
Towards Versioning of Arbitrary RDF Data

Marvin Frommhold
Agile Knowledge Engineering

and Semantic Web
Institute of Computer Science
University of Leipzig, Germany
frommhold@informatik.uni-

leipzig.de

Rubén Navarro Piris
eccenca GmbH

Hainstr. 8
04109 Leipzig, Germany
ruben.navarro.piris@

eccenca.com

Natanael Arndt
Agile Knowledge Engineering

and Semantic Web
Institute of Computer Science
University of Leipzig, Germany

arndt@informatik.uni-
leipzig.de

Sebastian Tramp
eccenca GmbH

Hainstr. 8
04109 Leipzig, Germany
sebastian.tramp@

eccenca.com

Niklas Petersen
Enterprise Information

Systems
Institute for Applied Computer

Science
University of Bonn, Germany

petersen@cs.uni-
bonn.de

Michael Martin
Agile Knowledge Engineering

and Semantic Web
Institute of Computer Science
University of Leipzig, Germany

martin@informatik.uni-
leipzig.de

ABSTRACT
Coherent and consistent tracking of provenance data and in
particular update history information is a crucial building
block for any serious information system architecture. Ver-
sion Control Systems can be a part of such an architecture
enabling users to query and manipulate versioning informa-
tion as well as content revisions. In this paper, we introduce
an RDF versioning approach as a foundation for a full fea-
tured RDF Version Control System. We argue that such a
system needs support for all concepts of the RDF specifica-
tion including support for RDF datasets and blank nodes.
Furthermore, we placed special emphasis on the protection
against unperceived history manipulation by hashing the re-
sulting patches. In addition to the conceptual analysis and
an RDF vocabulary for representing versioning information,
we present a mature implementation which captures version-
ing information for changes to arbitrary RDF datasets.

Keywords
RDF, Versioning, Blank Node, RDF Quad, Hashing

1. INTRODUCTION
In recent years, the need for shared semantics and integra-

tion of heterogeneous data across enterprises has dramati-
cally increased. The Semantic Web is on its way to provide
tools and technologies [18] to express a shared meaning of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEMANTiCS 2016, September 12 - 15, 2016, Leipzig, Germany
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4752-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2993318.2993327

data that is crucial for distribution and integration of data.
In the LUCID research project1, we focus on semantic tech-
nologies which allow for distribution of RDF data in decen-
tralized value chain networks in order to make the flow of
information more efficient, more effective and more robust.
In addition to that, within the LEDS research project2, we
concentrate on the co-evolution of datasets outside and in-
side of an enterprise to allow for better integration of public
and private data. Both usage scenarios strongly depend on
a system which keeps track of changes of RDF datasets and
thereby enables the collaborative development of RDF data
in distributed environments.

An area with similar requirements is software develop-
ment where versioning mechanisms have been successfully
applied [1]. Unfortunately, there is a lack of robust and
highly efficient versioning systems for the Resource Descrip-
tion Framework (RDF) [9], hindering a wide adoption in
enterprises.

In this paper, we present a Version Control System (VCS)
for arbitrary RDF data to overcome this gap. It creates a
patch for each SPARQL Update query [10] containing the
added (addition set) and deleted (deletion set) triples and
their corresponding RDF graphs, as well as provenance in-
formation such as the author of the operation and a change
reason.

In particular, we present the following main contributions
of our proposed VCS:

• Change detection across multiple RDF graphs enabling
support for datasets consisting of any number of graphs.

• Full support for versioning of blank nodes allowing the
deployment of the system without the need for prepro-
cessing the target datasets.

• A vocabulary to describe changes to an RDF dataset
allowing for distribution of patches.

• Protection against unperceived manipulation of patches.
1http://www.lucid-project.org/
2http://leds-projekt.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226123579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2993318.2993327
http://www.lucid-project.org/
http://leds-projekt.de
https://www.researchgate.net/publication/259671336_RDF_11_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/225191130_Clearcase_multisite_Supporting_geographically-distributed_software_development?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/3454361_The_Semantic_Web_Revisited?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/profile/Niklas_Petersen?el=1_x_100&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/profile/Natanael_Arndt?el=1_x_100&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/profile/Michael_Martin18?el=1_x_100&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/profile/Marvin_Frommhold?el=1_x_100&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/profile/Sebastian_Tramp?el=1_x_100&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/profile/Ruben_Navarro_Piris?el=1_x_100&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==

This forms the foundation for a versioning of arbitrary RDF
data enabling efficient data exchange in distributed net-
works.

The paper is structured as follows: In section 2 we give an
overview of the requirements for a versioning system for ar-
bitrary RDF data. A comparison of our approach to related
work is discussed in section 3. Subsequently, we present
the concepts of our approach in section 4, followed by an
overview of the implementation in section 5. An evaluation
of the system is presented in section 6 and we conclude with
an outlook on future work in section 7.

2. REQUIREMENTS & PRELIMINARIES
First we formulate some requirements and preliminaries

for a VCS that is suitable to track changes made to any
possible RDF dataset.

Based on the features of traditional file-based VCS it has
to support basic versioning operations such as the reversal of
a change, the rollback to a specific version and the merge of
diverged versions, which is likely to happen in a distributed
environment. Provenance plays an important role in en-
terprise applications, therefore the reason and author of a
change have to be tracked as well.

