the previous step. The final 

third step involves charge transport measurements of the produced films and interpretation of the 

results. It is clear that such investigations involve a huge amount of work and are almost never 

complete. The published results are usually based on limited number of alloys derived in most 

cases from only one starting pure Se material. The starting material in most cases is chosen to 

have poor or modest transport properties for both electrons and holes and thus a lot of 

possibilities for the improvement of the transport for both types of carriers in the resulting alloys 

are ensured. For these reasons, the results from such studies cannot be reviewed as complete. 

A set of data from the experiments conducted in the usual way described above collected 

in the course of this PhD study is presented in Figure 5.1 and Figure 5.3. The concentration 

ranges studied were from 0 to 0.7% (wt.) for As and 0-40 ppm (wt.) for Cl. Such alloys are 

commonly involved in the fabrication of a-Se based photoconductor layers (more precisely, 

i- like layers) for x-ray detector applications. The starting pure Se material (99.999% purity) was 

chosen to have the following transport parameters: µh = 0.135 cm2V-1cm-1, τh = 5 μs, 

µe = 5.1×10-3 cm2V-1cm-1, and τe = 100 μs. It is obvious that the starting pure Se had very modest 

transport for both types of carriers.  

The whole set of alloys was produced by ANRAD Corp. All a-Se films were produced in 

our lab as described in subsection 4.2. The deposition conditions were kept as constant as 

possible: boat temperature of 250 °C, substrate temperature of about 60 °C. The film thickness 

was in the range from 80 to 200 μm.   

The results for hole transport are presented in Figure 5.1. It is apparent from the latter 

figure that the hole lifetime and also the hole range both decrease with As addition irrespective 

of the Cl content. Every time the Cl content is increased, there is a corresponding increase in τh 

and µhτh. Every time the As content is increased, there is a corresponding decrease in τh and µhτh. 

It is clear that As and Cl additions have opposite effects on the hole lifetime and range. The hole 
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Figure 5.1 The influence of As and Cl doping on hole lifetime, hole mobility and hole mobility-lifetime 
products in a-Se films prepared by vacuum evaporation technique. 

 

drift mobility is unaffected by either the addition of As or Cl. The most important technological 

conclusion from the data presented in Figure 5.1  is that by appropriately choosing the relative 

amounts of As and Cl, we can control the hole range. There is some latitude in choosing the 

composition of stabilized a-Se for a given µhτh product. For example, the hole range for 20 ppm 

of doped a-Se:0.3% As is about the same as that for 40 ppm of doped Se:0.5% As. 

Approximately 20 ppm Cl is needed to compensate for the addition of 0.2% As. 

 The influence of As and Cl additions on the electron transport have also been studied. It 

is well known that the electron mobility µe in a-Se depends on the applied electric field [123]. 

The results from our measurements of µe confirm the latter dependence as illustrated in Figure 

5.2. In order to get comparable values for different samples, we have measured μe at the same 

electric field (4 V/μm) for all the samples.  Figure 5.3 shows the effects of  As and Cl on electron 
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transport parameters. It is apparent that the behavior of the electron lifetime τe is opposite to that 

of holes. Increasing the concentration of As increases the electron lifetime, whereas increasing  
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Figure 5.2  A log-log plot of the electron mobility vs. the applied electric field in vacuum deposited films from 
Se:As:Cl alloys. 

 

the Cl content decreases the lifetime. The electron mobility tends to decrease as the As content is 

increased (Figure 5.2 and Figure 5.3), but the increase in the lifetime is greater and thus the 

electron range μeτe increases by adding As (Figure 5.3), which is a distinct technological 

advantage. The electron mobility is not affected by Cl doping, which is apparent from Figure 5.3. 

The results are qualitatively summarized in the Table 5.1. It is interesting that only small 

amounts of Cl (only a few  ppm) are needed to observe large changes in the properties compared 

with the amount of As (typically 0.1–1%) needed for similar changes. For example, the reduction 

in hole lifetime induced by a 0.2% increase in the As concentration from 0.3 to 0.5 at. % may be 

compensated by the addition of only 20 ppm of Cl (see Figure 5.1). 
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Figure 5.3 The influence of As and Cl doping on electron lifetime, electron mobility and electron ranges in 
a-Se films prepared by vacuum deposition technique. 

 

 

Table 5.1 The influence of As and Cl doping on charge transport in vacuum deposited a-Se films. 

EFFECTS ON HOLE TRANSPORT EFFECTS ON ELECTRON TRANSPORT  

ADDITIVE  
Mobility 

 
Lifetime 

Mobility-
lifetime 
product 

 
Mobility 

 
Lifetime 

Mobility-
lifetime 
product 

As no or very 
small change decrease decrease decrease increase increase 

Cl no or very 
small change 

strong 
increase 

strong 
increase 

no or very 
small change 

strong 
decrease 

strong 
decrease 

 

 The results described above have been published in [124,125] and are in good agreement 

with the data from previous studies. However, widely accepted explanation of the influence of 

As and Cl on the charge transport in vacuum deposited a-Se films is still missing in the scientific 

literature because the structure of a-Se and nature of the structural defects in it are not fully 

understood even today.  
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 Most authors will try to explain the effects of As and Cl within the framework of the 

band transport formalism for amorphous semiconductors, in terms of changing the populations of 

traps that control the mobility and lifetime of the carriers. This approach was adopted in [124] 

and can be summarized as follows. Some authors believe [126] that over ( ) and under ( ) 

coordinated charged defects in a-Se act as deep electron and hole traps respectively. Then the 

action of  As and Cl can be explained in terms of defect forming reactions which alter the 

population of such deep electron and hole traps. Indeed Cl is highly electronegative and for that 

reason it is believed that it can cause the following reactions to occur: 

+
3Se −

1Se

 

.ClSeClSe

ClSeClSe

0
0
2

0
11

03
0
1

0
2

−−

−+

+⎯→⎯+

+⎯→⎯+
 (5.1) 

 

 The first reaction describes the formation of a deep electron trap at the expense of one 

neutral normally coordinated Se atom under the influence of Cl. The second reaction shows how 

Cl can neutralize a deep hole trap and turn it in a normally coordinated Se atom. Thus Cl 

increases the population of deep electron traps ( ) and decreases the population of deep hole 

traps ( ) which translates into increasing hole lifetime and decreasing electron lifetime. At the 

same time, one can assume that the population of shallow traps that control the mobility of the 

carriers remains unaffected by Cl and so neither electron nor hole mobility is affected by the 

addition of  Cl. The above is true, only if we assume that  does not act as deep or shallow 

hole trap. 

+
3Se

−
1Se

−
1Cl

 It is more difficult to explain the effects of As in terms of simple defect-forming 

reactions. The electronegativity of As differs only slightly from that of Se, which implies the 

formation of both  and charged defects. Normally bonded atoms can react with 

defects to create  by the structural reaction 

−
2As +

4As 0
3As

+
3Se +

4As

 ++ +⎯→⎯+ 4
0
2

0
33 AsSeAsSe . (5.2)

The above reaction explains the effect of As on the electron transport if we assume that  acts 

as shallow electron trap. The reaction demonstrates the conversion of one deep electron trap 

( ) into a shallow electron trap . Thus the population of deep electron traps decreases and 

the population of shallow electron traps increases due to the addition of As. This results in an 

+
4As

+
3Se +

4As
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increase in the electron lifetime and a decrease in the electron mobility, or exactly the trends that 

are experimentally observed as As is added to Se.  

The effects on hole transport induced by As can be explained by the reaction below 

 +− +⎯→⎯+ 41
0
3

0
2 AsSeAsSe . (5.3)

The reaction explains the formation of deep hole traps and a shallow electron traps at the expense 

of normally coordinated Se and As atoms. Due to the above reaction, the population of deep hole 

traps increases and the hole lifetime decreases.  

 One would expect that  type centers will also be formed within the a-Se:As structure. 

Such centers can also trap holes. Thus, it is difficult to unambiguously explain the role of As. On 

an intuitive level, the formation of  should require somewhat greater energy than the 

formation of  because  must spatially connect with four neighbors (more lattice 

distortion will be needed to find four neighbors), whereas  simply fits into a chain. Although 

we do not yet have a complete model for the compensation effects of As and Cl in the a-Se 

structure, we can nonetheless speculate that under- and over- coordinated charged defects play an 

important role. There have been other discussions in the literature on the compensation 

mechanism between As and Cl in stabilized a-Se [

−
2As

+
4As

−
2As +

4As
−
2As

95] though, to date, there is no accepted final 

model that can explain all the observations. 

 The explanation in terms of defect forming reactions presented above are speculative and 

do not exclude other possible explanations.  Finding an universal explanation of the effects 

induced in charge transport in a-Se by different additives is extremely complicated, or even 

impossible. Each pure Se material comes with a unique cocktail of trace impurities which can 

have significant impact on the charge transport in that material. The added As or Cl can with 

great probability form compounds with some of the impurities present in the pure Se material. 

Thus certain impurities can be eliminated from the structure of a-Se as a result of As or Cl 

addition and that "purification" can be the reason for the observed changes in the transport 

properties. Further, the newly formed compounds can act as crystallization centers in a-Se film. 

Thus, nanocrystals from different types with concentrations 1015 cm-3 can easily be formed [29].  

Trapping at the phase boundaries can alter the charge transport in a-Se significantly. The net 

effect of a given dopant on the charge transport in a-Se is probably a combination of all the 
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channels of influence mentioned so far. Universal and quantitative explanation of charge 

transport effects is a-Se induced by different additives is an extremely difficult task. 

 The results from the next set of experiments seem to confirm further the above flow of 

thoughts. In the following experiments, we have examined the reproducibility of charge transport 

parameters in vacuum deposited a-Se films produced from different alloys that have one and the 

same composition – Se-0.2%As no Cl. That composition is often used for the production of i-

 like s in x-ray image detectors that collect electrons at the pixel electrodes. In this case, the 

electron transport is more important for the detector performance than the hole transport. This is 

the reason why only As is added to the pure Se – to retard crystallization and to improve electron 

transport. All alloys studied in this set of experiments were produced under industrial conditions 

by one of ANRAD Corp. Se suppliers. This means that several crude Se source materials were 

purified using the same equipment and methods to 99.999% purity. Further, thus purified Se 

materials were alloyed with 0.2% As using the same reactor and the same conditions. All the 

materials were pelletized under the same conditions. All packing, transport and storage 

conditions were the same for all alloys involved in the study. The description above shows that 

only the properties and the origin of the crude Se material were different for the alloys under 

study.  

 The a-Se films for studying the electron transport were produced in our laboratory. The 

deposition conditions were kept as constant as possible. The temperature of the molten Se was 

250 °C and the substrate temperature was 60 °C for all the depositions. The thickness of the 

produced films was in the range 80-200 µm.    

The results from the charge transport investigations of these films are summarized in 

Figure 5.4 and Figure 5.5 above. As can be seen from Figure 5.4 the electron transport is “good” 

for all alloys which can be seen from the values of mobility-lifetime products for all investigated 

alloys. These values are in the range from 1×10-6 to 3×10-6 cm2V-1. This is a great improvement 

over the electron transport in the pure (99.999%) source Se materials from which these alloys 

were prepared (see for one example Pure Se #1 in Figure 5.6). However, alloys #1, #2 and #3 are 

considered to have poor to mediocre electron transport for production of thick (700 μm or more) 

a-Se based i- like layers.   
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Figure 5.4 Electron transport in vacuum deposited a-Se films from different alloys having the same 
composition Se:0.2%As.   The alloys are based on crude source Se materials with different origins. The 
purification of the crude Se and the alloying with As was done in the same way under industrial conditions 
for all alloys involved in the study. 
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Figure 5.5 Hole transport in vacuum deposited a-Se films from different alloys having the same composition 
Se:0.2%As.   The alloys are based on crude source Se materials with different origins. The purification of the 
crude Se and the alloying with As was done in the same way under industrial conditions for all alloys involved 
in the study. 
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 The variations in the hole transport are much greater. As can be seen from Figure 5.5 hole 

mobility-lifetime product varies over 3 orders of magnitude and that is mainly due to variations 

in hole lifetime. 

 Why did the addition of one and the same amount of As have such different effects on the 

charge transport in these eight alloys?  

 The first thing that comes to mind is to question the success of the alloying procedure. 

Probably something went wrong during the production of alloys #1, #3 and #8 and less As 

entered the structure of Se. This is not the case because the presence of 0.2% As in these alloys 

was confirmed by elemental analysis.  

 The only explanation that remains is that something in the structure of the crude source 

Se like average chain lengths, number of rings, cis- to trans- linkage ratios in a-Se molecules, 

presence of certain impurities is preserved after the purification process. Thus the purified 

materials remain different in that sense and the net effect of alloying with 0.2% As is very 

different for the different pure Se materials.  

Another very interesting question is “why do alloys that contain 0.2% As and no Cl 

produce films that have such good hole transport?”. Usually Se is purified to 99.999% by several 

vacuum distillations. Films produced from vacuum distilled pure Se materials will extremely 

rarely demonstrate hole lifetime above 10-20 μs. As apparent from Figure 5.5, five out of eight 

alloys (Se:0.2%As no Cl) have hole lifetime that is bigger than 10 μs in spite of the 0.2 % As 

addition that is supposed to introduce deep hole traps and significantly suppress the hole 

transport. Such observation raises the question about the charge transport in the starting purified 

Se materials from which the alloys investigated in Figure 5.4 and Figure 5.5 were produced. 

 We have obtained several different purified Se materials from the same supplier that 

produced the Se:0.2%As alloys discussed above. These pure (99.999%) Se materials were result 

of the same purification process but were produced from crude Se materials with different 

origins. The technique that was used to purify these materials was the same as the one used to 

produce the pure Se materials from which all Se-0.2%As alloys discussed above were produced. 

We have produced and investigated films from these pure Se materials under the same 

conditions: 250 °C boat temperature and 60 °C substrate temperature.  All films without any 

exception demonstrated excellent hole transport and extremely poor electron transport. A typical 

representation of the type hole transport is shown in Figure 5.6 .  The pure Se  #1 in that figure is 
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typical representative for that set of pure Se materials. As can be seen from the figure the 

electron transport in that film is almost immeasurable. This means that for films about 100 μm 

thick the electron TOF waveform represents only decay; no extraction point can be found to 

fields up to 10 V/μm. Under such conditions only the electron lifetime can be estimated and the 

value extracted from the initial decay is about 10 μs. The hole transport on the contrary is 

excellent. Hole mobility is about 0.14 cm2V-1s-1, hole lifetime is well above 100 μs and that 

results in mobility-lifetime product in the 10-5 cm2V-1 range. This clearly comes to show that the 

type of purification technique can have significant impact on the charge transport in the vacuum 

deposited films.  

The elemental analysis on the pure Se material, have clearly shown that the materials do 

not contain halogen elements in significant quantities. Thus, the good hole transport and the 

absence of electron transport can not be contributed to the presence of halogens.  The “unusual” 

charge transport properties characteristic for that set of pure Se materials were traced to be due to 

the presence of oxygen, which will be explained in more detail in subsection 5.1.3.  

 Another interesting question related to the effects induced by As addition on the charge 

transport in vacuum deposited a-Se films is related to the magnitude and the direction of the 

effects: how big the observed changes can be, and are they always in the same direction, etc? 

The basis for these questions is that in almost all the papers on the subject the researchers chose 

to investigate changes triggered by the As in pure a-Se that has , moderate electron transport, i.e. 

lifetime in the range 100-200 μs and hole lifetime 5-10 μs.  There is no data published on the 

extreme cases. For example from the published work it is not clear what will happen if one tries 

to improve the electron transport by adding As to a pure Se that already has very good electron 

transport, i.e. electron lifetime of say 600 μs and more.  

 Two types of pure selenium materials with properties suitable for investigation in the 

direction described above were available for experiments. In Figure 5.6 they are labeled as Pure 

Se #1 and Pure Se #2. As can be seen from the figure and described previously in the chapter, 

Pure Se #1 has no electron transport (τe =10 μs) and very good hole transport (τh =150 μs). Pure 

Se #2 has very good electron transport (τe =600 μs) and moderate hole transport (τh =15 μs). 

Both materials were alloyed with 0.2 wt % As at our laboratory. The synthesis was done in 

evacuated quartz ampoule as described subsection 4.2.2. The synthesis temperature of 800 °C 

and the process duration of 24 h were used. At the end of the synthesis, the temperature of the 
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ampoule was decreased to 600 °C for 30 min, and the ampoule was quenched into tap water (7-

18 °C).  
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Figure 5.6 Charge transport changes caused by the addition of 0.2% As to two different pure selenium 
materials with very different initial charge transport properties. 

 

 The films were vacuum evaporated from the synthesized alloys under standard 

conditions: boat temperature 250 °C and substrate temperature 60 °C.  The results from the 

charge transport measurements on these films are shown also in Figure 5.6. The addition of 0.2% 

As to Pure Se #1 has improved the electron lifetime 30-40 times. At the same time, the hole 

lifetime has decreased more than 20 times. The alloy produced by us has almost identical 
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properties to alloy #8 in Figure 5.4 and Figure 5.5. This was expected because alloy #8 was 

produced from Pure Se #1 as a base material under industrial conditions. The fact clearly shows 

that the introduction of 0.2% As has very similar effects in spite of the differences in the alloy 

preparation procedures. 

 The charge transport changes observed in the other alloy are different. First, as expected 

the hole lifetime decreases, but the magnitude of that decrease is only 3 times. Second and more 

interestingly, the introduction of 0.2% As in Pure Se #2 has actually decreased the electron 

lifetime by 25% instead of increasing it.  At the same time the electron mobility has decreased, 

so the effect of As on the electron mobility is in the expected direction. 

 This observation can not be explained in terms of defect forming reactions.  For some 

reason (5.2) does not work for that alloy, or if it works there is at least one other mechanism that 

leads to an overall decrease in the electron lifetime with the addition of As.  

 This subsection can be concluded by saying that the effect of As and Cl on charge 

transport has now been studied for many years. The general believe, that As improves electron 

transport at the expense of deteriorated hole transport has been verified for many alloys and, in 

most cases, it holds.  In the opposite fashion, Cl is believed to improve the hole transport in a-Se, 

at the same time inducing a deterioration of the electron transport. That has also been checked, 

and holds for most of the cases. The effects of Cl are stronger than those of As in the sense that 

Cl addition in the ppm range is needed to achieve measurable effects on the charge transport, 

while the As addition has to be of the order of 0.1wt % to induce effects of the same magnitude 

on charge transport. 

 The exact explanation of the effects of As and Cl on charge transport in a-Se is still 

unknown. Many authors tend to explain the effects in terms of defect forming reactions. Our 

results however, show that charge transport in the alloy also depends on the properties of the 

pure Se starting material. We have shown that the same amount of As can have very different 

effects on charge transport, if the starting pure Se materials are different. We have also shown 

that the addition of As can cause a decrease of the electron lifetime and electron mobility-

lifetime products, while causing changes in the expected direction (decrease) for the electron 

mobility and hole transport. 

 These effects cannot be explained totally in terms of defect forming reactions. They 

generally show that additives can affect the charge transport through some other channels. These 
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other mechanisms are probably related to the molecular structure and the unique cocktail of 

impurities present in each pure Se material. Addition of As and Cl can then "purify" Se by 

bonding with some of these impurities. The latter itself can cause changes in the charge transport 

of the resulting alloy. The newly formed compounds can also act as crystallization nuclei, and 

thus lead to formation of high number of micro- and nano- crystal in the a-Se matrix. The 

trapping at the phase boundaries can then cause changes in the charge transport in the material.   

Alternatively, As and Cl can cause changes in the molecular structure of a-Se. For example, they 

can change the ratio cis to trans linkages in Se molecules, or they can alter the concentration of 

Se8 and Se6 ring molecules that are present in a-Se. Thus intuitively one can expect changes in 

the charge transport due to mechanisms other than defect forming reactions. 

 The exact mechanisms of the changes induced by As and Cl will have to be explained in 

the future. However, our experiments have confirmed that the alloying process is very sensitive 

to the starting Se material. A very interesting direction for future experiments will be to produce 

and investigate alloys from Se of much higher purity than 99.999% purity. In this way one can 

investigate the significance of the trace impurities that are inevitably present in the purified Se 

material. The presence of such trace impurities can be making the current alloying process not 

very well reproducible with respect to the charge transport in the final alloys.   

5.1.3 Effects of Oxygen 

 In late 1960s the general belief was that impurities in range below 1 % can not have 

significant effect on the electrical properties of amorphous semiconductors such as selenium 

[127]. However, Twaddell et al. [128, 129] have demonstrated that chlorine and oxygen in 

amounts 100 ppm or even in much lower amounts can cause drastic changes (several orders of 

magnitude) in the resistivity of a-Se. Effects of oxygen impurities on carrier ranges in Se were 

investigated in [130]. Takasaki and coworkers have found that mainly the electron ranges were 

affected by the addition of oxygen. A much bigger study on the effects of oxygen on the 

electrophotographic properties of selenium [131] was conducted by Oda and coworkers in 1985. 

Using TOF techniques these researchers have found that oxygen impurities ranging from 1 to 

1800 ppm do not affect hole and electron mobilities. However according to their results both 

electron and hole lifetimes decrease when the concentration of oxygen impurities is higher than 

100 ppm. In addition, the authors have found that the residual potential in the positive charge 
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mode decreases with increasing amounts of oxygen while the residual potential in the negative 

charge mode decreases. Further, Frank Jansen [132] has shown that trace amounts of oxygen can 

cause significant increase in the crystallization rate at the substrate-Se interface in films 

deposited from pure Se. Several years later Jeffrey Szabo and coworkers [133] have 

demonstrated that the presence in oxygen in the vacuum chamber during the film deposition 

process alters the photoconductivity of the produced pure Se films. 

 In the recent years, when the interest in a-Se was renewed as a result of its application as 

a photoconductor in digital detectors for medical imaging, the question for the influence of 

oxygen on the properties of vacuum deposited a-Se films has received little or nor attention. This 

is quite surprising, considering the magnitude of the effects related to the presence of oxygen 

[128,129], the fact that the published data are highly controversial [131], and negative impact 

that oxygen can have on the long term stability of a-Se based x-ray photoconductor layers [132].   

 From a technological point of view, oxygen is an impurity that can be present in pure Se 

with a great probability. The recovery of the crude selenium and later its purification involves 

many oxidations of selenium as different steps at the technological process. Thus the presence of 

trace amounts of oxygen in the pure Se material is almost inevitable. When oxygen free selenium 

is needed, the production process includes special steps to remove the oxygen impurities. 

Selenium is considered to be oxygen free when the content of oxygen is 5 ppm or below 

(specification of RETORTE, Germany, taken from company's website).  

 However, in view of the published data on the magnitude of oxygen effects on the 

properties of a-Se films, there are significant doubts that even such small quantities of oxygen 

can have significant impact on the electronic transport properties of the produced films. For 

example, the films produced from Pure Se #1 have shown very poor electron transport and 

unusually good hole transport as can be seen in Figure 5.6 . That can not be contributed to the 

presence of halogens because the elemental analysis has confirmed their absence. The question 

that arises is whether such transport can be related to the presence of oxygen impurities in the 

range 10 ppm or below, which in many cases are difficult to prove analytically.  

 In order to answer the above question, we have planed and conducted a series of 

experiments on the influence of oxygen on the electronic transport in vacuum deposited films 

from pure Se. We have chosen to work with pure Se material that has reasonable holes and very 

good electrons (Pure Se #2 in Figure 5.6). Such transport properties suggest that the amount of 
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oxygen impurities in this material, if any, is indeed small, and give us a good base for the 

examination of the changes in carrier transport as oxygen is introduced. We have chosen to 

introduce oxygen in the form of SeO2 because this substance was used in the past research [128, 

129 and 131] for that very purpose. Obviously, such a choice makes the fair comparison of our 

results with the ones published in [131] possible and, in addition, selenium dioxide is a solid 

substance, that can be conveniently handled during alloy preparation process. Alloys were 

prepared in evacuated quartz ampoules as described in section 4.2.2. Both, the synthesis 

temperature (800 °C) and synthesis duration (24 hours) were bigger than the ones used in [131] 

which eventually can ensure better homogenization. The films from the thus produced oxygen 

containing alloys were fabricated in the way described in section 4.2 using boat temperature of 

250 °C and substrate temperature of 60 °C. 

 The results from charge transport measurements on a set of freshly (24-48 hours after the 

evaporation) produced oxygen containing films are shown in Figure 5.7.  The films were then 

aged naturally at room temperature (23 °C) and in dark for several months. The charge transport 

was then re-measured. The effects of ageing on the charge transport in the films are summarized 

in Figure 5.8. 

 Figure 5.7 clearly shows that oxygen even in amounts less than 50 ppm has a very strong 

effect on the charge transport in vacuum deposited Se films. Oxygen in amounts of only 47 ppm 

has almost completely eliminated the electron transport. Even at highest voltages and hence field 

accessible in the TOF equipment the electron photocurrent waveforms represented only a decay, 

so that no mobility and mobility-lifetime products can be extracted from such TOF 

measurements. The lifetime estimated from the decay of the TOF waveforms was indeed very 

small - only ~ 4 μs. This lifetime is about 150 times less than the lifetime in the starting undoped 

Se material (0ppm of intentionally added oxygen). The effect of oxygen on the hole lifetime is 

just the opposite. The films containing oxygen have shown considerable increase in the hole 

lifetime. The films with 47 ppm added oxygen have a hole lifetime of about 385 μs which is 

about 26 times longer than in the starting material.  The addition of only 7 ppm oxygen has 

significantly changed both electron and hole lifetimes, leaving the mobility of both type of 

carriers unchanged. The addition of 47 ppm of oxygen seem to have decreased the hole mobility. 

The effect in Figure 5.7 is larger than the experimental error.    
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Figure 5.7 Influence of small amounts of oxygen on charge transport in vacuum deposited a-Se films.  Oxygen 
was introduced as SeO2. The measurements were done 24 to 48 hours after the evaporation of the film. 

 
 These results do not agree with the data published in [130] and mainly in [131]. 

According to the data published in [130, 131], oxygen affects the carrier transport only if added 

in amounts bigger than 100 ppm causing the lifetime of both type of carrier to decrease. 

 In an attempt to resolve that disagreement we have added oxygen to several other pure Se 

source materials with completely different origins (geographical and technological). The 

magnitude of the results was indeed material dependent but the direction was always the same. 

The addition of oxygen in ppm range to pure Se always caused hole transport to improve, 

increasing significantly the hole lifetime. In all cases the electron transport was deteriorated by 

the addition of oxygen, the main effect being the decrease of the electron lifetime. 

 The effects of ageing of oxygen containing films are also quite unusual as can be seen 

from Figure 5.8. Our observations in agreement with previous works [134] show that usually 

films produced from pure Se or stabilized Se (Se:As:Cl) demonstrate an improvement in the 

charge transport for both type of carriers as the films are ageing.  However, in Figure 5.8 we are 
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observing a deviation of that behavior if the films contain oxygen. Electron transport indeed 

improves with ageing of the samples but hole transport deteriorates. We observe that for films 

produced from other pure Se materials as well.    
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Figure 5.8 Effects of ageing on the charge transport in oxygen containing films. The oxygen was introduced as 
SeO2.  The films were aged for several months at room temperature (23 °C) and in dark.  

 
Our results can be explained on the basis of the hypothesis that oxygen changes the 

concentration of the charged over- ( ) and under- ( ) coordinated defects in a-Se as it was 

already done in [

+
3Se −

1Se

131]. In addition, we need to assume, as we did in subsection 5.1.2 when 

explaining the influence of Cl on the transport in a-Se, that   centers act as deep electron 

traps while the  centers act as deep hole traps and that the concentrations of these two type of 

traps determine carrier lifetime in a-Se. 

+
3Se

−
1Se

 The way in which oxygen affects the concentration of charged defects was explained 

[131]. Following the ideas introduced in the latter work, we can express the neutral condition of 

the structural defects in a-Se by the mass-action law as follows 

 ( ) ( )
( )20

2

13
13

0
2 ,2

Se

SeSe
KSeSeSe

−+
−+ ×

=+= , (5.4) 
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where K is a constant and the symbols of a charge defects in brackets stand for the concentration 

of that type of defect in a-Se structure. 

 Further, the authors of [131] have suggested that all of the oxygen impurities will become 

negatively charged defects by substituting Se atoms most of which are bonded in the chain-like 

molecules. The latter assumption is based on the fact that oxygen has higher electronegativity 

(3.4) than Se (2.4).  

Thus the presence of oxygen will affect the neutrality condition because the oxygen 

atoms will compete with the chain ends ( ) to receive an electron from the  defects 0
1Se 0

3Se

 ( ) ( ) ( )−−+ += OSeSe 13 . (5.5)

We can solve Equations (5.4) and (5.5) together to express the concentrations of the structural 

defects as follows 

 
( ) ( ) ( )

( ) ( ) ( )
.

2
O4KO

Se

2
O4KO

Se

2

1

2

3

−−
−

−−
+

−+
=

++
=

 (5.6)

The last set of equations is plotted in Figure 5.9. As can be clearly seen from the latter figure, if 

the concentration of oxygen impurities is bigger than a certain threshold value, the concentration 

of deep electron traps  increases with the concentration of oxygen impurities, while the 

concentration of deep hole traps  decreases.  

+
3Se

−
1Se

The latter change in the defect concentrations can qualitatively explain our results. Indeed 

the carrier lifetime is inversely proportional to the concentration of deep traps  

 

tt NC
1

=τ , (5.7)

where Nt is the concentration of deep traps and Ct is the capture coefficients of these traps in the 

absence of shallower traps. Equation (5.6) shows that the concentration of deep electron traps 

increases almost linearly with increasing oxygen content and indeed the electron lifetime (see 

Figure 5.7) decreases in an almost hyperbolic fashion as required by Eq. (5.7). The data in Figure 

5.7 are insufficient for precise analysis; however they give us some basis to think that the 

agreement is not only qualitative but semiquantitative as well. The same is not true for the hole 

lifetime. The concentration of deep hole traps decreases linearly with oxygen content (Eq. (5.6)). 
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The hole lifetime increases as a consequence of that, but the experimentally observed increase is 

quite different than the one predicted by Eq. (5.7).  This fact comes to show that oxygen might 
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Figure 5.9 Influence of oxygen on the concentration of over- and  defects in a-Se as described by 
Eqs. 

+
3Se −

1Se
(5.6). After [131].  

 

have other channels for influence on the lifetime of carriers in a-Se. One such influence might 

bedue to the formation of other types of deep electron and deep hole traps that are normally not 

present in an oxygen free a-Se films such as the hypervalent defects discussed in chapter 2.1.2.4. 

