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ABSTRACT 

  

 

The primary objective of this research was to investigate the feasibility of 

calibrating ultrasound scanners to measure surface impedance from reflection data.  The 

method proposed uses calibration curves from known impedance interfaces.  This plot, 

or calibration curve, may then be used, with interpolation, to relate measured grey level 

to impedance for the characterization of tissue specimens with unknown properties.  

This approach can be used independent of different medical ultrasound scanner systems 

to solve for reproducible tissue impedance values without offline data processing and 

complicated custom electronics. 

Two medical ultrasound machines from different manufacturers were used in the 

experiment; a 30 MHz and a 7.5 MHz machine.  The calibration curves for each 

machine were produced by imaging the interfaces of a vegetable oil floating over 

varying salt solutions.  

To test the method, porcine liver, kidney, and spleen acoustical impedances were 

determined by relating measured grey levels to reflection coefficients using calibration 

curves and then inverting the reflection coefficients to obtain impedance values.  The 30 

MHz ultrasound machine’s calculated tissue impedances for liver, kidney, and spleen 

were 1.476 ± 0.02, 1.486 ± 0.02, 1.471 ± 0.02 MRayles respectively.  The 7.5 MHz 

machine’s tissue impedances were 1.467 ± 0.09, 1.507 ± 0.09, and 1.457 ± 0.09 

MRayles respectively for liver, kidney and spleen.  The differences between the two 

machines are 0.61%, 1.41%, and 0.95% for the impedance of liver, kidney, and spleen 

tissue, respectively. If the grey level is solely used to characterize the tissue, then the 

differences are 45.9%, 40.3%, and 39.1% for liver, kidney, and spleen between the two 

machines.  The results support the hypothesis that tissue impedance can be determined 

using calibration curves and be consistent between multiple machines. 
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1. INTRODUCTION 
 

 

1.0 Overview  

 

Ultrasonography is an extremely useful tool that is primarily used as an in vivo 

method of examining anatomical structures.   Ultrasound (US) is now capable of high 

resolution real time imaging that is contained in a small, durable, and economical 

package.   It is testament to the importance of ultrasound that almost 25% of all imaging 

studies worldwide are ultrasound examinations [1].   With so many machines around the 

world and with so many manufacturers producing the machines, there is, however, no 

standard on how the signals received from the internal structures in the body are 

displayed for the practitioner.   It is, therefore, important to develop a method for 

analyzing the final image without knowledge of the specific signal processing because 

signal processing varies widely from machine to machine, and is often inaccessible to 

the researcher or practitioner.    

Assessment of tissue impedance would enhance the use of clinical ultrasonography 

as a method of non-invasive diagnosis.   For example, changes in tissue impedance may 

be reflective of cancer or may enable pre-operative prediction of skin plasticity and post-

operative repair.   It will be very useful to develop a method of converting the visual 

output of any ultrasound machine to quantitative impedance values.  Ultrasound models 

are based on the assumption that the signal received from the tissue interface is primarily 

due to reflection as opposed to scattering.    However, depending on the ultrasound 

frequency and the nature of the tissue surface, the actual tissue interface may become a 

scatterer and accepted models cannot be applied.    
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1.1 Ultrasonography 
 
 
 
1.1.1 Principles of Ultrasound  
 
 

Ultrasound refers to the range of acoustic frequencies which are above the 

human range of hearing (i.e., frequencies greater than 20 KHz).  An ultrasound scanner 

is used to produce high-frequency pressure pulses that are emitted into soft tissues to 

create and display a cross-sectional image of the tissue [2], [3], [4], [5].  Medical 

ultrasound is performed with ultrasound frequencies in the range of 1 � 20 MHz [2], [6].   

The high frequency sound waves penetrate the body tissue at a speed of 1450 to 1580 

meters per second, depending on the type of tissue [7].  An ultrasound scanner converts 

energy signals from the console into acoustic signals through piezoelectric crystals.    

The transducer is responsible for the transmission and reception of ultrasound 

waves [2], [3], [4], [5].  The piezoelectric material is a ceramic such as lead zirconate 

titanium (PZT) that is embedded into an epoxy matrix [1], [2].  The piezoelectric 

elements can be shaped into rectangular, planar disks, and concave disks depending on 

the shape of the scanner head and the frequency that is needed.  Transducers are made 

up of a number of layers that facilitate the sending and receiving of the ultrasound pulse.   

See Figure 1.1 for a simplified diagram of the transducer.  Starting at the surface, a 

typical transducer comprises: 1) a protective layer, 2) a lens, 3) matching layers, 4) an 

active piezoelectric material (with electrodes and connections), and  5) a backing block  

[1], [2], [5].  The backing material is applied to the piezoelectric crystal to allow 

damping to prevent excessive �ringing� of the crystal after excitation.  The lens allows 

the ultrasound energy to be focused upon a fixed area of interest.  The matching layers 

are necessary to allow as much energy into the tissue as possible (i.e., reducing 

reflections at the transducer-tissue interface).    



 - 3 -

 
 

FIGURE 1.1 Internal assembly of a transducer.  
 

 

1.1.2 Ultrasound Echoes 

 

Once the pulse has entered the tissue a number of factors influence its reflection 

back to the transducer.  Sound waves are reflected only where differences in acoustic 

impedance occur [2], [8].  Acoustic impedance, Z, is controlled by the tissue density, ρ, 

and the local sound velocity, c, as shown by:  

 

cZ ρ= .          (1.1) 

 

The metric units of acoustical impedance are Rayles [ ]smg ⋅2 .  The signal 

received back from the tissue is influenced by the reflection and scattering of sound 

waves at organ and tissue interfaces and scattering within heterogeneous tissues [3].  

Figure 1.2 depicts the typical causes of attenuation from heterogeneous tissue.   
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FIGURE 1.2 Attenuation of ultrasound waves passing through different media.  

Reproduced from [5]. 
 

 

If the ultrasound beam makes perpendicular incidence with an interface of two 

different impedance materials, then some of the beam will be reflected back towards the 

transducer while the remainder will be transmitted [2], [3], [5], [8].  The strength of the 

returning beam will depend on the difference between the impedances of the interface 

materials.  If the incident beam strikes a �smooth� interface at an angle, then the beam 

will appear to �bend� at the interface.  The difference in impedance at the interface 

determines the angle of refraction.  The amount of refraction is predicted by Snell�s law  

 

1

2

i

t

c
c

sin
sin

=
θ
θ

          (1.2) 

 

where c1 is the speed of sound on the incident side of the interface, c2 is the transmitted 

speed of sound, and θt and θi are the transmitted and incident beam angles respectively. 

Snell�s law relates the transmitted beam direction to the incident beam direction and the 

speeds of sound in the two materials forming the interface [2].  An interface that is not 

perfectly smooth and appears rough with respect to the acoustic wavelength will be a 

scatterer.  If the reflecting object is comparable in size to or smaller than the wavelength, 

or if a larger object does not have a smooth surface, the incident beam will be scattered 

[2], [3], [5], [8].  Backscatter is the small portion of the scattered echo that returns to the 
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transducer.  See Figure 1.3 for the difference between interface scattering and scattering 

within a medium (specular).  Modern ultrasound machines rely heavily on scatterers as 

they indicate tissue parenchyma (echogenicity) and not just the interfaces.   

 

 
Scattering at an interface Scattering within a  

heterogeneous medium 
 
FIGURE 1.3 Ultrasound beam scatterers: A rough and specular example.  Reproduced 

from [3]. 
 
 

Because tissues differ so much internally due to clusters or groups of cells mixed 

with connective tissue and vasculature, each tissue will vary in echogenicity. 

As the ultrasound beam travels into the tissue from the transducer, the amplitude and 

intensity will be reduced.  Attenuation encompasses absorption (conversion of sound to 

heat as the sound propagates) and the refraction and scattering of the sound as it 

encounters tissue interfaces and heterogeneous tissues [2], [3], [5], [8].  Absorption by a 

particular tissue is mainly dependent on the intercellular adhesive forces [9]. 
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1.1.3 Ultrasound Imaging 
 

 

All of the factors described in Section 1.1.2 will influence how the image is 

formed on the output screen of the ultrasound scanner, but the electronics and the 

transducer type determines how well they can be represented.  Figure 1.4 shows a 

simplified block diagram highlighting important features of the ultrasound scanning 

system. 

 

 
 

FIGURE 1.4 Simplified components of an ultrasound system.  Adapted from [2]. 
 

 

Modern ultrasound imaging is based upon the process of echo-ranging [2], [3], 

[8].  As each pulse travels into the tissue it undergoes reflection at interfaces.  The 

ultrasound machine will wait for the echo and attribute certain properties to the returned 

pulse.  The properties of the returned pulse can be calculated from two basic equations.  

The first of these is 

 

2
cTd =           (1.3) 
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where d is the distance of an echo causing object from the transducer, T is the time 

delay, and c is the average speed of sound.  The second equation relates the received 

signal strength to the original signal strength. 

 

( ) ( ) )t(I)t(A)t(BttS ⋅⋅⋅Γ=        (1.4) 

 

where S(t) is the received signal strength, Γ(t) is the original signal pulse strength, B(t) is 

a measure of the transducer properties, A(t) is the attenuation of the medium, and I(t) is 

the strength of the reflected signal.  Use of Fourier transforms converts equation (1.4) 

from the time domain to the frequency domain.   

In order to use these descriptive equations, first the ultrasound scanner circuitry 

must transmit a pulse into the tissue.  In pulse emitter mode, the beam former controls 

the individual piezoelectric elements within the transducer by pulse-delay sequences in 

order to achieve transmission and reception focus [2], [3], [8].  The pulses from the 

beam former are controlled by the transmitter clock and control circuitry.  Once the 

pulse has been received back from the tissue, the receiver begins to process the signals 

for display.  The weak analog return signal is first amplified and then attenuation 

compensation can be applied.  Attenuation compensation on ultrasound scanners is 

called time gain compensation [TGC] and depth gain compensation [DGC] [2], [3], [6], 

[8].  Compensation can be set by the operator or automatically and is used to equalize 

the differences in echo amplitude from reflectors at different depths.  If on automatic, 

the receiver will increase the gain as a function of time after each transmitter pulse.   

After amplification, the analog signal is converted through an analog to digital 

converter.  The scan converter combines the information from the sensing and control 

circuitry to produce a scan line.  A single scan line is composed of hundreds of x, y pixel 

addresses (position) and z pixels (intensities).  All of the scan lines are summed together 

and signal and image processing is applied to give the final output image.  The signal 

processor functions as a filter to eliminate noise and to compress the output signal to the 

familiar 8 bit or more resolution.   
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1.1.4 Imaging modes 

 

Most ultrasound books that cover topics in ultrasonography will review the 

different types of imaging modes [2], [3], [5], [6], [8].  The imaging mode is selected 

depending on the application.  When spatial information is needed A-mode and/or B-

mode is selected while if motion and velocity information is needed, then M-mode 

and/or Doppler is selected.  The following section is a brief description of the different 

modes.   

