
A MICROPROCESSOR-BASED SYSTEM FOR 
PROTECTING BUSBARS 

A Thesis 

Submitted to the College of Graduate Studies and Research 

in Partial Fulfillment of the Requirements 

for tbe Degree of 

Doctor o f  Philosophy 

in the! 

Department of EIectrical Engineering 

University of Saskatchewan 

Saskatoon, Saskatchewan 

Canada 

W E T  SINGH GILL 

spring 2000 

0 Copyright Hajeet Smgh Gin, 2000. Ail rights reserved. 



uisiins and 9- Acquisitions et 
Bib lographic Services services bibliographiques 

The author has granted a non- 
exclusive licence allowing the 
National Li'brary of Canada to 
reproduce, loan, distribute or sell 
copies ofthis thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accorde une licence non 
exclusive pennettant a la 
BrbiiothQue nationale du Canada de 
reproduire, p h r ,  distn'buer ou 
vendre des copies de cette these sous 
la fonne de microficheffilm, de 
reproduction sur papier ou sur fonnat 
eectronique. 

L'auteur conserve la proprietk du 
h i t  d'auteur qui protege cette these. 
Ni Ia these ni des extraits substantiels 
de celle-ci ne doivent &re imprim& 
ou autrement reproduits sans son 
ant orisat ion. 



PERMISSION TO USE 

In presenting this thesis in partial fidfdhent of the requirements for a Doctor of 

Philosophy degree from the University of Saskatchewan, the author agrees that the Libraries 

of this University may make it k l y  availabIe for inspection. The author fiuther agrees that 

for copying of this thesis in any manner, in whoie or in part, for scholarly 

purposes may be granted by the professors who supervised the thesis work or, in their 

absence, by the Head of the Depament or the Dean of the College in which the thesis work 

was done. It is understood that any copying or publication or use of this thesis or parts 

hereof for h c i d  gain shall not be allowed without the author's written permission. It is 

also understood that due recognition shall be given to the author and to the University of 

Saskatchewan in any schoIarIy use which may be made of any materid in this thesis. 

Requests for permission to copy or to make other use of material in this thesis in 

whole or part should be addressed to: 

Head of the Department of Electrical Engineering, 

University of Saskatchewan, 

Saskatoon, Saskatchewan, Canada S7N 5A9 



ABSTRACT 

Electric power utilities have traditionally used electromechanical and solid-state 

days for protecting busbars. Differential protection is generally used for this purpose. 

With the advent of digital technology, researchers and designers have made remarkable 

progress in the development of microprocessor-based relays. These refays use algorithms 

similar in principle to their electromechanica1 counterparts. Several algorithms, based on 

differential principle and suitabIe for implementation on microprocessors for protecting 

power system components, have been proposed in the past. However, a literature survey 

has revealed that very few algorithms for protecting busbars have been proposed in the 

past, Moreover, these algorithms do not have inherent immunity to current transformer 

(ct) saturation. The stability is achieved by using additional measures such as, using special 

circuitry, muitiple algorithms and changing the restraint hctor. These measures are not 

IikeIy to be effective during severe ct saturation. The impact of ct ratio-mismatch is 

countered by using percentage-bias characteristics that reduces the sensitivity of the relay, 

This thesis descr i i  a technique that provides a new approach for protecting 

busbars. The technique uses positive- and negativesequence models of the power system in 

a Gult-detection algorithm. While the busbar voltages, and currents in the circuits 

connected to the b u s h  are used to detect fblts, no infixmation concerning the parameters 

of the power system is requid. Only the arguments of the positive- and negative-sequence 

impedances computed by the relay are used to make trip decisions. 

The per fomce  of the proposed technique was studied by using data h m  

simulations on the eIectromagnetic trsnsient program, EMTDC. Results obtained for a 

sample system and an existing substation of SaskPower are presented. Different operating 

conditions of these systems and several busbar configurations were used m the 

performance evaluation. The of ct satutation and ratio-mismatch conditions was 

also studied. The m d t s  indicate that the proposed technique conectIy distinguishes fiults 

in a busbar protection zone hm those oatside the zone. AdditionalIy, the technique is 



stable during ct saturation and is not affected by ct ratio-mismatch. It can be applied to 

busbars of different configurations without any modifications. 

The impact of ct saturation and ct ratio-mismatch on the performance of the 

propsed technique was investigated using the Discrete Fourier analysis technique. Various 

parameters, such as, presence of d.c. o f k t  in the currents, mild and severe saturation of the 

cts, and different sampling frequencies have been considered. Also, the impact of the size of 

data-windows on the estimates of the current phasors is investigated. It is conc~uded that 

the decision generated by the technique is not affected by ct saturation. Also, independent 

computations made by individual relays makes the technique inherently immune to ct ratio- 

mismatch. 

The proposed technique was implemented using a general purpose relay hardware. 

The hardware and software constituents of the prototype are presented in this thesis. The 

procedure for testing these relays by using a playback simulator is reported and selected test 

d t s  are also included. 
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INTRODUCTION 

1.1. Background 

An electtic power system consists of four major divisions: generation, 

transmission, distnibution, and utilization. An eIectric utiIity generates, transmits and 

distniutes energy to a variety of consumers. Since power systems are spread over vast 

territories and comprise of large number of components, the probabilities of component 

failur~ abnormalities and fauIts are significant. Occurrence of faults can damage 

equipment and injure personnel resulting in substantial monetary losses to utilities and 

consumers. Each system element should, therefore, be protected fiom damage due to 

faults and adverse operating conditions. Protective relays, which activate trip circuits of 

circuit breakers for isolating the huited components h m  the power systems, are used for 

this purpose. 

1.2. Protection of power systems 

The major function of protective dwices is to detect the occurrence of faults and 

to isolate the faulted sections f k n  the power system. A power system is divided into 

protection zones, as shown in Figure 1.1, to achieve this objective. Each zone usually 

includes one major element and is protected by using a set of protective relays El]. The 

relays, responsible for protecting a zone, operate and open circuit breakers to disconnect 

the zone fiom the remaining system when a fault occurs. The relays also alert operators 

and start equipment for recording the waveforms of system currents and voltages. 

Adjacent zones overIap to ensure that no part of the power system is Ieft unprotected. 

Back-up relays are also provided to ensure isolation of the hdted equipment in case the 

primary relays f%I to operate. The back-up relays usualIy operate after a time-delay and 

isolate not only the hulted zone but aiso the adjoining zone(s). 





Fuses, which were used as protective devices in the early developments of power 

systems, were, and are still, used for p ro t ec~g  lines and equipment. Fuses are effective 

and inexpensive but have inherent disadvantages, such as, their inability to discriminate 

between supply and load side faults, and inability to restore the circuit after the fadt is 

cleared. Moreover, they must be replaced after each operation. 

Development of electromechanical relays provided a significant improvement in 

the protection of power systems. The relays provided means for controlling the operating 

times and also provided the ability to reclose the circuits. This improved the sensitivity 

and selectivity of the protection schemes. 

Solid state relays were introduced in early 1950s. These relays were not accepted 

initially by the users because of their inadequate designs and high failure rates of electronic 

components. Later developments utilized newer semiconductor technology and introduced 

improved designs. Several kinds of solid state and electromechanical relays are being used 

in power systems today [2]. Recent advances in the very large scale integrated circuits 

have led to the development of microprocessors and data acquisition chips. These have 

resulted in the development of digital relays. 

Relays energize trip circuits that result in opening the circuit breakers. The single- 

line diagram of a typical relay set up is shown in Figure I.2(a). The bctional block 

diagram of the dc trip circuit, used for opening the circuit breaker, is shown in Figure 

1.2(b). The relay senses the system voltages and currents through voltage and current 

transformers respectively. The protective relay senses the occurrence of a fault and 

activates the trip relay which, in turn, closes the breaker contact (CS). This energizes the 

breaker coil (52T) and opens the circuit breaker to disconnect the huited section h m  the 

rest of the power system. 

13. A microprocessor-based relay 

A relay that uses a microprocessor and software to process quantized signals for 

implementing the rday logic is being increasingly used m the power systems. Most of the 

research in the area of digital protection relates to the development of algorithms for 
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Figure 13. (a) Single-he diagram of a protective relay arrangement (b) DC trip circuit. 



specific applications. The following sections present a brief background of the evoIution 

of microprocessor-based relays, their pertinent features and fimctiodities [3,4,5]. 

1.3.1. Historical background 

In a paper [6] published in 1968, Rockefeller outlined the protection of all the 

equipment m a substation with a digital computer. This comprehensive paper, dthough 

speculative in nature and without any supportive experimental data, goes into substantid 

detail of the relaring programs for implementing on computers. This work led to the 

development and field installation of a system based on a process-control digitai computer 

for protecting a 1 'on line of the Pacific Gas and Electric Company (PG&E) [7, 83. 

The computer and its peripherals were Iarge compared to conventional relays, used 

sipficautly more station battery power, and cost about ten times more than the 

conventional relays. WhiIe this uses an expimental instalIation, it introduced m y  

design approaches that are in use today. Other experimental systems followed the PG&E . 

project f9, 10, 1 1, 12, 133. These systems advanced the numerical computation 

techniques, the economics, and the speed of tripping. 

Prior to 1972, the experimental systems used mefitting techniques in the 

computer programs to estimate the phasors of voItages and currents h m  the quantized 

vaIues of the samples [14]. The 1971 work of Ramamwrty 1151 was the first to propose 

the use of the Discrete Fourier Transform (DFT) to compute phasors h m  quantized 

samples that is the  prima^^ wmputationaI method in most ~~lfmercial microprocessor- 

based days. 

A commercial relay using a microprocessor appeared m 1979 [161. This product 

was a f k p m c y  relay with small rotary switches for seIecting set-points. This was an 

application in which a microprocessor w d d  be used to produce economically viable 

design. As the technology of the microprocessor chips in~eased and the relay designers 

learnt how to use them, more days appeared in the market These included relays that 

performed extremely simple tasks without resorting to high-speed measurements. Hybrid 



days  that measured parameters at high-speed using dedicated analog hardware also 

appeared in the market. Another use of the microprocessor chips was to perform complex 

logic for protection, monitoring and control. Minimum operating times of these relays 

were typically 2 to 2.5 periods of the nominal fiquency. By the Iate 1980's, traditiond 

and new relay manufacturers were offering sophisticated products for transmission line 

protection. 

Most relays that are being marketed now are of the numerical type, which 

continuously take samples of tine voltage and current signals, and quantize the samples to 

binary vaIues many thnes m each period of the waveform. Elaborate computations are 

performed in microprocessors to convert the quantized values to useful measurements. 

These are then combined with the settings and the logical inputs to make decisions. In 

addition to the usual protection functions, microprocessor-based days  provide detailed 

records of voltage and current waveforms during faults, and calculate fault locations [17, 

183. The relay platforms also include tacilities for monitoring software and hardware 

failures. 

Many recent products offer multipIe settings environments - upto eight sets of 

settings fiom which one can be selected for use in a variety of applications. One of the 

applications that benefits multipIe settings is a relay that provides backup protection for a 

large number of line protection relays in a reconfigurable busbar scheme. The backup 

relay must protect a different line as the busbar configuration changes. The backup d a y  

identifies the busbar configuration and invokes the appropriate settings without human 

intervention. Future microprocessor-based relays are likely to have facilities for 

performing more iimctions that might eliminate the need for peripheral devices, 

incorporate Iatest cummuuications technology and have more sophisticated self- 

monitoring functionalities. 

Some of the prominent centers of significant research in microprocessor-based 

relaying have been the University of Missouri [19,20,21], the Imperial College of Science 

and TechnoIogy in London [22,23], the University of Calgary [24,25] the University of 

Saskatchewan [26,27,28] and the Univecsity of Manitoba [29]. Major manufacturers of 



electric utility equipment m USA, Europe and Japan have pursued active projects on 

micropmcessor-based relays. Several Electric Power Utility organizations, such as the 

Pacific Gas and Electric Co., the Philadelphia Electric Co., and the Pennsylvania Power 

and Light Co. have worked on microprocessor-based relaying projects. 

1.3.2. Functional blocks and operating features 

The block diagram of a typical microprocessor-based relay is shown in Figure 

1.3. The relay can be divided into analog input, digital input and digital output 

subsystems, and a microcomputer, 

The input to a microprocessor-based relay consists of analog and digital signals 

derived h m  the power system. The levels of analog signals, system voltages and 

currents, are reduced to appropriate leveIs and are then applied to the analog input 

subsystem. The outputs tiom the subsystem are applied to the analog interface of the 

microcomputer. The digitd input subsystem receives the status of circuit breakers and 

isolators. Isolation circuitry and transient protection is used in analog and digitd input 

subsystems for protecting the relay fiom system transients. The outputs are provided 

through digital output subsystem. 

The microcomputer, in a microprocessor-based relay, consists of a central 

processing unit, non-volatile memory (ROM), random access memory (RAM), analog 

interface, and communications hardware and appropriate software. The voltages and 

currents are sampled and quantized, and are fed into the microcomputer. In most digital 

relaying applications, the values of quantized samples complete with time stamps are 

stored m a RAM. These are transferred to permanent memory storage (locaI or remote) 

as soon as possiile. A nonvolatile memory, ROM, is used for storing relay programs and 

settings. The relay logic is executed in the central processing unit 

Communication link enabIes the relay to share information with other devices. A 

self-diagnosis software resides m the relay and checks integrity of the reIay at regular 

intervals. This fkature allows the relay to remove itself h r n  service, when a malfinrction 
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(component fdure) occurs, and to alert the control center. Microprocessor-based relays 

are usually powered from the station battery which is provided with a battery charger. 

This ensures that the relays will operate during outages of the station ac suppIy. 

1.33. Benefits 

A microprocessor-based relay provides several benefits. These benefits can be 

Summarized as follows: 

(1). Economics 

The cost of digital hardware has been steadily decreasing. The economic 

consideration has become favourable to the increasing acceptance of microprocessor- 

based relays in the utility industry. 

(2). Performance 

Properly designed microprocessor-based relays perform at least as well as the 

presently available electromechanical relays. The performance in this context includes 

operating speed, security and improved operating fatures resulting h m  the use of digital 

processors. For example, memory action is provided in a microprocessor-based relay 

without a major design effort; a complex operating characteristics is easily programmed in 

a microprocessor-based reIay. 

(3). Reliability 

Digital equipment is perceived to hil more kquently than the components of 

electromechanical relays. However, most microprocessor-based relays are designed to 

monitor themselves at regular intervals by executing the software m conjunction with pre- 

specified data and comparing the results with those expected fi011.1 a properly hctiooing 

device- In the event of results diffaing h m  the expected values, the microprocessor- 

based relays alert the operator of the equipment Wure or impending faiIure. System 

reliability can be frrrther increased by the reIay monitoring its peripheds. These features 

increase the reliabiIity but, UnforhmateIy, increase the hardware and software costs also. 



Microprocessor-based relays can include multiple characteristics and have an 

option to select any one of those characteristics. Another factor that af'fiects flexiiity is 

the possiidity of replacing the sobare of a microprocessor-based relay and changing its 

entire nature. Because some inputs to the reIays in a substation are identical, a single 

transducer can provide an input to aIl microprocessor-based relays. It is also possible to 

design relays that can accept inputs fkom alternate devices in the case of failure of a 

transducer. These features increase the hardware and software costs that must be justified 

by the improvements in system operation. 

(5). Background tasks 

Since microprocessors handle the communication fimctions with ease, several 

microprocessor-based relays and systems are designed to collect data and transmit it to a 

prespecified location as a background task. Another task performed by some 

microprocessor-based relays is the post-fault analysis of the data collected during a fault. 

The relay computes the distance of a fault and provides the information for use by 

maintenance personnel immediately if the fault is of permanent nature and for future use if 

it is of temporary nature. Most microprocessor-based relays aiso collect sequence of 

events information locally, analyze it and provide the detaiIs and the resdts to a control 

computer. 

(6). Byproducts 

Microprocessor-based relays use digitized data that can be received over tiber 

optic links fiom electronic transducers instalIed in the substation. This approach results in 

savings h m  cabling costs and provide impetus for developing unified transducers and 

protection systems in the W e .  

1.4. Objective of the research 

As pointed out in the previous sections, the protection of severd elements of a 

power system is of paramount importance- The busbars, where various circuits converge, 

are a ctitical element of each power system. Since busbars are common nodes among 



different circuits, occurrence of a fault on a busbar intexrupts the supply to all circuits 

co~ec ted  to that busbar. It is, therefore, necessary to provide an effective protection 

system for protecting busbars. Factors such as the use of different busbar configurations 

and saturation of cts involved in the protection scheme make the protection of busbars a 

complex issue. Appendix A presents a brief outline of busbar arrangements. 

With the advent of digital technology, researchers and designers have made 

rernarkabIe progress in the development of suitable algorithms for use in rnicroprocessor- 

based relays. These algorithms use principles similar to their electromecfianical 

counterparts. Significant improvements have taken place in transmission line and 

transformer protection but busbar protection using digital techniques has received almost 

no attention. A literature survey has revealed that very few algorithms for protecting 

busbars have been proposed in the past Moreover, these algorithms are adversely 

affected by curreat transformer saturation and ratio-mismatch conditions. The reported 

d g o r i h s  use special circuitry and techniques to ensure correct relay operation during ct 

saturation. 

The objective of the proposed research was to develop a microprocessor-based 

busbar protection system suitable for correctly identiwg faults occumng inside and 

outside the protection zone of a busbar. The proposed algorithm must be stable during 

ct saturation and ct ratio-mismatch conditions, The theoretical basis desmiing the effect 

of these conditions on the proposed algorithm was to be developed and verified by 

carrying out studies consisting of diffefent types of faults and their locations. and for 

different busbar and power system contigurations. Also, the algorithm should be 

implementable in red-time and should provide decisions m reasonable time- 

1.5. Outline of the thesis 

The thesis is organized in seven chapters and ten appendices. The subject and 

organization of the thesis are descnied in the tirst chapter. It also presents a brief 

description of protection practices m power systems and important conclusions drawn 

fhm the review of literature on dgorithms proposed m the past for digital protection of 

busbars. 



Chapter 2 gives an overview of busbar faults and outlines the essential 

requirements of a busbar protection system. It also presents a review of the 

conventionally used diffetentid protection scheme with respect to its underlying principle, 

limitations and associated remedies. A brief review of the previousky proposed digitd 

aIgon'thms for busbar protection is mcluded and their pertinent characteristics are 

discussed. 

A fault-detection technique for protecting busbars is proposed in Chapter 3. The 

technique uses the concept of symmetrical components. The fault-detection characteristics 

of the proposed technique are presented. The procedure followed by the algorithm are 

desmibed in a flow chart. Various computations performed to realize the technique are 

also described in detail. 

The impact of ct saturation and ct ratio-mismatch is vital for all protection 

techniques, Chapter 4 presents a detailed analysis of the technique's performance when 

cts saturate or their ratios do not match Discrete Fourier d y s i s  technique was used to 

analyze the impact of ct saturation. Waveforms of currents tiom not-saturated and 

saturated cts were used as inputs, and the relative magnitudes and arguments of the 

computed phasors of currents were compared. Parameters, such as, dc offset in currents, 

mild and severe saturation of cts and different sampling fieswncies were considered in the 

anaIysis. Also, data-windows of different sizes were considered. The reasons for the 

technique's stable performance during ct saturation and ratiomismatch conditions have 

been established in Chapter 4. 

Chapter 5 d e s m i  system modeling and data processing steps that are used for 

evaluating the performance of the proposed technique. The electromagnetic transient 

simulation package, EMTDC, was used to generate simdation data. Studies were 

conducted for two diffkeat power system configurations which included a sample system 

mode1 and a SaskPower system model about its BRADA substation. Various types of 

busbar mangments and operating conditions were used. Results obtained h m  the use 

of the simulated data are presented and discussed. The impacts of ct ratio-mismatch and 

ct saturation are also included 



The hardware and software used to build a prototype busbar protection relay using 

the proposed technique are descriied in Chapter 6. The test set-up and the testing 

procedure are explained. Settings of instrument transformers used for reducing the 

voltages and currents to the relay level are outlined, The test results obtained by 

implementing the developed protection system are presented in the chapter. 

A brief summary of the conducted research and important conclusions dram 

thereof are outlined in Chapter 7. This chapter is followed by a list of references. 

Appendix A presents a brief outline of busbar acfangements. The concept of symmetrical 

components, used for analyzing an unbalanced three-phase system by transforming it into 

a set of balanced networks, is explained in Appendix B. These networks, called sequence- 

networks, are briefly defined in this appendix. Appendix C describes the Least Enor 

Squares (LES) algorithm which was used for estimating phasors. The design and 

hquency response of the anti-aliasing filters, used for off-line processing of the data, are 

presented in Appendix D. 

The co&guration and data of the power systems used for verification of the 

proposed technique are listed in Appendix E, An introduction to the EMTDC and ct 

model used in the simulations is given in Appendix F. Additional test results h m  

simulations are provided in Appendix G. The hardware and software used for testing of 

the relay software is descri'bed in Appendix H. Appendix I desmies the Real Time 

Playback (RTP) Simulator used for testing the implemented busbar protection system. 

Appendix J illustrates additional results obtained fhm the real-time testing of the 

developed protection system. 

Specific contniutions made by this thesis are as follows. 

An improved technique for protecting busbars has been deveIoped. The technique is 

desm'bed in Chapter 3. 

A digital algorithm based on the proposed technique is also reported in Chapter 3. 

A detailed analysis showing the effect of ct saturation on the proposed technique has 

been carried out, This is presented in Chapter 4 and verified by the tests reported in 

Chapters 5 and 6. The effect of ct ratio-mismatch on the proposed technique is also 



studied. The stable performance provided by the technique during ct saturation and ct 

ratio-mismatch is verified. 

A PC based fault-detection system that uses the proposed technique was designed, 

implemented and tested. The details are reported in Chapter 6. 

1.6. Summary 

ms chapter has briefly introduced the concepts of power system protection. The 

evolution of microprocessor-based relays and their important features are descriied. The 

latest trends in the area of microprocessor-based protection are briefly mentioned. The 

importance of busbar protection has been underlined. The objectives of the reported 

research arr outlined. The organization of the thesis is descnied and the specific 

contniutions made by this research project are enumerated. 



2.1. Introduction 

Faults on busbars are rare. However, an occurrence of a busbar fault can lead to a 

major shutdown. A bus-protection system, therefore, should be of high integrity. This 

chapter presents an overview of busbar-faults and essential requirements for a busbar 

protection scheme. DifTaential protection, conventionally used for protecting busbars, is 

bxiefly descni .  The limitations of this scheme and the additional features incorporated 

in differential relays are outlined. The previously proposed algorithms used in numerical 

bus-protection relays are also reviewed in this chapter. 

2.2. Busbar faults and protection requirements 

Busbar hults occur inf'resIuently and account for only a small percentage (6 - 7 %) 

of power system faults [30]. Statistics on busbar faults are not widely published, but one 

that shows the relative hquency of different types of hults is illustrated in Table 2.1. 

