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Abstract

The well-documented problems associated with mapping raw rates of disease have resulted

in an increased use of Bayesian hierarchical models to produce maps of “smoothed” estimates

of disease rates. Two statistical problems arise in using Bayesian hierarchical models for dis-

ease mapping. The first problem is in comparing goodness of fit of various models, which can

be used to test different hypotheses. The second problem is in identifying outliers/divergent

regions with unusually high or low residual risk of disease, or those whose disease rates are

not well fitted. The results of outlier detection may generate further hypotheses as to what

additional covariates might be necessary for explaining the disease. Leave-one-out cross-

validatory (LOOCV) model assessment has been used for these two problems. However,

actual LOOCV is time-consuming. This thesis introduces two methods, namely iIS and

iWAIC, for approximating LOOCV, using only Markov chain samples simulated from a pos-

terior distribution based on a full data set. In iIS and iWAIC, we first integrate the latent

variables without reference to holdout observation, then apply IS and WAIC approximations

to the integrated predictive density and evaluation function. We apply iIS and iWAIC to two

real data sets. Our empirical results show that iIS and iWAIC can provide significantly better

estimation of LOOCV model assessment than existing methods including DIC, Importance

Sampling, WAIC, posterior checking and Ghosting methods.
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Chapter 1

Introduction

1.1 Disease mapping

Mapping of disease incidence mortality rates is of primary importance in many epidemio-

logical studies. The use of crude rates to estimate rare disease risks in small areas, such as

health units, census areas or administrative zones, is problematic since it does not account

for the high variability of population sizes over the different regions, nor the spatial pat-

terns of the regions under study. For this reason, interpretation of the spatial distribution

of disease based on crude estimates is often misleading. Alternatively, Bayesian inference is

widely used to produce stabilized risk maps by borrowing information from neighbourhoods

across the map. Early developments of disease mapping methodology included the use of

empirical Bayes (EB) techniques to estimate parameters, and a plug-in approximation of

these for posterior inference, which yielded unbiased estimates of the relative risks. How-

ever, the variance of these estimates were underestimated, since the EB approach doses not

account for the uncertainty arising from estimating hyperparameters. In recent years, fully

Bayesian approaches have gained prominence. Inference is based on Markov chain Monte

Carlo (MCMC) algorithms (Congdon, 2006) [1]. Bayesian methods for disease mapping are

often termed as hierarchical spatial models. In this scenario, the goodness of fit of various

models becomes salient for describing disease mapping. Therefore, model comparison meth-

ods must be carefully considered. For example, transmission of many vector borne diseases

have multiple factor vectors related to environmental conditions. However, multiple potential

models emerge considering these factors as hypothesis effects. There rises urgency in com-

paring these available models in goodness of fit. Jeefoo et al. (2010) [10] studied diffusion

patterns of Dengue in Thailand and examined the spatial-temporal diffusion pattern. They
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affirm that outbreaks of Dengue are attributed to various factors, such as climate, breeding

site density probability, urbanization and human population movements. These findings in-

dicate that models for Dengue diffusion patterns can be constructed from multiple effects.

In this thesis, we are interested in methods of comparing different models for spatial data

to answer hypothesis-testing questions on whether effects(including spatial effect itself) are

significant or not. In Chapter 3, we use two typical data to apply our methods for model

comparison.

Disease mapping can also provide monitoring in public health surveillance by identifying

the outliers/divergent regions of infectious and chronic diseases. Detection of disease diver-

gent regions for public health surveillance is greatly helpful in improving the explaining of

properties of a disease. For example, in one of the earliest studies of disease mapping in 1854,

Dr. John Snow labelled on a dot-map residential addresses of people who died from cholera

in London. He identified the Broad Street pump as the source of an intense cholera outbreak

(McLeod, 2000) [15]. In recent years, a study found that chronic exposure to solar radiation

might be a major risk factor in the development of lip cancer. This finding was supported

by geographic residence of farmers, fishers and outdoor labours, compared to a global map

of lip cancer incidences (Moore et al., 1999) [16]. The wide use of Bayesian methods for

disease mapping has driven largely the improvement of outlier/divergent regions detection

techniques. These techniques are highly demanded due to their better accuracy and high

efficiency. For these practical considerations, model comparison and divergent region detec-

tion are two key tasks of model evaluation that need to be analysed carefully with reliable

and precise methods.

1.2 Review of Model Comparison and Outlier Detec-

tion Methods

Spatial Bayesian models can be evaluated in several ways. One of the most popular ways

to evaluate a model is to evaluate its predictive accuracy. Several measures are available

to estimate the expected predictive accuracy without out-of-sample data. We list several

reasonable-seeming predictive accuracy measures in three categories.
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• Within-sample predictive accuracy

A natural estimate of predictive density for out-of-sample data is the predictive density

for observed sample data, which typically uses posterior predictive density in model

evaluation. This is simple to understand, but is, in general, an overestimate of expected

predictive density for out-of-sample data (optimistic biased) because it is evaluated on

the data in which the model was fit.

• Adjusted within-sample predictive accuracy

Since using posterior predictive density is a biased estimate of expected predictive

density, the next logical step is to correct that bias. For instance, AIC, DIC, WAIC

and other methods aim to correct optimistic bias by starting with posterior predictive

density and then subtracting a correction for the number of parameters, or the effective

number of parameters. These adjustments can give reasonable answers in many cases,

but only in best scenarios.

• Cross-validation

Cross-validation is a natural way to approximate out-of-sample predictive performance

of a model. One must fit the model to training data set and then evaluate predictive

accuracy on a holdout data set, where training data set and holdout data are departed

from observed sample data set; then one must repeat this procedure with each holdout

data set and summarize all subset predictive accuracy. Cross-validatory evaluation

avoids the problem of optimistic bias. However, cross-validation can be computationally

expensive: to get a stable estimate typically requires many data partitions and fits.

1.2.1 Model Comparison Methods

Suppose we have a simple Bayesian model without latent variables where yobs
1:n = (yobs

1 , . . . , yobs
n )

denotes observation data and y = (y1, . . . , yn) models independent random variables given

parameter θ = (θ1, . . . , θp); thus probability density of y is P (y|θ) =
∏n

i=1 P (yi|θ). The

3



posterior of θ, given full observations data yobs is:

Ppost(θ) =
n∏
j=1

P (yobs

j |θ)P (θ)/C, (1.1)

where C is normalizing constant. For historical reasons, model comparison methods usu-

ally treat predictive accuracy as information criteria(IC) which are typically defined based

on the deviance of log predictive density of the observed data, multiplied by −2; that is,

−2 logP (yobs|θ).

• Leave-one-out cross-validation(LOO-CV)

In Bayesian cross-validation, the sample data are repeatedly partitioned into n, in

which each holdout represents a single test case. Then the model is fit to the training

set, with this fit to evaluate the predictive density of the holdout data. Assuming the

holdout data observation is yobs
i and training set is yobs

−i = (yobs
1 , . . . , yobs

i−1, y
obs
i+1, . . . , y

obs
n ),

the posterior distribution for cross-validation is expressed as:

Ppost(-i)(θ) =
∏
j 6=i

P (yobs

j |θj)P (θ)/C2 (1.2)

where C2 is the normalizing constant involving only with y−i. We give LOO-CV infor-

mation criterion based on P (yobs
i |θ) with respect to the posterior distribution Ppost(-i)(θ):

LOO-CVIC = −2
n∑
i=1

log

∫
P (yobs

i |θ)Ppost(-i)(θ)dθ, (1.3)

which can also be expressed as

LOO-CVIC = −2
n∑
i=1

logEpost(-i)[P (yobs

i |θ)], (1.4)

where Epost(-i)[ ] is integration over the posterior distribution Ppost(-i)(θ). Hence, we

notice that LOO-CV requires n times of the model fits, which requires much computing.

• Deviance information criterion(DIC)

4



DIC (Spiegelhalter et al., 2002) [19], is an information criterion of adjusted within-

sample predictive accuracy, taking the formula:

DIC = −2
(

logP (yobs

1:n|θBayes)− pDIC
)
, (1.5)

where θBayes is the posterior mean of θ which is plugged into the predictive density

function. pDIC is the effective number of parameters for adjusting predictive accuracy,

which is defined as

pDIC = 2(logP (yobs

1:n|θBayes)− Epost(logP (yobs

1:n|θ))), (1.6)

where the expectation in the second term Epost is an integral of log p(yobs|θ) over full

posterior distribution Ppost(θ), that is:

Epost[logP (yobs

1:n|θ)] =

∫
logP (yobs

1:n|θ)Ppost(θ)dθ (1.7)

The posterior mean of θ will produce the maximum log predictive density when it

happens to be same as the mode, and negative pDIC can be produced if posterior mean

is far from the mode. In addition, DIC become the most popular choice in Bayesian

model comparisons since it is implemented in WinBUGS.

• Importance sampling(IS)

Importance sampling adjust predictive accuracy by importance weighting technique

(Gelfand et al., 1992) [3], approximating CV prediction evaluation. Importance sam-

pling information criterion calculates posterior predictive density with importance weight-

ing point-wisely when averaging θ over its posterior distribution:

IS-IC = −2
n∑
i=n

log
Epost[P (yobs

i |θ)Wi]

Epost(Wi)
(1.8)

= −2
n∑
i=n

log
1

Epost[1/P (yobs
i |θ)]

(1.9)

where, Epost is an integral to full data posterior mentioned in (1.1). Wi is importance
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weighting for random variable yi. This case is that:

Wi =
1

P (yobs
i |θ)

. (1.10)

• Widely applicable information criterion(WAIC)

WAIC stands for the approximate cross-validation approach for estimating the out-of-

sample information criterion, starting with the computed pointwise posterior predictive

density, then adding a correction for effective number of parameters to adjust for the

bias from using the data twice:

WAIC = −2
n∑
i=1

logE[P (yobs

i |θ)] + 2pWAIC , (1.11)

where pWAIC represents a adjustment for effective number of parameters. There are two

adjustments proposed in the literature:

pWAIC1 = 2
n∑
i=1

{log(Epost[P (yobs

i |θ)]− Epost[logP (yobs

i |θ)]}, or (1.12)

pWAIC2 =
n∑
i=1

Vpost[logP (yobs

i |θ)], (1.13)

where Vpost stands for variance over θ with respect to Ppost(θ). Watanabe (2010) [26]

has proven that WAIC is equivalent to LOO-CVIC asymptotically as random variables

of training data. However, WAIC is only justified for problems where observed data

are independently distributed with a population distribution. In this thesis, we will

handle a problem where y1, . . . , yn are not independent given θ.

1.2.2 Divergent Region Detection Methods

The divergent region for disease mapping is usually termed as outlier in Bayesian spatial

modelling. We have noticed that some of the methods above are based on adjustments of

pointwise predictive density. Outlier detection is also an object related to pointwise prediction

used for checking for whether the observed data point is at the extreme tails of the predictive

6



distributions. Hence, we define a p-value as tail probability, that is p-value(yobs
i ) = Pr(yi ≥

yobs
i |θ). We can use CV as an outlier detection method by looking at the predictive density

of yobs
i and all predictive densities of yi that are greater than the observation yobs

i value.

• Leave-one-out cross-validation(LOO-CV):

LOO-CV posterior predictive p-value is:

p-valueCV(yi) = Epost(-i)[Pr(yi ≥ yobs

i |θ)] (1.14)

• Importance Sampling(IS):

Importance sampling as mentioned above, can check the p-value by:

p-valueIS(yi) =
Epost[Pr(y ≥ yobs

i |θ)Wi]

Epost(Wi)
, where (1.15)

Wi =
1

P (yobs
i |θ)

. (1.16)

• Posterior checking:

Gelman et al. (1996) [5] provide a method which applies posterior predictive assessment

in evaluating Bayesian models. We will call this method posterior checking, and use

the subscript Post.check to denote application of posterior checking. One of the simplest

formulas for estimating the p-value of yi is:

p-valuePost.check(yi) = Epost[Pr(y ≥ yobs

i |θ)], (1.17)

which uses posterior checking for outlier detection. Gelman et al. (1996) [5] do not

recommend this use of posterior checking because it involves double-use of the data,

which leads to optimistic bias. However, due to convenience, this is often used in

practice.

• Ghosting:

Ghosting is a method mixing the CV and posterior checking approaches by Marshall

and Spiegelhalter (2003) [13]. This method is applied to the models with latent variable

7



bi. We use Ghost to denote the application of the Ghosting method. The formula is:

p-value(yi)
Ghost =

∫
P (yi ≥ yobs

i |θ, bi)P (bi|b−i,θ)P (b−i,θ|yobs

1:n)dθdbi (1.18)

where yobs
i in the right side of equation is one of the observations in yobs

1:n. Ghosting

avoids double use yi directly and corrects optimistic bias to some extent.

1.3 Contribution of this thesis

LOO-CV is a natural way to approximate out-of-sample predictive evaluation in Bayesian

spatial models and is recognized as a golden standard for other existing methods which aim

to correct for optimistic bias. Moreover, the shortage of LOO-CV in expensive computing

becomes the motivation for us to improve approximating CV methods. In the following

context, we will use CV to represent LOO-CV, as this is the only method we will discuss.

In this thesis, we introduce two methods based on IS and WAIC for use in Bayesian

spatial models. IS and WAIC can be simply applied to the predictive density of observed

data. This data is modelled conditional not only on model parameters, but also on latent

variables. However, actual validation observation units often bring optimistic bias into their

latent variables in IS and WAIC methods. One remedy to eliminate the bias in the latent

variables associated with the validatory units is to temporarily discard the latent variables

in the full data posterior sample. One must integrate away the latent variables with respect

to the conditional distribution of the latent variables associated with the validatory units

conditional on only the model parameters but not the actual observations. This integration

will lead to an integrated predictive density and integrated evaluation function, which result

in two predictive evaluation methods: Integrated Importance Sampling (iIS) and Integrated

WAIC (iWAIC). The required integrals can be obtained analytically in some models using

Monte Carlo methods or other numerical methods.

Vehtari et al. (2001) [24] and Vanhatalo et al., 2012, 2013 [21, 22] have used iIS for

computing information criterion; they have provided a special, but very important case of

predictive evaluation, in Gaussian process latent variable models in their matlab toolbox

8



GPstuff. This is documented by the manual for GPstuff, but their technical report (Vanhatalo

et al., 2012) [21] did not discuss the details of iIS. This thesis gives iIS a detailed discussion.

In addition, we provide a formula for iIS that is applicable to general evaluation function; in

particular, our formula can also be used for computing CV posterior p-value. Addition, we

have also proven the equivalence of iIS and CV. The main contribution of this thesis is in

illustrating the necessity of incorporating iIS and iWAIC in approximating CV. In computing

CV posterior p-value, iIS is also related to Ghosting method, which was proposed by Marshall

and Spiegelhalter (2007) [14] and discussed by Held et al. (2010) [9]. Ghosting method does

not use importance re-weighting to correct the bias in model parameters; hence, Ghosting

method can be deemed as a partial implementation of iIS.

This thesis will be organized as follows: we discuss in Chapter 2, a class of Bayesian

models with unit-specific models to which iIS and iWAIC can be applied, how to perform

actual cross-validation evaluation, and give relevant posterior distribution. We will then

describe iIS and iWAIC in general terms. This Chapter is almost taken verbatim from

Section 2 to 5 of the paper by Li et al. (2014) [11]. I am a co-author of this paper, and I have

contributed to these sections partially. In Chapter 3, we compare iIS and iWAIC to other

information criteria approximation methods for model comparison with two disease mapping

data sets. One set of data concerns the prevalence of suicide in London, while the other deals

with lip cancer in Scotland. The results of Scottish lip cancer data has been reported in Li

et al. (2014) [11] to which I contributed partially; the results of London suicide data (Section

3.1) are originally reported here. In Chapter 4, we compare iIS with other methods in the

problem of detecting divergent regions for disease mapping data: the first approach uses p-

value based on predictive distribution of yi, while the second predictive distribution of relative

risk λi. The results of Chapter 4 are original in this thesis. Our empirical results show that

iIS and iWAIC provide significantly closer approximating to actual CV evaluation results

than ordinary IS and WAIC, as well as other methods. Chapter 5 will conclude this thesis

by summarizing our findings and discussing advancements for the future. In Appendices, we

give a sketch of the working procedures of iIS and iWAIC, long tables and R code.
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Chapter 2

Integrated IS and WAIC 1

2.1 Bayesian Models with Unit-specific Latent Vari-

ables

The new predictive evaluation methods that we will describe are for use in Bayesian models

with unit-specific latent variables. Throughout this thesis, we use bold-faced letters to denote

vectors and matrices, and supposing we have n observations yobs
1 , · · · ,yobs

n on n observation

units (e.g. cases, such as persons, locations, time points, or a combination of them), we model

them as a realization of random variables y1, · · · ,yn. In many problems, we introduce a latent

variable (often random vector, sometimes called random effects, missing data), bi for each unit

i from which yobs
i is observed; then we model yi and bi with certain statistical distributions

parametrized by θ. Conditional on bi and θ (often also on a covariate variable xi that will be

omitted in the following equations for simplicity), we assume that y1, · · · ,yn are statistically

independent, with probability density P (yi|bi,θ), which we will call non-integrated predictive

density in this thesis. If we assume independence between b1, · · · , bn given θ, then the

marginalized distributions of random variables y1, · · · ,yn are also independent for each i

(e.g. in mixture models). In modelling spatial and time series data, we often assume that the

latent variables b1, · · · , bn are dependent in modelling correlations between locations or time

points. In the following general discussion, we will assume that b1, . . . , bn are correlated.

