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ABSTRACT 

 

Nordihydroguaiaretic acid (NDGA), is a naturally-occurring lignan isolated from the 

creosote bush (Larrea tridentata). The aqueous extract of this shrub, commonly referred to as 

Chaparral tea, was listed in the American pharmacopeia as an ethnobotanical used to treat 

tuberculosis, arthritis and cancer. Other documented traditional applications of creosote bush 

extract include treatment for infertility, rheumatism, arthritis, diabetes, gallbladder and kidney 

stones, pain and inflammation among many others. In spite of the numerous pharmacological 

properties, NDGA use has been associated with toxicities including hepatotoxicity in humans. 

Previous studies in our group showed that oxidative cyclization of NDGA (a di-catechol) at 

physiological pH forms a dibenzocyclooctadiene that may have therapeutic benefits whilst 

oxidation to ortho-quinone likely mediates toxicological properties.  

In order to investigate the structural features responsible for pharmacological and 

toxicological properties, a series of NDGA analogues were designed, synthesized and characterized 

for the purpose of studying their oxidative metabolism. Literature procedures were modified to 

successfully prepare seven lignan analogues via multi-step synthesis. In our effort to understand the 

mechanisms of NDGA intramolecular cyclization, the prepared analogues were incubated under 

previously established conditions where NDGA autoxidized to yield the dibenzocyclooctadiene 

derivative. We also evaluated the stability of the analogues under the conditions of this study. 

Furthermore, we evaluated bioactivation potential of the prepared analogues with a goal of 

eliminating reactive metabolite liability through rational structural modification. We incubated 

NDGA and its analogues in rat liver microsomes (RLM) in the presence of glutathione as a 

nucleophilic trapping agent. Standards for comparison were generated by performing glutathione 
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trapping experiments with chemical and enzyme oxidation systems. The potential of the 

dibenzocyclooctadiene lignan 2 derived from NDGA under physiological conditions to contribute 

to toxicological properties via reactive metabolite formation was also evaluated. Glutathione 

conjugates were detected by electrospray ionization-mass spectrometry (ESI-MS) scanning for 

neutral loss (NL) 129 Da or 307 Da in positive ion mode or precursor ion (PI) scanning for 272 Da 

in negative ion mode and further characterized by liquid chromatography–tandem mass 

spectrometry (LC–MS/MS) or in a single LC-MS run using multiple reactions monitoring (MRM) 

as a survey scan to trigger acquisition of enhanced product ion (EPI) data.  

We determined that NDGA autoxidation at pH 7.4 is dependent on substituents and/or 

substitution pattern on the two aromatic rings. In particular, spontaneous intramolecular cyclization 

to a dibenzocyclooctadiene required a di-catechol lignan, raising the possibility that o-Q formation 

may not be necessary for cyclization to occur. Cyclization was significantly inhibited in the 

presence of excess GSH which supports the involvement of free radicals as opposed to o-Q in the 

intramolecular cyclization process. The mono-catechol analogues A1 and A4 underwent oxidation 

to o-Q but no evidence of cyclization was found implying that electrophilic substitution cannot 

account for NDGA cyclization. The phenol-type analogues were oxidatively more stable in 

comparison with the catechol-type analogues at pH 7.4. The results demonstrate that electrophilic 

substitution makes no contribution to the intramolecular cyclization process and that a radical 

mediated process accurately describes the situation for NDGA. 

Oxidative metabolism and bioactivation studies on NDGA and its analogues revealed that 

reactive metabolites formation is dependent on substitution and/or substitution pattern of the 

aromatic rings. Cytochrome P450-mediated oxidation of NDGA and its catechol-type analogues 

yielded electrophilic intermediates which reacted with GSH. The GSH mono-conjugates were 
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identified as ring adducts derived from o-Q although the position at which the GSH binds to the 

aromatic rings could not be determined. We also found that NL 129 or 307 scanning in positive 

ionization mode has potential diagnostic utility in distinguishing between aromatic and benzylic 

GSH conjugates although further studies may be required for validation. We found no evidence of 

p-QM either directly or via isomerization of o-Q intermediates suggesting that o-Q is the major 

reactive toxicophore responsible for reactive metabolite mediated toxicities associated with NDGA 

use. In addition, we demonstrated that the NDGA-derived dibenzycyclooctadiene lignan (cNDGA 

2) undergoes P450-mediated oxidation to a reactive metabolite which might have toxicological 

implications. There was no evidence of P450-mediated oxidation to reactive metabolites for the 

phenol-type NDGA analogues. It is concluded that structural modification efforts should focus on 

phenol-type analogues to potentially enhance the safety profile of NDGA.  
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1 INTRODUCTION 

 

The leaves of the plant creosote bush were used commonly in traditional medicines among 

the Native Americans for diverse beneficial effects.1-3 The aqueous extract of this shrub, commonly 

referred to as Chaparral tea, was listed in the American pharmacopeia as an ethnobotanical used to 

treat tuberculosis, arthritis and cancer.3 Documented traditional applications of the plant extract 

include treatment for infertility, rheumatism, arthritis, diabetes, gallbladder and kidney stones, pain 

and inflammation among many others.1,2 Creosote bush is rich in lignans particularly 

nordihydroguaiaretic acid (NDGA, 1) (up to 15% dry weight (d.w.)).1 This natural polyphenol is 

generally accepted as responsible for both the beneficial and adverse effects associated with 

creosote bush, mainly because of its high content in the plant.1,2, 4-6 NDGA 1 has been shown to 

have promising applications in the treatment of multiple diseases, including cardiovascular 

diseases,7, 8 neurological disorders9-13 and cancers.2,14-20 It has also been reported to potently inhibit 

viruses such as human immunodeficiency virus (HIV-1), herpes simplex virus (HSV), human 

papilloma virus (HPV) and influenza virus.1,21 The radical scavenging22,23 and antioxidant effects24 

as well as anti-inflammatory25, 26 and anti-proliferative properties may be of relevance in different 

diseases. Despite its broad pharmacological activities, NDGA 1 use is associated with toxicity 

especially when ingested at higher doses.27 Reports of severe hepatic24, 27-29 and renal injuries30-32 

associated with NDGA 1 use are likely linked to bioactivation to reactive ortho-quinones (o-Qs).32-

34 

Interestingly, incubation of NDGA 1 at pH 7.4 gave a schisandrin-like 

dibenzocyclooctadiene lignan 2.35 This appears to be an intramolecular cyclization although the 

1 
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mechanism is yet unknown. The conditions of preparation of Chaparral tea2 and biological 

evaluations of NssDGA 15,36,37 favour autoxidation suggesting that any biological action by NDGA 

treatment could result from either NDGA itself or its oxidation products.37 Also, lignans with the 

dibenzocyclooctadiene structural moiety have received much research attention and are known to 

exhibit a wide variety of interesting biological activities,38,39 including antiviral,40 anticancer,41 anti-

inflammatory,42 and hepatoprotective effects.43 On the other hand, Billinsky et al.,33 reported that 

oxidative metabolism of NDGA gives rise to an o-Q but does not appear to form a para-quinone 

methide (p-QM). This is surprising given that under similar oxidative conditions 

secoisolariciresinol (SECO, 9), a structurally similar lignan, converts to lariciresinol 21 likely via a 

p-QM intermediate.33, 44 It is noteworthy that oral consumption of SECO is not reported to cause 

serious toxic effects in humans whilst use of NDGA in the food industry as an antioxidant was 

banned following reports of nephrotoxicity.31 

Research interest in NDGA continues to rise due to its encouraging treatment benefits in 

conditions such as cardiovascular diseases, neurological disorders and cancers.6 Several medicinal 

properties have been supported by in vitro and in vivo experimental studies, as well as historical 

reports. Studies suggest that NDGA derivatives such as tetramethyl-O-NDGA (M4N, 14) and tetra-

acetyl NDGA 15 exhibit similar or even higher anti-viral activities than natural compounds. It is 

worth mentioning that M4N 14 is currently under clinical evaluations for treatment of human 

cancers.45 Perhaps, the most startling observation is with 1,4-bis-(3,4-dihydroxyphenyl) butane 17, 

a simplified NDGA, which is 10 times more potent as a proliferative inhibitor of H-69 small lung 

cancer cells than NDGA.36 Given that chemical modification of NDGA may reduce toxicity, 

combined with enhancing therapeutic effects, the possibility that derivatives of NDGA may become 

important drugs in the future has been well recognized as evidenced by increasing research interest. 



 
 

3 
 

Unfortunately, the structural features that govern both pharmacological and toxicological properties 

of NDGA are poorly understood. At present, the usefulness of NDGA and its derivatives is 

hindered by the lack of understanding of the mechanisms of not only the beneficial activities but 

also toxicity. A thorough understanding of pharmacological and toxicological pathways may lead to 

rational design of NDGA analogues with improved safety profile. While a great deal of 

observational and correlative data has been reported, there have been few comprehensive 

mechanistic or structure-function studies conducted on NDGA. Therefore, the overall goal of this 

study is to synthesize analogues of NDGA to investigate the mechanisms of pharmacological and 

toxicological pathways. The study is expected to provide insight into the structural features which 

modulate biological properties of NDGA and likely lead to development of new treatments for 

human diseases in the future. The results will certainly advance our understanding of structure-

activity-relationships of NDGA and direct efforts towards discovery of new NDGA analogues with 

better safety profiles. 
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2 LITERATURE REVIEW 

 

2.1 Lignans 

Lignans constitute an important class of natural products derived from oxidative dimerization 

of two phenylpropanoid units. They are widely distributed in the plant kingdom and probably play 

important roles in plants’ defense mechanisms against various biological pathogens and pests.46 

Structurally, lignans have two C6C3 structural units linked through β and βʹ (or C8 and C8ʹ) carbons 

to form 18 carbon basic skeleton46, 47 (Figure 2-1).  

 

Figure 2-1: Structures for (a) C6C3 phenylpropane subunit and (b) basic lignan skeleton. 

 

Lignans continue to attract much research attention due largely to their significant 

pharmacological properties including antitumor, anti-inflammatory, immunosuppressive, 

cardiovascular, antioxidant and antiviral actions.48,49 In addition to their staggering biological 

activities, lignans show enormous structural diversity which partly accounts for an upsurge in 

research interest. Lignans have been classified into different families on the basis of their general 

chemical structure.49,50 
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2.2 Nordihydroguaiaretic Acid (NDGA) 

2.2.1 Source and Traditional Uses 

Nordihydroguaiaretic acid NDGA 1 is a lignan present at concentrations of up to 15% by dry 

weight of creosote bush leaves.1 Creosote bush (Larrea tridentata), is a common shrub of the arid 

regions of northern Mexico and the south-western United States. Traditionally, the shrub has been 

used by the indigenous people of these areas to treat numerous health problems.2, 51 Extracts and 

preparations of the plant were used for varied reasons including treatment for infertility, 

rheumatism, arthritis, diabetes, gallbladder and kidney stones, pain and inflammation among 

others.2, 4  

  

2.2.2 Structure and Physical Properties 

Structurally, NDGA 1 possesses two catechol moieties linked via a butane bridge with two 

methyl substitutions at C2 and C3. This polyphenol occurs naturally as a meso compound (Figure 2-

2). Its strong antioxidant properties are believed to result from the presence of four phenolic 

hydroxyl groups. NDGA 1 is classified as a dibenzylbutane lignan because the phenylpropanoid 

dimers are joined only by β-βʹ bonds47. Its molecular formula and weight are C18H22O4 and of 

302.26 g/mol respectively.  It is solid at room temperature (mp 185-186 °C).  NDGA 1 is also 

referred to as 2,3-bis(3,4-dihydroxybenzyl)butane, 4,4’-(2,3-dimethyl-1,4-butanediyl)bis[1,2-

benzenediol] and 4,4’-(2,3-dimethyltetramethylene)dipyrocatechol and trivially as masoprocol. 
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Figure 2-2: Molecular Structure of Nordihydroguaiaretic Acid (NDGA 1). 

 

2.2.3 Pharmacological Properties of NDGA 

The natural antioxidant NDGA 1 has been under study for numerous pharmacological 

activities including its anti-inflammatory and anti-cancer properties. A topical form of NDGA 

(Actinex®, Chemex Pharmaceuticals, Denver CO) was approved by the FDA for treatment of 

actinic keratosis. After a short while on the market, Actinex® was voluntarily withdrawn due to 

reports of skin hypersensitivity.4 NDGA 1 has shown benefit in cancer chemoprevention, cancer 

therapy, antimicrobial, fertility and hypoglycaemic effects in in vitro and in vivo studies as well as 

human clinical trials1. In addition, NDGA is a known potent inhibitor of lipoxygenase,4, 24 HPV,2 

HSV and HIV.1, 4 It is particularly touted for its antioxidant properties. However, its long use as 

antioxidant in the food industry52 was discontinued following reports of NDGA-induced cystic 

nephropathy in rats.31 The use of NDGA for therapeutic purposes is currently limited due largely to 

toxicity concerns. 

 

2.2.4 NDGA and Autoxidation 

A study in the 1980s reported that nordihydroguaiaretic acid underwent conversion to 

“activated NDGA” in the presence of oxygen.37 The structure of the oxidation product remained 

unstudied until a recent literature report suggesting the “activated NDGA” is a 
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dibenzocyclooctadiene.35 In this study, Billinsky et al.,35 showed that NDGA underwent rapid 

oxidative cyclization in aqueous solution at physiological pH (7.4) to a schisandrin-like 

dibenzocyclooctadiene lignan.  The structure of the oxidation product (Figure 2-3) was 

unequivocally determined from NMR and MS experiments.  

 

Figure 2-3: Structure of the NDGA-derived dibenzocyclooctadiene (cNDGA). 

 

2.2.5 Biological Implications of NDGA-derived Dibenzocyclooctadiene 

NDGA-derived dibenzocyclooctadiene lignan probably makes contribution to therapeutic 

effects attributed to NDGA.  The “activated” NDGA originally reported by Wagner et al.,37 formed 

a stable complex with duplex DNA. This suggests that any biological action by NDGA treatment 

could result from either NDGA itself or its oxidation products37 since many antimicrobial and 

antineoplastic agents are known to function by interacting with DNA and subsequently affecting 

nucleic acid metabolism.53, 54 Unlike NDGA itself, the “activated” NDGA interacted with duplex 

DNA via hydrophobic association. Further, no evidence of intercalation was seen suggesting that 

complexation might not lead to DNA structure modification. In addition, the following important 

observations lend support to potential involvement of NDGA oxidation products in therapeutic 

claims.  
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Firstly, the traditional method of preparation of products from creosote bush normally 

involves boiling the leaves in water. Under such extraction conditions, NDGA possibly converts to 

dibenzocyclooctadiene lignan.35 Secondly, reported conditions of biological activity evaluations 

involving NDGA favour its oxidation and therefore NDGA-derived dibenzocyclooctadiene lignan 

likely makes contribution to reported biological activities especially where biological studies were 

conducted under aerobic conditions for extended periods of time at pH 7.4 or higher.35  For 

example, anticancer activity reported by McDonald et al.,36 was carried out for 7 days under 

conditions that favour oxidation. NDGA autoxidation is rapid35 and therefore the observed activity 

may not result entirely from the natural polyphenol.  Lastly, lignans with dibenzocyclooctadiene 

structural moiety exhibit a wide variety of interesting biological activities,38,39,55 including 

antiviral,40 anticancer,41 anti-inflammatory,42 and hepatoprotective effects.43 For instance, gomisin J 

and derived dibenzocyclooctadiene lignans are reported to have effective anti-HIV activity56 and 

schisantherin D and kadsuranin showed similarly effective anti-HIV activity.57 A study58 involving 

a series of dibenzylbutanediols reported enhanced anti-tumor activity and benefit in breast cancer 

cell inhibition following introduction of the dibenzocyclooctadiene structural moiety. These 

findings suggest that an NDGA-derived dibenzocyclooctadiene likely makes contribution to 

therapeutic properties of NDGA. 

 

2.2.6 Proposed Mechanisms of NDGA Autoxidation 

Nordihydroguaiaretic acid autoxidation to dibenzocyclooctadiene probably occurs via a 

radical-mediated reaction.35, 59 A proposed mechanism involves sequential 2 proton 2 electron loss 

leading to a di-radical 4a which subsequently undergoes coupling via its resonance form 4b to the 

dibenzocyclooctadiene lignan 2 as shown in Scheme 2-1.35, 59 This mechanism is supported by the 
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biosynthesis of the dibenzocyclooctadiene family of lignans in plants which is known to involve 

enzymatic intramolecular biaryl oxidative coupling of phenolic precursors via radical cations, as a 

key step.38, 60 

 

Scheme 2-1: Proposed mechanism for NDGA autoxidation via radical addition. 

In addition,  the dibenzocyclooctadiene family of lignans has been successfully prepared by 

biomimetic synthetic methods.38, 59, 60 Whilst all described approaches involve oxidative aryl 

coupling, the reagents used are critical for the success of the reactions. Coupling of lignans 

containing phenol functions have been achieved using milder oxidative coupling reagents such as 

vanadium(V) oxyhalides,61 thallium(III) tris(trifluoroacetate) (TTFA),62 hypervalent iodine 

reagents,63 ruthenium oxide,60 and others.38 On the other hand, non-phenol substrates required 

oxidizing agents such VOF3.  
64 Attempts at minimizing the accompanying side reactions led to a 

variety of transition metal oxides or their salts, such as Tl(III), Mn(II), Fe(III), Co(III), and Ru(IV), 

which promote aryl-aryl couplings including intramolecular cases.38 In particular, ruthenium(IV) 

dioxide in trifluoroacetic acid-trifluoroacetic acid anhydride (TFA-TFAA) medium is a versatile 

reagent for the synthesis of bridged biaryls from non-phenolic precursors.60 Chattopadhyay et al.,65 
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demonstrated for the first  time the use a cheap, readily accessible non-transition metal based 

reagent 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as oxidative coupling reagent for non-

phenols. This reagent has been widely used in non-phenol oxidative coupling reaction as illustrated 

with the general structure in Scheme 2-2. 

   

Scheme 2-2: Oxidative coupling of non-phenol lignans using DDQ. 

Reagents: a) TiCl4/Zn; b) CH(OEt)3, BzOH; c) (i) H2, PtO2; (ii) DDQ, TFA 

 

Notwithstanding the proposed radical mediated mechanism, autoxidation of NDGA could 

also result from electrophilic substitution66 as illustrated in Scheme 2-3. This mechanism also 

involves a 2 proton, 2 electron loss as in the case of radical-mediated addition. The sequential loss 

of 2 protons and 2 electrons is expected to occur at only one of the two equivalent rings leading to a 

di-radical 5a which possesses the resonance form o-Q 5b. A subsequent nucleophilic attack of the 

unoxidized ring on the o-Q is expected to yield the dibenzocyclooctadiene product 2. The two 

catechol moieties of NDGA are equivalent and therefore exclusive oxidation of one ring seems 

unlikely as suggested by Galano et al.22 However, only one of the two equivalent phenol rings of 

secoisolariciresinol (SECO, 9) was oxidizable with 2,2'-azobis(2-amidinopropane) dihydrochloride 

(AAPH).51 Given that SECO 9 and NGDA 1 are structurally similar and oxidation of NDGA in the 
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presence of GSH could result in a mono-conjugate derived from o-Q,33 an electrophilic substitution 

mechanism cannot be ruled out. 

 

Scheme 2-3: Autoxidation of NDGA via electrophilic substitution mechanism. 

This mechanism is further supported by observations with polyphenols present in tea.  

Oxidations have resulted in dimers such as 8 and other oligomers, whose formation is suggested to 

occur via intermolecular nucleophilic attack of an unoxidized ring of one molecule 6 on an o-Q 7 

derived from oxidation of a second molecule.66, 67 Flavonoids undergo enzymatic or non-enzymatic 

reactions known to proceed via oxidation of the 3,4-dihydroxy function of the B-ring to the 

corresponding o-Qs such as 7. The o-Qs have electrophilic properties and are able to react with 

surrounding nucleophilic molecules including unoxidized polyphenols68 such as 6 via an 

electrophilic substitution mechanism. Oxygen-dependent dimerization of dihydrochalcone  

aspalathin 6 occurred via electrophilic substitution as illustrated in Scheme 2-466. Interestingly, 

aspalathin was treated under the same conditions of incubation (phosphate buffer, pH 7.4 and 37 

ºC) as in the NDGA autoxidation study. Although, the coupling is intermolecular, the fact that an 

initially formed o-Q reacts with a nucleophilic phenolic ring suggests that NDGA o-Q 5b possibly 
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undergoes intramolecular coupling with its unoxidized catechol ring. It should be noted however 

that this mechanism was not demonstrated conclusively and a radical-mediated process remains a 

possibility for the formation of 8. 

 

Scheme 2-4: Dimerization of aspalathin via oxidative coupling.66 

The exact mechanisms of NDGA oxidative cyclization remain unknown but likely depend on 

substituents and/or substitution patterns on both aromatic rings. Understanding the mechanisms will 

be critical to designing NDGA analogues with higher propensity to undergo cyclization at 

physiologically relevant conditions. Also, NDGA analogues resistant to autoxidation can be 

designed and synthesized to investigate the contribution of cyclization product 2 to 

pharmacological activity and/or toxicity.  

 

2.3    Toxicological Properties of NDGA 

Creosote bush has been utilized in traditional healing practices for many years in a wide range 

of remedies, but its use in clinical setting is currently limited due to toxicity concerns. For instance, 
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chronic exposure to Chaparral tea, an aqueous extract of creosote bush is known to cause liver 

damage. Individuals who consumed Chaparral tea over time suffered drug-induced hepatitis.2, 24, 27 

With exception of one specific case report of total hepatic failure24, 28 and a few cases of 

progression to liver cirrhosis,24 hepatotoxicity was reversible when ingestion is discontinued.2, 24, 27, 

28 In 1968 the Canadian Food and Drug Directorate found evidence of NDGA-induced cystic 

nephrotoxicity in rats.31 Consequently, NDGA use as food preservative was banned in Canada. 

Furthermore, NDGA lost its “Generally Recognized As Safe” (GRAS) status and was removed 

from the US Food and Drug Administration’s list following several reports of toxicity.1, 31   

 

2.3.1 Secoisolariciresinol (SECO) versus Nordihydroguaiaretic acid (NDGA) 

Secoisolariciresinol (SECO, 9) belongs to the dibenzylbutanediol class of lignans. It is closely 

related to NDGA 1 in structure.  Like NDGA, is linked only by a β-βʹ bond. However, SECO 9 has 

hydroxymethyl groups at C2 and C3 of the butane bridge and methoxy substitutions at 3 and 3ʹ 

positions of the aromatic rings (Figure 2-4). Both NDGA 1 and SECO  9 have been under study for 

their diverse pharmacological properties and potential as lead drug candidates.  

 

 

Figure 2-4: Molecular structure of Secoisolariciresinol (SECO, 9) and its diglucoside (SDG, 10). 

The consumption of flaxseed has shown benefits in humans. Experimental evidence 

suggests that the lignan secoisolariciresinol diglucoside (SDG, 10) present in flaxseed and its 
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mammalian metabolites may protect against CVD and metabolic syndrome by reducing lipid and 

glucose concentrations, lowering blood pressure, and decreasing oxidative stress and 

inflammation.69 A reduction in cancer risk by preventing pre-cancerous cellular changes and by 

reducing angiogenesis and metastasis following ingestion of flax lignans has also been suggested.69 

Therefore, dietary SDG 10 has been proposed as having the potential to decrease the incidence of 

several chronic diseases. Despite its close structural similarity to NDGA 1, flaxseed lignan SECO 9 

appears to be well tolerated among adult populations69 and no known significant toxicity in humans 

has been reported.44 

 

2.3.2 Quinones and Toxicity  

Quinones represent a class of toxicological intermediates which have been implicated in a 

variety of xenobiotic toxicities in vivo, including cytotoxicity, immunotoxicity, and carcinogenesis. 

Formation of quinones from xenobiotics may be mediated by monooxygenase enzymes, 

peroxidases and in some cases molecular oxygen. Quinone-mediated toxic effects may have varied 

and often complex mechanisms.70 However, the main theories proposed over the years to explain 

quinone toxicity include alkylation or covalent binding, and oxidative stress mechanisms of 

cytotoxicity.71 

 

2.3.3 Theories of Quinones Toxicity 

2.3.3.1 Alkylation of Macromolecules 

The major non-protein sulfhydryl present in cells, glutathione (GSH, 11) is generally 

considered to protect cells from oxidative damage because its thiol function serves as “sacrificial” 
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nucleophile, preventing critical sites on cellular macromolecules from irreversible modification.70  

The physiological concentration of GSH in the liver is approximately 7mM72 of which nearly 90% 

is found in the cytosol.73    

 

Figure 2-5: Structure of glutathione (GSH, 11). 

The presence of electrophiles in the cellular environment causes a reaction with cellular 

GSH 11 leading to its depletion. Following GSH 11 depletion, nucleophilic groups on cellular 

macromolecules, such as proteins or DNA, react covalently with electrophiles (Figure 2-6) leading 

to irreversible structural and/or functional changes resulting in cell death.70,71 DNA modifications 

likely mediates cytotoxicity of rapidly dividing cells, such as tumor cells, whilst in resting or non-

dividing cells alkylation of essential protein thiol or amine groups and/or oxidation of essential 

thiols by activated oxygen species and/or GSSG is the molecular basis of quinone cytotoxicity.71  
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Figure 2-6: Covalent binding of electrophiles with (a) GSH and three possible forms of 

electrophile-protein interactions: interaction with (b) thiol group (c) amine group of protein and (d) 

reduction of semiquinone radical by sulfhydryl group and subsequent protein cross-linking in the 

presence of oxygen.74 

 

2.3.3.2 Oxidative Stress 

Quinone toxicity may result from oxidative stress. Oxidative stress arises when there is a 

disturbance in the prooxidant-antioxidant balance in favour of the former, leading to potential 

damage.75 Quinones are potent redox active compounds which can undergo enzymatic or non-

enzymatic redox cycling with their semi-quinone radicals, leading to formation of reactive oxygen 

species (ROS) such as superoxide anion radicals (Scheme 2-5). Superoxide anion radicals may 

cause damage on their own or react further with hydrogen peroxide, formed from enzymatic or 
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spontaneous dismutation of superoxide anion radical to give hydroxyl radicals. Hydroxyl radicals 

are powerful oxidizing species that may be responsible for most of the damage to essential 

macromolecules involved in oxidative cytotoxicity (Scheme 2-5)70, 71. 

 

 

Scheme 2-5: (a) Redox cycling of quinones generating reactive oxygen species (ROS) and (b) 

Oxidation of 2-deoxy-guanosine by hydroxyl radical. 

 

2.3.4 NDGA and Quinones Formation 

The mechanisms of NDGA toxicity remain unclear although quinone formation has been 

implicated in hepatotoxicity. In theory, the structure of NDGA 1 suggests possible direct oxidation 

to either o-Q 5b or p-QM 5c (Scheme 2-6). Such transformations may be cytochrome P450-
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mediated or catalysed by other oxidases.28 Formation of NDGA o-Q 5b has been reported in the 

literature.32, 33, 76 Surprisingly, NDGA does not appear to form p-QM 5c33 even though its o-Q 5b 

meets structural requirements for isomerization.77, 78 The presence of benzyl protons available for 

abstraction suggests that NDGA o-Q 5b can tautomerize to p-QM 5c.79 In addition, extended π-

conjugation at the para or 4-position of a catechol78 as well as acidity of the benzyl proton80 

enhances o-Q to p-QM isomerization rate.  On the contrary, steric hindrance at the benzyl position 

slows down tautomerization rate and may lead to non-detectable levels of p-QM. This has 

previously been cited as a possible explanation for the absence of p-QM 5c in NDGA oxidation 

experiments.33    

 

 

 

Scheme 2-6: Oxidation of meso-NDGA to o-Q and p-QM derivatives. 

