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ABSTRACT 
 
Larger and stronger muscles are positively associated with bone strength in the growing 

skeleton; however, less is known about the role of muscle properties on bone strength 

later in life. The primary objective of this study was to examine the relationship between 

muscle cross sectional area (MCSA), muscle force and rate of torque development (RTD) 

with bone strength indices (bone strength index (BSI) and strength strain index (SSI)) in 

the radius of healthy middle-aged adults. All bone and muscle measurements were 

determined in the non-dominant forearm in a sample of 40 healthy adults (23 men, 17 

women: mean age 49.5, SD 2.3 yrs). Peripheral quantitative computer tomography 

(pQCT) was used to scan the distal and shaft sites of the radius bone in the forearm. 

MCSA was determined from the forearm shaft scan. Forearm muscle force was measured 

by hand grip dynamometry and RTD was obtained from isometric wrist flexion from an 

isokinetic dynamometry protocol. Hierarchical regression analyses were used to identify 

whether muscle properties (MCSA, grip force, and RTD) independently predicted radius 

bone strength indices (BSI and SSI), after adjusting for the confounders of sex, height 

and weight. Steps of the regression models that included sex, height, weight and a muscle 

property explained between 66% and 71% of variance in distal radius BSI and between 

74% and 78% variance of estimated bone strength (SSI) at the shaft site (all steps 

p<0.001). MCSA explained a significant amount of variance in BSI (R2=0.08; p<0.01) 

and SSI (R2=0.04; p<0.05) at the radius. Grip force was also a significant predictor of SSI 

(R2=0.05; p<0.01) but not distal radius BSI (R2=0.03; p=0.07). Conversely, RTD 

explained a significant amount of variance in bone strength at the distal radius (R2=0.04; 

p<0.05), but not at the shaft (R2=0.01; p=0.17). These cross sectional findings support the 
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theory that regional muscle size, force, and rate of torque development are related to 

estimated bone strength in the forearm at midlife. Further research should focus on 

targeted interventions to help determine which muscle property elicits a greater 

osteogenic response to optimize bone strength at distal and shaft sites of the radius.   
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INTRODUCTION 
 

The risk of wrist fracture increases sharply after the age of 55, especially in 

women (Larsen & Lauritsen, 1993). Muscle properties, such as size and strength, are 

positively associated with bone strength in the growing skeleton (Kontulainen, Sievanen, 

Kannus, Pasanen, & Vuori, 2002; Macdonald et al., 2005; Macdonald, Kontulainen, Petit, 

Janssen, & McKay, 2006; Schoenau, Neu, Beck, Manz, & Rauch, 2002; Schoenau, Neu, 

& Manz, 2004); however, less is known about the role of muscle properties on bone 

strength later in life. It is hypothesized that larger and stronger muscles elicit higher 

strains on bone than small or weak muscles, which in turn leads to adaptations within the 

bone tissue that increase its resistance to fracture (Frost, 1987; Burr, 1997). Therefore a 

possible strategy of optimizing fracture prevention among aging adults is to explore the 

muscle properties that are related to bone strength in mid-adulthood to improve bone 

strength prior to the period of increased risk of fracture (Owen, Melton, Johnson, Ilstrup, 

& Riggs, 1982).   

 Bone strength, or its ability to resist fracture, can be described as the product of i) 

bone size and shape (bone geometry); and, ii) its material distribution (Martin et al., 

1998). A stronger bone is therefore larger in cross section and has more mass than a weak 

bone. Although bone tissue is influenced by a plethora of factors, including genetics, 

nutrition, and hormone status, muscle contractions result in the largest physiological 

strains on bone tissue (Burr, 1997; Martin et al., 1998). The influence of muscle 

contractions on bone strength is particularly important because of the modifiable nature 

of skeletal muscle. Training regimens can be designed to increase muscle size 
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(hypertrophy), muscle strength (the ability for a muscle group to contract and generate 

force), and muscle power (the rate at which a muscle force is generated). Frost’s (1987) 

mechanostat theory hypothesizes that bone tissue undergoes structural adaptations in 

response to external loads to maintain material strains within an acceptable range. Once 

external loads exceed a predetermined minimum effective strain (MES), a physiologic 

response in the bone tissue facilitates adaptation, whereas bone that is exposed to loading 

below the MES fails to initiate an adaptive response in the bone tissue (Frost, 1987). This 

theory is supported by research that has observed no osteogenic response to gravitational 

forces in the lower limb, yet significant osteogenic effects of high or odd impact loading 

as would be experienced during hurdling or soccer, respectively (Dalsky et al., 1988; 

Heinonen et al., 1996; Nikander, Sievanen, Uusi-Rasi, Heinonen, & Kannus, 2006a).  

 Animal models have demonstrated bone elicits a greater response to magnitude of 

loading rather than repetitious low-intensity loading (Rubin & Lanyon, 1985). 

Furthermore, peak strain rates have also demonstrated a greater osteogenic response than 

low or moderate strain rates (Lanyon & Rubin, 1984; Mosley & Lanyon, 1998). As 

skeletal muscle contracts, dynamic strains are not only localized at sites of musculo-

tendinous origin and insertion but are also distributed along the shaft and appear to be the 

primary stimulus of bone adaptation (Burr et al., 1996; Turner, 1998). Muscle power 

serves as an indicator of how quickly a muscle can produce force, or the efficiency of a 

contraction. The association of peak power of the lower extremity and tibia bone 

geometry has been previously examined in a cross sectional analysis of elderly women 

(Ashe, Liu-Ambrose, Cooper, Khan, & McKay, 2008). The results indicated that muscle 

power is a significant predictor of bone strength, explaining up to 8.9% of variance in 
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estimated bone strength at the shaft site. Currently, there is no known literature 

demonstrating a relationship between muscle power and bone strength at the radius. The 

radius is a clinically important site to study because of the high incidence of reported 

fracture, particularly in adults 65 years of age and older who are more susceptible to 

experiencing falls (Hausdorff, Rios, & Edelber, 2001; Cummings & Melton, 2002; 

Kannus, Uusi-Rasi, Palvanen, & Parkkari, 2005). 

 Analysis of bone and muscle in vivo has been facilitated by development of 

precise non-invasive peripheral quantitative computer tomography (pQCT). This imaging 

technique permits estimation of long bone strength indices, which consider bone size, 

shape and material distribution from a single tomographic slice. Two bone strength 

indices are commonly employed to estimate strength: strength strain index in torsion 

(SSIp) and bone strength index in compression (BSIc). SSIp, proposed by Schiessl et al. 

(1996a) considers density distribution and represents a long bone’s ability to resist 

torsional stresses in the normal plane (Kontulainen et al., 2008).  BSIc, the product of 

total area and squared total density of the bone cross section, estimates bone strength at 

the distal site of long bones, which are primarily loaded in compression (Ferretti, 

Capozza, & Zanchetta, 1996; Kontulainen et al., 2008). 

 The association between muscle properties and bone parameters has been 

assessed in both upper and lower extremities. Muscle cross sectional area (MCSA), an 

adequate surrogate of muscle force (Ikai & Fukunaga, 1968; Maughan, Watson, & Weir, 

1983), was associated with estimated bone strength in children (Macdonald et al., 2006; 

Remer et al., 2003; Schoenau, Neu, Mokov, Wassmer, & Manz, 2000) and adolescents 

(Schoenau et al., 2004). The most obvious limitation of MCSA is its failure to assess the 
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functional abilities of skeletal muscle, such as dynamic force generation and power 

output. Muscle force assessment by hand-held grip dynamometry has demonstrated a 

positive association with estimates of bone strength at the forearm (Hasegawa, Schneider, 

& Reiners, 2001; Kaji et al., 2005; Schoenau, 1998); however, none of these studies have 

focused on healthy individuals in mid-adulthood. Evaluating the relationship between 

muscle properties and bone strength at the radius is the first step in determining whether a 

training intervention could be beneficial in midlife to reduce the rate of fractures 

observed in later adulthood.   

 This cross sectional study aimed to assess the relationship between muscle 

properties and estimated bone strength at distal and shaft sites of the radius in healthy 

adults, after accounting for the influence of sex and body size. It was hypothesized that  

MCSA, grip force and RTD will each be significantly related and independently predict 

estimated bone strength. 
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1.0 REVIEW OF LITERATURE 

 In this chapter I present the key concepts of physiology, strength and adaptation 

of bone and skeletal muscle to provide a framework of knowledge necessary to 

understand associations between the tissues. The review of the literature is intended to 

provide background information pertaining to musculoskeletal strength measurement 

techniques and tissue adaptations to mechanical loading.  

1.1 Bone Physiology  

 Bone is a dynamic tissue continually regenerating as a result of environmental 

influences and metabolic demands (Dempster, 2006). Bones serve many critical 

functions: systemic mineral homeostasis, hematopoesis, a protective barrier for vital 

organs, and structural support to facilitate precise movements and locomotion (Dempster, 

2006). The material composition of bone reflects its need to be stiff enough to resist 

deformation under mechanical loading, yet sufficiently flexible to absorb energy when 

tension or compression stresses are applied. Stiffness is attributed to the matrix of 

crystalline calcium hydroxyapatite, the principle inorganic compound of bone consisting 

of calcium and phosphate (Robey & Boskey, 2006). Type I collagen, the predominant 

organic material of bone, provides bone with flexibility (Rubin & Rubin, 2006). The 

proportion of organic and inorganic compounds of bone is critical, since imbalance could 

compromise its structural integrity and systemic mineral status (Rubin & Rubin, 2006).  

 Long bones are essentially hollow rods and are composed of two types of 

calcified bone tissue: cortical (also called compact bone) and trabecular (also called 

cancellous bone). Classified by their porosity and microstructure, cortical bone encloses 

the medullary cavity and forms the dense, external portion of the long bone shaft 
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(Dempster, 2006).  Trabecular bone is a more porous material composed of an intricate 

network of vertical and horizontal plates (Martin et al., 1998). Distal regions of long 

bones are characterized by an increase in trabecular bone, thinning cortical shell, and 

absence of the medullary cavity.  

 Cortical bone is characterized by two distinct surfaces: periosteal and endosteal. 

The periosteum covers the outermost perimeter and bone “added” here (increasing its 

diameter) is the most effective way to increase the bone’s resistance to bending and 

torsion (Robling, Castillo, & Turner, 2006). The endosteum is the inner surface of 

cortical bone that lines the medullary cavity. Both periosteal and endosteal surfaces 

remain metabolically active throughout the lifespan as a consequence of bone 

remodeling, yet periosteal apposition is suppressed in adults due to the deafened response 

mature bone exhibits to biomechanical loading (Robling et al., 2006). The structural units 

of cortical bone are cylindrical osteons, which are comprised of a Haversian canal 

surrounded by concentrically organized fibers along the long axis of the bone (Bonewald, 

2008). This arrangement is optimal for resisting deformation from torsion and 

compression loading along its longitudinal axis (Martin et al., 1998).  