Figure 2.1 gives a graphical representation of the models described here.

Throughout this thesis, we will use notation a1:n to denote the collection of all aj: {aj|j =

1This chapter is part of the co-authored paper “Li, L., Qiu, S., Zhang, B., and Feng, C.X. (2014).
Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated
IS and WAIC. Available from http://arxiv.org/abs/1404.2918 ”
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model parameters

θ

yi

xi for i = 1, · · · , n

bi

for i = 1, · · · , n

for i = 1, · · · , n

covariate variables

observable variables

latent variables

Figure 2.1: Graphical representation of Bayesian latent variables models. The double
arrows in the box for b1:n mean possible dependency between b1:n. Note that the
covariate xi will be omitted in the conditions of densities for bi and yi throughout this
thesis for simplicity.

1, . . . , n}, and use a−i to denote the collection of all aj except ai: {aj|j = 1, . . . , n, j 6= i}.

Conditional on θ, we have specified a density for yi given bi: P (yi|bi,θ), a joint prior density

for latent variables b1:n: P (b1:n|θ), and a prior density for θ: P (θ). The posterior of (b1:n,θ)

given observations yobs
1:n is proportional to the joint density of yobs

1:n, b1:n, and θ:

Ppost(θ, b1:n|yobs

1:n) =
n∏
j=1

P (yobs

j |bj,θ)P (b1:n|θ)P (θ)/C1, (2.1)

where C1 is the normalizing constant involving only with yobs
1:n.

2.2 Cross-validatory Predictive Evaluation

To do cross-validation, for each i = 1, . . . , n, we omit observation yobs
i , and then draw

MCMC samples from CV posterior distribution of model parameter and latent variables

P (θ, b1:n|yobs
−i ):

Ppost(-i)(θ, b1:n|yobs

−i ) =
∏
j 6=i

P (yobs

j |bj,θ)P (b1:n|θ)P (θ) /C2, (2.2)

where C2 is the normalizing constant involving only with yobs
−i . Note that in equation (2.2),

we assume that the possible structure’s information (e.g. spatial relationships between n
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locations) among b1:n are not lost, as only the value of yobs
i is omitted. After we draw MCMC

samples of (θ, b1:n) from (2.2), and then drop bi, we obtain MCMC sample of (θ, b−i) from

the marginalized CV posterior P (θ, b−i|yobs
−i ):

Ppost(-i), M(θ, b−i|yobs

−i ) =
∏
j 6=i

P (yobs

j |bj,θ)P (b−i|θ)P (θ) /C2, (2.3)

where P (b−i|θ) is the marginalized prior density for b−i generated from the specified joint

prior for b1:n, i.e., P (b−i|θ) =
∫
P (b1:n|θ)dbi. Using conditional prior

P (bi|b−i,θ) = P (b1:n|θ)/P (b−i|θ), (2.4)

we can say:

Ppost(-i)(θ, b1:n|yobs

−i ) = Ppost(-i), M(θ, b−i|yobs

−i )P (bi|b−i,θ). (2.5)

From the above expression, we see that sampling from Ppost(-i) is equivalent to sampling

from Ppost(-i), M, and the conditional prior P (bi|b−i,θ). Therefore, this method of performing

cross-validation makes use of the assumed structure in b1:n (such as neighbouring relationships

between spatial units) through P (bi|b−i,θ), in predicting yi given yobs
−i . This treatment indeed

regards the structure information in b1:n as fixed covariate and being known. We feel that

this treatment is reasonable because we are interested in comparing competing models for

the conditional distribution of y1:n given the structure between the n units, rather than the

distribution of the structure itself. This is similar to how cross-validation is done in linear

models, for which we assume that the values of the covariates (explanatory variables) of the

test case are known when making a prediction of the test case response.

The purpose of performing CV is to evaluate certain compatibility (or discrepancy) be-

tween the posterior P (yi|yobs
−i ) and the actual observation yobs

i . We will specify an evaluation

function a(yobs
i ,θ, bi) that measures certain goodness-of-fit (or discrepancy) of the distribu-

tion P (yi|θ, bi) to the actual observation yobs
i . CV posterior predictive evaluation is defined

as the expectation of the a(yobs
1:n, ., .) with respect to Ppost(-i):

Epost(-i)(a(yobs

i ,θ, bi)) =

∫
a(yobs

i ,θ, bi)Ppost(-i)(θ, b1:n|yobs

−i )dθdb1:n. (2.6)
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The expectation in (2.6) can be approximated by averaging a(yobs
i , ·, ·) over MCMC samples

of (θ, bi) drawn from Ppost(-i).

One example of a is the value of predictive density function P (yi|bi,θ) at the actual

observation yobs
i :

a(yobs

i ,θ, bi) = P (yobs

i |θ, bi). (2.7)

The expectation of (2.7) with respect to Ppost(-i) is CV posterior predictive density P (yobs
i |yobs

−i ).

CV information criterion (CVIC) is defined as the sum of minus twice the CV posterior pre-

dictive densities over all validation units:

CVIC = −2
n∑
i=1

log(P (yobs

i |yobs

−i )). (2.8)

A smaller value of CVIC indicates a better fit of a Bayesian model to a real data set. A

second example is to set a in (2.6) as the p-value given model parameter and latent variable

for unit i: p-value Pr(yi ≥ yobs
i ) (Marshall and Spiegelhalter, 2003, 2007) [13, 14]; for discrete

y, we use:

a(yobs

i ,θ, bi) = Pr(yi > y
obs

i |θ, bi) + 0.5Pr(yi = yobs

i |θ, bi), (2.9)

where Pr means probability of a set, as we have used P as density; also yi should be a scalar

for such situations. The expectation of (2.9) with respect to Ppost(-i) gives CV posterior

p-value:

CV posterior p-value (yobs

i ) = Pr(yi > y
obs

i |yobs

−i ) + 0.5Pr(yi = yobs

i |yobs

−i ), (2.10)

which is a tail probability of CV posterior predictive distribution with density P (yi|yobs
−i ). The

purpose of computing CV posterior p-value is to check the discrepancy of the observation

yobs
i to the CV posterior predictive distribution of yi that is conditional on other observations

yobs
−i . Both very large and very small values of posterior p-value indicate that yobs

i may be an

outlier (unusually small or large) compared to other observations.

Actual CV requires n of Markov chain simulations (each may use multiple parallel chains),

one for each validation unit. This is very time consuming, especially when the model is

complex and n is fairly large. Therefore, we are interested in approximating the expecta-
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tions in (2.6) for all validation units where i = 1, . . . , n with samples of (θ, b1:n) obtained

with a single MCMC simulation based on the full data set; that is, with samples drawn

from Ppost(θ, b1:n|yobs
1:n), called full data posterior for short hereafter. However, we cannot

simply treat samples from the full data posterior as CV posteriors, because the inclusion

of yobs
i has introduced optimistic bias in validating yobs

i . The optimistic bias means that

the posterior predictive distribution of yi formed by averaging P (yi|bi,θ) with respect to

Ppost(θ, b1:n|yobs
1:n) fits yobs

i better than the actual CV posterior predictive distribution of yi

that averages P (yi|bi,θ) with respect to Ppost(-i)(θ, b1:n|yobs
−i ). Therefore, we need to correct

for the optimistic bias with a certain method to obtain an unbiased approximate/estimate

of actual CV posterior predictive evaluation. We will introduce two new approximating

methods in Section 2.3 and 2.4, respectively.

2.3 Importance Sampling (IS) Approximation

2.3.1 Non-integrated Importance Sampling

Importance weighting (Gelfand et al., 1992) [3] is a natural choice for approximating CV

prediction evaluation based on the posterior, given the full data set. For general and detailed

discussion of importance sampling techniques, one can refer to Geweke, Neal, Gelman and

Meng, Liu (1989, 1993, 1998, 2001) [8, 17, 4, 12]. If our samples are from Ppost(θ, b1:n|yobs
1:n),

but we are interested in estimating the mean of a with respect to Ppost(-i)(θ, b1:n|yobs
−i ) as

in (2.6), importance weighting method is based on the following equality for CV expected

evaluation:

Epost(-i)(a(yobs

i ,θ, bi)) =
Epost

[
a(yobs

i ,θ, bi)W
nIS
i (θ, b1:n)

]
Epost

[
W nIS
i (θ, b1:n)

] , (2.11)

where Epost[ ] is expectation with respect to Ppost(θ, b1:n|yobs
1:n), and

W nIS
i (θ, b1:n) =

Ppost(-i)(θ, b1:n|yobs
−i )

Ppost(θ, b1:n|yobs
1:n)

× C2

C1

=
1

P (yobs
i |θ, bi)

. (2.12)

Note that we can multiply any constant to the above importance weight since it will be can-

celled at the fraction of (2.11); also we use superscript nIS to denote application of importance
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sampling (shortened to nIS ) to the non-integrated predictive density, in contrast to iIS to be

given in next section. In words, importance sampling estimates the expected evaluation by

finding Monte Carlo estimates of the two means in the fraction of (2.11) with only MCMC

samples from Ppost(θ, b1:n|yobs
1:n). We can apply equation (2.11) to estimate means of any

evaluation function a with respect to the CV posterior distribution of (θ, bi).

Particularly, in computing CVIC, the evaluation function a(yobs
i ,θ, bi) is equal to P (yobs

i |θ, bi)

which is the same as 1/W nIS
i in equation (2.12). Therefore, the numerator of (2.11) is just

1 when applied to compute CVIC. Hence, the CV posterior predictive density P (yobs
i |yobs

−i )

is equal to the harmonic mean of the non-integrated predictive density P (yobs
i |θ, bi) with

respect to P (θ, b1:n|yobs
1:n):

P (yobs

i |yobs

−i ) =
1

Epost

[
1/P (yobs

i |θ, bi)
] . (2.13)

Based on the equality (2.13), nIS estimates the CV posterior predictive density by:

P̂ nIS(yobs

i |yobs

−i ) =
1

Êpost

[
1/P (yobs

i |θ, bi)
] . (2.14)

The corresponding nIS estimate of CVIC using (2.14) is −2
∑n

i=1 log(P̂ nIS(yobs
i |yobs

−i ). Note

that, if there are not latent variables used for a model, there will be no bi in (2.13) and (2.14).

2.3.2 Integrated Importance Sampling

In theory, the nIS estimate (2.11) is valid for almost all Bayesian models with latent variables

as long as the integral itself exists and the supports of Ppost(-i)(θ, b1:n|yobs
−i ) and Ppost(θ, b1:n|yobs

1:n)

are the same. However, in simulating MCMC from Ppost(θ, b1:n|yobs
1:n), the latent variable bi is

largely confined to regions that fit the observation yobs
i well. Therefore, the distribution of bi

marginalized from Ppost(θ, b1:n|yobs
1:n) may be highly biased to regions that fit the observation

yobs
i well, compared to the distribution of bi marginalized from Ppost(-i)(θ, b1:n|yobs

−i ), which

can cover a much larger area. Therefore, although the supports of Ppost(-i)(θ, b1:n|yobs
−i ) and

Ppost(θ, b1:n|yobs
1:n) are the same in theory, the effective support of Ppost(θ, b1:n|yobs

1:n) may be

much smaller than that of Ppost(-i)(θ, b1:n|yobs
−i ). This results in the inaccuracy of nIS.
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To improve nIS, we can re-generate bi from P (bi|b−i,θ), with the observation yobs
i re-

moved, as the actual cross-validation simulation does; see equation (2.5). The formal formu-

lation of such re-generation procedure is given as follows. First we note that using equation

(2.5), we can rewrite the expectation in (2.6) as:

Epost(-i)(a(yobs

i ,θ, bi)) = Epost(-i), M(A(yobs

i ,θ, b−i)) (2.15)

=

∫ ∫
A(yobs

i ,θ, b−i)P (θ, b−i|yobs

−i )dθdb−i (2.16)

where,

A(yobs

i ,θ, b−i) =

∫
a(yobs

i ,θ, bi)P (bi|b−i,θ)dbi. (2.17)

We will call (2.17) an integrated evaluation function.

We will also discard bi temporarily for validation unit i in MCMC samples from the full

data posterior Ppost(θ, b1:n|yobs
1:n). The marginalized full data posterior of (θ, b−i) is

Ppost, M(θ, b−i|yobs

−i ) =
∏
j 6=i

P (yobs

j |bj,θ)P (b−i|θ)P (θ)×
∫
P (yobs

i |bi,θ)P (bi|b−i,θ)dbi/C1.

(2.18)

We will call the second factor in (2.18) integrated predictive density, because it integrates

away bi without reference to yobs
i . For ease in reference, it is explicitly given below:

P (yobs

i |θ, b−i) =

∫
P (yobs

i |bi,θ)P (bi|b−i,θ)dbi. (2.19)

Using the standard importance weighting method, we will estimate (2.16) by:

Epost(-i), M(A(yobs

i ,θ, b−i)) =
Epost, M

[
A(yobs

i ,θ, b−i) W
iIS
i (θ, b−i)

]
Epost, M

[
W iIS
i (θ, b−i)

] , (2.20)

where W iIS
i is the integrated importance weight:

W iIS
i (θ, b−i) =

Ppost(-i), M(θ, b−i|yobs
−i )

Ppost, M(θ, b−i|yobs
1:n)

× C2

C1

=
1

P (yobs
i |θ, b−i)

, (2.21)

for estimating CVIC, A × W iIS
i = 1 in particular. Therefore, the iIS estimate of the CV
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posterior predictive density based on equality (2.20) is given by:

P̂ iIS(yobs

i |yobs

−i ) =
1

Êpost, M

[
1/P (yobs

i |θ, b−i)
] . (2.22)

Accordingly, iIS estimate of CVIC using (2.22) is −2
∑n

i=1 log(P̂ iIS(yobs
i |yobs

−i )). The only

difference from nIS of estimate (2.14) is in the replacement of non-integrated predictive

density P (yobs
i |θ, bi) by integrated predictive density P (yobs

i |θ, b−i). Note that we can also

write the expectation Epost, M( ) in equations (2.20) and (2.22) as Epost( ) because we still find

Monte Carlo estimates with samples of (θ, b1:n) from Ppost(θ, b1:n|yobs
1:n), but without using bi.

The integration over bi in equations (2.17) and (2.19) is the essential difference between iIS

and nIS. In order to use iIS, we need to find bi. In some problems, bi can be approximated

with finite summation, or calculated analytically. Otherwise, we will re-generate bi given

(b−i,θ) with no reference to yobs
i , which is often easy. Note that this re-generation needs

to be done for each i = 1, . . . , n. Sometimes much computation can be shared by these n

re-generating processes since they are all conditional on θ; see the example in Chapter 3.

2.4 WAIC Approximations

In this section, we describe a generalized WAIC method, iWAIC, for approximating CV

predictive density in Bayesian models with correlated latent variables.

