
EFFICIENT DATA ENCODER FOR ENDOSCOPIC

IMAGING APPLICATIONS

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon

By

Ramin Tajallipour

c©Ramin Tajallipour, September 2010. All rights reserved.

PERMISSION TOUSE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that theLibraries of this University

may make it freely available for inspection. I further agreethat permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis workor, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done.

It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

University of Saskatchewan

57 Campus Drive,

Saskatoon SK S7N 5A9

Canada

i

ABSTRACT

The invention of medical imaging technology revolved the process of diagnosing dis-

eases and opened a new world for better studying inside of thehuman body. In order

to capture images from different human organs, different devices have been developed.

Gastro-Endoscopy is an example of a medical imaging device which captures images

from human gastrointestinal. With the advancement of technology, the issues regarding

such devices started to get rectified. For example, with the invention of swallow-able pill

photographer which is called Wireless Capsule Endoscopy (WCE); pain, time, and bleed-

ing risk for patients are radically decreased. The development of such technologies and

devices has been increased and the demands for instruments providing better performance

are grown along the time. In case of WCE, the special feature requirements such as a small

size (as small as an ordinary pill) and wireless transmission of the captured images dictate

restrictions in power consumption and area usage.

In this research, the reduction of image encoder hardware cost for endoscopic imaging

application has been focused. Several encoding algorithmshave been studied and the

comparative results are discussed. An efficient data encoder based on Lempel-Ziv-Welch

(LZW) algorithm is presented. The encoder is a library-based one where the size of library

can be modified by the user, and hence, the output data rate canbe controlled according to

the bandwidth requirement. The simulation is carried out with several endoscopic images

and the results show that a minimum compression ratio of 92.5% can be achieved with a

minimum reconstruction quality of 30 dB. The hardware architecture and implementation

ii

result in Field-Programmable Gate Array (FPGA) for the proposed window-based LZW

are also presented. A new lossy LZW algorithm is proposed andimplemented in FPGA

which provides promising results for such an application.

iii

ACKNOWLEDGEMENTS

This research project would not have been possible without the support of many peo-

ple. The author wishes to express his gratitude to his supervisor, Dr. Khan Wahid who

was abundantly helpful and offered invaluable assistance,support and guidance. Deepest

gratitude are also due to the members of the supervisory committee, Dr. Seok-Bum Ko

and Dr. Li Chen without whose knowledge and assistance this study would not have been

successful.

The author would also like to convey thanks to the NSERC and Electrical and Com-

puter Engineering department for providing the financial means and laboratory facilities.

The author wishes to express his love and gratitude to his beloved family; for their

understanding and endless love, through the duration of hisstudies.

iv

This thesis is dedicated to my father, who taught me that the best kind of knowledge

to have is that which is learned for its own sake. It is also dedicated to my mother, who

taught me that even the largest task can be accomplished if itis done one step at a time.

v

CONTENTS

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 4
1.3 Thesis Objectives . 5
1.4 Thesis Organization . 6

2 Data Compression 7
2.1 Introduction . 7
2.2 Compression Methods . 8
2.3 Run-Length Encoding . 10
2.4 Huffman Encoding . 11
2.5 Adaptive Huffman Coding . 14
2.6 Arithmetic Coding . 15
2.7 LZ or LZ77 Coding . 18
2.8 LZ78 Coding . 19
2.9 LZW Coding . 20
2.10 LZW–Flush Coding . 22
2.11 Lossless JPEG Encoding . 23
2.12 Summary . 23

3 Simulation Result 25
3.1 Introduction . 25
3.2 DCT-Based Compression . 25
3.3 ZigZag Scan . 27
3.4 Comparative Study . 29

3.4.1 Determining the Library Size . 33
3.5 Summary . 35

vi

4 Hardware Implementation 38
4.1 Introduction . 38
4.2 Hardware Architecture . 38

4.2.1 Dictionary . 39
4.3 Controller . 42
4.4 Counter . 44
4.5 Summary . 46

5 Performance Evaluation 47
5.1 Introduction . 47
5.2 Hardware Comparison . 47
5.3 Reconstructed Images . 50

6 Lossy LZW–Flush 55
6.1 Introduction . 55
6.2 Lossy LZW–Flush . 55

6.2.1 Weber–Fechner Law . 55
6.2.2 Algorithm . 56
6.2.3 Proposed Lossy LZW–Flush . 58

6.3 Performance Evaluation .61
6.4 Summary . 63

7 Conclusion and Future Work 69
7.1 Summary Of Accomplishments . 69
7.2 Future Works . 71

References 72

vii

L IST OF TABLES

2.1 Probability table for each symbol 16
2.2 Probability table for ”a” interval 17
2.3 Probability table for ”ab” interval 17

3.1 The quantization table developed in [1] 27
3.2 Performance analysis of the encoder 35

5.1 The average CR of 20 medical images for different encoding algorithms . 48
5.2 Hardware comparison of different encoder 49

6.1 Compression performance of the proposed lossy encoder 62
6.2 Hardware cost of lossy LZW-Flush algorithm 62

viii

L IST OF FIGURES

1.1 Block diagram of a typical endoscopic system [1] 3

2.1 Lossless and lossy compression and decompression method 9
2.2 An example for RLE algorithm . 11
2.3 RLE hardware . 11
2.4 Example of Huffman compression algorithm 13
2.5 Example of LZ77 algorithm [2] .19
2.6 Example of LZ78 algorithm [3] .20
2.7 Example of LZW algorithm taken from [4] 21
2.8 Flow chart of LZW–Flush algorithm 24

3.1 Overview of DCT operation . 26
3.2 Image compression system used in this work 27
3.3 Functional diagram of ZigZag Scan 28
3.4 20 endoscopic colour-scale images 30
3.5 Effects ofn on compression ratio(CR) 31
3.6 Effects ofn on PSNR . 32
3.7 Compression ratio (CR) of different data encoding methods 34
3.8 Effect of different library size on CR(%) 36
3.9 Effect of library size on mean CR for 20 endoscopic colour-scale images . 37

4.1 Hardware block diagram of the LZW–Flush encoder 40
4.2 Hardware architecture and RTL view of a CAM cell 41
4.3 The architecture of entire proposed dictionary 43
4.4 The architecture of the proposed controller 45
4.5 The architecture of the counter .. . 46

5.1 The image reconstruction process block diagram 50
5.2 Image 8 PSNR = 30.914 dB . 51
5.3 Image 9 PSNR = 30.409 dB . 52
5.4 Image 13 PSNR = 32.249 dB . 53
5.5 Image 16 PSNR = 30.271 dB . 54

6.1 The lossy LZW–Flush algorithm flow chart 59
6.2 Block diagram of proposed lossy LZW–Flush 60
6.3 Effects ofTr on PSNR . 60
6.4 Effects ofTr on CR of five arbitrary capsule endoscopy images 61
6.5 Gray scale of image 6 (Tr = 1 to 10) . 64
6.6 Gray scale of image 13 (Tr = 1 to 10) .65
6.7 Gray scale of image 16 (Tr = 1 to 10) .66
6.8 Proposed filter hardware architecture and RTL view 67
6.9 Reconstructed colour image Lena .. . 68

ix

L IST OF ABBREVIATIONS

FPGA Field-Programmable Gate Array
RLE Run-Lenght Encoding
chr Character
CR Compression Ratio
PSNR Peak Signal Noise Ratio
WCE Wireless Capsule Endoscopy
CAM Content-Addressable Memory
Tr Threshold
JPEG Joint Photographic Experts Group
LZW LempelZivWelch
SQ Scaling and Quantization
DFT Discrete Fourier Transform
VLSI Very Large Scale Integration
DPCM Differential Pulse Code Modulation

x

CHAPTER 1

INTRODUCTION

1.1 Introduction

The enhancement of technology has radically affected everything and the medical science

is not excluded. One of the major effects is the invention of medical imagining technology.

Prior to the end of the nineteenth century, doctors cut open the patient to diagnose most

of the internal medical problems. With the invention of X-rays by William Roentgen [5],

the first medical image emerged to medical science. As the invisible gets visible through

X-ray, the cut open was removed from the process of diagnosing many internal medical

problems. The first revolution in medical science occurred in the earliest twentieth cen-

tury. During this time, scholars started to enhance the Roentgen’s discovery which led to

the invention of computed tomography scanning (CT scan), magnetic resonance imaging

(MRI), position emission tomography (PET) scanning, and ultrasonography [6].

Medical imaging step by step has shaped its own concept. In medicine context, the

technique or process which leads to create an image from human body for the medical

proposes is called medical imaging [7, 8]. This concept opened new disciplines in medi-

cal imaging such as biological imaging, radiology, nuclearmedicine, endoscopy, etc. As

1

other types of science, these technology enhancements havebrought some disadvantages

particularly in medical profession, such as bringing pain or bleeding risk to patient dur-

ing the imaging process. To overcome these problems, another enhancement is required

which dictates some restrictions for engineers which are discussed in the following.

In endoscopy discipline, in order to study inside of the human gastrointestinal (GI) and

digestive track and diagnose the GI diseases, the first gastro–endoscopy prototype was de-

veloped in 1952 by a Japanese team of a doctor and optical engineers [9]. It was integrated

from a flexible tube attached to a tiny camera and light bulb ontop of it. To capture images,

this tube should be immersed to the intestine. Meanwhile, the patient suffers from a lot of

pain caused by this device and there might be some scratch while the device gets trough.

To alleviate the pain and scratch risk and study the rest one third of bowl, scholars brought

up new solution and made a wireless swallow–able device so–called capsule endoscopy

(CE) invented by Dr. Gavriel Iddan [10] in 1998.