 There are three types of bone cells – osteoclasts, osteoblasts, and osteocytes. 

Osteoclasts are multinucleated, phagocytic cells that secrete enzymes to dissolve the bone 

matrix (Bonewald, 2008). Osteoblasts are bone cells found on the outer surfaces and 

within cavities of bone. They are responsible for producing osteoid, which is the 

predominant organic component of collagen and assists in bone apposition (Dempster, 

2006). Osteoid is a cartilage-like material where calcium salts precipitate (Dempster, 

2006). Osteoblasts that become entrapped in the osteoid are called osteocytes. Osteocytes 
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are mature bone cells and the most numerous cell type composing the adult skeleton 

(Bonewald & Johnson, 2008). They were once thought to be quiescent, but have 

demonstrated roles in monitoring mineral content of surrounding osteoid and responding 

to mechanical strains that are important for bone remodeling (Lanyon, 1993). 

1.1.2 Modeling and Remodeling 

 Bone modeling is a process that facilitates bone growth and adaptations in bone 

strength by increasing bone diameter and accumulating additional mass (Forwood, Owan, 

Takano, & Turner, 1996). Remodeling is the process whereby basic multicellular units 

(BMUs) replace old pockets of bone with new bone to maintain bone mass and strength 

(Karsenty & Elefteriou, 2008). The BMU links microscopic cellular activities to the 

entire bone macromorphology. It is responsible for the coupled function of new bone 

deposition by a team of several hundred osteoblasts and old bone removal (resorption) by 

a few active osteoclasts (Karsenty & Elefteriou, 2008).  

 There are three principle stages to the remodeling process: activation, resorption, 

and formation (Parfitt, 1979). Activation is initiated by metabolic or mechanical stimuli 

and signals for cellular recruitment of the BMU to begin resorbing bone at a specific 

location (Robling et al., 2006). As depicted in Figure A, osteoclasts are the leading cells 

of the BMU that excavate an intracortical tunnel by adhering to the packet of old bone, 

which stimulates synthesis and release of acidic enzymes (Robling et al., 2006). Leaving 

only mononucleated cells in its wake, the BMU now creates a matrix high in sulfur and 

mineral-deficient where several osteoblasts remain and synthesize unmineralized bone 

(osteoid) (Robling et al., 2006). Once the final stages of osteoid deposition are complete, 

a new osteon with a central Haversian canal is formed and awaits mineralization (Robling 
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et al., 2006). In this fashion, the BMU ensures that old bone tissue is removed and new 

material is laid down to maintain structural integrity of the whole bone (Parfitt, 2000).  

 

Figure A. Schematic representation of BMU remodeling stages. The large multinucleated 
cells on the right are osteoclasts, which are activated from precursor cells at the point of 
BMU origin. The small black cells on the left are osteoblasts, which appear around the 
tunnel periphery and fill in the excavation made by osteoclasts. The direction of the BMU 
always follows the same sequence in normal bone remodeling. Adapted from Martin et 
al. (1998) 
 

 In adulthood the rate of remodeling slows down and bone adaptation strives to 

conserve bone strength in response to environmental and physiological stimuli (Seeman, 

2003). When the rate of bone resorption exceeds bone formation there is a resulting net 

loss in bone material. In aging adults, the periosteal surface of bone results in a positive 

bone balance (or net gain) compared with the endosteal surface that experiences an 

overall net loss of bone material (Dempster, 2006). The outcome of the coupled positive 

and negative bone balance is an enlarged circumference and an enlarged medullary cavity 

with increasing age (Dempster, 2006). This modification in bone geometry becomes 

important in resistance to fracture, since geometry (size and shape) is a determinant of 

bone strength at both distal and shaft sites of long bones (Martin et al., 1998).   

 

                 

direction of BMU  
 
Formation……..…..…………….Resorption……Activation 

--
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1.2 Mechanostat  

 It was in 1867 that Culmann and Von Meyer (1867) postulated that the trabecular 

structure of bone tissues coincided with principle stress directions (von Meyer, 1867). 

This is the earliest credited notion that structural adaptation occurs with mechanical 

loading. This idea was further developed by Wolff who postulated that bone structure 

would change if the mechanical stress directions were altered (Wolff, 1892). Now 

referred to as Wolff’s Law, this theory has helped lead to the development of the 

mechanostat hypothesis.  Advanced by Frost in 1987, the mechanostat hypothesis 

suggests that bone undergoes structural adaptations in response to external loads in 

attempts to maintain strain levels within an acceptable range (Frost, 1987). This is 

currently the most widely established hypothesis of bone adaptation, and with it the 

notion that muscular forces generate the highest levels of physiological strain on the 

skeleton (Frost, 1988; Genant, Geusens, Rosen, Zhao, & Jiang, 1999). Although the 

mechanostat bone response is governed by biomechanical usage, it can be modified by 

several modulators, including nutrition, environment, and hormones (Frost, 1987).  

 The mechanical loading that drives osteogenic adaptations of bone strength can be 

classified into minimum effective strain (MES) “windows” based on the strain levels 

achieved by the bone tissue (Figure B) (Forwood & Turner, 1995). Strain magnitude 

dictates and stimulates the remodeling, modeling, or repair responses of bone tissue 

(Frost, 1987). Likewise, strains not reaching the remodeling MES threshold (disuse) fail 

to elicit a response and the result is resorption rate exceeding remodeling rate, which 

leads to a net loss of bone mass and subsequently diminished bone strength (Frost, 1987). 

On the other end of the spectrum, exposure to high magnitude strains in the pathological 
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window can lead to eventual bone failure (fracture) due to microcracks coalescing, as in 

repetitive loading (Burr et al., 1998; Matheson et al., 1987) 

 

 
Figure B.  A schematic representation of Frost’s mechanostat hypothesis. The solid curve 
reflects “normal” conditions of minimum effective strain (MES) windows and 
microstrain (µε) ranges hypothesized to elicit osteogenic responses. The dash line 
represents the estrogen deficient hypothetical strain curve. Adapted from Suominen 
(2006) 

 
 Bone tissue senses and responds to peak strains and strain rates resulting from the 

dynamic loading of muscle contractions, the largest physiological loads on bones 

(Bonewald & Johnson, 2008; Jee, 2000; Martin et al., 1998). The osteogenic response to 

mechanical loading seems to be site specific, thus bone will be added where strain 

distribution is the greatest (Robling, Hinant, Burr, & Turner, 2002). However, the 

beneficial responses of bone to mechanical loading are dampened with advancing age 

(Rubin, Bain, & McLeod, 1992; Turner, Takano, & Owan, 1995). Declines in bone 

response associated with aging have triggered research focus in the direction of new 

types of loading that may be sufficient and safe to elicit a bone response in adults.  
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1.3 Peripheral Quantitative Computer Tomography  

 Peripheral QCT is a non-invasive research imaging tool capable of capturing a 

cross sectional image of bone and muscle tissues at several sites of the appendicular 

skeleton, such as the forearm or lower leg. The emergence of pQCT in the early 1990’s 

permitted analysis of whole bone cross sectional geometry (i.e. bone size and shape), 

distribution of trabecular and cortical bone, and aspects of bone material properties (i.e. 

volumetric bone mineral density) using an X-ray source (Khan et al., 2001). Volumetric 

bone mineral density (BMD, mg/cm3) of cortical and trabecular bone is accounted for by 

considering the porosities of the tissues and their normal material density (1200mg/mm3). 

The ability of pQCT to independently analyze tissues of high and low density is 

particularly important, especially when distinguishing between cortical and trabecular 

bone or isolating skeletal muscle from bone (Genant, Fuerst, Faulkner, & Gluer, 1996).  

  The capabilities of pQCT are not without limitation. pQCT scans are limited by 

their slice thickness. Although in-plane resolution or voxel (pixel) size selections for the 

scan range from 0.1mm to 0.8mm, the slice thickness cannot be adjusted and is 

approximated 2.3±0.2mm (Stratec, 2008). As a result, the pQCT image generates a voxel 

that is not a perfect cube and augments the likelihood of influence by the partial volume 

effect (PVE). The problem of PVE is most pronounced at distal scan sites where the 

cortical shell is thin and the in-plane resolution includes lower density trabecular bone 

within the same voxel (Rauch, Neu, Manz, & Schoenau, 2001). Thus PVE can result in 

underestimation of the density of cortical bone. Scan times and radiation doses are also a 

concern for imaging techniques. Compared with dual energy x-ray absorptiometry 
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(DXA), the scan times and radiation doses are similar to those of pQCT. DXA forearm 

scans (6 minutes in duration) have a radiation dose between 20-30 µSv and an effective 

(absorbed) dose of 0.07 µSv whereas a pQCT forearm scan (7 minutes) has a reduced 

effective dose of 0.02 µSv per scan even though the radiation dose is higher (30-100 µSv) 

(Augat, Fuerst, & Genant, 1998; Lewis, Blake, & Fogelman, 1994). Both peripheral sites 

scanned by pQCT (i.e. tibia and radius) and whole body scans by DXA contribute to only 

a fraction of annual background radiation doses of 2400 µSv (Augat et al., 1998).  

 

1.4 Estimating Whole Bone Strength 

 Direct measurement of long bone strength can only be assessed by breaking the 

structure and is therefore only feasible for cadaver specimens. Thus the development of 

algorithms, which estimate whole bone strength have received considerable attention 

among researchers and have facilitated quantitative estimated assessment in vivo (Augat 

et al., 1998). The assessment of bone acquired by pQCT permits the estimation of bone 

strength index (BSIc) and stress strain index (SSIp) that are commonly used to estimate 

bone strength in compression and torsion, respectively. This section will highlight 

methods of estimating bone strength in vivo using pQCT, which combine aspects of size 

(area), density, and spatial distribution of density. 

1.4.1 Bone Strength Index  

 Bone strength index (BSI, mg2/cm4) is a non-invasive strength index for 

epiphyseal sites because they are primarily loaded in compression (Ferretti et al., 1996). 

Total strength in compression is dependent upon total area and therefore BSIc is the 

product of total bone area (ToA) and squared total density (ToD). The BSIc reflects 
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mechanical rigidity and has been validated as an indicator of bone’s resistance to 

compressive loading at the distal tibia (Kontulainen et al., 2008). 