2.3.5 ortho-Quinones and Reactive Oxygen Species 

In general, catechols undergo two successive 1-electron oxidations catalysed by a variety of 

oxidative enzymes, metals ions and in some situations molecular oxygen to generate reactive 
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metabolites called o-Qs (Scheme 2-5a).71  For example, tyrosinase oxidizes phenols and/or 

catechols directly to o-Qs.81, 82 o-Qs are redox active molecules with potential to undergo non-

enzymatic two-electron reduction with cellular reducing equivalents [NAD(P)H] or enzymatic one-

electron reduction. The ensuing redox cycling (Scheme 2-5a) increases production of reactive 

oxygen species (ROS), including superoxide, hydrogen peroxide and ultimately hydroxyl radical.70 

Production of ROS in the cellular environment is known to cause severe oxidative stress through 

the formation of oxidized macromolecules, including lipids, proteins, and DNA (Scheme 2-5b). The 

intermediate  semiquinone radical (Scheme 2-5a) may cause deleterious damage on its own74 or 

oxidizes further to the o-Q. Cytotoxicity of o-Qs appears to be mainly due to oxidative stress70 

although the potential to react with cellular nucleophiles can occur due to the o-Q’s ability to act as 

electrophilic Michael acceptors. NDGA o-Q 5b is therefore likely to mediate toxicological effects 

via oxidative stress resulting from redox cycling with its intermediate semiquinone radical 3 

although covalent modification of cellular macromolecules may also occur as illustrated in Scheme 

2-7. The o-Q 5b has intrinsic potential to isomerize to the more electrophilic p-QM 5c tautomer 

which may also contribute to toxicity.  
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Scheme 2-7: Proposed toxicological pathways for NDGA. The redox cycling of NDGA o-Q 5b 

with its semi-quinone radical 3 leads to ROS which may cause oxidative stress. The o-Q 5b may 

bind covalently to  cellular nucleophiles (Nu) forming aromatic adducts. 

2.3.6 p-Quinone Methide and Adduct Formation 

Quinone methides (QMs) differ structurally from quinones (Figure 2-7), as one carbonyl 

group is replaced by a methylene or substituted methylene group.77 QMs have been implicated in 

toxicity of certain exogenous compounds including food additives such as eugenol and butylated 

hydroxytoluene (BHT).79  

 

Figure 2-7: General structures of ortho-quinone and para-quinone methides.  

Oxidative metabolism generates QM by one of two major mechanisms. Firstly, phenols with 

at least one benzylic proton may be directly oxidized to the corresponding phenoxy radical as a 
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result of monooxygenase83, 84 or peroxidase activity.85, 86 The phenoxy radical is subsequently 

oxidized to a QM which is probably non-enzymatic but is likely to be enzyme-catalysed in the 

presence of cytochrome P450.87 A second pathway involves indirect conversion of a catechol to a 

QM via isomerization of the initially formed o-Q. However, this tautomerization is dependent on 

the presence of a benzylic hydrogen available for abstraction79 and steric factors around the benzyl 

position.33 

In theory, NDGA 1 should form both o-Q and p-QM. Given that the o-Q 5b has benzylic 

hydrogens it is expected to isomerize to the more electrophilic p-QM 5c as shown below (Scheme 

2-8) although there is no evidence yet for NDGA p-QM 5c. The p-QM 5c is anticipated to be 

highly electrophilic in nature and expected to exhibit higher reactivity than o-Q tautomers.88 

Therefore, NDGA p-QM, if formed, will more readily react with cellular nucleophiles than the o-Q 

tautomer implying a higher toxicity. On this basis, the molecular mechanism of toxicity for a p-QM 

will be mainly characterized by alkylation of cellular nucleophiles rather than redox chemistry.  

 

Scheme 2-8: Isomerization of NDGA o-Q 5b to p-QM 5c and subsequent reaction with cellular 

nucleophile (Nu) to form a benzylic adduct 13. 
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2.4   Structure Activity Relationship (SAR) Studies on NDGA 

McDonald et al.,36 examined activities of various NDGA analogues against H-69 small cell 

lung cancer cell line. The primary objective was to establish relationships between structure and 

potency as proliferative inhibitor of H-69 lung cancer cell line.  The authors report that the optimum 

carbon spacing between the two catechol moieties is four as analogues with less or greater than C4 

bridge showed decreased activity.  Findings of McDonald and co-workers  as well as those of 

others21, 89-91 also suggest that the catechol moiety has little, if any, effect on activity. A tetra-O-

methyl-nordihydroguaiaretic acid (M4N 14) is strikingly more effective,21, 92 non-toxic and 

currently in clinical trials against human cancers.91 Other hydroxyl-substituted analogues (Figure 2-

8) such as a tetraacetate of NDGA (TA 15) and the prodrug tetraglycinylated-NDGA (G4N 16) 

have also shown antiviral activity.21, 89 Lambert et al.,5 have observed a positive correlation of O-

methylation with potency for NDGA and have suggested increased lipophilicity which allows the 

compounds to traverse lipid membranes as one probable reason for the enhanced activity. Since 

NDGA binds to estrogen receptors (ERs) to elicit estrogenic response, the potent inhibition of 

MCF7 breast cancer line by methylated NDGA analogues may be related to increased affinity for 

ER which are expressed in MCF7 cells.5 

NDGA potently inhibits lipoxygenase by a  mechanism which involves reduction of ferric 

iron into inactive ferrous form,  and concomitant oxidation of the catechol moiety of NDGA to a 

semiquinone.93 Whitman et al.,94 found that “masking” of the phenolic groups of NDGA removes 

lipoxygenase inhibitory activity. It follows then that pharmacologically active analogues with 

masked phenolic groups act via a lipoxygenase independent mechanism thus suggesting NDGA 

acts at multiple targets. Although M4N 14 and other hydroxyl-substituted analogues display 

similar36 or better potency than NDGA,91 the catechol moiety is required for lipoxygenase activity 
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and also largely accounts for NDGA antioxidant activity. NDGA possibly possesses cytotoxic 

activity independent of pro-oxidant capability but its antioxidant properties have also been cited in 

many beneficial applications. For instance, NGDA is a potent in vitro scavenger of peroxynitrite, 

singlet oxygen, hydroxyl radical, superoxide anion and hypochlorous acid.23 In fact, NDGA is a 

more effective hydroxyl radical scavenger than other recognized hydroxyl radical scavengers like 

uric acid, dimethylthiourea, trolox and mannitol.23 In addition, the inhibition of cytotoxicity 

induced by t-butylhydroperoxide63 and hydrogen peroxide74 in mammalian cells is also consistent 

with the antioxidant effect of NDGA. Therefore, suggestions that the o-hydroxyl functions may not 

be critical to biological activities of NDGA are misleading and possibly simplistic. Perhaps the 

most striking SAR report is the observation that 1,4-bis(catechol-yl-)-butane 17, a double 

demethylated NDGA (Figure 2-8), is 10 times more potent than NDGA as proliferative inhibitor of 

H-69 small cell lung cancer cells.36 This raises the question of whether or not NDGA’s internal 

planes of symmetry are necessary for pharmacological activity. NGDA and its racemate showed 

similar potency as proliferative inhibitor of H-69 small cell lung cancer cells36. There are no 

systematic evaluations of stereochemical influence on biological activity for NDGA.  
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Figure 2-8: Examples of pharmalogically active o-hydroxy-substituted analogues of NDGA and a 

simplified NDGA 17. 

 

2.5    Design of NDGA Analogues 

A radical mediated mechanism (Scheme 2-9 pathway A) has been proposed to explain NDGA 

1 autoxidation to dibenzocyclooctadiene35, 59 but could also result from an electrophilic 

substitution66 mechanism (Scheme 2-9 pathway B). Although the exact mechanism of the 

intramolecular cyclization remains unknown, it likely depends on substituents and/or substitution 

patterns on both aromatic rings. Access to approapriate NDGA analogues will allow for 

investigations into the effect of aromatic rings and/or butane bidge substitutions on 

dibenzocyclooctadiene product formation. This will untimately provide insight into the structural 

features which modulate NDGA pharmacological and toxicological effects. Therefore, we proposed 

the synthesis of of eigth NDGA analogues (Figure 2-9) to primarily verify the proposed 
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mechanisms of NDGA intramolecular cyclization and whether oxidative conversion to reactive 

metabolites depends on substituents and/or substitution pattern of the aromatic rings. 

 

 

Figure 2-9: Structures of proposed NDGA analogues  for this project. 
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Scheme 2-9: Proposed mechanisms of NDGA autoxidation. Pathways A and B represent radical-

mediated and electrophilic substitution mechanisms respectively. 
 

2.6 Rationale for the Proposed NDGA Analogues 

A radical-mediated addition mechanism (Scheme 2-9, pathway A) requires initial formation 

of a di-radical 4, followed by radical coupling. This mechanism is dependent on a di-catechol 

moiety or the presence of free 3-OH and 3ʹ-OH groups, suggesting that a mono-catechol NDGA 

and other analogues lacking 3 and 3ʹ OH structural units may not undergo the intramolecular 

cyclization under similar conditions. On the other hand, an electrophilic substitution mechanism 

(Scheme 2-9, pathway B) requires at least a catechol moiety which oxidizes to an o-Q 5b via a di-

radical intermediate 5a and the potential of the other ring to act as a nucleophile. 

A mono-catechol A1 (Figure 2-9) lacks readily ionizable -OH groups on the unsubstituted 

ring and could only cyclize via an electrophilic substitution mechanism. The Hammett constants for 
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substituents σ (Table 2-1),95 suggest that the mono-catechol A1 is less nucleophilic and therefore 

expected to undergo autoxidation at a greatly reduced rate in comparison to NDGA.  A4 is 

comparable to NDGA in nucleophilicity and will be expected to autoxidize at a rate comparable to 

that reported for NDGA if the cyclization follows electrophilic substitution mechanism. However, 

the lack of free –OH functions on both aromatic rings of A4 means that the radical-mediated 

pathway cannot occur for A4. Therefore, absence of autoxidation in A4 could imply that a radical-

mediated process more accurately describes NDGA oxidative cyclization. Compounds A5 and A6 

are expected to behave like NDGA under oxidative conditions although intramolecular cyclization 

to a dibenzocyclooctadiene derivative is expected to occur at different rates. Given the potential of 

compound A6 to cyclize under oxidative conditions, we were motivated to verify whether a 

dibenzocyclooctadiene derivative possibly contributes to the remarkable anti-proliferative activity 

reported by McDonald et al.36 Compound A5 was intended to investigate the effect of butane-

bridge substitution on intramolecular cyclization rate. Lastly, if the intramolecular cyclization 

follows a radical-mediated addition mechanism, compounds A7 and A8 will be expected to form 

dibenzocyclooctadiene derivatives.  
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Table 2-1: Hammett constants for substituents95 on the prepared NDGA analogues. 

Substituents  Hammett constant (σ) 

H 

m-OH  

p-OH 

m-OCH3 

p-OCH3 

0.00 

0.12 

-0.37 

0.12 

-0.27 

 

Unlike NDGA 1, oxidation of SECO 9 did not form reactive intermediates capable of 

interacting with biological nucleophiles.33 Instead, SECO converts to lariciresinol (Scheme 2-10 ) 

which is resistant to further oxidations96. The lack of reactive metabolites likely explains the 

relative safety profile reported for SECO.33  

 

Scheme 2-10: Conversion of SECO to lariciresinol under oxidative conditions. 

The methoxy substituents of the di-phenolic lignan SECO 9 possibly prevent metabolic 

conversion to quinones (Scheme 2-11). Metabolism studies of A2 and A3 which lack the potential 

for o-Q formation are expected to aid in understanding the contribution of o-Qs and/or p-QMs to 

NDGA 1 toxicity. Oxidative metabolism studies of the analogues will help us to better appreciate 
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metabolism of lignans and possibly lead to development of some understanding of structure-activity 

relationships for lignans, an area where data is currently lacking. 

 

Scheme 2-11: Oxidation of secoisolariciresinol (SECO 9) and nordihydroguaiaretic acid (NDGA) 

analogue 3 (A3) to quinones. 

 

2.7 Synthesis of NDGA and its Analogues 

Synthesis of lignans and their analogues continues to attract attention due to their interesting 

biological properties and potential for use as medicines. One such lignan with interesting 

pharmacological properties is NDGA. In a recent review, Chen48 described various approaches to  

prepare NDGA analogues. Synthetic analogues were categorized broadly into three families (Figure 

2-10) based on the modification type as a) hydroxyl-substituted NDGA derivatives, b) butane-

bridge modified NDGA derivatives and c) phenyl-ring NDGA derivative48  

 

 

Figure 2-10: Modifications of the backbone of NDGA to (a) hydroxyl-substituted NDGA 

derivatives (b) butane-bridge modified NDGA derivatives and (c) phenyl-ring NDGA derivatives 

(shaded areas are sites of modification).48  
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Approaches to syntheses of lignans and their analogues described in the literature involve the 

use of a limited number of vital reactions to construct the basic 18-carbon skeleton which is 

subsequently modified via cyclization, reduction, oxidation or hydration among others to the 

desired target compound. The compounds of interest for this project are all hydroxyl-substituted 

NDGA derivatives. This section reviews a number of approaches with emphasis on their 

applicability to the synthesis of our anticipated NDGA analogues. Based on retrosynthetic analysis, 

hydroxyl-substituted NDGA type derivatives can be prepared via four major routes (Figure 2-11)48 

depending on synthetic objective and factors such as availability of starting materials, yield and 

stereoselectivity among others. 
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Figure 2-11: Retrosynthetic approach for synthesis of hydroxyl-substituted NDGA derivatives. 

 

2.7.1 Consecutive Stobbe Condensation 

The Stobbe condensation reaction has been used extensively in the literature for 

constructing the basic skeleton of lignans due largely to its versatility. The reaction involves 

treating an aromatic aldehyde 18 with a succinate ester 19 in the presence of a base to give a trans-

benzylidene succinate monoester 20.97 The mechanisms (Scheme 2-12) involve intramolecular 

cyclization leading to formation of a 5-membered lactone97, 98 which subsequently cleaves via β-

elimination to form the trans-benzylidene product 20. The intermediate 5-membered lactone has 

been confirmed by isolation.97 Stereochemistry of the trans-benzylidene product 20 was 
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unambiguously established through NMR studies.98 The diamagnetic anisotropic deshielding effect 

of the carbonyl group causes the olefenic proton in the E configuration to appear beyond 7.5 ppm, 

downfield from the Z proton arrangement.98  

A consecutive Stobbe condensation of the trans-benzylidene diester 21 with another 

equivalent of aromatic aldehyde 18 in refluxing alkoxide/alcohol affords the diarylbutanediene 

basic structure 22. A couple of subsequent reductive steps lead to the desired lignan.99, 100  The 

approach provides a flexible way for preparing lignans in good yield with individual steps ranging 

from 73-99% in the literature. The major drawback, however, is lack of stereo-control for the 

forming stereogenic centers. This has led to various modifications aimed at controlling 

stereochemistry as reviewed in the subsequent sections.  

 

Scheme 2-12: General mechanism of Stobbe condensation reaction. 
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The analogues of interest for this project can all be synthesized by using a double Stobbe 

condensation approach as illustrated below for A1 (Scheme 2-13). In the case of A2, A3, A4, A7 

and A8 protection of the active phenol group in the starting aromatic aldehyde may be necessary to 

prevent side reactions.  

 

Scheme 2-13: Consecutive Stobbe condensation approach for synthesis of A1. 

Reagents and Conditions: i) EtONa/EtOH, reflux; ii or iv) MeI, K2CO3/DMSO, rt; iii) BnCHO, 

EtONa/EtOH, reflux; v) H2, Pd-C, vacuum; vi or viii) LiAlH4/THF, rt; vii) TsCl/py, 0°C; ix) 

BBr3/DCM, -78°C.  

 

Following hydrogenation, the resulting four stereoisomers in the case of A1, A2 and A4 for 

example are expected to exist as two pairs of enantiomers which should be separable 

chromatographically.101 A3, A7 and A8 will exist as a meso-compound and a pair of enantiomers 

which are separable chromatographically.101 Figure 2-12 shows the possible stereoisomers of A1, 
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A2, A3 and A4 following hydrogenation. It is not known whether any preference for the formation 

of any specific stereoisomers will occur, but it remains a possibility. 

 

 

Figure 2-12: Stereoisomers of analogues A1, A2, A3 and A4. 
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2.7.1.1 Approach to controlling stereochemistry of the Stobbe Condensation  

2.7.1.1.1 Stobbe Condensation-Alkylation 

Xia et al.,58, 102 described an approach for enantioselective synthesis of NDGA, (–)-saururenin 

and their analogues using a Stobbe condensation followed by alkylation as key synthetic steps 

(Scheme 2-14). The Stobbe condensation product, a benzylidene half-ester was esterified and 

treated with appropriate alkylating agent in the presence of LDA to give the basic lignan structure. 

After basic hydrolysis, the resulting diacids were resolved via their quinine salts. Hydrogenation of 

esterified (+) or (-) acid followed by LiAlH4 reduction gave diols which were readily separable by 

chromatography. Further reductive steps gave the desired stereospecific lignans with individual 

yields varying from 38-92%.  
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Scheme 2-14: Enantioselective synthesis of NDGA analogues by Stobbe Condensation-alkylation 

approach. 

Reagents and conditions: i) substituted BnBr, LDA/THF, -78°C; ii) NaOH/H2O, reflux; iii) (-)-

quinine resolution; iv) EtOH/C6H6, H
+; v) H2, Pd-C; vi) LiAlH4/THF, rt. 

 

This approach will allow access to A1 and A2 needed for this project as illustrated in Scheme 

2-15 for A2. The key advantage of this approach is stereo-control leading to analogues with defined 

stereochemistry. The major drawback is the lack of general applicability as appropriate alkylating 

agents needed may not be readily available.  
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Scheme 2-15: Synthesis of A2 via Stobbe condensation-alkylation method. 

Reagents and Conditions: i) BnBr, K2CO3/DMF; ii) EtONa/EtOH, reflux; iii, v or viii) MeI, 

K2CO3/DMSO, rt; iv) BnBr, LDA/THF, -78°C; vi) NaOH/H2O, reflux; vi) (-)-quinine resolution; 

ix) H2, Pd-C; x or xii) LiAlH4/THF, rt; xi) TsCl, Pyridine, 0 °C; xii) KOH/EtOH-H2O (1:1), reflux.  

  

2.7.1.1.2 Stobbe Condensation-Lactonization 

The backbone conformation of NDGA analogues can be established by catalytic 

hydrogenation of a racemic lactone.101, 103 The Stobbe condensation product, benzylidene half-ester 

is hydrogenated over Pd/C to give the corresponding saturated hemiester which is chemoselectively 
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reduced and lactonized with Ca(BH4)2 in ethanol to give the racemic lactone in good yield (Scheme 

2-16). Stobbe condensation of the lactone with another equivalent of substituted benzyladehyde 

followed by catalytic hydrogenation with Pd/C yields the cis-lactone exclusively, which was 

reduced to the diol with Ca(BH4)2.
48

 The approach is useful for stereoselective synthesis of 

dibenzylbutane type lignans.   

  

 

Scheme 2-16: Synthesis of NDGA analogues via Stobbe condensation-lactonization approach. 

Reagents and Conditions: i) : (i) H2, Pd-C; (ii) KOH, Ca(BH4)2; (iii) NaH, THF, ArCHO, reflux; 

(iv) H2, Pd-C; (v) Ca(BH4)2, THF, H2O. 

 

2.7.2 Grignard Reaction 

Lieberman et al.,104 used the coupling of 1-piperonyl-1-bromoethane and its Grignard 

derivative as a key step to make the skeleton of NDGA. This approach has been modified without 

success to improve yield and stereo-control in the literature.105 Son et al.,106 developed a modified 
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procedure via 1,4-di(substituted-phenyl)-2,3-dimethyl- butan-2-ol as a key intermediate for the 

synthesis of NDGA and related lignans (Scheme 2-17).  

 

Scheme 2-17: Synthesis of NDGA analogues via Grignard synthesis approach. 

Reagents and Conditions: i) (a) Mg/ether, (b) then H3O
+; ii) H2SO4; iii) H2/PtO2. 

 

Following dehydration, the resulting (E) and (Z) stereoisomers were readily separable since 

the (E) and (Z) forms were crystalline and oily respectively at room temperature.106 The effect of 

various ring substitutions on these physical states is unknown and likely not general. However, this 

approach has a wider applicability because it allows access to both symmetrical and unsymmetrical 

NDGA analogues. In addition, the method uses ketones which are readily available and cheap as 

electrophilic coupling reagents. The overall yields range from 45-54%. The attractiveness of this 

approach may, however, be limited by lack of stereoselectivity although isomers following 

hydrogenation may be separable by chromatography.101 In principle, this approach is expected to 

allow synthesis of all four analogues of interest. Following hydrogenation, the two pairs of 

enantiomers in the case of A1, A2, A4 and the meso-compound and a pair of enantiomer of A3 

(Figure 2-12) should be separable by chromatography.101 
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2.7.3 McMurry Coupling Reaction 

Ti-induced carbonyl-coupling reactions of substituted phenylacetones, surprisingly, resulted 

in 1,4- disubstituted-butane-2,3-diols instead of expected McMurry type butenes. This finding 

provides an attractive alternative route to NDGA and its non-meso isomer using (3,4-

dimethoxyphenyl)-acetone as starting material as shown in Scheme 1-18.107 The method is simple 

and stereoselective although yields were not fully reported.  Also, the approach offers many 

possibilities to produce a wide variety of NDGA derivatives, since carbonyl containing compounds 

are easily accessible. 

However, applicability is limited to symmetrical NDGA analogues since McMurry coupling 

reactions between two different ketones are rarely successful.108 Therefore, A3, A6, A7 and A8 

may be obtainable via this approach as illustrated in Scheme 2-19 for A3. We have also observed 

that an electron-withdrawing substituent on the OH para to the benzyl carbon prevents the coupling 

reaction, resulting only in reduction of starting material to the alcohol (unpublished work). Hence 

the need for an electron-donating group such as trimethylsilyl (TMS) group shown in Scheme 2-19. 

Dehydroxylation of the resulting butanediol is expected to give both Z and E-butenes. As reported 

previously for NDGA,108 the Z and E-isomers may be separable by crystallization. Subsequent 

hydrogenations should either form the meso-compound or a racemic mixture of A3.  
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Scheme 2-18: Synthetic route to NDGA and its stereoisomer using Ti-induced carbonyl-coupling 

reaction. 

Reagents and Conditions: i) TiCl4/Zn, THF; ii) CH(OEt3), BzOH; iii) H2/PtO2; iv) BBr3. 
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Scheme 2-19: Synthesis of A3 via McMurry coupling reaction. 

Reagents and Conditions: i) TiCl4/Zn, THF; ii) CH(OEt3), BzOH; iii) H2/PtO2; iv) H2O/H+. 

 

2.7.4 Oxidative Coupling Approach 

Matairesinol has been synthesized through oxidative coupling of ferulic acid as a key step.109 

The poor control of regiochemistry in the oxidative coupling step led to low yield of the desired 

coupling product.  Oxidized ferulic acid exists in three mesomeric forms (Figure 2-13) which 

allows for six different coupling patterns leading to a mixture of coupling products.101, 110 The 

major coupling pathway seems to be β-5 linked compound.111 

 

Figure 2-13: Mesomeric forms of oxidized ferulic acid. 

This strategy has been modified over the years to improve regioselectivity of the coupling 

reaction. Notably, the use of tert-butyl protection at C5 of the phenyl ring enhances the desired β-β 

coupling by blocking the major β-5 pathway.101, 110 The attractiveness of this approach, however, is 
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limited by its applicability. It does not allow access to unsymmetrical lignan skeletons and therefore 

applicable only to A3 as shown in Scheme 2-20.  

 

Scheme 2-20: Synthesis of A3 via oxidative coupling approach. 

Reagents and Conditions: i) t-BuOH, 85% H3PO4, 75°C; ii) Br2, t-BuOH, r.t.; iii) Ph3PCHCOOEt, 

CH3OCH2CH2OCH3, reflux; vi) K3[Fe(CN)6], KOH, C6H6-H2O, rt; v) H2, Pd/C(10%); vi) AlCl3, 

C6H6, 50°C; vii) LiAlH4/THF, rt.; viii) TsCl, Pyridine, 0°C; ix) LiAlH4/THF, rt;  x) KOH/EtOH-

H2O (1:1), reflux.   

 

2.8 Oxidative Metabolism 

In order to facilitate elimination from the body, xenobiotics are metabolized by various 

oxidation and conjugation enzymes to more electrophilic metabolites. However, this generally 

accepted detoxification process may lead to chemically reactive metabolites in vivo, a process 

known as bioactivation. Most reactive metabolites are electrophilic in nature and can react with 

nucleophiles. Due to a possible link between reactive metabolites and drug toxicity, screening for 

metabolic activation has become integral part of the drug development process.112, 113  
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2.8.1 Metabolism of Nordihydroguaiaretic Acid 

The low bioavailability of NDGA is attributed to efficient first-pass metabolism as opposed 

to low absorption given that NDGA readily forms glucuronides, and liver function test (LFT) 

abnormalities have been detected in multiple patients indicating delivery of NDGA to the 

hepatocyte.114 Lambert et al.,4 detected mono- and diglucuronides of NDGA within minutes in the 

plasma of mice following intravenous treatment.  When incubated with human hepatic microsomes, 

however, NDGA formed only the monoglucuronide. While this finding suggests that 

glucuronidation may be a major detoxification pathway for NDGA, it remains to be determined 

whether differences in mouse and human glucuronosyltransferases accounted for this observation or 

it simply reflects in vitro versus in vivo situations.4 Rats fed 0.5-1.0 % NDGA in the diet developed 

cystic reticuloendotheliosis of the paracaecal lymph nodes and vacuolation of kidney epithelium. 

Subsequent isolation of o-Q intermediate of NDGA from kidney extracts suggests that the observed 

kidney lesions are mediated by the o-Q reactive metabolite.32  In another study, Woodrats which 

had adapted to a creosote bush diet had elevated levels of cytochrome P450s (CYP2B, CYP1A)  

and glutathione conjugation liver enzymes compared to Woodrats on a traditional juniper diet,  

indicating the importance of these enzymes in the metabolism and elimination of NDGA 

metabolites.115   

 

2.8.2 Assessment of Bioactivation Potential 

Catechols and phenols form quinones and/or quinone methides via oxidative metabolism 

which may be enzyme-catalyzed.33, 34, 70, 71, 84, 86, 87  Like other reactive metabolites, the high 

reactivity of quinones and quinone methides preclude their detection by traditional analytical 

methods. However, reactive metabolites are generally analyzed by LC-MS/MS after chemical 
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trapping with nucleophilic agents such as GSH 11.113,116-119 This approach traps the otherwise 

highly unstable electrophilic intermediates as GSH adducts to allow structural elucidation of the 

stable conjugates by LC-MS/MS and/or NMR methods. The data obtained provide indirect 

information about the structure of the electrophilic species, and hence the bioactivation 

mechanism.113 GSH 11 as nucleophilic trapping agent is known to work well with ‘soft’ 

electrophiles but does not trap effectively some ‘hard’ electrophiles.119 Therefore, other 

nucleophilic trapping agents, such as  semicarbazide or methoxylamine120, 121 and potassium 

cyanide122, 123 that are capable of trapping ‘hard’ electrophiles have been employed for 

comprehensive screening protocols for reactive metabolite. A few other trapping agents have also 

been suggested in the literature for simultaneously trapping both ‘soft’ and ‘hard’ electrophiles.124, 

125 

 

2.8.3 Methods for Studying GSH Adducts  

2.8.3.1 Nuclear Magnetic Resonance (NMR) Approach 

Glutathione conjugates of NDGA o-Q 5b have previously been studied by NMR and LC-MS 

methods.33 The GSH conjugate of p-QM 5c of NDGA will be distinguishable by NMR as it forms 

exocyclic GSH adduct 13 whilst the o-Q generally yields ring conjugates 12.33, 78 (Scheme 2-21). 

 

Scheme 2-21: Glutathione conjugates derived from NDGA o-Q 12 and p-QM 13. 
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2.8.3.2 Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) Approach 

LC-MS/MS techniques have been routinely utilized in in vitro evaluations of new chemotypes for 

reactive metabolites via GSH trapping experiments. Dieckhaus et al.,116 demonstrated that precursor 

ion (PI) scanning of m/z 272 (deprotonated γ-glutamyl-dehydroalanyl-glycine) in the negative ion 

mode (Scheme 2-22 ) provides a general survey scan applicable for the detection of a wide variety 

of GSH conjugates.116  

 

Scheme 2-22: Detection of GSH conjugates via precursor ion (PI) scan of m/z 272 in the negative 

ion mode. 

Previously, a triple quadrupole MS technique employing neutral loss (NL) of  m/z 129 

(pyroglutamic acid moiety) in the positive ion mode (Scheme 2-23) was largely used for screening 

GSH-trapped reactive metabolites.126 Neutral loss 307 (glutathione) has also been employed as a 
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detection technique.116, 126 The structure of a suspected glutathione conjugate is elucidated 

following a product ion scanning of the parent ion (MH+).116, 126 However, general applicability of 

NL 129 as a detection technique suffers from low sensitivity and limited selectivity resulting from 

the interference of endogenous compounds and background noise.116 

 

 

Scheme 2-23: Detection of GSH conjugates via neutral loss scan (NL) of m/z 129 or 307 in the 

positive ion mode. 

