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Abstract 

 

The objective of this research project was to establish a better understanding of 

the mechanism(s) and route(s) by which selenium (Se) may enter an aquatic 

ecosystem that has been receiving treated metal mine effluent from an 

upstream uranium milling operation.  Synchrotron based X-ray absorption 

spectroscopy (XAS) and X-ray fluorescence (XRF) imaging, which require little 

sample pre-treatment, were employed to study the speciation and distribution of 

Se in complex sediment and benthic invertebrates samples collected from the 

field. Laboratory based inductively coupled plasma mass spectrometry (ICP-

MS) provided quantitative Se concentrations. Samples were taken from Fox 

Lake and Unknown Lakes, downstream of the mill, and Yeoung Lake as a 

control.  The variation in Se speciation as a function of depth in intact sediment 

cores may provide insight into the species of Se available to the sediment 

dwelling benthic invertebrate communities.  Therefore, a custom sample holder 

was designed to facilitate analysis of intact sediment cores at cryogenic 

temperatures. Additionally, laboratory reared chironomids were water-exposed 

to various Se species, to compare their Se speciation and localization to 

chironomids collected in the field. 

 

The successful demonstration of the custom sample holder and viable use of 

synchrotron XAS and XRF in studying sediment and chironomid samples have 

revealed that biologically relevant Se forms were present in sediment at depths 

accessible by the benthic invertebrate community. These Se forms included 

selenomethionine-like and selenite species, and to a lesser degree elemental 

Se; an increased proportion of reduced Se species was observed as depth 

increased.  Other elements measured concurrently with Se included As, Zn, Cu, 

Ni, Fe, and Mn, providing an estimation of the redox boundary found both in 

Fox and Unknown Lake, as well as suggesting the presence of iron species that 
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could aid in the reduction of Se.  Field and laboratory reared chironomids 

showed similar Se species, and XRF imaging revealed the localization of Se in 

4 distinct regions: head capsule, brain, salivary glands, and gut lining.  Overall, 

the project has provided important insights into the interactions of Se with this 

aquatic ecosystem, which may have future applications in cold water systems 

with elevated Se concentrations 
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Chapter 1 - Introduction 

1.1.  Objective 

A lake system in Northern Saskatchewan has been receiving treated metal 

mine effluent from an upstream uranium milling operation.  It has been noted 

that the selenium (Se) concentrations in the affected lake system are elevated 

with respect to surrounding lake systems.  Synchrotron X-ray absorption 

spectroscopy and X-ray fluorescence imaging may provide insight into the 

possible effects of Se on this aquatic ecosystem, by examining the forms and 

routes by which Se interacts with lower trophic levels.  Future endeavors may 

include a method for the sequestration and removal of Se to return this aquatic 

environment to unmodified times, ie. bioremediation.  

 

1.2.  Selenium 

1.2.1.  General 

The first noted discovery of selenium (Se) was as early as the 13th century by 

the famous Italian adventurer, Marco Polo (Reilly, 1996).  He dictated in his 

novel, Il Milione, that as he traveled through "a mountainous area on the far 

border of Cathay (China)" he was warned by various merchants of poisonous 

plants along the mountain that caused the hooves of animals to drop off (Pisa 

and Polo, 1300).  It was not until Jöns Jakob Berzelius, in 1817, that Se was 

isolated from reddish deposits left after sulfuric acid production.  Initially, 

tellurium was thought to be the culprit based on its smell; however, closer 

inspection from Berzelius revealed that it was not tellurium but had very similar 

properties.  Therefore, when Berzelius finally isolated the mysterious substance 

and because of its similarities to tellurium (after the Greek word for Earth, 

tellus), he called it selenium (after the Greek word for moon, selene) (Berzelius, 

1818; and Reilly, 1996).  In nature Se is ubiquitous and can be found at trace 

levels in almost all types of soils and water.  Selenium can be found in several 

forms including selenate, selenite, elemental selenium selenides and organic 
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forms such as selenomethionine; elemental Se also has 3 allotropic forms: red, 

grey, and black Se.   

 

Selenium is used in many manufactured products: photovoltaic cells, rectifiers, 

pigments, metallurgy, glass, and other applications (STDA, 2010).  Despite wide 

use in society, Se cannot be mined as a primary product and is mainly obtained 

as a by-product of many industrial processes such as copper and sulfuric acid 

production.  In both copper and sulfuric acid production, Se is found in the 

system because of its association with the raw materials, copper ore and pyrite, 

respectively.  Some waste products are refined to extract the Se.  In addition to 

Se's use in industrial products, it is required as a micronutrient for healthy living 

in humans and animals; however, concentrations outside of Se's beneficial 

range may induce effects of Se deficiency or toxicity. 

 

1.2.2.  Benefits  

In humans, Se is a component of the essential amino acid selenocysteine, 

which is present in glutathionine peroxidase (GPx), thioredoxin reductase 

(TrxR), and many other essential selenoproteins.  GPx has an important role in 

reducing hazardous hydrogen peroxide (H2O2) into water.  Normally H2O2 is 

utilized for destruction of bacteria and viruses (Rotruck et al., 1972).  TrxR is 

essential in the reduction of thioredoxin, which is responsible for cell growth, 

inhibition of apoptosis, DNA synthesis, gene transcription, and production of 

antioxidants (Reilly, 1996; Arnér and Holmgren, 2000; and Mustacich et al., 

2000).  Selenium has a very narrow beneficial range, and levels of Se above 

and below this range could result in Se toxicity or deficiency, respectively. 

Studies in fish have shown that dietary concentrations > 3 µg g-1 can lead to 

growth inhibition, tissue damage, reproductive impairment and death (Hodson 

and Hilton, 1983; Lemly, 1993; and May et al., 2008).   
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1.2.3.  Selenium Deficiency 

Selenium deficiency indirectly causes the body to be more susceptible to 

foreign invaders, ie. bacteria and viruses.  It is hypothesized that Se deficiency 

causes the immune system to work at sub-optimal conditions, providing less 

effective protection (Combs, 2000; and Zimmerman and Kohrle, 2002).  The 

most notable cases of Se deficiencies occurred in Keshan Country of the 

Heilongjiang province, China (Li et al., 1985) and through areas stretching from 

the Far East, from Eastern Siberia to Central China (Wapnir, 1990).  These two 

areas of Se deficiencies led to the classification of the Keshan Disease (KSD) 

and Kashin-Beck Disease (KBD), respectively.  Although both diseases have an 

overlap of affected areas and are caused by Se deficiency, the symptoms of 

each differ from one another.  KSD is characterized by multifocal necrosis and 

replacement fibrosis of the myocardium, which may result in cardiomyopathy 

(heart failure).  KBD is characterized by osteoarthropathy, a disease affecting 

the bones, joint and growth plate cartilages (Moreno-Reyes, 2009).  

 

1.2.4.  Selenium Toxicity 

On the opposite side of the spectrum, Se toxicity, or selenosis, can also be very 

problematic.  Selenium is found to be toxic in chronic “high” doses of ≥ 400µg 

day-1 for humans (Institute of Medicine, Food and Nutrition Board, 2000) and ≥ 

10µg L-1 for fish (Schultz and Hermanutz, 1990; and Lemly, 1996).  In some 

cases, Se has been shown to cause larval deformations oviparous animals .  In 

addition to the concentration, the chemical form of Se is also important; for 

example, low concentrations of dimethyl selenide are extremely toxic while 

elemental Se, even in high concentrations, is relatively non-toxic (Parizek et al., 

1980; and Cummins and Kimura, 1971).  The exact mechanism by which Se 

toxicity occurs is not known.  In some cases, it is thought that Se is taken up 

through the same mechanisms as sulfur due to their chemical similarity (Brown 

et al., 1981). However, the suggestion that the accidental substitution of Se in 

place of sulfur can lead to different tertiary and quarternary structures and 



 

 
 

5 

therefore different protein function (Lemly, 2002; and Brown et al., 1981) is 

unlikely.  Macromolecular crystallography routinely substitutes 

selenomethionine for methionine to aid in structure solution and the enzyme 

activity is not compromised by this substitution (Yuan et al., 1998).  Another 

prevailing theory includes the reaction of Se with thiols to produce superoxides, 

or free radicals (O2
-) (Spallholz and Hoffman, 2002).  Overall the cause of Se 

toxicity is dependent on the chemical form, very complex, and not fully 

understood. 

 

1.2.5.  Selenium in the Environment 

Shamberger (1981) has presented a simplified geochemical cycle of Se (Fig. 

1.1).  Selenium’s widespread occurrence at low levels in natural environments 

arises from the early stages of magma production in which Se separates from 

the parent magma.  When the magma begins to crystallize, volatile components 

such as Se and sulfur separate, remain mobile, and are able to spread further 

distances leading to the association of Se with many sulfide ores (Shamberger, 

1981).  During weathering, the Se separates from the sulfides ores through 

oxidation into elemental Se or selenite, SeO3
2-, where it may then associate 

with, for example, ferric hydroxide surfaces (Howard, 1977). Weathering of Se-

bearing rocks distributes Se into the soil and subsequently into plants and other 

organisms. 

 

 

 

 

 

Fig. 1.1.  Geochemical cycle of Se (Shamberger, 1981). 
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There is a greater chance of Se uptake and bioaccumulation the more mobile 

and biologically available the Se species. The mobility and uptake of Se is 

dependent on many factors and thus very complex (Fig. 1.2): it is influenced by 

pH, species, oxidation state, redox potential, microbial community, etc 

(Hartikainen, 2005; and Masscheleyn, et al., 1990).  Investigations have 

included the effects of Se adsorption to carrying clay content and Se’s 

absorption into plants based on the present pH (Gissel-Nielsen, 1971).  There 

has also been research on observing the effects of Se when pH and redox 

potential is varied (Masscheleyn, et al., 1990).  Thus, analyzing the effects of Se 

within a closed or even open system that takes into account all the various 

factors can be extremely difficult.   

 

 

 

Fig 1.2.  Simplified figure of the environmental cycling of Se (Lemly, 1999). 

 

Uptake of Se from the soil into plants can occur via several Se species, 

selenate, selenite, or organic selenium (Shamberger, 1981).  Some plants, such 

as Astralagus bisulcatus, have been shown to accumulate high levels of Se as 

Se-methylselenocysteine with no detrimental effects (Trelease et al., 1960, 
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Terry et al., 2000, Sors et al., 2005). Sediment dwelling bacteria have been 

shown to convert inorganic and organic Se into two main volatile Se species: 

dimethyl selenide and dimethyl diselenide (Chau et al., 1976; and McCarty et 

al., 1993). Under certain conditions, elemental selenium can be produced by 

bacteria (Garbisu et al., 1996; and Oremland et al., 1989). A variety of insects 

fed an elevated Se diet exhibited a selenomethionine-like species as the major 

organic Se species (Andrahennadi et al., 2007; and Vickerman et al., 2004).   

 

Previously, one of the most comprehensive attempts to understand the transfer 

of Se through an aquatic ecosystem was performed in the mid 1980s, 

investigating the Kesterson National Wildlife Refuge in California, United States.  

This refuge was once an evaporation pond for agricultural waters, and over time 

the Se concentration was raised to a concentration in which the surrounding 

wildlife may be affected (Presser and Barnes, 1984).  Extensive research has 

been performed on trophic levels ranging from the sediments to birds (Clark, 

1987; Clark et al., 1989; Ohlendorf et al., 1986; Ohlendorf and Hothem, 1987; 

Weres et al., 1989) and the biogeochemical cycling of Se throughout the 

aquatic ecosystem (Presser and Ohlendorf, 2005).  Since the late 1990s 

methods have been proposed to stimulate bioremediation of this aquatic 

ecosystem (Losi and Frankenberger, 1997; and Frankenberger and Arshad, 

2001). 

 

  In A. bisculcatus, the pre-dominant organic species of Se found was Thus, Se-

methylselenocysteine may be the Se form that is bioaccumulated, and grazers 

feeding on these plants may exhibit Se toxicity.  This certain instance occurred 

in South Dakota, US, in the 1930s where large quantities of livestock exhibited 

symptoms of “blind staggers”; after ingesting Se hyper-accumulating plants they 

became blind, walked in a staggered fashion, and eventually died (Rosenfield 

and Beath, 1964).  It has been suggested that the cause may be ingestion of 
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excess sulfur rather than Se (Beke and Hironaka, 1991); however, the exact 

mechanism has yet to be determined.   

 

1.3.  History and Background of the Site 

Our research is focused on the Key Lake operation, located in Northern 

Saskatchewan (Canada) approximately 700 km north of Saskatoon (Fig. 1.3).  

Uranium (U) ore mined from McArthur River is transported 80 km to Cameco’s 

Key Lake site, the world’s largest high-grade U milling operation. The treated 

metal mine effluent from the milling process is released into the David Creek 

drainage system (Fig. 1.3) resulting in elevated Se in the aquatic ecosystem.   

In addition to U’s use in nuclear power and munitions it plays a major role in 

today’s society, since the current theory suggests that Earth’s molten core and 

tectonic plates are in part due to the decay of U (Bercovici et al., 1989, and 

Herndon, 1996).  Some other uses of U include medical isotopes or dating the 

age of old samples.  Uranium is widely distributed at low levles in rocks and 

seawater, the cost to benefit ratio in its extraction is very high (Tsezos et al., 

1984). 
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Fig. 1.3. A) Map of Saskatchewan, Canada, showing the study area as a red dot. B) A 

schematic map depicting the locations chosen for sediment and chironomid sampling. Yeoung 

Lake is located 8.2 km SE of Fox and Unknown Lake, and was chosen as the reference lake. 

Mean concentrations of water, sediment, and benthic invertebrates for Fox and Unknown Lake 

are presented (Wiramanaden et al., 2010b).  

 

There has been an increase in U mining operations around the world due to the 

increasing demand of nuclear power.  Kazakhstan (~27%), Canada (~20%), 

and Australia (~16%) U mining operations constitute ~ 63% of the world's U 

(WNA, 2010).  Uranium is typically milled and processed until it becomes U3O8, 

or yellowcake, its most stable form.  This allows for safe transportation in 

between processing plants and nuclear power plants all over the world.  Once 

arrived at the power plant, the yellowcake is further processed into UO2, the 

most common form used in nuclear power plants.  Uranium can be further sub 

divided into the most readily used isotope, 235U, for nuclear power. 
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1.4.  Source of Selenium from Uranium Processing 

The by-products associated with mining and processing of raw materials are a 

major concern.  One concern is Se as the by-product of U processing.  During 

the alkaline leaching of U ore, Se is leached and tends to accumulate and get 

re-circulated in the leachate (red arrow, Fig. 1.4) (Gupta and Singh, 2003; and 

Committee on Accessory Elements, 1979).  This is controlled by siphoning part 

of the leachate away each cycle (Fig. 1.4) (Committee on Accessory Elements, 

1979).  In more mainstream and commercial processes, Se is found in the 

remnants of copper purification and sulfuric acid production (Reilly, 2006).   

Fig. 1.4.  Simplified Mill Flow Diagram at Key Lake (Cameco.  Key Lake Extension Project: 

Project Description.  Safety, Health, Environment & Quality.  March, 2010).  Red arrow denotes 

the step in the U enriching process where Se is accumulated in the leachate. 
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The treated mine effluent from U ore processing is released into a nearby lake 

system, resulting in elevated concentrations of Se relative to surrounding 

unconnected/unaffected lakes, potentially causing disturbances to the lakes’ 

aquatic ecosystem (Fig. 1.3).  The next section briefly addresses the 

characteristics of this site. 

 

1.5.  Site Description – Key Lake 

1.5.1.  General 

Our research revolves around the Key Lake operation, located in Northern 

Saskatchewan (Canada) approximately 700 km north of Saskatoon (N 

57º13’14.91”, W 105º37’59.29”) (Wiramanaden et al., 2010a; and Wiramanaden 

et al., 2010b)  (Fig. 1.1).  Located in the Boreal Shield ecozone (Cameco, 2010) 

the lake system has been receiving treated metal mine effluent from an 

upstream U ore processing mill, causing elevated Se levels in the aquatic 

ecosystem.  The lakes have relatively shallow depths (< 20m) with a few deep 

areas (> 20m) and are mainly comprised of sand substrates (Cameco, 2010).  

Lakes in Northern Saskatchewan are typically nutrient poor, and have pH 

ranging from alkaline to slightly acidic, depending on surrounding bogs and 

muskeg (Cameco, 2010).  Conductivity measurements demonstrate that the 

dispersion of treated effluent mixes fully within Wolf, Fox and Unknown Lake 

(Cameco, 2010). Yeoung Lake (N 57º 10’39.3”, W 105º 35’00.1”), located ~8.2 

km SE of Fox and Unknown Lake, was chosen as the reference site, due to its 

proximity, similar aquatic geochemistry, and disconnect from the affected lake 

system (Fig. 1.3).   

 

Knowledge of the surrounding wildlife is essential in understanding organisms 

that may be affected by elevated levels of Se.  Selenium can be readily taken 

up and then bioaccumulated through a food chain, suggesting that any 

vegetation or wildlife nearby may be affected by increased concentrations of 
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Se.  Spruce, balsam fir and Jack pine are the major forest cover (Cameco, 

2010).  Susceptible wildlife includes caribou, great grey owl, bald eagles, 

osprey, aquatic furbearers, and moose (Cameco, 2010).    

Past laboratory studies have shown that elevated levels of Se in northern pike 

eggs collected from the study site receiving environment have been linked to an 

increase in larval deformities in a laboratory study(Muscatello et al., 2006).  

These teratogenic effects included craniofacial deformities, skeletal deformities, 

and edema (Muscatello et al., 2006).  To study the effects of the elevated levels 

of Se, synchrotron based X-ray absorption spectroscopy (XAS) and X-ray 

fluorescence (XRF) imaging was employed.  The use of synchrotron 

characterization techniques allows the analysis of very complex samples with 

little to no pre-treatment and it also provides the ability to look at an element 

and its respective chemical forms. 

 

1.6.  Synchrotron 

1.6.1.  What is it? 

A synchrotron is a facility for the generation of a wide spectrum of intense and 

nearly coherent electromagnetic radiation.  It consists of several basic 

components (Fig. 1.5A) a) electron gun; b) linear accelerator (LINAC); c) 

booster ring; d) and storage ring.  Assembled, these pieces have the 

capabilities to accelerate electrons or protons/lead ions to relativistic speeds.  

The electron gun is responsible for the production of electrons by heating up a 

cathode till electrons are released; for the Canadian Light Source (CLS), this 

cathode is a tungsten-oxide disk (CLS, 2009).  These electrons then enter the 

LINAC where they are accelerated to a given energy by passing through 

multiple oscillating electric potentials.  From here, the accelerated electrons 

enter the booster ring where they are further accelerated, via radio frequency 

(RF) amplifiers, to speeds nearing that of light and the energy of the storage 

ring (Winick, 1994).  In the storage ring electrons are constantly losing energy in 
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the form of radiation, emitted tangentially to the electrons' orbit, as their 

direction changes due to magnetic fields (Ezquerra et al., 2009).  The energy 

lost is recovered by constant “boosts” from RF cavities spaced evenly across 

the storage ring.   