For example, in the presence of oxygen the appearance of threefold coordinated Se atoms of 

valency 4 seems quite possible ( ) [42]. Other possibility is that oxygen forms 
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crystallites of SeO2 [128] and/or aids in the formation and the growth of nano- and micro- Se 

crystals of different polymorphic modifications [21, 132, 143]. Trapping at the interface between 

such crystals and the amorphous phase can have significant impact on charge transport in these 

Se films; such a complicated situation is obviously very difficult to analyze quantitatively. 

The ideas used above can be applied to explain the change in the charge transport 

observed with the ageing of oxygen containing films. Lacourse and coworkers [128] have shown 

that as oxygen containing Se samples age their infrared spectra change. These changes are 

illustrated in Figure 5.10. The nature of the changes in the spectra suggests that oxygen changes  

Wavelength, μm

8 10 12 14 16 18 20 22

Tr
an

sm
ita

nc
e,

 a
rb

. u
ni

ts

a-Se with less than 2ppm O

Se:500ppm O, fresh sample

Se:500ppm O, older than 1 month

Crystalline SeO2

 

Figure 5.10 The IR spectra of fresh and aged oxygen containing samples together with the spectra of oxygen 
free Se and crystalline SeO2. Data were selectively extracted from [128]. 

 

its bonding configuration in the samples. The spectrum of the fresh sample does not show 

distinct absorption bands that are characteristic for a double bond between oxygen and selenium 

(as in SeO2). This is in agreement with our earlier assumption that the oxygen atoms initially 

simply substitute for Se atoms in selenium chain molecules in the vast majority of the cases.   In 

the IR spectrum of the aged sample the absorption bands of OSe =  bonds are clearly present and 

the authors of [128] have concluded that this is due to the formation of SeO2 crystallites in the 

oxygen containing Se samples with time.  We can not infer that this is necessary the case, 
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however the spectrum of the aged sample clearly shows that with time oxygen atoms start to 

form double bonds with the Se atoms. Thus as oxygen containing films age it is quite possible 

that the concentration of threefold coordinated Se atoms of valancy 4 increaces. 

We can further assume that the defects of type  act as deep hole traps. Then 

the observed decrease in the hole lifetime as the oxygen containing films age becomes a simple 

consequence of the increasing concentration of  defects which act as deep hole traps.  

An alternative explanation can be given assuming that nano- and micro- crystals form in the 

sample as a result of its ageing, and trapping at the boundaries of these crystals decreases the 

hole lifetime in the observed way. One can also assume a combination of the mechanisms 

specified above which probably is closer to the reality. 

In conclusion, we would like to summarize the technological importance of the set of 

experiments described above. Unlike the previously published data [129, 131], we have shown 

that small amounts of oxygen have a very strong effect on electronic transport in pure a-Se films. 

The effects of oxygen on pure Se resemble those of Cl in stabilized a-Se alloys. When introduced 

into pure Se, oxygen increases greatly the hole lifetime and decreases the electron lifetime. The 

effect is very strong. Less than 10 ppm of oxygen can a have very strong impact on the lifetime 

of both types of carriers, leaving the carrier mobilities unchanged. With time, the oxygen 

changes its bonding configuration in a-Se with the dominant tendency of forming double bonds 

with the Se atoms. As a result of changes in bonding, the hole transport slightly deteriorates as 

the samples age, while the electron transport remains the same or improves slightly.  

5.1.4 Effects of Chlorine Doping on Charge Transport: Comparison with Oxygen 

In section 5.1.2 we have discussed the effects of small amounts of Cl on charge transport 

in Se:As:Cl alloys. Our data clearly demonstrate that when added in such alloys, Cl suppresses 

the electron transport and improves hole transport. The effect is very strong and only a few ppm 

Cl are needed to observe significant changes.  

This behavior makes Cl a very useful dopant when a p- like  (good hole transport and 

poor electron transport) has to be produced. Following the general logic, in such situation only 

Cl has to be added to pure Se since As has exactly the opposite effect on charge transport in Se. 

However, some evidence exists in the scientific literature that when added to pure Se, chlorine 
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has somewhat different effect on the charge transport. For such cases, in 1971 it was found [135] 

that Cl indeed suppresses very effectively the electron transport in a-Se films, leaving the hole 

transport relatively unchanged (small deviations in both directions are observed). Later in 1983, 

this finding was confirmed independently by Takasaki et al. in [130]. In 1982-1984, the effects 

of Cl on carrier drift mobilities in Se:Cl materials have been investigated thoroughly by Kasap 

and Juhasz [136, 121] and some data about the effects of Cl on hole lifetime in pure Se ware 

presented in [121]. The latter two works report that the addition of Cl to pure Se act to decrease 

hole mobility and to improve hole lifetime, and in the same time the electron lifetime is greatly 

deteriorated by the addition of Cl.  

All literature sources mentioned above agree that effect of Cl on electron transport in 

pure Se is negative. In most cases addition of more than 10 ppm Cl will result in deep traps 

limited electron transport in the resulting films. However, there is no such good agreement about 

chlorine induced effects on hole transport in pure Se. Every thing from slight improvement to 

slight deterioration of hole transport as a result of Cl addition was reported in the above 4 works.  

In the last 5-6 years, the effects of Cl on the thermal properties of a-Se were investigated 

[136] and quantum modeling study on the effects of Cl on different structural defects in a-Se was 

published [137]. Both works suggests that Cl acts as chain terminator and can lead to bond 

switching in the rearrangement of network fragments. The net effect on charge transport was not 

studied but the reader remains with the feeling that such action of Cl should improve the hole 

transport in a-Se. 

Led by lack of recent information on the influence of Cl on charge transport in pure a-Se 

films and by the unexpected results from the experiments on the oxygen doping experiments (see 

the previous subsection) we have conducted a limited in number experiments on the influence of 

Cl on the charge transport in vacuum deposited films from pure Se. 

Several Se:Cl alloys supplied by ANRAD Corp., Montreal, Quebec were involved in the 

study. The Cl content ranged from 0 to 67 ppm. This range was selected because in [136], it was 

shown that the introduction of Cl in this concentration range does not have significant effects on 

the crystallization stability of the films. 

The a-Se films were prepared as described in section 4.2. Boat temperature was 250 °C 

and substrate temperature was 60 °C. 
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The results from TOF and IFTOF measurements on the charge transport in these films are 

in good agreement with the results present in the scientific literature [130, 135].  

The typical influence of Cl on electron and hole transport in pure Se films is presented in Figure 

5.11  and compared with the typical influence of similar amounts of oxygen. Small amounts of 

Cl have almost no effect on the hole mobility-lifetime product. When the concentration of Cl is 

higher there is a tendency towards a slight decrease in the hole lifetime and hole mobility. In all 

cases the introduction of Cl has a drastic effect on the electron lifetime. In almost all samples the 

electron transport is deep trap limited, i.e. the TOF waveforms represent only decays. Under such 

conditions, only the electron lifetime can be estimated from the decay rate of the photocurrent 

and the values are almost never better than 10-20 μs. Thus, in contrast to the cases when added 

to Se:As alloys,  Cl seems to have no positive effect on hole transport in pure Se.   

It is interesting that the addition of both  oxygen and chlorine to pure Se cause a huge 

decrease in the resistivity [128, 129], however our experiments show that only oxygen actually 

causes similar in magnitude improvement in the hole transport in a-Se and it is known that there 

is a positive correlation between hole transport and the conductivity of a-Se. The effect of both 

dopants on the electron lifetime is in the same direction – decrease of electron lifetime and 

electron mobility-lifetime product. The effect of both additives is very strong. Only a few ppm 

are needed to significantly suppress the electron transport in Se. Our data are limited but 

indicates that Cl is more effective than oxygen in suppressing electron lifetime in pure a-Se.  

The experiments with pure Se have revealed interesting aspects of the influence of Cl on 

the charge transport in that material. The net effect induced by Cl on hole transport, unlike the 

effect on the electron transport, is dependent on the presence of other impurities such as arsenic.  

As described earlier (subsection 5.1.2), in the presence of sufficient amounts of arsenic (<0.1%), 

the introduction of Cl increases the hole lifetime in the films, while when introduced into pure 

selenium, Cl has no significant effect on hole transport. This observation clearly shows that the 

action of Cl can not be completely described in terms of Eq. (5.1). Indeed, the first reaction 

describes the creation of deep electron traps under the influence of Cl. That process seems to 

take place equally successfully in both pure Se and in Se:As alloys. In this way the action of Cl 

on the electron transport is always the same – the electron transport is always strongly 

suppressed by the introduction of Cl in both pure Se and Se:As. The effect of the second reaction 

in Eq. (5.1) (neutralization of deep hole trap under the influence of Cl) is different in Se:As and 
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Figure 5.11 Comparison between effects of chlorine and oxygen additives on the charge transport in vacuum 
deposited films from pure Se. The measurements were done on well aged films and hence represent the 
relaxed charge transport in them. 

 

in pure Se. In pure Se, the effect of the neutralization of deep hole traps under the action of Cl 

seems to be partly compensated by some other effect of Cl which was not discussed so far. We 

may speculate that Cl can not only neutralize but also create deep hole traps in Se. Indeed the 

results published in [136, 137] suggest that the most probable action Cl atoms is to terminate 

existing Se chain ends or to instill into Se-Se bonds. This results, in most cases, in the formation 
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of two Se chains that are shorter than the starting one or into the opening of  a Se ring molecule. 

In all cases one of the newly formed chain ends is terminated by the Cl atom and the net result is 

the formation of one new chain end that according to the VAP theory will finally be turned either 

into a deep electron trap  or a deep hole trap .   Thus the transformations caused by Cl, 

depending on the circumstances can lead both to the formation and to the neutralization of deep 

hole traps.  If the amount of added Cl is small compared to the number of  sites existing in 

pure Se, the net effect on the hole lifetime will be relatively small because the two channels of 

interaction compensate for each other. No effect on hole lifetime will be observed at all or small 

changes in both directions are possible. However, if the amount of Cl added is large, say 100ppm 

or more, Cl in majority of the cases will lead to the formation of new deep hole traps and the 

hole lifetime will be shortened as the concentration Cl impurities in pure Se increases. 

+
3Se −

1Se

−
1Se

In the case of Se:As alloys, the bond breaking action of Cl is compensated for by the 

action of As which tends to link the Se chains in a star like configuration. The newly created 

shorter chains due to the bond breaking action of Cl in the vast majority of the case will be 

linked together by As because the concentration of As is typically one or two orders of 

magnitude higher than that of Cl. Thus, in the presence of sufficient amounts of arsenic, Cl can 

no longer form deep hole traps through bond breaking and the effect of its presence will be to 

increase the hole lifetime in the resulting Se:As:Cl alloy. 

The explanation of the action of Cl on charge transport in a-Se presented above is quite 

speculative. At present time it is impossible to predict the exact effect of Cl on all known and 

unknown structural defects in a-Se. Due to its bond breaking and chain terminating action, Cl 

can cause significant changes in the polymerization and crystallization properties of Se in the 

process of film growth and that can lead to the formation of deep carrier traps of other nature 

[29, 132, 143]. 

5.1.5 Electronic Transport in Commercial N-like and P-like a-Se Layers 

In this subsection we will summarize the results from TOF measurements on commercial 

pin- like structures and n- likelayers. Most of the measurements were done on samples supplied 

by ANRAD Corp., Montreal, Quebec.  Semitransparent Au TOF contacts were produced on the 

top surface of the samples in our laboratory by DC sputtering (subsection 4.2.4). The resulting 

sample structure allows illumination from both top and bottom side, i.e. through the n- like and 
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through the p- like layer which was very important for our measurements. Most measurements 

were done on pin- like structures although we have also done small number of measurements on 

single n- like layers.  The thickness of the pin- like structures was in the range 500-1000 μm 

while the thickness of the n- like layers was 10-15 μm. Such thickness ranges and the structure 

of the samples, as it will be described below, led to certain difficulties with the  TOF 

measurements. At relatively low voltages the waveforms represent only an initial spike in the 

current which then quickly decays almost exponentially and represents carrier trapping in the 

blocking layer. The carrier lifetimes were extracted from the parameters of the decay. The 

measured lifetimes for holes and electrons in the n- like s were then compared against the results 

of limited number of control measurements on single n- like s with a thickness 10-20 μm 

produced on the same type of ITO coated glass substrates. The results were in reasonable 

agreement which confirms that the measurements on pin- like structures can be used to estimate 

the lifetimes in the trapping layers.   

The results from the lifetime measurements on a-Se based pin- like structures are 

summarized in Table 5.2. Since the carrier mobilities in most of the measurements could not be 

determined together with the lifetimes we have entered only estimates in the table. The mobility 

of the electrons in the n- like layer is represented by a value that is typical for a-Se that has good 

electron transport while the mobility of holes is represented by the lowest hole mobility 

measured in stabilized a-Se films (the n- like layer must have poor hole transport). A similar 

approach was used to enter estimates for electron and hole mobilities in the p- like layer.  

The values in Table 5.2 illustrate important features of the transport in the n- and 

p- like layers. In the p- like layer, the mobility-lifetime product for the holes is more than two 

orders of magnitude bigger than the one for electrons. In the n- like layer the electron mobility-

lifetime product is only about and order of magnitude better than the one for the holes. This 

illustrates that n- like layers are more difficult to manufacture than the p- like layers and that the 

thickness of an efficient n- like layer is much bigger than the thickness of an efficient p-

 like layer. 

In an average quality i- like layer, the hole lifetime is ~20 μs or longer while electron 

lifetime is greater than 300 μs. From Table 5.2 we find that the hole lifetime in the p- like layer 

is only 5 μs while the electron lifetime in the n- like layer is typically below 50 μs.  So the 

suppression of the electron transport in the p- like layer is achieved at the expense of significant 
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deterioration of hole transport. A similar trend is evident for the n- like layer; the hole transport 

is suppressed but the quality of the electron transport is well bellow the quality in the electron 

transport in an i- like layer. Such characteristics will lead to trapping of holes in the p- like layer 

and trapping of electrons in the n- like layer which eventually can lead to deteriorated detector 

performance. 

 

Table 5.2 Electronic transport in a-Se based n- and p- like layers. 

Electron Transport Hole Transport 
Layer Type Lifetime 

τe, 

μs 

Mobility 
μe, 

cm2V-1s-1

Range 
μετe, 

×10-6cm2V-1

Lifetime 
τh, 

μs 

Mobility 
μh, 

cm2V-1s-1

Range 
μhτh, 

×10-6,cm2V-1

n- like  
(hole trapping layer) 30-50 0.003* 0.09-0.15 0.2-0.5 0.1* 0.02-0.05 

p- like  
(electron trapping layer) 5 0.0014* 0.007 10 0.13* 1.3 

* The value is a rough estimate,  since no transit time can be derived from the TOF signal performed on pin- like structure.  
 

 

The situation is actually worse than the one presented above because carrier mobilities in 

the n- and p- like layers are expected to be much lower then the estimates given in Table 5.2. 

Typically an n- like layer is produced by doping Se with an alkali metal (Na being the most 

common example). Alkali doping tends to encourage crystallization in a-Se films [138] and to 

suppress that tendency the manufacturers use heavy arsenic doping (up to 10% As). Such levels 

of As lead to dispersive electron and hole transport in the films evaporated from these alloys. 

The charge carriers move more slowly and their motion can be described with a distribution of 

drift mobilities, and not by a single mobility as in the case of films produced from stabilized a-

Se. The p- like layers are produced from As2Se3 or heavily doped Se:Cl and the same type of 

dispersive charge transport is observed in films produced from the later two materials. The exact 

structure, doping and other details about the n- and the p- like layers involved in our study were 

not supplied.  

However, we were able to design and conduct a TOF experiment that clearly 

demonstrates that the hole mobility and/or the hole lifetime in the p- like layer is much worse 

than those in the i- like layer,  and that the electron mobility in the n- like layers is worse than the 

one in the i- like layers. A typical TOF hole waveform recorded with high voltage applied to the 

pin- like structure and some measures to prevent the field in the structure from entire collapse is 
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shown in Figure 5.12. The illumination was done through the p- like . The p- like  was positively 

biased and thus a packet of holes was injected through that layer into the sample. Note that in 

this case a foreword bias is applied across the pin- like structure and that the dark current is 

significant. The main consequence is that the electrons injected from the negative electrode will 

pass through the n- like layer, then through the i- like layer and will be trapped in the p-

 like layer. Similarly, the holes injected from the positive electrode will pass through the p- and i-

 like layers and will be trapped in the n- like layer. If the bias across the sample is left for long 

enough time, the field in the i- like layer will collapse due to the trapped charge accumulated in 

the p- and n- like layers. For the latter reason many researchers fail to observe TOF waveforms 

even in foreword biased pin- like structures. However, the result shown in Figure 5.12 is not 
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Figure 5.12 A hole TOF waveform measured on a commercial a-Se based pin- like structure with total 
thickness of 860 μm. The sample was illuminated through the contact on the p- like layer. The applied bias 
during the measurements was 3500V. 

 

what is intuitively expected to be observed in a good quality pin- like structure that should have 

comparable hole transport in the p- and i- like layers.  Indeed, if the hole transport was 
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comparable for the p- and the i- like layers, the thin p- like layer should be "invisible" for holes 

and one should observe a normal TOF waveform due to the motionof the holes through the thick 

i- like layer. When the packet enters the n- like layer all the holes will be almost immediately 

trapped and that will appear as the "extraction" point in a normal TOF waveform on a single 

layer when the packet has reached the backside electrode. However, as demonstrated in Figure 

5.12  the hole waveform in the pin-like structure is very different from the waveforms reported 

for single a-Se layers but has a shape that is very similar to the shapes of the TOF waveforms 

reported by Vaezi-Nejad and Juhasz for much thinner heterojunction multilayer a-Se based 

photoreceptor structures [139]. Example of a typical hole TOF waveform measured on triple 

layer photoconductor structure (Se:Te-Se-Se:Te) and  reported  in [139] is shown in Figure 5.13. 

The authors of the latter work have pointed out that the reasons for the observed shape are the 

differences in charge carrier mobilities and differences in the charge trapping kinetics in the 

different layers of a multilayer structure.  
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Figure 5.13 Hole TOF waveform measured on triple layer Se:15%Te-Se-Se:15%Te photoreceptor. The 
thickness of the layers from the substrate to the top of the structure is 23, 28 and 9 μm respectively.  The 
applied bias across the structure was 20V. The transit of the charge packet through the bottom layer was 
undetectable. Data were selectively extracted from [139]. 

 

The waveform shape in Figure 5.12 is due in particular to the fact that hole mobility 

and/or the hole lifetime in the p- like layer are much lower than those in the thick i- like layer. 

According to the authors of [139] the part of the waveform from the initial spike of the 
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photocurrent to the lowest point of the "saddle" is due to the motion of the holes through the p-

 like layer. The motion of the holes in the i- like layer corresponds to the fraction of the 

waveform between the lowest points of the "saddle" to the maximum of the photocurrent. The 

motion of the holes  in the n- like layer can not be resolved since the hole lifetime there is about 

two orders of magnitude lower than in the i- like layer and practically all holes entering the n-

 like layer are almost immediately immobilized (trapped). The slow decay of the waveform after 

the maximum in the photocurrent is due to the slow de-trapping of holes that were initially 

trapped in the n- like layer. The shape of the waveform in Figure 5.12 directly confirms the fact 

that the hole transport in the p- like layer is much worse than the one in the i- like layer. The 

effect is even stronger than intuitively thought because of the uneven field distribution in the 

sample. As explained earlier, the dark current causes the field in the i- like layer to decrease. Let 

us estimate how significant is that decrease. The time needed by the holes to traverse the i-

 like layer (from the lowest point of the "saddle" to the maximum in the photocurrent) is about 60 

μs. Hole mobility in the i- like layer is 0.13 cm2 V-1 s-1 (as measured on single i- like layers) and 

the i- layer in the structure is about 830 μm thick. Based on this data set we can calculate that the 

average field in the i- like layer of the pin- like structure during the measurement was about 

1  V μm-1. A total of 3500 V was applied across the pin- like structure to record the waveform 

and only about 830 V of them were dropped across the i- like layer. The rest of the voltage was 

dropped across the much thinner trapping layers and if we assume that the voltage was dropped 

uniformly across both the n-, and the p- like layers we can estimate that the field in these layers 

was around 9  V μm-1.  Even at such high fields, the holes in the p- like layer move much more 

slowly and with considerable trapping than in the i- like layer, and thus we can safely conclude 

that indeed the hole transport in the p- like layer is much worse than the hole transport in the i-

 like layer.  

The observation of electron TOF waveform in pin- like structures of such thickness 

(~800 μm) is more difficult due to the much lower mobility of the electrons and will require the 

application of much higher voltage across the sample. We have not been able to attempt such 

measurements due to equipment limitations but we believe that similar measurements for 

electrons are possible..  

We can finalize this subsection by concluding that indeed by suitable doping it is possible 

to produce effective a-Se based n- and p- like layers. However, the doping or the fabrication 
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technique, or both of them affect in undesirable direction the electron transport in the 

n- like layer as well as the hole transport in the p- like layer and they both are much inferior 

compared to the electron and hole transport in the i- like layer. This undesired “side effect” of the 

doping and the preparation techniques used to produce efficient electron and hole trapping layers 

can have negative impact on the imaging performance of the x-ray detector.   

5.1.6 Effects of Alloying and Doping on Charge Transport in Vacuum Deposited a-
Se Films – Summary 

In this subsection we have described the most important results from experiments 

investigating the influence of some dopants on the charge transport in vacuum deposited a-Se 

films. 

It was found that arsenic in amounts 0.1-0.7 wt % increases electron lifetime and 

decreases electron mobility when added both to pure and stabilized (Se:As:Cl) selenium. Overall, 

As increases the electron mobility-lifetime products (ranges) because the increase in the electron 

lifetime compensates for the observed decrease in the electron mobility. In very limited cases, 

when As is added to pure Se with extremely good starting electron transport, there can be 

deviations from the tendencies described above. In such cases, the electron transport can remain 

unaffected or can even slightly deteriorate. The effect of As addition on the hole transport is 

opposite. Arsenic leaves the hole mobility relatively unchanged but causes hole lifetime to 

decrease, as a result hole mobility-lifetime product also decrease as the amount of added As 

increases. 

The effects of Cl addition on charge transport in selenium films are somewhat opposite to 

those of As. Chlorine in the amounts 2-70 ppm sharply deteriorates electron transport in 

selenium whether it is pure or stabilized. The effect is dominated by the decrease in the electron 

lifetime, since Cl in the amounts specified above does not strongly affect the electron mobility 

especially in the cases when it is added to stabilized a-Se material. When Cl is added to 

stabilized selenium, it forces a significant increase in the hole lifetime, leaving the hole mobility 

unchanged. The total effect in such cases is an increase in the hole range. However, when Cl is 

added to pure Se, the effect on the hole transport is not clear. In such cases, Cl tends to decrease 

hole mobility slightly, while the effect on the hole lifetime shows significant variations with the 

starting pure Se material and the alloying conditions. Anything between a slight increase to a 
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slight decrease in hole lifetime can be observed. The magnitude of the effect is much smaller 

compared to the case when Cl is added to stabilized a-Se. 

These results are in good qualitative agreement with those published earlier in the 

scientific literature and confirm that the combined alloying-doping with As (0.1-0.7 wt % and Cl 

(2-60 ppm) is an effective way to control carrier ranges in vacuum deposited films of a-Se. The 

main difficulty accompanying the alloying process is the very strong dependence on the 

properties of the starting pure Se material which makes the exact determination of the right 

amounts of As and Cl additions needed a very difficult task. 

Our experiments indicate that when added in large amounts both As (above 1 wt %) and 

Cl (above 100 ppm) force changes in a-Se which result in dispersive transport in the films for 

both type of charge carriers. 

The effects of oxygen on pure Se were also investigated, since oxygen impurities are very 

likely to be present in the material as a result of the nature of the technological processes used for 

recovery and purification of Se. Unlike previously published works in the scientific literature 

[130, 131], it was found that oxygen in amounts below 50 ppm can have very strong impact on 

both electron and hole transport in a-Se films. Oxygen deteriorates electron transport and 

improves hole transport when added to pure Se. Both effects are caused mainly by changes in 

carrier lifetimes. 

Charge transport in n- and p- like layers in commercial a-Se based pin- like structures 

was also investigated. The   n- like layers were produced from Se:As material with alkali doping, 

while the p- like layers were produced with heavy Cl doping or by evaporation of As2Se3.  

Details on layer structures and concentration of dopants were not supplied for the investigated 

pin- like structures. As expected, it was found that electron range in the p- like layer is 2-3 orders 

of magnitude smaller than the hole range. At the same time, the hole range in the n- like layer is 

only one order of magnitude or less smaller than the electron range in that layer and thus we can 

conclude that a-Se based n- like layers are more difficult to fabricate than a-Se p- like layers. Our 

TOF measurements on the pin- like structures have also shown that the hole transport in the 

p- like layer is much worse that the hole transport in the i- like layer.  

The observed effects on charge transport in a-Se films caused by different dopants can be 

qualitatively explained in terms of relatively simple defect forming reactions if we assume that 

charged over- and under- coordinated defects in a-Se act as deep traps for charge carriers. Such 
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reactions cause changes in the concentrations of deep hole and electron traps and/or the creation 

of new shallow ones. This explanation cannot be made quantitative due to the complexity of the 

bonding in a-Se and to the lack of complete knowledge on defect properties and the structure. 

The presented explanation does not exclude the existence of other mechanisms for inducing 

charge transport changes in a-Se due to the presence of certain impurities.  

 

5.2 Effects of Preparation Conditions on Charge Transport in a-Se Films 

5.2.1 Introduction 

There are a number of deposition parameters that can potentially influence the structure 

and electronic properties of a-Se prepared by thermal evaporation. The most important these 

parameters are the boat (source) temperature, evaporation rate, and the substrate temperature. 

Post-deposition treatments such as annealing can also modify the charge transport in vacuum 

deposited a-Se films. 

In addition, the a-Se that is used in actual x-ray photoconductor applications is not simply pure 

(99.999%) a-Se but stabilized a-Se (Se:As:Cl) alloys. The small amounts of As are added to 

retard crystallization of the a-Se films by forming cross-links between Se chains [126, 135]. We 

have shown in the previous section that suitably choosing the amounts of As and Cl in the Se 

alloy, one can achieve both good electron and good hole transport in thick films prepared by 

vacuum deposition. However, the preparation of films by vacuum deposition from stabilized a-

Se is much more difficult than preparation of films from pure Se. Due to a number of different 

reasons, when stabilized Se is used for film preparation by vacuum deposition, the distribution of 

the impurity (mainly As) in the resulting film is non uniform across the thickness of the film.  

This is shortly described with the term "fractionation". Under certain evaporation conditions, the 

fractionation can be really severe. For example, the evaporation of an  a-Se:0.3%As alloy, can 

lead to a film having almost no As near the substrate and around 10% As close to the top surface. 

This will lead to huge variations of charge transport across the thickness of the film which is 

unacceptable. 

We have examined the influence of the deposition conditions and sample post-treatment 

on electronic transport in films produced from pure Se and stabilized a-Se alloys. Planning 

experiments we have focused on those factors that can eventually provide an efficient way to 
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control carrier ranges in the produced films. The investigations were limited only to those sets of 

deposition parameters which resulted in films with acceptable quality for applications in a-Se 

based x-ray photoconductors in digital medical image detectors. The results from these 

experiments are described in this subsection.  

5.2.2 Influence of Boat Temperature and Deposition Rate on Charge Transport in 
Vacuum Deposited Films form Pure Selenium   

Evaporation selenium alloys can lead to fractionation, resulting in unacceptably non-

uniform composition across the thickness of the sample as described in the introduction to this 

subsection (5.2). The amount of fractionation that occurs depends very strongly on the boat 

(source) temperature and when alloys are being evaporated that parameter can not be freely 

varied. Evaporation of pure Se avoids the fractionation issues and alloys experiments in which 

the boat temperature can be varied in relatively wide range.   

In the deposition experiments with pure Se we have fixed the substrate temperature to 60-

65 °C just above the glass transition temperature, which is known to lead to electronic quality a-

Se films [130] and have varied the boat temperature in the range 190-250 °C. In our vacuum 

coater, the source to substrate distance was set to 16 cm (see subsection 4.2.3) and the variation 

of the boat temperature led to variations in the deposition speed as well. At boat temperatures 

below 190 °C, the deposition rate became impractically low, while boat temperatures over 250 

°C led to a vigorous evaporation with a lot of splashes (spitting) and produced films with poor 

surface quality.   

However, the boat temperature controls more than the grow rate of the films. When the 

temperature of the boat changes the composition of the Se vapor  also changes [140]. Increasing 

the boat temperature from 190 °C to 250 °C, causes Se5 molecular species to increase and 

become predominant instead Se6 species.  

We have investigated pure a-Se films deposited by using various boat temperatures in the 

range 190-250 °C. Figure 5.14 summarizes the mobility and lifetime values as a function of boat 

temperature and shows that the lifetimes and mobilities of both electrons and holes are relatively 

independent of the boat temperature, even though the deposition rate varied by nearly two orders 

of magnitude. The lack of any change in the electronic properties despite the change in the 

vapor-phase composition implies that all arriving species are incorporated into the growing film 

in a uniform way regardless of the particular vapor phase composition. Such results are actually 
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expected. The growth of the Se film on the surface of the substrate is a result of complicated and 

simultaneously appearing processes such as polymerization and de-polymerization of Se 

molecules, formation of nanocrystals followed by their growth or by their dissociation, etc. The 

kinetics of all these processes in the absence of additives (impurities) is governed by the 
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Figure 5.14 The influence of the boat temperature and deposition rate on electronic transport in vacuum 
deposited films of pure (99.999%)  Se.   The lines are drown just as guide for the eyes. 

 

substrate temperature and thus the properties of the films are mainly determined by the substrate 

temperature. Maintaining the substrate temperature above the glass transition temperature of the 

material during the film deposition enhances the surface mobility of deposited molecular species 

and allows them to find their optimal positions in a-Se network. This results in films that have 

good visual appearance and very similar electronic transport properties independent of the source 

temperature during the deposition.  
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The data in Figure 5.14 demonstrate significant scatter which is well above the errors of 

the mobility and lifetime measurements. This scatter is due to the fact that the electronic 

properties of the vacuum deposited films from pure Se are extremely sensitive to coater residual 

gas atmosphere, impurities present in the coater from previous evaporations, amount of high 

vacuum silicone grease on the gaskets, etc. Such high sensitivity of film properties to the coater 

history is not unique to our vacuum system only and has been previously reported by other 

researchers [133]. The films with the properties reported in Figure 5.14  have not been produced 

in a continuous series of depositions. This means that between the depositions of the films 

involved in the study, the coater has been used for the production of films of other differently 

doped Se materials. In addition, the pauses between the depositions have been of different 

length, the vacuum grease to the L-gasket (see Figure 4.3) has been reapplied and the walls of 

the bell jar have been cleaned from time to time as part of the short term maintenance of the 

vacuum system. All these and other factors that are difficult to take into account can affect the 

properties of the films produced from pure Se and cause the scatter in the data observed in Figure 

5.14.   