We will first describe WAIC for models with no latent variables (or models after we inte-

grate away latent variables that are independent for units given parameters). In such models,

observed variables y1, . . . ,yn are independently distributed with a probability distribution

P (y|θ) conditional on model parameters θ. After we obtain MCMC samples for θ given

observations yobs
1 , . . . ,yobs

n , a version of WAIC (Watanabe, 2009, 2010, 2010) [25, 27, 28] is

given by:

WAIC = −2
n∑
i=1

[
log(Epost(P (yobs

i |θ)))− Vpost(log(P (yobs

i |θ)))
]
, (2.23)

where Epost and Vpost stand for mean and variance over θ with respect to P (θ|yobs
1 , . . . ,yobs

n ).
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By comparing the forms of WAIC and CVIC (2.8), we can see the CV posterior predictive

density approximated by:

P̂WAIC(yobs

i |yobs

−i ) = exp
{

log(Epost(P (yobs

i |θ)))− Vpost(log(P (yobs

i |θ)))
}
. (2.24)

In words, WAIC corrects the bias in mean of training predictive density of yobs
i by dividing

exponential of variance of log predictive density of yobs
i with respect to the posterior of

θ, given the full data set. Watanabe (2010) [26] has proven that WAIC is asymptotically

equivalent to CVIC when observed variables are independently distributed conditional on

θ. He has shown the asymptotic equivalence of Taylor expansions of (2.24) and harmonic

mean (2.14) (without bi). From our research, we do see that (2.24) provides results very

close to CV posterior predictive density of each yobs
i . This perspective of WAIC also provides

the approach to assess statistical significance of differences of WAICs of different models by

looking at differences in means of log CV posterior predictive densities, which was advocated

by Vehtari and Lampinen (2002) [23] for CVIC itself.

For the models given in Section 2.1 with possibly correlated latent variables, a naive way

to approximate CVIC is to apply WAIC directly to the non-integrated predictive density of

yobs
i conditional on θ and bi:

P̂ nWAIC(yobs

i |yobs

−i ) = exp
{

log(Epost(P (yobs

i |θ, bi)))− Vpost(log(P (yobs

i |θ, bi)))
}
. (2.25)

We will refer to (2.25) as non-integrated WAIC (or nWAIC for short) method for approxi-

mating CV posterior predictive density. The corresponding information criterion based on

(2.25) is:

nWAIC = −2
n∑
i=1

log(P̂ nWAIC(yobs

i |yobs

−i )). (2.26)

This way to apply WAIC indeed treats latent variables as model parameters. nWAIC is not

justified by the theory for WAIC. However, practitioners may likely apply WAIC to Bayesian

models with latent variables this way for the sake of convenience.

Our research (to be presented next) will show that nWAIC cannot correct the bias in unit-

specific latent variables entirely. We propose applying WAIC approximation to the integrated
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predictive density (2.19) in order to estimate the CV posterior predictive density:

P̂ iWAIC(yobs

i |yobs

−i ) = exp
{

log(Epost(P (yobs

i |θ, b−i)))− Vpost(log(P (yobs

i |θ, b−i)))
}
. (2.27)

Accordingly, iWAIC for approximating CVIC is given by :

iWAIC = −2
n∑
i=1

log(P̂ iWAIC(yobs

i |yobs

−i )). (2.28)

In Section 2.3, we have theoretically shown the equivalence of iIS to CV predictive eval-

uation for models with correlated latent variables, which holds as long as the support of full

data posterior is not a subset of the CV posterior. However, we have not proven any sort

of equivalences of P̂ iWAIC and P̂ nWAIC to CVIC. The derivations of formulae for nWAIC and

iWAIC for models with correlated latent variables are only heuristic, borrowing the asymp-

totic equivalence of WAIC estimate (2.24) and CVIC expressed with harmonic mean (IS)

(2.13) (without bi) for models without latent variables, which is proven by Watanabe (2010)

[26].
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Chapter 3

Emprical Results on Model Comparison

3.1 London Suicide Data

In this section, we will investigate the performance of iIS and iWAIC in an analysis of

London boroughs suicide data. The London suicide data is based on registered mortality

under International Classification of Diseases (ICD) classes 950-959 and 980-989. This data

set was downloaded from the link http://webspace.qmul.ac.uk/pcongdon/BSM2.zip, then

opened with OpenBUGS. This data set is used in example 9.8 of the textbook by Congdon

(2007) [2] for demonstrating spatial effects models. The data set is shown in Table 3.1. This

example discusses the suicide mortality of 32 London boroughs from 1989-1993. The map of

32 London boroughs is shown in Figure 3.1. For i = 1, . . . , n and n = 32, we denote random

variables yi as observed suicide counts. Expected suicide counts in the ith borough are Ei

(derived using demographic methods). We also denote that yobs
i is actual observed counts.

The centroid of the ith borough was recorded as vector xi = (xi1, xi2), each with a unit of

10km as a reference point. The Euclidean distance dij between xi and xj is used to measure

the distance between the ith and the jth borough. We also note the standardized morbidity

ratio(SMRi ≡ yi/Ei).

Table 3.1: London boroughs suicide mortality(male and female suicides combined over
1989-1993)

ID Boroughs x1 x2 Y E SMR

1 Barking and Dagenham 547.80 185.10 75 80.70 0.93

2 Barnet 524.30 191.70 145 169.80 0.85

3 Bexley 548.40 175.70 99 123.20 0.80
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Table 3.1 – Continued from previous page

ID Boroughs x1 x2 Y E SMR

4 Brent 520.70 185.50 168 139.50 1.20

5 Bromley 541.80 167.60 152 169.10 0.90

6 Camden 527.90 184.30 173 107.20 1.61

7 Croydon 533.30 165.10 152 179.80 0.85

8 Ealing 515.90 181.40 169 160.40 1.05

9 Enfield 533.10 195.30 130 147.50 0.88

10 Greenwich 542.80 176.80 117 116.80 1.00

11 Hackney 534.20 185.50 124 102.80 1.21

12 Hammersmith and Fulham 523.80 178.50 119 91.80 1.30

13 Haringey 531.50 189.60 134 119.60 1.12

14 Harrow 515.00 189.50 90 114.80 0.78

15 Havering 553.10 188.20 98 131.10 0.75

16 Hillingdon 508.60 183.80 89 136.10 0.65

17 Hounslow 514.00 175.80 128 116.60 1.10

18 Islington 531.10 185.10 145 98.50 1.47

19 Kensington and Chelsea 525.60 179.50 130 88.80 1.46

20 Kingston upon Thames 519.40 167.50 69 79.80 0.86

21 Lambeth 530.80 174.60 246 144.90 1.70

22 Lewisham 537.50 174.00 166 134.70 1.23

23 Merton 525.80 169.30 95 98.90 0.96

24 Newham 541.20 183.60 135 118.60 1.14

25 Redbridge 543.80 188.90 98 130.60 0.75

26 Richmond upon Thames 517.00 173.40 97 96.10 1.01

27 Southwark 526.60 164.50 202 127.10 1.59

28 Sutton 533.60 177.10 75 97.70 0.77

29 TowerHamlets 536.10 181.80 100 88.50 1.13

30 Waltham Forest 526.40 173.90 100 121.40 0.82

31 Wandsworth 527.20 181.10 153 156.80 0.98
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Table 3.1 – Continued from previous page

ID Boroughs x1 x2 Y E SMR

32 Westminster 537.90 189.60 194 114.00 1.70

We model yi|Ei, µi ∼ Poisson(µiEi), where µi denotes the underlying relative risk of

London suicide for borough i. We consider four different models for the log relative risk

log(µi) as follows:

model 1 (spatial+exchangeable) : log(µi) = α + si + ui (3.1)

model 2 (spatial) : log(µi) = α + si (3.2)

model 3 (exchangeable) : log(µi) = α + ui (3.3)

model 4 (pooled) : log(µi) = α (3.4)

where α is an intercept for modelling pooled effect for all boroughs, and ui and si are ex-

changeable (independent) and spatially correlated random effects on ith borough, respec-

tively. According to (Congdon, 2007) [2], we assign priors to α, ui and si with the following

hierarchy:

α ∼ N(0, 1000) (3.5)

ui ∼ N(0, τ 2) (3.6)

s1, . . . , sn|Σ ∼ Nn(0,Σ) (3.7)

Σ = σ2R, with rij = exp[−(φdij)
δ] (3.8)

1/σ2, 1/τ 2 ∼ Gamma(1, 0.001) (3.9)

φ ∼ Uniform([0.1, 5]) (3.10)

δ ∼ Uniform([0, 2]) (3.11)

All the above four models belong to the class of Bayesian latent variable models depicted

by Figure 2.1. The observable variable is yi, and the latent variable bi is ui and si (for
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Figure 3.1: Map of London boroughs. This data of boundary files for this map was
generated from the Office for National Statistics (ONS) 2011 Census. For informa-
tion on the licensing of this data see http://www.ons.gov.uk/ons/guide-method/

geography/beginner-s-guide/licences/index.html

model 1), si (for model 2), ui (for model 3), or none (for model 4). Model parameter θ is

(α, τ, σ, φ, δ) for model 1 or a subset of it for other models.

We used Winbugs to fit the above 4 models to London suicide data. For each model, we

ran MCMC simulations with two parallel chains, each with 10000 iterations, from which we

discarded the first 5000 iterations as burning. We then used MCMC simulations for each

model to calculate the posterior inference of parameters. The results are summarized in

Table 3.2.

For each model, we ran 32 actual cross-validatory MCMC simulations with each of the

32 observations removed (set yi to NA in WinBugs). We then computed actual CV pos-

terior predictive density P (yobs
i |yobs

−i ) using equation (2.6) with evaluation function set to

dpoisson(yobs
i |µiEi) — Poisson probability mass function having the parameter µiEi. We

computed CVIC for different models displayed in Table 3.3.

We then considered approximating CVIC with four different methods (nIS, nWAIC,

iIS, and iWAIC) from a single MCMC simulation based on all of the 32 samples for each

model. The dpoisson(yobs
i |µiEi) is non-integrated predictive density used in computing nIS
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Table 3.2: Posterior inference parameters for the four models of London suicide data

Model Parameters Posterior distribution
Mean 2.5% Median 97.5%

model 1 (spatial+exchangeable)

α 0.01 -0.25 0.03 0.16
δ 0.94 0.05 0.86 1.96
φ 2.74 0.29 2.84 4.90
σ2 0.025 0.00 0.00 0.1
τ 2 0.04 0.00 0.04 0.09

model 2 (spatial)
α -0.02 -0.30 -0.00 0.18
δ 0.82 0.05 0.69 1.94
φ 3.31 0.49 3.57 4.93
σ2 0.07 0.04 0.07 0.13

model 3 (exchangeable)
α 0.04 -0.05 0.04 0.14
τ 2 0.06 0.03 0.06 0.11

model 4 (pooled) α 0.07 0.03 0.07 0.10

and nWAIC with equations (2.14) and (2.25), where µi is computed with latent variables and

model parameters used in respective models. We will now describe how to compute iIS and

iWAIC for model 1 (3.2). The integrated predictive density (2.19) used in equations (2.22)

and (2.27) is:

P (yobs

i |θ, s−i,u−i) =

∫ ∫
dpoisson(yobs

i |µiEi)P (si, ui|θ, s−i,u−i)dsidui. (3.12)

where the second factor in the integral can be written as P (si|s−i,θ)P (ui|u−i,θ) because the

spatial effects si and the random effects ui are assumed independent. We do not have closed-

form solution for this integral. We therefore need to use Monte Carlo method to estimate

(3.12) by generating random numbers from P (ui|u−i,θ) and P (si|s−i,θ) for each MCMC

sample of (θ, s1:n,u1:n) and each validation unit i. The P (ui|u−i,θ) is N(0, τ 2) because u1:n

are independent given θ. The spatial effects s1:n given Σ are distributed with Nn(0,Σ).

Let B = Σ−1. By standard formula for conditional normal distribution, the P (si|s−i,θ) is

N(−B−ii,iBi,−is−i, B
−1
ii ), where Bi,j stands for the matrix containing only rows i and columns

j of B. By using this formula, we must invert the covariance matrix Σ only once, then

B can be used for each i. In this computing, we generate 200 random numbers from each

of the two conditional distributions for approximating the integral in (3.12). Finally, based

on computed values of P (yobs
i |θ, s−i,u−i) for all MCMC samples, we then compute iIS and
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iWAIC approximates of CV posterior predictive densities (with equations (2.22) and (2.27)

respectively) or corresponding iIS-IC and iWAIC. For computing iIS and iWAIC in model 2

and model 3, we need only to integrate dpoisson(yobs
i |µiEi) with respect to P (si|s−i,θ) and

P (ui|u−i,θ), respectively. For model 4, iIS and nIS are the same, as are iWAIC and nWAIC,

since there is no latent variable.

We repeated computing nIS-IC, WAIC, iIS-IC, and iWAIC, as well as DIC for 100 inde-

pendent MCMC simulations, each with 2 parallel chains. The means of these 100 information

criteria for each method and each model are shown in Table 3.3, with standard deviations

shown in brackets. From Table 3.3, we see that compared to nIS, nWAIC and DIC, iIS

and iWAIC provide significantly closer approximates to the actual CVIC. For iWAIC, the

approximates are almost identical to actual CVIC. This shows that the integration applied

to latent variables associated with the validation unit indeed helps in correcting optimistic

bias. The comparable results of iIS information criteria and CVIC may not be surprising

since our derivation in Chapter 2 has shown their equivalence. However, it is surprising to

see that the heuristic iWAIC also gives estimates very close to CVIC for model 1, as we have

no theory to support this result. In addition, iWAIC has smaller standard deviations and

smaller bias than iIS.

On the other hand, we see that although DIC, nIS and nWAIC are much downward

biased, their model selection results (the ordering of these four models in terms of information

criterion ) are still correct. However, we believe that this may not generalize to more complex

models. Finally, we notice that our model evaluation results (using actual CV) for the London

suicide data indicate that there may not spatial effects. We can observe from Table 3.2 that

the 95% credible intervals of parameter τ 2 and σ2 in model 1 from posterior distribution are

(0.00, 0.1) and (0.00, 0.09), respectively. We find that credible intervals of τ 2 are very close

to zero, which means spatial effect can be ignored.

We also explored the performance of this experiment in Openbugs. We repeated the above

processes by transferring identical data into Openbugs. We fitted the 4 models with Openbugs

through R package R2OpenBUGS, then ran MCMC simulation with two parallel chains, 10000

iterations for each chain, burning the first 5000. The comparison results are shown in Table

3.4. When we compare Table 3.4 with Table 3.3, we can see that the results in iWAIC and
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Table 3.3: Comparison results of cross-validation and other approximating methods
using WinBugs in four models of London suicide mortality data

CV DIC iWAIC iIS nWAIC nIS

model 1 318.64(0.40) 273.99(0.16) 320.61(0.28) 326.86(4.12) 268.05(0.31) 297.99(4.99)
model 2 319.05(0.23) 274.21(0.16) 321.29(0.12) 327.41(3.79) 268.42(0.29) 298.38(4.87)
model 3 317.45(0.20) 273.59(0.15) 318.84(0.11) 319.09(0.19) 267.26(0.24) 295.48(4.42)
model 4 521.21(0.06) 511.77(0.03) 521.12(0.14) 521.13(0.16) 521.12(0.14) 521.13(0.16)

iIS are almost the same. However, the DIC in model 1 and 2 are extraordinarily different

from DIC given by WinBUGS. This happened with negative value and large variance.

Table 3.4: Comparison results of cross-validation and other approximating methods
using OpenBugs in four models of London suicide mortality data.

