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Abstract

Protein inference is a critical computational step in the study of proteomics. It lays the foundation for

further structural and functional analysis of proteins, based on which new medicine or technology can be

developed. Today, mass spectrometry (MS) is the technique of choice for large-scale inference of proteins

in proteomics. In MS-based protein inference, three levels of data are generated: (1) tandem mass spectra

(MS/MS); (2) peptide sequences and their scores or probabilities; and (3) protein sequences and their scores

or probabilities. Accordingly, the protein inference problem can be divided into three computational phases:

(1) process MS/MS to improve the quality of the data and facilitate subsequent peptide identification; (2)

postprocess peptide identification results from existing algorithms which match MS/MS to peptides; and (3)

infer proteins by assembling identified peptides. The addressing of these computational problems consists of

the main content of this thesis.

The processing of MS/MS data mainly includes denoising, quality assessment, and charge state determina-

tion. Here, we discuss the determination of charge states from MS/MS data using low-resolution collision

induced dissociation. Such spectra with multiple charges are usually searched multiple times by assuming

each possible charge state. Not only does this strategy increase the overall database search time, but also

yields more false positives. Hence, it is advantageous to determine the charge states of such spectra before

the database search. A new approach is proposed to determine the charge states of low-resolution MS/MS.

Four novel and discriminant features are adopted to describe each MS/MS and are used in Gaussian mixture

model to distinguish doubly and triply charged peptides. The results have shown that this method can

assign charge states to low-resolution MS/MS more accurately than existing methods.

Many search engines are available for peptide identification. However, there is usually a high false positive

rate (FPR) in the results. This can bring many false identifications to protein inference. As a result, it

is necessary to postprocess peptide identification results. The most commonly used method is performing
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statistical analysis, which does not only make it possible to compare and combine the results from different

search engines, but also facilitates subsequent protein inference. We proposed a new method to estimate

the accuracy of peptide identification with logistic regression (LR) and exemplify it based on Sequest scores.

Each peptide is characterized with the regularized Sequest scores ∆Cn∗ and Xcorr∗. The score regular-

ization is formulated as an optimization problem by applying two assumptions: the smoothing consistency

between sibling peptides and the fitting consistency between original scores and new scores. The results have

shown that the proposed method can robustly assign accurate probabilities to peptides and has a very high

discrimination power, higher than that of PeptideProphet, to distinguish correctly and incorrectly identified

peptides.

Given identified peptides and their probabilities, protein inference is conducted by assembling these peptides.

Existing methods to address this MS-based protein inference problem can be classified into two groups: two-

stage and one unified framework to identify peptides and infer proteins. In two-stage methods, protein

inference is based on, but also separated from, peptide identification. Whereas in one unified framework,

protein inference and peptide identification are integrated together. In this study, we proposed a unified

framework for protein inference, and developed an iterative method accordingly to infer proteins based

on Sequest peptide identification. The statistical analysis of peptide identification is performed with the

LR previously introduced. Protein inference and peptide identification are iterated in one framework by

adding a feedback from protein inference to peptide identification. The feedback information is a list of

high-confidence proteins, which is used to update the adjacency matrix between peptides. The adjacency

matrix is used in the regularization of peptide scores. The results have shown that the proposed method can

infer more true positive proteins, while outputting less false positive proteins than ProteinProphet at the

same FPR. The coverage of inferred proteins is also significantly increased due to the selection of multiple

peptides for each MS/MS spectrum and the improvement of their scores by the feedback from the inferred

proteins.
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Chapter 1

Introduction

1.1 Overview of the protein inference problem

Proteomics is the large-scale study of proteins expressed in a sample that is extracted from a tissue or an

organism. This study covers much of the functional analysis of gene products, including the identification

and characterization of proteins, and protein-protein interactions (PPI) [1]. It can provide complementary

information which cannot be provided by the study of genomics or transcriptomics. One of the explicit aims

of proteomics is to infer proteins in a cell or tissue, or eventually in a whole organism. Therefore, protein

inference is an important step in proteomics, which is referred to as assembling identified peptides to infer

the protein content in a biological sample [2]. Currently, mass spectrometry (MS) is the technique of choice

to accomplish this goal [3–5]. The general steps of this MS-based shotgun proteomics for protein inference

are shown in Figure 1.1. First, proteins are digested into smaller peptides with enzymes. Then, tandem mass

spectrometry (MS/MS) spectra are obtained from a combination of liquid chromatography (LC) and mass

spectrometry. Next, peptide identification is performed by database searching or de novo sequencing. Since

peptide identification is usually a large-scale analysis, and there is a high rate of false positive identifications,

postprocessing peptide identification results is necessary to ensure the quality of peptide identification. The

most commonly used method is to perform a statistical analysis of peptide identification results. Finally,

protein inference is conducted by assembling the identified peptides with the assistance of available protein
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databases.

 

Protein 

sample 

Peptide 

mixtures 

Enzyme 

digestion 

LC!MS/MS

Peptide sequences Protein sequences 

Peptide identification 

by Sequest or Mascot 

Assembly peptides into 

proteins 

MS/MS 

spectrum 

Figure 1.1: The general experimental steps in the shotgun proteomics for protein inference.

As mentioned above, in shotgun proteomics, proteins are first digested into peptides, and protein inference

is conducted by identifying peptides first and then assembling these peptides to obtain final proteins. We

are more interested in which proteins are contained in a sample, and peptide identification is a necessary

intermediate step in protein inference based on shotgun proteomics. After gathering all identified peptides,

we need to infer the existence of proteins in the sample. The natural nested relationship between identified

peptides and proteins in a database can be represented with a bipartite graph, in which there are only edges

between nodes in the upper level and nodes in the lower level, whereas there are no edges between nodes in

the same level. Figure 1.2 gives a typical example of the relationship between peptides and proteins. In most

cases, this is the standard input for the protein inference model. One common problem of inferring proteins

from such bipartite graphs is the existence of degenerate peptides that are shared by multiple proteins in

a database. More details about the degenerate peptides will be discussed later. Here, we first see a simple

example in Figure 1.2, where peptide P4 is shared by protein QA, protein QB and protein QC. If there is

no other supporting information, it is hard to decide to which protein should peptide P4 be assigned. In

addition, ‘one-hit wonders’ also commonly happen in protein inference. As shown in Figure 1.2, protein
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QD is a ‘one-hit wonder’. Even if peptide P5 is unique to protein QD, it is still unreliable to determine the

presence of protein QD in the sample, because there is a chance that peptide P5 itself is a false positive.

 

  

QA QB QC QD

P1 P2 P3 P4 P5 

Proteins: 

 

 

 

Peptides: 

Figure 1.2: A typical bipartite graph which shows the relationship between identified peptides and

database proteins.

Aside from the two relatively special occasions, degenerate peptides and ‘one-hit wonder’, discussed above,

the accuracy of peptide identification can affect protein inference in a more general and broad sense. Usually,

protein inference models are built by making some necessary assumptions. First, it is assumed that all

identified peptides that are used for protein inference are true positives. From this, we can derive the upper

and lower bound of the number of possible proteins in a sample. Obviously, the upper bound is the number

of all proteins which are associated with the identified peptides. This upper bound sets the limit, and we

cannot infer more proteins based on the current input. Some but few existing protein inference methods

return all possible proteins without filtering [6], and the underlying assumption is that the sample of interest

contains a large portion of homologous proteins. It is not as simple as it seems to find the lower bound of

the number of possible proteins. This question can be formulated as a set covering problem [7], of which the

goal is to find a minimum subset of proteins that cover all the identified peptides. Then, the lower bound

is the number of proteins in the optimal solution of the set covering problem. It is well known that the

set covering problem is NP-complete, which makes it difficult to obtain the optimal solution in practice [8].

Therefore, parsimony principle is usually used, which applies Occam’s razor [9] to deal with degenerate

peptides. According to this principle, only the simplest group of proteins which are sufficient to explain all

the observed peptides are reported to be identified [10, 11]. In summary, under this problem setting, any
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protein inference algorithm can only produce a result in between the upper and lower bound, trying to reach

a trade-off between not including too many false positive proteins and not excluding too many true positive

proteins. On the one hand, reporting the upper bound number of proteins may include too many false

positive proteins in the final result. Noted that the upper bound is deducted by searching the database with

the identified peptides, and thus it is only a theoretical upper bound based on the given identified peptides

and the protein database. On the other hand, reporting the lower bound number of proteins may exclude

some true positive proteins, especially in the case of homologous proteins existing in the sample.

The above derivation of the upper and lower bound of the number of proteins are based on the given

assumption as well as that no other information is adopted in protein inference. If the given identified peptides

are not considered all true, then the lower bound may be even lower. Similarly, if we take advantage of some

supplementary information such as, raw MS/MS data, single-stage MS data, peptide expression profiles,

mRNA expression data, PPI networks or gene models, to assist the inference of proteins, then the upper

bound can be raised. Nowadays, there is a trend that protein inference is performed by combining MS/MS

data with other available information in order to increase the number of inferred proteins [7, 12–18].

In addition, it is also usually presumed that all peptides have the same chance to be detected in an MS

experiment. As is known, some peptides have a higher chance to be detected than others in the same

experimental conditions. The reasons behind this include the difference between the ability of peptides to be

ionized and fragmented in mass spectrometers, and the difference between the physio-chemical properties of

their parent proteins in the enzymatic digestion. This is why the concept of proteotypic peptides, which is

referred to as the peptides in a protein that are most likely to be observed by current MS-based proteomics

method [19, 20], was proposed and has been widely used in quantitative proteomics. Besides, peptide

detectability, which is defined as the probability of observing a peptide in a standard sample by a standard

proteomics routine [21], was also proposed to address the problem of the assignment of degenerate peptides.

Over the past decade, much attention was given to the peptide identification from MS/MS data, which
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includes developing algorithms to match MS/MS data to peptides [22–27], and postprocessing the peptide

identification results from those algorithms [28–35]. However, it is not straightforward to generate a list

of confidently inferred proteins from those identified peptides. The reasons are given as follows. First, as

discussed previously, the assembly of peptides to corresponding proteins is complicated by the existence of

degenerate peptides. The uncertainty of assigning degenerate peptides to truly present proteins brings much

ambiguity to protein inference, not only which confounds the identification of truly present protein(s) when

it/they indeed exist in the sample, but also increases the number of false positive inferred proteins when the

degenerate peptides themselves are false positives. This is a big challenge in protein inference, and some

existing attempts to address this problem will be introduced in the next chapter. Secondly, ‘one-hit wonders’

are often seen in the protein inference process [36], which puts us in a dilemma of keeping or discarding these

proteins. Literally, ‘one-hit wonders’ are proteins that only have one single peptide identified in an MS

experiment. On the one hand, we want to increase the number of proteins inferred from MS data in order to

improve the coverage of the sample. On the other hand, we want to keep the number of false positive proteins

as low as possible. It is difficult to determine the presence of a protein confidently only based on one peptide

from it, even if this peptide is unique to this protein in the database since it is possible that this peptide

itself is a false positive. Thirdly, it is also a big challenge to validate the results of a protein inference model

in proteomics. The most direct method is to use some datasets in which the validity of proteins is known

to us in advance. Some standard datasets are already collected for the purpose of verifying algorithms for

peptide identification and protein inference [37, 38]. However, such benchmark datasets usually contain very

few proteins, which are far from comparable to the complexity of datasets in real proteomics projects. Thus,

these standard datasets can only provide a very limited performance assessment and comparison of different

models. An alternative way is to generate simulation data that are reasonably close to reality and provide a

fair testing ground for different models [39]. The drawback of the simulation datasets is that they completely

depend on the underlying assumptions of the generating model, and thus they have inevitable biases which

are not expected in the assessment and comparison of performance of different models. Although real

and representative reference datasets with ground-truth are desirable in the evaluation of protein inference

5



results, they are too expensive to generate and collect, especially when other supplementary information

besides MS data, such as gene models or PPI networks, is required to assist the inference of proteins. As a

result, in most cases, we can only estimate the reliability of protein inference. Overall, protein inference is

not as simple as it seems. There are many challenges associating with this problem, and a lot of effort is

still needed to address those challenges in order to produce a reliable and close to complete list of proteins.

 

MS!based protein inference 

Process MS/MS data: 

 Deriving peak lists 

 Denoising  

 Quality assessment 

 Charge state 

determination 

Identify peptides: 

 PSM 

 Postprocess  

Infer proteins: 

 Assembly peptides 

 Validate results 

Figure 1.3: Three general computational phases in the MS-based protein inference, which are

grouped according to the data subject to be processed. PSM is short for peptide-spectrum-match.

As shown in Figure 1.1, there are three levels of data in MS-based protein inference: MS/MS spectra,

identified peptides and inferred proteins. These data correspond to three general computational phases in

protein inference: (1) processing MS/MS data; (2) identifying peptides from MS/MS data; and (3) protein

inference by assembling identified peptides. These computational steps are grouped and shown in Figure 1.3.

In the first phase, MS/MS data are processed to facilitate and improve the analysis in the second phase of

peptide identification. Raw MS/MS data are continuous and usually heavily contaminated by noise. Thus,

the first step is to transform these continuous data into peak lists with discrete data points consisting of

horizontal mass-to-charge (m/z) and vertical intensity. This step is introduced in detail in Chapter 2.

After this step, the peak lists are subject to all follow-up processing, which includes denoising, quality
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assessment and charge state determination of MS/MS data. Machine learning methods such as support

vector machine (SVM) and Gaussian mixture model have been applied to determine the charge states of

MS/MS spectra [40, 41], and the k-means clustering and SVM have been used in the quality assessment of

MS/MS spectra [42, 43]. Novel features are constructed to describe each tandem mass spectrum, and they

are used in the machine learning methods to discriminate, for example, high or low quality MS/MS spectra.

After being processed, MS/MS data are more ready and convenient for peptide identification.

In the second phase, peptides are identified by matching MS/MS data to peptide sequences in the database.

Since there are already many well-developed search engines performing the work of peptide-spectrum-match

(PSM), it is supposed here that PSM has been conducted and the peptide identification reports from search

engines are ready for our use. As is known, most search engines provide a group of scores to measure

the degree of match between MS/MS and peptide sequences from different angles. Although a group of

scores demonstrates a more comprehensive view on one peptide identification, and it helps ‘people’ to better

understand the match between spectrum and peptide, it is not helpful for ‘computers’ in the same sense. Due

to the large scale of modern proteomics analysis, it is almost impractical for people to verify each peptide

identification. Under this situation, the statistical analysis which can transform a group of scores into one

probability becomes a necessary step in postprocessing peptide identification results from search engines.

Furthermore, different engines use different scoring functions, which leads one PSM to have multiple groups

of scores. In this case, it is hard to compare or combine the results from different search engines. However,

by transforming all scores with statistical analysis into the same scale of probability, the comparison and

combination of multiple PSM results can be realized. Besides, statistical analysis can estimate the accuracy of

peptide identification and facilitate the subsequent protein inference [2, 10, 28, 33–35, 44]. Generally, novel

predictors are proposed based on scores output from search engines, and probabilistic machine learning

methods can be used to statistically analyze peptide identification results.

In the third phase, protein inference can be fulfilled by assembling peptides identified in the last step. Based

on different criteria, the protein inference model can be categorized into different groups. According to the
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data and information used in the model, the protein inference model may be classified into one using only

MS data, and the other one using MS data and extra information such as gene models or PPI networks.

Although additional information other than MS data is helpful in protein inference, the availability of this

kind of information is limited to very few organism models. For MS-based protein inference, existing methods

can be further split into two groups. The first group performs protein inference and peptide identification

separately [10, 12, 45, 46]. First, peptides are identified from MS/MS data by de novo sequencing [22–24] or

database search [25–27]. Then, proteins are inferred by assembling these identified peptides. The other group

combines protein inference with peptide identification, identifying peptides and proteins simultaneously. It

has been shown that the trend of MS-based protein inference is to unify protein inference and peptide

identification in one framework, because this way can make better use of the available information from

MS/MS data to inferred proteins [18, 44, 47–49]. After the protein inference model has been developed, it is

also necessary to figure out how to evaluate the performance of the model. It is very important to validate

the protein inference results in real proteomics projects, the aim of which may be to find effective biomarkers

for medicine development.

1.2 Motivation, goals and organization of this thesis

1.2.1 Motivation and goals

As previously mentioned, much attention was given to peptide identification based on MS/MS data in

the past decade. Relatively, protein inference is less sufficiently studied compared to the extensive study

of peptide identification. In the early research work on protein inference, which includes the very popular

program ProteinProphet [10], often ignored is the natural nested relationship between identified peptides and

database proteins. In such cases, protein inference and peptide identification are two separate computational

steps with the results of peptide identification as the input into protein inference. It has been shown that only
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a small portion of MS/MS data can be interpreted by available search engines [38], and furthermore, there

is usually a high false positive rate (FPR) in the resultant peptides. Consequently, two obvious problems

will happen when protein inference is performed with the input of ‘one-step’ peptide identification results

only based on MS/MS data. One problem is that, for most inferred proteins, the coverage is usually very

low due to the small number of peptides identified from MS/MS data. Also, this problem compromises the

accuracy of inferred proteins, since the more peptides identified for a protein, the more reliable that this

protein is inferred to exist in the sample. The other problem is that there will also be a high FPR of inferred

proteins which is attributed by the high FPR of identified peptides, and the FPR of inferred proteins can

even be magnified due to the ‘one-to-many’ mapping relationship between degenerate peptides and their

parent proteins.

With the observation of this ignorance of the nested relationship between identified peptides and database

proteins in traditional protein inference methods, we are motivated to design a unified framework that can

infer proteins and output identified peptides simultaneously based on peptide identification reports from

search engines. This framework will integrate protein inference and postprocessing of peptide identifica-

tion together by allowing a feedback from protein inference to the postprocessing of peptide identification.

Inspired by reference [50], which uses the sibling relationship between peptides to regularize the scores of

peptides from search engines, we formulate the feedback information, a list of putative inferred proteins, as

the construction of an adjacency matrix between peptides. Each element in the matrix takes the values of 1

if two peptides are siblings, or 0 otherwise, if two peptides are not siblings. Two peptides are siblings if they

can be generated by a common parent protein. Furthermore, an iterative method is developed accordingly

based on the proposed unified framework to infer proteins and identify peptides simultaneously.