The patient swallows the capsule (size: 11×30 mm) that captures images of the GI

tract and sends them wirelessly through the RF signal [10]. The device is comprised of

four main modules: battery, image sensor, image compressor, and wireless transmitter as

shown in figure 1.1. The image sensor converts the physical image to electrical signals.

The captured digital signal needs many bytes to represent the image and takes a long time

for transmission [11]. To make it efficient for sending, an image compression is a must.

Therefore, images are compressed in image compressor and then transmitted to the out-

side world by the RF transmitter block where they are reconstructed back to image in a

2

������� ����	
�������	�������
������������ �������������������

�������������
Figure 1.1: Block diagram of a typical endoscopic system [1]

workstation and used for diagnosis. The signals are received by the receiver tied to the

patient’s belt. The received images are uncompressed and enhanced inside the computer

and are provided for doctors to study. The capsule is energized by the built–in battery. It

is important to mention that for such an application, the number of transmitted bits has

linear relationship with the amount of power consumption.

In order to save the battery life, it is important to have modules of ultra–low power

consumption. At the same time, the reconstructed images should be of high resolution for

the physician to examine correctly [12].

The image compression can be accomplished in two ways: Lossless and Lossy [13].

The lossless algorithm has no effect on the quality of the reconstructed image, while the

lossy degrades the quality; however, the compression rate of the lossy algorithm is more

than the lossless. Therefore, there is a trade-off between compression rate and the driven

quality.

3

For the low–power medical imaging system, an efficient data encoder is proposed

based on Lempel–Ziv–Welch (LZW) algorithm. The LZW algorithm searches for patterns

inside of the input stream and replaces each with a unique index. The larger the patterns

in the data, the better compression rate is achieved. The encoder is library–based and the

size of the library can be controlled by the user which results in variable data rate. The

simulation is carried out on endoscopic colored images using several encoder algorithms.

The hardware architecture of the proposed encoder is also presented.

1.2 Motivation

How much image quality is expected in medical imaging is an important issue. The vi-

sual image quality can be determined by Peak–Signal–to–Noise–Ratio (PSNR) and their

appearance [12]. Due to the importance of taken images on thestudy of human body, the

PSNR of the images should be higher than 30dB [12]. In [1], efficient image compressor

architecture is presented which achieved a very good compression rate along with an av-

erage PSNR above 30dB. The image processor is constructed with three main blocks; 2D

forward transformer, Scaling and Quantization (SQ), and encoding.

In order to assess the suitability for an area– and power–sensitive medical imaging sys-

tem such as capsule endoscopy, the previous works in literature have focused mostly on

the two first components of the image compressor which include the 2D cosine transform

and the scaling and quantization [14]. A very few research has been devoted on investi-

gating the procedures and methods that can be applied to the data encoding component to

4

achieve more efficient images in terms of quality with regardto power consumption and

size.

Our concern in this work is to find a simple encoder with high compression ratio and

PSNR for this configuration. This encoder converts the 2D data given from SQ block to

stream of symbols suitable for the Transmitter stage. The encoder can be departed to two

parts; zigzag scan and data compression, which will be discussed in details later in this

thesis.

1.3 Thesis Objectives

In [1], Wahid et al presented the low–power design of an imagecompressor for the wireless

capsule endoscopic system. As mentioned, our focus here in this research is to find an

efficient data encoding algorithm which is the part of the image compressor. The objective

in finding such an algorithm can be summarized into:

1. Selecting an encoding algorithm which produces high quality reconstructed images.

This feature increases the chance of diagnosing diseases.

2. Selecting an encoding algorithm which produces highly compressed data. The mo-

tivation for this purpose is that as the data is compressed the compression results

need less data to be transmitted through the wireless transmitter which results in de-

creasing the amount of power consumption. Besides, it ends up to have a decrease

in the size of encoded data which requires less space for storing the data.

5

3. Selecting a simple encoding algorithm which would be a high potential candidate

for hardware implementation. This feature would yield to less power and area con-

sumption. The motivation behind this reason relies on the limitations of the size

of the capsulate and the power it exploits. This work leads tothe development of

the architecture, and its implementation on FPGA and Very-Large-Scale Integration

(VLSI) platform.

1.4 Thesis Organization

This thesis is organized into seven chapters. In Chapter 2, information on different data

compression methods and algorithms are provided. In Chapter 3, a comparative study

is accomplished between different encoding methods and thesimulation results are pre-

sented. Chapter 4 provides the hardware FPGA implementation of the most efficient en-

coding method investigated and selected in Chapter 3. Later, in Chapter 5, the performance

of LZW–Flush encoder is evaluated in terms of algorithm simplicity and FPGA hardware

cost. Chapter 6 presents a developed lossy encoder which is similar to JPEG-LS [15] and

investigates its compression rate and hardware design. Chapter 7 concludes the thesis by

summarizing the accomplishment of the research work and presenting future extensions

that can be applied to this research.

6

CHAPTER 2

DATA COMPRESSION

2.1 Introduction

Data transmission is the physical transfer of data over channels. The main issues regard-

ing data transmission can be classified into the limitation of bandwidth as well as capacity

problems. In order to tackle these issues, solutions exist such as building large storage

capacity or increasing the bandwidth. These solutions are not desirable as they require

expensive resources such as hard disk space or large transmission bandwidth [3]. In order

to reduce resource consumptions, data compression techniques were developed to provide

better solution for these challenges. Compression techniques aim to find an efficient algo-

rithm to remove various redundancy from a certain type of data.

In this chapter, we provide an introduction to compression techniques. First, the

two major categories of compression techniques, lossless and lossy compression, are

described. Later, different algorithms of lossless compression techniques are presented.

These algorithms include Run-Length Coding, Huffman Coding, Arithmetic, LZW, LZ77,

LZ78, and Joint Photographic Experts Group (JPEG).

7

2.2 Compression Methods

Data compression has become a requirement for most applications in different areas such

as computer science, information technology, communications, medicine, etc. In com-

puter science,Data Compressionis defined as the science or the art of representing infor-

mation in a compact form [3]. In communications, data compression enables devices to

transmit or store the same amount of data in fewer bits. In this area, it is viewed as a means

for efficient representation of a digital source of data suchas text, image, sound, or any

combination of these. Examples of some application areas that require data compression

include:

• personal communication systems such as facsimile, voice mail and telephony

• multimedia, signal processing, imaging

• image archival

• memory structures or disk optimization

• better usage of connection bandwidth

Compression techniques can be categorized into two major types: lossless and lossy

compression. If it is possible to exactly rebuild the original data from the compressed

version, the compression approach is referred to as lossless compression. It can be un-

derstood that this method is called lossless as there is no loss of any information during

the compression process. This approach is also called reversible compression since it is

8

Compression DecompressionAABAAC... AABAAC...

Compression DecompressionAABAAC... AABADC...

Lossless Compression

Lossy Compression

Figure 2.1: Lossless and lossy compression and decompression method

possible to recover the original data perfectly by decomposition.

In 1948 Claude E. Shannon formulated the theory of data compression in [16]. Shan-

non established that there is a fundamental limit to lossless data compression. This limit,

called the entropy rate, is denoted byH. The exact value ofH depends on the information

source, more specifically, the statistical nature of the source. It is possible to compress the

source, in a lossless manner, with compression rate close toH. It is important to mention

that mathematically it is impossible to do better thanH.

Shannon [16] also developed the theory of lossy data compression. Lossy Data Com-

pression methods are not able to reconstruct the original data exactly from the compressed

version. Some insignificant details might get lost during the process of compression. This

type of compression is also referred to as irreversible since it is not possible to recover the

original data exactly by decomposition. Multimedia, images, video and audio are more

easily compressed by lossy compression techniques.

9

Figure 2.1 shows an example of data compression and decompression using lossless

and lossy algorithms. In the rest of this chapter, differenttypes of lossless compression

algorithms are provided.

2.3 Run-Length Encoding

Run-Length Encoding (RLE) is a simple, easy, famous, lossless compression method

used in different applications such as facsimile communication or image formats such

as Graphics Interchange format (GIF) and windows Bitmap (BMP) [17]. In some applica-

tions, a combination of this method along with other techniques would be used to archive

with higher compression ratio. In this method, the length ofeach repeating character

(calledrun) in a stream of data, is calculated and the data is encoded into two bytes. The

first byte represents the number of characters in the run and the second byte is the value of

the character in the run.

In terms of hardware, this method has very basic structure. It does not need data

processing and can be easily implemented. Thus, it is a suitable candidate for those appli-

cations which have restriction on hardware or energy consumption.

The pseudocode for RLE algorithm is presented below:

1. readchr(i)

2. if it’s not the same aschr(i + 1), output{chr(i)} otherwise, count run’s ofchr(i)

and output{run, chr(i)}

10

3. if there is morechr go to step 1

In order to provide a better understanding of the algorithm an example is given in fig-

ure 2.2.

stream ...AAAAAAAAAAAAAAAAABBBBBBBBCCCAEE...

compressed ...17A8B3CA2E...

Figure 2.2: An example for RLE algorithm

As it can be observed, the stream takes 31 bytes while the compressed stream requires

just 9 bytes.An example of hardware implementation is provided in figure 2.3

� !"# $$%#
� &!"%#

'!(&")"#%*+ � +(#%,,%-)"#%*+

Figure 2.3: RLE hardware

2.4 Huffman Encoding

The Huffman encoding (static Huffman) is a popular losslessdata compression algorithm

that produces variable length code to represent symbols [18]. The driven length depends

11

on the probability of the occurrence of each symbol in the input string. Therefore, for more

frequent symbols, this method uses shorter codewords and for less common ones, it uses

longer codewords. The Huffman optimum algorithm is developed by David A. Huffman

in 1952, while he was a Ph.D. student at MIT, and has been applied to many software and

hardware applications. For example, Huffman compression method is included in JPEG

and MPEG standards, as well as ZIP standards, for compressing data files [19].