The applicability for versioning of arbitrary RDF data
yields to additional requirements. Obviously, to be widely
adopted in enterprises, such a system must be deployable
without the need to make changes to the versioned dataset.
In addition to support for RDF datasets consisting of a col-
lection of RDF graphs, another core feature of the RDF
standard, the concept of blank nodes, must be supported.
Blank nodes are problematic in terms of matching and ad-
dressability, especially when working with OWL ontologies.

To illustrate our discussion, we use the RDF dataset shown
in Listing 1 as a running example for the rest of the pa-
per. The dataset consists of one named graph containing
two OWL classes with restrictions typically involving blank
nodes. All namespaces used in the examples are the ones
returned by looking them up on prefix.cc3.

ex:GraphA {

ex:ClassA a owl:Class ;

rdfs:subClassOf [

owl:onProperty ex:someProperty ;

owl:cardinality "1"

] .

ex:ClassB a owl:Class ;

rdfs:subClassOf [

owl:onProperty ex:someProperty ;

owl:cardinality "1" ;

owl:someValuesFrom ex:ClassC

] .

}

Listing 1: RDF dataset in TriG [4] syntax used as a
running example.

In the following we elaborate the requirements of the LU-
CID and LEDS research projects.

3http://prefix.cc/PREFIX.file.txt, replace PREFIX with
the prefix to look up

2.1 Invertible Patches
Cassidy and Ballantine [7] propose a semi-formal model

for RDF patches based on the theory of patches of Darcs4.
In their work, a version is a sequence of patches and a patch
consists of two sub-graphs, one to be added and the other
to be deleted. To manipulate these sequences, they describe
three basic operations:

• Commute: This operation swaps the order of two con-
secutive patches. The commute fails if a conflict arises
[7, Section 3.1].

• Revert : This operation reverts the most recent patch
from the current sequence. With the help of the com-
mute operation it is possible to revert a patch that is
not at the head of a sequence.

• Merge: This operation combines two patches that ap-
ply to the same sequence. A merge is possible if the
commute operation between the two patches succeeds.

According to [7] a patch must be invertible in order to
allow these operations. They define the inverse of a patch
as the simplest patch to achieve this. By their definition,
the application of a patch followed by its inverse restores
the state before the patch. In the context of RDF, the in-
version of a patch can be achieved by swapping the add and
delete sub-graphs, hence removing all added statements and
putting back all deleted statements by an update request.

2.2 Change Detection
As a patch must be invertible, this yields to a particular

requirement for the tracking of changes. Let us consider a
SPARQL Update INSERT DATA query which adds the triple
ex:ClassA a owl:Class to the graph of our running exam-
ple in Listing 1. According to the RDF specification, when
adding a triple already contained in a graph, nothing should
happen. That means the state of the graph and therefore the
dataset will not change. If a VCS only tracks the executed
SPARQL Update queries (query log), the resulting patches
would be not invertible. When reverting the patch based on
that query, a naive approach would be to execute a SPARQL
Update DELETE DATA query which removes that triple from
the graph leading to a state not equal to the state before
the patch. As noted before, reverting a patch must result in
the same state as before the patch was applied. Taking this
into account, a VCS must be able to detect and track actual
changes to the dataset in order to create invertible patches.

2.3 Blank Nodes
As stated in an empirical survey of Mallea et al. [17], over

50% of published datasets contain blank nodes. This em-
phasizes the need for blank node support in a VCS.

The standard semantics interprets blank nodes as existen-
tial variables, denoting the existence of some unnamed re-
source. This leads to difficulties when it comes to versioning
of datasets containing blank nodes. To illustrate the issue,
let us consider the SPARQL Update query in Listing 2. The
query adds the triple [] owl:someValuesFrom ex:ClassC

to the restriction of ex:ClassA making it equivalent to the
restriction of ex:ClassB. To revert this change, the triple
has to be deleted again. As SPARQL does not allow blank

4http://darcs.net/Theory

prefix.cc

nodes in a DELETE DATA query5, the only way to remove the
triple is using a DELETE query in conjunction with a WHERE

clause addressing the blank node. Therefore a VCS must ad-
ditionally track the context of any blank nodes contained in
a triple to be able to address them in subsequent operations
or other RDF repositories containing a fork of the versioned
dataset.

INSERT {

?restriction owl:someValuesFrom ex:ClassC .

}

USING ex:GraphA

WHERE {

ex:ClassA rdfs:subClassOf ?restriction .

?restriction owl:onProperty ex:someProperty .

}

Listing 2: SPARQL Update query adding a triple
containing a blank node to the graph of the example
dataset in Listing 1.

2.4 RDF Quads
Let us consider a SPARQL Update query that adds a

triple to a named graph G6 of an RDF dataset consisting
of multiple graphs. If the patch tracks only the triple with-
out the graph reference, it becomes not invertible, as the
graph to delete the triple from can not be determined. That
means, to support all possible RDF datasets, a VCS needs
to track the corresponding RDF graph of a triple, known as
quad [8].