The simplest ultrasound mode is the A-mode output.  It is based on the pulse 

echo technique.  The A-mode represents the instantaneous echo signal amplitude versus 

time after transmission of an acoustical pulse [2].  Each amplitude peak corresponds to a 

tissue interface of different impedances.  The position of the interface can be established 

by measuring the difference in the peaks.  The A-mode output is poor for visualization 

but the information can be obtained quickly.   

B-mode is the natural progression from A-mode where the information is 

presented as an image.  See Figure 1.5 to see how a B-mode image is produced from an 

A-mode scan.  The data from the B-mode is combined to produce a two-dimensional 

greyscale image.  A black to white grey level denotes the intensity.  If the pulse does not 

return from the tissue then it is given a 0 value (black) from the image processor 

whereas if the pulse returns unattenuated then the grey level value is assigned 255 

(white).  B-mode is the most commonly used modality in diagnostic practices today.  

 M-mode is a hybrid of A-mode and B-mode.  The M-mode output is comprised 

of a grey scale output with echo-intensity information overlaid to produce successive 

images where motion appears as wavy lines on the display.  See Figure 1.6 for an 

example of an M-mode display. 
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  A-mode      B-Mode 

 

FIGURE 1.5 Comparison between A-mode and B-mode for the same interfaces and 
scan line.  B-mode is created from the time-amplitude plot of the A-
mode. 

 

 

Quantitative velocity measurements can be obtained from displacements of tissue 

on the image.  Duplex or Doppler mode uses the frequency change of a moving object to 

assess the velocity of the moving object.  By directing the Doppler pulse onto the axis of 

projection, the colour coded frequency shifted echoes are overlaid on a B-mode image.  

The flow (away from the transducer or the flow towards the transducer) determines the 

color of the image.   

 
 

 
FIGURE 1.6 The M-mode display is produced by taking echo information from one 

pulse over time.  Reproduced from [2]. 
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1.2 Objectives of this thesis 

 

The primary objective of the research was to investigate the feasibility of 

calibrating ultrasound scanners to measure surface impedance from reflection data.  It 

must be emphasized, from the onset, that the research objective was the design and 

testing of the calibration method itself.  In most medical ultrasound studies, the 

ultrasonography is used as an imaging tool to test a scientific hypothesis regarding the 

characterization of tissue and related physiological processes.  In contrast, the objective 

here was to develop and improve the tool itself and the experimental measurement of the 

tissue impedance was used only to test or verify that the proposed calibration method 

does indeed constitute an improvement in ultrasound technology. 

A secondary objective was to determine if the maximum grey level intensity is just as 

effective a measure as the conventional mean grey level to measure pixel intensity 

variation.  A comparison  between the measures was formulated to satisfy the objective. 

 

 

1.3 Outline of the Thesis 

  

This thesis is organized into 7 chapters.  Chapter 2 reviews the current research 

into tissue and property assessment through ultrasound.  Echotexture research is also 

reviewed.  Chapter 3 describes the fundamental physics and theory behind acoustic 

ultrasonography.  Chapter 4 describes the experimental method of calibrating ultrasound 

to measure tissue impedances.  Results and discussion are covered in Chapter 5.  

Conclusions are drawn in Chapter 6 while recommendations for future research are in 

Chapter 7. 
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2. LITERATURE REVIEW 
 
 
 
2.1  Tissue Assessment through Ultrasound 
  

Ultrasound has progressed past the initial development stage that was solely 

concerned with producing an adequately high resolution image of tissue.  Researchers 

are now searching within the capabilities of ultrasound to provide more information than 

the pulse-echo image.  The fundamental observation that drives researchers to develop 

tissue characterization techniques is that many tissue types can be categorized in terms 

of their acoustical properties and changes in their acoustical properties can be correlated 

with specific pathological states [10].  Not only is there a connection between acoustical 

properties and pathological status but modern ultrasound scanners use only a portion of 

the information available to them, leaving phase and spectral characteristic largely 

ignored.  This section is a brief literature review of some of the tissue characterization 

techniques that researchers are pursuing. 

 
 

2.1.1 Image Inspection 
 

Perhaps the oldest and most familiar method of tissue characterization comes 

from an experienced radiologist being able to relate the texture of an image to the 

histology [11].  The experienced radiologist, familiar with the settings of the ultrasound 

machine will be able to differentiate between tissues with different speckle or 

echogenicity.  More specifically, changes in ultrasound-tissue interactions such as 

attenuation, velocity, and refraction can be detected [12], [13].  Thus, for example, the 

radiologist can distinguish between the image texture of normal and neoplatic liver 

tissues [14].   
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2.1.2  Echotexture Measurement and Analysis 

 
An attempt to quantify image inspection is the echotexture technique.  

Researchers are using the output of the ultrasound machine to correlate the histological, 

biochemical, and physiological characteristics of the tissues.  The ultrasound output is 

comprised of a two-dimensional matrix of pixels with each pixel having an x and y 

coordinate that specifies location and a z coordinate which specifies the pixel intensity 

[2], [5], [3].  Different tissues at different times will exhibit characteristic appearances 

through the pixels on the output screen.  The characteristic appearance of an examined 

tissue with an ultrasound image has been referred to as the echotexture of the tissue [5].  

Echotexture is characterized by using the average (mean) pixel intensity and the 

variance of the pixel values within a selected area on a digital image.  In order for a 

computer to analyze analog images, the analog image information must be converted to 

a digital format.  Initially, image echotexture developed from visually comparing grey-

scale reference cards to the characterized change in the output image [15], [16], [17], 

[18], [19].  However, it was very difficult for the user to detect small changes in the 

pixel values without having a bias.  Computer analysis eliminates the subjectivity and is 

much more sensitive to changes in specific pixels values (color and greyscale) or the 

distribution of various pixel values (heterogeneity), and can measure very specific areas 

of an image [20], [21], [22], [23], [24].   

Much research is being done using various forms of echotexture.  The 

terminology that is being used includes: texture analysis, speckle analysis, echography, 

echogenicity, echopattern, and many more.  Beekman and Visser have reviewed the 

capability of echotexture to evaluate the nervous system [25].  The review points to 

literature that covers normal and abnormal echotexture of peripheral nerves, 

differentiating muscles from nerves, and possible therapeutic strategies.   Statistical 

analysis of echogenicity was used with high-resolution ultrasound as a method of 

distinguishing between benign and malignant skin lesions [26].  Echotexture has begun 

to progress beyond the need for human interaction.  Momenan et al. [27], [28] have 

developed unsupervised analysis from a learning technique that was used to detect 

tumors and discriminate between neighboring tissues (kidney and liver).  The analysis 

uses 2nd order statistics extracted from speckle in conventional B-scans.  Lerski et al. 
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[29] use texture analysis as possible indicators of histology and pathology for the 

detection of human liver disease.  Increased echogenicity of the kidneys allows for the 

differentiation of normal and abnormal tissue but does not allow a pathological 

diagnosis to be performed, and the ultrasound must be used with a biopsy to characterize 

the pathology [11].  It should be noted that this is just a sampling of the enormous field 

that is echotexture analysis. 

 
 

2.1.3 Scattering Characteristics 
 

Because tissues tend to be inhomogeneous and comprised of rough interfaces, 

there is increasing interest in scattering phenomena and their quantification.  However, 

waves in random media presents one of the most challenging problems to theoreticians 

[30].  Most studies in scattering characterization center around three principles: 

frequency dependence of the scatterer, angular reflection of the scatterer, and analysis of 

the amplitude of the scattered echo.   

There are many mathematical models describing how much reflection from 

scatterers will be returned [31], [32], [33], [34].  Backscatter measurements made on 

blood, eye, liver, spleen, brain, and heart show the feasibility of differentiating tissues 

and determining scatterer spacing [35].  It has been shown that for tumors there is a 

marked disorganization of the cellular structure and those new malignant formations 

have the same dimension as the wavelengths of ultrasound being used.  It is probable 

that the energy lost by scattering within cancerous tissues exceeds that of the absorption 

energy [9].  It has also been shown that when the beam strikes the scattering volume the 

acoustic pressure acting on each point will be different and an averaged or smoothed 

approach must be used.  With this technique Campbell and Waag distinguished between 

benign and malignant liver scattering and correlated it back to microscopic observations 

[36].  Heckmatt and Leeman used ultrasonic scattering to define the stage and type of 

muscular disease in children [37], [38].    

Spectral analysis of the backscattered signal must take into account the effects of 

diffraction which acts like a frequency filter [9].  The spectral analysis technique was 

developed by Lizzi et al. [39] and King et al. [40].  It can provide theoretical predictions 
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for scatterer size and concentration [32].  Backscattered spectra can be used to 

differentiate between tissues (fatty tissue, liver, spleen) [41].  A great deal of  research 

has been directed towards characterizing tissue scattering from the spectra [42], [43], 

[44], [45], [46], [47].  Angular spectral scattering can only be assumed on tissues that 

give rise to Bragg scattering.  Tissues that are well suited to this analogy are muscular 

tissue, glandular structures such as the spleen and thyroid, and the liver with its 

hexagonal lobules [9].   

Analysis of the statistical amplitude distribution for diseased and normal tissue 

was shown to be a useful complementary tissue characterization [48].  The analysis of 

backscatter spectra provides the backscattering coefficient parameter [33], [49].  The 

technique characterizes the variations of frequency from a region of interest that is 

interrogated from different angles.  Backscattering spectra were used to characterize 

hyperplastic spleen and atheromatous aorta specimens [50].  Both tissues exhibited a 

decrease in the largest peak when diseased.  Newer backscatter models are being 

developed that assume strict boundary conditions in order for the iterative calculations 

of reflected and transmitted waves at rough interfaces to work [51].   

 

 

2.1.4 Doppler Signals 

 

The Doppler signal is widely used to study blood flow.  This can be used towards 

tissue characterization by measuring the pulsing of the tissue with time.  However a 

much different detection algorithm must be employed to detect the displacement and 

frequency of a vibrating tissue [52], [53].  The Doppler technique has been shown to 

also characterize tumors.  In comparison with normal breast arteries and benign lesions, 

malignant tumors tended to have Doppler signals of higher frequencies [54], [55], [56], 

[57].  Development of a tumor is associated with the development of new blood vessels.  

Differentiation of tumor types through duplex Doppler has been clinically proven [58].  

Contrast agents, such as encapsulated microbubbles, further enhance blood pools and 

jets for tissue characterization as well as echogenicity of a malignant tumor [59].  

Kruskop et al. [60] used a single A-mode Doppler to measure tissue flow under external 
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vibration and found tissue elasticity.  Charting tissue changes from external stimuli (i.e., 

drugs) is an emerging field and only preliminary research has been done [61].   