 

Though the resulting accelerated electrons are referred to an electron “beam”, 

they actually are discrete bunches of electrons.  As a result of the discrete 

bunches the RF cavities must be synched to provide a “boost” at the exact 

instant bunches of electrons are to pass (Willmot, 2011).  These 

synchronizations of RF cavity boosts give rise to the name synchrotron. 

 

Fig. 1.5.  (A) General overview of a synchrotron.  (B) General description of a primary optical 

enclosure (POE) for a spectroscopy beamline.  (C) General outline of a spectroscopy 

beamline’s end station. 

 

1.6.1.1.  Beamlines 

To harness the high energy X-rays, beamlines are constructed tangentially to 

the storage ring.  Characterization of samples is achieved by bombardment of 

X-rays or other electromagnetic radiation.  Beamlines receive these X-rays 
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either from a bend magnet, part of the storage ring, or an insertion device, such 

as a wiggler or undulator, which enhances the intensity of the X-rays.  While the 

electrons travel along the storage ring they are constantly emitting X-rays with 

an angular distribution of ∆



  both vertically and horizontally tangent to their 

path (Winick, 1994).  By inducing an oscillatory path for the electron beam, an 

insertion device increases the intensity of the x-ray beam to be utilized by 

beamlines.  These oscillations, or changes in direction, cause coherent 

interference resulting in a more intense beam (Hulbert and Williams, 1998).   

 

The resulting X-rays, or white beam, are collected and passed through a 

monochromator crystal to select for a specific X-ray energy (Saisho and Gohshi, 

1996).  The ability to select single energies is essential for the study of specific 

elements using techniques such as XAS or XRF.  Adjusting the angle at which 

X-rays hit the monochromator crystals provides specific wavelengths, 



  (Eq. 

1.1), and the beam spot size is adjusted via slits (Fig. 1.5B).  

 



n 2dsin  

Eq. 1.1.  Bragg diffraction equation.   

The sin of an angle, sin 



 , multiplied twice the lattice plane separation, 2d, will 

equal multiples, n, of a wavelength, 



 .  The angle 



  is used in selection of 

particular wavelengths, 



  (Eq. 1.1); however, as 



  changes so will the position 

of the diffracted X-ray beam.  Therefore, in a double monochromator system, 

the second crystal is parallel to the first crystal, which allows the diffracted beam 

to remain parallel to the incident beam.   

 

1.6.2.  X-ray Absorption Spectroscopy (XAS) 

1.6.2.1.  Background 

X-ray absorption spectroscopy (XAS) involves analyzing the interaction of X-

rays with matter as a function of incident X-ray energy.  An absorption edge 
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occurs for every element, produced when the incident X-ray energy is sufficient 

to eject a core electron from its respective shell (Gautreau and Savin, 1999).  

These “edges” are specific to every element; analyzing the shape and position 

of these edges by scanning a narrow energy range surrounding the edge gives 

species details about the element of interest.  K-edges are produced when 

inner core electrons (1s electrons) absorb the energy from the beam and have 

the energy to overcome the binding forces and are ejected from the core as a 

photoelectron, also known as the photoelectric effect (Fig. 1.6A).  Fig. 1.6B 

demonstrates that every element has a unique energy at which its absorption 

edge occurs.  In addition to each element having a different absorption edge 

energy, different chemical types of each element will also produce a different 

spectral shape (Fig. 1.7). For example, species of different oxidation states 

appear at different energies; increases in oxidation state require more energy to 

remove an electron, and shift spectra to higher energies.  In the case of an 

unknown sample, such as Se in sediment, the resulting spectrum can then be fit 

using a linear combination approach to deduce the relative contributions of 

standards to the spectrum of the unknown. 

 

Extending the energy range further past the absorption edge, and before 

another element’s absorption edge, can give information about an atom’s local 

environment, also known as extended X-ray absorption fine structure (EXAFS) 

spectroscopy (George and Pickering, 2007).  A typical spectroscopy beamline 

setup used to analyze near-edges and EXAFS of samples is demonstrated in 

Fig. 1.5C.   
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Fig. 1.6. (A)  Diagram of photoelectric effect and fluorescence production.  (B) K-edges of 

multiple elements.  Pickering, I., and George, G.  Lecture 4:  X-ray Absorption – Interaction of X-

rays with Atoms and Molecules.  Geology 898 Class. University of Saskatchewan, Saskatoon, 

SK.  22 January 2009. Reproduced with permission. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7.  Stack plot of four Se standards: iron selenide (FeSe), selenocystine (CysSeSeCys), 

selenomethionine (SeMet) and selenite.  Red lines pass through the white line of each standard 

and help emphasize that each standard produces a slightly different spectra at a different 

energy.   
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1.6.3.  Transmission and X-ray Absorption Spectroscopy (XAS) 

1.6.3.1.  Background 

XAS can be recorded using transmission or fluorescence and these are both a 

direct result of the absorption process.  Transmission analysis can be used to 

analyze strong or concentrated samples, while fluorescence is generally used 

for weaker samples.  Transmission, T, involves analyzing the change in an X-

ray beam; therefore, the log of the ratio between readings of ion chambers 

placed after and before the sample (I0/I1), respectively (Mandelkow and Bazin, 

1988) (Eq. 1.2).  The ion chamber readings represent the beam's intensity.  

Thus, as the beam passes through a sample with sufficient energy to eject an 

inner core electron, the X-ray beam's intensity will decrease.  



T  log
I0

I1









 

Eq. 1.2.  Equation for transmission. 

Using a wide energy range can reveal the presence of multiple absorption 

edges of various elements.  Fluorescence is produced as a result of the X-ray 

absorption process.  X-rays with sufficient energy can remove an electron from 

its orbital creating a vacancy.  An electron from a higher energy orbital will lose 

energy to fill the vacancy; the energy lost can be released in a form of a 

fluorescent photon (Fig. 1.6A) or an Auger electron.  For sensitivity to the lowest 

concentration samples, an energy-dispersive detector is used to allow 

differentiation between incoming X-ray photons of varying energies, including 

separation of fluorescence from the element of interest from scattered photons 

or fluorescence from other elements.    

 

1.6.3.2.  X-ray Fluorescence (XRF) Imaging  

Fluorescence that arises from the absorption of sufficiently high energy X-rays 

can be collected and utilized to provide distribution maps of elements and 
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species of interest.  X-ray fluorescence imaging (XRF) employs fluorescence to 

map a sample (Kudo, 2000).  Since all elements with an absorption edge below 

the incident energy will fluoresce, maps of localization and distribution of 

elements of interest can be obtained by selecting an incident energy above all 

of their absorption edges.  By setting specific “windows” on the detector, one 

can look at multiple elements at once.  These windows cause the resulting 

element’s image to only display the fluorescence collected within a specific 

energy range.   

 

XRF is effective in providing detailed maps of the location/presence of elements 

of interest in a sample.  Combining XRF with XAS allows one to select points of 

interest from the fluorescence map and collect near-edge spectra, which will 

give information on chemical forms at those points of interest.  XAS's sensitivity 

to chemical form allows tuning of the XRF incident energy to different features 

in the near-edge, which can provide maps of different chemical forms of specific 

elements in the sample (Pickering et al., 2000).  

 

1.7. Overview of Thesis 

Selenium’s very narrow beneficial range has made it an element of much 

interest to scientists.  Through the collaboration with various principal 

investigators at the Toxicology Centre (University of Saskatchewan) a holistic 

approach has been taken to study the effects of Se on the Key Lake system.  

Various trophic levels have been studied, both in the field and through 

laboratory experiments, in order to provide a better understand of the Se 

species present and their effects on the following outlined specimens.  In this 

thesis, the investigation of the speciation and localization of Se found in 

sediment and benthic invertebrates from affected lakes may shed light on the 

route(s) by which Se bioaccumulates and is biotransformed through lower 

trophic levels of the aquatic ecosystem.  Synchrotron XAS and XRF imaging 
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techniques are employed to provide a better understanding of the speciation 

and localization of Se in sediment and benthic invertebrate samples.   

 

This thesis is centered on the use of synchrotron radiation to investigate 

speciation and localization of Se in sediments and organisms, and involves in 

part some development of the techniques.  Chapter 2 describes the design, 

construction, and testing of a Soller slit apparatus to solve the problem of a 

distortion present in the spectra of samples run in transmission.  This distortion 

is caused by fluorescence from the foil entering the ion chamber downstream of 

the sample (I1). 

 

The study of sediments is discussed in Chapters 3 and 4.  Chapter 3 explains 

additional technique developments, specifically two devices that were created 

to aid in studying intact sediment cores at cryogenic temperatures.  These 

devices include a guide rail system to help cut sediment cores, and a sediment 

holder to allow fluorescence and transmission analysis of intact sediments 

cores under cryogenic temperatures (~10 K).  XAS analysis of sediments using 

this holder can provide information on Se species as a function of depth.  

Chapter 4 presents the results obtained from both devices as well as the data 

collected on Se, and other elements, in a sediment core as a function of depth.   

 

Chapter 5 describes a comparative study of benthic invertebrates, chironomids, 

collected from the field with Chironomus dilutus grown in the laboratory and 

exposed to various Se spiked water conditions to mimic conditions found in the 

field.  Distributions of Se and other elements are compared using synchrotron 

XRF measurements of both field and laboratory reared chironomids.  The study 

includes XRF imaging of preserved chironomids, bulk XAS analysis, and 

inductively coupled plasma mass spectrometry (ICP-MS) measurements for 
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total Se concentration.  The combination of XAS and XRF to examine 

chironomids will allow the determination of Se species present in the whole 

chironomid, and localization of Se in the chironomid, respectively.   

 

This thesis concludes with Chapter 6, which presents an overall summary and 

discussion.  Proposed future work on sediments and chironomids is also found 

in this chapter, to provide an idea of what may be required to further solidify 

results presented in this thesis. 

 

The thesis is written in paper format with the result that certain materials, such 

as materials and methods, appear in more than one chapter.  
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CHAPTER 2 

SOLLER SLITS 
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1Chapter 2 – Soller Slits 

2.1.  Abstract 

The measurement of X-ray absorption spectroscopy (XAS) in transmission is 

the method of choice for strong or concentrated samples.  In a typical XAS 

experiment above 5 keV the sample is placed between the first (I0) and second 

(I1) ion chambers, with a standard foil placed between the second (I1) and third 

(I2) ion chambers for simultaneous calibration of energy during sample analysis.  

However, some fluorescence from the foil may be registered in I1 that may 

cause anomalies in the transmission signal of the sample, especially when the 

sample edge jump is relatively small.  To remedy this, Soller slits were 

constructed and placed between the foil and I1 to minimize the back 

fluorescence from the standard foil.  A comparison of a blank and standard 

sample, measured with and without Soller slits or under a worst case scenario, 

where the standard foil is against I1, displayed a significant improvement in the 

resulting transmission spectra when Soller slits were implemented.  These 

results demonstrate the advantages of Soller slits when analyzing weak signal 

samples via transmission XAS.   

 

2.2  Introduction 

Since their creation in 1924 (Soller, 1924), Soller slits have been used in a 

variety of experimental configurations to help collimate the beam of interest, 

whether it is parallel, converging or diverging.  In general, Soller slits with 

closely spaced blades have shorter blades lengths, and the inverse is 

applicable.  Housed in a casing and angled as the X-rays of interest, the blades 

are composed of a material that will strongly absorb any scattered beams and 

not fluoresce in the energy range of interest.  In fluorescent XAS, Soller slits 
                                                           
1 This chapter is based on the Communication published as Tse, J.J, George, G.N., and 
Pickering, I.J.  Use of Soller slits to remove reference foil fluorescence from transmission 
spectra.  Journal of Synchrotron Radiation. 2011, v.18, pp 527-529.  Reproduced with 
permission from the International Union of Crystallography (IUCr).   
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increase the signal to noise ratio by eliminating scatter, that arises from sample, 

prior to the detector (Lytle et al., 1975; and Samant et al., 1987).  

 

Transmission XAS is utilized in place of fluorescence XAS when the sample is 

sufficiently concentrated that the fluorescence may cause anomalies in the 

detection.  A typical transmission XAS measurement (Fig. 2.1) involves a 

sample between I0 and I1 with a standard foil downstream between I1 and I2, for 

internal energy calibration.  Back-fluorescence from the foil into I1 (Fig. 2.1) 

appears as an inverted edge superimposed on the transmission data of the 

sample (T, Eq. 2.1).   



T  log
I0

I1









                                                                Eq. 2.1 

This effect becomes more pronounced when the foil is closer to I1 or the signal 

from the sample is weak (Fig. 2.2). In the present study, the elemental Se foil 

has a lower excitation energy than the selenate sample, leading to a trough in 

the spectrum.  To minimize this effect, Soller slits, to be placed between the foil 

and I1, were constructed (Fig. 2.3).  

 

 

 

Fig. 2.1.  Plan view of a typical transmission XAS setup. 
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2.3.  Materials and Methods 

The Soller slit assembly consists of an Al case with slots that accommodate up 

to 21 vertical blades (Fig. 2.3).  The assembly was fabricated by Vantec Design 

& Manufacturing LTD (Saskatoon, SK, Canada).  The case assembled with 4 

separate Al pieces held together by 8 M2 x 8 head cap Allen screws.  The width 

of the Soller slits (Fig. 2.3) is identical to that of the ion chamber for easy 

alignment.  If properly aligned, the beam will travel through 13 “inner blades” 

spaced 2.0 mm apart in the middle of the Soller slit, while 8 “outer blades” are 

spaced 4.0 mm apart; the closer spaced blades provide less back-fluorescence.  

Ideally a set of horizontal slits would also be present; however, the openings in 

the ion chamber are much larger in the horizontal direction. 

 

Silver (Ag) was chosen for the blade material due to its high Z, long-term 

stability, machinability, and availability. Sheets of 0.25 mm thick Ag (Surepure 

Chemetals, Florham Park, NJ, USA) were cut with an X-Acto No. 2 knife into 

blades measuring 30 mm (vertical height) × 25 mm (length along the beam).  All 

edges of the blades were sanded with 3M™ diamond lapping film to remove 

any burrs acquired during the cutting process.  A thickness of 0.25 mm allowed 

for 0% transmission at energies below 15 keV and up to 2.2% transmission at 

21 keV (McMaster, et al., 1969).  To demonstrate the effectiveness of the Soller 

slit, a Se-free blank and 4.3 mM Na2SeO4 standard were measured under 3 

conditions described below. The blank consisted of an aqueous solution of a 

standard biochemical buffer, 100 mM MOPS (pH 7), with 30% v/v glycerol 

added to reduce ice crystal formation upon freezing. The 4.3 mM Na2SeO4 

solution was created by a 1:5 dilution of a 21.4 mM solution of Na2SeO4 in 100 

mM MOPS (pH 7) and 30% glycerol.  Samples were measured on beamline 7-3 

at the Stanford Synchrotron Radiation Lightsource (SSRL) in custom 2 mm path 

length Vero White polymer cuvettes, 90º to the incident beam, at 10K (Oxford 

Instrument Liquid Helium cryostat). The energy was selected with a Si(220) 

double crystal monochromator, a 15 keV cutoff achieved by adjusting the angle 
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of the upstream Rh-coated vertically collimating mirror, nofocusing optics and a 

1.0 x 8.0 mm (height x width) beam defined using slits upstream of I0.   

 

Measurements of the blank and dilute selenium sample were made under three 

conditions. (1) With Soller slits (SS) between the standard foil and I1 with ~ 3 

mm on either side. (2) Without the Soller slits (NSS).  (3) In a worst-case 

scenario with no Soller slits (NSS-WC), I1 was moved downstream so that it 

was flush with the foil, maximizing the foil fluorescence entering I1. 

 

2.4.  Results and Discussion 

The effects of foil fluorescence entering I1 are shown in Fig. 2.2. In NSS-WC 

and even NSS, the blank spectra (Fig. 2.2A) showed a significant negative 

feature, which also appeared as a trough in the pre-edge region of the 4.3 mM 

Na2SeO4 spectrum (Fig. 2.2B).  Substantial reduction of back-fluorescence from 

the foil into I1 was observed (Fig. 2.2B) with the use of of the Soller slits.  

Though residual back-fluorescence is observed in SS, the contribution is 

negligible compared to NSS and NSS-WC. Estimated from the height of the foil 

white line above background, the ratio of back-fluorescence intensities in the 

three cases NSS-WC:NSS:SS is 2.45:1:0.09 
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Fig. 2.2. (A) Spectra from the blank under the 3 conditions, plotted as I1/I0 to emphasize the 

back-fluorescence signal.  (B)  Background subtracted and normalized transmission spectra 

from 4.3 mM Na2SeO4 run under the 3 conditions.  The 12663 eV shoulder is a small fraction of 

selenite produced by selenate photoreduction in the X-ray beam even at 10K. 

 

 

 

 

 

 

 

 

 

Fig. 2.3.  Image of Soller slits. 
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The Soller slit assembly’s effectiveness in the horizontal dimension was 

predicted from a general single point of fluorescence (PoF) between two blades 

(Fig. 2.4). The current configuration predicted a projected horizontal length (PH) 

of 2.21 mm (Eq. 2.2), equivalent to an angle of 71 mrad.  Regardless of the PoF 

position on a line normal to the blades, PH remained the same.  In the absence 

of Soller slits, the angle calculated from the width of ion chamber opening 

(approximately 64 mm) at a distance DI(Fig. 2.4) was 1.60 rad.  Thus, the 

calculated intensity ratio NSS:SS is about 1:0.04, slightly better than the 

observed ratio of 1:0.09, the difference is possibly due to uncertainties in 

measuring the very small SS back-fluorescence (Fig. 2.2A). Quantifying foil 

fluorescence into I1 for NSS-WC was difficult due to the acute angles occurring 

with the foil so close to I1; however, more back-fluorescence is expected for 

NSS-WC compared with SS and NSS due to the foil's proximity. 

                                                                                                                                      



PH 
D1DS

D1 X2

                                          Eq. 2.2 

Fig. 2.4. Schematic demonstrating the amount of foil fluorescence entering I1 in the horizontal 

plane from any point of fluorescence (PoF) along the line of fluorescence.   Ls= length of Soller 

slit blades.  Ds = distance between Soller slit blades (S1 + S2).  DI = distance from foil to I1 (Ls + 

X1 + X2).  X1 = distance from foil to Soller slit.  X2 = distance from the Soller slit to I1.   PH= 

horizontal projection onto I1. Since PH=C1+C2, and C1/S1 = C2/S2 = DI/(DI-X1), therefore 

PH=DIDS/(DI-X2). 
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In summary, the use of Soller slits to remove foil fluorescence is advantageous 

when collecting transmission XAS of weak/dilute signal samples. Foil back-

fluorescence anomalies are essentially removed by the Soller slits, allowing for 

more accurate spectra. The simplicity of the Soller slit design and the relatively 

low cost of materials allow easy creation of custom Soller slits for any XAS 

beamline.  
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CHAPTER 3 

SEDIMENT SAMPLE HOLDER 
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Chapter 3 - Sediment Sample Holder 

3.1.  Abstract 

A versatile sample holder is described for analysis of intact sections of 

heterogeneous sediment cores using synchrotron XAS at approximately 10 K in 

a liquid helium flow cryostat.  Cryogenic temperatures are essential in 

determining accurate chemical speciation as a function of depth in intact 

sediment cores.  Control samples were measured to test possible shadowing 

effects in fluorescence measurements. The successful demonstration of the 

stability and minimal shadowing of the sample holder at ~10 K suggests its 

viability for studying sediment samples.  In addition, the sample holder houses 

inner sample cells, fabricated by 3D printing, which can be customized for a 

wide range of applications and samples. 