Table 2.1. Busbar fadt statistics [3 11. 



These statistics show that a majority of busbar faults short-circuit one of the phases to 

ground. The causes of the faults can be classified in the following categories. 

(i) Insulation failure due to detmureoration of material, 

(ii) Flashover caused by prolonged and excessive over-voltages, 

(iiii Failure of a circuit breaker to clear tauit currents leading to its short circuit, 

(iv) Human errors in operating and maintaining switchgear, 

(v) Foreign objects falling across busbars and 

(vi) Contact by animals, etc. 

Damage to the equipment depends on the faultduration, the fault-level and the 

withstand capability of the switchgear. The isolation of a busbar disrupts all the circuits 

connected to the busbar. The busbar protection system, therefore, must be carellly 

monitored to prevent inadvertent operations. A scheme that is simple in design and easy 

to apply is most likely to provide reliable service. To meet these requirements, a bus- 

protection system must satistjl the following criteria. 

(i) High speed for promptly clearing fidts to minimize damage and maintain 

system stability, 

(ii) Stable for all e x t d  hdts to avoid unnecessary interruption of supply, 

(iiii Proper discrimination between zones - tripping a minimum number of circuit 

breakers, and 

(iv) Reliable operation - avoid extensive damage to equipment, danger to 

personnel and disruption of service. 

Differential protection is by fir the most common method of providing busbar 

protection. A brief review of the differential principle is presented m the following 

section. Limitations and additional features that are incorporated in differefltial relays to 

prevent incorrect operatiom are also described. 

23. Differential protection 

Differential protection is M a b I y  a prime candidate for protecting a11 

components of power systems and is often selected to provide primary protection [321. 

Traditionally, differential protection has been used for protecting most power transformers 



and generators. Duxing the last five years, diBerential protection of transmission lines has 

also become a viable technique. The basic principte of differential protection is discussed 

in this section. Special features that are incorporated in differential relays to prevent 

incorrect operations are briefly discussed. 

2.3.1. The differential principle 

The currents at the extremities of a zone are reduced in level by current 

transformers (cts) and are continuoudy compared. The operating coil of the relay is 

connected to the secondary windings of the cts in such a way that the current flowing 

through it is equal to the sum of the secondary currents of the cts. The differential 

principle can be described with the help of Figure 2.1. 

Figure 2.1. A basic difhential scheme during (a) normal operation and external huh, 
and (b) intend fidts. 



Net cunent flowing through the operating wiJ of the diffefential d a y  is zero during 

normal operation and during external fidts. A fault m the protection zone upsets this 

balance and causes a current to flow in the operating coil of the reIay. This is shown m 

Figure 2. I (b). 

2.3.2. Issues 

A small amount of current normally flows in the operating coil bemme of 

mismatch of ct ratios and differences in characteristics of the cts. Phenomena of ct 

saturation and ratio-mismatch, which cause the differential relays to operate incorrectly, 

are described in the following sections. 

23.2.1. CT saturation 

Ct saturation occurs when the flux density required to produce the secondary 

current exceeds the limit that can be provided by the ct core. Whether, or not, a given ct 

wilI saturate depends on the following Factors: 

( i )  CT ratio, 

(ii) Core cross-sectional area, 

(iiii Connected burden, 

(iv) Level of remanent flux, 

(v) Level of dc offset in the current, and 

(vi) Material of the core. 

A simplified circuit of a current transformer is shown in Figure 2.2 [33]. L, 

represents the non-linear magnetizing inductance. %, is the iron loss equivalent resistance. 

The currents that represent the reactive and active components of the magnetizing current 

are shown as I, and I, respectively. Rt, is the load comected to the ct that is made up of 

the impedances of all leads and the relay coils. & and L, represent resistance and leakage 

inductance of the primary winding. R and L, represent the resistance and inductance of 

the secondary winding. & and V, are the induced emfof the ct secondary winding and the 

voltage at the ct terminds respectively. 

The primary winding of a ct is in series with the line and, therefore, carries the 

cment that flows m the line. When a short-circuit occurs, the line current b m e s  large, 



which also flows in the ct primary (I,). The seccndary current (I,) also increases. Ideally, 

the secondary current should be proportional to the primary current. The ct must develop 

mfticient voltage (6) to make this current to flow in the secondary circuit To generate 

this voltage, part of the primary cument becomes the magnetizing current (I,) that 

produces flux in the core of the ct. 

Figure 23. An equivalent circuit of a current transformer. 

Normally9 the magnetizing current is small and the secondaty current remains 

proportional to the primary current for all practical purposes. If a ct has ro develop a . 

large voltage to overcome the voltage drop in the secondary circuit, the core fIux levels 

must be high. If the flux approaches the saturation level, the exciting current (I,) becomes 

large and the secondary current decreases. The secondary current of the ct in this case is 

less than its h e 1  had the ct not saturated. As the primary current increases beyond the 

saturation 1-1, the core saturates during a part of the cycle only f34]. The result is that 

the secondary current becomes distorted. 

Since the cts used in differential protection schemes are in series with the line, they 

carry large amounts of currents during k t e r d  and external faults. A high level of current 

can cause a ct to saturate resulting in different secondary currents out of the two cts. This 

d t s  in the flow of a differential current in the operating eIement of the reiay while the 

fault is outside the protection zone. Saturation of cts can, therefore, cause the diffetential 

relays to operate during external hults. It is essential that steps be taken to detect ct 

saturation and bIock the relay operation when it is necessary. 



23.22. Ratio-mismatch 

The ratios of various cts used in a differential protection scheme should be so 

selected as to provide no differential current during normal-operation and through-hdt 

conditions. Any mismatch in the ratios of cts will result in a net current in the differential 

coil causing the relay to operate during through faults. The realization of exactly matching 

ct ratios is diffidt in practice. As such, there always are some currents in the differential 

coils of the relays. To avoid incorrect operations of differential relays, additional features 

are employed; these are descnied in the next section. 

2.33. Remedies 

It is observed that the operation of a differential protection scheme in the simple 

form of Figure 2.1 is adversely affkted by the characteristics of the cts. The lengths of 

the leads, conl~ecting the cts to the day, are not usually equal. The VA burdens on the 

cts, therefore, are not equal. This causes the cts to produce different outputs for the 

same levels of input currents. The consequence is that some current flows in the 

operating element of the differential reIay during through faults, 

The effect of ct saturation can be reduced by increasing the cross-section of the ct 

core. Also, a stabilizer resistance can be used in series with the operating coil of the relay, 

which increases the relay burden and reduces the difference between the mapetking 

currents of the cts. 

Differential relays are provided with a percentage-bias feature to avoid tripping 

due to ratio mismatch. The diffefential relays include restraints that are derived h m  the 

arithmetical suxn of all the currents, which are rectitied and added. The operating current 

is the vectorial sum of all the cuttetlts and the mtcahhg current is their scalar sum. The 

differential current required to operate the relay must exceed a set percentage of the total 

restraint. The ratio of the operating cunent and restraining current expressed as a 

percentage is d y  called the slope of the relay characteristic. A typical percentage-bias 

characteristic is shown in Figure 23. 
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F i e  23. A typical percentagebias differential relay characteristic. 

The dope is adjustabIe and is usually made large enough to prevent the relay b m  

operating due to ct mismatches. The differential current caused by ct ratio mismatch is 

countered by the restraining m e n t  keeping the relay h m  operating incorrectly [35]. 

This feature increases the security of the relay while it keeps its sensitivity at a reasonabIe 

level. 

2.4. Digital algorithms for busbar protection 

A literature survey has reveaIed that very few algorithms for protecting busbars 

have been proposed in the past. These algorithms are based on differential protection, 

and can be broadly divided into the following categories. 

( Bay-oriented busbar protection system, 

(hi Half-cycle differential algorithm and 

(iii) Algorithms using special circuitry. 

These aigorithms are adversely affected by current transformer (ct) saturation and 

ratio-mismatch conditions. As such, the a&orithms use rn-es to ensure correct relay 

operation during ct saturation conditions. Both, speciai circuitry and techniques are used 

for the purpose. A brief description of these algorithms is provided in the following 

sections. 

2.4.1. Bay-oriented busbar protection system 

A numerical technique utilizing two independent algorithms has been proposed by 

Peck, Nygaard and Wadetius [3q, The proposed protection system is baysriented and 



consists of installating bay units (BUS) close to the switchgear. The arrangement of the 

system using these units is shown in Figure 2.4. The bay units interface with the 

switchgear and act as data-acquisition units. They also process the inputs. The currents, 

applied to the bay units via current transformers, are filtered and then quantized. The 

samples are time-stamped so that appropriate samples are used by a centrd unit (CU) 

while implementing the protection algorithm, The central unit consists of a number of 

central processing units (CPUs), each performing a dedicated part of the protection 

algorithm. A separate master CPU supervises the other CPUs and enabIes the hl trip 

command. 

Figure 2.4. Busbar protection system arrangement using bay units [36]. 

Two protection algorithms are used for faultdetection; these are based on 

measuring the differential current and atiIizing a restraint current to provide stability. 

One algorithm uses the instantaneous current samptes and the other uses the hdamentaI 

fipquency phasors calculated by the Discrete Foarier Transform. 

These algorithms can be expressed by Equations 2.1 and 2.2. 



where RF is the restraint factor, n is the number of circuits, and it and <(it) are the 

instantaneous samples and fimdamental frequency phasors respectively of each phase. 

Every bay unit continuously monitors the currents of its bay. The computed 

values are transmitted to the CU, which calculates the sum of the currents and monitors 

the differential current. In the event of a fault, the ditferential current increases. As soon 

as its value exceeds a threshold and/or current in one or more bay units exceeds a 

threshold, implementation of the instantaneous and full-cycIe algorithms is started. The 

instantaneous algorithm is executed only once. It uses three consecutive current samples 

taken by the bay units before any ct can saturate, The integrity of the current values is 

secured due to high sampling rate (48 samplesicycle) in the BU. The kll-cycle algorithm 

is repeatedly applied until the fadt is identified. The stability for ct saturation during 

external faults is achieved by adjusting the trip characteristics and the restraint factor 

used in the trip criteria. 

Man machine interface 0 is used to communicate with the busbar protection 

system and is comected to the CU via a fibre-optic cable. The protection system can be 

configured and tested by using software accessed via the MMI. 

2.4.2. Half-cycle differential algorithm 

Forford and Linders [37] described a hdf-cycle bus differential d a y  which 

evaluates the situation in the period from the inception of the fault to the onset of ct 

saturation. The proposed relay makes the required measurements prior to ct saturation 

and rejects the information received h m  the cts when they are saturated. 

The relay is based on &&-impedance differentid current principle. A schematic of 

this relay system is shown in Figure 2.5. It employs two h e  diodes for each phase of each 

circuit These provide fuEl wave rectification of each current in the relay. The total input 



. . 
current deveIops a restrillIllng voltage across a resistor. Any differential cment due to ct 

ratio error or internal fauk will flow through an adjusting resistor and a current isolating 

ct. The differential cunent output of this ct is rectified by a tirll wave bridge and is applied 

to resistor (RD). The voltage across this resistor is used as differential voltage. The 

diffaential (b) and restraining (V,) voltages are compared and used for closing the 

tripping contacts. The stability during ct saturation is achieved by increasing the resistor 

(RD) to increase the restraint. During internal faults, the secondary fault current flows in 

the high-impedance differentid circuit and the relay operates. The ability of this relay to 

operate prior to ct saturation is its main feature. 

Figure 2.5. Schematic diagram of the halfqcie bus differential system [30]. 

2.4.3. Algorithms using special circuitry 

Some digitat algoritlrms that use special circuits to prevent improper operation of 

the relays during ct saturation have been proposed. These circuits include saturation 

detectors, countermeasure elements, and RC circuits. A brief review of these algorithms 

is presented in this section. 



The waveform of a secondary current of a saturated ct consists of outputs of the 

'saturation' and 'non-saturation' periods. There are no differential currents during the 

'non-saturation' periods. Utilizing these facts, the low-impedance solid-state diffecentiai 

relays, which incorporate a ct saturation countermeasure have long been proposed. This 

principle has been implemented in a digital busbar protection [38] as well. 

The countermeasure element, included in the day ,  contains a waveform 

discriminating unit, which prevents an unwanted tripping when the differential current is 

significant due to ct saturation during external faults. The working of the waveform 

discriminating element is governed by the change in the instantaneous values of the 

differential and restrsllnrn . . g currents. However, the ct output cannot be determined during 

the intervals between the sampIing instants in digital relays. The algorithm suggests 

proper ct saturation countermeasure to overcome this drawback. 

Royle and Hill [39] developed a technique for busbar protection that uses 

eIectronic detectors for detecting ct saturation, and semiconductor witches to short 

circuit the differential path for the portion of the cycle during which the secondary 

current h m  the ct is inadequate due to saturation. Figure 2.6 shows the saturation 

detector m a simplikd form. The input ct feeds the differe~ltial circuit via the primary 

winding of an auxiliary transformer whose output develops a voltage across a resistor. A 

capacitor is charged to peak value of this voltage. 

A comparator is used to compare the voltage (V) with half the voltage stored in 

the capacitor. When the voltage (V) is Iess than 0.5 V,, the comparator produces an 

output signal to close the electronic switch connected across the 'Input ct'. Pulses 

produced by the comparator at each zero crossing of the current waveform are of short 

duration and shunt negligible current h m  the 'Input ct'. However, when the current 

transformer saturates, the wavehrm of the voltage V collapses during part of the cycle 

and the pulse width increases. This increased pulse operates the semiconductor switch to 

prevent the flow of current while the ct is saturated. 
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- Figure 2.K ~aturati& detector [39]. 

Kumar and Hansen [40] deveIoped a busbar protection technique that is based on 

the low-impedance differential scheme. Requirements of fast trip and security against 

unwanted relay operations are achieved by muitiprocessing. Three microcomputers are 

used for the purpose. The protection algorithm uses relationship between restraining and 

differential currents and a testraining factor. The sum of the rectified currents provides 

the restmining signal and the vectorial sum of the currents is rectified to provide the 

differentid signaI. The restraining signal is obtained by charging a capacitor provided m 

the output circuit Undesired operations, during ct saturation, are ehinated using 

additional techniques. Advantage is taken of the fact that ct saturation does not set m 

immediately on the occurrence of the fault and a saturated ct recovers and transforms 

correctly at regdar intervals. The method of ensuring stability assumes that the ct takes 

a prespecified time to saturate after the occurrence of a fauk This method, however, 

does not guarantee correct operation for severe ct saturation. 



2.4.4. Discussion of the algorithms 

Digital algorithms proposed in the past for protecting busbars have been reviewed 

in Sections 2.4.1 to 2.4.3. The following observations can be made fiom the review of 

the Literature on these algorithms, 

The area of digital busbar protection has not been of active research. Very 

littie work has been reported on the development of algorithms suitable for 

protecting busbars. 

The phenomenon of ct saturation affects the protection schemes adversely 

and causes improper operations of the relays. Most algorithms proposed 

for busbar protection handle ct saturation by using circuitry, and are 

based on the assumption that they function correctly. Use of additional 

circuitry in the protection scheme incremses its complexity and, therefore, 

increases the possliility of incorrect operations due to malfunction of its 

components. Also, an increase in the number of components in the 

protection scheme increases the total cost, 

No algorithm proposed in the past has inherent hnmlmity to ct saturation. 

The stability of the algorithm during this condition is provided by using 

special means, such as, special circuitry, two algorithms working in 

conjunction and choice of restraint fictor. Moreover, the correct operation 

is not guaranteed if the ct saturation is severe. 

The effect of ct ratio-mismatch has not been explained far any of the 

previoudy proposed algorithms. In practice, matching the ratios of various 

cts of a protection scheme is an important consideration. 

The initial values of m e n t  and voItage thresholds are required to be 

selected. The correct impIementation of the algorithms depends on the 

proper seIection of these iuitial values. 

The fact that cts do not saturate immediateIy on the occurrence of a M t  

has been the lmderiying principle used in some of the proposed relays- 



These relays also require that resistors in their restraint circuits be adjusted 

to prevent incorrect operations during external faults. However, there 

always is a chance of selecting resistors of incorrect values that could affect 

the operation of the relay. 

2.5. Summary 

A brief outline of busbar M t s  and the essential requirements of a busbar 

protection system have been presented in this chapter. The principle of diffaentid 

protection and its Sitations have been described. Additional features incorporated m 

diffefential relays to ensure correct operation during ct condition have been d i d  as 

well. 

Previously proposed digital algorithms for protecting busbars have been briefly 

rewiewed. It is noted that, unlike other power system components, the area of busbar 

protection has not been very active. The algorithms proposed for busbar protection use 

special circuitry to provide correct relay operation during ct saturation. Unfortunately, 

their correct operation during severe saturation of cts is not guaranteed. 



3. THE PROPOSED TECHNIQUE 

3.1. Introduction 

The algorithms proposed in the past for protecting busbars have been briefly 

reviewed in Chapter 2. It is observed that no previously proposed algorithm has inherent 

immunity to ct saturation. The stability of the algorithms during this condition is achieved 

by using additional means, such as special circuitry, two algorithms working in 

conjunction and using restraint factors, Moreover, their correct operation on severe ct 

saturation is not guaranteed, The impact of ct ratio-mismatch is countered by using 

percentage-bias characteristics, which however reduces the sensitivity of the relay. 

This chapter proposes a technique that distinguishes between the faults internal md  

external to the busbar protection zone. The technique [41] is based on the concept of 

symmetrical components, which has been emptoyed previously for the development of 

protection algorithms for transmission Lines [42], synchronous generators [43] and power 

msformers [44,45,46], The technique uses positive- and negativesequence models of 

the power system in a fault-detection algorithm. While the phase voltages and currents at 

the busbar are used to detect faults, no information on the parameters of the power system 

is required. The concept of symmetrid components is briefly explained in Appendix B. 

3.2. Development of the technique 

Figure 3.1 shows a busbar, B, which is connected to several circuits (I, 2, 4) and 

is protected by relays Rt, R2, .....-It,,,, b2, ......... Rj that are instaIled on the circuits. 

Since these relays compute the incrementid-impedances using the pre-fadt and during- 

hult samples of the voltages and cunents, they are designated as delta-impedance relays. 

These reIays consider the carrent entering the busbar to be positive. 
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Figure 3.1. Busbar B and circuits connected to it considered for developing the 
proposed technique. 

3.2.1. External fault 

The pre-fault, during-fault a d  Thevenin equivalent circuits for an external fault (Ft ' 

in Figure 3. l), on circuit j, can be rqnsmted by the sequence networks shown in Figures 

3.2 and 3.3. The fault impedance Zf, which includes the fault resistance and impedances of 

the sequence networks representing unbalanced hults, is shown in these figures. 

The phasors of the positive-sequence incremental voltages, AVI, AV2, ....... 
AV,, AV&ib AV~m+w...., AV' and the phasors of the incremental currents, AIL,, Ma, 

....... hi, AI(mc~)p, AI(=* ..... AIjp at the d a y  locations can be defined as follows: 

where: 

V is the phasor of the positive-sequence voltage at Rk before the 

o c m c e  of a hdt, 

Vfrp (wt) is the phasor of the positivesequence voltage at Rk after the occurrence 



Zero potential bus 

Reference bus 

F i i e  3.2. Positive-sequence (a) pre-Mt, (b) during-fault, (c) Thevenin equident, 
and (d) eqtivdent circaits about d a y  Rj for an extemaI fault at Ft . 



Figure 33. Negative-sequence (a) pre-fadt, (b) d-g-hdt, (c) T h e v d  equivdent, 
and (d) equivalent circuits about d a y  Rj for an extemd fauIt at FI. 



I is the phasor of the positive-sequence current at Rk before the 

occurrence of a fault, 

ILI, (fault) is the phasor of the positive-sequence current at Rk after the occurrence 

of a fault 

and k I, 2, ....., m, m+ 1, m+2, .,....= i. 

Define ZI,, Z?p ......, as the equivalent positive-sequence impedances of the 

circuits and systems connected to terminals 1, 2, ..... j of the busbar. It is clear h m  

Figure 3.2 (c) that the phasor ofthe positive-sequence incremental voltage at relay RI can 

be expressed as 

Rearranging this equation provides the ratio of the positive-sequence voltage and current 

at the relay Rl . 

Following a similar procedure, it can be shown that for an external fault, the ratios 

of the phasors of the positive-sequence voltages and currents at the relays Rt, ...-, Rm 

R,,, k2, ...., Rj.L, which are provided on the healthy circuits, can be expressed by the 

following equation 

where k = I, 2, ...., rn, m+l, m+2, ...., j-I (k#~). 

The positive-sequence impedance seen by the relay R, can be obtained by defining 

an equivalent circuit as shown in Figure 3.2 (d). The foUowing equation expresses the 

voltage-cunent rdationship in this case. 



where 

(&& is the equivalent positive-sequence impedance of the network seen from the 

location of relay Rj. 

Because AIp= - AIjp Equation 3.6 becomes 

Avjp = (ujp)(&vt)jp- (3 7) 

The ratio of the phasors of the positivesequence voltage and current as seen by 

relay R, can be obtained by rearranging this equation. 

The ratios of negative-sequence voltages and cumnts as seen by relays, except 

relay Rj, can be obtained by using a similar procedure. These ratios are 

where 

Zb is the equivalent negative-sequence impedance of the circuits connected to 

terminals 1,2, ..... j- 1 of the bwbar, 

AVk is the phasor of the negativpseqw~lce incremental voltage at the location of d a y  

Rk, 

AIlm is the phasor of the negative-sequence incremental current at the location of relay 

EL, 

and k= 1-2, ...., m, m+l, m+2, ...., j-I. 

The ratio of the negativesequence voltages and currents seen by rday Rj, located 

on the hulted circuit, can be expressed as follows. 



where 

(&,-),, is the equivalent negative-sequence impedance of the network seen from the 

location of relay Rj, 

A is the phasor of the negativesequence incremental voltage at the relay Rj and 

4, is the phasor of the negative-sequence incrementd current at the relay R,. 

Similar procedure can be used for determining the ratios of sequence voltages and 

m t s  seen by the relays for external faults on other circuits. The preceding analysis 

shows that the impedance seen by the relay located on the faulted circuit wilI be in the fbt  

quadrant and the impedances seen by all other relays will be in the tbird quadrant. 

3.2.2. Internal fault 

Figure 3.1 shows a hult (F2 m Figure 3.1) in the protection zone of the bush.  

The pre-fault and during-fault positive-sequence networks for the internal fault are shown 

in Figures 3.4 (a) and (b) respectively. The Thevenin equivaIent circuit is shown in Figure 

3.4 (c). 