 
 
2.1.5 Non-linearity of signal propagation 

 

The assumption that ultrasound propagation through media is linear may not be 

valid [62], [63].  The second order, non-linearity parameter, B/A is used to characterize 

biological tissue [64].  The variation of velocity is proportional to the B/A parameter by 
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where c is the sound velocity, ∆P is the change in sound pressure, and co and ρo are the 

initial sound velocity and density under static pressure [65].  The physical meaning of 

this expression is connected to the relationship between acoustic pressure and density of 

a medium.  If the acoustic pressure is written as a general series expansion in medium 

density, then the coefficient of the first order term is A while the coefficient of the 

second order term is B.  The dimensionless parameter is found by solving a Taylor series 

expansion of adiabatic changes in a medium solved through either a finite element or a 

thermodynamic method [66] and is related fundamentally to the physical properties of 

the medium.  B/A values have been published in order to create the necessary reference 

in characterizing tissues.  Spleen, liver, breast, kidney, and melanoma have been 

characterized with the non-linear B/A value [67].  Ichida and Sato have measured B/A 

values in vivo and have produced tomographic images [65].   

 

 

2.1.6 Motion of Tissue and Elastography 

 

Since echogenicity and the stiffness of tissue may not be correlated, it is 

expected that imaging tissue stiffness or strain will provide new information that is 

related to pathological tissue structure.  Not everyone agrees that elastic properties of 
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tissue and echogenicity are not linked and the echographic visibility may be determined 

by how much collagen resides in the tissue [68].   Certain types of tissues have markedly 

different elastic properties as compared to surrounding tissues.  Elastic tissue methods 

map the connection between Young�s modulus, Poisson�s ratio, and viscosity to tissues.  

It is interesting to note that the primary viscoelastic theory used in elastography is 

analogous to the relaxation theory in attenuation [69].  Young�s modulus has been found 

for prostate specimens [70] but there is a need to gain more information about this 

parameter for other tissues such as breast, kidney, liver, and heart for it to be an effective 

method of tissue characterization.   

To study tissue motion, Oestreicher et al. [71], [72] used mechanical vibrations 

to acquire wave propagation patterns. With the surface wavelength and wave speed they 

explained that impedance of tissue increases with increased frequency.  Using M-mode 

signals from aortic pulses of the liver, Wilson and Robinson [73] characterized healthy 

liver tissue.  Along the same lines but with A-mode, Dickinson and Hill [74] and 

Tristam et al. ([75], [76]), evaluated tissue by measuring a correlation parameter 

between successive A-scans.  Using cardiac pulsations of the fetal lung and ultrasound 

B-mode images, Birnholz and Ferrel [77] postulated that stiff lung tissue transmits 

cardiac pulsation as a whole rather than local deformations.  Eisencher et al. [78] 

characterized breast and liver tissue with a 1.5 Hz source and M-mode ultrasound.  They 

found that malignant lesions gave rise to an unstructured, non-linear response, while 

benign lesion responses were sinusoidal.   

Sonoelastography images tissue elastic parameters from ultrasound [79].  Stiff 

tissue will vibrate differently than the surrounding tissue, producing a disturbance in the 

normal eigenmode patterns [80], [81].  The sonoelastography technique has been 

extended to liver, breast, and kidneys and in vitro prostate cancer [82], [83].  Rubens et 

al. [84] demonstrated that sonoelastography can be a very sensitive and predictive tool 

over B-mode images alone.  Using A-mode ultrasound and a compression technique 

(elastography) on tissue sections, Ophir et al. [85] were able to measure the stress and 

strain fields to produce an elastogram.  Ophir�s technique is depicted in Figure 2.1.  Any 

in vivo tissue that is subjected to a small compression (such as a pulsating artery or 

respiration) and is accessible ultrasonically can be imaged with elastography.  Other 
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elastic tissue techniques are: forward 2-D analytical compression strain sonoelasticity 

[86], Inherent strain elastography using a mechanical strain gauge, B-scan images and 

reconstruction algorithms [87], and tissue motion with speckle tracking [88].   

A mechanical method of assessing elastic properties comes from the indentation 

test [89], [90], [91] where an indenter depresses the tissue and the resulting deformation 

is recorded.  Using an ultrasound transducer mounted with a force transducer, Han et al. 

[92] were able to estimate linear elastic properties and recover Young�s modulus for 

each layer of a multilayered phantom.  To test the quantitative accuracy of ultrasound 

elasticity values, Chen et al. [93] compared muscle and liver tissue Young�s modulus 

values from a stress-strain Instron experiment to ultrasound derived values.  They 

concluded that the relative error in Young�s modulus between the two methods was on 

the order of 25%. 

 

 
FIGURE 2.1 A block diagram describing the process of creating an elastogram.  

Reproduced from [94].   
 

 

2.1.7 Attenuation of Ultrasound  

 

Attenuation can be attributed to absorption, scattering, beam divergence, and 

wave mode conversion.  The two main methods of measuring attenuation are: 1) 

measuring the difference in peak values between the received waveforms from two 

depths and 2) measuring the downshift of frequency of the received pulse from two 
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depths [95].  In order to measure the attenuation within the main methodologies, 

different techniques can be used such as: transmission, computed tomography, 

decrement in echo amplitude with increasing range and by the down shift method [11].  

Most if not all of the characterization techniques using attenuation rely on the 

assumption that attenuation has a linear frequency dependence (known only to be an 

approximation) [10], [95] which is found by using a least-squared error approach from 

the frequency.   

Attenuation measurements depend on these measurement techniques [96] and 

other factors such as temperature and sample preparation [97].  The methods used to find 

the attenuation slope can be broadly categorized into time domain and frequency domain 

methods which are linked by Fourier transformations [95].  The classical theory of 

attenuation states that absorption occurs when waves within the supporting medium get 

out of phase with the pressure of the wave [98].  However it has been found 

experimentally that the classical theory does not hold and that a relaxation process is at 

work [99], [100], [101].  The majority of the attenuation studies using ultrasound are 

attempting to characterize liver diseases [102], [103], [104], [105].  Most studies are 

trying to correlate liver attenuation with histological quantification of fibrosis, necrosis, 

and fat.   Ahuja [106] explains the frequency dependence and large magnitude of 

attenuation compared to water with the viscoelastic Voigt model [107].  Calderon et al. 

characterized the differences in attenuation between normal and malignant or benign 

breast tissue [108].  Miller et al. have shown that frequency dependence of attenuation 

on canine myocardium can be related to myocardial infarction [109].   

Fink et al. proposed using off line Fourier analysis to analyze the A-mode 

waveform to produce frequency dependent attenuation plots [110].  Ferrari and Jones 

[111] suggested that the attenuation be based on the assumption that the pulse follows 

Gaussian propagation  and seems to be consistent with other methods.  Knowing that the 

returned A-mode pulse from tissue is a combination of the initial smooth pulse and 

reflected bumpy pulse some techniques  compare the reflected spectrum to the incident 

pulse [112].  The spectral shift technique has been employed by Dines and Kak [113] to 

measure the overall attenuation of multilayered tissue from the Gaussian approach 

developed by Ferrari.  More recently attempts have been made to incorporate attenuation 
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information through pseudo-color maps onto standard B-mode outputs [114].  By using 

methods developed for X-ray CT reconstruction, tomography can be exploited to 

reconstruct attenuation coefficients even in the presence of bone and noisy data [115].   

 
 
2.1.8 Velocity of Ultrasound 

 

Perhaps the oldest tissue characterization technique is from using simple A-mode 

amplitudes and estimating the resulting tissue sound velocity.  First suggested in 1952 

by Wild and Reid [116], they were able to distinguish between normal breast tissue and 

malignant, benign breast lesions.  Average tissue sound velocity is usually assumed to be 

around 1540 m/s with fat at the low end of the range (1460 m/s) and muscle at the high 

end (1550 � 1660 m/s) [117].  An interesting application of A-mode velocity 

measurement is to establish whether or not a breast implant has ruptured.  A-mode 

velocities for intact implants were lower (1060 ± 50.1 m/s) than for those that had 

ruptured (1115 ± 74.3 m/s) [118].   There is much literature in characterizing liver using 

sound speed [119], [43], [120] as well as sound speed characterizing female breast tissue 

[121], [122], [117], [123].  Velocity measurements in tissue are important not only to 

characterize the physiology of tissue but because the resolution and accuracy of 

conventional ultrasound scanners is so profoundly affected by the distribution of 

velocities [10].  Unfortunately, velocity measurements in vivo are surprisingly difficult 

to obtain.  Using several estimated A-mode amplitudes for 30 different in vivo livers, 

Mountford and Wells [48] characterized the normal tissue using velocity.  By means of a 

simple triangulation, the speed of ultrasound can be estimated in tissues [124].  Goss et 

al. have shown that sound speed and attenuation decrease with tissue water content and 

increase with complexity [96].  Robinson et al.  has developed a technique where the 

discrepancy between true sound speed and the assumed sound speed from multiple 

scanners is calculated from the shift position of an object [125].  If recognizable targets 

are not visible then the local sound velocity can be calculated from the misrepresentation 

of tissue boundaries [126].  A useful method of determining sound velocity in superficial 

organs is the Reference Line Technique by Ohtsuki et al. [127].  Using one transducer 

along the axis of an organ and a second transducer perpendicular to the organ boundary 
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at the far end of the organ, the sound speed of the organ can be determined by the axial 

shift detected by the second transducer.  See Figure 2.2 for a depiction of the Ohtsuki 

technique.  A biprism mounted to the aperture of a transducer can determine sound 

speed by estimating the depth of the target, the angle of the prism, and the distance 

between the images displayed by a single target [128].  Although the biprism technique 

is conceptually simple, it suffers from inaccuracy [129].  Haumschild and Greenleaf 

[130] have investigated a simple method of crossing two beams (two transducers) to 

estimate the speed of sound.  Implementation of the cross-beam technique using beam 

steering of a multiple array was met with limited success [131] because differing sound 

speed layers need to be accounted for and inaccuracies arise from the steered beam 

angle.  A beam tracking method first outlined by Ophir [132] uses two perpendicular 

transducers.  One transducer acts as a transmitter and provides a stationary beam while 

the other acts as a receiver and receives the pulse at different positions perpendicular to 

the stationary beam.  A plot of pulse travel time as a function of distance along the 

stationary beam is made.  A slope of a fitted curve is used to estimate the reciprocal of 

speed along the path of the transmitted pulse.  Subsequent research with the beam 

tracking method has pushed the precision to 1% for a small region [133].   