 

3.2.  Introduction 

We designed, constructed and demonstrated the effectiveness of a custom 

holder used in synchrotron XAS analysis of spatially heterogeneous samples in 

a liquid helium flow cryostat.  Spatially heterogeneous samples include 

sediment cores for which speciation and abundance of elements may vary with 

depth.  Under room temperature analysis, extensive chemical modification and 

spatial migrations are expected.  Although preservation methods such as resin 

infusion or embedding (Lamoureux, 1994) would allow for intact sediment cores 

to be sectioned and analysed, these chemical procedures may cause 

speciation changes.  Use of liquid helium (~10 K) rather than liquid nitrogen 

(~77 K) to maintain sample temperature minimizes any photo-induced changes 

of the sample due to the intense X-ray beam.  By maintaining the sediment core 

frozen throughout preparation and analysis, its depth profile and speciation of 

elements remain intact.  The sample holder facilitates analysis of sediment core 

sections at approximately 10 K with minimal pre-treatment or preparation of the 

cores.   
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Cryogenic XAS of bulk sediment can involve grinding a frozen sediment sample 

until homogeneous (Wiramanaden et al., 2010a), thus losing any depth profiles 

that the sediment may have exhibited.  Analysis also can be achieved by 

homogenizing short sections (e.g. 1 cm depth) of whole cores (Martin et al., 

2011); however, variations may occur at a finer scale especially near the 

sediment-water interface.  A commercially available alternative to analyzing 

frozen whole sediment cores is a Displex® (Advanced Research Systems); 

however, this system can cost in excess of $30,000, requires special and 

expensive shipping procedures, and necessitates long downtime between 

samples due to warming and cooling cycles.   

 

To facilitate analysis of intact cores at 10K, a custom sediment sample holder 

was designed for the Oxford Instruments CF1208 liquid helium flow cryostat, 

which is currently employed for bulk XAS at the Stanford Synchrotron Radiation 

Lightsource (SSRL), Canadian Light Source (CLS) and several other 

synchrotron facilities worldwide.  The sample holder was designed to analyze 

speciation variations as a function of depth for intact frozen sediment core 

segments. Using vertical cryostat translation, spectra at spatial increments of 

100 µm are achievable.  In addition, a guide rail system was developed in order 

to accurately cut segments of frozen sediment cores to fit inside the sample 

holder and cryostat. 

 

3.3.  Guide Rail System 

The sample cell was designed to utilize the maximum amount of viewable area 

given by the cryostat.  Sediment cores were larger than the sample cell; 

therefore, samples required some cutting to fit within the sample cell.  To help 

maintain constant proportions with the Zephyr ring saw (Gryphon Corp.) (Fig. 

3.1A) a guide system (Fig. 3.1B) was designed and built.  The guide system 

had a knob for easy adjustments and the work area was large enough to 

accommodate sizable samples. 
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Fig. 3.1.  (A)  Zephyr ring saw.  (B-E) Guide rail system designed for the work surface of the 

Zephyr ring saw. 

 

The Zephyr ring saw was chosen due to its portability, diamond blade, and 

ability to subsection sediment cores into acceptable sizes for the sample holder.  

The steel core circular blade is coated with diamond flecks/fragments which will 

eliminate metal transfer onto the sample, making the Zephyr saw ideal for omni-

directional cutting and preparing samples for synchrotron trace element 

analysis.  Initially, the plan was to bring the Zephyr saw to the beamline and cut 

cores on-site; however, shipping various cores frozen was more costly and risky 

than shipping sub samples of the cores.   

 

To minimize the effects of human error in cutting sediment samples, a guide rail 

system was required.  The design for the guide rail system had to be one that 

could conform to the pre-existing Zephyr work surface (Fig. 3.1A).  Sediment 

cores will come in contact with the guide rail system; therefore, the contact 

surfaces must be comprised of a material that is non-metallic, to reduce any 

metal transfer to the sample. Vantec Design & Manufacturing Ltd was 

responsible for the construction of the guide rail system.  The material chosen 

was ultra-high-molecular-weight polyethylene (UHMWPE). Due to its availability 
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and low price, UHMWPE was used for most of the guide rail system (Fig. 3.1B 

and C). A ruler (Products Engineering) (Fig. 3.1E) screwed into one of the 

UHMWPE to allow for accurate (± 0.25 mm) adjustments of the distance 

between piece C and the circular ring blade (Fig. 3.1C). Some steel pieces were 

used for support (Fig. 3.1D).  

 

One restriction provided by the Zephyr saw is the constant need for water to 

cool down the blade, which generates a lot of heat through friction from cutting 

a sample.  The Zephyr saw utilizes a built-in water reservoir to maintain blade 

cooling during cutting.  Prior to any sample cutting, this reservoir is emptied and 

the saw run until no dripping water is observed over the sample cutting area.  

This heating of the blade could be detrimental to the sample, as heat could melt 

the sample, change Se speciation, and lose the sediment depth profiles.  

Therefore, prior to any cutting, samples were frozen in liquid nitrogen to keep 

sediment profiles intact and aid in cooling down the blade during cutting.   

 

3.4.  Sediment Holder 

The sample holder comprised two main pieces: the outer sample holder and the 

sample cell.  The outer sample holder was mainly comprised of Al, machined by 

Vantec Design & Manufacturing Ltd from a stock Al cylindrical bar by computer 

numerical control machining and electrical discharge machining (Fig. 3.2B).  

Additional pieces were custom printed on a 3D printer (Objet Eden500V) in 

VeroWhite (Objet FullCure®830), shown to have no interference from elements 

within our energy range of interest (data not shown, 12520 – 12860 eV), and 

attached by #0-80 nylon screws.  The front/back or sides of the sample holder 

were angled or shortened, respectively, to maximize a cone of fluorescence 

from the centre of the sample holder at a 45º or 90º sample orientation.  In the 

cryostat, the sample holder had a 0.75 mm clearance on all sides and could 

accommodate samples of 10 mm × 10 mm × 5 mm (width × height × depth).  
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Measurement of subsequent segments of the same core allowed analysis of 

additional depths. 

 

Fig. 3.2.  Computer-aided design drawing of the sample holder and sample cell (A), with the 

finished sample holder (B) and sample cell (C).  The assembly sits inside a CF1208 cryostat 

denoted by the arrow shown in (D). 

 

The pillars were removable, interchangeable, and shaped to allow maximum 

fluorescence from the sample with the fluorescence detector at 90° to the 

incident beam.  One pillar was constructed of aluminum (Al) to add structural 

stability to the sample holder at cryogenic temperatures; the other pillar and 

sample cells, used to contain samples, were printed of VeroWhite to maximize 

fluorescence from the sample to the detector (Fig. 3.2B and C).  

Interchangeability of the pillars allowed for maximum fluorescence collection 

regardless of detector position relative to the cryostat, ie. left or right of the 

cryostat, with the printed pillar always on the detector’s side.  The sample cells 
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had a carved out window to expose the whole sample surface to the incident 

beam, and fluorescence to the detector.  The use of printed sample cells 

allowed for cheap mass production, minimal absorption, and custom 

modifications. 

 

A window of kapton film (38µm thick) around the sample holder added a second 

layer of containment.  Since moisture in the air could cause freezing of the 

sample cell to the inside of the sample holder resulting in extended sample 

change times and loss of valuable beamtime, a hole in the bottom disk of the 

sample holder allowed a mid-sized Allen key to push the sample cell out of the 

sample holder without the removal of the kapton film.  After initial trials showed 

that the upper mounting disk froze to the top disk of the sample holder, both 

surfaces were finely polished to reduce water nucleation, reducing the duration 

of sample changes from about 15 to 7 minutes. 

 

To demonstrate the effectiveness of the sample holder a homogeneous Se 

standard, 10 mg L-1 of Se as sodium selenate (Na2SeO4) dissolved in 

Barnstead water (18.2 MΩ-cm), was measured to investigate any shadowing 

effects on the fluorescence signal or interference that may occur from the 

cryostat or detector position.  The sample face was divided into 3 columns, 

spaced 0.25 mm apart, and each column was divided into 21 vertical points, 

spaced 0.5 mm apart, giving an average measured area of 10 mm × 10 mm 

(height × width).  At each point in the homogeneous sample, a short Se K-edge 

spectrum (12520 - 12860 eV) was measured and its edge jump plotted (Fig. 

3.3).   

 

Measurements were conducted on beamline 9-3 at SSRL at ~10K.  The energy 

was selected using a Si(220) double crystal monochromator, with a 15 keV 

cutoff achieved by adjusting the angle of an upstream Rh-coated vertically 

collimating mirror. A 0.1 mm × 2.12 mm (height × width) beam, defined by 
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upstream slits, projected to a 0.1 mm × 3.0 mm illuminated area on the sample 

which was oriented at 45º to the incident beam. 

 

3.5.  Results 

The effectiveness of the sample holder (Fig. 3.2) was demonstrated by 

fluorescence measurements from standards, which showed that regardless of 

sample position with respect to the sample cell and detector, the fluorescent 

edge jump was essentially invariant (0.181 ± 0.012 standard deviation) (Fig. 

3.3); therefore, no shadowing effects or obstructions by equipment were 

observed. The holder has been used to measure Se and other elements in 

frozen sections of sediment cores (Fig. 3.4).  Additional details are presented in 

Chapter 4 (Sediments).  The sample holder has since been used to house a 

frozen solution of a highly reactive biomolecule (Pushie et al., 2011) during XAS 

data acquisition. Beam induced chemical changes were minimized by 

combining multiple short measurements from different spatial locations at 10K. 

 

The price of each printed sample cell (approximately $1 each) allows for mass 

production and customization.  The sample holder was designed for the 

CF1208 cryostat but will also fit inside newer models, such as the Optistat CF 

and CF-V (Oxford Instruments). 
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Fig. 3.3.  Fluorescence intensity as a function of relative vertical position from the center of a 

homogeneous Se standard. 

 

 

 

 

 

Fig. 3.4.  Example data set from a sediment core.  At 100 µm step sizes, variations in the Se 

signal can be observed within an 8 mm depth. 
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Chapter 4 - Sediments 

4.1.  Abstract 

A lake system downstream from a U milling operation in northern 

Saskatchewan has been receiving treated metal mine effluent.  This effluent 

increased the Se water concentrations within this lake with respect to 

surrounding lake system not receiving effluent.  The sediment of the lake 

system is an important route by which Se may enter the aquatic ecosystem, 

especially as benthic invertebrate communities inhabit the sediment.  By 

collecting, preserving, sectioning, and analyzing frozen sediment cores and 

combining synchrotron XAS at high resolution with vertical cryostat movement, 

it is possible to study changes of Se levels and speciation as a function of 

depth.  These methods demonstrated the presence of biologically available Se 

species (selenite and selenomethionine-like species) that may be accessible by 

the benthic invertebrate community.  

 

4.2.  Introduction 

Selenium is a micronutrient, required for the survival for many organisms, and 

must be regulated to prevent Se deficiency or toxicity.  In addition to the 

required Se intake, the species in which Se is taken up is also very important; in 

fact, it is the species and not concentration that is the most influential 

bioavailability factor (Zayed et al., 1998).  Selenomethionine and selenocysteine 

are both Se-containing amino acids commonly found in organisms.  

Selenocysteine is considered the 21st essential amino acid and is produced and 

incorporated into proteins very specifically.  In humans, selenocysteine is 

required for the production of glutathionine peroxidase to detoxify hydrogen 

peroxide (H2O2) into water, and thioredoxin reductase, used in cell growth, 

redox signaling, regulation of apoptosis, etc. (Stadtman, 1990; Mustacich, et al., 

2000; and Arnér and Holmgren, 2000), as well as several other essential 

enzymes.  By contrast, selenomethionine is not an essential amino acid but, 

when present in abundance, is accidentally substituted for the essential amino 
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acid methionine in proteins.  In nature, Se can exhibit oxidation states ranging 

from -2 to +6, is found in minute quantities, and is often purified from waste 

material of other industrial processes, such as copper purification (Thomassen 

et al., 2004), sulfuric acid production (Stewart, 2004), and U ore processing 

(Gupta and Singh, 2003).  In some cases, it may not be profitable to further 

purify for Se, and the treated waste is disposed.  

  

Selenium has been shown to be toxic to an aquatic ecosystem; in a well-

documented case, the Kesterson National Wildlife Refuge located in California, 

was once used as an evaporation pond for agricultural drain waters. Over 

extended periods of time Se was at a sufficiently high concentration that 

decreased wildlife reproduction and increased deaths, especially in waterfowl, 

were observed (Clark, 1987; and Ohlendorf and Hothem, 1987).  There has 

been extensive research from benthic invertebrates to birds in this particular 

aquatic ecosystem (Ohlendorf and Hothem, 1987). 

 

In the present case, a lake system in Northern Saskatchewan (Fig. 4.1) has 

been receiving treated metal mine effluent from an upstream U milling 

operation.  Over time, the treated metal mine effluent has caused the overall Se 

concentration in a nearby lake system to become elevated with respect to 

surrounding unaffected lake systems.  Previous research has demonstrated that 

elevated levels of Se can cause larval deformities in northern pike (Esox lucius)  

(Muscatello et al., 2006).  However, this should not be attributed solely to Se, as 

the treated effluent is most likely comprised of many compounds, and the exact 

mechanisms and routes by which Se enters an aquatic ecosystem are not fully 

understood.  To provide additional information in the understanding of how Se 

many enter an aquatic ecosystem, we propose to study the species of Se in 

sediment from various sites in the lake system.  Sediments may act as one of 

the initial steps for Se biomagnification through a food chain.  Employing 
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synchrotron XAS combined with the translation of a cryostat will provide 

valuable data on how Se speciation changes as a function of depth in 

preserved sediment cores. 

 

 

 

 

 

 

 

 

 

Fig. 4.1.  Fox and Unknown Lake of the Key Lake system. Sites chosen for study are depicted 

by red stars. 

 

Previous research on sediments from the same sites has been performed at a 

coarser resolution (Wiramanaden et al., 2010a).  Cores at room temperature 

were cut into 1cm sections, homogenized in an agate mortar and pestle, frozen, 

and then Se speciation was measured at 10K using XAS (Wiramanaden et al., 

2010a).  The research of Wiramanaden et al. (2010) was essential in 

understanding the potential Se species that may be present in the sediment; 

however, as the samples were homogenized, the sediment depth profile was 

lost and any variations of Se species as a function of depth could not be 

measured.  Building on this previous work, our research focused on analyzing 

intact, preserved sediment cores with cryogenic (~10 K) temperatures at a finer 

resolution, especially near the sediment-water interface.  In many cases, this is 
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also the zone inhabited by benthic invertebrates. If samples could be collected, 

flash frozen and then maintained frozen during transport, preparation, and 

analysis, any sample degradation should be greatly minimized.  Therefore, the 

ideal method to analyze sediment cores would be at ~10 K, with the added 

benefit of minimizing any changes of the sample caused by the intense beam of 

3rd generation light sources.   

 

4.3.  Materials and Methods 

Sediment cores were collected in both the 2008 and 2009 field season in acrylic 

core tubes (4.8 cm diameter) with a custom made corer (Wiramanaden et al., 

2010a).  During the 2009 field season, June 11-16th, core samples were taken 

from Unknown 2 and Fox 3 (Table 4.1).  These sites were chosen due to their 

high Se concentration measured in past years (Wiramanaden et al., 2010b), 

enabling easier bulk analysis.  No cores were taken from Yeoung Lake, the 

control site for other measurements, as previous bulk measurements showed 

that the Se concentration was below the detection limit of the beamline.  Field 

season 2008 cores were frozen in a deep freezer; however, large ice crystals 

were found to form disrupting the sediment depth profile.  Therefore to prevent 

ice crystal formation, the 2009 field season cores were prepared initially by flash 

freezing in a slurry of liquid nitrogen and iso-pentane, a method known to 

minimize ice crystal formation by very rapid freezing.  Cores were transported 

back to the Toxicology Center (University of Saskatchewan) by truck in coolers 

filled with dry ice, and then stored in a ~253 K freezer. 
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Lake/Site Location 

Fox/2 N 57º 13’23.8” 

W 105º 41’04.2” 

Fox/3 N 57º 13’27.6” 

W 105º 41’02.6” 

Unknown/2 N 57º 14’02.9” 

W 105º 40’28.7” 

Unknown/3 N 57º 14’00.8” 

W 105º 40’08.9” 

Table. 4.1.  Table of GPS coordinates and elevation of the sites of interest. 

 

Cores sub-sampled for synchrotron analysis remained at liquid nitrogen 

temperatures (~77K) throughout the process.  Since XAS is very sensitive to 

elements that may be present in a sample, especially metal, the prevention of 

any contamination was crucial.  Therefore, to eliminate the possibility of metal 

contamination a Zephyr (Gryphon Corp.) saw was used to perform cuts on 

sediment samples used for synchrotron analysis.  The Zephyr contains a 

diamond flake encrusted circular ring saw blade that allows for cutting in any 

direction without the risk of any metal flakes from the blade falling on the 

sample.  The whole core is too large to be cut by the Zephyr, thus a Ryobi 

tabletop band saw was used cut the core in half.  Once cut in half, the acrylic 

core is discarded and the remaining core is processed with the Zephyr saw.  All 

pieces after sub sampling are placed in plastic bags, archived, and stored at 

~253 K at the Toxicology Center.  An overview of the sample preparation is 

displayed below (Fig. 4. 2) 
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Fig. 4.2.  Flow diagram of sediment sample preparation.  A = Whole frozen core (in acrylic 

casing) is cut in half with a Ryobi band saw.  B = Casing is discarded and a thin slice is 

removed with the Zephyr saw, as a precaution in case any metal transferred from the Ryobi 

blade to the sample.  C = Using the Zephyr saw, smaller 1 x 1 x 0.5 cm (height x length x width) 

sections are obtained.  D = Extra pieces are collected in a Ziploc bag and archived.  E = 

Sections are then placed in custom printed cells wrapped in mylar tape. 

 

After cores were sub-sampled, individual samples were placed in 3D printed 

sample cells wrapped in mylar tape.  The sulfur- and metal-free mylar tape 

acted as a secondary containment of the sample and prevention of 

contamination of the cryostat.  Each sample was then held in place with several 

frozen drops of glycerol.  The printed sample cells were then marked and stored 

in either a plasmid box or 50 ml Falcon tubes in a -80 °C freezer (Toxicology 

Center).  If the printed cells were stored in Falcon tubes, they were only stored 

in groups of two separated by several sheets of Kimwipes to avoid any cross-

contamination.  All samples were then transported to SSRL on dry ice and kept 

in a -80°C freezer once at the facility.    