More recently, a complementary technique utilizing multiple reaction monitoring (MRM) as 

a survey scan to trigger the acquisition of enhanced product ion (EPI) spectra has been reported.127 

Although this MRM-based approach seems to provide superior sensitivity and selectivity for GSH 

adducts, it only detects the GSH adducts pre-set on an MRM transition protocol. Therefore MRM-

EPI approach must be used in conjunction with PI or NL when comprehensive analysis of predicted 

and unpredicted GSH conjugates is desired.127 Recent developments in mass spectrometry have 
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revolutionized reactive metabolites analysis in the drug discovery process. For example, the 

quadrupole-linear ion trap mass spectrometry (Q-trap) retains the MS/MS scan functions of both 

the triple quadrupole and the ion trap.128 In addition to speeding the data acquisition process, the Q-

trap allows information dependent acquisitions which provide the advantages of combining the 

selectivity of PI, NL and MRM scans by the triple quadrupole and the sensitivity of MS/MS 

spectral acquisition by the ion trap.129 The Q-trap allows detection and MS/MS acquisition of 

analytes to be accomplished in a single LC-MS run.       

 

2.9 Perspective 

The structural features that govern both pharmacological and toxicological properties of 

NDGA are poorly understood. In the drug discovery process, chemical modification is commonly 

used to reduce toxicity and/or enhance pharmacological effects of potential drug candidates or new 

chemotypes.  It is likely that NDGA 1 toxicity is related to its catechol moieties.32-34 The 

structurally similar lignan secoisolariciresinol (SECO 9) which exists as a di-phenol has limited 

toxicity suggesting that the o-dihydroxy function in the case of NDGA 1 is possibly culpable.  Also, 

the rapid intramolecular cyclization to a dibenzocyclooctadiene derivative reported35 for NDGA 1 

at physiological conditions did not seem to occur when SECO 9 was treated under similar 

conditions. Instead, SECO 9 yields lariciresinol 2344 which likely occurs via a para-quinone 

methide intermediate as shown in Scheme 2-24.  
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Scheme 2-24: Proposed mechanism of SECO oxidation to Lariciresinol. 

In theory, a p-QM 5c derived from NDGA is expected to be formed directly or via 

isomerization of the o-Q  5b as depicted by Scheme 2-6. The p-QM 5c, if formed, will be expected 

to contribute to toxicity (Scheme 2-25) as has been confirmed for the o-Q.32 It is unclear why 

NDGA does not seem to form the p-QM 5c and will be investigated in these studies.  The structural 

features which govern the pathways to reactive metabolites and intramolecular cyclization which 

likely have toxicological and pharmacological implications respectively (Scheme 2-25) were of 

interest in this study.  
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Scheme 2-25: Autoxidation of NDGA 1 at physiological conditions to a dibenzocyclooctadiene 

lignan (cNDGA 2) and ortho-quinone (o-Q 5b). There is no evidence yet for a para-quinone 

methide (p-QM 5c).  
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2.10 Purpose of this Project 

2.10.1 Rationale 

Nordihydroguaiaretic acid has a broad spectrum of important biological activities but its 

usefulness is hindered by toxicity concerns. Rational modifications of the structure of NDGA will 

allow for identification of its pharmacophore and toxicophore and likely lead to design and 

synthesis of analogues with better safety profiles in the future. The pathways mediating 

pharmacological and toxicological effects of NDGA are presently unclear. Therefore, 

understanding the mechanistic pathways is the way forward to develop NDGA analogues with 

better safety profiles. To this end, there is the need to design and synthesize appropriate NDGA 

analogues (Figure 2-9) that will provide vital information to unravel the mechanisms of its 

oxidative conversion to a dibenzocyclooctadiene derivative which likely has pharmacological 

implications. The conditions of formation35 and the known biological properties of the 

dibenzocyclooctadiene family of lignans55 suggest that this oxidation product likely contributes to 

the pharmacological effects of NDGA.  Autoxidation studies on appropriate analogues will aid in 

understanding the mechanisms of NDGA-derived dibenzocyclooctadiene formation and the design 

of analogues with higher propensity to convert to a dibenzocyclooctadiene under physiologically 

relevant conditions. Also, oxidation studies on the prepared analogues will provide vital 

information about structural features which influence reactive metabolite formations. This is 

expected to help in design strategies to metabolically block reactive intermediates formation with 

potential implication for ameliorating the safety profile of NDGA analogues. The overall outcome 

of this study is expected to advance our understanding of structural features that influence 

biological activities of NDGA and likely lead to discovery of analogues with improved 

pharmacological effects and safety profile. 
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2.10.2 Hypotheses 

The following hypotheses were tested in this study: 

1. Nordihydroguaiaretic acid intramolecular cyclization to dibenzocyclooctadiene involves a 

radical mediated addition mechanism. 

2. Formation and type of quinoid species is dependent on substitution and/or substitution pattern 

of the aromatic rings 

3. A p-QM of nordihydroguaiaretic acid contributes to its toxicity 

 

2.10.3 Objectives and Aims 

In order to verify our hypotheses, the following objectives and aims were outlined. 

2.10.3.1 Objective 1 

Synthesis and characterization of NDGA analogues for the purpose of understanding 

structural features that influence pharmacological and toxicological properties of NDGA. The two  

specific aims of this objective are: 

1.  To develop synthetic protocols for the preparation of the NDGA analogues 

2.  To purify and characterize prepared analogues using various chromatographic, mass 

spectroscopy (MS) and nuclear magnetic resonance (NMR) methods  

2.10.3.2 Objective 2 

Evaluate the synthesized NDGA analogues for their potential to undergo autoxidative 

cyclization under physiologically relevant conditions. This study is expected to help explain the 

mechanisms of NDGA oxidative cyclization in a phosphate buffer (pH 7.4) at 37°C and provide 
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information about structural features that influence pharmacological properties of NDGA. The two 

specific aim of objective 2 are: 

1. To develop an HPLC method for detection and quantification of the autoxidation products 

and subsequently quantify the rates of autoxidation 

2. To isolate and elucidate the structures of the autoxidation products. 

2.10.3.3  Objective 3 

Study the oxidative metabolism and bioactivation of the NDGA analogues. This will provide 

understanding of the effect of aromatic rings substitution and/or substitution pattern on quinoid 

species formed under oxidative conditions and also help determine the major toxicophore 

responsible for NDGA’s toxicity.  The two specific objective are: 

1. Perform enzymatic and chemical oxidation on the prepared analogues and trap reactive 

quinones as glutathione conjugates for HPLC and LC-MS analyses. 

2. Perform in vitro microsomal incubations and identify glutathione-trapped conjugates by 

MS and/or NMR techniques 
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2 MATERIALS AND METHODS 

 

3.1 Materials/Chemicals  

The following chemicals were purchased from Sigma-Aldrich (St. Louis, MO): 

Benzaldehyde, 3,4-dimethoxybenzaldehyde, vanillin, 3-hydroxy-4-methoxybenzaldehyde, 4-

hydroxy-3-methoxybenzaldehyde, 3,4- dihydroxybenzaldehyde,  3-hydroxybenzaldehyde, diethyl 

succinate, benzyl bromide, lithium diisopropylamide, CH3I, eugenol, BBr3 (1 M in DCM), p-

toluenesulfonyl chloride, methanesulfonyl chloride, Pd/C (10%), anhydrous DMSO, anhydrous 

pyridine, AgNO3, LiAlH4, anhydrous THF, anhydrous DCM, molecular sieves 3Å, MgSO4, 

trifluoroacetic acid (TFA), nordihydroguaiaretic acid (NDGA), reduced glutathione (GSH), 

mushroom tyrosinase, reduced nicotinamide adenine dinucleotide phosphate (NADPH) tetrasodium 

salt, 3,4-dimethoxyphenyl acetone (DMPA), K2HPO4, MgCl2, salicylamide. NaOH and silica gel 

60 (0.040-0.063 mm) used in flash columns were obtained from EMD. K2CO3, NaHCO3, H2SO4, 

Na2HPO4, KOH, formic acid and perchloric acid were obtained from BDH Chemicals (Toronto). 

Celite® 545, H3PO4, HCl, NaCl, citric acid and sea sand used in the flash columns were obtained 

from Fisher Scientific (Fairlawn, NJ); ethanol (it was distilled and stored over sieve under N2(g) 

prior to use) was obtained from Commercial Alcohols Inc. (Brampton, ON); CDCl3, CD3OD, and 

DMSO-d6 were obtained from Cambridge Isotope Laboratories Inc. (Andover, MA). Silver oxide 

(Ag2O) was freshly prepared from AgNO3 and KOH according to literature procedure.130 NaOEt 

solution in ethanol was prepared by addition of Na(s) to dry ethanol. Hydrogenation of eugenol gave 

PC2; PC1 was obtained from PC2 by demethylation with BBr3 solution in DCM; NDGA analogues 

were prepared according to literature procedures with modifications where appropriate as described 

in Section 3.3. All other solvents were of the highest grade purity obtained from EMD (Gibbstown, 
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NJ).  HPLC runs were done with HPLC grade water and acetonitrile. LC/MS grade water, methanol 

and acetonitrile were used for all LC-MS analyses.  

 

3.2 Equipment/Instrumentation 

TLC aluminium sheets were coated with silica gel 60 F254 purchased from EMD Chemicals 

Inc. (Gibbstown, NJ). Rotary evaporator systems consisted of Büchi Rotavapor R-200, and Büchi 

v700 vacuum pump with attached v850 vacuum controller. Samples in test tubes were concentrated 

using Eppendorf Concentrator 4301 with Büchi Vac V-500 with attached v850 vacuum controllers. 

Incubates were centrifuged using an Eppendorf Centrifuge 5417C. Trace amounts of solvent and 

moisture were removed using an Edwards High Vacuum Pump. Vortexed reactions utilized a Janke 

& Kunkel IKA-Vibrax VXR with VX2 attachment. Incubations were done in a VWR incubating 

orbital shaker. Water was purified with a Millipore Milli-Q system with a Quantum EX Cartridge 

(Mississauga, ON). HPLC system consisted of Waters Alliance 2695 connected to Waters 2996 

photodiode array detector. The HPLC system was controlled by, and data interpreted with the 

Waters Empower software. NMR experiments were performed on a Bruker AVANCE DPX-500 

spectrometer, and data processed by X-WIN NMR 3.5 software or TopSpin 3.2. All compounds 

were named using ACD/ChemSketch. MS experiments were conducted using AB SCIEX 4000 

QTRAP (AB SCIEX instruments) quadrupole linear ion trap mass spectrometer coupled to an 

Agilent 1100 system consisting of an Agilent 1100 G1311A pump and an Agilent 1100 G1329A 

autosampler (Agilent Technologies, Mississauga, ON). Data acquisition and analysis was 

performed using Analyst 1.5.1 software from AB SCIEX.  
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3.3 Experimental 1: Synthesis and Characterization of NDGA Analogues 

3.3.1 Synthesis of (3E)-4-(3,4-dimethoxyphenyl)-3-(ethoxycarbonyl)but-3-enoic acid (25)100, 

102  

 

Sodium ethoxide (28%) solution (44.5 ml, 180.54 mmol), dried ethanol (180.5 ml) were 

transferred into the reaction flask under nitrogen gas. 3,4-dimethoxybenzyladehyde (15 g, 90.27 

mmol) was added to the stirring mixture. Diethyl succinate (22.6 ml, 135.40 mmol) was added via 

syringe in drops and the mixture refluxed for 4 h. Ethanol was removed and the resulting orange 

solid was acidified (5 M HCl) and extracted with ethyl acetate (70 ml × 3). The combined organic 

layer was extracted with satd. NaHCO3 (80 ml). The NaHCO3 extract was acidified to pH 2, and the 

resulting oily solution re-extracted with EtOAc (20 ml × 3). The combined organic extract was 

dried over MgSO4, filtered and evaporated in vacuo to give yellowish brown oil. On further drying 

under vacuum, yellowish solid form which was recrystallized form ethyl acetate/petroleum ether 

(26 g, 98 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.35 (t, J = 7.1Hz, 3H), 3.63 (s, 2H), 3.89 (s, 

3H), 3.91 (s, 3H), 4.31 (q, J = 7.1Hz, 2H), 6.91 (d, 1H), 7.00 (d, 2H), 7.87 (s, 1H), 11.60 (bs, 1H). 

13C NMR (500 MHz, CDCl3): δ (ppm) 14.4, 34.2, 56.1, 61.7, 111.3, 112.4, 122.9, 123.4, 127.5, 

142.69, 149.1, 150.2, 168.3, 176.8. ESI-MS (m/z) = 293.0 [M-H]-. 
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3.3.2 Synthesis of 1-ethyl 4-methyl (2E)-2-(3,4-dimethoxybenzylidene)butanedioate (26)102 

 

 

DMSO (176 ml) and K2CO3 (24.80 g, 179.46 mmol) were stirred for 5 min in the reaction 

flask at RT. The half-ester 25 (35.21 g, 119.64 mmol) was added followed by iodomethane (11.2 

ml, 179.46 mmol). After stirring 2 h at RT, water (1000 ml) was added and extracted with DCM 

(100 ml × 4).  The combined DCM layer was washed with water (1000 ml), and the aqueous layer 

re-extracted with DCM (50ml). The combined DCM extract was dried over MgSO4, filtered and 

evaporated in vacuo. Flash chromatography over silica (2:1 PE/EtOAc) gave the product as 

yellowish oil (34.4 g, 93 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.30 (t, J = 7.1Hz, 3H), 3.56 (s, 

2H), 3.69 (s, 3H), 3.84 (s, 3H), 3.86 (s, 3H), 4.24 (q, J = 7.1Hz, 2H), 6.85 (d, 1H), 6.93 (m, 2H), 

7.81 (s, 1H). 13C NMR (500 MHz, CDCl3): δ (ppm) 14.2, 33.5, 51.9, 55.7, 60.9, 110.6, 112.3, 

122.5, 124.2, 127.3, 141.7, 148.7, 149.7, 167.37, 171.7. ESI-MS (m/z) = 309.1 [M+H]+. 

3.3.3 Synthesis of compound 27102  

 

A well-stirred solution of the diester 26 (11.15 g, 36.16 mmol) in THF (45 ml) was added 

dropwise to a solution of LDA (39.78 mmol, 2 M in THF) in THF at -78°C under nitrogen 

atmosphere. After stirring at -78°C for 20 min, benzyl bromide (6.80 g, 39.78 mmol) in THF (22.6 
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ml) was added in drops. The mixture was stirred at -78°C for 2h, then allowed to warm up to room 

temperature. THF solvent was evaporated in vacuo after which excess saturated aqueous NH4Cl 

solution was added. The mixture was extracted with DCM (40 ml × 3), washed with brine (50 ml), 

dried over MgSO4 and evaporated in vacuo. Flash chromatography over silica (3:2 Pet. 

Ether/EtOAc) gave orange oil (10.5 g, 73%).  1H NMR (500 MHz, CDCl3): δ (ppm) 1.33 (t, J = 

7.1Hz, 3H), 3.00 (dd, 1H), 3.44 (dd, 1H), 3.72 (s, 6H), 3.86 (s, 3H), 4.13 (dd 1H), 4.28 (q, 1H), 

6.44 (s, 1H), 6.58 (d, 1H), 6.74 (d, 1H), 6.92 (d, 2H), 7.12 (m, 3H), 7.69(s, 1H). 13C NMR (500 

MHz, CDCl3): δ (ppm) 14.2, 36.1, 45.5, 52.0, 55.8, 60.8, 110.6, 111.4, 121.3, 126.0, 127.9, 128.1, 

129.2, 129.7, 139.1, 142.4, 148.6, 149.3, 166.7, 173.3. ESI-MS (m/z) = 399.2 [M+H]+. 

3.3.4 Synthesis of compound 2899-101  

 

The reaction flask was evacuated and Pd/C (10%, 2.0g) added under N2 gas. The flask was 

sealed, then ethanol (700 ml) and TFA (100 µl) were added. The diester 27 (10 g, 25.09 mmol) in 

ethanol (100 ml) was added. The flask was evacuated until the solvent just begun to bubble, then 

flushed with N2 gas several times. The N2 gas was replaced with H2 gas. After flushing three times 

the mixture was left to stir under H2
 for 132 hours. The reaction was filtered through a pad of celite 

and washed with ethanol. The solvent was evaporated and after flash chromatography over silica 

gave yellow oil (8.8g, 88 %).  1H NMR (500 MHz, CDCl3): δ (ppm) 1.20 (t, 3H), 3.01 (m, 4H), 
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3.62 (s, 3H), 3.79 (s, 3H), 3.85 (s, 3H), 4.09 (m, 4H), 6.57 (d, 1H), 6.75 (m, 2H), 7.09 (m, 2H), 

7.21(m, 3H). ESI-MS (m/z) = 401.2 [M+H]+. 

3.3.5 Synthesis of compound 29100, 102  

 

A suspension of LiAlH4 (3.0 g, 79 mmol) in THF (90 ml) was stirred under N2 and cooled to 

0°C. The diester 28 (7.6 g, 18.97 mmol) in THF (150 ml) was slowly added. The mixture was 

allowed to come to RT and stirred 2h. The mixture was diluted with ether (50 ml) and cooled to 

0°C. Water (3 ml) was carefully added via syringe, followed with 15% NaOH (3 ml) after stirring 5 

min. Water (15 ml) was added after allowing the mixture to come to RT. EtOAc (50ml) and anhy. 

MgSO4 were added and stirred overnight.  The mixture was filtered, evaporated in vacuo and the 

resulting crude product chromatographed via flash column over silica gel (1:1 Pet 

ether/ethylacetate) to give white solid (4.1 g, 65 %) 1H NMR (500 MHz, CDCl3): δ (ppm) 1.92 (m, 

2H), 2.78 (m, 4H), 3.54 (m, 4H), 3.83 (s, 3H), 3.87 (s, 3H), 6.66 (s, 1H), 6.71 (m, 1H), 6.78 (d, J = 

8.1, 1H), 7.16 (d, J = 7.1, 2H), 7.21 (t, J = 5.1, 7.2, 1H), 7.28 (t, J = 7.2, 7.5, 2H). 13C NMR (500 

MHz, CDCl3): δ (ppm) 35.9, 36.4, 43.1, 55.9, 56.1, 60.6, 111.0, 112.3, 121.2, 126.3, 128.5, 129.4, 

133.2, 140.6, 147.4, 148.9. ESI-MS (m/z) = 329.1 [M-H]-. 
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3.3.6 Synthesis of compound 30100, 102, 144  

 

Pyridine (7.8 ml) was added via syringe to the diol 29 (2.0 g, 6.053 mmol) in the reaction 

flask under nitrogen. The mixture was stirred at 0°C for 20 min. Toluenesulfonyl chloride (2.77 g, 

14.53 mmol) was added to the mixture and stirred 2 h at 0°C. HCl (60ml, 2M) was added and 

filtered by suction. The filtrate was extracted with EtOAc (30ml×3). The combined organic layer 

was washed with water (30 ml), brine (30ml) and dried over MgSO4. After evaporation in vacuo, 

the crude product was purified by flash chromatography over silica gel to give white solid (1.0 g, 

26 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 2.10 (m, 2H), 2.47 (s, 6H), 2.52 (m, 2H), 2.69 (m, 

2H), 3.81 (s, 3H), 3.87 (s, 3H), 3.96 (m, 4H), 6.48 (d, J = 8.1, 1H), 6.55 (s, 1H), 6.69 (d, J = 8.1, 

1H), 7.17 (m, 3H), 7.34 (d, J = 8.7, 4H), 7.72 (m, 4H). ESI-MS (m/z) = 639.4 [M+H]+. 

3.3.7 Synthesis of compound 31100, 102  

 

To a stirred suspension of LiAlH4 (0.26, 6.85 mmol) in THF (12 ml) at 0°C under nitrogen 

was added the substrate 30 (0.99 g, 1.56 mmol) in THF (12 ml) slowly via syringe. The mixture 
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was stirred 2 h at RT. Diethyl ether (20ml) was added to the mixture and cooled to 0°C. Water 

(0.26 ml) was carefully added via syringe, followed with 15% NaOH (0.26 ml) after stirring 5 min. 

Water (0.81 ml) was added after allowing the mixture to come to RT and stirring continued for 15 

min. EtOAc (20 ml) and anhy. MgSO4 were added and stirred overnight.  The mixture was filtered 

and evaporated in vacuo. Flash chromatography over silica gel (hexane-EtOAc 9:1) gave yellowish 

oil (0.4 g, 82 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 0.88 (d×2, 6H), 1.82 (m, 2H), 2.40 (m, 1H), 

2.43 (m, 1H), 2.65 (m, 1H), 2.83 (m, 1H), 3.84 (s, 3H), 3.89 (s, 3H), 6.61 (s, 1H), 6.67 (d, J = 8.1, 

1H), 6.79 (m, 1H), 7.12 (d, J = 7.1, 1H), 7.20 (d, J = 7.2, 2H), 7.28 (m, 2H) 13C NMR (500 MHz, 

CDCl3) 14.1, 16.3, 37.9, 41.1, 41.7, 55.9, 56.0, 111.0, 112.1, 121.0, 125.8, 125.8, 128.3, 128.3, 

129.2, 129.3, 134.3, 141.8, 147.1, 148.8.  ESI-MS (m/z) = 299.2 [M+H]+. 

3.3.8 Synthesis of 4-(2,3-dimethyl-4-phenylbutyl)benzene-1,2-diol (A1)100, 106  

 

To a stirred solution of the substrate 31 (0.20g, 0.67 mmol) in DCM (6.67 ml) at -78 °C under 

nitrogen was added 1M BBr3 in DCM (3.35ml, 3.35 mmol) carefully via syringe. The mixture was 

stirred 2 h at -78 °C. After warming to RT, the reaction was quenched with water (6.67 ml) and 

extracted with EtOAc (15ml, 7ml×3).  The combined organic layer was washed with 10 ml each of 

NaHCO3 (10%), HCl (1 M), water, and brine. It was dried over MgSO4, filtered and the solvent 

evaporate in vacuo to give purplish dark oil (180 mg, > 99 %). 1H NMR (500 MHz, CDCl3): δ 

(ppm) 0.84-0.87 (6H, 2×d, J = 4.3, H9, 9'), 1.74-1.84 (2H,  m, H8, 8'), 2.32-2.36 (1H, dd, J = 8.5, 

13.4, H7α), 2.43-2.48 (1H, dd, J = 8.6, 13.4, H7α'), 2.55-2.59 (1H, dd, J = 6.4, 13.6, H7β), 2.66-
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2.70 (1H, dd, J = 6.2, 13.6, H7β'), 5.78 (2H, bs, o, p-ArOH), 6.55-6.57 (1H, dd, J = 1.9, 8.1, H6), 

6.64 (1H, d, J = 1.9, H2), 6.79 (1H, d, J = 7.9, H5), 7.14 (2H, d, J = 7.2, H2', 6'), 7.21 (1H, t, J = 

7.4, H4'), 7.30 (2H, t, H3', 5'). 13C NMR (500 MHz, CDCl3): δ (ppm) 13.9, 16.2, 38.1, 39.3, 40.8, 

41.5, 115.2, 116.1, 121.6, 125.6, 128.2, 128.2, 129.1, 129.2, 134.9, 141.3, 141.8, 143.3. ESI-MS 

(m/z) = 269.1 [M-H]-. 

3.3.9 Synthesis of 4-(benzyloxy)-3-methoxybenzaldehyde (32)46  

 

Vanillin (10 g, 65.72 mmol) and K2CO3 (13.7g, 98.58 mmol) were stirred in DMF (60 ml) 

under nitrogen atmosphere at room temperature. Benzyl bromide (9.4 ml, 78.86 mmol) was slowly 

added via syringe with agitation. The mixture was stirred at RT for 1 h. The reaction mixture was 

diluted with water (27 ml), neutralized with 50% HCl (20 ml) and extracted with EtOAC (67 ml, 20 

ml ×2). The combined EtOAc extract was wash with water, brine (67 ml each) and dried with 

MgSO4. The solvent was evaporated in vacuo to give orange solid which after recrystallization 

from heptane-EtOAc (9:1) gave white crystals (84 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 3.95 

(s, 3H), 5.25 (s, 2H), 6.99 (d, J = 8.2, 1H), 7.33 (t, J = 7.3, 1H), 7.39 (m, 3H), 7.44 (d, J = 7.3), 9.84 

(s, 1H). 13C NMR (500 MHz, CDCl3): δ (ppm) 56.1, 70.9, 109.3, 112.4, 126.6, 127.2, 128.2, 129.0, 

130.3, 136.0, 150.1, 153.6. ESI-MS (m/z) = 243.1 [M+H]+ obs; 243.1016 Da calc. 
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3.3.10 Synthesis of (3E)-4-[4-(benzyloxy)-3-methoxyphenyl]-3-(ethoxycarbonyl)but-3-enoic 

acid (33)100, 102  

  

The procedure described for 25 but starting with 32 (9.6 g, 39.63 mmol) gave compound 33 as 

yellow oil (98 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.25 (t, J = 7.1, 3H), 3.61 (s, 2H), 3.87 (s, 

3H), 4.14 (q, J = 7.1, 2H), 5.16 (s, 2H), 6.89 (m, 2H), 6.97 (s, 1H), 7.30 (m, 1H), 7.35 (t, J = 7.3, 

7.6, 2H), 7.42 (d, J = 7.3, 2H), 7.84 (s, 1H), 11.39 (s, 1H). ESI-MS (m/z) = 369.0 [M-H]- obs; 

269.1332 Da calc. 

3.3.11 Synthesis of compound 34102 

 

Following the procedure described for 26 but starting with 33 (20.9 g, 54.24 mmol), 

compound 34 was obtained as yellow oil (92 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.33 (t, J = 

7.1, 3H), 3.58 (s, 2H), 3.72 (s, 3H), 3.88 (s, 3H), 4.27 (q, J = 7.1, 2H), 5.18 (s, 2H), 6.87 (s, 2H), 

6.96 (s, 1H), 7.30 (t, J = 7.3, 5.1, 1H), 7.37 (t, J = 7.2, 7.7, 2H), 7.42 (d, J= 7.3, 2H), 7.83 (s, 1H). 

13C NMR (500 MHz, CDCl3): δ (ppm) 14.3, 33.7, 52.2, 56.0, 60.9,  70.9, 112.7, 113.5, 122.4, 

124.4, 127.2, 127.9, 128.7, 136.9, 141.8, 148.9, 149.4, 167.5, 171.8. ESI-MS (m/z) = 385.2 [M+H]+ 

obs; 285.1645 Da calc. 
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3.3.12 Synthesis of compound 35102 

 

Following the procedure described for 27 but starting with 34 (10.22 g, 26.57 mmol), compound 35 

was obtained as orange oil (92 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.37 (t, J = 7.1, 3H), 3.04 

(dd, 1H), 3.47 (dd, 1H), 3.76 (s, 3H), 3.77 (s, 3H),  4.16 (m, 1H), 4.31 (q, J = 7.1, 2H), 5.18 (s, 2H), 

6.49 (s, 1H), 6.56 (d, J = 8.2, 1H), 6.78 (d, J = 8.2, 1H), 6.92-6.94 (m, 2H), 7.11-7.14 (m, 3H), 7.39-

7.42 (m, 3H), 7.46 (d, J = 7.2, 2H), 7.72 (s, 1H). ESI-MS (m/z) = 475.2 [M+H]+obs; 475.2115 Da 

calc. 

3.3.13 Synthesis of compound 36102  

 

A 20% sodium hydroxide solution (2.44 ml, 12.2 mmol) was added to the diester 35 (0.29 g, 

0.61mmol) and refluxed for 6 h. After cooling to room temperature, the mixture was washed with 

ethyl acetate (5 ml×3) and acidified until pH ≤ 2. The mixture was extracted with ethyl acetate (10 

ml×4), dried over anhy. MgSO4 and solvent evaporated in vacuo. Recrystallization from acetic acid 

gave the product as white crystals (57 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 3.13 (dd, 1H), 

3.48 (dd, 1H), 3.82 (s, 3H), 4.20 (dd, J = 4.7, 4.5, 1H), 5.26 (s, 2H), 6.79 (s, 2H), 7.11-7.15 (m, 3H), 
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7.28-7.31 (m, 3H), 7.56-7.63 (m, 5H), 7.72 (s, 1H), 12.63 (s, 2H). ESI-MS (m/z) = 431.1 [M-H]- 

obs; 431.1489 Da calc. 