As shown in Figure 1.1, there are three levels of data involved in protein inference, and correspondingly, there

are three computational phases. In addition to the final goal of inferring proteins by assembling peptides

identified from MS/MS data, the processing of MS/MS data and the postprocessing of peptide identification

results are also studied as part of the preparation work for protein inference.
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1.2.2 Organization of the thesis

This thesis is organized in a manuscript-based style. To keep in line with the three computational phases in

protein inference, the results obtained from the work of each computational phase consist of the main content

of this thesis. They are presented in the form of published or submitted manuscripts. In each chapter, a brief

introduction is included to describe the connection of the manuscript to the context of the thesis. Also, a

general discussion of the links of each manuscript to the thesis as a whole is also provided in Chapter 6. The

paper manuscripts have been modified in format to be consistent with the rest of the thesis. The remaining

thesis is structured as follows: Chapter 2 introduces the background of mass spectrometry in proteomics, and

a comprehensive review of protein inference is also included. Chapter 3 presents a novel method to determine

the charge states of MS/MS spectra from low-resolution collision induced dissociation (CID). This is one of

the important operations in processing MS/MS data. It can save a lot of time and resources in performing

database searching of peptide identification. Chapter 4 proposes a method based on logistic regression (LR)

to compute the probability of peptide identification. The results of this work are used as input into protein

inference. Based on the work introduced in Chapter 4, a unified framework and an iterative method are

developed in Chapter 5 to infer proteins and identify peptides simultaneously. Protein inference and peptide

identification are combined together by adding a feedback from protein inference to peptide identification.

Finally, the main conclusions and contributions of this thesis, and some recommendations for future work

are summarized in Chapter 6. In addition, a general discussion is given to summarize the relationship of

each manuscript to the thesis. The full list of publications is included in Appendix A, and the copyright

permissions of included manuscripts are in Appendix B.
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Chapter 2

Mass spectrometry

Mass spectrometry (MS) is an important technique used in the study of proteomics. Protein inference and

peptide identification are mainly achieved by analyzing and interpreting MS data. This chapter will introduce

the process of acquiring MS data, followed by an introduction of preprocessing and interpreting MS data. In

addition, though protein inference and peptide identification are computational steps (i.e. bioinformatics)

in proteomics, it is helpful for researchers who focus on the computation to know the whole workflow of a

proteomics project. When we can see the position of our work clearly in the big picture, we would know

better the importance and the direction of our work. Hence, this chapter will start with the introduction of

general workflows in proteomics, which include targeted and non-targeted ones. After that, considerations

and processing that are needed to be taken before mass spectrometry, during mass spectrometry and after

mass spectrometry are introduced.

2.1 Proteomics workflow

Proteomics is the large-scale study of proteins, which includes the identification and characterization of

proteins, and the study of interactions between proteins [1]. The core instrument in proteomics is a mass

spectrometer. According to the entities introduced into a mass spectrometer, protein inference and charac-

terization by MS can be classified into top-down and bottom-up proteomics [2]. In the top-down approach,
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intact protein ions or large protein fragments are subjected to gas-phase fragmentation for MS analysis. In

the bottom-up approach, purified proteins or protein mixtures are enzymatically digested into peptides, and

the resulting peptides are subjected to MS analysis. The top-down approach is relatively young, and its

application is limited by the determination of multiply charged product ion masses. Whereas the bottom-up

approach is mature and has been widely used in proteomics labs. In this chapter, we will focus on bottom-up

proteomics, which can be further divided into targeted and non-targeted proteomics. The workflows of these

two approaches are introduced.

 

Protein 

separation 
Protein 

digestion 
Peptide

separation 

Protein 

sample  
Peptide

mixture  

Peptide identification 

Protein inference and 

characterization 
MS/MS 

Non-targeted proteomics 

Sample preparation: biological hypothesis, species model, sample properties, robust protocols, and avoiding 

introduction of contaminants to sample etc.

Protein separation: Typically, 1-D or 2-D gel electrophoresis, decided by the requirement of protein purity. 

Protein digestion: choose a protease by considering enzymatic specificity and desired length of peptides etc.

Peptide separation: 1-D or multiple dimensional separations with HPLC, compatible with MS analysis.  

MS analysis: combine ionization source (ESI or MALDI) and mass analyzer (TOF or LIT etc.) according to the analyte 

state, required mass accuracy, funds and so on. 

Peptide identification, protein inference and characterization: processing and interpretation of MS data. 

Prelab considerations: biological hypothesis, species model, sample properties 

Figure 2.1: Basic steps of MS analysis for non-targeted proteomics with notes for each step.

2.1.1 Non-targeted proteomics

Proteins of interest are not known in non-targeted proteomics. The inference and characterization of such

proteins in a sample relies on the MS analysis. The basic steps of MS analysis are shown in Figure 2.1.

Under this workflow, proteomics experiments tend to generate a very high redundancy of tandem mass
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spectrometry (MS/MS) data, while having a very limited sensitivity. The reasons arise from both the nature

of biological samples and the properties of the adopted mass spectrometers. The nature of biological samples

includes:

• The majority of proteins in a sample are of low abundance, and they are hard to detect and identify.

• Only a very small portion of sample proteins are of high concentration, and they dominate the gener-

ation of MS/MS data. Typically, these proteins are also not the ones of interest.

• The existence of homologous proteins, especially in eukaryotes, produces a high number of degenerate

peptides, which brings much ambiguity in the protein inference step.

• Most of the proteins in a cell will go through certain kinds of modifications during the metabolism of

cell growth; these single or multiple modifications complicate the identification of peptides, and they

will be lost if modifications are not considered in peptide identification.

• The physicochemical properties of proteins and peptides cause differences in the tryptic digestion of

proteins, the ionization ability and the fragmentation sites of peptides, and these differences make

some peptides more detectable than others.

And the properties of mass spectrometers include:

• The inevitable introduction of electric and chemical noise into the mass spectra;

• In each duty cycle of a mass spectrometer, high intensity peptides will be selected, and some of them

will be repeatedly selected. As a result, redundant mass spectra will be produced for these peptides.

While peptides with low abundance may never get a chance to be selected to be analyzed. This

suppresses the detection of low-abundance peptides.
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In non-targeted proteomics, all proteins in a sample get the same chance to be analyzed, because proteins

of interest are unknown. Although there have been incremental improvements to this workflow, its intrinsic

weaknesses will need more efforts to be overcome. Currently, to detect the low-abundance proteins and to

better understand the change of proteins in the development of diseases, a different proteomic workflow can

be employed.

2.1.2 Targeted proteomics

Different from non-targeted proteomics, targeted proteomics first finds the proteins of interest by analyzing

the pathological or physiological models. The workflow is given in Figure 2.2. Under this workflow, physio-

logical models are analyzed with the most suitable proteomics technologies, and the changes or differences in

proteins between experimental conditions and controls are revealed [3]. This approach allows for the optimal

discovery of the changes which define the model system. When performing targeted proteomics, there are

two basic problems we need to consider, which are listed as follows.

• How to determine the proteins of interest?

The determination of these proteins needs a deep understanding of the studied models and the hy-

potheses. Usually, these proteins are determined by biological experts, or by gleaning from literature

if the models have been studied under the same or similar conditions.

• How to use these proteins to improve proteomic results?

Given proteins of interest, techniques, such as protein chips, can be used to select these proteins from

the sample. In this way, the concentration and purity of these proteins of interest can be increased.

Another possible use is to create an inclusion list in the real-time generation of MS/MS data in mass

spectrometers. This can increase the possibility of generating high-quality MS/MS data for these

proteins. But this inclusion list only works when the abundance of proteins is above the detection

limit of a mass spectrometer.
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Figure 2.2: An overview of potential steps in proteomic analysis. This figure is adapted from [3]. The

differences of targeted and non-targeted proteomics mainly arise from whether the proteins of interest

are known or not. If known, then they can be identified with other approaches like antibody-affinity

other than MS analysis.
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2.2 Before lab experiments

A proteomics project can be very big and needs the collaboration of many researchers. Although there

have been projects that are designed to provide reference data for testing algorithms and models proposed

for processing proteomics data [4, 5], more general proteomic projects are initiated to provide insights into

the real biological models, so that pathologists or physiologists can verify the underlying mechanisms of

diseases and disease processes [3]. Thus, before we begin a proteomics project, we first need to understand

what we are going to analyze and what we are expecting from the project. This section will outline some

considerations we need to take before going into the experimental stage.

2.2.1 Build a hypothesis

Building a hypothesis is one of the most critical steps in a proteomics project, because it will determine

the follow-up design of the whole experiment. As pointed out in [3], the key to increasing success in any

proteomics experiment is to have a comprehensive understanding of the physiological model or disease process

being studied. From the understanding, a hypothesis can be formed, and it will drive the selection of the

particular proteomics/analytical approach. For example, the experimental design will differ if the hypothesis

involves the change of abundant proteins versus the change of low-abundance proteins determining the

cause of a disease. The latter one will need special care to improve the protein concentration in the sample

preparation step, or to remove some of the high level proteins with protein depletion kits.

2.2.2 Choose a model

The study of proteomics relies on the integration of mass spectrometry and protein databases, and these

databases are derived from genomics. Thus, the lack of genomic information of a species can greatly limit

22



the success of a proteomic project, especially when it comes to the phase of protein inference. It is therefore

important for researchers to choose a model of which the genome is completely sequenced.

2.2.3 Consider sample attributes

Considerations should be given to the following properties of a sample: protein concentration, dynamic range

of protein concentration, protein solubility in the solvent, and the copy number of protein classes in which

one is attempting to assess the changes. It is a rule of thumb to expect reasonable success in identifying the

protein of interest if it can be visualized by Coomassie blue staining [3, 6].

2.3 Lab experiments

As shown in Figure 2.2, there are many kinds of operations involved in a proteomics lab experiment. This

section will introduce some basic operations that are necessary for MS analysis, which are categorized as

operations before MS, in MS and after MS.

2.3.1 Before mass spectrometry

Sample preparation

Sample preparation is a critical step in proteomics experiments. It is important to minimize variations of

sample preparation by strictly adhering to robust experimental protocols [7]. An early checking of sample

quality and replacing the poor quality samples with high quality ones are preferred. For example, we can

check the concentration of proteins to make sure that they are abundant enough to be detected in mass

spectrometers. This can prevent a lot of quality problems when it comes to subsequent data analysis. In
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addition, it can increase the number of peptides to be identified and therefore improve the coverage of protein

inference.

Protein separation

Protein separation is necessary when the complexity of the sample is not suitable for MS analysis for protein

inference. The most commonly used technique for protein separation is gel electrophoresis, which separates

proteins according to molecular mass or isoelectric point. Most separation methods can be described by [8]:

(1) the substance through which the molecules migrate; (2) the external force that causes the molecules to

migrate; (3) the preprocessing of molecules that enables them to migrate through the substance.

Based on molecular mass, protein separation is performed with SDS-PAGE. SDS is short for sodium do-

decyl sulfate and PAGE is PolyAcrylamide Gel Electrophoresis. Strictly speaking, this technique separates

molecules according to their size, which are usually proportional to their mass. In SDS-PAGE, the substance

is polyacrylamide, which is formed into a porous gel with many small tunnels. This network of tunnels will

impede the movement of large molecules while small ones can move much more readily through it. The force

applied to move the molecules through the gel is supplied by an electric field. To use PAGE for separation,

proteins should be prepared to have a size proportional to their mass. In order to make sure they are sepa-

rated by their sizes in the electric field, the charges carried by proteins should be proportional to their mass

as well, and these charges should be all positive or all negative. Therefore, the necessary preprocessing of

proteins includes: (1) denaturing proteins into a linear form to have a mass-proportional size; (2) making

them carry mass-proportional charges. These are achieved by treating proteins with SDS, which is a de-

tergent molecule with a long hydrophobic tail and a negatively charged head. SDS can attach to protein

sequences to denature them into a linear form, and impart negative charges to them roughly proportional to

their sizes. The resulting proteins are loaded onto polyacrylamide gel. The gel is then placed in an electric

field, which moves the negatively charged proteins towards the positive electrode with velocities inversely
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proportional to their sizes. Finally, proteins are separated by their sizes in the gel.

Based on the isoelectric point (pI), proteins are separated by the technique called isoelectric focusing (IEF).

A pH gradient is used for separation. First, proteins enter into the gradient by absorption from a buffer

with the sample. Next, an electric field is applied across the gradient. This makes proteins initially move

towards the electrode with the opposite charge. As a protein reaches the point that is equal to its pI, its

net charge becomes zero, and its migration will stop. Thus, when all proteins reach their respective pI

point, they are separated in the gradient. SDS-PAGE and IEF can be combined to perform two-dimensional

separation, since they separate proteins on orthogonal attributes. Proteins are separated on pI in the first

dimension, and on mass in the second dimension. IEF is performed first because SDS can attach to proteins

and make them all carry mass-proportional negative charges, and this makes it inappropriate for proteins to

be separated by their pI.

Protein digestion

One important step in MS-based protein inference is to cleave proteins into peptides. The most often used

method for protein cleavage is enzymatic cleavage. The enzymes that perform protein cleavage are called

proteases. Two basic rules in choosing a protease for protein digestion are:

• The protease should cleave proteins in a consistent and predicable way, that is, it should cleave proteins

at some specific sites. This provides some guidance in choosing a protease for the sample under study,

and also helps in peptide identification;

• The protease should cleave proteins into peptides of lengths suitable for MS analysis. Mass spectrom-

eters are usually set by users to have a limited mass range, and only peptides with masses (more

accurately, mass-to-charge m/z) falling into this range have a chance to be detected. Peptides which

are too long or too short will fall out of the range and cannot be detected. Besides, the number of
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peptides that share a specific mass increases with the decreasing mass [8]. Thus, short peptides (less

than six amino acids) are usually very difficult to discriminate and not suitable for the identification

of peptides. Also, because the chemical background is more intense in the low m/z region, therefore

peptides of m/z less than 300 are not usually examined.

Trypsin is the most commonly used enzyme for protein digestion. It can produce peptides most suitable

for MS analysis. Trypsin cleaves proteins after arginine (R) and lysine (K), except followed by proline (P).

Following are some attributes of trypsin [8]: (1) High specificity, with rare missed and unexpected cleavages;

(2) Peptides produced are of suitable lengths. R and K appear with an average distance of approximate 11

residues, and with a small probability of being followed by P; and (3) It is easy to be obtained and purified,

and is applicable in most experimental settings. Trypsin can be used to cleave proteins in solution, gels, or

even can be adsorbed onto surfaces.

Trypsin is suitable for positively charged MS analysis. Peptides need charged to be detected by mass

spectrometers. Since R and K are basic residues, peptides produced by trypsin with R or K on the C-

terminal have the ability to retain protons. However, trypsin may not be suitable for digesting proteins

which are highly basic or highly acidic. Highly basic proteins may contain too many R and K, which will

be cleaved into many too small peptides by trypsin. On the other hand, highly acidic proteins will contain

many glutamic (E) and aspartic (D) acids while few R and K, which will be cleaved into a few too long

peptides by trypsin. In this case, alternative proteases will be needed.

Peptide separation

After protein digestion, we get peptide mixture solutions. To reduce the complexity of MS/MS data, pep-

tide mixtures are subject to further separation with chromatography. Chromatography includes a family of

techniques that are used to separate a mixture into its individual components. The most often used chro-

matography in peptide separation is liquid chromatography (LC). LC uses a liquid as the mobile phase and
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a porus solid as the stationary phase. High pressure (HP) is usually applied to change the flow rate of the

mobile phase and improve the separation efficiency. HPLC is often classified according to the principle of sep-

aration: hydrophobicity, charge, affinity to special functional groups or component size. In proteomics, two

often used HPLC are reverse phase HPLC (RP-HPLC), which separates peptides based on hydrophobicity,

and strong cation exchange HPLC (SCX-HPLC), which separates peptides based on charges.

The stationary phase in RP-HPLC is the modification of carbon chains with different lengths (like C4, C8, C18).

The longer the carbon chain, the stronger the hydrophobic interaction between peptides and the stationary

phase. Two solutions (A and B) are used as the mobile phase. Solution A is usually water with a small

amount of organic acid, in which peptide sample is injected into the column. After being forced through

the column, peptides attach to the carbon chains and stay on the stationary phase. To detach peptides,

solution B that is mainly an organic solvent is gradually mixed into solution A. With the increase of the

concentration of organic solvent, less hydrophobic peptides will detach and move along with the mobile phase

to be eluted. More hydrophobic peptides will detach at higher percentage of organic solvent. This change

in solvent strength over time is called gradient. When the gradient reaches a certain percentage of solvent,

all peptides are usually eluted from the stationary phase.

SCX-HPLC is an ion exchange chromatography, which uses the principle that opposite charges attract each

other. Peptides are zwitterionic molecules and their net charge depends on the pH of the solution and their

pI. When the pI is above the pH, the peptide is positively charged; otherwise, it is negatively charged.

The stationary phase in SCX-HPLC is often a surface modified with sulfonic acid groups, which becomes

negatively charged at a pH above 2 ∼ 3. The peptide sample is injected into the column at a low pH solution

(often 3 ∼ 3.5). The pI of most peptides is 4 ∼ 7 [8]. Thus, the peptides are positively charged, and they

will interact with the negatively charged stationary phase. The more positive charges a peptide carries, the

stronger it interacts with the stationary phase. Similar to RP-HPLC, the other solution B is mixed into

the pH solution to elute peptides. Usually, solution B contains salts which carry both positive and negative

charges. By gradually increasing the salt concentration, these ions will compete with the positive charges on
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peptides and negative charges on the stationary phase. The peptides with the weakest binding will detach

first and start moving with the mobile phase. While the peptides with stronger binding only detach at a

higher salt concentration. Different from RP-HPLC, the eluate from SCX-HPLC cannot be directly infused

into a mass spectrometer, because the mobile phase in SCX contains salts which will interrupt the subsequent

data acquisition.

2.3.2 Mass spectrometry

Mass spectrometry is an analytical technique which is widely used in the measurement of molecular masses,

by recording m/z values of the charged molecules. It is the method of choice for peptide and protein

identification today [9–11]. Schematically, a mass spectrometer includes three parts: ionization source, mass

analyzer and detector. Although different mass spectrometers have different properties, they have the same

underlying principle.

Principle of mass spectrometry

All mass spectrometers use electric or electromagnetic fields to control the movement of charged particles

and separate them accordingly. Hence, the molecules to be analyzed need to be ionized before their masses

can be measured. The ionized molecules are sent into a mass analyzer, in which they are separated based

on their m/z values. The separated molecules then hit a detector, and a mass spectrum is constructed by

a connected computer. A mass spectrum is typically shown as a diagram, with m/z on the horizontal axis

and the intensity of the signal for each molecule along the vertical axis. Since the analyzer works on m/z

but not on the mass directly, the charge of a molecule must be known to determine the mass.

28



Ionization source

There are many ionization sources, however, the two most commonly used ionization sources in proteomics

laboratories are, electrospray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI).