2.5 Version Integrity
Provenance and trust play an important role when work-

ing with a VCS. This includes mainly ensuring the integrity
of a patch, protection against manipulation of patches as
well as versions (sequences of patches). When distributing
a patch, it should be possible to verify the integrity of this
patch. Optionally, a digital signature of the patch can be
provided lowering the barrier of trust [6]. That means, the
system must provide an algorithm to produce a unique hash
for RDF data in the presence of quads and blank nodes. A
patch should include the hash of its predecessors preventing
unperceived history manipulation.

2.6 Change Representation
To be able to store the changes, a VCS requires a suitable

representation format for its patches. Such a representation
must reference the changes to an RDF dataset as well as ad-
ditional meta-information such as the author, change reason
and time stamp to provide provenance. As a VCS is typi-
cally used in distributed environments, it is crucial to allow
for sharing of patches. It must be possible to apply a patch
to an RDF repository, whether it is the same or another
repository containing a fork of the same dataset.

5http://www.w3.org/TR/2013/REC-sparql11-query-
20130321/#sparqlGrammar
6assuming G is not the default graph (http://www.w3.org/
TR/2014/REC-rdf11-concepts-20140225/#dfn-default-
graph)

3. RELATED WORK
Various different approaches for versioning of RDF have

been published. Since special requirements are placed on
data management in enterprise environments, they typically
use databases to store their data. For this reason, we now
only consider previous work introducing version control for
RDF repositories (triple or quad stores) and therefore sup-
porting query languages like SPARQL to query and update
the data. Table 1 provides a feature comparison between
the related work and our work.

In 2002, as part of the On-To-Knowledge project, Kiryakov
and Ognyanov [14] present an ontology middleware tracking
changes in an RDF repository. They are the first to in-
troduce a triple-based versioning system. Saving the meta-
information in RDF allows them to query, manage and edit
this information using the same technologies as for the data
itself. To represent the meta-information they also provide
a vocabulary for tracking, versioning, security and user-
defined information. The RDF 1.0 specification [15] be-
came a recommandation in 2004, specifying any expression
in RDF as a collection of triples. This fact would explain
why Kiryakov and Ognyanov have not considered quads at
all (they define a repository as a set of triples). As blank
nodes are not mentioned we assume they are not supported,
too.

Five years later, in 2007, Auer and Herre [2] describe a
system to support the evolution of RDF ontologies. They
are the first to consider blank nodes which typically occur in
ontologies and define an atomic graph as the smallest unit
of change that cannot be divided without duplicating blank
nodes. A patch consists of a set of these atomic graphs added
to or deleted from an RDF graph. However, their main focus
is to aggregate these patches into higher level aggregations
and classification into ontology evolution patterns. The de-
rived ontology evolution patterns together with data migra-
tion algorithms are used to allow automatic data migration
in distributed environments. This aggregation makes it dif-
ficult, for example, to revert a single atomic change at a
later time. The term of an RDF dataset was officially in-
troduced by the RDF 1.1 specification [9] in the year 2011.
This can be an indicator why Auer and Herre are focusing
on versioning of a single RDF graph, too.

Also published in 2007, Cassidy and Ballantine [7] pro-
pose a solution based on a semi-formal model named the
theory of patches of Darcs, where a version is a sequence
of patches. They define that a patch consists of two sub-
graphs, one containing the effectively added and the other
one the effectively deleted triples. While they only use this
basic form of a patch, they note possible meta-information
can be attached to a patch if necessary. Their main contri-
bution is the transformation of the basic versioning opera-
tions of Darcs, a traditional file-based VCS, to RDF. They
are the first to define requirements a patch must fulfill to
support these operations. Unfortunately, they only consider
versioning for triples and do not support blank nodes. How-
ever, they note that their approach is entirely compatible
with the formulation of [2] which means the described RDF
versioning operations are able to support blank nodes.

About six years later, Vander Sande et al. [21] present
R&Wbase, storing triples as consecutive deltas to lower the
storage footprint when versioning RDF data. A delta has
meta-information associated, including a hash value, en-
abling provenance. Vander Sande et al. were the first to

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/#sparqlGrammar
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/#sparqlGrammar
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#dfn-default-graph
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#dfn-default-graph
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#dfn-default-graph
https://www.researchgate.net/publication/280113557_N-Quads_Extending_N-Triples_with_Context?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/271131696_Resource_Description_Framework_RDF_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/265140763_RWbase_git_for_triples?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/259671336_RDF_11_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220810121_A_Versioning_and_Evolution_Framework_for_RDF_Knowledge_Bases?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220810121_A_Versioning_and_Evolution_Framework_for_RDF_Knowledge_Bases?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==

introduce hashing for patches, but unfortunately they have
not described the hashing algorithm. Because their inter-
pretation layer hides the graphs and exposes a triple-based
repository, it is not possible to use this approach to ver-
sion an RDF dataset. Their approach provides naive blank
node support: either delete all triples matching a triple pat-
tern, or delete a specific triple if the internal identifier of the
repository is used to reference contained blank nodes. This
fact of using the internal identifiers of the repository makes
it impossible to apply a patch to another repository.