 

Samples, inside the custom sediment sample holder (Fig. 3.2) were analyzed at 

~ 10 K in a liquid helium cooled cryostat (CF1208, Oxford Instruments) on 

beamline 9-3 at SSRL. Beamline 9-3 comprises an upstream collimating Rh-

coated mirror, a Si(220) double crystal monochromator, and a downstream 
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focusing mirror, also Rh-coated. A beam size of 0.1 or 0.25 x 2.12 mm (height x 

width) was achieved using slits upstream of the I0 ion chamber detector, which 

was filled with nitrogen gas.  Sediment cores were oriented at 45° to the 

incident beam and fluorescence intensities were measured using a multi-

element germanium detector.  A 3 absorption length As filter placed in front of a 

Soller slit was utilized to selectively reduce scatter into the detector and causing 

non-linearities.  A near-edge spectrum (12645 to 12855 eV) was collected for 

each 0.10 or 0.25 mm step across the face of the sediment.  Sample spectra 

were fit using linear combination fitting to deduce the relative contributions of 

standards to the spectrum of the unknown.  

 

The 9-3 detector setup allowed the analysis of multiple elements using the 

second set of SCA windows on the detector and this was used to gain 

additional information about other elements of interest in the sample, namely 

As, Fe, Ni, Cu, Zn, and Mn.  In order to achieve this, after the sediment sample 

was analyzed for Se, the second set of SCA windows was selected. Additionally 

the filters, downstream of the sample and before the Soller slits, were changed 

from As to Ti and to compensate for the higher count rates an upstream 0.25 

mm Al filter was also used to attenuate the incident beam.  The filters were 

changed as an As filter would block all the fluorescence from the lower Z 

elements.  Titanium reduces fluorescence from any lower elements such as K, 

Ca or lower while not significantly attenuating fluorescence from the elements of 

interest.  Using the same step sizes that were performed on the core during Se 

analysis, depth profiles at 0.10 and 0.25 mm were achieved. 

 

All XAS data collected was processed with the EXAFSPAK suite (George and 

Pickering, 1993).  Processing included background subtraction, normalization 

and fitting using linear combination fitting (Fig. 4.3).  Data fitting was done using 

linear combination fitting which employs fitting several standard spectra to an 
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unknown spectrum.  Each standard spectra is scaled by a constant coefficient 

and added to one another until the unknown spectrum can be replicated.  The 

constant coefficients give an idea of the percentage that each standard 

spectrum makes up an unknown spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3.  Schematic of a samples’ life from collection to data presentation.  All data analysis 

was performed in EXAFSPAK (George and Pickering, 1993) using models A) process, B) pca, 

C) datfit, and D) muldat 
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4.4.  Results 

Initial depth profiles of sediment cores from F2 and U3 using the newly 

designed sediment sample holder demonstrated an increasing trend of total Se 

signal, as measured by the size of the absorption edge jump measured in 

fluorescence, as the depth increased within the core samples (Fig. 4.3 and 4.4).  

It is possible that this increase may be attributed to sediment grain size and/or 

density; however, the possibility of bacterial contributions cannot be ruled out.  

The increase in Se may also be representative of the bacterial community as a 

function of depth, and the presence of bacteria may provide another source of 

Se for benthic invertebrates.  The transmission data, concurrently collected with 

fluorescence, will also fortify the location of the sediment-water interface (Fig. 

4.4B).  While a density change is observed across the sediment-water interface, 

via transmission, fluorescence data shows that the transition of Se over this 

interface is more gradual (Fig. 4.3 and 4.4A).  Previous studies by 

Wiramanaden et al. showed evidence of a correlation between total organic 

carbon (TOC) and Se concentration (Wiramanaden et al., 2010b); therefore, 

smaller grain sizes and higher density may provide more surface area and 

possibly higher Se concentrations.  The preliminary results for Fox and 

Unknown Lake both show a similar Se trend as a function of depth; however, 

differences are seen in Unknown Lake in that it exhibits an oxidized Se species, 

selenite, at further depths which are not found in Fox Lake at equivalent depths 

(Table 4.2).   
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Fig. 4.4. Se species as a function of depth in a Fox Lake site 1 sample: elemental Se (Se0), 

selenomethionine (SeMet), dimethyl selenoxide (DMSeO), and selenite, Black arrow roughly 

denotes location of the sediment-water interface.  Note the change in y-axis increments, from 

100 to 250 µm increments once the sediment water interface has been crossed, denoted by the 

black arrow. 
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Fig. 4.5.  (A)  Selenium depth profile of the 1
st
 cm of a Fox Lake core,  graphed to emphasize 

the increasing trend of Se as a function of depth.  (B)  Graphed absorbance data, at 12680 eV, 

of another Fox Lake core as a function of depth, more absorption is observed as depth 

increases.  Black arrows roughly denotes the location of the sediment-water interface.  Note the 

change in y-axis increments as once the sediment water interface has been crossed with 100 

µm increments, 250 µm step sizes were utilized. 
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For the 1st cm of a U2 core, 2 replicates were made and the values obtained 

from fitting were averaged.  For sediments where a full sediment depth profile 

was collected, 1st cm of U2 and the entire F3 core, resulting spectra were 

grouped in 10 to provide a better signal to noise ratio for fitting.  A water leak in 

the beamline vacuum chamber resulted in the loss of our beamtime on 

beamline 9-3.  Thus, collection of a high-resolution sediment depth profile of U2 

was not possible. Therefore, depths exceeding 1 cm for U2 were performed as 

homogenized 0.5 cm sediment sections on beamline 7-3, similar to the work 

performed by Wiramanaden et al. (Wiramanaden et al., 2010a), and values 

from the fits were averaged.   

 

The majority of Se present in all sediment sections analyzed was 

selenomethionine or elemental Se species and a small fraction was in the form 

of selenite (Table 4.2).  The presence and bioavailability of a selenomethionine 

species is most likely due to the presence of organisms or decaying organic 

matter, and may contribute as a source of Se bioaccumulation.  A vast majority 

of the Se species found originates from the effluent and have been chemically 

changed via reduction.  Reduction of Se can occur biotically or abiotically.  It is 

known that bacteria can reduce Se to an elemental form (Oremland et al., 

1989); however, it has also been shown that this reduction can occur via iron (II, 

III) oxide and green rust surfaces (Myneni et al., 1997). 
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1st cm 2nd cm 3rd cm 4th cm 

F3R1 U2 (Avg) F3R1 U2R3 F3R1 U2R3 U2R3 

Se0 27 (1) 27 (1) 42 (1) 50 (1) 43 (1) 65 (1) 52 (1) 

SeMet 61 (1) 38 (1) 58 (1) 37 (1) 58 (1) 24 (2) 32 (1) 

FeSe   36 (2)          

DMSeO 10 (1)            

Selenite 10 (1) 6 (1)   9 (1)  9 (1)   

Table 4.2.  The average percentage of composition result of Se species found at various depths 

in both Unknown and Fox Lake with the bracketed values representing three times the 

estimated standard deviation.   

 

Selenoxides (R-SeO-R), modeled as dimethyl selenoxide (DMSeO) were only 

present in sediment samples from Fox Lake.  Selenoxides (R-SeO-R) include 

methionine selenoxide, an oxidation product of selenomethionine.  Selenoxides 

are only observed in the 1st cm of Fox Lake, which is close to the sediment-

water interface, where a larger chance for oxidation of selenomethionine can 

occur. 

 

A metal selenide, modeled as iron selenide, was only found in Unknown Lake 

sediments.  The presence of a metal selenide is not unusual (Wiramanaden et 

al., 2010a); however, if what is found is truly iron selenide, this may be due to 

the mineral ferroselite, a FeSe2 mineral.  As the presence of a metal selenide 

was only observed in Unknown Lake, this further emphasizes the heterogeneity 

of a lake system.   

 

A peak for Fe, As, and Mn was observed in the 1st cm before returning to a 

background level for the remaining analyzed depths (Fig. 4.5).  This increase, 

represented by increasing edge jumps (Fig. 4.5), is thought to represent the 

redox boundary present in the sediment depth profile.  An increase in sediment 
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depth results in a more anoxic environment, causing the reduction of 

compounds.  In the case of Fe, Mn, and As, once reduced they can become 

mobile, and may mobilize upwards towards the surface; once these elements 

become exposed to oxygen, they will become oxidized and immobile again, 

thus representing the redox boundary (Boyle, 2001; Cornwell, 1986; Li and 

MacDonald, 2005; and Peramaki et al., 2006).  As more sediment is deposited, 

the previous oxidized layer now becomes anoxic allowing reduction to occur 

again with mobilization of the elements.  Therefore, this continuing cycle causes 

the redox boundary to be actively moving.  This redox boundary is observed 

primarily in Fox Lake; however, a small peak is observed in Unknown Lake at a 

similar depth to that found in Fox Lake, possibly suggesting that the redox 

boundary is located at roughly the same depth in the two lakes.  Arsenic is most 

likely not a naturally occurring element in such high concentrations; therefore, 

the As found at the redox boundary is most likely attributed to the effluent.  This 

redox boundary also seems to correlate with an increase in Se.  The Se depth 

profile shows an increase to a maximum in the 1st cm, and then decreases and 

remains at a more constant level, for 3 cm of depth.  This overlaps nicely with 

the other elements as the redox boundary may act as a layer were reduction of 

Se may occur.  Iron (II, III) oxide in addition to green rust has been shown to act 

as reduction sites for Se (Myneni et al., 1997).  After Se has interacted with the 

redox boundary and become reduced, it may accumulate and remain as 

elemental Se or selenomethionine.  This would explain why Se does not 

decrease in concentration but increases and remains steady, in contrast to the 

profiles of the other elements.  Obtaining X-ray absorption near-edge structure 

of Fe and Mn would provide more information on the present redox status; 

however, substantially more beamtime and data processing time would be 

required.  It is important to note that Fig. 4.5 assumes a uniform thickness and 

matrix composition are present throughout the entirety of the core depth, as we 

assume that the size of the edge jump equates to the level of the element 

present.    
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Fig.  4.6.  Graph depicting the trend of other elements as a function of depth for Fox Lake site 3.  

The black arrow denotes the rough location of the sediment-water interface. 
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Thus, throughout the depths of the sampled cores, bioavailable species 

including selenomethionine species and selenite were present. Elemental Se 

also may be, to some degree, bioavailable (Gao et al., 2000; and Zhang et al., 

2001).  Such species may be taken up by benthic invertebrates and may be 

bioaccumulated through the food chain.  Therefore, understanding the 

bioavailable species present to lower trophic organisms is important in 

understanding the bioaccumulation of Se into higher level trophic organisms.   
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Chapter 5 - Chironomids 

5.1  Abstract 

A lake system, downstream of a U milling operation in Northern Saskatchewan, 

has been receiving treated metal mine effluent which has increased 

concentrations of selenium (Se) in its aquatic ecosystem.  An important step in 

the transfer of Se through the food chain is the bioaccumulation of Se by 

chironomids, benthic invertebrates, that serve as a food source for higher 

trophic level organisms, especially fish. Chironomids have been shown to be 

excellent health markers for aquatic ecosystems as they are ubiquitous and 

some species are primary consumers.  In this study, chironomids were sampled 

from various lakes downstream of a U milling operation.  For comparison, 

Chironomus dilutus (Chironomidae) were reared in the laboratory and exposed 

to water spiked with selenate, selenite, or seleno-DL-methionine at the average 

water concentration of Se found in the respective lakes to mimic field 

conditions.  Synchrotron based XAS and XRF imaging techniques were used to 

compare laboratory reared chironomids with those collected in the field to give a 

better understanding by which Se is taken up by this trophic level of the aquatic 

ecosystem.  Field and laboratory reared chironomids showed similar tissue Se 

speciation and localization.  These results suggest that organic Se species R-

Se-Se-R and R-Se-R, modeled as selenocystine and selenomethionine 

respectively, are the major forms of Se in the chironomid tissue.  However, 

water may not be the dominant exposure route, as concentrations found in 

laboratory reared chironomids were substantially below the concentrations 

found in field chironomids.  

 

5.2.  Introduction 

Selenium is an important micronutrient required by many organisms.  However, 

above a rather narrow beneficial range Se can be toxic.  In nature, Se can be 

found in oxidation states ranging from - 2 to + 6.  The valence and coordination 
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of Se radically affects its mobility, bioavailability, and toxicity (Geering et al., 

1968; and Elrashidi et al., 1987); therefore, analysis on the chemical form of Se 

is important.  Selenium run-off from disposal areas such as for copper 

purification (Thomassen et al., 2004), sulfuric acid production (Reilly, 1996) or U 

processing (IAE, 1989) may affect local aquatic systems.  Selenium has a 

tendency to biomagnify through the food chain, such that relatively low levels in 

surface waters can lead to significantly higher levels for top predators (Hymer 

and Caruso, 2006).  High Se levels in wildlife have known toxic effects including 

general tissue damage, reproductive failure, and teratogenic effects (Lemly, 

1996; Lemly, 1997; Maier and Knight, 1994).  Since Se has similar chemistry to 

that of sulfur, high levels of Se can cause accidental formation and 

incorporation of the amino acid selenomethionine in place of methionine into 

proteins.  However, Se is required for the essential amino acid selenocysteine, 

which is necessary for the formation of many enzymes (Stadtman, 1991).  

Unlike selenomethionine, the production and incorporation of selenocysteine 

into proteins is highly specific and most likely will not occur accidentally.   

 

The Kesterson National Wildlife Refuge incident is a well-documented example 

of how an excess amount of Se has been shown to pose health risks.  The 

Kesterson Reservoir was once utilized as an evaporation pond for agricultural 

drainage waters.  The continual drainage over a long period of time increased 

concentrations of Se, which led to decreased wildlife reproduction and 

increased deaths, with waterfowl affected more than the sampled mammals and 

rodents (Clark, 1987; and Ohlendorf and Hothem, 1987).    

 

In the present case, a lake system in Northern Saskatchewan, 57º12’N, 

105º41’W (Fig. 5.1), has been receiving treated metal mine effluent from a 

nearby U milling operation (Wiramanaden et al., 2010a; and Wiramanaden et 

al., 2010b).  The effluent was found to raise surface water Se levels with 

respect to surrounding unaffected lakes (Wiramanaden et al., 2010a).   

Previous research has demonstrated that elevated levels of Se can cause larval 
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deformities in northern pike (Esox lucius)  (Muscatello et al., 2006); however, 

this cannot be attributed solely to Se, as the effluent is comprised of many 

compounds, and the exact mechanisms and routes by which Se or other 

species of concern enter and propagate through the aquatic food chain are not 

yet fully understood.  To study the elevated Se, field chironomids obtained from 

the affected lake system were compared with laboratory reared C. dilutus 

reared in water spiked with various Se species.  This study builds on previous 

work by Franz et al. (2011) and by Wiramanaden et al. (2010a and 2010b) in 

characterizing the Key Lake aquatic ecosystem. In the present study we have 

combined synchrotron XAS and XRF to study the speciation and localization of 

Se in chironomids, respectively. Our study provides insights into the localization 

and route by which Se is transferred through an aquatic ecosystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1.  A schematic map depicting the locations chosen for sediment and chironomid 

sampling.  Yeoung Lake is located 8.2 km SE of Fox and Unknown Lake and was chosen as 

the reference lake.   
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5.3.  Materials and Methods 

5.3.1.  Field Chironomids 

A mixture of various chironomid species and ages was taken from Fox, 

Unknown, and Yeoung Lakes during the 2009 field season, Jun 11-16th.  

Yeoung is part of a separated lake system located 8.2km SE of Fox and 

Unknown Lake and was chosen as the reference site.  Samples were taken 

from F2 and F3, representative of the inflow and outflow of Fox Lake, closer to 

the effluent source; U2 and U3 from Unknown Lake, downstream of Fox Lake 

(Table 4.1).  Sediment grabs, via an Ekman Grab, were sieved through a 500 

µm sieve bucket, placed in a cooler with site water, and transported to an onsite 

environmental shed.  Within 24 hours, each cooler was further inspected for the 

presence of chironomids.  Any chironomids found were removed using PTFE 

coated tweezers (T5665 Sigma Aldrich) and then placed in a petri dish 

containing 50 μm sieved site water.  Chironomids chosen for XRF imaging were 

1-2 cm and exhibited the characteristic “bloodworm” redness.  Those chosen 

were preserved at 4°C for later imaging experiments in either a 70% ethanol 

(EtOH)/Barnstead water solution or a 70% EtOH/50μm filtered site water 

solution.  The remaining chironomids were pooled into 2ml Eppendorf tubes, 

frozen in liquid nitrogen to preserve Se speciation, and stored at -20ºC for later 

analysis via bulk XAS and ICP-MS.  Late thawing of lakes delayed life cycles of 

the chironomids; therefore, insufficient chironomids for ICP-MS were collected 

during our field season.  More chironomids were collected by MSc candidate 

Eric Franz (K. Liber) during the month of July, and combined with chironomids 

collected in June for ICP-MS analysis; however, insufficient amount Yeoung 

Lake chironomids prevented analysis via ICP-MS.  A beamtime experiment at 

SSRL was scheduled 10 days after our field season in 2009.  Therefore, all 

subsequent laboratory chironomid exposures were planned to end 10 days prior 

to a scheduled beamtime, to match the preservation time of the field 

chironomids.   
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Several preservatives, as suggested by laboratory members and those of 

Donald and Paterson (1977) and Morales et al (2011), were tested with 

laboratory C. dilutus to determine the ideal preservative.  Chironomids were 

kept in the solution for ten days and then evaluated based on their flexibility, 

colour, and presence of surface disruptions (Table 5.1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1.  Results of various preservative solutions utilized on chironomids. 

 

 

 

Preservative Observations

10% Neutral Buffered Formalin

(NBF) + Barnstead Water

 Still flexible

 No longer red/ brownish with some green

 A bit more rigid than the past tries

 No visible cracks/cuts/leaks/etc…

10% NBF + filtered site water  Still flexible

 More rigid than above

 No more red/ lighter brown and almost no green

 No visible cracks/cuts/leaks/etc…

10% NBF  Flexible but rigid near edges

 Brownish/green

 No visible cracks/cuts/leaks/etc…

5% NBF  Quite rigid

 Similar to 10% NBF – quite opaque

 More brownish/some green

 No visible cracks/cuts/leaks/etc…

70% Ethanol (EtOH) +

Barnstead Water

 Some were flexible

 Much more red than the above tries

 No visible cracks/cuts/leaks/etc…

 Less of a health hazard

70% EtOH + filtered site water  A bit rigid, but should still be flexible enough

 Very weak pink, mostly white

 No visible cracks/cuts/leaks/etc…
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The results of the laboratory test, as well as previous research, demonstrated 

that the two “best” preservatives were 70% EtOH + Barnstead water and 70% 

EtOH + filtered site water to prevent biomass lost (Black and Dodson, 2003; 

and Gaston et al., 1996).  Thus from each benthic grab, 2 to 3 chironomids 

were placed in each preservative.   