 
 
FIGURE 2.2  The sound speed can be estimated by measuring the shift in the apparent 

position of the tissue with respect to the physical organ boundary. 
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Characterizing tissues from the velocity has led into computerized reconstructive 

tomography.  Velocity images are created from time-of-flight measurements and 

incorporated into a reconstruction process [134], [122], [135], [136], [137].  Most time-

of-flight techniques have been based on algorithms for X-ray tomography and assume 

straight line propagation paths.  Some techniques have been developed to compensate 

for the non-uniformity of ultrasound transmission in tomography [138], [139], [140], 

[141] but are highly susceptible to noise.  Dubovikova and Dubovikov [142] suggest 

using a regularization method to reduce the errors and improve accuracy for noisy 

reconstructions.   

 

 

2.1.9 High Frequency Ultrasound and Scanning Acoustic Microscopes 

 

High frequency ultrasound techniques generally use ultrasound methods already 

developed for tissue characterization but at higher resolutions.  High frequency acoustic 

microscopes operate in the frequency range of 10 MHz to 5 GHz.  The penetration depth 

is low however the resolution is comparable to that of optical microscopes [143].  

Hozumi et al.  [144] characterized cardiac tissue using sound speed and a 50 to 150 MHz 

ultrasonic microscope.  The technique used reflections from the front and rear sides of 

the sliced tissue and time-frequency analysis.  Santosh et al. [145], [146] analyzed 

reflection from a 10 MHz pulse from the human eye and plaque deposits on the wall of 

an artery.   

Many medical papers discuss the ability of emergent high frequency ultrasound 

systems to discriminate between malignant and benign breast tumors [147] and 

dermatological cancers [148].  High frequency ultrasound systems can be over 90% 

specific in determining breast cancer.  High frequency ultrasound in the 7.5 to 13 MHz 

range has sufficient resolution to clearly detail the three layers (epidermis, dermis, and 

subcutaneous) of normal skin [149] and is able to measure the thickness of cutaneous 

melanoma, an important prognostic factor.  Using inverse scattering theory they were 

able to recover profiles of acoustic impedance for cutaneous melanoma with features of 

50 µm being resolved.  Ultrasound biomicroscopy can show the frequency-dependance 
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of attenuation within skin, arteries, heart, liver, muscle, blood, cornea and other tissues 

with high resolution [150].    

Scanning acoustic microscopes (SAM) operate differently than typical 

ultrasound scanners in that they excite the surface of the material to produce acoustic 

waves.  By detecting the acoustic waves, the acoustic properties of materials at a high 

resolution are achieved.  Imaging of biological samples at the angstrom level is possible 

as well as previously difficult tissues to image with ultrasound (such as lung) [143].  

Amplitude and phase characterization has been done on metal composites with SAM but 

has yet to be performed with biological tissue [151], [152].   

 

 

2.1.10 Acoustic Impedance 

 

If the scattering is weak and scattering from fluctuations in absorption can be 

neglected, then the only tissue acoustical property contributing to the backscattered 

signal is the characteristic impedance [10].  This observation is supported in both 

simplistic one-dimensional reflection models (reflection coefficient) and by complicated, 

three-dimensional scattering models from inhomogeneous media [153].  Impedance can 

be estimated by correcting for overlying tissue attenuation and geometry [154].  

Impedance characterization has found a niche in characterizing tumor blood vessels 

which are deficient in muscular elements and are of low impedance [11].  Calcification 

of heart tissue can be detected because it involves changes in impedance [97].  Using a 

simple model and a temperature controlled water bag, Ogura et al.  [155] measured the 

acoustic impedance of abdomen and breast skin.  The severity of atherosclerotic arteries 

from their acoustic profiles was investigated by Tobocman et al. [156].  The acoustic 

profiles of the arteries were obtained using an attenuation compensation technique and 

backscatter spectral analysis.  

 Jones and Cole-Beuglet [157] found that intra-ocular and orbital lesions can be 

detected and displayed through an impedogram (profiles of acoustical impedance).   

Impedography is a general method of reconstructing the impedance profile from the 

impulse response of the investigated medium.  Initially a one-dimensional technique 
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[158], it has evolved into a three-dimensional model assuming that the wave-fronts 

remain planar [159].  Pederson et al. used the impedography technique (a non-recursive 

method) and compared it to the geological reconstruction algorithm of Goupillaud (a 

recursive technique) [160].  The research showed that when noise was present the 

Goupillaud method is far better for reconstruction of the acoustic impedance profile of a 

layered medium.  Acoustic impedance profiling of a layered medium from reflected 

pulses and a priori knowledge of the transducer and attenuation of the medium was 

performed on a 3-layer phantom by Pederson and Lifshitz [161], [162].  A reflection 

model was suggested and the inversion is performed with a Wiener filter to compensate 

for noise inherent in the signal.  This technique has been extended to reconstructions of 

media with resolutions as fine as 48 µm [163].   

 

 

2.1.11  Non-biological Material Property Measurement Through Ultrasound 

  

To complete this literature review, it should be acknowledged that many 

ultrasound techniques have been applied to the material science arena.  In a 

manufacturing process it might be useful to determine a particular property of a material 

which is imbedded in another.  Most material property techniques are simpler methods 

than tissue characterization techniques and only deal with homogeneous materials being 

perpendicular to the transducer.   

Detection of the thickness of air gaps inside composite materials is accomplished 

by detecting the increase in the measured attenuation [164].   Bramanti [165] suggested a 

technique where impedance, attenuation and acoustic velocity of a material in a water 

bath can be determined.  The method is based on the reflection coefficient and 

frequency.  A curvature compensated boundary reflection assessment method for 

determining acoustic impedance inside oil pipelines is described by Gunarathne and 

Konstantinos [166].  The method uses sequential A-mode scans inside the petroleum 

pipe and a curvature compensated algorithm to automatically classify impedance 

profiles.  In order to identify recyclable polymeric materials and components, Hull et al. 



 - 24 -

[167] used an ultrasound attenuation and time of flight method to separate the 

recyclables from waste streams.    

 

 

2.2 Concluding Comments  

 

There is a need for a quantitative parameter that is reproducible from one 

recording to another, from one patient to another [9].  Conventional B-mode images are 

not quantitative images for two reasons.  Firstly, image densities depend on system 

settings and the choice of transducer.  Secondly, even if settings and transducers could 

be allowed for, the resultant image would be a reflectivity map of the tissue which is a 

complicated function of both tissue interaction parameters as well as tissue morphology 

[37].  All of the foregoing techniques and methods require specialized machines or 

laboratory conditions.   

The purpose of this thesis is to provide a simple, effective means of 

characterizing tissue with any conventional ultrasound machine.  Including a table of 

acoustical properties of common materials and tissues concludes this section.  The table 

shows the comparisons between tissue characterization techniques such as: velocity, 

impedance, attenuation and frequency of attenuation on tissue and 2 reference 

substances.   The table was copied from Jones and Leeman [10]. 
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TABLE 2.1 

Acoustical properties of several common materials [10] 

Material Propagation 
velocity [m/s] 

Characteristic 
impedance 

[106 · kg/m2s] 

Attenuation at 
1 MHz 

[dB/cm] 

Frequency 
dependence of 

attenuation 

Water (20oC) 1480 1.48 0.0022 f 2 

Aluminum (bulk) 6300 17 0.018 F 

Air (std.) 343 0.000415 12 f 2 

Blood 1570 1.61 0.18 f 1.3 

Brain 1541 1.58 0.85 ~ f 

Fat 1450 1.38 0.63 ~ f 

Human soft 

tissue (mean) 
1540 1.63 0.81 ~ f 

Muscle 1585 1.70 1.3 � 3.3 ~ f 

Skull bone 4080 7.80 13 F 2 
Lung 650 0.26 41 f -1 
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3. THEORY OF MEASUREMENT 

 

 

3.1 Ultrasound Wave Propagation 

 

Ultrasound propagates both as transverse and longitudinal pressure waves.  In 

tissues, sound waves only travel as longitudinal waves [2], [3].  Consider an element of 

length dx within an elastic medium which is being acted upon by the passage of a sound 

wave, as shown by Figure 3.1. 

 

 

 

 
 
 
 
 
FIGURE 3.1 Forces on an element during the passage of a sound wave. 
 

 

As the wave propagates through the medium, it must obey Newton�s second law, 

 

∑ = maFx           (3.1) 

 

where Σ Fx is the instantaneous net force on the element, m is the mass of the element, 

and a is the instantaneous acceleration of the element.  Due to pressure variations within 

the medium, if one face experiences a force, the force on the opposite face will be, in 

general, ( )dxxFF xx ∂∂+ .  Referring to Figure 3.1 the difference in the forces is 
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Considering the same element, the displacements of the element are shown by Figure 

3.2.  During the passage of the sound wave the left face of the element will have moved 

a distance ξ and the right a distance ξ + dξ.   

 

 
FIGURE 3.2 Displacements of the element during the passage of a sound wave.  

Reproduced from [168]. 
 

 

The change of length of the element is then 

 

( ) dx
x

ddd
∂
ξ∂=ξ=ξ−ξ+ξ=l         (3.3) 

 

where dl is the change in the length of the element.  The resulting axial strain on the 

element is then 

 

xdx
d

∂
ξ∂==ε l .          (3.4) 

 
To relate the strain and the axial force for a linear elastic medium, Hooke�s law is used 
 
 

ε
σ=E            (3.5) 
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where E is the modulus of elasticity and σ is the axial stress.  The stress for this axial 

case is given by  

A
F=σ            (3.6) 

 
where A is the area of the face on which the force is applied.  Combining equation (3.5) 

with equations (3.4) and (3.6) gives 

 

x
AF

E
∂ξ∂

= .          (3.7) 

 
Rearranging equation (3.7)  gives 
 

x
AEFx ∂

ξ∂= ,          (3.8) 

 
which is the force on the left face of the element.  Taking the partial derivative of 

equation (3.8) and substituting into equation (3.2) gives the expression for the net force 

on the element considering homogeneous elastic properties, 

 

dx
x

AEdF 2

2

x ∂
ξ∂= .         (3.9) 

 

Knowing that mass and acceleration of the element can be written as 

 

( )dxAm ρ=           (3.10) 

 

and 

 

2

2

t
a

∂
ξ∂=           (3.11) 

 

where ρ is the density of the medium and t is the instantaneous time, equation (3.1) 

becomes 
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dx
dt

AdFx 2

2ξρ ∂= .         (3.12) 

 

Equating equation (3.9) with (3.12) yields the sound wave transmission equation (or 

simply the wave equation) 

 

2

2
2

2

2

x
C

t ∂
ξ∂=

∂
ξ∂

l          (3.13) 

 

where 

 

ρ
EC =l .          (3.14) 

 
For plane longitudinal waves, equation (3.13) is the one-dimensional form of the wave 

equation.  Two-dimensional and three-dimensional wave propagation is formed from the 

same equations [169] but is not covered in this thesis.  The constant Cl is the 

propagation speed of a disturbance within the medium.  From equation (3.14) it is 

obvious that the wave propagation speed is only a function of the properties of the 

medium and not on the frequency or wavelength of the disturbance.   