Strong dependence of electronic transport in a-Se films on the residual atmosphere in the 

vacuum chamber is typical for the case in which the films are produced from pure Se. We 

observe that the properties of the films produced from stabilized a-Se are much less sensitive to 

the residual gas atmosphere in the vacuum chamber. 

  The results from the experiments described above in this subsection can be summarized 

as follows. Boat temperature variations in the range 190-250 °C that cause changes in the 

deposition rate of almost two orders of magnitude does not have significant effects on charge 

transport in films deposited onto substrates kept at a temperature in the range 60-65 °C. The 

scatter in the data can be attributed to the differences in the residual gas atmosphere in the coater 

from evaporation to the evaporation. The insensitivity of the electronic properties of the films 

produced from pure Se to the deposition rate and boat temperature suggests that the properties of 

the films are determined from processes of polymerization, de-polymerization, crystallization, 

etc, that take place during the film growth and which are controlled primarily by the substrate 

temperature during the deposition. 
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5.2.3 Influence of Substrate Temperature on Charge Transport in Vacuum 
Deposited a-Se Films 

5.2.3.1 Introduction 

The production of films from stabilized a-Se as described in subsection 5.2.1 can be quite 

complicated due to the fractionation that can appear in the film. Many efforts have been devoted 

to solving the fractionation problem.  All suggested methods involve suitable mechanical and 

thermal treatments of the Se pellets prior to the deposition of the films and optimization of the 

deposition conditions. Among all deposition parameters, the boat temperature is the one that 

influences most strongly the fractionation in the produced a-Se films. The issues of fractionation 

can be almost fully avoided if the boat temperature during the deposition of the film is kept 

sufficiently high for the given a-Se alloy (the exact temperature depends on the amount of As in 

the alloy). By simply protecting the substrates with a shutter during the heating of the boat in the 

beginning of the evaporation and at the end when very little material is left in the boat allows the 

production of films that are practically free from fractionation. Thus when films are to be 

fabricated from stabilized a-Se, the boat temperature cannot be freely varied and the substrate 

temperature remains the only parameter of practical importance that can be easily changed 

during the production of a thick Se film. 

The results from the experiments in the previous subsection (5.2.2) suggest that the 

substrate temperature plays decisive role in the determination the charge transport in films 

produced from pure Se. The data published in literature in relation to the substrate temperature is 

limited. There exists some evidence that, as early as 1971, it was known that the substrate 

temperature can have a huge impact on the hole ranges in films produced in a-Se. According to 

[135], Regensburger has found that the hole mobility-lifetime products are strongly dependent on 

the substrate temperature during the deposition of the film and that the hole range decreased two 

orders of magnitude when the substrate temperature was decreased from +80 °C to -80 °C. 

Compared to the latter, the electron range demonstrated little sensitivity to that wide change in 

the substrate temperature.  Two years later in 1973 Montrimas and Petretis have investigated the 

influence of the substrate temperature on the crystallization processes in vacuum deposited a-Se 

films and the formation of deep electron and hole traps in these films [29].  The a-Se films 

produced in Kasap’s laboratories at University of Saskatchewan in the period 1980-2000  were 

typically grown on substrates kept a temperature in the range 40-80 °C, because such condition 
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is known to produce electronic quality a-Se films [130]. Initial and fractional data collected on 

such films suggests that the hole transport indeed deteriorates with the decrease of the substrate 

temperature while the electron transport remains relatively unaffected. This short discussion can 

be finished by mentioning that the deposition on cold substrates was successfully exploited to 

produce a-Se based diode devices from Se:3at%As described in [141, 142]. 

  As briefly demonstrated above for almost 40 years it has been known that substrate 

temperature during the deposition has some impact on the charge transport in a-Se films 

produced by vacuum deposition. However, the knowledge on the subject was very fragmental. 

The latter together with the fact that the substrate temperature is a parameter that can be changed 

without significant technological difficulties have motivated us to study the influence of the 

substrate temperature on charge transport in the vacuum deposited a-Se film.  

We have experimented with pure Se, Se:As and Se:As:Cl alloys and have varied the 

substrate temperature in the range from 2 to 80 °C keeping the rest of the deposition conditions 

as constant as possible. From each alloy, a set of films was produced by using constant boat 

temperature in the range 250-280°C and changing the substrate temperature from deposition to 

deposition to cover the range specified above. It turned out that it is possible to produce good 

quality a-Se films if the substrate temperature is kept below the glass transition temperature of 

the Se material during the deposition. The film production process involves two steps: first the 

deposition of the film and second, a mild annealing of the film at a temperature around the glass 

transition temperature of the Se material for a duration from one to several hours. The charge 

transport in all films was then investigated and the results from the study will be reported in the 

following subsections. 

5.2.3.2 Properties of a-Se Films Deposited on Cold Substrate 

Before continuing with the description of the results from the investigation of the 

influence of the substrate temperature on charge transport in the produced films, it is instructive 

to discuss the basic observations related to deposition of a-Se films on cold substrates. The term 

“cold substrate” implies that during the deposition substrate temperature Tsubstrate was kept below 

the glass transition temperature Tg of the selenium material used for the production of the films. 

Films produced at such substrate temperatures sometimes had matt and grayish surface, unlike 

the films produced at Tsubstarte > Tg which always have a dark and mirror like surface. The 
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magnitude of the substrate temperature effect depends on the Se material, the value of the 

substrate temperature and the deposition rate. For example, this effect has greatest influence at 

about 25-35 °C for films prepared from Se with 0.2-0.5% As and no Cl. We have observed that 

the latter samples were prone to surface crystallization. The crystallization process can be 

significantly accelerated by touching the surface of the sample, by prolonged exposure to light, 

etc. and our initial feeling was that such samples might not be suitable for the purposes of our 

project due to the lack of stability. However, we have found out that mild annealing of such 

samples at temperature around the glass transition temperature of the sample material transforms 

quickly the sample surface to a dark and mirror like state. Careful examination under low 

magnification microscope of the surface of the cold deposited samples after the annealing has 

shown that there are no appreciable visual differences between the surface of a cold deposited 

and annealed samples and the surface of the samples deposited at Tsubstarte > Tg.  

Further evidence that the cold deposited and post annealed samples should have similar 

crystallization resistance as the ones prepared using the traditional substrate temperature range 

(Tsubstarte > Tg) comes from the results of differential scanning calorimetry (DSC) studies on 

films prepared in both ways.  Figure 5.15 shows the thermograms of three a-Se samples prepared 

in different way from Se:0.2%As (no Cl) alloy. The first sample (top curve in the figure) is a 

piece of a pellet of as received material and it essentially is a melt quench a-Se sample that has 

been well aged. The other two samples were peeled off from a-Se films prepared by vacuum 

deposition. The first of those samples (the middle curve in Figure 5.15) was peeled of from film 

prepared under standard conditions (65 °C substrate temperature), while the second one was 

peeled off from a film deposited at 8 °C and annealed after the end of the deposition for one hour 

at temperature of 50 °C. All other deposition parameters were the same for both films.  

The two films have aged at the same conditions but for different time intervals before the 

DSC samples were prepared from them. Thus the different ageing history and the slight 

differences in the DSC sample preparation can explain the differences in the Tg regions of the 

curves corresponding to hot and cold deposited films. The crystallization peaks are similar in 

shape for the two film samples. The maxima of the crystallization peaks are at different 

temperatures which might suggest that the average length of the chains is different in the two 

films i.e. different viscosity. Remarkably, the onset of the crystallization process is almost the 
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same (~104 °C) for all the three samples which suggests that all the three samples should have 

similar resistance to crystallization at room temperature. Indeed, our observations over a period 

 

 

Figure 5.15 Comparison between the thermograms (heating 10 °C/min) of three differently prepared a-Se 
samples from the same material (Se:0.2%As no Cl).  The onset of the crystallization of the film deposited at 
Tsubstrate = 65 °C is the same as for the film produced by cold deposition (Tsubstrate = 65 °C) and mild post 
annealing (1 hour at Tanneal = 50 °C) which suggests that the films should have similar resistance to 
crystallization.  The small differences in the Tg region can be explained in terms of different sample history 
and do not necessarily reflect different material properties.    

 

of 4-5 years have confirmed that the cold deposited and post annealed samples have very similar 

crystallization properties to the films prepared under the standard conditions (Tsubstarte > Tg).   

From the discussions in the subsection so far it is evident that the annealing has beneficial effects 

on cold deposited films with respect to their mechanical properties and their resistance to 

crystallization. It is interesting to know what happens to the charge transport after the annealing. 

Results from a typical experiment that was designed to answer the above question are presented 

in Figure 5.16. The charge transport was measured before the annealing of the samples and 24 
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Figure 5.16 Effect of a mild post annealing (T = 50 °C ≈ Tg) with duration of about one hour on carrier 
mobility-lifetime products in films produced from Se:0.5wt%As (no Cl) films. 

 

hours or more after the end of the annealing. Immediately after the annealing, the transport of 

both types of carriers is suppressed compared to the state before the annealing. However, 24-48 

hours after the annealing, the relaxation processes in the sample cause the transport to change 

most often in the direction illustrated in Figure 5.16.  As can be seen from the figure, the hole 

transport does not change much, while the electron transport shows tendencies towards 

improvement. For the films in the figure, the electron range has improved about 2-3 times. 

Similar changes in the transport are observed if the cold deposited films are aged without 

annealing in dark at room temperature for a period of 1-4 months.   

In cases when the cold deposited film has preserved significant hole transport, we 

observe that the mild annealing of the samples causes hole ranges to decrease.  

We can summarize the effects as follows. The mild post annealing (Tannealing ~ Tg) with a 

duration from one to several hours does not improve the hole range and does not deteriorate the 

electron range in cold (Tsubstarte > Tg) deposited a-Se films. This result is important because as it 
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will be explained later in subsection 5.2.3.3, the cold deposition followed by subsequent 

annealing has demonstrated significant potential for production of a-Se based n- like layers 

( eehh τμτμ << ). 

5.2.3.3 Dependence of the Charge transport in a-Se Films on Substrate Temperature 
during the Vacuum Deposition Process 

The dependence of charge transport in vacuum deposited a-Se samples on the substrate 

temperature during the film deposition process was investigated for 3 different groups of 

materials. These include Se:As no Cl alloys, Se:As:Cl alloys and pure Se materials. Typical 

results for each group of materials are illustrated in Figure 5.17, Figure 5.18 and Figure 5.19 

respectively.  The films deposited at Tsubstrate < Tg were annealed typically for 1 hour at 50 °C 

before any charge transport measurements on them. All the films were rested for at least 24 

hours prior to the TOF and IFTOF measurements. 

As can be seen from Figure 5.17  the substrate temperature has huge impact on the hole transport 

in the films. As the substrate temperature decreases the hole mobility and hole lifetime are also 

decreasing. The decrease in the hole lifetime is huge - more than two orders of magnitude as the 

substrate temperatures decreases from 75 to 25 °C.  At the same time the electron transport is not 

so strongly affected. The tendency shown in the figure is towards a slight decrease in electron 

mobility and more pronounced decrease in the electron lifetime. However, the decrease in the 

electron lifetime that corresponds to substrate temperature decrease from 75 to 25 °C is only 

about 3 times, which is much less than the corresponding decrease in the hole lifetime. 

Experimenting with different Se:As alloys we have observed that the hole lifetime always 

decreases significantly as the substrate temperature is decreased while electron lifetime might 

decrease, might remain the same of might demonstrate a slight increase. The magnitude of the 

change in all cases is much smaller compared to the observed changes in the hole lifetime. 

Figure 5.17  demonstrates that the transport in the films clearly switches from p- like type 

( eehh τμτμ > ) to n- like type ( eehh τμτμ < ) as the substrate temperature decreases.   The substrate 

temperature around which the latter transition occurs is in the range 30-40 °C as can be seen 

from Figure 5.17. The transition from p- like type to n- like type transport is quite sharp – almost 

step like and most of that effect is due to a change in the hole lifetime.demonstrates that the 

transport in the films clearly switches from p- like type ( eehh τμτμ > ) to n- like type 
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Figure 5.17 Influence of the substrate temperature on the charge transport in vacuum deposited films from 
Se:0.5%As no Cl alloy. The lines are plotted as guide for the eyes only. 

 

( eehh τμτμ < ) as the substrate temperature decreases.   The substrate temperature around which 

the latter transition occurs is in the range 30-40 °C as can be seen from Figure 5.17. The 

transition from p- like type to n- like type transport is quite sharp – almost step like and most of 

that effect is due to a change in the hole lifetime. 
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This result has a very significant technological importance. The layer produced at 25 °C 

has electron range that is 40 times bigger than the hole range and in many cases can act as hole 

trapping (n- like layer) in a-Se based pin- like structures for x-ray image detector applications.  

The two step process (cold deposition and annealing) is quite simple and does not require the 

production of alloys accurately doped with alkali elements to suppress the hole transport and 

which in the same time have to be heavily doped with As to ensure the long term resistance of 

the films against crystallization. 

The practical importance of this result motivated us to investigate the influence of the 

substrate temperature on charge transport in vacuum deposited films further for films produced 

from Se:As:Cl alloys. One set of results from such investigations for Se:0.3%As:10ppm Cl alloy 

are presented in Figure 5.18. The results are very similar to the ones we have already described 

for the Se:As no Cl alloys. The decrease of the substrate temperature forces a significant 

decrease in the hole mobility-lifetime products leaving the electron mobility-lifetime products 

relatively unchanged. The step like change from p- like type transport to n- like type transport 

when the substrate temperature is decreasing is observed again and effect is again almost totally 

due to the decrease in the hole lifetime. The exact substrate temperature at which the transport in 

the films switch from p- like type to n- like type for this type of alloys lays somewhere in the 

range between from 6-7 to 20 °C (Figure 5.18). This is 15-20 degrees lower than in the case 

when  Se:0.2%As no Cl alloys (Figure 5.17) and this difference must be due purely to the 

presence of Cl because both alloys have very similar hole transport when the films are deposited 

at a high substrate temperature (say 60 °C). Thus, it is clear that Cl somehow affects the changes 

in the structure of the films that appear as a result of deposition on a cold substrates and lead to 

the changes in the charge transport that we have described above.   

If only 10 ppm Cl can observably affect the changes in the transport related to the 

deposition on cold substrate, a question arises about the influence of the arsenic. Arsenic 

impurities are present in much higher concentration and one might think that the changes in the 

charge transport observed in the cold deposited a-Se films are mainly due to the presence of 

arsenic impurities in selenium.   

The data presented in Figure 5.19 demonstrate that is not the case. Films deposited from 

pure Se source material exhibit the same dependence of the charge transport on the substrate 

temperature as the films produced from Se:As or Se:As:Cl alloys. Figure 5.19 clearly 
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demonstrates that the pure Se #2 has similar ranges for both types of carriers when deposited on 

a hot substrate. The deposition on cold substrate (4 °C) has produced from the same Se material  
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Figure 5.18 Influence of the substrate temperature on charge transport in vacuum deposited films from 
Se:0.3%As:10ppm Cl alloy. The lines are shown as guides for the eyes only. 
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Figure 5.19 Influence of the substrate temperature on the charge transport in vacuum deposited films from 
pure Se (99.999%). 

 

a film possessing clearly n- like type of transport. The observed change in the hole range is 

almost two orders of magnitude and the film deposited at 4 °C has trap limited hole transport. 

Hot deposited films from pure Se #3 have holes with very long lifetimes and deep trap limited 

electron transport. As discussed in subsection 5.1.3 such charge transport properties are probably 

due to oxygen impurities in the ppm range that are present in the material. The same change in 

the substrate temperature (from 60 °C to 4 °C) has left the electron lifetime practically 
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unchanged and has decreased the hole range about one order of magnitude.  Similar to the case 

of Cl containing alloys, we might expect that further decrease in the substrate temperature is 

required and/or longer annealing to produce films from pure Se #3 that have trap limited hole 

transport. 

The results described in this subsection so far indicate that the deposition on cold 

substrate induces changes in the structure of the a-Se films which, in their turn, alter the charge 

transport in the films. If the substrate temperature is sufficiently low the transport in the cold 

deposited layers becomes n- like ( eehh τμτμ < ). The mild post annealing (Tannealing ~ Tg) with 

duration from 30 min to several hours obviously affects the structure of the films but the changes 

in the structure induced by the annealing usually amplify the effects of on the charge transport 

that resulted from deposition on a cold substrate. The question that logically arises is how 

permanent are the changes in the a-Se structure that result from deposition on cold substrate and 

what does it take to "reset" the structure of  a-Se material to the state prior to cold deposition. We 

carried out the initial research towards answering the latter question by performing the 

experiments described below. 

We have selected several Se:0.2%As materials and have produced films from them at a 

high substrate temperature (60 °C) and on a cold substrate (4 °C). The cold deposited films were 

then annealed for 1 hour.  Additionally, we have evaporated films from each material on Al foil 

with a sufficiently large area kept at 4-10 °C. We have then reclaimed the cold evaporated 

material from the foil. From the cold reclaimed material we have produced films onto a substrate 

kept at 60 °C. All other deposition parameters were the same for all the films. The charge 

transport was measured in all the films and a typical set of results is presented in Figure 5.20. 

  It is well known that the temperature of the melt determines key parameters in the 

structure of the molten Se like chain length, average distance between the chains etc. According 

to the data published in the literature [28] it takes less than 15 mins for the melt to reach its 

equilibrium state. For our coater, it takes about 5-10 min after the boat has reached its nominal 

temperature (250 °C) for the evaporation rate to stabilize. The shutter is then opened and the 

films begin to grow on the substrate for a period of time that is more than 40-50 min longs.  Our 

intuitive expectations were that the films deposited from the starting material at 60 °C substrates 

and the films produced from the cold reclaimed material on substrates kept at the same 

temperature (60 °C) will have very similar transport properties. In spite of our expectations,  
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Figure 5.20 Charge transport in vacuum deposited films from cold reclaimed Se:0.2%As material produced 
at 60 °C substrate temperature. Cold reclaimed means that the alloy was first evaporated on a cold (4-10 °C) 
Al foil. The material from the foil was then reclaimed and from the reclaimed material we evaporated films 
onto substrates kept at 60 °C. The transport in such films is compared with the transport in films produced 
directly from the starting alloy on hot (60 °C) and cold (4 °C) substrates. The cold deposited films were 
annealed at 50 °C for one hour. The samples were rested in dark for at least 24 hours prior to the charge 
transport measurements.   

 
Figure 5.20 clearly shows that the transport in the films produced from the cold reclaimed 

material on hot substrates have almost the same charge transport properties as the films deposited 

from the starting material on cold (4 °C) substrates. The result is a clear manifestation of a 

“memory” effect associated with the structure of the cold deposited material. The changes in the 

structure of a-Se induced by the deposition on cold substrate are very strong and persistent, at 
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least re-evaporation of the cold reclaimed material on a hot substrate cannot “reset” the structure 

and charge transport properties of the material.     

5.2.3.4 Discussion on the Influence of the Substrate Temperature on Charge Transport 

It is difficult to explain all experimental findings related to the charge transport changes 

in a-Se films induced by deposition onto a cold substrate in the frame of a simple model. The 

reduction in the hole range with decreasing Tsubstrate is due almost totally to the reduction in the 

hole lifetime  τh.  The observed decrease in the hole lifetime related to the deposition on a cold 

substrate can be two and a half orders of magnitude. Thus evaporation of films on a substrate 

kept at sufficiently low temperature must result in concentration of deep hole traps that is two 

and half orders of magnitude higher than the one in hot deposited films. The mild (Tannealing ~  Tg) 

post-annealing up to a few hours seems to have negligible effect on on the concentration of deep 

hole traps.  At the same time, the concentration of deep electron traps is much less sensitive to 

the substrate temperature because the observed changes in the electron lifetime are much smaller 

in magnitude compared to the changes observed for the hole lifetime.The drift mobilities of both 

type of carriers show tendencies towards decreasing as the substrate temperature is decreased, 

the effect associated with hole mobility being much more pronounced. 

Many attempts have been made to relate the electron and hole traps to various structural 

defects in the a-Se films. Such defects can be under- ( ) and over- ( ) coordinated charged 

centers that can be found in the structure of a-Se. In section 

−
1Se +

3Se

5.1 we have assumed that  acts 

as deep hole trap while   acts as deep electron trap. Such assumption enabled us like many 

researchers to qualitatively explain the effects of different dopants on the charge transport in a-Se 

films.  

−
1Se

+
3Se

Such assumption alone can not explain our results related to the deposition of a-Se on a 

cold substrate. Obviously, when Se molecules arrive at the substrate kept at low enough 

temperature, they are immediately “frozen” on the surface of the film. In contrast, deposition on 

a hot substrate (Tsubstrate > Tg) allows Se molecules arriving at the substrate to move for a while 

on the surface of the film and thus to polymerize and form longer Se chains and bigger and more 

stable Se aggregates. Thus the films produced on cold substrates will be built by shorter Se 

chains and will be more disordered which will result in a bigger distance between the chains. 

Such changes in the structure will indeed result in higher concentration of chain ends which can 
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act as hole traps and thus, at first view, explain the observed decrease in the hole lifetime 

resulting from the deposition on a cold substrate.  However, during the post annealing or as the 

sample ages over the time at room temperature the shorter chains will tend to organize forming 

long chains and decreasing the average distance between them. This should lead to an observable 

increase in the hole lifetime. Further, according to the VAP theory, the chain ends ( )   are 

unstable defects in a-Se and they gradually will be transferred into pairs of   and  which 

will lead to changes in both hole and electron lifetimes. In contrast, our observations are that, as 

a result of annealing or ageing, the hole lifetime stays the same or gets worse, while the electron 

lifetime stays the same or increases.  

0
1Se

−
1Se +

3Se

The research of Montrimas et al. published in [29, 143] suggests that deep carrier traps of 

totally different origin can additionally exist in a-Se layers. According to the transmission 

electron microscope studies published in the latter works, in each a-Se layer can be found 

numerous nano-crystalline inclusions. Some of them have the structure of trigonal selenium 

while the others have the structure of monoclinic Se. In [29] have been suggested that the 

trapping at the interface between the crystalline inclusions and the amorphous phase can have 

significant impact on charge transport in a-Se films. The hypothesis raised in that work is that the 

interface surrounding the crystalline inclusions of trigonal allotrope modification of Se can trap 

deeply holes while the interface around the inclusions of monoclinic Se allotrope deeply traps 

electrons. The authors have investigated the concentration of the microcrystalline inclusions as a 

function of the substrate temperature and that dependence is reproduced below in Figure 5.21. 

The results of Montrimas and Petrètis (Figure 5.21), clearly show that the concentration 

of microcrystalline inclusions changes over more than 4 orders of magnitude as the substrate 

temperature is decreased from 60-70 °C to about 8 °C. It is worth noting that the substrate 

temperature according to their results has effect on the size and the morphological structure of 

the crystalline inclusions. The authors have found that the average size of the of the crystalline 

inclusions produced at Tsubstrate = 8-30 °C is about 50 nm while the inclusions in the films 

produced at higher substrate temperatures are bigger in size reaching 200 nm for Tsubstrate = 

80-90 °C. Crystalline inclusions of trigonal type are predominant in layers produced at substrate 

temperatures above 50 °C while both monoclinic (mainly β) and trigonal inclusions exist in the 

layers produced at substrate temperatures lower than 30 °C. The authors have also pointed out  
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Figure 5.21 Concentration of crystalline inclusions in a-Se films as a function of substrate temperature. Data 
were taken from [29]. 

 

that the existence of the nano-crystals in the a-Se films is not the only reason for the formation of 

deep charge carrier traps in them.  They have argued that deep traps with concentrations below 

1013 cm-3 can easily form by structural fluctuations in the amorphous phase. 

Based on the findings of Montrimas and Petrètis [29] we can explain quite consistently 

the results from the charge transport measurements on films produced at different substrate 

temperatures. Films produced at substrate temperatures 50-70 °C have very low concentration of 

nanocrystalline inclusions. In these films the deep traps due to structural fluctuations (these very 

well might be the over- and under- coordinated charged defects) in the amorphous phase 

dominate the lifetimes and the ranges of the carriers.  

As the substrate temperature decreases the number of crystalline inclusions in the 

amorphous matrix increases. In films produced at lower substrate temperatures the amorphous 

phase itself has two different components and when crystallizing it produces crystallites of both 

trigonal and monoclinic type [29]. At very low temperatures the concentration of crystalline 
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inclusions is very high (see Figure 5.21) and the deep traps that exist due to the presence of these 

nanocrystals dominate the hole lifetime and hole ranges. Most of the crystalline inclusions are of 

trigonal type. That is the reason for which the hole transport is more sensitive to the substrate 

temperature during the growth of the film. During post annealing and ageing of the samples, 

several processes take place. First, some of the inclusions that are very small will disappear 

forming amorphous phase. Second, some new crystal inclusions of trigonal and monoclinic type 

are formed. Third, the crystal inclusions that have a size bigger than certain critical radius grow 

at the expense of the amorphous phase or of the smaller crystals around them. Fourth, the 

inclusions from monoclinic type are transformed into crystal inclusions of trigonal type which is 

the more stable crystal form of Se.  Fifth, the amorphous part of the film homogenizes because 

the phase that tends to crystallize in monoclinic form gradually transforms into the phase that 

crystallizes in the trigonal Se crystal form.  

As a result of all these processes, depending on the exact conditions (substrate 

temperature, annealing temperature, annealing time, ageing time, starting material, etc.) the 

concentration of trigonal nano-crystal is not likely to be decreased while the concentration of the 

monoclinic crystalline inclusions  is not likely to be increased. Such trends qualitatively explain 

the reasons for the hole lifetimes and ranges that tend to decrease with annealing and ageing 

while electron lifetimes and ranges tend to improve with annealing and ageing.   

The crystalline inclusions can also act as scatter centers for the charge carriers and in this 

way we can explain why both hole and electron mobilities tend to decrease for films produced at 

lower substrate temperatures. 

The exact substrate temperature which will force the Se molecules arriving at the 

substrate to freeze immediately and efficiently form numerous crystalline inclusions depends on 

the starting Se material and from dopants like As and Cl. It is well known that Cl tends to make 

Se chains shorter and a-Se network structure more flexible [136, 137] while As tends to link 

several Se chains together and has exactly the opposite effect. For that reason, the exact  

substrate temperatures at which the charge transport in the film  will switch from p- to n-type and 

the  hole transport will become deep trap limited depend on the starting  Se material and 

impurities (see Figure 5.17 and Figure 5.18). In light of the above discussions, Cl will cause 

these changes to happen at lower substrate temperature while As will have the opposite effect 

and that is exactly what is observed in Figure 5.17 and Figure 5.18. 
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Further we can roughly check whether the experimentally obtained in [29] and presented 

in Figure 5.21 function  describing the concentration of crystalline inclusions in a-Se 

layers vs. substrate temperature is consistent with our results presented in 

)(incl TN

Figure 5.17 and Figure 

5.18. Assuming that almost all inclusions after the annealing of the samples are of trigonal 

crystal modification of Se we can use the function  to calculate hole lifetime in the a-Se 

films using the following relation 

)(incl TN

 

20incl1 )(
1)(

CTTNC
Th ++

=τ . (5.8)

In the last expression C1 is a constant that, multiplied by the concentration of crystalline 

inclusions, gives the deep hole trapping rate that is due to deep trapping related to the crystalline 

inclusions alone.  The other constant C2 has the meaning of deep hole trapping rate, that is due to 

the hole traps present in the material in the absence of any crystalline inclusions.  The last 

constant T0 describes the shifts to the left and to right on the temperature scale of the function 

 due to the properties of the staring material, the presence of impurities like As and Cl, 

etc.  Equation 

)(incl TN

(5.8) can be fitted to the hole lifetime data presented in Figure 5.17 and Figure 

5.18 and the results from one such attempt are presented in Figure 5.22. As can be seen from the 

figure, the data on the concentration of crystalline inclusions [29] in a-Se layers prepared at 

different substrate temperatures agrees quite well with both set of our own experimental data 

having in mind that  and hole lifetimes were measured on films produced from materials 

with totally different origin and are separated in time by more than 30 years. However, the 

number of hole lifetime data points in each of the data sets is limitted and the agreement can not 

be characterized quantitatively. 

)(incl TN

 If the nano-crystalline inclusions really exist in the vacuum evaporated a-Se films in 

such high concentrations and play such significant role in shaping the charge transport properties 

of such films a lot of data published about a-Se have to be re-examined. For example almost all 

experimental results are processed on the base of the assumption that the film has uniform 

properties across its thickness. As one intuitively expects and as it was actually experimentally 

found, the concentration of the nano-crystalline inclusions in vacuum deposited films is not 

uniform across the film thickness. The concentration of such inclusions is much bigger near the  
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Figure 5.22 Comparison between experimentally measured hole lifetimes in a-Se films produced at different 
substrate temperature in our laboratory with the ones estimated on the basis of experimentally measured 
concentration [29] of nanocrystalline inclusions in a-Se films produced at different substrate temperatures.  

 

substrate and near the top surface of the film and the observed variation can be several orders of 

magnitude [29] thus the films are far from having uniform properties across its thickness. 
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Unfortunately, we cannot explain in a consistent way the data from our experiments with 

Se that was reclaimed after the evaporation on cold substrate (see Figure 5.20) with the 

hypothesis based on the formation of nanocrystalline inclusions with different concentrations for 

different substrate temperatures. The only idea that can be used is that the deposition on a cold 

substrate results in the formation of highly  

distorted Se structure that is preserved after melting. Then the evaporation of the material with 

highly dispersive structure results in a vapour phase consisting of predominantly  smaller Se 

molecules which cannot rearrange efficiently and form bigger and more stable Se aggregates on 

the substrates even at high (60 °C) substrate temperatures. We can then speculate that a 

metastable form of Se is formed even at high substrate temperatures that later results in the 

formatin of nanocrystalline inclusions. 

The lack of fundamental understanding of the a-Se structure and hence  on the exact 

nature of the deep carrier traps in a-Se films makes it particularly difficult to formulate an exact 

physical model that can explain all experimental observations related to alloying and to cold 

deposition of a-Se. 