 

5.3.2. Laboratory chironomids 

Chironomus dilutus were chosen because it was readily available, from an in 

house culture (Toxicology Center, University of Sasaktchewan, Saskatoon, 

Saskatchewan, Canada), and is representative of the local species that serve 

as a food source for predators, and thus a vector for Se bioaccumulation 

through a food chain.  Their extensive characterization and relatively short life 

cycle, 23-30 days, make chironomids ideal for exposure studies (Benoit et al., 

1997; Leung et al., 2004; and Choi et al., 1999).  The laboratory reared C. 

dilutus were raised in one of two water exposures spiked with one of three Se 

species.  One water exposure was performed in dechlorinated water for 10-

days, followed by a 10-day depuration period during where the raising of C. 

dilutus was continued in dechlorinated water without any Se additions.  Another 

10-day uptake exposure was carried out in Barnstead water (Barnstead 

NANOpure Diamond, 18.2 MΩ-cm) to eliminate any extraneous sources of Se, 

as the dechlorinated water can contain trace amounts of Se (City of Saskatoon 

Water Treatment Plant, 2009). In both water treatment scenarios, the water was 

spiked with prepared sodium selenate (Na2SeO4), sodium selenite (Na2SeO3), 

or seleno-DL-methionine (C5H11NO2Se) as described below.  Selenate and 

selenite were chosen as they are the predominant forms found in surface 

waters, and are the most abundant bioavailable forms of Se found in the 

environment (Besser et al., 1993; and Fleet-Stalder et al., 2000).  

Selenomethionine was chosen as it is readily found in nature, from accidental 

incorporation into proteins to decaying organic matter.   
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To mimic environmental field conditions, chironomids were reared in the 

laboratory using a modification of the method of Franz et al. (2011).  Beakers 

(300 mL Pyrex) were prepared with 96 ± 10 g of washed silica sand (Granusil 

silica fillers) and 200 mL of spiked water with constant aeration by bubblers 

(Optima).  The average Se concentrations, determined by ICP-MS, in the water 

of Fox Lake and Unknown Lake, 10.3 ± 0.4 and 3.9 ± 0.3 µg L-1, respectively, 

were used as the environmentally relevant concentrations to perform laboratory 

based water exposures.  Stock 110 mg L-1 solutions of Na2SeO4 (Aldrich), 

Na2SeO3 (Alfa Aesar), and C5H11NO2Se (Sigma) were prepared with Barnstead 

water on day 0.  The stock solutions were diluted 1: 10 followed by a 1 : 1000 or 

1 : 2750 dilution to represent Fox and Unknown Lake Se water concentrations, 

respectively, every 3 days for a water change.  In addition, water quality tests 

were performed before and after every water change. Every day, the dissolved 

oxygen (Orion 3 Star DO Portable, DO Probe 081010MD, Thermo Scientific) 

content was measured.  Chironomid food was prepared by blending 10 g of fish 

flakes (Sera pond bio flakes) in 100 mL of Barnstead water on day 0.  The 

mixture was aliquoted into 50 mL Falcon tubes, frozen, and then was diluted 

1:10 every day to feed 1 mL to each beaker containing 10 chironomids.  Each 

treatment was performed in triplicate to yield sufficient chironomids for ICP-MS, 

synchrotron XRF and XAS.  For both the 10 day exposure and the 10 day 

exposure followed by a 10 day depuration period, 1 to 2 chironomids were 

removed at the 10 day and 20 day (if applicable) time points and were 

preserved in a 70% ethanol solution for synchrotron XRF imaging.  The 

remaining chironomids were separated into two groups, either frozen for 

speciation analysis by XAS or set aside for total Se content analysis by ICP-MS. 

 

The 10-day uptake in Barnstead water produced the averages of dissolved 

oxygen (7.5 ± 0.4 mg mL-1), conductivity (30 ± 12 µS cm-1), pH (7.5 ± 0.1), 

alkalinity (12.8 ± 4.3 mg L-1 of CaCO3), and hardness (78.0 ± 3.7 mg L-1 of 

CaCO3).  For a 10-day uptake followed by a 10-day depuration in dechlorinated 
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water, the following values were obtained for dissolved oxygen (8.32 ± 0.16 mg 

mL-1), conductivity (432 ± 4 µS cm-1), pH (8.21 ± 0.01), alkalinity (111 ± 3 mg L-1 

of CaCO3), and hardness (137 ± 1 mg L-1 of CaCO3).  Both water treatments 

had ammonia values that were below the detection limits, < 0.02 mg L-1 

(Ammonia Nitrogen Test Kit.  Low Range Method.  La Motte, USA). 

 

5.3.3. Total Selenium Analysis Using ICP-MS 

All chironomids were dried for several days in a drying oven at 60°C until 

masses were constant.  Dried samples were cold digested using nitric acid 

(Omnitrace Ultra, EM Science) and hydrogen peroxide (Super Pure; EMD 

Chemicals).  Samples were measured at the Toxicology Center (University of 

Saskatchewan, Saskatoon, SK) using ICPMS (X Series II Thermo Electron 

Corporation, Waltham, MA, USA) and analyzed for 80Se using collision cell 

technology as described previously by Wiramanaden et al. (2010b).  A standard 

reference material (SRM), Tort-2 (Lobster hepatopancrease, NRC) was used.  

Triplicates of SRM were within the certified value of 5.63 ± 0.67 mg kg-1 

(Wiramanaden et al., 2010b). 

 

5.3.4. Synchrotron X-ray Absorption Spectroscopy (XAS) 

X-ray absorption spectroscopy (XAS) analysis can provide information on the 

oxidation state, nature of the ligands and coordination geometry of a given 

element in a complex sample.  Therefore, XAS is sensitive to the chemical form 

of a compound since binding energies of core electrons are characteristic for 

each species. However, XAS cannot distinguish specific molecules but rather 

the type of local bonding environment around the element; for example, in the 

case of selenomethionine, XAS will deduce the presence of two local aliphatic 

groups around Se (R-Se-R) and we can only draw the conclusion of a 

selenomethionine-like compound rather than specifically selenomethionine, and 

similar arguments apply to selenocystine (R-Se-Se-R). Though the majority of 
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endogenous Se is found as selenocysteine incorporated into proteins, the 

dimerized form, selenocystine, is often used when fitting spectra.  This is 

because the selenol (Se-H) group in the selenocysteine monomeric form is very 

unstable, and thus is unlikely to be found in organisms.  The spectrum of a 

mixture of more than one chemical form of an element appears as the sum of 

the spectra of the individual components.  Linear combination fitting is used to 

deduce the relative contributions of standards to the spectrum of the unknown.  

 

Frozen chironomids for XAS analysis were crushed with a liquid nitrogen cooled 

agate mortar and pestle.  The cooling helped to prevent speciation changes and 

allowed for easier crushing of chironomids into a homogeneous powder.  

Maintained at liquid nitrogen temperatures, homogenized chironomids were 

packed tightly into custom printed 2 mm path length cuvettes, sealed with a 

drop of glycerol, and stored in liquid nitrogen. 

  

XAS data were collected on the structural molecular biology beamlines 7-3 and 

9-3 at the Stanford Synchrotron Radiation Lightsource (SSRL) located in Menlo 

Park, California, USA with a Si(220) double crystal monochromator.  A 15 keV 

cutoff was achieved by adjusting the angle of the upstream Rh-coated vertically 

collimating mirror; 9-3 additionally has a downstream focusing mirror, also Rh-

coated.  A 1.0 x 8.0 mm (height x width) beam was defined by upstream slits.   

Incident and transmitted intensities were recording using N2-filled ion chambers.  

Samples were measured at 45º to the incident beam and were maintained at 

10K using a flowing liquid helium cryostat (Oxford Instruments).  Se Kα 

fluorescence was measured using a 30-element germanium detector 

(Canberra); arsenic filters and Soller slits were used to enhance the Se 

fluorescence signal by selectively preventing scatter from entering the detector, 

thus maintaining the detector count rates in a pseudolinear regime.  A 

downstream elemental Se foil was used for continuous energy calibration 
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during data acquisition; the first energy inflection of the foil was assumed to be 

12658.0 eV.  Data analysis, which includes background subtraction, 

normalization, and data fitting by linear combination fitting was performed using 

the EXAFSPAK program suite (George and Pickering, 1993), as previously 

described in 4.3. 

 

5.3.5. Synchrotron X-ray Fluorescence (XRF) Imaging 

Chironomids were kept in the preservative solution for no more than 25 days at 

4ºC prior to XRF imaging measurements, to minimize any possible degradation 

of the sample.  XRF imaging was performed on beamline 10-2 at SSRL.  

Chironomids were placed between two sheets of polypropylene and mounted at 

90º to the incident beam.  To prevent dehydration of the sample, a small piece 

of Kimwipe soaked in preservative was placed between the sheets outside of 

the field of view.  A Si(111) crystal was used to achieve an incident energy of 

13.45 keV, just below the bromine edge (Br) to avoid possible excitation of Br 

Kα fluorescence, as Br is found commonly in plastics and other materials in the 

beamline environment.  X-ray fluorescence was detected using a single element 

vortex detector, positioned at approximately 45 to the sample.  A 50 µm 

incident beam defocused spot size was achieved downstream of the focal spot 

of a tapered glass capillary optic.  Measurements used a sampling rate of 0.3s 

per 30 µm increment in continuous scan mode across the chironomid.  Data 

were processed using Sam’s microprobe analysis kit (SMAK), written by Sam 

Webb (Webb, 2010).  Data processing included removal both of scatter (Fig. 

5.2) and of anomalously high pixels that would cause improper intensity scaling, 

possibly attributed to occasional dust particles. 

 

The absolute quantification using XRF of metal concentration in a thick and 

irregularly shaped object is challenging and cannot be done precisely without 

significant additional measurements of beam pathlengths.  The measurements 
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presented herein are therefore on relative, rather than absolute scales.  

Chironomids reared at the same time under different treatments were imaged 

together during the same beamtime with the same conditions, thus the intensity 

scales should be directly comparable.  However, since different beamtime 

experimental runs are often spaced months apart, minor equipment 

adjustments do not allow data sets collected from different beamtimes to be 

directly comparable in terms of intensities.  These minor adjustments included 

varied distances between the sample and the capillary, as the sample mounting 

media was not rigid, and varied distances and angles between the sample and 

the detector.  Despite these changes, the relative anatomical localization for a 

given elemental map can be compared across all the treatments. 



 

 1 

   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2.  Outline of how chironomids imaging results are processed.  Step 1.  The Se channel is divided by the scatter channel (Se/Sca).  Step 2.  

Data is averaged along the X-axis to determine a constant value (c, red arrow) for the background.  Step 3.  The scatter channel is multiplied by 

the constant c (cSca).  Step 4. The original Se channel has the cSca channel subtracted from it to reveal the true Se image with minimal 

contribution from the scatter. 
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5.4.  Results 

5.4.1. X-ray Absorption Spectroscopy 

XAS may be used to investigate the chemical speciation of trace levels of 

environmental contaminants in biota essentially without any pretreatment.  

Currently, the concentration of Se is the most commonly used criteria in 

assessing environmental risk of different environmental components such as 

water, sediments, macroinvertebrates, and fish. However, information on the 

chemical form of Se in the various environmental components is needed to give 

a more refined indication of the risk (Andrahennadi et al., 2007).  

 

XAS Se speciation analysis of chironomid tissue, comparing field chironomids 

and those reared in the laboratory, was carried out in order to provide a better 

understanding of the Se species implicated in bioaccumulation in high-level Se 

aquatic ecosystems (Fig. 5.3).  Results of XAS analysis (Fig. 5.4) suggest that 

the dominant form of Se in chironomids, from both field and laboratory, are 

organic – selenomethionine-like and selenocystine-like species (Table 5.2).  For 

laboratory reared chironomids, a selenocystine-like species was the dominant 

form found in both control and selenate exposed chironomids (Table 5.2).  In 

selenite and selenomethionine exposed chironomids, both selenomethionine- 

and selenocystine-like species were observed; however, the predominant form 

was a selenomethionine-like species (Table 5.2).  In terms of total selenium in 

the chironomids (Table 5.2), levels were seen to increase in the order of 

bioavailability (control < selenate < selenite < selenomethionine). 
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Fig. 5.3. Se K-edge XAS of whole chironomids from the field and laboratory.  A) Field 

chironomids from Fox Lake (F) and Unknown Lake (U) sites 2 and 3, B) chironomids reared in 

the laboratory with a 10-day uptake in Barnstead water, and C) chironomids reared in the 

laboratory with a 10-day uptake and 10-day depuration in dechlorinated water.  [F] and [U] 

represent the Se concentration in the spiked water, chosen to be equivalent to that of Fox Lake 

(11 µg L
-1

) or Unknown Lake (4 µg L
-1

), respectively.   
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Fig. 5.4.  Se K near-edge XAS spectra showing results of least squares fitting for field 

chironomids, (A) Fox Lake site 2 and (B) Unknown Lake site 2 



 

 

Table 5.2. Synchrotron XAS and ICP-MS results of chironomids collected from the field and laboratory.  Values for XAS results represent relative 

percentages with three times the estimated standard deviations in brackets.  The bracketed values under ICP-MS represent the error. 

a: Samples were below detection limits of the beamline, thus spectra were not able to be properly fit. 

 

 

Laboratory: 

 

 

Exposure 

 

Se Species Present 

 

CysSeSeCys SeMet Selenite Selenate Me3SeI
-
 FeSe ICP-MS 

mg kg
-1

 

Barnstead H2O: Control 63 (12)  5 (3)   32 (13) 0.60 (0.05) 

Selenate 89 (9)   8 (3) 11 (7)  0.74 (0.01) 

Selenite 25 (14) 48 (9)  2 (0.1) 13 (3) 11 (8) 2.02 (0.01) 

SeMet (11 µg L
-1

) 24 (16) 48 (11)  2 (0.1) 9 (3) 17 (10) 62.7 (0.3) 

SeMet (4  µg L
-1

) 77 (16) 35 (16)     N/A 

Dechlorinated H2O 
with depuration: 

Control
a
       1.4 (0.1) 

Selenate
a
       0.50 (0.04) 

Selenite 59 (14) 39 (14)     3.1 (0.1) 

SeMet (11  µg L
-1

) 40 (12) 70 (12)     6.4 (0.2) 

Field: Fox Lake Site 2 10 (9) 55 (5)    36 (6) 77.8 (0.1) 

Fox Lake Site 3 34 (11) 43 (6) 8 (1) 6 (0.6)  9 (7) 80.3 (0.1) 

Unknown Lake Site 2 25 (5) 43 (5) 33 (1)    20.9 (0.1) 

Unknown Lake Site 3 13 (12) 63 (6)    25 (7) 7.84 (0.1) 

7
1
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After a waterborne exposure to a lower concentration (4 µg L-1) of 

selenomethionine, the laboratory reared chironomids were found to have a 2 : 1 

ratio of selenocystine- to selenomethionine-like species compared with 0.6 : 1 

for the higher concentration of 11 µg L-1.  Previous studies of Franz et al. (2011) 

and Phibbs et al. (2011a and 2011b) made similar observations of a higher R-

Se-Se-R to R-Se-R ratio for lower Se exposure concentrations.  Additionally, 

chironomids that have undergone a 10-day depuration period show a larger 

ratio between selenocystine and selenomethionine-like species compared with 

their undepurated counterparts. Therefore, when the source of Se is eliminated, 

the organism appears to excrete or deplete its excess selenomethionine-like 

component; however, growth dilution of the already present Se cannot be ruled 

out.  In support of this, a decrease in total Se content is observed (Table 5.2) in 

chironomids sampled after a 10-day depuration compared with those analyzed 

after a 10-day uptake period.  Results of the laboratory reared chironomids in 

two different water conditions suggest that chironomids after a 10-day uptake 

and 10-day depuration contained similar species to those observed in 

chironomids from the Barnstead water exposure after a 10-day uptake.  

Although total Se levels are very low in the depurated cases, fits from both 

types of water exposures suggest that both the control and selenate exposures 

from both water experiments share a selenocystine-like Se species as the 

dominant species (Table 5.2).  Therefore, despite being reared in different types 

of water exposures, the laboratory-reared chironomids contained similar Se 

species at the end of the exposures.   

 

In comparison with the results obtained from laboratory-reared chironomids, 

similar speciation was found in chironomids obtained from the field, although 

there was a much higher concentration of Se in field chironomids than those 

reared in the laboratory.  Field chironomids have been exposed to a much more 

complex environment with elevated amounts of Se and throughout their 

lifecycle; they can also obtain Se from ingestion as well as via waterborne 
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sources.  Each of these might contribute to the significantly higher Se 

concentration observed compared to laboratory reared chironomids.  Despite 

the differences in concentration, both field and laboratory-reared chironomids 

displayed a selenomethionine-like species as the dominant form of Se.  Among 

the sampled field chironomids, the biggest difference in speciation was 

observed in the U2 chironomids (Table 5.2), which showed an increased 

contribution from metal selenide.  As lake beds are quite heterogeneous 

(Wiramanaden et al., 2010a; and Wiramanaden et al., 2010b), this increase in 

metal selenide could be due to an increased amount of this compound in the 

diet or in the water/sediment system. While care was taken to sample the same 

types of chironomids from the different sites, it is also possible that different 

chironomid species might have different uptakes.  This speciation distribution 

difference also appears to provide a different synchrotron XRF imaging result, 

as discussed below.  

 

Some similarities can be observed in Table 5.2 between field and laboratory 

chironomids.  A 1 : 1.5 (selenocystine : selenomethionine) ratio was observed in 

the selenite and selenomethionine laboratory exposures as well as F3 and U2 

from the field.  By contrast, a 1 : 5.2 (selenocystine : selenomethionine) ratio is 

observed for both F2 and U3.  These observations help reinforce the site 

specificity in an aquatic ecosystem.  Wiramanaden et al (2010b) performed 

analysis on the percentage of sand in collected cores revealing that 26% of 

sediment from Fox 2 was sandy, 95% for Fox 3, 52% for Unknown 2, and 5% 

for Unknown 3. High sand content generally has less organic material present in 

the sediment, and possibly therefore less selenomethionine available to 

chironomids. In support of this, the lower proportions of selenomethionine were 

observed in chironomids from F3 and U2 (Table 5.2) where the highest sand 

content is found. 
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5.4.2. X-ray Fluorescence Imaging 

The distribution of Se in chironomids was imaged concurrently with the 

distributions of As, Zn, Cu, Ni, Fe, and Mn.  An example of two chironomids with 

all elements displayed side-by-side is shown in Fig. 5.5.  Strong similarities are 

seen between chironomids taken from the field and those reared in the 

laboratory.  In both cases Se tended to accumulate around the head capsule, 

salivary gland and around the gut.  Selenium in the field chironomid seemed to 

accumulate more Se into the frontal region, possibly in the head capsule region 

(Fig. 5.5 and 5.6).  As waterborne exposure may not be the primary route of Se 

bioaccumulation, this may account for the absence in the laboratory-reared 

chironomids in the XRF results, as the Se concentration present may have been 

below the detection limit of the beamline.  Clearly, the method of Se uptake 

(food, water, absorption) is an important factor in how Se is biotransformed and 

transported throughout the organism.  There also seems to be a degree of co-

localization of Zn with Se, especially around the gut and in the head capsule 

and salivary gland region (Fig. 5.5), more noticeable in the field chironomid.   