MALDI is mainly used in peptide mass fingerprinting as it predominantly yields singly charged ions. It is

more tolerant to salts and contaminants compared with ESI, and is usually used for samples with a small

number of proteins. ESI typically produces multiply charged ions and is applied in MS/MS analysis. It is

used for more complicated samples, because it is readily coupled to the LC system. ESI forms ions from

solutions whereas MALDI requires to spot the analytes on a plate with a suitable matrix and laser ionization.

Mass analyzer

The basic operation of a mass analyzer is to separate peptides and measure their m/z values. While

an analyzer for MS/MS performs two tasks: one for selecting the m/z of interest, and the other one for

measuring the m/z values of the fragment ions. These tasks can be performed in two analyzers, called in-

space analyzers, or in one analyzer at different times, called an in-time analyzer. In order to allow both MS

and MS/MS analysis to be performed on one instrument, analyzers commonly can function in two scanning

modes. Take an example of an ion trap analyzer, in full-scan mode, all peptide ions from the ionization

source are analyzed and retained, allowing the recording of a mass spectrum. In MS/MS mode, the analyzer

only retains ions that fall within the specified m/z range, ejecting or cutting off any ions that fall out of

this range. After the selection, the retained ions are fragmented into fragment ions. Then, the fragment

ions are analyzed in the full-scan mode, which produces a tandem mass spectrum. Mass spectrometers are

configured to continuously switch between these two modes, and automatically record MS and MS/MS data.

The mechanism used to measure the m/z of ions depends on the type of an analyzer. These can be based

on the time of flight of the ions, their movement in magnetic or electromagnetic fields and so on.
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2.3.3 After mass spectrometry

After tandem mass spectra are obtained, the subsequent work is to process, analyze and interpret the data.

This work includes raw data processing, peak list processing, peptide identification, protein inference, protein

quantification and characterization. Peptide identification and protein inference will be introduced in the

next two sections. Here we will elaborate a little bit on raw data and peak list processing, which are necessary

steps to improve the peptide and protein identification results.

Raw data processing

Raw MS data are continuous with peaks and valleys, which are not convenient for data analysis and inter-

pretation. They are thus converted into peak lists, usually by the in-house software specific to each mass

spectrometer. However, some basic operations and considerations are the same.

First, one has to consider the noise in a spectrum. The quality of a spectrum is strongly influenced by the

amount of noise versus the amount of signal peaks (corresponding to peptides in MS or peptide fragments

in MS/MS) in the spectrum. There are two main types of noise:

• Chemical noise: the sources of chemical noise may be the contaminants introduced during sample

handling, like the detergents not removed from the sample and polymers from plastic tubes, or proteins

unintentionally brought into sample, such as keratin from the skin or hair.

• Electric noise: Electronic noise comes from the electronic disturbances, and happens with random

fluctuations between the chemical noise.

A form of noise occurs as the baseline of a spectrum, derived predominantly from chemical noise [8]. The

baseline is an offset of the intensities of masses, and should be subtracted from the measured intensities. It

is usually dependent of m/z values, such that it is highest at low m/z values, and decays toward higher m/z
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values. The simplest method to remove the baseline is to subtract the lowest point in the spectrum. Note

that the baseline varies from spectrum to spectrum, so it should be treated individually to each spectrum.

Secondly, one needs to detect peaks from noise and pick them to construct the peak list. The goal is to

represent each peak with exactly one data point. One way is to identify the apex of a peak, and the intensity

at this point is compared to the surrounded noise level to determine the start and end point of this peak.

Another way is to use the valley on the both sides of the apex to determine the start and end point of the

peak. The area of the peak is then calculated, and is compared to a threshold to decide whether this peak

is a signal or noise. After a signal peak is detected, one needs to compute its m/z value and intensity in the

derived spectrum. The intensity is proportional to the area under the peak, and the value at the centroid of

the peak is usually used to calculate the ion’s actual m/z value.

Finally, the spectra derived have to be calibrated to achieve the accuracy required for a database search,

because there usually exists a mass shift in the spectra. The most commonly used technique is internal

calibration. This is achieved by adding known standards to the sample, and determining the exact m/z

values of certain peaks from the standards in the spectrum. Another way is to find peaks from the autolysis

products of the used protease. Measurement deviations, which are observed for the known peaks, are then

used to compute a function to calibrate the masses of other peaks.

Peak list processing

Peak lists derived from raw MS data need to be further processed such that they are more appropriate for

peptide and protein identification.

• Monoisotoping and deisotoping

This step reduces a cluster of isotopic peaks to a single peak, with intensity equal to the sum of the

isotope intensities. Monoisotoping reduces isotopic cluster to the peak with the lowest m/z in the
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cluster. Deisotoping reduces the isotopic cluster to a centroid peak, with m/z value determined from

the intensities of the individual isotopes. The centroid m/z value is obtained with the average masses

of the atoms in the peptide used for calculating its mass.

• Denoising

Although the initial peak construction eliminates some noise, the derived discrete spectra are still

noise contaminated. To achieve good matches in a database search, the spectra should be further

denoised with more complex methods by considering their properties [12, 13]. In addition, some

known contaminants, such as peptides from keratin or autolytic peptides from the protease should also

be filtered.

In addition to the above processing which actually changes the peak lists in MS/MS, other analysis can

also be performed to facilitate peptide identification, which includes quality assessment and charge state

determination of MS/MS data. Machine learning methods such as support vector machine, and Gaussian

mixture model are applied to such an analysis by using significant features to describe MS/MS [14–16]. This

analysis can improve the chance of identifying true peptides in a database search, and also significantly save

time in the searching step.

2.4 Peptide identification

Peptide identification is the first computational step in proteomics. Its accuracy is critical to the success of

the subsequent protein inference [17]. Database searching and de novo sequencing are the two main methods

for peptide identification, which are introduced in this section. Also, the target-decoy database used to

evaluate the identification results is also introduced.
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2.4.1 Database searching

Database searching is the dominant method for peptide identification in proteomics. The procedure of

this method is: First, database proteins are cleaved to produce peptides in terms of enzyme specificities;

Second, theoretical MS/MS of these peptides are generated; Third, a scoring system is used to measure the

similarity between the experimental MS/MS and the theoretical MS/MS, i.e., performing peptide-spectrum-

match (PSM); Finally, the peptide with the highest score is usually reported to be identified. Many search

engines have been developed for peptide identification [18–22], and the main difference between them lies

in the scoring system. This leads to the situation that one query spectrum will have two different sets

of scores after being searched with, for instance, Mascot [18] and Sequest [19]. As such, it is hard to

compare the identification results with these scores. In addition, peptide identification is only an intermediate

step in proteomics. It lays the foundation of protein inference. To facilitate the comparison between the

identification results and the subsequent protein inference, statistical analysis of peptide identification results

is usually performed [23–25].

Database searching has several obvious advantages in peptide identification. First, it is very simple and nat-

ural in practice. Once a protein sequence database is available, peptide identification by database searching

would be very simple to implement by well-developed programs [18–22]. Second, a database always has a

limited searching space while the de novo sequencing does not. In addition, databases have been growing

very fast in size in recent years and this means their completeness is also growing. The completeness of a

database is critical, because we can never find peptides that are not in a database. Actually, this leads to a

conflict between the need of a small searching space, which can reduce computational effort, and the need

of database completeness, which can increase correct identifications. Fortunately, databases with both satis-

factory completeness and relatively small searching space can be formed with the observation of proteotypic

peptides [26–28].
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Although a database search is an effective method for peptide identification, there are also drawbacks of this

method. First, it is limited by the used database. On the one hand, the completeness of the database can

directly determine the accuracy of the identification results [11, 29]. On the other hand, the increasing size

of the database requires more computational effort. This could be a big problem for large-scale and complex

sample analysis [29]. Second, the generation of theoretical spectra is not accurate [30]. In silico digestion

of proteins is purely based on the “ideal” sites that are cleaved by enzymes (typically trypsin). In contrast,

the production of experimental spectra varies a lot due to many factors, such as the uneven probability

of being ionized in the competition for protons. Third, a database search cannot identify peptides which

are modified in an unexpected way [31]. For example, when new proteins, mutations, post-translational

modifications (PTMs) and sequencing errors happen, database searching cannot identify such peptides [32].

Last but not least, statistical analysis of the identification results can be tough because of the variants in

the experiment [11, 33]. Now the publication of proteomics data requires or encourages author(s) to provide

the software and statistical analysis of their results [34, 35], otherwise their results would not be reliable for

other researchers to use.

2.4.2 De novo sequencing

De novo sequencing predicts peptide sequences directly from tandem mass spectra [31]. It has benefits in

the situation that effective databases are not available or there exists protein homologies and modifications

in the sample under study. Besides, it can be used to validate results from a database search. If de novo

sequences explain MS/MS data better than database-derived sequences, then the database-derived sequences

are likely to be false positives [36].

Many programs have been developed to implement de novo peptide sequencing. The software package

Lutefisk [36, 37] is a typical one which employs graph theory for de novo peptide sequencing. In this

approach, the spectrum is first translated into a sequence graph. The nodes in the graph represent peaks in
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the spectrum, and two nodes are connected with an edge when their mass difference is close to an amino acid

mass. The software then tries to find a path, which connects the N and C termini and connects all the nodes

corresponding to y-ions or b-ions. The problem is that it can be complicated and often fail by the absence of

ions, which break the path the software tries to find. Later, Ma et al. [38, 39] developed a different software

package PEAKS, which works directly on spectra without translating them into sequence graphs. In essence,

this de novo sequencing can be regarded as trying to identify peptides from the “exhausted” peptide sequence

database, which contains all the possible combinations of animo acids. It introduces rewards and penalties

for ions to scoring a candidate peptide sequence. Candidate peptide sequences are formed by considering all

the possible amino acid combinations. A positive reward is added to a sequence if it can generate a y-ion

or b-ion with the mass which is close to a given peak’s mass value. Otherwise, if there is no ion’s mass

close to the given peak’s mass value, a negative penalty is added to the sequence. Thus, searching candidate

peptides is reduced to finding sequences whose b and y ions can maximize the total rewards at their mass

values. Owning to the use of reward and penalty, the absence of ions does not cause as many problems as

Lutefisk to PEAKS. Other programs for de novo peptide sequencing can be referred to in [17, 40–44].

2.4.3 Target-decoy database

Studies have shown the lack of consistency in the false-discovery rates (FDRs) of peptide identification when

using the thresholds of Sequest [45] and Mascot [46]. This means that we need to validate peptide identi-

fication results in an experiment-specific or dataset-specific way. One way to estimate the FDR of peptide

identification is to use the decoy database which is formed by reversing or reshuffling protein sequences in

the original (target) protein database [45, 47–50]. The assumption is that the occurrences of false discoveries

in the target database is equally likely in the decoy database. When searching MS/MS spectra against the

decoy database, we are sure that the resultant PSMs are incorrect. They are used as the surrogates for

incorrect PSMs obtained by searching against the target database. Then, the FDR is calculated as the num-

ber of decoy false positive PSMs over the number of positive target PSMs (including true positive and false
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positive PSMs). Generally, there are two ways to use the decoy database. One way is to search the target

and decoy database separately and the other is to search a concatenated target-decoy database. Elias et

al. [47] pointed out that the target-decoy database works better than the separate searches in two databases.

2.5 Protein inference

MS-based protein inference can be performed with one-stage or two-stage MS data. The one based only on

MS data is called peptide mass fingerprinting (PMF), and the one based on MS/MS data is by assembling

identified peptides to infer proteins. Database searching is the core operation in both methods. In the

following, we will describe these two methods with a greater focus on protein inference with MS/MS data.

2.5.1 Peptide mass fingerprinting

PMF identifies proteins by matching observed peptide masses to theoretical peptide masses generated by

virtually digesting database proteins. The presumption of PMF is that every protein has a set of unique

peptides, and thus masses of these peptides can form its fingerprinting. The performance of PMF heavily

relies on the high mass accuracy and precise cleavage of enzymes [31, 51, 52]. The study of PMF was

promoted by the advent of a high accuracy mass spectrometer MALDI-TOF in early 1990s. MALDI-TOF

predominantly produces singly charged peptides, so it is easy to compute their masses [53]. Usually, PMF

has a good performance with 2D gels in which proteins have a high purity, but it can run into troubles when

dealing with complex protein mixtures. Additionally, incomplete cleavages of proteins and post-translational

modifications can decrease the sensitivity of PMF [31]. Finally, it is challenging work in the future to improve

PMF so as to handle more proteins at one time and relax the requirement of sample separation.
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2.5.2 Protein inference by assembling peptides

Protein inference based on MS/MS is usually performed in a two-stage way. First, peptides are identified

from MS/MS with database searching or de novo sequencing. The identification results are often subject to

a statistical analysis [23–25]. At this point, peptide identification is completely finished. Secondly, protein

inference is conducted based on the output from peptide identification. This strategy has been widely

used in protein inference, and implemented in many programs, which will be briefly introduced in later

sections. The shortcoming of this strategy is that there is no message passing between protein inference

and peptide identification, which can provide useful information to improve the confidence and increase the

number of identified peptides [54, 55]. In turn, the coverage and confidence of protein inference can also

be increased [56, 57]. Before introducing the algorithms for assembling peptides to proteins, we first see

some common challenges in protein inference, and some possible solutions to these challenges. In particular,

an MS/MS intensity-based strategy which was proposed to address the challenge of assigning degenerate

peptides is discussed.

Challenges in protein inference

After obtaining statistically reliable peptide identification, protein inference is more than only assembling

peptides to proteins in a database. Many challenges exist in this step. First, it is hard to assign degenerate

peptides to the protein(s) which truly exist in the sample. Theoretically, the presence of degenerate peptides

implies that any protein containing them has a chance to be identified. However, the more realistic chance is

that this degenerate peptide only comes from one or the partial proteins but not all those proteins [26, 58].

Second, it is a tough task to develop analysis methods and statistical models for protein inference. Many

factors in proteomics experiments influence the inference results. It is expected to integrate all possible

factors into one analysis model so as to improve the accuracy of protein inference. For example, different

experimental designs can result in different datasets, and a good analysis method should be able to be adapted
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to handle these different datasets. Generally, a good model sets parameters which could be adjusted by users

so that it works in experiment- and data-specific applications. In addition, it is a challenge to identify low-

abundance proteins in a complex sample. It has been shown that low-abundance proteins tend to fail

in competing for cleavages in the digestion phase and also often fail in getting protons in the ionization

phase [58]. This can shrink their probability to be detected and identified. Finally, a statistical analysis of

identification results is as important as the identification itself. It is well known that there exists a high rate

of false positives in peptide identification and this rate can be magnified in protein inference.

Useful concepts

Many useful concepts have been proposed to address the challenges mentioned above. In the following, we

introduce three of them that are often used and appear frequently in recent research papers.
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Figure 2.3: Parsimony principle to solve degenerate peptides. Only protein A and protein D would

be reported to be inferred because they can explain all the observed peptides. Although protein C

and protein D can also explain all the observed peptides, protein A is favored because it can explain

more peptides than protein C.

• Parsimony principle applies Occam’s razor [59] to deal with homologous proteins and degenerate

peptides. According to this principle, only the simplest group of proteins which are sufficient to explain

all the observed peptides are reported to be inferred [24, 60]. For example, in Figure 2.3, only Protein

A and D would be reported because they are enough to explain all the 5 peptides.
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• Proteotypic peptides are the peptides in a protein that are most likely to be observed by current MS-

based proteomics methods [26, 28]. The proteotypicality of a peptide can be predicted according to the

peptide’s chemico-physical properties [28, 32, 34, 61]. By building proteotypic peptide libraries, protein

inference can be based on the identification of proteotypic peptides. Because proteotypic peptides

can be identified with a high confidence, the sensitivity of protein identification can consequently be

increased.

• Peptide detectability is defined as the probability of observing a peptide in a standard sample by

a standard proteomics routine [58]. A standard sample is a sample which contains a fixed number

of different proteins (peptides), and they are mixed at the same fixed concentration [58]. Further,

under this condition, peptide detectability is considered as an intrinsic property of a peptide that

is mainly decided by its primary sequence and its parent protein sequence. By this definition of

peptide detectability, a degenerate peptide now can be assigned to each of its parent proteins with a

corresponding probability assuming that it comes from that protein. Currently, this is a concept that

can explain the assignment of degenerate peptides in principle, compared with the use of weights [24],

which presumes that degenerate peptides only can come from one protein, or the use of the concept

of peptide grouping [29], which assigns two peptide sequences into the same peptide group if their

predicted spectra are not distinguishable.

MS/MS intensity-based strategy for assigning degenerate peptides [57]

As discussed before, it is difficult to compute the probabilities of a degenerate peptide belonging to different

parent proteins, because the connection between peptides and proteins is lost in proteome experiments. Here

we propose an MS/MS intensity-based strategy to assign degenerate peptides to truly present proteins. The

idea is that, for a given peptide which is shared by protein Q1 and Q2, if the peptide was from Q1, then its

intensity will be closer to the intensity of its siblings in Q1 than that in Q2. The intensity of a peptide is
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computed with the signal peak intensity in its matched tandem mass spectra.

This MS/MS intensity-based method requires that all peptides in the sample have a similar ability to be

ionized and fragmented, and thus have a similar chance to be analyzed by mass spectrometers. However,

this is not the case in practice. One way to alleviate the effect of peptide detectability [58] on peptide

intensity is that, for each protein with degenerate peptides, we compute the average intensity of peptide

siblings, and compare this intensity to the intensity of a degenerate peptide. Some peptides of a protein may

have low detectability, but others may not. Thus, averaging the intensity of all peptide siblings can help to

reduce the effect of detectability on intensity. An alternative way is to combine peptide detectability into

the computation of peptide intensity, if the computation of detectability is accurate enough. The intensity

of a peptide Pi is computed as the sum of the signal peak intensity in all its matched tandem mass spectra,

which is given by

Ii =

Ns∑
j=1

Spj , (2.1)

where Ii is the peptide intensity and Ns is the number of tandem mass spectra matched to the peptide. The

Spj is the preliminary score in Sequest [19] output for the jth tandem mass spectrum, which is the sum of

the intensity of all signal peaks in the spectrum. And it is factored with the ratio between experimental and

theoretical peaks that can be derived from the peptide. This factor can eliminate the unfair advantage of

longer peptides over short ones. In addition, Spj is normalized with the maximum value in each whole data

set.

As previously mentioned, for a given degenerate peptide, the intensity of its siblings is averaged in order to

reduce the effect of peptide detectability on intensity. So the intensity of the siblings of a degenerate peptide

Pi is calculated by

Ji =
1

Ni

Ni∑
j=1

Ij , (2.2)

where Ji is the average intensity of the siblings of peptide Pi, and Ni is the number of its siblings. Ij is the

intensity of its jth sibling peptide.
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Figure 2.4: A toy example of the assignment of degenerate peptides. The intensity of the three

peptides are I1, I2, I3, respectively.