In 2014, Graube et al. [12] promote R43ples acting as a
proxy in front of any SPARQL service. Their work is the
first to provide an approach allowing for versioning of RDF
datasets, including a vocabulary to represent patches refer-
encing the changed named graphs. While blank node sup-
port is not implemented, they propose Skolemization before
executing a SPARQL query. Skolemizing the queries means
that the versioned dataset must not contain blank nodes
prior to deployment or the dataset has to be skolemized,
too.

Finally, we can summarize that all of our requirements
were discussed before, including descriptions of possible so-
lutions, except for hashing of RDF. A comprehensive ap-
proach, however, was not presented before.

4. CONCEPTS
While none of the related work (section 3) meets our re-

quirements, the proposed versioning system by Cassidy and
Ballantine [7], based on a semi-formal model, appears to be
the most suitable as groundwork for our approach. In the
following we present solutions for the open requirements,
namely blank nodes, hashing and quads.

4.1 Addressing Blank Nodes
As the approach of Cassidy and Ballentine does not sup-

port blank nodes, it suffers from the same problem regarding
the addressability of blank nodes outside their original graph
described in subsection 2.3. One may argue skolemizing the
versioned dataset will solve the problem, but this is against
the requirement of not changing the dataset (section 2).
Skolemization of blank nodes changes the dataset and can-
not be undone under certain circumstances [13]. This cir-
cumstance prevents the possibility to switch the VCS or even
uninstall it completely.

To solve this, we use the idea of Tummarello et al. [20] in-
troducing the formal definition of a Minimum Self-Contained
Graph (MSG). The key concept of a MSG is to consider
triples containing blank nodes always together with their
surrounding triples when storing or transferring them. Ac-
cording to Tummarello et al. the MSG of a triple s, written
as MSG(s), is the set of triples containing s and recursively,
for all blank nodes involved so far, the MSG of the triples
containing these blank nodes. In particular each triple be-
longs to one and only one MSG, thus it makes no difference
which triple is chosen as a starting point to build an MSG.
The MSG of a triple with no blank nodes is therefore the
triple itself. That means, applied to the creation of patches,
whenever a triple containing blank nodes is deleted or added,
the MSG of that triple will be referenced in the patch in-
stead. For example, a patch as shown in Listing 3 based on
the SPARQL Update query in Listing 2 would reference two
MSGs: the old MSG that gets deleted containing the blank

node of the triple [] owl:someValuesFrom ex:ClassC and
the new MSG that gets added extended by this triple.

Because of the semantics of blank nodes it happens that
an RDF graph may contain redundant information. Such
non-lean graphs contain indistinguishable MSGs [19]. While
the addition of indistinguishable MSGs is not a problem, the
VCS must be aware of this when deleting such MSGs, for
example during a revert of a patch. Our VCS ensures that
only one of the indistinguishable MSGs is removed and no
sub-graph of another MSG is removed by mistake due to
isomorphism.

4.2 Hashing RDF
As the work of Carroll [6] shows, it is possible to calculate

the hash for a large class of RDF graphs in O(n log n) even in
the presence of blank nodes. The key of his approach is the
modification of the representation of an RDF graph without
a change in its meaning before hashing. Although being
rare [17], there might be situations where hashing results in
a non-deterministic way, especially if many blank nodes with
no property or label attached are involved. But as there is
a finite number of possible serializations, it is possible to
compute all hashes and treat them as equivalent.

4.3 Versioning Vocabulary

sd:Graph

1..*

1

hasRevision

0..11
deltaInsert ion

0..11
deltaDelet ion

0..2

0..*
previousCommit

Commit

commitMessage : xsd:st ring
prov:atT ime : xsd:dateTime
sha256 : xsd:base64Binary
previousCommitSha256 : xsd:base64Binary

prov:Act ivity

rdf:type

prov:Ent ity

rdf:type

prov:Agent

0..*

1
commitAuthor

Revision

hasRevisionGraph : sd:Graph

Figure 1: The revision vocabulary.

We have developed a revision vocabulary7, shown in Fig-
ure 1, which is based on the structure of the Delta ontol-
ogy [3] and reuses concepts of the PROV-O ontology [16].
By reusing concepts of PROV-O, a patch fulfills the notion
of provenance of [11]. A patch includes a reference to the
author, change reason, time stamp and changes of a trans-
action triggered by a SPARQL Update query. To meet the
requirement of tracking changes of RDF quads (see subsec-
tion 2.4), we store the additions and deletions for all affected
named graphs of a SPARQL Update query in the same single
patch.

Another advantage of our vocabulary is the support for
two different serialization formats. A triple based format

7https://vocab.eccenca.com/revision/

https://vocab.eccenca.com/revision/
https://www.researchgate.net/publication/310821182_Skolemising_Blank_Nodes_while_Preserving_Isomorphism?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/238653508_Delta_an_Ontology_for_the_Distribution_of_Di_erences_between_RDF_Graphs?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221466925_RDFSync_Efficient_remote_synchronization_of_RDF_models?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221021984_Signing_individual_fragments_of_an_RDF_graph?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==

Invertible Change Blank Change
Work Date Patches Detection Nodes Quads Hashing Representation

[14] 2002 yes yes n/a no no yes

[2] 2007 n/a yes yes no no yes

[7] 2007 yes yes no no no no

[21] 2013 n/a n/a partially no yes no

[12] 2014 yes yes no yes no yes

Our Work 2016 yes yes yes yes yes yes

Table 1: Feature comparison of versioning approaches.

using reification8 for situations where the data and version-
ing information should remain in the same repository with-
out polluting it with too many graphs. Additionally, a quad
based format is available which provides a lower memory
footprint by using named graphs to store the additions and
deletions. This format is preferred if the versioning infor-
mation can be stored in a separate repository. Listing 3
illustrates how a patch looks like using the quad based for-
mat.