5.2.4 Effects of the Preparation Conditions on the Charge Transport in a-Se Films - 
Summary 

The influence of preparation conditions on charge transport in vacuum evaporated a-Se 

films was investigated in this subsection. The emphasis was placed on the two parameters that 

can be easily changed in every vacuum deposition system – the boat temperature and the 

substrate temperature. Due to fractionation issues, it is not possible to freely vary the boat 

temperature when films from stabilized a-Se are to be prepared and we therefore studiedthe the 

dependence of charge transport parameters on the boat temperature for films produced from pure 

Se material only. In our coater, for a boat to substrate distance of 16 cm, variation of boat 

temperature in the range 190-250 °C changes the evaporation rate in the range 0.1-10 μm/min 

and the composition of the Se vapor as well.  For films deposited at high substrate temperatures 

(Tsubstarte > Tg), the variation of the boat temperature and hence the evaporation rate in above 

ranges did not cause any systematic change in the charge transport properties of the deposited 

films. We observe a big scatter in the data which can be attributed to the huge sensitivity of the 

properties of the pure a-Se to the residual atmosphere in the chamber and hence to the coater 

history.  
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The observed lack of dependence of charge transport on the boat temperature, deposition 

rate and on the accompanying small changes in the composition of the Se vapor suggests that 

after the arrival of the Se molecules at the substrate held at Tsubstarte > Tg they can travel a small 

distance on the surface and take part in the processes of polymerization (and possibly of 

crystallization) taking place at the surface of the growing film.  In the absence of As and Cl 

atoms, the processes of rearrangement mentioned above will depend mainly on the substrate 

temperature, which is the parameter that determines the charge transport properties under such 

conditions. 

Charge transport in vacuum deposited films produced from stabilized a-Se and from pure 

Se was investigated as a function of substrate temperature in the range 0-80 °C.  

It was found that good quality a-Se films can be produced by evaporating Se on cold substrates 

(Tsubstrate < Tg). The production process involves two steps: first evaporation of the film onto a 

cold substrate and second mild (Tannealing ~ Tg) annealing with duration from one to several hours. 

Films produced by using the procedure described above have resistance to crystallization similar 

to that observed for films produced on hot substrates as estimated with DSC measurements. It 

has been demonstrated that the mild post annealing process does not improve the hole transport 

while the electron transport does not deteriorates due to the annealing. 

The decrease in the substrate temperature has a huge impact on the hole transport 

decreasing the hole range about two and more orders of magnitude in the same time the electron 

transport remains relatively unaffected. Films produced at low substrate temperature demonstrate 

clearly n-type transport (μhτh<μeτe) and if the substrate temperature is low enough the hole 

transport becomes deep trap limited. Such behavior of charge transport has been observed for 

films produced from Se:As, Se:As:Cl and pure Se materials.  The temperatures at which the 

transport switches from p-type to n-type and the temperature at which the hole transport becomes 

deep trap limited depend on the material. Films evaporated on substrates kept at temperatures 20-

30 °C from alloys that contain only As have, in most cases, deep trap limited hole transport, 

while the films produced from Cl containing alloys demonstrate deep trap limited hole transport 

only  if produced on substrates kept at temperatures that are at least 20 °C lower than the range 

specified above. 

It was found that the changes in the Se structure related to the deposition onto a cold 

substrate are quite persistent. For example, if Se:As alloy is evaporated onto a cold substrate (4-
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10 °C), and then the material is reclaimed and re-evaporated onto hot substrates (60°C) the 

resulting films demonstrate hole transport that bares no resemblance to that observed in films 

produced directly from the starting Se:As material on substrates kept at 60°C. In the same time 

the charge transport in films produced from cold reclaimed material on hot substrates is very 

close to the one observed in films produced directly from the starting material on a cold substrate 

(4°C). 

The changes in the transport related to the deposition on cold substrate can be quite 

consistently explained if we assume that nanocrystalline (50 nm typical dimensions) inclusions 

with different concentrations are formed in the a-Se matrix during the evaporation. The 

concentration of such inclusions is several orders of magnitude higher in films produced at lower 

substrate temperatures and the trapping at the interface between the crystalline and the 

amorphous phases modifies the charge transport in the films.  

The above explanation however is speculative and does not rule out other possibilities 

until carefully re-examined. 

The lack of fundamental understanding of the a-Se structure and the exact nature of the 

deep carrier traps in a-Se films makes it particularly difficult to formulate an exact physical 

model that can explain all experimental observations related to to cold deposition of a-Se. 

On the positive side, the finding that films produced on cold substrates can have deep trap 

limited hole transport and good electron transport has a significant technological impact. This 

finding enabled us to produce n- like s from almost any Se:As material by simply changing the 

substrate temperature during the deposition. The method avoids the necessity of alkali doping 

and all complications related to the latter. For further details see subsection 5.4.  

  

5.3 Dark Currents in Single Layer Metal/a-Se/Metal Samples 

5.3.1 Introduction 

Dark currents in a-Se have not been well studied and fully understood. This is partly due 

to the fact that a-Se was mostly studied under the free surface geometry used in xerography 

[130]. It is quite strange that the use of this material as a photoconductor in medical x-ray image 

detectors over the last 20 years has produced very little work on the dark currents in metal/a-

Se/metal devices.  
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Most of the published works in sixties and seventies are related to studies of space-

charge-limited currents (SCLC) in a-Se as a tool obtain information about different properties of 

the material [144,145, 146]. In several cases the I-V curves were found to be proportional to 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
1

exp V  which suggest that the currents were limited by Schotky or Poole-Frenkel mechanisms 

[148]. The authors of [141, 142] claim that the contact Au/a-Se is ohmic and that the interface 

between Al/Al2O3 and a-Se (Se with 3-10% As) possess rectifying properties. 

Careful study of these initial works reveals several interesting issues. First, most of the 

authors have mentioned that they have measured the steady state current in their samples, or that 

they have waited long enough for the current to stabilize. This suggests that the measurements 

are complicated due to the presence of non-steady state (transient) currents although that the 

authors have not mentioned them explicitly. Second, in many of the works, the presence of 

contact “formation” process is described [141, 142, 145]. By contact “formation” the authors 

mean that application of high electric field for the first time, or annealing at temperature around 

50 °C lead to permanent changes in the metal/a-Se contact properties. In some cases the changes 

lead to the appearance of an ohmic region in the I-V curves at low voltages [145] and, in other 

cases, to the formation of a rectifying device [141, 142]. Third, in [146] the authors have 

observed that films produced in one and the same run of the vacuum coater can have dark 

currents that can differ more than two orders of magnitude which suggests that the surface of the 

Se films has very important role for the properties of metal/a-Se/metal samples. 

In 1998 Johanson and coworkers [14] have investigated contacts between many metals 

and a-Se films. The existence of long transients after the application of the bias across the a-Se 

film has been acknowledged for the first time in this work. The authors do not observe any 

correlation between the dark currents through the samples and the work function of the metal and 

have concluded that the current is controlled by complex details of the metal to a-Se junction. 

The authors did not found presence of significant amounts of space charge using TOF 

measurements and concluded that the dark currents in a-Se are not space charge limited currents 

(at least according to the definition of space charge limited currents used in [14]) over the time 

scale of their experiments. The study however is not a complete one, because the experiments 

were limited only to the top surface of the a-Se films produced in industrial coaters on standard 
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glass/ITO substrates. Obviously the bottom interface of a-Se films can not be studied under such 

experimental conditions. 

The lack of sufficient experimental data on the dark currents in metal/a-Se/metal devices 

and the importance of the problem have motivated us to collect experimental data on the subject. 

The purpose of this subsection is to describe the main experimental results from that study. 

5.3.2 Dark Currents in Symmetrical Metal/a-Se/Metal Devices 

The term symmetrical meta/a-Se/metal devices imply that these devices were produced to 

be as symmetrical as possible. The evaporation conditions were selected to have as little 

fractionation as possible and both bottom and top contacts were produced from the same metal. 

The produced samples can be divided in three main groups:samples produced from pure Se, 

sample produced from Se:As no Cl alloys, and samples produced from Se:As:Cl alloys. The 

measured dark currents demonstrate complicated behavior as can be seen in Figure 5.23 Figure 

5.24 and Figure 5.25. 

In all cases the current decayed over the time after the bias was applied to the sample. In 

some cases the decay was greater than 2-3 orders of magnitude. For certain applied voltages and 

certain samples, the dark current demonstrates a tendency towards reaching a steady state or 

quasi-steady state but for the vast majority of the measured the I-t curves represent a decay with 

time for the whole duration of the measurement. The shape of the I-t curve depends on the 

material and on the applied bias across the sample. In contrast to our expectations, the I-t and I-V 

curves are not fully symmetrical with respect to the polarity of the applied bias even when the 

samples are produced from pure Se, that is no inhomogeneity due to the fractionation exists. 

The I-V curves have two regions: low field one and high field one which is in good 

agreement with the data in [14] and in [146]. For both regions the current is a power law function 

of the applied bias 

 nVI ∝ , (5.9) 

where n is a constant. As can be seen from figures Figure 5.23-Figure 5.25 the values of n for the 

low field region are in the range 1.1-1.9 while for the high field region n takes values in the 

interval 3.1-4.4. These values are somewhat different from those published in previous works 

[14, 146] which is not unexpected because the sample thickness is quite different, the Se alloys 

are different, and electrodes are different. 
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Figure 5.23 Dark current I-t and I-V curves for a-Se film produced at 70 °C substrate temperature from 
photoreceptor grade pure (99.999%) selenium material. The sample has a thickness of 105 μm and both 
bottom and top contacts are made from gold.  Hole lifetime is about 2 μs and the electron lifetime is in the 
range 250 μs. 

 

The authors of [14], based on their data,  have explained the decay in the dark current 

curves with a gradual decrease of the electric field close to the electrode/s due to small amounts 

of trapped charge, undetectable with TOF measurements.  
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Figure 5.24  Dark current I-t and I-V curves for a-Se film produced at 70 °C substrate temperature from 
Se/0.3%As no Cl alloy. The sample has a thickness of 130 μm and both bottom and top contacts are made 
from gold.  Hole lifetime is about 15 μs and the electron lifetime is in the range 400 μs. 

 
Our data suggest that the conclusion that the dark currents in a-Se being not space charge 

limited might be premature. In the I-V characteristics we observe a low field superlinear region 

( 2 ) and a high field region in which the exponent n is bigger than two 

( 2 ). For thin samples and low applied voltages, an ohmic region ( ) has been 

reported by several researchers. At very high fields, and hence high injection rate at the 

electrodes, the observed dark currents will most probably follow the usual relation for space  

1, <<∝ nVI n

, >∝ nVI n VI ∝
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I-V Curves for Negative Bias
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Figure 5.25 Dark current I-t and I-V curves for a-Se film produced at 70 °C substrate temperature from 
Se:0.5%As:10ppmCl alloy. The sample has a thickness of 114 μm and both bottom and top contacts are made 
from gold.  Measured hole lifetime is about 100 μs and the electron lifetime is in the range 350 μs. 

 

charge limited currents ( ).  Thus the I-V curve measured for the dark currents over wide 

range of applied voltages will most probably contain all the four regions described above. 

Similar I-V curves have been proven to exist theoretically and experimentally for insulators 

having two different sets of traps distributed in energy [

2VI ∝

147]. For the latter distribution of traps 

and single carrier conduction, the application of the regional approximation theory leads to I-V 

curves that can contain four regions with different values of the exponent for increasing applied 

voltage across the sample (n=1, 1<n<2, n>2 and n=2). In a-Se, the conduction is not of single 
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carrier type (both electrons and holes can move). The situation is further complicated by the fact 

that exact distribution of traps is unknown for both electrons and holes. However, the ideas 

behind the regional approximation analysis should still be applicable and, as it will be described 

in subsection 5.3.7, there is evidence that significant space charge regions do form in metal/a-

Se/metal devices left under bias. 

Films produced from pure Se (Figure 5.23) have lower dark currents than films produced 

from stabilized Se (Figure 5.24 and Figure 5.25). This is expected because As and Cl are known 

to produce states in the band gap of Se. Thermal generation of carriers associated with the band 

gap states is one of the reasons for the above observation. The second reason is that the electron 

and hole transport in layers produced from stabilized Se is better that the one in the films 

produced from pure Se. If electron and hole transport is similar in films produced from Se:As 

and Se:As:Cl alloys, then the films produced from the alloys that contain Cl typically 

demonstrate higher dark currents. 

  The most unexpected observation associated with the data presented in Figure 5.23-

Figure 5.25 is that the dark currents are not symmetrical with respect to the polarity of the 

applied bias. The currents when the top electrode is positive with respect to the bottom 

(substrate) electrode seem to be a little higher compared to the case when the top electrode is 

negatively biased in the films produced from pure Se (Figure 5.23). Films produced from Se:As 

or Se:As:Cl (Figure 5.24 and Figure 5.25), on other hand, exhibit exactly the opposite behavior 

and the negatively biased top electrodes produce higher dark currents. Since all electrodes, are 

produced from Au, this asymmetry suggests that Se films are not homogeneous across their 

thickness and/or that the top and the bottom surface of the films do not have the same properties. 

Consequently, the charge injection from the top and bottom contacts must be different and this 

must have added to different trapping profiles across the film thickness to produce the observed 

asymmetry in the dark currents for negatively and positively biased samples (see Figure 5.26). 

The authors of [29] have shown that the concentration of deep hole and electron traps can be up 

to several orders of magnitude higher near the bottom and top surface of the film than in the bulk 

of the film. The exact trap concentration profile depends on the material and on the substrate 

temperature during the deposition of the Se film and strictly it is almost never fully symmetric 

(Figure 5.26-a). Further the investigation in [132] and in [143] have shown that in many cases a 

 171



continuous polycrystalline Se sub-layer forms between the substrate and the a-Se film (Figure 

5.26-b and Figure 5.26-c). Arsenic and Cl additives, together with the oxygen impurities and the 

 

 
a) Distribution of nanocrystalline inclusions across the thickness of a-Se films for several different substrate 
temperatures. Data were taken from [29]. 

 

 

 

 
 

 

b) Distribution of the crystalline phase near the substrate 
in thick vacuum evaporated a-Se films as a function of 
substrate temperature. After from [143]. 

c) A transmission electron microscopy cross section 
of high purity a-Se film deposited on Al substrate 
kept at 80 oC during the evaporation of the film.  The 
photo is taken from [132]. 

 

Figure 5.26 Factors that can potentially contribute to the observed asymmetry in the dark current I-t and 
I-V curves with respect to the polarity of the applied bias. 

 
substrate temperature during the deposition of the film play a significant role in altering the 

nucleation rate and thus in the formation of microcrystalline sub-layer between the substrate and 

the bulk a-Se film. As the substrate temperature is increased above 60 °C the density of the 
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microcrystalline inclusions at the substrate interface increases. When the substrate temperature is 

70 °C or higher, the microcrystalline sub-layer becomes continuous (Figure 5.26-b and Figure 

5.26-c). The charge injection from the metal electrode into such a microcrystalline layer and then 

into bulk a-Se will obviously be different compared to the injection from the top metal electrode 

directly into the a-Se film. Such difference can easily contribute to the observed asymmetry in 

the dark currents. When the top electrode is negatively biased, theenhanced hole injection from 

the metal contact into the sub-layer of microcrystalline Se is probably one of the reasons for the 

observed higher dark currents compared to the case when the top electrode is positively biased 

(Figure 5.25). This, by the way, is one of the probable reasons for which the free surface of Se 

can only very rarely be charged to high negative potentials in the case of a-Se photoconductor 

layers for xerographic applications. 

In conclusion, we have to mention that it is possible to produce samples that have higher 

dark currents in cases when the top contact is positively biased.  A way to achieve this for a-

Se:As without Cl is to deposit the films on a substrate kept at a temperature of 50 °C or lower 

from Se:As no Cl alloys. Under such conditions the continuous microcrystalline sub-layer does 

not form. The distribution of deep carrier traps across the sample thickness also changes 

significantly which results in higher currents for positively biased top electrodes. One example is 

shown Figure 5.27. The dark currents in that sample are higher for positive bias. Such 

asymmetry is probably due to the reasons explained above and not to the fact that this particular 

sample has top and bottom electrodes produced from different metals. If the electrodes were the 

same only the relative magnitude of the asymmetry will be affected. 

5.3.3 Experimental Observation of Contact “Formation” Process  

As described in subsection 5.3.3 several authors have observed in their experiments 

changes in the properties of the electrical contacts to a-Se films involved in their studies. The 

changes were associated with application of sufficiently high electric fields across the sample for 

a time interval of sufficient length [145] or with thermal annealing of the samples for 1 hour at 

50 °C [141, 142]. The first treatment of the sample leads to significant changes in the electrical 

properties of the contact, following which the properties of the contacts are stable in time. 

In our dark current experiments we observe similar behavior for the cases of some 

metallic contacts to Se. One example is presented in Figure 5.27 below. The transient curves in 
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the figure are numbered in the order of which they are measured. After the recording of each 

transient the sample is rested under short circuit conditions for a period  
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Figure 5.27 An example for contact “formation” process under the influence of high electric fields applied for 
a sufficient time across the sample.  The results of the contact formation process are easily seen if we compare 
transient curve #1 with transient curve #13 and I-t curve #5 with I-t curve #9. The number associated with 
each transient curve reflects the order in which the measurements were taken. Third and subsequent set of 
measurements resulted in I-t curves that are very similar to the ones obtained in the second set of 
measurements.  The sample structure is glass/Al-a-Se-Au. The film thickness is 110 μm. The film was 
evaporated on a substrate kept at 60 °C from Se:0.2%As no Cl alloy.  The asymmetry of the sample with 
respect to the polarity of the applied bias is not a result from the difference in the metal electrodes.  The 
maxima in the I-t curves #7, #8, #11, and #12 are not an artifact of the measurement. The reason for their 
appearance will be explained in subsection 5.3.4.  

 
of 2 hours during the first set of measurements and of 4 hours during the second set of 

measurements. Direct comparison between I-t curves #1 and #13 for negative bias (top contact is 

negative) and transient curves #5 and #9 for positive bias across the sample demonstrates the 

effect of the contact “formation” process.  As demonstrated in Figure 5.27, the contact formation 

process affects the low field region of the I-V characteristics of the samples. The asymmetry in 

the conduction process for positive and negative bias becomes stronger and (thin samples up to 

15 μm) with high content of As (3%-10%) can have rectification properties as strong as 106 for 

low applied voltages [141]. We have typically worked with much thicker samples produced from 

alloys containing up to 0.7% As. This makes the measurement in the low field region difficult 

but we observe asymmetry in the conduction for positive and negative bias that can be different 
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by 2-3 orders of magnitude. The rectification properties are better expressed when a bottom Al 

contact is involved. 

Very similar contact “formation” process can be observed if the sample is annealed under 

mild conditions (50°C for 1 hour). Our experiments show that the decrease in the conduction at 

low electric field is related mostly to changes at the bottom contact. Most probably processes of 

inter-diffusion and/or crystallization are taking place at the bottom interface of the samples (see 

Figure 5.26-b). In addition, the crystalline inclusions of monoclinic type are transformed to those 

of trigonal modification. All these changes are facilitated by the applied high electric field or by 

the elevated temperature during the annealing of the samples but the crystallization process is 

most probably responsible to greatest extent to the observed changes.  

The described above formation process bares striking similarities with the technique used 

to fabricate standard polycrystalline Se rectifiers. The fabrication process of such devices begins 

with roughened Al plate which is coated with a layer of Bi on top of which the Se layer is placed. 

Cadmium top electrode is then applied and the whole structure is annealed to transform the Se 

into polycrystalline trigonal form. In this process, the diffusion of Bi into Se and of Cd into Se is 

very important. It is known that Bi cause Se to crystallize very quickly due to the difference in 

the size between Bi and Se atoms. In addition, at the top interface a thin layer of CdSe is formed 

and the actual diode is formed between the insulating CdSe  thin n- like  and the p-type Se 

polycrystals [149]. 

The process of contact “formation” in our films must have a very close origin to the 

processes that are taking place during the high temperature fabrication step in polycrystalline Se 

rectifier production technology. In any case, the formation of metal selenides, the crystallization 

of Se at the interface, and the formation of metal contacts to the Se crystalline inclusions present 

at the interface must be the most important factors that lead to the observed contact “formation” 

process in our films. 

5.3.4 “Abnormal” Dark Current I-t Curves 

The data that will be described below illustrates the extreme complexity of the dark 

currents in a-Se samples. The current that flows in any sample after application of a constant 

voltage is usually constant or monotonically decreasing in time. In the vast majority of cases, the 

dark currents in thick a-Se films are no exception of that behavior. However, as shown in Figure 
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5.28, there are cases in which the a-Se thick films demonstrate I-t curves that exhibit maximum 

in spite of the constant bias across the sample. Very often the films produced in our lab that have 

an Al bottom electrodes demonstrate I-t curves as the ones shown in the left graph of  Figure 

5.28. These I-t curves exhibit a maximum or maxima (Figure 5.27, transients #8 and #12) for 

certain applied voltages. The maxima in the curves shift towards shorter times after the 

application of the bias, as the applied voltage across the samples increases.  At the same time, the 

I-t curves when the top electrode is negative are of the normal monotonically decreasing type. 

Such behavior in a-Se films to our knowledge has never been reported in the scientific literature 

before. Our initial understanding was that this strange behavior is related to the properties of the 

bottom electrode. It is known that Al is very reactive and the exposure to air almost immediately 

leads to the formation of Al2O3 on the surface of the Al electrode. The oxide layer formed in this 

way is highly disordered and the Al-Se interface would consist of Se, Al2O3, Al2(OH)3, and Al 

[141]. Obviously such an interface can have very complicated properties and it was thought this 

specific interface had the decisive role for the appearance of the “abnormal” I-t curves. 

However, later we have recorded similar “abnormal” I-t curves on a foreword biased 

commercial a-Se based pin- like structure as shown in Figure 5.28. In this pin- like structure the 

n- like  is grown on a glass/ITO substrate and thus the bottom electrode is ITO while the top one 

is made from Au. The “abnormal” I-t curves appear again only when the top electrode is 

positively biased, but this time the bottom contact interface is totally different. 

 Current transients displaying a peak whose time position depends on the applied voltage 

have been observed in many thin films produced from other materials. In the vast majority of the 

cases, the results have been interpreted on the basis of the theory of space-charge-limited 

currents, reference [150] being one recent example. The time position of the peaks in the I-t 

curves observed by us will lead to mobilities of the order 10-8 – 10-10 cm2V-1s-1 if the space 

charge limited current theory [151] is applied to our experimental data. Such values are for 

example compatible with negative ions (O2- or OH-) moving through the sample. However, 

careful examination shows that the shape of the transients observed by us does not agree with the 

one described in [151] and that the currents do not scale appropriately with the square of the 

applied voltage, and thus no grounds exist for the interpretation of our results in terms of space 

charge limited currents. 
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It seems that in both cases presented in Figure 5.28  the appearance of the “abnormal” I-t 

curves is related to the presence of layers through which the electrons can move with difficulties. 

For the sample produced in our lab this is an Al2O3 layer while for the pin- like structure this is  
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Figure 5.28 The dark current in the samples is intuitively expected to monotonically decrease with time after 
the application of a constant bias. In contrast to that some a-Se samples exhibit clear maximum in the I-t 
curves measured on them under certain conditions. Two “abnormal” I-t curves measured on single a-Se layer 
produced in our laboratory (Se:0.3%As no Cl, Tsubstrate = 70 °C)  and on commercially produced multilayer  
pin- like structure are shown above.  

 

n- like , because as described in subsection 5.1.5 the electron mobility and lifetime in the n- like  

are much worse than the ones in the i- like . At the very beginning after the application of the 

bias the current through the sample is due to drifting holes injected from the positive top 

electrode (we are neglecting the thermal generation of carriers in the film). Let us assume that 

the applied bias is such that the centroid of the positive charge due to trapped holes is situated 

closer to the bottom surface of the film. As a result, the field near the top electrode decreases 

while near the bottom electrode it increases and the increase of the field near the bottom 

electrode is bigger in magnitude. This will lead to a decrease in the hole injection and generally 

to decrease in the current through the sample. This process will continue for sometime until the 

field at the back electrode increases to the point when the Al2O3 layer or the n- like  will become 

permeable for some of the electrons. Some electrons will start moving in the sample and some of 

them will be trapped in the bulk of the film. Because the field between the bottom electrode and 
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the centroid of the positive space charge due to trapped holes in the film is high it is more likely 

the portion of the trapped electrons to be bigger in the space between the centroid of the positive 

space charge and the top electrode of the sample than in the other part of the film. Thus the 

centroid of the space charge due to trapped electrons will be positioned somewhere in the region 

between the electrode and the centroid of the trapped holes. Under such conditions the negative 

space charge that is forming due to the trapped electrons will affect mostly the field near the top 

electrode leaving the field near the bottom one without significant changes. Thus the field at the 

top contact will increase due to the electrons trapped in the sample which will cause the hole 

injection also to increase. More holes will be trapped close to the bottom surface of the sample, 

the field at the bottom electrode will increase and thus the injection of electrons through the 

oxide layer or the n- like will increase. The trapped negative space charge will grow and the field 

at the top electrode will increase even further causing further increase of the hole injection. Thus 

a positive feed back is established and the current in the film starts to grow.  This process does 

not continue indefinitely because as the amount of positive and negative, free and trapped charge 

in the sample increases some other processes become important.  Two of them are the 

recombination of the drifting electrons with trapped holes and recombination of drifting holes 

with trapped electrons. As these processes become intensive the region of negative space charge 

near the positive top electrode and the region of positive space charge near the bottom negative 

electrode can not grow further. Thus the positive feed back is destroyed and the current in the 

sample will seize to grow. In selenium the electron traps are some what deeper than the hole 

traps, the average release times are different for holes and for electrons and a tendency exist 

more negative space charge to be accumulating in the sample as the time progresses. As the time 

flows the amount of trapped negative charge increases and will tend to spread more uniformly 

across the sample.  The profile of the accumulated trapped charge in the film will gradually 

change and as the amount of the trapped charge in the sample increases the amount of the free 

charge that can be injected in the sample decreases because the total charge that can be 

accommodated in the sample is limited by its geometric capacitance. These processes limit the 

injection and force the current in the sample to decrease in time as in the usual dark current I-t 

curves measured on a-Se thick films (see subsection 5.3.2).  

Note that the possible qualitative explanation presented above is valid also for the case 

when no layer with poor electron transport is present between the negative electrode and the a-Se 
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film. The most significant difference is that the peak in the current will be observed at much 

shorter times which are inaccessible for our current experimental setup (t > 3s). Thus the 

function of the electron trapping layer is only to introduce delay before the electron current in the 

a-Se film become significant and thus to shift the peak in the current to longer times after the 

application of the bias that can be accessed with the measuring setup we are currently using. 

Obviously a careful experimental verification for shorter times after the application of the 

bias is needed in order to arrive at more rigorous explanation of the nature of the observed 

“abnormal” dark current I-t curves. This is a nice direction for continuation of the experimental 

work but was beyond the scope of our research.  

5.3.5 Time Needed for the Dark Current in a-Se Films to Reach Steady State 

As discussed in the previous subsection, trapping in a-Se can play significant role in 

controlling the dark currents in thick films produced from that material. If that is the case the 

question arises on the length of time needed for the dark currents in a-Se films to reach steady 

state. The time needed for the dark currents in a-Se to stabilize should be related to the average 

release time of carriers from deep electron and hole traps in the material. Since the carrier 

concentration in the sample can reach steady state only for times that are basically longer than 

the release time for the deepest carrier traps. The discussion in subsection 2.2 has shown that in 

a-Se a significant amount of deep traps for both holes and electrons is present around the Fermi 

level. The deep hole traps are located 0.87 eV from the valence band edge, while the electron 

traps are located 1.22 eV below the conduction band edge (see Figure 2.5). Assuming that the 

traps are charged when empty their effective depth can appear somewhat lower due to Poole-

Frenkel effect. Thus, for example the barrier height for the traps in a-Se will appear with 0.09 eV 

lower at an applied field of 10 V/μm.   Even with this lowering the trap depth remains significant 

and thus leads to huge average release time especially for the trapped electrons. The average 

release times at room temperature (295 K) for trapped holes calculated with trap depth of 0.8 eV 

and 1012 s-1 for the attempt to escape frequency is ~48 s. The average release time for electrons 

under the same conditions and with a trap depth of 1.1 eV is about 6,427,302 s or ~1, 785 hours 

(about two months!). 

Almost all dark current transients shown in the figures so far demonstrate that the dark 

currents in the samples are hardly steady state currents after one hour. Some curves give a hint 
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that eventually a steady state or quasi-steady state is about to be reached. The latter motivated us 

to perform experiments in which we followed the current transients after the application of the 

voltage step for extremely long times from experimental point of view (as long as 100,000s).  

Typical results are shown in Figure 5.29. For the particular sample in the figure 7200s are 

not enough for the current to reach even quasi-steady state under a negative bias of 

approximately 10 V/μm (top electrode negative). For a positive bias of 10 V/μm and times of the 

order of 20,000 s, the dark current seems to stabilize. However, this state lasts for 10,000-20,000 

s and then the current starts to change again; this time it increases. That might be the beginning 

of the behavior we have described in the previous subsection that will cause a peak to appear in 

the dark current. Another possibility is that the field due to trapped charge in the sample becomes 

to high and leakage current cause the rise in the curve. The exact reason for such a behavior is 

unknown; however the fact is that the dark currents in a-Se are not strictly constant for even 

impractically long times after the application of the bias. 
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Figure 5.29 I-t dark current curves recorded on 105 mm thick a-Se film with Au top and bottom contacts. 
The currents were followed for time of up to 28 hours after the application of the bias.  The film was 
produced from Se:0.5%As no Cl on substrate kept at 70 °C. It is difficult to say that for that time the dark 
current has reached steady state. 
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We have also found a very similar behavior for the photoinduced currents in a-Se films 

under constant bias when one of the contacts is under a steady illumination with blue light. The 

fact that the currents in a-Se films are complicated by such long transients makes the application 

of some typical DC conductivity experimental techniques to a-Se very difficult. Most of these 

techniques require the steady state DC current to be measured. 

5.3.6 Reproducibility of the Dark Current I-t Curves in a-Se Films 

In the previous subsection we have discussed some data that give us an idea on how long 

it will take for the dark current in a-Se device to reach its steady state. The waiting time has been 

proven to be long for almost all cases of practical importance. This means that an experimentalist 

is forced to work with slowly time-varying dark currents. In many experiments it is necessary to 

make corrections for the dark current. Such experiments can be related to measuring the x-ray 

sensitivity of a-Se devices, the actual imaging with some detectors, correction for the dark 

current in post transit time-of-flight experiments, etc. The question that arises in relation to such 

situations is how reproducible the dark in a-Se devices are. The change in the dark current with 

time in a-Se films after the application of the bias indicates that the electronic state of the sample 

is changing. There are number of experiments in which it is important to make sure that the 

sample has been restored to its original state before the next measurement can begin. A factor of 

importance for such experiments is what resting period will ensure that the sample has been 

restored to its initial state. Both of these questions have not been properly addressed in the 

scientific literature. The only criterion found is due to Johanson et al. [14]. The approach adopted 

in that work is that the sample has to be rested for a period of time that is at least twice as long as 

the period for which the sample has been kept under bias. Since we have used this approach in 

part of our measurements it will be interesting to know how well this criterion works.  