The intensity of a degenerate peptide is contributed to by all of its parent proteins in the sample. This

makes the intensity proportion contributed to by each protein sum to unity. A simple example is used to

illustrate how to compute these proportions. In Figure 2.4, peptide P2 is shared by protein Qk and Qj . The

proportion contributed by protein Qk to the intensity of peptide P2 is calculated by

P k′

2 =
|I2 − I3|

I2
, (2.3)

where | · | is the absolute value operator. Similarly, the proportion contributed by protein Qj is given by

P j′

2 =
|I2 − I1|

I2
. (2.4)

Since the proportions contributed by all proteins sum to 1, the previous proportions are normalized,

P k
2 =

P k′

2

P k′
2 + P j′

2

, P j
2 =

P j′

2

P k′
2 + P j′

2

. (2.5)

For any given peptide Pi, and its parent protein Qk, the proportion of the intensity of Pi contributed to by

the protein Qk, denoted by P k
i , is given as follows,

P k′

i =

∣∣∣∣∣Ii− ∑
f ̸=k

Jf
i

∣∣∣∣∣
Ii

P k
i =

Pk′
i∑

All parent Qf of Pi

P f′
i

,

(2.6)

where Ii is the intensity of peptide Pi, and Jf
i is the average intensity of the siblings of peptide Pi from

protein Qf . Here, we take this proportion to represent the probability of peptide Pi belonging to protein

Qk.
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It is worth pointing out that although the probabilities of degenerate peptides also sum to 1 as in Protein-

Prophet [24], it is not required that these shared peptides can only come from one truly present protein in

the sample. In the case of ProteinProphet, the weights of a shared peptide will eventually be one of them

that becomes close to 1, and the others become close to 0, because it assumes that shared peptides can only

come from one truly present protein. This is not true in practical experiments and also misinterprets the real

meaning of shared peptides. By removing this assumption, the probability P k
i allows degenerate peptides

to be assigned to multiple proteins in the sample, as long as these proteins have enough evidence to support

their existence.

Assembling peptides to a protein list

Protein inference by assembling peptides identified from tandem mass spectra is an important computational

step in proteomics, based on which further analysis, such as inference of protein structure and function can

be performed. This problem has been systematically discussed in [33, 62, 63]. Existing MS-based methods

to address this problem can be divided into two groups. The first group performs protein inference and

peptide identification separately [24, 64–66]. First, peptides are identified from tandem mass spectra by de

novo sequencing [37, 38, 42] or database searching [18, 19, 21]. Then, proteins are inferred by assembling

these identified peptides. The other group combines protein inference with peptide identification, identifying

peptides and proteins simultaneously [67–69].

We will first see some examples of the first group. There are many options to assemble identified peptides to

a list of proteins [24, 28, 29, 60, 64–67, 69–72]. However, statistical models are considered as a standard and

preferred option [24, 29, 64–67, 69, 70]. There are many benefits to use statistical models for protein inference.

First, statistical models can integrate the probabilities of peptide identification into protein inference. This

can help to recover the lost connection between peptides and proteins in the digestion phase. Secondly, a

natural advantage of this method is that it provides protein inference with statistical analysis. This analysis
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is necessary and very important, because there is a small chance to validate the results according to any

theoretical inference, since there are many variations of the internal chemical and physical process of protein

digestion, peptide ionization and fragmentation. Third, there are many flexibilities in using statistical models.

As is known, many factors govern the outcomes of proteome experiments. Thus, we always want to consider

as many factors as possible in order to make an accurate protein inference. Meanwhile, statistical models

allow us to integrate any significant factor that can decide the inference results. Furthermore, options in

the model parameters can be provided so that users can apply their expertise in a specific scenario. Due

to these obvious advantages, many statistical models have been proposed for protein inference. Here, one

typical model is introduced to exemplify the procedure of this method, and a brief introduction of other

methods is also provided.

Nesvizhskii et al. proposed the first statistical model for protein inference, which is implemented in the

software ProteinProphet [24]. ProteinProphet infers proteins using the peptide identification probabilities

produced by PeptideProphet [23]. The model is

Pn = 1−
Mn∏
i=1

(1− wn
i p

n
i ) (2.7)

where Pn is the probability of protein n, and Mn is the number of peptides assigned to protein n. The wn
i

is the weight of peptide i being assigned to protein n, and pni is the probability of peptide i being correctly

identified given it is from protein n.

If peptide i has Ni parent proteins, then

wn
i =

Pn∑
j=1,...,Ni

Pj
and

∑
n=1,...,Ni

wn
i = 1. (2.8)

It can be seen that the weight wn
i is decided by the probability of protein n among all the parent proteins

of peptide i. The probability pni is computed by considering both the search engine information Di and its

number of sibling peptides (NSP) Sn
i in protein n, and is given by

pni = p(+|Di,S
n
i ) =

p(+|Di)p(S
n
i |+)

p(+|Di)p(Sni |+) + p(−|Di)p(Sni |−)
. (2.9)
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The number of sibling peptides of peptide i in protein n is written as

Sni =
∑

{m|m̸=i}

p(+|Dm),

where p(+|Dm) is the probability of peptide m also from protein n given its information Dm. Information D

is provided by searching engines, including matching scores and other useful information. From the formula

above we can see that the estimated Sn
i is usually not an integer, because it is not really the number of

sibling peptides but the sum of their identification probabilities.

In this model, degenerate peptide i is assigned to each of its parent protein n, n = 1, . . . , Ni with a weight

wn
i , which assumes that all peptides are from only one protein. These weights are computed iteratively using

an expectation-maximization (EM) algorithm, as is the protein probability Pn. If one protein probability

is getting higher and higher, then the weight to this protein is also becoming higher and higher. Besides,

peptide identification probabilities are adjusted to integrate NSP. It shows that correctly identified peptides

tend to have more siblings from one same protein, while incorrectly identified peptides tend to be the only

child of its parent protein. Thus, NSP is helpful to distinguish correct peptides from incorrect ones.

ProteinProphet has been widely used to infer proteins, but there are also some problems with its model.

First, it is often not true to assume that all peptides are from only one protein, especially for higher eukaryote

samples in which homologous proteins exist. Second, the model tends to overestimate the probability of pro-

tein inference, because Equation(2.7) can be interpreted as the probability of a protein existing in the sample

is equal to the probability that at least one identified peptide is generated by this protein. Consequently,

the false-positive rate of this model is often high.

Since Tang et al. proposed the concept of peptide detectability [58] which can theoretically explain the

assignment of degenerate peptides, this group introduced an algorithm named Lowest-Detectability First

Algorithm (LDFA) to count the number of missed peptides [73]. Missed peptides are those which are not

identified by searching engines, but have the detectabilities above the “lowest detectability” of an identified

peptide. Then, the protein with the smallest number of missed peptides is identified first. The algorithm
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will iterate until all the identified peptides are assigned to a protein. Then these proteins are reported to be

identified. In essence, this algorithm also applies the parsimony principle to report a protein list, because

the protein with the smallest number of missed peptides can explain more peptides than other proteins, and

is identified with a priority.

Tang and his coworkers also presented another model using a Bayesian approach to infer proteins [74]. In

this model, identified peptides and their parent proteins are grouped to form protein configuration graphs,

shown in Figure 2.5.   Proteins:   Peptides: 
Figure 2.5: Protein configuration graph.

All the degenerate peptides and unique peptides that are assigned to a group of proteins form a peptide

configuration, say (y1, . . . , yi, . . . , yn). yi = 1 when the peptide i is identified; otherwise, yi = 0. Then,

the protein inference problem is reduced to finding the maximum a posterior (MAP) protein configuration

(x1, . . . , xi, . . . , xm), which maximizes the conditional probability P (x1, . . . , xm|y1, . . . , yn). That is,

(x1, . . ., xm) = argmax
(x′

1,...,x
′
m)

P (x1, . . ., xm|y1, . . ., yn), (2.10)

where xi = 1 if protein i is present, and xi = 0 otherwise. The conditional probability is

P (x1, . . . , xm|y1, . . . , yn) =
P (x1, . . . , xm)P (y1, . . . , yn|x1, . . . , xm)∑

(x′
1,...,x

′
m) (P (x1, . . . , xm)P (y1, . . . , yn|x1, . . . , xm))

=
P (x1, . . . , xm)

∏
j [1− P (yj = 1|x1, . . . , xm)]1−yjP (yj = 1|x1, . . . , xm)yj∑

(x′
1,...,x

′
m) P (x1, . . . , xm)

∏
j [1− P (yj = 1|x1, . . . , xm)]1−yjP (yj = 1|x1, . . . , xm)yj

, (2.11)

in which P (x1, . . . , xm) is the prior probability for protein configuration. Suppose proteins are independent

of each other, then

P (x1, . . . , xm) =
∏
i

P (xi). (2.12)
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In addition,

P (yj = 1|x1, . . . , xm) = 1−
∏
i

[1− xiP (yj = 1|xi = 1, xj = 0, j ̸= i and 1 ≤ j ≤ m)], (2.13)

where P (yj = 1|xi = 1, xj = 0, j ̸= i and 1 ≤ j ≤ m) is the probability of peptide j to be identified if only

protein i is present in the sample. According to the definition of peptide detectability, this is the detectability

of peptide j if it comes from protein i, denoted by dij . Substituting Equations (2.12) and (2.13) into Equation

(2.11) leads to

P (x1, . . . , xm|y1, . . . , yn)

=

∏
i
P (xi)

∏
j

{[∏
i
(1−xidij)

]1−yj
[
1−

∏
i
(1−xidij)

]yj
}

∑
(x′

1,...,x′
m)

∏
i

P (x′
i)

∏
j

{[∏
i

(1−x′
idij)

]1−yj
[
1−

∏
i

(1−x′
idij)

]yj
} .

(2.14)

This Bayesian model is solved by Gibbs Sampling. In addition to this basic model, the authors also proposed

an advanced model which incorporates the peptide identification scores into the Bayesian model. Further

details can refer to [74]. Because the peptide detectability is also affected by protein concentration in the

sample, it needs to be converted to reflect different protein abundances. By applying this model to each

protein configuration graph, all the proteins in the sample will be identified.

This model is cogent in theory because it strongly connects peptide identification with protein inference

through the concept of peptide detectability and Bayes’ theorem. To some extent, it addressed the problem

of degenerate peptides with peptide detectability. However, there is still some room to improve this model.

First, the prior probability of proteins can be refined. Secondly, more effort is needed to accurately predict

peptide detectability in samples with proteins of different concentrations. Last, the model tries to identify

proteins as a group. Although it mentions that marginal probability of a single protein could be computed,

it doesn’t solve this problem explicitly.

In addition, Higdon et al. proposed to use logistic function to predict proteins by a single peptide match [70].

Logistic function is very useful and flexible in predicting the presence of proteins and peptides. It can “digest”

and “absorb” any factor and still produce a probability value. Specifically, if we can quantify the factors

46



which govern the protein digestion and peptide ionization, we can combine all of them into the logistic

function and use it to identify peptides and proteins. In addition to logistic function, Shen et al. presented

a hierarchical statistical model for protein inference [69]. Price et al. proposed to use Poisson distribution

to simulate the distribution of the number of correct and incorrect peptide assignments [64], and then use

EM algorithm to obtain the protein identification probability.

Aside from statistical models, Zhang et al. [60] took advantage of the mapping relationship between peptides

and proteins, and adopted graph theory to infer proteins from identified peptides. They simulated the

peptide-protein relationships in a bipartite graph, and employed a greedy set covering algorithm to derive a

minimal protein list according to parsimony principle. An open-source software called IDPicker is developed

to implement this method. A remarkable benefit of this software is that it provides the visualization of

bipartite graphs, which can clearly demonstrate the peptide-protein mapping relationships, and greatly

improve the transparency of protein inference. Moreover, it also reports the maximum protein list. This can

help researchers with expertise to adjust the final inference results. However, the derivation of a minimal

protein list leads to a conservative protein inference by nature, and it leaves out meaningful proteins from

time to time. Other approaches of protein inference can refer to [28, 71, 72, 75].

Besides the methods introduced above, several other methods have been presented to identify proteins and

peptides simultaneously [67–69]. Recently, Spivak et al. have built a Barista model [68] which formulates

the protein inference as an optimization problem, shown in Figure 2.6. The protein inference problem is

represented as a tripartite graph, with layers corresponding to spectra, peptides and proteins. The input

to Barista is the tripartite graph with a set of features describing the match between peptides and spectra.

The parameters in the model are estimated by training the model with reference data, and then the trained

model is used to infer proteins. The advantage of this model is that it utilizes the spectrum information in

all the steps of protein inference, without discarding spectra from peptide identification to protein inference.

The application of this method is limited by the necessity of reference data to train the model each time

when different datasets are analyzed.
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Figure 2.6: Barista tripartite graph. The tripartite graph represents the protein inference problem.

From bottom to top, each layer denotes mass spectra, peptides and proteins, respectively. Barista

computes a non-linear function on each PSM feature vector. Each peptide score is the maximum PSM

score, and each protein score is a normalized sum of its constituent peptide scores.

Since many well-developed search engines for peptide identification are available, methods for processing

peptide identification reports from these engines have been proposed. For example, Li et al. have used a

nested mixture model [67] to estimate peptide and protein probability at the same time based on identified

peptides and their scores from search engines. This model allows evidence feedback between proteins and

their constituent peptides. It is built on several reasonable assumptions except that it completely ignores

the problem of degenerate peptides.

2.5.3 Modifications

Post-translational modifications (PTMs) are covalent processing events that change the properties of a

protein by proteolytic cleavage or by adding a modifying group to one or more amino acids [6]. PTMs of a

protein can determine its activity state, localization, turnover and interactions with other proteins. Thus,

identifying the modifications of a protein is an important aspect of protein characterization. Modification

analysis is usually done by comparison of experimental data to known amino acid sequences [6, 8]. That

is, protein identity is known and the focus is to find the modifications that this protein may carry out.

Therefore, the procedure for MS-based modification analysis can be performed with the following steps [6]:
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• Protein identification is conducted with MS analysis, and only unmodified peptides are considered in

a database search. This can form a small database of known proteins.

• Modifications are then taken into account by searching this small known protein database. In addition,

a second protease may be applied and another MS experiment can be performed in order to improve

the coverage of sequences, and also increase the identification of modifications in the sample.

The confidence of identifying modified peptides is often lower than unmodified peptides, because they are

searched against a much larger number of peptides. When a few modifications are considered, this problem

is more significant.

2.6 Summary

Proteomics is the large-scale study of proteins, and the core instrument in proteomics is the mass spectrome-

ter. This chapter introduced some main considerations one needs to take in designing proteomic experiments,

and some often used techniques in MS-based proteomics. Methods of choice for peptide identification and

protein inference were reviewed, and the challenges arising from these computational steps and possible

solutions were also discussed.

Protein inference is a critical computational step in proteomics, from which the identification results serve

as the foundation for further protein characterization and functional analysis. High-throughput protein

inference is made convenient by MS analysis and the availability of many public genomic databases. So far,

there is no perfect way to solve the protein inference problem. Although statistical models and graph theory

are very good attempts, there is much space to improve these methods. First, the internal chemico-physical

process of protein digestion and peptide ionization is not totally clear to us. The factors in these processes

that determine the cleavage sites of proteins, the ionization ability and the charge states of peptides are not

always predictable. If these factors can be quantified and included in the statistical models, the inference
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accuracy should be improved. Secondly, a theoretically cogent and practically feasible concept is needed to

recover the connection between peptides and proteins. Although peptide detectability is a good concept to

this end, it is limited by the necessary control of protein concentration in the sample. We also proposed

an MS/MS intensity-based strategy to address this problem, but this method is not yet verified with real

complex proteomics data. Its practical use cannot be determined at this point. Thirdly, the identification

of modified peptides in a database search is not optimized. Although database searching for modifications

is possible, it is extremely paralyzed by the exponential growth of search space caused by the combinatorial

explosion of modification possibilities. Last but not least, consistent validation methods are expected to

analyze protein inference results, because there are no theoretical results available for reference, while the

proteins or gene products vary a lot from sample to sample.
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Chapter 3

Peptide charge state determination of tandem mass

spectra from low-resolution collision induced disso-

ciation

Published as: Jinhong Shi, and Fang-Xiang Wu, Peptide charge state determination of tandem mass spectra

from low-resolution collision induced dissociation, Proteome Science, vol.9(Suppl 1):S3, 2011. This work

was first presented in International Workshop on Computational Proteomics, Hong Kong, China. 18-21

December 2010.

In the previous chapter, we introduced the basic concepts and principles of tandem mass spectrometry for

protein inference. From MS/MS data to inferred proteins, there are three computational phases: First,

process MS/MS data to improve the quality of peptide identification; Second, postprocessing peptide iden-

tification results from search engines; and third, infer proteins based on the identified peptides and their

probabilities. Note that a peptide-spectrum-match is performed with existing search engines. In this thesis,

we will introduce the work on each phase, respectively. This chapter will present a method to determine

the charge states of peptide tandem mass spectra from low-resolution collision induced dissociation (CID),

which is one aspect among various processing of MS/MS data.

The manuscript included in this chapter studies the determination of low-resolution CID tandem mass

spectra with an unsupervised machine learning method, Gaussion mixture model (GMM). Four novel and
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discriminant features are proposed to represent each tandem mass spectrum, and are used in GMM to

distinguish doubly and triply charged peptides. The results have shown that this method is easier and more

accurate to assign charge states to low-resolution tandem mass spectra than existing methods.
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Peptide charge state determination of tandemmass spectra from low-resolution

collision induced dissociation

Abstract

Charge states of tandem mass spectra from low-resolution collision induced dissociation cannot be deter-

mined by mass spectrometry. As a result, such spectra with multiple charges are usually searched multiple

times by assuming each possible charge state. Not only does this strategy increase the overall database

search time, but also yields more false positives. Hence, it is advantageous to determine charge states of

such spectra before a database search. We propose a new approach capable of determining the charge states

of low-resolution tandem mass spectra. Four novel and discriminant features are introduced to describe tan-

dem mass spectra and used in Gaussian mixture model to distinguish doubly and triply charged peptides.

By testing on three independent datasets with known validity, the results show that this method can assign

charge states to low-resolution tandem mass spectra more accurately than existing methods. The proposed

method can be used to improve the speed and reliability of peptide identification.