 

 

 

 

 

 

 

 

 



 

 
 

75 

 

Fig. 5.5.  Synchrotron XRF imaging results of a Fox Lake site 3 chironomid and a laboratory 

chironomid reared in 14 µg L
-1

 selenomethionine water spiked exposure.  The scale bar 

represents 1 mm. 
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Fig. 5.6.  (A) Model anterior end, in a dorsal view, of a chironomid (modified from Yagi S., 1984) 

indicating hc) head capsule, br) brain, sl) salivary glands, and gl) gut lining. (B) 11 µg L
-1

 

selenomethionine waterborne exposed laboratory reared chironomids in a sagittal view.  (C) F3 

chironomid, in a sagittal view.  The scale bars represent 1 mm. 
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The remaining elements, As, Ni, Cu, Fe, and Mn seem to be localized similarly 

in both types of chironomids (Fig. 5.5 and 5.7-9).  All were present in the gut, 

not locally found elsewhere in the chironomid.  Field chironomids, and to a less 

extent laboratory, additionally displayed “pellets” of elements in the gut, 

presumably taken up through ingestion.  As not much is found in any other 

region, it may suggest that if present in the tissue, it is present in very low 

concentrations, or that it is not absorbed through the gut lining at all.  In the 

case of As, it was found in the rectum, suggesting that it is on the way to being 

excreted. 

 

Fig. 5.5 displays the example results of a one field and laboratory reared 

chironomid.  However, similar results for the remaining field chironomids (F2, 

U2, and U3) and laboratory reared chironomids (control, Na2SeO3, and 

Na2SeO4) were also collected.  A chironomid that had gone through a 

depuration period was imaged to provide more insight into changes of Se 

localization if the main source of Se, water, is removed.  Following a 10-day 

depuration, the chironomid showed a lack of localization (data not shown), 

suggesting that present Se is below the detection limit of the beamline.  Some 

Se is expected to remain in tissues, as it is required for the organism’s survival. 

 

 

 

 



 

 
 

78 

  

Fig. 5.7.  XRF imaging results of field chironomids, (A) Yeoung Lake, (B) Unknown Lake site 2, (C) Unknown Lake site 3, (D) Fox Lake 

site 2, and E) Fox Lake site 3.  Images have been scaled such that chironomids of the same element are comparable.   
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Fig. 5.8.  XRF imaging results of field chironomids, (A) Yeoung Lake, (B) Unknown Lake site 2, (C) Unknown Lake site 3, (D) Fox Lake 

site 2, and E) Fox Lake site 3.  Images have been scaled such that chironomids of the same element are comparable.   
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Fig. 5.9.  XRF imaging results of field chironomids, (A) Yeoung Lake, (B) Unknown Lake site 2, (C) Unknown Lake site 3, (D) Fox Lake 

site 2, and E) Fox Lake site 3.  Images have been scaled such that chironomids of the same element are comparable.
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5.5. Discussion 

Combining synchrotron XAS and XRF provides insights into the speciation and 

localization of Se in biological samples.  In terms of Se speciation, there were 

similarities between the Se species present in chironomids analyzed after a 10-

day uptake or 10-day depuration period.  The majority of Se species present 

were selenomethionine- and selenocystine- like species.  In circumstances of 

high concentrations of Se in the surrounding environment, the Se taken up by 

the gut lining, head capsule, and salivary gland is possibly incorporating the Se 

as selenomethionine into proteins that may possess a high turnover rate or 

acting as a temporary Se storage/sink.  In chironomids reared with a 10-day 

depuration, the total Se concentration decreases and no specific Se 

localizations similar to chironomids imaged after a 10-day uptake were 

observed.  This trend was also observed by Franz et al. (2011), where after a 3-

day depuration the proportion of selenomethionine decreases and 

selenocystine increases.  Therefore, when the source of Se is eliminated, the 

proteins may return to utilizing S for methionine rather than Se.  The Se after a 

10-day depuration period may suggest the base level of Se in the chironomid, 

while un-depurated chironomids (10-day uptake) probably show the excess Se 

being taken up by the gut lining cells, salivary gland, and head capsule region 

(Fig. 5.5 and 5.6).  The diffusion or decreased concentration of Se in specific 

tissues may be resolved by imaging with a higher spatial resolution. 

 

While the values of dissolved oxygen and pH are relatively similar between the 

two different types of water exposure, differences are observed in conductivity, 

alkalinity, and hardness because of the substantial difference in the amount of 

ions between Barnstead and dechlorinated water. Even with the lack of ions, 

chironomids had > 97.4% survival.  Deaths were mainly attributed to difficulties 

experienced in acclimating to a new environment, when the chironomids were 

transferred from the holding tanks to exposure beakers.  Recent studies 

comparing fresh water and salt water exposures of Chironomus riparius and 
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Aedes aegypti have shown that besides varying rates of ion uptake, they are 

able to adjust to either condition and survive (Nguyen and Donini, 2010; Donini 

et al., 2007; and Jonusaite et al., 2011).  When the specimens were transferred 

from salt water to fresh water conditions an increase in the anal papillae was 

observed, allowing a greater surface for the absorption of scarce ions.  A 

greater concentration of Se was found in chironomids reared in Barnstead 

water spiked with selenomethionine, than those observed by Franz et al (2011). 

This may be attributed to the increased anal papillae resulting in a greater 

absorption of selenomethionine.  By contrast an increase in total Se 

concentration after selenite exposure is not observed.  It is possible that due to 

its negative charge, selenite may utilize different ion uptake channels than 

selenomethionine, which may undergo passive diffusion.  

 

The total concentrations of Se in the chironomid tissue (Table 5.2) show that 

with increasing distance from the mining effluent discharge, the total Se 

concentration in the chironomid decreases ([Se]U2 > [Se]U3, Table 5.2), which 

is also reflected by concentrations found in the surface water, whole sediment, 

pore water, and chironomids recorded by Wiramanaden et al. (Wiramanaden et 

al., 2010b).   Speciation results also demonstrated the presence of multiple Se 

species.  Though the study mainly focused on the trend between 

selenomethionine- and selenocystine-like species, other species are observed 

including a metal selenide (possibly FeSe), aqueous tri-methyl selenonium ion 

(Me3Se+), selenate (SeO4
2-), and selenite (SeO3

2-).  These species are 

expected, as chironomids can be non-specific feeders, and ingestion of 

sediment particles and compounds in the floc may lead to these species.  Metal 

selenides are most likely associated with the sediment particles, and Me3Se+ 

with urine excretion.  Selenite arises from the reduction of selenate, which is the 

major Se species in the effluent. After the 10-day depuration selenocystine- and 

selenomethionine-like species are the only species detectable, while at the 10-

day uptake time point, FeSe, SeO3
2-, and Me3Se+ are additionally observed.  



 

 
 

83 

Therefore, it seems that during the depuration period, because the total Se 

concentration decreases (Table 5.2), most of the Se is excreted rather than 

being transformed into another species.  This excretion can include urine, fecal 

matter, or secretion from the salivary glands to form the tubes in which they 

dwell.   

 

Comparisons between chironomids reared in the laboratory with those in the 

field provide similar speciation and localization profiles; however, differences 

are mainly found in the concentrations of total Se present.  This is consistent 

with the main route of Se exposure and accumulation being not through 

dissolved Se species in water.  Further work has been done demonstrating 

ingestion as the primary route of exposure (Franz et al., 2011). Results from 

chironomids reared in the laboratory did demonstrate that when exposed to an 

organic species, selenomethionine, the same Se speciation and localization is 

observed in chironomids collected from the field (Fig. 5.5 and 5.6).  Therefore, 

the Se accumulation seen in field chironomids may be due at least in part to an 

organic species of Se and more specifically possibly a selenomethionine-like 

species.  Chironomids do not possess the means to synthesize methionine 

(Spallholz and Hoffman, 2002); therefore, the methionine/selenomethionine 

must be obtained from another source that may include the diet or bacterial 

contributions either in the local environment or present in the gut.  The food 

given to the chironomids, containing wheat and wheat germ, contained low 

levels of Se, 0.38 ± 0.06 mg kg-1 (bio flakes (Sera Pond)).  In both field 

chironomids and selenomethionine and selenite water spiked laboratory 

chironomids, the percentage of selenomethionine in the fit was always greater 

than selenocystine.  In environments of high Se, accidental incorporation of 

selenomethionine into proteins will occur; however, the synthesis and 

incorporation of selenocystine is extremely specific.  In the selenate and control 

exposures, a greater percentage of the fit is attributed to selenocystine than 

selenomethionine.  This does not imply a greater total concentration of 
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selenocystine but that with a smaller percentage of selenomethionine, the 

selenocystine component becomes more pronounced.    

 

In XRF imaging on C. dilutus samples, Se was found to be accumulating in the 

head, salivary gland, and gut region.  Research on the Drosophila suggests that 

its genome may encode a possible three selenoproteins: selenophosphate 

synthetase 2 (SPS2), G-rich, and BthD (Martin-Romero et al., 2001).  SPS 2 is 

thought to accumulate in the brain during growth, while BthD is shown to 

accumulate in the salivary glands and may help with oxidative stress, vitality, 

and viability (Martin-Romero et al., 2001; and Hirosawa-Takamori et al., 2004).  

The present research will help further emphasize and verify the localizations of 

Se that may be attributed to selenoprotein analogs of those found in Drosophila.    

 

Thus, the combination of synchrotron XAS and XRF can provide new insight 

into the speciation and localization of Se within chironomids.  Monitoring and 

analyzing chironomids on a daily basis could provide a better understanding on 

the biotransfer and biotransformation of Se, as one could examine the uptake 

and loss of specific Se species as well as where and if localizations of Se may 

change.  What should be also noted is even though the chironomids are 

exposed to concentrations of only 11 µg L-1, Fox Lake, 4 µg L-1, Unknown Lake, 

they have the ability to bioaccumulate Se to concentrations exceeding 7.5 mg 

kg-1 and up to 80 mg kg-1, or bioaccumulation factors ranging from 2000 – 7300 

([Se] in the chironomids divided by [Se] in the water).  Therefore, the similarities 

observed in the distribution and speciation between field and laboratory 

chironomids suggest that a selenomethionine-like species is readily taken up 

and bioaccumulated. 
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Chapter 6 - Summary 

6.1.  Overall Summary 

This thesis is one component of a larger collaborative research program which 

aimed at a holistic approach to the study of the Key Lake aquatic 

ecosystem.  Individual projects encompassed studies of the water, sediment, 

benthic invertebrate community, and small fish inhabiting this lake system.  

Experimental designs ranges from purely field-based observations through to 

controlled laboratory simulations.   While work performed by Franz et al. (2011), 

Phibbs et al. (2011a and 2011b), and Wiramanaden et al. (2010a and 2010b), 

are mentioned throughout this thesis, the scope of this whole project does have 

a further reach.  Work performed by Driessnack et al., (2011) examined the 

effects on health and reproduction of fathead minnows (Pimephales promelas) 

when exposed to diluted effluent.  An increase in egg production was observed 

when fathead minnows were exposed to the 25% effluent; however, the eggs 

also were hatching early.  This sped up hatching process may contribute to the 

observed increased larval deformities and decreased larval survivability 

observed in this high treatment 5-days post hatch by preventing the proper and 

full maturation of the fish. 

 

In conjunction with studying the health and reproduction of fathead minnows, 

Goertzen et al., (2011) studied the effects of the effluent on their swimming 

performance and energy homeostasis.  They reported that no change in energy 

homeostasis was observed between fish in 5% diluted effluent and those in 

dechlorinated water; however, a change in the critical swim speed, Ucrit, was 

noticed (Goertzen et al., 2011).  This value, Ucrit, represents the endurance and 

maximal swim speed of the fish (Brett, 1964).  Though the exact mechanism for 

the decrease in Ucrit is not known, it is believed that effluent exposure may alter 

biochemical or metabolic cycles (Goertzen et al., 2011). 
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The research presented in this thesis focused on the sediments and benthic 

invertebrates from the Key Lake aquatic ecosystem.  These samples were 

chosen as they may function as points of entrance for foreign matter in the 

aquatic ecosystem present at the Key Lake site.  The results of studies of 

sediment and chironomids help give a better understanding of the methods by 

which Se may be entering the aquatic ecosystem.  Chironomids, or benthic 

invertebrates, were chosen because of their ubiquitous nature, the fact that they 

inhabit the sediment, and their previous use in toxicology studies (Maier and 

Knight, 1993; Benoit et al., 1996; Wise et al., 2001; Krantzberg and Stokes, 

1989; Krantzberg and Stokes, 1990; and Hare et al., 1991).  Therefore, 

understanding the routes of exposure by Se may provide insight into its 

mobilization throughout a food web. 

 

From the successful testing of the sediment sample holder (Chapter 3) 

analyzing small segments of a whole core at high resolution is achievable.  Prior 

work on sediment cores (Wiramanaden et al., 2010a) was done by extracting 1 

cm sections, grinding a homogeneous sample, and analyzing via bulk XAS.  

The new holder allowed intact 1 x 1 x 0.5 cm (length x height x width) sediment 

samples to be analyzed.  Combined with beamline motion controls, 100 and 

250 µm step profiles were obtained from the sediment sample.  Compared to 

previous research (Wiramanaden et al., 2010a; Tetsu et al., 1991; and Tetsu et 

al., 2008) a more detailed picture of the Se speciation changes and additional 

elements can be analyzed as a function of depth.  Obtaining depth profiles to 

this resolution is important in understanding, amongst other things, what (micro) 

organisms may be able to access the Se.  One can imagine that the microbial 

community can drastically vary as a function of depth, from more aerobic 

species to anaerobic ones, as less oxygen becomes available the further the 

depth increases (Machel and Foght, 2000; and Hansen and Blackburn, 1991).   
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It might be expected that oxidized species would dominate over reduced 

species at the surface of sediments, whereas as the depth increases reduced 

species predominate, and these effects are observed in the analyzed sediment 

depth profiles.  The sediment-water interface was not a sharp transition, as first 

believed.  This sharp interface, of no Se to some Se, was expected due to the 

transition between a liquid (water) and solid (sediment) phase.  Instead, what is 

observed is a more gradual change in Se.  This gradual change is hypothesized 

to be due to flocculation, a murky layer between the “clear” water and dense 

sediment in which suspended particles are found.  One of the benefits of 

analyzing the sediment cores via bulk XAS is the collection of other elements 

that may be of interest.  After analyzing a sediment sample for the presence of 

Se, the filters were replaced, and the same sample was measured again 

identically (though, with a smaller energy range) to examine other elements that 

may be present.  Therefore, elemental maps of Fe, As, Ni, Cu, Zn, and Mn can 

be plotted on top of Se to demonstrate their change in concentrations as a 

function of depth.  The sediment depth profiling not only revealed the change in 

Se species, but by expanding the analysis to 3 cm of depth, trends in Se and 

other elemental accumulation are observed as a function of depth (Fig. 4.6).  

Due to time constraints, only relative concentrations, instead of full spectra, of 

the secondary elements could be taken, but in principle whole XAS spectra 

could be collected, given significantly more beamtime.  Though Fig. 4.6 does 

demonstrate that Fe is the dominant metal species present regardless of depth, 

up to 3 cm, the relative proportions of one secondary element to another as a 

function of depth may provide insight into the mineral composition. 

 

The work on chironomids helped expand the picture of Se’s movement from 

sediment into benthic invertebrates of Key Lake.  Though chironomids from the 

field can be easily collected and then analyzed by bulk XAS or XRF, there are a 

multitude of factors affecting the uptake of Se by chironomids from the field.  To 

help minimize outside factors, C. dilutus were reared in the laboratory in 
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Barnstead water.  The work done here and by Franz et al. (2011) with 

chironomids in controlled laboratory environments, help explain the forms and 

routes by which Se may enter chironomids.  Though some differences are 

observed in the bulk XAS speciation data between Franz’s and our data, we 

attribute it largely to the water in which the chironomids were reared.  Franz et 

al. utilized dechlorinated water, while my experiments involved Barnstead water 

in order to remove the effects of additional foreign matter.  Overall, our data 

largely complements one another.  Both of our experiments suggest that water 

is not the major route of exposure to Se; however, water may still play a small 

role in Se bioaccumulation.  Concentrations of 7 – 80 mg kg-1 of Se were found 

in field chironomids, while 0.6 – 63 mg kg-1 were found in chironomids reared in 

the laboratory in Barnstead water.  By coupling ICP-MS with the results of 

synchrotron techniques, our results suggest that waterborne exposure may only 

contribute a very small amount of the present Se in the chironomids found in 

the field.  Combined with XRF, a versatile synchrotron based imaging 

technique, observing the localization of the Se accumulation within chironomids 

is achievable.  Results suggest that selenomethionine from the water is taken 

up and accumulated primarily in the gut or gut lining.  Cells of the intestinal gut 

lining, responsible for absorbing nutrients from food, in the presence of Se may 

be responsible for its absorption, biotransformation, and short-term storage, Se 

absorbed may be taken up and biotransformed in the cells lining the gut.  

Imaging results of selenate-exposed chironomids resembled those of the 

control, which is expected due to the low bioavailability of selenate.  Aqueous 

selenite exposure resulted in a similar distribution to that of selenomethionine, 

however, the overall concentration was much lower.  Exact concentrations of Se 

are difficult to obtain from chironomids because of the varying thickness 

throughout the chironomids.  Comparing the images of the laboratory reared 

chironomids and field chironomids gives a remarkable result, in that similar 

localization is observed.  This was a very exciting achievement, that despite all 

the factors affecting Se uptake in the field, we were able to duplicate some 

similar results in the laboratory.  The field chironomids also accumulated Se in 
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the gut or gut lining.  By comparing the bulk XAS from both sets of chironomids, 

selenomethionine is present in both chironomids, suggesting that 

selenomethionine may be an important endpoint species, regardless of the Se 

species exposed to the chironomids.  Lack of Se in images from laboratory 

selenate and control reared chironomids suggest that Se levels were below the 

detection limit of the current set up; however, bulk XAS suggest that there are 

trace amounts of Se present in both treatments of chironomids (Fig. 5.2).    

 

Chironomids from the field as well as those reared in the laboratory in water 

exposures spiked with bioavailable species (ie. selenite and selenomethionine) 

bioaccumulated and localized Se in similar areas.  The 3 main areas of 

localization were the head capsule, salivary glands, and gut.  In relation to 

Drosophila melanogaster selenoproteins, three areas of accumulation are 

expected.  The genome of D. melanogaster has been shown to encode several 

selenoproteins, and recent work has been centered on 3 of these 

selenoproteins: selenophosphate synthetase 2 (SPS 2), BthD, and G-rich 

(Martin-Romero et al., 2001; Hirosawa-Takamori et al., 2004; and Kwon et al., 

2003).  In Drosophila, SPS 2 only accumulates in the brain during larval stages; 

however, in the laboratory, the early larval stages of chironomids are 

experienced in holding tanks that do not contain large amounts of Se.  