The following experiments have been designed to partially give an answer to the 

questions described above. We have recorded the dark current in the samples after the 

application of a high enough electric field. Each I-t curve was followed for 1200 s. The samples 

were rested prior to the next measurement for a period of time that was 2400 s or longer and thus 

the criterion described in [14] was met. After the rest period, the same field was applied to the 

sample and the dark current was followed for another 1200 s.  Several I-t curves collected in this 

way were compared to get an idea of how reproducible is the dark current under such conditions.   
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A set of typical results from such experiments is shown in Figure 5.30. Two things are 

almost immediately evident. For negative bias (Figure 5.30-a), a rest period of 2400 s seem to be 

sufficiently long to roughly restore the sample to its initial state. The graph shows that the I-t 

curves overlap quite well and no particular relation can be bound to the order in which the 

measurements were taken. The reproducibility seems to be good. The curves coincide to within 

±20% - ±30% and that is the best reproducibility for the dark currents that can be achieved by 

simply resting the samples.  

However the reversal of the polarity of the sample bias changes the reproducibility of the 

dark currents significantly as illustrated in Figure 5.30-b. In each subsequent measurement the 

dark current I-t curve systematically sinks towards lower currents and that is not affected 

significantly by the duration of the rest period before the measurement. Although the change is 

systematic, the average reproducibility of the dark current I-t curves 1000 s after the application 

of the bias remains about ±20%. For shorter times the reproducibility can be as much as a factor 

of 2 worse.  
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Figure 5.30 Reproducibility of the dark current I-t curves in a-Se film recorded in subsequent measurements 
after different rest periods.  During the rest period the sample was kept under short circuit conditions and in 
dark.  The sample was evaporated on polished Al substrate kept at 70 °C from Se:0.5%As:10ppm Cl  
material. The film thickness is 100 μm and the top contact is sputtered Pt with area of 0.25 cm2.  The data 
illustrate that after a reasonable in duration rest periods the dark current is reproducible to within ±20 % at 
best. This fact makes the corrections for the dark current in a-Se films that are required in many experiments 
an extremely complicated task. 
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The most probable explanation for such behavior is based on deep trapping of electrons 

in the a-Se film and/or in the case of Figure 5.30 in the Al2O3 layer that is present between the 

bottom electrode and the film. The release time of the trapped electrons in a-Se as explained in 

subsection 5.3.5 can be very long compared with the rest period involved in these measurements 

(max 7200 s). The difference for negative and positive bias is probably due to the fact that the 

sample is not symmetrical; presence of a thin insulating oxide layer at the bottom electrode, a 

nonuniform distribution of traps across the thickness of the a-Se film, etc. The speculative 

explanation presented so far does not rule out other possibilities. 

The most important practical implication of this result is that the correction for the dark 

current becomes quite a complicated task, and that the precision with which such correction can 

be applied is unsatisfactory for many cases; not better than ±20 % if only resting of the sample in 

dark is used to restore the sample to its original state. 

5.3.7 Experimental Evidence for Formation and Relaxation of Regions of Immobile 
Charge in Single Layer a-Se Films Left under Bias 

As explained earlier in subsections 5.3.2-5.3.6 the dark currents in a-Se are very 

complicated and not fully understood. After the application of a voltage step to a metal/a-

Se/metal structure, the dark current is not constant but changes with time. In many cases we 

observe that the dark current decreases monotonically with time over several orders of 

magnitude as reported in [14, 163]. A quasi steady state current is reached in some of the 

samples after 10-30 minutes but in other samples many hours are needed to a reach similar quasi 

steady state. The magnitude of the dark current and its temporal behavior depend on the a-Se 

material, on the preparation conditions, on the metal from which the electrodes are produced, on 

the sample history (irradiation with x-rays or visible light, application of bias etc) on the polarity 

of the applied bias. The fact that there are so many different factors that can alter the dark current 

in a-Se shows that there are probably several different processes that are controlling the dark 

current in a-Se and the latter makes a  simple explanation impossible.  

Amorphous Se is a semiconductor with a relatively wide bandgap (~2.2 eV) and as 

shown in subsection 2.2, various localized states that can act as electron and hole traps are 

located in the bandgap. At room temperature and in dark, the electronic properties of the material 

should be very close to those of an insulator with defects. It has been known for more than one 
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century that the dark currents in insulators with defects have temporal behavior similar to those 

we observe in a-Se. The temporal behavior has been related to the presence of defects in the band 

gap of the insulator and it was found that two empirical laws in many cases correctly describe the 

temporal behavior of the dark currents in such systems. These are the Curie – von Schweidler 

Law and the Kolrausch-Wiliams-Wats Law 
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where I(∞), I0, n, τ, and β are suitable constants that enable the equations to best describe the 

data. 
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Figure 5.31 A fit of KWW law to experimentally measured dark current transient curve in a-Se thick film 
with thickness 90 μm.  The film was deposited Se:0.5%As:10ppm Cl alloy on substrate kept at 70 °C.  The 
sample has Pt bottom electrode and Au top electrode. The applied voltage was 200 V. The Au electrode was 
positively biased. 
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Figure 5.31 and Figure 5.32 illustrate that these two emperical relations can be fitted 

really well to some of the experimentally recorded transient I-t curves in a-Se films.  
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Figure 5.32  A fit of Curie’s law to experimentally measured dark current transient curve in a-Se thick film 
with thickness 70 μm.  The film was deposited Se:0.5%As:10ppm Cl alloy on substrate kept at 70 °C.  The 
sample has Au top and bottom  electrodes. The applied voltage was 500 V. The top electrode was positively 
biased. 

 

The possible mechanisms for the occurrence of a temporal behavior of the type described 

by Eq. (5.10) in a wide range of different materials have already been discussed in the scientific 

literature. There are numerous mechanisms that can lead to the manifestation of the equations 

(5.10). In many cases, these mechanisms are of totally different physical nature. For example, the 
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most popular mechanisms for the appearance of Curie – von Schweidler behavior in various 

materials are: 

a. Distribution of relaxation times [152] 

b. Distribution of hoping probabilities [100] 

c. Space charge due to trapping [153, 154] 

d. Maxwell-Wagner relaxation [155] 

e. Energetically inequivalent, self-similar multi-well potentials [156]. 

From the above list the second and the third mechanisms seem to be of particular 

relevance to a-Se. Formation of space charge region or regions due to carrier trapping is a highly 

likely mechanism that may be responsible for the temporal behavior of the dark currents in a-Se 

films. Quantitative explanation of many effects related to the dark currents observed in a-Se have 

been qualitatively explained in [14] on the basis of the modification of the internal electric field 

in the sample especially in the regions near the electrodes. The authors of that work did not 

report any evidence for a considerable amount of trapped charge in their samples.  

If the trapped charge in the films is a key factor for the observed dark current temporal 

behavior in metal/a-Se/metal devices, one should be able to design an experiment through which 

the space charge in a-Se will reveal its existence. In this subsection we are presenting 

experimental evidence for the formation of regions of space charge in a-Se films left under bias 

that significantly alter the electronic state of the samples in particular the internal electric field in 

the films. 

The idea for the first set of experiments that provide some evidence for the existence of 

significant amounts of space charge in a-Se films left under bias was taken from reference [154]. 

The authors of the latter work have proven that development of  space charge regions due to 

immobile carriers in defect insulators can lead to the manifestation of Curie-von Schweidler Law 

(see Figure 5.32) and force the appearance of different “memory“ effects related to the current 

flow in thin film samples when the applied bias changes in a  step-wise manner.  

We have studied the changes in the current in an a-Se sample as a result of changes in the 

applied bias that occur step-wise. Figure 5.33 presents the most commonly observed results from 

such studies. Before discussing the results we would like to remind the reader that we can get 

reliable readings from the electrometer only 2-3 s after the bias has been changed. Thus the 

currents that we observe reflect the real behavior of the sample. They are not related to the  
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Figure 5.33 A typical reaction of metal/a-Se/metal structure to stepwise changes in the applied bias. The 
nature of the changes in the currents indicates the existence of strong internal fields due to space charge 
regions.  The space charge is due to trapped carriers as evident from the long time that it takes for the space 
charge region to relax to its new equilibrium state when the bias changes. 
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response time of the HV power supply, or to transients that appear due to the finite RC- constant 

of the sample.  

When a voltage bias of 60 V is applied across the sample (top pair of graphs in Figure 

5.33) a non-steady state time dependent current starts flowing in the system as space charge 

develops in it. The system then approaches its quasi-equilibrium state and the current eventually 

relaxes to a more stable value at a level of about 0.31 pA. Then we increase the applied voltage 

to 120 V and a time dependent current again begins to flow and eventually stabilizes at about 1.5 

pA as the system relaxes from the quasi-steady state defined by the first applied bias to the quasi-

steady state defined by the second applied bias. Note that the current that corresponds to the 

initial portion of the decay at a bias of 120 V is not bigger than the initial portion of the current 

in the sample when 60 V are applied across it. The latter behavior is different than the one shown 

in Figure 5.23 and Figure 5.25.  In the case of those measurements, the samples were rested for a 

long time before the application of the new bias. We can see that the effect of the space charge 

on the internal electric field in the sample is significant and that the electric field defined by the 

60V applied bias is almost completely absorbed across the space charge region. In such a 

situation, the current corresponding to the initial portion of the decay will be greater than that for 

the initial bias voltage only if the new bias voltage is more than two times bigger than the initial 

bias voltage what is observed in Figure 5.33. Identical relaxations process is observed when the 

applied bias increases from 120 V to 240 V. The latter voltage step appears 2000 s after the 

beginning of the experiment and the behavior of the current through the film demonstrates that 

the amount of charge stored in the sample is capable of completely absorbing the field defined by 

application of 120 V across it.  

The amount of immobile charge that can develop in the sample is usually limited. As the 

applied bias increases, the space charge region will not be able to completely absorb the electric 

field, and deviations from the behavior described above will be observed. Such deviations are 

clearly observed 3000 s and 4000 s after the beginning of the experiment when the voltage across 

the sample is increased to 480 V and to 700 V respectively. Even at such high applied biases the 

influence of the space charge region in the sample is significant which is demonstrated in the 

bottom set of graphs in Figure 5.33, which illustrate the changes in the current in the cases when 

the applied bias across the sample is decreased step-wise.  
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After time interval of 5000 s from the beginning of the experiment, the applied bias is 

decreased from 700 V to 480 V. The current in the sample decreases from 3341.3 pA to a new 

quasi-steady state value of 380 pA. The initial part of the relaxation is very interesting. The 

current jumps down to a value that in many cases is smaller than the quasi-steady state value of 

the current at the new applied voltage (in our case 380 pA). Then the current increases, passes 

through a maximum, and then decreases again to reach the quasi-steady state value for the new 

applied bias (380 pA). This manifestation of the  

relaxation of the space charge region inside the sample to its new quasi-equilibrium state defined 

by the new applied voltage is much better elucidated at low applied voltages across the sample 

when the changes in the internal electric field caused by the immobile space charge are of 

relatively larger importance. Thus, the change in the current 6000 s after the beginning of the 

experiment is much more impressive. At that time, the voltage is decreased from 480 V to 240 V, 

and an initial reverse current flows in the sample (i.e. one which flows in the opposite direction 

to the conventional current that normally flows for the given applied bias) as the system relaxes 

to the new quasi-steady state defined by the new applied bias. The current crosses the time axis 

(is zero) at the moment when the internal relaxation current is equal to the current injected at the 

electrodes. Thereafter, since the injection current exceeds the relaxation current, the net current 

in the system flows in the positive direction as in Figure 5.33. Relaxation processes with the 

reversal of the current direction are clearly observed 7000 s and 8000 s after the beginning of the 

experiment. 

The observed difference in the quasi-steady state currents that are established for 

increasing voltages (upper set of graphs in  Figure 5.33) and for decreasing voltages (lower set of 

graphs in  Figure 5.33) are different. This is another indication that the electronic state of the 

sample changes continuously during the measurements. Such changes are most likely due to very 

slow relaxations of the regions of immobile space charge inside the sample. The relaxation times 

are relatively long, in any case, much longer than the duration of practical measurements.  

The accumulation of charge in a-Se films left under bias was further investigated by TOF 

technique as proposed in [14, 157]. Hole TOF waveforms were used to probe the space charge 

distribution in the samples [157] because in a-Se the holes move with higher drift mobility and 

exhibit less dispersion than electrons. Thus, the packet of injected charge remains with small 

width from injection to extraction, which makes the experiments more sensitive to the shape of  
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Evolution of hole TOF waveform in a-Se
sample after  application of 1000 V 
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Figure 5.34 The dark current transient curve following the application of bias across the sample  are shown 
together with the changes in the shape of the hole TOF waveform recorded on the same sample left under the 
same bias.  The sample is a single a-Se layer with thickness L = 500 μm deposited on glass/ITO substrate. The 
top contact is produced by sputtering of Au and has area of 0.5 cm2. The I-t curve and the evolution of the 
hole TOF waveforms were studied in two separate experiments. The sample was rested in dark for several 
days prior and between the measurements.  

 
the space charge accumulated in the sample. The results from the experiments for two different 

applied voltages across the sample are summarized in Figure 5.34. 

For both applied voltages across the sample, the dark current decays in a monotonic 

manner over the period of the measurement (Figure 5.34-a and Figure 5.34-c). The magnitude of 
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the decay is about one order of magnitude in both cases. The current for a bias of 150 V (Figure 

5.34-a), unlike the current for 1000V (Figure 5.34-c), shows a tendency towards reaching a 

quasi-steady state values close to the end of the measurement. As expected, the shape of hole 

TOF waveform changes as the time after the application of the bias progresses.  The magnitude 

of the changes for higher bias (Figure 5.34-d) is “at most a few percent” as previously described 

in [14], however the changes observed for lower bias (Figure 5.34-b) are much stronger than a 

few percent. In our view, in both cases, these changes are significant and reflect significant 

amount of charge accumulated in the sample. The increase in TOF photocurrent after the 

excitation indicates that the electric field near the top electrode is increasing as the time after the 

application of the bias progresses. 

The increased electric field can cause more efficient photogeneration process close to the 

top electrode. Thus, a charge packet that eventually contains more holes travels at higher speed 

through the sample and for such reasons we can observe initial increase in the photocurrent as in 

Figure 5.34. A pronounced decay in the current is observed for all TOF waveform recorded on 

samples that have been under bias for 10 or more minutes. Such decay of the photocurrent near 

the extraction point can mean that the electric field decreases as the charge packet approaches the 

bottom side of the sample, and/or loss of carriers due to trapping and recombination.  

The analysis of the TOF waveforms shown in Figure 5.34 can be developed further and made 

quantitative. For example, one can easily calculate the changes in the electric field near the 

excitation electrode as the time after the application of the bias across the sample progresses. 

Such calculation can be easily done on the basis of the observed changes in the photogeneration 

efficiency. It is possible to go even further and calculate the time evolution of the trapped charge 

profile in the sample using, for  example, the method proposed in [157] with some minor 

modifications. Such quantitative analysis was beyond the scope of our research program and 

would require data that have been collected more systematically. However, the data presented in 

Figure 5.34 clearly demonstrates that the internal electric field in the sample is changing after the 

application of the bias. The change is is significant for applied external electric fields as high as 2 

V/μm and indicates that significant space charge develops in the a-Se film that is left under bias 

for sufficiently long time. 

Neglecting the thermal generation of carriers in the bulk of the sample, we can say that 

the dark currents in a-Se films depend on the applied external field, on the rate of carrier 
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injection at the electrodes and on the transport properties of the a-Se film. The rate of carrier 

injection depends, in a complicated way, on the metal/a-Se interface. The type of metal used for 

the electrode and the presence of crystalline inclusions at the interface can have an extremely 

important role in determining the injection efficiency at the electrodes. The bandgap of a-Se 

contains sets of deep electron and hole traps with significant concentrations and space charge 

will build up in the sample after the application of the bias. The situation is even more 

complicated because the deep traps most probably are never uniformly distributed across the 

thickness of the a-Se films (see Figure 5.26). The rate at which the space charge will grow 

depends mainly on carrier injection rates, and the on carrier Schubweg (μτF). However, the 

presence of the immobile charge in the sample affects both the carrier injection rate at the 

electrodes and the carrier Schubweg. The injection rate is affected because the immobile space 

charge, merely by its presence, limits the amount of charge that can move in the sample (the total 

amount of charge free or trapped that the sample can hold at a given bias is limited by the 

geometric capacitance of the sample). Further, even very small amounts of immobile charge can 

change the electric field near the electrodes, and thus significantly alter the carrier injection 

process. Carrier transport properties are also affected by the presence of space charge. Since the 

space charge is not uniformly distributed across the sample, the electrons and holes will have 

different deep trapping times (τ) at different spots in the sample, simply because the deep trap 

occupancy is different across the sample. In addition, since the electron mobility in a-Se is field 

dependent, the electron mobilities in the sample will be position dependent, because the electric 

field in the sample is not uniform. At high densities, the immobile space charge (we assume that 

the space charge forms due to trapped carriers) can make the recombination process in the 

sample of particular significance and this also affects the transport of carriers through the 

sample. 

The temporal behavior of dark currents is a result of a complicated interplay of these 

processes. Under different circumstances, totally different scenarios are possible which explains 

at least qualitatively the great variety of characteristics in the observed I-t curves. The results 

from the experiments, described in this subsection, have demonstrated that in many cases of 

practical importance the build up of space charge regions in a-Se films and their relaxation to a 

new state when the conditions change, play a very important role in determining the magnitude 

and the temporal behavior of the dark currents in a-Se devices.   
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5.3.8 Effects of X-ray Irradiation on the Dark Currents 

Some changes in the dark currents similar to the ones described in reference [158] are 

almost always observed in single layer a-Se films after they have been irradiated x-rays.  The 

main purpose of this subsection is to briefly describe the observed x-ray induced changes in the 

dark currents after a relatively small exposure of an a-Se film to x-rays. 

The samples used for the purpose of these experiments were produced on Al substrates 

from Se:0.5%As:10ppm Cl alloys. The a-Se layers had a thickness in the range 50-150 μm and 

were grown on substrates that were kept at 70 °C during the film deposition process. Fabrication 

of the test metal/a-Se/metal devices was completed by the fabrication of a top electrode with area 

0.25 cm2 by sputtering Au or Pt.  

The dark current in the sample decreases about two orders of magnitude (from ~10-7 to 

~10-9 A) after applying positive voltage (top contact positive) with most of the decay occurring 

in the first 300 s as shown in Figure 5.35. The same figure also shows that for the first 100 s after 

applying negative bias to the sample the current is almost constant at ~10-9 A. The dark current 

decreases by only a factor of two after applying a negative voltage to the samples over the period 

of the measurements. 

The samples were rested for a period of 2400 s between the measurements. As described 

previously (subsection 5.3.6) this rest period in not long enough to restore the initial state of the 

sample before the measurements and, as a result, the reproducibility in the dark currents from 

measurement to measurement is similar to the one shown in Figure 5.30.  The dark currents for 

positive bias overlap within 30% in the subsequent cyclic measurements (1200s with bias-2400s 

rest) implying that the rest period is long enough to restore the initial state of the sample if the 

measurement involves the application of positive bias across the sample.  However, the I–t 

curves measured under a negative bias in subsequent cycles shift to lower currents; thus, the 

2400 s rest period is not long enough for negative bias (complete restoration requires between 30 

and 100 h of zero bias). Quantitatively, the dark current I-t curve during the 6-th measuring cycle 

is shifted down towards lower currents by about 60% compared to the I-t curve measured in the 

first cycle on a well rested sample. 

Exposure to X-rays immediately before applying positive bias has no effect on the dark 

current decay curves. Exposure immediately before applying negative bias results in I–t curves 

similar to those without exposure but the observed shift downwards from cycle to cycle is some 
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what bigger. After six measuring cycles, the dark current is 25% smaller when pre-exposing to x-

rays before each cycle compared to the same procedure without exposure. 

The expose of the sample to x-rays while the bias is applied results in a different behavior 

as shown in Figure 5.35. The biased samples were irradiated 10 s after applying the negative 

voltage. The x-ray exposure induced current was ~100 times greater than the dark current in the 

sample. The current after the exposure decreases quickly to a value that is 1.6 times higher than 

the dark current at the same time after the application of the bias as measured on an unexposed 

sample. Figure 5.35 clearly shows that after the x-ray exposure, the current for negative bias is 

bigger than the dark current in an unexposed sample until the end of the measurement (for more 

than 1100 s). The difference ΔIdark(t) ranges from 60% of Idark immediately after the end of the 

exposure to about 20% of Idark close to the end of the measurement.  

For positive bias, irradiation of the sample 10 s after application of the voltage induces a 

totally different behavior. During the exposure the x-ray induced current is only 2.7 times bigger 

than the dark current in the unexposed sample. However, the absolute value of the x-ray induced 

current is about the same as that recorded with negative bias (89nA:85 nA, see Figure 5.35). The 

difference between the two dark currents in exposed and unexposed samples measured after the 

end of the exposure, ΔIdark(t), is negative for the first 10-15 s after the exposure, then becomes 

positive for the next 500-600 s and then settles to zero (Figure 5.35, lower left graph). Thus, in 

the case of positive bias it takes about 10 min for the dark current to return to the values 

measured in unexposed sample. 

The irradiation of the same sample carrying the same positive bias 100 s after the voltage 

application, when the dark current has completed most of the decay, results in a 

photoconductivity that is about 100 times larger than the dark current (Figure 5.35, lower right 

graph). The absolute magnitude of the x-ray induced photocurrent is this case is about 1.2 

(106nA:89nA) times bigger than that when the irradiation is done 10 s after the bias application 

(see Figure 5.35).  However, the persistent photocurrent in this case requires 300-400 s to return 

to the I–t curve measured without exposure (lower right graph in Figure 5.35). The difference 

between the dark currents for exposed and non exposed sample, ΔIdark(t), in this case is always 

positive and starts its monotonous decay to zero from about 400% of Idark immediately after the 

end of x-ray exposure.  
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The experiments involving x-ray irradiation give good grounds to think that the formation 

and relaxation of space charge regions in the films might be responsible for the temporal 

behavior of the dark currents themselves and for the observed changes in the currents when the 

samples are irradiated with x-rays. Under the conditions given in Figure 5.35, assuming that the 

electric field in the sample is constant, x-ray exposure (1.6 R, 30 kV average energy, 2.8s)  
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Figure 5.35 Effects of x-ray irradiation on the dark currents in single layer a-Se samples. The films had a 
thickness of 100 μm and were evaporated on Al substrates kept at 70 °C during the deposition process from a 
Se:0.5%As:10ppm Cl alloy.  The top contact is produced by sputtering of Pt and has an area of 0.25 cm2.   
Films produced under the same conditions from the same material usually demonstrate hole lifetime of about 
100 μs  and electron lifetime of approximately 300-350 μs.    
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generates about  2×1014 electron-holes pairs in the sample. This amount of charge can interfere 

significantly with the space charge regions in the sample through the processes of trapping and 

recombination. Consequently, the space charge regions in the sample after the end of the 

exposure are different than they were before that and naturally different currents will flow in the 

sample. The samples involved in these experiments are not symmetric. The bottom and the top 

metal/a-Se interfaces are different. The bottom interface is complicated by the presence of thin 

(several nm) insulating Al2O3 that is known to block the traffic of electrons between the metal 

electrode and the a-Se film and possibly by a continuous layer of polycrystalline trigonal Se as 

shown in  Figure 5.26 due to a relatively high substrate temperature during the deposition of the 

film (Tsubstarte = 70 °C).  The sample recovery after the end of the x-ray exposure to the state of 

unexposed sample will take different times for the cases of negative and positive bias (see Figure 

5.35) due to the asymmetry of the samples. 

Additional support for the space charge region hypothesis can be found in the x-ray 

induced photocurrents in the sample. The net x-ray currents (corrected for the dark current) are 

given in the three graphs in Figure 5.35. The samples, irradiated 10 s after bias application, have 

produced almost the same x-ray currents for both polarities of the applied bias; the current for 

positive bias being ~5% bigger. The reasons for the latter can be a difference in the internal 

electric field in the sample, different x-ray sensitivity of a-Se film sample for positive and 

negative bias due to a non-uniform x-ray photogeneration across sample thickness and difference 

in the electron and hole Schubwegs as described in [159]. The analysis in [159] applied to the 

experimental conditions shown in Figure 5.35 gives difference in the sensitivity for the cases of 

negative and positive bias of about 1% assuming that the internal electric field in the sample is 

constant and equal 5 Vμm-1. That 1% sensitivity difference and an experimental error of a few 

percent can explain our experimental results for the case of x-ray irradiation with 10s delay after 

the bias application but can not explain the measured value of the x-ray induced current when the 

sample was irradiated 100s after bias application which is close to being 25% bigger. Such big 

difference strongly suggests that the internal electric field in the sample changes as the time after 

application of positive bias progresses. The results presented in Figure 5.35 are consistent with 

internal electric field that is becoming bigger than the nominal field (applied bias divided by the 

sample thickness) in the region of the sample that is close to the positive (radiation receiving) 

electrode. The increased electric field makes the x-ray photogeneration efficiency bigger in the 
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top portion of the sample and that explains the observed increase in the x-ray induced 

photocurrent. The changes in the internal electric field profile under a constant applied bias 

across the sample must be related to the formation of regions of immobile space charge in the a-

Se film and to their relaxation when the experimental conditions are changed. (the onset and the 

end of x-ray exposure). 

In conclusion, it should be mentioned that we do not have ready explanations for the 

changes in the dark currents observed after irradiation with x-rays since the dark current I-t 

curves themselves are not fully understood. However, one result of practical importance 

following from our experimental observations is that precise correction for the dark in the sample 

in experiments involving x-ray irradiation is a complicated task. The magnitude of the x-ray 

currents depend on the time of the irradiation with respect to the application of the bias and on 

the polarity of the applied bias. The persistent current after the end of the x-ray exposure can be 

quite different than the dark current in unexposed samples both in magnitude and in shape, 

depending on the polarity of the bias, the time after the application of the bias, the magnitude of 

the previous exposure to x-rays, the time after the previous exposure to x-ray, etc. It is almost 

impossible to take into account all these factors quantitatively and obviously fine corrections for 

the dark current in the sample will be extremely difficult and close to impossible in many 

practical cases.   

5.3.9 Effects of Substrate Temperature during Film Fabrication Process on the 
Magnitude of the Dark Currents in Metal/a-Se/Metal Devices 

In subsection 5.2.3 we have discussed the influence of the substrate temperature during 

the deposition process on charge transport in a-Se films. It was found that by lowering the 

substrate temperature, the hole mobility-lifetime products can be reduced by two and more 

orders of magnitude while the electron lifetimes remain relatively unaffected. This can be 

understood if we assume that the cold deposited films have a concentration of deep hole traps 

that is greater (sometimes more than 2 orders of magnitude) than the one in the films deposited 

on hot substrate (Tsubstrate>Tg). If the additional deep hole traps formed as a result of the cold 

deposition do not act as centers for thermal generation of carriers as well one would expect that 

the dark currents in the cold deposited films will be lower than the currents in the hot deposited 

ones simply because they can hold more trapped charge. The experiments that will be 

summarized in this subsection were devoted to studying the dark currents in cold deposited a-Se 
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films towards the fabrication of metal/a-Se/metal devices having tolerable dark currents for 

applications in digital x-ray image detectors.  

The a-Se alloys chosen for the experiments contained only As (0.2-0.5%) because Cl is 

known to create centers in a-Se that act to improve thermal generation of carriers and hence to 

increase the dark conductivity of the films which was not desired.  Most of the films were 

produced on Al or Al coated glass substrates since the final goal was depositing of a-Se 

structures on CCD chips that had Al metal bus on top of them to interface the x-ray 

photoconductor.  Further, because the CCD readout circuit was designed to collect electrons we 

were interested mostly in creating a-Se based photoconductor structures that have low dark 

currents when the top electrode is negatively biased. 

Figure 5.36 shows the dependence of the dark current density on the applied electric field 

(J-F curves) for the case of two devices; Pt/a-Se/Pt and Al/a-Se/Au. Both  
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Figure 5.36 Dependence of dark current density on the applied electric field in a-Se films produced by 
deposition on cold substrates (Tsubstrate = 25 °C) from Se:0.5%As alloy on glass/Pt and Al substrates. Both 
films were annealed after the deposition (1 hour, at ~50°C). The top electrodes (Pt and Au) were produced on 
the annealed films by sputtering.  

 

samples contain single cold deposited and post-annealed a-Se layer. The top contacts were 

sputtered on the films after the annealing. A direct comparison between Figure 5.24 and Figure 

5.36 reveals that the dark currents are significantly suppressed as a result of the cold fabrication 

technique of the film. Additional and beneficial difference is that the dark currents in the cold 

deposited sample unlike in the hot deposited ones (Figure 5.24) are lower for a negatively biased 
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top electrode. The dark currents in cold deposited films like those in hot deposited films are not 

symmetrical with respect to the polarity of the applied bias even when the sample is fabricated to 

be symmetrical (Pt/a-Se/Pt sample in Figure 5.36). 

The observed changes are related to the preparation technique and not to the specific Se 

alloy used to produce the film. Amorphous Se films produced on a hot substrate from the same 

alloys as the samples in Figure 5.36 do not exhibit the same behavior and demonstrate much 

higher dark currents in Figure 5.37. 

In subsection 5.2.3.3  we have discussed our experimental findings that a two step fabrication 

process consisting of the deposition of an a-Se film on a cold substrate followed by mild 

annealing leads to significant suppression of the hole transport (hole lifetime decreases more 

than two orders of magnitude) in the resulting films leaving the electron transport relatively 
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Figure 5.37 Comparison between the dark current J-F curves for negative bias in samples produced on hot 
and cold substrates. The samples were produced from the same Se:0.5%As material used to fabricated the 
samples shown in Figure 5.36. 
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unaffected.  The decrease in the hole lifetime and the relatively unchanged electron lifetime can 

be explained assuming that the cold deposition technique leads to a significant increase in the 

concentration of deep hole traps while the concentration of deep electron traps remains relatively 

unaffected. 

We can speculate that the dark currents in the cold deposited a-Se films are low because 

the films having a higher concentration of deep hole traps can hold more immobile positive 

charge. If more immobile charge is present in the sample, the amount of free charge that can be 

injected in the sample decreases because the total amount of charge (free + immobile) that the 

sample can accommodate is limited by the geometric capacitance of the sample and the applied 

bias. The bulk immobile charge will decrease the amount of charge that can be transported 

through the sample per unit time or in other words will cause the dark current to decrease. 

Alternatively, we can explain the observed decrease in the dark currents in a-Se films 

deposited onto a cold substrate as follows. The concentration of deep hole traps is most likely not 

constant across the thickness of the sample. The exact distribution of traps is substrate 

temperature dependent as Figure 5.26 shows. The cold deposition leads to changes in the 

distribution of deep hole traps in the bulk of the sample and especially in the regions near the 

electrodes. That change will affect the profile of immobile space charge developing in the 

sample after the application of bias. The modification of internal field in the sample due to the 

presence of the immobile space charge might act to decrease the charge injection from the 

electrodes (due to decreased electric field near the contacts). 