Ultrasound excitation within media is known as simple harmonic motion.  If the 

medium is excited by a pulse with angular frequency of ω radians per second, the 

resulting particle within the medium will displace 

 
( )kxtjAe −ω=ξ           (3.15) 

 

where ω is the angular frequency, k is the wave number and the maximum displacement 

of the particle is given by A, the amplitude.  Equation (3.15) is complex because the 

angle of vibration may be out of phase with the direction of propagation.  As successive 
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waves propagate into the medium, they are separated by a distance of one wavelength, λ 

given by 

 

( ) ωπλ ll 2 CfC ==           (3.16) 

 

where f is the harmonic excitation frequency in cycles per second (Hertz).  The wave 

number, k, is the number of complete waves in 2π meters (in SI).  It can be related back 

to the speed of wave propagation and angular frequency by 

 

l
Ck ω= .          (3.17) 

 

 

3.2 Acoustic Impedance 

 

A wave front reflection at interfaces between two media of different acoustic 

impedance is a fundamental property of ultrasound.  An impedance difference within 

and between tissue governs how intense the return echo on the output screen appears.  

Impedance is given by 

 

upz =           (3.18) 
 
where p is the instantaneous pressure of the medium at a point and u is the instantaneous 

particle velocity ( ξ& ) at the same point.  Equation (3.18) is the characteristic impedance 

of the medium and it is analogous to electrical impedance ( IVR = ).  It is equal to the 

mechanical impedance per unit area of the cross section of the medium.  The pressure in 

an elastic medium can be written as a stress, 

 

x
Ep

∂
ξ∂=           (3.19) 

where E is the Young�s modulus and x∂ξ∂  is the strain.  Substituting equations (3.15) 

and (3.19) into (3.18) expresses impedance as a frequency dependent term yielding 
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( )ω−= kEz .          (3.20) 

 

Furthermore, using equations (3.17) and (3.14) converts the impedance equation into the 

more familiar expression of 

 

lCz ρ−= .          (3.21) 

 

A final simplification is to use only the absolute magnitude of impedance 

(because the present discussion is not interested in determining the reactive component, 

only the resistive) so 

 

lCz ρ= .          (3.22) 

 

 

3.3 Transmission and Reflection at an Interface 

 

 If a sound wave meets the interface of two different media with two different 

impedances, the sound wave will be partially reflected and partially transmitted.  See 

Figure 3.3 for the behaviour of the wave at the boundary of two different impedances.  

The particle velocity of the incident beam can be found by taking the partial derivative 

of  equation (3.15) with respect to t: 

 
( )kxtj

ii eUu −ω=          (3.23) 

 

where Ui is the velocity amplitude of the incident wave.  Similarly, the equations for the 

reflected and transmitted waves are 

 

 ( )kxtj
rr eUu +ω=          (3.24) 

 

and  
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( )x'kt'j

tt eUu −ω=          (3.25) 

 

where the primed terms indicate the wave traveling in medium 2.  The positive and 

negative signs for kx indicate the direction of travel of the wave from the interface.   

 

 
FIGURE 3.3 Reflection and transmission at a boundary perpendicular to the wave 

propagation. 
 

 

Under the condition that the media are continuous, which holds at the boundary, 

the resultant particle velocity (or particle displacement) of the incident and reflected 

waves must equal the particle velocity (displacement) of the transmitted wave, otherwise 

a discontinuity would appear at the boundary [169].  Therefore, if continuity of the 

particle�s velocity, stress, and frequency is assumed at the boundary between the two 

media, then  

 

tri uuu =+ .          (3.26) 
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Substituting equations (3.23) � (3.25) into (3.26) yields 

 
( ) ( ) ( )x'kt'j

t
kxtj

r
kxtj

i eUeUeU −ω+ω−ω =+ .      (3.27) 

 

The assumption of frequency continuity at the interface requires that 'ω=ω  at x = 0.  

Therefore, at the interface the exponential terms cancel and disappear leaving 

 

tri UUU =+ .         (3.28) 

 

The frequency dependent pressures at the interface can be written as 

 
( )kxtj

ii ePp −ω= ,         (3.29) 
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rr ePp +ω= , and          (3.30) 

 
( )x'kt'j

tt ePp −ω= .         (3.31) 

 

Similarly, the pressure (stress) across the boundary is written as 

 

tri ppp =+            (3.32) 

 

and solving for pressure continuity across the boundary from equations (3.29) � (3.31) 

and (3.32) yields 

 

tri PPP =+ .          (3.33) 

 

The materials� specific impedances are given by equation (3.18) such that 

 

ii1 UPz = ,          (3.34) 
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rr1 UPz −= , and          (3.35) 

 

tt2 UPz = .          (3.36) 

 

Note that the reflection impedance in equation (3.35) is negative with respect to the 

transmitted (3.36) and incident (3.34) impedance equations.  The negative sign arises 

from the reflected wave propagating in a direction opposite to the incident and 

transmitted wave.   

Combining equations (3.36) with (3.33) and (3.28) yields 
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+

= .         (3.37) 

 

Further manipulations of (3.37) using equations (3.34) and (3.35) results in the reflection 

coefficient [RC] 
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and the transmission coefficient [TC] 
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The pressure reflection and transmission coefficients, which determine the 

amplitude of the pressure in the reflected and transmitted waves depend heavily on 

which medium the wave enters.  If the mediums are of the same impedance (z1 = z2) 

then no reflection will occur.  If the wave starts in a medium of high impedance then 

propagates across a boundary into a medium of low impedance (z1 >> z2), the reflection 

coefficient will be -1 (the negative indicates a change of phase for the reflected wave).  
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If the wave starts in a medium of low impedance then propagates into a medium with 

high impedance (z1 << z2), the reflection coefficient will be 1 and will have no phase 

change.  However for the transmitted wave, a low to high impedance (z1 << z2) 

boundary will represent an amplification of the wave.   The pressure ratios at boundaries 

of differing impedances are summarized in Table 3.1.   

 

TABLE 3.1 

Reflection and transmission coefficients at boundaries 

 z1 = z2 z1 >> z2 z1 << z2 

RC =
i

r

P
P  0 -1 1 

TC = 
i

t

P
P  1 0 2 

 

 

 

3.4 Power Intensities 

 

Pixel intensity as represented on the output of the ultrasound screen is a 

combination of power intensity per unit area of the wave front and the scanner 

electronics.  The power intensity is defined as power = stress multiplied by the 

displacement velocity.  The derivation of the power expressions for the incident, 

transmitted, and reflected waves is similar to that of the pressure ratios [168] and is  
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22
rlr AC

2
1Pwr ωρ= .         (3.42) 

 

Using the same assumption of continuity across the boundary and through algebraic 

manipulation using equations (3.40) � (3.42) with equation (3.22) yields the reflection 

coefficient intensity [IRC] and transmission coefficient intensity [ITC] 
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and 
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Note that Equation (3.43) gives simply the square of the quantity on the right hand side 

of Equation (3.38).  This is as expected, since the energy of the wave is known to be 

proportional to the square of its amplitude.  Equation (3.43) is used throughout the thesis 

to relate the impedances of the interfaces in the experiment (Section 4.1).   This is a 

simplified physical model of the ultrasound return intensity and is valid only because of 

the planar or almost planar interfaces involved in both surface impedance measurements 

and the calibration method itself.   In the future, for non-planar surfaces and structures 

below the surface, a more complicated model will be needed that relates the reflection 

coefficient intensity with attenuation and scattering phenomena.  There is an immense 

amount of literature available on more sophisticated models (see Chapter 2) of 

ultrasound physics that can be used to this end.  
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4.   EXPERIMENTAL METHOD 

 

 

4.1 Calibration Experiment: Oil-Salt Solution Interfaces 

 

 In order to characterize tissue with any conventional ultrasound scanner, a 

calibration curve was necessary to relate grey level to acoustical impedance.   The 

calibration experiment produced images of two liquid layers of different impedance and 

produced plots of grey level intensity versus reflection coefficient intensities (Equation 

3.43).  Each set of liquid layers produces a single interface consisting of one layer of oil 

floating over a layer of salt solution.  The same oil, of known impedance, was used for 

each interface.  The impedance of each salt solution was set by controlling the 

concentration of salt.  To get a large enough sampling of data for the curves, the salt 

solutions were varied from 0% to 20% salt concentration in 2% increments.  Each oil 

layer and salt solution concentration was used to produce one data point on the 

calibration plot. 

The mass of salt required for the preparation of each solution was determined by 

referring to the CRC handbook of Chemistry and Physics [170].  This manual gives the 

precise mass of ACS grade salt to be mixed with distilled water to produce a particular 

anhydrous solute weight per cent (g solute/ 100 g solution).  Using a Canlab Sartorius 

1000 g analog mass scale (VWRCanlab, Edmonton, Canada) and a 500 mL beaker, the 

required mass of salt was obtained for a 3 L solution.  A 5% mass addition was used to 

compensate for the volume displaced by the salt in the solution.  Using a 3.5 L graduated 

beaker to measure 3 L of distilled water, the salt was added and mixed using a mixing 

bar on a hot plate.  The solution was mixed until it was visually apparent that there was 

no longer any solute.  Once the solutions were properly mixed, they were poured into    

4 L plastic jugs and left to sit overnight.  An ERTCO (Ever Ready Thermometer Co, 

Dubuque, USA) precision hydrometer (specific gravity from 1.000 to 1.220) was used to 

determine the precise specific gravity of the solution.  Following the ASTM test 

standard [171] the specific gravity was recorded as was the solution temperature in 
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degrees Celsius.  The specific gravity reading was then calibrated for temperature with 

the supplied ERTCO Correction for Specific Gravity Hydrometer data sheet (See 

Appendix A for the reproduced data correction sheet).  Because the temperatures 

measured in the solution did not correspond exactly to the values on the data sheet, a 

linear interpolation was used to solve for the correction factor at each measured 

temperature.  Since the correction factor depends on the nominal specific gravity as well 

as the temperature, the correction factor needed at the measured specific gravity was 

found by using another linear interpolation.  Finally the correction factor was applied to 

the nominal specific gravity to find the calibrated specific gravity.  The calibrated 

specific gravity value was compared back to the CRC handbook to find what the actual 

anhydrous solute weight per cent was present in the solution.  Impedance values for 0%, 

10%, 15%, and 20% salt solutions were found in published material [172] and a second-

order quadratic (4.1) was used to relate the percent salt solution to the impedance using 

Microsoft Excel 2003 (Microsoft Corporation, Redmond, USA).   