In order to specify the frequency of each symbol and replace the symbols with relative

code-words, two passes of the entire string to the encoder are required. In the first pass, the

frequency of each character is calculated and the Huffman binary tree is produced. Later,

Huffman’s algorithm minimizes the weighted path length
∑

wjfj among all binary trees,

wherewj is the weight of the jth leaf, andfj is its depth in the tree [18]. The codewords

related to each symbol are determined and inserted in a look up table. In second pass, each

character is replaced by it’s codeword which was calculatedin the first pass. The pseudo

code of this algorithm is presented below [20].

1. C is a set of n characters

2. n is the total number of chars inC

3. insert all the chars to in ascending frequency order in queueQ

4. n-1 times

5. create a new nodeZ

12

6. left child of z is the least frequent char popped fromQ

7. now pop another char fromQ to create the right child

8. frequency ofZ is the sum of frequencies of it’s children

9. insert the newly created object into the min-priority queue

10. loop ends

11. return the root of the tree

An example for the Huffman algorithm is shown in figure 2.4. Itis important to men-

tion that Huffman coding would be the best variable-length entropy coding when the prob-

ability of the occurrence of each symbol is negative powers of 2 [18]. For example, if the

frequency of the symbol is 0.4, the ideally assign code should be log
2
0.3 ≈ 1.73bits

which Huffman normally can assign 1 or 2 bits for it.

Input Stream = CODES_ARE_COOL

Compressed Stream :

./0./ 10./
2 30./30./ 4 .0./5 60./

70.//0./ /0./ 8 60./9 60./: .0./; .0./< .0./= .0./60./ 60./
>> .> ..> > . > . > . >. >

C 011
O
D
E
S
_
A
R
L

11
0000
100
0001
010
0010
0011
101

0111100001000001010001000111000100111111101

Figure 2.4: Example of Huffman compression algorithm

In [19], [21], the authors have proposed different hardwareimplementations of the

Huffman algorithm. As Huffman method requires two passes, it is not suitable for real-

13

time applications. Thus, in order to eliminate the pre-scanstep for these types of appli-

cations, known code word tables [22] are provided. These tables are tuned for different

applications. For a large file or big stream of data, it is somehow very difficult to find the

frequency of eachchr. Therefore, it is needed to store the whole stream which requires a

huge space. If the frequency of eachchr varies, the related codeword is varied. In order to

find the codeword, we should re-compute the Huffman code by running through the entire

file.

One problem is that the statistical model of the data source must be known before the

design of the Huffman code. The better the model and data source agree, the better the

Huffman code performs. A bad model can lead to a low compression efficiency, sometimes

even worse than no compression at all. This is a very real problem because in many

applications, the prior knowledge of the statistics of a data source is impossible, or the

statistics are changeable with time. [23]

2.5 Adaptive Huffman Coding

In order to tackle the two-pass issue of the Huffman method and make it suitable for real-

time applications, Faller and Gallager [24] presented a solution which is referred to as

Adaptive Huffman algorithm (also called Dynamic Huffman).In the adaptive coding, a

fixed model is no longer used. Instead, a counter is set up for each symbol of the source

alphabet, and the count is initially set to 1 or to an expectedoccurrence frequency. Each

time a symbol occurs, its count increases by 1, and the code tree is then updated to fit the

14

accumulative counts which approximately represent the local statistics of the data source.

Every time a certain amount of data has been encoded, equivalent to a time constant, each

count is multiplied by some fixed factor. Since both sender and receiver update their own

code tree based on the same previous data sequence, the codesused by both sides always

agree [23].

However, the adaptive coding provides low compression efficiency when it is applied

to segmented data. In fact, there is still a low compression efficiency at the beginning of

the data even with the adaptive coding. The reason resides onthe fact that not enough sta-

tistical information has been gained in the beginning to establish a good model. However,

the problem becomes more serious when segmenting data into segments. Every segment

cannot use the previous segment’s model as the segments could have been corrupted by

channel noise. Thus, initialization is basically necessary for every segment which results

in a large percent of data encoded with lower compression efficiency. [23].

2.6 Arithmetic Coding

Almost for 25 years, arithmetic coding was the most successful substitute for Huffman

coding algorithm. This method has superior performance compared to Huffman specially

for the situations where the input stream is small. This algorithm was an extension of

encoding work of Shanon, Fano and Elias [3]. This algorithm solves the problem of as-

signing integer to each symbol for those do not have occurrence frequency as a power of 2.

In this algorithm, instead of looking for each symbol, the method that most entropy encod-

15

ing algorithms apply, the entire file stream is checked and encoded into a single number,

n which is 0≤ n< 1. In Arithmetic coding , there exists a probability line, 0 –1. A range

is assigned to each symbol based on its probability. As the ranges are assigned to each

symbol, the encoding process starts.

In order to clarify how the algorithm behaves, an example is provided in the following.

Assume that we want to encodeabd. Table 2.1 shows the probability value assigned to

each symbol.

Table 2.1: Probability table for each symbol

Symbol Probability Interval

a 0.2 [0.0, 0.2)

b 0.3 [0.2, 0.5)

c 0.1 [0.5, 0.6)

d 0.4 [0.6, 1.0)

The first symbol to be encoded isa. For this purpose, wezoomto the line which rep-

resents the probability ofa and re-calculate the probability of each symbol of the table2.1

for the new interval. The new values retrieved are presentedin table 2.2

The next symbol in this stream is b which results in the table 2.3

The encoded stream is any number between[0.1608, 0.2) , which for this example

16

Table 2.2: Probability table for ”a” interval

Symbol New ”a” Interval

a [0.0, 0.04)

b [0.04, 0.1)

c [0.1, 0.102)

d [0.102, 0.2)

Table 2.3: Probability table for ”ab” interval

Symbol New ”ab” Interval

a [0.102, 0.1216)

b [0.1216, 0.151)

c [0.151, 0.1608)

d [0.1608, 0.2)

0.1608 was chosen. In the binary, the symbol is represented as 11001001000. As it can

be seen from the example, this algorithm needs a lot of calculation and the output of the

encoded stream depends on the floating point unit precision.On the other hand, floating

point arithmetic is not suitable in terms of hardware implementation as it requires a lot of

hardware. Apart from that, this method has binary rounding which brings error. Thus, this

algorithm is not a suitable choice for large files and is fairly slow due to big numbers of

calculations.

17

2.7 LZ or LZ77 Coding

In variable-length compression algorithms, a prior knowledge about the source charac-

teristic is important which helps in achieving higher compression ratio. In many cases,

accessing prior information is impossible or unreliable. Therefore, there was a need for

a mechanism which learns the characteristics of the input stream and applies it for the

purpose of gaining higher compression ratio. Abraham Lempel and Jacob Ziv, in 1977,

introduced a dictionary-based compression algorithm which is called LZ or LZ77 [25].

This algorithm looks for patterns while encoding the input stream, and replace those

patterns with a fixed size codeword. This algorithm is very simple and does not need huge

resources to be implemented. LZ77 exploits a windows which slides through the input

stream. The window can be divided into two parts, the left oneis calledHistory buffer

or search buffer which includes a portion of recently seen input stream, and the right one

is calledLook-ahead bufferwhich contains the next portion of the input required to be

compressed. The window size is fixed and the size of the history buffer is much bigger

than look-ahead buffer. The pseudo code for LZ77 algorithm is shown below:

1. Read from input stream till look-ahead buffer(L) gets full.

2. search through history buffer(h) to find a prefix match with L

3. if the size of match is bigger than one , output< location of first match symbol in

window = f , match length = l, mismatch symbol following the match =c >.

4. if there is no match output< 0, 0, ASCII(c) >

18

5. if there is more symbole to encode, slides window one symbol to right and run from

step 2.

An example of this algorithm is shown in figure 2.5.

i k a c c b a d a c c b a c c b a c c g k m c a b

i k a c c b a d a c c b a c c b a c c g k m c a b

i k a c c b a d a c c b a c c b a c c g k m c a b

Tripple < 6 , 2 , c >

Tripple < 4 , 5 , c >

Tripple < 0 , 0 , i >

Figure 2.5: Example of LZ77 algorithm [2]

2.8 LZ78 Coding

In LZ77, the pattern would easily be lost if it is shifted out from the history window; there-

fore, no match would be found for the next symbol in the input stream. This deficiency

causes this algorithm to be incapable of having highly compression ratio. A year after the

development of LZ77, Lemple and Ziv introduced a new algorithm, referred to as LZ78,

which overcomes the discussed problem and provides the capability of holding all patterns

[26]. Another improvement of this algorithm compared to LZ77 is that the new method

encodes the input into a two component codeword< index(word), c > instead of a triple.