It is also possible that the deposition on a cold substrate simply prevents the formation of 

a continuous layer of trigonal Se between the bottom electrode and the a-Se film as illustrated in 

Figure 5.26. If that layer is absent, hole injection from the bottom electrode will be significantly 

modified and possibly decreased. That can explain the observation that in the cold deposited 

films, unlike the case for hot deposited films, the dark currents for negative bias are lower than 

those flowing under a positive bias across the sample. 

We observed a strong correlation between hole lifetime and the dark currents for the 

cases of cold deposited a-Se films (Tsubstrate<Tg). The decrease of the hole lifetime is almost 

always accompanied by the decrease in the dark currents in the films. This means that the 

formation of deep hole traps resulting from the deposition on cold substrate seems to control 

both quantities. 
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There are a few exceptions. Films produced on an Al surface (Al or glass/Al substrates) 

by cold deposition and annealing from Se:As alloys (0.2-0.5 %As) and having a hole lifetime in 

the range 0.3-10 μs can have very similar dark currents for negative bias especially if the applied 

bias is not very high (less than 10 Vμm-1). This observation suggests that in these samples there 

exists an additional mechanism that acts to reduce the dark current. A hint of the latter behavior 

can be seen if we compare the two graphs presented in Figure 5.36. The sample with the Al 

bottom electrode seems to have additionally suppressed dark currents for negative bias if the 

field is below 8 V/μm. 

The additional blocking of the dark current can be due to the insulating properties of the 

Al2O3 layer present on the bottom Al electrode. Alternatively, following the ideas published in 

[141,142], we can contribute these additional blocking properties to the modification of the 

interface Al-Al2O3-Se as a result of inter-diffusion between Al2O3 and Se facilitated by the 

combination of the cold deposition with the subsequent annealing process. However, our 

experimental results do not support the findings that a p-n junction is formed between a modified 

n-type Al2O3 and p-type Se. The difference is probably due to the fact that the films in [141,142] 

we produced from Se heavily doped with As (3%) and were much thinner (typically less than 10 

μm). Since Al2O3 that is naturally present on the Al substrate is a highly disordered system and 

since that disorder can be amplified due to inter diffusion between Al2O3 and Se ith Se phase one 

can expect some improvement of the blocking properties of the interface. 

The reduction of the dark current in a-Se films related to the deposition on a cold 

substrate is a significant finding with important technological consequences. It can be used as a 

very suitable technique to minimize the dark currents in single layer a-Se based photoconductors 

or to create multilayered photoconductor structures (pin-, ni and- in- like structures) in which the 

n- like layer can be produced by the cold deposition process. For further details see 

subsection 5.4. 

5.3.10  Influence of the Electrode Metal on the Dark Currents in Metal/a-Se/Metal 
Devices 

When a metal contact is formed on a semiconductor, one will normally expect formation 

of either an ohmic or an Schotky contact depending on the difference between the work 

functions of the materials. Since the work function of a-Se is larger than that for all metals [14] 
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that are practically used for electrodes one will expect a Schotky barrier to holes to form at the 

metal/a-Se interface. Although the formation of both Schotky and ohmic contacts to a-Se has 

been reported in the scientific literature (see subsection 5.3.1) it is not very likely that the 

complicated metal/a-Se interface can result in a contact that can be fully described within the 

framework of such a simple theory. Early indications that the metal/a-Se interface will be neither 

ohmic nor Schotky can be found in the works of Paul Nielsen [48] who investigated Au/a-Se and 

(Al-Al2O3)/Se interfaces. More recently Johanson et all. [14] found no correlation between the 

work function of the metal and the current flowing through the metal/a-Se junction and based on 

that and the complicated nature of the interface (formation of metal selenides, etc.) have 

suggested that no simple theory (Schotky or ohmic) can explain the electrical behavior of metal 

contacts to a-Se. However, they have suggested that the dark currents in metal/a-Se/metal 

devices can be minimized by proper selection of the metal for contact fabrication and found that 

an ITO/a-Se/Mg structure resulted in exceptionally low dark currents when the Mg contact that 

was deposited on the top surface of the film was biased negatively. 

  In the case of x-ray image detector applications the bottom electrode is predetermined by 

the technology used in the production of the readout circuit. Thus, when polysilicon AMA array 

is used as a readout circuit the bottom electrode is most often ITO. Our research was primarily 

related to a CCD readout technique. The CCD chips were manufactured at DALSA Inc. and had 

an Al bus on them, i.e. the bottom electrode was fixed - always Al. In addition, the CCDs were 

designed to collect the electrons created by the x-rays in the photoconductor. Thus, by necessity, 

most interesting case for us became Al/a-Se/metal structures biased negatively (radiation 

receiving electrode is negative). Following the ideas expressed in [14] we have decided to study 

the possibility for dark current minimization in Al/a-Se/metal structures by a proper selection of 

the metal for the radiation receiving electrode. 

Under a negative bias, the top electrode will inject electrons into a-Se film. Thus, changes 

in the electron component of the dark current through different Al/a-Se/metal structures have to 

be observed. Typical a-Se films have much better hole transport than electron transport, 

especially if deposited on a hot substrate (Tsubstrate>Tg). In such films, the dark current at room 

temperature is dominated by hole injection from the positive contact as it was found in [14]; and 

any observation of small changes due to the electron component of the current might not be 

possible. Our experiments were conducted on cold deposited and annealed films because in such 
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films the hole transport is strongly suppressed which means that the hole component of the dark 

currents is smaller in magnitude. We also needed to study the potential of the cold deposited 

films for application in x-ray image detectors. 

The metals investigated as top electrode were chosen to be stable and to allow the 

convenient fabrication of the contact without risking damage to the CCD chip with the 

equipment that was available in our laboratory. For these reasons, the experiments were 

conducted using Pt, Au, and Al as top electrodes. The Pt and Au contacts were produced by DC 

sputtering, while the Al ones were fabricated by thermal evaporation.    
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Figure 5.38 The influence of the top electrode metal on the dark current J-t curves in Al/a-Se/metal structures 
under negative bias.  The a-Se film was produced on glass/Al substrate. The film was deposited on a substrate 
kept at 25 °C from Se:0.5%As no Cl alloy. After a mild annealing (50 °C, one hour), contact from Pt, Au and 
Al were fabricated on the top surface of the sample.  The area of the contacts was 0.25 cm2. 

 
As demonstrated in Figure 5.38, the dark currents for electrodes were decaying with time 

after the bias is applied over the whole period of the measurement (20 min). For the period 10 to 

1000 s after application of the voltage, the dark current measured with Pt is the smallest one 

while the dark current measured with Al is the highest. 

There is a clear negative correlation between the work function of the metal from which 

the top electrode was fabricated and the dark currents measured in the film as summarized in 

Table 5.3. 
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Assuming that the observed dependence in the dark currents is due only to different 

electron injection rates at the top electrodes our results can be explained as follows. We can think 

that the injection is a two step process. At first stage, the electron is injected into a localized state 

in the bandgap of a-Se near the interface and in the second stage; the electron is thermally 

released into the conduction band in which it starts its drift. The rate of the first stage will depend 

on the density of available unoccupied localized states in the bandgap of a-Se that are accessible 

for an electron occupying a state around the Fermi level in the metal. As the work function of the 

metal increases the electrons in the metal that can be potentially injected into a-Se will be seeing 

a decreasing density of localized states in the bandgap of a-Se because its work function is large 

(5.9eV according to reference [14]) and, as a result, the injection rate will decrease. Such ideas 

can explain the observed correlation between the dark currents in the film and the work function 

of the metal for the top electrode but is highly speculative since there might be significant 

contributions from bulk processes that alter the injection of carriers as well.  

 

Table 5.3  The electron work function, J(100s), and the ratio of current densities at t=1000s and t=10s for 
each metal studied.  Work function data were taken from [160]. 

5 V/μm 10 V/μm  

Metal 

Work 

Function, 

Φ [eV] 

J(100s), 

[A cm-2] J(10s)

J(1000s)  
J(100s), 

[A cm-2] J(10s)

J(1000s)  

Al 4.25 5.11×10-11 0.21 4.94×10-10 0.22 

Au 5.1 2.67×10-11 0.05 3.63×10-10 0.10 

Pt 5.65 1.55e×10-11 0.05 1.50×10-10 0.08 

 

Form a practical point of view, our data show that by manufacturing the top electrode 

from Pt one can obtain 2-5 times lower dark currents compared to those cases when the top 

electrode is produced from Al or Au.  

5.3.11 Dark Currents in Metal/a-Se/Metal Devices - Summary 

In above subsections we have presented results from different experiments on dark 

currents in single layer metal/a-Se/metal devices.  
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As observed in previous studies [14] the dark current after the application of a constant 

voltage decreases as the time after the bias application progresses, in some cases over 2-3 and 

more orders of magnitude. We have observed decays as long as 20000 s and even after this long, 

it is difficult to say that the dark currents become constant. The magnitude of the decay and the 

shape of the I-t curves depend on the applied bias, on the Se material, and on the metals from 

which the top and the bottom electrodes are produced. 

In many cases Currie von Schweidler Law ( ) or Kolrausch-Wiliams-Wats  Law 

(

nttI −∝)(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−∝

β

τ
ttI exp)( ) can be used to describe the shapes of the dark current transient curves. 

We observe that the dark current I-t curves for negative and positive bias are never fully 

symmetrical even when the metal/a-Se/metal device was fabricated to be symmetrical. For some 

materials and preparation conditions, the dark currents are larger when the top electrode is 

positive; for other materials and preparation conditions, the dark currents are bigger when the top 

electrode is negative. For all deposition conditions and materials the substrate temperature seems 

to play an important role. Films produced at sufficiently high substrate temperatures have higher 

dark currents when the top electrode is negatively biased, while the opposite is generally true if 

the films are produced at low enough substrate temperatures. The asymmetric dark currents for 

negative and positive bias can be explained with the asymmetric properties of the top and bottom 

metal/a-Se interface and/or with asymmetric non-uniform distribution of various microcrystalline 

inclusions that act as carrier traps across the thickness of the a-Se film. The major factor that 

contributes to the asymmetry between the top and bottom metal/a-Se interface is probably the 

formation of a continuous layer of polycrystalline trigonal Se between the bottom electrode and 

the bulk of a-Se film for films produced at high substrate temperatures. 

 In our samples we observe a process of “contact formation” which basically is a 

permanent change in the electrical properties of the contacts after application of high electric 

field to the sample  for the first time, or after mild annealing (Tannealing ~Tg) of the sample. We 

observe a decrease in the dark currents at low fields when the voltage is applied after the contact 

has been “formed”. 

The process of contact “formation” in our films must have very close origin to the 

processes that are taking place during the high temperature fabrication step in the polycrystalline 

Se rectifier production technology. In any case, the formation of metal selenides, the 
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crystallization of Se at the interface, and the Se crystalline inclusions present at the interface 

must be important factors that lead to the observed contact “formation” process in our films. 

In most of the cases the dark current I-t curves are monotonically decreasing. However, 

in certain cases we observe deviations form the latter behavior and the I-t curve passes through a 

distinct maximum. Such “abnormal” behavior was observed for samples that have   Al-Al2O3-Se 

bottom interface or for multilayer pin- like structures. In the scientific literature, the presence of 

a peak in the I-t curves for some ceramics have been explained on the basis of space-charge-

limited currents and mobile ion species. We think that the observed peak in the I-t curves for our 

samples most likely reflects the dynamics of the developing space charge regions in the sample 

after the bias application. By growing and changing their shape, the space charge regions in the 

sample can alter the electric field at the electrodes, which would lead to changes in the injection 

of carriers from the electrodes. The altered carrier injection in turn affects the kinetics of space 

charge region formation in the sample. For certain periods of time, a positive feed back can 

exists between these two processes and that can result in the observed maximum in the I-t curves 

for constant applied bias. 

We observe that the dark current I-V curves are strongly non-linear. Our data suggest that 

the I-V curves measured on single layer metal/a-Se/metal devices contain several regions for 

which . The value of the exponent n is different in the different regions. Over the range 

of film thicknesses and over the range of electric fields covered in our experiments we observe 

two distinct regions with different values of n in the measured I-V curves; 1.1≤n≤1.9 for the 

lower field region and 3.1≤n≤4.4 for higher field region. Several authors have claimed that they 

observe an ohmic region ( ) in thinner samples. It has also been proven that 

for the cases when the contacts are made more injective by application of high fields 

or illumination with strongly absorbed light. 

nVVI ∝)(

VVI ∝)(

2)( VVI ∝

 The theory of SCLC (the method of regional approximation) applied to an insulator 

having two sets of traps well separated in energy can theoretically account for the observation of 

I-V curves having up to four distinct regions for which . The ohmic region is observed 

for the lowest fields and the usual dependence for SCLC  is observed at highest fields. 

The two other regions occur due to the presence of the two distinct sets of traps. The value of the 

nVVI ∝)(
2)( VVI ∝
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exponent n can be related under certain experimental conditions to the exact shape of the trap 

distribution in energy and values for n well above 2 can easily be observed. 

 The application of the regional approximation theory to a-Se is difficult because the two 

types of carriers are mobile and can contribute to the conduction and because the exact 

distribution of the traps in the bandgap is still unknown. However, our data show that the space 

charge regions do form in a-Se and that these regions alter significantly the conduction process is 

a-Se. 

 Based on two different groups of experiments we have demonstrated that significant 

amount of space charge builds up in a-Se films left under bias at least for nominal applied fields 

below 2 V/μm.  

The space charge can cause significant changes in the internal electric field in the sample 

and that was illustrated by monitoring the changes in the dark current as a result of stepwise 

change in the bias across the sample. The internal electric fields in some cases can become 

stronger than the externally applied ones, for example after stepwise decrease in the voltage, 

which can cause negative currents to flow in the samples for positive applied biases as  the space 

charge regions in the films are relaxing to their new equilibrium state.  

 The changes is the internal electric field in samples left under bias were also probed with 

hole TOF experiments. The changes in the shape of the recorded TOF waveforms at different 

times after bias application clearly indicate changes in the internal electric filed profile, which in 

turn indicates build up of space charge in the samples.  

These results suggest that the space charge has significant contribution to the observed 

behavior of the dark currents in metal/a-Se/metals devices. The amount of charge that can move 

in the sample gets smaller as the regions of trapped charge grow in the sample because the total 

amount of charge free or trapped that the sample can hold at a given bias is limited by the 

geometric capacitance of the sample. Carrier transport properties are also affected by the 

presence of space charge. Since the space charge is not uniformly distributed across the sample 

the electrons and holes will have different deep trapping times (τ) in different regions in the 

sample, simply because the deep trap occupancy is different across the sample. In addition, since 

the electron mobility in a-Se is field dependent, the electron mobilities in the sample will be 

position dependent, because the electric field in the sample is not uniform. At high densities the 

immobile space charge (we assume that the space charge forms mostly due to trapped carriers) 
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can make the recombination process in the sample of particular significance and this also affects 

the transport of carriers through the sample. 

The accumulation of trapped charge in the sample changes the field near the electrodes 

and thus affects carrier injection form the electrodes in the sample as well.  

The temporal behavior of the dark currents is a result of a complicated interplay of the 

processes described above. Under different circumstances totally different scenarios are possible 

which explains at least qualitatively the great variety in the observed I-t curves. Because very 

deep traps exist for both electrons and holes in a-Se, the process of relaxation of the space charge 

regions to their new equilibrium state after abrupt change in the experimental conditions will be 

very long. For that reason, the dark current in a-Se will be a strong function of the history of the 

sample and precise corrections for them might be very difficult. 

 The effects of x-ray radiation on the dark currents in single layer metal/a-Se/metal 

devices were studied. It was found that x-ray irradiation (about 2 R) of a sample prior to 

application of the voltage across it has no effect on the dark currents within the precision of our 

measurements. Irradiation of biased samples however leads to changes in the dark current. The 

effect depends on the polarity of the applied bias, as well as on the time interval between the 

application of the bias and the irradiation with x-rays. The dark current after the end of the 

irradiation is generally bigger that the dark current in unexposed sample measured at the same 

time after the application of the bias. This effect is known as the “persistent x-ray current” and 

has been previously described in the literature [157]. The time needed for the persistent dark 

current to decay to zero depends on the polarity of the applied bias.  For the case of our samples 

and positive polarity of the applied bias, the dark current after the irradiation returns to the level 

of the dark current in unexposed sample after 300-700 s depending on the time interval between 

the application of the bias and the exposure to x-rays. The persistent current decays to zero faster 

when the sample is exposed to irradiation when the dark current I-t curve has almost completed 

its decay. 

For the case of negative applied bias, the dark current in our samples after the irradiation 

with x-rays was bigger then the dark current in unexposed samples for the whole duration of the 

experiment (~20 min). 

 The observed behavior of the persistent current in our sample agrees well with the idea 

that space charge regions develop in the sample after the application of the bias. The x-ray 
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generated carriers in the bulk of the sample, as a result of the profile of the space charge regions 

after the irradiation, is different than that established in an unexposed sample. That is the reason 

for the observed persistent currents. It can take quite a long time for the space charge regions 

after the irradiation with x-rays to return to their unperturbed state (the state in the unexposed 

sample). During that time a different current will flow compared to the one in unperturbed 

samples 

Effects of the substrate temperature during the film fabrication process on the magnitude 

of the dark currents in metal/a-Se/metal structures were studied. We have found that the 

magnitude of the dark currents in films produced by deposition on cold substrates and 

subsequent post annealing have much lower dark currents than the films produced on hot 

substrates. Our measurements indicate that films produced by cold deposition and annealing 

have lower hole lifetimes and hence bigger concentration of deep hole traps, most significant  

part of which have appeared as a result of the cold  fabrication process. Dark current 

measurements on cold deposited films have, however, confirmed that the deep hole traps that 

appear as a result of the deposition on cold substrate do not act as centers for thermal generation 

of carriers in the film. Thus we can assume that the thermal generation component of dark 

currents is the same for the cold and hot deposited films. The observed decrease in the dark 

current is most probably due to the fact that the cold deposited films can deeply trap much bigger 

amount of holes then the films deposited on hot substrates. The observed decrease in the dark 

current can be then explained in terms of space charge limited currents. Another possible 

explanation is that the region of positive space charge that develops due to trapped holes near the 

positively biased electrode acts to decrease the electric field near that electrode and thus the rate 

of hole injection from the electrode decreases. These results have big technological importance 

because they prove that the cold deposition process is very suitable for the production of 

n- like layers. 

The influence of the metal from which the top electrode has been produced on the dark 

current in metal/a-Se/metal devices in which the top electrode is carrying the negative bias was 

investigated. Several metals were investigated as top electrodes: Al,  Au and Pt. It was found that 

Pt top electrode results in the lowest dark current densities under all other conditions being the 

same. We observe a negative correlation between the work function of the metal used to produce 

the top electrode and the dark current in the metal/a-Se/metal structure. The metals with higher 
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work function lead to lower dark currents in the samples under allother conditions being the 

same.  

We do not have a complete explanation for the observations described above. However, 

the results do have a significant technological importance giving a way to decrease the dark 

current in a-Se photoconductor layers operating a under negative bias up to 5 times by simply 

fabricating the top contact from Pt.     

 

5.4 Reduction of Dark Currents in a-Se Photoconductor Devices for X-ray 
Detector Applications 

Based on the results from experiments described in subsections 5.1 through 5.3, we have 

been able to propose a new technology for dark current reduction in a-Se based photoconductor 

layers. In this subsection we will describe this newly proposed technology and compare it with 

the existing methods for dark current reduction in a-Se based photoconductor layers. 

5.4.1 Description of the New Technology for Dark Current Reduction in a-Se 
Photoconductor Layers 

The existing methods for dark current minimization in a-Se photoconductor layers for 

application in x-ray image detectors are based on the use of multilayered structures [161, 162]. 

United States patent [161] is directed to reducing the dark current in a-Se x-ray detectors by the 

inclusion of buffer layers, or blocking layers as shown in Figure 5.39. These are specially alloyed 

and doped layers, or layers from different material placed on the top and bottom surfaces of the 

a-Se x-ray detection layer, between the a-Se and the bias electrodes.  The buffer layer between 

the a-Se x-ray photoconductor and the negative electrode is called the p- like layer. This 

p- like layer, is a buffer layer, which is normally As2Se3 or a-Se heavily doped with Cl (more 

than 100 ppm). The buffer layer between the positive bias electrode and a-Se is called the 

n- like layer, and it is an a-Se layer that has been doped by an alkali metal dopant, and has been 

alloyed with a few per cent As to achieve stability against crystallization. The buffer layers are 

much thinner than the a-Se photoconductor layer so that the x-rays are absorbed mainly in the a-

Se layer. This multilayer structure with buffer or blocking layers between a-Se and the bias 

electrodes, normally metals, reduces the injection component of the dark current. The holes 

injected from the positive electrode will be trapped in the n- like layer. The electrons injected by  
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a) Reversed bias a-Se based pin- like structure as an x-ray image detector for collecting electrons. 
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b) Reversed bias a-Se based pin- like structure as an x-ray image detector for collecting holes. 
 
Figure 5.39 Method of producing multilayer  metal/a-Se/metal  pin- like structures  for digital x-ray image 
detectors as proposed in [161]. 

 

the negative electrode will be trapped in the p- like layer. The electric field near the electrodes 

will collapse due to the presence of the trapped holes and electrons, and thus the carrier injection 

rate that is proportional to the electric field at the electrodes will decrease which leads to the 

reduction of the dark current in the pin- like structure. 

An United States patent [162] directed to the reduction of the dark current in an a-Se x-

ray detector by using a double layer structure, containing a transport (buffer) layer based on di-

antimony three-trisulfide (Sb2S3) is shown in Figure 5.40. The authors claim that a diode whose 

cathode is the charge transport layer is formed at the interface between the x-ray detection layer 
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and the charge transport layer so that no holes are injected from the positive electrode into the x-

ray detection layer. Thus, the hole component of the injection current is minimized and the 

structure has tolerable dark currents for applications in digital x-ray image detectors. 
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a) Double layer detector structure with low dark currents for collecting electrons. 
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b) Double layer detector structure with low dark currents for collecting holes. 
 
Figure 5.40 X-ray Detection Plate based on double layer structure proposed in [162]. 

 

The only fundamental difference between the two patents [161] and [162] is that the dark 

current reduction is achieved by using different chemical compositions in the buffer layers. Both 

cases involve using a blocking layer of particular composition that is different than the actual x-

ray detection layer (i- like layer) which absorbs the x-rays and generates the charges. The latter 

differance leads to certain difficulties that will be described below. 
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The technology for the dark current reduction that we are proposing is based on the same 

rational as the techniques described above that use a trapping layer to block carrier injection 

from the electrodes. The novelty is that we have found a convenient way to produce hole 

trapping layers (n- like layers) by the combined use of two technological processes – cold 

deposition and annealing that were described in subsection 5.2.3.2. The term "cold deposition" 

refers to the deposition of a-Se from its vapor in a vacuum system 

on a substrate whose temperature is kept bellow the glass transition temperature of the particular 

a-Se alloy used. The annealing process basically corresponds to heating the a-Se layer to a 

temperature that is close to its glass transition temperature for time period from one to several 

hours. The films produced on substrates kept at sufficiently low temperatures during the 

deposition process have very poor hole transport, good electron transport and low dark current 

(see subsections 5.2.3.3 and 5.3.9) which essentially makes them good quality n- like layers. 

Such cold deposited layers can obviously directly replace the alkali metal doped n- like layers in 

the structures shown in Figure 5.39 and the Ss2S3 charge transport layers in Figure 5.40. 

However, the full potential of the technology we are proposing is best understood by examining 

the structures shown in Figure 5.41. When a double layer structure is used (Figure 5.41-a and 

Figure 5.41-b), both layers can be produced from one and the same a-Se alloy (Se:0.2-0.5 at. % 

As:very little (≤2ppm) or no Cl). The n- like layer is produced using a low substrate temperature 

(in some cases around 4 oC). The i- like layer is deposited at a higher substrate temperature that 

will ensure reasonable hole transport in this layer. The exact substrate temperatures are found by 

several trial and error experiments for a given a-Se alloy. 

In some cases, the new technology enables x-ray imaging with a single a-Se layer when 

the readout electronic circuit requires a negative bias across the photoconductor layer (Figure 

5.41 c)). In this case the hole injection from the bottom metal/a-Se interface is to some extend 

suppressed for the cold deposited a-Se layer. In some practical cases, this suppression is 

sufficient to reduce the dark current to tolerable levels. The application of a single 

photoconductor for x-ray imaging is a big advantage in the case of high-resolution detectors 

because the buffer layer (n- like layer) has undesirable effects on the imaging performance of the 

detector. 

When the n- like layer is at the bottom of the structure (Figure 5.41-a) the observed 

reduction in the dark current is somewhat greater than the case when the cold deposited n- like 

 213



V
Metal (pixel electrode)

X-rays

n- like layer: Cold deposited a-Se:As

i- like layer: a-Se:As

Pixel storage capacitor

Pt (radiation receiving electrode)

 
a) Amorphous Se based in detector structure for collecting electrons. 
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b) Amorphous Se based ni detector structure for collecting holes. 
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c) Single layer a-Se detector structure for collecting electrons. 

 

Figure 5.41 The most suitable detector structures for fabrication by the cold deposition technology. 
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layer is at the top side of the structure (Figure 5.41-b). This might be due to changes at the 

bottom surface of the films related to cold deposited that act additionally to reduce the hole 

injection from the bottom electrode. The latter enables the use of thinner n- like layers for the 

case of negative bias, and hence the buffer layer at the pixilated electrode is thinner with very 

little negative impact on the imaging performance of the detector. 

It was experimentally found (subsection 5.3.10) that top electrode fabricated from Pt 

results in the smallest dark current when the structure is negatively biased and  all other 

conditions are the same. When positive bias is needed, the top electrode can be fabricated from 

Mg. Such a choice as suggested in reference [14] will minimize the dark currents for the case of 

positively biased radiation receiving electrode. 

The main difference between the technology for dark current reduction in a-Se 

photoconductor layers and those that previously existed [161, 162] is that the hole  

blocking properties of the n- like layer have been achieved by changing the deposition conditions 

instead of changing the actual chemical composition of the layer. This simplifies the production 

process because single a boat deposition system cab be used, and there is no need to produce 

specially doped alloys for production of n- like layers, which by its self is a difficult task; and 

avoids some other issues that will be described in the following subsection. 

5.4.2 Levels of Dark Currents in Single and Double layer a-Se X-ray Detector 
Structures Achievable with the Cold Deposition Technology 

In this subsection we provide experimental results from initial tests of the cold deposition 

technology for dark current reduction in a-Se photoconductor structures described in the previous 

subsection.   

As discussed in subsection 5.3, the dark current I in a simple single layer metal/a-

Se/metal structures depends not only on the applied field but also on time from the instant of 

application of the bias; I = I(t) . In detector applications, usually the bias is applied and kept on 

the detector for long times e.g. at least longer than 300 s. Figure 5.42 shows typical J-F (current 

density vs. field) curves obtained from a cut through a family of I-t curves 300 s after the 

application of the bias voltage (see subsection 4.4 for more details) for several Al/a-Se/Pt 

structures produced from selenium alloys that contained no Cl. The single i- like  was deposited 

on a heated substrate (Tsubstrate = 60 °C) from Se-0.5%As alloy, which resulted in τh ~ 80 μs and 

τe ~ 400 μs. This single layer exhibits dark currents that are 2-3 orders of magnitude greater than 
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~10-10 A cm-2 that are needed in detector applications over operating fields greater than 5 V/μm. 

Figure 5.42 also shows the J-F data points for an single n- like layer produced from the same 

alloy (Se-0.5%As) as the single i- like layer by cold deposition; in this case Tsubstrate = 25 °C. The 

hole and electron lifetimes in this layer were measured to be τh ~ 0.8 μs and τe ~ 300 μs 

respectively. The J-F data for a double layer ni- like detector structure are also shown in Figure 

5.42. This particular detector structure was recently used in prototype detectors for slot scanning 

x-ray imaging [11]. Both layers in the latter structure were produced from the Se-0.2%As alloy. 

The n- like layer was deposited at a substrate temperature of Tsubstrate = 7 °C  and is 20 μm thick. 
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Figure 5.42 Current density vs electric field characteristics of thee different a-Se based detector structures, all 
fabricated from  Se:As no Cl alloys. ■ - Simple Al/a-Se/Pt structure produced from Se-0.5%As no Cl alloy at 
Tsubstrate = 60 °C, which is an i- like layer   ● - An n- like layer produced from the same alloy (Se-0.5%As no 
Cl) by cold deposition in which Tsubstrate = 25 °C.  ♦ - An ni- like structure produced as a sister sample for one 
of the x-ray detectors described in [11]. Both layers are produced from the same alloy (Se-0.2%As no Cl). The 
n- like layer was deposited at Tsubstrate = 7 °C  and is 20 μm thick. The i- like layer was deposited with Tsubstrate 
= 40 °C and is 110 µm thick. The dark currents measured and reported for commercial selenium based 
pin- like structures at 10 V µm-1 typically lay in the hatched area. The smallest x-ray exposures of interest for 
mammography will produce currents that are slightly bigger than those corresponding to the upper end of 
the hatched area if the thickness of the a-Se photoconductor is about 200 µm and the applied bias is greater 
than 5 V µm-1. 
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The i- like layer was deposited at a substrate temperature Tsubstrate = 40 °C and is 110 μm thick. 

The n- like layer in this structure has a hole lifetime τh ~ 0.6 μs and τe ~ 300 μs.  The lifetimes 

measured in the i- like layer were τh ~ 6 μs and τe ~ 400 μs. It is worth mentioning that the 

electron transport in the cold deposited n- like layer is much better than the electron transport 

measured in commercial alkali metal doped n- like layers (see Table 5.2). This can potentially be 

a big advantage for the case of high resolution image detectors with fast dynamic pixel readout 

such as CCDs working in TDI mode.  

It is clear from Figure 5.42 that the dark current in the double layer ni- like structure at 10 

V/μm is almost an order magnitude lower than that in the simple cold deposited n- like layer. 

The dark current in the ni- like layer produced in the described manner is somewhat lower than 

the typical values reported for pin- like structures at the same field (hatched area in Figure 5.42). 

The smallest x-ray exposures of interest for mammography will produce currents that are slightly 

bigger than those corresponding to the upper end of the hatched area in Figure 5.42 if the 

thickness of the Se photoconductor is about 200 μm and the applied field is larger than 5 V/μm. 