CV DIC iWAIC iIS nWAIC nIS

model 1 318.42(0.41) 167.25(93.39) 319.93(0.23) 323.64(2.48) 267.36(0.15) 295.83(2.97)
model 2 318.66(0.17) 135.37(276.90) 320.79(0.11) 326.36(2.83) 267.29(0.25) 293.42(3.57)
model 3 317.61(0.23) 273.60(0.13) 318.88(0.10) 319.17(0.19) 267.22(0.20) 294.99(4.84)
model 4 565.54(0.07) 511.79(0.03) 521.21(0.16) 521.20(0.16) 521.21(0.16) 521.20(0.16)

3.2 Scottish Lip Cancer Data

In this section, we apply iIS and iWAIC to another data set, Scottish lip cancer data, which

was used in Stern and Cressie, Spiegelhalter et al., Plummer (2000, 2002, 2008) [20, 19, 18]

and extracted from Stern and Cressie (2000) [20]. The data represents male lip cancer counts

(over the period of 1975-1980) in the n = 56 districts of Scotland. At each district i, the

data include these fields: (1) identity number of each district i; (2) name of each district;

(3) number of observed cases of lip cancer, yi; (4) number of expected cases, Ei, calculated

based on standardization of “population at risk” across different age groups; (5) standard-

ized morbidity ratio(SMRi) for the ith districts, SMRi ≡ yi/Ei; (6) percent of population

employed in agriculture, fishing and forestry, xi, used as a covariate; and (7) group of IDs

of neighbouring ith district. Figure 3.2 shows “ID” and “District name” on Scotland map,

where we can verify the neighbouring districts graphically.
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Table 3.5: Scotland lip cancer data

ID District name Y E SMR X Neighbours

1 Skye-Lochalsh 9 1.38 6.52 16 5,9,11,19

2 Banff-Buchan 39 8.66 4.50 16 7,10

3 Caithness 11 3.04 3.62 10 6,12

4 Berwickshire 9 2.53 3.56 24 18,20,28

5 Ross-Cromarty 15 4.26 3.52 10 1,11,12,13,19

6 Orkney 8 2.40 3.33 24 3,8

7 Moray 26 8.11 3.21 10 2,10,13,16,17

8 Shetland 7 2.30 3.04 7 6

9 Lochaber 6 1.98 3.03 7 1,11,17,19,23,29

10 Gorden 20 6.63 3.02 16 2,7,16,22

11 Western Isles 13 4.40 2.95 7 1,5,9,12

12 Sutherland 5 1.79 2.79 16 3,5,11

13 Nairn 3 1.08 2.78 10 5,7,17,19

14 Wigtown 8 3.31 2.42 24 31,32,35

15 NE Fife 17 7.84 2.17 7 25,29,50

16 Kincardine 9 4.55 1.98 16 7,10,17,21,22,29

17 Badenoch 2 1.07 1.87 10 7,9,13,16,19,29

18 Ettrick 7 4.18 1.67 7 4,20,28,33,55,56

19 Inverness 9 5.53 1.63 7 1,5,9,13,17

20 Roxburgh 7 4.44 1.58 10 4,18,55

21 Angus 16 10.46 1.53 7 16,29,50

22 Aberdeen 31 22.67 1.37 16 10,16

23 Argyll-Bute 11 8.77 1.25 10 9,29,34,36,37,39

24 Clydesdale 7 5.62 1.25 7 27,30,31,44,47,48,55,56

25 Kirkcaldy 19 15.47 1.23 1 15,26,29

26 Dunfermline 15 12.49 1.20 1 25,29,42,43

27 Nithsdale 7 6.04 1.16 7 24,31,32,55
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Table 3.5 – Continued from previous page

ID District name Y E SMR X Neighbours

28 East-Lothian 10 8.96 1.12 7 4,18,33,45

29 Perth-Kinross 16 14.37 1.11 10 9,15,16,17,21,23,25,26,34,43,50

30 West Lothian 11 10.20 1.08 10 24,38,42,44,45,56

31 Cumnock-Doon 5 4.75 1.05 7 14,24,27,32,35,46,47

32 Stewartry 3 2.88 1.04 24 14,27,31,35

33 Midlothian 7 7.03 1.00 10 18,28,45,56

34 Stirling 8 8.53 0.94 7 23,29,39,40,42,43,51,52,54

35 Kyle-Carrick 11 12.32 0.89 7 14,31,32,37,46

36 Inverclyde 9 10.10 0.89 0 23,37,39,41

37 Cunninghame 11 12.68 0.87 10 23,35,36,41,46

38 Monklands 8 9.35 0.86 1 30,42,44,49,51,54

39 Dumbarton 6 7.20 0.83 16 23,34,36,40,41

40 Clydebank 4 5.27 0.76 0 34,39,41,49,52

41 Renfrew 10 18.76 0.53 1 36,37,39,40,46,49,53

42 Falkirk 8 15.78 0.51 16 26,30,34,38,43,51

43 Clackmannan 2 4.32 0.46 16 26,29,34,42

44 Motherwell 6 14.63 0.41 0 24,30,38,48,49

45 Edinburgh 19 50.72 0.37 1 28,30,33,56

46 Kilmarnock 3 8.20 0.37 7 31,35,37,41,47,53

47 East Kilbride 2 5.59 0.36 1 24,31,46,48,49,53

48 Hamilton 3 9.34 0.32 1 24,44,47,49

49 Glasgow 28 88.66 0.32 0 38,40,41,44,47,48,52,53,54

50 Dundee 6 19.62 0.31 1 15,21,29

51 Cumbernauld 1 3.44 0.29 1 34,38,42,54

52 Bearsden 1 3.62 0.28 0 34,40,49,54

53 Eastwood 1 5.74 0.17 1 41,46,47,49

54 Strathkelvin 1 7.03 0.14 1 34,38,49,51,52

55 Annandale 0 4.16 0 16 18,20,24,27,56
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Table 3.5 – Continued from previous page

ID District name Y E SMR X Neighbours

56 Tweeddale 0 1.76 0 10 18,24,30,33,45,55

(a) Map of Scotland with district
names

(b) Map of Scotland with district ID

Figure 3.2: Maps of Scotland with district names and ID. Note: the GIS boundary
files for ESRI and map was from from Local Government Boundary Commission for
Scotland. For more information see the link http://www.lgbc-scotland.gov.uk/

maps/datafiles/index_1995_on.asp

The yi, for i = 1, . . . , n, is modelled as an independent Poisson random variable condi-

tional on λi and Ei:

yi|Ei, λi ∼ Poisson(λiEi), (3.13)

where λi denotes the underlying relative risk for district i, and Ei stands for expected counts.

Let si = log(λi). We consider four different models for the vector s = (s1, · · · , sn), conditional
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on X = (x1, . . . , xn)′ and neighbouring information between districts:

spatial+linear (called full for short) : s ∼ Nn(α +Xβ,Φτ 2), (3.14)

spatial : s ∼ Nn(α,Φτ 2), (3.15)

linear : s ∼ Nn(α +Xβ, Inτ
2), (3.16)

exchangable : s ∼ Nn(α, Inτ
2), (3.17)

In (3.14) and (3.15) above, Φ = (In − φC)−1M is a matrix for capturing the spatial

correlations amongst the n districts, in which the elements of C are: cij = (Ej/Ei)
1/2 if

areas i and j are neighbours, and cij = 0 if otherwise; the elements of M are: mii = E−1i

and mij = 0 if i 6= j; φ is a parameter measuring spatial dependence; Φ can be expressed

as M1/2(I − φM−1/2CM1/2)−1M1/2. For positive definite Φ, the range of φ, (φmin, φmax) is

inverse of smallest and largest eigenvalues of M−1/2CM1/2(Stern and Cressie, 2000) [20]. The

multivariate normal distributions with Φ as covariance matrix are called proper conditional

auto-regression (CAR) model. In (3.14) and (3.16), β is a model parameter controlling linear

effects of covariateX to logarithm of relative risk s. In all four of these models, α represents a

constant variable to standardized s and τ 2 represents a constant variance amongst n districts.

Derived from the joint distribution in (3.14), the conditional distribution of si|s−i, α, β, φ is:

si|s−i,θ ∼ N(α + xiβ + φ
∑
j∈Ni

(cij(sj − α− xjβ)), τ 2mii), (3.18)

where Ni is the set of neighbours of district i. At a higher level, diffused priors are assigned

to α, β, τ , and φ: α ∼ N(0, 10002), β ∼ N(0, 10002), τ 2 ∼ Inv-Gamma(0.5, 0.0005), φ ∼

Unif(φmin, φmax) . In model (3.2), we consider both spatial and linear effects of xi in modelling

s, whereas model (3.15) considers only spatial effect; model (3.16) considers only linear effect;

and model (3.17) considers neither spatial nor linear effect. We are interested in comparing

the goodness-of-fit of the four models to lip cancer data set, so as to determine which model

is the most appropriate. CVIC is one criterion for measuring goodness-of-fit. All the above

four models belong to the class of Bayesian latent variable models depicted by Figure 2.1.

The observable variable is yi, the latent variable is si, and the model parameters θ in model
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Table 3.6: Parameter summary fo posterior inferences of fitting the four models to
the full lip cancer data

Model Parameters Posterior distribution
Mean 2.5% Median 97.5%

Full(spatial+linear)

α -0.57 -0.89 -0.57 -0.23
β 6.31 3.57 6.30 9.17
φ 0.14 0.02 0.15 0.17
τ 2 2.00 0.99 1.91 3.57

Spatial
α -0.21 -0.52 -0.20 0.11
φ 0.16 0.11 0.16 0.17
τ 2 3.14 1.77 3.01 5.25

Linear
α -0.49 -0.82 -0.49 -0.18
β 6.83 3.96 6.82 9.74
τ 2 0.36 0.20 0.36 0.62

Exchangeable
α 0.08 -0.16 0.08 0.31
τ 2 0.61 0.36 0.59 0.97

(3.14) are (α, β, τ, φ), with a subset for other models depending on which are used in respective

models.

We used OpenBUGS through R package R2OpenBUGS to run MCMC simulations for

fitting each of the above models to Scottish lip cancer data. For each simulation, we ran

two parallel chains, each with 15000 iterations, with the first 5000 discarded as burn-in.

We used one actual MCMC simulation for each model to compute the posterior inference

of parameters. The results of posterior inference based on the full data are summarized in

Table 3.6.

For each model, we first ran 56 actual cross-validatory MCMC simulations with each of

the 56 observations removed (set yobs
i to NA in OpenBUGS), and then computed actual CV

posterior predictive density P (yobs
i |yobs

−i ) using equation (2.6) with evaluation function set to

dpoisson(yobs
i |λiEi) — Poisson probability mass function with parameter λiEi. Because Ei

plays an important role in computing actual CV posterior predictive density, we take a brief

digression here to explain it. Because E is internally standardized in the data set, Ei is

determined by yi. It is necessary therefore to recalculate expected counts E−i. When yi is

removed, change E−i to ciE−i, where ci =

∑n
j 6=i yj∑n
j 6=iEj

. In this data set, we found only a tiny

change in the values of E−i.

31



We computed CVIC using equation (2.8). We computed actual CVIC 10 times for each

model although actual LOOCV gives very stable results. The averages and standard devi-

ations of 10 CVICs for different models are displayed in Table 3.7. From this table, we see

that the full model is optimal for the Scottish lip cancer data according to CVIC.

We then consider approximating CVIC with four different methods (nIS, nWAIC, iIS,

and iWAIC) from a single MCMC simulation based on all of the 56 observations. The non-

integrated predictive density used in computing nIS and nWAIC with equations (2.14) and

(2.25) is dpoisson(yobs
i |λiEi), where λi = exp(si). Next, we describe how to compute iIS and

iWAIC for model (3.14). The integrated predictive density (2.19) required by (2.22) and

(2.27) is:

P (yobs

i |θ, s−i) =

∫
dpoisson(yobs

i |λiEi)P (si |θ, s−i)dsi, (3.19)

where P (si|θ, s−i) is given by equation (3.18). Because there is no closed form for the

integral (3.19), we use Monte Carlo method to estimate it by generating 200 random numbers

from P (si|s−i,θ) (note that this is done for each retained MCMC sample of (θ, s1:n) and

each validation unit i, with si alternately discarded). Finally, based on computed values of

P (yobs
i |θ, s−i) for all MCMC samples, we can compute iIS and iWAIC approximates of CV

posterior predictive densities (with equations (2.22) and (2.27), respectively), corresponding

iIS information criterion and iWAIC. iIS and iWAIC are computed similarly for models (3.15)

- (3.17), with only a change in the conditional distribution (3.18) according to their joint prior

distributions.

We repeated computing the values of the above four criteria as well as DIC for 100

independent MCMC simulations based on each model. The means of these 100 information

criterion values for each method and each model are shown in Table 3.7, with standard

deviations shown in brackets. We see that CVIC chooses the full model; for confirming the

CVIC’s choice, we can verify from Table 3.6 that the 95% credible intervals of parameter β

and φ in full model from posterior distribution, (3.57, 9.17) and (0.02, 0.17), are not including

zero, which means that linear and spatial effect can not be ignored.

We notice iIS and iWAIC provide significantly closer approximates to actual CVIC than

nIS, nWAIC and DIC. Furthermore, iWAIC and iIS are almost identical to actual CVIC. In

contrast, DIC has large biases and variances when spatial effects are considered, and also
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Table 3.7: Comparisons of information criteria for lip cancer data. Except CVIC, each
table entry shows the average of 100 information criterion values computed from 100
independent MCMC simulations, and the standard deviation in bracket. For CVIC,
the average and standard deviation are from 10 independent LOOCV evaluations.

CV DIC iWAIC iIS nWAIC nIS

full 343.93(0.12) 269.43(12.30) 344.47(0.12) 345.21(0.19) 306.82(0.21) 335.54(1.27)
spatial 352.54(0.11) 266.79(10.15) 354.11(0.06) 356.06(0.37) 304.61(0.18) 338.77(1.85)
linear 349.46(0.10) 310.42(0.11) 350.48(0.05) 350.54(0.05) 306.94(0.21) 338.81(3.02)
exch. 366.59(0.00) 312.57(0.12) 368.01(0.03) 368.08(0.03) 306.74(0.17) 346.55(3.46)

the mean DIC of full model is bigger than the mean DIC of the model with spatial effects

only. This suggests that if we randomly draw one MCMC simulation out of the 100 based

on each model, the probability that DIC does not pick up the full model as the optimal

model is high (56.6% if we assume the DICs are normally distributed). nWAIC and nIS also

have large biases and variances. In particular, nWAIC nearly never chooses the full model

(with a probability close to 1 if nWAICs are normally distributed). nIS has a good chance

to choose the spatial+linear model (0.92 if the values are normally distribute). However, nIS

is numerically unstable, with fairly large variance, which is well-known by many researchers

(Spiegelhalter et al., 2002) [19]. In summary, the integration applied to latent variables

associated with each validation unit substantially improves the estimates of CVIC given by

nWAIC and nIS.

The good approximates of CVIC by iIS may not be surprising because our derivation

in Section 2.3.2 has shown their equivalence in these models. It is surprising to note that

the heuristic iWAIC also gives estimates very close to CVIC for model (3.14) and (3.15),

which contain correlated random effects. Furthermore, note that iWAIC has smaller standard

deviations and biases than iIS. Therefore, the equivalence of iWAIC to iIS (or CVIC) deserves

more empirical and theoretical investigations in the future.
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Chapter 4

Empirical Results on Detecting Divergent

Regions

4.1 Detecting Divergent Regions Using p-value Based

on CV Posterior Predictive Distribution of yi

In this section, we are interested in detecting the outliers in Scotland lip cancer data. This

data set is the same as the data set shown in Table 3.5 from section 3.2. We wish to remind

the reader that the data set has the following fields: (1) the number of observed cases of

lip cancer, yi; (2) the number of expected cases, Ei; (3) the standardized morbidity ratio

(SMRi) for the ith districts, SMRi ≡ yi/Ei; and (4) the percent of the population employed

in agriculture, fishing and forestry, xi. By the conclusion presented in section 3.2, the lip

cancer data set is well-fit to the full model (spatial + linear):

yi|Ei, λi ∼ Poisson(λiEi) (4.1)

s ∼ Nn(α +Xβ,Φτ 2). (4.2)

Note that s = logλ. The full model is a member of the Bayesian latent variable models

depicted by Figure 2.1. The observable variable is yi, the latent variable bi is si, the covariate

variable vector isX, and the model parameter vector θ is (α, β, τ, φ). We consider comparing

different methods for computing posterior p-values in order to identify outliers in Scotland

lip cancer data. We used OpenBUGS through R package R2OpenBUGS to run MCMC for

fitting the full model to Scottish lip cancer data. For each simulation, we ran two parallel

chains, each with 15000 iterations with 5000 iterations for burning in and 10000 for sampling.
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The p-value(given parameters and latent variable) defined by (2.9) for this example is:

a0(y
obs

i ,θ, si) = p-value(yobs

i |θ, si) (4.3)

= Pr(yi > yobs

i |θ, si) + 0.5Pr(yi = yobs

i |θ, si) (4.4)

= 1− ppoisson(yobs

i ;λiEi) + 0.5dpoisson(yobs

i ;λiEi), (4.5)

where yobs
i is the actual observation for yi, and ppoisson and dpoisson denote CDF and PMF

of Poisson distribution. Very small or very large p-values indicate that the actual observed

yobs
i falls on the lower tail of Poisson(λiEi) (i.e. is unusual to Poisson). Those extreme p-

values identify outliers in Scotland lip cancer data. We also evaluate two probabilities to

have a more thorough picture:

a1(y
obs

i ,θ, si) = Pr(yi > yobs

i |θ, si), (4.6)

a2(y
obs

i ,θ, si) = Pr(yi = yobs

i |θ, si). (4.7)

Therefore, it is clear that ao(y
obs
i ,θ, si) = a1(y

obs
i ,θ, si) + 0.5a2(y

obs
i ,θ, si).