 

49.1
100
SolutionSalt%
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4997.8z
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×=       (4.1) 

 
 

where  z is the impedance of the solution.  The fitted equation has a coefficient of 

determination of 0.9985 where 1 is a perfect fit.  The coefficient of determination is 

defined by 

 

SST
SSE1R 2 −=            (4.2) 

 

where ( )2

jj Y�YSSE ∑ −= , ( ) ( )
n
Y

YSST
2

j2
j

∑∑ −= , Yj are the best least-squares 

quadratic fitted data, and jY�  are the data points.  Equation 4.1 was necessary because 

more salt solution concentrations (0% to 20% in 2% increments) were used than the 

published data provided. 
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Two ultrasound machines were used for the research: a VisualSonics Vevo 660 

High Resolution Imaging System equipped with a 30 MHz probe (VisualSonics Inc., 

Toronto, Canada) and a 7.5 MHz Aloka SSD-900 linear array (Aloka Co. Ltd., Tokyo, 

Japan).  The two product specifications are given in Table 4.1.  In order for the images 

from the Aloka SSD-900 to be saved, a Pentium II computer with a FlashBus Spectrim 

Lite (Integral Technologies, Indianapolis, USA) video capture card was used.  FBG 32 

video capture software (Integral Technologies, Indianapolis, USA) with 640 X 480 max. 

resolution was used on the computer to capture the interface images.   The settings for 

the Vevo 660 and the Aloka SSD-900 were standardized throughout the observation 

period at predetermined values (but not between the two machines).  The group of 8 

STC slider resistors which adjust gain at each display depth were kept at the zero 

position and the ABC button, which automatically adjusts the B mode image sensitivity, 

was turned off.  The 7.5 MHz scanner of the Aloka SSD-900 was set to high resolution 

(R mode) image select and the line density, which controls the scanning line density of a 

black and white image, was set to high (H mode).  The settings of the Aloka SSD-900 

are given in Table 4.2 and the associated FBG 32 image-grab software settings are given 

in Table 4.3.  The Vevo 660 settings are in Table 4.4 

 

TABLE 4.1 
Product specifications of the ultrasound transducers 

Manufacturer: Aloka VisualSonics 

Operating Frequency: 7.5 MHz 30 MHz 

Probe: UST-5821-7.5 VS-RMV30A 

Focal Length: 64 mm 12.5 mm 

 

 

The interfaces for the Vevo 660 were created within 900 mL graduated glass beakers 

with approximately 400 mL salt solution (Figure 4.1).  The salt solutions were poured 

slowly from the 4 L plastic jugs with the beaker tilted to make sure no air bubbles were 

being produced.  Three vegetable oils were used because of their known impedances 

[172], inertness with the ultrasound scanners, and cost.  The three oils were: Mazola 

corn oil (ACH Food Companies, Cordova, USA), Planters peanut oil (Kraft Canada Inc., 
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Don Mills, Canada), and Aldo Petrelli olive oil (Imported by Anderson Watts Ltd., 

Vancouver, Canada).  The values from literature places the corn oil�s impedance as the 

highest at 1.41 MRayles, then olive oil at 1.32 MRayles, followed closely by peanut oil 

at 1.31 MRayles.  One oil at a time (corn, olive, or peanut) was poured slowly on top of 

each salt solution concentration with the beaker tilted to reduce air entrapment.  Only 

one oil of known impedance was needed to produce the data for the single calibration 

curve needed for a particular machine.  Because there were several different types of oil 

to choose from, however, more than one oil was used.  Therefore more than one 

calibration curve was determined for each ultrasound scanner.  The interfaces for the 

Aloka SSD-900 were created in modified square plastic containers which allowed the 

cord of the Aloka�s scanner head to protrude from the container without being bent.  The 

filling procedure for the interfaces created for the Aloka SSD-900 was the same as for 

the Vevo 660. 

 

TABLE 4.2 

Aloka SD-900 with UST-588U-5 linear array scanner settings 

Frequency and Resolution: 7.5 MHz R-H 

Acoustic Power Output (DVA): 100% 

Display Depth (cm): 04 

Gain: 70 (30 ~ 90) 

Contrast: 1 (1 ~ 8) 

 

 

If any air or salt solution bubbles were created, then a fine needle and syringe 

were used to eliminate the bubbles.  A photographic gimballed pan-and-tilt head was 

modified to mount the scanner heads onto the photographic stage that was used (Figure 

4.1).  A photographic stage was used because it allowed the scanner head to be finely 

adjusted vertically with the help of a microscope�s rack and pinion vertical adjustment.  

The rack and pinion allowed the interface to be viewed at exactly the focal point as 

indicated by an arrow on the output screen. 
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TABLE 4.3 

FBG 32 image-grab software settings 

Brightness: 35 

Contrast: 35 

Field delay: 1 

Line: 0 

Align: Any 

Type: None 

 

 

The container with the oil-salt solution interface was re-positioned horizontally 

five times for the Vevo 660 and four times with the Aloka SSD-900 to make sure that a 

consistent measure of the interface was performed.   The difference in the number of 

interfaces imaged for the machines was necessitated by the differences in the shape of 

the containers used.  The Vevo 660 interfaces were held in a circular beaker and the 

interface was first imaged in the middle, then pushed to the edge, imaged again and then 

rotated along the edge a further three equal increments until a full revolution of the 

beaker was imaged.  The Aloka SSD-900 linear scanner was placed at the end of the 

square container and moved to 3 more positions along the container. 

 

TABLE 4.4 

Vevo 660 with VS-RMV30A scanner settings 

Frequency: 30 MHz 

Attenuation: 0 dB 

Gain: 4 dB 

Frame rate: 16 Hz [15] 

Field of view: 8 x 8 mm 

 

After each salt solution and oil interface was scanned, the 900 mL beaker or the 

square plastic container was drained, washed with Sunlight dish soap, and then dried 

with a towel.  Between each change in oil the scanning head was cleaned with Kimwipes 
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EX-L delicate task wipes.  After the interfaces between the oil and salt solutions were 

imaged, they were saved either in a TIFF format (Vevo 660) or as a BMP format (Aloka 

SSD-900).  Each interface from both machines was opened in Corel PHOTO-PAINT 10 

(Corel Corporation, Ottawa, Canada).  The interfaces were selected with a mask (photo 

editing software name for selected/analysed area on an image) and the histogram 

(distribution of pixel intensities) of the masked interface was used to find the maximum 

pixel value.  On the histogram, the mouse cursor could be dragged to the maximum 

brightness level (between 0 and 255) to ascertain the maximum grey level intensity of 

the interface.  Because the image output from the ultrasound machines was already a 

greyscale picture, the images were not converted to greyscale in PHOTO-PAINT and 

were therefore analyzed with the histogram as an RGB colour mode output (default) 

which gave the same result for the maximum pixel intensity.   The ultrasound grey level 

intensities from the oil-salt solution interfaces for the Vevo 660 and Aloka SSD-900 can 

be found in Appendix C.   

 

 

Photographic stage 

 Rack and pinion fine  
adjustment 

Scanner head 

Oil layer 

Salt Solution 

Modified microscope 
base stage (allowing  

       horizontal x-y  
    Vevo 660   movement)    Aloka SSD-900 

 

FIGURE 4.1 Vevo 660 and Aloka SSD-900 oil and salt solution interface setup. 
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4.2  Ultrasound Tissue Analysis 

 

To test the calibration technique, tissue samples were sought that would have 

published impedance values.  Porcine liver, kidney, and spleen tissue was selected 

having known published impedance values [173], [174].  The porcine tissue samples 

were imaged under corn oil to produce an interface that could be analysed.   

The porcine tissue was received post-mortem from the University of 

Saskatchewan�s Western College of Veterinary Medicine necropsy lab.  The three 

tissues were removed from 10 high-health Landrace breed (4 to 7 week old) animals.  

The animals were involved in another study and therefore some of the tissues had been 

cut lengthwise to expose their interior structure.  However, it is irrelevant to this 

experiment whether or not the tissue was cut because only the exterior tissue was of 

interest.  The tissues were placed in plastic bags from the necropsy lab and left to sit at 

room temperature until the tissues could be imaged under the corn oil.  For each sample 

of tissue, the tissue was removed from the plastic bag, washed with distilled water, dried 

with a paper towel, and digitally photographed with a 30 cm (12 inch) ruler as reference.  

The capsule surrounding the kidneys was removed by scoring the capsule with a scalpel 

and then pulling until it was separated from the kidney.   Appendix B contains 

photographs of the tissue used in the experiment.   

After the photographs were taken, all three tissues (liver, kidney, and spleen) 

from the same animal were placed in a 20 x 14 x 7 cm glass pyrex dish.  The glass dish 

with the tissue was filled with corn oil to a level that allowed the focal point of the 

ultrasound machines to be placed at the interface between the oil and tissue.  If the tissue 

was tilted in the ultrasound image, the midpoint of the interfaces was adjusted to the 

focal point.  Depending on the size of the tissue sample and the ultrasound machine, the 

interface was imaged anywhere between 4 to 8 times by moving the scanner head and 

the glass dish to different positions per tissue type from the 10 animals.  The interfaces 

were analyzed the same manner as the oil � salt solution interfaces.  Grey level results 

from the tissue experiment can be seen in Appendix D.  Subsequent tissues were placed 

under the same oil in the same container. 
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4.3 Impedance, Error, and Statistical Analysis 

 

Because the output of the ultrasound machines is a grey level intensity, an 

inverse mathematical process to calculate tissue impedance is necessary through the 

calibration curves (these curves will be shown and discussed in Chapter 5).  From 

Excel�s least squares fit, the following third-order polynomials are produced for the 

Vevo 660 and Aloka SSD-900 grey level output and reflection coefficient intensity 

curves for corn oil only: 

 

Vevo 660: 7.112I14862I915744I102GL RC
2

RC
3

RC
7 +⋅+⋅−⋅×=    (4.3) 

 

and 

 

Aloka SSD-900: 065.69I1.7309I451783I109GL RC
2

RC
3

RC
6 +⋅+⋅−⋅×=  (4.4) 

 

where GL is the grey level output from the salt-solution interfaces and IRC is the 

calculated reflection coefficient intensity (equation 3.43) from the oil and salt-solution 

interfaces.  The coefficient of determination for equations (4.3) and (4.4) are 0.925 and 

0.928 respectively.  Using Maple 7 (Maplesoft, Waterloo, Canada), equations (4.3) and 

(4.4) were each inverted to give expressions for IRC in terms of GL.   Although easily 

used for computations within Excel, these expressions are extremely lengthy in form.   

The Maple 7 Output page is given in Appendix E and the inverted expressions are 

Equations (E.1) and (E.2) for the Vevo 660 and Aloka SSD-900 outputs respectively.  