To increase trust, parties can optionally certify a patch by
signing its hash value and attach the digital signature to the
patch, for example using the Cert Ontology9.

5. IMPLEMENTATION
We implemented our proposed concept as part of the LU-

CID endpoint which acts as a proxy in front of one or more
RDF repositories. The current implementation works in
conjunction with an OpenLink Virtuoso Universal Server10.
To review the history of a versioned dataset, the LUCID
endpoint provides an interface to retrieve patches by vari-
ous parameters, for example, patches containing changes for
a specific resource.

5.1 Architectural Overview
Figure 2 displays the structure and process flow of our

VCS. During the first startup, the LUCID endpoint initial-
izes the Virtuoso instance by adding triggers, procedures and
a custom table (diff table) for change detection (1). Since
changes are detected by the Virtuoso server, users are able
to send SPARQL Update queries either through the LUCID
endpoint interface (2a) or directly to the Virtuoso instance
(2b). Each addition or deletion to the Virtuoso instance is
saved to the diff table referencing the author, change mes-
sage and transaction that triggered the change (3). Within
the same transaction, the MSG calculation is performed for
all blank nodes in the diff table. The triples of these MSGs
are also added to the diff table (4). The LUCID endpoint
then reads the triples and meta-information per transaction
and creates the patch (5) followed by the hash calculation
(6). Finally, the patch is stored depending on the configura-

8https://www.w3.org/TR/rdf11-mt/#reification
9http://www.w3.org/ns/auth/cert#

10http://virtuoso.openlinksw.com/; minimum required ver-
sion 7.2.1

tion either in the same Virtuoso instance (7a) or in another
repository (7b).

Additionally, we want to note that we implemented two
different modes for the generation of patches. In the first
mode, asynchronous patch generation, the response is re-
turned to the user as soon as step 4 finishes. In this mode,
the LUCID endpoint processes the arising data of the diff
table at regular intervals (step 5 to 7). The other mode,
synchronous patch generation, processes the steps 5 to 7
immediately after step 4, before returning the response to
the user. Through this, the patch of an update operation
will be available right after successful execution.

5.2 RDF Hashing Algorithm
We use an implementation of the algorithm described by [6]

to create the hash value for a patch in triple based format.
To generate the same hash value for a patch regardless of

which format, it is transformed to the triple based format
before hashing as shown in Figure 3. We avoid the neces-
sity of providing an URI schema for a patch by making it
anonymous before hashing. That means, the subject URI of
a patch and the URIs of intermediate resources and reified
triples must be replaced by blank nodes before hashing. This
allows for easier sharing of patches between participants in a
distributed environment where usually each party uses their
own scheme to create URIs. As one can attach arbitrary
meta-information to the patch, the algorithm only considers
a fixed set of properties for the hash calculation.

6. EVALUATION
Due to a lack of benchmarks for uniform and comparable

testing of RDF-based versioning systems we now present
three different use cases to evaluate the performance and
correctness of our proposed VCS. We performed our evalu-
ation on a machine with a 2 GHz Intel Core i7 quad-core
processor and 16 GB of system memory. The used Virtu-
oso server version was 7.2.1 (07.20.3214-pthreads). It was
configured to use 1 GB of available system memory.

6.1 Performance Benchmark
With the help of the Explore and Update use case of

the Berlin SPARQL Benchmark (BSBM) [5], we measured
the performance of our implemented VCS. The Explore use
case consists of SELECT, CONSTRUCT and DESCRIBE
SPARQL queries. The Update use case consists of INSERT

https://www.w3.org/TR/rdf11-mt/#reification
http://www.w3.org/ns/auth/cert#
http://virtuoso.openlinksw.com/
https://www.researchgate.net/publication/220123872_The_Berlin_SPARQL_benchmark?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==

LUCID endpoint

OpenLink Virtuoso

Patch

1

2a

2b 3 4

5

6 7b

7a

Figure 2: Architectural overview of our VCS implementation.

Input: RDF representation of patch
Output: hash value of patch
function calculateHash(patch)

if quad based format then
foreach revision do

foreach delta do
create intermediate resource;
foreach triple do

create reified triple and attach to
intermediate;

end
replace delta named graph with
intermediate;

end

end

end
replace URI of patch, intermediates and reified
triples with blank nodes;
calculate hash value of patch as described in [6];
return hash value;

end

Figure 3: Calculation of the hash value of a patch.