In this example, CV posterior p-value (Marshall and Spiegelhalter, 2003) [13] for obser-

vation yobs
i is the mean of p-value(yobs

i ,θ, si) with respect to the CV posterior distribution

P (θ, si|yobs
−i ):

p-value(yobs

i |yobs

−i ) = Pr(yi > yobs

i |yobs

−i ) + 0.5Pr(yi = yobs

i |yobs

−i ). (4.8)

To detect outliers, we are interested in computing the following three probabilities (consider-

ing the p-value as a probability), which can be written as mean of ao(y
obs
i ,θ, si), a1(y

obs
i ,θ, si)

and a2(y
obs
i ,θ, si), with respect to CV posterior distribution of (θ, si) defined by (2.6):

Pr(yi > yobs

i |yobs

−i ) = Epost(-i)

[
a1(y

obs

i ,θ, si)
]

(4.9)

Pr(yi = yobs

i |yobs

−i ) = Epost(-i)

[
a2(y

obs

i ,θ, si)
]

(4.10)

p-value(yobs

i |yobs

−i ) = Epost(-i)

[
a0(y

obs

i ,θ, si)
]
. (4.11)
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Note that:

p-value(yobs

i |yobs

−i ) = Epost(-i)

[
a1(y

obs

i ,θ, si)
]

+ 0.5Epost(-i)

[
a2(y

obs

i ,θ, si)
]
. (4.12)

We carried out 56 actual cross-validatory MCMC simulations, and used the MCMC sam-

ples of (θ, si) to estimate the two probabilities in (4.9) and (4.10), and the p-value in (4.11).

The results of estimating the two probabilities and p-value are shown in column “CV” of

Table B.1.

In Table 4.1, we show some selected results of the CV p-values and two probabilities. We

can see that we get very small or very large CV posterior p-value for some observation yobs
i .

This indicates that the yobs
i is unusual to the predictive distribution of yi given yobs

−i . In this

example, when CV posterior p-value for yobs
i is very small or very large, the ith district is

probably an outlier to other districts (e.g. CV posterior p-values of district 2 and district 55

are 0.03 and 0.99).

Table 4.1: The results of quantities of three probabilities: Pr(yi > yobs
i |yobs

−i ),
Pr(yi = yobs

i |yobs
−i ) and p-value(yobs

i |yobs
−i ), which are means of a0(y

obs
i ,θ, si), a1(y

obs
i ,θ, si)

and a2(y
obs
i ,θ, si) with respect to posterior distribution of (θ, si) for different methods

under selected districts.

ID
Pr(yi > y

obs
i |yobs

−i ) Pr(yi = yobs
i |yobs

−i ) p-value(yobs|yobs
−i )

CV PCH GHO nIS iIS CV PCH GHO nIS iIS CV PCH GHO nIS iIS

1 0.29 0.37 0.30 0.28 0.29 0.03 0.09 0.03 0.05 0.03 0.31 0.42 0.32 0.30 0.31

2 0.03 0.30 0.05 0.03 0.03 0.00 0.04 0.01 0.00 0.00 0.03 0.32 0.05 0.03 0.03

3 0.08 0.29 0.09 0.10 0.08 0.02 0.08 0.02 0.02 0.02 0.09 0.33 0.10 0.12 0.09

11 0.12 0.30 0.12 0.10 0.11 0.02 0.07 0.02 0.02 0.02 0.13 0.34 0.13 0.11 0.12

15 0.06 0.24 0.06 0.07 0.05 0.01 0.06 0.01 0.02 0.01 0.06 0.27 0.07 0.07 0.06

17 0.55 0.36 0.54 0.46 0.55 0.11 0.20 0.12 0.14 0.11 0.60 0.47 0.60 0.53 0.61

26 0.04 0.20 0.05 0.05 0.04 0.01 0.06 0.02 0.02 0.01 0.05 0.22 0.06 0.05 0.05

38 0.06 0.18 0.07 0.05 0.06 0.03 0.08 0.04 0.03 0.03 0.07 0.22 0.09 0.07 0.07

42 0.99 0.82 0.97 0.98 0.99 0.00 0.06 0.01 0.01 0.00 0.99 0.85 0.98 0.99 0.99

45 0.95 0.78 0.89 0.95 0.96 0.01 0.05 0.02 0.01 0.01 0.96 0.80 0.91 0.96 0.96

49 0.99 0.85 0.94 0.98 0.99 0.00 0.03 0.01 0.00 0.00 0.99 0.87 0.95 0.99 0.99
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Table 4.1 – Continued from previous page

ID
Pr(yi > yobs

i |yobs
−i ) Pr(yi = yobs

i |yobs
−i ) p-value(yobs

i |yobs
−i )

CV PCH GHO nIS iIS CV PCH GHO nIS iIS CV PCH GHO nIS iIS

50 0.94 0.78 0.91 0.93 0.94 0.02 0.08 0.03 0.03 0.02 0.96 0.82 0.93 0.95 0.96

55 0.98 0.85 0.97 0.97 0.98 0.02 0.15 0.03 0.03 0.02 0.99 0.92 0.99 0.99 0.99

56 0.68 0.45 0.67 0.64 0.68 0.32 0.55 0.33 0.36 0.32 0.84 0.73 0.83 0.82 0.84

Abbreviations: CV: cross validation, PCH: posterior checking, GHO: Ghosting, nIS: non-integrated Importance Sampling,

iIS: integrated Importance Sampling

There are three methods proposed in the literature for estimating the p-values (and the

two probabilities) with only MCMC simulation based on the full data set. One method is

to apply the posterior checking concept of Gelman et al. (1996) [5] without considering bias-

correction. That is, to average each a0(y
obs
i |θ, s1) with respect to the posterior distribution of

(θ, si) given the full data set yobs
1:56 (full data posterior distribution). We will call this method

posterior checking :

̂p-value(yobs

i |yobs

−i )
Post.check = ÊPost.check

post(-i)

[
a0(y

obs

i |θ, si)
]

(4.13)

= Êpost

[
a1(y

obs

i |θ, si)
]

+ 0.5Êpost

[
a2(y

obs

i |θ, si)
]
. (4.14)

We drew a single MCMC sample of (θ, si) from the full data posterior distribution Ppost(θ, s1:n|yobs
1:n)

to estimate the probabilities and p-value. The results of the approximation using posterior

check are shown in Table B.1 and Table 4.1 in the “PCH” column.

We also portray the two p-values values given by CV posterior distribution and full data

posterior distribution as tails of Poisson(λiEi). We first ran 56 actual cross-validatory MCMC

simulations with each of the 56 observations removed (set yobs
i to NA in OpenBUGS) and

then computed actual CV posterior predictive probability mass function (PMF) for yi using

the equation:

Ppost(-i)(yi|yobs

−i ) =

∫
P (yi|θ, si)P (θ, s1:n|yobs

−i )dθds1:n, (4.15)

for yi = 0, 1, 2, 3, . . .. For each value of yi (up to a limit), the above integration was found

by using MCMC samples of θ, si from the CV posterior P (θ, s1:n|y−i). Secondly, we ran a

MCMC simulation based on the full data set and computed full data posterior predictive
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(b) Full data posterior predic-
tive PMF of yi, Ppost(yi|yobs

1:n)
for district 2 (Banff-Buchan),
corresponding p-value = 0.32
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(c) CV posterior predictive
PMF of yi, Ppost(-i)(yi|yobs

−i )

for district 42 (Falkirk), corre-
sponding p-value = 0.99
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(d) Full data posterior predic-
tive PMF of yi, Ppost(yi|yobs

1:n)
for district 42 (Falkirk), corre-
sponding p-value = 0.86
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(e) CV posterior predictive
PMF of yi, Ppost(-i)(yi|yobs

−i ) for

district 55 (Annandale), corre-
sponding p-value = 0.99
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(f) Full data posterior predic-
tive PMF of yi, Ppost(yi|yobs

1:n)
for district 55 (Annandale), cor-
responding p-value 0.92

Figure 4.1: Posterior predictive distribution of yi, given full data compared to CV
posterior predictive distribution of yi and data set with yobs

i omitted. The red vertical
line represents the value of yobs

i .
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probability mass function for yi = 0, 1, 2, 3, . . .:

P̂Post.check
post(-i) (yi|yobs

−i ) = PPost.check
post (yi|yobs

1:n) (4.16)

=

∫
P (yi|θ, si)P (θ, s1:n|yobs

1:n)dθds1:n. (4.17)

Similarly, for each value of yi, the integration is found by using MCMC samples of θ, si from

the full data posterior P (θ, s1:n|yobs
1:n). We compared the above two PMFs in Figure 4.1 with

red vertical lines indicating the actual observed values of yobs
i for the three selected districts,

2, 42 and 55. Figure 4.1 draws the shape of tails of Poisson(λiEi) cut by observation yobs
i , in

which the p-values (using either CV or full data posterior) are read as the sum of PMFs on

the right of the actual observation yobs
i , with only halp of the PMF at yobs

i . In Figure 4.1, we

can see that the full data posterior fits the actual observations better than the CV-posterior.

This is called optimistic bias. The consequence is that the posterior p-values will tend to be

more concentrated to 0.5 than the CV posterior p-values, as shown by Figure 4.2a.

In order to reduce the bias of including yobs
i in model fitting, Marshall and Spiegelhalter

(2003) [13] propose Ghosting method : for each MCMC sample, one averages p-value(yobs
i ,θ, si)

with respect to the conditional distribution of si given θ (but without yobs
i ) to obtain Ghosting

p-value. Ghosting method discards si associated with the yobs
i , and re-generates it from the

distribution without reference to the actual observation of yobs
i using Monte Carlo method to

compute the p-value.

The third method is the non-integrated importance sampling method (nIS) which averages

p-value(yobs
i ,θ, si) after being weighted with the inverse of probability density (mass) of yobs

i .

For computing integrated p-values and predictive densities as needed by nIS and Ghosting

method, we generated 100 of si from

si|s−i,θ ∼ N(α + xiβ + φ
∑
j∈Ni

(cij(sj − α− xjβ)), τ 2mii) (4.18)

for each district and each MCMC sample.

The fourth method is the integrated importance sampling method (iIS). For each MCMC

sample, we must first average p-value(yobs
i ,θ, si) with respect to P (si|θ, s−i) in order to
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find integrated evaluation p-value (equation(2.16)) and integrate predictive density (equa-

tion(2.19)). Then we must find the weighted average of integrated p-values with reversed

integrated predictive density as weights over all MCMC samples using formula (2.20). We see

that the difference between Ghosting method and iIS is that iIS uses importance weighting

to correct the bias in full data posterior of θ, but Ghosting method does not. Therefore,

Ghosting method can be viewed as a partial implementation of iIS method presented here.

We write the four methods estimating CV posterior p-values as expectations of evaluation

functions, in which expectations are defined by (2.11) - (2.20):

̂p-value(yobs

i |yobs

−i )
nIS =

Êpost

[
a0(y

obs
i |θ, si)W nIS

i (θ, s1:n)
]

Êpost

[
W nIS
i (θ, s1:n)

] (4.19)

=
Êpost

[
a1(y

obs
i |θ, si)W nIS

i (θ, s1:n)
]

Êpost

[
W nIS
i (θ, s1:n)

] (4.20)

+
0.5Êpost

[
a2(y

obs
i |θ, si)W nIS

i (θ, s1:n)
]

Êpost

[
W nIS
i (θ, s1:n)

] (4.21)

̂p-value(yobs

i |yobs

−i )
iIS =

Êpost

[
A0(y

obs
i |θ, s−i)W iIS

i (θ, s−i)
]

Êpost

[
W iIS
i (θ, s−i)

] (4.22)

=
Êpost

[
A1(y

obs
i |θ, s−i)W iIS

i (θ, s−i)
]

Êpost

[
W iIS
i (θ, s−i)

] (4.23)

+
0.5Êpost

[
A2(y

obs
i |θ, s−i)W iIS

i (θ, s−i)
]

Êpost

[
W iIS
i (θ, s−i)

] (4.24)

̂p-value(yobs

i |yobs

−i )
Ghost = Êpost

[
A0(y

obs

i |θ, s−i)
]

(4.25)

= Êpost

[
A1(y

obs

i |θ, s−i)
]

+ 0.5Êpost

[
A2(y

obs

i |θ, s−i)
]
, (4.26)
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where

A0(y
obs

i |θ, s−i) =

∫
a0(y

obs

i ,θ, si)P (si|s−i,θ)dsi (4.27)

A1(y
obs

i |θ, s−i) =

∫
a1(y

obs

i ,θ, si)P (si|s−i,θ)dsi (4.28)

A2(y
obs

i |θ, s−i) =

∫
a2(y

obs

i ,θ, si)P (si|s−i,θ)dsi (4.29)

W nIS
i (θ, s1:n) =

1

P (yobs
i |θ, si)

(4.30)

W iIS
i (θ, s−i) =

1

P (yobs
i |θ, s−i)

(4.31)

=
1∫

P (yobs
i |θ, si)P (si|s−i,θ)dsi

, (4.32)

noting that a0(), a1() and a2() are defined by equation (4.3),(4.6) and (4.7).

Using the above four methods, we calculated 56 posterior p-values, given a MCMC simu-

lation based on the full data set shown by Table B.1 and p-values of selected districts shown

in Table 4.1. Figure 4.2 shows scatter-plots of four sets of estimated CV posterior p-values,

given by four different methods against the actual CV posterior p-values from one MCMC

simulation. In Figure 4.2, we can see that the actual p-values given by posterior checking are

more concentrated around 0.5 than the actual CV posterior p-value, and do not appear to be

uniformly distributed (Gelman et al., 2013) [6]. Ghosting method reduces the bias; hence,

the estimated p-values are closer to the actual CV p-values, and more spread out over (0, 1).

However, for this example, the bias is still visible from Figure 4.2b. Both nIS and iIS give

estimate p-values very close to the actual values found by CV. However, nIS is less stable

than iIS, and sometimes gives very bad estimate (e.g for the district Skye-Lochalsh with ID

= 1 shown in Figure 4.2c).

Table 4.2: Comparisons of Relative Errors of Estimated CV p-values

iIS nIS Ghost Post. check
1.501(0.210) 12.481(1.586) 19.212(0.359) 160.580(1.101)

To measure more precisely the accuracy of estimated p-values to the actual CV p-values,
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(b) Ghosting method
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(c) Non-integrated IS (nIS)
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(d) Integrated IS (iIS)

Figure 4.2: Scatterplots of estimated posterior p-values in full data from an MCMC
simulation against actual CV posterior p-values. The number points show indices of
districts.
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Figure 4.3: Box-plots of relative errors of P-value in different methods in 100 replicates
of MCMC simulations given the full data

we use absolute relative error, defined as:

RE = (1/n)
n∑
i=1

|p̂i − pi|
min(pi, 1− pi)

× 100, (4.33)

where p̂1:n are estimates of p1:n. This measure greatly emphasize the error between p̂i and

pi when pi is very small or very large, for which we demand more absolute error than when

pi is close to 0.5. A similar measure (only using pi in denominator) is used by Marshall

and Spiegelhalter (2007) [14]. Here, we modify the denominator because large p-values are

also important. Table 4.2 and Figure 4.3 show the averages of REs over 100 independent

simulations for each method. Clearly, we see that iIS is the best method among the four, as

it is a significant improvement from Ghosting and posterior checking methods.
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4.2 Detecting Divergent Regions using p-value based

on CV posterior predictive distribution of λi

In this section, we will use another definition of p-value which computes probability of λi

with CV posterior predictive distribution greater to actual observation SMRi. The data set

and model we used here is the same as in Section 3.2 and in Section 4.1. This CV posterior

p-value for λi is defined as follows:

p-value(SMRi|yobs

−i ) = Pr(λi > SMRi|yobs

−i ). (4.34)

In order to compute the above p-value with different approximating methods, we further

define evaluation function of p-value of λi:

b(SMRi,θ, si) = I(λi > SMRi) noting λi = exp(si). (4.35)

In this way, the above p-value can be expressed as:

p-value(SMRi|yobs

−i ) = Epost(-i)

[
b(SMRi,θ, si)

]
. (4.36)

We carried out 56 actual cross-validatory MCMC simulations, and used the MCMC sam-

ples of (θ, si) to estimate the p-value (4.36). The results of estimating the p-value are shown

in column “CV” of Table 4.3.