In LZ78, the history buffer is replaced with a dictionary which collects all previously ob-

served patterns. The size of look-ahead window is restricted to one symbol length. The

pseudo code for this algorithm is shown below [3], [25]

19

1. input: input stream, and empty dictionary

2. emptyword

3. send next symbol toc

4. search forword+c in the dictionary, if there is a match, replaceword with word+c

and take next symbol toc and redo step 3

5. if there is not a match, output token< (index ofword in the dictionary), c > and

addword+ c into the dictionary

6. if still there is a symbol to compressed go to step 3

In order to provide a better understanding of how this algorithm works, an example is

presented in figure 2.6. The example takesa dateas input stream.

i w c w+c output 0 1 2 3 4 5

1 a a 0 , a a
2 _ _ 0 , _ a _
3 d d 0 , d a _ d
4 a a

a t at 1 , t a _ d at
5 e e 0 , e a _ d at e

Figure 2.6: Example of LZ78 algorithm [3]

2.9 LZW Coding

In 1984, four years after the introduction of LZ78, Terry Welch published a paper about a

new algorithm called LZW. Welch in this algorithm provides small changes to LZ78 algo-

rithm which yields to higher compression ratio. In LZW, the first 256 rows of dictionary

20

i w c w+c output 257 258 259 260 261

1 a a
a c ac a ac

2 c b cb c cb
3 b b bb b bb
4 b a ba b ba
5 a a aa a aa
6 a c ac

ac 257

Figure 2.7: Example of LZW algorithm taken from [4]

are initially pre-filled with 0 to 255. Also, the number of output components is decreased

to one [27]. The LZW idea is to identify the longest pattern from the input stream and

replace it with dictionary indices. The pseudo code for thisalgorithm is shown below [3].

The implementation speed of this algorithm, as can be seen from pseudo code, is very fast.

1. emptyword

2. send next symbol toc

3. search forword+c in the dictionary, if there is a match, replaceword with word+c

and take next symbol toc and redo step 2

4. if there is not a match, output the dictionary index forword and addword+ c to the

dictionary, and replaceword with x.

5. if still there is a symbol to compressed go to step 2

6. output the dictionary index for theword

An example of this method is provided in figure 2.7 to clarify the pseudo code. The

example takesacbbaac as input stream, and outputsa c b b a 257.

21

2.10 LZW–Flush Coding

The implementation of LZW has an important restriction; size of dictionary. In practise,

we cannot have unlimited dictionary size. Besides, the sizeof the dictionary is increased

by feeding the encoder with larger file size. Therefore, to tackle this issue, a modified LZW

algorithm, called LZW-Flush [28] was developed in which thedictionary gets flushed if it

is full and gets refilled again through the process of compression for the rest of symbols.

The process of flushing and refilling continues till the wholeinput stream is compressed.

The pseudo code of this algorithm is written below.

1. emptyword

2. send next symbol toc

3. search forword+c in the dictionary, if there is a match, replaceword with word+c

and take next symbol toc and redo step 2

4. if there is not a match, output the dictionary index forword.

5. if dictionary is not full, addword+ c to the dictionary.

6. if dictionary is full, clear the dictionary and addword+ c to the dictionary.

7. replaceword with x

8. if still there is a symbol to compressed go to step 2

9. output the dictionary index for theword

Figure 2.8 shows the flow chart of LZW–Flush coding algorithm.

22

2.11 Lossless JPEG Encoding

JPEG is designed to exploit known limitations of the human eye. It is based on the fact that

the small color changes are perceived less accurately than small changes in brightness. The

encoding method uses a predictive scheme based on the three nearest causal neighbours

which include the upper, left, and upper-left neighbours. To assess the prediction error en-

tropy coding is used [29]. The lossless coding process employs a simple predictive coding

model called Differential Pulse Code Modulation (DPCM). Inthis model, the predictions

of the sample values are estimated from the neighbouring samples that are already coded

in the image. In most predictors, the average of the samples are taken immediately of the

above and to the left of the target sample. Once all the samples are predicted, Huffman

coding or Arithmetic coding is applied to differentiate between the samples in a lossless

fashion.

2.12 Summary

This Chapter provided a review of different encoding methods. The description of each

method was broken down into three parts of algorithm explanation, psudo code, and ex-

amples. The performance of all explained method is evaluated in the next chapter.

23

?@AB @ CDEFGH IJGEKLMNO COJB@E @LPC@QB KO GL RSC TUVW X R KL OYBHKFJ@JD Z[NOMNOOYB \GPBIGJ]UVW
^PP]UVW X ROG HKFJ@JD @C @LB_ BLOJDàWbcd TUVW]ecf R

gdahbRd TUVW]ecf TUVW X R
SLMNO COJB@E KCBiY@NCOBPZ

jO@JO

kLP

kEMODTUVW

lKFJ@JD KCINHHZmHB@J OYBBLOKJB HKFJ@JD[NOMNOOYB nhopfCDEFGH
[NOMNOOYB \GPBIGJ]UVW

qG rBC
qGrBC

rBCqG

Figure 2.8: Flow chart of LZW–Flush algorithm

24

CHAPTER 3

SIMULATION RESULT

3.1 Introduction

Due to the different requirements of different applications, different methods are applied.

In order to select an efficient algorithm for this particularapplication, first of all the per-

formance of different algorithms should be assessed. This chapter presents the analysis of

different algorithms through a specific image compression method [1]; DCT-based com-

pression. At the beginning, the DCT-based image compression method is explained. Later,

a modified zigzag scan is presented and at the last section of this chapter an efficient algo-

rithm is selected based on the implementation difficulties of different algorithms and their

compression ratio.

3.2 DCT-Based Compression

The rapid growth of digital imaging applications, including desktop publishing, multime-

dia, teleconferencing, and high-definition television (HDTV) has increased the need for

effective and standardized image compression techniques.These techniques employ a ba-

sic technique known as the discrete cosine transform (DCT),developed by [30], which is

a close relative of the Discrete Fourier Transform (DFT). DCT helps separate the image

25

DCT

 f(i,j) F(u,v)

Figure 3.1: Overview of DCT operation

into parts (or spectral sub-bands) of differing importancewith respect to the image’s visual

quality.

The DCT is similar to the discrete Fourier transform: it transforms a signal or im-

age from the spatial domain to the frequency domain. Figure 3.1 provides a high level

overview of this transformation.

The general equation for a 2-D DCT for an image sized N× M is defined by the

following equation:

F (u, v) = (
2

N
)
1

2 (
2

M
)
1

2

N−1
∑

i=0

M−1
∑

j=0

Λ(i).Λ(j). cos(
πu

2N
(2i+ 1)) cos(

πv

2M
(2j + 1)).f(i, j)

(3.1)

and the corresponding inverse 2D DCT transform is simpleF−1(u, v), i.e. where

Λ(ζ) =

1
√

2
for ζ = 0

1 otherwise

The image compressor component of a typical endoscopic system is shown in figure

26

Figure 3.2: Image compression system used in this work

Table 3.1: The quantization table developed in [1]

64 128 128 512

128 256 256 1024

128 256 512 1024

512 1024 1024 2048

3.2. It starts in the format of Bayer patterns [31] and separately processes R-G1-G2-

B signals of the raw image. Later, it computes the 2-D DCT, quantizes it, and outputs

the encoded bit-stream for transmission. The 2-D DCT methodwhich we exploit in our

model is based on the technique proposed in [1] which has the advantage of reducing the

hardware space as well as processing time. The proposed architecture in [1] eliminates

the need of transpose operation by direct mapping of the 2D Discrete Cosine Transform.

Wahid et al used an error-free algebraic integer encoding instead of the conventional binary

finite precision approach which guarantees lossless computation. Table 3.1 shows the

corresponding quantization table developed in [1] to comply with the JPEG standard.

3.3 ZigZag Scan

In order to send the scaled/quantized coefficients, data reordering (from 2-D to 1-D) is a

must. This procedure is accomplished by scanning (as shown in figure 3.3). Different

27

scanning methods exist. The reforming from 2-D to 1-D can be done by sampling row by

row, or column by column or an arbitrary pattern. The best method brings more redun-

dancy of data which yields to better compression rate from the encoder stage. Since the

most significant information of the image is located in the top-left region of the matrix,

the zigzag scan would be a good candidate. This method is depicted on figure 3.3.

0000

0000

0126

00612

−−
−

()0,0,0,0,0,0,0,0,1,0,0,2,0,6,6,12 −−−

Figure 3.3: Functional diagram of ZigZag Scan

We can pass only such nonzero significant information (i.e. low frequency compo-

nents) to the next stage while discarding the rest (zero coefficients) through the zigzag

scan. To make this process more efficient, we propose a methodwhich is dicussed bellow.

The effect of the method on the compression ratio and reconstructed quality (in peak-

signal-noise-ratio, PSNR) is anaylsed later in this section.

The devised algorithm performs the zigzag scan and stops scanning when it encounters

a number of consecutive zeros, n, where the parameter n is variable and defined by the user;

a symbol is added to represent the end of scanning process. Wehave applied this method

on 20 endoscopic coloured images, shown in figure 3.4 (a resolution of 256× 256), with

different values of n to investigate its effect on the PSNR and the CR (as defined in Eq.

28

3.2 and 3.3).

CR = (
no. of discarded coefficients

256× 256
)× 100% (3.2)

PSNR = 10× log
10
(

(256× 256)× (255× 255)
∑

255

i=0

∑

255

j=0
(xreconstruct

i,j − x
original
i,j)2

) (3.3)

For the reconstruction, the output of the scan is inverse-scanned, followed by the in-

verse SQ and 2-D transformation. The results are shown in figures 3.5 and 3.6. As it can

be seen from these two figures, for n less than 3 the PSNR is above 30 dB and with bigger

values of n, a better CR is achieved. Hence, we have chosen n = 3for the proposed encoder.

In summary, the algorithm will discard the remaining coefficients, if three consecutive

zeros are detected in the scanning chain. Hence, it speeds upthe scanning process over

the traditional approach.