DATA and DELETE WHERE SPARQL Update queries.
We generated a benchmark dataset with around 10 million
triples using the BSBM data generator11. Each benchmark
run was performed with the BSBM test driver using 250
warm up and 500 query mix runs12. The results of the
benchmark are shown in the chart of Figure 4. To have a

11./generate -pc 28482 -ud
12./testdriver SPARQL_ENDPOINT -runs 500 -w 250 -dg
"urn:bsbm" -o run_001.xml -ucf usecases/explore-
AndUpdate/sparql.txt -udataset dataset_update.nt
-u UPDATE_ENDPOINT

Virtuoso (V)

Virtuoso + LUCID (V+L)

V+L Versioning Async

V+L Versioning Sync

0 2000 4000 6000 8000 10000 12000

BSBM QMpH

Figure 4: Comparison of Query Mixes per
Hour (QMpH) of the Berlin SPARQL Benchmark
(BSBM) Explore and Update use case.

reference value, we benchmarked a plain Virtuoso instance
(V) that was able to perform 10909 Query Mixes per Hour
(QMpH). To quantify the plain overhead of the LUCID end-
point, we run the test against an instance without versioning
enabled using an equivalent Virtuoso instance as backend
store (V+L). It achieved 11403 QMpH on average which is
a 4.5% better performance than the plain Virtuoso instance
(V)13. In the next test run we enabled versioning with asyn-
chronous patch generation (V+L Versioning Async). The
performance dropped by 35% to 7438 QMpH in comparison
to the V+L run. Finally, we repeated the test with enabled
versioning but this time using synchronous patch generation

13There seems to be a problem related to the HTTP compo-
nent of Virtuoso.

{

ex:patch-af1a8a4b-... a eccrev:Commit ;

eccrev:commitAuthor ex:MarvinFrommhold ;

eccrev:commitMessage

"extend property restriction of class a"

prov:atTime

"2015-12-17T13:37:00+01:00"^^xsd:dateTime ;

eccrev:previousCommit ex:patch-8ca11472-... ;

eccrev:previousCommitSha256

"LNbDoZ...AFQ20="^^xsd:base64Binary ;

eccrev:sha256

"c7f9Hb...8Ft2E="^^xsd:base64Binary ;

eccrev:hasRevision ex:revision-8686f2ab-... .

ex:revision-8686f2ab-... a eccrev:Revision ;

eccrev:hasRevisionGraph ex:GraphA ;

eccrev:deltaDelete ex:delete-5391fd22-... ;

eccrev:deltaInsert ex:insert-94c59669-... .

}

ex:delete-5391fd22-... {

ex:ClassA rdfs:subClassOf [

owl:onProperty ex:someProperty ;

owl:cardinality "1"

] .

}

ex:insert-94c59669-... {

ex:ClassA rdfs:subClassOf [

owl:onProperty ex:someProperty ;

owl:cardinality "1" ;

owl:someValuesFrom ex:ClassC

] .

}

Listing 3: A patch in TriG syntax replac-
ing an MSG due to the addition of triple
[] owl:someValuesFrom ex:ClassC to the graph of the
example dataset in Listing 1.

(V+L Versioning Sync). That means, the patches are cre-
ated within the same transaction of the request right after
the SPARQL Update query. This run provids feedback of
the overall performance impact of our proposed VCS. The
performance decreased to 5527 QMpH which is a drop of
51.5% compared to the V+L run.

A separate look at the average Query Execution Times
(aQET) of the explore and update queries shows 78% slower
update queries and 50% slower explore queries of the V+L
Versioning Async run in comparison to the V+L run. On
the other hand, the V+L Versioning Sync run has about
600% slower update queries, but nearly the same times for
the explore queries, when compared to the V+L run.

In summary, the ideal configuration for the patch gen-
eration depends on the particular use case. If there is no
need to have the patches available after an update imme-
diately, the asynchronous patch generation is recommended
due to the better overall performance. However, if the ex-
plore functionality of the system is of crucial importance,
the synchronous patch generation should be used since only
the update queries are affected by a performance hit.

6.2 Patch Size Benchmark
In addition to the overall performance test, we determined

0,
33

3
s

1,
60

5
s

14
,9

05
s

25
6,

71
5

s

0,
04

8
s

0,
07

5
s

0,
40

2
s

4,
85

s

50 500 5000 50000

Changed Triples vs.
SPARQL Update Execution Times

w/o versioning w/ versioning

Figure 5: SPARQL Update query performance
of the LUCID endpoint regarding the number of
changed triples.

which size of updates (number of changed triples) our im-
plementation is able to handle. For this, we created test
datasets up to 50000 triples where each triple is of the form
<urn:s:i> <urn:p:i> <urn:o:i> replacing i by 1 up to the
specific size. We then executed a SPARQL Update query re-
naming the object of each triple. The results of a comparison
between a LUCID endpoint with no versioning and a ver-
sioning enabled instance with synchronous patch generation
is shown in the chart of Figure 5.

In a nutshell, SPARQL Update queries producing a large
number of changed triples (> 10000) result in a clear drop
in performance.