Therefore, in the latter part of the chironomids larval stage, when it is being 

exposed to Se, there may be not enough time for the SPS 2 protein to 

accumulate in the head capsule.  In Drosophila, SPS 2 was found to be 

required for the formation of imaginal discs.  Imaginal discs are important in the 

formation of limbs, and during Drosophila metamorphosis, pupal and adult 

appendages form from the imaginal discs.  When the SPS protein was knocked 

out, the Drosophila were not able to live past 8 days.  SPS 2 is also known to 

be responsible and essential for the transformation of serine tRNA’s (Ser) into 

selenocysteine tRNA’s (Sec) (Itoh et al., 2009).  A quick look into the 

wormbase, a complete genomic sequence of C. elegans, has shown that 
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Chironomidae do posses a genome encoding for selenophosphate synthetase 

(WormBase, 2011).  The localization of Se is only clearly observed in the head 

capsules of chironomids collected from the field.  We believe that the absence 

of Se in the head capsules of chironomids reared in the laboratory is due to 

time and concentration.  As SPS 2 is responsible for the production of Sec and 

the brain will be fully formed early in the larval stages, it might suggest that 

there are proteins in the brain that contain Sec.  This is further enforced by the 

localization of Se in the head capsule of chironomids collected in the field, and 

the absence of this localization in chironomids reared in the laboratory.  The 

selenoprotein BthD will accumulate in the salivary glands and may be required 

for survival.  Work is being done to analyze the tubules created by chironomids, 

by Gallegos et al. (personal communication), initial results have demonstrated 

the presence of Se.  Therefore, it is likely that C. dilutus contains a 

selenoprotein analog of BthD.   

 

The Chironomidae community generally dwells within the first 2 cm of sediment; 

however, in rare cases, they have been found to be dwelling at much further 

depths (> 2 m) (Cannings and Scudder, 1978).  Therefore, analyzing these 

depths of sediments at high resolution will provide us with the speciation and 

localization of Se that may be accessible by the benthic invertebrate 

community.  The species of Se present is important, as this will determine its 

ability to be bioaccumulated.  The more biologically available the species, the 

more it will be taken up and the greater possibility that Se is biomagnified 

through the food chain.  Thus, by determining the Se species present in the 

sediment, utilizing the biologically available species for laboratory exposures, 

we can determine and verify whether the species found in the field is being 

taken up and where it might be localizing within the organism.  Therefore, the 

presence of the organic selenomethionine- like species and elemental Se may 

be the species responsible for the Se bioaccumulation found in the Key Lake 

aquatic ecosystem.  This hypothesis is further reinforced by the synchrotron 
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XRF results of chironomids.  In laboratory chironomids spiked with 

selenomethionine, similar localization and speciation compared to those 

collected from the field were observed.   

 

6.2.  Future Work 

A holistic approach was undertaken to study the aquatic ecosystem present at 

the Key Lake site.  In conjunction with 3 principal investigators from the 

Toxicology Centre (University of Saskatchewan), the food web was only studied 

up to the level of fish.  Studies on Se's effects on breeding birds downstream of 

the U mill have been performed (Weech et al., 2011).  However, surrounding 

vegetation and other higher level organisms need to be examined for the effects 

of Se bioaccumulation.  By applying the same synchrotron and laboratory 

based techniques, one could easily analyze samples of vegetation and wildlife 

and help expand the current picture of Se throughout the food web. 

 

6.2.1.  Sediments 

Samples of several centimeters of section were created every time a sediment 

core was sectioned for “pseudo-bulk imaging”.  Analyzing these additional cores 

will provide a better understanding of the trend of Se as a function of depth.  At 

the moment, Fox Lake has been studied at a high resolution (100 and 250 µm) 

for a total of 3 cm.  The first cm of Unknown Lake has been studied at this high 

resolution and depths 2 - 4.5 cm were analyzed in 0.5 cm sections.  Observing 

the trends of Se and other elements at lower depths in Unknown Lake at the 

high resolution will provide a better comparison with Fox Lake.   

 

Using the previously analyzed sediment cores, digesting for multi-elemental 

ICP-MS analysis can be used to calibrate the observed fluorescence intensities 

in terms of a mg kg-1 scale as a function of depth.  Since Se may not be the sole 
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cause of decreased wildlife in the Key Lake aquatic ecosystem, research is 

required on other elements and compounds that may be present.  Our data on 

the other elements present demonstrate a large peak of As that may be 

accumulating at the redox boundary.  Arsenic, similarly to Fe and Mn can 

become mobile under reducing conditions; therefore, it will always been present 

at the redox boundary and constantly in the presence of dwelling benthic 

invertebrate communities.   

 

Some modifications may need to be made to sample preparation.  As detectors 

on beamlines may contain dead channels, eliminating as many possible 

sources of scatter in the sample would help greatly with the data collected.  As 

this cannot always be avoided in the sample, sectioning thinner sections would 

provide less substance for the beam to pass through, and therefore less chance 

of hitting a scattering object.   

 

The sample holder itself functioned as expected.  Modifications may need to be 

made to the printed pillar.  At 45° incident to the beam not every position on the 

observable sample area will provide the same intensity.  The printed pillar was 

observed to reduce some of the incoming beam into I1.  Therefore, another 

material for the printed pillar may need to be utilized, or ensuring that if samples 

are to be analyzed via transmittance, that the sample holder is positioned at 90° 

to the incident beam.   

 

6.2.2.  Chironomids 

Since most of the conclusions for the localization of Se have been correlated 

with selenoproteins found in Drosophila, performing and obtaining a complete 

genomic sequence of C. dilutus will prove invaluable.  Using BLAST (Altschul et 

al., 1990), or homebrew software, to compare genomic sequences between C. 
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dilutus and D. meloganster will see if some sequences will enlighten the 

presence of selenoprotein analogs present in the C. dilutus.  Genomic matching 

could also be performed to observe whether chironomids have similar Se 

processing pathways as Drosophila. 

 

The initial experiments done using chironomid imaging have provided a new 

way to view chironomids and Se localization.  We used a standard sagittal 

orientation of the chironomids for ease of mounting; however, alternate 

orientations will be very important in separating localizations that will otherwise 

superimpose in this orientation, such as the eyes and brain.  Therefore, work is 

ongoing to examine Se localization in a dorsal orientation rather than our typical 

sagittal orientation. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

95 

 

6.3.  References 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman D.J.  Basic local 

alignment search tool.  J. Mol. Biol. 1990, v. 215, pp 403-410 

Andrahennadi, R., Wayland, M., and Pickering. I. J.  Speciation of selenium in 

stream insects using X-ray absorption spectroscopy.  Environ. Sci. Technol.  

2007, v. 42, pp 7683-7687. 

Arnér, E. S. J., and Holmgren, A.  Physiological functions of thioredoxin and 

thioredoxin reductase.  Eur. J. Biochem. 2000, v. 267, pp 6102-6109. 

Beke, G. J., and Hironaka, R.  Toxicity to Beef Cattle of Sulfur in Saline Well 

Water-A Case Study.  Sci. Total. Environ. 1991, v. 101, pp 281 – 290. 

Benoit, D. A., Sibley, P. K., Jeunemann, J. L., and Ankley, G. T.  Chironomus 

tentans Life-Cycle Test: Design and Evaluation for Use in Assessing Toxicity of 

Contaminated Sediments.  Environ. Toxicol. Chem.  1997, v. 16, pp 1165-1176. 

Bercovici, D., Schubert, G., and Glatzmaier, G.A. Three - Dimensional Spherical 

Models of Convection in the Earth's Mantle.  Science. 1989. v. 244, pp 950-955 

Berzelius, J. J.  Letre de M. Berzelius a M. Berthollet sur deux métaux 

nouveaux.  Annals de chimie et de physique.  1818, v. 7, pp 199-206. 

Besser, J. M., Canfield, T. J., and La Point, T. W.  Bioaccumulation of organic 

and inorganic selenium in a laboratory food chain.  Environ. Toxicol. Chem.  

1993, v. 12, pp 57-72 

Black, A.R., and Dodson, S.I.  Ethanol: a better preservation technique for 

Daphnia.  Limnology and Oceanography: Methods.  2003, v.1, pp 45-50 

Boyle, J.  Redox mobilization and the heavy metal record in lake sediments: a 

modeling approach.  Journal of Paleolimnology, v. 26, pp 423-431. 



 

 
 

96 

Brett, J. R.  The respiratory metabolism and swimming performance of young 

Sockeye salmon.  J. Fish. Res. Bd. Can.  1964, v. 21, pp 1183-1226. 

Cameco.  Key Lake Extension Project: Project Description.  Safety, Health, 

Environment & Quality.  Retrieved March, 2010 from http://www.cameco.com/ 

common/pdf/responsibility/regulatory/key_lake/Cameco_Key_Lake_Extension_

Project.pdf. 

Cameco. McArthur River. September 3, 2011 <http://www.cameco.com/mining/ 

mcarthur_ river/> 

Canadian Light Source, (2009), How does the CLS Synchrotron work?. 

<http://www.lightsource.ca/education/pdf/materials/1.2_How_does_the_CLS_S

ynchrotron_work.pdf> 

Cannings, R. A., and Scudder, G. G. E.  The littoral Chironomidae (Diptera) of 

saline lakes in central British Columbia.  Canadian Journal of Zoology. 1978, v. 

56, pp 1144-1155. 

Chau, Y. K., Wong, P. T. S., Silverberg, B. A., Luxon, P. L., and Bengert, G. A.  

Methylation of Selenium in the Aquatic Environment.  Science.  1976, v. 192, pp 

1130 – 1131.   

Chen, Y.-W., Truong, H.-Y.T., and Belzile, N.  Abiotic formation of elemental 

selenium and role of iron oxide surfaces.  Chemosphere, 2008, v. 74, pp 1079-

1084. 

Choi. J, Roche, H., and Caquet, T.  Characterization of superoxide dismutase 

activity in Chironomus riparius Mg.  (Diptera, Chironomidae) larvae – a potential 

biomarker.  Comparative Biochemistry and Physiology Part C:  Pharmacology, 

Toxicology and Endocrinology. 1999. v. 124, pp 73-81. 

City of Saskatoon Water Treatment Plant.  Drinking Water Quality and 

Compliance.  2009. pp 1 – 7 

http://www.cameco.com/common/pdf/responsibility/regulatory/key_lake/Cameco_Key_Lake_Extension_Project.pdf
http://www.cameco.com/common/pdf/responsibility/regulatory/key_lake/Cameco_Key_Lake_Extension_Project.pdf
http://www.cameco.com/common/pdf/responsibility/regulatory/key_lake/Cameco_Key_Lake_Extension_Project.pdf


 

 
 

97 

Clark, D. R. Selenium Accumulation in Mammals Exposed to Contaminated 

California Irrigation Drainwater.  The Science of the Total Environment, 1987, 

v.66, pp 147-168 

Clark, D. R., Ogasawara, P. A., Smith, G. J., and Ohlendorf, H. M.  Selenium 

Accumulation by Raccoons Exposed to Irrigation Drainwater in Kesterson 

National Wildlife Refuge, California, 1986.  Arch. Environ. Contam. Toxicol.  

1989, v. 18, pp 787 – 794.   

Combs, G. F.,  Food system-based approaches to improving micronutrient 

nutrition: the case for selenium.  Biofactors. 2000, v. 12, pp 39-43. 

Committee on Accessory Elements.  Board on Mineral and Energy Resources.  

Commission on Natural Resources.  National Research Council.  Redistribution 

of Accessory Elements in Mining and Mineral Processing.  Part II:  Uranium, 

Phosphate, and Alumina.  Washington, D.C.  National Academy of Sciences, 

1979.   

Cornwell, J. C.  Diagenetic Trace-Metal profiles in Arctic Lake Sediments.  

Environ. Sci. Technol. v. 20, pp 299-302. 

Cramer, S. P., Tench, O., Yocum, M. and George, G. N. A 13-element Ge 

detector for fluorescence EXAFS.  Nucl. Instrum. Methods. Phys. Res. A. 1988, 

v. 266, pp 586–591. 

Cummins, L. M., and Kimura, E. T.  Safety evaluation of selenium sulfide 

antidandruff shampoos.  Toxicol. Appl. Pharmacol.  1971, v. 20, pp 89-90. 

Donald, G.L., and Paterson, C.G.  Effect of preservation on wet weight biomass 

of chironomid larvae.  Hydrobiologia.  1977, v. 53, pp 75-80. 

Donini, A., Gaidhu, M. P., Strasberg, D. R., and O'donnell, M. J.  Changing 

salinity induces alterations in hemolymph ion concentrations and Na+ and Cl- 

transport kinetics of the anal papillae in the larval mosquito, Aedes aegypti.  J. 

Exp. Biol.  2007, v. 210, pp 983 – 992. 



 

 
 

98 

Driessnack, M. K., Dubé, M. G., Rozon-Ramillo, L. D., Jones, P. D., 

Wiramanaden, C. I. E., and Pickering, I. J.  The use of field-based mesocosm 

systems to assess the effects of uranium milling effluent on fathead minnow 

(Pimephales promelas) reproduction.  Ecotoxicology.  2011, v. 20, pp 1209-

1224. 

Elrashidi, M. A., Adriano, D. C., Workman, S. M., and Lindsay, W. L.  Chemical 

Equilibria of Selenium in Soils:  Theoretical Development.  Soil Sci.  1987, v. 

144, pp 141-152 

Ezquerra, T. A., García-Gutiérrez, MC., Nogales, A., and Gómez, M.  

Applications of Synchrotron Light to Scattering and Diffraction in Materials and 

Life Sciences.  Heidelberg, Berlin, Springer, 2009. 

Fleet-Stalder, V. V., Chasteen, T. G., Pickering, I. J., George, G. N., and Prince, 

R. C.  Fate of Selenate and Selenite Metabolized by Rhodobacter sphaeroides.  

Appl. Environ. Microbiol.  2000, v. 66, pp 4849-4853 

Frakenberger, W. T., and Arshad, M.  Bioremediation of selenium-contaminated 

sediments and water.  Biofactors.  2001, v. 14, pp 241 – 254.  

Franz, E.D., Wiramanaden, C.I.E., Janz, D.M., Pickering, I.J., and Liber, K.  

Selenium bioaccumulation and speciation in Chironomus dilutus exposed to 

water-borne selenate, selenite, or seleno-DL-methionine.  Environ. Toxicol. 

Chem.  In Press, Corrected Proof 

Gao, X., Zhang, J., and Zhang, L.  Acute toxicity and bioavailability of nano red 

elemental selenium.  Journal of Hygiene Research.  2000, v. 29, pp 57-58. 

Garbisu, C., Ishii, T., Leighton, T., and Buchanan, B. B.  Bacterial reduction of 

selenite to elemental selenium.  Chemical Geology.  1996, v. 132, pp 199 – 

204. 

Gaston, G.R., Bartlett, J.H.W., and McAllister, A.P.  Biomass Variations of 

Estuarine Macrobenthos Preserved in Ethanol and Formalin.  Estuaries.  1996, 

v.19, pp- 674-679 



 

 
 

99 

Gautreau, R., and Savin , W.  Modern Physics: Second Edition.  USA, The 

McGraw-Hill Companies, Inc, 1999.   

Geering, H. R., Cary, E. E., Jones, L. H. P., and Allaway, W. H.  Solubility and 

Redox Criteria for the Possible Forms of Selenium in Soils.  Soil Sci. Soc. Am. 

Proc.  1968, v. 32, pp 35-40 

George, G. N., and Pickering, I. J.  X-ray Absorption Spectroscopy in Biology 

and Chemistry.  Brilliant Light in Life and Material Sciences.  Springer.  2007, pp 

97-119. 

George, G.N., and Pickering, I.J.  EXAFSPAK:  A Suite of Computer Programs 

for Analysis of X-ray Absorption Spectra.  Stanford Synchrotron Radiation 

Laboratory.  1993. 

Giessel-Nielsen, G.  Influence of pH and Texture of the Soil on Plant Uptake of 

Added Selenium.  J. Agr. Food. Chem. 1971, v. 19, pp 1165 – 1167. 

Goertzen, M. M., Driessnack, M. K., Janz, D. M., and Weber, L. P.  Swimming 

performance and energy homeostasis in juvenile laboratory raised fathead 

minnow (Pimephales promelas) exposed to uranium mill effluent.  Comparative 

Biochemistry and Physiology, Part C.  2011, v. 154, pp 420-426. 

Gupta, C. K., and Singh, H.  Uranium Resource Processing: Secondary 

Resources.  Germany, Springer, 2003. 

Hansen, L. S., and Blackburn, T. H.  Aerobic and anaerobic mineralization of 

organic material in marine sediment microcosm.  Mar. Ecol. Prog. Ser.  1991, v. 

75, pp 283-291. 

Hare, L., Tessier, A., and Campbell, P. G. C.  Trace Element Distributions in 

Aquatic Insects: Variations among Genera, Elements, and Lakes.  Can. J. Fish. 

Aquat. Sci.  1991, v. 48, pp 1481-1491. 



 

 
 

100 

Hartikainen, H.  Biogeochemistry of selenium and its impact on food chain 

quality and human health.  Journal of Trace Elements in Medicine and Biology.  

2005, v. 18, pp 309 – 318. 

Herndon, J. M. Substructure of the inner core of the Earth. Proc. Natl. Acad. 

Sci. 1996, v. 93: 646-648 

Hirosawa-Takamori, M., Chung, H-R., and Jäckle, H.  Conserved selenoprotein 

synthesis is not critical for oxidative stress defence and the lifespan of 

Drosophila.  EMBO reports, 2004, v.5, pp 317-322 

Hodson, P. V., and Hilton, J. W.  The nutritional requirements and toxicity to fish 

of dietary and water-borne selenium.  Ecol. Bull.  1983, v. 35, pp 335-340. 

Howard, J. H., Geochemistry of selenium: formation of ferroselite and selenium 

behavior in the vicinity of oxidized sulfide and uranium deposits.  Geochemica 

et Cosmochimica Acta.  1977, v. 41, pp 1665 – 1678. 

Hulbert, S. L., and Williams, G. P.  Synchrotron Radiation Sources.  

Experimental Methods in the Physical Sciences, 1998, v. 31, pp 1-25 

Hymer, C. B., and Caruso, J. A.  Selenium speciation analysis using inductively 

coupled plasma – mass spectrometry.  Journal of Chromatography A.  2006, v. 

1114, pp 1-20 

Institute of Medicine, Food and Nutrition Board.  Dietary Reference Intakes:  

Vitamin C, Vitamin E, Selenium, and Carotenoids.  Washington, DC.  National 

Academy Press, 2000. 

International Atomic Energy (IAE).  In Situ Leaching of Uranium: Technical, 

Environmental and Economic Aspects.  IAEA-TECDOC-492, 1989. 

Itoh, Y., Sekine, S., Matsumoto, E., Akasaka, R., Takemoto, C., Shirouzu, M., 

and Yokoyama, S.  Structure of Selenophosphate Synthetase Essential for 

Selenium Incorporation into Proteins and RNAs.  J. Mol. Biol.  2009, v. 385, pp 

1456-1469.   



 

 
 

101 

Jonusaite, S., Kelly, S.P., and Donini, A.  The physiological response of larval 

Chironomus riparius (Meigen) to abrupt brackish water exposure.  J. Comp. 

Physiol. B. 2011, v. 181, pp 343 – 352. 

Krantzberg, G., and Stokes, P. M.  Metal Concentrations and Tissues 

Distribution in Larvae of Chironomus with Reference to X-ray Microprobe 

Analysis.  Arch. Environ. Contam. Toxicol  1990, v. 19, pp 84.93. 