 

BSI = ToA * ToD2 

1.4.2 Strength Strain Index  

 The bone shaft can be loaded in many directions and subsequently experiences 

strains different from the distal region. Section modulus is a measure of material strength 

in torsion where increases in the distance from the bending axis (or centre of mass) of the 

cross section require less material for the same torsional stiffness (Kontulainen, Hughes, 

Macdonald, & Johnston, 2007). Technology which captures bone geometry (size and 

shape) and volumetric density has enabled the quantification of estimated long bone 

strength. Polar strength strain index (SSIp, mm3) is an algorithm, which estimates bone 

strength by incorporating the bone’s cross section strength in torsion (section modulus, (a 

* d2)/dmax) and the ratio of pQCT measured cortical density (CoD) to normal 

physiological density (ND, 1200mg/mm3) of cortical bone (Schiessl, Ferretti, Tysarczyk-

Niemeyer, & Willnecker, 1996b). Figure C illustrates a schematic image of the variables 

incorporated in the calculation of SSIp. A close association between SSIp and failure load 

has been demonstrated in the radius and tibia (Liu et al., 2007; Lochmuller, Lill, Kuhn, 

Schneider, & Eckstein, 2002; Muller, Webber, & Bouxsein, 2003) 

 
SSIp =  Σ [(a * d2)(CoD/ND)] 

          dmax 
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Figure C. An illustration of a bone shaft cross section and variables used in calculating 
polar SSI, where a is the area of a voxel, d is the distance between the voxel and the 
neutral axis, and dmax is the farthest distance of a bone voxel from the neutral axis. 
Adapted from Macdonald et al. (2007)  
 

1.5 Skeletal Muscle 

 Skeletal muscle provides forces necessary to perform physical activities, maintain 

posture, and locomote. Muscle is a tissue specialized for contracting or shortening of its 

component cells along its longitudinal axis. As skeletal muscle contracts, strains are 

detected by bone cells and adaptations occur to either maintain or increase bone mass. 

The importance of maintaining skeletal muscle function is therefore an important 

component of preventing bone fragility. Although the peak force generated by a muscle 

group is attributed to a multitude of factors, in this section of the literature review I will 

provide a brief background on skeletal muscle physiology. 
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1.5.1 Physiology 

 Each muscle fiber is a single, elongated cell surrounded by a thin layer of 

connective tissue called endomysium.  A bundle of muscle fibers are wrapped together by 

a membrane called the perimysium and these bundles become attached to bone by a 

tendon.  The contractile machinery of each muscle fiber is the sarcomere, a structure 

consisting of actin and myosin proteins. The number of sarcomeres lined up in parallel 

(stacked one next to the other) will determine the muscle thickness, whereas muscle 

length will be dictated by how many sarcomeres are lined up in series (Malina, Bouchard, 

& Bar-Or, 2001). 

 Reductions in muscle mass and function seem to be unavoidable consequences of 

the aging process. The term sarcopenia was coined to describe this age-associated loss of 

muscle force and mass evident with advancing age (Roubenoff, 2000). It is generally 

accepted that muscle force is well preserved throughout adulthood until the age of 45, at 

which point performance outcomes begin to deteriorate (Aoyagi & Shephard, 1992). 

Accelerated declines in muscle force and power are evident in adults after 60 years of age 

(Grabiner & Enoka, 1995; Hakkinen & Hakkinen, 1991). It is believed the diminishing 

levels of sex hormones (i.e. estrogen and testosterone) influence the anabolic pathways in 

skeletal muscle (Brown, 2008). The increasing prevalence of sedentary lifestyle habits 

causes an infiltration of lipids, particularly intramuscular adipose, which threatens 

skeletal muscle quality and function (Taaffe et al., 2009). Although it remains unclear 

whether muscle wasting with aging is a result of inactivity, endocrine function, or 

intrinsic muscle properties (i.e. muscle architecture), both disuse and aging are likely 

responsible for marked reductions in strength (Hekimi et al., 2001).  
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1.6 Measuring Muscle Properties 

 A muscle’s ability to generate force is not merely attributable to its size, but a 

complex synthesis of many factors including co-ordination, neuromuscular activation, 

fiber type distribution, and pennation angle. In this section I outline some key 

measurement tools currently available to measure muscle properties, including: isokinetic 

dynamometry, handgrip dynamometry and muscle cross sectional area.  

1.6.1 Isokinetic Dynamometry 

 Isokinetic dynamometry is a method of measuring muscular torque across a range 

of motion while maintaining a constant contraction velocity. The devices employ 

computer assisted resistance equipment to assess concentric, eccentric and isometric 

contractions; and can be configured to isolate and measure the torques of different joints. 

Benefits of assessing muscle forces using isokinetic dynamometry include the ability to 

standardize joint positioning to permit a constant range of motion. This tool is also useful 

because its settings restrict muscle contributions or body movement that could help or 

hinder force acquisition at the desired joint axis. Although isokinetic dynamometry is 

heralded as the gold standard for the relatively safe and controlled quantitative 

assessment of functional muscle capacity (Mercer & Gleeson, 1996), the methodology is 

not without disadvantage. The most frequently cited shortfall of isokinetic dynamometry 

rests in its external validity. Isokinetic dynamometry produces highly controlled, 

repeatable results, but the assessment does not necessarily mimic the natural 

biomechanics of naturally occurring contractions (Baltzopoulos & Brodie, 1989). 
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1.6.2 Hand Grip Dynamometry 

 Hand grip dynamometry is an established predictor of health complications, 

demonstrating an ability to reasonably predict future outcomes of premature mortality, 

development of disability, as well as increased length of hospital stay (Bohannon, 2008). 

The convenience, portability and simplicity of administering grip force testing are likely 

responsible for making this tool so valuable across the age range. Hand grip force has 

often been utilized as an assessment of total body capacity for muscular force generation 

because of its ability to correlate well with force generation of other muscle groups and 

their associated functional tasks (Rantanen et al., 1998). Poor grip force results have also 

demonstrated a relationship with low aBMD at the clinically important femoral neck and 

lumbar spine in adults over 50 years old (Dixon et al., 2005). Isometric gripping induces 

considerable strain on the forearm bones and has therefore been a useful tool for 

assessing the muscle-bone relationship at the radius (Ducher, Jaffre, Arlettaz, Benhamou, 

& Courteix, 2005; Hasegawa et al., 2001; Van Pottelbergh, Goemaere, Nuytinck, De 

Paepe, & Kaufman, 2001; Yamazaki et al., 1995).  

1.6.3 Muscle Cross Sectional Area  

 MCSA is considered an adequate surrogate of muscle force in healthy populations 

(Fukunaga et al., 2001; Ikai & Fukunaga, 1968; Maughan et al., 1983). The MCSA and 

muscle force relationship remains evident in cases of hypertrophy (Hubal et al., 2005) 

and muscle atrophy (Frontera, 2008). Relatively convenient methods of calculating 

MCSA are now included within musculoskeletal imaging software packages, which 

accompany hardware such as Stratec’s pQCT scanner. These measures are advantageous 

because they are not reliant upon participant motivation levels; however, they are limited 
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by the accuracy and precision of the data acquisition and analysis protocols. Although 

muscle size is highly correlated with its ability to generate force, the importance of 

screening populations by gender and age are emphasized in order to attain accurate 

representations of the muscle-force relationship (Jones, Bishop, Woods, & Green, 2008).  

1.6.4 Muscle Power  

 Power generated by skeletal muscle is the product of force and displacement, or 

work, divided by the time elapsed to do the work (McGinnis, 2005). Stated more simply, 

power describes the rate at which work is done, since it represents the force and 

shortening velocity of a muscular contraction (Foldvari et al., 2000). Most of the 

literature pertaining to muscle power has evaluated older adults and has highlighted lower 

extremity muscle power as an important determinant of functional independence 

(Foldvari et al., 2000; Runge, Rittweger, Russo, Schiessl, & Felsenberg, 2004). Since 

there are physiological changes in skeletal muscle associated with atrophy and aging, 

muscle power declines at a quicker rate than muscle force and MCSA (Foldvari et al., 

2000; Runge et al., 2004). Measurement of isometric muscle power is possible by 

obtaining a rate of torque development (RTD) from a muscular contraction. RTD has 

been previously reported as an adequate surrogate of muscle power because it reflects the 

maximal amount of force that can be achieved during a muscle contraction (Aagaard, 

Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002). Although the RTD of an 

isometric contraction does not result in displacement in the line of action of the force, it 

remains an indicator of the ability for fast force generation (Kraemer et al., 2002).   
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1.7 Forearm Muscle-Bone Association 

 Assessment of the muscle-bone relationship independent of gravitational 

influences is made possible by measuring non-weight bearing segments of the 

appendicular skeleton, such as the upper extremity. Regional muscle forces of the 

forearm have been previously reported as grip force (Hasegawa et al., 2001; Kaji et al., 

2005) MCSA (Hasegawa et al., 2001; Rittweger et al., 2005; Sumnik, 2006), and elbow 

flexor moment (Nikander, Sievanen, Uusi-Rasi, Heinonen, & Kannus, 2006b)  

 The upper extremity muscle-bone relationship has been assessed among adult 

men and women aged 18-86 years of age (Kaji et al., 2005; Hasegawa et al., 2001). In 

simple regression analyses Kaji et al. (2005) reported very weak, yet significant, 

correlations of grip force with cortical density (CoD), cortical area (CoA), cortical 

thickness (CoTh), and SSIp at the radius shaft (r values ranging from 0.16 to 0.43). These 

low correlations may be attributed to a sample with little variation in handgrip strength 

and bone geometry. The Pearson correlations were higher in the women than men, which 

could have been a result of combining pre- and post- menopausal participants (Kaji et al., 

2005). Hasegawa et al. (2001) used MCSA in addition to grip force to determine the 

independent contribution of these variables on the SSIp. Although MCSA and SSIp were 

correlated (r = 0.58, p<0.05) in both genders, the stepwise multiple regression revealed 

sex and grip force as the only non-bone parameters significantly contributing to the age 

adjusted model predicting SSIp (adjusted R2=0.82, p<0.05) (Hasegawa et al., 2001).  

 In a sample of premenopausal women and middle aged men, height and MCSA 

explained 22% of variability in pQCT measured bone mineral content (BMC) at the distal 
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radius shaft (Sumnik, 2006). The Long Term Bed Rest (LTBR) study also found a low 

but significant correlation (r = 0.47, p<0.05) between MCSA and BMC at the distal 

radius after three months immobilization (Rittweger et al., 2005). Although the LTBR 

study had a small sample size, it is important to note that this result suggests the pivotal 

role of biomechanical loading. The relationship between MCSA and BMC found after a 

period of immobilization suggests muscle strains of the forearm may be critical for 

maintaining distal radius bone strength. Elbow flexor moments of elite female athletes 

significantly predicted variance at the 30% site of the radius BMC, cortical thickness, and 

ToA (Nikander, Sievanen, Uusi-Rasi, Heinonen, & Kannus, 2006a). Interestingly, CoD 

has shown no significant correlations with muscle force (or its surrogates) at the shaft site 

of the radius (Kaji et al., 2005; Nikander, Sievanen, Uusi-Rasi, Heinonen, & Kannus, 

2006a). Thus it seems that both muscle size and function are related to bone size and 

geometry, yet density is not predicted by muscle force measures in the forearm. Bone 

strength improves most by expansion at the periosteal surface thus increasing in cross 

sectional area and distribution of mass away from the center of gravity (Robling et al., 

2006).  