3.3.14 Synthesis of compound 3758 

 

To a stirred suspension of LiAlH4 (1.93 g, 50.83 mmol) in THF (100 ml) was added AlCl3 

(2.04 g, 15.26 mmol) under N2. After stirring 20 min, the mixture was cooled to 0 °C. The substrate 

13 (5.86 g, 12.35 mmol) in THF (40 ml) was slowly added via syringe. The mixture was allowed to 

come to RT and stirred 2.5 h. The mixture was diluted with ether (50 ml) and cooled to 0°C. Water 

(2 ml) was carefully added via syringe, followed with 15% NaOH (2 ml) after stirring 5 min. Water 

(6 ml) was added after allowing the mixture to come to RT. EtOAc (50ml) and anhy. MgSO4 were 

added and stirred overnight.  The mixture was filtered, evaporated in vacuo and the resulting crude 

product chromatographed via flash column over silica gel eluting with ethyl acetate to give white 

solid (3.67g, 73.5%) 1H NMR (500 MHz, CDCl3): δ (ppm) 2.73-2.84 (m, 2H), 3.05 (bs, 2H), 3.38-

3.44 (m, 1H), 3.69-3.76 (m, 2H), 3.82 (s, 3H), 4.10 (d, J = 11.8, 1H), 4.43 (d, J = 11.8, 1H), 5.16 (s, 

2H), 6.57-6.61 (m, 2H), 6.63 (s, 1H), 6.81 (d, J = 7.1, 1H), 7.00 (d, J = 7.0, 2H), 7.14-7.21 (m, 3H), 

7.32 (t, J = 7.2, 1H), 7.39 (t, J = 7.4, 2H ), 7.45 (d, J = 7.4, 2H). 13C NMR (500 MHz, CDCl3): δ 

(ppm) 36.0, 43.1, 56.1, 64.9, 65.2, 71.2, 112.7, 113.8, 121.2, 126.2, 127.5, 128.1, 128.41, 128.8, 

129.1, 130.4, 133.3, 137.3, 139.8, 140.8, 147.3, 149.4.  ESI-MS (m/z) = 403.2 [M-H]-. 
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3.3.15 Synthesis of 2-benzyl-3-(4-hydroxy-3-methoxybenzyl)butane-1,4-diol (39)99 

 

The diol 37 (0.812 g, 2.0 mmol) in ethanol (150 ml) and catalytic amount of TFA (50 µl) is 

stirred under hydrogen atmosphere for 24 h in the presence of 10 % Pd/C (162 mg). The reaction 

mixture was filtered through a pad of celite and solvent removed in vacuo. Flash chromatography 

over silica gel (3:1 EtOAc/Pet. ether) gave the desired product as two pairs of enantiomers. 1H 

NMR (500 MHz, MeOD): δ (ppm) 1.91 (m, 1H), 1.96 (m, 1H), 2.62 (m, 2H), 2.68 (m, 2H), 3.56 

(m, 4H), 3.73 (s, 3H), 6.54 (d, J=7.9Hz, 1H), 6.65 (m, 2H), 7.11 (m, 3H), 7.19 (m, 2H). 13C NMR 

(500 MHz, MeOD): δ (ppm) 35.6, 36.4, 44.4, 44.5, 56.4, 62.0, 62.1, 113.7, 115.9, 122.8, 126.9, 

129.4, 130.3, 133.9, 142.9, 145.7, 148.9. ESI-MS (m/z) = 315.1 [M-H]-. 

3.3.16 Synthesis of compound 40101 

 

Pyridine (0.98 ml) was added via syringe to the diol 39 (308 mg, 0.76 mmol) in the reaction 

flask under nitrogen. The mixture was stirred at 0°C for 20 min. Toluenesulfonyl chloride (1.16 g, 

6.06 mmol) was added to the mixture and stirred 4 h at 0°C. HCl (4 ml, 2M) was added and the oil 

mixture extracted with ethyl acetate. The combined organic layer was washed with water, brine and 

dried over MgSO4. After evaporation in vacuo, the crude product was purified by flash 

chromatography over silica (363.6 mg, 62%). 1H NMR (500 MHz, CDCl3): δ (ppm) 2.10 (m, 2H), 
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2.47 (s, 6H), 2.52 (m, 2H), 2.69 (m, 2H), 3.81 (s, 3H), 3.87 (s, 3H), 3.96 (m, 4H), 6.48 (d, J = 8.1, 

1H), 6.55 (s, 1H), 6.69 (d, J = 8.1, 1H), 7.17 (m, 3H), 7.34 (d, J = 8.7, 4H), 7.72 (m, 4H). ESI-MS 

(m/z) = 639.4 [M+H]+. 

3.3.17 Synthesis of compound 42100 

 

Following the procedure described for 25 but starting with substrate 34 (7.65g, 19.90 mmol) 

and benzaldehyde 41 (2.32 g, 21.89 mmol), the resulting half-ester was esterified according the the 

procedure described for 26 to give compound 42 as yellow oil (> 90 %). 1H NMR (500 MHz, 

CDCl3): δ (ppm) 1.11 (t, J = 7.1, 3H), 3.56 (s, 3H), 3.74 (s, 3H), 4.14 (q, J = 7.1, 2H), 5.12 (s, 2H), 

6.75 (s, 1H), 6.77(s, 1H), 7.01 (t, J = 6.6, 8.2, 2H), 7.11 (d, J = 8.5, 1H), 7.16 (d, J = 8.4,  1H), 7.20 

(s, 1H), 7.25 (s, 2H), 7.44-7.46 (m, 3H), 7.89 (m, 1H), 8.05 (s, 1H), 8.08 (s, 1H).  

3.3.18 Synthesis of 4-(2,3-dimethyl-4-phenylbutyl)-2-methoxyphenol (A2)101 

 

To a stirred suspension of LiAlH4 (88.57 mg, 2.33 mmol) in THF (7 ml) at 0 °C under 

nitrogen was added the substrate 40 (363.6 mg, 0.47 mmol) in THF (4 ml) slowly via syringe. The 

mixture was stirred 2 h at RT. The reaction mixture is diluted with ether and cooled to 0 °C. The 

reaction is quenched with saturated sodium sulfate solution and H2SO4 (10%) solution. The mixture 



 
 

68 
 

is extracted with EtOAc, washed with brine and dried over anhy. MgSO4.  The solvent is removed 

in vacuo. The resulting residue in 3% KOH in ethanol-water (1:1) solution is refluxed overnight (12 

h). On cooling to rt, the mixture is neutralized with acetic acid and extracted with ether. Combined 

ether is washed brine, dried over MgSO4 and solvent removed in vacuo. Flash chromatography over 

silica (4:1 hexane/EtOAc) gave pale yellow oil (54.4 mg, 41 % in 2 steps) 1H NMR (500 MHz, 

CDCl3): δ (ppm) 0.86-0.88 (6H, overlapping d, H9, 9'), 1.77-1.85 (2H, m, H8, 8'), 2.38-2.49 (2H, 

m, H7α, 7α'), 2.57-2.68 (2H, m, H7β, H7β'), 3.84 (3H, s, OCH3), 5.51 (1H, bs, p-ArOH), 6.58 (s, 

1H), 6.62-6.65 (1H, m,), 6.84-6.88 (1H, m,), 7.13 (d, J = 7.2, 1H), 7.18-7.23 (m, 2H), 7.23-7.33 (m, 

2H). 13C NMR (500 MHz, CDCl3): δ (ppm) 13.95, 16.11, 37.81, 38.94, 41.09, 41.45, 55.84, 111.34, 

113.97, 121.67, 125.64, 128.15, 129.08, 133.57, 141.73, 143.55, 146.29. ESI-MS (m/z) = 283.18 

[M-H]- obs; 283.17 Da calc. 

3.3.19 Synthesis of compound 44100  

 

Following the procedure described for 25 but starting with substrates 32 (7.83, 32.31) and 34 

(11.29 g, 29.37 mmol), compound 44 was obtained as yellow powder (72 %). 1H NMR (500 MHz, 

CDCl3): δ (ppm) 1.07 (t, J = 7.1, 3H), 3.56 (s, 6H), 3.64 (s, 3H), 3.65 (s, 3H), 4.12 (q, J = 7.1, 2H), 

5.07 (s, 4H), 7.01 (t, J = 6.6, 8.2, 2H), 7.11 (d, J = 8.5, 1H), 7.16 (d, J = 8.4,  1H), 7.20 (s, 1H), 7.25 

(s, 2H), 7.30-7.33 (m, 2H), 7.35-7.40 (m, 8H), 7.79 (s, 2H), 12.53 (bs, 1H).  
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3.3.20 Synthesis of compound 45100 

 

The esterification procedure described for 26 but starting with 44 (10.79 g, 18.59 mmol) was 

employed to obtain 45 as sparkling yellow crystals (87 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 

1.11 (t, J = 7.1, 3H), 3.69 (s, 3H), 3.76 (s, 6H), 4.16 (q, J = 7.1, 2H), 6.80 (d, J = 7.5, 2H), 7.03 (d, J 

= 8.3, 2H), 7.16 (s, 2H), 7.30 (m, 2H), 7.36 (m, 4H), 7.39 (m, 4H), 7.86 (s, 2H). 13C NMR (500 

MHz, CDCl3): δ (ppm) 14.3, 52.6, 56.1, 61.2, 70.9, 112.5, 112.9, 124.7, 124.9, 125.1, 127.1, 128.2, 

128.8, 136.7, 142.3, 142.5, 149.4, 149.7, 167.3, 167.9. 

3.3.21 Synthesis of compound 4658 

 

The reduction method described for 37 but starting with 45 (9.42 g, 15.83 mmol) afforded 46 

as yellow powder (6.2 g, 74%). 1H NMR (500 MHz, CDCl3): δ (ppm) 2.51 (bs, 2H), 3.76 (s, 6H), 

4.16 (s, 4H), 5.14 (s, 4H), 6.65 (s, 2H), 6.79 (d, J = 8.3, 2H), 6.97 (d, J = 8.3, 2H), 7.14 (s, 2H), 7.30 

(m, 2H), 7.36 (m, 4H), 7.42 (m, 4H). 13C NMR (500 MHz, CDCl3): δ (ppm) 56.0, 66.9, 70.9, 111.5, 
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113.6, 121.1, 127.2, 127.9, 128.6, 129.2, 129.5, 136.9, 137.4, 147.9, 149.4. ESI-MS (m/z) = 537.20 

[M-H]- obs; 537.22 Da calc. 

3.3.22 Synthesis of meso-secoisolariciresinol (47a) and racemic (±)-secoisolariciresinol (47b)99, 

101 

               

 meso-Secoisolariciresinol 47a        (±) Secoisolariciresinol 47b 

Hydrogenation procedure described for 28 but starting with 46 (2.38 g, 4.43 mmol) afforded 

meso- and rac(±)-secoisolaricirenol as pale yellow oil (747.4 mg, 47 %)  and as pale orange solid 

(771.7 mg, 48 %) respectively after flash chromatography over silica (3:1 EtOAc/hexanes). 47a, 

off-white solid, 1H NMR (500 MHz, CDCl3), δ (ppm): 1.91 (m, 1H), 1.96 (m, 1H), 2.62 (m, 2H), 

2.68 (m, 2H), 3.56 (m, 4H), 3.73 (s, 3H), 6.54 (d, J=7.9Hz, 1H), 6.65 (m, 2H), 7.11 (m, 3H), 7.19 

(m, 2H). 13C NMR (500 MHz, MeOD): δ (ppm) 35.6, 36.41, 44.4, 44.5, 56.4, 62.0, 62,1, 113.7, 

115.9, 122.8, 126.9, 129.4, 130.3, 133.9, 142.9, 145.7, 148.9. ESI-MS (m/z) = 315.1 [M-H]-. 

3.3.23 Synthesis of 4,4'-[(2S,3S)-2,3-dimethylbutane-1,4-diyl]bis(2-methoxyphenol) (A3)101 

 

To meso-secoisolariciresol 47a (443.2 mg, 1.22 mmol) in pyridine (1.6 ml) was added tosyl 

chloride (1.86 g) at 0ᴼC and stirred 4h. The reaction was quenched with HCl (2M) solution and 
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extracted with ethyl acetate. After drying over MgSO4, the solvent is removed in vacuo. The crude 

product was added to a suspension of LiAlH4 (270 mg, 7 mmol) in THF (25 ml) at 0ᴼC under 

nitrogen and stirred at room temperature overnight (12 h). The reaction was quenched with 

saturated NA2SO4 solution and 10% H2SO4 solution.  The clear mixture was extracted with ethyl 

acetate, washed with brine, dried over MgSO4 and solvent removed in vacuo to give colourless oil 

(983 mg). KOH (3%, 25 ml) solution in ethanol-water (1:1) of was added to the oil and refluxed 

overnight (12h). On cooling to RT, the mixture was neutralized with acetic acid and extracted with 

ether. Combined ether layer was washed with brine, dried over MgSO4 and solvent removed in 

vacuo. Flash chromatography over silica (3:1 pet. ether/EtOAc) gave A3a as off white solid (296.9 

mg, 73.47% in 3 steps). The procedure was repeated with (±)-secoisolariciresol 47b (476.3 mg, 

1.31 mmol) to afford A3b as white solid (276.1 mg, 64 % in 3 steps). A3a, off-white solid, mp 79-

80°C; 1H NMR (500 MHz, CDCl3): δ (ppm) 0.83-0.86 (6H, overlapping d, J = 6.4, H9, 9'), 1.72-

1.76 (2H, m, H8, 8'), 2.26-2.32 (1H, dd, J = ,H7α), 2.37-2.41 (1H, dd, J = 7.4, 13.4, H7α'), 2.51-

2.55 (1H, dd, J = 7.4, 13.7, H7β), 2.72-2.76 (1H, dd, J = 4.1, 12.9,  H7β'), 3.82 (3H, s, p-OCH3), 

3.87 (3H, s, o-OCH3), 5.58 (2H, bs, p-ArOH), 6.55 (1H, s, H2), 6.60 (1H d, J = 7.8, H6), 6.64 (1H, 

s, H2'), 6.68 (1H, d, J = 7.8, H6'), 6.83 (1H, d, J = 8.0, H5), 6.85 (1H, d, J = 8.0, H5'). 13C NMR 

(500 MHz, CDCl3) δ (ppm) 14.0, 16.4, 21.3, 37.6, 39.1, 39.4, 41.3, 55.9, 56.0, 60.6, 111.5, 111.6, 

114.0, 114.2, 121.8, 121.9, 133.8, 133.9, 143.7, 143.7, 146.4, 146.5. ESI-MS m/z: 329.1 [M-H]- 

obs; 329. 18 Da calc. 

A3b, δ (ppm) 0.83-0.86 (6H, overlapping d, J = 6.8, H9, 9'), 1.72-1.76 (2H, m, H8, 8'), 2.28-2.32 

(1H, dd, J = 9.3, 13.3 ,H7α), 2.37-2.42 (1H, dd, J = 7.7, 13.7, H7α'),  2.51-2.55 (1H, dd, J = 7.3, 

13.7, H7β), 2.72-2.76 (1H, dd, J = 5.2, 13.7,  H7β'), 3.82 (s, 3H, p-OCH3), 3.87 (s, 3H, o-OCH3), 

5.50 (bs, 2H, p-ArOH), 6.53 (1H, s, H2 ), 6.60 (1H, d, J = 7.7, H6), 6.63 (1H, s, H2'), 6.68 (1H, d, J 
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= 8.0, H6'), 6.81 (1H, d, J = 7.7, H5), 6.84 (1H, d, J = 7.7, H5'). 13C NMR (500 MHz, CDCl3) δ 

(ppm) 13.9, 16.3, 37.5, 38.9, 39.2, 41.1, 55.8, 55.9, 111.3, 111.5, 113.9, 114.0, 121.7, 121.7, 133.6, 

133.8, 143.5, 143.6, 146.3, 146.3. ESI-MS m/z: 329.13 [M-H]- obs; 329. 18 Da calc. 

3.3.24 Synthesis of compound 4946 

 

Benzylation procedure described for 32 but starting with 3,4-dihydroxybenzaldehyde 48 

(15.06 g, 109.04 mmol) gave 49 as white crystals (84%). 1H NMR (500 MHz, CDCl3): δ (ppm) 

5.23 (s, 2H), 5.27 (s, 2H), 7.03 (d, J = 8.2, 1H), 7.34 (m, 2H), 7.39 (m, 5H), 7.47 (m, 5H), 9.82 (s, 

1H). 13C NMR (500 MHz, CDCl3): δ (ppm) 31.1, 70.9, 71.1, 112.5, 113.2, 126.9, 127.2, 127.5, 

128.2, 128.3, 128.8, 128.8, 130.5, 136.4, 136.7, 149.3, 154.4, 191.0. ESI-MS m/z: 319.10 [M+H]+ 

obs; 319.13 Da calc. 

3.3.25 Synthesis of compound 50100, 102 

 

Stobbe condensation procedure described for 25 but starting with 49 (24.95 g, 78.23 mmol) 

gave 50 as yellow solid (98 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.33 (t, J = 7.1 Hz, 3H), 3.51 

(s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 5.21 (s, 2H), 5.22 (s, 2H), 6.96 (s, 2H), 7.03 (s, 1H), 7.38 (m, 5H), 

7.46 (m, 5H), 7.82 (s, 1H), 11.48 (bs, 1H). ESI-MS m/z: 445.10 [M-H]- obs; 445.16 Da calc. 
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3.3.26 Synthesis of compound 51102 

 

Esterification procedure described for 26 but starting with 50 (35.05 g, 78.56 mmol) gave 51 

as yellow oil (98 %).1H NMR (500 MHz, CDCl3): δ (ppm) 1.34 (t, J = 7.1 Hz, 3H), 3.51 (s, 2H), 

3.74 (s, 3H), 4.28 (q, J = 7.1 Hz, 2H), 5.19 (s, 2H), 5.20 (s, 2H), 6.96 (s, 2H), 7.04 (s, 1H), 7.36-

7.40 (m, 5H), 7.45-7.46 (m, 5H), 7.82 (s, 1H). ESI-MS m/z: 461.20 [M+H]+ obs; 461.19 Da calc. 

3.3.27 Synthesis of compound 5299 

 

Following the procedure described for 25 but starting with 51 (10 g, 21.71 mmol) and 3,4-

dimethylbenzylaldehyde 24 (3.97g, 23.89 mmol), compound 52 was obtained as yellow solid (> 

90%). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.07 (t, J = 7.1, 3H), 3.56 (s, 6H), 3.64 (s, 3H), 3.65 (s, 

3H), 4.12 (q, 2H), 5.07 (s, 4H), 7.01 (t, J = 6.6, 8.2, 2H), 7.11 (d, J = 8.5, 1H), 7.16 (d, J = 8.4,  1H), 

7.20 (s, 1H), 7.25 (s, 2H), 7.31 (m, 2H), 7.37 (m, 8H), 7.79 (s, 2H), 12.53 (bs, 1H).  
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3.3.28 Synthesis of compound 53100, 102 

 

Esterification procedure described for 26 but starting with compound 52 (12.6 g, 21.71 mmol) 

gave the desired product as orange oil (98 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.09 (t, J = 7.0 

Hz, 3H), 3.67 (s, 3H), 3.71 (s, 3H), 3.87 (s, 3H), 4.13 (q, J = 7.0 Hz, 2H), 5.16 (s, 2H), 5.19 (s, 2H), 

6.78 (d, 1H), 6.83 (d, 1H), 7.01-7.01 (m, 3H), 7.33-7.38 (m, 5H), 7.39-7.43 (m, 3H), 7.81 (s, 1H), 

7.82 (s, 1H).  

3.3.29 Synthesis of compound 5499 

 

Hydrogenation procedure described for 28 but starting with 53 (8.42 g, 13.84 mmol) afforded 

the desired product 54 in > 99% yield. 1H NMR (500 MHz, CDCl3): δ (ppm) 1.09 (t, J = 7.0 Hz, 

3H), 3.67 (s, 3H), 3.71 (s, 3H), 3.87 (s, 3H), 4.13 (q, J = 7.0 Hz, 2H), 6.78 (d, 1H), 6.83 (d, 1H), 

7.01-7.01 (m, 2H),  7.81 (s, 1H), 7.82 (s, 1H).  
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3.3.30 Synthesis of compound 5546 

 

Benzylation procedure described for 32 but starting with compound 54 (5.8 g, 13.41 mmol) 

gave 55 as white solid (63 %) after flash chromatography over silica (2:1 pet. Ether/EtOAc).  1H 

NMR (500 MHz, CDCl3): δ (ppm) 5.23 (s, 2H), 5.27 (s, 2H), 7.03 (d, J = 8.2, 1H), 7.34 (m, 2H), 

7.39 (m, 5H), 7.47 (m, 6H), 9.82 (s, 1H). 13C NMR (500 MHz, CDCl3): δ (ppm) 31.1, 70.9, 71.1, 

112.5, 113.2, 126.9, 127.2, 127.5, 128.2, 128.3, 128.8, 128.8, 130.5, 136.4, 136.7, 149.4, 154.4, 

191.0.  

3.3.31 Synthesis of compound 56100 

 

To a stirred suspension of LiAlH4 (1.45 g, 38 mmol) in THF (80 ml) at 0°C under nitrogen 

was added the substrate 55 (3.9 g, 6.36 mmol) in THF (45 ml) slowly via syringe. The mixture was 

stirred 4 h at RT. The reaction mixture was diluted with ether and cooled to 0°C, then quenched 

with saturated sodium sulfate solution and H2SO4 (10%) solution. The mixture was extracted with 

EtOAc, washed with brine and dried over anhy. MgSO4.  The solvent is removed in vacuo to give 

compound 56 as colourless oil. 1H NMR (500 MHz, CDCl3): δ (ppm) 2.43-2.49 (m, 4H), 2.59-2.66 

(m, 2H), 3.32-3.38 (m, 4H), 3.79 (s, 3H), 3.83 (s, 3H), 5.07 (s, 2H), 5.12 (s, 2H), 6.40 (d, J = 7.8 , 
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1H), 6.44 (d, J = 7.8, 1H), 6.55 (s, 1H), 6.64-6.68 (m, 2H), 6.74 (d, J = 8.0, 1H), 7.30-7.32 (m, 6H), 

7.36-7.38 (m, 4H), 7.44-7.46 (m, 4), 7.70-7.72 (m, 4H). 

3.3.32 Synthesis of compound 57101 

 

Pyridine (8.22 ml) was added via syringe to the substrate 56 (3.45 g, 6.36 mmol) in the 

reaction flask under nitrogen. The mixture was stirred at 0°C for 20 min. Toluenesulfonyl chloride 

(4.85 g, 25.44 mmol) was added to the mixture and stirred 4 h at 0°C. Addition of HCl (20 ml, 2M) 

gave a mixture of white solid and pale yellow oil. The oil was extracted into ethyl acetate and the 

white solid into DCM.  The two organic extracts were washed separately with water, brine and 

dried over MgSO4. The white solid obtained by DCM extraction 57a was pure by NMR and was 

used without further purification (1.60g, 30 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 2.10 (s, 6H), 

2.43-2.49 (m, 4H), 2.59-2.66 (m, 2H), 3.79 (s, 3H), 3.83 (s, 3H), 3.86-3.94 (m, 4H), 5.07 (s, 2H), 

5.12 (s, 2H), 6.40 (d, J = 7.8 , 1H), 6.44 (d, J = 7.8, 1H), 6.55 (s, 1H), 6.64-6.68 (m, 2H), 6.74 (d, J 

= 8.0, 1H), 7.30-7.32 (m, 6H), 7.36-7.38 (m, 4H), 7.44-7.46 (m, 4), 7.70-7.72 (m, 4H). 13C NMR 

(500 MHz, MeOD): δ (ppm) 35.6, 36.4, 44.4, 44.5, 56.4, 62.0, 62,1, 113.7, 115.9, 122.8, 126.9, 

129.4, 130.3, 133.9, 142.9, 145.7, 148.9. ESI-MS (m/z) = 851.20 [M-H+]. After evaporation, the 

ethyl acetate extract was purified by flash chromatography over silica to yield 57 57b (2.97g, 55 

%). 
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3.3.33 Synthesis of compound 58101 

 

LiAlH4 reduction described for compound 56 but starting with 57a (1.6 g, 1.85 mmol) 

resulted in 58a. Flash chromatography over silica gel (2:1 Pet. Ether/EtOAc) gave 58a as colorless 

oil (632.6 mg, 67%). 1H NMR (500 MHz, CDCl3): δ (ppm) 0.79-0.81 (2 d, 6H), 1.71-1.74 (m, 2H), 

2.34-2.40 (m, 2H), 2.51-2.57 (m, 2H), 3.82 (s, 3H), 3.85 (s, 3H), 5.11 (s, 2H), 5.14 (s, 2H), 6.58 (s, 

1H), 6.60-6.63 (m, 2H), 6.70 (s, 1H), 6.76 (d, J = 8.9, 1H), 6.84 (d, J = 8.1 , 1H), 7.29-7.32 (m, 2H), 

7.34-7.38 (m, 4H), 7.45-7.47 (m, 4H). 13C NMR (500 MHz, MeOD): δ (ppm) 35.6, 36.4, 44.4, 44.5, 

56.4, 62.0, 62,1, 113.7, 115.9, 122.8, 126.9, 129.4, 130.3, 133.9, 142.9, 145.7, 148.9. ESI-MS (m/z) 

= 511.2 [M+H+] obs; 511.28 Da calc. The procedure was repeated with 57b to obtain 58b. 

3.3.34 Synthesis of 4-[4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl]benzene-1,2-diol (A4)99 

 

Treatment of 58a (0.812 g, 2.0 mmol) or 58b with excess H2 in the presence of Pd-C(10%) as 

described for compound 28 gave compound A4a as dark purple solid (323.7 mg, 98%) or 

compound A4b. A4a, dark purple solid, mp 105-108 °C, 1H NMR (500 MHz, CDCl3): δ (ppm) 

0.81-0.83 (6H, overlapping d, J = 4.5, H9, 9'), 1.69-1.76 (2H, m, H8, 8'), 2.31- 2.33 (2H, dd, J = 

7.8, 13.4, H7α), 2.38-2.42 (1H, dd, J = 7.7, 13.4, 7α'), 2.46-2.51 (1H, dd, J = 7.0, 13.3, H7β), 2.51-

2.55 (1H, dd, J = 7.3, 13.5, 7β'), 3.82 (3H, s, p-OCH3), 3.86 (3H, s, o-OCH3), 6.50 (1H, d, J = 6.2), 
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6.56 (1H, s), 6.58 (1H, s), 6.77-6.78 (m, 2H). 13C NMR (500 MHz, MeOD): δ (ppm) 13.8, 13.9, 

37.3, 37.4, 40.7, 40.9, 55.9, 55.99, 111.0, 112.3, 115.0, 115.9, 121.2, 121.5, 134.4, 134.7, 141.5, 

143.3, 146.9, 148.6. ESI-MS (m/z) = 329.13 [M-H+]- obs; 329. 18 Da calc.  

3.3.35 Synthesis of compound 59 

 

Stobbe condensation procedure described for 25 but starting with substrates 26 (7.50g, 

24.32 mmol) and 24 (4.45g, 24.33 mmol), gave a yellow oil which was esterified with MeI in 

K2CO3/ DMSO as describe for 26 to afford compound 59. 1H NMR (500 MHz, CDCl3): δ (ppm) 

1.12 (t, J = 7.1 Hz, 3H), 3.59 (s, 3H), 3.73 (s, 3H), 3.74 (s, 3H), 3.84 (s, 3H), 3.85 (s, 3H), 4.12 (q, J 

= 3.4, 7.1, 2H), 6.77-6.80 (m, 2H), 7.11-7.17 (m, 4H), 7.90 (s, 1H), 7.94(s, 1H).  
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3.3.36 Synthesis of compound 60 

  

Compound 59 (12.85, 29.04 mmol) was hydrogenated in excess H2 atmosphere in the 

presence of Pd-C(10%) as described for 28 to afford compound 60. 1H NMR (500 MHz, CDCl3): δ 

(ppm) 1.12 (t, J = 7.1 Hz, 3H), 2.87-2.90 (m, 2H), 2.93-2.98(m, 2H), 3.54 (s, 3H), 3.78 (s, 6H), 3.83 

(s, 6H), 4.12 (q, J = 3.4, 7.1, 2H), 6.55 (s, 2H), 6.60-6.62 (m, 2H), 6.63-6.74 (m, 2H). 