3.1 Background

Mass spectrometry has been widely used to analyze high throughput protein samples. Proteins are first

cleaved into peptides with enzymes or chemical cleavages. Then, peptides are separated from mixture

solutions by high pressure liquid chromatography (HPLC), and sent to an ionization source where they

get ionized. There are two ionization techniques, electrospray ionization (ESI) and matrix assisted laser

desorption/ionization (MALDI), which are often used in proteomics laboratories. MALDI is mainly used in

peptide mass fingerprinting as it predominantly yields singly charged ions. Unlike MALDI, ESI typically

produces multiply charged ions. After being ionized, peptides are introduced into analyzers such as ion trap

or triple quadrupole to produce mass spectra (MS). To obtain tandem mass spectra (MS/MS), peptide ions
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with the highest intensities in MS are isolated and subjected to fragmentation by collision induced dissociation

(CID). The resultant MS/MS are used to provide structural composition information of peptides.

The commonly used database search programs for peptide identification include Sequest [2] and Mascot [3].

These programs compare experimental spectra with theoretical spectra in a database and use scoring func-

tions to measure the similarity between them. Typically, the peptide with the highest score is identified.

However, the growing number of protein sequences in expanding databases becomes a challenge for database

search software because the search space is sharply increasing. Moreover, multiply charged peptide tandem

mass spectra from ESI-CID also add complexities to these programs, because they generate much more

complex spectra. Although high-resolution mass spectrometers can provide separable isotropic spacing of

fragment ions to derive charge states, most commonly used ion trap and triple quadrupole analyzers have

limited resolution to do so [4]. In such a case, one spectrum is usually searched multiple times by assuming

each possible charge state of its precursor peptide ion. This strategy increases the overall time of database

search and yields more false positives as true positives need to be distinguished from much more peptide

candidates. The requirement of determining peptide charge states is not limited to database searching, but

also is necessary in de novo sequencing methods [5].

This paper will focus on the charge state determination of low-resolution tandem mass spectra. There have

been reports in determining charge states of low-resolution tandem mass spectra [1, 4, 6, 7]. Thirty-four

features were proposed in [6] to describe MS/MS and the link between MS and MS/MS, then a support

vector machine (SVM) was used to classify MS/MS into three groups +2, +3 and +2/+3. One problem with

this method is that it classifies peptide ions into three groups, which still leaves ambiguities in the charge

determination. Lately, twenty-eight features of MS/MS were proposed to train an SVM in [7] to discriminate

doubly and triply charged peptides. The common problem with [6, 7] is that an SVM needs training with

labeled data (labeled data are the ones that we know to which class they belong). This inherent drawback

of supervised methods limits their generality in determining the charges of any experimental MS/MS. Last

but not least, it is computationally expensive to first train SVM and then apply it on test data.
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In this paper, we present an unsupervised learning method based on Gaussian mixture model (GMM) to

determine the charge states of low-resolution tandem mass spectra. Four novel and discriminant features

are proposed to describe MS/MS. By testing on three low-resolution MS/MS datasets with verified charge

states, the results have shown that the proposed method can accurately assign charge states to such tandem

mass spectra.

3.2 Methods

In a database search, tandem mass spectra are usually considered to carry 1, or 2 or 3 charges. Research [8]

shows that singly charged MS/MS can be reliably determined. Therefore, the charge state determination

can be reduced to the classification of doubly and triply charged MS/MS. To solve this problem, this study

uses the unsupervised GMM with features proposed to reflect the properties of MS/MS. Since the features

are to be extracted from MS/MS, we will first introduce several properties of peptide CID tandem mass

spectra. For more details about these properties, we would refer readers to [9].

Properties of CID tandem mass spectra

Let m(ai) be the mass of amino acid ai, then the mass of peptide P with n amino acids is given by

m(P) = m(H) +
n∑

i=1

m(ai) +m(OH) (3.1)

where m(H) and m(OH) are the masses of the additional N-terminal and C-terminal. The cleavage along

peptide bonds in CID mainly leads to the production of N-terminal bi ion and C-terminal yn−i ion. The

singly charged ion with N-terminal is denoted by b+i , and its m/z value is

m(b+i ) = m(H) +

i∑
j=1

m(aj). (3.2)
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The m/z value of its doubly charged counterpart b++
i is

m(b++
i ) = [m(b+i ) +m(H)]/2. (3.3)

The singly charged ion with C-terminal is denoted by y+n−i, and its m/z value is

m(y+n−i) = 2 ∗m(H) +m(OH) +
n∑

j=i+1

m(aj). (3.4)

Here two hydrogens are added because C-terminal ions carry one negative charge after fragmentation, thus

it needs two protons to make it carry one positive charge. Similarly, the m/z value of its doubly charged

counterpart y++
n−i is

m(y++
n−i) = [m(y+n−i) +m(H)]/2. (3.5)

From equations (3.1) to (3.5), we have the following equations holding for peptide CID tandem mass spectra:

m(P) + 2 ∗m(H) = m(b+i ) +m(y+n−i) (3.6)

m(P)/2 + 2 ∗m(H) = m(b++
i ) +m(y++

n−i) (3.7)

m(P)/2 + 2 ∗m(H) = m(b++
i ) + (m(y+n−i) +m(H))/2 (3.8)

m(P)/2 + 2 ∗m(H) = (m(b+i ) +m(H))/2 +m(y++
n−i). (3.9)

Since one peptide with different charges can produce different MS/MS, we can infer the charge state of a

peptide according to the features of its MS/MS. As we will see, these features will be calculated based on

the above relationships between the singly and doubly charged fragment ions.

Spectrum features

First, six functions are defined for a given peptide MS/MS [9] as follows:

d1(m1,m2) = m2 −m1
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s1(m1,m2) = m1 +m2

d2(m1,m2) = m2 − (m1 + 1)/2

d3(m1,m2) = (m2 + 1)/2−m1

s2(m1,m2) = m1 + (m2 + 1)/2

s3(m1,m2) = (m1 + 1)/2 +m2

where m1 and m2 are the m/z values of any two peaks from the given peptide tandem mass spectrum and

m2 > m1.

Complementary pairs

Complementary pairs measure the likelihood that an N-terminal ion and a C-terminal ion in a peptide

MS/MS are produced as the peptide fragments at the same peptide bond. Given a peptide P and MS/MS

data, let

S1 = {(m1,m2) | s1(m1,m2) ≈ m(P) + 2 ∗m(H),m1,m2 ∈ ..,m1 < m2.}

S2 = {(m1,m2) | s2(m1,m2) ≈ m(P)/2 + 2 ∗m(H),m1,m2 ∈ ..,m1 < m2.}

S3 = {(m1,m2) | s3(m1,m2) ≈ m(P)/2 + 2 ∗m(H),m1,m2 ∈ ..,m1 < m2.}

then, the first feature is defined as

δcp = |S1| − (|S2|+ |S3|) (3.10)

where | · | denotes the cardinality of a set. The feature δcp is the difference between the number of comple-

mentary pairs (+1, +1) and the number of complementary pairs (+1, +2) in MS/MS. This feature accounts

for the fact that +2 peptides tend to generate two +1 ions at the same bond, while +3 peptides are prone

to yield one +1 and one +2 ion [1, 4]. From the definition, this feature is expected to be larger for doubly

charged peptides than triply charged ones.
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According to the definition of s1, s2 and s3, we define peak sets

P+
11 = {m1 | (m1,m2) ∈ S1}, P+

12 = {m2 | (m1,m2) ∈ S1}

P++
2 = {m1 | (m1,m2) ∈ S2} ∪ {m2 | (m1,m2) ∈ S3}

P+
2 = {m1 | (m1,m2) ∈ S3} ∪ {m2 | (m1,m2) ∈ S2}.

Then, the second feature is given by

δRcp =

∑
m∈P+

12

I(m)

0.5 +
∑

m∈P+
11

I(m)
−

∑
m∈P++

2

I(m)

0.5 +
∑

m∈P+
2

I(m)
(3.11)

where I(·) represents the intensity of peaks. The feature δRcp is the difference between the ratio of +1

peak intensity over their complementary +1 peak intensity and the ratio of +2 peak intensity over their

complementary +1 peak intensity. The item 0.5 is added in view that the intensity of y ions in higher

mass regions is larger than that of b ions in lower mass regions. This feature accounts for the fact that the

intensity of +1 peaks and the intensity of their complementary +1 peaks should be comparable when they

are produced from doubly charged peptides, while the intensity of +1 peaks from triply charged peptides

should be comparable to the intensity of their complementary +2 peaks. Thus, the difference between these

two ratios should be greater than 0 for doubly charged peptides while less than 0 for triply charged ones.

This newly proposed feature is expected to be more significant than the first feature which has been used

in [4], because it integrates the intensity information into the feature definition rather than just counting

the number of complementary pairs.

Regional intensity

Intensity is an important property of tandem mass spectra, so we incorporate it into the expression of the

third feature. Let

D1 = {(m1,m2) | d1(m1,m2) ≈ Mi/2, i = 1, 2 . . . 20}

D2 = {(m1,m2) | d2(m1,m2) ≈ Mi/2, i = 1, 2 . . . 20}
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D3 = {(m1,m2) | d3(m1,m2) ≈ Mi/2, i = 1, 2 . . . 20},

where Mi is the residue mass of the amino acid i. Then according to the definition of d1, d2, d3, we can see

that the set of doubly charged peaks is

P++ = {m1 | (m1,m2) ∈ D1} ∪ {m2 | (m1,m2) ∈ D1} ∪ {m2 | (m1,m2) ∈ D2} ∪ {m1 | (m1,m2) ∈ D3}.

In view of further manipulation, we define an indicator function of the peak masses in a spectrum,

X(m) =


1 m ∈ [mp, 1.5mp]

0 otherwise

where mp is the m/z value of parent peptide ions. Then the third feature is defined as

Idc =
∑

m∈P++

I(m)X(m). (3.12)

The feature Idc is the intensity of +2 peaks in the mass region [mp, 1.5mp]. In theory, the m/z values

of +2 peaks from +2 peptides should not exceed mp, while they should not exceed 1.5mp when they are

from +3 peptides. Hence, Idc which accounts for the +2 peak intensity in the region [mp, 1.5mp] should be

very discriminant for doubly and triply charged peptides. This feature is expected to be smaller for doubly

charged peptides than triply charged ones.

Amino acid distance

The charge state of a peptide is theoretically determined by the number of basic amino acids it contains [10].

The side chains of basic sites have high proton affinities to attract protons in ESI, and the N-terminal amine

group can also attract a proton. Thus in theory, doubly charged peptides should contain one basic site and

triply charged peptides should contain two basic sites. Let nbs be the number of basic sites of an MS/MS,

and define

D = {(m1,m2)|d1(m1,m2) ≈ Ma, a = K,R,H} ∪ {(m1,m2)|d1(m1,m2) ≈ Ma/2, a = K,R,H}

{(m1,m2)|d2(m1,m2) ≈ Ma/2, a = K,R,H} ∪ {(m1,m2)|d3(m1,m2) ≈ Ma/2, a = K,R,H},
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where Ma is the residue mass of the amino acid a. Then the number of basic sites is computed by

nbs = |D| / Nt, (3.13)

where Nt is the theoretical repeat number of basic residues in a mass spectrum. More discussion about nbs

is given later.

When we compute the values of all features, the situations when peaks are produced by losing water,

ammonia, CO or NH group are considered as proposed in [7].

3.2.1 Gaussian mixture model

Gaussian mixture model (GMM) [11] is commonly used for clustering and it is unsupervised, which makes

GMM have an obvious advantage over other supervised methods in terms of saving efforts in labeling training

data. The expression of Gaussian mixtures is given by

f(x; θ) =

K∑
k=1

pkg(x;µk, σk) (3.14)

where

g(x;µk, σk) =
1

(
√
2πσk)D

e
− 1

2

(
∥x−µk∥

σk

)2

, (3.15)

∥∥ is 2-norm of a vector, and pk is the mixing probability of the kth component. Here, D is the space

dimension of data points. The maximum likelihood approach is used to estimate the parameter vector θ in

GMM. The likelihood function is given by

λ(X; θ) =

N∏
n=1

f(xn; θ) (3.16)

Substituting the Gaussian mixtures (3.14) into (3.16), and taking the logarithm of the likelihood function,

we have

L(X; θ) =
N∑

n=1

log
K∑

k=1

pkg(xn;µk, σk). (3.17)
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Then, the parameter θ is given by

θ̂ = argmax
θ

L(X; θ). (3.18)

To solve (3.18), we take the derivatives of L with respect to µk and σk, which yields

∂L

∂µk
=

N∑
n=1

p(k|n)
σ2
k

(µk − xn) (3.19)

∂L

∂σk
=

N∑
n=1

p(k|n)(−D

σk
+

∥xn − µk∥2

σ3
k

) (3.20)

where

p(k|n) = p(k, n)

p(n)
=

p(k, n)∑K
z=1 p(z, n)

. (3.21)

In the above expression, p(k, n) is defined as

p(k, n) = pkp(n|k) = pkg(xn;µk, σk). (3.22)

To obtain the derivative of L with respect to the mixing probability pk, we write the variables pk as functions

of unconstrained variables γk [12], given in (3.23), because the values of pk are constrained to being positive

and adding up one.

pk =
eγk∑K
z=1 e

γz

(3.23)

This transform enforces both constraints automatically. From the chain rule of differentiation, we obtain

∂L

∂γk
=

N∑
n=1

(p(k|n)− pk). (3.24)

Setting all derivatives to zero, we obtain three groups of equations for the means, variances, and mixing

probabilities:

µk =

∑N
n=1 p(k|n)xn∑N
n=1 p(k|n)

(3.25)

σ2
k =

1

D

∑N
n=1 p(k|n) ∥xn − µk∥2∑N

n=1 p(k|n)
(3.26)

pk =
1

N

∑N

n=1
p(k|n). (3.27)
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These equations are intimately coupled with one another, because the term p(k|n) in turn depends on all

terms on the left-hand sides through (3.21) and (3.22). Thus, it is hard to solve these equations directly.

However, the EM algorithm can provide a solution. We start with a guess for the parameters pk, µk, σk,

and then iteratively cycle through (3.21), (3.22) (E-step), and then (3.25), (3.26) and (3.27) (M-step). The

procedures of EM algorithm are given as follows:

• E-step:

p(i)(k|n) =
p
(i)
k g(xn;u

(i)
k , σ

(i)
k )∑K

z=1 p
(i)
z g(xn;µ

(i)
z , σ

(i)
z )

(3.28)

• M-step:

µ
(i+1)
k =

∑N
n=1 p

(i)(k|n)xn∑N
n=1 p

(i)(k|n)
(3.29)

σ2(i+1)

k =
1

D

∑N
n=1 p

(i)(k|n)
∥∥∥xn − µ

(i+1)
k

∥∥∥2∑N
n=1 p

(i)(k|n)
(3.30)

p
(i+1)
k =

1

N

∑N

n=1
p(i)(k|n). (3.31)

3.3 Results and Discussion

3.3.1 Experimental data

Three datasets are used to investigate the performance of the proposed method in predicting charge states

of peptide CID tandem mass spectra.

• ISB dataset was acquired on an LC-ESI ion trap (ThermoFinnigan) and was provided by the Institute

of Systems Biology (ISB, Seattle, USA). It contains 37, 044 peptide MS/MS spectra from a control

mixture of 18 standard proteins [13]. The charge states were assigned to 1656 doubly charged and 984

triply charged peptides with Sequest.
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• TOV dataset includes 22, 577 peptide MS/MS spectra which were acquired on an LCQ DECA XP

ion trap (Thermo Electron Corp.). The samples analyzed were generated by the tryptic digestion of a

whole-cell lysate from 36 fractions of TOV-112D [14]. These spectra were searched using Sequest and

the assignments of 1898 doubly charged and 261 triply charged spectra were verified to be correct by

Scaffold (http://www.proteomesoftware.com) with the minimum probability of 0.95.

• BALF dataset was obtained from an LCQ DECA ion trap mass spectrometer (ThermoFinnigan) and

is available in PeptideAtlas (http://www.peptideatlas.org/repository) data repository. MS/MS were

searched with Sequest against IPI human protein database. The assignments of 2492 doubly charged

and 3686 triply charged spectra were validated using PeptideProphet with the minimum probability

0.90.

3.3.2 Results

GMM is solved by implementing the EM algorithm described previously with MATLAB. All features are

transformed to have variances of 1. A receiver operating characteristic (ROC) curve and Area Under the

Curve (AUC) are employed to measure the classifier performance. ROC curves of actual classifications locate

in between the ideal plot (the point (0, 1)) and the random-guess plot (the diagonal line) with AUC ∈ (0.5, 1).

The bigger the AUC, the more powerful the classification is.

Comprehensive performance of the features

First, we build the classifier with all features to see their comprehensive performance. The estimated means

of the four features for doubly and triply charged peptides of the three datasets are shown in Table 3.1. It

can be seen that all these estimated values are consistent to the expected values. ROC curves of the three

datasets are given in Figure 3.1. AUC for ISB, TOV and BALF are 0.9732, 0.9903, 0.9990, respectively.
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Both ROC and AUC show that GMM with the proposed features is well-suited for the classification of

low-resolution peptide CID tandem mass spectra.

Table 3.1: Estimates of means of all features for +2 and +3 MS/MS and their expected relationships.

Features
ISB TOV BALF EXPECTED

+2 +3 +2 +3 +2 +3 Feature values

δcp −0.0956 −1.5366 −0.4592 −2.1642 −0.8590 −2.3805 +2 > +3

δRcp 0.8384 −0.5340 0.8842 −0.4470 0.4762 −1.3666 +2 > +3

Idc 0.2099 1.4521 0.3941 2.0239 0.4743 1.5057 +2 < +3

nbs 0.4887 1.4556 0.9962 2.1185 1.2003 1.2302 +2 < +3
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Figure 3.1: ROC curves of ISB, TOV, and BALF data with all features. AUCISB = 0.9732,
AUCTOV = 0.9903, AUCBALF = 0.9990.
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Discriminant power of each feature

Here we examine the power of each proposed feature in discriminating doubly charged and triply charged

peptides with AUC, which is given in Table 3.2. The AUC shows that the most significant feature is δRcp ,

which measures the comparable degree of the intensity of complementary pairs. The second one is the

commonly used feature δcp and the third one is Idc, which accounts for the intensity difference of doubly

charged peaks in the mass region [mp, 1.5mp]. The feature with the least discriminant power is the number

of basic sites nbs. Theoretically, this feature reflects the origin of the charges carried by peptides through

ESI, thus it should be significant in distinguishing doubly and triply charged peptides. More discussions are

given for this inconsistent result in the following subsection.

The three most significant features are used to build the GMM classifier and the performance is given in

Figure 3.2. It is obvious that the classifier is very powerful in separating doubly charged and triply charged

peptides in all three datasets. Furthermore, it is even better than the classifier built with all features.
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Figure 3.2: ROC of ISB, TOV, and BALF with three most significant features. AUCISB = 0.9976,

AUCTOV = 0.9970, AUCBALF = 0.9984.
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Table 3.2: AUC of classifiers built with each feature.