 Muscle power has recently been studied in concert with measures of bone strength 

in the lower extremity. From a functional perspective, low femoral neck aBMD measured 

by DXA has demonstrated an association with poor functional test performance in 

women (Blain et al., 2001). This is an important point, since poor functional performance 

may lead to increased likelihood of falls and subsequent fracture. Ashe et al. (2008) 

conducted a cross sectional study of women aged 65-75 years to assess the association 

between lower extremity muscle power and bone strength in the tibia. They reported leg 
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extensor muscle power predicted up to 8.9% of variance in tibia shaft SSIp. Similarly, 

Rantalainen and colleagues (2008) showed that peak eccentric plantar flexor torque and 

muscle volume of the lower leg are related to BSI at the tibia shaft. This highlights the 

potential association between the explosive nature of muscle power to positively affect 

bone geometry parameters in the upper extremity, which has not yet been reported in the 

literature. 

1.8 Objective  

 The objectives of this study were to determine the relationships and predictive 

capacity of forearm muscle properties (MCSA, grip force, and RTD) and estimated bone 

strength (BSIc and SSIp) at the distal and shaft sites of the radius in healthy adults in 

midlife.  
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2.0 HYPOTHESIS 

 After accounting for sex and body size, I hypothesize MCSA, grip force and RTD 

will each be significantly related and independently predict estimated bone strength 

indices (BSIc and SSIp) in the radius of healthy adults in midlife.  
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3.0 METHODS 

3.1 Participants 

 This cross-sectional study was a part of a larger longitudinal study, the 

Saskatchewan Growth and Development Study (SGDS, 1964-2010). My first instance of 

recruitment involved individuals returning for SGDS follow-up measurements. A detailed 

description of this population has been reported previously (Thompson, Baxter-Jones, 

Mirwald, & Bailey, 2002).  A total of 314 participants, 46-52 years of age, were therefore 

eligible for follow-up measurements. Most updated address listings were used to mail out 

an informative letter inviting all SGDS participants for follow-up measurements. 

Additional eligible participants who were not members of the SGDS were recruited by 

online campus announcements and emails within the College of Kinesiology. 

 Participants who did not meet the age criteria (45-55 years) or reported a 

musculoskeletal or neurologic condition (i.e. osteoarthritis, Parkinson’s disease, multiple 

sclerosis, or rheumatoid arthritis) that may be associated with decreased functional 

capacity, decreased muscle strength or poor bone health were excluded. Women who 

were peri- or post-menopausal (had not menstruated within the last twelve months) were 

also excluded.  

 I recruited and evaluated 48 healthy adults (26 men, 22 women). Self-reported 

menopausal status revealed 17 women were pre-menopausal and were included in data 

analysis. Women who had not menstruated within last twelve months (n=4) or had 

undergone a partial hysterectomy (n=1) were excluded from analyses. Although the five 

women were excluded from the present analysis, they were evaluated because they were 
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members of the SGDS. A total of 33 adults (21 males) were recruited from the SGDS and 

the remainder (n=15, 5 males) were additional recruits.  

3.2 Background Characteristics, Anthropometry and Health  

 Height was measured using a wall-mounted stadiometer (Holtain Ltd., Britain) 

accurate to ±1 mm and weight was measured using a scale (Toledo, Windsor, ON) 

accurate to ±0.05 kg. A standard questionnaire (Appendix A) was used to identify current 

medical conditions, including medications, menopause status, and bone and joint health 

(Dequeker, Ranstam, Valsson, Sigurgevisson, & Allander, 1991). Informed consent was 

obtained from all participants prior to testing (Appendix B).  The study protocol was 

approved by the University of Saskatchewan Biomedical Research Ethics Board 

(Appendix F).  

3.3 Muscle Measurements 

 I conducted peak torque testing of the non-dominant arm using an isokinetic 

dynamometer (Humac Norm, CSMi, Stoughton, MA).  Force was tested with the forearm 

supinated ensuring the middle third of the forearm was resting on a padded holder. To 

limit contribution of the trunk and shoulders a waist buckle was fastened and Velcro 

straps were fit snugly to stabilize and limit postural compensations. A cotton forearm 

sleeve with a thumb hole was worn by the participant during testing to prevent rubbing 

from the Velcro strap or discomfort from the padding.  

 The programmed dynamometry protocol included isometric (0 degrees) flexion of 

the forearm about the wrist joint. The protocol consisted of three maximum exertions 

each separated by 30 seconds of rest. Prior to the three recorded trials a practice 

contraction was programmed and performed to be sure the participant was clear on 
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instructions and was aware of what to expect. Ten seconds rest was provided after the 

practice contraction. Verbal encouragement was provided to promote maximal exertion. 

Peak torque (Nm) and time to peak torque (seconds), as calculated by dynamometer 

software, were used to calculate rate of torque development (RTD, Nm/s). RTD was 

defined as the peak torque attained by the isometric wrist flexion divided by the time 

elapsed to attain the peak torque. RTD is considered a surrogate of muscle power 

(Aagaard, Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002). Lab precision 

(CV, %) of muscle strength measurements using dynamometry for the left arm was 

previously reported at 5.8% (Farthing, Chilibeck, & Binsted, 2005).  

 Maximal grip force of the non-dominant arm was determined using a hand-held 

dynamometer (JAMAR, Jackson, MI). I instructed participants to adjust the instrument’s 

grip setting so the second joint of the fingers fits snugly under the handle and takes the 

weight of the instrument. Participants stood in anatomical position with their non-

dominant arm about 45 degrees away from their body. Once ready, they were told to 

squeeze the grip as hard as possible for 3 seconds. Approximately 30 seconds rest was 

permitted between repetitions. Three maximal contractions were assessed, but only the 

highest force (MVC, kg) was used for analysis. Short-term precision (CV,%) of hand 

held dynamometry measures has been previously reported to be 6.3% (Trutschnigg et al., 

2008).  

3.4 Peripheral Quantitative Computer Tomography  

 Peripheral QCT (Stratec XCT 2000, Pforzheim, Germany) was used to measure 

bone geometry (i.e., bone size and shape), density, and estimated strength of the non-

dominant radius. Scanning protocol is described in Appendix C. A single 2.3 mm slice 
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was acquired at a voxel size of 0.4 mm from distal (4%) and shaft (65%) sites of the 

radius. These sites correspond with radius length between Radiale (point at the proximal 

and lateral border of the head of the radius) and Stylion (most distal point of the lateral 

margin of the styloid process of the radius) (International Society for the Advancement of 

Kinanthropometry, 2001). Planar scout views over the joint line were used to accurately 

place the reference line at the medial tip of the distal radius endplate. The 4% site was 

chosen to estimate bone strength at a clinically relevant location, whereas the 65% site 

represents bone strength at the shaft and muscle cross sectional area (Figure D). 

Radiation dose (< 0.5 µSv) to participants was minimal and approximately equal to 

background radiation exposure during a return flight between Saskatoon and Toronto 

(Department of Transport UK, 2003).   

Proximal 

 

Distal 

 
Figure D. Diagram showing the distal and shaft pQCT scan sites of the radius and sample 
scan images of the forearm.  

Shaft 65% site 

Distal 4% site 
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3.4.1 pQCT Data Analysis 

 I analyzed all scans using Stratec software, Version 6.0. The 4% site images were 

analyzed for total bone area (ToA, mm2) and density (ToD, mg/cm3). The 65% site 

assessed cortical bone area (CoA, mm2), cortical density (CoD, mg/cm3) and muscle 

cross sectional area (MCSA, mm2). Estimates of radius bone strength were calculated at 

the distal site as bone strength index in compression (BSIc, mg2/cm4) and stress strain 

index in torsion (SSIp, mm3) at the shaft. 

 All scans of the 4% site radius were analyzed using contour mode 1, 280 mg/cm3 

to separate bone from surrounding soft tissue. Peel mode 2 with the inner threshold of 

480 mg/cm3 was used to obtain trabecular bone. Scans from the 65% site of the radius 

were analyzed using separation mode 4 with inner and outer threshold of 480 mg/cm3. 

The MCSA was analyzed at this site using manufacturer recommended contour mode 1 

bone edge detection threshold set to 40 mg/cm3. Muscle filter C02 was used to smooth 

and enhance muscle tissue detection. Precision of these scan acquisition and analysis 

protocols have been previously assessed in our laboratory using a separate sample of 

adult participants. Bone strength precision as calculated by coefficient of variation 

(CVrms, %) (Gluer et al., 1995) for BSIc and SSIp were 6.25% and 4.33%, respectively at 

the radius (unpublished data). Upper extremity MCSA precision (CVrms, %) was 1.4% 

(unpublished data). 

3.5 Statistical Analysis 

 I reported mean and standard deviation (SD) for descriptive characteristics and 

select outcome variables. I first reported Pearson correlation coefficients for both genders 

pooled to determine which variables were most highly correlated with estimated bone 



 

28 

strength. Next, I constructed hierarchical linear regression models (enter method) to 

assess the independent variance muscle measures (MCSA, grip force, RTD) accounted 

for in estimates of bone strength (BSIc and SSIp). In these models, body size and gender 

were statistically controlled for by forcing height, weight and sex (entered as 0=male, 

1=female) variables into the regression model prior to muscle measures. MCSA was then 

entered into the regression model. The regression model was then constructed with grip 

force replacing MCSA. The last model replaced grip force with RTD. For each model, 

the unstandardized β coefficient, standard error, variance in estimated bone strength (R2), 

and standardized β coefficient are reported. Normal distribution of data was checked by 

assessing skewness, kurtosis, and homoscedasticity. The significance level was set at 

p<0.05. I used SPSS Version 17.0 for Windows (SPSS, Chicago, IL, USA) for all data 

analysis.  