Considering the equivalent circuit shown m Figure 3.4 (c) and using an approach 

similar to the approach used m Section 3.2.1, the ratios of the phasors of the positive- 

sequence and negative-sequence incremental voltages and currents as seen by ditkent 

delta-impedance relays can be expressed by the equations. 

where 

Zr, is the equivalent positive-sequence impedance of the circuits c0MeCted to the 

busbar, 

Zb is the equivdent negative-sequence impedance of the circuits co~ected to the 

busbar 
. . and k= 1,2, ....., m,m+I,m+2, ...., J-1,~. 



Zero potential bus 

Zero potential bus 

Figure 3.4. Positive-sequence (a) pre-fault, (b) during-fault, and (c) Thevenin equivalent 
circuits for an internal fauIt in the busbar (F2)- 



Figure 3.5. Negativesequence (a) pre-fault, (b) during-fiult, and (c) Thevenin equivalent 
circuits for an internal tault in the busbar (Fz). 



3.2.3. Fault-detection characteristics 

The presentations of Sections 32.L and 32.2 iead to the foI1owing observations. 

The impedances seen by all  the debimpedance relays lie in the third quadrant of 

the impedance plane when a fault is in the protection zone of the busbar. 

The impedance seen by the relay located on the hulted circuit lies in the i%st 

quadrant when a fault is outside the protection zone of the busbar. The impedances 

seen by all other relays lie in the third quadrant. 

These criteria are true for positive- as weU as negative-sequence impedances seen 

by the relays and, therefore, can be used to distinguish faults outside the bus-protection 

zone fiom fkults in the protection zone. The criteria can be translated into the fault 

detection characteristics shown in Figure 3.6. 

one rda rn 

Figare 3.6. Fadtdetection chamtexhitics for (a) an external fault and (b) an i n t d  
hult. 



3.3. Protection algorithm 

A digital algorithm based on the fault detection technique proposed in Section 3.2 

has been developed for protecting busbars. Each delta-impedance relay used in the 

protection scheme executes the proposed algorithm, and the final decision is made by 

combining the observations made by all the relays. The algorithm uses the voltages and 

currents sampled simultaneously at a predefined rate. The following sections d a c n i  the 

procedure followed in executing the proposed algorithm. 

3.3.1. Procedural steps and flow-chart 

A flow chart of the proposed algorithm is displayed in Figure 3.7. The following 

steps are performed in the algorithm by the deIta-impdmce relay Rt e l ,  2, ......j). 

Initialize the trigger indicator, TRIGGER, and the trip counters, TPOSk and 

TNEGk of the positive- and negative-sequence impedances to zero. 

Check if it is time to sample voltages and cwents. If so, proceed to Step 3. 

Otherwise, wait until it is time to take samples. 

Sample and quantize the phase voltages and currents. 

Calculate the 60 Hz voltage and current phasors using the LES filters described m 

Appendix C. 

Calculate the positive- and negative-sequence phasors and store the sequence- 

phasors in the processor's memory. 

Compare the most recent vottage and current samples with the voltage and current 

samples fiom one cycIe earlier. If the change is greater than a pre-defined 

threshoId, V-CHANGE for voltage and I-CHANGE for current, then increase 

TRIGGER by one, else decrease TRIGGER by one if it is greater than zero. 

Check if TRIGGER is equal to two. If so, proceed to Step 8, else revert to Step 2. 

Compute the phasors of the positive- and negative-sequence incremental voltages 

and currents using Equations 3.1 and 3 2  respectively. 



b TRIGGER >=2 ? 

(contd. on next page) 

Obtain a set of sampIes f 
I Caldate 60 Hz voltage and current phason I 

1 Calculate positive- and negative-sequence phasof~ I I and store in processor's memory I 
I 

instantaneous samples 

Decrease TRIGGER +I 

increase TRIGGER 
by 1 

F i  3.7. Flow chart of the proposed aIgorithm @re-fault segment). 

40 



(contd. ftom previous page) Q 

Acquire next set of samples. 
Calculate 60 Hz voltage and 
current phasors. Compute 
positive- and negative- sequence 
phasors. 

i . Bi, - j (contd. on p. 42) . - -.--- 

A. 
: -. 

i Ci, i (contd. on p. 43) . - . . -I.-. 
_...* 

_I .1 

i C,, j (hm p. 43) 

No 

1 Yes 

Set TRIF-SIGNAL to HIGH (1) Hold TRIP-SIGNAL to LOW (0 

Figure 3.7 (contd.). Flow chart of the proposed algorithm (during-fault segment). 



No 

Compute pasitive-sequence impedance, Zpk 

Yes 

1 
No Increase TPOSk by 1 

a I 

Yes 

1 
No Decrease TPOSk by 1 

-- I -- 

Figure 3.7 (contd). Segment for checking threshold of positive-sequence voItages and 
currents. 



I Compute negative-sequence impedance, Zu, I 

Figare 3.7 (contd). Segment for checking threshoId of negative-sequence voltages and 
currents. 



Check if the magnitudes of the phasors of the positive-sequence incremental- 

voltages and incrernental-~~~~ents are greater than a predefined minimum value, 

MINIMUM, times the conesponding pre-fadt values that were calculated in Step 5. 

If they are, compute the ratio of the phasors of the positive-sequence incremental 

voltage and current (Z,S seen by the relay, otherwise, proceed to Step 1 1. 

Check if the positive-sequence impedance is in the third quadrant. If it is, increase 

the positive-sequence trip counter, TPOSk, by one. Decrease the trip counter by 

one if the impedance lies in the first quadrant. 

Check if the magnitudes of the phasors of the negative-sequence incrementd- 

voltages and incremental-currents are greater than a predefined minimum value, 

h4lMMUM, times the corresponding p f a u l t  values that were calculated in Step 5. 

If they are, compute the ratio of the phasors of the negative-sequence incremental 

voltage and current (Zb) seen by the relay, otherwise proceed to Step 13. 

Check if the negative-sequence impedance is m the third quadrant. If it is, increase 

the negative-sequence trip counter, TNEGk, by one. Decrease the trip counter by 

one if the impedance lies in the first quadrant. 

Check if the value of either the positivesequence trip counter or the negative- 

sequence trip counter has violated a pre-specified value, THRESHLD. If either 

counter has, proceed to Step 14, otherwise revert to Step 2. 

Set trip signal (TRIP-SIGNALk) to HIGH (I)  (LOW (0)) for positive (negative) 

values of trip counters. 

Revert to Step 2. 

The algorithm steps outlined above wilI be continuously executed by the relay until a 

signal is sent to the tripIogic for a f5ult in the protection zone of the busbar. 

However, for a fault outside the busbar protection zone, the d a y  continuously computes 

the impedances as long as the circuit breaker on the finlted circuit is opened and a signal 

to this effect is received by the day. 



33.2. Computations 

The digital algorithm executes the steps outlined in Section 3.3.1. Various 

computations performed by the relays are briefly descnied in this section. 

3.3.2.1. Voltage and current phasors and sequence quantities 

The coefficients of orthogonal filters, which are designed off-line, are used for 

computing phasors. A Least Error Squares filter [47] designed for a data window of 25 

samples taken at 1440 Hz was used in this work. At each sampling instant, voltage and 

current samples are obtained h r n  each phase of the power system, are quantized, and are 

used for computing phasors. The computed voltage and current phasors are used for 

calculating the sequence-voltage and sequence-current phasors. The latest set of phasors 

and sequence-phasors are stored in a buffer. The data window is advanced to receive new 

samples. Appendix C descries the Least Enor Squares Glter used for estimating phasors. 

The voltage and current samples h m  each phase are used for detecting the 

inaption of a fault The most recent sample is compared with the c o n e s p o ~ g  sample 

taken one period earlier and the change in its value is calculated. If the change is greater 

than a predefined threshold, I-CHANGE for current and V-CHANGE for voltage, the 

associated trigger counter is incremated Two SUCCeSSive increments of a counter 

establish the onset of a fault. Once the Wt-inception is detected, the procedure for 

computing incremental-sequence phasors is initiated- 

33.23. Phasors of incremental voltages and currents, and apparent 

impedances 

As descnied before, phasors of sequence voltages and amex16 are computed 

using a data window of fixed length every time the sampIes are taken. The data window 

moves continuously such that a new sample is included at every sampling instant and the 

oldest sample is discarded, The movement of data window is illustrated in Figure 3.8. 



Pre-fault data window (A) 
I Faultdata window(1 faultdata sample) (B) 

Figure 3.8. Data window for computing phasors. 

The phasors of sequence voltages and currents calculated using twenty five 

consecutive windows are saved in memory. The phasors calculated after the occurrence of 

a fault (instant F in Figure 3.8) are used m conjunction with the corresponding pre-fault 

sequence phasors to compute the incremental sequence-phasors. For example, the 

phasors calculated using samples of data window B of Figure 3.8 are used along with the 

values of the sequence-phasors calculated using the pre-fault data window A. When the 

next sample is acquired, the fault data window is advanced by one sample h m  window B 

and the pre-fault phasor calculated by using the data window advanced by one sample 

h m  window A is used. 

The incremental voltage and current phasors are used for calculating the sequence 

impedances seen by the relays. The arguments of the impedances are used in conjunction 

with the fault-detection characteristics of Figure 3.6 for detecting fault in the busbar zone. 

The arguments of impedances are noted for their sign, As discussed in Section 

3.2.3, this sign forms the basis of determining if a W t  is either inside or outside the 

protection zone of the busbar. To ensure secure decisions, two tripcounten based on 



positive- and negative-sequence impedance are formed for each relay. These are 

inmementedfdecremented for a negativdpositive value of the argument of the impedance. 

A decision is made by a relay when the absolute value of either of the two trip-counters 

reaches the pre-specified limit, THRESHID. As soon as the trip-counter reaches the 

threshold, a TIUP-SIGNAL representing the decision of the delta-impedance relay is set. 

It is set HIGH (I), if the trip counter is positive and it is set LOW (0) if the trip counter is 

negative. The decision is passed on to the tripIogic. 

3.3.2.5. Triplogic 

The triplogic combines the decisions made by all the delta-impedance relays by 

using an AND gate logic circuit and provides the find decision. Figure 3.9 shows the mp 

logic for the busbar protection system of Figure 3- 1 - In his figure, TRtP-SIGNALk, k= 1, 

2, ..., m, m+l, m+2 ,...., j, represent the decisions h m  the individual delta-impedance 

relays that are sent to the trip logic using appropriate communication system. 

The output Erom the trip logic is used to trip the circuit breaker when a fault is in 

the busbar protection zone. However, if any of the input signals is LOW (O), the tripping 

of the circuit breaker is blocked 

AND Gate 

Figure 3.9. Trip logic. 

3.4. Summary 

A technique for protecting busbars has k e n  presented in this chapter. The 

technique uses samples of the threephase voltages and currents of the circuits c o ~ e c t e d  

to the busbar. The sampIes are used to compute positive- and negative-sequence voltage 

and current phasors which, m turn, are used to identify fBults in the busbar protection 



zone using the proposed technique. It is observed that the technique does not use the 

parameters of the power system components. Only the arguments of the impedances 

computed by the delta-impedance relays are used to identify the fault. 

A digital algorithm based on the deveIoped technique has been explained as well. 

The delta-impedance relays involved in the protection scheme would execute the 

algorithm. The detaiIs of the computations performed by the algorithm execution have 

also been presented. 



4, IMPACT OF CT SATURATION AND CT RATIO- 

MISMATCH 

4.1, Introduction 

Relays make decisions while dc 6 e n t  component are present in voltages and 

currents, To ensure that a relay makes decisions correctly, the waveforms of currents 

received h m  cts shoufd not be distorted. Emphasis is, therefore, placed on the ability of 

cts to provide to protective relays current waveforms that are true representation of the 

primary currents. 

This chapter examines in detail the impact of ct saturation and ct ratio-mismatch 

on the phasors computed by digitai algorithms. Different levels of ct saturation, and 

different parameters used for phasor computations, such as sampling k p e n c y  and data- 

window alignment, are considered. The impact of ct saturation and ct ratio-mismatch 

conditions on the performance of the technique, proposed in Chapter 3, is also examined. 

The objective is to establish the reasons for stable performance of the proposed technique 

when cts saturate and (or) their ratios do not match. 

4.2. CT saturation - Impact on phasor calculations 

Current transformers are used to reduce the tevels of currents experienced m 

power systems so that the currents may be conveniently applied to relays. Wavefbrms of 

currents generally provided by cts MhfbUy represent the primary currents untiI the ct 

wre saturates. The saturation causes the waveform of the secondary current to distort. 

The extent of distortion depends on the magnitude of the remnant flux in the ct core, the 

presence of dc o f k t  in the primary current and the ct burden, A saturated ct gradually 

recovers and the waveform of its secondary m e n t  starts to ~~y represent the 

primary cment. An investigation of the transient perfbnnance of  cts reveals that the 

waveforms provided by saturated cts have typical protiles shown m Figure 4.1. 



Figure 4.1. Typical waveforms of currents provided by saturated cts [33]. 

This figure shows that a ct does not saturate immediately after the occurrence of a 

fault Also, ct saturation results in clipping a part of the waveform after a zero crossing. 

More severe the saturation is, more of the waveform is clipped. 

The proposed technique uses the fimdamentd kquency phasors that are 

computed fiom quantized values of the waveform-sarnpIes. The impact of ct saturation 

on the computed vaIues of the phasors was, therefore, studied. important conclusions 

dram fiom the study and an explanation of the effect of ct saturation on the performance 

of the proposed technique is provided m the fornowing sections. 

4.2.1. Procedure 
The objective of analysis was to investigate the underiying phenomenon that 

affects the impedances calculated after cts saturate. The impact of ct saturation on the 

magnitudes and arguments of the computed phasors of the fundamental fkquency was 



studied. Discrete Fourier analysis technique was used for computing the phasors h m  

quantized samples of the waveforms provided by unsaturated and saturated cts. The 

waveforms of the primary currents were considered to be sinusoids of the hdamentd 

hquency with decaying dc offset. The outputs of saturated cts used in these studies 

resemble one of the waveforms shown in Figure 4.1. Different alignments of the data 

window and the current waveform were used. Selected resu1t.s obtained h m  the analysis 

are presented in the next section. The effects of various factors on the results are also 

identified. 

4.2.2. Results 

The results obtained from the tests, when a sampling tiequency of 480 Hz was 

used, are shown in Figure 4.2. This figure shows the simulated waveforms of currents 

provided by unsaturated and saturated cts. The magnitudes and arguments of the phasors, 

computed for two alignments of the data window, are shown as well. 

Figure 43. Waveforms of curze~lts h m  unsaturated and saturated cts, and phasors 
calculated h m  the waveforms when two distinctly diffaeat alignments of 
the data window are used. 



The waveform has about 50% dc offset. Moreover, a substantial part of the waveform 

representing output of the saturated ct is cLipped Additional studies revealed that the 

impact of saturation, on the magnitudes and arguments of phasors, was sirniIar for other 

alignments of the data-window. A perusal of Figure 4.2 leads to the following 

conctusions. 

The magnitudes of the phasors computed from the outputs of saturated cts are 

always smaller than the magnitudes of the phasors computed fiom the outputs of 

not-saturated cts. 

The arguments of the phasors computed fiom the outputs of saturated cts are 

greater than the arguments computed from the outputs of unsaturated cts. 

These observations were found true for aI1 alignments of the data-window. 

4.2.2.1. Effect of da ta-window movement 

The data-window used for computing phasors h m  currents moves by one sample 

at a time. At each sampling instant, a new sample is included in the data-window and the 

oIdest sample is discarded. Figure 4.3 shows the magnitudes and arguments of the 

computed phasors of currents provided by unsaturated and saturated cts for different 

alignments of the data-window. The profile of current waveforms fiom unsaturated and 

saturated cts are aIso shown in this figure. A sampling fkquency of 480 Hz was used in 

this d y s i s .  

A perusal of Figures 4.3 (a) to (h) reveals that the arguments of phasors calculated 

from the outputs of saturated cts are atways greater than the corresponding arguments of 

phasors computed from the outputs of not-saturated cts. A h ,  the magnitudes of the 

phasots computed f?om waveforms provided by saturated cts are always smaller than the 

magnitudes of phasors cdculated h m  waveforms of currents provided by not-saturated 

cts. These conclusions remain valid as the data window is advanced one sampk at a time 

for the duration of one cycle. 



Figure4.3. Waveforms of currents fiom unsaturated and saturated cts, and phasor 
arguments and magnitudes computed when the data window starts at (a) 
oO, (b) 450, (c) go0, and (d) 135'. 



(h) 
Figure 4 3  (contd.). Waveforms of currents h m  unsaturated and saturated cts, and 

phasor arguments and magnitudes computed when the data window 
starts at (e) 180°, (f) &, (g) 270°, and (h) 3 19. 



4.2.2.2. Effect of sampling frequency 

AnaIysis reported in the previous section was repeated with different sampling 

kquencies. The phasors were calculated by using the Fourier analysis technique and 

sampling frequencies of 480 Hz, 720 Hz, 960 Hz and 1440 Hz were used. Table 4.1 gives 

an overview of the calculated arguments and magnitudes of the fundarned fkquency 

phasors computed tiom the waveforms provided by an unsaturated ct and a saturated cr. 

Table 4.1. The magnitudes and arguments of phasors calculated tiom the waveforms 
provided by an unsaturated ct and a saturated ct. 

I sampling I ~nsaturatedci I Saturated ct 

- - - - - - - 

A study of the results presented in the table reveals that the conciusions drawn m 

Section 4.2.2 are valid when other plauslile sampling frequencies are used. The 

difference in arguments calculated h m  waveforms provided by unsaturated and 

saturated cts remains constant for a given sampling fkquency and does not change with 

the alignment of the data-window. 

4.2.2.3. Effect of the severity of ct saturation 

Folmer analysis of waveforms provided by cts with different levels of saturation 

was carried out to investigate the impact cf saturation on the trend observed in Sections 

4.2.2. I and 4.2.2.2. The results h m  an andysk, when a sampIing fkquency of 720 Hz 

was used, is illustrated in Figure 4.4. The arguments and magnitudes of computed phasors 

of the fizndament.1 fkquency me shown in the figure. The waveforms of the currents 

provided by unsaturated and saturated cts are also shown. This figure shows that, as 

expected, the waveform of the current become more distorted as the severity of ct 



saturation increases. Increased distortion causes the magnitudes of the phasors to 

decrease to d e r  values. The computed arguments of the phasors increase to larger 

values with increased saturation. Similar results were observed when other sampling 

frequencies and other data-window alignments were used. 

Figure 4.4. Waveforms of currents fbm unsaturated and, miIdIy, moderateIy and severely 
saturated cts, and phasor arguments and magnitudes calculated from the data 
representing the waveforms. 



4.2.2.4. Effect of the data-window size 

Data windows of different sizes are used by different algorithms for extracting the 

fundamental frequency component tiom a given signal. The effect of data-window size on 

the arguments and magnitudes of tbe computed fundamental fkquency phasors was 

investigated. Figure 4.5 shows a typical result in which data-windows of 13 and 17 

samples and the Least Error S q w  algorithm were used. The sampling frequency of 720 

Hz was used in these cases. This figure shows that the arguments of the fundamental 

frequency phasors o f  a s a m t e d  waveform are greater than the arguments if the waveform 

was provided by a ct that was not saturated. On the other hand, the magnitudes of the 

fundamental frequency phasors of  a saturated waveform are smaller than the magnitudes if 

the waveform was provided by a ct that was not saturated. Investigations showed that 

these trends are also true when other sampling hquencies and other data-window 

alignments were used. 

Figure 45. Waveshapes of currents h m  unsaturated and saturated cts, and phasors 
calculated by using data windows of (a) 13 samples and (b) 17 samples. 



4.2.2.5. Effect of the cut-off frequency of anti-aliasing fdter 

An anti-aliasing tiIter is used to process signals before they are processed by the 

daying software. This is done to prevent aliasing of sign&. Cut-off ftequency of the 

anti-aliasing filter is selected using the Nyquist criterion [48]. The andysis of Sections 

4.2.2.1 to 42.2.4 was carried out without using anti-aliasing fiIters. The impact of the 

cut-off tiequency of the fiIter on computed phasors is examined in this section, 

Anti-aliasing filters of diffefent cut-off fkequencies were used to investigate their 

effect on the arguments and magnitudes of the computed fimdamental-frequency phasors. 

Outputs of unsaturated and saturated cts were used as inputs to the fiIters. Cut-off 

tiequency of the tiIter was set at different values for a given sampling Eequency. The 

outputs of the filters were used to estimate the magnitudes and arguments of the 

fundamental kquency phasors for different data-window alignments. Table 1.2 lists the 

arguments of the fundamental fiecruency phasars when a partidar alignment of the data- 

window at a sampling kquency of 720 Hz was used. Similar mends were observed h m  

the results when other alignments of the data-window and other sampling frequencies 

were used. It is interesting to note that the differences between the arguments calculated 

from waveforms provided by not-saturated and saturated cts are approximateiy the same 

tbr all cut-off fkquencies of the anti-aliasing filter. 

Table 4.2. Impact of the cut-off kquency of the tiIter on the phasor arguments 
computed h m  waveforms provided by unsaturated and saturated cts. 

Cut-off fkqency 

m) 
100 

200 

300 

Difference (deg.) 

(we) 
19-89 

22.18 

22.43 

Phasor argument (deg.) 

unsaturated (0) 
-3 1 .07 

-33.53 

-39.6 I 

saturated (8') 
-1 1.18 

-1 1.35 
-1 7. I9 



4.23, Discussion 

As discussed in the previous section, the waveforms fhm saturated cts are 

distorted unlike those from not-saturated cts. The profile of the waveforms h m  

saturated cts have typical form like those shown in Figure 4.1. The analyses and 

discussions, contained in Sections 4.2.1 and 4.2.2, descnie the impact of ct saturation on 

the computed phasors. The presentations in these sections lead to the following 

conclusions. 

1, The waveform of the output of a saturated ct has a typical profile in which a part 

of the cycle is distorted. Each cycle starts with the waveform that is simiIar to the 

waveform provided by a not-saturated ct, The waveform is subsequently distorted and the 

extent of distortion depends on the severity of saturation. The decaying dc component of 

the primary cment is one of the major causes for causing cts to saturate. 

2. The magnitudes of the fundamental-fresuency phasors computed hrn  data 

representing a waveform provided by a saturated ct is always smaller than the magnitudes 

that would have been calculated if the waveform was not distorted. 

3. The arguments of the hdamental-fkquency phasors computed &om data 

representing a waveform provided by a saturated ct is always greater than the arguments 

that would have been calculated if the waveform was not distorted. 

4. The difference in the relative magnitudes and arguments increase with increased 

severity of saturation. The difference, however, remains practically constant for a 

saturation level. 

5. The relation between the arguments and magnitudes of the fundamental-fiquency 

phasors computed h m  waveforms provided by not-saturated and saturated cts remain 

constant even when data-windows of different lengths (non-Fourier type fiIters) are used. 