However, we have to admit that the direct comparison between the dark current densities 

for the commercial pin- like structures and the ni- like layer based on the results presented in 

Figure 5.42 is not fair. The buffer layer approach for dark current reduction addresses only the 

injection component of the currents and can not suppress currents that are due to thermal 

generation of carriers in the bulk of the sample. The dark current density due to thermal 

generation of carriers in the photoconductor is proportional to the thickness of the sample. The 

ni- like structure in Figure 5.42 is only 130 μm thick while a typical commercial pin-

 like structure for general radiography can be more than 700 μm. That difference in the thickness 

accounts almost in total for the observed difference in the dark current densities at 10 Vμm-1 

between the commercial pin- like strucures and the ni- like structure based on the cold deposition 

technique. The small difference that still remains after taking into account the difference in the 

thickness between the samples can be attributed to the differences in the bottom electrode 

interface. A commercial pin- like structure is typically grown on ITO layer that serves as the 

bottom electrodes. The cold deposited ni- like structures were grown on an Al film, to imitate the 

metal bus on top of the CCD readout chip. As described in subsection 5.3.9, the interface 

Al/Al2O3/a-Se might have additional hole blocking properties.  
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Taking into account of all the differences, we have to conclude that the cold deposition 

technique for dark current reduction gives very similar results with respect to the observed 

magnitude of the dark current densities as the commercial pin- like structures [161] and the 

double layer structures containing Sb2S3 charge transport layer [162].  

The success of all methods for dark current minimization proposed so far [161, 162, 163] 

is attributed mainly to the successful reduction of the hole injection rate from the positive 

electrode.  It is difficult to explain all experimental findings connected to the reduction of the 

dark current in cold deposited a-Se photoconductor structures within the frame of a simple model 

since the charge transport through a-Se multilayer structures is generally not well understood. 

Theoretically, two separate mechanisms, or a combination of them, can lead to reduced hole 

injection and hence to the observed dark current reduction in cold deposited Se layers. The first 

is related to the modification of the properties of the metal/n- like Se interface in a way that 

suppresses the hole injection from the metal electrode. Phenomena that can lead to such a 

modification resulting from the cold deposition have been proposed in the literature [29, 141] 

and we have already discussed these in subsection 5.3. Their relative contribution to the observed 

dark current reduction will be investigated in the future. 

The second mechanism for the reduction in the current must be related to the 

modification of the electric field at the interface between the positively biased metal electrode 

and n- like Se. Due to the poor hole transport in the n- like layer, most of the holes injected from 

the positive electrode become deeply trapped in this layer and form a positive bulk space charge 

region near the metal electrode. By virtue of Poisson's equation, the field at the metal interface 

becomes reduced from its original value, which decreases the hole injection, and hence the dark 

current. Similar things probably happen in the single cold deposited layers due to increased 

concentration of hole traps near the bottom interface. 

The reduction in the hole range, as we have already discussed in subsections 5.2.3.3 and 

5.2.3.4 with decreasing Tsubstrate is due almost totally to the reduction in the hole lifetime τh. Thus, 

lower substrate temperatures must result in a higher concentration of deep hole traps Nt and mild 

(Tannealing ~ Tg) annealing for approximately 1 hour seems to have a negligible effect on Nt. At the 

same time, cold deposition does not increase the concentration of deep electron traps. Many 

attempts have been made to relate the electron and hole traps to various structural defects in a-Se 

films, the disorder in the amorphous structure including chain ends and the generation of 
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monoclinic nanocrytal inclusions at low substrate temperatures; but the exact nature of these 

traps still remains unknown and published work is sometimes highly controversial. The latter 

makes it particularly difficult to formulate an exact physical model that can explain all 

experimental observations related to the proposed in this work technology for dark current 

reduction in a-Se photoconductor layers. 

5.4.3 Potential Advantages of the Cold Deposition Method for Dark Current 
Reduction over the Previously Used Multilayer Structures 

As described in the previous subsection, the newly proposed technology for dark current 

reduction limits the dark currents densities in a-Se multilayered structures to approximately the 

same levels as achieved by the previously existing methods. In addition, the new technology has 

certain potential advantages that will be briefly discussed below: 

• It enables x-ray imaging with a single layer a-Se photoconductors at electric fields 

5 V µm-1 and slightly higher, which is a distinct advantage for applications in very 

high resolution x-ray image detectors one example being mamography. 

• The new technology is simpler for implementation than the previously existing 

ones. All the layers can be produced from one and the same starting a-Se alloy 

and thus a simple single boat evaporation process can be used. The other 

technologies use two or more materials with different chemical compositions and 

require evaporation from two or more boats and or co-evaporation to produce a 

multilayer structure. The cold deposition technology avoids the necessity to 

produce materials required for the production of n- and p- like layers by previous 

structures for dark current reduction. Synthesis of such materials on itself is quite 

complicated, challenging and time consuming process.  

• The n- like layers produced with the cold deposition method have some potential 

advantages compared to the layers produced from alkali metal doped a-Se (as 

practiced by ANRAD). Both types of n- like layers have similar hole transport 

(similar hole trapping properties) but electron transport in cold deposited 

n- like layers is better (the electron μτ-product is at least 4 times bigger) than in 

alkali metal doped n- like layers, which minimizes the unwanted effects due to 

electron trapping in such layers. The absence of big amounts of As in the cold 
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deposited n- like layers ensures higher mobility for electrons in such layers which 

is a distinct advantage when fast readout of the pixels is required, and the readout 

circuit collects electrons.  

• Long-term stability of the cold deposited n- like layers will probably be better 

compared to those produced from alkali metal doped Se, because the latter 

material tends to crystallize and, further, positive ions like Na+ ones can diffuse in 

the structure, aided by the large applied field. 

In subsections 5.4.1 and 5.4.2 we have explained that advantages offered by the new 

technology are much better pronounced when the radiation-receiving electrode is negatively 

biased. This is the case for many detector applications because the image readout electronic 

circuit offers distinct advantages in simplicity and price when designed to collect electrons and 

hence requiring the use of negatively biased photoconductor structures (radiation receiving 

electrode negative). 

5.4.4 Dark Current Reduction - Summary 

The experimental research during this work has enabled us to propose and test a novel 

method for dark current reduction in a-Se photoconductor structures. The method as well as the 

previously existing techniques for dark current minimization, reduces the injection component of 

the dark current through the use of a thin buffer (trapping) layer that is inserted between the x-

ray generation layer and the electrodes on its sides. We have proven that efficient hole trapping 

layer (n- like layer) can be fabricated in two steps: the deposition of a-Se on cold substrate and 

mild post annealing. Such cold deposited n- like layers can replace the alkali metal doped Se:As 

n- like layers in commercially used multilayer a-Se photoconductor structures. The new method 

leads to x-ray imaging with simple single, ni-, and in- like structures. The electron injection by 

the negative electrode is minimized by proper selection of the electrode metal. Thus the simple 

cold deposited single and double layer structures can be produced by the evaporation of only one 

suitably chosen Se:As alloy. We achieve different charge transport properties of i- like layer and 

n- like layer by changing the deposition conditions during fabrication. In particular we can 

change the substrate temperature to switch from n- like layer production to i- like layer 

production and vice versa.  Thus a simple single boat evaporation system can be used for the 

production of the photoconductor structure.  In all previous methods, materials with completely 
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different chemical composition are used for the production of different layers and that requires 

the use of multi-boat evaporation. In addition, materials suitable for fabrication of buffer layers 

have to be synthesized and produced which on its own is a complicated task. 

The simple ni- like structures proposed by us reduce the dark currents to approximately 

the same levels that can be achieved with commercial pin- like structures based on alkali metal 

doped n- like layers or double layer structures containing Sb2S3 as charge transport layers.  

The cold deposited n- like layers have potential advantages over alkali metal doped n-

 like s that are related to the absence of alkali metal ions. The advantages include better electron 

mobilities and lifetimes in the cold deposited n- like layers and potentially better long term 

stability to crystallization and drift. 

 

5.5 Image Characteristics of Pilot X-ray Detectors 

5.5.1 Introduction 

The cold deposition based technology described in subsection 5.4 was developed and 

tested as a part of a bigger project aiming at the development of high resolution (20 lp/mm) 

digital momographic detectors for use with slot scanning digital x-ray machines. 

Currently existing detectors for slot scanning imaging are of indirect type. They utilize 

CCD readout circuits working in Time Delayed Integration (TDI) mode coupled to phosphors 

that makes them sensitive to the x-rays. The lateral scatter of light produced in the scintillation 

events limits the resolution of such indirect detectors to about 8 lp/mm in spite of the fact that the 

size of the pixel on the CCD in some cases allows imaging with much higher resolution.  

The goal of the project was to develop a direct conversion detector for slot scanning 

imaging based on a CCD readout circuit coupled directly to an a-Se photoconductor. The charge 

created in the photoconductor by the x-rays is collected and injected in the CCD wells by the 

applied electric filed with almost no lateral scatter and such detectors have the potential of 

achieving very high resolution. After some preliminary research [13], a-Se was selected as the 

photoconductor because of its high intrinsic resolution and due to the fact that it can be 

conveniently coated onto the CCD by vacuum deposition which is a distinct technological 

advantage. 
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More details on the slot scanning technique for x-ray imaging, TDI readout technique, 

and the pixel structures of direct conversion x-ray detectors with CCD readout are provided in 

APPENDIX A. 

   Several different CCD chips fabricated at DALSA Inc., Waterloo, Ontario, Canada were 

used as image readout circuits in the different stages of the project. In this subsection we will 

present results from tests with two prototype CCDs. The first of these two types of CCD chips 

was basicaly a line detector known under the code name SELMA. The used version of the chip 

contained 400 detector elements with size 20×1000 μm arranged in one line. The pixel electrodes 

in the line were parallel along their long side and the gap between them was 5 μm. Further 

details and pixel structure (see Figure A.5 in APPENDIX A) for this type of CCD chips are 

given in [11]. The second type of prototype CCD chips was known under the code name 

SALLY. These chips are array detectors with an image area of  5 × 10 mm. Pixel size in SALLY 

CCDs was 20×20 μm and the pixel pitch was 25 μm. Both SELMA and SALLY CCD chips had 

an aluminium metal bus to interface the a-Se photoconductor layer. Both types of chips were 

designed to collect the electrons generated by the absorbed x-rays in the photoconductor layer. 

Thus, the a-Se layers on top of the CCDs had to be optimized for operation under a negative bias. 

The chips were functionally tested at NOVA R&D Inc, Riversdale, California, USA. The a-Se 

based photoconductor was fabricated on top of the CCD chips in our laboratory using the cold 

deposition technology for dark current reduction after which a radiation receiving Pt top 

electrode was sputtered on top of the a-Se layer to complete the detector structure. The Se coated 

detectors were shipped back to NOVA R&D Inc for functional testing, mounting in carrier 

packages and wire bonding.  

The performance of the detectors was studied by our partners at Sunnybrook Hospital, 

Toronto, Ontario, Canada. Figure 5.43 shows a photograph of a SALLY detector PCB card and 

the data acquisition system PCB board used to evaluate the performance these detectors. 

The x-ray detector imaging performance is most often quantitatively characterized in 

terms of its Detective Quantum Efficiency (DQE) and Modulation Transfer Function (MTF). 

MTF is a measure for the spatial resolution, while DQE is a measure of the signal-to-noise ratio, 

contrast resolution and dose efficiency.  An imaging system is best characterized by examining 

the corresponding MTF and DQE curves over a range of spatial frequencies, because one 

number at a single spatial frequency cannot adequately describe the imaging performance of a 
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a)  A pilot x-ray detector based on SALLY CCD and an a-Se photoconductor layer produced by the cold 
deposition technology described in this work.  The detector is mounted in a ceramic chip carrier and wire 
bonded.  The PCB card on which the chip carrier is mounted provides a means to conveniently connect the x-
ray detector to the data acquisition and cooling systems.   The thick wire supplies the HV bias to the radiation 
receiving electrode which is not visible in the picture. The actual connection between the electrode and the 
HV wire is accomplished by the use of a small diameter wire that can not be seen in the photo. The latter wire 
is glued to the radiation receiving electrode of the detector.  The spot of glue holding the wire to the electrode 
can barely be seen in the picture close to the bottom edge of the Se area. However, both the tiny wire and the 
spot of glue connecting it to the top electrode are clearly seen in the x-ray images. 
 

 

 

 

 

b) SALLY detector data acquisition system.  The picture on the left is shows the cooling finger that keeps the 
chip at about 20 C. The photo on the right shows the component side of the PCB board.  
 

Figure 5.43  SALLY x-ray detector and data acquisition systems. All photographs courtesy of David Hunter, 
Sunnybrook and Women’s  Hospital, Toronto. 
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detector system. Thus the measurements of the DQE and MTF as a function of the spatial 

frequency are routinely used to determine how well the imaging system captures information 

over that range of spatial frequencies of interest.  

The a-Se layers produced in our lab on top of SELMA and SALLY CCD were about 200 

μm thick. The a-Se layer with such a thickness absorbs about 95% of the incident radiation in the 

mammographic energy range. That value is higher than screen-film cassettes and indirect 

conversion detectors and the DQE is not expected to be adversely affected, so the first image 

performance measurements with SELMA and SALLY detectors were focused on measurements 

of their MTFs, rather than their DQEs. The measurements were performed at the Sunnybrook 

Hospital, University of Toronto by the method of tantalum edge as described in [11]. 

Some results of the resolution performance testing of SELMA and SALLY chips will be 

reported in this subsection together with some results related to the dark current minimization 

problem.  

5.5.2 Dark Current Measurements 

The first set of experiments was aimed at the evaluation of the dark current performance of a-Se 

layers produced by the newly proposed fabrication technology based on the cold deposition 

technique. The photoconductor layers were deposited on silicon wafer pieces with Al deposited 

on one of their surfaces to imitate closely the interface between the metal bus of the chips and the 

photoconductor layer. The dark currents, as well as the x-ray induced currents were measured on 

these Al/a-Se/Pt structures under negative bias (see Figure 5.41) to evaluate the performance of 

the photoconductor layer under conditions close to the ones present in a real detector.  The 

investigated conditions have covered a range of applied fields up to 10 Vµm-1. The x-ray induced 

currents were measured at the lowest exposure rates of interest used in mammography.  The 

results have demonstrated that the dark currents are sufficiently low and that the ratios between 

the x-ray induced current and dark currents are very reasonable. For example, we have measured 

ratios better than 200:1 at a bias of 5 Vµm-1.   

In a second set of experiments, the influence of the dark current on the performance of 

the x-ray detectors containing SELMA readout CCD and cold deposited photoconductor 

structure was studied.  A selection of important results is shown in Figure 5.44. The expected  
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Figure 5.44 The total dark signal in Se coated SELMA CCDs biased at 3.5 V/μm in shown in this figure. The 
photoconductor utilizes the dark current reduction technology based on the cold deposition technique and 
has a double layer ni-structure. The n- like layer is 30 μm thick while the thickness of the i- like  is about 180 
μm.  The dark signal represented in the graph has two components. One of them is the dark current trough 
the Se photoconductor caused by the applied HV bias. The second one is due to the dark current of the CCD 
chip.  The measurements have shown that the dark signal is dominated by the dark current of the CCD chip, 
due mainly to surface generation of carriers in Si. The typical dwell time of the electric charge in the 
quantum well of the CCD is expected to be 200 ms or less. Thus the dark signal does not pose a serious 
problem for the SELMA detector operation.  The figure is based on experimental data obtained by our 
partners at Sunnybrook Hospital, University of Toronto (courtesy of David Hunter). 

 

dwell time for the electric charge in the well of the CCD in a mammographic TDI slot scanning 

system is about 200 ms. As apparent from Figure 5.44, the dark signal does not pose a serious 

problem. Another interesting result is that the dark signal for the SELMA devices is dominated 

by the thermal properties of the silicon (thermal generation in that material) and the contribution 

of the dark current forced hrough the a-Se layer by the HV bias is very minimal. This 

observation is important because it allows the used of higher electric fields, or the use of 

structures with thinner n- like, or even single layer photoconductor structures (see Figure 5.41) to 

achieve imaging with higher spatial resolution. 
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5.5.3 Resolution Performance of SELMA X-ray Image Detectors 

Photoconductor double layer ni- like structures with different thickness for the 

n- like layer were manufactured on top of several SELMA CCD chips following the cold 

deposition method for dark current reduction (see Figure 5.41-a). Photoconductors, having the 

structure shown in Figure 5.41-c was also produced on several of the SELMA CCD chips. The 

thickness of the n- like layers in the ni- like structures was in the range from 6 to 50 μm. The x-

ray detectors produced in this way were used to study the influence of the blocking layer 

thickness on the resolution of the detector. It was also interesting to study whether the dark 

current in an a-Se photoconductor will become high enough to interfere with the functioning of 

the x-ray detector, especially in the detectors having a double layer photoconductor structure 

with the thinnest n- like layers and in the detector utilizing a simple single layer structure (Figure 

5.41-c). 

The MTFs for these detectors were measured and the results were published in [11]. Some of the 

measured MTFs are shown in Figure 5.45.  As intuitively expected, the presence of a thick 

blocking layer between the pixel electrodes and the x-ray detection layer (i- like layer) 

deteriorates significantly the resolution performance of the detector. A model was developed to 

explain the influence of the blocking layer thickness on the MTF of the detector (for details see 

[11]). The MTF calculated on the basis of that model agrees reasonably well with experimentally 

measured MTF for the cases of a single layer photoconductor structure, and ni- like structures 

with n- like layer thicknesses of 30 and 50 μm. Disagreement between the calculated and 

measured MTFs is observed for ni- like structures having 6 and 16 μm blocking layer thickness. 

The reasons for the observed disagreements are not clear. Part of them might be related to 

oversimplifications in the model used to calculate the MTF. Another possible explanation is 

related to the reproducibility of the charge transport parameters in the produced cold deposited 

n- like layers. It is known that the quality of a-Se films is related quite strongly to the presence of 

some trace impurities in the coater. Sometimes conditions that are difficult to account for, such 

as the history of the vacuum coater system, can have a significant impact on the quality of the 

produced layers. The reasons for the observed discrepancy will have to be investigated more 

systematically in the future. 

On the positive side, Figure 5.45 demonstrates that SELMA detectors that incorporate 
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Figure 5.45 Resolution comparison between SELMA x-ray detectors having different a-Se photoconductor 
structures fabricated on top of the CCD chip. All photoconductor layers were fabricated by the use of the 
cold deposition technology for dark current reduction. Data were provided by David Hunter, Sunnybrook 
and Women’s Hospital, Toronto.  

 

single layer structure or an ni- like structure with a thin n- like layer are capable of imaging with 

very high resolution (20 lp/mm).  

For all different photoconductor structures involved in the experiments and over the 

whole rage of applied electric fields (0-5 V/μm), the dark currents forced through the a-Se 

photoconductor layers in SELMA detectors have never imposed any serious problems for the 

detector performance. 

In Figure 5.46 we have compared the experimentally measured MTF of several 

commercially available detector systems for mammography with the MTF measured on SELMA 

x-ray detector utilizing a cold deposited single a-Se photoconductor layer. For all indirect  
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Figure 5.46 Comparison between the MTF measured for SELMA x-ray research detector and for several 
commercially available detector systems. Data were selectively extracted from: [164] for Siemens Mammomat 
NovationDR system, [11] for single photoconductor layer SELMA research detector, [166] for Fischer Imaging 
SenoScan system, and [165] for both AGFA Mamoray HDR screen-film system and FUJI PROFECT 
computed radiography system. 

  
systems, the lateral spread of light emitted during the scintillation events produced by the x-rays 

interacting with the phosphor layer (or during the laser readout of the plate for computed 

radiology system) limits the resolution of such detectors somewhere in the range 10-14 lp mm-1. 

Note that this limitation is almost totally due to the intrinsic resolution of the phosphor. Both the 

intrinsic resolution of the film in AGFA screen-film system and of the CCD in the detector of 

Senoscan imaging system is above 18 lpmm-1.  
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The red MTF curve for the SELMA detector in Figure 5.46 lies above the MTF curves 

for all other competing detector systems. This is a clear indication that the SELMA detectors 

have excellent spatial resolution, much better than those of the other detector systems presented 

in Figure 5.46. The highest spatial resolution of SELMA detector is due to the smallest pixel size 

of the CCD readout circuit and to the fact that a-Se has much superior intrinsic resolution than 

CsI(Tl). 

5.5.4 Imaging Performance Evaluation of SALLY Prototype X-ray Detector 

SALLY detectors were actually capable of acquiring x-ray images. They have a pixel pitch of 25 

µm and an image area of approximately 10 × 5 mm. The a-Se photoconductor layer produced on 

SALLY chips had the simple single layer structure or double layer ni-structure (see Figure 5.41-a 

and  Figure 5.41-b) of total thickness around 200 µm. The n- like layers in the ni- like structures 

were very thin (1-2 μm) because that allows imaging with a high spatial resolution and without 

any associated with the dark current problems up to 1000 V photoconductor bias voltage. Two of 

the first static images acquired with a SALLY detector are shown in Figure 5.47.  These were 

taken in an attempt to image a PCB (left image) and an apple seed (right image).  These 

preliminary x-ray images demonstrate the potential of SALLY detectors for high resolution 

imaging of soft tissue. Although some positioning problems are present (only part of the apple 

seed is in the image field) together with some defects in the particular CCD, one can notice a lot 

of details in the PCB image and, more importantly, in the image of the seed. The tiny HV wire 

and the conducting glue making the electrical contact with the top Pt electrode can also be very 

clearly seen in the image.  

The spatial resolution of an x-ray image detector can be routinely evaluated by imaging 

of commercially available resolution phantoms.  These phantoms have built in line patterns with 

different spatial frequencies. Taking x-ray images of the line patterns provides a fast and 

convenient way to study the spatial resolution of an x-ray detector.  

Figure 5.48 shows x-ray images of small areas of a resolution phantom taken with a 

SALLY detector. The imaged line pattern areas have spatial frequencies of 3, 5 and 16 lp mm-1. 

Since the lines in all the images can be clearly distinguished the experiment confirms that the 

spatial resolution of SALLY detector is indeed close to 20 lpmm-1. 
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Figure 5.47 Image of a printed circuit board (PCB) with the holes and the metal tracks (on the left) and 
attempt to image an apple seed (on the right). Both images are obtained with the energy of the x-rays in the 
mammographic range with a SALLY detector. The CCD has a vertical streak defect. The HV bias wire and 
the epoxy glue holding it to the top contact are also visible. Image courtesy of David Hunter, Sunnybrook and 
Women’s Hospital, University of Toronto.  

 

 
 

Figure 5.48 Spatial resolution evaluation for a SALLY x-ray image detector based on resolution phantom 
imaging.  The line pattern x-ray images were taken in snap shot mode and are differently scaled. Images 
courtesy of David Hunter, Sunnybrook and Women’s Hospital, University of Toronto.  
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Figure 5.49 presents x-ray images showing a part of a resolution bar pattern. The images 

were taken on a Faxitron® Specimen Radiography System and on the SALLY prototype imaging 

device. The resolution displayed can be seen on the numbers on the left side in the images and 

ranges from about 5 lp/mm to 8 lp/mm. The choice of window and level that allows fair  
 

 
 

Figure 5.49 SALLY-FAXITRON image comparison. The image on the left was taken with the digital detector 
FAXITRON® Specimen Radiography System. The image on the right was taken by SALLY prototype 
detector system in a step and shoot mode. The SALLY image consists of many “stitched” together images and 
has some alignment problems.  The HV bias wire can be seen in the image. This particular SALLY CCD 
shows some small vertical streak defects. Images courtesy of David Hunter, Sunnybrook and Women’s 
Hospital, University of Toronto. 

 

conditions for detector performance comparison are somewhat subjective and difficult because 

the Faxitron images could be stretched to emphasize any existing resolution. Such adjustment 

was not necessary with the SALLY prototype imaging system.  The image taken with the 

SALLY detector was comprised of 100 separate image sections taken in a step and shoot mode. 

There are alignment offsets. Also the bias wire is seen in the image segments. The wire appears 6 
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times in two rows situated just above the patterns with frequency 5.6 lp mm-1 and 7.1 lp mm-1 in 

the portion of the SALLY image shown in  

Figure 5.49. The SALLY CCD in this particular detector has some vertical streak defects 

appearing as very thin dark vertical lines. 

However, in terms of resolution, the SALLY image is clearly superior (see the amount of 

fine structure in the “numbers” that can be observed in the image taken with SALLY detector). 

This was expected because the digital x-ray image detector in Faxitron system is specified to 

have resolution of only 10 lp mm-1.   
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Figure 5.50 MTFs for a single layer SALLY prototype detector measured for two different qualities of the x-
ray beam. Data courtesy David Hunter, Sunnybrook and Women’s Hospital, Toronto. 

 
MTF and DQE of the SALLY x-ray image detector were measured to further characterize 

the performance of these prototype detectors. Two MTF curves measured for different x-ray 

beam qualities are shown in Figure 5.50. These MTF are very similar to the MTF curves for the 

SELMA detector shown in Figure 5.46 and simply confirm that the SALLY detector is capable 
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of imaging with a resolution that is much higher than the one achievable with the commercial 

detector systems with MTFs shown in Figure 5.46.  

The DQE efficiency for the SALLY detector was measured by David Hunter, 

Sunnybrook Hospital, University of Toronto under the following conditions: 35 kV tube 

potential, tungsten target, 0.5 mm Al + 0.03 mm Mo filtration, mean energy of the x-ray beam 22 

keV, and  28.8 mR exposure. The measured DQE is shown in Figure 5.51 together with DQEs  
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Figure 5.51 Comparison between a DQE curve measured for SALLY detector and DQE curves reported in 
the literature for several commercial detector systems for mammography. The conditions of the 
measurements were selected to be as close to each other as possible. SALLY DQE data courtesy David 
Hunter, Sunnybrook and Women’s Hospital, Toronto. The DQE data for KODAK ORTO M screen film 
system and for Fischer Imaging System were taken from [166]. The DQE data for ANRAD Corp. detector 
were taken form [167]. 

 
for several other detector systems reported in the literature and measured under similar 

experimental conditions. As seen from the figure, the values for the DQE measured on the 
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SALLY detector are somewhat lower at spatial frequencies up to 3.5 lp mm-1 when compared 

with the DQE values reported for ANRAD Corp. detector. Since this is the first time the DQE on 

a SALLY detector has been measured, we are not sure whether the observed relatively low 

values are objective or they are due to factors connected with this particular detector. For 

example, we have observed structural noise generated by defects in the particular CCD (vertical 

columns) and structural noise that appears in the image due to defects in the top electrode. The 

relative contribution of these two noise sources and the electronic noise in the measured DQE 

values are to be studied in the future. 

The task of comparing the DQE curves is not an easy one. However, over an ensemble of 

images (a large set of mammograms) what is likely to matter is the integral over the DQE curve 

[166]. Thus, if we use the area under the DQE curve as a measure of system effectiveness, Figure 

5.51 clearly demonstrate the superior performance of SALLY detector over the rest of the 

detector systems shown in the same figure. 

5.5.5 Summary 

In subsection 5.4 we have proposed and described a technology for dark current reduction 

in a-Se x-ray photoconductor layers based on the cold deposition technique. The results from the 

first practical implementation of this technology were described in this subsection (0).  The 

prototype detectors based on SELMA and SALLY experimental readout CCD chips have 

demonstrated an excellent imaging performance, as it was described in subsections 5.5.3 and 

5.5.4. This performance is in part due to the properties of the photoconductor layers fabricated on 

the CCD chips in our laboratory.  The development of an a-Se photodetector layer which has 

negligibly small dark current at high electric fields was a key factor in the realization of the high 

resolution x-ray detectors. 
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6. SUMMARY AND CONCLUSIONS 
 

6.1 Introduction 

The objective of this work was to find a suitable way for dark current reduction in a-Se 

photoconductor devices for application in high resolution medical x-ray image detectors through 

studying the electrical properties and durk currents in various metal/a-Se/metal devices as a 

function of deposition conditions, alloying and other technological parameters.  

Based on the results of the work described above, a new technology for the fabrication of 

multilayer a-Se structures with low dark currents was proposed and tested in a prototype a-Se 

based high-resolution x-ray image detectors. The new technology eliminates the need of doping 

with alkali elements to suppress the hole transport in the n- like layer and the complications 

associated with alkali doping. Consequently, the fabrication method proposed by us can have 

several potential advantages over the existing technologies for the fabrication of a-Se based 

multilayer photoconductor structures with low dark currents. The initial test results on the 

imaging performance of the prototype detectors were very promising (A patent application was 

filed [168].). 

 

6.2 Effects of Alloying and Doping on Charge Transport in Vacuum Deposited 
a-Se Films  

The effects of alloying and doping with several elements on charge transport in vacuum 

deposited a-Se films were studied by TOF and IFTOF techniques. The results from these 

investigations will be summarized below. 

6.2.1 Effects of Arsenic 

It was found that arsenic addition in the amounts 0.1-0.7 wt % increases the electron 

lifetime and decreases electron mobility when added both to pure and stabilized (Se:As:Cl) 

selenium. Overall, As increases the electron mobility-lifetime products (ranges) because the 

fractional increase in the electron lifetime is more than the observed decrease in the electron 

mobility. In very limited number of cases, when As is added to pure Se with extremely good 
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starting electron transport, there can be deviations from the tendency described above. In such 

cases, the electron transport can remain unaffected or can even deteriorate.  

The effect of As addition on hole transport is opposite to the effect on electron transport. 

Arsenic leaves the hole mobility relatively unchanged but causes the hole lifetime to decrease; as 

a result, the hole mobility-lifetime product also decrease as the amount of added As increases. 

6.2.2 Effects of Chlorine  

The effects of Cl addition on charge transport in vacuum deposited selenium films are 

somewhat opposite to those of As. 

 Chlorine in the amounts 2-70 ppm drastically deteriorates electron transport in selenium 

both when added to pure or stabilized (Se:As) material. The effect is dominated by the decrease 

in the electron lifetime, since Cl in the amounts specified above does not strongly affect the 

electron mobility especially in cases when added to stabilized a-Se material.  

When Cl is added to stabilized selenium (Se:As) it forces a significant increase in the 

hole lifetimes, leaving hole mobility unchanged. The total effect in such cases is a significant 

increase in the hole range. However, when Cl is added to pure Se, the effect on hole transport is 

not so clear. In such cases Cl tends to decrease the hole mobility slightly, while the effect on the 

hole lifetime shows significant variations with the starting pure Se material and alloying 

conditions. Anything between a slight increase to slight decrease in the hole lifetime can be 

observed. The magnitude of the effect is much smaller compared with the case when Cl is added 

to stabilized a-Se. 

6.2.3 Combined Alloying with Arsenic and Chlorine 

Our results show that combined alloying with As (0.1-0.7 wt %) and Cl (2-60 ppm) can 

be a very effective tool for the control of the carrier ranges in vacuum deposited films from 

stabilized a-Se. The addition of As generally improves the electron transport in the films at the 

expense of deteriorated hole transport. The deterioration of hole transport caused by the As 

dopant can be compensated for by the addition of Cl. Thus the combined addition of As and Cl 

results in improved mobility-lifetime products for both electrons and holes. In general terms, 

these results are in good agreement with the ones previously published in the scientific literature. 