3.4 Comparative Study

In order to choose an efficient encoding algorithm for the image compressor, we have

implemented the all mentioned encoding algorithms discussed in the previous chapter in

MATLAB software [32] to investigate the performance of eachmethod. The simulation

was carried out on the same endoscopic images. The output from the SQ unit (figure 3.2)

has undergone the zigzag scanning (as defined in Section 3.3)before becoming the input

29

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6 (g) Image 7 (h) Image 8

(i) Image 9 (j) Image 10 (k) Image 11 (l) Image 12

(m) Image 13 (n) Image 14 (o) Image 15 (p) Image 16

(q) Image 17 (r) Image 18 (s) Image 19 (t) Image 20

Figure 3.4: 20 endoscopic colour-scale images

30

0 2 4 6 8 10 12 14 16 18 20
87

88

89

90

91

92

93

94

95

Image No.

C
R

 (
%

)

Traditional
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Figure 3.5: Effects ofn on compression ratio(CR)

3
1

0 2 4 6 8 10 12 14 16 18 20
26

28

30

32

34

36

38

40

Image No.

P
S

N
R

 (
dB

)

Traditional
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

Figure 3.6: Effects ofn on PSNR

3
2

to the encoder. The results are shown in figure 3.7. This result is just for the encoder stage.

In order to represent the study better, we applied plot chartinstead of bar graph. It can be

seen from the figure 3.7 that both Huffman and LZW produce higher compression ratio

compared to LZ78 and LZW-Flush (with a library size of 240 bytes) where the later twos

performance is very similar. The PSNR for this comparative study for different method is

the same as shown for n = 3 on figure 3.6.

As discussed earlier, the implementation of static Huffmanencoder requires more

memory, while LZW and LZ78 require larger dictionary and library size. In this case,

the LZW-Flush would be a good option as the library size can beset by the user. There-

fore, keeping the application in mind, where hardware resources (or design space) and

power consumption are critical, we propose to use LZW–Flushencoding scheme.

3.4.1 Determining the Library Size

In order to find the best library size for the proposed WCE application, we have examined

those endoscopic images with different library sizes of theLZW–Flush encoder. These

images have been passed through the encoder and then reconstructed back to calculate the

CR. The results are summarized in figure 3.8. It can be seen from figure 3.8 that the re-

sults for all 20 images are consistent in nature. As expected, by increasing the library size,

higher compression rate can be achieved. Figure 3.9 shows the average CR of all images

for different library size. However, it can be seen that the gain in CR slows down after

a certain threshold (in library size) is passed. Considering the degree of compression we

have achieved in the previous stages and the complexity and hardware cost of the encoder,

33

0 2 4 6 8 10 12 14 16 18 20

−20

−10

0

10

20

30

40

50

60

70

Image No.

C
R

 (
%

)

Variable Huffman LZW Static Huffman Lossless JPEG LZ77 LZ78 LZW−Flush RLE Arithmatic

Figure 3.7: Compression ratio (CR) of different data encoding methods

3
4

Table 3.2: Performance analysis of the encoder

CR(%) (Zigag) CR(%) LZW–Flush CR(%) (Overall) Energy Consumption

90 % 49.40 % 94.9 % 75µJ / frame

we have chosen a library size of 240 bytes that will give us an average CR of 30% (figure

3.9).

In table 3.2, the performance analysis of the encoder is presented. Throwing out co-

efficients in the zigzag stage makes this encoding scheme lossy. As it can be observed,

by applying the proposed window-based (library size of 240 bytes) LZW–Flush algo-

rithm with a defined (n=3) zigzag pattern, a minimum compression ratio of 94.9% with

acceptable image reconstruction (minimum PSNR of 30dB) canbe achieved. As men-

tioned earlier, we have used 20 colour scale endoscopic images of 256×256 resolutions

for our simulation. According to [33], It takes 1.91nJ of energy for a BFSK transmitter to

transmit one bit (assuming 2.07mA current consumption). Byconsidering the image size

(256x256, 8bpp, colour) and the CR achieved in this work, thetotal energy consumption

is estimated to be 75µJ/frame. As a result, a 1-min endoscopic video (captured at arate

of 4 frames per second) will consume only 18mJ of energy.

3.5 Summary

In this chapter the performance of different encoding methods in a DCT-based image

compressor are evaluated. Also, a modified zigzag scan is presented and their effects is

discussed. Hence, an efficient method (LZW–Flush), is selected. Simulation regarding the

35

0 2 4 6 8 10 12 14 16 18 20
15

20

25

30

35

40

45

50

55

Image No.

C
R

 (
%

)

120 Bytes
180 Bytes
240 Bytes
320 Bytes
384 Bytes
512 Bytes
640 Bytes
768 Bytes

Figure 3.8: Effect of different library size on CR(%)

3
6

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

Library Size (Bytes)

C
R

 (
%

)

Mean

Figure 3.9: Effect of library size on mean CR for 20 endoscopic colour-scale images

effects of different library sizes for LZW–Flush were accomplished and the best library

size was chosen.

37

CHAPTER 4

HARDWARE IMPLEMENTATION

4.1 Introduction

In the previous chapter, the simulation results of different encoding algorithms were pre-

sented and it was observed that the LZW–Flush provides better performance compared to

other methods. In this chapter, the hardware implementation of the LZW–Flush algorithm

is presented. The LZW–Flush implementation includes the Content-Addressable Memory

(CAM) and a state machine to compress the input stream. The FPGA code is written in

Verilog. The overall block diagram of the LZW–Flush encoderis also presented.

4.2 Hardware Architecture

The block diagram of LZW–Flush is shown in figure 4.1. The input stream is connected

to input register. This register is updated in each clock when itsEn pin is set to high. The

Word register contains the previous match index. It is concatenated to theinput and is fed

to the input of theDictionary. Dictionary is a CAM which records the observed patterns

and is updated whenever a new pattern is arrived. Whenever the input stream matches a

row of the dictionary, thematched indexis updated with the content index. In addition to

this update, thecontroller updates theoutputregister with the previously matched index,

38

word.

The matched flagdetermines the occurrence of a match. TheDictionary can be

cleared, read or written byFlush DicandW/Rpins respectively. Whenever theDic. Full

flag is set, it is not able to record any more patterns. In case the dictionary gets full, the

controller sets theflush dicsignal to clear the dictionary in order to record the coming

patterns. Thecontrollercontrols the entire compression process and throughputs the com-

pressed symbols. In the following sections, the details of the Dictionary and controller

components are described.

4.2.1 Dictionary

In order to record and retrieve patterns, memory is needed. Two types of RAM can be

used for this purpose which include SRAM and CAM. SRAM can notbe considered a

good candidate since it requires large numbers of clock cycles in order to search through

the RAM and discover the matching pattern. The search time also depends on the library

size. If we have a modified hash based SRAM, it needs few clock cycles [34]. CAM is a

special memory architecture. Rather than providing an address to retrieve the data, it gets

the data, and returns the address back. This operation only consumes one clock cycle. In

CAM, rather than having few clock cycles, the index can be accessed by just one clock

cycle. Obviously it needs more power and occupies more area.But in such an application,

its a need to use this type of memory due to the time constraintthat exists for data com-

pression.

39

Dictionary

st uvw

xyz{|}~ �t~}�
xyz{|}~ ��y�����| ��{

�t��z

st
Input Word

st
�� �� �

Controller��t~ xyz{|����| ��{��{� ���� ��y���� s� s� su s�
st

Output

��

�

�� ����| ���ty��

��{ uvw
�

�

� ���

��z��z�}�}{z��

�

Counter

�

�~~�}��
���� ���� ������� ¡¢¢ £¤

Figure 4.1: Hardware block diagram of the LZW–Flush encoder

40

(a) RTL view

¥¦§¨©ª¦« ¬®¯°±²¬³
´°®µ¶ ·¸¹º³»®¼½¾¹

¿¯¼À¶´°̄ ÁÂÃÂ
Â Â

(b) Hardware architecture

Figure 4.2: Hardware architecture and RTL view of a CAM cell

The architecture of the implemented cell of a typical CAM is shown in figure 4.2. It

records 15 bits which is divided into 7 bits for input stream and 8 bits for the index. If

the flush bit is set to high, the register content gets cleared. The W/R pin is connected

to activate the D-latch register pin. If this pin is low, it prohibits the write operation for

D-Latch, and the content of the register is compared with input. In case both are the same,

the match flag is set to high. In the other cases, it is always assigned to low.

To extend the size of the dictionary to 128 cells, the architecture depicted in figure 4.3

is proposed. The decoder takes the input address and decodesit to W/R pin of related

cell. The encoder takes all match flag pins as input and produces an eight bit length output

41

which contains the address of the proper matched index cell.

The match-index is shifted to above 128. The reason behind this shift is that the first

128 (0 to 127) are used for the purpose of predefining characters. (refer to LZW algorithm

description). This operation can be easily done by a left shift of match index.

4.3 Controller

The controller is composed of two step state machine and somelogics, controls the dic-

tionary and the peripheral components. The architecture ofthis controller is depicted in

figure 4.4. It has eight output pins and two inputs. If ED pin isactivated, the Dictionary is

enabled, otherwise if the EI pin is activated, the input register gets enabled. The EW and

EO enable the word and the output register respectively. DicW/R selects the operation of

the dictionary. If it is low, it forces the dictionary to operate in read mode and when it is

set to high, the dictionary accepts writing operation. The output selector selects between

the flush signal and Compressed symbol. Flush dictionary clears the dictionary contents.

Dic Full Flag, is an input signal which comes from counter andshows that the dictionary

is full. Find match tells the controller the combination of input register and word which

is found inside of the dictionary. Word-match selector selects the output. The next clock

turns back the state level to state number one.