ISB TOV BALF

δcp 0.9832 0.9839 0.9613

δRcp 0.9905 0.9856 0.9964

Idc 0.8973 0.9268 0.8190

nbs 0.6624 0.6476 0.5124

Comparison with existing methods

Since the number of basic sites is not finally determined, we compare the results given in [1] with our results

obtained with the other three features, which is shown in Table 3.3. By testing on the same ISB dataset,

the proposed features can achieve both higher precisions for doubly and triply charged MS/MS as well as a

higher accuracy for all spectra. This indicates that the three features are significant in discriminating doubly

charged MS/MS from triply charged ones. Besides, testing these features on the other two independent

datasets indeed verify their discriminant power.

Table 3.3: Results obtained by using three features on ISB dataset and the caparison with the results

given in [1] on the same dataset are provided.

Features
Estimated Parameters Precision

Accuracy

+2 +3 +2 +3

GMM

δcp −0.1175 −1.8433

δRcp 0.8228 −0.8352 0.9803 0.9886 0.9833

Idc 0.2847 1.6196

SVM see [1] N/A 0.9240 0.9380 0.9310
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Discussion of the number of basic sites

The result about the discriminant power of each feature shows that the number of basic sites is not powerful

in discriminating peptides with different charges. The reason is that the computation of this feature is not

quite precise. It is hard to compute the number of basic sites, because it is complicated by the following

factors: (1) it is possible that the mass differences between many pairs of peaks correspond to one same

basic site, because 6 kinds of ions can be generated in CID although they are not equally likely generated.

Besides, those ions can produce variants by losing water, ammonia, CO or NH group. (2) When we compute

the number of basic sites, we don’t want to consider too much about their positions in a sequence, otherwise,

it would become another complex problem, peptide de novo sequencing. However, when there are multiple

basic sites especially multiple identical basic sites like two K’s or R’s existing in a peptide, we need to find

a way to differentiate these two K’s or R’s. (3) Situations when tryptic peptides end with two adjacent

basic sites (KK, RR, KR, RK, HK, HR) or start with a basic site also complicate the computation. The

research in [15] shows that when two basic sites are adjacent, it is more likely that only one of them can

attach protons because there exists strong Coulombic repulsion force between adjacent protons. In addition,

peptides starting with basic residues will make the N-terminal amine group less likely to attract protons,

because the side chains of basic residues have much higher proton affinities than the amine group [15].

According to the definition of nbs, we can approach its computation in two possible ways: (1) compute

the pseudo-number of basic sites by counting the number of all cases corresponding to a basic site while

ignoring duplicate cases. This is reasonable because the pseudo-number of triply charged peptides should be

generally larger than that of doubly charged ones. And (2), figure out a theoretical repeat number of basic

sites with the statistics of mass spectrometry generating ions. There is some research conducted to quantify

the percentage of each kind of ion produced in CID. The study [16] reports some of such statistics based on

the yeast proteome. However, data in a more general sense is needed. With the statistics of ions produced

in CID, we can compute a theoretical repeat number for each basic residue. Then, it can be combined with
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the pseudo-number to derive the real number of basic sites in a mass spectrum. In this study, the feature

nbs was computed as the pseudo-number and transformed to have a variance of 1. This feature is cogent in

theory to discriminate doubly and triply charged MS/MS, but how to precisely compute it is still an open

problem.

3.4 Conclusions

A new approach for assigning charge states to low-resolution CID MS/MS is proposed based on the unsuper-

vised GMM with four novel and discriminant features extracted from MS/MS. ROC and AUC demonstrate

that GMM with proposed features is very promising in classifying doubly and triply charged MS/MS. For

future work, we will examine more on the computation of the number of basic sites, which theoretically

should be the most significant feature in discriminating peptides with different charges.
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Chapter 4

Improve accuracy of peptide identification with con-

sistency between peptides

Published as: Jinhong Shi, Bolin Chen and Fang-Xiang Wu, “Improve accuracy of peptide identification

with consistency between peptides,” IEEE BIBM’2011, Atlanta, America, 12-15 November 2011.

We have introduced the processing of MS/MS data, which is in the first computational phase of MS-based

protein inference, in the previous chapter. This chapter will address the postprocessing of peptide identifi-

cation results in the second computational phase. Usually, statistical analysis is performed to postprocess

peptide identification results. This step plays a very important role in peptide identification. Today, the

amount of MS/MS data is usually very large, and it is impractical to manually verify peptide identification

results. As is known, there exists a high rate of false positives in peptide identification. This will bring many

false identifications directly to protein inference. Therefore, it is necessary to develop reliable methods to

verify the identification results. In addition, statistical analysis of peptide identification facilitates protein

inference by providing more reliable measurement of peptide identification accuracy.

The manuscript included in this chapter proposes a new method to estimate the accuracy of peptide identi-

fication with logistic regression based on Sequest scores. Instead of using original Sequest scores ∆Cn and

Xcorr, the regularized scores ∆Cn∗ and Xcorr∗ are used as input into the logistic regression model. The

scores are regularized by use of an adjacency matrix describing the sibling relationship between peptides.
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The results have shown that the proposed method can robustly assign accurate probabilities to peptides and

have a very high discrimination power.
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Improve accuracy of peptide identification with consistency between peptides

Abstract

A new method is presented to estimate the accuracy of peptide identification with logistic regression (LR)

based on Sequest scores. Each peptide is characterized with the regularized Sequest scores ∆Cn∗ and

Xcorr∗. The score regularization is formulated as an optimization problem by applying two assumptions:

the smoothing consistency between sibling peptides and the fitting consistency between original scores and

new scores. An adjacency matrix is built to describe the affinity between peptides, and is used in the score

regularization to compute new scores. Then, the new scores are input to the LR model, which is solved with

the penalized Newton-Raphson method. By applying the method on two datasets with known validity, the

results have shown that the proposed method can robustly assign accurate probabilities to peptides and have

a very high discrimination power, higher than that of PeptideProphet, to distinguish correct and incorrect

peptides.

4.1 Introduction

Peptide identification by tandem mass spectrometry is an important step in proteomics. One popular way

to identify peptides is database searching. The procedure of this method is: First, database proteins are

cut to produce peptides in terms of enzyme specificities; Second, theoretical tandem mass spectra (MS/MS)

of these peptides are generated; Third, a scoring system is used to measure the similarity between the

experimental MS/MS and the theoretical MS/MS, i.e., performing peptide-spectrum-match (PSM); Finally,

the peptide with the highest score is usually reported to be identified. Many search engines have been

developed for peptide identification and the main difference between them lies in the scoring system they

use. This leads to the situation that one query spectrum will have two different sets of scores after being

searched with, for instance, Mascot [1] and Sequest [2]. As such, it is hard to compare the search results with
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these scores. In addition, peptide identification is not the final goal of proteomics. It lays the foundation of

protein inference. To facilitate the comparison between search results and subsequent protein analysis, it is

necessary to estimate the accuracy of peptide identification [3–5].

This paper will show a new method of estimating the accuracy of peptide identification based on Sequest

search results, though it can be easily and readily extended to other search engines. There have been several

methods proposed to improve the accuracy of Sequest peptide identification [3, 6, 7]. The most commonly-

used one is PeptideProphet [3]. It used a bimodal and EM algorithm to assign probabilities to Sequest search

results. This algorithm has also been extended to analyze search results from X!Tandem [8] and Mascot.

The advantage of this algorithm is that it models the distribution of all discriminant scores in a sample,

and then uses a Bayesian model to assign probabilities to peptide identifications. However, the probability

model heavily depends on the appropriate distribution hypotheses, which needs to be closely verified for

each different data set.

In this paper, we propose a new method to assign probabilities to Sequest peptide identifications by use

of logistic regression (LR). Rather than inputting the original Sequest scores to the LR model, we first

regularize the scores by applying a smoothing consistency assumption between sibling peptides and a fitting

consistency assumption between the new scores and original scores. The consistency assumptions have been

widely used in semi-supervised learning problems and state that (1) nearby points are likely to have the

same label; and (2) points in the same cluster are likely to have the same label [9]. They point out the

local and global property of points in different clusters, respectively. As for peptide identification, we can

similarly define the nearby peptides as the “sibling peptides”, which are generated by the same protein. The

smoothing consistency means that sibling peptides should have similar scores. Since peptide identification

is preliminarily done with search engines, the original search scores provide the basic clusters of true and

false peptides. Thus, the fitting consistency means that the new scores cannot deviate too much from the

original scores such that they can keep the basic clusters of peptides.
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The consistency assumptions have been applied to peptide identification by He et al [10]. In this study, to

realize the smoothing consistency, we first propose to use a simpler “peptide-by-peptide” adjacency matrix

to replace the “PSM-by-PSM” weight matrix in He’s method. The element in the adjacency matrix shows

whether two peptides are from one protein or not. He built the weight matrix by presuming that (1) given

two peptides from one protein, they are independent of each other; (2) shared peptides are equally generated

by parent proteins. The element in the weight matrix denotes the probability that the peptides of two

PSMs are from one protein. The results we have got show that the affinity between peptides dominates

the smoothing consistency rather than the probability of affinity. Thus, we use a simpler adjacency matrix

instead of the weight matrix in the score regularization. Then, we characterize peptides with the regularized

scores and build an LR model to assign probabilities to identified peptides.

The Sequest scores ∆Cn and Xcorr are used as original scores, and the regularized scores are input to the

LR model, which is solved with the penalized Newton-Raphson method. Two datasets are used to evaluate

the performance of our method. The results have shown that the assigned probabilities are accurate and

have a high power to discriminate correct and incorrect peptide identifications, which is also higher than

that of PeptideProphet. Furthermore, we apply the score regularization to PeptideProphet probabilities. It

shows that the regularized results have a higher discrimination power than PeptideProphet as well.

4.2 Methods and materials

4.2.1 Workflow of peptide identification

The goal of peptide identification is to obtain peptides along with their probabilities by interpreting MS/MS

data. As is known, one peptide could be matched by different MS/MS. Although the number of MS/MS

and their matched scores can reflect the confidence of an identified peptide, they are only interpreted to the
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same peptide. In other words, the interpreting result from a group of PSMs corresponding to one peptide

is equivalent to the interpreting result from the best PSM in this group. Here, we do not take the goal of

peptide identification as to interpret each MS/MS, i.e., PSM. Instead, we set our goal as obtaining identified

peptides and their probabilities, which can be directly used by protein inference. Therefore, we perform

peptide identification based on Sequest with the following procedures.

• PSM: use Sequest to perform PSM and get the original scores of peptide identification.

• Filtering: use PeptideProphet to filter peptide identifications. This step can be easily included since

PeptideProphet is in the Trans-Proteomics-Pipeline (TPP) [11], and is free to users and it can analyze

the results from commonly-used search engines including Sequest, Mascot, X!Tandem and so on. It

has been shown that 80 − 90% of reported peptide identifications are incorrect if the results are not

filtered [12]. Thus, it is reasonable to only use the filtered results (default setting: probability≥ 0.05)

from PeptideProphet for the analysis. Moreover, it can also save time and resources to handle a much

smaller amount of data.

• Build peptide-protein relation matrix W0: the element in the matrix indicates whether a peptide

belongs to a protein or not.

• Build peptide-peptide adjacency matrix W : the element in the matrix indicates whether two peptides

are from one protein or not. In order to cancel the self-enforcement effects, the diagonal elements are

set to zeros.

• Perform score regularization with the adjacency matrix.

• Compute probabilities of peptide identification using logistic regression with regularized scores.

• Output identified peptides and their probabilities by setting proper thresholds.
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Figure 4.1: A configuration to show the construction of peptide-protein relation matrix W0.

4.2.2 Score regularization

This section will first introduce the construction of adjacency matrix and then describe the regularization

of search scores.

Construction of adjacency matrix

According to the workflow of peptide identification, suppose that L PSMs passed the default filtering of

PeptideProphet, and they correspond to N peptides and M proteins. First, we will use these N peptides

and M proteins to construct an N by M peptide-protein relation matrix W0. The element in the matrix

shows the belonging relationship of a peptide to a protein. A simple example is given to show the construction

of peptide-protein relation matrix W0 in Figure 4.1.

The relation matrix W0 is given as

W0 =



w011 0 0

w021 w022 0

w031 0 0

0 w042 w043


,

where w0ij denotes the relationship between peptide i and protein j. If a peptide belongs to a protein, then

w0ij = 1; otherwise, w0ij = 0. Then, we construct a matrix between peptides as follows,

W ′ = W0 ∗WT
0 , (4.1)
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where WT
0 is the transpose of W0. In W ′, wij = 0 if peptide i and peptide j are not from any protein;

wij = 1 if two peptides are only from one protein. It is possible that two peptides are simultaneously shared

by multiple proteins, in this case, wij > 1. However, we only consider the notion that two peptides are

siblings or not, thus we set all wij = 1 as long as peptide i and peptide j are siblings, no matter how many

parent proteins they may have. In addition, in order to cancel the self-enforcement effect of peptides, the

diagonal elements of W ′ are set zeros, i.e., wii = 0. We call this newly derived matrix as the adjacency

matrix between peptides, and denote it as W in the following.

Here, W is a symmetrical matrix. Thus, the confidence enforcement is spread symmetrically among sibling

peptides. In essence, the adjacency matrix accounts for extra information from proteins, i.e., using proteins

to build the affinities between peptides, which is the reason why the later score regularization can improve

the discrimination power of scores.

Here, we also build a diagonal matrix D from W . The diagonal elements are defined as dii =
N∑

k=1

wki. The

diagonal matrix D is called the degree matrix in spectral graph theory [13]. The differences between the

adjacency matrix and He’s weight matrix are summarized as follows: We build the adjacency matrix with

the goal of identifying peptides, rather than interpreting all MS/MS data, i.e., PSM. Thus, our adjacency

matrix is of (the number of) peptides by (the number of) peptides. Instead, He’s matrix is of (the number

of) PSM by (the number of) PSM. Compared to He’s method, our adjacency matrix is easier to build, much

smaller and more goal-driven in peptide identification. However, if the goal is to study the interpretability

of MS/MS from a certain instrument, we need to build the PSM by PSM matrix.

Score regularization

As our goal is to get peptides that can be interpreted from MS/MS, for each peptide, we only choose the

PSM with the highest PeptideProphet probability as the evidence to show its identification. The original

scores of these N peptides are given by X = (x1, x2, ..., xN ), selected from the L PSM. The xi could be a
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scalar, such as the negative logarithm of E-value from X!Tandem, or a vector, such as Sequest (∆Cn,Xcorr).

Given the vector of original scores X, and the adjacency matrix W , we compute a vector of new scores Y

by simultaneously applying the consistency assumptions: smoothing consistency among sibling peptides and

fitting consistency between original scores and new scores [9, 10].

Smoothing consistency: The inconsistency of scores of sibling peptides is formulated in the following cost

function,

S(Y ) =
1

2

N∑
i,j=1

wij

(
yi√
dii

− yj√
djj

)2

, (4.2)

where dii and djj are the diagonal elements of the degree matrix D. If sibling peptides have quite different

scores, then the cost function value will be large. Here, we can see that dii cannot be zero. From the

definition of D, dii = 0 means that the peptide i has no siblings. In order to avoid this situation, we add

a dummy sibling to such peptides by setting dii to be a fairly small value as in [10]. In addition, we write

S(Y ) in a matrix form as follows,

S(Y ) = Y T (I −D−1/2WD−1/2)Y, (4.3)

where I is the identity matrix. The derivation of Equation(4.3) from Equation(4.2) can be found in [10].

Fitting consistency: The inconsistency between original scores and new scores is given by

F (Y ) =
N∑
i=1

(yi − xi)
2. (4.4)

This value will be large if the new scores deviate too much from the original scores.

Objective function: A linear combination of S(Y ) and F (Y ) is used to compose the final cost function,

Q(Y ) = (1− λ)S(Y ) + λF (Y ), (4.5)

where λ ∈ (0, 1) is the parameter which can regularize the balance between the smoothing consistency and

the fitting consistency. Then, the objective becomes to find the new scores Y ∗ which can minimize Q(Y ),

i.e.,
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Y ∗ = argmin
Y

Q(Y ). (4.6)

By taking the derivative of Q(Y ) w.r.t. Y , and setting the derivative zero, we get

Y ∗ = λ(I − (1− λ)V )−1X, (4.7)

where V = D−1/2WD−1/2.

4.2.3 Logistic regression

LR is used to represent the posterior probabilities of peptide identifications given the scores. Under the

general assumptions [14], the posterior probability of a random peptide identification Z can be written as a

sigmoid function acting on a linear combination of a feature vector ϕ so that

p
(
Z = 1

∣∣ϕ,w) = exp
(
wTϕ

)
1 + exp (wTϕ)

(4.8)

p
(
Z = 0

∣∣ϕ,w) = 1

1 + exp (wTϕ)
, (4.9)

where w is a weight vector. Here, p
(
Z = 1

∣∣ϕ,w) and p
(
Z = 0

∣∣ϕ,w) are the posterior probabilities of a

correct and incorrect peptide identification given its feature vector ϕ, respectively.

We build the feature vector as ϕ = (∆Cn∗, Xcorr∗). Different feature vectors can be built for other search

engines [3, 5]. The weight vector w is estimated directly from the new scores and the given labels of peptides

by maximizing the conditional likelihood, i.e.,

ŵ = argmax
w

(
N∏
i=1

p
(
Zi
∣∣ϕi,w

))
, (4.10)

where N is the number of peptides, Zi is the ith peptide, and ϕi is its feature vector. Equation (4.10) is

equivalent to maximizing the conditional log likelihood

ŵ = argmax
w

L(w), (4.11)
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where the conditional log likelihood L(w), after substitutions of (4.8) and (4.9) into (4.10) and some math-

ematical manipulations, is given by

L(w) =
N∑
i=1

[
ZiwTϕi − ln

(
1 + exp

(
wTϕi

))]
. (4.12)

However, there is no analytic solution to (4.11). Thus, we choose the Newton-Raphson method to find a

numerical solution. To avoid over-fitting, a penalty λ1

2 ∥w∥22 is imposed on large fluctuations of the parameter

w. In addition, we also add a prior knowledge µ0 to the regularization term. The penalized log likelihood

function LP (w) now is written as

LP (w) = L(w)− λ1

2
∥w − µ0∥22 , (4.13)

where λ1 is a constant determining the strength of the penalty term. By taking the first and second

derivatives of LP (w) w.r.t. the weight vector w, we have the iterative equation of the Newton-Raphson

method as follows,

ŵi+1 = ŵi −
[
∇2L (ŵi)− λ1I

]−1
[∇L(ŵi)− λ1(ŵi − µ0)] (4.14)

where ∇2L (ŵi) is the Hessian matrix, and ∇L(ŵi) is the scoring function of L(w) at the ith iteration. Since

LP (w) is concave w.r.t. w, because the Hessian matrix ∇2L (ŵi) is semi-negative definite, this method will

always converge to a global maximum. An active learning method is used to select training data for solving

the LR model. The details can be found in a previous work [5].