6. The cut-off Ereguency of the anti-aliasing filter has negligible effkct on b e  

differwces between the arguments of phasors computed h m  the outputs of not-saturated 

and saturated cts. 

The observations 2 and 3 are true for all  alignments of the data-window and for 

different sampling fkpencies. These observations hold good for the fimdamental 



fresuency component and, therefore, are valid irrespective of the type of filter used for 

extracting the component. 

4.3. Impact of CT conditions on the proposed technique 

The effect of ct saturation and the ct ratio-mismatch on the conventional 

differential protection systems has always been a matter of concern. It is shown in this 

section that the proposed busbar protection system has inherent stabiIity during ct 

saturation and ct ratiomismatch conditions. 

4.3.1. Effect of CT saturation 

Figure 4.6 shows the impedances calculated by a relay, used for protecting a 

busbar (Figure 3.11, during an internal fault and an external fault if cts saturate or do not 

saturate. In the case of an external fa& the relay is assumed to be Iocated on the faulted 

circuit connected to the busbar. As expected, the computed impedances are larger m 

magnitude if the ct is saturated because the magnitudes of the computed phasors of the 

currents are smaller. Because the argument of the current phasors becomes larger when a 

ct saturates, the argument of the calculated impedance becomes smaller. This is evident m 

Figures 4.6 (a) and (b). 

Legend 
I I 1 

Figure 4.6. Effect of ct satmation on the impedance seen by the relay for (a) an internal 
fadt and (b) an external fauk 



This figure shows that the magnitude and argument of the computed impedances 

change but the tripcriteria continues to indicate the fault type (internal or external) 

correctIy. Because the proposed technique calculates impedances that must be in the first 

or third quadrant, there is a wide range m which their calculated values can lie. This 

argument and extensive testing leads to the conclusion that the proposed technique 

performs correctly during ct saturation including severely saturated ct conditions. 

43.2. Effect of CT ratiomismatch 

The proposed technique calculates the impedances using the voltage and current 

samples taken at the busbar end of the connected circuits. The changes in ct ratio fiom 

laominal value increases or decreases the magnitude of the current-phasor but does not 

change its argument as illustrated m Figure 4.7, If the ct ratio is less than nominal value, 

the magnitude of the current-phasor increases but the argument remains the same. As a 

result, the calculated magnitudes of the impedances decrease but the calculated arguments 

remain the same. On the other hand, if the ct ratio is more than nominal value, the 

magnitude of the current-phasor decreases but the argument remains the same. As a 

result, the calculated magnitudes of the impedances increase but the calcuiated arguments 

remain the same. The impedances, therefore, remain m the appropriate quadrant wen if 

the ct ratio is not equal to nominal value. The effect of ct ratiu-mismatch on the 

performance of a relay during i n t d  and external faults is shown in Figure 4.8. These 

trends were observed in all the cases in which the ct ratios did not match. 

c NominaI = Nominal > Nominal 
CT Ratio - <Nominal: = Nominal > Nominal 

CT Ratio - 
Figme 4.7 . Change of the computed magnitude and argument of the current p h r  as 

the ct ratio changes. 



Figure 4.8. Drifts in the computed impedance due to errors in ct ratios for (a) an internal 
fault and (b) an external fauIt. 

Because each relay computes the impedance independently, the ct ratio-mismatch 

at a relay location does not affect the performance of the technique. This is different fiom 

the conventional differential relays whose perf~mance is adversely affected by mismatches 

in the ratios of various cts. 

4.4. Summary 

The phenomenon of ct saturation affects protection schemes adversely. A detailed 

analysis of the impact of ct saturation has been carried out and the results tiom the 

analyses have been presented. The effects of sampling frequency, movement of data- 

window and severity of ct saturation on the computations of arguments and magnitudes of 

the fimdamental-mency phason have been demonstrated. 

The studies have shown that the saturated cts produce current-waveforms of 

typical profiles. Fourier analysis of the waveforms reveals that the magnitude of the 

estimated f i m -  phasor for a waveform of current provided by a 

saturated ct is smaller than the magnitude computed for a waveform provided by a not- 

saturated ct. Also, the arguments of the computed phasors are always greater if the ct 

saturates compared to the arguments if the ct does not saturate. These observations have 

been used to determine the effect of ct saturation on the performance of the proposed 

technique. The reasons for stable performance during ct saturation have, thus, been 

established. 



PERFORMANCE EVALUATION 

5.1. Introduction 

The proposed technique for correctly identifjing internal and external hults in bus 

protection zones is presented in Chapter 3. Fault-detection c h c t a i s t i c s  of the relay are 

also established in that chapter. Two different power system configurations were used to 

verify the validity of the proposed technique. Different busbar arrangements and system 

operating-conditions were considered. The impacts of ct saturation and ratio-mismatch 

on the performance of the technique was also studied, Fault data were generated by 

simulating faults in power systems by using EMTDC [49], an electromagnetic transient 

program. This chapter descrii  the procedure used in the simulations and presents 

results showing that the proposed technique works well. 

5.2. System modeling 

The data for testing the proposed technique were generated on a Sun SPARC 

workstation using EMTDC - an electromagnetic transient program. Two model power- 

systems were selected for generating the fault data. These models are descriied in the 

following sections. 

5.2.1. Model system 

A typical power system used in this project is shown in Figure 5.1. In this figure, a 

busbar (El) is connected to systems represented by three equivalent sources GI, Gz and GI, 

a motor M, and a static load L at the end of a transmission line, Tt The busbar is 

protected by relays, R,, Rz, R3 and &, which are located at the busbar end of the circuits. 

The eI&cal parameters of the eIements, shown m Figure 5.1, are given in Appendix D. 



(Emtdc Data ~ i l e l  
(Relay h) 

Busbar (B) 

Generation 

Three-phase Transformer (T) 
13U345 kV(nns, lie-line) 
150 MVA 

Transmission Line 

Three-phase Transformer (TI 
l32l13.8 kV(rms, line-line) 
150 MVA 

CB1, CB2, CB3, CB4 : Circuit breakers 

Figure 5.1. Power system used for simulating data. 

5.2.2. BRADA substation 

The configuration of the BRADA substation and a model of the SaskPowm 

transmission system were also used for testing the technique. Figure 5.2 shows the 

equivalent power system and parameters of the system components. The substation has 

two busbars to which five circuits, operating at 230 kV and 138 kV levels, are connected 

The data for the substation was obtained h m  SaskPower. DetaiIs of the system 

parametas are provided in Appendix D. 



Figure 52.  Bus configuration of the BRADA substation of SaskPower and the 
equivalent sources used for generating fault data. 

The proposed technique was tested by using the data obtained from simulations of 

operating conditions of the substation, Faults of different types, and at various Iocations, 

were considered. The fault locations used in the studies are indicated in Figure 5.2. 

53. Signal processing 

The power system mod& d e s c r i i  in the previous section were used m the 

simulation studies. An overview of the J5MTDC software, which was used for generating 



fault data, is given in Appendix E. The ct model [SO] developed at the University of 

Manitoba, Canada was used in the studies. The fault data were generated fiom the 

simulations using calculation steps of 43.4 ps (23040 Hz). This calculation step provides 

a reasonable approximation to the continuous-time domain signals. The output fiom the 

EMTDC was then pre-processed using digital-equivalents of a 4' order Butterworth filter 

implemented on the MATLAB. The filtered data were re-sampled at 1440 Hz. Since the 

Nyquist criterion requires that all frequency components of 720 Hz and higher 

hquencies should be suppressed to prevent aliasing, cut-off frequency of 200 Hz was 

selected. Details of the anti-aliasing filter are given in Appendix F. 

The Least Error Squares (LES) algorithm was used for computing the phasors of 

the fundamental fbquency components from sampled (and quantized) data. The LES 

fiIters were designed for a data-window of 25 samples and a sampling rate of 1440 Hz. 

The proposed technique was implemented using a program written in ANSI C. 

As stated in Chapter 3, the inception of a fault can be detected by comparing the 

recently quantized values of voltages and currents with those quantized one cycle earlier. 

The threshold for the changes in the instantaneous values, V-CHANGE, and 

1-CHANGE, were set at 3.5% and 10% respectively. The value of MINIMUM, the 

minimum magnitude of positive- and negative-sequence incremental voltages and 

currents, was set at 1% of the pre-fault values. To ensure sensitivity and to maintain 

security, the limits of the trip counter, THRESHLD, were set at k6. 

5.4. Test studies 

Power system models, shown in Figures 5.1 and 5.2, were simulated for 

generating data that were used to check the performance of the proposed technique. 

Different types of faults were simulated and the voltages and currents at the relay 

locations were recorded in data tiles. Several busbar configurations and different 

operating conditions of the selected power systems were considered. The impacts of ct 

saturation and ct ratio-mismatch conditions were also studied. Selected test results are 

presented in this section. 



5.4.1. Internal faults 

Internal fidts were simulated at various locations in the bus zone of the 

substation of Figure 5.1 and the BRADA substation. Some test studies are presented in 

the following sections; additiond cases are presented in Appendix G. 

5.4.1.1. Single phase-to-ground faults 

Single phase-to-ground faults, at different locations in the selected substations 

were simulated with and without fault resistance. This section presents sample results 

from these studies. 

A solid Phase B-ground fault was simulated on location 1 of the substation shown 

in Figure 5.1 except that the busbar was configured m the form of a ring as shown in 

Figure 5.3. The inception of the fault was detected when the second set of samples were 

acquired. The phasors of voltages and currents were calculated using the second set and 

the subsequent samples. From these phasors, phasors of incrementat sequence voltages 

and currents were computed. Finally, the sequence-impedances were computed. Figure 

5.4 shows the arguments and magnitudes of positive- and negative-sequence impedances 

computed by the relays RL, R2, R3, and FL This figure shows that all the arguments of the 

sequence impedances Lie in the third quadrant. This means that the fiult is in the busbar 

protection zone. The positive-sequence (and negative-sequence) trip counters for the 

relays RI to Rq are incremented and reach the threshold in 6 (6), 6 (6), 6 (6) and 6 (6) 

samples respectively. It took the algorithm seven sampies to confirm that the fault was in 

the busbar zone. The algorithm, therefore, took 4.86 ms (i-e. 7tI440 ms) to make the 

final decision. The study was repeated in which cts of relays 1, 2 and 3 saturated. The 

positive- and negative-sequence trip counters of the relays Rt to Et reached the threshold 

in 6 samples. The algorithm took 4.86 ms to make the decision in this case as well. 

A Phase A-to-ground huIt in the protection zone of the busbar was simulated at 

location 1 1 in the substation shown in Figure 5.2, The inception of the fault was detected 

when the second set of samples were acquired The phasors of voltages and currents were 

calculated using the second set and the subsequent samples, From these phason, phasors 



Generation Source GI 

Three-phase Transformer (TI) 
132/345 kV(rms, line-Iine) 
150 MVA 

3 

Generation Source G3 

Threephase Traasfonner (T2) 
132' 13.8 kV(rms, beeline) 
I50 MVA 

Figure 53. Power system, with ring bus configuration used in the simdations. 
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Figure 5.4 (a). Plots of the arguments and magnitudes of the positive-sequence 
impedance computed by the days for Phase B-ground fault in the 
bnsbar protection zone of the substation of Figure 5.3. 
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Figure 5.4 (b). Plots of the arguments and magnitudes of the negative-sequence 
impedance computed by the relays for Phase S-ground fidt in the 
busbar protection zone of the substation of Figure 5.3, 
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counters for a Phase B-ground hult in the busbar protection zone of 
the substation of Figure 53. 
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RofiIe of the (a) positive-sequence, and (b) negativesequence trip- 
counters (on expanded scaIes) for a Phase B-ground fault in the busbar 
protection zone of the substation of Figure 5.3. 



of incremental sequence voltages and currents were computed. Finally, the sequence- 

impedances were computed. The protiles of voltage and current waveforms acquired at 

the relays are shown in Figure 5.5. Figure 5.6 shows the profile of the magnitudes and 

arguments of the sequence-impedances and the trip counters of the relays. For this case, 

the arguments of all the computed positive- and negative-sequence impedances lie in the 

third quadrant. This indicates that the fault is in the protection zone of the busbar. When 

the cts did not saturate, the positive-sequence (and negative-sequence) trip counters of the 

relays RI, R2, Rj, It, and R5 reached the threshold in 6 (6), 9 (1 I), 8 (7), 9 (9) and 12 (12) 

samples respectively. At 13th sampling instant, the trip-logic confirmed that the fadt was 

in the protection zone of the busbar. It took the algorithm 9.03 ms (i.e. 1311440 ms) to 

make the final decision. When the ct of relay Rl saturated, the positive- (and negative-) 

sequence trip-counters reached the threshold in 6 (6) samples. Since the cts located at 

relays Rz, R3, R, and RS did not saturate, their sequence trip counters took the same time 

a s  before. In this case also, the algorithm took 9.03 ms to make a final decision. 

5.4.1.2. Phase-to-phase faults 

A solid Phase A-Phase B fault was simulated on location 1 of the substation shown 

in Figure 5.1 except that the busbar was contigured as a breaker-and-half scheme s 

shown in Figure 5.7. The inception of the fadt was detected when the second set of 

samples were acquired. The phasors of voItages and currents were calculated using the 

second set and the subsequent samples. From these phasors, phasors of incremental 

sequence voltages and currents were computed. Finally, the sequence-impedances were 

computed. Figure 5.8 shows the arguments and magnitudes of positive- and negative- 

sequence impedances computed by the relays Rt, Rz, R3, and Rt. This figure shows that 

all the arguments of the seqnence impedances lie in the third quadrant. This means that 

the fault is in the busbar protection zone. The positive-sequence (and negative-sequence) 

trip counters for the relays Rl to It reached the threshold in 6 (6) samples. After 7 

sampIes, the algorithm confhed that the fiult was in the busbar zone. The algorithm 

took 4.86 ms (i.e. 711440 ms) to make the fhl decision. The study was repeated m 

which cts of relays I and 2 saturated. The positive- and negative-sequence trip counters 
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Figure 5.5. Profiles of phase voltage and current waveforms applied to the relays 
when a Phase A-ground fault at location 1 I in Figure 5.2 was 
simulated, and no cts saturated. 
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Fignre 5.5 (contd.). Profiles of phase voltage and current waveforms applied to the 
relays when a Phase A-ground hdt at location 1 1 in Figure 5.2 
was simulated, and no cts saturated. 



Figure 5.5 (contd.). Profiles of phase vottage and current waveforms applied to the 
relays when a Phase A-ground fault at location 1 1 in Figure 5.2 
was simulated, and no cts saturated. 

Figure 5.5 (contd.). ProfiIes of phase voltage and current waveforms applied to the 
relays when a Phase A-ground fidt at Iocation I i in Figure 
5.2 was simdated, and the ct saturated. 
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negative-sequence impedances computed by the relays for a Phase A- 
ground fault in the busbar protection zone of the BRADA substation. 
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Figure 5.6 (b). Proflies of the (a) positive-sequence, and (b) negative-sequence trip- 
counters for a Phase A-ground tault at Iocation 11 of the BRADA 
substation. 
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of relays R, to & reached the threshold m 6 samples. The algorithm took 4.43 ms to 

make the decision in this case. 

A Phase A-Phase C hult m the protection zone of the busbar was simulated at 

location 14 in the substation shown in Figure 5.2. The inception of the fault was detected 

when the second set of samples were acquired. The phasors of voltages and cments were 

calculated using the second set and the subsequent samples. From these phasors, phaors 

of incremental sequence voltages and currents were computed. Finally, the sequence- 

impedances were computed. Figure 5.9 shows the profile of the magnitudes and 

arguments of the sequence-impedances and the trip counters of the relays. In this case, 

the arguments of all the positive- and negativesequence impedances lie in the third 

quadrant. This indicates that the fault is in the protection zone of the busbar. When the cts 

did not saturate, the positive-sequence (and negative-sequence) trip counters of the relays 

RI, R?, R3, Eb, and R5 reached the threshold in 7 (7)- I0 (9), 7 (7), 9 (8) and 14 (14) 

samples respectively. At 15th sampling instant, the trip-logic c o n h e d  that the fault was 

in the protection zone of the busbar. It took the algorithm 10.42 ms (i.e. 1511440 ms) to 

make the fmaI decision. When the ct of relay Rt saturated, the positive- (and negative-) 

sequence hipcounters reached the threshold in 7 (7) samples respectively. Since the cts 

located at relays Rz, R3, % and R5 did not saturate, their sequence trip counters took the 

same time as before. In this case also, the algorithm took 10.42 ms to make a final 

decision. 

5.4.1 3. Three-phase faults 

A three phase-to-ground fault was simdated on location I of the substation shown 

in Figure 5.3. The inception of the fault was detected when the second set of samples 

were acquired. The phasors of voltages and currents were caIcuIated using the second set 

and the subsequent samples. From these phasors, phasors of incremental sequence 

voltages and currents were computed, Finally, the sequence-impedances were computed. 

Figure 5-10 shows the arguments and magoitudes of positive-sequence impedances 

computed by the relays R,, R?, Rj, and %. This figure shows that all the arguments of the 

positive-sequence impedances lie in the third quadrant. This means that 
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Figure 5.10 (b). Profile of the positive-sequence tripcounters for a three phaseground 
fault in the busbar protection zone of the substation of Figure 5.3. 

the fault is in the busbar protection zone. The positive-sequence trip counters for the 

relays Rl to E& reached the threshold in 6 samples. After 7 samples, the algorithm 

confirmed that the fault was m the busbar zone. The algorithm took 4.86 ms (i-e. 7/1440 

ms) to make the final decision. The study was repeated in which the cts of relays I and 2 

saturated. The positive-sequence trip counters of relays Rl to % reached the threshold in 

6 samples each. The algorithm took 4.86 ms to make the decision m this case. Because 

no negative-sequence voltages and currents were experienced during a three-phase fault, 

no conclusion was generated by those components. 

A three phase fault in the bus protection zone was sirndated at Iocation 5 in the 

substation shown in Figure 52. The inception of the fault was detected when the second 

set of sampks were acquired. The phasors of voltages and currents were calcuIated using 

the second set and the subsequent samples. From these phasors, phasors of mcfementai 

sequence voltages and curtents were computed. Finafly, the sequence-impedances were 

computed. Figure 5.1 1 shows the profile of the maghdes and arguments of the 
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Figure 5.11 (a). Plots of the arguments and magnitudes of the positive-sequence 
impedances computed by the relays for a three phase fault m the 
busbar protection zone of the BRADA substation. 
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Figure 5.11 (b). Profiles of the positivesequence tripcounters for a three phase fault at 
location 5 of the BRADA substation. 

sequence-impedances and the trip counters of the relays. In this case, the arguments of 

all the computed positive-sequence impedances Iie m the third quadrant indicating that 

the fault is in the protection zone of the busbar. When the cts did not saturate, the 

positive-sequence trip counters of the relays RI, R2, R3, &, and RS reached the threshold 

m 6, 10, 9, 8 and I I samples respectively. At the 12th sampling instant, the triplogic 

confbed the fiult to be m the busbar protection zone. It took the dgorithm 5.56 ms 

(i.e. 811440 ms) to make the final decisioa,When the ct of relay Rt saturated, its positive- 

sequence trip-counter reached the threshold m 6 samples. Since the cts located at relays 



Rr, R3, Rt and Rs did not saturate, heir sequence trip counters took the same time as 

before. In this case also, the algorithm took 8.33 ms to make a final decision. 

5.4.2. External faults 

Fadts outside the bus-protection zone were simulated at selected locations in the 

power systems shown m Figures 5.1 and 52. Selected studies are presented m the 

following sections and additional studies are presented in Appendix G. 

5.4.2.1. Single phase-to-ground faults 

Single phase-to-ground faults, outside the bus protection zones of selected 

systems, were simulated. This section presents results of cases fimm the studies of both 

power system used for verification of the proposed technique. 

A Phase C-ground fault was simulated on location 2 of the substation shown m 

Figure 5.3. The inception of the fault was detected when the second set of samples were 

acquired. The phasors of voltages and currents were calculated using the second set and 

the subsequent samples. From these phasors, phasors of incremental sequence voltages 

and currents, and sequence impedances were computed. Figure 5, L 2 shows the arguments 

and magnitudes of positive- and negative-sequence impedances computed by the relays. 

This figure shows that the arguments of the sequence impedances for relays RI, Rz and Rt 

lie in the third quadrant. The arguments of the sequence-impedances for the relay R3 lie in 

the first quadrant. This means that the huh is outside the busbar protection zone. The 

positive- (and negative-sequence) trip counters for the relays RI, R2 and It are 

incremented and reach the threshold in 6 (6), 6 (6) and 7 (7) samples respectively. The 

positive- (and negativesequence) trip counters for the relay R3 are decremented and reach 

the threshold m 8 (8) samples. At the 9th sampling instant, the dgorithm confirmed the 

fault to be in the busbar protection zone. The algorithm took 6.25 ms (ie. 9/1440 rns) to 

make the final decision. The study was repeated in which ct of relay R3 saturated. The 

positive-sequence and negative-sequence trip counters of d a y  Rj reached the threshold m 

8 samples. The tripcounters of the other days took the same number of ssrmpIes as m 

the previous case. The algorithm took 6.25 ms to make the decision in this case as well. 
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A Phase A-to-ground fault outside the protection zone of the busbar was simulated 

at location 2 in the substation shown m Figure 52. The inception of the fault was 

detected when the second set of samples were acquired. The phasors of voltages and 

currents were calculated using the second set and the subsequent samples. From these 

phasors, phasors of incremental sequence voltages and currents were computed. Finally, 

the sequence-impedances were computed. Figure 5.13 shows the profile of the 

magnitudes and arguments of the sequence-impedances and the trip counters of the relays. 

In this case, the arguments of the computed positive-sequence and negative-sequence 

impedances of relays RI, RZ, Rs, and R5 lie in the third quadrant. The arguments of the 

computed positive-sequence and negative-sequence impedances computed by the relay R3 

lie in the 6rst quadrant. This indicates that the fault is outside the protection zone of the 

busbar. When the cts did not saturate, the positive-sequence (and negative-sequence) trip 

counters of the relays RI, R2, R3, %, and RS reached the threshold in 7 (7), 11 (1 I), 7 (7), 

7 (9) and 12 (12) samples respectively. At the 13th sampling instant, the triplogic 

confirmed that the fault was outside the protection zone of the busbar. It took the 

algorithm 9.03 rns (i.e. 1311440 ms) to make the 6nal decision. When the ct of relay R3 

saturated, the positive-sequence (and negative-sequence) trip-counters reached the 

threshoid in 7 (7) samples respectiveIy. Since the cts located at relays RI, R,, % and Rs 

did not saturate, their sequence trip counters took the same time as before. The algorithm 

took 9.03 rns to make a fiaal decision in this case as well. 