3.5.1 Sample Size Justification 

 Required sample size was determined using studies that previously assessed 

muscle forces and bone strength outcomes in the lower extremity within adult samples 

(Ashe et al., 2008; Rantalainen et al., 2008). In the calculation, I assumed a significant 

total R2=0.35 (effect size of 0.54) because this was the least amount of bone strength 

index variance explained in a body size adjusted linear regression model by Rantalainen 

and colleagues (2008). Each linear regression model had three forced predictors (sex, 

height, and weight) and a measure of muscle properties (MCSA, grip force, or RTD). In 

line with similar models, age was not entered as a predictor, since all participants were 

within a close age range (Rantalainen et al., 2008). Therefore, a sample size of 40 

provided a power of 0.95 at an alpha level of 0.05 (Soper, 2009). 
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4.0 RESULTS 

4.1 Descriptive data 

 Descriptive variables for all participants are presented (Table A). All data was 

normally distributed. Three male participants were excluded from analysis as a result of 

movement artifact during pQCT scanning (n=2) and no RTD captured by dynamometry 

system (n=1). The final sample included in analysis consisted of 40 healthy adults (23 

males, 17 females) (Table A). Values for muscle force measures and bone outcome  

variables are presented in Table B.  

 

Table A. Description of the participants

Males Females

Variables n=23 n=17

Age (years) 50.87 ± 1.25 47.76 ± 2.11

Height (cm) 179.18 ± 7.41 164.89 ± 5.58

Weight (kg) 90.67 ± 18.97 67.35 ± 12.29

BMI 28.08 ± 4.61 27.74 ± 4.20

Data presented as mean ± SD  

 

Table B. Bone and muscle variables 

All

Variables N=40

Total area (ToA, mm2) 404 ± 84

Total density (ToD, mg/cm3) 340 ± 40

Bone strength index (BSIc, mg2/cm4) 4813 ± 1668

Cortical area (CoA, mm2) 110 ± 22

Cortical density (CoD, mg/cm3) 1090 ± 54

Strength strain index (SSIp, mm3) 417 ± 132

MCSA (mm2) 4179 ± 1295

Grip force (kg) 42 ± 13.6

Rate of torque development (Nm/s) 12 ± 12

Data presented as mean ± SD
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4.2 Correlations  

 Bivariate correlations (Pearson’s r) are provided in Table C. Additional 

correlations are presented in Appendix E. Pooled gender Pearson correlation coefficients 

for sex were significant with both distal and shaft site bone strength variables (-0.67 and -

0.74, respectively; p<0.01). Correlations were positive and significant for both height and 

weight on BSIc and SSIp  (0.72-0.78; p<0.01).  

 

 

 

4.3 Hierarchical Linear Regression Models  

 Hierarchical linear regression models were used to quantify the contribution of 

muscle properties on estimated bone strength variables. Results are summarized in Tables 

D and E. All assumptions of hierarchical linear regression modeling (linearity, normality 

of residuals, homoscedasticity of residuals) were met. Predictor variable and multivariate 

outliers were tested by assessing leverage values adjusted for a small sample size, 3p/n (p 

= number of predictor variables, n = sample size). Values did not exceed 0.225. There 

Table C. Bivariate Correlations (Pearson's r)

Sex Age (yrs) Height (cm) Weight (kg)

ToA (mm
2
) -0.78** 0.54** 0.76** 0.74**

ToD (mg/cm
3
) -0.35* 0.02 0.41** 0.41**

BSIc (mg
2
/cm

4
) -0.67** 0.29 0.72** 0.72**

CoA (mm
2
) -0.73** 0.44** 0.68** 0.69**

CoD (mg/cm
3
) 0.12 -0.07 -0.06 -0.10

SSIp (mm
3
) -0.74** 0.42** 0.78** 0.77**

*p<0.05, **p<0.01
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were no extreme scores (>1), as tested by Cook’s distance. Colinearity was not detected, 

since all tolerance values were >0.1 and Variance Inflation Factors were <10.  

 Step one in the hierarchical linear regression models revealed that baseline 

adjustments for height, weight and sex significantly explained between 63.2% (p<0.001; 

BSIc) and 72.5% (p<0.001; SSIp) of variance in bone strength at the radius.  

 Sex was a significant predictor of both BSIc and SSIp, albeit only in the baseline 

models (Step 1, Tables D and E) and in the step with RTD as a predictor (Step 4, Tables 

D and E). Weight predicted 14.4 – 21.4% of variance in BSIc (p<0.001) and 5.4 – 7.9% of 

variance in SSIp (p<0.01) at all steps that did not include MCSA. Conversely, height was 

not a significant predictor for either of the outcome variables (Tables D and E). 

  Both models (Steps 1-4, Tables D and E) were significant in the overall prediction 

of estimated bone strength (p<0.001). MCSA was a significant predictor of BSIc 

(R2=0.085; p<0.01) and SSIp (R2=0.042; p<0.05) (Figures E and F). Although grip force 

was not a significant predictor of BSIc (R2=0.032, p=0.075), a significant amount of 

variance in SSIp (R2=0.060; p<0.01) was accounted for by isometric grip force. The 

variance accounted for by RTD was significant in predicting BSIc (R2=0.049, p<0.05), 

yet did not reach statistical significance in predicting midshaft radius SSIp (R2=0.144, 

p=0.174). 
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MCSA = muscle cross sectional area 
RTD = rate of torque development 
 

 

Independent Overall R
2

R
2 
Change B SE of B p value

Variable

STEP 1 0.632

Sex -1699.999 497.977 -0.510 0.002

Height (cm) -48.335 30.986 -0.282 0.128

Weight (kg) 52.198 12.598 0.627 <0.001

STEP 2 0.717 0.085

Sex 167.416 725.087 0.050 0.819

Height (cm) -27.663 28.264 -0.162 0.334

Weight (kg) 9.316 17.301 0.112 0.594

MCSA (mm2) 1.169 0.360 0.908 0.003

STEP 3 0.664 0.032

Sex -1083.794 588.044 -0.325 0.074

Height (cm) -59.858 30.670 -0.350 0.059

Weight (kg) 48.087 12.409 0.577 <0.001

Grip Force (kg) 40.200 21.936 0.328 0.075

STEP 4 0.681 0.049

Sex -2083.053 498.065 -0.625 <0.001

Height (cm) -55.710 29.419 -0.325 0.067

Weight (kg) 59.686 12.320 0.717 <0.001

RTD (Nm/s) -37.620 16.178 -0.267 0.026

Table D. Hierarchical linear regression model investigating the contribution of muscle forces to BSIc at 4% site
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MCSA = muscle cross sectional area 
RTD = rate of torque development 

Independent Overall R
2

R
2
 Change B SE of B p  value

Variable

STEP 1 0.725

Sex -94.288 34.100 -0.357 0.009

Height (cm) 2.508 2.122 0.185 0.245

Weight (kg) 2.779 0.863 0.421 0.003

STEP 2 0.767 0.042

Sex 9.366 52.160 0.035 0.859

Height (cm) 3.655 2.033 0.269 0.081

Weight (kg) 0.399 1.245 0.060 0.750

MCSA (mm2) 0.065 0.026 0.635 0.017

STEP 3 0.785 0.060

Sex -27.757 37.286 -0.105 0.462

Height (cm) 1.264 1.945 0.093 0.520

Weight (kg) 2.335 0.787 0.354 0.005

Grip Force (kg) 4.340 1.391 0.446 0.004

STEP 4 0.740 0.015

Sex -77.916 35.678 -0.295 0.036

Height (cm) 2.823 2.107 0.208 0.189

Weight (kg) 2.459 0.882 0.372 0.009

RTD (Nm/s) 1.608 1.159 0.144 0.174

Table E. Hierarchical linear regression model investigating the contribution of muscle forces to SSIp at 65% site
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A.  B.  

C.  

Figure E. The relation between muscle cross sectional area (MCSA) (A), grip force (B) and rate of torque 
development (RTD) (C) and estimated bone strength (BSIc) at the radius 4% site. The line of fit is based on 
bivariate correlations: A: R2=0.702; B: R2=0.487; C: R2=0.064 
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A. B.

C.  

Figure F. The relation between muscle cross sectional area (MCSA) (A), grip force (B) and rate of torque 
development (RTD) (C) and estimated bone strength (SSIp) at the radius 65% site. The line of fit is based on 
bivariate correlations: A: R2=0.73; B: R2=0.675; C: R2=0.304 
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5.0 DISCUSSION AND CONCLUSIONS 

5.1 Discussion 

 The aim of this study was to identify the relationship between forearm muscle 

properties and pQCT measured bone strength at the distal and shaft sites of the radius of 

healthy individuals in mid-adulthood. I hypothesized that muscle properties (MCSA, grip 

force and RTD) would each independently be significant predictors of estimated bone 

strength indices (BSIc and SSIp) in the radius of healthy adults, after adjusting for sex, 

height, and weight.  

 Results revealed RTD was a significant predictor of BSIc at the distal radius and a 

significant positive correlate with SSIp, which agrees with previous human research of 

the lower extremity (Ashe et al., 2008; Binkley & Specker, 2008). The model predicting 

BSIc suggested that bone strength increases with a quicker RTD, however the bivariate 

correlation indicated no association between the two variables. Within the isokinetic 

dynamometry protocol a trend was observed, whereby individuals attaining the highest 

peak torque values tended to take longer to reach their peak, thus resulting in a slower 

RTD. The trend may partially explain the non-significant contribution of RTD predicting 

SSIp and indicates that different components of force development should also be 

investigated. This was the first known study to investigate the relationship between an 

indicator of explosive muscle force and bone strength in the forearm. Animal studies 

have shown that generating high strain rates (large muscle forces in a short time) can 

stimulate increases in cross sectional area of bone (Lanyon & Rubin, 1984). Presuming 

these quick strains have similar effects on human bone, one would expect individuals 

capable of generating an increased amount of power to have larger bone cross sectional 
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area and therefore improved bone strength. Evidence from human studies has suggested 

that lower extremity muscle power is associated with bending strength at the tibia shaft of 

older adults and has been shown to predict up to 9% of estimated bone strength (Ashe et 

al., 2008; Binkley & Specker, 2008). Although Ashe et al. (2008) demonstrated peak 

muscle power correlated well with SSIp at the tibia shaft, others have reported muscle 

power to have less predictive contribution to estimated bone strength than measures of 

muscle size (Binkley & Specker, 2008; Ashe et al., 2008). The importance of muscle 

power in the lower extremity is associated with functional tasks of daily living such as 

gait speed and chair rise time, whereas the importance of forearm muscle power is 

important for daily tasks such as opening doors, bottles, and jars (Hazell, Kenno, & 

Jakobi, 2007). My results seem to indicate that larger muscle forces are positively 

associated with greater bone strength in the upper extremity, yet the RTD may be larger 

in these same individuals. The independent contribution of RTD predicting distal radius 

BSIc was significant, yet at the radius shaft RTD was not a significant predictor on the 

criterion variable SSIp. There are no muscle insertions at the distal site of the radius, but 

ten muscles cross the wrist joint and load the distal radius in compression when they 

contract. The strains on bone at the shaft site likely differ from those at the distal radius 

and these may play a critical role in bone strength adaptation. Maintaining the force 

generating ability of these wrist flexion muscles as adults get older could have an 

important osteogenic effect on bone strength at the clinically relevant site. Since the risk 

of distal radius (Colles’) fractures for a woman in her 50’s can reach up to 60% 

(Cummings et al., 1999), these preliminary results warrant further experimental research 
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to focus on establishing methods of fracture prevention by assessing muscle properties 

that may be most effective for optimizing osteogenic response to loading. 

