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immunity against OVA-expressing BL6-10OVA melanoma in B6 mice. In vivo OVA-TEXO/IL-21-

stimulated CTLs more efficiently up-regulate phosphorylation of mTORC1-regulated EIF4E and 

expression of mTORC1-controlled T-bet molecules as well as Ki67 (a protein associated with 

cell-cycle progression) than the control OVA-TEXO/Null-stimulated CTLs, indicating that 

enhancement of converting CTL exhaustion in chronic infection by OVA-TEXO/IL-21 vaccination is 

mostly through the stronger activation of the PI3K-Akt-mTORC1 pathway derived from both its 

endogenous CD40L and transgenic IL-21 signaling. Importantly, Gag-TEXO/IL21 vaccine also 

induces stronger Gag-specific therapeutic immunity against established Gag-expressing BL6-

10Gag melanoma lung metastases than Gag-TEXO/Null vaccine in chronic infection. Therefore, this 

study should have a strong impact on developing new therapeutic vaccines for chronic infectious 

diseases such as HIV-1 infection.  
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NC is a 7 kDa nucleic acid chaperone protein that is able to chaperon nucleic acid rearrangement 

during viral assembly, by binding to genomic RNA [52]. 

 

1.2.1.3.2   Viral enzyme proteins 
 
The Pol protein of HIV-1 is composed of three viral enzymes; PR, RT, and IN [53].  HIV-1 PR 

functions as a homodimer. PR (aspartic protease) is known for cleaving viral precursor proteins. 

HIV-1 RT (reverse transcriptase) is one of the unique features of HIV-1. This enzyme is highly 

error-prone, which results in a high rate of non-specific mutations in HIV-1 genome during viral 

replication. Since mutations arise in antigenic epitopes often present a novel epitope, these 

viruses will not be recognized by the initial immune responses [54]. HIV-1 integrase functions in 

a tetrameric form and facilitates the integration of viral DNA into the host genome.  

 

1.2.2 HIV-1 pathogenesis 

 
HIV-1 preferentially infects T cells, mainly CD4+ T cells and those subsets of T cells that express 

C-C chemokine receptor type 5 (CCR5), particularly memory T cells [55]. Gp120 binds the CD4 

receptor, which causes a conformational change in Gp120, leading to chemokine-binding of 

either CCR5 or CXC-chemokine receptor type 4 (CXCR4) co-receptor [56, 57]. Gp41 pulls target 

cell towards the virus, thus facilitating HIV-1 attach and fuse into target cells and subsequently 

release capsid components into the host cell. With the onset of immunodeficiency, the tropism 

switch which involves switching from using CCR5 to CXCR4 and infects naïve CD4+ T cells 

also [55]. HIV-1 infection also resultant into the development of dysfunctional or tolerogenic 

DCs because it continuously exposed to viral proteins, such as Gp120. Progressive CD4+ 

lymphocytes depletion, dysfunctional dendritic cells (DCs) and tolerogenic cytotoxic CD8+ 

lymphocytes are some features of HIV-1 pathogenesis [58], which made HIV-1 distinct from 

other viruses. The progression of the HIV-1 virus is discussed below. 

 

1.2.2.1 HIV-1 transmission 
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continues throughout the whole course of HIV-1 infection[80]. The rapid loss of founder viral 

sequence indicated the effectiveness of early T cell responses. 

 

Mutations generated during HIV-1 replication (due to error-prone nature of HIV-1 RT) result in 

new epitopes being presented on MHC-I and MHC-II complexes, which inhibits development 

and maturation of HIV-1 specific CD4+ and CD8+ T cells because of mutant variant of epitopes 

presented on the APCs [86, 87]. Continuous T cell activation against HIV-1 viral escape mutants 

lead to T cell exhaustion, and high levels of microbial components and inflammatory molecules 

circulating in blood of HIV-1 infected patient, thus causing increased expression of programmed 

death-1 marker on monocytes, which is involved in apoptosis and negative regulation of T cells 

activation, leading to T cell dysfunction or tolerated T cells [88]. However, strong HIV virus-

specific CD8+ CTL responses are important in controlling infection and its progression [89, 90].  