5.4.2.2. Phase-to-phase faults 

A Phase A-Phase B fault was simulated on the 345 kV side of the power 

transformer TI (location 2) of the power system shown in Figure 5.7. The fault was 

applied at 0.3 seconds. Figure 5.14 shows the performance of the algorithm. The 

inception ofthe huIt was detected d e n  the second set of samples were acquired. The 

phasors of voItages and currents were calculated using the second set and the subsequent 

samples. From these phasors, phasors of incremental sequence voItages and currents were 

computed. FinalIy, the sequence-impedances were computed. The computed sequence 
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impedances and the profile of the positive-sequence and negative-sequence trip couters 

are shown in Figures 5.14 (a) and (b) respectively. 

This figure shows that the positive- and negative-sequence impedances computed 

by reIays Rr, Rt and R were in the third quadrant, whereas the sequence-impedances 

computed by the relay Rj lit in the first quadrant. The trip counters associated with the 

positivesequence and negative-sequence impedances computed by the relays Rr, Rz and 

EL incrernented whereas the trip counters of relay R3 decremented. The trip counters 

reached their thmholds and it was decided that the fault was outside the protection zone 

of the b u s h .  The positive-sequence (and negative-sequence) trip counters for the relays 

RI to It reached the threshold in 6 (6) samples respectively. At the 7th sampling instant, 

the algorithm confirmed that the huh was outside the busbar zone. The algorithm took 

4.86 ms (i.e. 7/ 1440 ms) to make the final decision. The study was repeated m which the 

ct of relay R3 saturated. The positive-sequence and negative-sequence trip counters of 

relays Rl to Rq reached the threshold m 6 samples. The algorithm took 4.86 ms to make 

the decision in this case as well. 

A Phase A-Phase B fault outside the bus protection zone was simulated at bcation 

9 in the substation shown in Figure 5.2. The inception of the fidt was detected when the 

second set of samples were acquired. The phasors of voltages and m e n t s  were 

caIcuIated using the second set and the subsequent sampIes. From these phasors, phasors 

of incremental sequence voltages and currents were computed. FinalIy? the sequence- 

impedances were computed. Figure 5.15 shows the profile of the magnitudes and 

arguments of the sequence-impedances and the trip counters of the relays. ln this case, the 

arguments of the positive-sequence and negative-sequence impedances computed by 

reIays RI, R2, k, and Rs lie m the third quadrant. The arguments of the positive-sequence 

and negativesequence impedances computed by relay R3 lie m the fmt quadrant. This 

indicates that the fadt is outside the p t d o n  zone of the busbar. When the cts did not 

saturate, the positive-sequence (and negative-sequence) trip counters of the days  Rt , R,, 

R3, &, and R5 reached the threshold in 6 (6), 11 (lo), 6 (6), 7 (9) and 12 (1 1) samples 

respectively. At the 12th sapling insbnt, the triplogic confirmed that the fault was 
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outside the protection zone of the busbar. It took the algorithm 8.33 rns (i.e. IU1440 ms) 

to make the find decision. When the ct of relays Rl and R3 saturated, the positive- (and 

negative-) sequence tripcounters reached the threshold m 6 (6) samples. Since the cts 

located at relays Rz, Rq and R5 did not saturate, their sequence trip counters took the same 

time as before. The algorithm took 8.33 ms to make a final decision in this case as well. 

5.4.2.3, Three-phase faults 

A three phase fault was simulated at location 3 of the power system of Figure 5.3. 

The inception of the fault was detected when the second set of samples were acquired. 

The phasors of voltages and currents were calculated using the second set and the 

subsequent samples. From these phasors, phasors of incremental sequence voltages and 

currents were computed. Finally, the sequence-impedances were compured, Figure 5. i 6 

shows the protile of the arguments and magnitudes of the positive-sequence impedances 

computed by the relays. This figure shows that the arguments of the sequence impedances 

computed by relays Rz, Rj, and & lie in the third quadrant. The arguments of the 

sequence impedance computed by the relay Rl lie in the first quadrant This means that 

the fault is outside the busbar protection zone. The positive-sequence trip counters for the 

relays RI to F4 reached the threshold in 6 samples each. At the 7th sampting instant, the 

dgorithm confirmed that the fault was outside the busbar zone. The a1gorith.m took 4.86 

ms (i-e. 71 1440 ms) to make the final decision, The study was qea ted  in which cts of 

relays 1 and 2 saturated. The positive-sequence trip counters of days  Rt to k reached 

the threshold in 6 samples each, The dgorithm took 4.86 ms to make the decision in this 

case. As no negative-sequence voltages and m t s  were experienced during a three- 

phase fauIt, no conclusion was generated by those components. 

A three phase fauk outside the bus protection zone was simulated at tocation I3 in 

the substation shown in Figure 52.  The inception of the fadt was detected when the 

second set of sampIes were acquired. The phasors of voltages and currents were 

calculated using the second set and the subsequent sampIes. From these phasors, phasors 

of incremental sequence voltages and currents were computed. Finally, the sequence- 



+unsaturated 
4 unsaturated +saturated 

A + saturated 

0 - W W A  
0 0 0 0  

0 - W W P  
0 0 0 0  

Time (ms.) Time (ms.) 
Rchv R t 

4unsaturated 
saturated 

+ unsaturated 
saturated 

Time (ms.) 

4 Relay R3 + &lay R4 
, Time (ms.) 

0 

Time (ms.) -200 -' 

Figure 5.16 (a). Plots of the arguments and magnitudes of the positive-sequence 
impedances computed by the relays for a three phase fidt at location 
3 of the system shown in Figure 5.3. 



0 5 LO 
Time (ms.) 

0 5 10 
Time (ms.) 
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location 3 of the substation of the system shown in Figure 5.3. 

impedances were computed. Figure 5.17 shows the profile of the magnitudes and 

arguments of the sequence-impedances and the trip counters of the relays. In this case, 

the arguments of the positive-sequence impedances computed by relays RI, R2, R3, atid RS 

lie in the third quadrant The arguments of the positive-sequence impedances computed 

by the d a y  Rs lie in the 6rst quadrant. This indicates that the fault is outside the 

protection zone of the busbar. When the cts did not saturate, the positive-sequence trip 

counters of the relays RI, Rt, R3, Rq, and Rs reached the threshold in 6, 10, 8, 6 and 1 I 

samples respectively. At the 12th sampling instant, the trip-logic confirmed that the fault 

was outside the protection zone of the busbar. It took the algorithm 8.33 ms (i-e. LUI440 

ms) to make the final decision. When the cts of reIays Rt and Rq saturated, the positive- 

sequence tripcounters for these relays reached the threshold m 6 samples. Since the cts 

located at relays R2, R3, and RS did not saturate, their sequence trip counters took the 

same time as before. The algorithm took 8.33 ms to make a final decision m this case as 

wen. 
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5.43. Effect of ct ratio-mismatch 

The effect of ct ratio-mismatch on the performance of the prcposed technique was 

also investigated. Different levels of ratio-mismatch, between the cts used in the 

protection scheme, were simulated. Some results illustrating the impact of ratio-mismatch 

are presented in the fbllowing sections. 



5.43.1. Internal faults 

A Phase A to ground fault in the bus-protection zone (location I in the substation 

shown in Figure 5.1) was simulated Nominal and o f f - n o d  ct ratios were used at the 

relay bcations. Table 5.1 shows the vaIues of nomid and off-nomind ct ratios used at 

the relays. 

Table 5.1. Ct ratios used for studying a Phase A to ground fault in the bus-protection 
zone (location 1 in the substation shown in Figure 5.1). 

I I ~t ratio I 
Relay NolllinaI off-nominaI 

Case 1 Case 2 

250 600 

250 600 

250 600 

Figure 5.18 shows the performance of the algorithm when three ct ratios were 

used. The inception of the fault was detected when the second set of samples were 

q u i d .  The phasors of voltages and currents were calculated using the second set and 

the subsequent samples. From these phasors, phasors of incremental sequence voltages 

and currents were computed. Finally, the sequence-impedances were computed. The 

magnitudes and arguments of positivesequence and negative-sequence impedances 

computed by the relays are shown m Figures 5.18 (a) and 5.1 8 @) mpedvely. These 

figures show that the arguments of the sequence-impedances computed by all the relays tie 

in the third quadrant. This Ied to the decision that the fault occurred in the protection 

zone of the busbar. Use of off-nominal ct ratios madkted in changes in the magnitudes 

of the impedances but did not change the arguments. Because the proposed technique 

based its decision on the arguments only, the changes in the magnitudes of the impedances 

did not have any impact on the decisions. This study illustrates the stability of the 

proposed technique when ct ratios do not match. The figure shows that the positive- 
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sequence and negative-sequence trip counters of all relays reached the threshold in 6 

samples. The algorithm made the final decision after 4.86 ms (i.e. 711440 ms) in all cases. 

A Phase C to ground fault in the bus-protection zone (location 5 in the substation 

shown in Figure 5.2) was simdated. Nominal and off-nomind ct ratios were used at the 

relay locations. Table 5.2 shows the values of nominal and off-nominal ct ratios used at 

the relays. 

Table 5.2. Ct ratios used for studying a Phase C to ground hult in the bus-protection 
zone (location 5 in the substation shown in Figure 5.2). 

Relay 

Figure 5.19 shows the performance of the algorithm when ct ratios do not match. 

The inception of the fault was detected when the second set of samples were acquired, 

The phasors of voltages and currents were calculated using the second set and the 

subsequent samples. From these phasors, phasors of incremental sequence voltages and 

currents were computed. Finally, the sequence-impedances were computed. The 

magnitudes and arguments of the positivesequence and negative-sequence impedances 

computed for each ct ratio are shown in Figure 5.19 (a) and Figure 5.19 (b) respectively. 

These figures show that the arguments of the sequence-impedances computed by all  the 

relays lie in the third quadrant. This led to the decision that the fault was in the protection 

zone of the busbar. Use of different ct ratios manifested in changes m the magnitudes of 

the impedances but did not change m the argument. Because the proposed technique 

based its decision on the arguments only, the changes in the magnitudes of the impedances 

did not have any impact on the decisions. This study illustrates the stability of the 

Ct rafio 

N o d  I off-nominal 

RI 80 

Case1 

60 

Case 2 

160 



proposed technique when ct ratios do not match. The figure shows that the positive- 

sequence and negative-sequence trip counters of the relays Rr, Rt, R3, & and R5 reached 

the threshold in 6 (8), 9 (9), 8 (S), 8 (9) and 12 (12) samples respectiveIy. The algorithm 

made tbe final decision in 9.03 ms (i.e. 131 1440 ms) in dl cases. 

5.4.3.2. External faults 

A Phase B to ground fsult outside the bus-protection zone (location 5 in the 

substation shown in Figure 5.1) was simulated. Nominal and off-nominal ct ratios were 

used at the relay locations. Table 5.3 shows the values of nomind and off-no& ct 

ratios used at the relays. 

Table 53. Ct ratios used for studying a Phase B to ground fault outside the bus- 
protection zone (Iocation 5 in the substation shown in Figure 5.1). 

m-naminaI 

Case 3 

300 250 400 

Figure 5.20 shows the performance of the algorithm when nominal and off-nominal 

ct ratios were used. The inception of the &ult was detected when the second set of 

samples were acquired. The phasors of voItages and currents were calculated using the 

second set and the subsequent samples. From these phason, phasors of incremental 

sequence voltages and currents were computed. Finally? the sequence-impedances were 

computed. The magnitudes and arguments of positive-sequence and negative-sequence 

impedances computed by the relays are shown m Figures 5.20 (a) and 5.20 (b) 

respectiveIy. These figures show that the sequence-impedances computed by the days 

RI, Rz, k, and R5 lie in the third quadrant, The sequence-impedances computed by the 

relay R3 lie m the first quadrant. This led to the decision that the hult was outside the 

protection zone of the busbar. Use of off-nominal ct ratios manifested in changes in the 
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impedances computed by the days for a Phase C-ground fault m the 
busbar protection zone (location 5) of the BRADA substation. 
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busbar protection zone (location 5) of the BRADA substation. 
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5.1. 
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magnitudes of the impedances but did not change the ~~guments. Because the proposed 

technique based its decision on the arguments ody, the changes in the magnitudes of the 

impedances did not have any impact on the decisions. This study illustrates the stability of 

the proposed technique when ct ratios do not match. The figure shows that the positive- 

sequence and negative-sequence trip counters of all days  reached the threshold in 6 

samples. The algorithm made the final decision in 4.86 ms (i.e. 7/1440 ms) in a l l  cases. 

A Phase A to ground fault outside the bus-protection zone (location 13 in the 

system shown in Figure 5.2) was simulated. Nominal and off-nominal ct ratios were used 

at the relay locations. TabIe 5.4 shows the values of nominaI and off-nominal ct ratios 

used at the relays. 

Table 5.4. Ct ratios used for studying a Phase A to ground fault outside the bus- 
protection zone (location 13 in the substation shown in Figure 5.2). 

Ct ratio 

Case 2 

Figure 521 shows the performance of the algorithm when nominal and off-nominal 

ct ratios were used. The inception of the Wt was detected when the second set of 

samples were acquired. The phasors of voltages and currents were calculated using the 

second set and the subsequent samples. From these phasors, phasors of incremental 

sequence voltages and currents were computed. Finally, the sequence-impedances were 

computed, The magnitudes and arguments of positive-sequence and negative-sequence 

impedances computed for each ct ratio are shown in Figures 5.21 (a) and 5.21 (b) 

respectively. These figures show that the arguments of the sequence-impedances 

computed by the relays Rt, Rt, R3, and R5 Iie in the third quadrant. The argmneats of the 
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sequence-impedances computed by the relay I4  lie in the first quadrant. This led to the 

decision that the fault was outside the protection zone of the busbar. Use of off-nominal ct 

ratios manifested in changes m the magnitudes of the impedances but did not change the 

arguments. Because the proposed technique based its decision on the arguments only, the 

changes in the magnitudes of the impedances did not have any impact on the decisions. 

This study illustrates the stability of the proposed technique when ct ratios do not match. 

The figure shows that the positive-sequence and negative-sequence trip counters of the 

relays RI, It?, R3, Ro, and RS reached the threshold in 6 (6), 9 (1 I), 9 (8), 8 (9) and 12 (12) 

samples respectively. The aIgorih made the h a l  decision in 9.03 ms (i.e. I3/1440 ms) 

in all cases. 

5.4.4. Summary of test results 

Seiected test results obtained during the performance evaluation phase of the 

proposed technique have been presented in Sections 5.42 and 5.43 in detail. Different 

types of faults at various locations in the simdated power systems were considered. The 

test studies considered diffkent operating condiaons of the power systems, four busbar 

configurations, and ct saturation. Tables 5.5 and 5.6 give a summary of the d t s  

obtained fiom the simulation studies reported in Appendix G. 

5.5. Summary 

The proposed b u s h  protection technique has been tested using data h m  

simulations of two power system models. The procedure used for evaluating the 

perfonnrmce of the proposed technique has been descri'bed in this chapter. Details of the 

system models used in the EMTDC simulations have been presented. 

Diffixent types of hults were SimuIated and data h m  these simulations were used 

to evaIuate the technique proposed in Chapter 3. The impact of ct saturation and ct ratio- 

mismatch on the performance of the proposed technique has aIso been investigated. The 

test studies showed that the impedances seen by a relay when the ct to which it is 

connected saturated is higher in magnitude than the corresponding value when the ct was 

not saturated. The argument of the computed sequence impedances during ct saturation is 



Table 55. Summary of the simulation studies, for the model power system shown in 

Fault 
location 

1 (int) 

3 (ext.) 

1 (int.) 

2 (ext.) 

2 (ext.) 

2 (ext.) 

I (int) 

4 (ext.) 

1 (ixlt.) 

1 (int) 

1 (int) 

5  ex^) 

1 (int.) 

2 (ext.) 

1 (int) 

6 (ext) 

I (int) 

I (int.) 

6 (ext) 

4 (ea) 

Figure 5.1, reported in Appendix G. 

Busbar type 

singie 

single 

double 

double 

single 

breaker-and- 
half 

fig 

*g 

breaker-and- 
half 

ring 
single 

single 

breaker-and- 
half 

breaker-and- 
half 

doubIe 

double 

r*g 

ring 

&g 

breaker-and- 
half 

Post-fault samples needed for 
positive (and negative) sequence 

ten to reach threshold 

- 
Time 
0 

6.25 

13.89 

4.86 

4.86 

6.25 

4.86 

4.86 

6.25 

4.86 

4.86 

6.25 

4.86 

4.86 

4.86 

4.86 

4.86 

625 

4.86 

4.86 

4.86 

- 

- 
Fig. 
0 

- 
G. 1 

(2.2 

G.3 

G.4 

G.5 

G.6 

G.7 

G.8 

(3.9 

G.1C 

G.1 I 

G.12 

G. 13 

G.14 

G.15 

G.1t 

G.17 

G.16 

g.15 

G.X 

- 
T: Fault-decision time (ms.) ; F: Reference figttre in Appendix G. 
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Table 5.6. Summary of the simulation studies, for the power system shown in Figure 5.2, 

Fault 
location 

1 (ext.) 

2 (ext.) 

3 (inL) 

4 (ext.) 

5 (int.) 

6 (int.) 

7 (int) 

8 (int) 

9 (ext) 

10 (ext.) 

5 (int) 

8 (inti) 

18 (int.) 

1 1  (inL) 

10 (ext.) 

17 (ext.) 

15 (at.) 

6 (int.) 

IS (ext.) 

16 (ext.) 

reported in Appendix G. 

- 
Fault 
type 

4 3  

A-C 

ABC-g 

B-g 

ABC 

B-C 

A-g 

c-g 

A-B 

B-C 

A-B 

ABC 

c-g, 

RFIOQ 

B-C 

ABC-g 

&lock 

ABC 

Post-fault samples needed for positive (and 
negative) sequence trip counters to reach 
threshold 

-- -- 

I I 

- 
Time 
0 

8.33 

10.42 

8.33 

8.33 

8.33 

7.64 

9.03 

8.33 

8.33 

7.64 

8.33 

8.33 

8.33 

8.33 

8-33 

833  

8.33 

9.03 

8.33 

7.64 - 
T: Faultdecision time (rns.) ; F: Reference figure in Appendix G. 
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lower than the corresponding argument computed when the ct was not saturated. 

However, the impedances lies welI within the fault-detection zone even when the cts are 

saturated. These observations are m agreement with the analysis presented m Section 

4.2.3. The technique is stable when the ct ratios do not match. This can be attniuted to 

the fact that the impedances calculated by each relay are independent of caIculations 

performed by other relays. 

The studies have shown that the proposed technique distinguishes correctly 

between internal and extend M t s .  The stable perfonnance of the proposed technique, 

during ct saturation and ct ratio-mismatch conditions, has also been established. 



6. IMPLEMENTATION AND TESTING 

6.1. Introduction 

A digital technique for protecting busbars has been presented in Chapter 3. The 

technique was tested in off-line mode to evaIuate its suitability. Configuration and data of 

a model system and an existing substation were used to verify the technique's 

performance. Samples of test results are presented in Chapter 5. The d t s  show that 

the proposed technique is suitable for protecting busbars of different configurations 

without any mod5cations. Moreover, the technique provides stable performance during 

current transformer saturation and ratio-mismatch conditions. 

The delta-impedance relays involved in the protection system were impluuented 

using a genaal-purpose relay hardware. The hardware and software constituents of the 

prototype delta-impedance relays are presented in tbis chapter. The procedure for testing 

the delta-impedance relays by using a playback simulator is reported m the chapter and 

selected test remlts are also included. 

6.2. The busbar protection system 

Using the technique developed in Chapter 3, a busbar protection system has been 

developed. As explained m Section 3.32.5, individual decisions fi.om the delta-impedance 

relays are used in the trip logic for hl detection of the fault. The proposed protection 

system has been realized in practice by pmesshg the voltages and currents at the 

individual relay locations. Each relay pe r f~ l l l ~  the procedural steps explained in Section 

3.3.1 and transmits its decision to the trip logic shown in Figure 3.9. The implementations 

of a11 the delta-impedance relays are similar. As such the same are explained with respect 

to a singIe relay in the following sections. 



6.3. The delta-impedance relay 

This section descni the hardware and sobare components required for the 

real-time implementation of the proposed delta-impedance day .  The verification of the 

proposed technique, using these relays, as applied to an existing power substation is 

illustrated using sample test results. 

6.3.1. Hardware 

The proposed delta-impedance relay was implemented in the laboratory using a 

general-purpose relay hardware [51j. This includes four major components: tow-pass 

filter boards, data-acquisition system @AS) cards, a digital signal processing (DSP) card 

and a host personal computer. Figure 6.1 shows the organization of the hardware 

components. A brief description of these components is provided in the succeediLlg 

sections. 

Analog V and I Inputs 
/ 

Figure 6.1. Hardware configuration of the proposed delta-impedance relay. 



63.1.1. Low-pass ffiter boards 

The low-pass filter is required to barad-limit the analog current and voltage signals 

to the data-acquisition system and to prevent aliasing in samples of voltages and currents. 

Cut-off kquency of the low-pass filter depends on the frequency at which voltage and 

current signals are sampled by the data-acquisition system. A cut-off tiequency of 200 Hz 

has been used in the test studies. Switched capacitor filters, designed using MF6CN-100 

[52] are used. The circuit diagram of one channel of the low-pass filter is shown in Figure 

6.2. 

MF6CN-100 is a low cost, easy to use 6th order low-pass filter with ICpin DIP 

packaging. They provide a wide range of cut-off kquency obtainable by changing the 

external clock frequency. The ratio of clock fhquency to cut-off hquency is i n d y  

set to 100: 1. A 'ITL logic wmpahile clock signal is provided to MF6CN-100 h a 

signal generator for cut-off fiesuency contr01. 

8.  &a? 'f" 
Figure 63. Circuit diagram of one channel of the Butterworth low-pass filter 152,531. 



Two operational amplifiers avaiIabIe h m  a TL082 chip 1531 are provided at the 

input and output of the filter for the purpose of buffering the signals. As an additional 

featurc, gain of the operational amplifier at the input of the 6Iter is set to 0.5 while the 

operational amplifier at the output of the fiiter has a gain of 2.0. This fature extends the 

range of signals that can be filtered to Y.OV 6om e S V .  Two flter boards each capable 

of handling four signal channels are used. The fiIters on these boards are powered fiom a 

+1 N power supply. 

63.1.2. Data-acquisition system cards 

The data-acquisition system consists of hardware that samples and quantizes 

signals at a specified rate (1440 Hz used for the present work). It employs two 4-Channel 

Analog Interface cards [54] to collect data h n  the eight channels. Each card supports 

four analog input c b e l s  and two analog output channels. Each card provides hdities 

that include four analog signal conditioning units, a quad samplehoId amplifier, an analog- 

to-digital conversion (ADC), a sample rate timer, and the control and status registers with 

the associated interrupt control. 