 My results indicated that grip force was a significant predictor of SSIp in the 

radius after controlling for confounders of sex and body size. This result is supported by 

literature demonstrating a close association between radius estimated bone strength 

indices and isometric muscle force in adults (Hasegawa et al., 2001; Kaji et al., 2005; 

Specker, Binkley, & Fahrenwald, 2004). Grip force has been shown to be strongly related 

to sex and age (Hasegawa et al., 2001), yet the site-specific relationship between muscle 

force and SSIp seems to be stronger in women than men (Kaji et al., 2005). I found that 

the contribution of grip force did not remain significant in the regression model 

predicting BSIc, which could be a potential outcome of analyzing a small sample with 

sexes pooled. Although unclear from this study design why such a relationship exists, it 

could be attributed to the muscle strains generated by isometric gripping eliciting an 

influential effect on bone remodeling at the radius shaft. An investigation of rural and 

non-rural dwellers found that daily activities involving gripping and forearm strength 

may lead to increased bone and muscle strength at the forearm (Specker, Binkley, & 

Fahrenwald, 2004). The close relationship observed between grip force and bone strength 

is important since it suggests that maintaining function of muscle is associated with bone 

strength. To further correlate grip force with health related outcomes, Rantanen et al. 

(1998) found that midlife grip force was well correlated with physical functional capacity 

25 years later. Grip force may therefore help screen for individuals who may be at 

increased risk of physical disability due to low muscle strength and serve as an indicator 

of individuals who could also be at higher risk of bone fragility. The correlations I have 
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reported may not represent a convincing relationship between muscle force and bone 

strength; however, a closer look at the muscle to bone relationship among healthy adults 

is warranted. Prior to muscle force measures being considered an indication of bone 

strength, further investigation should focus on assessing how bone geometry can change 

to improve its ability to resist fracture. Identifying the most influential muscle property 

capable of inducing remodeling at the radius may one day be beneficial in reducing the 

incidence of Colles’ fractures among aging adults. 

 The use of MCSA as a surrogate of muscle force has been criticized because it 

ignores intrinsic muscle properties known to affect functional performance, such as fiber 

type and pennation angle (Rittweger et al., 2000). My results indicated that MCSA was 

closely associated with estimated strength of the radius at both distal and shaft sites. 

MCSA has previously demonstrated significant positive relationships with bone size at 

the weight bearing tibia of children (Binkley & Specker, 2008; Macdonald et al., 2006) 

and adults (Rittweger et al., 2000). Significant associations with BMC and MCSA have 

been demonstrated in the forearm of growing boys and girls (Schoenau, Schwahn, & 

Rauch, 2002), yet there remains a paucity of literature concerning the forearm MCSA 

association with bone geometry and strength in healthy adults. Sumnik et al. (2006) 

revealed MCSA and height were strong predictors of BMC at the radius 65% site among 

healthy adults, but BMC has been criticized for its inability to represent long bone 

strength in torsion (Burr, 1997). Using SSIp as an indicator of bone strength in torsion is 

particularly relevant to the radius shaft because it likely more representative of biological 

loading conditions. Due to limitations in study design I cannot prove that muscle size is 
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improving bone strength, yet my results are preliminary evidence highlighting a 

relationship between muscle size and bone strength at the radius.  

 MCSA, grip force, and RTD resulted in higher correlations with estimated bone 

strength at the shaft than at the distal radius. Furthermore, MCSA correlations with BSIc 

were larger than those with grip force or RTD. Anatomically, many muscles are involved 

in hand gripping tasks, which include flexors of the interphalangeal joints and wrist that 

are responsible for the grip force in addition to forearm extensor muscles that account for 

wrist stabilization. Origins of these muscles are primarily at the proximal half of the 

forearm, while their insertions are at the phalanges. Peak muscle forces generated by 

mechanical loading induce proportionately predictable strains (deformation) on bone 

tissue (Forwood, 2001), particularly at the shaft site where the strain gradient is a result 

of mechanical loading. MCSA could be more influential on long bone shaft strength due 

to the higher strains occurring near midshaft attachments that subsequently stimulate a 

site specific osteogenic response. These findings suggest an important role for local 

muscle size and function on bone geometry and strength. The highest dynamic strains are 

experienced at the cortical surface of the bone (Robling et al., 2006), which is a 

component of bone strength estimates. Since the distal radius is predominantly composed 

of trabecular bone, cortical enlargement may occur to a lesser extent than expected at the 

midshaft. This is consistent with literature indicating that adding material to the periosteal 

surface is the most effective means of increasing long bone strength (Robling et al., 

2006). In support of this notion, Kontulainen et al. (2002) found that in a sample of 

female racquet-sport players there were no significant differences in cortical density 

between dominant and contra-lateral arms but side-to-side differences in other bone 
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characteristics were significant at the distal radius. The increased amount of mechanical 

loading on the dominant arm is therefore associated with bone geometry. It has been 

proposed that bone material properties (i.e. density) differ to a lesser extent than 

architectural (structural) characteristics across populations (Ferretti, Cointry, Capozza, & 

Frost, 2003). This is supported by similar evidence in the lower extremity. Previous 

findings by Rantalainen and colleagues (2008) found that BSIc at the distal tibia was not 

significantly associated with muscle volume, eccentric torque, or ground reaction force in 

women; however in men these relationships were significant and positive. This may be an 

indication of a depressed osteogenic response or a smaller range of muscle properties and 

their performance in women, which could prevent a significant association to be 

observed. Having a small sample size and analyzing my data as a pooled sample of men 

and women may have limited the range of muscle properties and subsequently masked a 

relationship with bone strength at the distal radius for some variables.  

 The middle-aged group of adults measured for this study was important for 

several reasons. These participants were also younger than the 55 years of age, which is 

the critical age at which incidence of Colles’ fractures rises significantly (Larsen & 

Lauritsen, 1993). They were also healthy adults between 45-55 years of age that do not 

yet exhibit signs of sarcopenia, meaning that the size and strength of their skeletal muscle 

has not yet begun to diminish. Finally, women of this age are approaching menopause but 

most still experience normal menstruation cycles. The pre-menopausal status was 

important because this would indicate that these women have normal estrogen levels, 

which is important for bone remodeling (Pacifici, 1996). Evaluating musculoskeletal 

relationships and interactions among healthy adults at midlife may assist in the 
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development of methods aimed at optimizing bone geometry for fracture prevention and 

establishing non-pharmacologic interventions for individuals nearing the age of increased 

fracture risk. 

5.2 Summary 

 Altogether these results indicate that bone strength of the non-dominant radius of 

healthy adults is predicted by muscle size, grip force and RTD of the forearm. This 

outcome parallels findings from studies that have reported a muscle-bone relationship at 

various anatomical sites in other populations. Additional assessment of site specific 

muscle properties and their interactions with bone geometry is warranted to gain 

understanding of how bone strength may be improved by training skeletal muscle. 

5.3 Strengths and Limitations 

 This study provided a glimpse into the muscle-bone relationship in healthy adults. 

I used some of the most advanced measurement equipment for both bone and muscle 

strength data acquisition. The Humac dynamometer permitted RTD to be calculated from 

a muscle contraction and pQCT facilitated estimation of distal and shaft site bone 

strength derived from structural and geometric properties. Desired sample size was also 

calculated prior to initiating recruitment to ensure I would be sufficiently powered to 

observe a significant regression model with a large effect size (f2 = 0.54). This sample of 

participants permitted me to study a group of adults approaching the age at which there is 

a high prevalence of Colles’ fractures. Focusing on the distal radius and forearm shaft 

sites was important, since it facilitated the examination of the relationship muscle 

properties have with bone, independent of weight bearing and gravitational influence, in 

addition to its importance in the clinical realm. 
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 On the other hand, I acknowledge there are limitations to this study. First of all, 

the cross sectional study design does not permit the identification of causal relationships 

between muscle forces and bone geometry. The intent of this study was instead to gather 

preliminary observations of the muscle-bone association in the forearm to explore the 

contribution of muscle size or function to predicting bone strength. The second limitation 

lies in the reliability of RTD as a surrogate measure of muscle power at the wrist. In 

particular, the muscle contraction from which RTD was obtained was isometric, which is 

indicative of no displacement about the joint, thus no work was done. Since muscle 

power had not yet been investigated in the forearm, the use of RTD was attempting to 

capture a meaningful indicator of how quickly the local muscles are able to produce 

force. Finally, I recognize the challenges associated with analyzing pooled data of men 

and women, without contrasting sexes for confounding differences. Sex has been 

demonstrated to be a significant variable of radius bone strength (Mueller et al., 2009). 

However, pooling men and women in this study was important for maintaining adequate 

power according to my sample size justification. I attempted to overcome this limitation 

by excluding all women who self-reported themselves peri- or post-menopausal, in order 

to eliminate participants who may have a shift in their MES due to estrogen removal 

(Frost, 1987). In addition, I used gender as a predictor in the regression models to assess 

its overall explanatory power at each step.   

5.4 Future Directions 

 Future research is necessary to comprehend the site specific osteogenic 

adaptations occurring as a result of mechanical loading incurred by muscle forces, 

particularly at non-weight bearing sites of the appendicular skeleton. Other clinically 



 

44 

relevant sites, the proximal femur and vertebrae, should also be examined to explore the 

potential differences between loaded and non-loaded sites in their response to targeted 

muscle force training interventions. In terms of muscle function analysis, methods of 

accurately capturing muscle power of the forearm should be investigated and validated 

because this may facilitate further inquiry to be made about an individual’s functional 

status and how it may relate to bone strength. As technology contributes to the 

advancement of musculoskeletal imaging equipment the need to utilize these tools with 

enhanced image resolution to assess bone geometry and architecture should be used to 

examine specific components of bone strength, such as tissue porosity and trabecular 

microstructure. 
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Subject ID: _________________ 
 
Date: ________________ (dd/mm/yy)    
 
Medication questionnaire 
 
Please answer the following questions to the best of your ability. If you answer yes to any 
of the questions please provide the drug name and dosage to the best of your ability.  
 