 

HIV-1 infects CD4+ T cells and depletes memory CD4+ T cells significantly [91], and CD4+ T 

cell responses to HIV proteins have been difficult to show, but several epitopes, in Gag 

particularly, for CD4+ T cells have been identified [92]. The first CD8+ T cell responses could be 

strong with even suboptimal help from weakened CD4+ T cell repertoire. In the long term, the 

function of memory T cells could be impaired as CD4+ T cells are depleted [93]. 

 

Humoral immune responses  

The antibody-mediated humoral response is crucial in neutralizing cell-free viruses and for 

activating cell-mediated Ab-dependent cytotoxic effect thus suppressing the spread of infection. 

Non-neutralizing antibodies are first produced against the structural proteins, such as p24, p17 

and Gag are usually detected ~ 4-6 weeks post HIV-1 transmission, followed by neutralizing Abs 

against the envelope proteins (such as Gp120 and Gp41) develop even slower, ~12 weeks or 

longer against autologous virus and may take up to years to develop Abs against heterologous 

virus [94]. Antibodies show neutralization against heterologous virus were observed in ~20% of 

patients post infection [94, 95], and the production of these rare, late, broad-specificity 

neutralizing antibodies might relate to genetic factor and maturation of the antibody responses to 

HIV-1. Based on the study of Tomaras GD. et al. [96], the initial gp41-specific IgG and IgM 

responses did not affect the viral load significantly in the early stage of HIV-1 infection. During 
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combination therapy [99]. HAART is currently being used as an HIV-1 treatment regimen; it has 

been reported effective in reducing viral titers to a level below detection limit and recovery of 

partial CD4+ T cells. However, HAART is limited by its high cost, drug unavailability, side 

effects, and drug resistance will be developed ultimately [98, 100].  

 

1.2.5 HIV-1 latency 

 
HAART reduces plasma HIV-1 RNA from 10,000 copies/ml to 50 copies/ml, which is below the 

detection level. However, a stable latent reservoir consisting of infected resting CD4+ T cells is 

developed during the early stage of HIV-1 infection [100]. The ability of a pathogenic virus to 

reside within a cell, as part of the viral life cycle is known as viral latency [101]. The result of the 

viral latency is that the virus can be reactivated and produce a large amount of viral progeny 

without the host being infected with the new virus. The viral latency presents a major barrier to 

the treatment and functional cure/ sterilizing cure for HIV-1 although there is less than one per 

million resting CD4+ T cells harbor latent virus. Hosts of the latent reservoir can be naïve CD4+ T 

cells and memory CD4+ T cells. Integration is a vital step in HIV-1 viral replication. Pre-

integration latency is generated in the cell without integration, and it is unstable and decays 

rapidly [102]. Post-integration latency happens mostly through the infection of activated CD4+ T 

cells, and it is integrated but transcriptional silent. A small part of activated CD4+ T cells become 

resting memory CD4+ T cells, which can be reversed upon encountering their cognate antigen or 

another stimulus [103].  

 

Therefore, it is difficult to achieve the goal of complete viral eradiation because of HIV-1 latency 

properties and the nature of host cells. However, with a better understanding of the mechanism of 

HIV-1 latency, it gives us an idea focusing on latent HIV-1 reservoirs attack. Current strategies 

for purging viral latency focus on reactivating provirus and inducing global T cell activation, 

however, the effect is limited due to CTL exhaustion.   

 

1.2.6 Chronic infections 
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L1 pathway blockade with anti-PD-1 antibody would enhance proliferation and functionality of 

CD4+ and CD8+ T cells, thereby promoting cytokine production, and reducing viral loads [110]. 