6.3 Versioning Evaluation Tool
To test the correctness of the patch generation of our sys-

tem, we developed an evaluation tool14. It allows to provide
a sample dataset description in TriG format as the start-
ing point for a versioning operation and a SPARQL Update
query which performs an alteration to the dataset. After
submitting the data, the tool imports the given dataset, ex-
ecutes the SPARQL Update query and presents the resulting
patch to the user allowing him to review the result.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a VCS for arbitrary RDF

data. By supporting all concepts of the RDF specifica-
tion, the VCS is able to track changes for any possible RDF
dataset, even when blank nodes are involved. As provenance
plays an important role in distributed environments, our
work deals with the protection against unperceived history
manipulation by providing hashing of patches. We described
the concepts of our system and presented an implementation
integrated into a middleware acting as a SPARQL proxy.

To provide a full-fledged versioning system, we plan to add
more features in the context of the two research projects LU-
CID and LEDS. Most importantly, we want to add support

14A demo is available at https://versioning-evaluation-demo.
eccenca.com.

https://versioning-evaluation-demo.eccenca.com
https://versioning-evaluation-demo.eccenca.com

for the basic operations described by Cassidy and Ballan-
tine [7]. This allows, for example, to undo a change made
mistakenly or merge different versions of a dataset enabling
collaborative editing in distributed environments. As part
of the LUCID project we are developing a Publish-Subscribe
mechanism to synchronize patches between the participants
of distributed B2B Linked Data networks. We will add sign-
ing for patches as trust plays an important role in this sce-
nario. Currently, we only provide support for the OpenLink
Virtuoso Universal Server. However, to ensure a wide ap-
plication especially in enterprises, we are working on the
support for additional RDF repositories, such as the Spatial
and Graph option for Oracle Database 12c15 and Complex-
ible Stardog16.

The evaluation highlighted that our current implementa-
tion is not able to handle large changes in a reasonable time.
One of the main reasons causing this is the used implemen-
tation of the RDF hashing algorithm by [6]. The complete
patch needs to be loaded into the memory to calculate its
hash value. To resolve this issue a more scalable solution is
required without the need to load the patch into the memory
as a whole.

Finally, as more RDF versioning approaches arise, there
is a need for a benchmark defining test scenarios for RDF
versioning systems allowing to compare the performance of
such systems.

8. ACKNOWLEDGMENTS
This work was partly supported by the following grants

from the German Federal Ministry of Education and Re-
search (BMBF) for the LUCID Project (GA no. 01IS14019A)
as well as for the the LEDS Project (GA no. 03WKCG11A
and GA no. 03WKCG11C).

9. REFERENCES
[1] L. Allen, G. Fernandez, K. Kane, D. Leblang,

D. Minard, and J. Posner. Clearcase multisite:
Supporting geographically-distributed software
development. In Software Configuration Management,
Lecture Notes in Computer Science, pages 194–214.
Springer Berlin Heidelberg, 1995.

[2] S. Auer and H. Herre. A versioning and evolution
framework for RDF knowledge bases. In Perspectives
of Systems Informatics, Lecture Notes in Computer
Science, pages 55–69. Springer Berlin Heidelberg,
2007.

[3] T. Berners-Lee and D. Connolly. Delta: an ontology
for the distribution of differences between RDF
graphs, 2004.

[4] C. Bizer and R. Cyganiak. RDF 1.1 TriG. W3C
recommendation, 2014.

[5] C. Bizer and A. Schultz. The Berlin SPARQL
Benchmark. International Journal on Semantic Web
& Information Systems, 5(2):1–24, 2009.

[6] J. J. Carroll. Signing RDF graphs. In The Semantic
Web - ISWC 2003, Lecture Notes in Computer
Science, pages 369–384. Springer Berlin Heidelberg,
2003.

15http://www.oracle.com/technetwork/database/options/
spatialandgraph/overview/rdfsemantic-graph-1902016.html

16http://stardog.com/

[7] S. Cassidy and J. Ballantine. Version control for RDF
triple stores. ICSOFT (ISDM/EHST/DC), 7:5–12,
2007.

[8] R. Cyganiak, A. Harth, and A. Hogan. N-quads:
Extending n-triples with context. W3C
Recommendation, 2008.

[9] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1
concepts and abstract syntax. W3C Recommendation,
2014.

[10] P. Gearon, A. Passant, and A. Polleres. SPARQL 1.1
update. W3C recommendation, 2013.

[11] Y. Gil, J. Cheney, P. Groth, O. Hartig, S. Miles,
L. Moreau, P. P. da Silva, and Others. Provenance xg
final report. Final Incubator Group Report, 2010.

[12] M. Graube, S. Hensel, and L. Urbas. R43ples:
Revisions for triples. In 1st Workshop on Linked Data
Quality, 2014.

[13] A. Hogan. Skolemising blank nodes while preserving
isomorphism. In Proceedings of the 24th International
Conference on World Wide Web, WWW ’15, pages
430–440. International World Wide Web Conferences
Steering Committee, 2015.

[14] A. Kiryakov and D. Ognyanov. Tracking changes in
RDF(S) repositories. In Knowledge Engineering and
Knowledge Management: Ontologies and the Semantic
Web, Lecture Notes in Computer Science, pages
373–378. Springer Berlin Heidelberg, 2002.

[15] G. Klyne and J. J. Carroll. Resource description
framework (RDF): Concepts and abstract syntax.
W3C Recommendation, 2004.