Table 4.3: p-value based on P (λi|yobs
−i ) for all districts

ID District name CV Posterior Ghosting nIS iIS

checking

1 Skye-Lochalsh 0.31 0.40 0.31 0.26 0.30

2 Banff-Buchan 0.03 0.26 0.04 0.05 0.02

3 Caithness 0.07 0.27 0.08 0.09 0.07

4 Berwickshire 0.42 0.43 0.42 0.39 0.41

5 Ross-Cromarty 0.13 0.31 0.14 0.14 0.12
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Table 4.3 – Continued from previous page

ID District name CV Posterior Ghosting nIS iIS

checking

6 Orkney 0.52 0.47 0.51 0.42 0.52

7 Moray 0.05 0.24 0.06 0.07 0.05

8 Shetland 0.09 0.26 0.10 0.08 0.09

9 Lochaber 0.26 0.36 0.27 0.21 0.26

10 Gorden 0.26 0.37 0.26 0.23 0.25

11 Western Isles 0.11 0.29 0.12 0.12 0.10

12 Sutherland 0.52 0.47 0.52 0.47 0.52

13 Nairn 0.49 0.44 0.48 0.43 0.48

14 Wigtown 0.47 0.45 0.48 0.47 0.47

15 North East Fife 0.05 0.20 0.05 0.04 0.04

16 Kincardine 0.60 0.52 0.59 0.61 0.59

17 Badenoch 0.62 0.50 0.62 0.56 0.62

18 Ettrick 0.11 0.25 0.11 0.11 0.11

19 Inverness 0.36 0.40 0.36 0.34 0.35

20 Roxburgh 0.24 0.33 0.24 0.21 0.24

21 Angus 0.10 0.24 0.10 0.11 0.09

22 Aberdeen 0.77 0.61 0.72 0.72 0.76

23 Argyll-Bute 0.37 0.41 0.37 0.38 0.37

24 Clydesdale 0.07 0.20 0.10 0.07 0.07

25 Kirkcaldy 0.05 0.17 0.06 0.04 0.04

26 Dunfermline 0.03 0.13 0.03 0.03 0.02

27 Nithsdale 0.20 0.29 0.20 0.17 0.20

28 East Lothian 0.27 0.34 0.27 0.28 0.27

29 Perth-Kinross 0.70 0.59 0.69 0.67 0.70

30 West Lothian 0.22 0.31 0.24 0.22 0.22

31 Cumnock-Doon 0.24 0.31 0.24 0.23 0.23

32 Stewartry 0.86 0.69 0.85 0.84 0.86
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Table 4.3 – Continued from previous page

ID District name CV Posterior Ghosting nIS iIS

checking

33 Midlothian 0.46 0.44 0.46 0.46 0.46

34 Stirling 0.14 0.24 0.17 0.14 0.14

35 Kyle-Carrick 0.34 0.39 0.35 0.33 0.34

36 Inverclyde 0.10 0.20 0.11 0.11 0.10

37 Cunninghame 0.62 0.55 0.62 0.67 0.63

38 Monklands 0.03 0.12 0.05 0.03 0.03

39 Dumbarton 0.88 0.73 0.85 0.86 0.87

40 Clydebank 0.12 0.20 0.13 0.12 0.12

41 Renfrew 0.33 0.38 0.35 0.35 0.35

42 Falkirk 1.00 0.96 0.99 1.00 1.00

43 Clackmannan 0.95 0.86 0.95 0.94 0.95

44 Motherwell 0.63 0.58 0.65 0.63 0.65

45 Edinburgh 0.98 0.93 0.97 0.99 0.99

46 Kilmarnock 0.89 0.81 0.88 0.89 0.90

47 East Kilbride 0.53 0.49 0.53 0.53 0.53

48 Hamilton 0.79 0.72 0.79 0.79 0.80

49 Glasgow 0.99 0.96 0.99 1.00 1.00

50 Dundee 0.99 0.95 0.98 0.99 0.99

51 Cumbernauld 0.67 0.61 0.67 0.67 0.68

52 Bearsden 0.64 0.58 0.64 0.65 0.65

53 Eastwood 0.92 0.87 0.92 0.92 0.92

54 Strathkelvin 0.98 0.95 0.98 0.98 0.98

55 Annandale 1.00 1.00 1.00 1.00 1.00

56 Tweeddale 1.00 1.00 1.00 1.00 1.00

In Table 4.3, we can see that CV p-values of district 2, 7, 15, 25, 26 and 38 are smaller than

0.05 and CV p-values of district 42, 49, 50, 55 and 56 are greater than 0.99. Whereas in
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Section 3.2, Table 4.1 shows CV p-values of district 2 and 26 are smaller than 0.05 and CV

p-values of districts 42, 49 and 55 are greater than 0.99.

We used three other methods to estimate the CV posterior p-value: posterior check-

ing, non-integrated importance sampling(nIS) and integrated importance sampling(iIS). The

expressions for these methods are as follows:

̂p-value(SMRi|yobs

−i )
Post.check = Êpost

[
b(SMRi,θ, si)

]
(4.37)̂p-value(SMRi|yobs

−i )
Ghost = Êpost

[
B(SMRi,θ, s−i)

]
(4.38)

̂p-value(SMRi|yobs

−i )
nIS =

Êpost

[
b(SMRi|θ, si)W nIS

i (θ, s1:n)
]

Êpost

[
W nIS
i (θ, s1:n)

] (4.39)

̂p-value(SMRi|yobs

−i )
iIS =

Êpost

[
B(SMRi,θ, s−i)W

iIS
i (θ, s−i)

]
Êpost

[
W iIS
i (θ, s−i)

] , (4.40)

where

B(SMRi,θ, s−i) =

∫
b(SMRi,θ, si)P (si|s−i,θ)dsi (4.41)

W nIS
i (θ, s1:n) =

1

P (yobs
i |θ, si)

(4.42)

W iIS
i (θ, s−i) =

1

P (yobs
i |θ, s−i)

(4.43)

=
1∫

P (yobs
i |θ, si)P (si|s−i,θ)dsi

, (4.44)

as b(SMRi,θ, si) is defined in equation (4.35).

Given an MCMC simulation based on the full data set, we calculated 56 posterior p-values

with the four methods and repeated this calculation for 100 independent MCMC simulations.

The results of quantities of p-values with the four approximating CV methods are shown in

Table 4.3.

We present a scatterplot of posterior p-values on λ using four methods with full data

against actual CV posterior p-values in Figure 4.4. We can see that in Figure 4.4a, p-values

given by posterior checking are more concentrated around 0.5 than the actual CV posterior

p-value, and do not appear to be uniformly distributed (Gelman et al., 2013) [7]. It can be

observed that extreme p-values (identifying outliers) in both lower and upper tails in this
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graph are quite different in CV and posterior checking. For example, in Table 4.3, we see

that the CV posterior p-value is 0.03 compared to 0.26 in posterior checking for district 2.

We call this gap between CV posterior p-values and posterior checking p-values optimistic

bias.
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(a) Posterior checking
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(b) Ghosting method
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(c) Non-integrated IS (nIS)
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(d) Integrated IS (iIS)

Figure 4.4: Scatterers of posterior p-values on λ in four methods given full data
against actual CV posterior p-values on λ.

To assess the bias more visually, we portray p-values of λi with respect to CV poste-

rior distribution and respect to full data posterior distribution. Tail of both densities of

λis are taking SMRi as critical value indicating I(λi > SMRi). We plot a histogram that

48



approximates the density of λi using MCMC simulations of si from posterior distribution,

marking SMRi in this histogram shown in Figure 4.5. We observe that these shapes of full

data posterior densities of λi are much closer than the shapes of CV posterior densities. This

is because when computing each p-value, the observed value yobs
i itself is included in model

fitting, resulting in optimistic bias.

In Figures 4.4b, 4.4c and 4.4d, we see that Ghosting, nIS and iIS methods approximate

CV posterior p-values much better than posterior checking and greatly reduce the optimistic

bias. In Figure 4.4b, p-values with Ghosting method are more spread out in (0, 1) so that the

bias is still visible. Compared with p-values with iIS, p-values with nIS are unstable in graph

4.4c, which provides the best approximates of CV posterior p-values of the four methods.

We also apply absolute relative error formula (4.33) to measure the accuracy of estimated

p-values to the actual CV p-values of λ. Because the estimated and actual p-values for

district 55 and 56 are equal to 1, denominator of relative error (4.33) is invalid. In this case,

we discard the two districts’ p-values then use the remaining p-values to compute the relative

error. We display the results in Table 4.4 and Figure 4.6.

Table 4.4: Comparisons of relative errors of estimated CV p-values of λ

iIS nIS Ghost Post. check
5.486(0.195) 13.780(1.507) 18.726(0.995) 166.241(3.724)

Our purpose in researching CV approximation methods is to lower computing resource

cost by CV method, especially in computing time. We recorded execution time of computing

p-values and running MCMC for fitting the full model to Scottish lip cancer data. For each

simulation, we ran two parallel chains, each with 15000 iterations, 5000 iterations for burning

in, and 10000 for sampling. We considered time consumed in two parts: 1) running MCMC

simulations of (θ, si), and 2) computing means of evaluation function (b(SMRi,θ, si)). In

Table 4.5, we observe that the time spent on MCMC simulations in CV method is about 56

times that of other methods because cross validation computes MCMC simulation for each

of the 56 observation unit. In contrast, the other methods use only one MCMC simulation,

given full data. We also observe that for Ghosting and iIS methods, time is mainly spent

on computing integrations of evaluation functions: re-generating si or integrating away the

(s1:n,θ) in Ghosting and iIS. Considering the total time, we see that iIS saves 85% computing
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Figure 4.5: Histograms of λi simulated from CV posterior distribution and full data
posterior distribution.
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Figure 4.6: Box-plots of relative errors of p-valus of λ in different methods

time of p-value with CV, and it preforms best in approximating p-values to CV.

Table 4.5: Comparisons of user execution time(in seconds). “p-values” represents
time spned on work process of calculating p-values

CV iIS nIS Ghost Post. Check
MCMC 1037.35 19.95 19.98 20.14 19.91
p-values 0.12 133.61 10.94 113.91 0.18

Total 1037.47 153.56 30.92 134.04 20.08
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Chapter 5

Conclusions and Future Work

The new proposed iIS and iWAIC significantly reduce the bias of nIS and nWAIC in

evaluating Bayesian spatial models with unit-specific latent variables. We provide formulas

for iWAIC and iIS that are applicable to general evaluation function.

In Chapter 3, we saw that iIS and iWAIC produce very close results for comparing

competing models as what the actual CVIC provides. The results answer the hypothesis

questions about whether spatial or linear effects are present in models. On the other hand,

iIS and iWAIC save a great deal of computing resources compared to CVIC. In addition,

iWAIC works well in the spatial random effect models, the result in which is surprising and

encouraging. iIS and iWAIC provide new options with better performance in correcting

optimistic bias than DIC, ordinary IS and WAIC.

In Chapter 4, we used iIS to compute CV posterior p-values, which aims to detect the

outlier from Scotland lip cancer data. iIS has the lowest relative errors in approximating the

CV posterior predictive p-values of yi and λi.

Although our empirical results show that iIS and iWAIC provide better approximates

of CVIC than DIC, we notice that the implementations of iIS and iWAIC is much more

complicated, and requires users to have background knowledge in statistics and scientific

computing. To automate applications is a direction for future research one can pursue. One

may consider investigating the validity of iWAIC theoretically due to the lack of applicability

of iWAIC to models. In the future, we will empirically test iWAIC in many other models

using correlated latent variables, such as stochastic volatility models, multivariate spatial

models, etc.
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Appendix A

Working Procedures of iIS and iWAIC

A.1 Working procedure of iIS

1. Generate MCMC samples {(θ(s), b(s)1:n); s= 1,. . . , S} from P (θ, b1:n|yobs
1:n)

2. For each s = 1, . . . , S

(a) for each i = 1, . . . , n, generate {b(s,r)i ; r = 1, . . . , R} from P (bi|b(s)−i ,θ
(s)), and

estimate P (yobs
i |θ, b−i) by

P̂ (yobs

i |θ(s), b
(s)
−i ) = (1/R)

R∑
r=1

P (yobs

i |θ(s), b
(s)
−i , b

(s,r)
i ). (A.1)

Then, we can find iIS weight:

W iIS
i (θ(s), b

(s)
−i ) =

1

P̂ (yobs
i |θ

(s), b
(s)
−i )

(A.2)

(b) For each i = 1, . . . , n, generate {b̃(s,k)i ; k = 1, . . . , K} from P (bi|b(s)−i ,θ
(s)), and

estimate integrated evaluation function A by

A(yobs

i ,θ(s), b
(s)
−i ) = (1/K)

K∑
k=1

a
(
yobs

i ,θ(s), b̃
(s,k)

i

)
(A.3)

(c) Estimate expected evaluation function a with respect to P (θ, b1:n|yobs
−i ) by

ÊiIS
post(-i)(a(yobs

i ,θ, bi)) =
(1/S)

∑S
s=1

[
A(yobs

i ,θ(s), b
(s)
−i )W

iIS
i (θ(s), b

(s)
−i )
]

(1/S)
∑S

s=1W
iIS
i (θ(s), b

(s)
−i )

. (A.4)

Note that, if we are only interested in computing CVIC, don’t need to do step 2(b), and
take the numerator in (A.4) to be 1 as warranted by theory.
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A.2 Working procedure of iWAIC

1. Generate MCMC sampels {(θ(s), b(s)1:n); s= 2,. . . ,S} from P (θ, b1:n|yobs
1:n)

2. For each s = 1, . . . , S

(a) For each i = 1, . . . , n, generate {b(s,r)i ; r = 1, . . . , R} from P (bi|b(s)−i ,θ
(s)), and

estimate integrated predictive density P (yobs
i |θ, b−i) by

P̂ (yobs

i |θ(s), b
(s)
−i ) = (1/R)

R∑
r=1

P (yobs

i |θ(s), b
(s)
−i , b

(s,r)
i ). (A.5)

(b) Estimate log CV posterior predictive density:

log(P̂ (yobs

i |yobs

−i )) = log((1/S)
S∑
s=1

P̂ (yobs

i |θ(s), b
(s)
−i ))− V S

s=1 log(P̂ (yobs

i |θ(s), b
(s)
−i )),

(A.6)
where V S

s=1a
(s) stands for sample variance of (a(1), . . . , a(S)).

3. Find iWAIC:

iWAIC = −2
n∑
i=1

log(P̂ (P̂ (yobs

i |yobs

−i ))) (A.7)
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Appendix B

 Probabilities of p-values Table and Pos-

terior inference Table

Table B.1: The results of quantities of three probabilities: Pr(yi > yobs
i |yobs

−i ), Pr(yi =
yobs
i |yobs

−i ) and p-value(yobs
i |yobs

i ), which are means of a0(), a1 and a2() with respect to
posterior distribution of (θ, si) for different methods under selected districts.