Krantzberg, G., and Stokes, P. M.  Metal Regulation, Tolerance, and Body 

Burdens in the Larvae of the Genus Chironomus.  Can. J. Fish. Aquat. Sci.  

1989, v. 46, pp 389-398. 

Kudo, A.  Volume 1:  Plutonium in the environment.  Proceedings of the Second 

International Symposium.  The Netherlands, Elsevier Science Ltd, 2000.   

Kwon, S. Y., Badenhorst, P., Martin-Romero, F. J., Carlson, B. A., Paterson, B. 

M., Gladyshev, V. N., Lee, B. J., and Hatfield, D. L.  The Drosophila 

Selenoprotein BthD Is Required for Survival and Has a Role in Salivary Gland 

Development.  Molecular and Cellular Biology.  2003, v. 23, pp 8495-8504. 

Lamoureux, S. F.  Embedding unfrozen lake sediments for thin section 

preparation.  J. Paleolimnol. 1994, v. 10, pp 141-146. 

Lemly, A. D.  Assessing the Toxic Threat of Selenium to Fish and Aquatic Birds.  

Environmental Monitoring and Assessment.  1996, v. 43, pp 19-35. 

Lemly, A. D.  Guidelines for evaluating selenium data from aquatic monitoring 

and assessment studies.  Environ. Monit. Assess.  1993, v. 28, pp 83-100. 

Lemly, A. D.  Selenium Transport and Bioaccumulation in Aquatic Ecosystems:  

A Proposal for Water Quality Criteria Based on Hydrological Units.  

Ecotoxicology and Environmental Safety.  1999, v. 42, pp 150 - 156.  

Lemly, A. D.  Symptoms and implications of selenium toxicity in fish: the Belews 

lake case example.  Aquat. Toxicol. 2002, v. 57, pp 39-49. 



 

 
 

102 

Leung, Y.K., Wong, K.F., Lee, H.K., and Ho, J.W.  Cloning and characterization 

of chironomidae ferrochelatase:  Copper activation of the purified 

ferrochelatase.  Mol. Cell. Biochem.  2004. v. 262, pp 225-231. 

Li, G. S., Wang, F., Kang, D., and Li, C.  Keshan disease: An edemic 

cardiomyopathy in China.  Human Pathology.  1985, v. 16, pp 602-609.  

Li, Y.-F, and Macdonald, R. W.  Sources and pathways of selected 

organochlorine pesticides to the Arctic and their impacts to the existence of 

these pesticides in the Arctic environment:  A review.  Science of the Total 

Environment.  2005, v. 342, pp 87-106. 

Losi, M. E., and Frankenberger, W. T.  Bioremediation of Selenium in Soil and 

Water.  Soil Science.  1997, v. 162, pp 692 – 702.   

Lytle, F. W., Sayers, D. E., and Stern, E. A.  Extended x-ray-absorption fine-

structure technique.  II.  Experimental practice and selected results. Phys. Rev. 

B. 1975, v.11, pp 4825–4835. 

Machel, H. G., and Foght, J.  "Products and Depth Limits of Microbial Activity in 

Petroliferous Subsurface Settings".  Microbial Sediments.  Eds. Riding, R. E., 

and Awramik, S. M.  Germany.  Springer.  2000, pp 105-120.  

Maier, K. J., and Knight, A. W.  Comparative Acute Toxicity and 

Bioconcentration of Selenium by the Midge Chironomus decorus Exposed to 

Selenate, Selenite, and Seleno-DL-methionine.  Arch. Environ. Contam. 

Toxicol.  1993, v. 25, pp 365-370. 

Mandelkow, E., and Bazin, D.  Synchrotron radiation in chemistry and biology I.   

Springer. 1988 ISBN 9783540183853 

Martin-Romero, F. J., Kryukov, G. V., Lobanov, A. V., Carlson, B. A., Lee, B. J., 

Gladyshev, V. N., and Hatfield, D. L.  Selenium Metabolism in Drosophila: 

selenoproteins, selenoprotein mRNA expression, fertility, and mortality.  J. Biol. 

Chem.  2001, v. 276, pp 29798-29804. 



 

 
 

103 

Martin-Romero, F. J., Kryukov, G. V., Lobanov, A. V., Carlson, B. A., Lee, B. J., 

Gladyshev, V. N., and Hatfield, D. L.  Selenium Metabolism in Drosophila.  J. 

Bio. Chem.   2001, v. 276, pp 29798-29804. 

Martin, A. J., Simpson, S., Fawcett, S., Wiramanaden, C. I. E., Pickering, I. J., 

Belzile, N., Chen, Y. W., London, J., and  Wallschläger, D.  Biogeochemical 

Mechanisms of SElenium Exchange between Water and Sediments in Two 

Contrasting Lentic Environments.  Environ. Sci. Technol.  2011, v.45, pp 2605-

2612. 

Masscheleyn, P. H., Delaune, R. D., and Patrick, W. H. Transformation of 

Selenium As Affected  by Sediment  Oxidation-Reduction Potential and pH.  

Environ. Sci. Technol.  1990, v. 24, pp 91 – 96. 

May, T. W., Fairchild, J. F., Petty, J. D., Walther, M. J., Lucero, J., Delvaux, M., 

Manring, J., and Armbruster, M.  An evaluation of selenium concentrations in 

water, sediment, invertebrates, and fish from the Solomon River Basin.  

Environ. Monit. Assess.  2008, v. 137, pp 213-232. 

McCarty, S., Chasteen, T., Marshall, M., Fall, R., and Bachofen, R.  

Phototrophic bacteria produce volatile, methylated sulfur and selenium 

compounds.  FEMS Microbiology Letters.  1993, v. 112, pp 93 – 98. 

McMaster, W. H., Kerr Del Grande, N., Mallet, J. H. and Hubbell, J. H.  

Compilation of X-ray Cross Sections. Lawrence Livermore National Laboratory 

Report. Lawrence Livermore National Laboratory, Livermore,CA, USA. 1969. 

Morales, M., Plannelló, R., Martínez-Paz, P., Herrero, O., Cortés, E., Martínez-

Guitarte, J. L., and Morcillo, G.  Characterization of Hsp70 gene in Chironomus 

riparius:  Expression in response to endocrine disrupting pollutants as a marker 

of ecotoxicological stress.  Comparative Biochemistry and Physiology, Part C. 

2011. v. 153, pp 150-158.   

Moreno-Reyes, R.  "Iodine, Selenium Deficiency and Kashin-Beck Disease."  

Comprehensive Handbook of Iodine: Nutritional, Biochemical, Pathological and 



 

 
 

104 

Therapeutic Aspects.  Ed.  Preedy, V. R., Burrow, G. N., and Watson, R. R.  

USA.  Academic Press.  2009.  pp. 685. 

Muscatello, J. R., Bennet, P. M., Himbeault, K. T., Belknap, A. M., and Janz, D. 

M.  Larval Deformities Associated with Selenium Accumulation in Northern Pike 

(Esoxlucius) Exposure to Metal Mining Effluent.  Environ. Sci. Technol., 2006a, 

v.40 (20), pp 6506-6512 

Mustacich, D., and Powis, G.  Thioredoxin reductase.  Biochem. J. 2000, v. 346, 

pp 1-8 

Myneni, S. C. B., Tokunaga, T. K., and Brown, G. E.  Abiotic Se Redox 

Chemistry in the PResence of Fe (II, III)-oxides.  Science. 1997, v. 278, pp 

1106-1109. 

Nguyen, H., and Donini, A.  Larvae of the midge Chironomus riparius possess 

two distinct mechanisms for ionoregulation in response to ion-poor conditions.  

Am. J. Physiol. Regul. Integr. Comp. Physiol.  2010, v. 299, pp 762 – 773. 

Ohlendorf, H. M. and Hothem, R. L.  Selenium Contamination of the 

Grasslands, A Major California Waterfowl Area.  The Science of the Total 

Environment, 1987, v.66, pp 169-183 

Ohlendorf, H. M., Hoffman, D. J., Saiki, M. K., and Aldrich, T. W.  Embryonic 

mortality and abormalities of aquatic birds: Apparent impacts of selenium from 

irrigation drainwater.  Science of the Total Environment. 1986, v. 52, pp 49 – 

63. 

Oremland, R. S., Hollibaugh, J. T., Maest, A. S., Presser, T. S., Miller, L. G., 

and Culberston, C. W.  Selenate Reduction to Elemental Selenium by 

Anaerobic Bacteria in Sediments and Culture: Biogeochemical significance of a 

Novel, Sulfate-Independent Respiration.  Appl. Environ. Microbiol. 1989, v. 55, 

pp 2333-2343. 



 

 
 

105 

Parizek, J., Kalouskova, J., Babicky, A., Benes, J., and Pavlik, L.  "Interaction of 

selenium with mercury, cadmium and other toxic metals".  Trace Elements 

Metabolism in Animals.  Eds. Hoekstra, W. G., Suttie, J. W., Ganther, H. E., and 

Mertz, W.  Baltimore.  University Park Press.  1974.   

Phibbs, J., Franz, E., Hauck, D., Gallego, M., Tse, J.J., Pickering, I.J., Liber, K., 

and Janz, D.M.  Evaluating the trophic transfer of selenium in aquatic 

ecosystems using caged fish, X-ray absorption spectroscopy and stable isotope 

analysis.  Ecotoxicology and Environmental Safety.  2011a July.  In Press 

Phibbs, J., Wiramanaden, C. I. E., Hauck, D., Pickering, I. J., Liber, K., and 

Janz, D.  Selenium uptake and speciation in wild and caged fish downstream of 

a metal mining and milling discharge.  Ecotoxicology Environmental Safety. 

2011b March, v. 74, pp 1139-1150. 

Pickering, I. J., Prince, R. C., Salt, D. E., and George, G. N.  Quantitative, 

chemically specific imaging of selenium transformation in plants.  Proc Natl 

Acad Sci.  2000, v. 97, pp 10717-10722.   

Pickering, I. J., Wright, C., Bubner, B., Ellis, D., Persans, M. W., Yu, E. Y., 

George, G. N., Prince, R. C., and Salt, D. E.  Chemical Form and Distribution of 

Selenium and Sulfur in the Selenium Hyperaccumulator Astragalus bisculcatus.  

Plant Physiology.  2003, v. 131, pp 1460 – 1467. 

Pisa, R., and Polo, M.  Livres des merveilles du monde.  Venice.  1300 

Presser, T. S., and Barnes, I.  Selenium concentrations in waters ributary to and 

in the vicinity of Kesterson National Wildlife Refuge, Fresno and Merced 

counties, California.  US Geological Survey Water Resources Investigation 

Report 84-4122.  1984, pp 1- 26. 

Presser, T. S., and Ohlendorf, H. M.  Biogeochemical cycling of selenium in the 

San Joaquin Valley, California, USA.  Environmental Management.  2005, v. 11, 

pp 805 – 821. 



 

 
 

106 

Pushie, M. J., McDonald, A., Millhauser, G. L., & George, G. N. (2011).  In 

preparation. 

Reilly, C.  Selenium in Food and Health.  Padstow, Cornwall: Blackie Academic 

& Professional, 1996. 

Rosenfield, I., and Beath, O. A., Selenium: geobotany, biochemistry, toxicity 

and nutrition.  Academic Press, New York. 1964. 

Rotruck, J.T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., and 

Hoekstra, W. G.  Selenium: Biochemical Role as a Component of Glutathione 

Peroxidase.  Science. 1972, v. 179: 588-590 

Saisho, H., and Gohshi, Y.  Applications of Synchrotron Radiation to Materials 

Analysis.  Amsterdam, The Netherlands, Elsevier Science Ltd, 1996.  

Samant, M. G., Borges, G. L., Gordon, J. G. II, Melroy, O. R. and Blum, L.  In 

situ surface extended x-ray absoption fine structure spectroscopy of a lead 

monolayer at a silver (111) electrode/electrolyte interface.   J. Am. Chem. Soc. 

1987, v. 109, pp 5970–5974. 

Saskatchewan Environment.  Surface Water Quality Objectives Interim Edition.  

EPB 356.  2006. 

Schultz, R., and Hermanutz, R.  Transfer of Toxic Concentrations of Selenium 

from Parent to Progeny in the Fathead Minnow (Pimephales promelas).  Bull. 

Environ. Contam. Toxicol.  1990, v.45, pp. 568-573. 

Selenium-Tellurium Development Association (STDA).  Sources of Selenium 

and Tellurium.  November 29, 2010 < http://www.stda.org/se-te.htm> 

Shamberger, R. J., Selenium in the Environment.  The Science of the Total 

Environment.  1981, v. 17, pp 59 – 74. 

Soller, W. A new precision X-ray spectrometer. Phys. Rev. 1924, v. 24, pp 158–

167. 

http://www.stda.org/se-te.htm


 

 
 

107 

Sors, T. G., Ellis, D. R., and Salt, D. E.  Selenium uptake, translocation, 

assimilation, and metabolic fate in plants.  Photosynthesis Research.  2005, v. 

86, pp 373 – 389.  

Spallholz, J. E., and Hoffman, D. J.  Selenium toxicity: cause and effects in 

aquatic birds.  Aquatic Toxicology.  2002, v. 57, pp 27-37. 

Stadtman, T.  Biosynthesis and Function of Selenocysteine-containing 

Enzymes.  The Journal of Biological Chemistry.  1991, v. 266, pp 16257-16260 

Stadtman, T.  Selenium Biochemistry.  Annu. Rev. Biochem. 1990, v. 59, pp. 

111-27. 

Stewart, S.  Public Health Statement:  Selenium - Production, Import/Export, 

Use, and Disposal.  Agency for Toxic Substances and Disease Registry, 2004.   

Terry, N., Zayed, A. M., de Souza, M. P., and Tarun, A. S.  Selenium in Higher 

Plants.  Annu. Rev. Plant. Physiol. Plant Mol. Biol.  2000, v. 51, pp 401 – 432. 

Trelease, S. F., Di Somma, A. A., and Jacobs, A. L.  Seleno-Amino Acid Found 

in Astragalus bisulcatus.  Science.  1960, v. 132, pp 618. 

Tetsu, T. K., Brown, G. E., Pickering, I. J., Sutton, S. R., and Bajt, S.  Selenium 

Redox Reactions and Transport between Ponded Waters and Sediments.  

Environ. Sci. Technol.  2008, v. 31, pp 1419-1425. 

Tetsu, T. K., Lipton, D. S., Benson, S. M., Yee, A. W., Oldfather, J. M., Duckart, 

E. C., Johannis, P. W., and Halvorsen, K. E.  Soil Selenium Fractionation, 

Depth Profiles and Time Trends in a Vegetated Site at Kesterson Reservoir.  

Water, Air, and Soil Pollution.  1991, v. 57, pp 31-41. 

Thomassen, Y., Nieboer, E., Romanova, N., Nikanov, A., Hetland, S., 

VanSpronsen, E. P., Odland, J. Ø., and Chashchin, V.  Multi-component 

assessment of worker exposures in a copper refinery Part 1.  Environmental 

monitoring.  J. Environ. Monit.  2004, v. 6, pp 985-991. 



 

 
 

108 

Tse, J. J., Wiramanaden, C. I. E.,& Pickering, I. J. (2011). In preparation. 

Tsezos, M. and Noh, S.H. Extraction of Uranium from Sea Water Using 

Biological Origin Adsorbents.  The Canadian Journal of Chemical Engineering. 

1984. v. 62: 559-561 

Vickerman, D. B., Trumble, J. T., George, G. N., Pickering, I. J., and Nichol, H.  

Selenium Biotransformations in an Insect Ecosystem:  Effects of Insects on 

Phytoremediation.  Environ. Sci. Technol.  2004, v. 38, pp 3581 – 3586.   

Wapnir, R.  Protein Nutrition and Mineral Absorption.  Boca Raton, Florida.  

CRC Press. Inc. 1990. 

Webb, S.M. SMAK: Sam’s Microprobe Analysis Kit. <http://home.comcast.net 

/~sam_webb/smak.html>, 2010. 

Weech, S. A., Scheuhammer, A. M., and Wayland, M. E.  Selenium 

accumulation and reproduction in birds breeding downstream of a uranium mill 

in northern Saskatchewan, Canada.  Ecotoxicology. 2011, DOI: 10.1007/ 

s10646-011-0788-9.   

Weres, O., Jaouni, A.-R., and Tsao, L.  The distribution, speciation and 

geochemical cycling of selenium in a sedimentary environment, Kesterson 

Reservoir, California, USA.  Applied Geochemistry. 1989, v. 4, pp 543 – 563. 

Willmott, P.  An Introduction to Synchrotron Radiation: Techniques and 

Applications.  Singapore, Wiley, 2011.   

Winick, H.  Synchrotron Radiation Sources:  A Primer.  Singapore, World 

Scientific Publishing Co. Pte. Ltd, 1994. 

Wiramanaden, C. I. E., Forster, E. K., and Liber, K.  Selenium distribution in a 

lake system receiving effluent from a metal mining and milling operation in 

Northern Saskatchewan, Canada.  Environmental Toxicology and Chemistry.  

2010b March, v. 29, pp 606-616 



 

 
 

109 

Wiramanaden, C. I. E., Liber, K., & Pickering, I. J.  Selenium Speciation in 

Whole Sediment using X-ray Absorption Spectroscopy and Micro X-ray 

Fluorescence Imaging.  Environ. Sci. Technol.  2010a July, v. 44, pp 5389-

5394.  

Wise, R. R., Pierstorff, C. A., Nelson, S. L., Bursek, R. M., Plude, J. L., McNello, 

M., and Hein, J.  Morphological Deformities in Chironomus (Chironomidae: 

Diptera) Larvae as Indicators of Pollution in Lake Winnebago, Wisconsin.  J. 

Great Lakes Res.  2001, v. 27, pp 503-509. 

World Nuclear Association (WNA).  Uranium in Canada.  May 2011. 

<http://world-nuclear.org/info/inf49.html> 

WormBase.  "Gene Summary for seld-1".  WormBase.  September 4, 2011.  < 

http://www.wormbase.org/db/gene/gene?name=WBGene00012867;class=Gen

e> 

Yagi, S.  Effects of ligation on ethanol-induced Balbiani ring puffing in salivary 

glands of Chironomus.  Chromosoma. 1984, v. 89, pp 274-279 

Yuan, T., Weljie, A. M., and Vogel. H.J.  Tryptophan Fluorescence Quenching 

by Methionine and Selenomethionine Residues of Calmodulin: Orientation of 

Peptide and Protein Binding.  Biochemistry. 1998, v. 37, pp 3187-3195 

Zayed, A., Lytle, C. M., and Terry, N.  Accumulation and volatilization of 

different chemical species of selenium by plants.  Planta.  1998, v. 206, pp 284-

292. 

Zhang, J. -S., Gao, X. -Y., Zhang, L. -D., and Bao, Y. -P.  Biological effects of a 

nano red elemental selenium.  BioFactors.  2001, v. 15, pp 27-38. 

Zimmerman, M. B., and Kohrle, J.  The impact of iron and selenium deficiencies 

on iodine and thyroid metabolism: biochemistry and relevance to public health.  

Thyroid. 2002, v. 12, pp 867-878. 