Analog signal conditioning unit includes a unity gain bw offset operational 

amplifier that buffers the input s i p 1  hm the on-card low-pass filter. A S . S V  analog 

input signal provides fulI scale operation of the ADC and it is necessary to limit the input 

signals below S.OV to prevent damage to the quad samplehold chip. The signal 

conditioning bIock aIso has programmable 3rd order Butterworth Iow-pass analog f i lm  

to suppress unwanted high fkquencies. They are suitable as anti-aliasing filters only if the 

sampling fkquacy is very much higher than the xmxhum input lkquency component, 

However, in the present project, the sampling hquency is not very much higher than the 

input fkquency component, an external low-pass filter, as descri i  in the previous 

section, is used as an anti-aliasing filter. 

The output h m  analog signal conditioning unit is ki to the quad sampIeihoId 

chip. It performs the sampling of input sigaals at a pre-dehed sampling rate defined using 

the sampie rate timer. The quad sampldhold also perfom the multipIexing of the input 



si@ to a single analog-to-digital converter (ADC). The conversion of a channel, 

selected by the controI register, presented to the ADC is initiated by a trigger signal to the 

ADC. The ADC indicates the end-of-conversion by setting the EOC bit high which is read 

by the DSP through the status register. The sample rate timer is a 16-bit up counter 

nmning at 8 MHz. The counter has a programmable input register from which the counter 

is loaded every time the maximum count value of FFFF (hexadecimal) is reached. Each 

card occupies a short PC slot and is powered Gram the bus. All control and data signals are 

transfmed via 50-pin DSPLINK2 connector tiom the digital signal processing card. 

63.13. Digital signal processing card 

The fCIC31 d [55, 561, based around the 33.3 MHz TMS320C3 1 Digital 

S i p I  Processor h m  Texas Instruments [57], is used as a digital signal processor card. 

It is a Ill-height, two-thirds length card, It occupies one 16 bit PC slot and draws power 

fiom the f C bus. 

Communication between the PC and the DSP card takes place over two 

autonomous intdce.  Memory-Mapped Interface, consist of DPRAM, allows fast 

infomation exchange between the PC and DSP without disrupting the process of either 

device. YGMapped Intehce provides access to various card fdt ies ,  such as  reset and 

interrupts, through software pro~rrmnmaible wnmI registers. The PCIC31 card is 

equipped with Loughborough Sound Images Ltd.3 D S P L W  digital system expansion 

interface- It has a bidirectional bus that allows input/output directly tolfiom the DSP, 

without using the YO bus on the PC. DSPLINK2 in- is used to oommunicate with 

the data acquisition system cards, descriied in the previous section. There are f0.m 

maskd.de interrupts to the TMS320C31 DSP driven by DSPLINK2, PC and other 

optional peripheral devices. One such DSP card is used in the developed relay. 

63.1.4. Host personal computer 

The PCK31 DSP card and data-acquisition @AS) cards are placed into the 

expansion ports of an IBM compatible personal computer. This host PC provides hcilities 

to: 



(i) control the operation of the DSP and DAS cards, 

(ii) debug the softwares and 

(iii) access various memory locations and registers in the DSP. 

A persoad computer based on Intel Corporation's 486 processor, running at 66 

MHz is used. The PC nms on Microsoft W d w s  for Workgroups Version 3.1 1 

operating system. 

6.3.2. Software 

Three softwares are needed for implementing the prototype relay i.e. data- 

acquisition, relaying and user-interface sohares. Figure 6.3 shows the organisation of 

these sohares within the delta-impedance relay, 

User-Interface n 

F i r e  63, Organhation of softwares within the delta-impedance relay. 

63.2.1. Data-acquisition software 

The data-acquisition software is used to initialise the data-acquisition system cards, 

control a sample-rate timer and acquire samples at SUCCeSSive sampling instants. It consists 

of two routines, a main routine and an intemrpt savice mutine. The main routine 

initialises the system cards and loads the timer with the appropriate hexadecimal number 

which is stored in a specified DSP memory location. This number corresponds to the 

selected sampling rate, which is 1440 Hz. The mrdn muthe enables an interrupt after 

loading the timer which results in activation of the intermpt service routine. Intemrpt 

service routine executes the fimctions related to data-acquisition such as sample-and-hold, 



analog-to-digital conversion and initiates the execution of the relaying software after 

acquiring a set of samples. 

63.2.2. Relaying software 

An executable code of the relaying software is generated using TMS320 floating- 

point C compiler and then loaded into the memory of the DSP. Quantized samples 

obtained h m  DAS are used by this code to execute the proposed technique. ANSI C 

programming language has been used to develop the relaying software. The relaying 

software, based on the proposed hultdetection technique is executed by the individual 

delta-impedance relays. The relaying software carries out the following computations as 

expIained in Section 3.32. 

(a). Estimates the phasors and sequence-phasors h m  the voltages and currents 

samples obtained using the data-acquisition sobare. 

(b). Detects the onset of fault by camparing the changes in magnitudes of the 

voltage (V-CHANGE) and w e n t  (I-CHANGE) phasors to be above a pre- 

specified threshold for three consecutive times. Unlike detection of the fault, 

carried out using sample magnitudes in simulation studies, phasor magnitudes 

are used in real-time testing of the technique. This is done keeping in view the 

limited resolution of the AID converter and existence of large differences 

between the signd levels, particularly mt, before and after the occurrence 

of a fault. As such, smaller magnitudes of the signals, before the onset of 

fault, can be affected by the presence of mise and may result in inconect 

identification of the onset of hul t  Use of phasor magnitudes, calculated 

fbm a collection of samples in a data window, ensures correct detection of 

hult-incqtion as the wise is removed by the filters used for estimating 

phasors. 

(c). Computes the incrementaI-sequence phasors using pre-fault and hult samples 

after the fault has occurred. 

(d). Calculates the sequence impeaances using incremental current and voltage 

phasors* 



(e). Forms trip counters using the arguments of the impedances and the fault- 

detection characteristics descriied in Section 3.2.3. 

(0. Generates the tripsignal representing relay's decision. 

The relaying software has the provision to record the samples of the voltages and 

currents in Merent phases acquired by the delta-impedance reIays. The output results 

are reported in the form of data fles which contain the profiles of the tripcounters and 

computed sequence impedances. 

63.23. User-interface software 

The user-interface software, devetoped in Visual Basicm [58], is used to upload 

the results from the memory of the digital signal processor (DSP). PCK3 1 IlL (InteIligent 

Interface Library) functions [59] are used m the development of this software. It has the 

f lexl i ty of scanning the DSP board memory by selecting the corresponding start address 

and the nrrmber of individual data points required. The display of the developed user- 

i n t h e  is shown in Figure 6.4. 

. . . .  
: : : FAULT-DETECTION SOFTWARE INTERFACE 1 

Figare 6.4. Display of the user-interface. 
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6.4. Testing 

The proposed micropro~~~~r-basai  system employing delta-impedance days for 

protecting busbatrs was impiemented and tested in the Iaboratory. This section descn'bes 

the testing of the hardware and software followed by the test set-up, the power system 

codgumtion empIoyed in the test studies and illustration of sample test rcsults. 

6.4.1. Hardware and software components 

The hardware and software of the proposed relay used were tested individually for 

their correct firnctionality before combining them. This section explaias the procedures 

adopted for the testing of these hardware and software components. 

Low-pass aters were implemented in a circuit board with ICs and discrete 

components. Cutsff firesuency of 200 Hz was selected for the low-pass flters. The 6ltm 

was tested using s spectrum analyser. The frequency response of one of the filters buiIt is 

&own in Figure 6.5. The response indicates that the 6lter petformance is close to the 

expected response- 

-x 
Figure 6.5. Frequency response of the sixth order Butterworth low-pass tilter. 



6.4.1.2. Data-acquisition software 

Data aquisition software was tested by applying a sinusoidd test waveform from 

the FDF Dynamic Frequency Source [60] of the Doble Engiueering Company. The level 

of the signal was first checked in an osciIloscope to ensure that it is less than i2.0 Vok so 

that the data acquisition card is not stressed. Initial testing of the data acquisition 

software was done by using the MPC View C Source Debugger [61] avaiiable from 

Spectrum Signal Processing, manufacturer of DSP and DAS cards. 

MPC View is a Windows based user-interface and it allows different fimctions like 

load, display and execution of the DSP code. It also allows data management Wty and 

dl data in the DSP including memory and registers can be viewed in a desired format: 

floating-point, hexadecimal or decimd MPC View can also be interfaced with an 

Intelligent Interfie Library (IIL). 

Testing of the data aquisition system revealed that the on-board low-pass filters in 

the two DAS cards have significantly different group delays which has resulted m a phase- 

shift between the signals acquired by the two boards. The amount of p b s h i f t  was 

determirred and software compensation was provided to eliminate the undesired phase- 

shift between the signals acquired by the two boards. 

6.4.13. Relaying software 

The relaying software was tested by including a data file, containing simdated W t  

data, in the software. This data file was prwiously used for off-line testing of the 

proposed technique. The testing of the reIaying sohare was done on a PC equipped with 

a TMS320C30 Evaluation module (EVM) [62]. The debugging of the program was done 

by using a TMS320C30 C Source Debugger [63]. Appendix H gives an overview of the 

testing system used and the procedures followed. 

This testing ofthe ~Iaying software is required to c o b  that the software can be 

executed within the inter-sampIing time. Benchmarking of the daykg software indicates 

that it can be executed within 0.412 lllilIisecond for each pass of the program, This is 

much less than the available inter-sampling time of 0.694 milIisecond for 1440 Hz 



sampling bquency. Even if the software overhead for data acquisition is added, it is 

expected to be much less than the inter-sampling the.  Results h m  these tests are similar 

to those obtained from the simulations on the U N E  workstation. This verifies the 

accuracy of the computations performed by the DSP. 

6.4.1.4. User-interface software 

The user-interface software, developed in Visual BasicTM, used to upload the 

results h m  the memory of DSP was tested by nmning a test me.  The values of the 

sequence-impedances computed by a delta-impedance d a y  and the associated trip 

counters were stored in the memory of DSP. The user-interface sohare  was executed to 

upload these results to a data file. The flexibility of the user-interface software to scan the 

DSP board's memory by selecting the corresponding start address and the number of data 

points uploaded was dso tested. 

6.4.2. The busbar protection system 

Individual delta-impedance relays were tested to vaify the performance of the 

proposed busbar protection system. This section descn'bes the test set-up and selected 

test results. 

6.4.2.1. Test setup 

Figure 6.6 shows an ovenriew of the complete test set-up. The various steps 

petformed in t&g of the proposed delta-impedance relay involve: 

(a) generation of f d t  data usiug simulations, 

(b) playback of the simulated data and 

(c) testing of the relay. 

Generation of fault data 

The petfonnauce of the proposed delta-impedance relay was verified using the 

configmation and data of an existing substation (SRADA) of the SaskPower. The 

substation is of double busbar configatation and has five ditlkmt circuits operating at 230 

kV and 138 kV levels. Delta-impedance relays RI to Rs, as shown in Figure 6.7, are used 
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Figure 6.6. Testing arrangement for a delta-impedance relay. 
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Figure 6.7. System model used for simulating data using the EMTDC. 



for providing protection to the busbar (B). The data for two different operating conditions 

of the substation was used in the studies. Figure 6.7 a h  shows the power system model 

and the pafameters of the system components used to generate the M t  data. Various 

fault tocations considered in the test studies are dso indicated in the figure. 

Faults were simulated, in the selected busbar system, on the SUN SPARC 

workstation using the PSCADA3iTDC and the ct model using a time-step of 1.0/23040 

seconds. Various levels of ct saturation, obtained by changing the burden, were used. A 

recorder component, used in the simulations, stored the voltage and current samples as 

playback files, which were used by Real-Time Playback Simulator to generate analog 

signals. Parameters of the fecorder component are given in Appendix D. 

Playback of the simulated data 

Power System Analysis laboratory at the UnivefSity of Saskatchewan, Canada has 

a personal computer equipped with hardware and software for use as a Red-Time 

Playback SimuIator (RTPS) 1641. Data fles containing fault data, generated by the 

PSCADIEMTDC power system simulation software, can be played back using the RTPS 

to provide the c~rre~p~nding analog signals. These d o g  si@ were given as input to 

the delta-impedance rday for testing. Figure 6.8 shows a typical display of the RTPS 

wherein a fadt waveform is shown being played back. The cments in the simulated 

power system were decreased fbm the system level to relay levels by using current 

transfmers. Ct ratios of 80, 80, I00,80 and 80 were used for the relays h, Rt, R3, k 

and Rs respectively. Appendix I gives an overview of the RTPS. 

The corresponding voltage signals were lowered in magnitude by a &or of 1000 

for ail the relays using potential transformers. These cunents and voltages were fiather 

decreased by using auxikq ct and pt ratios. This was accomplished by using the gain 

settings availabIe in the RTPS software. This ensured that the current and voltage inputs 

to the DAS are weU within the available range(e.5V peak-to-peak). The ratio of 

auxiliary cts and pts at different relay Iocations are given in Table 6.1. 



Figure 6.8. A fault waveform being played back by the Real Time Playback Simulator. 

Table 6.1. Ratios of auxiliary pts and cts. 

Reh~ 

Rt 

Rz. 

R3 

R4 

Rs 

pt ratio 

70 

120 

70 

120 

120 

c t  ratio 

50 

40 

50 

40 

40 



Relay testing 

Tests were conducted using the five sets of voltages and currents samples obtained 

at the debimpedance relay Iocations (R,, R2, R3, Eb and Rs shown m Figure 6.7). Test 

set-up shown in Figure 6.6 was used for testing the rehys, Each set of data results in an 

individual decision. These decisions were combined using the logic circuit shown in Figure 

3.9 to provide the hid fault-detection. The values of 1-CHANGE and V-CHANGE used 

for detecting hdt-inception were set at 30% and 15% of the pre-fault current and voltage 

magnitudes respectively. To ensure algorithm sensitivity ad maintain s-ty against false 

trips, the d u e  of THRESHLD was set at six. Selected test studies are presented in the 

next section. 

6.43.2. Results 

The designed delta-impedance relay sampled the analog voltages and currents 

generated by RTPS at 1440 Hz. Results showing the performance of the proposed relay 

for different types of faults occurring at various locations in the selected power system are 

presented. The effect of ct saturation was also considered in the test cases. 

Figure 6.9 demonstrates the performance of the proposed protection system for a 

single-phase-to-gromd fiult involving Phase A occurring at location 3 shown in Figrae 

6.7. Figure 6.9(a) shows the current waveforms, reconstructed using their smples 

obtained by the delta-impedance relay R,. 

-0.6 1 SampLc No. 

6.9 (a). Profile of the currents, reconstructed using data samples acquired by the 
delta-impedauce relay Ri. 



It takes 7, 6, 7, 9 and 7 fault sampIes by the relays RI to Rs respectively to detect the 

onset of fault. After this delay, the incremental-sequence impedances are computed The 

plots show that the argument of all the impedances computed by different delta-impedance 

relays lie in the third quadrant, Tbis leads to the decision that fault is inside the protection 

zone of the busbar. Figures 6.9(b) and 6.9(c) show the profiie of magnitudes and 

arguments of the positiveand negative-sequence impedances respectively which are 

computed h m  voltages and currents data obtained by the various delta-impedance relays 

indicated in Figure 6.7. From the plots of corresponding positive- and negative-sequence 

trip counters, shown in Figures 6.9(b), 6.9(c) and 6.9(d) respectively, it is observed that 

the trip-logic of the proposed system will issue a trip command in 14 fault samples i.e. 

9.72 ms (1411440). From Figure 6.9(a), it is seen that current in Phase A is highly 

saturated. However, the onset of saturation does not alter the decision made by the 

proposed technique. 

Figure 6.10 shows the performance of the proposed system for an external fault 

involving phases A and B (location 21, Figure 6.7). Figure 6.10(a) shows the current 

waveforms, reconstructed h m  the samples acquid  by the delta-impedance relays Rt and 

R3. The positive- and negative-sequence impedances computed h m  the voltages and 

currents samples obtained at different locations are shown in Figures 6.10(b) and 6.10(c) 

respectively. The plots of corresponding trip counters are also shown in these figures and 

Figure 6.10(d). The detection of Wt-inception by the reIays RI to RI takes 5 6 ,  5,9 and 

7 hult samples respectively. After this delay, the sequence impedances are computed at 

the individual relay locations. It is seen that the impedancemgument computed for aU the 

relays except the relay R3 lie m the third quadrant. The argument of the impedances 

computed by the relay R3 is positive. As such, it is concluded that the huIt is external to 

the busbar protection zone. The pfiIe of trip counters indicate that the triplogic will 

establish the fault in 14 fidt  samples ie. 9.72 ms (1411440). The saturation of cts installed 

for phases A and B at reIays Rt and R3, however, does not affect the decision made by the 

proposed technique. 



(4 
FSgures 6.9 (b) & (c). ProfiIes of sequence-impedances' magnitude, argument and the trip 

counters fbr Phase A-ground internal fault (location 3, Figure 6.7). 
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Figure 6.9 (d). Plots of positive-sequence and negative-sequence trip counters (on 
expanded scde) for Phase A-ground m t d  Mt (location 3, Figure 
6.7). 
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Figure 6.10 (a). Profile of the currents, reconstructed using data samples 
acquired by the delta-impedance relays R 1 and R3. 

Figure 6. I 1 demorutrates the performance of the proposed protection system for a 

Phase A-Phase B fault occurring at location 5 shown in Figure 6.7. I t  takes 5, 9, 9, 11 

and 8 fault samples by the relays RI to R5 respectively to detect the onset of fault. After 

this delay, the incremental-sequence impedances are computed. The plots show that the 

argument of all the impedances computed by different delta-impedance relays lie in the 

third quadrant This leads to the decision that fault is inside the protection zone of the 

busbar. Figure 6.1 1 shows the profile of magnitudes and arguments of the positive- 

sequence and negative-sequence impedances respectively which are computed fiom 

voltages and currents data obtained by the various delta-impedance relays shown m Figure 

6.7. The protiles of trip counters are also shown in the figure. From the plots of 

corresponding positive- and negativesequence trip counters, it is observed that the trip- 

Iogic of the proposed system will issue a trip co~mnand in 16 fault samples i.e. 1 1.1 1 ms 

(16/1440). 



(4 
Figures 6.10 (b) & (c) Profiles of  sequence-impedances' magnitude, argument and the trip 

counters for Phase A-Phase B external fault (location 21, Figure 6.7). 
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Figure 6.10 (d). Plots of positive-sequence and negativesequence trip counters (on 
expanded scaIe) for Phase A-Phase B extemaI fault (location 21, 
Figure 6.7). 



F i i  6.11 (a). Profiles of (a) positive-sequence and (b) negative-sequence impedance 
magnitude, argument and the trip counters for Phase A-Phase B 
internal fault (Iocation 5, Figme 6.7). 



Figure 6.11 (b). Plots of positive-sequence and negative-sequence trip counters (on 
expanded scale) for P k  A-Phase B internal fadt (location 5, Figure 
6-7). 



6.5. Additional test results 

The performance of the delta-impedance relays was tested in the laboratory by 

simulating various types of faults at different locations in the power system configuration 

shown in Figure 6.7. The test studies also included faults occuning through fault 

resistance of different magnitudes. 

Table 6.2 presents a summary of sample test results. The number of W t  samples 

required for the positive- and negative-sequence tripcounters to reach the threshold limit 

and, thus, the time required for making a   MI decision on fault-detection for each test 

case are also shown in this table. Various fault locations indicated in the table are shown in 

Figure 6.7. Plots of positive- and negative-sequence impedances computed by different 

relays for the results outlined in Table 6.2 are presented in Appendix J. 

6.6. Summary 

This chapter desmied the impternentation and testing of the proposed technique. 

The proposed system is explained to be composed of delta-impedance relays which 

execute the faultdetection algorithm based on the proposed technique. The 

implementation of these relays require hardware and software. These constituents of the 

relays are descnied and their pertinent characteristics are outlined. 

The testing of the proposed reIays involves prior testing of the associated hardware 

and software. The details of testing hardware and software have been presented. The 

complete set-up used in testing the proposed protection system has been shown. Various 

steps involved to carry out the test studies such as generation of fault data, playback of 

data and the relay testing are explained. 

For the considered test cases, each of the prototype delta-impedance days  was 

tested by playing back simulated data using a Real T i e  Playback Simulator. The test 

results show the reconstructed waveforms of test signals, the calculated impedances and 

the trip counters. The t h l  hult-decision times are a h  given. These trip times are in the 

range of 9.0 to 13.5 ms. 



Table 63. Summary of additional test cases from real-time testing. 

# in (&b,c) values in the ceh,  a: Fault sampIes d c d  for hdt detection, b Bc: Fault sampIes needed for 
positive-sequence and negative-seqamce trip countas to reach threshold (lTRESHLD) respcctivcfy. 
* Rr : F d t  nsistance. 

' F : No. of iault sampIes; T : Time (ms.); FJ : Rtftrmce figure in Appxcadix J. 



It is concluded that the performance exhibited by the delta-impedance relays is 

satisfactory and the faults occurring inside and outside the protection zone of  the busbars 

are correctly identified. This validates the feas i ty  of the proposed busbar protection 

technique for practical applications. Also, the feasiity of implementing the proposed 

technique using commercially available hardware components has been established. 



SUMMARY AND CONCLUSIONS 

A power system occasionally experiences faults which can cause extensive damage 

to the equipment besides injury to personnel. This results in substantid monetary losses to 

utilities and consumers. A system element should, therefore, be protected h m  damage 

due to faults and abnormal operating conditions. 

The first chapter of the thesis has descnied power system protection concepts and 

developments leading to and including the use of microprocessor-based relays. Majority 

of the research work in this area has concentrated towards developing suitable algorithms 

for protecting diffetent power system equipments. 

An ovenriew of busbar faults and the essential requirements for a busbar 

protection scheme has been presented in Chapter 2. Differential protection, 

conventionally used for protecting busbars, is briefly descnied. The principle, and 

limitations of diffetential relays, and the additional features incorporated in them are 

outlined. 

The advent of digital technology has lead to the introduction of microprocessor- 

based systems for busbar protection. A literature m e y  has revealed that very k w  

dgorithms for protecting busbars have been proposed in the past. Moreover, these 

algorithms are adversely affected by ct saturation and ct ratio-mismatch conditions. The 

reported algorithms use different working principles to achieve correct relay operation 

even when the cts saturate. Specid circuitry and techniques have been used m the past 

for the purpose. Use of additional circuitry in a protection scheme increases the 

complexity of a scheme and increases the possiity of incorrect operation due to 

rnahction of circuit components. Also, an increase m the number of components in a 

protection scheme increases the total cost. 

No algorithm proposed in the past has inherent immunity to ct saturation, 

Moreover, their correct operation on severe ct saturation is not guaranteed. Also, no 



algorithm handles the ct ratio-mismatch satisfactorily. The previously proposed digital 

algorithms for protecting busbars are reviewed in Chapter 2. 