ID
Pr(yi > y

obs
i |yobs

−i ) Pr(yi = yobs
i |yobs

−i ) p-value(yobs|yobs
−i )

CV POH GHO nIS iIS CV PCH GHO nIS iIS CV PCH GHO nIS iIS

1 0.29 0.37 0.30 0.28 0.29 0.03 0.09 0.03 0.05 0.03 0.31 0.42 0.32 0.30 0.31
2 0.03 0.30 0.05 0.03 0.03 0.00 0.04 0.01 0.00 0.00 0.03 0.32 0.05 0.03 0.03
3 0.08 0.29 0.09 0.10 0.08 0.02 0.08 0.02 0.02 0.02 0.09 0.33 0.10 0.12 0.09
4 0.39 0.39 0.40 0.37 0.39 0.04 0.10 0.05 0.06 0.04 0.42 0.44 0.42 0.40 0.42
5 0.14 0.32 0.14 0.11 0.13 0.02 0.07 0.02 0.02 0.02 0.15 0.36 0.15 0.12 0.14
6 0.49 0.41 0.49 0.39 0.49 0.05 0.10 0.05 0.06 0.05 0.51 0.46 0.51 0.42 0.52
7 0.05 0.29 0.07 0.08 0.05 0.01 0.05 0.01 0.01 0.01 0.06 0.31 0.07 0.09 0.06
8 0.10 0.27 0.10 0.10 0.10 0.03 0.10 0.03 0.03 0.03 0.11 0.32 0.11 0.11 0.11
9 0.25 0.33 0.26 0.25 0.25 0.05 0.11 0.05 0.06 0.05 0.27 0.39 0.28 0.28 0.27

10 0.25 0.37 0.26 0.23 0.25 0.03 0.06 0.03 0.03 0.03 0.26 0.40 0.27 0.25 0.27
11 0.12 0.30 0.12 0.10 0.11 0.02 0.07 0.02 0.02 0.02 0.13 0.34 0.13 0.11 0.12
12 0.48 0.40 0.48 0.44 0.48 0.07 0.13 0.07 0.08 0.07 0.51 0.46 0.52 0.48 0.52
13 0.45 0.35 0.44 0.37 0.44 0.09 0.16 0.09 0.10 0.09 0.49 0.43 0.48 0.42 0.48
14 0.44 0.40 0.44 0.40 0.45 0.06 0.10 0.06 0.06 0.06 0.47 0.45 0.47 0.43 0.47
15 0.06 0.24 0.06 0.07 0.05 0.01 0.06 0.01 0.02 0.01 0.06 0.27 0.07 0.07 0.06
16 0.55 0.44 0.55 0.52 0.55 0.06 0.10 0.06 0.06 0.06 0.58 0.49 0.58 0.55 0.58
17 0.55 0.36 0.54 0.46 0.55 0.11 0.20 0.12 0.14 0.11 0.60 0.47 0.60 0.53 0.61
18 0.12 0.25 0.12 0.12 0.11 0.04 0.10 0.04 0.04 0.04 0.14 0.30 0.15 0.14 0.14
19 0.34 0.37 0.35 0.36 0.34 0.06 0.10 0.06 0.06 0.06 0.37 0.42 0.38 0.39 0.37
20 0.24 0.32 0.24 0.19 0.24 0.06 0.11 0.06 0.05 0.06 0.27 0.37 0.27 0.21 0.27
21 0.11 0.27 0.12 0.13 0.11 0.03 0.07 0.03 0.03 0.03 0.13 0.30 0.14 0.14 0.13
22 0.72 0.55 0.68 0.73 0.73 0.03 0.05 0.03 0.03 0.03 0.74 0.57 0.69 0.74 0.74
23 0.35 0.38 0.36 0.35 0.35 0.06 0.09 0.06 0.06 0.06 0.38 0.42 0.39 0.38 0.38
24 0.09 0.23 0.11 0.09 0.09 0.04 0.10 0.04 0.04 0.04 0.11 0.28 0.14 0.11 0.11
25 0.07 0.23 0.09 0.04 0.06 0.02 0.06 0.02 0.01 0.02 0.08 0.26 0.10 0.05 0.07
26 0.04 0.20 0.05 0.05 0.04 0.01 0.06 0.02 0.02 0.01 0.05 0.22 0.06 0.05 0.05
27 0.21 0.29 0.21 0.21 0.21 0.07 0.11 0.07 0.07 0.07 0.24 0.35 0.25 0.24 0.24
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Table B.1 – Continued from previous page

ID
Pr(yi > yobs

i |yobs
−i ) Pr(yi = yobs

i |yobs
−i ) p-value(yobs

i |yobs
−i )

CV PCH CHO nIS iIS CV PCH GHO nIS iIS CV PCH GHO nIS iIS

28 0.28 0.34 0.28 0.27 0.28 0.06 0.09 0.06 0.06 0.06 0.31 0.39 0.31 0.30 0.31
29 0.64 0.51 0.63 0.58 0.64 0.05 0.08 0.05 0.05 0.05 0.66 0.55 0.65 0.60 0.67
30 0.23 0.32 0.25 0.23 0.23 0.05 0.09 0.06 0.05 0.05 0.25 0.36 0.28 0.26 0.26
31 0.23 0.29 0.24 0.21 0.23 0.09 0.13 0.09 0.08 0.09 0.27 0.36 0.28 0.25 0.27
32 0.78 0.51 0.76 0.77 0.78 0.07 0.17 0.08 0.08 0.07 0.82 0.60 0.80 0.81 0.82
33 0.42 0.40 0.42 0.41 0.42 0.08 0.12 0.09 0.09 0.09 0.46 0.45 0.46 0.46 0.46
34 0.16 0.27 0.18 0.16 0.16 0.06 0.10 0.06 0.06 0.06 0.19 0.31 0.21 0.19 0.19
35 0.34 0.37 0.34 0.33 0.33 0.07 0.09 0.07 0.06 0.07 0.37 0.42 0.37 0.36 0.37
36 0.13 0.24 0.14 0.13 0.13 0.05 0.09 0.05 0.05 0.05 0.15 0.29 0.16 0.16 0.15
37 0.56 0.48 0.56 0.54 0.57 0.07 0.09 0.07 0.07 0.07 0.60 0.52 0.59 0.58 0.60
38 0.06 0.18 0.07 0.05 0.06 0.03 0.08 0.04 0.03 0.03 0.07 0.22 0.09 0.07 0.07
39 0.79 0.57 0.76 0.75 0.79 0.06 0.12 0.06 0.07 0.06 0.82 0.63 0.80 0.78 0.82
40 0.13 0.22 0.14 0.13 0.13 0.09 0.13 0.09 0.08 0.09 0.18 0.28 0.19 0.17 0.18
41 0.34 0.36 0.34 0.33 0.33 0.08 0.10 0.08 0.08 0.08 0.38 0.41 0.38 0.37 0.37
42 0.99 0.82 0.97 0.98 0.99 0.00 0.06 0.01 0.01 0.00 0.99 0.85 0.98 0.99 0.99
43 0.84 0.61 0.83 0.85 0.85 0.08 0.18 0.08 0.07 0.08 0.88 0.70 0.87 0.89 0.88
44 0.54 0.47 0.53 0.53 0.54 0.11 0.13 0.11 0.11 0.11 0.60 0.53 0.59 0.59 0.59
45 0.95 0.78 0.89 0.95 0.96 0.01 0.05 0.02 0.01 0.01 0.96 0.80 0.91 0.96 0.96
46 0.75 0.58 0.74 0.75 0.75 0.10 0.16 0.11 0.10 0.10 0.80 0.66 0.79 0.80 0.80
47 0.41 0.36 0.40 0.41 0.41 0.20 0.23 0.20 0.20 0.20 0.51 0.47 0.50 0.51 0.51
48 0.62 0.51 0.61 0.61 0.62 0.14 0.18 0.14 0.14 0.14 0.69 0.60 0.68 0.69 0.69
49 0.99 0.85 0.94 0.98 0.99 0.00 0.03 0.01 0.00 0.00 0.99 0.87 0.95 0.99 0.99
50 0.94 0.78 0.91 0.93 0.94 0.02 0.08 0.03 0.03 0.02 0.96 0.82 0.93 0.95 0.96
51 0.46 0.37 0.45 0.45 0.46 0.26 0.31 0.27 0.27 0.26 0.59 0.52 0.59 0.58 0.59
52 0.44 0.36 0.43 0.44 0.44 0.27 0.31 0.27 0.27 0.27 0.57 0.51 0.57 0.57 0.57
53 0.65 0.52 0.64 0.67 0.65 0.21 0.28 0.21 0.20 0.21 0.76 0.66 0.75 0.77 0.76
54 0.77 0.62 0.76 0.76 0.77 0.15 0.24 0.16 0.16 0.15 0.84 0.74 0.84 0.84 0.85
55 0.98 0.85 0.97 0.97 0.98 0.02 0.15 0.03 0.03 0.02 0.99 0.92 0.99 0.99 0.99
56 0.68 0.45 0.67 0.64 0.68 0.32 0.55 0.33 0.36 0.32 0.84 0.73 0.83 0.82 0.84

Abbreviations: CV: cross validation, PCH: posterior checking, GHO: Ghosting, nIS: non-integrated Importance Sampling,
iIS: integrated Importance Sampling

Table B.2: Posterior inference for λ for the spatial + linear model of Scotland lip
cancer data.

Parameter Mean 2.5% Median 97.5% Parameter Mean 2.5% Median 97.5%

λ1 6.26 2.96 6.04 10.85 λ29 1.19 0.76 1.17 1.72
λ2 4.10 2.92 4.06 5.50 λ30 0.98 0.55 0.95 1.55
λ3 3.12 1.57 3.02 5.24 λ31 0.92 0.38 0.87 1.76
λ4 3.48 1.71 3.36 5.97 λ32 1.40 0.49 1.30 2.84
λ5 3.19 1.84 3.10 5.00 λ33 0.99 0.49 0.96 1.69
λ6 3.37 1.57 3.24 5.90 λ34 0.79 0.39 0.76 1.36
λ7 2.85 1.87 2.81 4.04 λ35 0.85 0.50 0.83 1.32
λ8 2.52 1.03 2.40 4.74 λ36 0.73 0.39 0.70 1.20
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Table B.2 – Continued from previous page

Parameter Mean 2.5% Median 97.5% Parameter Mean 2.5% Median 97.5%

λ9 2.78 1.10 2.62 5.28 λ37 0.92 0.55 0.90 1.39
λ10 2.87 1.81 2.82 4.18 λ38 0.62 0.31 0.59 1.09
λ11 2.61 1.42 2.55 4.15 λ39 1.04 0.53 1.01 1.77
λ12 2.86 1.07 2.70 5.55 λ40 0.57 0.22 0.53 1.20
λ13 2.82 0.73 2.55 6.42 λ41 0.51 0.30 0.49 0.77
λ14 2.41 1.16 2.32 4.21 λ42 0.82 0.48 0.80 1.23
λ15 1.83 1.09 1.79 2.80 λ43 0.80 0.29 0.75 1.61
λ16 2.07 1.06 2.01 3.44 λ44 0.45 0.25 0.44 0.73
λ17 2.12 0.42 1.85 5.32 λ45 0.48 0.34 0.48 0.65
λ18 1.38 0.60 1.31 2.52 λ46 0.53 0.24 0.50 0.96
λ19 1.56 0.79 1.51 2.61 λ47 0.39 0.13 0.36 0.83
λ20 1.42 0.65 1.36 2.54 λ48 0.41 0.19 0.39 0.75
λ21 1.33 0.80 1.30 2.00 λ49 0.41 0.31 0.41 0.52
λ22 1.45 1.04 1.44 1.93 λ50 0.49 0.28 0.48 0.75
λ23 1.21 0.69 1.18 1.90 λ51 0.39 0.10 0.34 0.97
λ24 0.97 0.43 0.92 1.79 λ52 0.37 0.09 0.32 0.91
λ25 1.03 0.66 1.01 1.51 λ53 0.33 0.11 0.30 0.71
λ26 0.94 0.56 0.92 1.46 λ54 0.33 0.12 0.31 0.67
λ27 1.01 0.48 0.97 1.80 λ55 0.58 0.16 0.53 1.27
λ28 1.03 0.57 1.00 1.67 λ56 0.42 0.05 0.33 1.33
α -0.57 -0.89 -0.57 -0.23 β 6.31 3.57 6.30 9.17
φ 0.14 0.02 0.15 0.17 τ 1.40 0.99 1.39 1.90
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Appendix C

R Code for CV

C.1 Utility Function

###################################

## Three functions to calculate mean and harmonic mean

## of exponential of log functions

###################################

## log_sum_exp --- A function to calculate the value of log of

## sum over exponential of log function.

## log_mean_exp --- A function to calculate the value of log of

## mean of exponential of log function.

## log_hmean_exp --- A function to calculate the value of log of

## harmonic mean of exponential of log function.

log_sum_exp <- function (lx)
{

mlx <- max (lx)

log (sum (exp (lx - mlx))) + mlx

}

log_mean_exp <- function (lx)

{

log_sum_exp (lx) - log(length (lx))

}

log_hmean_exp <- function (lx)

{

- log_mean_exp (-lx)

}

C.2 MCMC Simulation for CV Posterior

## load R package "R2OpenBUGS"

library("R2OpenBUGS")

##################################

## A function to specify initial values for MCMC simulation.

## Initials are for starting points of prior parameters
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##################################

## alpha --- A latent variable for linear effect representing intercept.

## prec --- (inverse variance) A scalar parameter representing

## the overall precision parameter.

## beta --- a latent variable for linear effect with covariate X.

inits <- function()

{

list(alpha = 0, prec = 0.5, gamma =0,

S=rnorm(56,0,20)

)

}

#########################################

## Load data for MCMC simulation

########################################

## N --- number of districts

## sumNumNeigh --- summation of number of neighbourhood for each district

## O --- number of observation cases for each district

## E --- expected number of cases for each district

## X --- covariate, percent of population employed in

## agriculture, fishing and forestry

## adj --- adjacent ID of each district

## num --- number of adjacent ID of each district

raw_data <- list(N = 56,

sumNumNeigh = 264,

O = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20,

13, 5, 3, 8, 17, 9, 2, 7, 9, 7,

16, 31, 11, 7, 19, 15, 7, 10, 16, 11,

5, 3, 7, 8, 11, 9, 11, 8, 6, 4,

10, 8, 2, 6, 19, 3, 2, 3, 28, 6,

1, 1, 1, 1, 0, 0),

E = c( 1.38, 8.66, 3.04, 2.53, 4.26, 2.40, 8.11, 2.30, 1.98, 6.63,

4.40, 1.79, 1.08, 3.31, 7.84, 4.55, 1.07, 4.18, 5.53, 4.44,

10.46,22.67, 8.77, 5.62,15.47,12.49, 6.04, 8.96,14.37,10.20,

4.75, 2.88, 7.03, 8.53,12.32,10.10,12.68, 9.35, 7.20, 5.27,

18.76,15.78, 4.32,14.63,50.72, 8.20, 5.59, 9.34,88.66,19.62,

3.44, 3.62, 5.74, 7.03, 4.16, 1.76),

X= c(16,16,10,24,10,24,10, 7, 7,16,
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7,16,10,24, 7,16,10, 7, 7,10,

7,16,10, 7, 1, 1, 7, 7,10,10,

7,24,10, 7, 7, 0,10, 1,16, 0,

1,16,16, 0, 1, 7, 1, 1, 0, 1,

1, 0, 1, 1,16,10),

adj = c( 5, 9,11,19,

7,10,

6,12,

18,20,28,

1,11,12,13,19,

3, 8,

2,10,13,16,17,

6,

1,11,17,19,23,29,

2, 7,16,22,

1, 5, 9,12,

3, 5,11,

5, 7,17,19,

31,32,35,

25,29,50,

7,10,17,21,22,29,

7, 9,13,16,19,29,

4,20,28,33,55,56,

1, 5, 9,13,17,

4,18,55,

16,29,50,

10,16,

9,29,34,36,37,39,

27,30,31,44,47,48,55,56,

15,26,29,

25,29,42,43,

24,31,32,55,

4,18,33,45,

9,15,16,17,21,23,25,26,34,43,50,

24,38,42,44,45,56,

14,24,27,32,35,46,47,

14,27,31,35,

18,28,45,56,

23,29,39,40,42,43,51,52,54,

14,31,32,37,46,

23,37,39,41,

23,35,36,41,46,

30,42,44,49,51,54,

23,34,36,40,41,

34,39,41,49,52,

36,37,39,40,46,49,53,

26,30,34,38,43,51,
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26,29,34,42,

24,30,38,48,49,

28,30,33,56,

31,35,37,41,47,53,

24,31,46,48,49,53,

24,44,47,49,

38,40,41,44,47,48,52,53,54,

15,21,29,

34,38,42,54,

34,40,49,54,

41,46,47,49,

34,38,49,51,52,

18,20,24,27,56,

18,24,30,33,45,55),

num = c(4, 2, 2, 3, 5, 2, 5, 1, 6,

4, 4, 3, 4, 3, 3, 6, 6, 6 ,5,

3, 3, 2, 6, 8, 3, 4, 4, 4,11,

6, 7, 4, 4, 9, 5, 4, 5, 6, 5,

5, 7, 6, 4, 5, 4, 6, 6, 4, 9,

3, 4, 4, 4, 5, 5, 6)

)

#####################################

## Identify latent variables and parameters to be MCMC sampled.

#######################################

## S --- latent variable, the logarithm of relative risk

parameters<-c("alpha","S","sigma","prec")