The expression for tissue impedance (z2) in terms of reflection coefficient intensity (IRC) 

was obtained by inverting equation (4.5) to give equation (4.6) such that  
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and after inverting,  
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In order to make sure that the sampled tissue data were repeatable and were a 

proper measure of the tissue properties, statistical analysis was performed with both 

Microsoft Excel 2003 Data Analysis ToolPak and SPSS 12.0 (SPSS Ltd., Chicago, 

USA).  Using SPSS, a two-tailed Pearson correlation analysis was performed on the oil 

and salt-solution data to confirm a relationship between the grey level output and the 

reflection coefficient for both machines and all three oils (corn, peanut, and olive).  The 

significance of the Pearson correlation was set at α = 0.01.    

Excel�s Data Analysis ToolPak was used to perform a two-factor with replication 

ANOVA for the different oils and the changing salt solutions.  Descriptive analysis for 

the grey level at each percent salt solution and oil was performed to find the mean, 

standard deviation and standard error.  A Two-Sample Assuming Unequal Variances t-

test (α = 0.05) was used to compare the means between the impedance outputs from the 

different machines. 

Uncertainty error analysis for the calculated tissue impedance was estimated 

using the standard error in the grey level from the salt solutions and oil.  Beginning with 

the calibration curves, and approximating a small portion of the curve as linear,  

 

m
dGLdIRC = ,          (4.7) 

 
 

where dIRC is the error in the reflection coefficient intensity, m is the slope of the 

calibration curve in the region of interest, and dGL is the error in the grey level.  The 

reflection coefficient intensity is given again by equation (4.8), 
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where z2 is the lower interface impedance (tissue) and z1 is the upper interface 

impedance (oil).  If we differentiate equation (4.8) with respect to an arbitrary 

parameter, t, it becomes 
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or, assuming z1 to be a constant (i.e., without error),  
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where dz2 is the error in the estimated impedance.   Combining equation (4.7) and 

equation (4.11) gives an estimate of the error in the calculated tissue impedance from the 

error in the grey level and the slope in the region of the calculated tissue impedance.  

The final error equation is: 
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The results of the ultrasound calibration curves and ultrasound tissue analysis 

will be presented in Chapter 5. 
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5. RESULTS AND DISCUSSION 
 
 
5.1 Calibration Curves 

 

The calibration curves were the result of the oil-salt solution interface and the 

grey level ultrasound output from imaging the interfaces described in Section 4.1.  For 

each calibration curve, the properties of the floating oil layer did not change, however 

the lower salt solution layer was varied in concentration from 0% to 20% salt 

concentration producing varying reflection coefficients intensities [IRC] (Equation 3.43).   

The research that was performed in this thesis used pixel intensities from the 

ultrasound scanner�s output; therefore a quantitative measure of the intensity distribution 

was needed.  Current research techniques that employ the grey level output, such as 

echotexture (Section 2.1.2), primarily use the mean and standard deviation of the pixel 

intensity.  However, in this thesis the maximum grey level was chosen as a measure due 

to the ease of attaining the value and because the value was less prone to error.  By 

selecting the entire interface and measuring the maximum grey level the procedure is 

much simpler than selecting a particular set of pixels for the mean and standard 

deviation measure.  From Figure 5.1 it is evident that the measure of maximum pixel 

intensity is as informative as the mean pixel intensity for calibration and measurement 

purposes.  The curves in Figure 5.1 were produced from the interface of corn oil and 0%, 

10%, 15%, and 20% salt solutions. The reason that the 0, 10, 15, and 20 percent salt 

solutions were chosen for this experiment was because these values were from published 

data. All other values of salt impedance were interpolated from these four values.  In 

comparing the mean and maximum grey level curves, the maximum grey level curve is 

expectedly higher than the mean grey level curve.  Second order polynomial trend lines 

using MS Excel were superimposed to show how close the shapes of the curves are.  The 

trend line for the maximum grey level is y = -262556 x2 + 9205.9 x + 118.05 (R2 = 

0.8997) while the trend line equation for the mean grey level is y = -274629 x2 + 9359.1 

x + 97.184 (R2 = 0.9071).  Therefore, because the maximum and mean grey levels from 
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the reflection coefficient intensity are equally effective  measures, maximum grey levels 

were used throughout the experiment and thesis.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 5.1 Comparison between the maximum and mean grey levels as a measure 

with the reflection coefficient intensity of corn oil. 
 

 

The calibration curves for the Vevo 660 and Aloka SSD-900 are shown in 

Figures 5.2 and 5.3 respectively.  The calibration curves from both machines have two 

distinct regions: a curved region at low IRC values and a linear portion past IRC = 0.005.  

A hypothesis why this is occurring is because of the logarithmic amplification within the 

ultrasound scanner�s electronic image processing.  At low IRC values, the return signal 

intensity is weak and needs to be amplified more than return signals that are strong.  As 

the intensity of the reflection becomes greater (IRC > 0.005) the amplification is reduced.   

The curves from each oil, when imaged with the Vevo 660, were much more separated 

than that of the Aloka SSD-990.  The grey level intensity of the corn oil is more 

predominant with the Vevo 660 while the olive oil is the greatest with the Aloka SSD-

900.   
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FIGURE 5.2 Vevo 660 calibration curves for corn, peanut and olive oil. 

 

 

 

 

FIGURE 5.3 Aloka SSD-900 calibration curves for corn, peanut and olive oil.   
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The Vevo 660 operates at a much higher frequency (30 MHz) than the Aloka SSD-900 

(7.5 MHz) and is likely much more sensitive to impedance changes due to its high 

resolution.  Slight variations in oil viscosities might cause huge variations in attenuation 

or even velocity at high frequencies.  The Vevo 660 grey level output was greater in 

intensity and in range than the Aloka SSD-900 simply because the Vevo 660 employed 

higher amplification and sensitivity.  It is advantageous to have a large range for the 

maximum grey level in view of the fact that there is a need to differentiate the tissues 

from the grey level.  MS Excel�s ANOVA Two-Factor With Replication data analysis 

was performed on the three oils and varying salt solution to show whether or not there is 

any statistical interactions.  The p-value results of the interaction analysis are 

summarized in Table 5.1.  It is obvious from Table 5.1 that there is no interaction 

between the three oils and between the differing salt concentrations.   

 

TABLE 5.1 

Oil and salt solution interaction p-values 

 Oils Salt solutions 

Vevo 660 7.3 x 10-110 
 

1.5 x 10-153 
 

Aloka SSD-900 2.27 x 10-13 9.89 x 10-67 

 

 

Pearson correlation analysis on the oil and salt concentrations was performed to confirm 

a relationship between grey level output and the reflection coefficient intensity for both 

machines and for all three oils.  The results are summarized in Table 5.2.  Because the p-

values are all greater than the cut-off of α = 0.05, the results indicate a relationship 

between the maximum grey level outputs and the reflection coefficient intensities.  Note 

that only one of the curves (corresponding to one of the oils or reference layers in 

practice) is actually needed/used to calibrate for impedance. 
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TABLE 5.2 

 Pearson correlations: Grey level output and reflection coefficient intensity interaction 

p-values 

 Corn oil Peanut oil Olive oil 

Vevo 660 0.869 0.879 0.876 

Aloka SSD-900 0.849 0.839 0.756 

 

 

 

5.2 Tissue Impedance Measurements 

 

Once a calibration curve for a machine is produced, tissue impedance calculation 

is possible from the grey level output of an oil-tissue interface.  By imaging tissue under 

a known impedance layer (oil) the grey level produced from the interface of the oil and 

tissue can be related back to the reflection coefficient intensity through an inverse 

mathematical process.  The tissue�s impedance can be solved through the reflection 

coefficient intensity equation (see Section 4.3).  Liver, kidney, and spleen porcine 

tissues were imaged and impedance values calculated through the calibration curves.  

The impedance values with the calculated error (Equation 4.12) are summarized in table 

5.3.  The greatest acoustical impedance value for the examined tissue was kidney with 

liver then spleen following.  The calculated percent difference between the machines is 

approximately 1%.  This is important because with the method described within this 

thesis, it is possible to use any standard ultrasound scanner, after a calibration curve has 

been built, to experimentally derive tissue impedance values.   
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TABLE 5.3 

Tissue impedance values [MRayles] (mean ± S.E.) 

 Liver Kidney Spleen 

Vevo 660 1.476 ± 0.020 1.486 ± 0.020 1.471 ± 0.020

Aloka SSD-900 1.467 ± 0.088 1.507 ± 0.088 1.457 ± 0.088

% Difference 0.61 % 1.39 % 0.96 % 

 

 

Literature impedance values [173], [174] for porcine liver, kidney, and spleen are 

summarized in Table 5.4.  The impedance values found in the literature are overlapping 

making tissue characterization difficult.  The differences in impedance values with the 

method described in this thesis and the literature values may be because of temperature 

and frequency differences [10] and whether or not the tissues were taken in vivo and in 

vitro [175], [176].   

 

TABLE 5.4 

 Literature values of impedance for porcine liver, kidney, and spleen [173, 174] 

 Impedance [MRayles] 

Liver 1.567 � 1.62 
Kidney 1.6 � 1.65 
Spleen 1.6 � 1.619 

 

 

The importance of using the calibration curves and solving for impedance is evident by 

referring to Table 5.5.  Summarized in Table 5.5 are the maximum grey level values 

between the Vevo 660 and Aloka SSD-900.  The average error between the two 

machines is 42%.  Therefore the ability to characterize tissue using grey level intensities 

becomes questionable and research performed by different people using different 

machines is not verifiable.   
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TABLE 5.5 

Grey level intensity values (mean ± S.E.) 

 Liver Kidney Spleen 

Vevo 660 140.5 ± 3.06 146.1 ± 2.80 131.5 ± 4.19

Aloka SSD-900 76.05 ± 2.08 87.28 ± 1.50 80.06 ± 1.20

% Difference 45.9 % 40.3 % 39.1 % 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Conclusions 

 

In this thesis a calibration method is designed for use with any conventional 

ultrasound scanner.  The method uses a calibration curve produced from a set of oil-salt 

solution interfaces.  Each oil-solution interface is an interface of known impedances 

from which reflection coefficient intensity is calculated.  Once the maximum grey level 

output and reflection coefficient intensity curve is built, any subsequent tissue analyzed 

with the ultrasound scanner will provide a maximum grey level with a corresponding 

impedance value (assuming the settings of the ultrasound scanner are still the same as 

the calibration curve settings and the impedance of the layer above the investigated 

tissue is known).  Most current methods for characterizing tissue rely heavily on offline 

signal processing or specialized machines.  As shown in this thesis, more direct 

approaches may be feasible.   

The conclusion is that this thesis demonstrated that different ultrasound machines 

(differences such as image acquisition, frequency, and resolution) were able to produce 

acoustic impedance values that were comparable.  Experimentally this is very useful 

because experiments derived from the approach in this thesis can be compared and 

verified from researcher to researcher. 