 The main difficulty accompanying the alloying process is the very strong dependence on 

the properties of the starting pure Se material which makes the exact determination of the right 
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amounts of As and Cl additions needed a very difficult task. The simultaneous addition of As 

and Cl in arbitrarily big amounts will not have the same beneficial effect on the carrier transport.   

Our experiments indicate that, when added in large amounts both As (above 1 wt %) and Cl 

(above 100 ppm) force changes in a-Se which result in dispersive transport in the films for both 

types of charge carriers. 

6.2.4 Effects of Oxygen 

The effects of oxygen on charge transport in films produced from pure Se were 

investigated. This was motivated by the fact that oxygen impurities are very likely to be present 

in any pure (99.999%) a-Se as a “side effect” of the technological processes used for the 

recovery and purification of Se.  

Unlike previously published reports in the scientific literature, we have found that the 

addition of oxygen even in amounts smaller than 50 ppm can have a very strong impact on both 

electron and hole transport in a-Se films. We observe that oxygen deliberately added to pure Se 

in amounts specified above causes a deterioration in electron transport and improves hole 

transport. Both effects are caused mainly by changes in the carrier lifetimes.  

The effect strongly resembles that due to the addition of Cl into Se:As:Cl alloys; however 

when Cl is added to pure Se it causes deterioration of the electron transport but the effect on hole 

transport is relatively small and not clear (it can be in both directions). 

We have initial data that indicate that in films produced from oxygen containing 

selenium, charge transport changes differently as the films age compared to the changes in 

charge transport in ageing films produced from stabilized a-Se. As a result of ageing, the charge 

transport for both electron and holes slightly improves in films produced from Se:As:Cl alloys. 

In the films produced from oxygen containing pure Se, the electron mobility-lifetime product 

increases as the films age while the hole range decreases. Such changes correlate well with the 

data published in the literature, which demonstrates that oxygen is switches its bonding 

configuration in ageing a-Se films. 

6.2.5 Charge Transport in N- and P- Like Layers in Commercial a-Se 
PIN- Like Structures 

Charge transport in n- and p- like layers in commercial a-Se based pin- like structures 

was also investigated. The n- like layers were produced from Se:As material with alkali doping, 
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while the p- like layers were produced with heavy Cl doping or by the evaporation of As2Se3.  

Details on the concentration of dopants were not supplied for the investigated commercial pin-

 like structures. 

  We have found that electron ranges in the p- like layers is 2-3 orders of magnitude 

smaller than the hole range. At the same time, hole ranges in the n- like layers is only, at most, 

one order of magnitude smaller than the electron range in that layer. Thus, a-Se based n- like s 

with good qualities are harder to manufacture than a-Se p- like layers. 

Our TOF measurements on the pin- like structures have also shown that the hole transport 

in the p- like layer is much worse that the hole transport in the i- like layer and at the same time 

the electron transport in the n- like layer is much worse than the electron transport in the 

i- like layer. The latter peculiarities are "side effects" of heavy As or Cl doping and/or fabrication 

conditions. 

 

6.3 Effects of Preparation Conditions on Charge Transport in a-Se Films 

The influence of preparation conditions on charge transport in vacuum evaporated a-Se 

films was investigated in the course of this work. The emphasis was placed on the two 

parameters that can be easily changed in every vacuum system – the boat temperature and the 

substrate temperature.  

6.3.1 Effects of Boat Temperature on Charge Transport in Vacuum Deposited Films 
from Pure Selenium 

Due to fractionation issues, it is not possible to freely vary the boat temperature when 

films from stabilized a-Se are to be prepared and this is the reason that the dependence of charge 

transport parameters on the boat temperature was studied for films produced from pure Se 

material. In our coater, for source-to-substrate distance of 16 cm, variations of boat temperature 

in the range 190-250 °C changes the evaporation rate in the range 0.1-10 μm/min and the 

composition of the Se vapor as well.   

For films deposited at high substrate temperatures (Tsubstarte > Tg), variations of boat 

temperature and hence in the evaporation rate in the ranges specified above did not cause any 

systematic change in charge transport properties of the produced films. We observe a big scatter 
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in the data which can be attributed to the huge sensitivity of the properties of the films produced 

from pure Se material to the residual atmosphere in the chamber and hence to the coater history.  

6.3.2 Effects of Substrate Temperature on Charge Transport  in Vacuum Deposited 
a-Se Films 

Charge transport in vacuum deposited films produced from stabilized a-Se and from pure 

Se was investigated as a function of the substrate temperature in the range 0-80 °C.  

We have found that good quality a-Se films can be produced by evaporating Se on a cold 

substrate (Tsubstrate < Tg). The production process involves two steps: first, the evaporation of the 

film onto a cold substrate and second, mild (Tannealing ~ Tg) annealing with a duration from one to 

several hours. Films produced using the procedure described above have resistance to 

crystallization similar to the one observed for films produced on hot substrates as estimated with 

DSC measurements. 

 It has been demonstrated that the mild post annealing process does not improve the hole 

transport in the studied films while electron transport does not deteriorate due to the annealing. 

The decrease in the substrate temperature has a huge impact on the hole transport. It 

decreases the hole range about two and more orders of magnitude. At the same time, the electron 

transport remains relatively unaffected. Films produced at sufficiently low substrate temperatures 

demonstrate clearly an n- like type transport (μhτh<μeτe). It is possible to achieve deep trap 

limited hole transport if the substrate temperature during the deposition is kept well below the 

glass transition temperature, which depends on the material. The latter behavior of the charge 

transport has been observed for films produced from Se:As, Se:As:Cl and pure Se materials.   

The temperatures at which the transport switches from p- like type to n- like type and the 

temperature at which the hole transport becomes deep trap limited depend on the material. Films 

evaporated on substrates kept at temperatures 20-30 °C from alloys that contain only As have, in 

most cases, deep trap limited hole transport. The films produced from Cl containing alloys 

demonstrate deep trap limited hole transport only if produced on substrates kept at temperatures 

around 0 °C or lower. 

We have found that the changes in the Se structure related to the deposition of the film 

onto a cold substrate are quite persistent. For example, if Se:As alloy is evaporated onto a cold 

substrate (4°C), and then the material is reclaimed and re-evaporated onto hot substrates (60°C) 
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the resulting films demonstrate hole transport that bares no resemblance to the one observed in 

films produced directly from the starting Se:As material on substrate kept at 60°C. At the same 

time the charge transport in films produced from cold reclaimed material on hot substrates is 

very close to the one observed in films produced directly from the starting material on a cold 

substrate (4°C). 

6.4 Dark Currents in Metal/a-Se/Metal Devices 

Dark currents in single layer metal/a-Se/metal devices have been investigated towards 

achieving a better understanding of the mechanisms that control the currents. 

6.4.1 Dark Current I-t Curves 

We have presented results from different experiments on dark currents in metal/a-

Se/metal devices. We have studied the I-t curves in a-Se films as a function of the material from 

which the films are produced, as well as a function of the preparation conditions. We have 

observed decays in the I-t curves that are as long as 20000 s and even after that it is difficult to 

say that the dark current becomes constant. The magnitude of the decay and the shape of the I-t 

curves depend on the applied bias, on the Se material, and on the metals from which the top and 

bottom electrodes are produced. We not been able to observed fully symmetrical I-t curves with 

respect to the polarity of the applied bias even when the metal/a-Se/metal device was produced 

to be symmetrical. For some materials and preparation conditions the dark currents are bigger 

when the top electrode is positive, for other materials and preparation conditions, the dark 

currents are bigger when the top electrode is negative.  

The substrate temperature plays an important role in determining the properties of the 

film. Films produced at sufficiently high substrate temperatures have higher dark currents when 

the top electrode is negatively biased, while the opposite is generally true if the films are 

produced at sufficiently low substrate temperatures. The asymmetric dark currents for negative 

and positive bias can be explained with the asymmetric properties of the top and bottom metal/a-

Se interface and/or with asymmetric non-uniform distribution of various microcrystalline 

inclusions and/or other carrier traps across the thickness of the a-Se films. A major factor that 

can contribute to the asymmetry between the top and bottom metal/a-Se interface is probably the 
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formation of a thin continuous layer of polycrystalline trigonal Se between the bottom electrode 

and the a-Se film produced at high substrate temperatures.  

 In our samples we observe a process of “contact formation” which basically is a 

permanent change in the electrical properties of the contacts after the application of high electric 

field across the sample  for the first time, or after mild annealing (Tannealing ~Tg) of the metal/a-

Se/metal structure. We observe a decrease in the dark currents at low fields when the bias 

voltage is applied after the contact has been “formed”. 

The process of contact “formation” in our films must have a very close origin to the 

processes that are taking place during the high temperature fabrication step in polycrystalline Se 

rectifier production technology. In any case, the formation of metal selenides, the crystallization 

of Se at the interface, and the formation of metal contacts to the Se crystalline inclusions present 

at the interface must be the most important factors that lead to the observed contact “formation” 

process in our films. 

We have also observed “abnormal” I-t curves that appear in a-Se samples having a non-

uniform structure such as pin- like devices or films produced on an Al surface in which the 

native Al2O3 layer plays the role of an insulating film. The “abnormal” I-t curves exhibit a clear 

maximum in the current. The time at which the maximum in the current appears is voltage 

depended.  Such type of behavior has been described for various ceramic films and is associated 

with space-charge limited ion currents. Such explanation is unlikely for a-Se samples. The peak 

in the current most probably appears as a result of injection at the contacts being modified by the 

a growing space charge region in the film which, in its turn, affects the kinetics of space charge 

region formation.  

6.4.2 Dark Current I-V Curves 

We observe that the dark current I-V curves are strongly non-linear. Our data suggest that 

that the I-V curves measured on single layer metal/a-Se/metal devices can contain several regions 

for which . The value of the exponent n is different in the different regions. Over the 

range of film thicknesses and over the range of electric fields covered in our experiments we 

observe two distinct regions with different values of n in the measured I-V curves; 1.1≤n≤1.9 for 

the lower field region and 3.1≤n≤4.4 for higher field region.  

nVVI ∝)(
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We do not have a ready explanation for the observed I-V curves in single layer a-Se 

samples. Previously, it was thought that the dark currents in a-Se are not space charge limited 

[14].  However, the theory of SCLCs applied to an insulator having a suitable distribution of 

traps in the bandgap can predicts I-V curves that have shapes which are close to the ones 

experimentally observed by us.  

We have tested the hypothesis that “space charge regions gradually form in a-Se films 

left under bias” by using several different techniques. Our results suggest that significant space 

charge build up is possible in films biased up to 2 V/μm.   

The space charge can cause significant changes in the internal electric field in the sample 

and that was illustrated by monitoring the changes in the dark current as a result of stepwise 

changes in the bias across the sample. The internal electric field in some cases, can become 

stronger than the externally applied one. For example, a stepwise decrease in the voltage can 

cause currents in the opposite direction to that normaly expected for the applied bias to flow in 

the sample as the space charge regions in the film relax to their new equilibrium state.  

 The changes is the internal electric field in samples left under bias were also probed with 

hole TOF experiments. The changes in the shape of the recorded TOF waveforms at different 

times after the bias application clearly indicate changes in the internal electric filed profile, 

which in its turn indicates build up of space charge in the samples.  

The persistent photocurrent after x-ray exposure is probably another proof that space 

charge regions in the films play important role in determining the electronic state of the a-Se 

sample. Internal space charge regions that form as a result of the x-ray exposure ,or that have 

been perturbed as a result of the x-ray exposure, start their relaxation to the equilibrium state 

after the cessation of the exposure. Such processes can very well be the reason for the observed 

persistent currents in the sample after the end of the exposure. 

All these result suggest that the dark currents in a-Se films observed in our experiments 

can very well be non equilibrium space charge limited currents. 

6.4.3 Effects of Substrate Temperature on the Magnitude of the Dark Currents 

Effects of substrate temperature during film fabrication process on the magnitude of the 

dark currents in metal/a-Se/metal structures were studied. We have found that the magnitude of 

the dark currents in films produced by deposition onto cold substrates and subsequent post 
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annealing have much lower dark currents than the films produced on hot substrates. Our 

measurements indicate that films produced by cold deposition and annealing have lower hole 

lifetimes and hence bigger concentration of deep hole traps, most significant  part of which have 

appeared as a result of the cold  fabrication process. Dark current measurements, however, 

confirmed that the deep hole traps that appear as a result of the deposition on a cold substrate do 

not act as centers for thermal generation of carriers in the film. Thus we can assume that the 

thermal generation component of dark currents is one and the same for the cold and hot 

deposited films. The observed decrease in the dark current is most probably due to the fact that 

the cold deposited films can trap deeply much bigger amount of holes then the films deposited on 

hot substrates. The result can be explained by assuming that a region of positive space charge 

that develops due to trapped holes near the positively biased electrode acts to decrease the 

electric field near that electrode and thus the rate of hole injection from the electrode decreases. 

Another potential explanation is related to a possible modification of the properties of 

substrate/a-Se interface related to the deposition on cold substrates, which makes injection of 

holes by the bottom electrode more difficult. 

The reduction of the magnitude of the dark currents as a result of deposition on cold 

substrates does not have a simple explanation. However, the technological importance of these 

results is significant because they prove that the cold deposition process is very suitable for the 

production of a-Se based n- like layers. 

6.4.4 Effects of Electrode Metal on the Dark Currents  

The influence of the metal from which the top electrode has been produced on  dark 

currents in metal/a-Se/metal devices in which the top electrode carries the negative bias was 

investigated. Several metals were investigated as top electrodes: Al, Au and Pt. It was found that 

the Pt top electrode results in the lowest dark current densities under all other conditions being 

the same. We observe a negative correlation between the work function of the metal used to 

produce the top electrode and the dark current in the metal/a-Se/metal structure, which means 

that metals with higher work functions lead to lower dark currents in the samples when all other 

conditions ate the same.  

We do not have a complete explanation for the facts described above. However, the 

results do have technological importance paving the way to decrease the dark current in a-Se 
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photoconductor layers operating under negative biasvoltages up to 5 times by simply fabricating 

the top contact from Pt.     

 

6.5 A Novel Technology for Dark Current Reduction in a-Se Based 
Photoconductor Layers 

The research during the PhD program of study has enabled us to propose and test a novel 

technological method for dark current reduction in a-Se photoconductor structures. The rational 

of the method is the same as in the previously existing techniques for dark current reduction. The 

idea is to introduce a thin buffer (trapping) layer between the positive electrode and the a-Se 

photoconductor that reduces the carrier injection from the electrode. 

 We have proven that an efficient hole trapping layer (n- like layer) can be fabricated in 

two steps: deposition of a-Se on a cold substrate and mild post-annealing. Such a cold deposited 

n- like layer can replace the alkali metal doped Se:As n- like layers in commercially used 

multilayer structures. The new method makes possible imaging with simple single, or double ni-, 

and in- like structures. The electron injection by the negative electrode is minimized by the 

proper selection of the electrode metal. Thus, the simple cold deposited single and double layer 

structures can be produced by evaporation of only one suitably chosen Se:As alloy. We control 

the different charge transport properties of the i- like layer and n- like layer by changing the 

deposition conditions during fabrication. In particular, we change the substrate temperature to 

switch from an n- like layer production to an i- like layer production and vice versa.  Thus, a 

simple single boat evaporation system can be used for the production of the photoconductor 

structure.   

In all previous methods, materials with different chemical compositions were used for the 

production of the different layers, which requires the use of multiple boat evaporation. In 

addition, materials suitable for the fabrication of buffer layers have to be synthesized and 

produced, which on its own is a complicated task. 

We have proven that simple ni- like structures proposed in this work reduce the dark 

currents to approximately the same level as can be achieved with commercial pin- like structures 

based on alkali metal doped n- like layers or double layer structures containing Sb2S3 as charge 

transport layers.  
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The cold deposited n- like layers have potential advantages over the alkali metal doped n-

 like s that are related to the absence of alkali metal doping. The advantages include better 

electron mobilities and lifetimes in the cold deposited n- like layers, and potentially better long 

term stability in terms of resistance against crystallization and the undesirable drift of the alkali 

ions in the structure. 

 

6.6 Results from the Application of the New Technology for Dark Current 
Reduction to Prototype X-ray Image Detectors 

Simple single layer and double layer photoconductor ni-structures were fabricated 

according to the newly proposed method on a series of prototype x-ray image detectors with 

CCD readout.  Both SELMA and SALLY prototype detectors have demonstrated an excellent 

imaging performance, in particular very high spatial resolution. Dark currents in the selenium 

photoconductor layer were not a problem for the detector operation at all tested electric fields. 

Various x-ray images of phantoms were taken to demonstrate the operation of the prototype 

detectors. The imaging performance of the prototype detectors was also investigated in terms of 

measuring the MTF and DQE of the detectors. 

 

6.7 Suggestions for Future Work 

The engineering focus of the research work was placed on the minimization of the dark 

current in metal/a-Se/metal structures for application in digital x-ray image detectors. The 

research indeed resulted in a technology for dark current reduction which was successfully 

implemented on prototype image detectors with very high resolution. However, our 

understanding of properties of a-Se is far from being complete. 

It is known that certain elements added to a-Se in very small amounts (ppm range) can 

drastically change the hole and electron transport in a-Se. Elements that were investigated in the 

work are Cl and O. Probably, other additives in very small amounts can have similar in 

magnitude effects on the charge transport. Finding such additives in the form of pure chemical 

elements or chemical compounds will be a topical research task for the future with potential 

practical importance. 
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The mechanisms by which the impurities affect the electronic transport in a-Se are also 

unknown. Most of the researchers tend to explain their results in terms changing concentrations 

of charged defects in a-Se under the influence of the introduced impurities. That is one 

possibility. However, other possibilities also exist. For example, the impurities can be inhibiting 

or promoting the formation of different nano- and micro- crystalline inclusions in a-Se that act as 

carrier traps. Further, research will have to investigate such possibilities. 

It is not clear why exactly the hole lifetime decreases as a result of the deposition of a-Se 

on a cold substrate which is another question that has to be answered in the future. It seems that 

our results cannot be explained in terms of charged over- and under- coordinated effects. The 

hypothesis about the formation of microcrystalline inclusions that seems capable of explaining 

our results have been based on data that are nearly 30 years old. It will be useful to perform new 

electron microscope studies on the concentration of nano- and micro- crystalline inclusions in the 

a-Se film as a function the preparation conditions. It will also be interesting to study the 

distribution of these inclusions across the sample thickness. 

The cold deposition technology for dark current reduction has to be further studied for 

potential problems when the technology is scaled up to produce large area detectors and for long-

term stability. It will be useful to test the technology with CCD detectors capable of fast TDI 

readout. Long term stability of the devices have to be further studied because processes similar to 

photo-dissolution of the Pt top electrode encouraged by the high electric fields and the x-ray 

irradiation might have the potential to affect the photoconductor structure.  

 246



APPENDIX 
 

APPENDIX A 

The Slot Scanning Technique for X-ray Imaging. Time Delayed Integration Readout 
Technique. Pixel Structure of a Direct Conversion X-ray Detector with CCD 
Readout 

Introduction  

The purpose of this appendix is to briefly illustrate the basics of the slot scanning 

technique for x-ray imaging and compare it with conventional snapshot radiography.  Almost all 

x-ray detectors designed to be used with slot scanning x-ray machines are based on CCDs and 

utilize the time delayed integration (TDI) readout technique.  The principles of the TDI mode of 

operation are explained later in this appendix together with an example pixel structure of a direct 

conversion detector with a CCD readout circuit. 

The Slot Scanning Technique for X-ray Imaging 

  Conventional radiology or flat panel detector based digital radiology system for snapshot 

imaging is schematically shown in Figure A.1. The system requires a wide primary x-ray beam 

to spread over a sizable area of interest according to the dimensions of the object to be imaged. 

The image is taken with one single exposure with a duration that is typically a fraction of a 

second. In the case of a digital system, the image is available to the radiographer about 2 seconds 

after the x-ray exposure. Such systems efficiently utilize all the x-rays generated by the x-ray 

tube and do not require any mechanically moving parts, which make the x-ray tube and the rest 

of the system relatively easy to design and not so expensive to manufacture. 

However, there are certain limitations arising from fundamental physics which prevent 

the application of such systems in certain cases; imaging of very big objects and digital imaging 

with very high spatial resolution being two examples. 

For a number of different reasons the size of the x-ray field cannot exceed about 40 × 40 

cm.  So the imaging of big objects like a full body imaging and the examination of large patients 

become very difficult. If a digital detector is used, it has to be bigger than the object to be 

imaged. The number of pixels increases very rapidly with the size of the detector. The  
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Figure A.1 Principles of operation of conventional radiology or other digital radiology/computer radiology 
systems for projection radiography.  The diagram is taken from reference [169]. 

 

complexity of the readout circuit grows as well. For a number of reasons, the production of flat 

panel detectors with a huge number of pixels is very difficult. When a very large number of 

pixels are involved, the production process tends to have a very low yield; the price of such big 

area detector will be prohibitively large.  

The number of pixels becomes unreasonably large also in the cases when very high 

resolution is required. Consider mammography, for example. The field of interest is about 

20 × 20 cm in other words relatively small.  The smallest objects of interest in mammography are 

80-100 μm (various micro calcifications in the breast). Quality imaging of such small objects 

becomes possible if the pixel size is 20 μm or less. The number of pixels for the above-

mentioned area becomes 6.4 ×107 assuming 25 μm pixel pitch. Such flat panel imagers cannot be 

manufactured with the currently available technology. 

In many cases, the quality of the x-rays is deteriorated by the Compton scatter in the 

object (Figure A.1).  Partial reduction of the scattered radiation is achieved by inserting a post 
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patient scatter rejection grid in front of the detector (see Figure A.1). This is a compromise with 

the performance of the system but is required to maintain the image quality.  The radiographer in 

this case has to increase the patient exposure to counteract the adverse effects of body scatter and 

grid absorption.  

The higher radiation exposures together with the wide x-ray beam spread causes 

relatively high amounts of scattered radiation throughout the room where the x-ray machine is 

installed, and in adjacent areas. The premise where such an x-ray equipment is to be installed has 

to be designed and built in a special way so that the requirements for radiation safety of the 

patient and of the personnel are met. 

In the slot (line) scanning technique, the image of the objects is formed line by line, very 

much like the image in a fax machine or a computer scanner. The coordinate perpendicular to the 

scan direction corresponds simply to the position of the pixel in the line detector. The coordinate 

along the scan direction is determined by the parameters of the relative motion of the object with 

the respect to the x-ray detector. In most of the systems, the patient is immobile and the x-ray 

source moves synchronously with the detector to scan the area of interest. The major parts and 

the basics of the slot scanning technique for x-ray imaging are illustrated in Figure A.2.  A 

specially designed x-ray beam controlling mechanism creates a fanned x-ray beam of primary 

photons. Only the primary x-ray beam strikes the solid-state x-ray detector (in the case of Figure 

A.2 indirect conversion CsI(Tl) with  60 μm pixel size CCD readout circuit operating in Time 

Delayed Integration Mode). The result is the elimination of the influence of the scattered 

radiation on the image. This means that no anti-scatter grid is required regardless of the patient 

size.  

Such slot scanning systems will produce higher quality “scatter free” digital images with 

high resolution (theoretically expected to be 8 lp/mm). The most important result is the highly 

reduced patient dose as shown in Table A.1. 

Table A.1 compares the slot scanning system with full field radiography based on screen 

film cassettes. The trend will remain the same even if a digital detector is used to capture the 

image in the full field snapshot technique because in the slot scanning technique there is no need 

to compensate for the effects of the scattered radiation on the image. In the slot scanning 

technique, the area of the detector is highly reduced. This enables the production of very high-

resolution line detectors with small pixel sizes (smaller than 20 μm). The dose efficient 
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Figure A.2  A slot scanning technique for x-ray imaging as implemented in STATSCAN (LODOX Inc) digital 
radiography system. The diagram is taken from [169]. 

  
elimination of the effects of scattered radiation together with the possibility to produce detectors 

with small pixel size makes the slot scanning technique very suitable for applications in 

mammography. At the moment several slot-scanning systems for mammography are 

commercially available on the market by Fisher, Philips and others. All of them are based on the 

indirect conversion detectors with a CCD image readout circuit. 

In concluding this section we have to mention that the major drawback of the slot scanning 

technique is the inefficient use of the beam produced by the x-ray tube. A full body scan needs 

~15 s to complete and a mammogram is produced in ~6s. During all that time the x-ray tube has 

to operate, which means extensive x-ray tube heating and wear off. Another disadvantage is the 

presence of the mechanically moving parts. This causes some inconvenience during examination, 

and adds significantly to the price of a slot scanning system.  
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Table A.1 Patient dose comparison between full field radiography based on film-screen cassettes and the slot 
scanning imaging technique as implemented in STATSCAN machine, LODOX Inc.  

Procedure 
Guidance 

Dose *, 
mR 

Statscan™ 
Dose **, 

mR 

Statscan™ Dose  
as % 

 of conventional 
Ratio 

Spine 15000 1640 11 9.1 
Abdomen AP 5000 409 8 12.2 

Pelvis 5000 409 8 12.2 
Skull 2500 210 8 11.9 

Full Body AP 1500 150 10 10.0 
Extremity 450 60 13 7.5 
Chest AP 200 142 71 1.4 

* Typical Patient Radiation Doses in Diagnostic Radiology- 75th percentile, Dept of Radiology, Baylor College of 
Medicine, AAPM/RSNA Physics Tutorial 1998 (CR & High Speed Film) 
** Statscan Skin Entrance Radiation Doses measured for “Large” Patient (120kg – 150kg) 
 
 

Time Delayed Integration CCD Readout Mode 

Area-array Charge-Coupled Device (CCD) image sensors consist of a two dimensional 

matrix of charge collection sites. Analog voltages corresponding to the charge at each site are 

read from the CCD by applying clocking signals to transfer the charge in each row of sites to the 

succeeding row (parallel transfer), and eventually to a serial register, that does not participate in 

the charge collection process during the exposure, from which charges are clocked and 

transferred in the orthogonal direction to the detector and amplifier. In the more common two-

dimensional imaging mode, after a charge collection time interval (exposure), each sensitive site 

of the CCD is read out and represents one pixel of the acquired image. Thus a CCD of x columns 

and y rows yields an image of x by y pixels. 

A line array CCD sensor consists of a one-dimensional sensitive structure analogous to 

the serial register, detector, and amplifier of the area array CCD sensor. By repeatedly exposing 

and reading a line array CCD sensor, while moving the sensor in a direction orthogonal to the 

array, a two dimensional image can be reconstructed. The resulting image has a maximum width 

in pixels equal to the number of charge collection sites of the sensor, but a theoretically 

unlimited length, which corresponds to the length of the scan. This, of course, is the basic 

principle behind common scanning devices such as FAX machines and document copiers.  
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Obviously, the slot scanning technique for x-ray imaging described above can use a linear 

array CCD as detector readout circuit. However, in order to increase the sensitivity and the 

scanning speed (so as to decrease the patient dose) all commercial devices utilize area array CCD 

sensors operated in Time Delay Integration (TDI) mode as the readout circuit. 

TDI is a somewhat similar in operation to the means of acquiring a continuous two-

dimensional image using an area array CCD sensor. If the row by row transfer of charge in the 

sites proceeds at a rate equal to and in the same direction as the apparent motion of the subject 

being imaged, accumulation of charge integrates during the entire time required for the row of 

charge to move from the top of the sensor to the serial register (or to the storage area of the 

device, in the case of a frame transfer CCD). This integration time provides an increase in the 

sensitivity over the line array CCD sensor, proportional to the number of rows of sites of the area 

array sensor. Like the two dimensional image acquired using a line array sensor, the TDI image 

has a maximum width in pixels equal to the number of sites in a row of the sensor and a length 

limited only by the maximum storage capacity of the system collecting the data.  

 

 
Figure A.3. Schematic representation of  a two stage TDI process. The CCD sensor has 3 TDI sections each 
performing TDI over 6 rows. The signals from the 3 sections are transferred off-chip and integrated together 
with appropriate delay to form the final image.  After [170]).  The figure is not to scale. 

252 



 
The factor that limits the sensitivity of a CCD sensor operating in TDI mode is the 

capacity of the charge collection sites. If the number of rows is too big, the charge generated 

during the exposure at certain detector elements will exceed the capacity of the charge collection 

sites and the signal will saturate. Further increase in the sensitivity is possible if the CCD sensor 

is designed and fabricated in sections as shown in Figure A.3. 

Each section consists of several rows and performs normal TDI over these rows. The signals 

from all sections are transferred off-chip and added with an appropriate delay to form the final 

image.  

The maximum dose in mammography can be 1000 mR or more. This corresponds to 

approximately 7.6×108 electron-hole pairs per pixel if Si is used as x-ray photoconductor.  

Unfortunately CCD well capacity is quite limited; with maximum charge storage levels about an 

order of magnitude lower (~107 electron-hole pairs) than required. To accommodate such large 

signals, CCD sensors with 24 sections (8 rows per section) have been successfully realized [170].  

Pixel Structure of a Direct Conversion X-ray Detector with CCD Readout 

The direct conversion detectors that utilize CCD sensors as image readout circuits are 

usually fabricated as two separate parts. The first part is the working media of the detector. This 

is an array of detector elements where the interaction of the x-rays with the image detector takes 

place. A portion of the incident energy of the x-rays is converted into electric charges. These 

charges are then injected into the wells of a CCD sensor which is the second part of the image 

detector. The charges in the wells are then clocked out of the sensor, measured and transferred to 

a computer to form the image. A schematic cross section of such detector is shown in Figure A.4. 

The most difficult fabrication stage involved is the indium bump bonding that forms electrical 

contacts between the CCD and the detector array. The process requires the formation of small 

indium bumps and very precise alignment and mating. It becomes a complicated process with a 

low yield when small pixel size is required. One advantage when a-Se is used as a 

photoconductor is that indium bump bonding process is not required. Instead the CCD sensor is 

placed in a vacuum chamber and its electroded surface is conveniently coated with an a-Se layer 

with the required thickness.  After the latter deposition, the radiation receiving electrode is 

fabricated on top of the a-Se photoconductor. Obviously this process is much simpler and can be 

used with any pixel size. The cross section of a pixel in this particular case is shown in Figure 
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A.5. This actually is the pixel architecture was used in one of the test detector fabricated in the 

course of the PhD work (see more Apendix B for more details). 

 
Figure A.4. Cross-sectional view of a direct conversion image detector with CCD readout circuit. After [170]. 

 
 

 
Figure A.5 Cross section of one detector element in an test x-ray detector [11]. The drawing is not to scale. 
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