Controller is based upon the match flag pin and changes its state. In case it is set to

high, a match has been found in the dictionary. Thus, it enables the input register to update

42

De
co

de
r (1

:12
8)

ÄÅÆÅÇÈÉÊËÌÍÎ ÏÐÅÆÑËÒÇÈÅÓÔÕÈÈÖ×ÄÅÆÅÇÈÉÊËÌÍÎ ÏÐÅÆÑËÒÇÈÅÓÔÕÈÈÖØÄÅÆÅÇÈÉÊËÌÍÎ ÏÐÅÆÑËÒÇÈÅÓÔÕÈÈÖÙ

ÄÅÆÅÇÈÉÊËÌÍÎ ÏÐÅÆÑËÒÇÈÅÓÔÕÈÈÖØÙÚ
En

co
de

r (1
28

:1)

ÇÈÉÊË ØØÄÅÆÅ ØÛ

Ú

ÐÅÆÑË ÇÈÅÓ

ÐÅÆÑËÜÝÞÕßÚàÞÞáÕÊÊ
.

.

.

.

.

.

Figure 4.3: The architecture of entire proposed dictionary

43

with new symbol of input stream in next clock. It also enablesword register to update with

the match index. In the occurrence of a match condition, the write enable pin of the output

register is cleared. If there is no match, the match flag is setto low, and the controller

enables the input register to update with the new symbol of the input stream in the next

clock. Hence, the word-matched selector selects input and feeds the word input by the

content of the input register. W/R is set to high which activates the writing operation of

the dictionary. It also enables the output register. If the counter does not pull the flush dic

to high, the output selector selects the word register. In the next clock, the state machine

steps to the second state and all registers are updated.

If in the first step the Dic full flag is set to high, theflush dicof Controller is enabled,

the dictionary is flushed, and the flush signal is selected by the output selector. Hence,

input register and word are not enabled, and while the state machine is entered to second

state, their values are not updated. Therefore, the next clock sends back the state machine

to state number one, and the process starts from the beginning as described earlier.

4.4 Counter

The architecture of the counter is shown in figure 4.5. It is a simple 7-bit length counter.

It counts from 0 up to 127. It is enabled when the W/R pin of the controller is one. The

overflow pin is set if there is an overflow, and in the next clock, it is cleared by the con-

troller. The counter output is connected to the address pinsof the dictionary. The reset

44

Figure 4.4: The architecture of the proposed controller

4
5

âã
Input

+

Over Flow

äå

=

127

Output

0

æ å

æ
çèéèê ëìíãêèî âãïðñè

æ
åå

Figure 4.5: The architecture of the counter

pin, resets the counter.

4.5 Summary

This Chapter discussed a hardware implementation of LZW–Flush. An overall block de-

scription was provided as well as an in depth discussion of the implementation. The im-

plementation was broken down into three parts: Dictionary,Controller, and Counter. Each

part was discussed in detail. In the next chapter, the performance of the encoder methods

discussed in chapter 2 is evaluated, and the proper encoder for the application is proposed.

46

CHAPTER 5

PERFORMANCEEVALUATION

5.1 Introduction

In Chapter 4, the simulation results of different encoding algorithms were presented and

it was observed that LZW–Flush provides better compressionratio compared to the other

methods. In this Chapter, we are going to evaluate the performance of the algorithms

which provided us with highest compression results. The evaluations are accomplished

with regard to the library size, memory consumption, and thesimplicity of hardware ar-

chitecture. In the last part of this chapter, we provide someof the test images, fed into the

proposed compression system along with their corresponding decoded images.

5.2 Hardware Comparison

As it was discussed earlier, the LZW–Flush encoding algorithm provides better compres-

sion ratio compared to the other methods provided in previous chapter. Table 5.1 presents

the average compression ratio of the 20 simulated images fordifferent encoding algo-

rithms. As it can be observed from the table, the encoding methods which guarantee the

best compression ratios for the tested images respectivelyincludes: LZW, Lossless JPEG,

Arithmatic, Static Huffman, LZW–Flush, LZ78, and AdaptiveHuffman. Therefore, we

47

Table 5.1: The average CR of 20 medical images for different encoding algorithms

Arith. Stat.

Huff.

Var.

Huff.

LZW LZ78 LZ77 LZW

Flush

RLE L.L

JPEG

CR (%) 54.95 54.52 9.75 64.60 46.91 7.35 49.40 -14.59 57.75

established the performance evaluation on these algorithms to detect the encoding method

that best suits the compression system and provides better overall performance in terms of

simplicity of hardware architecture. It can be noticed fromthe results shown in the table

that the compression results of the Arithmetic, Huffman, LZW, LZ78, and LZW–Flush are

better than the rest. Therefore, the evaluations were done to investigate the performance

of these algorithms in terms of hardware.

Before we go through further investments, it is important tomention that the LZW

algorithm is not a perfect choice for the compression system. The reason behind this ar-

gument is that LZW needs a large library to accomplish the encoding [35, 36, 37, 38].

The mean size of the library used for the experiment performed sums up to 8.1 KByte.

Thus, the RAM power consumption as well as the area are large for such an application.

The static Huffman method has some basic issues as well. First, this algorithm needs two

passes to do the encoding which reduces the speed and thus decrease the performance.

In addition, this method requires a large RAM to store the image. For an image of size

256×256, the Huffman algorithm needs more than 65 KB of memory which is a big

number. Arithmetic encoding method would not be a good choice due to the algorithm

hardness. It requires several multiplication to encode theinput stream. Lossless JPEG

48

exploits Arithmetic or Static Huffman as the part of the entropy encoder, which makes it

difficult to be implemented in hardware. The RLE algorithm expands the input stream due

to not having much runs in the input stream.

Table 5.2: Hardware comparison of different encoder

Scheme LUT Registers RAM

Proposed 1 LZW–Flush 2624 1947 0

Proposed 2 LZW–Flush 966 49 1920

Rigler et al. [39] Huff1 2066 573 40234

Rigler et al. [39] Huff2 1980 533 4410

Rigler et al. [39] Huff3 1842 502 2969

Jamro et al. [40] Var. Huff. 3007 1042 4112

Rigler et al. [39] LZ 2077 734 8192

Cui [41] LZW 6436 – 272 K

Abdelghany et al. [42] LZ 419 408 1040

Therefore, the focus was put on the rest of the algorithms which would shorten the

list to LZ78, LZW-Flush, and variable Huffman. While LZ78 requires a larger library

compared to LZW–Flush, but the difference in terms of algorithm simplicity is not much.

The hardware implementation of both methods is almost the same while LZW–Flush pro-

vides better results in terms of the compression. The only algorithms remained to be

compared, are variable Huffman encoding and LZW–Flush. Thehardware details of the

variable Huffman encoding is presented in [39, 40]. These details along with the hardware

49

implementation details of the LZW–Flush which was presented in Chapter 4, are pre-

sented in table 5.2. The presented data for LZW-Flush proposed 1 is simulated on FPGA

Board Cyclon II EP2C35F484C7. Proposed 2 is simulated on FPGA Board APEX20KE

EP20K30ETC144. In proposed 1, the dictionary is made of the CAM architecture de-

scribed earlier. In proposed 2, the dictionary takes advantage of built-in CAM memory

of the FPGA board. As it can be observed from the table, variable Huffman encoding

requires more hardware compared to LZW–Flush. Thus, from the arguments and evalua-

tions, we can justify that LZW–Flush guarantees better performance compared to the other

approaches as it supports higher compression ratio, and smaller hardware cost.

5.3 Reconstructed Images

In the previous section, it was discussed that LZW–Flush provides the best functionality.

In this section, four out of the twenty images are randomly chosen and shown along with

their reconstructed images. Figure 5.1 shows the process ofreconstruction from the origi-

nal image. Figures 5.2,5.3, 5.4, and 5.5 present these images along with their reconstructed

images achieved through the LZW–Flush based compression system.

Figure 5.1: The image reconstruction process block diagram

50

(a) Original

(b) Reconstructed

Figure 5.2: Image 8 PSNR = 30.914 dB

51

(a) Original

(b) Reconstructed

Figure 5.3: Image 9 PSNR = 30.409 dB

52

(a) Original

(b) Reconstructed

Figure 5.4: Image 13 PSNR = 32.249 dB

53

(a) Original

(b) Reconstructed

Figure 5.5: Image 16 PSNR = 30.271 dB

54

CHAPTER 6

LOSSY LZW–FLUSH

6.1 Introduction

In endoscopy applications, the quality of captured images plays an important role in di-

agnosing a disease. Higher quality images require higher level representative data. As

mentioned in the first chapter, there are two concerns; powerconsumption, and area usage.

Therefore, streaming of high quality images is somehow impossible. In such applications,

the streaming of high quality images is not considered an issue, rather, the quality of the

image taken from the interested zone is important. If by a simple change in the data en-

coder (tolerable hardware cost), the quality of images becomes under control, the target

would be achieved. In this chapter, a filter is proposed to investigate this problem. Later,

the algorithm and the proposed hardware are presented.

6.2 Lossy LZW–Flush

6.2.1 Weber–Fechner Law

The actual magnitude of a physical quantity measured by a proper instrument is not the

same as the perceived one. For example, assume a person is asked to hold a 1 Kg package

55

of sand for a few seconds. In case a few seconds later, the sandpack is replaced with

another one weights 1.01 Kg, that person can not discriminate the weight difference of the

two packs. Weber–Fechner attempts to define the relationship of physical magnitude and

their perceived one [43]. In case of vision, it is discoveredthat the eye senses brightness

approximately logarithmically [44]. This means that the discrimination boundary of the

human vision, i.e. the threshold, varies logarithmically with respect to the intensity range.