4.2.4 Experimental Data

Two datasets are downloaded from ISB public database and the detailed description of the data can be

found in reference [15]. These two datasets are generated from two mixtures in which there are 18 standard

proteins and 15 contaminants also considered to be present. One dataset is generated on the Thermo Electron

(Waltham, MA) LTQ, called Mix1 LTQ. The other one is produced with ABI (Foster City, CA) API QSTAR

Pulsar i, called Mix2 QSTAR. The datasets from different instruments are used to verify the robustness of
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Figure 4.2: The ROC of the original ∆Cn, the regularized ∆Cn∗ with our matrix W and WHe for

Mix1.

our method to datasets from various experiments. The statistics of the two datasets is summarized in

Table 4.1.

Table 4.1: Statistics of the two datasets: the number of MS/MS, the number of PSM passed

PeptideProphet default filtering, the number of peptides and proteins corresponding to these PSM.

MS/MS PSM passed the filter Peptides Proteins

Mix1 86850 19814 2217 729

Mix2 26780 6929 1200 383

4.3 Results

Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) are employed to measure

the discrimination power of the regularized scores and LR model. ROC curves of actual classifications locate

in between the ideal plot (the point (0, 1)) and the random-guess plot (the diagonal line) with AUC ∈ (0.5, 1).

The bigger the AUC, the higher the discrimination power.
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Figure 4.3: The ROC of the original Xcorr, the regularized Xcorr∗ with our matrix W and WHe

for Mix1.

4.3.1 Regularized Sequest scores

We first demonstrate the results of applying our method on Sequest scores ∆Cn and Xcorr, which are given

in Figure 4.2 to Figure 4.5. They show that

• The regularized scores, ∆Cn∗ and Xcorr∗, can greatly improve the discrimination power between

correct and incorrect peptide identifications.

• The discrimination power of regularized scores are consistent with the original scores. We can see that

Sequest ∆Cn has a higher discrimination power than Xcorr, so does the regularized ∆Cn∗.

• The discrimination power of regularized scores heavily depends on the original scores. This is verified

by the difference between He’s results and our results on the same dataset Mix2 QSTAR. He used

X!Tandem negative logarithm of E-value as the original scores [10]. The AUC of X!Tandem original

scores is 0.64, while the regularized scores can only marginally improve the AUC to 0.65. However,

by using Sequest scores of the same dataset, the regularized scores can significantly improve the AUC

from A∆Cn = 0.8626 and AXcorr = 0.8011 to 0.9882 and 0.9871, respectively.

• There is a very small difference between the discrimination power of the scores regularized with the
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Figure 4.4: The ROC of the original ∆Cn, the regularized ∆Cn∗ with our matrix W and WHe for

Mix2.
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Figure 4.5: The ROC of the original Xcorr, the regularized Xcorr∗ with our matrix W and WHe

for Mix2.

proposed simpler adjacency matrix and He’s matrix. The proposed adjacency matrix can produce a

slightly higher power than He’s matrix, see the red line in magnified subfigures. This implies that the

affinity between sibling peptides dominates the regularization, while the effect of the probability of

affinity is quite small.

• The score regularization is robust to different datasets. The results for Mix1 and Mix2 have the same

trends and they are both of very good performance.
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Figure 4.6: ROC of logistic regression based on original and regularized Sequest scores, as well as

the ROC of PeptideProphet results for Mix1.
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Figure 4.7: ROC of logistic regression based on original and regularized Sequest scores, as well as

the ROC of PeptideProphet results for Mix2.

4.3.2 Logistic regression results

We compute the logistic regression with the original and regularized Sequest scores ∆Cn and Xcorr. The

results are illustrated in Figure 4.6 and Figure 4.7. It can be seen that:

• The discrimination power of the LR results based on the Sequest original scores is the lowest one

among the four situations. The discrimination power of PeptideProphet is much lower than that

of the LR results computed from the regularized scores. As is known, PeptideProphet is the most

commonly-used program for the accuracy estimation of peptide identification. It incorporates Sequest
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Figure 4.8: ROC of original and regularized PeptideProphet probabilities for Mix1.

∆Cn, Xcorr, SpRank and dM to get discriminant scores, and then applies EM algorithm to estimate

the probabilities of peptide identification. Compared to this method, the probabilities generated by

logistic regression based on regularized Sequest ∆Cn∗ and Xcorr∗ are more accurate and easier to get.

• Again, the discrimination power of LR model computed with scores regularized with He’s matrix and

the proposed simpler adjacency matrix is very similar.

4.3.3 Regularized PeptideProphet probabilities

We also apply our method on PeptideProphet probabilities. Figure 4.8 and Figure 4.9 show that the regu-

larized probabilities have an obvious improved discrimination power over the original PeptideProphet prob-

abilities. Since PeptideProphet already accounts for the information of each individual peptide, by including

the affinity information between peptides, the regularization actually improves the scores by spreading the

confidence of peptides to their siblings.

At very low false positive rates (FPR < 0.03) for Mix1 (see Figure 4.8), the regularized probabilities give

a lower true positive rates (TPR) than PeptideProphet. However, when analyzing peptide identification

results, the FPR usually takes the value of 0.05. In this case, the regularized probabilities can yield a much

higher TPR than PeptideProphet.
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Figure 4.9: ROC of original and regularized PeptideProphet probabilities for Mix2.

4.4 Conclusion

We have demonstrated a new method to assign probabilities to identified peptides. By testing our method

on two datasets, the results have shown that the new method can robustly assign accurate probabilities to

identified peptides and indeed have a very high power to distinguish correct and incorrect peptides. Fur-

thermore, the discrimination power of the new method is also higher than that of PeptideProphet, the most

commonly-used program to assign probabilities to peptide identifications. Compared to PeptideProphet, in

addition to the higher discrimination power, the new method also has some other benefits: it is easier, faster,

and more goal-driven in peptide identification. The peptides and their probabilities output from the method

can be directly used for the subsequent protein inference. Furthermore, it is robust to different experimental

datasets. However, the distribution hypotheses in PeptideProphet need careful examinations when different

datasets are used. Although we exemplify the procedure with Sequest search results, the method can be

easily and readily extend to other search engines.
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Chapter 5

Unifying protein inference and peptide identifica-

tion with feedback to update consistency between

peptides

Published as: Jinhong Shi, Bolin Chen and Fang-Xiang Wu, “Unifying protein inference and peptide iden-

tification with feedback to update consistency between peptides,” Proteomics, accepted.

To this point, we have introduced the processing of MS/MS data and the postprocessing of peptide iden-

tification results in the last two chapters. This chapter will discuss protein inference with the identified

peptides and their probabilities. Existing methods to address this problem can be classified into two groups:

two-stage and one unified framework to perform peptide identification and protein inference. In two-stage

methods, protein inference is based on, but also separated from, peptide identification. While in one unified

framework, protein inference and peptide identification are integrated together by adding a feedback from

protein inference to peptide identification. This feedback can improve peptide identification results, and in

turn increase the accuracy and coverage of inferred proteins.

The manuscript included in this chapter proposes an iterative method to infer proteins based on peptides

identified from Sequest. The statistical analysis of peptide identification is performed with the logistic

regression that has been introduced in the previous chapter. Protein inference and peptide identification

are iterated in one framework by adding a feedback from protein inference to peptide identification. The
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feedback information is a list of high-confidence proteins, which is used to update the adjacency matrix

between peptides. The adjacency matrix is then used in the regularization of peptide scores. The results

have shown that the proposed method can infer more true positive proteins, while outputting less false

positive proteins than ProteinProphet [1] at the same false positive rate. The coverage of inferred proteins is

also significantly increased due to the selection of multiple peptides for each MS/MS and the improvement

of their scores by the feedback from the inferred proteins.
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Unifying protein inference and peptide identification with feedback to update

consistency between peptides

Abstract

We first propose a new method to process peptide identification reports from databases search engines. Based

on it, we then develop a method for unifying protein inference and peptide identification by adding a feed-

back from protein inference to peptide identification. The feedback information is a list of high-confidence

proteins, which is used to update an adjacency matrix between peptides. The adjacency matrix is used in

the regularization of peptide scores. Logistic regression (LR) is used to compute the probability of peptide

identification with the regularized scores. Protein scores are then calculated with the LR probability of pep-

tides. Instead of selecting the best peptide match for each MS/MS, we select multiple peptides. By testing

on two datasets, the results show that the proposed method can robustly assign accurate probabilities to

peptides, and has a higher discrimination power than PeptideProphet to distinguish correct and incorrect

identified peptides. Additionally, not only can our method infer more true positive proteins, but also infer

less false positive proteins than ProteinProphet at the same false positive rate. The coverage of inferred

proteins is also significantly increased due to the selection of multiple peptides for each MS/MS and the

improvement of their scores by the feedback from the inferred proteins.

5.1 Introduction

Protein inference by assembling peptides identified from tandem mass spectra is an important computational

step in proteomics, based on which further analysis, such as inference of protein structure and function can be

performed [2, 3]. This problem has been systematically discussed in [4–6]. Existing methods to address this

problem can be split into two groups. The first group performs protein inference and peptide identification

separately [1, 7–9]. First, peptides are identified from tandem mass spectra by de novo sequencing [10–
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12] or by database searching [13–15]. Then, proteins are inferred by assembling these identified peptides.

The other group combines protein inference with peptide identification, identifying peptides and proteins

simultaneously [16–18].

Spivak et al have built a Barista model [17] which formulates the protein identification as an optimization

problem. The protein inference problem is represented as a tripartite graph, with layers corresponding to

spectra, peptides and proteins. The input to Barista is the tripartite graph with a set of features that

describes matches between peptides and spectra (PSM). The parameters in the model are estimated by

training the model with reference data, and then the trained model is used to infer proteins. The advantage of

this model is that it utilizes the spectrum information in all the steps of protein inference, without discarding

spectra from peptide identification to protein inference. The application of this method is limited by the

necessity of reference data to train the model each time when different datasets are analyzed. Since many

well-developed search engines for peptide identification are available, methods for processing the peptide

identification reports from these engines have been proposed. For example, Li etc have used a nested mixture

model [18] to estimate peptide and protein probability at the same time based on identified peptides and

their scores from search engines. This model allows evidence feedback between proteins and their constituent

peptides. It is built on several reasonable assumptions except that it ignores the problem of shared peptides.

This paper proposes a method to unify protein inference and peptide identification by adding a feedback

from protein inference to peptide identification. The feedback is applied by use of the smoothing consistency

between peptides, which is constructed from the mapping relationship between the inferred proteins and

the identified peptides. Similar to [18], we rely the protein inference process on the peptide identification

reports from database search engines. However, we select multiple peptides instead of only choosing the best

match for each MS/MS. First, we expect that the feedback from protein inference can improve the peptide

identification scores, especially of those that are not the best matches. Second, we also expect to improve

the coverage of proteins by increasing the number of identified peptides. Two datasets have been used to

verify our proposed method, and the results have shown that this feedback method can significantly increase
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the number of identified peptides and the coverage of inferred proteins compared to PeptideProphet [19] and

ProteinProphet [1], respectively.

5.2 Methods and materials

5.2.1 Feedback workflow for peptide identification and protein inference

The feedback workflow for peptide identification and protein inference is shown in Figure 5.1. The starting

point of this workflow are the peptide identification reports from database search engines. In this study, we

test our method based on Sequest [14] peptide identification results.

First, multiple peptides are selected for each MS/MS spectrum from Sequest .out files; here, we select 3

peptides for each MS/MS. There has been some work to rerank peptide identification results for MS/MS [20],

which uses a machine learning method to recompute the coefficients for PeptideProphet [19] model. However,

we don’t aim to rerank peptide identification results for each MS/MS, but instead, we aim to improve the

results with feedback from protein inference. Second, putative peptides are used to search proteins in

the database. Third, an adjacency matrix which shows whether two peptides are siblings or not is built

according to the list of proteins. Then, peptide scores are regularized with the application of two consistency

assumptions, and the regularized scores are used as features in logistic regression (LR) to compute peptide

identification probability. Based on the LR probability, protein scores are computed. Next, high-confidence

proteins are selected to compose the new list of proteins, which is used to update the adjacency matrix

between peptides. The experiments have shown that the loop will stop in two to four iterations for the used

datasets.

The main advantage of this workflow is that many peptides that are not selected by, such as Peptide-

Prophet [19], are given the chance to be identified with the help of the feedback from protein inference. In
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return, this will significantly improve the coverage of inferred proteins. The following sections will introduce

the logistic regression, score regularization and protein inference model, respectively.

5.2.2 Logistic regression to compute peptide identification probability

Logistic regression is used to represent the posterior probabilities of peptide identifications given their scores.

Under the general assumptions [21], the posterior probability of a random peptide identification Z can be

written as a sigmoid function of a linear combination of a feature vector ϕ so that

p
(
Z = 1

∣∣ϕ,w) = exp
(
wTϕ

)
1 + exp (wTϕ)

(5.1)

and

p
(
Z = 0

∣∣ϕ,w) = 1

1 + exp (wTϕ)
, (5.2)

where w is a weight vector. Here, p
(
Z = 1

∣∣ϕ,w) and p
(
Z = 0

∣∣ϕ,w) are the posterior probabilities of a

correct and incorrect peptide identification given its feature vector ϕ, respectively. Notice that Equation(5.2)

follows directly from Equation(5.1) because the sum of these two probabilities must be 1.

We build the feature vector as ϕ = (∆Cn∗, Xcorr∗). The notations ∆Cn∗ and Xcorr∗ represent the

regularized Sequest scores, the computation of which will be introduced later. Different feature vectors can

be employed for other search engines [19, 22]. The weight vector w is estimated directly from the scores and

the given labels of peptides by maximizing the conditional likelihood, i.e.,

ŵ = argmax
w

(
N∏
i=1

p
(
Zi
∣∣ϕi,w

))
, (5.3)

where N is the number of peptides, Zi is the ith peptide identification, and ϕi is its feature vector. Equation

(5.3) is equivalent to maximizing the conditional log likelihood

ŵ = argmax
w

L(w), (5.4)
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where the conditional log likelihood L(w), after substitutions of Equation(5.1) and (5.2) into Equation(5.3)

and some mathematical manipulations, is given by

L(w) =

N∑
i=1

[
ziwTϕi − ln

(
1 + exp

(
wTϕi

))]
, (5.5)

where zi ∈ {0, 1} is the label of the ith peptide. However, there is no analytic solution to Equation(5.4).

Thus, we choose the Newton-Raphson method to find a numerical solution. To avoid over-fitting to the

training data, a penalty λ1

2 ∥w∥22 is imposed on large fluctuations of the parameter w. The penalized log

likelihood function LP (w) is written as

LP (w) = L(w)− λ1

2
∥w∥22 , (5.6)

where λ1 is a constant determining the strength of the penalty term. We also add a prior knowledge µ0 to

the regularization term, and the penalized log likelihood function now becomes

LP (w) = L(w)− λ1

2
∥w − µ0∥22 . (5.7)

By taking the first and second derivatives of LP (w) w.r.t. the weight vectorw, we have the iterative equation

of the Newton-Raphson method as follows,

ŵi+1 = ŵi −
[
∇2L (ŵi)− λ1I

]−1
[∇L(ŵi)− λ1(ŵi − µ0)] (5.8)

where ∇2L (ŵi) is the Hessian matrix, and ∇L(ŵi) is the scoring function of L(w) at the ith iteration. Since

the penalized conditional log likelihood function LP (w) is concave w.r.t. w, because the Hessian matrix

∇2L (ŵi) is semi-negative definite, this method will always converge to a global maximum [23].

5.2.3 Regularization of peptide scores

This section will first introduce the construction of the adjacency matrix and then describe the regularization

of search scores.
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Construction of adjacency matrix

Suppose that N peptides are selected and they correspond to M proteins. First, we will use these N peptides

and M proteins to construct an N -by-M peptide-protein relation matrix W0. The element w0ij in the matrix

denotes the relationship between peptide i and protein j. If peptide i belongs to protein j, then w0ij = 1;

otherwise, w0ij = 0. Given W0, we construct a matrix between peptides as follows,

W ′ = W0 ∗WT
0 , (5.9)

where WT
0 is the transpose of W0. In W ′, wij = 0 if peptide i and peptide j are not from any same protein;

wij = 1 if two peptides are only from one protein. It is possible that two peptides are simultaneously shared

by multiple proteins, in this case, wij > 1. However, we only consider the fact that two peptides are siblings

or not, thus we set all wij = 1 as long as peptide i and peptide j are siblings, no matter how many common

parent proteins they may have. In addition, in order to cancel the self-enforcement effect of peptides, the

diagonal elements of W ′ are set zeros, i.e., wii = 0. We call this newly derived matrix as the adjacency

matrix between peptides, and denote it as W in the following.

Here, W is a symmetrical matrix. Thus, the confidence enforcement is spread symmetrically among sibling

peptides. In essence, the adjacency matrix accounts for extra information from proteins, i.e., using proteins

to build the affinities between peptides, which is the reason why the regularized scores can improve the

discrimination power of LR probability. In addition, we also build a diagonal matrix D from the adjacency

matrix W . The diagonal elements are defined as dii =
N∑

k=1

wki.

Score regularization

As mentioned before, multiple peptides are selected for each MS/MS. Each peptide may have multiple

MS/MS mapped to it, in this case, we find the best MS/MS for each peptide according to the Sequest

correlation score Xcorr. Then, the two kinds of original scores of the selected N peptides are given by
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X = (x1, x2, ..., xN ), and xi is ∆Cni or Xcorri. Given the original score X and the adjacency matrix W ,

we compute a corresponding new score Y by applying the consistency assumptions: smoothing consistency

among sibling peptides and fitting consistency between original scores and new scores [24, 25].

Smoothing consistency: the inconsistency between scores of sibling peptides is formulated as,

S(Y ) =
1

2

N∑
i,j=1

wij

(
yi√
dii

− yj√
djj

)2

, (5.10)

where dii and djj are the diagonal elements of the degree matrix D. If sibling peptides have quite different

scores, then the cost function value will be large. Here, we can see that dii cannot be zero. From the

definition of D, dii = 0 means that the peptide i has no siblings. In order to avoid this situation, we add

a dummy sibling to such peptides by setting dii to be a fairly small value as in [24]. In addition, we write

S(Y ) in a matrix form as follows

S(Y ) = Y T (I −D−1/2WD−1/2)Y, (5.11)

where I is the identity matrix. Note that Y is a column vector here, so S(Y ) in the matrix form is still a

scalar. The derivation of Equation(5.11) from Equation(5.10) can be found in [24].