1. Are you taking medications for high blood pressure? 
Yes ⁭ 
No ⁭ 
Not Sure ⁭ 
 
Name: ___________   Name: ___________  Name: ___________ 
Dosage: ___________  Dosage: __________  Dosage: __________ 
 
 
2. Are you taking medications to lower your blood cholesterol? 
Yes  ⁭ 
No ⁭ 
Not Sure ⁭ 
 
Name: ___________   Name: ___________  Name: ___________ 
Dosage: ___________  Dosage: __________  Dosage: __________ 
 
 
3. Are you currently taking asprin at least three times a week? 
Do not include Tylenol (acetaminophen) or Advil (ibuprofen) use. 
 
Yes ⁭ 
No ⁭ 
Not Sure⁭ 
 
Name: ___________   Name: ___________  Name: ___________ 
Dosage: ___________  Dosage: __________  Dosage: __________ 
 
 
4. Are you taking any other prescription medications?  
Remember to include prescribed medications such as insulin, nicotine patches and birth 
control (pills, patches or injections) 
Yes ⁭ 
No ⁭ 
Not Sure ⁭ 
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If yes, how many prescription medications are you taking? 
__________ 
 
Name: ___________   Name: ___________  Name: ___________ 
Dosage: ___________  Dosage: __________  Dosage: __________ 
 
 
5. Are you taking any over-the-counter medications?  
Pain killers, antacids, allergy pills and hydrocortisone creams are all examples of over-
the-counter medications. 
 
Yes ⁭ 
No ⁭  
Not Sure ⁭ 
 
If yes, how many over-the-counter medications are you taking? 
 
_______________ 
 
Name: ___________   Name: ___________  Name: ___________ 
Dosage: ___________  Dosage: __________  Dosage: __________ 
 
 
6. Are you taking any health products or herbal remedies?  
Vitamins, minerals, fish oils and other oils, and botanical or homeopathic preparations 
are all example of health products or herbal remedies.  
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
If yes, how many health products or herbal remedies are you taking? 
 
_________________ 
 
Name: ___________   Name: ___________  Name: ___________ 
Dosage: ___________  Dosage: __________  Dosage: __________ 
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Subject ID: _____________ 
 
The following questions 7-9  are for women only. 
Menopausal Status  
 
7. Regarding menopause, do you think you are?  

a. Without any sign ⁭ 
b. Just beginning ⁭ 
c. In the middle ⁭ 
d. Near the end ⁭ 
e. All through ⁭ 

 
8. Have you had your uterus (hysterectomy) or both ovaries removed? 
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
9. Have you menstruated in the past 12 months? 
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
If yes, have you menstruated in the past 3 months? 
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
If yes, has the length of your cycle become less predictable in the past year? 
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
If no, when did you stop menstruating? 
  
Date: (mm/yy) _____/______ 
 
10. Have you used any female hormones in the preceding 3 months? 
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
If yes, please fill in the question #4.
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Subject ID: _________________ 
 
Bone and Joint Health Questionnaire 
 
 
 
1. Have you ever had a wrist fracture? 
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
If yes, please indicate the body site and date: 
 
Left or Right (circle)                           Date: (mm/yy) _____/______ 
  
 
2.  Have you ever had any other broken bone or stress fracture?  
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
If yes, please indicate the bone and date:  
 
Bone ________________________ 
 
Left or Right (circle)                           Date: (mm/yy) _____/______ 
 
 
3. Have you ever been treated for or diagnosed with arthritis or other painful joint 
disease?  
 
Yes ⁭ 
No ⁭   
Not Sure ⁭ 
 
 
If yes, please explain_______________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
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Title:  The bone to muscle relationship in the forearm at midlife. 
 

College of Kinesiology, University of Saskatchewan 
Consent Form 

 
Investigators:  
Principal Investigator: Saija Kontulainen, Ph.D., College of Kinesiology, University of 
Saskatchewan, phone: 966-1077 
Student Investigator: Amanda Lorbergs, M.Sc Candidate (supervised by Dr. 
Kontulainen), College of Kinesiology, University of Saskatchewan, phone: 966-1123 
 
Participant:   
You are invited to participate in a research study to determine the relationship between 
bone and muscle strength in the forearm at midlife. The findings of this study may 
provide valuable information about the association between of bone and muscle 
properties. 
 
Before you decide to participate, it is important for you to understand what the research 
involves. This consent form will tell you about the study, why the research is being done, 
what will happen to you the study and the possible benefits, risks and discomforts.   

If you decide to participate, you will be asked to sign this consent form.  Your 
participation is entirely voluntary. If you do decide to take part in this study, you are free 
to withdraw at any time without giving any reasons for your decision. Please take time to 
read the following information carefully and feel free to ask any questions you might 
have. 
 
Purpose of the study:  
There is an increased risk of fracture after the age of 55, especially in women. To 
optimize fracture prevention we need to determine those factors such as muscle size or 
strength that can be modified to improve bone strength prior to the time of increased risk 
of fracture. A strong bone has a greater ability to resist fracture than a weak bone. The 
proposed study aims to assess the association of muscle and bone parameters in the 
forearm with the aim of developing fracture prevention interventions in the future. This 
study will examine muscle size, strength, and power among men and women between the 
ages of 45 and 50 to assess whether there is a relationship to various bone properties of 
the forearm.  
 
Procedures:  
All testing procedures will occur at the Physical Activity Complex and will take 
approximately one hour to complete. If you agree to participate in this study the 
following will happen: 
 

a) Questionnaires:  You will be required to complete questionnaires regarding 
current medications, menopausal status (women only), and bone and joint health.   

b) Anthropometry:  Your standing height and weight will be measured. 



 

64 

c) Muscle Strength:  Arm and hand muscles force and power will be measured by 
two dynamometers. The first measurement will assess your grip strength. You 
will be asked to squeeze a hand-held grip dynamometer as hard as you can. The 
second set of measurements will assess your ability to flex and extend your wrist 
joint.  

d) Bone Strength:  Bone structural properties and strength will be measured by 
scanning the non-dominant wrist and forearm by peripheral quantitative computer 
tomography (pQCT). You will be asked to sit quietly with your arm extended 
through the pQCT scanner.  Approximate time of the scanning procedure is seven 
minutes. Measurements are done by a qualified technician. 

 
Possible benefits of the study:  
There may be no direct benefits from participation in this study.  
 
Foreseeable risks, side effects or discomfort:  
The strength tests will be performed at maximal intensity and therefore may result in 
muscle fatigue and/or muscle soreness. Radiation dose associated with the pQCT 
measurements is minimal. The effective dose is 0.2 µSv per pQCT scan. The combined 
dose of two pQCT scans is less than 0.5 µSv. This is similar to the background radiation 
exposure resulting from a flight from Saskatoon to Halifax on a commercial airline. 
 
Research-Related Injury:  
There will be no costs to you for participation in this study. You will not be charged for 
any research procedures. In the event that you become ill or injured as a result of 
participating in this study, necessary medical treatment will be made available at no 
additional cost to you. By signing this document you do not waive any of your legal 
rights. 
 
Confidentiality:  
The researchers will protect your privacy, and safeguard the confidentiality of 
information collected about you during the course of this study. Absolute confidentiality 
cannot be guaranteed. You will be identified in this study only by your assigned study 
number. All testing procedures will take place in an enclosed space in the Physical 
Activity Complex.  All imaging data will be recorded on password protected digital 
media in the Growth and Development Laboratory. It is the intention of the research team 
to publish results of this research in scientific journals and to present the findings at 
related conferences and workshops, but your identity will not be revealed. 
 
Voluntary Withdrawal:  
Your participation in this research is entirely voluntary.  You may withdraw from this 
study at any time. If you decide to enter the study and to withdraw at any time in the 
future, there will be no penalty or loss of benefits to which you are otherwise entitled.  If 
you choose to withdraw from the study there will be no penalty or loss of benefits to 
which you are otherwise entitled, and your future medical care will not be affected. 
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If you choose to enter the study and then decide to withdraw at a later time, all data 
collected during your enrolment in the study will be retained for analysis.  All 
information provided and data collected will be stored in a locked office for a minimum 
of five years after the completion of the study. 
 
If you have questions concerning the study you can contact Dr. Kontulainen at 306-966-
1077.  
 
If you have questions about your  rights as a research participant or about the study, you 
can contact the Chair of the Biomedical Research Ethics Board, University of 
Saskatchewan at 306-966-4053. This number can be called collect if you are phoning 
long distance. 
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Consent to Participate: 
 
I, _________________________, 
 (please print name) 

 
• Have read or have had this read to me and understood the research subject 

information and consent form 
• Have had sufficient time to consider the information provided and to ask for 

advice if necessary 
• Have had the opportunity to ask questions and have had satisfactory responses to 

my questions 
• Understand that all of the information collected will be kept confidential and that 

the result will only be used for scientific objectives 
• Understand that my participation in this study is voluntary and that I am 

completely free to refuse to participate or to withdraw at any time without 
changing in any way the quality of care that I receive 

• Understand that I am not waiving any of my legal rights as a result of signing this 
consent form 

• Understand that there is no guarantee that this study will provide any benefits to 
me 

• Have read this form and I freely consent to participate in this study 
• Have been told that I will receive a dated and signed copy of this form for my 

records 
 
 
 
 
Participant’s Signature:_______________________   Date: _______________________ 
 
 
 
Researcher Signature:________________________   Date: ______________________ 
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pQCT Measurement Protocol 
 

• Participants were seated in a chair with their non-dominant arm at shoulder 
height, extended through the gantry so that their elbow was within the clamp 

• Hand was pronated through the gantry and was comfortably rested on the hand 
attachment 

• A foam cushion was placed under the arm to ensure comfort and a tensor bandage 
was wrapped around the fingers to eliminate movement from the hand 

• They were instructed to find a comfortable position and sit as still as possible 
during the scanning period 

• Talking was not permitted during the scan to minimize any movement 
• Scout scans were obtained prior to scanning and reference lines were placed at the 

medial tip of the distal radius endplate 
• At each site we acquired a single 2.3 mm slice at a scan speed of 20 mm/s.  
• The pQCT operator scanned the phantom daily to maintain quality assurance 

 
 
 
 
 

 
 

Figure G. A participant seated for pQCT scanning of the non-dominant radius. Arm 
extended and supinated through the gantry. Foam support for the upper arm and bandage 
wrap for the distal arm to maximize comfort and minimize movement, respectively.  
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APPENDIX D – TABLES OF HIERARCHICAL LINEAR 
REGRESSION ANALYSES 
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Table C.1.0 – Hierarchical Linear Regression on Dependent Variable BSIc (Step 1) 
  