3.3.37 Synthesis of compound 64 

  

LiAlH4 reduction described for compound 56 but starting with 60 (6.5 g, 14.11 mmol) 

resulted in 64 as a white solid (91 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 0.86-0.88 (m, 2H), 

2.66-2.70 (dd, 2H, J = 5.8, 13.7 Hz), 2.76-2.80 (dd, 2H, J = 8.4, 13.7 Hz), 3.19 (s, 2H), 3.52-3.55 

(dd, 3H, J = 4.4, 11.1 Hz), 3.60-3.63 (dd, 1H, J = 7.1, 11.1 Hz), 3.83 (s, 4H), 3.86 (s, 8H), 6.66 (s, 

2H), 6.69 (d, 2H, J = 7.7 Hz), 6.77 (d, 2H, J = 7.7). 
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3.3.38 Synthesis of tetra-O-methyl NDGA (14) 

 

Compound 64 (3.5, 8.96 mmol) was tosylated as described for compound 57 to yield white 

solid which was reduced with LiAlH4 in THF as described for 56 to afford compound 14 as white 

solid (93 %) 1H NMR (500 MHz, CDCl3): δ (ppm) 0.84-0.86 (overlapping d, 6H), 1.75-1.80 (m, 

2H), 2.29-2.34 (dd, 1H, J = 5.3, 13.3 Hz), 2.39-2.43 (dd, 1H, J = 6.5, 13.6 Hz), 2.55-2.59 (dd, 1H, J 

= 7.7, 13.6 Hz), 2.75-2.78 (dd, 1H, J = 9.3, 13.3 Hz), 3.83 (s, 4H), 3.86 (s, 8H), 6.59 (s, 1H), 6.62 – 

6.66 (m, 2H), 6.70-6.72 (m, 1H), 6.76-6.80 (m, 2H). 

3.3.39 Synthesis of 4-(3,4-dimethoxyphenyl)butan-1-ol (66) 

 

A 4-(3,4-dimethoxyphenyl)butyric acid (3.0 g, 13.4 mmol) was reduced with LiAlH4 as 

described for compound 56 to obtain 66 (86 %). 1H NMR (500 MHz, CDCl3): δ (ppm) 1.26 (s, 2H), 

1.60-1.65 (m, 2H), 1.66-1.72 (m, 2H,), 2.60 (t, J = 7.2 Hz, 2H), 3.68 (bs, 1H), 3.86 (s, 3H), 3.88 (s, 

3H), 6.72 (d, J = 8.0, 2H), 6.79 (d, 1H, J = 7.8 Hz). 
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3.3.40 Synthesis of 4-(3,4-dimethoxyphenyl)butanal (67)  

 

A solution of 66 (2.0 g, 9.5 mmol) in dried CH2Cl2 (10 ml) was treated with pyridinium 

chlorochromate (PCC) (4.10 g, 19.0 mmol) in dried CH2Cl2 (20 ml). The mixture was allowed to 

stir for 2.5 h and filtered through a pad of silica gel. The residue was washed thoroughly with 

CH2Cl2 and solvent removed in vacuo to afford 67 (84%). 1H NMR (500 MHz, CDCl3): δ (ppm) 

1.94 (m, 2H), 2.46 (t, J = 7.2 Hz, 2H), 2.61 (t, J = 7.6 Hz, 2H,), 3.86 (s, 3H), 3.87 (s, 3H), 6.70 (d, J 

= 8.7 Hz, 2H), 6.79 (d, J = 7.8 Hz, 1H), 9.76 (s 1H). 

3.3.41 Synthesis of compound 70 

 

The Grignard reagent 3,4-dimethoxyphenylmagnesium bromide  generated in situ refluxing 

a mixture of magnesium turning (0.46 g), 3,4-dimethoxyphenyl bromide (2.69 ml), iodine (1 

crystal) in THF under N2. The reagent was cooled to -78 oC under N2 and treated with a solution of 

67 (2.6 g, 12.5 mmol) in anhydrous THF (10 ml).  The mixture was warmed to RT, and after 2 h the 

reaction was judged complete by TLC.  Et2O (35 ml) was added and the product mixture was 

washed with 20 ml NH4Cl (5 % aq) followed by NaCl (satd aq).  The crude product mixture was 

dried over MgSO4, concentrated, and purified by flash column chromatography to afford 70 (71%).  

1H NMR (500 MHz, CDCl3): δ (ppm) 1.52-1.60 (m, 1H), 1.68-1.75 (m, 2H), 1.80-1.86 (m, 1H) 
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3.57 (t, J = 7.0, 2H), 3.84 (s, 6H), 3.86 (s, 3H), 3.87 (s, 3H), 4.61 (t, J = 7.0, 1H), 6.67 (m, 2H), 6.76 

(d, J = 7.8 Hz, 1H), 6.82 (m, 2H), 6.87 (s, 1H). 

3.3.42 Synthesis of compund 72 

 

Compound 70 (2.3 g, 6.64 mmol) was treated with excess hydrogen gas as described for 28 

to afford 71 in 91% yield.  1H NMR (500 MHz, CDCl3): δ (ppm) 1.65 (s, 4H), 2.58 (s, 4H), 3.85 (s, 

12H) 6.70 (m, 4H), 6.79 (m, 2H). 

3.3.43 Synthesis of 4,4'-butane-1,4-diyldibenzene-1,2-diol (A6) 

 

Compound 71 (0.61 g, 1.83 mmol) was demethylated with BBr3 in DCM as described for A1 

to afford A6 as brown solid (> 99%).1H NMR (500 MHz, CD3OD): δ (ppm) 1.52 (4H, s, H8, 8'), 

2.43 (4H, s, H7, 7'), 6.44 (2H, d, J = 8.0, H6, 6'), 6.56 (2H, s, H2, 2'), 6.63 (2H, d, J = 8.0, H5, 5'). 

13C NMR (500 MHz, CD3OD): δ (ppm) 32.58 (C8, 8'), 36.26 (C7, 7'), 116.31 (C6, 6'), 116.64 (C5, 

5'), 120.78 (C2, 2'), 135.75 (C1, 1'), 144.20 (C4, 4'), 146.13 (C3, 3'). 
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3.4 Characterization of NDGA Analogues 

3.4.1 High Performance Liquid Chromatography (HPLC) Analyses 

A reverse phase, high performance liquid chromatography (RP-HPLC) method was 

developed to determine purity of the prepared analogues. Standard NDGA was run alongside for 

comparison. The RP-HPLC method employed a 150 × 2.1 mm Hypersil GOLD, ODS 3µ, 

microbore column at a flow rate of 200 µL/min using gradient elution.  Solvent A consisted of 

water with 0.1% formic acid and Solvent B was acetonitrile containing 0.1% formic acid. A 

gradient of 90% A for 2 min, decreased to 60% A over 10 min, then 10% A over 5 min, held 

isocratic for 10 min, returned to 90% A in 5min and held isocratic for 2 min. All eluates were 

monitored by UV diode array detection.  

 

3.4.2 Nuclear Magnetic Resonance (NMR) Spectroscopy Experiments  

The prepared analogues were characterized by 1H-NMR, 2-D COSY and 13C-NMR 

experiments. 

 

3.4.3 Mass Spectroscopy Experiments 

The molecular masses of the prepared analogues were confirmed by ESI-MS analyses. The 

molecular ions and isotopic masses were determined by Enhanced Resolution (ER) scanning in 

negative ionization mode. Fragmentation patterns were studied by tandem ESI-MS/MS in negative 

ion mode. Tandem ESI-MS/MS data for NDGA was obtained for comparison. Instrument 

parameters  were set as follows: Cur = 0, Temp = 200, GS1 = 14, GS2 = 40, ihe = on, IS = -4500, 

CAD = high, DP = 50, EP = -10, CE = -40 and CXP = -15. 
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3.4.4 Characterization of NDGA 

 

Figure 2-1: Molecular structure of NDGA (C18H22O4, 302.36 g/mol) 

 

Figure 2-2: HPLC chromatogram (Panel A) and UV absorption maxima (Panel B) for NDGA. 

A retention time of 19.1 min by the method described in section 3.4.1 was observed with a 

characteristic absorption at 282.8 nm obtained by UV-PDA detection. 

 

Summary of NMR data for NDGA 

[1H] NMR (500 MHz, DMSO-d6) δ(ppm): 0.74 (6H, d, J=6.6 Hz, H9,9’), 1.60 (2H, m, H8,8’), 

2.09 (2H, dd, J=4.8, 13.3 Hz, H7α,7’α), 2.56 (2H, dd, J=9.3, 13.2 Hz, H7β,7’β), 6.38 (2H, dd, 

J=1.8, 7.8 Hz, H6,6’), 6.52 (2H, d, J=1.8 Hz, H2,2’), 6.61 (2H, d, J=7.8 Hz, H5,5’), 8.58b (2H, s, 

o,p Ar-OH), 8.65b (2H, s, o,p Ar-OH) 
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Figure 2-3: ER-ESI-MS in negative ionization mode for NDGA  

 

Figure 2-4: Tandem ESI-MS/MS in negative ionization mode for NDGA. 

A m/z 301.1 was observed consistent with calculated mass of NDGA 1 (302.36 g) based on 

molecular formula (C18H22O4). Product ions observed were consistent with predicted fragmentation 

patterns NDGA with a base peak at m/z 122.1 Da. 
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3.4.5 Characterization of A1 

 

Figure 2-5: Molecular structure of A1 (C18H22O2, 270.36 g/mol). 

 

Figure 2-6: HPLC chromatogram (Panel A) and UV absorption maximum (Panel B) for A1. 

A retention time of 24.2 min by the method described in section 3.4.1 was observed with a 

characteristic absorption at 282.8 nm obtained by UV-PDA detection.  

 

Summary of NMR data for A1 

[1H] NMR (500 MHz, CDCl3): δ (ppm) 0.84-0.87 (6H, 2×d, J = 4.3, H9, 9'), 1.74-1.84 (2H,  m, H8, 

8'), 2.32-2.36 (1H, dd, J = 8.5, 13.4, H7α), 2.43-2.48 (1H, dd, J = 8.6, 13.4, H7α'), 2.55-2.59 (1H, 

dd, J = 6.4, 13.6, H7β), 2.66-2.70 (1H, dd, J = 6.2, 13.6, H7β'), 5.78 (2H, bs, o, p-ArOH), 6.55-6.57 
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(1H, dd, J = 1.9, 8.1, H6), 6.64 (1H, d, J = 1.9, H2), 6.79 (1H, d, J = 7.9, H5), 7.14 (2H, d, J = 7.2, 

H2', 6'), 7.21 (1H, t, J = 7.4, H4'), 7.30 (2H, t, H3', 5'). 

[13C] NMR (500 MHz, CDCl3): δ (ppm) 13.97, 16.24, 38.10, 39.33, 40.67, 41.45, 115.18, 116.08, 

121.55, 125.64, 128.17, 128.23, 129.13, 129.17, 134.89, 141.28, 141.78, 143.25. 

 

 

Figure 2-7: ER-ESI-MS in negative ionization mode for A1.  
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Figure 2-8: Tandem ESI-MS/MS in negative ionization mode for A1. 

A m/z 269.1 was observed consistent with calculated mass of A1 (270.36 g) based on 

molecular formula (C18H22O2). Product ions observed were consistent with fragmentation patterns 

observed for standard NDGA with a base peak at m/z 122.0 Da.  

 

3.4.6 Characterization of A2 

 

Figure 2-9: Molecular structure of A2 (C19H24O2, 284.39 g/mol). 
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Figure 2-10: HPLC chromatogram (Panel A) and UV absorption maximum (Panel B) for A2. 

A retention time of 26.3 min by the method described in section 3.4.1 was observed with a 

characteristic absorption at 281.6 nm obtained by UV-PDA detection.  

 

Summary of NMR data for A2 

1H NMR (500 MHz, CDCl3): δ (ppm) 0.86-0.88 (6H, d×2, H9, 9'), 1.77-1.85 (2H, m, H8, 8'), 2.38-

2.49 (2H, m, H7α, 7α'), 2.57-2.68 (2H, m, H7β, H7β'), 3.84 (3H, s, OCH3), 5.51 (1H, bs, p-ArOH), 

6.58 (s, 1H), 6.62-6.65 (1H, m,), 6.84-6.88 (1H, m,), 7.13 (d, J = 7.2, 1H), 7.18-7.23 (m, 2H), 7.23-

7.33 (m, 2H).  

13C NMR (500 MHz, CDCl3): δ (ppm) 13.95, 16.11, 37.81, 38.94, 41.09, 41.45, 55.84, 111.34, 

113.97, 121.67, 125.64, 128.15, 129.08, 133.57, 141.73, 143.55, 146.29.  
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Figure 2-11: ER-ESI-MS in negative ionization mode for A2.  

 

Figure 2-12: Tandem ESI-MS/MS in negative ionization mode for A2. 

A m/z 283.2 was observed consistent with calculated mass of A2 (284.39 g) based on 

molecular formula (C19H24O2). Product ions observed were consistent with fragmentation patterns 

observed for standard NDGA with a base peak at m/z 121.0 Da. 

 -MS2 (283.20) CE (-35): 847 MCA scans from Sample 6 (IA-3-A2 MSMS) of August 2 2014.wiff (Turbo ... Max. 1.0e8 cps.
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3.4.7 Characterization of A3 

 

Figure 2-13: Molecular structure of A3 (C20H26O4, 330.42 g/mol). 

 

Figure 2-14: HPLC chromatogram (Panel A) and UV absorption (Panel B) for A3. 

A retention time of 22.7 min by the method described in section 3.4.1 was observed with a 

characteristic absorption at 281.6 nm obtained by UV-PDA detection. 

 

Summary of NMR data for A3 

A3a, 1H NMR (500 MHz, CDCl3): δ (ppm) 0.83-0.86 (6H, 2×d, J = 6.4, H9, 9'), 1.72-1.76 (2H, m, 

H8, 8'), 2.26-2.32 (1H, dd, J = ,H7α), 2.37-2.41 (1H, dd, J = 7.4, 13.4, H7α'), 2.51-2.55 (1H, dd, J = 

7.4, 13.7, H7β), 2.72-2.76 (1H, dd, J = 4.1, 12.9,  H7β'), 3.82 (3H, s, p-OCH3), 3.87 (3H, s, o-

OCH3), 5.58 (2H, bs, p-ArOH), 6.55 (1H, s, H2), 6.60 (1H d, J = 7.8, H6), 6.64 (1H, s, H2'), 6.68 

(1H, d, J = 7.8, H6'), 6.83 (1H, d, J = 8.0, H5), 6.85 (1H, d, J = 8.0, H5') 
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13C NMR (500 MHz, CDCl3) δ (ppm) 14.04, 16.40, 21.25, 37.62, 39.07, 39.36, 41.26, 55.95, 56.03, 

60.62, 111.46, 111.61, 114.04, 114.15, 121.81, 121.89, 133.77, 133.97, 143.67, 143.73, 146.42, 

146.50.  

A3b, δ (ppm) 0.83-0.86 (6H, 2×d, J = 6.8, H9, 9'), 1.72-1.76 (2H, m, H8, 8'), 2.28-2.32 (1H, dd, J = 

9.3, 13.3 ,H7α), 2.37-2.42 (1H, dd, J = 7.7, 13.7, H7α'),  2.51-2.55 (1H, dd, J = 7.3, 13.7, H7β), 

2.72-2.76 (1H, dd, J = 5.2, 13.7,  H7β'), 3.82 (s, 3H, p-OCH3), 3.87 (s, 3H, o-OCH3), 5.50 (bs, 2H, 

p-ArOH), 6.53 (1H, s, H2 ), 6.60 (1H, d, J = 7.7, H6), 6.63 (1H, s, H2'), 6.68 (1H, d, J = 8.0, H6'), 

6.81 (1H, d, J = 7.7, H5), 6.84 (1H, d, J = 7.7, H5')  

13C NMR (500 MHz, CDCl3) δ (ppm) 13.89, 16.25, 37.45, 38.91, 39.21, 41.10, 55.79, 55.87, 

111.31, 111.47, 113.89, 114.00, 121.66, 121.74, 133.62, 133.82, 143.51, 143.57, 146.27, 146.34. 

 

 

Figure 2-15: ER-ESI-MS in negative ionization mode for A3.  

 -ER: 205 MCA scans from Sample 1 (IA-3-146-01 ERMS) of IA-3-146-01 ERMS.wiff (Turbo Spray), Ce... Max. 1.5e10 cps.
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Figure 2-16: Tandem ESI-MS/MS in negative ionization mode for A3. 

A m/z 329.1 was observed consistent with calculated mass of A3 (330.42 g) based on 

molecular formula (C20H26O4). Product ions observed were consistent with fragmentation patterns 

observed for standard NDGA with a base peak at m/z 122.3 Da. 

 

3.4.8 Characterization of A4 

 

Figure 2-17: Molecular structure of A4 (C20H26O4, 330.42 g/mol). 

 

 -MS2 (329.13) CE (-40): 478 MCA scans from Sample 1 (IA-3-146-01 MSMS) of IA-3-146-01 MSMS.wif... Max. 8.1e8 cps.
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Figure 2-18: HPLC chromatogram (Panel A) and UV absorption maximum (Panel B) for A4. 

A retention time of 22.2 min by the method described in section 3.4.1 was observed with a 

characteristic absorption at 280.4 nm obtained by UV-PDA detection.  

 

Summary of NMR data for A4 

A4a, 1H NMR (500 MHz, CDCl3): δ (ppm) 0.81-0.83 (6H, overlapping d, J = 4.5, H9, 9'), 1.69-

1.76 (2H, m, H8, 8'), 2.31- 2.33 (2H, dd, J = 7.8, 13.4, H7α), 2.38-2.42 (1H, dd, J = 7.7, 13.4, 7α'), 

2.46-2.51 (1H, dd, J = 7.0, 13.3, H7β), 2.51-2.55 (1H, dd, J = 7.3, 13.5, 7β'), 3.82 (3H, s, p-OCH3), 

3.86 (3H, s, o-OCH3), 6.50 (1H, d, J = 6.2), 6.56 (1H, s), 6.58 (1H, s), 6.77-6.78 (m, 2H),  

13C NMR (500 MHz, MeOD): δ (ppm) 13.82, 13.89, 37.31, 37.44, 40.69, 40.98, 55.89, 55.92, 

110.99, 112.28, 115.04, 115.96, 121.16, 121.49, 134.40, 134.69, 141.52, 143.29, 146.96, 148.55.  

A4b, 1H NMR (500 MHz, CDCl3): δ (ppm) 0.81-0.85 (6H, overlapping d, J = 6.3, H9, 9'), 1.69-

1.76 (2H, m, H8, 8'), 2.24-2-29 (m, 1H), 2.31-2.42 (m, 1H), 2.46-2.56 (m, 1H), 2.67-2.75 (2H, m), 

3.82 (3H, s), 3.86 (3H, s), 6.55 (2H, m), 6.67 (2H, m), 6.79 (2H,  m)  
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Figure 2-19: ER-ESI-MS in negative ionization mode for A4.  

 

Figure 2-20: Tandem ESI-MS/MS in negative ionization mode for A4. 

A m/z 329.1 was observed consistent with calculated mass of A4 (330.42) based on 

molecular formula (C20H26O4). Product ions observed were consistent with fragmentation patterns 

observed for standard NDGA with a base peak at m/z 122.2 Da 

 -ER: 229 MCA scans from Sample 1 (IA-3-141 ERMS) of IA-3-141 ERMS.wiff (Turbo Spray), Centroid... Max. 4.0e10 cps.
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3.4.9 Characterization of A6 

 

Figure 2-21: Molecular structure of A6 (C16H18O4, 274.31 g/mol). 

 

Figure 2-22: HPLC chromatogram (Panel A) and UV absorption for A6. 

A retention time of 17.5 min by the method described in section 3.4.1 was observed with a 

characteristic absorption at 281.6 nm obtained by UV-PDA detection 

 

Summary of NMR data for A6 

1H NMR (500 MHz, CD3OD): δ (ppm) 1.52 (4H, s, H8, 8'), 2.43 (4H, s, H7, 7'), 6.44 (2H, d, J = 

8.0, H6, 6'), 6.56 (2H, s, H2, 2'), 6.63 (2H, d, J = 8.0, H5, 5') 

13C NMR (500 MHz, CD3OD): δ (ppm) 32.58 (C8, 8'), 36.26 (C7, 7'), 116.31 (C6, 6'), 116.64 (C5, 

5'), 120.78 (C2, 2'), 135.75 (C1, 1'), 144.20 (C4, 4'), 146.13 (C3, 3') 
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Figure 2-23: ER-ESI-MS in negative ionization mode for A6.  

 

Figure 2-24: Tandem ESI-MS/MS in negative ionization mode for A6. 

A m/z 273.1 was observed consistent with calculated mass of A6 (274.31 g) based on 

molecular formula (C16H18O4). Product ions observed were consistent with fragmentation patterns 

observed for standard NDGA with a base peak at m/z 122.2 Da. 
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3.4.10 Characterization of A7 

 

Figure 2-25: Molecular structure of A7 (C18H22O2, 270.36 g/mol). 

 

Figure 2-26: HPLC chromatogram (Panel A) and UV absorption for A7. 

A retention time of 22.5 min by the method described in section 3.4.1 was observed with a 

absorption at 273.3 nm obtained by UV-PDA detection 

 

Summary of NMR data for A7 

1H NMR (500 MHz, CDCl3): δ (ppm) 0.87-0.89 (6H, 2×d, J = 6.5, H9, 9'), 1.61-1.69 (2H, m, H8, 

8'), 2.32-2.36 (2H, dd, J = 8.3, 13.3, H7α, H7α'), 2.59-2.63 (2H, dd, J = 6.3, 13.4, H7β, H7β'), 5.56 

(2H, bs, ArOH), 6.68-6.60 (2H, s), 6.70 (1H, d, J = 1.6), 6.76 (2H, d, J = 7.3), 6.83-6.86 (1H, m), 

7.14-7.17 (2H, m) 
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Figure 2-27: ER-ESI-MS in negative ionization mode for A7.  

 

Figure 2-28: Tandem ESI-MS/MS in negative ionization mode for A7. 

A m/z 269.1 was observed consistent with calculated mass of A7 (270.36 g) based on 

molecular formula (C18H22O2). Product ions observed were consistent with fragmentation patterns 

observed for standard NDGA with a base peak at m/z 106.0 Da.  

 -ER: 4 MCA scans from Sample 1 (IA-2-281 ERMS) of IA-2-281 ERMS.wiff (Turbo Spray), Centroided Max. 1.1e9 cps.
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3.4.11 Characterization of A8 

 

Figure 2-29: Molecular structure of A8 (C20H26O4, 330.42 g/mol). 

 

Figure 2-30: HPLC chromatogram (Panel A) and UV absorption maximum (Panel B) for A8. 

A retention time of 22.9 min by the method described in section 3.4.1 was observed with a 

characteristic absorption at 281.6 nm obtained by UV-PDA detection. 

 

Summary of NMR data for A8 

A8a, 1H NMR (500 MHz, CDCl3): δ (ppm) 0.80-0.84 (6H, 2×d, J = 6.7, H9, 9'), 1.74-1.78 (2H, m, 

H8, 8'), 2.22-2.27 (1H, dd, J = 9.6, 13.3, H7α), 2.31-2.35 (1H, dd, J = 7.9, 12.8, H7α'), 2.54-2.58 

(1H, dd, J = 5.8, 13.5, H7β), 2.70-2.74 (1H, dd, J = 4.5, 13.4, H7β'), 3.89 (6H, s, 3,3' OCH3), 5.58 

(2H, bs, ArOH), 6.58-6.60 (1H, dd, J = 1.6, 8.1), 6.63-6.65 (1H, dd, J = 1.6, 8.1), 6.71 (1H, d, J = 

1.6), 6.75-6.79 (3H, m) 
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A8b, 1H NMR (500 MHz, CDCl3): δ (ppm) 0.81-0.84 (6H, 2×d, H9, 9'), 1.73-1.79 (2H, m, H8, 8'), 

2.23-2.28 (1H, dd, J = 9.5, 13.3, H7α), 2.32-2.36 (1H, dd, J = 8.5, 13.5, H7α'), 2.55-2.59 (1H, dd, J 

= 5.8, 13.5, H7β), 2.71-2.74 (1H, dd, J = 4.6, 13.4, H7β'), 3.87 (6H, s, 3,3' OCH3), 5.68 (2H, bs, 

ArOH), 6.59-6.61 (1H, dd, J = 1.7, 7.9), 6.64-6.66 (1H, dd, J = 1.7, 7.9), 6.71 (1H, d, J = 1.7), 6.75-

6. 79 (3H, m) 

 

 

Figure 2-31: ER-ESI-MS in negative ionization mode for A8.  

 

 -ER: 112 MCA scans from Sample 1 (IA-4-13-02) of IA-4-13-02.wiff (Turbo Spray), Centroided Max. 9.7e10 cps.
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Figure 2-32: Tandem ESI-MS/MS in negative ionization mode for A8. 

A m/z 329.2 was observed consistent with calculated mass of A8 (330.42 g) based on 

molecular formula (C20H26O4). Product ions observed were consistent with fragmentation patterns 

observed for standard NDGA with a base peak at m/z 121 Da.  

  

 -MS2 (329.20) CE (-40): 464 MCA scans from Sample 4 (IA-4-A8b MSMS) of August 2 2014.wiff (Turbo... Max. 1.6e9 cps.
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Table 2-1: Summary of ESI-MS analyses data for NDGA and its analogues. 

Compound 

(M) 

a[M-H]- 

found 

b[M-H]- 

calcd 

cProduct ion following CID aIsotopic Peaks 

NDGA (302) 301.1 301.1 177, 149, 135, 122, 109  301.1, 302.1, 303.1 

A1 (270) 269.1 269.2 149, 135, 122, 108 269.1, 270.1, 271.1 

A2 (284) 283.2 283.2 268, 121 283.2, 284.2. 285.2 

A3 (330) 329.1 329.2 314, 177, 149, 136, 122, 109 329.1, 330.1, 331.1 

A4 (330) 329.1 329.2 314, 177, 149, 136, 122, 109 329.1, 330.1, 331.1 

A6 (274) 

A7 (270) 

273.1 

269.1 

273.1 

269.1 

245, 217, 149, 135, 122, 109 

147, 133, 119, 106 

273.1, 274.1, 275.1 

269.1, 270.1, 271.2 

A8 (330) 329.1 239.2 314, 177, 149, 135, 121, 109 329.1, 330.1, 331.1 

aThe parent ion and isotopic peaks were determined by ER scanning in negative ion mode. bThe calculated parent ions 

were obtained from ACD/ChemSketch software.  cThe product ion determine by MS-MS scannind using the following 

instrument parameters: CUR = 10, Temp = 200ºC, GS1 = 14, GS2 = 40, ihe = on, IS = 4500, CAD = high, DP = -50, 

EP = -10, CE = -30 to -55, CXP = -15. The boldface type denotes base peak. 
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3.5 Experimental 2: Autoxidative Cyclization Potential of NDGA Analogues 

3.5.1 General HPLC Method 

An HPLC method was developed to monitor autoxidation and glutathione trapping 

experiments. The RP-HPLC method employed a 150 × 2.1 mm Hypersil GOLD, ODS 3µ, 

microbore column at a flow rate of 200 µL/min using gradient elution.  Solvent A consisted of 

water with 0.1% formic acid and Solvent B was acetonitrile containing 0.1% formic acid. An initial 

isocratic phase of 90% A for 2 min, decreased to 60% A over 8 min, then 10% A over 12 min, held 

isocratic for 10 min, and finally increased to 90% A over 1 min and held isocratic at 90% A  for 6 

min to equilibrate the column. All eluates were monitored by UV diode array detection.  

 

3.5.2 Autoxidative Cyclization Studies 

The potential of the prepared analogues to autoxidize to their corresponding 

dibenzocyclooctadiene lignans was examined using a method developed by Billinsky et al.35 

Briefly, the substrate in CH3CN (20 mM) is added to phosphate-citric acid buffer (0.5 M, pH 8.5) 

pre-equilibrated to 37 °C to give a final substrate concentration of 0.1 mM. The reaction mixture 

was stirred at the same temperature for 90 min and monitored by HPLC. The reaction was stopped 

by acidification to pH 1.5 with HCl. The mixture was extracted with ethyl acetate, dried over 

MgSO4 and solvent evaporated in vacuo. The oxidation product was purified over a C-18 column 

(RedSep®Rf GOLD, Teledyne Isco) on a Tris Pump connected to UA-6 UV/Vis Detector 

(Teledyne Isco) separation system using 70:30 H2O/CH3CN (v/v) containing 0.1% formic acid. The 

product was analyzed by HPLC, MS and NMR techniques. Standard NDGA was used as positive 

control.  
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3.5.2.1 Chemical Stability Determination 

The test compound in CH3CN (20 mM)  and internal standard (DMPA) were added to a 

phosphate-citric acid buffer (0.5 M, pH 7.4) pre-equilibrated to 37 °C to give final concentrations of 

0.5 mM each. The mixture was incubated at 37 ºC in incubating Orbital Shaker (VWR). Aliquots 

were taken at various time intervals and the reactions quenched by acidification to pH 1.5 with HCl. 