In contrast to immunosuppressive cytokines noted above, positive regulators of T cell responses 

can enhance immunity during chronic infection [111].  IL-2 and IL-7 treatment have provided a 

role in rescuing T cell exhaustion as well as other aspects of immune responses during chronic 

viral infections [112, 113]. IL-2 and IL-7 have been tested as effective candidates for treatment of 

chronic infection in animal challenges.   



http://en.wikipedia.org/wiki/Glycoprotein
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toll-like receptors-mediate phagocytosis or C-type lectins. Upon exposure to antigens, DCs are 

activated and move to lymph nodes to stimulate adaptive immune responses. Then DCs present 

antigenic peptides on its MHC class-I and -II molecules through which Ag-specific CD8+ and 

CD4+ T cells are activated (signal 1) respectively. DCs also provide co-stimulatory (signal 2) and 

cytokine (signal 3) signals [119]. Mature DCs express elevated levels of co-stimulatory 

molecules, such as CD86, CD80, peptide MHC class-I and -II complexes and adhesion molecules 

result in enhanced secretion of IL-12 and IL-23 cytokines and reduced expression of endocytic or 

phagocytic receptors facilitating T cell response. Because of their immune-regulatory effect, 

vaccinations with tumor antigen-presenting DCs have been proposed as a treatment modality for 

chronic infections. 

 

Vaccination with whole DCs 

 DCs bearing specific tumor peptides DCs loaded with total tumor lysate antigens, and tumor 

mRNA- pulsed/ transfected DCs have been studied for their therapeutic potential [120]. These 

studies found that administration of tumor peptides with DCs can lead to dramatic immune-

stimulation. DC vaccines have shown to break disease-associated tolerance, which is beneficial in 

the treatment of cancer or chronic infection [121]. DCs cause the stimulation of both naive and 

memory T cells. Autologous DC vaccine has been used for the treatment of prostate cancer, 

increasing the survival rates for patients [122]. According to Levy Y et al., DCs loaded with HIV-

1 lipo-peptides lead to increased levels of effector cytokines, and they generate HIV-1 specific 

poly-functional immune responses [123]. It was shown that DC vaccines pulsed with autologous 

inactive HIV-1 decrease viral load in distinct conditions [124, 125]. 

 

Although DC vaccines have obtained highest success rate among other vaccines, the efficiency of 

which is still limited when it comes to clinical trials. DC-induced CTL responses are dependent 

on CD4+ T cells help, notwithstanding, CD4+ T cells are dysfunctional or even depleted in HIV-1 

infected patients. Therefore, DC-based vaccines need additional improvement before they could 

be considered as practical alternatives to HIV-1 treatment [66]. 

 

1.3.3.1 Adenovirus 
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infection model by i.v. infection of C57BL/6 mice with a recombinant adenovirus (AdVOVA) 

expressing ovalbumin (OVA). Similar to the situation in the LCMV clone 13-induced chronic 

infection, our mice with the AdVOVA-induced chronic infection demonstrated that OVA-specific 

CD44+PD-1+LAG-3+ memory CTL (mCTL) inflation. These mCTLs were also functionally 

defective and exhausted [151].  We also found that the PD-1 blockade efficiently converts CTL 

exhaustion in the OVA-specific chronic infection model [152]. 

 

We recently developed a novel ovalbumin (OVA)-specific exosome (EXO)-targeted T cell-based 

(OVA-TEXO) vaccine by using non-specific polyclonal T cells with the uptake of OVA-specific 

dendritic cell (DC)-released EXO via the CD54/LFA-1 interaction [138]. We demonstrated that  

the OVA-TEXO vaccine was able to directly stimulate potent OVA-specific CTL responses in the 

absence of CD4+ T cell help by counteracting CD4+25+FoxP3+ regulatory T (Treg) cell 

suppression [138, 149]. We also developed an HIV-1 Gag-specific T cell-based vaccine, Gag-

TEXO, by using non-specific polyclonal T cells  with the uptake of Gag-specific DC-released EXO 

and demonstrated that the Gag-TEXO vaccine triggered potent Gag-specific immunity against 

Gag-expressing tumors in transgenic human leukocyte antigen (HLA)-A2 mice [153]. To 

enhance its immunogenicity, we generated 4-1BBL-expressing OVA-TEXO and Gag-TEXO 

vaccines, demonstrated that the former one triggered potent therapeutic immunity [154]. It also 

induced an efficient conversion of CTL exhaustion via its CD40L-dependent signaling activation 

of the mammalian target of rapamycin complex 1 (mTORC1) pathway in chronic infection 

models [151].  
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1.4 HYPOTHESIS 
 

We hypothesize that novel transgene IL-21-engineered OVA- and Gag-specific T cell-based 