A technique, based on the concept of symmetrical components, has been 

developed for protecting busbars; the technique has been reported in Chapter 3. It uses 

fundamental fresuency voltage and current phasors computed from quantized samples of 

bus voltage and quantized samples of currents in the circuits connected to the bus. The 

computed phasors are used to caIculate the positive- and negative-sequence phasors. 

These sequence-phasors are manipulated to estimate the positive- and negative-sequence 

impedances. The relay uses the arguments of the impedances to distinguish between the 

faults in the protection zone from those outside the zone, The proposed technique has 

been verified for its application to busbars of d i f f i t  con6gurations. Fault-detection 

characteristics and an algorithm based on the proposed technique have also been described 

in Chapter 3. 

The impact of ct saturation on the developed technique has been investigated and 

reported in Chapter 4. Studies have revealed that the magnitudes of the ftndamentai 

hqwmcy phasors computed h m  the outputs of saturated cts are always SmaUa than the 

magnitudes of the phasors computed from the outputs of maturated cts. Also, the 

arguments of the phasors computed hm the output of saturated cts are greater than the 

arguments of the phasors computed hm the outputs of not-saturated cts. Since the 

proposed fault-detection technique rapires that the arguments of the sequence- 

impedances lie in the first and/or the third quudrants, there is a wide range in which they 

can lie. The change in arguments due to ct saturation, therefcre, does not affect the 

decisions made by the technique. This fim proves the ability of the technique to provide 

correct decisions during ct saturation. The effect of ct ratio-mismatch on the paformame 

of the technique has also been discussed in Chapter 4. 

Chapter 5 evaluates the perfomme of the proposed technique. Faultdata 

generated h m  simdations of power system models incIuding the BRADA substation of 

SaskPower were used for this purposeurpose The power system were simdated on a SUN 

SPARC workstation using the simulation so- PSCAD. Faults were applied at 



different locations in the system. The simulated fault data were pre-processed using anti- 

aliasing filters. 

A program written in ANSI C was used to implement the proposed technique. 

Test studies were wried out for different types of faults in the system models and for 

different operating conditions. Also, several busbar configurations were considered in the 

evaluation process. The impact of ct saturation and ct ratio-mismatch on the performance 

of the technique were investigated Test results showed that the proposed technique 

correctly detects the faults that occur inside and outside the busbar protection zone. Also, 

the stability of the proposed technique during ct saturation and ct ratio-mismatch has been 

verified. 

It has been shown that the impedance seen by a relay when a ct saturates is higher 

in magnitude and lower in argument than that observed if the ct does not saturate. 

However, the impedances remain well within the faultdetection zones. This confirmed 

the theoretical basis developed in Chapter 4. Test studies have shown that the decisions 

made by the technique are not affected by mismatch of ct ratios. This results from the fact 

that the impedances calculated hm the data obtained by the days included m the 

protection scheme are independent of each other. This has made the proposed technique 

inherently immune to mismatch of the ct ratios. 

The proposed techuique has bem implcmcnted using commercially available 

general-purpose relay hardware. The bardware and the software designed for 

implementing the proposed faultdetection technique has been descrii in Chapter 6. 

The testing of individual hardware .and software components, involved in &e 

implementation, have been descri i  in the chapter as well. The individual relays of the 

busbar protection system have been tested by playing back the hult data using a Red 

lime Playback (RTP) Simulator. Test resuIts have also been reported in Chapter 6. 

Numerous tests have shown that the proposed technique is capable of detecting huIts in 

the busbar protection zone and provides trip decisions with operating times ranging hm 

9.0 ms to 13.5 ms. 



The objective of this research was to develop and test a microprocessor-based 

system for protecting busbars. The developed system should be stable during ct saturation 

and ct ratio-mismatch conditions. It should also be implementable in microprocessor- 

based relay. The work reported in this thesis shows that the objectives have been 

successfully met. Specifically, this thesis has made the following contniutions. 

1. A technique for protecting busbars has been proposed and an algorithm based 

on the technique has been developed. While phase voltages and currents are 

used to detect faults, parameters of the power system are not used. Only the 

arguments of the sequence-impedances computed by the relays are used to 

make decisions. 

2. The effects of ct saturation and ct mtio-hsmatches on the proposed technique 

have been d e s c r i i  and evaluated It has been shown that the technique is not 

affected adversely by ct saturation d ct ratio-mismatches. 

3. Viability of the proposed technique to provide microprocessor-based protection 

for busbars has been demonstrated by implementing the proposed technique in 

a prototype. 
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Appendix A. BUSBAR ARRANGEMENTS 

Substations differ in configurations based on operational considerations. Whether 

single or multiple busbars are necessary will depend mainly on how the system is operated 

and on the need for sectionalizing, to avoid excessive breaking capacities. Account is also 

taken of the need to isolate parts of the installations for purposes of cleaning and 

maintenance, and also of future extensions. Major substation configurations and their 

associated features are descriied as under. 

Single busbars 

Single busbar configuration is suitable for smaller installations (most dc 

switchboards, small ac substations and some generating stations). Figure A.l shows a 

typical single busbar substation. It uses a single set of busbars. All generators, feeders 

and transformer circuits are wanected to it. A sectionalizer allows the station to be split 

into two separate parts and the parts to be disconnected for maintenance purposes. This is 

also the least expensive scheme. 

Feeders 

Figure A.1. A typical single busbas system. 



Some of its disadvantages include shutdown of the entire substation when the busbar or a 

circuit-breaker failure occurs, difficulty in performing maintenance and need for totd 

shutdown when the substation is to be extended. 

Duplicate h b a r  system 

Major substations are usually equipped with duplicate busbars to increase 

flexibility during the operation of the substation and for doing maintenance on the 

equipment. Normally, one set of busbars is in use while the other remains available for use 

in the event of a busbar fault m the substation. This scheme includes a busbar-coupler 

circuit breaker and two isolators. Each incoming and outgoing feeder is comected to both 

busbars by a circuit breaker and two isolators as shown in Figure k 2 .  

In this scheme, an appropriate sequence of operations must be used to transfer 

circuits fiom one set of busbars to the other. The busbar-coupler circuit breaker is used to 

synchronize the systems connected to these busbars. The isolators are used to select the 

busbars and to disconnect the circuit breaker for maintenance. 

TB = Busbar-tie Breaker 

BI = Busbar-tie IsoIator 

F i e  A.2. A typical duplicate busbar system. 



This configuration hditates maintenance on busbars, testing and commissioning of new 

feeders, and operating an existing feeder at a different voltage to compensate for abnormal 

voltage drops. The disadvantage of this scheme is that all the circuits connected to a 

busbar are interrupted in the event of a busbar fault. 

I Breaker-and-a-half (I - ) system 
2 

As the name implies, it requires one and a half circuit breakers per circuit because 

each pair of circuits is controlled by three circuit breakers. AU breakers are normally 

closed. Uninterrupted supply is thus maintained even if one busbar M s .  The branches can 

be connected by a linking breaker as shown in Figure k 3 .  The flexibility and reliability 

are high but relaying and reclosing are compiex to implement 

F i i  A.3. A typical breaker-and-a-half system. 



Ring busbars 

Some major substations use the mesh arrangement, called a ring busbar, as shown 

in Figure A.4. Each branch requires onIy one circuit-breaker, and yet each breaker can be 

isolated without interrupting the power supply in the outgoing feeders. to take a circuit 

out of service, two adjacent circuit breakers must be opened. This scheme has a low 

initial and dtimate cost and provides flexl'bility m operation for maintenance of breakers. 

The arrangement, however, makes protective relaying and automatic redosing complex. 

The ring busbar layout is often used as the first stage of II breaker configurations. 
2 

Figure A.4. A typical mesh substation. 

Two circuit-breaker system 

Used in major substations, this scheme has two circuit-breakers in each circuit 

There is no bus-coupler circuit-breaker. This arrangement, also calIed a double-busbar- 

double-breaker scheme, is shown in Figure A.5. It is considered to be one of the best 

suited configurations for high voltage substations [65] but also is the most expensive 

alternative. Use of two circuit-breakers increases operational flexiity. That is, since 

each circuit has two circuit breakers, it can be connected to either busbar. Any busbar and 

any circuit breaker can be taken out of senrice for maintenance without intermpting 

connection to the feeders. 



Figure AS. A typical two-circuit breaker system. 

Multiple burbar system 

This system, shown in Figure A.6, consists of more than two sets of busbars. This 

layout is firesuently provided with a bypass bus. Any busbar can be isolated for 

maintenance, A circuit can be d y  transferzed b r n  one busbar to another using the 

busbar-tie breaker and busbar selecting switches. It is used for vital installations feeding 

electricalIy separate networks or if rapid sectionalizing is required in the event of a fault to 

limit the short-circuit power. However, it is not a popular scheme because it is not cost 

effective and its performance does not surpass the two-circuit-breaker, breaker-and-a-haIf 

and me& arrangements. In this scheme, a circuit breaker m o t  be serviced without 

interrupting power supply to a he. 

F i i  A.6. A typical muItipIe busbar system. 



Appendix B. SYMMETRICAL COMPONENTS & SEQUENCE- 
NETWORKS 

Symmetrical components 

The method of symmetrical components was first proposed by CL. Fortescue and 

has been found very usem in analyzing mbdanced polyphase circuits. The concept of 

symmetrical components allows decomposition of any unbalanced 3-phase system of 

vectors (whether representing currents or voltages) into three balanced systems of 

vectors which are called its 'symmetrical components'. The balanced set of phasors are- 

positivesequence, negative-sequence and zero-sequence components. Figure B.1 shows 

the relation between the unbalanced set of phasors and the conesponding symmetricd 

Unbalanced set 
of ABC phasors 

Positive-sequence Negativesequence Zero-sequence 
components components components 

Figure B.1. Decomposition of rn unbalanced set of ABC phasors in 

symmetrical components. 

Positive-sequence components are the baIanced systems of 3-phase vectors having 

the same phase seqaence as the mbdanced set rmlike the negative-sequence components 

which have an opposite phase sequence from the original unbalanced set of phasors. 

Zero-sequence components are equal in mgnitude and are in phase with each other. 



In equation form, symmetrical components for an unbalanced set of voItages can be 

written as 

va= v,, + v, + v, 

Vb = Vbl + VE + VbO 

Vc=VcL+VCt + v *  . 

h, 

vbl=a2vaI ,  V C I = a V a I ,  Vbl=aVe, v C = a z v d ,  Vw=Veo=Vd (52) 

where: 

a is an operator that causes a phase shift of 120 degrees and is 

defined as -0.5 + j 0.866, 

a' is an operator that causes a phase shift of 240 degrees and is 

de6ned as -0.5 - j 0.866. 

From Equations (B. 1) and (B.2), it follows that 

in matrix form, 

The symmetrical components can, thus, be represented in terms of the unbalanced set of 

P-as 



The voltage drop caused by w e n t  of a particular sequence depends upon the 

impedance offered to the current of that sequence. Therefore, sequence-impedances are 

termed positive-, negative- and zero-sequence impedance depending upon the respective 

sequence currents [66]. 

The analysis of an usosymmetrical hult in a symmetrical system consists of finding 

the symmetrical components of the unbalanced cumnts flowing in the circuit Since the 

sequence current of one type differs h m  the other, and causes voltage drop of Iike 

sequence only, it may be considered to flow in an independent network composed of the 

impedances to the current of that particuiar sequence only. The single-phase equivalent 

circuit comprising impedances to current of one sequence type only is called the sequence 

network for that particular sequence. This network shows all the paths for the flow of 

current of that sequence in a system. 

The method of symmetrical components, thus, involves determination of sequence 

impedances to form sequence-networks and their appropriate connections to d y z e  a 

fault. 



Appendix C. LEAST ERROR SQUARES ALGORITHM 

Sachdev and Baribeau [4q described the Least Enar Squares (LES) approach for 

developing a digital filter which explicitly takes account of the decaying d.c. components 

in the system voltages and currents. This curve-fitting technique is based on mhhhing 

the meamquare error between the actual and assumed waveforms. The technique uses 

the d c i e n t s  of the designed filter to compute the real and imaginary components of 

the voltage and current phasors. In designing the LES filter, the power system currents 

and voltages are modeled as a combination of an exponentially decaying dc component, a 

fimdamental f k p m c y  component and harmonics of specified order. 

Consider that the waveform of a voltage can be modeled as 

where: 

v(t) is the instantaneous value of the voltage at any time t, 

.s is the time constant of the decaying dc component, 

N is the highest order harmonic component present in the voltage, 

0, is the fimdamental fkquency of system in radidseconds, 

A, is the initial value of the dc o f k t  at time HI, 

A, is the peak value of the n" harmonic component, and 

8, is the phase angIe of the n* harmonic component. 

The Taylor series expansion for the decaying dc component gives 



Applying the trigonometric identity sin(A+B)=sinAcosB+cosAsinB and using the first 

two terms of the Taylor series expansion of the decaying dc component, Equation (C. 1) 

becomes 

If the fourth and higher order harmonics are assumed to be removed by the anti-aliasing 

filter, and t = t, , Equation (C.3) becomes 

(A, cos0,)sin(200tl) +(A, sin0,)cos(2aot,) + 
(A, cos0,)sin(3o,tI) +(A, sin0,)cos(3aotl). 

This equation can be expressed as 

xt= A, cos 8, , xa= A, sin 0, , and 

a11=1, a t ~ t ,  , at~sin(a, t , ) ,  a~~=cos(lil,t,), a1s=sin(2a,t,), a1~=cos(2a,t,), 

al~sin(3o,t,) ,  atg=cos(300t,). 

The voltage signal is sampled at intervals of At s. Equation (C.5) can be rewritten in the 

following form by substituting t, = At, 2 At , .........., m At as follows. 

v ( At )=at I X I + ~ I  2x2+a1 ~3+a14&+ar ~x~+atdb+ws+a~~xs 

The a-co&cients can be redefined as follows: 

&I= 1, -At, & d n ( ~ @ t  ), ~ s ( o , m A t ) ,  aesin(2 w,mAt), 



If S voltage samples are expressed as equations and S 8 ,  the resulting equations can be 

written in the matrix form as 

The unknowns, [XI, can be calculated as follows 

where [A]' is the left pseudo-inverse of [A] and is given by 

[A]' = [ [A' ] [A] 1'' [A']. (c.9) 

The elements of the rows of [A]' are the coefficients of the LES filter that can be 

used for estimating the reaI and imaginary components of the fimdamental kquency and 

harmonic hquency phasors of the voltages. These elements can be computed a priori 

m the off-line mode because At is known. The peak value of the fundamental fresuency 

component can then be d d a t e d  by using the eqution 

v, = ,/= (C. 10) 

where x3 and are the sum of the multiplications of the elements of the 3d and 4' rows 

of [A]' and the voltage samples. Similar procedure can be used for computing the 

hdamental frequency components of the currents. A one cyde LES algorithm 

attenuates high-hquency components, noise and the decaying component. 

For the work reported in this thesis, sampling hqmcy  of 1440 Hz was used. 

The time instant coinciding with the thirteenth sample was considered to be zero. The 

filter coefficients, for estimating the real and imagimy components of the fundamental 

fkpency phasors of voItages and cunents, are given in Table C.1. The red and imaghy  

components of the fimdamental hquency phasor are calculated by muItiplying the 

coetllcients with the samp1es. The transfer function of the cosine and sine filters in the z- 

plane is given by 



H(z) = c[-12]iE + C[-1 l] i l '+ C[-~O]Z'~ + c[-9]z4+ c[-812' + ~[-7]z-'+ c[-6]zd + 

C[-S]Z-'+ c[-4]z4 + ~[-3]z-~+ c[-2]z" + c[-l]z*'+ c[0]z0 + c[l]z1+ c[2]z' + 

cp]$+ c[4]z4+ C[5]25 + C[6]z6+ c[qz7+ c[8]zg + C[9]z9+ C[~O]Z'~+ C[l l]z" + 

c[12]z" (C. 11) 

The magnitude response of the LES algorithm is obtained by using the numerical 

values of the fiIter coefficients and substituting z with dm in Equation C.11 and 

evaluating the resulting equation. The responses are shown in Figure C. 1. 

Table C.I. The filter coefficients far a 25 point LES fiIter based on a sampling rate of 

Cosine Coefficients 
0.3 16490 
-0.02 1568 
-0.04 1667 
-0.058926 
-0.072 169 
-0.080494 
-0.083333 
-0.080494 
-0.072 169 
-0.058926 
-0.04 I667 
-0.02 1568 
0.000000 
0.02 1568 
0.04 1667 
0.058926 
0.072 I69 
0.080494 
0.083333 
0.080494 
0.072 169 
0.058926 
0.041667 
0.021568 
-0.3 164% 

Sine Coefficienb 
-0.042553 
-0.07872 1 
-0.073942 
-0.0571 53 
-0.043440 
-0.01 9795 
-0.00 1773 
0.023341 
0.039894 
0.060699 
0.070396 
0.082267 
0.08 1560 
0.082267 
0.070396 
0.060699 
0.039894 
O.02334 1 
-0.00 1 773 
-0.0 19795 
-0.043440 
-0.057 153 
-0.073942 
-0.07872 1 
-0.042553 



It is observed fiom the mency response that the filters attenuate components of higher 

fkqumcies. 

100 200 300 400 500 600 700 800 
Frequency in Hz 

Figure C.1. Frequency response of least error squares Mter having a data window of 25 
samples. 



Appendix D. SYSTEM DATA 

As desmied in Chapter 5, a model system model and an existing substation of the 

SaskPower were used for verifying the performance of the proposed technique. This 

appendix presents a more detailed outline of these system configurations and the data of 

various system parameters used in these models. AU parameters are based on a rated 

three-phase base MVA of 100. 

D.1. Model system 

Figures D. I to D.4 shows the model systems simulated using the PSCADEMTDC 

software. Four different configurations including ring, single, double and breaker-and-haIf 

were considered. Also, two diffetent operating conditions of the system were considered 

utilizing load flow technique. The electrical parameters of various components involved m 

the model system are given in Tables D. 1 to D.7. 

Table D.1. Equivalent source data. 

Parameter 
Rated volts (L-L, RMS) (kV) 
Initial phase (deg.) 
Positive-sequence RRL 
Resistance (series) (ohms) 
Resistance (parallel) ( o h )  
Inductance (parallel) (H) 
Zero-sequence RL 
Resistance (padel) (ohms) 
Inductance (paralle1) (H) 

Table D2. Load data, 

Source S1 
132.0 
10.9878 

0.1742 
5000.0 
0.0 139 

50.0@6 
0.0035 

Source S3 
345.0 
0.0 

1.1903 
5000.0 
0.0947 

5o.wofJ 
0.0237 

Motor load (M) Static load (L) 
Load MVA (MVA) 
Rated RMS phase voltage (kV) 
Horse power (H.P.) 

Load MVA ( M A )  
L-L voltage, RMS (kV) 
Resistive component (ohms) 
Reactive component (H) 

84.0 
7.967 
100000.0 

6.3 
13.8 
0.1028 
0.0002 











Table D3. Transformer data. 

Parameter 
3-phase MVA (MVA) 
Pos.-seq. leakage reactance (pu.) 
Winding # I 
Co~~nection type 
L-L voltage, RMS (kv) 
Winding # 2 
Connection type 
L-L voltage, RMS 0 

Table D.4. Transmissioa line (TL) data [67. 

Ground resistivity (ohm-m) 
Voltage (L-L, RMS) (kV) 
Conductor name 
Other properties 

I Number of bundles 
1 Number of ground wires 

Conductor and Ground wire data 

I Ideally transposed I 
I Frequency-dependent model I 

Conductor I Ground wire 

Sukond. spacing (cm) 1 0.001 I Horizoatd Distance X (m) 1 0.0 

I 

Horizontal Distance X (m) 1 -10.0,-10.0,-10.0 I &i@t at Tower Y (m) 1 345736 

Panmeter 

Table D3. Current transformer data. 

V i e  Parameter I 

Height at T' Y (m) 

DC c c s ~ c e  (ohms/bn) 

Vafue 

I Burden inductance (H) 1 0.843 1 

173736, 21336, 
25.908 
0.03206 

Parameter 
Burden resistance (ohms) 

Value - 

0.5 - 40.0 

DC nsistance (ohmslkm) 2.8645 



Table D.6. Simulation parameters. 

Another operating condition of the formulated system was devised using the load 

flow technique. The data of all the system components except the sources was maintained 

same. Table D.7 shows the data of various sources used for the second operating 

condition of the formulated system. 

Table D.7. Source data for second operating condition of the formulated system. 

Parameter 
Rated voIts (L-L, RMS) (kv) 
Initial phase (deg.) 
Positive-sequence RRL 
Resistance (series) (ohms) 
Resistance (parallel) (ohms) 
Inductance (parallel) (H) 
Zero-sequence RL 
Resistance (parallel) (ohms) 
Inductance (parallel) (H) 

Source S1 
132.0 
0.0 

0.1742 
5000.0 
0.0 I39 

50.0et06 
0.0035 

Source S2 
t 32.0 
4.5025 

0.1 742 
5000.0 
0.0139 

50.0et06 
0.0035 

Source S3 
345.0 
8.7949 

1.1903 
5000.0 
0.0947 

50.0et06 
0.0237 

D3. An existing substation 

Figure D.5 shows the simulated model of the SaskPower substation used for 

testing the proposed busbar protection technique. The substation is of double busbar 

configuration and has five different circuits operating at 230 kV and 138 kV levels. 

C m t s  and voltages were recorded for five different locations as shown m the figure. 

Two diffmmt operating conditions of the substation has been used in the studies. The 

parameters of various system components and the recorder icon used for testing the 

technique for real-time are given in Tables D.8 to D.12. 





Table D.8. Equivalent source data. 

Parameter 
Rated volts (L-L, RMS) (kV) 
Initial phase (deg.) 
Positive-sequence RRL 
Resistance (series) (ohms) 
Resistance (pardel) (ohms) 
Inductance (pardel) (H) 
Zero-sequence Rl 
Resistance (parallel) (ohms) 
Inductance (parallel) 0 

Table D.9. Load data 

Motor load (M) 
Load MVA (MVA) 1 43.4 

Table D.10. Transformers (TI & T2) data. 

Static load (L) 
Load MVA (MVA) 1 18.4 

Rated RMS phase voltage (kV) 
Horse power (H-P.) 

Parameter 
3-phase MVA (MVA) 
Winding # I 
Co~ection type 
L-L voltage, RMS (kV) 
Winding # 2 
COM~OXI  type 

L-L voltage, RMS (kV) 
Winding # 3 
COM&O~ type 
L-L voltage, RMS (kV) 
Pa-seq. leakage reactance 
m~lding #1 - Wmding #2 @.L) 
Winding #1- Winding #3 @a) 

#2 - Winding #3 @.L) 
Reactor connections 
COM&O~ 
Inductandphase (H) 

Value 
150.0 

Y 
138.0 

A 
13.8 

Y 
230.0 

0.0773 
' 0.0367 
0.1213 

I 

Y 
10.0583 

132.79 
50.0 

Total load (p.u.) fX+j15 @ 100 MVA 

L-L voltage, RMS (kV) 
Resistive component (ohms) 
Reactive component 0 

230.0 
2766.0 
1.838 



Table D.11. Transmission line data. 