Samples were analyzed directly by HPLC. Test analogues were verified by the elution time of 

standards and quantitated by their corresponding standard curves (R2 = 0.97-1.0). All calibration 

curves were developed by plotting peak area ratios of substrate versus internal standard as a 

function of concentration   

 

3.5.2.2 Dibenzocyclooctadiene Formation via o-Q intermediate 

The experiment as described in section 3.5.2.1 was repeated in the absence and presence of 

GSH (added at time t = 0 h) and also with GSH added in aliquots over time. All samples were 

treated as in section 3.5.2.1 and analyzed by HPLC. A separate experiment was conducted without 

and with 20 fold excess of GSH at 37 ºC for 6 h to further investigate the involvement of o-Q 

intermediate in the intramolecular cyclization process.  

 

3.5.2.3 Reaction Kinetics 

The concentrations of the test analogues that remained in solution over time were used to 

establish the kinetics of the loss of each analogue in phosphate buffer at pH 7.4. The loss of NDGA 

in phosphate buffer at pH 7.4 follows apparent first-order kinetics.33 Thus, the disappearance rate of 

the analogues can be described by: 
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   𝑙𝑛
𝐶

𝐶𝑜
=  −𝑘𝑡  

where Co and C are initial concentration and concentration at different time points respectively; k is 

the reaction rate constant and t is time. A plot of ln C against time is expected to give a straight line 

with intercept ln C0 and a gradient -k for a first order degradation reaction. 

 

3.6 Experimental 3: Reactive Metabolites Formation Potential of NDGA Analogues 

3.6.1 Enzymatic Oxidation Studies 

Each test compound (1 mM), glutathione (5.0 mM) and mushroom tyrosinase (47.25 units) 

in 500 µl NA2HPO4 buffer (50 mM, pH 6.0) was vortexed for 60 min at room temperature (25 °C). 

The reaction was stopped by addition of perchloric acid (20 µl). After centrifugation (14,000 for 10 

min), aliquots of the supernatant were analyzed directly by HPLC and further by MS. Control 

experiments were performed in the absence of GSH, in the absence of mushroom tyrosinase, and 

with the addition of GSH after the 60 min vortex. Each reaction was performed in triplicate. 

 

3.6.1.1 Pilot Enzymatic Oxidation Study 

4-Propylbenzene-1,2-diol (PC1) and 2-methoxy-4-propylphenol (PC2) were synthesized 

from eugenol. The PC1 and PC2 were used as mimics of the catechol analogues (A1, A4 and A6)  

and phenol analogues (A2, A3, A7 and A8) respectively. HPLC and MS conditions for oxidative 

metabolism studies were validated using PC1, PC2 and standard NDGA. The compounds were 

oxidized as described in section 3.6.1 
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3.6.1.2 Mushroom Tyrosinase-catalysed Oxidation of the prepared Analogues 

The analogues prepared for this study were oxidized with mushroom tyrosinase as described 

in section 3.6.1 and the oxidation products analyzed by HPLC and MS technique 

 

3.6.1.3 Isomerization of o-Q to p-QM Studies 

Analogues A1 or A4 was oxidized with mushroom tyrosinase in the presence and absence 

of GSH for 60 min. For the incubations containing GSH, salicylamide (internal standard) was 

added at 60 min and quenched with perchloric acid. For the experiments conducted in the absence 

of GSH, an aliquot was stirred in a phosphate buffer after 60 min incubation and sampled at various 

time points. To each 1 hour interval aliquot, GSH was added and treated similarly as incubations 

with GSH. Samples were taken for 8 hours. Samples were analysed by HPLC and LS-MS. 

 

3.6.2 Chemical Oxidation Studies 

Freshly prepared silver oxide (300 mg) was added to the test sample in dried acetonitrile 

(2.5 mM) pre-equibilirated to 60ºC. 1 ml aliquots were taken at 30 s or 30 min and centrifuged at 

14,000 for 10 min. The resulting supernatant was added to a potassium phosphate buffer (pH 7.4) 

containing GSH to a final concentration ratio of 1:5 substrate-GSH. Control experiments contained 

no GSH and were all performed in duplicates. The samples were analyzed directly by HPLC. For 

MS analysis, samples were loaded on C-18 extraction cartridges (Bond Elut, Varian) and eluted 

with methanol. 
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3.6.2.1 Pilot Chemical Oxidation Studies 

The two pilot compounds (PC1 and PC2) and standard NDGA were oxidized as described 

in section 3.6.2 to validate the oxidation, HPLC and MS method. 

3.6.2.2 Silver oxide-catalysed Oxidation of prepared Analogues 

The analogues prepared for this study were oxidized with Ag2O as described in section 3.6.2 

and the oxidation products analyzed by HPLC and MS techniques 

 

3.6.3 Cytochrome P450 Oxidation Studies 

Test compounds in DMSO (0.5 mM) were incubated in NA2HPO4 buffer (50 mM, pH 7.4) 

containing GSH (5 mM), rat liver microsomes (0.5 mg/ml) and MgCl2 at 37 °C for 60 min. The 

final reaction volume (500 µl) contained 0.5% DMSO solvent. The reaction was initiated with 

NADPH after 5 min pre-incubation and terminated by chilling in ice bath followed by addition of 

ice cold acetonitrile (200 µl). After centrifugation at 14,000 rpm for 10 min, the supernatant was 

analyzed by HPLC and LC-MS. Samples for LC-MS were loaded on C-18 extraction cartridges 

(Bond Elut, Varian) and eluted with methanol. Control experiments contained no NADPH. All 

experiments were run in duplicates. 
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4 RESULTS 

 

4.1 Syntheses of NDGA Analogues 

4.1.1 Syntheses of A1: 4-(2,3-dimethyl-4-phenylbutyl)benzene-1,2-diol 

 

Figure 4-1: Molecular structure of NDGA analogue 1 (A1). 

The basic lignan skeleton was constructed using a Stobbe condensation followed by 

alkylation.58, 102 Reaction of the aromatic aldehyde 24 with succinate ester 19 gave a trans-

benzylidene succinate monoester 25 in 98% yield (Scheme 4-1). The monoester 25 was esterified to 

26 using CH3I/K2CO3 in DMSO in 93% yield. Alkylation with benzyl bromide and LDA in THF at 

-78 °C afforded the basic lignan skeleton 27 as orange oil (73%). Compound 27 was hydrolyzed to 

a diacid to allow resolution via quinine salts. However, this theoretically possible step proved 

practically challenging as the expected fractional crystallization did not occur. This separation step 

was not pursued further. Instead, compound 27 was hydrogenated under H2 atmosphere using Pd-

C(10%) catalyst to give 28 as yellowish oil (87% ) which was reduced with LiAlH4 in THF to the 

diol 29, a white solid in 65% yield. Tosylation of compound 29 in pyridine gave the resulting 

tosylate 30 as white crystals in low yield (26%). Contrary to our expectation, this step does not 

seem to provide separation into two pairs of enantiomers for A1. The 1H NMR and ESI-MS data of 

only one of the two isolated products was consistent with the expected product. A further reduction 

of 30 with LiAlH4 in THF gave 31 as yellowish oil (82 %). Demethylation of compound 31 with 
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BBr3 in DCM at -78 °C afforded the final NDGA mono-catechol A1 as a purple oil in quantitative 

yield. 

 

Scheme 4-1: Synthetic pathway to NDGA analogue 1 (A1). 

Reagents and Conditions: i) EtONa/EtOH, reflux, 98%; ii) MeI, K2CO3/DMSO, rt, 93%; iii) BnBr, 

LDA/THF, -78 °C, 73%; iv) H2, Pd-C, 88%; v) LiAlH4/THF, rt, 65%; vi) TsCl, Pyridine, 0 °C 

26%; vii) LiAlH4/THF, rt, 82%;  viii) BBr3/DCM, -78 °C, > 99%. 
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4.1.2 Synthesis of A2: 4-(2,3-dimethyl-4-phenylbutyl)-2-methoxyphenol  

 

Figure 4-2: Molecular Structure of NDGA analogue 2 (A2). 

Benzylation of vanillin gave compound 32 which was treated with diethyl succinate 19 via a 

Stobbe condensation reaction to give the trans-benzylidene succinate monoester 33 (Scheme 4-2). 

After methylation, the resulting diester 34 was alkylated with BnBr/LDA in THF to give the basic 

lignan structure 35. Compound 35 was hydrolyzed to diacid 36 to allow resolution of the 

enantiomeric pair via diastereomeric quinine salts. As observed in the case of A1, the desired 

fractional crystallization of diastereomeric quinine salts did not occur even though ESI-MS data 

showed successful reaction. Compound 35 was subsequently reduced with LiAlH4/AlCl3 mixture in 

THF to the diol 37. Compound 35 required a more vigorous condition obtained by using LiAlH4 in 

the presence of a Lewis acid, AlCl3to undergo reduction. Reduction with LiAlH4 in the absence of a 

Lewis acid was unsuccessful. It is noteworthy that this reduction step does not cleave the benzyl 

protecting group and therefore offers synthetic advantage as it shortens the synthetic steps by one. 

Attempts to tosylate diol 37 led to undesired lactone 38a and 38b possibly through tosylation of one 

OH group followed by elimination. When compound 37 was hydrogenated to 39, subsequent 

tosylation easily gave the desired tosylate 40 in good yield (62%). This step however tosylates the 

de-protected aromatic OH group as well.   LiAlH4 reduction followed by aromatic detosylation with 

refluxing KOH (3%) in ethanol-water (1:1) mixture afforded A2 as a yellow oil. Compound A2 was 
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also prepared via consecutive Stobbe condensation reaction on 34 using benzylaldehyde 41 

followed with methylation to give the diester 42. Compound 42 was hydrogenated and the resulting 

mixture reduced with LiAlH4 to give 43. Compound 43 was treated with mesyl chloride and the 

resulting mesylate reduced with LiAlH4 and further with refluxing KOH (3%) in ethanol-water 

(1:1) mixture afforded A2 as yellow oil. 
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Scheme 4-2: Synthetic pathway to NDGA analogues 2 (A2). 

Reagents and Conditions: i) EtONa/EtOH, reflux, 98%; ii) MeI, K2CO3/DMSO, rt, 92%; iii) BnBr, 

LDA/THF, -78 ºC, 92%; iv) NaOH/H2O, reflux, H3O
+, 57%; v) LiAlH4/AlCl3, THF, rt, 74%, vi) 

63%; vii) H2, Pd/C (10%), EtOH, 99% viii) TsCl, Pyridine, 0 ºC 62%; ix) (a) LiAlH4, THF, rt; (b) 

KOH/EtOH-H2O (1:1), reflux, 41%; x) (a) H2, Pd/C (10%), EtOH; (b) LiAlH4, THF, rt; xi (a) 

MsCl, Pyridine, 0 ºC; (b) LiAlH4, THF, rt; (c) KOH/EtOH-H2O (1:1), reflux. 
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4.1.3 Synthesis of A3: 4,4ʹ-(2,3-dimethylbutane-1,4-diyl)bis(2-methoxyphenol) 

  

Figure 4-3: Molecular Structure of NDGA analogue 3 (A3). 

A second Stobbe condensation reaction on 34 using benzylated vanillin 32 in EtONa/EtOH 

gave the basic lignan skeleton 44 (Scheme 4-3). Compound 44 was esterified to 45 and reduced 

under similar conditions as 35 to give the diol 46. Flash chromatography over silica on the 

hydrogenation product of 46 led to meso-secoisolariciresinol 47a and racemic (±)-

secoisolariciresinol 47b. Treatment of 47a or 47b with toluenesulfonyl chloride in pyridine at 0 ºC, 

followed by LiAlH4 reduction and refluxing the resulting crude product in KOH (3%) in ethanol-

water (1:1) mixture afforded A3 as the meso-compound A3a or rac (±)-compound A3b.  
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Scheme 4-3: Synthetic pathway to NDGA analogues 3 (A3). 

Reagents and Conditions: i) EtONa/EtOH, reflux, 72%; ii) MeI, K2CO3/DMSO, rt, 87%; iii) 

LiAlH4/AlC3, THF, rt., 74%, iv) H2, Pd-C, EtOH, 47% 23a, 48% 23b; v) (a) TsCl, Pyridine, 0 ºC;  

(b) LiAlH4, THF, rt.; (c) KOH/EtOH-H2O (1:1), reflux, 74% 24a, 64% 24b. 

 

4.1.4 Synthesis of A4: 4[4-(3,4-dimethoxyphenyl)-2,3-dimethylbutyl]benzene-1,2-diol  

     

Figure 4-4: Molecular Structure of NDGA analogue 4 (A4). 

Benzylation of  3,4-dihydroxybenzyladehyde 48 gave 49 as white crystals in 84% yield 

(Scheme 4-4). Treatment of 49 with a succinate ester 19 via Stobbe condensation followed by 

esterification gave 50 and 51 respectively. A second Stobbe condensation reaction on 51 using 24 

in EtONa/EtOH afforded the half-ester 52 which on esterification gave 53, the basic lignan skeleton 

for A4. After hydrogenation of 53 under H2 atmosphere, the de-protected OH groups of the 
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resulting compound 54 were protected again via benzylation to give 55. Compound 55 was reduced 

with LiAlH4 in THF. Treatment of the resulting diol 56 with tosyl chloride in pyridine at 0 ºC and a 

flash chromatography over silica gel resulted in 57a and 57b. Reduction of 57a or 57b with LiAlH4 

in THF gave 58a or 58b which were separately hydrogenated under H2 atmosphere to afford A4 as 

two enantiomeric pairs A4a or A4b.  

 

Scheme 4-4: Synthetic pathway to NDGA analogue 4 (A4). 

Reagents and Conditions: i) BnBr, K2CO3/DMF, rt., 84%; ii) EtONa/EtOH, reflux; 98%, iii) MeI, 

K2CO3/DMSO, r.t., 98%; iv) EtONa/EtOH, reflux; > 90 % v) MeI, K2CO3/DMSO, rt., 98%;  vi) H2, 

Pd-C, vacuum; > 99%; vii) BnBr, K2CO3/DMF, rt., 63 %; viii) LiAlH4/THF, rt; ix) TsCl, pyridine, 

0 °C; x) LiAlH4/THF, rt; 67 %;  xi) H2, Pd-C, vacuum; > 98%. 
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4.1.5 Attempted synthesis of A5: 4,4'-(2,2,3,3-tetramethylbutane-1,4-diyl)dibenzene-1,2-diol 

 

Figure 4-5: Molecular structure of NDGA analogue 5 (A5). 

Treatment of compound 26 with 24 in a refluxing EtONa/EtOH followed by esterification 

afforded the basic lignan structure 59 which on hydrogenation gave 60 (Scheme 4-6). We have 

previously observed that base-catalyzed esterification of a dicarboxylic acid 61 with iodomethane 

(Scheme 4-5) resulted in additional methylation at the α-position to produce 62 as the major 

product. Although 62 was a side-product not useful for the synthesis of the intended target 

compound A2, we thought this reaction could be exploited to make A5. However, treatment of 60 

with powdered KOH in anhydrous DMSO in the presence of iodomethane surprisingly failed to 

form the expected di-methylated product 63. After a number of unsuccessful attempts, compound 

60 was reduced with LiAlH4 to 64 followed by tosylation and a further reduction with LiAlH4 to 

obtain tetra-O-methyl NDGA (M4N 14)  

 

 

Scheme 4-5: Base-catalysed esterification of a di-carboxylic acid using KOH in DMSO. 
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Scheme 4-6: Attempted synthesis of NDGA analogue 5 (A5) led to tetra-O-methyl NDGA 14. 

Reagents and Conditions: i) (a) EtONa/EtOH, reflux, 98%; (b), MeI, K2CO3/DMSO, 92%; ii) H2, 

Pd/C (10 %), EtOH, 99%;  iii) MeI, KOH/DMSO, rt.;  iv) LiAlH4, THF, rt., v) (a) TsCl, Pyridine, 0 

ºC; (b) LiAlH4, THF, rt. 

 

4.1.6 Synthesis of A6: 4,4'-butane-1,4-diyldibenzene-1,2-diol 

 

Figure 4-6: Molecular structure of NDGA analogue 6 (A6). 

Compound A6 was prepared according to previously reported literature method131 with 

minor modification as shown in Scheme 4-7.  Reduction  of carboxylic acid 65 with LiAlH4 gave 

the alcohol 66 which was oxidized with pyridinium chlorochromate (PCC) to the intermediate 

aldehyde 67. Treatment of 67 with the Grignard reagent 68 which was generated in-situ gave 70 

which upon hydrogenolysis resulted in compound 71. Compound 71 was treated with BBr3 in DCM 

to afford the target compound A6. 
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Scheme 4-7: Synthetic pathway to NDGA analogue 6 (A6). 

Reagents and conditions: i) LiAlH4, THF, rt. 86%; ii) PCC, DCM, rt 84%; iii) THF, -78 ºC, then rt 

71%; iv) H2, Pd-C, EtOH 91%;  v) BBr3, DCM, -78 ºC, then rt > 99%.  

 

4.1.7 Synthesis of A7: 3,3'-(2,3-dimethylbutane-1,4-diyl)diphenol 

 

Figure 4-7: Molecular structure of NDGA analogue 7 (A7). 

Benzylation of  3-hydroxybenzyladehyde 72 followed by treatment with succinate ester 19 

in refluxing EtONa/EtOH and esterification of the resulting half-ester gave 73 (Scheme 4-8). 

Compound 73 was subsequently treated with benzylated 72 in refluxing EtONa/EtOH and esterified 

to generate the basic lignan skeleton 74. Following hydrogenation of 74 and reduction of the 
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resulting mixture with LiAlH4, compound 75 was isolated. Tosylation of 75 with TsCl in pyridine 

followed by reduction with LiAlH4 gave 76 which upon refluxing in KOH (3%) in ethanol-water 

(1:1) mixture afforded A7 as yellowish brown oil. 

 

Scheme 4-8: Synthetic pathway to NDGA analogue 7 (A7). 

Reagents and conditions: i) BnBr, K2CO3/DMF, rt; ii) diethyl succinate, EtONa/EtOH, reflux; iii or 

v) MeI, K2CO3/DMSO, rt; iv) 3-(benzyloxy)benzaldehyde, EtONa/EtOH, reflux; vi) H2, Pd-C, 

EtOH, vii) LiAlH4, THF, rt., viii) TsCl, Pyridine, 0 ºC;  ix) LiAlH4, THF, rt.; (x) KOH/EtOH-H2O 

(1:1), reflux.  

 

4.1.8 Synthesis of A8: 3,3'-(2,3-dimethylbutane-1,4-diyl)bis(6-methoxyphenol)  

 

Figure 4-8: Molecular structure of NDGA analogue 8 (A8). 

Benzylation of 4-methoxy-3-hydroxybenzaldehyde 77 followed by Stobbe condensation 

reaction with succinate ester 19 and esterification of the resulting half-ester gave the di-ester 78 
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(Scheme 4-9).  Compound 78 was treated with benzylated 77 and the resulting acid esterified to 

give 79. Reduction of 79 with a mixture of LiAlH4 and AlCl3 in THF gave the unsaturated diol 80 

which upon hydrogenation and purification via flash column chromatography resulted in easily 

separable 81a and 81b. Compound 81a or 81b was tosylated to 82a or 82b and reduced with 

LiAlH4 to 83a or 83b. Refluxing of 83a or 83b in KOH (3%) in ethanol-water (1:1) mixture 

afforded the target compound as A8a or A8b. 

 

Scheme 4-9: Synthetic pathway to NDGA analogue 8 (A8). 

Reagents and conditions: i) BnBr, K2CO3/DMF, rt.; ii) diethyl succinate, EtONa/EtOH, reflux; iii 

or v) MeI, K2CO3/DMSO, rt.; iv) 3-(benzyloxy)-4-methoxybenzaldehyde, EtONa/EtOH, reflux; vi) 

LiAlH4/AlCl3, THF, rt.; vii) H2, Pd-C, EtOH; viii) TsCl, Pyridine, 0 ºC;  ix) LiAlH4, THF, rt.; (x) 

KOH/EtOH-H2O (1:1), reflux. 
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4.2 Autoxidation Cyclization Potential of NDGA Analogues 

4.2.1 Autoxidation Studies 

Two possible mechanisms were proposed (Schemes 2-1 and 2-3) for NDGA autoxidation 

based on literature reports.35, 59, 66 We hypothesized that NDGA autoxidation is a radical-mediated 

process in which the slightly lower pKa of the meta hydroxyl group resulted in preferential 

oxidation and cyclization of the carbon-centered resonance form. The NDGA analogues prepared 

for this study were examined for their potential to undergo autoxidative cyclization under 

previously described conditions.35 Compound A6 cyclized into its corresponding 

dibenzocyclooctadiene derivative as shown below in Scheme 4-10. 

 
Scheme 4-10: Intramolecular cyclization of A6 to its dibenzocyclooctadiene derivative 84. 

 

A decrease in retention time and the 3.5 nm shift to a higher absorbance observed by HPLC 

(Figure 4-9) is consistent with previous35 and current results obtained for NDGA under the same 

condition. The λmax for NDGA and A6 changed from 282.8 to 286.3 and 281.6 to 285.1 respectively 

(Figure 4-10). ESI-MS in negative ion mode (Figure 4-11) was consistent with predicted m/z 299.1 

and 271.1 Da for NDGA and A6 dibenzocyclooctadiene derivatives respectively. Both were two 

mass units less than their respective m/z 301.1 and 273.2 prior to oxidative cyclization. 

Fragmentation patterns following collision induced dissociation (CID) in Tandem MS/MS 
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experiments were consistent for dibenzocyclooctadiene derivatives for NDGA and A6 as shown in 

Figure 4-12.  

1H and 13C NMR data as summarized below confirmed intramolecular cyclization of A6 

under oxidative conditions to dibenzocyclooctadiene derivative 84. 1H NMR (500 MHz, CD3OD): 

δ (ppm) 1.37 (2H, m), 1.94 (2H, m), 2.00 (2H, m), 2.47 (2H, m'), 6.54 (2H, s,  H2, 2'), 6.60 (2H, s,  

H5, 5'). 13C NMR (500 MHz, CD3OD): δ (ppm) 31.3 (C8, 8'), 33.4 (C7, 7'), 117.0 (C2, 5, 2', 5'), 

133.8 (C1, 1'), 135.6 (C6, 6'), 143.9 (C4, 4'), 145.7 (C3, 3'). The loss of C6, 6' proton, coupling of 

C7, 7' and well as C8, 8' protons are all consistent with cyclization. 

       

      

Figure 4-9: HPLC Chromatogram for incubation in phosphate-citrate buffer pH 7.4 at 37 °C for 90 

min for NDGA (panel A) before and (panel B) after incubation; A6 (panel C) before and (panel D) 

after incubation. 
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Figure 4-10: UV absorption of dibenzocyclooctadiene derivatives for NDGA (panel A) and A6 

(panel B). 
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Figure 4-11: ER-ESI-MS scanning in negative ionization mode for dibenzocyclooctadiene 

derivative of NDGA (panel A) and A6 (panel B).  

The m/z 299.1 and 271.1 Da observed were consistent with calculated monoisotopic masses 

of dibenzocyclooctadiene derivatives for NDGA (300.13 g) and A6 (272.10 g) respectively. The 

observed masses were two mass units less than their respective m/z 301.1 and 273.2 prior to 

oxidative cyclization. 
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Figure 4-12: ESI-MS/MS of dibenzocyclooctadiene derivative for NDGA (panel A) and A6 (panel 

B). 

A consistent fragmentation pattern was observed generating product ions which were 

different than those observed for standard NDGA (Figure 3-4) and A6 (Figure 3-24).  
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When the other catechol (A1 or A4) and phenol (A2 or A3) analogues were subjected to the 

same oxidative conditions as describe in section 3.5.2, no evidence of intramolecular cyclization 

was observed. Unlike NDGA or A6, no changes in retention time and UV absorption characteristics 

were seen by HPLC (Figure 4-13) although concentration of the starting materials appeared to 

decrease over time. This prompted us to determine the chemical stability of these compounds and 

also establish their rates of disappearance in the phosphate buffer (pH 7.4).  

 

 

             

Figure 4-13: HPLC chromatograph for A1 before (panel A) and after (panel B) reaction; A4 before 

(panel C) and after (panel D) reaction; A2 before (panel E) and after (panel F) reaction. Reactions 

were performed by incubating substrates in phosphate-citrate buffer (7.4) at 37ºC for 90 min.  

A
U

0.00

0.10

0.20

Minutes

20.00 22.00 24.00 26.00 28.00 30.00

2
5
.1

1
9 A
U

0.00

0.05

0.10

Minutes

20.00 25.00 30.00

2
5
.1

3
1

A
U

0.00

0.20

0.40

Minutes

20.00 22.00 24.00 26.00 28.00 30.00

2
4
.5

1
6

A
U

0.00

0.20

Minutes

20.00 22.00 24.00 26.00 28.00 30.00

2
4
.5

2
0

A
U

0.00

0.50

Minutes

20.00 22.00 24.00 26.00 28.00 30.00

2
6
.1

2
5

A
U

0.00

0.02

0.04

0.06

Minutes

20.00 25.00 30.00

2
6
.0

7
7

(A) (B) 

(C) (D) 

(E) (F) 



 
 

128 
 

We predicted that A4 will cyclize at a comparable rate to NDGA if the intramolecular 

cyclization follows electrophilic substitution mechanism and that absence of cyclization could 

imply that the radical-mediated pathway more accurately describes NDGA autoxidation. Based on 

our observations with A1 and A4, an electrophilic substitution mechanism (Scheme 2-9, pathway 

B) was ruled out. We synthesized and evaluated A7 to advance more support for the radical-

mediated pathway. Contrary to our expectations, A7 did not cyclize although it meets the minimum 

structural requirements for di-radical ion formation.77, 78 We thought stability of a possible radical 

or di-radical intermediate might be important for cyclization60 although this does not appear to be 

the case. We predicted that methoxy substituents of compound A8 should stabilize the di-radical 

intermediate via a positive inductive effect to allow for cyclization. Surprisingly, we found no 

evidence of intramolecular cyclization for A8. We could detect the starting material quantitatively 

even after 48 h incubation at 37 °C in a phosphate buffer (pH 7.4) by HPLC (Figure 4-14). A 

further analysis of the reaction mixture by MS techniques gave no evidence of cyclization for A8. 

The predicted mass at m/z 327.16 Da in negative ionization mode was not detected.  

 

Figure 4-14: HPLC Chromatogram for A8 incubation in phosphate-citrate buffer (pH 7.4) at 37°C 

for 90 min: Before (panel A) and after (panel B) incubation. The UV absorption of the 21.5 min 

peak was inconsistent with dibenzocyclooctadiene product.  
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4.2.2 Chemical Stability and Reaction Kinetics  

Autoxidation experiments revealed a decrease in concentration of the analogues over time 

although no product peaks were seen by HPLC. This prompted us to determine the chemical 

stability of these compounds and also establish their rates of disappearance in the phosphate-citric 

acid buffer (pH 7.4) at 37ºC.  

     

 

 

Figure 4-15 : Chemical degradation profiles (panel A) and first-order degradation regression lines 

(panel B) for NDGA (●) and A6 (▲) in 0.5 M phosphate-citric acid buffer (pH 7.4) at 37ºC. 

Changes in concentration of substrates were determined from the peak area ratios and plotted as a 

function of time. 
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Figure 4-16: The disappearance of substrates (●) and appearance of corresponding 

dibenzocyclooctadiene derivatives (▲) for NDGA (panel A) and A6 (panel B) in 0.5 M phosphate-

citric acid buffer (pH 7.4) at 37ºC. The decrease and increase in concentrations of substrates and 

dibenzocyclooctadiene derivatives respectively were determined from the peak area ratios and 

plotted as a function of time.  
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Figure 4-17: Chemical degradation profiles (panel A) and first-order regression lines (panel B) for 

the catechol analogues A1 (♦), A4 (●) and A6 (▲) in 0.5 M phosphate-citric acid buffer (pH 7.4) at 

37ºC. Changes in concentration of substrates were determined from peak area ratios and plotted as 

a function of time. 
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Figure 4-18: Chemical degradation profiles (panel A) and first-order regression lines (panel B) for 

the phenol analogues A2 (♦), A3 (●) and A8 (▲) in 0.5 M phosphate-citric acid buffer (pH 7.4) at 

37ºC. Changes in concentration of substrates were determined from peak area ratios and plotted as 

a function  of time. 
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Table 4-1: Rate of autoxidative degradation of NDGA and its analogues in 0.5 M phosphate-citric 

acid buffer (pH 7.4) at 37ºC. 

Compound Rate constant k (s-1) Half-life t1/2 (h) Coefficient of determination R2 

NDGA 4.8778 × 10-5 3.94 0.9936 

A6 13.1111 × 10-5 1.47 0.9598 

A1 4.5611 × 10-5 4.22 0.9116 

A2 3.5027 × 10-5 5.49 0.9473 

A3 2.8722 × 10-5 6.70 0.9512 

A4 4.1583 × 10-5 4.62 0.9413 

A8 4.1138 × 10-5 4.68 0.888 

A plot of lnC as a function of time t gave the rate constant k as the gradient. Half-life t1/2 was determined from t1/2 = 

0.693/k(h). 