Fitting consistency: the inconsistency between original scores and new scores is given by

F (Y ) =

N∑
i=1

(yi − xi)
2. (5.12)

This value will be large if the new scores deviate too much from the original scores.

Objective function: a linear combination of S(Y ) and F (Y ) is used to compose the final cost function,

Q(Y ) = (1− λ)S(Y ) + λF (Y ), (5.13)

where λ ∈ (0, 1) is a parameter which can regularize the balance between the smoothing consistency and the

fitting consistency. It can be seen that when λ = 1, the new score equals the original score. Here, we want

to regularize the scores more with the smoothing consistency between peptides, thus λ is preferred to take
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small values. In this study, we take λ = 0.01. Then, the objective becomes to find the new scores Y ∗ which

can minimize Q(Y ), i.e.,

Y ∗ = argmin
Y

Q(Y ). (5.14)

By taking the derivative of Q(Y ) w.r.t. Y , and setting the derivative zero, we get

Y ∗ = λ(I − (1− λ)V )−1X, (5.15)

where V = D−1/2WD−1/2.

5.2.4 Protein inference model

Based on the LR probability of peptides, the protein score is computed as,

sk =
1

Nk

nk∑
i=1

qi (5.16)

where sk is the score of protein Qk and qi is the LR probability of peptide Pi. nk and Nk are the number

of experimental and theoretical peptides for protein Qk, respectively. The number of theoretical peptides

Nk is included to factor the length of a protein in the model. It is computed based on these criteria: (1)

trypsin-cutting; (2) two missed cleavages are allowed; and (3) peptides with masses falling in [Mmin,Mmax].

The minimum (Mmin) and maximum (Mmax) peptide masses are determined from the peptide identification

reports. An alternative way is to only count peptides with a certain length [17].

5.2.5 Experimental Data

Two datasets are constructed and analyzed with the proposed method, and they were described in [26].

These datasets are generated on Thermo Electron (Waltham, MA) LTQ and ABI (Foster City, CA) API

QSTAR Pulsar i, respectively. They are used to verify the robustness of our method to datasets from

different experiments. To avoid high-dimension (over 10,000) matrix in the computation, we construct two
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sub-datasets from the original datasets by keeping all the true peptides and randomly selecting similar

number of false peptides. The summary of the two sub-datasets is given in Table 5.1.

Table 5.1: Statistics of the two sub-datasets. The number of true proteins including standard

proteins and contaminant ones is given in the table. Besides, the number of true and false peptides in

the constructed datasets and those which are also output from PeptideProphet with probability> 0.05

(in brackets) are summarized as well.

Standard Proteins Contaminants True peptides False peptides Peptides

Mix1 18 13 4318 [1218] 4610 [998] 8928 [2216]

Mix2 18 15 1689 [792] 3605 [408] 5294 [1200]

5.3 Results

The proposed method is compared with PeptideProphet [19] and ProteinProphet [1] for the peptide identi-

fication and protein inference, respectively. Specifically, receiver operating characteristic (ROC) curves are

used to measure the discrimination power of the LR probability and PeptideProphet probability for peptide

identification, and the coverage of identified proteins is compared for protein inference.

5.3.1 Parameters setting

The parameters in logistic regression are computed with the active learning method, the details of which

can be referred to [22]. Here, λ1 = [5, 50, 50]T and µ0 = 0.0001[1, 1, 1]T . Since the variance of wi is
1

λ1i
, we

allow w0 has the largest variance of 1/5, while the other two parameters have the same variance of 1/50.
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5.3.2 Peptide identification results

We compute the LR probability with the original and regularized Sequest scores. The results are given in

Figure 5.2. The results of both Mix1 and Mix2 show that the discrimination power of LR probability based

on the original Sequest scores is much lower than LR probability based on regularized scores. Moreover,

the best results are given by the scores regularized with the adjacency matrix (W2) constructed from the

selected high-confidence proteins. This indicates that the adjacency matrix updated with the selected high-

confidence proteins can increase the confidence of peptides from high-confidence proteins while reduce the

confidence of peptides from low-confidence proteins.

5.3.3 Comparison with PeptideProphet

We first show the number of identified peptides from the proposed feedback method and PeptideProphet,

which is given in Table 5.2. By applying the feedback method to the two datasets, we can identify 3572 true

peptides for Mix1 and 1511 true peptides for Mix2 given the false positive rate (FPR) around 0.05. At the

same FPR, PeptideProphet can only identify 929 and 649 true peptides for Mix1 and Mix2, respectively.

Furthermore, among the identified peptides by the feedback method, the numbers of peptides that are

also output by PeptideProphet are shown in brackets. It can be seen that the proposed feedback method

can identify much more true positive peptides while outputting much fewer false positive peptides than

PeptideProphet.

To better compare the performance of the feedback method and PeptideProphet, Figures 5.3 shows the ROC

curves of the two methods applied on the peptides output by PeptideProphet. It is very obvious that the

feedback method has much higher discrimination power than PeptideProphet on these two datasets. This

implies that the feedback from protein inference, i.e., the updated adjacency matrix between peptides, can

essentially improve peptide scores, and thus increase the number of identified peptides.
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Table 5.2: The number of identified peptides. By applying the feedback method on the two datasets,

we can identify 3572 true peptides for Mix1 and 1511 true peptides for Mix2 given the false positive rate

(FPR) around 0.05. At the same FPR, PeptideProphet can only identify 929 and 649 true peptides

for Mix1 and Mix2, respectively. Furthermore, among the identified peptides by the feedback method,

the numbers of peptides which are also output by PeptideProphet are shown in brackets. It can be

seen that the proposed feedback method can identify much more true positive while output much

fewer false positive peptides than PeptideProphet.

Mix1 Mix2

Feedback PeptideProphet Feedback PeptideProphet

True Positive 3572 [1193] 929 1511 [782] 649

False Positive 235 [ 3] 50 182 [ 4] 24

True Negative 4375 [ 995] 948 3423 [404] 384

False Negative 746 [ 25] 289 178 [ 9] 143

5.3.4 Protein inference results

Given FPR as 0.05, an LR probability threshold is determined and is used to filter peptides. Then, protein

scores are computed as the sum of LR probability of the filtered constituent peptides. In the feedback

workflow, high-confidence proteins are selected by setting an FPR of 5% as the threshold for protein inference.

The coverage of these high-confidence proteins is then computed, and the final list of identified proteins is

determined according to the protein coverage. First, we show the ROC curves of protein inference for Mix1

and Mix2 in Figure 5.4. It can be seen that the discrimination power of the feedback method is much higher

than that of ProteinProphet. This is also illustrated in Table 5.3, which gives the number of inferred proteins

of Mix1 and Mix2 at an FPR of 5%. It shows that not only can the feedback method infer more true positive

proteins than ProteinProphet, but also output less false positive proteins than ProteinProphet. In addition,

the coverage of the 33 true proteins is given in Table 5.6.
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Table 5.3: The number of inferred proteins. The number of inferred proteins at FPR of 5% is shown.

The feedback method not only can infer more true positive proteins than ProteinProphet, but also

output less false positive proteins than ProteinProphet.

Mix1 Mix2

Feedback ProteinProphet Feedback ProteinProphet

True Positive 24 16 26 13

False Positive 4 38 4 19

True Negative 71 644 66 321

False Negative 9 15 7 17

5.4 Conclusion

We have demonstrated a new method to process peptide identification reports from database search engines.

Protein inference and peptide identification are unified in this new method by adding a feedback from protein

inference to peptide identification. The results have shown that the logistic regression based on scores that

are regularized with the adjacency matrix has a much higher discrimination power than PeptideProphet. At

the same FPR, our method can infer much more true positive proteins and less false positive proteins than

ProteinProphet. In addition, the coverage of proteins inferred from the proposed method is much higher

than the coverage computed from ProteinProphet. All these results indicate that the adjacency matrix

between peptides which is constructed from the feedback of inferred proteins has an essential impact on the

improvement of peptide scores.
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Table 5.6: The coverage of true proteins. This table shows the coverage of 33 true proteins in

the sample. For most true proteins, the proposed feedback method can significantly increase their

coverage. The reason that some proteins have a coverage of 0 is because the peptides corresponding

to these proteins have LR probability lower than the filter threshold. Similarly, the reason that

the coverage is not available for some proteins from ProteinProphet is that the peptides input to

ProteinProphet are filtered by PeptideProphet (probability> 0.05). It can be seen that the coverage

of standard proteins in the sample is very high from the feedback method, and both methods can

always identify peptides for these proteins, except ProteinProphet for protein P02602.

Mix1 Mix2

Feedback ProteinProphet Feedback ProteinProphet

>sp|P02188|MYG HORSE 1 0.728 0.843 0.700

>sp|P02754|LACB BOVIN 0.994 0.746 0.809 0.479

>sp|P46406|G3P RABIT 0.988 0.804 0.849 0.645

>sp|Q29443|TRFE BOVIN 0.987 0.684 0.790 0.630

>sp|P00722|BGAL ECOLI 0.982 0.895 0.829 0.681

>sp|P00489|PHS2 RABIT 0.976 0.751 0.837 0.595

>sp|P00432|CATA BOVIN 0.972 0.034 0.767 0.0884

>[Contaminant]sp|P02608|MLRS RABIT 0.970 0.175 0.893 0.116

>sp|P00634|PPB ECOLI 0.968 0.504 0.868 0.199

>sp|P06278|AMY BACLI 0.965 0.741 0.650 0.637

>[Contaminant]sp|P01948|HBA RABIT 0.964 0.477 0.354 0.088

>sp|P02602|MLE1 RABIT 0.963 0.033 0.874 0

continued on next page
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continued from previous page

Mix1 Mix2

Feedback ProteinProphet Feedback ProteinProphet

>[Contaminant]sp|P02643|TNNI2 RABIT 0.961 0.0799 0.425 N/A

>sp|P02769|ALBU BOVIN 0.960 0.758 0.837 0.618

>sp|P02666|CASB BOVIN 0.960 0.438 0.754 0.518

>sp|P00921|CAH2 BOVIN 0.958 0.795 0.792 0.645

>sp|P00946|MANA ECOLI 0.957 0.836 0.831 0.581

>sp|P01012|OVAL CHICK 0.953 0.788 0.826 0.604

>[Contaminant]sp|P0AF93|YJGF ECOLI 0.937 N/A 0.654 N/A

>sp|P00711|LCA BOVIN 0.937 0.745 0.725 0.542

>[Contaminant]sp|P0A6F3|GLPK ECOLI 0.934 N/A 0.110 N/A

>[Contaminant]sp|P02057|HBB RABIT 0.932 0.654 0.815 0.173

>[Contaminant]sp|P02586|TNNC2 RABIT 0.931 0.109 0.553 0.035

>[Contaminant]sp|P58772|TPM1 RABIT 0.915 N/A 0.592 N/A

>sp|P62894|CYC BOVIN 0.895 0.775 0.695 0.562

>[Contaminant]sp|P62975|UBIQ RABIT 0.895 N/A 0 N/A

>sp|P62739|ACTA BOVIN 0.641 0.860 0.589 0.739

>[Contaminant]sp|O46375|TTHY BOVIN 0 0.610 0.517 0.466

>[Contaminant]sp|P81178|ALDH2 MESAU 0 0.491 0 0.170

>[Contaminant]sp|P00883|ALDOA RABIT 0 0.893 0 0.503

>[Contaminant]sp|P01088|ITRF MAIZE 0 0.392 0.574 0.116

>[Contaminant]sp|P69327|AMYG ASPAW 0 N/A 0.648 N/A

>[Contaminant]sp|Q08043|ACTN3 HUMAN 0 N/A 0 N/A
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Putative peptides 

(three peptides per MS/MS)

Search proteins in a database
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Regularize peptide scores
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Figure 5.1: Feedback workflow for peptide identification and protein inference. The starting point

are the peptide identification reports from database search engines. First, multiple peptides are

selected for each MS/MS. Second, putative peptides are used to search proteins in the database.

Third, an adjacency matrix which shows whether two peptides are siblings or not is built according

to the list of proteins. Then, peptide scores are regularized with the application of two consistency

assumptions, and the regularized scores are used as features in logistic regression (LR) to compute

peptide identification probability. Based on the LR probability, protein scores are computed. Next,

high-confidence proteins are selected to compose the new list of proteins, which is used to update the

adjacency matrix between peptides. The experiments have shown that the loop will stop in two to

four iterations for the used datasets.
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Figure 5.2: The results of Mix1 and Mix2 show that the discrimination power of LR probability based

on the original Sequest scores is much lower than LR probability based on regularized scores. Moreover,

the best results are given by the scores regularized with the adjacency matrix (W2) constructed from

the selected high-confidence proteins. This indicates that the adjacency matrix updated with the

selected high-confidence proteins can increase the confidence of peptides from high-confidence proteins

while reduce the confidence of peptides from low-confidence proteins.
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Figure 5.3: ROC curves show that the feedback method has much higher discrimination power than

PeptideProphet on both datasets. This implies that the feedback from protein inference, i.e., the

updated adjacency matrix between peptides, can essentially improve peptide scores, and thus increase

the number of identified peptides.
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Figure 5.4: It can be seen that the discrimination power of the feedback method is much higher

than that of ProteinProphet for both datasets.
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Chapter 6

Conclusions, contributions and recommendations

6.1 General discussion

Protein inference based on peptides identified from tandem mass spectra is an important computational

step in the study of proteomics. The MS-based protein inference problem can be divided into three com-

putational phases: (1) process MS/MS to improve the quality of the data and facilitate subsequent peptide

identification; (2) postprocess peptide identification results from existing algorithms that match MS/MS to

peptides; and (3) infer proteins by assembling identified peptides. The addressing of these computational

problems has consisted of the main content of this thesis. In addition, the basic concepts and principles of

mass spectrometry in proteomics were introduced, and the major strategies for peptide identification and

protein inference were reviewed. In the following, a general discussion is given to summarize the relationship

of each manuscript to the thesis and how they make the thesis as a whole.

The manuscript included in Chapter 3 studies the determination of low-resolution CID tandem mass spectra

with an unsupervised machine learning method GMM. The determination of charge states of tandem mass

spectra is an important aspect in the processing of MS/MS data before peptide identification, which belongs

to the first computational phase of protein inference. It can be included as a preprocessing step in designing

programs for peptide identification. In Chapter 4, the manuscript included proposes a new method to

estimate the accuracy of peptide identification with logistic regression (LR) based on Sequest scores. This
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is the necessary step to postprocess peptide identification results from search engines for several reasons.

First, there is usually a high false positive rate in the results, which can bring many false identifications

to protein inference. Secondly, the postprocessing makes it possible to compare and combine the results

from different search engines, and also facilitates subsequent protein inference. As one step in the second

computational phase, this manuscript is an important component part of the thesis. Finally, the manuscript

included in Chapter 5 proposes an iterative method based on a unified framework to infer proteins with

peptides identified from Sequest. The statistical analysis of peptide identification is performed with the

LR introduced in Chapter 4. Protein inference and peptide identification are iterated in one framework

by adding a feedback from protein inference to peptide identification. This is the last computational step

in MS-based protein inference. To summarize, the three manuscripts included in this thesis are all closely

related to the thesis topic and make the thesis as a whole.

6.2 Summary of conclusions, contributions and recommendations

Based on this research, the following conclusions are drawn as such:

• Gaussian mixture model with novel and discriminant features can accurately determine the charge

states of low-resolution CID peptide tandem mass spectra. Especially, the newly proposed feature

δRcp , which measures the difference between the ratio of +1 peak intensity over their complementary

+ 1 peak intensity and the ratio between +2 peak intensity over their complementary +1 peak intensity,

is the most discriminant feature in determining the charge states.

• Logistic regression is an easy and effective model to compute the peptide identification probability

based on regularized search engine scores.

• The adjacency matrix between peptides is a significant factor in improving peptide identification ac-

curacy, because it captures extra protein information into the peptide identification step.
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• It is advantageous to perform protein inference and peptide identification under the proposed unified

framework, which not only can improve the accuracy of peptide identification, but also can increase

the accuracy and coverage of protein inference.

The major contributions of the research can be summarized as follows:

• The review of the mainstream methods of addressing the protein inference problem and the major

challenges arisen from the problem is provided.

• An easy machine learning method (GMM) is proposed to determine the charge states of low-resolution

CID peptide tandem mass spectra with four novel and highly discriminant features to represent each

spectrum. This unsupervised method is especially useful when the training data is expensive to collect

or not available.

• The statistical analysis of peptide identification results from search engines such as Sequest has been

conducted. This work is necessary due to the large scale of MS data which makes it impractical to

manually verify the identification results. In addition, the statistical analysis can unify identification

results from different search engines into the same scale, which can be used to compare and, more

importantly, to combine these results for the subsequent protein inference. Statistical analysis results

can be easier to use directly in protein inference models. The generated probability is a comprehensive

reflection of all main factors considered in peptide identification.

• A unified framework and an iterative method are developed to infer proteins and identify peptides

simultaneously based on the peptide identification reports from search engines. The key point in this

framework is to update the adjacency matrix between peptides by use of the feedback of a list of

high-confidence proteins from protein inference to peptide identification. The adjacency matrix is used

to regularize peptide scores, the results of which are used in a logistic regression model to compute

probabilities of peptide identifications. This can greatly improve the accuracy of peptide identification,
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because this adjacency matrix captures extra protein information into peptide identification. Besides,

multiple peptides are selected for each tandem mass spectrum, and these peptides are given a second

chance to be reevaluated. With the enhancement obtained from the regularization of scores, many more

peptides are identified, and they further contribute to the inference of proteins in terms of increasing

the accuracy and coverage of inferred proteins.

Some future work is recommended:

• The assignment of degenerate peptides to truly present parent proteins is still a challenge in protein

inference. The proposed MS/MS intensity-based strategy of assigning degenerate peptides is tentative.

Improvements can be made, such as, in the computation of peptide intensity.

• The proposed methods are verified on relatively simple datasets, which are collected for the verification

of proteomics algorithms. There shouldn’t be any scalability problem of the proposed unified framework

of protein inference, as long as the operations (multiplication and inverse) of large matrices is not a

problem. So it can be tested on more complex datasets to be further verified.

• It is still a challenge to validate the protein inference results in proteomics. It could be an independent

research topic which deserves more efforts from researchers.

• As more and more supplementary information becomes available, protein inference can be performed

by combing this information with traditional MS data. The supplementary information such as, raw

MS/MS spectra, single-stage MS data, peptide expression profiles, mRNA expression data, PPI net-

works or gene models, can be used to address the ambiguity problem in protein inference brought by

the degenerate peptides and ‘one-hit wonders’.
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