##################################

## Set NA to validity unit of observation

##################################

## ifold --- ifold in CV process is to identify validity unit

## that is, e.g. ifold = 2 means that we omit the observation of

## y for district 2 (set NA).

if (!exists ("ifold")) ifold <- 2

data <- raw_data

O_t<-data$O

E_t<-data$E

Coef<-rep(0,length(O_t))

O.ts <- data$O[ifold]

data$O[ifold] <- NA

Coef[ifold]<- sum(O_t[-ifold])/sum(E_t[-ifold])

data$E <- data$E*Coef[ifold]
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#########################################

## Define the full model

## One may also define alternative model in this way.

## The model description is saved in model file. ’lipcancer_prop_full.txt’

##########################################

’model {

for(i in 1 : N) {

m[i] <- 1/E[i]

}

cumsum[1] <- 0

for(i in 2:(N+1)) {

cumsum[i] <- sum(num[1:(i-1)])

}

for(k in 1 : sumNumNeigh) {

for(i in 1:N) {

pick[k,i] <- step(k - cumsum[i] - epsilon) * step(cumsum[i+1] - k)

}

C[k] <- sqrt(E[adj[k]] / inprod(E[], pick[k,]))

}

epsilon <- 0.0001

for (i in 1 : N) {

O[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + S[i]

RR[i] <- exp(S[i])

theta[i] <- alpha + beta*X[i]/100

}

# Proper CAR prior distribution for spatial random effects:

S[1:N] ~ car.proper(theta[], C[], adj[], num[], m[], prec, gamma)

# Other priors:

alpha ~ dnorm(0, 0.0001)

beta ~ dnorm(0, 0.001)

prec ~ dgamma(0.5, 0.0005)

v <- 1/prec

sigma <- sqrt(1 / prec)

# prior on precision

# variance
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# standard deviation

gamma.min <- min.bound(C[], adj[], num[], m[])

gamma.max <- max.bound(C[], adj[], num[], m[])

gamma ~ dunif(gamma.min, gamma.max)

}’

##########################################

## A function from R2OpenBUGS package to do MCMC sample simulation with

## arguments data, initial values, sampled parameters, iterations number,

## model file, number of chains, number of thin iteration,

## number of burning iteration,

## bugs.seed and return of DIC.

###########################################

fit<-bugs(data,inits,parameters, n.iter = 15000,

model.file=’/home/shq471/lipcancer/models/lipcancer_prop_full.txt’,

n.chains=2, n.thin=1, n.burnin = 5000, DIC=FALSE)

##################################

## save MCMC sample

##################################

mcmc<-fit$sims.matrix

alpha_hat<-mcmc[,"alpha"]

s_hat<-mcmc[,sprintf("S[%d]",ifold)]

mu_hat <- exp(s_hat)*data$E[ifold]

C.3 CVIC and CV p-value

#######################################

## calculate CVIC for district ’ifold’ and save it 
######################################

log_prob_CV <-dpois(O.ts, mu_hat,log=TRUE)

CVIS_sub <- -2*(log_mean_exp(log_prob_CV))

cat(CVIS_sub,file =sprintf("/lipcancer_CV_full_E%d.txt",ifold))

###########################################

## calculate CV p-value for district ’ifold’ and save it 
#########################################

log_pv <- log_sum_exp(c( log_mean_exp(ppois(O.ts, mu_hat,log=TRUE,

lower.tail=FALSE)),log_mean_exp(dpois(O.ts,mu_hat,log=TRUE))-log(2) ))

p_value <- exp(log_pv)
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cat(p_value,file =sprintf("/nPvcv%d.txt",ifold))
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Appendix D

R Code for iIS and iWAIC

D.1 MCMC Simulation for Full Data Posterior

## load R package "R2OpenBUGS"

library("R2OpenBUGS")

##########################################

## A function to specify initial values for MCMC simulation.

## Initials are prior parameters

#########################################

## alpha --- A latent variable for linear effect representing intercept.

## prec --- (inverse variance) A scalar parameter representing

## the overall precision parameter.

## beta --- a latent variable for linear effect with covariate X.

inits <- function()

{

list(alpha = rnorm(1,0,2), prec = runif(1,0.1,2), gamma =0,

S = rep(0,56), beta=rnorm(1,5,5))

}

##############################################

## Load data for MCMC simulation

###########################################

## N --- number of districts

## sumNumNeigh --- summation of number of neighbourhood for each district

## O --- number of observation cases for each district

## E --- expected number of cases for each district

## X --- covariate, percent of population employed in agriculture, fishing and forestry

## adj --- adjacent ID of each district

## num --- number of adjacent ID of each district

68



data <- list(N = 56,

sumNumNeigh = 264,

O = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20,

13, 5, 3, 8, 17, 9, 2, 7, 9, 7,

16, 31, 11, 7, 19, 15, 7, 10, 16, 11,

5, 3, 7, 8, 11, 9, 11, 8, 6, 4,

10, 8, 2, 6, 19, 3, 2, 3, 28, 6,

1, 1, 1, 1, 0, 0),

E = c( 1.38, 8.66, 3.04, 2.53, 4.26, 2.40, 8.11, 2.30, 1.98, 6.63,

4.40, 1.79, 1.08, 3.31, 7.84, 4.55, 1.07, 4.18, 5.53, 4.44,

10.46,22.67, 8.77, 5.62,15.47,12.49, 6.04, 8.96,14.37,10.20,

4.75, 2.88, 7.03, 8.53,12.32,10.10,12.68, 9.35, 7.20, 5.27,

18.76,15.78, 4.32,14.63,50.72, 8.20, 5.59, 9.34,88.66,19.62,

3.44, 3.62, 5.74, 7.03, 4.16, 1.76),

X= c(16,16,10,24,10,24,10, 7, 7,16,

7,16,10,24, 7,16,10, 7, 7,10,

7,16,10, 7, 1, 1, 7, 7,10,10,

7,24,10, 7, 7, 0,10, 1,16, 0,

1,16,16, 0, 1, 7, 1, 1, 0, 1,

1, 0, 1, 1,16,10),

adj = c( 5, 9,11,19,

7,10,

6,12,

18,20,28,

1,11,12,13,19,

3, 8,

2,10,13,16,17,

6,

1,11,17,19,23,29,

2, 7,16,22,

1, 5, 9,12,

3, 5,11,

5, 7,17,19,

31,32,35,

25,29,50,

7,10,17,21,22,29,

7, 9,13,16,19,29,

4,20,28,33,55,56,

1, 5, 9,13,17,

4,18,55,

16,29,50,

10,16,

9,29,34,36,37,39,
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27,30,31,44,47,48,55,56,

15,26,29,

25,29,42,43,

24,31,32,55,

4,18,33,45,

9,15,16,17,21,23,25,26,34,43,50,

24,38,42,44,45,56,

14,24,27,32,35,46,47,

14,27,31,35,

18,28,45,56,

23,29,39,40,42,43,51,52,54,

14,31,32,37,46,

23,37,39,41,

23,35,36,41,46,

30,42,44,49,51,54,

23,34,36,40,41,

34,39,41,49,52,

36,37,39,40,46,49,53,

26,30,34,38,43,51,

26,29,34,42,

24,30,38,48,49,

28,30,33,56,

31,35,37,41,47,53,

24,31,46,48,49,53,

24,44,47,49,

38,40,41,44,47,48,52,53,54,

15,21,29,

34,38,42,54,

34,40,49,54,

41,46,47,49,

34,38,49,51,52,

18,20,24,27,56,

18,24,30,33,45,55),

num = c(4, 2, 2, 3, 5, 2, 5, 1, 6,

4, 4, 3, 4, 3, 3, 6, 6, 6 ,5,

3, 3, 2, 6, 8, 3, 4, 4, 4,11,

6, 7, 4, 4, 9, 5, 4, 5, 6, 5,

5, 7, 6, 4, 5, 4, 6, 6, 4, 9,

3, 4, 4, 4, 5, 5, 6)

)

########################################

## Identify latent variables and parameters to be MCMC sampled.

#######################################

## S --- latent variable, the logarithm of relative risk
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parameters<-c("alpha","S","sigma","prec","gamma" ,"beta","theta")

##############################################

## nIter --- number of iterations for each chain of MCMC simulation

## nBur --- number of iterations for burning

## Sims --- total number of iterations sampled in two chains

nIter <- 15000

nBur <- 5000

Sims <- 2*(nIter - nBur)

#######################################

## A function from R2OpenBUGS package to do MCMC sample simulation with

## arguments data, initial values, sampled parameters, iterations number,

## model file, number of chains, number of thin iteration, number of

## burning iteration, bugs.seed and return of DIC.

#######################################

fit<-bugs(data,inits,parameters, n.iter = nIter, model.file=’lipcancer_prop_full.txt’,

n.chains=2, n.thin=1, n.burnin = nBur, DIC=TRUE , bugs.seed = sample(1:14,1))

####################################

## Save MCMC sample posteriors

####################################

mcmc<-fit$sims.matrix

alpha_hat<-mcmc[,"alpha"]

beta_hat<-mcmc[,"beta"]

gamma_hat<-mcmc[,"gamma"]

prec_hat<-mcmc[,"prec"]

sigma_hat<-mcmc[,"sigma"]

S_hat<-mcmc[,sprintf("S[%d]",c(1:56))]

theta_hat<-mcmc[,sprintf("theta[%d]",c(1:56))]

#################################

## Save data to another name

################################

adj<-data$adj

num<-data$num

E<-data$E

X<-data$X

logE<- log(data$E)

O.data<-data$O
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########################################

## C --- a vector the same length as adj[] giving normalised weights

## associated with each pair of districts

C <- table(adj,rep(1:56,num))

for(i in 1:56){

for(j in 1:56){

C[i,j]<-sqrt(C[i,j]*E[j]/E[i])

}

}

########################################

## R --- a scalar that indicates volume of integral of evaluation for iIS and iWAIC

R <- 200

D.2 Approximating CVIC with DIC, nWAIC, nIS and

iIS

###########################################

## Define MCMC sample size and integrated sample size

#########################################

log_prob_hat <- rep(0,56)

log_prob_rep <- rep(0,56)

log_P_matrix_hat<-matrix(,nrow=Sims,ncol=56,byrow=TRUE)

log_P_matrix_rep<-matrix(,nrow=Sims,ncol=56,byrow=TRUE)

##########################################

## Following code are details of calculation of iWAIC, nWAIC, nIS and iIS

## information criterion. We operate on full data posteriors through MCMC

## samples. Therefore, we execute MCMC sample with loop for each of the

## simulations

##########################################

for(k in 1:Sims){

for( i in 1:56 ) {

O.ts<- O.data[i]

## the mean of the Gaussian distribution that S belongs to

mu_S <- alpha_hat[k] + beta_hat[k]*X[i]/100 +

gamma_hat[k]*sum(C[i,]*(S_hat[k,]-alpha_hat[k]-beta_hat[k]*X/100))
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## the sigma of the Gaussian distribution

sigma_S <- 1/sqrt(prec_hat[k]*E[i])

## work process of integrated predictive density of observation y_i :

## First, to regenerate sample of latent variable S_i from

## conditional distribution of S_-i.

## Second, plug in the regenerated mean into predictive Poisson density of y_i.

S_rep <- rnorm(R, mu_S,sigma_S)

log_mu_rep <- S_rep + logE[i]

log_prob_raw <- dpois(O.ts,exp(log_mu_rep),log=T)

log_prob_rep[i] <- log_mean_exp(log_prob_raw)

## work process of non-integrated predictive density of observation y_i:

log_mu_hat <- S_hat[k,i] + logE[i]

log_prob_hat[i]<-dpois(O.ts,exp(log_mu_hat),log=T)

}

log_P_matrix_hat[k,] <- log_prob_hat

log_P_matrix_rep[k,] <- log_prob_rep

}

###########################################

## calculate iWAIC, nWAIC, iIS and nIS using integrated predictive density or

## non-integrated predictive density.

#######################################

logp_iwaic<-rep(0,56)

for(i in 1:56){

logp_iwaic[i] <- log_mean_exp(log_P_matrix_rep[,i])

- var(log_P_matrix_rep[,i])

}

logp_iwaic_t <- -2*sum(logp_iwaic)

logp_nwaic<-rep(0,56)

for(i in 1:56) {

logp_nwaic[i] <- log_mean_exp(log_P_matrix_hat[,i])

- var(log_P_matrix_hat[,i])
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}

logp_nwaic_t <- -2*sum(logp_nwaic)

logp_iis<-rep(0,56)

for(i in 1:56){

logp_iis[i] <- log_hmean_exp(log_P_matrix_rep[,i])

}

logp_iis_t <- -2*sum(logp_iis)

logp_nis <- rep(0,56)

for(i in 1:56){

logp_nis[i] <- log_hmean_exp(log_P_matrix_hat[,i])

}

logp_nis_t<- -2*sum(logp_nis)

#####################################

## return the value of DIC through function ’bugs’

######################################

DIC<-fit$DIC

###########################################

## Save results of information criterion into files

#############################################

## ifold --- a scaler, indicator of repeated number. We repeat the process

## calculation for 100 times to test the reliability.

cat(logp_iwaic_t,file = sprintf("/full_IWAI%d.txt",ifold))

cat(logp_nwaic_t,file = sprintf("/full_NWAIC%d.txt",ifold))

cat(logp_iis_t,file = sprintf("/full_IIS%d.txt",ifold))

cat(logp_nis_t,file = sprintf("/full_NIS%d.txt",ifold))

cat(DIC, file = sprintf("//full_DIC%d.txt",ifold))

D.3 Approximating CV p-value with Posterior check-

ing, Ghosting, nIS and iIS

###################################

## Define the size of p-values
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###################################

p_nis <- p_post <- rep(0,56)

p_ghost <- p_iis <- rep(0,56)

#############################################

## Define two vectors for integrated weight and integrated p-value

#############################################

log_weight_rep <- rep(0,Sims)

log_p_value_rep <- rep(0,Sims)

##########################################

## Following code are details of calculation of posterior checking,

## Ghosting, nIS and iIS methods for p-values.

###########################################

for( i in 1:56 )

{

O.ts<- O.data[i]

for(k in 1:Sims) {

## the mean of the Gaussian distribution that S belongs to

mu_S <- alpha_hat[k] + beta_hat[k]*X[i]/100 +

gamma_hat[k]*sum(C[i,]*(S_hat[k,]-alpha_hat[k]- beta_hat[k]*X/100))

## the standard error of the Gaussian distribution

sigma_S <- 1/sqrt(prec_hat[k]*E[i])

## the integrated weighting

s_rep_w <-rnorm(100,mu_S,sigma_S)

## the integrated evaluation function

S_rep <- rnorm(10, mu_S,sigma_S)

log_mu_rep <- S_rep + logE[i]

log_mu_rep_w<- s_rep_w + logE[i]

## the log of p-value with integrated evaluation function

log_average_raw <- log_mean_exp(dpois(O.ts,exp(log_mu_rep_w),log=T))
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log_weight_rep[k] <- - log_average_raw

log_p_value_rep[k] <- log_sum_exp(c(log_mean_exp(

ppois(O.ts,exp(log_mu_rep),

lower.tail=FALSE,log.p=TRUE)

),

log_mean_exp(dpois(O.ts,exp(log_mu_rep),log=TRUE))

- log(2)

))

}

## the log of p-value with non-integrated evaluation function

log_mu_hat <- S_hat[,i] + logE[i]

log_prob_hat <- dpois(O.ts,exp(log_mu_hat),log=T)

log_weight_hat<- -log_prob_hat

log_p_value_hat<- log(ppois(O.ts,exp(log_mu_hat),lower.tail=FALSE) +

0.5*dpois(O.ts,exp(log_mu_hat)))

## the p-value of each methods

p_ghost[i] <- exp(log_mean_exp(log_p_value_rep))

p_iis[i] <- exp(log_mean_exp(log_weight_rep + log_p_value_rep)-

log_mean_exp(log_weight_rep))

p_nis[i] <-exp(log_mean_exp(log_weight_hat + log_p_value_hat) -

log_mean_exp(log_weight_hat))

p_post[i] <- exp(log_mean_exp(log_p_value_hat))

}

############################################

## ifold --- the indicator of number of replicates

##############################################

cat(p_ghost,file = sprintf("/pvghs%d.txt", ifold))

cat(p_iis, file = sprintf("/pviis%d.txt",ifold))

cat(p_nis,file = sprintf("/pvnis%d.txt",ifold))

cat(p_post,file = sprintf("/pvpch%d.txt",ifold))
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