[16] T. Lebo, S. Sahoo, D. McGuinness, K. Belhajjame,
J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes,
S. Zednik, and J. Zhao. Prov-o: The prov ontology.
W3C Recommendation, 2013.

[17] A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On
blank nodes. In The Semantic Web – ISWC 2011,
Lecture Notes in Computer Science, pages 421–437.
Springer Berlin Heidelberg, 2011.

[18] N. Shadbolt, W. Hall, and T. Berners-Lee. The
semantic web revisited. Intelligent Systems, IEEE,
21(3):96–101, 2006.

[19] G. Tummarello, C. Morbidoni, R. Bachmann-Gmür,
and O. Erling. RDFSync: Efficient remote
synchronization of RDF models. In The Semantic
Web, Lecture Notes in Computer Science, pages
537–551. Springer Berlin Heidelberg, 2007.

[20] G. Tummarello, C. Morbidoni, P. Puliti, and
F. Piazza. Signing individual fragments of an RDF
graph. In Special Interest Tracks and Posters of the
14th International Conference on World Wide Web,
WWW ’05, pages 1020–1021. ACM, 2005.

[21] M. Vander Sande, P. Colpaert, R. Verborgh,
S. Coppens, E. Mannens, and R. Van de Walle.
R&Wbase: git for triples. In LDOW.
events.linkeddata.org, 2013.

View publication statsView publication stats

http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
http://stardog.com/
https://www.researchgate.net/publication/310821182_Skolemising_Blank_Nodes_while_Preserving_Isomorphism?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/310821182_Skolemising_Blank_Nodes_while_Preserving_Isomorphism?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/310821182_Skolemising_Blank_Nodes_while_Preserving_Isomorphism?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/310821182_Skolemising_Blank_Nodes_while_Preserving_Isomorphism?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/310821182_Skolemising_Blank_Nodes_while_Preserving_Isomorphism?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/280113557_N-Quads_Extending_N-Triples_with_Context?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/280113557_N-Quads_Extending_N-Triples_with_Context?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/280113557_N-Quads_Extending_N-Triples_with_Context?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/271131696_Resource_Description_Framework_RDF_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/271131696_Resource_Description_Framework_RDF_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/271131696_Resource_Description_Framework_RDF_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/265140763_RWbase_git_for_triples?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/265140763_RWbase_git_for_triples?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/265140763_RWbase_git_for_triples?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/265140763_RWbase_git_for_triples?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/259671336_RDF_11_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/259671336_RDF_11_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/259671336_RDF_11_Concepts_and_Abstract_Syntax?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/238653508_Delta_an_Ontology_for_the_Distribution_of_Di_erences_between_RDF_Graphs?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/238653508_Delta_an_Ontology_for_the_Distribution_of_Di_erences_between_RDF_Graphs?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/238653508_Delta_an_Ontology_for_the_Distribution_of_Di_erences_between_RDF_Graphs?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/225191130_Clearcase_multisite_Supporting_geographically-distributed_software_development?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/225191130_Clearcase_multisite_Supporting_geographically-distributed_software_development?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/225191130_Clearcase_multisite_Supporting_geographically-distributed_software_development?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/225191130_Clearcase_multisite_Supporting_geographically-distributed_software_development?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/225191130_Clearcase_multisite_Supporting_geographically-distributed_software_development?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221466925_RDFSync_Efficient_remote_synchronization_of_RDF_models?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221466925_RDFSync_Efficient_remote_synchronization_of_RDF_models?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221466925_RDFSync_Efficient_remote_synchronization_of_RDF_models?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221466925_RDFSync_Efficient_remote_synchronization_of_RDF_models?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221466925_RDFSync_Efficient_remote_synchronization_of_RDF_models?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221021984_Signing_individual_fragments_of_an_RDF_graph?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221021984_Signing_individual_fragments_of_an_RDF_graph?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221021984_Signing_individual_fragments_of_an_RDF_graph?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221021984_Signing_individual_fragments_of_an_RDF_graph?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/221021984_Signing_individual_fragments_of_an_RDF_graph?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220810121_A_Versioning_and_Evolution_Framework_for_RDF_Knowledge_Bases?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220810121_A_Versioning_and_Evolution_Framework_for_RDF_Knowledge_Bases?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220810121_A_Versioning_and_Evolution_Framework_for_RDF_Knowledge_Bases?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220810121_A_Versioning_and_Evolution_Framework_for_RDF_Knowledge_Bases?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220810121_A_Versioning_and_Evolution_Framework_for_RDF_Knowledge_Bases?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220123872_The_Berlin_SPARQL_benchmark?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220123872_The_Berlin_SPARQL_benchmark?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/220123872_The_Berlin_SPARQL_benchmark?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/3454361_The_Semantic_Web_Revisited?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/3454361_The_Semantic_Web_Revisited?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/3454361_The_Semantic_Web_Revisited?el=1_x_8&enrichId=rgreq-b2f0e78167e4ab4584ada2b8f7c6ad4f-XXX&enrichSource=Y292ZXJQYWdlOzMwMzkyNDczMjtBUzo0MDU0Njg2MzI2MzMzNDRAMTQ3MzY4MjY2Mzg5NA==
https://www.researchgate.net/publication/303924732