 

4.2.3 Dibenzocyclooctadiene Formation via o-Q intermediate 

We monitored the rate of formation of dibenzocyclooctadiene derivatives for NDGA and A6 

in the presence (i.e. added to the incubation mixture at time t = 0 min) and absence of GSH as well 

as addition of GSH at different time intervals. The results show a significant decrease in the 

formation of the dibenzocyclooctadiene derivatives for NDGA and A6 in the presence of GSH 

(Figure 4-19). The detection of GSH conjugates and significant reduction in the amount of 

dibenzocyclooctadiene derivatives when GSH was added to the incubation mixture suggested that 

an o-quinone intermediate is possibly involved in the intramolecular cyclization process. It is 

possible that competition exists between intramolecular cyclization and an intermolecular reaction 

with GSH and that after 3h for NDGA or 2 h for A6, the intramolecular cyclization pathway is 

favoured leading to a rise in the amount of dibenzocyclooctadiene derivatives as observed by 
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HPLC. Given the apparent suppression of intramolecular cyclization in the presence of GSH, the 

effect of GSH on the formation of dibenzocyclooctadiene derivatives was further investigated with 

the aim of establishing whether the observed inhibition is concentration dependent. The substrate-

GSH ratio in the incubation mixture was increased from a 1:2 ratio to a 20 fold excess of GSH 

(1:20). Incubations were done with and without GSH at 37ºC for 6 h and the percent compositions 

estimated by comparison of peak area ratios with time zero samples. The results (Figure 4-20, Table 

4-2) indicate that excess GSH significantly inhibits intramolecular conversion of A6 or NDGA to 

dibenzocyclooctadiene derivatives. Over 91% conversion was observed in the absence of GSH 

compared to barely 5% in the presence of 20 fold excess GSH for A6. NDGA formed no 

dibenzocyclooctadiene derivative in the presence of a 20 fold excess GSH compared to 33% 

conversion in the absence of GSH.  
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Figure 4-19: Formation of dibenzocyclooctadiene derivatives for NDGA (panel A) and A6 (panel 

B) over time in the absence of GSH (♦), GSH added at time points (●) and GSH added at time t = 0 

h (▲). The graphs show that the presence of GSH in the incubation mixture significantly affected 

the amount of dibenzocyclooctadiene formed over time.  
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Figure 4-20: HPLC Chromatogram for A6 (panel A) and NDGA (panel B) incubation in 

phosphate-citrate buffer (pH 7.4) at 37°C for 6 hr in the presence (i) and absence (ii) of glutathione. 

The 17.2 or 19.1 min peaks represent A6 or NDGA while the corresponding 

dibenzocyclooctadienes derivatives gave 15.6 or 17.9 min peaks respectively. Peak at 13.4 min 

represent internal standard.  
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Table 4-2: Relative composition of A6 or NDGA and their dibenzocyclooctadiene derivatives 

following 6 h incubation in phosphate-citrate buffer (pH 7.4) at 37°C in the absence or presence of 

20 fold excess glutathione. Concentrations were calculated from peak area ratios.  

Compound Incubation for 6h at 37 °C in the 

presence of GSH, (%) 

Incubation for 6h at 37 °C in the 

absence of GSH, (%) 

SM  CycloL  Adduct SM CycloL Adduct 

A6 95.46 4.54 - 8.52 91.47 - 

NDGA 87.08 - 12.91 66.90 33.09 - 

      SM = starting material; CycloL = dibenzocyclooctadiene derivative 

 

We determined that the dibenzocyclooctadiene derivatives 2 and 84 are unstable in the 

phosphate buffer over time. Compound 84 degraded at a rate of 1.75×10-5 s-1 in comparison with 

0.470×10-5 s-1 for compound 2. 

 

Table 4-3: The rate of formationa and degradationb of dibenzocyclooctadiene derivatives 2 and 84 

in a phosphate buffer (pH 7.4) at 37°C. 

Compound ak × 10-5 s-1 aRel rate bk× 10-5 s-1 bRel rate 

2 2.78 1 0.47 1 

84 8.70 3.1 1.75 3.7 
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4.3 Assessment of Reactive Metabolites Formation of NDGA analogues 

4.3.1 Synthesis of Pilot Compounds PC1 and PC2 

Two pilot compounds PC1 and PC2 were prepared from eugenol according to Scheme 4-11 

below. PC1 and PC2 were used to mimic the catechol and phenol NDGA analogues respectively 

under oxidative conditions. 

 

Scheme 4-11: Synthesis of pilot compounds from eugenol. 

 

4.3.2 Enzymatic Oxidation Studies 

Enzymatic oxidation experiments were performed using mushroom tyrosinase and the 

resulting quinoid species trapped as GSH conjugates. Tyrosinase-catalyzed oxidization of catechol 

is a common method for producing an o-Q moiety.77, 78, 87 Pilot studies were done using PC1, PC2 

and standard NDGA. The experiments were repeated using A1, A2, A3, A4 or A6. All glutathione 

conjugates were analyzed by HPLC and further by MS techniques. 

 

4.3.2.1  Neutral Loss (NL) ESI-MS Analysis 

Glutathione conjugates were detected by NL scanning for protonated ions that fragment to 

give m/z 129 Da corresponding to the pyroglutamic acid moiety. This MS technique has been 

extensively utilized in the literature for detecting GSH adducts although it lacks general 

applicability.116 As exemplified by PC1, NDGA, A1 and A4 in Figure 4-21, a NL 129 scanning in 
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positive ion mode gave the masses m/z 458.2, 608.3, 576.2 and 636.3 Da consistent with mono-

GSH conjugates of PC1, NDGA, A1 and A4 respectively. In addition, GSH is capable of losing m/z 

129 Da as indicated by the presence of m/z 308.1 Da for excess GSH.   

 

          

 

Figure 4-21: Positive ion ESI-MS in NL scan mode (129 Da) for detection of GSH conjugates for 

PC1 (panel A), NDGA (panel B), A1 (panel C) and A4 (panel D). The masses m/z 458.2, 608.3, 

576.2 and 636.3 Da detected by NL 129 scanning in positive ion mode are consistent with mono-

GSH conjugates of PC1, NDGA, A1 and A4 respectively. The ion at m/z 308 Da is due to a NL 129 

from excess GSH present in all the samples. 
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4.3.2.2 Enhanced Resolution ESI-MS Analysis 

To further confirm the presence of GSH conjugates, parent ions (MH+)  were determined by ESI-

MS in enhanced resolution (ER) positive ionization scanning mode. This gave isotopic peaks 

separated by one mass unit indicating singly charged adducts (Figure 4-22). Doubly charged 

adducts will be expected to have one-half mass unit difference between isotopic peaks. The ratio of 

substrate to GSH (1:5) was optimized to favour addition of one GSH molecule33 although trace 

amounts of di-conjugate were observed in the case of NDGA and A4 which is consistent with 

results of  Billinsky et al.33 

                                                                             

       

Figure 4-22: Positive ion ESI-MS in ER scan mode for detection of GSH conjugates for PC1 

(panel A), NDGA (panel B), A1 (panel C) and A4 (panel D). The isotopic peaks obtained following 

ER scanning for the parent ions [M+H+]+ differed by one mass unit for all observed masses. This is 
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consistent with addition of one GSH molecules as di-conjugates will be expected to have one-half 

mass unit difference. 

4.3.2.3 Tandem ESI-MS-MS Analysis 

In order to obtain further information for structural elucidation, tandem ESI-MS/MS 

analyses were performed on all suspected GSH conjugates. This was preceded by MS/MS analysis 

of standard GSH. The product ions generated by MS/MS analyses (Figure 4-23, Table 4-4) were 

consistent with fragmentation patterns reported for glutathione adducts116, 126, 132 and mirrored those 

obtained for standard GSH (Figure 4-23A). The fragmentation pathways were consistent for all 

GSH conjugates examined including standard NDGA-GSH conjugate (Figure 4-23B). The mass 

loss patterns and the resulting product ions suggest that fragmentation mainly occurred in the GSH 

moiety consistent with previous reports.116, 132  

The common neutral losses of glycine (75 Da), pyroglutamic acid (129 Da) and 146 Da 

mass units observed for standard GSH were also seen for GSH conjugates of PC1, NDGA and the 

cateccol analogues (A1, A4, A6). In addition, other typical losses from the parent ion MH+  

including 232, 249 and 275 Da mass units were consistently observed for all GSH conjugates 

analyzed. 
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Figure 4-23: Tandem ESI-MS/MS in positive ion mode for standard GSH (Panel A); NDGA-GSH 

(Panel B), A1-GSH (Panel C) and A4-GSH (Panel D) conjugates. 
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Table 4-4: Summary of Tandem MS/MS data for GSH conjugates following mushroom tyrosinase-

catalysed oxidation. 

Compound  

    (M) 

MH+ and (Major fragments) of GSH 

adductb 

    Adduct 

composition 

Isotopic peaksc 

PC1 (152) a458 (383, 329, 312, 237, 266, 183, 

130) 

 P + GSH – 2H   458.1, 459.1, 460.1 

PC2 (166) - - - 

NDGA (302) a608 (533, 479, 462, 387, 376, 359, 

333, 130) 

 P + GSH – 2H   608.1, 609.1, 610.1 

A1 (270) a576 (501, 447, 430, 355, 344, 327, 

301, 130) 

P + GSH – 2H   576.1, 577.1, 578.1 

A2 (284) -     -  - 

A3 (330) -     -  - 

A4 (330) a636 (561, 507, 490, 415, 404, 387, 

361, 130) 

 P + GSH – 2H  636.2, 637.2, 638.2 

A6 (274) a580 (505, 451, 434, 359, 348, 331, 

305, 130) 

 P + GSH – 2H  580.1, 581.1, 582.1 

aThe GSH adducts detected were the peaks detected by NL scan for m/z 129 Da. bProduct ions listed were greater than 

5% relative intensity. The boldface type denotes the product ions from the loss of 129 Da mass units from the parent 

ion. cIsotopic peaks were obtained by ER in positive ion scanning mode. 

 

In summary, the pilot compound PC1 easily oxidized in the presence of mushroom tyrosine 

to reactive quinone. Enhanced resolution MS gave m/z 458.1 Da consistent with addition of one 

glutathione molecule to PC1 (Table 4-4). NDGA and its catechol analogues (A1, A4 and A6) were 
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similarly oxidized to their corresponding quinoid species in the presence of mushroom tyrosinase 

and were stably trapped as glutathione conjugates for analysis (Table 4-4). As expected, we found 

no evidence of GSH conjugates for PC2 and the phenol analogues of NDGA (A2 and A3) in the 

mushroom tyrosinase-catalyzed oxidations indicating that the phenols do not form reactive 

intermediates under these conditions.   

 

4.3.3 Isomerization of NDGA o-Q to p-QM 

In theory, the structure of NDGA suggests possible direct oxidation to either o-Q or p-QM 

(Scheme 4-12). Surprisingly, NDGA does not appear to form the p-QM33 even though its o-Q 

meets the structural requirements for isomerization.77,78 The presence of benzyl protons available 

for abstraction suggests that the NDGA o-Q 5b can tautomerize to a p-QM 5c.79 We investigated a 

possible isomerization of o-Q to p-QM using A1 and A4. This study was expected to provide 

insight into the contribution of NDGA p-QM to its toxicity. Based on our observation that A1 and 

A4 form o-Qs but do not cyclize to dibenzocyclooctadiene derivatives in aqueous phosphate buffer 

(pH 7.4), we selected both compounds for this study. This was based in part on the assumption that 

competition between isomerization and intramolecular cyclization should not occur for A1 or A4 as 

may be the case for NDGA.  We therefore predicted that A1 or A4 will form p-QM.  
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Scheme 4-12: Proposed oxidation of NDGA 1 to p-QM 5c either directly or via isomerization of its 

o-Q 5b. 

A1 or A4 was oxidized with mushroom tyrosinase in the presence and absence of GSH for 

60 min. An aliquot from the experiment conducted in the absence of GSH was stirred in phosphate 

buffer after the 60 min incubation to allow for isomerization. GSH was added at different time 

points and samples were analyzed by HPLC and LC-MS. As shown in Figure 4-24, suspected GSH 

conjugate peaks were observed at 21.7 and 20.6 min respectively for A1 and A4 from the 

experiment conducted in the presence of GSH. However, HPLC analyses of time point samples 

obtained from 60 min incubation without GSH followed by stirring in a phosphate buffer 

experiment gave no evidence of conjugates formation.  

  

Figure 4-24: HPLC chromatograms for A1 (panel A) and A4 (panel B) following mushroom 

tyrosinase-catalyzed incubation for 60 min in the presence of GSH.  
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Following LC-MS analyses, the peaks observed at 21.7 and 20.6 min by HPLC from A1 and 

A4 incubations in the presence of GSH gave m/z 576  and 636 consistent with the [M+H]+ for A1-

GSH and A4-GSH conjugates respectively.  Product ions generated from the extracted ion 

chromatogram (XIC) (Figure 4-25) were consistent with fragmentation patterns oberved for A1 or 

A4 conjugates derived from their respective o-Qs via mushroom-tyrosinase catalyzed oxidations. 

No GSH conjugates were detected in the time point experiments where the initial incubation was 

done in the absence of GSH, suggesting that quinones were not stably present after 60 min 

incubations. The results of this study suggest that isomerization of o-Q to p-QM did not occur for 

A1 or A4. 

  



 
 

147 
 

 

 

  

      

     

Figure 4-25: LC-MS data for A1 and A4 incubation for 60 min with mushroom tyrosinase in the presence of 

GSH: (A) XIC chromatogram and (B) product ion for A1-GSH conjugate; (C) XIC chromatogram and (D) 

product ion for A4-GSH conjugate.   
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4.4 Chemical Oxidation Studies 

Chemical oxidations were performed using silver oxide and the resultant electrophilic 

entities were trapped as GSH adducts. This is a classical approach utilized to generate p-quinone 

methides from catechols and/or phenols.78, 80 Previous attempts to oxidize NDGA directly to a p-

quinone methide with silver oxide was unsuccessful but resulted in a complex mixture of products 

none of which was glutathione reactive.35 The reported results were based only on HPLC-UV 

analysis and are possibly limited by instrument sensitivity. To further probe this observation, 

eugenol, PC1 and PC2 were used to establish and validate the chemical oxidation protocol. 

Eugenol and PC2 have previously been oxidized to p-quinone methide with Ag2O.78, 133 The 

experiments were repeated with NDGA and its prepared analogues. The conditions used for HPLC 

and MS analysis were the same as those used for enzyme oxidation studies. However, additional 

MS experiments using PI scan for m/z 272 Da in the negative ESI mode and NL scan for m/z 307 

Da in positive ion mode were done. Table 4-5 shows the sensitivities of various MS scan modes 

used in detecting GSH adducts following Ag2O oxidation experiment 

 

4.4.1 Precursor Ion (PI) ESI-MS Analysis 

Following the non-detection of GSH conjugates for eugenol, PC2 and the phenol NDGA 

analogues by NL 129 Da scanning experiment even though eugenol and PC2 are known to oxidize 

to p-QM in the presence of Ag2O,78, 133 the potential of PI 272 Da scanning in negative ionization 

mode as an alternative detection method was explored.  The PI scan for 272 Da appears to be more 

sensitive and has broader applicability in detecting GSH conjugates of different classes for 

compounds.116 The results of this study revealed that, PI 272 Da scan was successful in detecting 

GSH adducts of PC1, A1 and NDGA at m/z 456.2, 574.1 and 606.3 Da respectively (Table 4-5). In 
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addition, the observed m/z 306.1 Da was consistent with excess GSH. Surprisingly, we saw no 

evidence of GSH conjugates for eugenol, PC2, A2 and A3 by PI 272 Da scanning in negative ion 

mode.  

 

4.4.2 Neutral Loss (NL) ESI-MS Analysis 

In addition to NL 129 Da scanning in positive ionization mode, NL 307 Da corresponding 

to a loss of GSH moiety has been employed in detection of GSH conjugates, albeit to a lower 

extent.116 To determine the potential utility of NL 307 Da for detecting GSH conjugates, the Ag2O-

catalysed oxidation samples were analyzed. Interestingly, adducts generated from PC1, NDGA and 

its catechol analogues could not be detected by NL 307 scanning in positive ion mode. However, 

GSH adducts of eugenol, PC2 and A2 could easily be detected by NL 307 Da scan (Table 4-5). A 

m/z 470.2, 472.2 and 590.3 Da detected by NL 307 Da is consistent with GSH adducts of eugenol, 

PC2 and A2 respectively.  

Table 4-5: Detection of GSH adducts using different ESI-MS scanning techniques. 

Compound-GSH 

conjugate (M, Da) 

MS Detection Technique 

ESI-MS (+) NL 129 ESI-MS (+) NL 307 ESI-MS (-) PI 272 

Eugenol-GSH (469) ND 470.1 ND 

PC1-GSH (457) 458.1 ND 456.2 

PC2-GSH (471) ND 472.2 ND 

NDGA-GSH (607) 608.3 ND 606.3 

A1-GSH (575) 576.1 ND 574.2 

A2-GSH (598) ND 590.2 ND 

A3-GSH (635) ND ND ND 

A4-GSH (635) 636.2 ND 634.2 

     ND = not detected 
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4.4.3 Tandem ESI-MS-MS Analysis 

Tandem MS/MS experiments were performed on all suspected GSH conjugates to obtain 

further information for structure elucidation. Examples of MS/MS spectral data and summary of 

product ions following Ag2O catalyzed oxidation in the presence of GSH are shown in Figure 4-26 

and Table 4-6 respectively.  

  

  

Figure 4-26: Tandem ESI-MS/MS in positive ion mode for GSH conjugates of A1 (Panel A), A2 

(Panel B), NDGA (Panel C) and A4 (Panel D) following silver oxide oxidation. 
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Table 4-6: Summary of Tandem MS/MS data for GSH conjugates following Silver oxide oxidation 

experiment. 

Compound  

    (M) 

MH+ and (Major fragments) of GSH 

adductc 

    Adduct 

composition 

Isotopic peaksf 

Eugenol (164) a470 (308, 233, 179, 163d)  P + GSH – 2H   470.1, 471.1, 472.1 

PC1 (152) b458 (329e, 312, 226, 209, 183, 145, 

130) 

 P + GSH – 2H   458.1, 459.1, 460.1 

PC2 (166) a472 (308, 233, 179, 165d) -   472.2, 473.2, 474.2 

NDGA (302) b608 (479e, 462, 376, 359, 333, 145, 

130) 

 P + GSH – 2H   608.1, 609.1, 610.1 

A1 (270) b576 (501, 447e, 430, 355, 344, 327, 

301, 130) 

P + GSH – 2H   576.1, 577.1, 578.1 

A2 (284) a590 (308, 283d, 159, 179, 137)     -  - 

A3 (330) -     -  - 

A4 (330) b636 (561, 507e, 490, 415, 404, 387, 

343, 327, 145) 

 P + GSH – 2H  636.2, 637.2, 638.2 

aThe GSH adducts were detected by NL scan for m/z 307 Da in positive ion mode only. bThe GSH adducts were 

detected by either NL scan for m/z 129 Da in positive ion mode or PI scan for m/z 272 Da in negative ion mode. cThe 

product ions were obtained in positive ion mode and the major ions listed were greater than 5% relative intensity. dThe 

product ions from the loss of 307 mass unit from the parent ions. eThe product ions from the loss of 129 Da mass unit 

from the parent ion. fIsotopic peaks were obtained by ER in positive ion scanning mode. 
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4.5 Cytochrome P450 Oxidation Studies 

In order to assess the relevance of the observed reactive metabolites in biological systems, 

in-vitro microsomal incubations using rat liver microsomes were performed. The results were 

compared with those obtained from chemical or enzyme-catalyzed oxidation studies. HPLC 

analyses showed significant loss of substrates although product peaks were barely seen. The 

samples were further analyzed by LC-ESI-MS using NL 129 or 307 Da scan in positive ion mode 

or PI 272 in negative ion mode as detection techniques. Suspected GSH adducts were subjected to 

tandem MS/MS analysis to obtain further information for structure elucidation in a second LC-ESI-

MS run.  

Glutathione conjugates of NDGA and its catechol analogues were detected by NL 129 Da 

scan in the LC-ESI-MS experiments. GSH-trapped conjugates of NDGA, A1, A4 and A6 gave 

parent ions (MH+)  at m/z 608.1, 576.1, 636.2 and 580.1 respectively. Tandem MS/MS analyses 

gave product ions (Table 4-7 ) generated from common neutral losses of glycine (75 Da) and 

pyroglutamic acid (129 Da) in addition to other typical losses including 146, 232, 249 and 275 Da 

mass units from the parent ion (MH+) for all GSH-trapped conjugates. Also, cytochrome P450 

mediated oxidation of NDGA-derived dibenzocyclooctadiene lignan 2 gave a parent ion MH+ at 

606.2 Da and product ions consistent with GSH conjugates. Like the parent ion, observed product 

ions (Table 4-7) were two mass units lower than their corresponding product ions obtained for 

NDGA. An example of an ion chromatogram from the LC-ESI-MS analysis is shown in Figure 4-

27 for RLM incubation of A1 in the presence of GSH. Incubations performed in the absence of 

NADPH gave the same results for NDGA and its catechol analogues suggesting that oxidation was 

independent of NADPH and possibly results from autoxidation. There was no evidence of P450 

enzyme mediated oxidation to reactive quinones for the phenolic analogues A2, A3 and A8 by NL 
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129 Da or 307 scanning in positive ion mode. The results were no different when the samples were 

re-analyses using PI 272 Da scan in negative ion mode as detection method.  

 

Table 4-7: Summary of Tandem MS/MS data for GSH conjugates following RLM incubation 

experiments. 

Compound  

    (M) 

MH+ and (Major fragments) of GSH 

adductb 

    Adduct 

composition 

Isotopic peaksf 

NDGA (302) a608 (533, 479, 462, 444, 376, 359, 

341, 333, 315, 191, 130) 

 P + GSH – 2H   608.1, 609.1, 610.1 

A1 (270) a576 (501, 447, 430, 355, 344, 327, 

301, 130) 

P + GSH – 2H   576.1, 577.1, 578.1 

A4 (330) a636 (561, 507, 415, 404, 387, 361, 

343, 327, 315, 233, 219) 

P + GSH – 2H  636.1. 637.1, 638.1 

A6 (274) a580 (505, 451, 442, 331, 305, 287, 

199, 163, 147, 130) 

P + GSH – 2H  580.1, 581.1, 582.1 

cNDGA 2 (300) a606 (531, 477, 460, 374, 357, 331, 

313, 298, 261, 130) 

 P + GSH – 2H  636.2, 637.2, 638.2 

aThe GSH adducts were detected by NL scan for m/z 129 Da in positive ion mode. bThe product ions were obtained in 

positive ion mode and the major ions listed were greater than 5% relative intensity. The boldface type denotes product 

ions from the loss of 129 Da mass units from the parent ion. fIsotopic peaks were obtained by ER in positive ion 

scanning mode. 
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Figure 4-27: NL and LC/MS/MS analysis of NDGA analogue A1-GSH conjugate formed in the 

RLM incubation. (A) NL scanning of 129 Da; (B) TIC of MSMS for 576.1 Da; (C) Product ion 

spectrum of MH+ (576.1) for A1-GSH conjugate. 
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4.5.1 MRM-EPI MS Analysis of Microsomal Incubations 

Rat liver microsomal incubations were analyzed further using the quadrupole-linear ion trap 

mass spectrometry (Q-trap) which combines MS/MS scan functions of both the triple quadrupole 

and the ion trap.128 Multiple reactions monitoring (MRM) was used as a survey scan to trigger 

acquisition of enhance product ion (EPI) data. As exemplified by A1 (Figure 4-28) and A4 (Figure 

4-29), the results of this study was consistent with data obtained by using the NL 129 Da detection 

method. Again, no evidence of reactive metabolites formation was seen for the phenol analogues of 

NDGA by the MRM-EPI technique. 
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Figure 4-28: MRM-EPI analysis of GSH conjugate formed in the RLM incubation for A1-GSH 

conjugate: XIC (panel A); MRM (panel B) and EPI  (panel C).  
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Figure 4-29: MRM-EPI analysis of GSH conjugate formed in the RLM incubation for A4-GSH 

conjugate: XIC (panel A); MRM (panel B) and EPI  (panel C).  

 

 

4.6 Preliminary Cytotoxicity Evaluation 

NDGA 1, cNDGA 2 and analogues synthesized for this study were evaluated for 

cytotoxicity against four human breast cancer cell lines T47D, MDA-MB-231 (M231), MDA-MB-

468 (M468), MCF7, and a lung cancer cell line A549 by our collaborator (J. Tuszynski) at the 

Cross Cancer Institute (Edmonton, AB). The cell lines were selected based on availability and 
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establilshed cell lines used in the Tuszynski. The MTS tetrazolium dye assay40 was used to measure 

changes in metabolism based on which the cytotoxicity of treatments were inferred (Table 4-8). 

Thiocolchicine and linoleic acid were used as positive and negative controls respectively. NDGA, 

the parent compound was tested for comparison. 

 

Table 4-8: Cytotoxicity of NDGA and its prepared analogues in the human lung cancer cell line 

A549 and four different human breast cancer cell lines. 

Compound Cell lines, IC50 (µM) 

A549 MCF7 MDA-MB-231 MDA-MB-468 T47D 

Thiocolchicine 0.035 0.078 0.002 0.021 0.004 

Linoleic acid 229.08 371.53 870.96 199.53 239.88 

NDGA 1 676.08 190.54 - - - 

A1 125.48 199.53 - ? - 

A2 257.04 281.84 218.78 ? 190.55 

A3b 295.12 190.55 95.45 83.18 75.86 

A6 891.25 1288.25 - - - 

cNDGA 2 1258.92 - - - - 

cA6 84 724.43 2041.74 - - - 

M4N 14 234.42 100.00 389.05 758.58 588.84 

Note: dash (-) indicates no growth inhibition effect, and “?” indicates results discarded due to problems with the plate 

 

As shown in Table 4-8, NDGA and its analogues had no significant growth inhibition effect 

against all the cell lines tested in comparison with the positive control thiocolchicine although the 
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phenol analogues A3b and A2 were generally better than the parent compound NDGA against the 

cell line used. Given that the phenol analogues are oxidatively more stable than the catechol 

analogues and NDGA, further biological assays in appropriate cell lines where NDGA shows 

cytotoxic effects are required for better comparison. Contrary to our expectation, cNDGA had no 

inhibitory activity or was less active in comparison to NDGA at inhibiting the growth the cancer 

cell lines tested 
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5 DISCUSSION 

 

5.1 Synthesis and Characterization of NGDA Analogues 

A number of approaches have been reported in the literature for synthesis of dibenzylbutane 

type lignans.48, 97, 100, 100-102, 102, 106, 107 Two of these approaches were exploited for constructing the 

basic lignan skeleton  in this project. We were initially interested in preparing analogues with 

defined relative and absolute configuration. An approach utilizing Stobbe condensation-alkylation 

and resolution of intermediate (±)-diacid via diastereomeric quinine salts is reported to yield 

enantiomerically enriched lignans.102 However, we could not successfully resolve our intermediate 

(±)-diacids as the expected fractional crystallization of the diastereomeric quinine salts did not 

occur. Whether this resulted from the different substituents on the aromatic rings was not 

investigated. The second approach involved consecutive Stobbe condensation reactions as an 

alternative pathway to the basic 18-carbon lignan skeleton.  Although relative configuration about 

the two stereogenic centers could not be controlled, the double Stobbe condensation pathway was 

versatile in providing access to all the desired compounds for this study. In addition, we could 

obtain separation into two pairs of enantiomers or a meso-compound and racemic product 

following flash chromatography of intermediate diols for A3 and A8. In the case of A3, the NMR 

of separated intermediate diols was compared with that of SECO 9 to obtain some information 

about which fraction is the meso-compound. We have also seen similar separation following a flash 

column on intermediate tosylates of A3 and A8. Thus, the target analogues were successfully 

synthesized in yields ranging from 8-45% by literature methods with modifications where 

appropriate. The prepared analogues were characterized by HPLC-UV-PDA, ESI-MS and NMR 

methods as reported in Chapter 3. The UV absorptions were consistent with that observed for 

NDGA.  
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Molecular mass of each of the prepared analogues was confirmed by ER-ESI-MS analysis. 

The parent ions [M-H]- and isotopic masses observed by ER-ESI-MS in negative ionization mode 

were in agreement with calculated masses. The fragmentation patterns observed by tandem MS/MS 

analysis were consistent with those obtained for NDGA with a base peak at m/z 122 Da as 

illustrated in Scheme 5-1 for NDGA. The product ions obtained for each analogue are tabulated in 

Table 3-1 and were in agreement with those obtained for standard NDGA. 