In [45], the intensity range versus threshold curve is depicted. By taking advantage of

the Weber–Fechner feature, a set of pixels having a non-differentiable range of intensity

(Weber’s law) can be converted to a set of pixels with the sameintensity. For example,

assume that we have three different intensities of{30, 31, 28}. If these three intensities

are converted to{30, 30, 30}, a human eye can not differentiate between the two sets from

each other. Hence, the redundancy of some intensities are increased in the image. In the

following section, taking advantage of this feature, a new filter is designed to exploit the

Weber–Fechner law to increase the redundancy of image data.

6.2.2 Algorithm

In the following, the proposed filter is presented. The pixelintensity of the first symbol of

input stream is taken as reference and is stored in r. Then, the absolute difference of the

next symbol and the reference is calculated and stored ind. If d is less than or equal to the

defined threshold (calculated from weber’s law), the symbolvalue in the input stream is

replaced withr, in other casesr takes the symbol value. This process is carried on for the

rest of symbols in the input stream.

56

As mentioned in the previous section, there are different thresholds for different inten-

sity ranges. These thresholds are logarithmically relatedto the intensity ranges. Therefore,

to find the proper threshold, there is a need to implement the intensity range–threshold

curve on a lookup table. The lookup table size for the full range is 256 bytes. To simplify

the process and get rid of the adaptive threshold, a fixed threshold is considered for all

ranges. The flowchart of this algorithm is depicted in figure 6.1. The pseudo code for the

algorithm is shown in the following:

1. take the first symbol from input stream, and store it as reference, r

2. take the next symbol,x

3. if |r − x| = d ≤ threshold then replacex with r

4. if |r − x| = d ≥ threshold then replace r withx

5. if the input stream is not exhausted get back to step 2

In the following, an example is given which presents how the filter algorithm works.

In this example, the input stream is{15, 29, 28, 20, 14} and Threshold is tr = 3.

• r ← 15 andx← 29

• |r − x| = |15− 29| = 14 > 3⇒ r ← 29, x← 28

• |r − x| = |29− 28| = 1 < 3⇒ r ← 29, x← 20

57

• |r − x| = |29− 20| = 9 > 3⇒ r ← 20, x← 14

• |r − x| = |20− 14| = 6 > 3⇒ r ← 14, (nomoreinputsymbol)

• filtered output ={15, 29, 29, 20, 14}

6.2.3 Proposed Lossy LZW–Flush

The architecture of the proposed lossy LZW–Flush is shown infigure 6.2. Lossy LZW–

Flush is composed of the proposed filter and the LZW–Flush encoder. This algorithm is

called lossy as the filter pixels can not be retrieved back in the reconstruction process. The

proposed compressor, has two parameters which affect the compression results; the filter

threshold value, and the LZW–Flush library size. To study the effect of each parameter,

20 medical images are encoded by the proposed data compressor.

The threshold value affects the PSNR and CR of the reconstructed image. The simu-

lation results are depicted in figures 6.3, and 6.4. In figure 6.4, five arbitrary images are

chosen to show the effect of the threshold on CR. In this simulation, the library size is

fixed to 4096 bytes. Figures 6.5, 6.6, and 6.7 show three different medical reconstructed

sample images. In each figure, the effect of the threshold on the reconstructed images can

be observed.

As it can be seen from the figures, when the threshold exceeds 5, the art effect starts

to appear significantly. In other aspect, threshold 5 results in acheiving the mean PSNR

above 41.04dB which provides satisfying results which are also acceptable by medical

58

òóôõ ó ö÷øùúû üýúøþÿ��� ö�ýõóø óÿ�öó�õ þ� úÿ �
�ö ��	
 � � þÿ ��õûþùýóý÷ ��������õ �ú�õüúý ��	

��� ��	
 � ��ú ûþùýóý÷ óö óÿõ� õÿ�ý÷��
��� ��	
���� �
������� ��	
���� ��	
 � �

�ÿ��� ö�ýõóø þöõ��ó�ö�õ�

��óý�

�ÿ�

�ø��÷��	

�þùýóý÷ þöü�ûû ûõóý ��õõÿ� þýõ ûþùýóý÷��������õ !�"#�ö÷øùúû
��������õ �ú�õüúý ��	

 ûõóý ýõüõýõÿ�õ $ý%óÿ��õ� ��õ ��ýõö�úû� $�ý%

&ú 'õö

&ú 'õö

�ü (ý) �(* �ý&ú+��ó�õ � � þ�� ý 'õö

'õö &ú

Figure 6.1: The lossy LZW–Flush algorithm flow chart

59

,-. /0 1-. 23040567 89:/63 ;<=-8:>5? @AB076323040567 C0D4365503
Figure 6.2: Block diagram of proposed lossy LZW–Flush

phicisions. By increasing the threshold, the compression ratio is increased respectively

(figure 6.4).

0 5 10 15 20
30

35

40

45

50

55

60

Image No.

P
S

N
R

Tr = 2
Tr = 3
Tr = 4
Tr = 5
Tr = 6
Tr = 7
Tr = 8
Tr = 9
Tr = 10
Tr = 1

Figure 6.3: Effects ofTr on PSNR

The hardware architecture of the proposed filter is shown in figure 6.8. It consists

of a register, two comparators, two adders, and three multiplexers 2:1. The register has

two functionalities which include working as the referenceregister as well as holding

60

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Threshold

C
R

(%
)

Image 1
Image 8
Image 13
Image 18
Image 20

Figure 6.4: Effects ofTr on CR of five arbitrary capsule endoscopy images

the filtered input symbol. The reset pin clears the content ofthe output register. The

threshold value is added to and subtracted from the output register value and respectively

is compared with the input symbol by two comparators. If the input symbol is not in the

defined boundary, the output register is updated with the input symbol.

6.3 Performance Evaluation

In [45], Chiang,el proposed a new lossy LZW. In their work, they exploit Weber’s law

and apply the threshold to the index of the LZW library. In order to implement that, an

exhaustive search through the dictionary is required. Fromthe hardware implementation

aspect, it obviously needs more significant hardware resources compared to the proposed

lossy LZW–Flush. In table 6.1, the CR and the PSNR of two standard images are shown.

61

Table 6.1: Compression performance of the proposed lossy encoder

Image Name
Chiang et al. [45] Proposed

Lossless LZW Lossy LZW Lossy LZW–Flush

CR(%) CR(%) PSNR(dB) CR(%) PSNR(dB)

Lena 7.06 43.68 33.58 45.84 38.10

Air-plane 15.22 66.47 34.90 67.83 32.16

Baboon 3.83 27.18 29.31 26.44 36.41

Table 6.2: Hardware cost of lossy LZW-Flush algorithm

Technology Logic cells Registers Freq. Power

Cyclone II 2662 1954 69.05 MHz 35.6 mW

As it can be observed, the Chiang’s method provides better results in terms of CR, while

both algorithms’ PSNR are about the same.

In this regard, due to having a simple algorithm, a simple hardware architecture is ex-

pected. Therefore, the proposed method would be a good candidate in application but it

has limitations of power consumption and area usage. Table 6.2 shows the hardware cost

of the implementation of this algorithm on to the Cyclone II FPGA. Figure 6.9 shows the

reconstructed images which were compressed by the proposedalgorithm.

62

6.4 Summary

This chapter proposed a new filter which increases the redundancy of the input stream.

The composition of this filter with the proposed LZW-Flush results in a novel lossy com-

pression algorithm. The effect of this algorithm was evaluated and simulated with over

20 medical images. The hardware architecture and the cost ofthis algorithm were also

presented. The results guarantee that this algorithm wouldbe a good solution for those

applications which require relatively high quality but also have the limitations of resource

consumption, area and power usage.

63

(a) Tr = 1 (b) Tr = 2

(c) Tr = 3 (d) Tr = 4

(e)Tr = 5 (f) Tr = 6

(g) Tr = 7 (h) Tr = 8

(i) Tr = 9 (j) Tr = 10

Figure 6.5: Gray scale of image 6 (Tr = 1 to 10)

64

(a) Tr = 1 (b) Tr = 2

(c) Tr = 3 (d) Tr = 4

(e)Tr = 5 (f) Tr = 6

(g) Tr = 7 (h) Tr = 8

(i) Tr = 9 (j) Tr = 10

Figure 6.6: Gray scale of image 13 (Tr = 1 to 10)

65

(a) Tr = 1 (b) Tr = 2

(c) Tr = 3 (d) Tr = 4

(e)Tr = 5 (f) Tr = 6

(g) Tr = 7 (h) Tr = 8

(i) Tr = 9 (j) Tr = 10

Figure 6.7: Gray scale of image 16 (Tr = 1 to 10)

66

EF GH I JKL M LN LO P LQF RS TRTUVW XY V Z [\

]^ _H I GH IJJ]

J
(a) Hardware architecture

(b) RTL view

Figure 6.8: Proposed filter hardware architecture and RTL view

6
7

Figure 6.9: Reconstructed colour image Lena

68

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary Of Accomplishments

Capsule endoscopy examines some parts of the tracts that cannot be discovered using

other types of endoscopies. The architecture of such a capsule includes an image com-

pression system which is responsible for doing transformations as well as making com-

pressions using encoding algorithms. In this thesis, we putforward a comparative study

of different encoding algorithms and their differences in terms of compression ratio, re-

constructed image quality, and the algorithm simplicity which result in a potential encoder

exploiting low power and area consumption.