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .795a .632 .601 1053.68025 

a. Predictors: (Constant), Weight, Gender, Height 

b. Dependent Variable: Rad_BSI 

 
 

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) 9687.323 4996.677  1.939 .060      

Gender -1699.999 497.977 -.510 -3.414 .002 -.668 -.495 -.345 .458 2.183 

Height -48.335 30.986 -.282 -1.560 .128 .557 -.252 -.158 .312 3.204 

1 

Weight 52.198 12.598 .627 4.143 .000 .715 .568 .419 .447 2.237 

a. Dependent Variable: Rad_BSI 
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Table C.1.1 - Hierarchical Linear Regression on Dependent Variable BSIc (Step 2) 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .847a .717 .685 936.50730 

a. Predictors: (Constant), MCSA, Height, Weight, Gender 

b. Dependent Variable: Rad_BSI 

 
 
                             

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) 3891.640 4785.395  .813 .422      

Gender 167.416 725.087 .050 .231 .819 -.668 .039 .021 .171 5.860 

Height -27.663 28.264 -.162 -.979 .334 .557 -.163 -.088 .296 3.374 

Weight 9.316 17.301 .112 .538 .594 .715 .091 .048 .187 5.341 

1 

MCSA 1.169 .360 .908 3.251 .003 .838 .482 .292 .104 9.645 

a. Dependent Variable: Rad_BSI 
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Table C.1.2 - Hierarchical Linear Regression on Dependent Variable BSIc (Step 3) 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .815a .664 .626 1020.77448 

a. Predictors: (Constant), GripL, Weight, Gender, Height 

b. Dependent Variable: Rad_BSI 

 
 

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) 10072.780 4845.202  2.079 .045      

Gender -1083.794 588.044 -.325 -1.843 .074 -.668 -.297 -.181 .308 3.244 

Height -59.858 30.670 -.350 -1.952 .059 .557 -.313 -.191 .299 3.344 

Weight 48.087 12.409 .577 3.875 .000 .715 .548 .380 .432 2.313 

1 

GripL 40.200 21.936 .328 1.833 .075 .698 .296 .180 .301 3.326 

a. Dependent Variable: Rad_BSI 
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 Table C.1.3 - Hierarchical Linear Regression on Dependent Variable BSIc (Step 4) 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .825a .681 .645 994.55792 

a. Predictors: (Constant), RTD, Height, Weight, Gender 

b. Dependent Variable: Rad_BSI 
 

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) 11001.071 4750.030  2.316 .027      

Gender -2083.053 498.065 -.625 -4.182 .000 -.668 -.577 -.399 .408 2.451 

Height -55.710 29.419 -.325 -1.894 .067 .557 -.305 -.181 .309 3.241 

Weight 59.686 12.320 .717 4.845 .000 .715 .634 .463 .416 2.401 

1 

RFD -37.620 16.178 -.267 -2.325 .026 .254 -.366 -.222 .690 1.450 

a. Dependent Variable: Rad_BSI 
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Table C.2.0 - Hierarchical Linear Regression on Dependent Variable SSIp (Step 1) 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .852a .725 .703 72.15245 

a. Predictors: (Constant), Weight, Gender, Height 

b. Dependent Variable: Rad_SSIp 

 
 

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) -201.450 342.156  -.589 .560      

Gender -94.288 34.100 -.357 -2.765 .009 -.738 -.419 -.241 .458 2.183 

Height 2.508 2.122 .185 1.182 .245 .759 .193 .103 .312 3.204 

1 

Weight 2.779 .863 .421 3.222 .003 .766 .473 .281 .447 2.237 

a. Dependent Variable: Rad_SSIp 
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Table C.2.1 - Hierarchical Linear Regression on Dependent Variable SSIp (Step 2)  
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .876a .767 .741 67.36839 

a. Predictors: (Constant), MCSA, Height, Weight, Gender 

b. Dependent Variable: Rad_SSIp 

 
 

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) -523.151 344.241  -1.520 .138      

Gender 9.366 52.160 .035 .180 .859 -.738 .030 .015 .171 5.860 

Height 3.655 2.033 .269 1.798 .081 .759 .291 .147 .296 3.374 

Weight .399 1.245 .060 .321 .750 .766 .054 .026 .187 5.341 

1 

MCSA .065 .026 .635 2.509 .017 .855 .390 .205 .104 9.645 

a. Dependent Variable: Rad_SSIp 
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Table C.2.2 - Hierarchical Linear Regression on Dependent Variable SSIp (Step 3) 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .886a .785 .761 64.72386 

a. Predictors: (Constant), GripL, Weight, Gender, Height 

b. Dependent Variable: Rad_SSIp 

 
 

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) -159.832 307.218  -.520 .606      

Gender -27.757 37.286 -.105 -.744 .462 -.738 -.125 -.058 .308 3.244 

Height 1.264 1.945 .093 .650 .520 .759 .109 .051 .299 3.344 

Weight 2.335 .787 .354 2.968 .005 .766 .448 .232 .432 2.313 

1 

GripL 4.340 1.391 .446 3.121 .004 .822 .467 .244 .301 3.326 

a. Dependent Variable: Rad_SSIp 
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Table C.2.3 - Hierarchical Linear Regression on Dependent Variable SSIp (Step 4) 
 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .860a .740 .710 71.24271 

a. Predictors: (Constant), RTD, Height, Weight, Gender 

b. Dependent Variable: Rad_SSIp 

 
 

Coefficientsa 

Unstandardized Coefficients 

Standardized 

Coefficients Correlations Collinearity Statistics 

Model B Std. Error Beta t Sig. Zero-order Partial Part Tolerance VIF 

(Constant) -257.603 340.257  -.757 .454      

Gender -77.916 35.678 -.295 -2.184 .036 -.738 -.346 -.188 .408 2.451 

Height 2.823 2.107 .208 1.340 .189 .759 .221 .116 .309 3.241 

Weight 2.459 .882 .372 2.787 .009 .766 .426 .240 .416 2.401 

1 

RFD 1.608 1.159 .144 1.388 .174 .552 .228 .120 .690 1.450 

a. Dependent Variable: Rad_SSIp 
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APPENDIX E – MUSCLE PROPERTY AND BONE STRENGTH 
CORRELATION MATRIX 
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Muscle property and bone strength correlation matrix 
 
 

  MCSA Grip Force RTD BSIc SSIp 
MCSA 1 0.854 * 0.528 * 0.838 * 0.855 * 
Grip Force  -  1 0.448 * 0.698 * 0.822 * 
RTD  -   - 1 0.254 0.552 * 
BSIc  -   -  - 1 0.712 * 
SSIp  -  -  -  - 1 
* p<0.01           

MCSA = muscle cross sectional area 
RTD = rate of torque development 
BSIc = bone strength index in compression 
SSIp = polar strength strain index 
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APPENDIX F – CERTIFICATE OF ETHICAL APPROVAL 



 

81 

 

 
 
 
 

 

~U~VJ:::K:iITY OF
W S.\,.<iKATCHI:.WAX
........, .",~.."""
'04' '.~ ••_.

Cerlificate of Approval
.,."

I"!_ " ·PO<U ... _ .........."'~"".
, " ~ -"'..... ,'
.' C...--,,", .h.\0., .._. " •.", ,~.

,,:.o:>o-~' ,=""~,,,.,..
,,~.;,., ..~.~
"','''''-'''-'': ","0.
I ~I'.WU

C. ",.... "".~....."."", ..~.. ·'."""WO', \,.."'m
........-.,. ...
,." ••••", ~"'''''' ,_.; ,,~ -'c·:,..,
,'....." ,,, "~,.. , •.::t»>:.
._.", "' ........,..,., ,....\,..,,,,,,,

" ...' .0' •'''''''' :",,',

«omncollOll
I '~'~ ••,~,.'" _. ~ '.0 r~.'. ,...~".....~...,_~-=.~ ..._ "' '_.~..
~ -_..,.r I , ,_ -.q _" ' -U"'.-..,~ "-"' , "'\~~"_"'.~'-'

;>o ~ ". "" .";", ~, ~~ ~pt..c'o ,,~a ,..",..i. --..., '_
........,-..... _.",..,.. ~ ..- _ .."','"'.. <-. ".,,_<11 ''''~b ........,.-.-..,"' , U ..k~_
...... .... z _ """' ,_.~__

_ , D;' 0:. ,_""'.-_....

,.. ..-._ .:<.. ","","""n~ ... I .,,"-.., "' ,_~ ~ ~"'."' ....... , .......~
'u,__, .; , <.."'~-" ~ •__ ~'.,,,,,,"" _J t V-«l , ""';.,, <. ".,.,.. fl .• 0""
,......--.".-' _ .. ,.' ,"< -.., ,...- ~.:I'"" _ '•. _.. ,,,,. "., ~"'"' <-_~ , ~~"Io<"

,O_~, 0<-'<1'''''' v ....V"I ~. "'" ..~ , .•....,..,\O{~ •. ,~ __ 'n•.,..'O '" ., .....
;0>0."-'''. "'" ~. '.O\<" "".,', "".' ~ <rot ,IN , .."" '" K>~~ , "'" , ... _ ..... '
.~ .•" "';X1. FA ,.....~ ~ ...~ '·.n ·.' 'w__~ '" ,,_-.

".A'·L""'""
,••"~" '., ot".· ....... ·l>c ,. ';'.'~" _" .........".". "''''. ,I, ,.' ... "_; <''''1'''' ""', ,'~ ••"""",,, "'l,,,,,,,.L ""
"""""t, nt~•• ,~"" .~''''''''1:>,,'"'" ',F. t·, ", ".' ''''f ~>;,1.01 ... ,,,',"" ~ co, ",.~"',~ ,•• " ........... .....,.
.:", ",' '--"""-:.""'" l', .~,~".• ,d "' "c"',, "'··'n~':'" ",,,,,. """,,,,u,d,, .." •. ''''' ,,_,
"""";"--"~ ,••~.... <,,"'" I.."", 110._ '" 1,,--, ~'''''.<", "..., '1.'.~, ,11 ...~'. "., ,~. ".,,~..... ',.,,, .... ", ", ','''''''
,;;., '>,." '.'U·,', ~~·•.I """',,, ~.,..".~•."" ~ ',,,,, __~" .., '. ;' ,1'1 '.' "'.', ,.'",'." I",:"",~,'''II'.i'',

....~.~ ....•..~~ ...,.... ,­
~"'~""""."'....-.'._ ........
" ....~ .... ·4 .. '·".


	Lorbergs_MScThesis.1
	Lorbergs_MScThesis.2
	Lorbergs_MScThesis.3
	Lorbergs_MScThesis.4
	Lorbergs_MScThesis.5