 

 

 

Scheme 5-1: Proposed Fragmentation of the [M-H]- ion of NDGA (m/z 301) following CID. 
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5.2 Autoxidation of NDGA 

The objective of this phase of the study was to investigate the mechanisms of intramolecular 

cyclization of NDGA and its analogues in phosphate buffer (pH 7.4) at 37ºC to 

dibenzocyclooctadiene lignans.  The dibenzocyclooctadiene family of lignans exhibits numerous 

pharmacological activities38, 39, 55 including antiviral,40-42 anticancer,41 anti-inflammatory42 and 

hepatoprotective effects.43 Billinsky et al.,35 reported a unique schisandrin-like 

dibenzocyclooctadiene lignan derived from NDGA via autoxidation under physiologically relevant 

conditions. Given the important biological activities of dibenzocyclooctadiene lignans,38, 49 and the 

fact that conditions of biological evaluations involving NDGA5, 36 as well as methods of Chaparral 

tea preparation24, 35 favour autoxidation, we speculated that the intramolecular cyclization product 

probably contributes to the broad spectrum of beneficial properties reported for NDGA. Wagner et 

al., suggested that any biological action by NDGA treatment could result from either NDGA itself 

or its oxidation products37 since many antimicrobial and antineoplastic agents are known to 

function by interacting with DNA and subsequently affecting nucleic acid metabolism.53, 54 The 

authors37 report that NDGA converts to “activated” NDGA in the presence of molecular oxygen 

which formed a stable complex with duplex DNA although the structure of the oxidation product 

was not elucidated. This “activated” NDGA was later confirmed as the dibenzocyclooctadiene 

derivative.35  

There is growing evidence in the literature that chemical modification of NDGA reduces 

toxicity, combined with enhanced therapeutic effects, indicating that derivatives of NDGA may 

become important drugs in the future.6 Therefore, investigating the mechanism of autoxidation to 

dibenzocyclooctadiene derivatives of NDGA and its analogues will aid in understanding the 

structural features which influence the previously reported intramolecular cyclization process. We 
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hypothesized that intramolecular cyclization of NDGA to the dibenzocyclooctadiene lignan follows 

a radical-mediated pathway rather than an electrophilic substitution mechanism. A radical-mediated 

mechanism has been proposed by Galano et al.,22 using a combination of theoretical and 

electrochemical techniques. In these studies, we designed and synthesized a series of NDGA 

analogues and evaluated their autoxidative potential in a phosphate buffer under aerobic condition 

at physiological pH and 37 ºC35 in our effort to unravel the exact mechanism of NDGA cyclization.  

Like NDGA, compound A6 underwent autoxidation to the corresponding 

dibenzocyclooctadiene lignan, although at a faster rate than NDGA. The rate enhancement seems to 

correlate with conformational flexibility as the absence of substitution on the butane bridge in the 

case of A6 could be expected to confer a less restrictive intramolecular interaction between the two 

aromatic rings allowing for a faster cyclization than NDGA. Although a Thorpe-Ingold effect is 

typically experienced by geminal substituents,134 the vicinal methyl groups attached to the butane-

bridge of NDGA likely generate  CH3-CH3 as well as CH3-CH2-Ar steric interactions as shown in 

Figure 5-1. It is unlikely that the most stable conformations I and IV for NDGA and A6 

respectively favour cyclization and that the required conformations for cyclization are II or III and 

V or VI. The presence of additional CH3-CH3 and CH3-CH2-Ar steric interactions suggests  

conformations II or III are more difficult to attain in comparison with V or VI.  This conformational 

flexibility probably explain the faster rate of cyclization observed for A6.  
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Figure 5-1: Conformational representations for NDGA (I, II, III) and A6 (IV, V, VI). I and IV 

represent the most stable conformations for NDGA and A6 respectively; II or III and V or VI 

conformers are the required formations for cyclization. 

 

Compounds A1 and A4 oxidized to yield o-Q although subsequent nucleophilic attack by 

the unoxidized ring did not occur. Given that intramolecular reactions are generally kinetically 

favoured over intermolecular reactions and that the dimethoxy substituted ring of A4 is comparable 

to the unoxidized ring of NDGA in nucleophilicity, A4 was expected to form a 

dibenzocyclooctadiene derivative if the mechanism involves electrophilic substitution. Compound 

A1 was also expected to autoxidize although we predicted it to occur at a slower rate than NDGA. 

Oxidation of polyphenols by molecular oxygen have resulted in intermolecular reaction products66, 

67 and oxidation of polyphenols present in tea have resulted in dimers and other oligomers via 

intermolecular nucleophilic attack of an unoxidized ring on an o-Q.66, 67 The absence of 

intramolecular cyclization in A1 or A4 could imply that a radical-mediated process more accurately 

describes NDGA oxidative cyclization. This is supported by the biosynthesis of 

dibenzocyclooctadiene series of lignans in plants, which is known to involve enzymatic 
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intramolecular oxidative coupling of phenolic precursors via a radical cation intermediate.60 The 

biosynthetic approach has been exploited in many synthetic strategies to construct the biaryl 

linkage of the dibenzocyclooctadiene lignan core structure.38, 59, 60 In this vein, lignans belonging to 

the dibenzylbutane class have served as precursors to dibenzocyclooctadiene derivatives via 

intramolecular coupling reactions using coupling reagents such as ruthenium dioxide (RuO2) for 

phenols60 or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) for non-phenols.38 No such similar 

report exists in the literature involving a catechol-containing substrate such as NDGA. The role of 

conformational rigidity in preventing intramolecular cyclization has not been clarified. However, 

this hypothesis may not explain the situation for A1 or A4 given that both compounds are 

conformationally equivalent to NDGA.  

Attempts to confirm a radical-mediated pathway for cyclization using compound A7 was 

unsuccessful, although our observation was similar to a result reported by Robin et al., using RuO2 

for cyclization of an ortho-phenol substituted lignan.60 Robin found however that additional 

methoxy substituents on the aromatic ring facilitated cyclization, suggesting that the electron-

donating methoxy substituents may be critical to cyclization, possibly due to enhanced stability of a 

radical intermediate. We investigated this hypothesis with compound A8 where the methoxy 

substituents were expected to stabilize the intermediate radical to allow for cyclization. In spite of 

the presence of methoxy groups on both aromatic rings, incubation of A8 at pH 7.4 gave no 

intramolecular cyclization product. The intermediate radical of A8 may be too stable to react or the 

intramolecular cyclization mechanism is not a simple di-radical coupling as proposed by us35 and 

Galano et al.22 An intriguing possibility, outlined in Scheme 5-2, involves attack of an ortho-

quinone by an ionized ring.  A sequential 2 proton 2 electron loss is expected to yield 5a or 5b with 
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a deprotonation step expected to be pH dependent. This hypothesis would require an analogue 

consisting of one catechol substituted ring and one 3-hydroxy-4-methoxy substituted ring.  

 

Scheme 5-2: Modification to the proposed mechanism of intramolecular cyclization of 

dibenzylbutane lignans to dibenzocyclooctadiene derivatives. 

 

Another interesting finding of this study is the inhibition of autoxidation by glutathione, a 

nucleophilic trapping agent used in this study. As shown in Figure 4-19 and Table 4-2, the rate of 

intramolecular cyclization and the amount of dibenzocyclooctadiene derivative produced decreased 

significantly in the presence of GSH. An o-Q will be expected to decrease the concentration of 

NDGA or A6 as a result of irreversible conversion to GSH conjugates whilst a semiquinone radical 

or a di-radical intermediate could regenerate the starting material in the presence of GSH via one 

electron reduction135, 136 as shown in Scheme 5-3. In addition, thiol compounds can regenerate the 

catechol moiety in situ during the oxidation reaction of polyphenols and are reported to exhibit 

potent synergistic effects on the antioxidant activity of polyphenols.137 Superoxide dismutase 

(SOD) suppresses oxidation of polyphenols by purging the system of superoxide ions.67 GSH is 
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also known to react with superoxide ion to generate oxidized GSH (GSSG)135 which will be 

expected to decrease the rate of superoxide-dependent chain oxidation. The proposed radical-

mediated or electrophilic substitution mechanisms can both generate superoxide ions, suggesting 

that incubation in the presence of SOD might not clarify the intramolecular oxidation process. The 

inhibition of intramolecular cyclization suggests that GSH acts as radical scavenger as illustrated in 

Scheme 5.3 and that the dibenzocyclooctadiene product only formed atfter GSH was depleted. This  

supports the involvement of free radicals as opposed to o-Q in the intramolecular cyclization 

process. 

 

Scheme 5-3: Proposed mechanism of regeneration of NDGA following incubation with excess 

GSH.  

 

Another important factor in polyphenol oxidation is the catalytic effect of transition metals. 

Chelating agents such as EDTA and Desferal have been employed to suppress or eliminate this 

catalytic effect.67 We did not determine whether any metals were present in our incubation system 

as our intent was to examine the analogues in our previously established conditions where NDGA 
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was observed to form a dibenzocyclooctadiene lignan. It is possible that the use of metal-ions-free 

buffer will inhibit or slow down the intramolecular oxidation reactions and also improve the 

stability of the NDGA and its analogues although this seems impractical for the purpose of 

biological evaluation studies. Also, the instability of NDGA in the extraction process is well known 

and likely oxidizes during traditional preparation of creosote bush. Our results suggest that 

electrophilic substitution makes no contribution to the intramolecular cyclization process and that 

NDGA autoxidative cyclization is a radical mediated process. This notwithstanding the inability of 

compound A8 to undergo intramolecular cyclization is intriguing and raises the question of whether 

a radical-mediated mechanism as a standalone is sufficient to explicitly describe autoxidation of 

dibenzylbutane lignans to dibenzocyclooctadiene derivatives especially for the non-dicatechol 

lignans.  

 

5.3 Assessment of Reactive Metabolites Formation of NDGA Analogues 

In order to minimize bioactivation of new chemotypes during the drug discovery process, a 

variety of experimental approaches have been developed and incorporated into early optimization 

of lead compounds including routine in vitro evaluation for reactive metabolite (RM) formation.129, 

138  RMs have been implicated in many drug-induced toxicities including hepatotoxicity.139 Despite 

the numerous known pharmacological properties of NDGA, its use is also associated with toxic 

outcomes including hepatic injury possibly mediated by RMs.32 Therefore, this phase of the project 

evaluated the metabolic activation potential of NDGA and its analogues with the overall goal of 

eliminating RMs liability through rational structural modification. This study was also expected to 

provide better appreciation of  the nature of RMs such as why NDGA does not appear to form p-

QM and how ring substitutions affect RMs formation. The potential of the dibenzocyclooctadiene 
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lignan 2 derived from NDGA under physiological conditions to contribute to its toxicological 

properties via reactive metabolite formation was also evaluated. This compound has been 

postulated to contribute to pharmacological properties attributed to NDGA and therefore 

assessment of its potential reactive metabolite liability is critical to its safety profile. We incubated 

NDGA and its analogues in rat liver microsomes (RLM) in the presence of glutathione as a 

nucleophilic trapping agent. Standards for comparison were generated by performing glutathione 

trapping experiments with chemical and enzyme oxidation systems. 

The results of this study demonstrate that NDGA and its catechol-type analogues were 

oxidized to their corresponding quinoid reactive intermediates by cytochrome P450s. We saw no 

evidence of RMs when the phenol-type analogues were incubated with microsomes. GSH 

conjugates were detected by ESI-MS scanning for neutral loss NL 129 Da or 307 Da in positive 

ionization mode or PI 272 Da scanning in negative ionization mode. These methods have been 

described in the literature for detecting different classes of GSH adducts116, 127 although none of 

them has general applicability. To obtain further information for structure determination, GSH 

conjugates were subjected to tandem MS/MS analysis or MRM-EPI analysis. Product ions obtained 

from these studies were consistent with previous reports.116, 127 As reported in Chapter 4, common 

neutral losses of glycine (75 Da) and pyroglutamic acid (129 Da) as well as other typical losses 

from the parent ion MH+ of GSH conjugates including 146, 232, 249 and 275 Da mass units were 

observed indicating that NDGA, A1, A4, A6, and cNDGA 2 were oxidized by P450 enzymes to 

their respective reactive metabolites. The typical fragmentation patterns observed for the GSH 

conjugates of NDGA and its analogues are summarized in Figure 5-2. The product ions are 

indicated by a- to k- in accordance with the literature117, 132, 140  
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Figure 5-2: Typical fragmentation pathways for GSH conjugates following CID for dibenzylbutane 

type lignans. P represents the parent ion (MH+). 

 

Fragmentation-based methods have been used to differentiate glutathione conjugates 

belonging to different structural classes.132 In particular, the cleavage of the cysteinyl C-S bond 

leading to formation of d/k-type ions is diagnostic for aromatic conjugates whereas benzylic 

conjugates primarily yield i/j-type ions upon cleavage of the C-S bond between the drug molecule 

and GSH.132 As speculated by the authors, the strong π–backbonding interaction between the lone-

pair electron of the glutathionyl sulfur atom and the aromatic ring may increase the resistance of the 

C-S bond between the drug and GSH to CID. The product ions obtained for NDGA and its 

catechol-type analogues following P450-mediated bioactivation are consistent with aromatic 

Fragment type Positive m/z 

a P-75 

b 145 

c P-146 

d P-275 

e P-129 

f 130 

g P-232 

h P-249 

i 308 

j P-307 

  

k 274 
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conjugates indicating that the conjugates were derived from o-Qs. The product ions (Table 4-7 ) 

were mainly derived from cleavage of bonds within the glutathionyl moiety as observed in the 

enzyme oxidation system (Table 4-4) and included the a-, b-, c-, d-, e-, f-, g- and h-type ions  for 

NDGA and its catechol-type analogues except A6 where b-, c- and g-type ions were not detected in 

the P450 oxidation system. It is worth noting that the d-type ion formed by the cleavage of the 

cysteinyl C-S bond and characteristic of ring adducts132 was observed for NDGA and all its 

catechol-type analogues. The only evidence of benzylic conjugates which primarily yield i/j-type 

ions upon cleavage of the C-S bond between the drug molecule and GSH132 was seen for the 

phenolic analogue A2 following Ag2O catalyzed oxidation. A similar observation was made for the 

phenolic compounds eugenol and PC2 (Table 4-6).  

Another noteworthy observation from this study is the potential diagnostic utility of the MS 

detection methods NL 129 and NL 307 in distinguishing aromatic and benzylic conjugates 

respectively. GSH conjugates of NDGA and its catechol analogues were consistently detected by 

NL 129 but not NL 307 scanning in positive ionization mode whilst conjugates of the phenol 

analogue A2, eugenol and PC2 formed in Ag2O catalyzed oxidation system were only detectable by 

NL 307 Da scanning. This is in agreement with the findings of Xie et al.,132 who reported that 

cleavage of the C-S bond between the test compound and GSH is a less favourable pathway when 

addition occurs on the ring than when is exocyclic. Tandem MS/MS analysis provided further 

support for this potential utility when GSH conjugates of NDGA and its catechol analogues all gave 

a product ion at m/z 130 Da consistent with the loss of pyroglutamic acid whilst conjugates of A2, 

eugenol and PC1 gave m/z 308 Da resulting from the loss of glutathione moiety (Tables 4-4, 4-6 

and 4-7).  
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Although the method of scanning for NL 129 Da is a widely used approach for detecting 

GSH adducts, especially when protonated molecules of GSH conjugates cannot be predicted, it 

suffers low LC/MS sensitivity and limited selectivity resulting from the interference of endogenous 

compounds and background noise.127 Also, neutral loss fragmentation patterns are compound-

dependent making the effectiveness of NL experiments vary among different classes of GSH 

adducts. To improve the selectivity of NL scanning for GSH adducts, the following MS techniques 

have been explored in the literature: (a) methods using a mixture of GSH and stable-isotope 

labelled GSH (1:1 ratio) as trapping agent;124, 141 (b) high-resolution LC/MS;118 (c) multiple 

reaction monitoring (MRM) method to monitor typical transitions of protonated (MH+) potential 

reactive metabolite trapped as GSH adduct;142 and (d) precursor ion (PI) scanning in negative 

electrospray ionization mode.116 Although an MRM-based approach seems to provide superior 

sensitivity and selectivity for GSH adducts, especially where isotope labelled GSH is not available, 

it only detects the GSH adducts pre-set on an MRM transition protocol.127 Therefore the MRM 

approach has been used in conjunction with PI or NL when comprehensive analysis of predicted 

and unpredicted GSH conjugates is desired.127 In order to further confirm the RMs formed in P450s 

mediated oxidation system, MRM was used as a survey scan to trigger acquisition of EPI. As 

shown in Figures 4-28 and 4-29, the results of this study were consistent with those of NL 129 

scanning and tandem MS/MS studies.  The P450-mediated bioactivation study also revealed that 

the NDGA-derived dibenzocyclooctadiene lignan 2 potentially makes contribution to NDGA 

toxicity via oxidation to reactive quinones. Results of ESI-MS/MS experiments (Table 4-7) clearly 

demonstrate evidence of P450-mediated oxidation to a reactive quinone. Notably, the 2 mass unit 

difference between NDGA (302 Da) and the cNDGA (300 Da) was maintained in the 

corresponding MH+ for GSH monoconjugates at m/z 608 and 606 Da respectively. Additionally, 
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major product ions obtained for NDGA-GSH and cNDGA-GSH conjugates differed by 2 mass 

units. This observation is in agreement with findings by Galano et al.22 who recently reported that 

NDGA forms a cyclic compound which can be further oxidized, although at a higher potential than 

NDGA.  

 

5.3.1 Isomerization of NDGA o-Q to p-QM 

The results of this study revealed that isomerization of NDGA o-Q 5b to p-QM 5c does not 

occur for either A1 or A4, suggesting that NDGA o-Q is the major toxicophore and likely 

responsible for  RMs-mediated toxicities. Steric hindrance at the benzyl carbon has been previously 

invoked to explain why NDGA does not form a p-QM. Compound A2 has the same steric bulk at 

the benzyl carbon and yet formed a GSH conjugate derived from p-QM in the chemical oxidation 

system. Also conversion of SECO to lariciresinol has been proposed to occur via p-QM 

intermediate, although the benzyl carbon has the same chemical environment. It is likely that p-QM 

formation from the dibenzylbutane-type lignans is a direct oxidation process and that isomerization 

contributes negligibly to its formation, as may be the case for NDGA. Like A2 and SECO, 

compound A3 lacks the potential to form an o-Q and was expected to oxidize directly to a p-QM. 

Surprisingly, A3 did not form a GSH reactive product in the P450 oxidation system nor in the Ag2O 

catalyzed oxidation system. No direct evidence of RMs formation has been reported for the 

standard compounds meso-dihydroguaiaretic acid (DGA) as well as SECO in the literature.  

Taken together, the results demonstrate that RMs formation is dependent on substituents 

and/or substitution pattern on the two aromatic rings of NDGA. It was observed that P450-mediated 

oxidation of the dibenzylbutane family of lignans do not form p-QM and that the o-Q is the major 

reactive toxicophore which likely leads to some of the toxic effects associated with NDGA use. It is 
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concluded that structural modification efforts should focus on phenol-type analogues to potentially 

enhance safety profile of NDGA. Notably, phenols such as A3 and A8 require further investigation 

as these phenols demonstrated improved stability at pH 7.4 and meta-OH substituted lignans, such 

as enterolactone, display pharmacological activity.69, 143  

 

5.4 Preliminary Cytotoxicity Evaluation 

NDGA derived-dibenzocyclooctadiene lignan (cNDGA 2) was evaluated for the first time 

for biological activity. We have speculated based on the conditions of its formation and the known 

pharmacological properties of the dibenzocyclooctadiene family of lignans that cNDGA possibly 

makes contribution to biological activities reported for NDGA. Thus, NDGA, cNDGA and the 

analogues synthesized for this project were evaluated for cytotoxicity against four human breast 

cancer cell lines T47D, MDA-MB-231 (M231), MDA-MB-468 (M468), MCF7, and a lung cancer 

cell line A549 by our collaborator (J. Tuszynski) at the Cross Cancer Institute (Edmonton, AB).  As 

shown in Table 4-8, NDGA and its analogues had no significant growth inhibition effect against all 

the cell line tested in comparison with the positive control thiocolchicine although the phenol 

analogues A3b and A2 were generally better than the parent compound NDGA against the cell line 

used. Given that the phenol analogues are oxidatively more stable than the catechol analogues and 

NDGA, further biological assays in appropriate cell lines where NDGA shows cytotoxic effects are 

required for better comparison.  
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6 SUMMARY AND CONCLUSIONS 

 

In summary, a series of NDGA analogues were designed, synthesized and characterized for 

the purpose of investigating the structural features that influence pharmacological and toxicological 

properties of NDGA. The potentials of the prepared analogues to undergo intramolecular 

cyclization under our previously established physiologically relevant conditions35 where NDGA 

was observed to form a dibenzocyclooctadiene lignan were evaluated. This study was intended to 

help explain the mechanisms of NDGA intramolecular cyclization to a dibenzocyclooctadiene 

derivative and provide information about structural features that influence pharmacological 

properties of NDGA. The results demonstrate that electrophilic substitution makes no contribution 

to the intramolecular cyclization process and that NDGA autoxidative intramolecular cyclization is 

a radical-mediated process. NDGA and A6 (both containing a di-catechol) autoxidized to their 

corresponding dibenzocyclooctadiene derivatives 2 and 84 respectively which were fully 

characterized by MS and NMR techniques. However, the mono-catechol analogues A1 and A4 

underwent oxidation to o-Q but no evidence of cyclization was found implying that electrophilic 

substitution cannot account for NDGA cyclization. Attempts to confirm the radical-mediated 

pathway with A7 were unsuccessful although our observation was similar to a result reported by 

Robin et al., using RuO2 for cyclization of an ortho-phenol substituted lignan.60 The pronounced 

suppression of cyclization for NDGA and A6 observed in the presence of 20 fold excess GSH 

supports the involvement of free radicals as opposed to o-Q in the intramolecular cyclization 

process. We also evaluated the stability of the analogues under the conditions used for this study. It 

was observed that stability of the analogues is dependent on the degree of substitution of the 

aromatic rings. At pH 7.4, the catechol-type analogues were generally less stable in comparison to 
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the phenol-type analogues. Compound A6 which lacks substitution on the butane-bridge degraded 

faster than NDGA possibly as a result of its conformational flexibility.  

Oxidative metabolism and bioactivation studies on NDGA and its analogues revealed that 

reactive metabolites formation is dependent on substitution and/or substitution pattern of the 

aromatic rings. Cytochrome P450-mediated oxidation of NDGA and its catechol-type analogues 

yielded electrophilic intermediates which reacted with GSH. LC-ESI-MS analysis in positive 

ionization mode gave parent ions at m/z 608, 576, 636 and 580 Da, consistent with addition of GSH 

to NDGA, A1, A4 and A6 respectively. A further tandem MS/MS studies gave products ions 

consistent with typical fragmentation patterns reported for GSH conjugates.116, 127, 129 The 

fragmentation patterns were used to identify the GSH conjugates as ring adducts derived from o-

Q132 although the position of attachment on the aromatic ring could not be determined. We also 

found that NL 129 or 307 scanning in positive ionization mode has potential diagnostic utility in 

distinguishing between aromatic and benzylic GSH conjugates. GSH conjugates of NDGA and its 

catechol-type analogues were consistently detected by NL 129 but not NL 307 scanning whilst 

conjugates of the phenol analogue A2, eugenol and PC2 formed in a Ag2O catalyzed oxidation 

system were only detectable by NL 307 Da scanning. This is in agreement with the findings of Xie 

et al.132 We found no evidence of p-QM formation either directly or via isomerization of o-Q 

intermediates suggesting that o-Q is the major reactive toxicophore responsible for reactive 

metabolite generated toxicities associated with NDGA use. In addition, we demonstrated that the 

NDGA-derived dibenzycyclooctadiene lignan (cNDGA 2) undergoes P450-mediated oxidation to a 

reactive metabolite which might contribute to the toxicological properties of NDGA. There was no 

evidence of P450-mediated oxidation to reactive metabolites for the phenol-type NDGA analogues. 

It is concluded that structural modification efforts should focus on phenol-type analogues.  
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Cytotoxicity of the NDGA analogues and the possible involvement of cNDGA in 

pharmacological properties attributed to NDGA were examined against human breast cancer cell 

lines T47D, MDA-MB-231 (M231), MDA-MB-468 (M468), MCF7, and a lung cancer cell line 

A549. This preliminary study gave growth inhibition (GI50) at micro molar concentration levels or 

showed no growth inhibitory effect. The results indicate that the analogues are several folds less 

potent in comparison to a known cytotoxic compound thiocolchicine against the cell lines used. The 

cNDGA showed no growth inhibition against human breast cancer cells and about two fold less 

potent than NDGA against the lung cancer cell line A549.  

  



 
 

178 
 

7 FUTURE RESEARCH 

On the basis of the findings made in these studies, the following are intended to direct future 

efforts at advancing this research project. 

Given the interesting observation that absence of substituents on the butane-bridge of the 

two aromatic rings enhances intramolecular cyclization to dibenzocyclooctadiene derivatives, a 

successful synthesis of A5 and evaluation of its autoxidation potential under similar conditions used 

for NDGA and A6 will provide further information about structural features which influence the 

oxidative cyclization rate. From our observation with A6, compound A5 will be expected to cyclize 

at a reduced rate in comparison to NDGA. The synthetic challenge that remained was introduction 

of the additional methyl substituents at positions C2 and C3 of the butane-bridge. One potential 

approach to forming the required basic lignan skeleton is shown in Scheme 7-1. Step 1 of this 

scheme involves esterification of 2,3-dimethylsuccinic acid. The use of MeI in DMSO/K2CO3 gave 

access to esters in good yield in this project and may be applicable. It is anticipated that the basic 

lignan skeleton may be obtainable via alkylation although step 2 is yet unstudied. Following a 

successful LDA alkylation, a couple of reductive steps and demethylation using BBr3 as reported in 

this project should allow access to compound A5. 
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Scheme 7-1: Potential synthetic approach to basic lignan skeleton for compound A5. 

Also, the inability of compound A8 to undergo intramolecular cyclization raises the 

question of whether radical-mediated mechanism as a standalone is sufficient to explicitly describe 

autoxidation of dibenzylbutane lignans to dibenzocyclooctadiene derivatives especially for non-

dicatechol lignans. Access to NDGA analogues shown in Figure 7-1 will be useful in verifying an 

intriguing possibility outlined in Scheme 5-2 of this project. This modified mechanism involves 

attack of an ortho-quinone by an ionized ring suggesting that compound 7-1 but not 7-2 should 

cyclize. The proposed compounds are obtainable by consecutive Stobbe condensation approach 

used in this project. 

 

Figure 7-1: Proposed compounds for verifying the modified mechanism of intramolecular 

cyclization of NDGA. 
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Another potential direction for this research is isolation of the GSH conjugates formed via 

P450 mediated oxidations of A1, A4, and A6 for NMR studies. The conjugates were identified as 

ring adducts derived from o-Qs by MS.132 However, NMR studies will be useful to define the 

position at which the GSH binds to these analogues and provide further support for the nature of the 

electrophilic entities. Following successful NMR determination of positions of GSH attachment, 

the pure isolates could be used in MS studies for validation of the diagnostic utility of NL 129 and 

NL 307 scanning modes for aromatic and benzylic adducts respectively. This will be extremely 

useful in the early drug discovery and optimization process for providing insight into the nature of 

reactive metabolites in real-time without the need for reference standards or the tedious and time-

consuming isolations for nuclear magnetic resonance (NMR) identification.  

Analogues of NDGA have been assessed for their growth inhibitory activity against human 

breast cancer, human colon cancer and human melanoma cell lines. The lignans had IC50 values of 

5–60 µM.5 M4N 14 inhibits the growth of a number of tumor cell lines in vitro and also the growth 

of both murine and human melanomas and human colon cancer in vivo without apparent hepatic 

and renal toxicity.92 Given that our preliminary cytotoxicity evaluation results varied widely from 

previous reports, it is recommended that biological activity screening of the analogues prepared for 

this project be repeated. Anti-viral activity has also been reported for NDGA and its derivatives.21 It 

may be interesting to evaluate the analogues prepared for this project in a similar model. M4N 14, 

which is being developed as an anticancer and antiviral drug, was also synthesized in addition to 

the analogues studied in this project. This presents a great opportunity to compare the biological 

activities of the analogues with two standards, NDGA and M4N to establish whether the findings 

support the idea that the “free” phenolic hydroxyl groups facilitate intolerable in vivo toxicity. 
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