Different encoding algorithms, including Huffman encoding, LZW, LZW–Flush, Arith-

metic, LZ77, LZ78, and JPEG were introduced and a study of each approach was pre-

sented. Later, a new zigzag scan method was presented and applied to the image compres-

sion component. The results of the proposed scan method along with different encoding

algorithms were simulated using different images. LZW–Flush presented better compres-

sion ratio compared to other approaches. Thus, LZW–Flush was chosen as the encoder

providing higher compression rates and its hardware was implemented to investigate the

69

hardware cost of this method.

The compression ratio results of other approaches; LZW, Huffman encoding, LZ78,

and LZW, were not significantly different from LZW–Flush. Thus, evaluations were done

to compare the hardware cost, power consumption, and area usage of these methods. The

evaluation results showed that in overall, still LZW–Flushprovides better performance in

terms of all these parameters. The claims behind this argument can be summarized as

follows:

• The reconstructed images provide high quality in terms of PSNR. Thus, the first

objective of selecting a high qulaity encoding algorithm was achieved.

• LZW–Flush has the highest compression rate compared to other methods. There-

fore, as less data is transmitted, the amount of power consumption is less.

• It requires an affordable size of RAM to accomplish the encoding.

• Due to the simplicity of the algorithm and its low hardware cost, LZW–Flush would

be a potential candidate having low power and area consumption.

As the encoding approaches used in the simulation phase wereall lossless compression

techniques, we later studied the effects of applying lossy LZW–Flush approach to the

compression system. The experiments showed that with the addition of a small tunable

hardware to the lossless LZW–Flush, an encoder is achieved which has a compression

ratio better than lossless. The results provide high quality reconstructed images having

satisfiable compression ratio.

70

7.2 Future Works

As the implementation has been done in FPGA, our future trends are toward VLSI imple-

mentation of the encoder to find the actual power consumptionand area usage. Different

search techniques are to be investigated in order to discover the optimal method which best

fits these types of applications in terms of VLSI design, hardware implementation, and la-

tency. In order to extend the research accomplished on lossyencoding, different schemes

of the applied filter will be investigated with the purpose ofreordering data toward in-

creasing pattern redundancy. This we believe would help in increasing the compression

ratio of the lossy approach.

71

REFERENCES

[1] K. Wahid, S.-B. Ko, and D. Teng, “Efficient hardware implementation of an image
compressor for wireless capsule endoscopy applications.,” in IJCNN, pp. 2761–2765,
2008.

[2] Zver, “http://projects.hudecof.net/diplomovka/online/ucebnica/html/alglz77.html/.”

[3] I. M. Pu, Fundamental Data Compression. Butterworth-Heinemann, 2006.

[4] W. Kinsner and R. Greenfield, “The Lempel-Ziv-Welch (LZW) data compression al-
gorithm for packet radio,” inIEEE Western Canada Conference on Computer, Power
and Communications Systems in a Rural Environment, pp. 225–229, 1991.

[5] “http://nobelprize.org/nobelprizes/physics/laureates/1901/rontgen-bio.html.”

[6] A. Meyer-Bse,Pattern recognition for medical imaging. Academic Press, 2003.

[7] Wikipedia, “http://en.wikipedia.org/wiki/medicalimaging.”

[8] J. T. Bushberg, J. A. Seibert, E. M. L. Jr., and J. M. Boone,The Essential Physics of
Medical Imaging. Lippincott Williams and Wilkins, 2001.

[9] Wikipedia, “http://en.wikipedia.org/wiki/endoscopy.”

[10] G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,”
Nature, vol. 405, no. 6785, p. 417, 2000.

[11] H. Kotze and G. Kuhn, “An evaluation of the Lempel-Ziv-Welch data compression
algorithm,” in Proc. of the Southern African Conf. on Comm. and Signal Proc.,
pp. 65–69, 1989.

[12] P. Cosman, R. Gray, and R. Olshen, “Evaluating quality of comppressed medical
images: SNR, subjective rating, and diagnostic accuracy,”Proceedings of the IEEE,
vol. 82, no. 6, pp. 919–932, 1994.

[13] D. Salomon,Data Compression. Springer, 3rd ed., 2004.

[14] F. Gong, P. Swain, and T. Mills, “Wireless endoscopy,”Gastrointestinal endoscopy,
vol. 51, no. 6, pp. 725–729, 2000.

[15] M. J. Weinberger, G. Seroussi, and G. Sapiro, “From logo-i to the jpeg-ls standard,”
in Proc. Int. Conf. Image Processing ICIP 99, vol. 4, pp. 68–72, 1999.

72

[16] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 22, pp. 379–423, 1948.

[17] J. Trein, A. T. Schwarzbacher, B. Hoppe, and K. H. Noff, “A hardware implementa-
tion of a run length encoding compression algorithm with parallel inputs,” inSignals
and Systems Conference, pp. 337–342, 2008.

[18] D. Huffman, “A method for the construction of minimum redundancy codes,”Pro-
ceedings of the IRE, vol. 40, no. 9, pp. 1098 –1101, 1952.

[19] T. Kumaki, Y. Kuroda, T. Koide, H. Mattausch, a. K. D. H. Noda, K. Arimoto, and
K. Saito, “CAM-Based VLSI architecture for huffman coding with real-time opti-
mization of the code word table,” inIEEE International symposium on Circuits and
Systems, vol. 5, pp. 5202–5205, 2005.

[20] “http://anupom.wordpress.com/2006/10/09/huffman-coding/.”

[21] M. L. Lu and C. F. Chen, “An encoding procedure and a decoding procedure for a
new modified huffman code,”IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 38, no. 1, pp. 128–136, 1990.

[22] “ISO \ IEC 10918 Information Technology,” 1994.

[23] W. W. Lu and M. Gough, “A Fast-Adaptive Huffman coding algorithm,” IEEE
Transactions on Communications, vol. 41, no. 4, pp. 535–538, 1993.

[24] J. S. Vitter, “Design and analysis of dynamic huffman coding,” 26th Annual Sympo-
sium on Foundations of Computer Science, vol. 34, no. 4, pp. 825–845, 1985.

[25] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”IEEE
Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[26] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate cod-
ing,” IEEE Transaction on Information Theory, vol. 24, no. 5, pp. 530–536, 1978.

[27] T. Welch, “A technique for high-performance data compression,”Computer, vol. 17,
no. 6, pp. 8–19, 1984.

[28] S. Bunton and G. Borriello, “Practical dictionary management for hardware data
compression,”Communication of the ACM, vol. 35, no. 1, pp. 95–104, 1992.

[29] M. Yang and N. Bourbakis, “An overview of lossless digital image compression tech-
niques,” inProc. 48th Midwest Symp. Circuits and Systems, pp. 1099–1102, 2005.

[30] N. Ahmed, T. Natarajan, and K. R. Rao., “Discrete cosinetransform,”IEEE Trans-
actions on Computers, vol. 23, no. 1, pp. 90–93, 1974.

[31] R. C. Gonzalez and R. E. Woods,Digital Image Processing (2nd Edition). Prentice
Hall, 2002.

73

[32] “http://www.mathworks.com/.”

[33] M. Shen, C. Lee, and J. Bor, “A 4.0-mW 2-Mbps programmable BFSK transmit-
ter for capsule endoscope applications,” inAsian Solid-State Circuits Conference,
pp. 245–248, 2005.

[34] R. Samanta and R. N. Mahapatra, “An enhanced CAM architecture to accelerate
LZW compression algorithm,” in20th International Conference on VLSI Design,
pp. 824–829, 2007.

[35] L. Ming-Bo, “A hardware architecture for the LZW compression and decompres-
sion algorithms based on parallel dictionaries,”Journal of VLSI Signal Processing
Systems, vol. 26, no. 3, pp. 369–381, 2000.

[36] N. Ranganathan, “Efficient VLSI for Lempel-Ziv compression in wireless data com-
munication networks,”IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 6, no. 3, pp. 475–483, 1998.

[37] J. Venbrux, P. Yeh, and M. Liu, “A VLSI chip set for high-speed lossless data com-
pression,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 2,
no. 4, pp. 381–391, 1992.

[38] C. Su, C.-F. Yen, and J. Yo, “Hardware efficient updatingtechnique for lzw codec
design,” inIEEE International Symposium on Circuits and Systems, pp. 2797–2800,
1997.

[39] S. Rigler, “FPGA-Based lossless data compression using GNU Zip,” Master’s the-
sis, University of Waterloo, 2007.

[40] E. Jamro, M. Wielgosz, and K. Wiatr, “FPGA implementation of the dynamic
Huffman encoder,” inProceedings of IFAC workshop on programmable devices and
embedded systems, 2006.

[41] W. Cui, “New LZW data compression algorithm and its FPGAimplementation,” in
Picture coding symposium, 2007.

[42] M. Abdelghany, A. Salama, and A. Khalil, “Design and implementation of FPGA-
based systolic array for LZ data compression,” inIEEE international symposium on
circuits and systems, pp. 3691–3695, 2007.

[43] M. R. Longo and S. F. Lourenco, “Spatial attention and the mental number line: Ev-
idence for characteristic biases and compression,”Neuropsychologia, vol. 45, no. 7,
pp. 1400–1407, 2007.

[44] J. Shen and Y.-M. Jung, “Weberized Mumford-Shah model with Bose-Einstein pho-
ton noise,”Applied Mathematics and Optimization, vol. 53, no. 3, pp. 1432–0606,
2006.

[45] S. Chiang and L. Po, “Adaptive lossy LZW algorithm for palettised image compres-
sion,” Electronics Letters, vol. 33, no. 10, pp. 852–854, 1997.

74