Another conclusion is that using the maximum grey level intensity as opposed to 

the conventional mean grey level proved to be effective.  The main difference between 

the two measures is that the maximum grey level curve will be greater than the mean 

grey level curve and that the determination of the maximum grey level from the 

ultrasound output is simpler.   
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6.2 Future Directions and Recommendations 

  

This method of calibrating any conventional ultrasound scanner to acquire tissue 

impedance is a powerful tool and has far reaching applications and benefits.  Although 

the current results allow a link to be established between grey level and tissue 

impedance, more elaborate studies need to be performed on tissues so the method can  

become more robust and accepted.  Depending on the application of this method, 

whether it is human or veterinary medicine, extensive tissue studies are needed for 

normal tissue impedance so any deviation from the norm can be evaluated.  This method 

can be incorporated in newly produced ultrasound scanners by allowing the 

manufacturer to calibrate the ultrasound scanner and then provide the settings to the end 

user which will allow tissue impedance assessment.   

The conventional mathematical ultrasound model herein is primarily a reflection 

model which does not account for scatterers. The precise conditions under which the 

reflection model is sufficiently accurate must be established.  In order to analyze 

quantitative ultrasound data for non-planar interior surfaces, the conventional 

mathematical model must be improved.  A robust solution to the ultrasound model must 

be found that incorporates reflection, attenuation, and scattering. 

Furthermore, perhaps this method of using the grey level output to assess tissue 

properties can be combined with the echotexture technique to establish a better link with 

tissue physiology. 
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APPENDIX A. Reproduced Hydrometer Correction Table 
 

TABLE A.1 Hydrometer temperature correction table 

 Ever Ready Thermometer Co., Inc.   
 Correction for Specific Gravity Hydrometers 60F/60F (15.56C/15.56C)   
                   

 Degrees F 68 77 86 95 104 113 122 131 140 149 158 167 176 185 194 203 212 
 Degrees C 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

0.700 0.5 1.2 1.9 2.6 3.3 4.0 4.7 5.4 6.1 6.8 7.5 8.2 8.9 9.6 10.3 11 11.7 
0.800 0.6 1.4 2.2 3.0 3.9 4.6 5.4 6.2 7.0 7.8 8.6 9.4 10.2 11.0 11.8 12.6 13.4 
0.900 0.6 1.6 2.6 3.6 4.6 5.6 6.6 7.6 8.6 9.6 10.6 11.6 12.6 13.6 14.6 15.6 16.6 
1.000 0.7 1.8 2.9 4.0 5.1 6.2 7.3 8.4 9.5 10.6 11.7 12.8 13.9 15.0 16.1 17.2 18.1 
1.100 0.8 1.9 3.0 4.1 5.2 6.3 7.4 8.5 9.6 10.7 11.8 12.9 14.0 15.1 16.1 17.1 18.3 
1.200 0.8 2.0 3.2 4.4 5.6 6.8 8.0 9.2 10.4 11.6 12.8 14.0 15.2 16.4 17.6 18.8 20 
1.300 0.9 2.3 3.7 5.1 6.5 7.9 9.3 10.7 12.1 13.5 14.9 16.3 17.7 19.1 20.5 21.9 23 
1.400 1.0 2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0 17.5 19.0 20.5 22.0 23.5 25 
1.500 1.1 2.6 4.1 5.6 7.1 8.6 10.1 11.6 13.1 14.6 16.1 17.6 19.1 20.6 22.1 23.6 25.1 
1.600 1.1 2.8 4.5 6.2 7.9 9.6 11.3 13.0 14.7 16.4 18.1 19.8 21.5 23.2 24.9 26.6 28.3 
1.700 1.2 3.2 5.2 7.2 9.2 11.2 13.2 15.2 17.2 19.2 21.2 23.2 25.2 27.2 29.2 31.2 33.2 
1.800 1.3 3.3 5.3 7.3 9.3 11.3 13.3 15.3 17.3 19.3 21.3 23.3 25.3 27.3 29.3 31.3 33.3 
1.900 1.4 3.4 5.5 7.6 9.7 11.8 13.9 16.0 18.1 20.2 22.3 24.4 26.5 30.7 30.7 32.8 35 <-

--
--

--
--
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--

--
->

 

2.000 1.4 3.5 5.6 7.7 9.8 11.9 14.0 16.1 18.2 20.3 22.4 24.5 26.7 30.8 31.7 32.9 39.9 
                   

 

Note: To use chart, choose specific gravity reading and temperature closest to the unknown sample 
and apply correction by moving the decimal point [3] places to the left.  For example the 
correction factor specific gravity 1,000 at 77F (25C) would be +.0018.  For corrections not on 
chart, one must interpolate between given corrections.   
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APPENDIX B. Photographs of the Tissues Used in the Experiment 
 
Tissues (liver, kidney, and spleen) from 10 pigs (Sus scrofa) were collected and imaged 

under corn oil with ultrasound.  Each of the animal�s tissues was photographed prior to 

the ultrasound imaging.  Figures B.1 to B.10 give the photographs of the tissues for the 

10 animals. 

       

 

 

 

 

 
 
 
 
 
 
 
 
Figure B.1  Liver, Kidney, Spleen   Figure B.2  Liver, Kidney, Spleen 

Animal 1                Animal 2 
 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.3  Liver, Kidney, Spleen   Figure B.4  Liver, Kidney, Spleen 

Animal 3     Animal 4 
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Figure B.5  Liver, Kidney, Spleen   Figure B.6  Liver, Kidney, Spleen 

Animal 5     Animal 6 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.7  Liver, Kidney, Spleen   Figure B.8  Liver, Kidney, Spleen 

Animal 7     Animal 8 
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Figure B.9  Liver, Kidney, Spleen   Figure B.10  Liver, Kidney, Spleen 

Animal 9     Animal 10
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APPENDIX C. Ultrasound oil- salt solution data 
 

 

Table C.1 Vevo 660 ultrasound grey level intensities for oil- salt solutions interfaces 

 

 Corn Oil 
 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Grey 137 153 157 167 169 180 184 188 192 199 198 
Levels: 136 151 158 165 170 177 183 187 193 198 201 
 134 154 158 168 168 178 183 186 192 198 201 
 134 152 157 169 173 177 184 187 194 199 201 
 133 152 158 168 173 180 183 185 193 196 199 
            
            
 Peanut Oil 
 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Grey 125 140 149 155 158 167 172 176 181 185 190 
Levels: 128 139 150 154 159 166 170 178 181 184 187 
 121 140 149 156 158 167 173 177 184 187 189 
 125 140 150 156 158 166 171 178 184 183 190 
 127 139 150 153 160 167 172 175 184 184 187 
            
            
 Olive Oil 
 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Grey 117 134 141 146 153 159 159 166 171 175 179 
Levels: 120 132 140 150 151 159 163 169 174 176 181 
 121 133 142 148 151 159 163 169 173 176 181 
 117 133 142 147 153 159 161 169 174 174 178 

 117 133 141 147 152 160 162 168 174 177 180 
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Table C.2 Aloka SSD-900 ultrasound grey level intensities for oil- salt solutions 

interfaces 
 
 

 Corn oil 
 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Grey  76 89 91 91 99 102 105 109 109 109 114 
Levels: 78 88 92 91 99 98 101 100 109 107 110 
 84 88 92 94 97 101 99 102 111 108 111 
 83 89 95 97 98 102 105 108 107 110 108 
            
            
 Peanut Oil 
 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Grey  72 85 91 97 99 98 101 105 109 108 115 
Levels: 75 86 91 96 102 101 100 108 111 110 114 
 76 86 92 92 101 100 102 107 110 111 107 
 82 88 95 96 94 98 101 102 110 109 112 
            
            
 Olive Oil 
 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
Grey  78 92 97 100 101 106 109 110 111 111 112 
Levels: 78 91 97 100 101 106 108 109 109 111 112 

 80 91 92 100 101 105 109 109 110 111 112 
 83 94 95 101 103 107 108 110 111 111 114 
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APPENDIX D. Ultrasound oil-tissue data 

 
 
Table D.1 Vevo 660 ultrasound grey level intensities for oil-tissues interfaces 
 

 Corn oil + Liver 
Animals: 1 2 3 4 5 6 7 8 9 10 
Grey  159 158 139 164 61 160 160 112 164 140
Levels: 156 142 99 101 137 128 156 155 153 117
 157 149 94 104 171 159 139 144 138 130
 152 135 125 128 140 162 127 111 144 138
 148  112  164 125 161 141 146 149
 162  140    166  163  
 162        170  
 113          
           
           
 Corn oil + Kidney 
Animals: 1 2 3 4 5 6 7 8 9 10 
Grey  184 133 119 161 139 142 143 162 133 161
Levels: 179 129 97 150 160 141 136 120 133 170
 183 133 119 159 165 158 128 133 158 174
 186 124 133 158 153 148 132 161 131 131
 182 114 154 134 149 123 115 124  165
 164   149    146     172
 163         122         
           
           
 Corn oil + Spleen 
Animals: 1 2 3 4 5 6 7 8 9 10 
Grey  123 162 126 144 67 168 101 132 85 126
Levels: 159 153 135 171 112 171 131 158 110 140
 155 139 138 146 63 147 161 162 72 114
 168 125 116 135 78 138 153 162 126 111
  137 109 159 110 169 149 163 74  
  155   68    145  
     155    91  
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Table D.2 Aloka SSD-900 ultrasound grey level intensities for oil-tissues interfaces  
 

 Corn oil + Liver 
Animals: 1 2 3 4 5 6 7 8 9 10 
Grey  66 87 60 40 76 64 91 78 101 107 
Levels: 73 84 63 41 103 80 77 74 105 89 
 64 78 71 55 80 83 76 70 98 97 
 78 74 60 52 56 73 83 70 86 87 
 77 94 63 42 68 77 66 63 78 84 
 86 86  53 71 87    90 
                   100 
           
           
 Corn oil + Kidney 
Animals: 1 2 3 4 5 6 7 8 9 10 
Grey  89 86 84 92 90 59 100 89 82 100 
Levels: 106 76 104 90 92 92 83 83 87 86 
 92 70 94 73 88 103 87 85 78 92 
 102 97 62 83 88 84 108 87 89 98 
 74 64 92 92 88 107 91 66 79 84 
 96 76 86           88   
           
           
 Corn oil + Spleen 
Animals: 1 2 3 4 5 6 7 8 9 10 
Grey  87 85 75 83 85 87 77 92 77 64 
Levels: 74 86 76 92 86 86 91 92 72 64 
 70 76 66 68 88 76 88 86 80 54 
 86 84 83 87 87 70 72 91 76 84 
 73 80 80 88 73 77 92 80 72 83 
                   82 
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APPENDIX E.  Expressions for reflection coefficient intensity in terms of grey level 
 
 
 
Vevo 660 inversion equation from the third order polynomial (Equation E.1): 
 

( ) 3
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Aloka SSD-900 inversion equation from the third order polynomial (Equation E.2): 
 

( ) 3
1
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