OVA-TEXO/IL-21 and Gag-TEXO/IL-21 vaccines efficiently stimulate therapeutic immunity and 

convert CTL exhaustion significantly in chronic infection. 
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1.5 OBJECTIVES 

 

1. Construction of recombinant adenovirus AdVIL-21 expressing IL-21; 

2. Generation of novel transgene IL-21-engineered OVA- and Gag-specific T cell-based OVA-

TEXO/IL-21 and Gag-TEXO/IL-21 vaccines; 

3. Assessment of OVA-TEXO/IL-21-induced OVA-specific CTL responses and anti-tumor 

immunity in wild-type C57BL/6 mice; 

4. Development of a chronic infection model with OVA-specific CTL exhaustion by i.v. 

infection of C57BL/6 mice with recombinant AdVOVA;   

5. Assessment of OVA-TEXO/IL-21-converted CTL exhaustion in chronic infection; 

6. Assessment of Gag-TEXO/IL-21-stimulated therapeutic immunity in chronic infection. 

  





http://www.unaids.org/en/resources/fact-sheet
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T (Treg) cell suppression [29, 30]. We also developed an HIV-1 Gag-specific T cell-based 

vaccine, Gag-TEXO, by using non-specific polyclonal T cells  with the uptake of Gag-specific DC-

released EXO and demonstrated that the Gag-TEXO vaccine triggered potent Gag-specific 

immunity against Gag-expressing tumors in transgenic HLA-A2 mice [31]. To enhance its 

immunogenicity, we generated 4-1BBL-expressing OVA-TEXO and Gag-TEXO vaccines, and we 

demonstrated that the former one triggered potent therapeutic immunity [32]. It also induced an 

efficient conversion of CTL exhaustion via its CD40L-dependent signaling activation of the 

mTORC1 pathway in chronic infection models [18].  

 

In this study, we constructed a recombinant adenovirus (AdVIL-21) expressing mouse IL-21 and   

generated new OVA-TEXO/IL-21 and Gag-TEXO/IL-21 vaccines engineered to express IL-21 by 

infection of the above OVA-TEXO and Gag-TEXO cells with AdVIL-21 as previously described [32]. 

We assessed the effectiveness of the OVA-TEXO/IL-21 vaccine in the conversion of CTL 

exhaustion and examined the effectiveness of the Gag-TEXO/IL-21 vaccine in therapeutic immunity 

against Gag-expressing tumors in chronic infection model. We found that the OVA-TEXO/IL-21 

vaccination rescued CTL exhaustion stronger than the OVA-TEXO vaccine in chronic infection, in 

addition, Gag-TEXO/IL-21 vaccination triggered more potent therapeutic immunity against 

established Gag-expressing BL6-10Gag tumor lung metastases, when compared to the Gag-TEXO 

vaccine in chronic infection.   
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according to protocols and guidelines approved by the Animal Research Ethics Board, University 

of Saskatchewan.  

 

 
 

Figure 2.1 Diagram of the production of AdvIL-21. (A) Mouse IL-21 open reading frame was 

inserted pShuttle-CMV vector by recombinant technology to get pShuttle-CMV-mIL-21. The 

Pmel-digested pShuttle-CMV-mIL-21 was then transformed into BJ5183 Escherichia coli cells 

for homologous recombination. The recombinant AdV vector was linealized by PacI digestion, 

and then transfected into HEK-293 cells to generate AdVIL-21. AdVIL-21 was purified by a series of 

cesium chloride ultracentrifugation. (B) Schematic representation of adenoviral (AdV) vector 

AdVIL-21. The E1/E3 depleted replication-deficient AdV is under the regulation of the 

cytomegalovirus (CMV) early promoter. ITR, inverted terminal repeat.  
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Figure 2.2 Characterization of EXOOVA. (A)  EXOOVA were stained with a panel of Abs (solid 

lines) or isotype Abs (dotted lines) and analyzed by flow cytometry. (B) Electron micrograph of 

EXOOVA. Scale bar, 100 nm. (C) Western blot analysis of EXOOVA for the expression of EXO 

markers CD9 and LAMP-1. (D) ConA-T cells incubated with EXOCFSE (solid line) or EXO 

(dotted line) were analyzed by flow cytometry. Mean fluorescence intensity (MFI) values are 

indicated in each panel. Dotted lines (on the left) represent isotype controls. One representative 

experiment of two is shown. 