Parameter 
Line length (lans.) 
Ground resistivity (ohm-m) 
Voltage (L-L, RMS) OrV) 
Conductor name 
Number of bundles 
Number of ground wires 

y Hawk Hawk 

Conductor data 

Parameter 

NO. of sub-cod 

Sub-cond radius (an) 
Subcond. spacing (cm) 

Horizontal Distance X (m) 

Height at tower Y (m) 

Sag at mid-span (m) 

Dcrrsistaw:~ (oflmdkm) 

M W S  
200.0 
6.0 
230.0 
Drake 
3 
2 

NBF 
1 

0.880872 

45.72 

-0.76195, 
-4.4193 1, 
-5.94321 
14.47705, 
14.47705, 
1 1398772 
4205964 

0.1 1713 

LMC 
1-76 
10.0 
230.0 
Drake 
6 
2 

No. of sub-cond 
Sub-cond. radius (an) 
Sub-cond spacing (cm) 
Horizontal Distance X (m) 

Height at towcry (m) 

Sag at mid-span (m) 

BNG 
1 
0.880872 
45.72 
-0.762, -4.4196, -5.9436, 0.762, 
4.4196,59436 
14.478. 14.478, 1139952, 
11.39952,14.478,1139952 
4.2064 

LMC 
1 
1.136904 
45.72 
-7.1, -5.9,0.0,8.6,7.4, 15 



Ground wire data 

Parameter I T-line 

Cond. name 
C o d  radius (cm) 
Horizontal dist. (m) 

Height at tower (m) 
Sag at mid-span (m) 
DC resistance (ohms/lan) 

NBF 
7/16 Stwl 
0.397 
-2.74302, 
2.74302 
16.9 1529 
2.666825 
5.73 

BNG 
7/16 Steel 
0397 
-2.74302, 
2.74302 
16.9 164 
2.667 
5.73 

MWS 
7116 Steel 

0.397 
-3.3.33 

23.4 
656 
5.73 

Table D.12. Current transformer data. 

Table D.13. Recorder icon, sIiders and comparator data. 

Parameter 
(i) Recorder data 
Output file format 
Recording time step (ps.) 
Low pass filtering enable 

system *av (Hz) 
Number of 12-bit analog channels 
Instrument transformer ratio (kVN or kA/A) 
(ii) Sliders 
Start time (sec.) 
End time (sec.) 
(k) Comparator 
Configuration 

output type 
Level data 
Output when A>B 
Output when A<=B 
Real-time constant (B) (sec,) 

TIME (A) (sec.1 

RTP 
217 
never 
60 
7 
1.0 (PriJSec.) 

Level 

I 
0 
0.7 
simulation time 

LMR 
71 16 S tee1 

0397 
-3.3,3.3 

23.4 
9.87 
5.73 



Table D.14. Simulation parameters. 

I Finish time (ms.) 750 
Print-ste~ hm.) 1 0.0434028 I 

Name 
Tie-step (ps.) 

The resistive and reactive components of the wavetraps used in the simulations 

Value 
43 .a28 

were 0.005788 ohms and 0.00128 H respectively. The second operating condition of the 

existing substation was simulated using the data available for the same. The Table D.15 

gives the values of the equivalent source parameters utilized for this operating condition. 

The data for other components was maintained the same as used for the first operating 

condition, the data for which is presented above. 

Table D.15. Equivalent source data. 

Parameter 
Rated volts (L-L, RMS) (kV) 
lnitial phase (deg.) 
Positive-sequence RRL 
Resistance (series) (ohms) 
Resistance (parallel) (ohms) 
Inductance (parallel) (H) 
Zero-sequence RL 
Resistance (padel) (ohms) 
Inductance (parallel) (H) 

S W F )  
138.0 
-5.0 

10.797948 
5000.0 
0.0937 

5 0 . M  
0.048933 

W C W  
230.0 
0.0 

1 1.4264 
5000.0 
0.8016 

5 0 . M  
0.062638 



Appendix E. EMTDC & CT MODEL 

This appendix gives a brief description of the power systems simulation software, 

EMTDC [493, which was used for the generation of simulated fault data for the power 

systems, and the ct model used to simulate ct saturation and ratio-mismatch conditions. 

Complex power system networks can be modeled using EMTDC to represent practical 

systems. A user interface, called Power Systems Computer Aided Design (PSCAD), 

enabIes the user to select preprogrammed models of power system components which are 

used to graphically build the power system networks. The built-in library of PSCAD 

includes models of voltage and current sources, machines, transmission lines, switches, 

measuring instruments, transformers and control blocks and many other power system 

apparatus models. 

Compilation of the PSCAD network generates FORTRAN source code. The 

source code is then compiled using EMTDC which generates executable code that nms m 

the UNlX environment of the SunSPARC workstation. Fault data generated by EMTDC 

was stored in a file. This data tile was used for testing the proposed protection algorithm. 

The ct model used m the research project was dowdoaded h m  the flp site of the 

University of Manitoba [50]. This model was initially written by Dr. J. Mohan Lucas and 

later revised by Dr. W.W.L. Keerthipala and Dr. Rohitha P. Jayasinghe respectively. The 

model can be represented as in Figure E. 1. 

F i i  E.1. CT model. 



The model has two wire labels for representing the primary and secondary currents 

of the current ~ f o t m e r  respectively. The primary wire label is given the same name as 

the current label used in the EMTDC simulation model. The secondary wire label then 

gives the equivalent ct output for the given input current. The ct ratio can be selected in 

the model. Saturation state of the ct can be simulated by using very high value for the 

burden resistance. Typical burden impedance in practice is much less than the values used 

in the model. The defauit values for the saturation and loss characteristics match with 

those of the 'siIectron 53' core material. 



Appendix F. ANTI-ALIASING FILTER DESIGN 

The fault voltages and meats  are associated with decaying dc, fimdamental 

fie<ruency (60 Hz) and high frequency components [68, 693. The high frequency 

components result due to traveling wave phenomenon and their frequencies depends on 

the distance to the hult. Noa-tineadks in the power system produce harmonics of 60 Hz 

components. 

Depending on the sampling rate of voltages and currents, some of the high 

fkquency components can appear as components of power fkquency 1483. An anti- 

aliasing filter was designed to pre-process the voltage and current samples obtained by 

simulation before being presented to the LES dgorithm. The principle of anti-aliasing 

dictates that the cut-off fresuency of the low-pass filter should be less than or equal to 

onehalf of the sampling frequency of the LES algorithm. The sampling frequency of least 

error squares algorithm used to estimate the fundamental kquency components of 

voltage and current si@ was selected as 1440 Hz. A 4th order Butterworth ater with 

a cut-off firesuency of 200 Hz was selected as an anti-aliasing at=. The filter was 

Equation F.1 gives the transfer function for the desiped using a Matlab program. 

designed filter. 



Figure F.1 shows the magnitude response of h designed low-pass filter. 

Frequency (Hz) 

Figure F.1. Magnitude response of anti-aliasing filter. 



Appendix G. ADDITIONAL SIMULATION RESULTS 

Seiected test results illustrating the performance of the proposed technique for 

busbar protection have been presented m Chapter 5. Different types of faults at various 

locations m the simulated power systems were considered. The studies considered 

different operating conditions of the power systems, four busbar configurations, and ct 

saturation. This appendix provides additional test results, obtained fimn simulation 

studies, for various types of faults and current transformer conditions for the system 

modeis considered in performance evaluation. Figures G.1 to G.40 show the plots of the 

arguments of sequence-impedances seen by the relays. Tables 5.5 and 5.6 (in Chapter 5) 

give a summary of the results presented in this appendix. This includes the fault location 

and type, busbar configuration, post-fault samples required by different relays to reach 

threshold and the time required by the proposed technique to make final decision on the 

type of faults. 
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5.7. 



+-unsaturated 
+saturated Time (ms.) 
0 ; 1 

--b unsaturated 
-satu~ted , Time (rnr.) 
0 

- - 
4-150 7 

-200 L Relav RI 'loo -200 ! -  A Relav R2 

+unsaturated 
Time (ms.) -0- unsaturated 

Time (ins.) 
0 .  

I -200 - u!m -200 i Relav R4 

Figure G.15. Plots of the arguments of the positive-sequence impedances computed by 
the relays for a three phaseground fault in the busbar protection zone 
(location 1) of the substation of Figure D.4 @. 178). 

*unsaturated -unsaturated 
Time (ms.) 

0 i t 

? 8 10 20 30 40 

- i 
$450 

0 LO 20 30 40 
Time (ms.) '-loo -200 f* A k k a 2  

+unsaturated +unsaturated 
Time (ms.) Time (ms.) 

t 0 ; i 

Figure G.16. Plots of the arguments of the positive-sequence impedances computed by 
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(location 6) of the substation of Figure D.4 (p. 178). 
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Figure G.20. Plots of the arguments of the positive-sequence impedances computed by 
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(location 4) of the substation of Figure 5.7. 
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Figure G.21. Plots of the arguments of the (a) positive-sequence and (b) negative- 
sequence impedances computed by the relays for a Phase A-ground fault , 

at location 1 of the system containing BRADA substation. 
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Figare G.28. Plots of the arguments of the (a) positive-sequence and (b) negative- 
sequence impedances computed by the relays for a Phase C-ground fidt m 
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F i e  6.29. Plots of the arguments of the (a) positive-sequence and (b) negative- 
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Figure G.35. Plots of the arguments of the (a) positive-sequence and (b) negative- 
sequence impedsnces computed by the days for a Phase B-Phase C Wt 
at location 10 of the system containing BRADA substation. 
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Figure (236. Plots of the arguments of the (a) positive-sequence and (b) negative- 
sequence impedances computed by the relays for a Phase A-ground hdt 
at Iocation 17 of the system containing BRADA substation. 
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Appendix H. TESTING THE RELAYING SOFTWARE 

This section gives a brief overview of the TMS320C30-based system that was used 

for testing the relaying software. An IBM-compatiile PC was used as the host machine in 

the system. The TMS320C30 Evaluation Module (EVM) is a development took h m  

Texas Instruments and was used for executing and debugging applications program using 

the TMS320C30 C source debugger. FIoating-point DSP applications can be evaluated 

and developed using the module. Each EVM includes a PC bus compahile card and 

software package. 

H.1 Hardware 

The hardware components of the EVM card include: 

TMS320C30, a 33-MFLOPS, 32-bit floating-point DSP, 

16K-word zero-wait-state SRAM, allowing on-board coding of the algorithms, 

Port for host-PC communications and 

Multiprocessor serial port providing connections to multiple EVMs. 

Loading of the code is done through the emulation port. A shared bi-directional 

ldbit register is used for commllnication bemeen the host and TMS320C30 after the 

code has been loaded since there is no direct host access into the TMS320C30 manory. 

The TMS320C30 has direct interface to SRAM which supports zero wait-state memory 

accesses on primary bus. 

H.2. Software 

The system has software tools to develop, debug, benchmark and run real-time 

algorithms. These include the TMS320C3x assembledlinker, C source debugger and an 

optimizing ANSI C compiIer, a program loader and example applications sohare. 

The EVM provides a window-based mousedriven user-interface that enables 

downloading, execution and debugging of assembIy code or C code. 



H3. Testing Procedure 

Testing of the relaying software was performed using code generation and 

execution steps. The ANSI C program written for the reIaying software was converted to 

the DSP code, which is executed after loading into the DSP. 

The TMS320C30 floating-point C compiler consists of three different programs: 

the parser, the optimizer (optional), and the code generator. C source file is an input to 

the parser which checks for syntax and semantic errors, and produces an internal 

representation of the program cded an intermediate file. The optimizer is an optional 

pass that is executed before code generation. 

The intermediate file provides input to the optimizer which produces a highly 

efficient version of the code in the same format as the intermediate file. The intermediate 

file tiom parser or optimizer (if used) provides input to the code generator. The code 

generator produces an assembly language source me. This provides input to an assembler 

which generates a Common Object File Format (COFF) tile. The output file From 

assembler provides an input to the linker which produces an executabIe COFF object fie 

<programgramname.ouu [70,7 11. 

DSP Code Generation Process 

1. Develop the relaying sohare in ANSI C programming language. 

2. lnclude a data file from PSCAD simulation into the relaying sobare.  

3. Compile, assemble, and link the C source file using the single command: 

<programgtamname.cmd> represents the command file used to allocate blocks of code 

and data into the memory. This is necessary whiIe linking the program. In general, 

initialized sections (e.g. executable code, tabk for preinitia1i.zi.g variables, strings 

constants) are linked into ROM or RAM whereas uninitialized sections (e-g. global 

variables, system stack, dynamic allocation using d o c ,  d o c )  must be linked into R A M  



After code genefation process, three fles are generated: <progm-name.obj>, 

<program-namemap, and <program_name.out>. The map file, ~progmwmne.map>, 

shows the memory configuration, section composition and allocation, and various symbols 

used in the program with their storage zddrrsses in the memory. The file with extension 

'obj' is an executable object file. The output file, <program-name.out> is baded into the 

memory of the TMS320C30 DSP for execution. 

Execution of the DSP Code 

1. The output file, ~program-na~.~~e.ou~, fiom the Linker is ioaded into the waluation 

module (EVM) in TMS320C30-based DSP board using the commands given below: 

evm30 

reset 

Ioad qmgram-name.out> 

2. The loaded file is executed by using the 'run' command and the execution can be 

stopped by pressing the <escape> key. 

3. The variables of interest can be displayed using fblIowing commands: 

disp Yint *) OxOOOXXX , for integer v&abIes or 

disp *(float *) O x O O O ~ ,  for fl oating-pint variables. 

OxOOOXXX is the memory address at which the selected variable resides and is known 

hm the map file. V d I e  name can be used instead of memory address. 

4. Time taken to nm the program on DSP can be obtained by using the process of 

hctxnarking. m g  involves creating breakpoints at the start and the end 

of the program and is carried out using the following command steps: 

d o  
reset 

load qxwgran-name.ouu 

ba Ox000XXX (0x000]CXX is the p g r m  start memory location) 

ba OxOOOYYY (OxOOOYYY is the program end memory Iocation) 



run 

nmb 

? CLK 

Complete program execution time including all passes through the program, in 

number of clock cycles of the DSP, is displayed on the screen. Program execution 

time in millisecond is calculated from the single-cycle instruction execution time 

which is 60 nanosecond for the TMS320C30. Time taken to execute a section of the 

program can also be calculated by using a similar procedure. 



Appendix I. RE& TIME PLAYBACK (RTP) SIMULATOR 

This section gives a brief overview of the Real Time Playback (RTP) Simulator 

h m  the Manitoba HVDC Research Centre. This simulator plays back, in red time, test 

signals generated from PSCADEMTDC power systems simulation software (Appendix 

E) or on-line recordings in COMTRADE format- These digital signals are converted into 

analog signals which are used for testing real-time systems including protective days, 

fault location and other monitoring systems. The RTP Simulator was used for testing the 

implemented busbar protection system. Hardware and s o b a r e  aspects of the system are 

described below. 

1.1 Hardware 

The hardware is composed of a standard personal computer (PC) package fitted 

with the necessary additional hardware cards and outputtinput ports. The system is 

composed of four separate components: a tower case, display monitor, keyboard and 

mouse pointing device. The tower case encloses, among others, the following main items: 

150 MHz Intel Pentium processor, 

2.1 GB Hard Drive, 

8x CD-ROM, 

32 MB RAM 

1 -4 MB Floppy Drive, 

National Instruments 10-channel, 12-bit DIA (Digital to Analog) card and 

Front panel with 10 BNC connectors for access to the DIA card outputs. 

13. Software 

The operating system of the PC that is used as RTP SimuIator is Microsoft 

Windows for Workgroups Version 3.1 1. In addition to a number of other programs, the 

main RTP software package (version 1.2) is isso installed in a separate directory. This 

software enabIes interfgcing with PSCAD/EMTDC (version 2.0) power systems 



simulation software. The waveforms of the signals that are loaded fiom PSCAD for 

playback can be previewed using this software. On user command, the software plays 

these signals back through the output connectors. 

The RTP SimuIator software package includes an installation routine that 

introduces a recorder icon into the component pallet in DRAFT moduIe of the PSCAD. 

There can be up to 9 recorders in a given power system simulation each having a 

maximum of 10 analog c b e b .  System parameters to be recorded are selected by the 

user along with start and end tirnes. The recordings can be user selected for 

C0MTRA.DE or RTP format. The recordings are stored in a separate file, during 

Runtime. The name of the file is selected by the user in the recorder icon in DRAFT 

module. The standard PSCAD output ASCII file is not affected by this process. 

The generated recording 6le (with extension PBK) is then ported to the RTP 

Simulator for playback Porting of these files can be done tbrough the network 

connections or by the use of floppy disks. The fonner is preferable for speed of transfer 

and to avoid the size limitation of floppy disks. 

When RTP playback sohare is started, any previoudy recorded files can be 

loaded for viewing on the screen and can be pIayed back. When playback is initiated, RTP 

Simulator plays the first cycle in each c b I  qeatedIy to create a pre-transient steady 

state waveform. Once the playback command is given, the RTP Simulator plays the 

transient data and then plays the last cycle repeatedly to create post-transient waveform. 

The last cyck is repeated 500 times by defkult, which can be reduced or increased by 

users. 



Appendix J. ADDITIONAL IMPLEMENTATION RESULTS 

Selected results h m  real-time testing of the proposed system for busbar 

protection have been presented in Chapter 6. Different types of faults at various locations 

in the simulated power system were considered. This appendix provides additional 

implementation results for various types of fiults and current ttansformer conditions. 

Figures J.1 to J.33 show the plots of the sequence-impedances seen by the relays and the 

corresponding trip counters. Table 6.2 (in Chapter 6) gives a summary of the results 

presented in this appendix. This includes the fidt location and type, samples required for 

detecting fault and, positive-sequence and negativesequence trip counters to reach 

threshold and the time required by the proposed technique to make final decision on the 

type of fitults. 



J.1. Profiles of sequence-impedances' magnitude, argument and the trip counters 
for Phase B-ground external halt (location I, Figure 6.7). 



F i i  J.2. Profiles of sequence-mces'  magnitude, argument and the trip counters 
hr Phase A-ground internal hult (location 2, Figure 6.7). 
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Figare 5.3. Profiles of sequence-impedances' magnitude, argument and the trip counters 
for Phase A-gromd internal fadt (Iocation 3, Figure 6.7)- 
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Figure J.4. Profiles of sequence-impedances' magnitude, argument and the trip counters 
fw Phase C-ground i n t d  M t  (location 4, Figure 6.7). 
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Figure J.5. Profiles of sequence-impedances' magnitude, argument and the trip counters 
for Phase A-Phase B internal Mt (location 5, Figure 6.7). 
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Figure 5.6. Profiles of sequence-impedances' magnitude, argument and the trip counters 
for Phase A-ground external hult (location 6, Figure 6.7). 
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Figure 5.7. Profiles of sequenceimpedances' magnitude, argument and the trip counters 
for Phase A-ground a d  Wt &cation 7, Figure 6.7). 



Figure J.8. Profiles of squenceirnpedances' magnitude, argument and the trip counters 
for Phase B - p m d  external fault (location 8, Figure 6.7). 



Figure J.9. ProfiIes of sequence-impedances' magnitude, argument and the trip counters 
for Phase B-grotid intemaI hdt (location 9, Figure 6.7). 



Figare J.10. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase C-ground internal hult (location 13, Figure 6.7). 
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Figure J.11. Romes of sequence-impedances' magnitude, argument and the trip 
counters for a three phase e x t d  fadt (location 10, Figure 6.7). 



F i e  5.12. Profiles of seqyence-impedances' magnitude, argument and the trip 
counters for Phase C-ground intend fiidt (location 1 I, Figure 6.7). 



F i e  J.13. Profiles of sequence-immces' rmguhde, argument and the trip 
counters for Phase A-ground intend fault (location 12, Figure 6.7). 



Figure J.14. Profiles of sequence-impedances' magnitude, argument and the trip counters 
for a three phase internal kdt (Iocation 12, Figure 6.7). 



Figure J.15. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase B-Phase C internal fidt (Iocation 13, Figure 6.7). 



figure 5.16. Profiles of supmce-impedances' magnitude, argument and the trip 
counters for Phase B-ground internal fault (location 15, Figure 6.7). 



Figure 5.17. ProfiIes of se~uarce-impedances' magnitude, argument and the trip 
counters for Phase A-Phase C external fault (location 16, Figure 6.7). 



Figure J.18. ProfiIes of qyemeimpedances' magnitude, argument and the trip 
counters for Phase &Phase C internal hult (location 4, Figure 6.7). 
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F i i e  J.19. Profla of se~uence-impedances' magnitude, argument and the trip 
couuters for Phase A-Phase C internal hult (location 13, Figure 6.7). 



Figure J.20. Profiles of sequenceimpedances' magnitude, argument and the trip 
counters for Phase C-ground internal hdt (location 13, Figure 6.7). 
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Figare 5.21. Profiiies of sequence-impedances' magnitude, argument and the trip 
counters for Phase A-ground internal Mt (rocation 4, Figure 6.7). 
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Figure J.22. Prosles of sequenc&mpedances' magnitude, argument and the trip 
counters for Phase A-Phase B external fault (location 21, Figure 6.7). 



F i e  5.23. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase A-ground external fault (location 22, Figure 6.7). 
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F i e  J.24. Profiles of sequence-impedauces' mwtade, argument and the trip 
counters for Phase A-ground intend f d t  (location 13, Figure 6.7). 



Figure J.25. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for a three phase internal fault (location 4, Figure 6.7). 



F i e  5.26. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase B-ground e x t d  huIt (Iocation I, Figare 6.7). 
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Figure 5.27. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase A-Phase B-ground extemaI fault (location 27, Figure 
6.7). 
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Figure 5.28. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase C-ground i n t d  fault (rocation 12, Figure 6.7). 



Figare J.29. Profiles of sequence-impedances' magnitode, argument and the trip 
counters for Phase A-ground internal fidt (Iocation 4, Figure 6.7). 



Figure 530. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for a three phaseground internal fault (location 5, Figure 6.7). 



Figure 5.31. Profiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase A-Phase B-ground intend hdt (location 12, Figure 
6.7). 



Figure 5.32. Protiles of sequence-impedances' magnitude, argument and the trip 
counters for Phase B-groand external f8ult (location 1, Figure 6.7). 
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Figure 533. Protiles of sequence-impedances' magnitude, argument and the aip 
counters for Phase A-pund intanal fidt (location 13, Figure 6.7). 