 

2.4.2 OVA-TEXO/IL-21 vaccine stimulates OVA-specific CTL responses in wild-

type C57BL/6 mice 
 

To examine the immunogenicity, we i.v. immunized B6 mice with OVA-TEXO/IL-21 or the control 

OVA-TEXO/Null vaccine. We demonstrated that both OVA-TEXO/IL-21 and control OVA-TEXO/Null 

vaccines stimulated comparable OVA-specific CTL responses (Figure 2.3A). To assess, whether 

these CTLs are of functional effect, we challenged immunized mice with OVA-expressing BL6-

10OVA tumor cells and examined its protective immunity against lung BL6-10OVA tumor 

metastases. We showed that OVA-TEXO/IL-21 or the control OVA-TEXO/Null vaccine induced 

complete protection from lung tumor metastases in all 6/6 mice (Figure 2.3B & 2.3C), indicating 

Lamp-1

CD-9

(~120KDa)

(~28KDa)

Fig. 2 

A

B C D

100nm

CD40 IabCD80

Re
la

tiv
e 

Ce
ll 

N
um

be
r

Fluorescence Intensity

CFSE 
        

Fluorescence Re
la

tiv
e 

Ce
ll 

N
um

be
r

27.9
MFI

CD11C

Intensity



 53 
 
 

that OVA-TEXO/IL-21 vaccine stimulates functionally effective CTL responses in wild-type B6 

mice. 

 

 
 

Figure 2.3 AdVIL-21 does not enhance OVA-TEXO vaccine immunity in wild-type (WT) B6 mice. 

(A) WT B6 mice (n = 5) were injected with OVA-TEXO or OVA-TEXO/IL-21. Six days after the 

injection, blood samples were collected, stained with FITC-CD8 Ab and PE-tetramer, and then 

analyzed by flow cytometry. The percentages of tetramer+CD8+ T cells in the total CD8+ T cell 

population are indicated. (B) Experimental set-up to test the protective anti-tumor immunity of 

TEXO vaccine. WT B6 mice were immunized with OVA-TEXO or OVA-TEXO/IL-21, followed by 

injection with BL6-10/OVA tumor cells 6 day later. (C) Murine lungs were collected at day 21 

following tumor cell injection. Metastatic tumor colonies were counted. (D) The lung tissues of 

immunized mice were fixed in 10% neutral-buffered formalin and then embedded in paraffin. 

Tissue sections were stained with H&E and examined by microscopy. Magnification, ×100. One 

representative experiment of two is shown. 
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Figure 2.5 AdVIL-21 enhance the capability of OVA- TEXO vaccine in converting CTL exhaustion 

conversion. (A) Experimental set-up. AdVova-infected B6 mice (n = 5) were immunized with 
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To assess a potential therapeutic immunity of the Gag-TEXO/IL-21 vaccine in chronic infection, 

AdVOVA-B6 mice with chronic infection were first i.v. injected with Gag-expressing BL6-10Gag 

melanoma cells. Four days post B16 melanoma cell challenge, mice were i.v.  immunized with 

the Gag-TEXO/IL-21 or the control Gag-TEXO/Null vaccine. Importantly, the Gag-TEXO/IL-21 vaccine 

demonstrated a complete eradication of established BL6-10Gag lung metastases in 5/6 AdVOVA-B6 

mice, thus stimulating more efficient therapeutic immunity against Gag-expressing BL6-10Gag 

melanoma than the control Gag-TEXO/Null vaccination (Figure 2.6). Our data indicate that Gag-

TEXO/IL-21 vaccine is capable of inducing potent therapeutic immunity against established Gag-

expressing tumors in the presence of chronic infection.   

 

 
 

Figure 2.6 Gag-TEXO/IL-21 vaccine stimulates enhanced antitumor immunity in chronic infection 

mice. (A) Experimental set-up to examine the therapeutic antitumor immunity of TEXO vaccines. 

Chronic AdVOVA-B6 (n = 6) were i.v. injected with BL6-10OVA cells. Four days after tumor 

challenge, mice were vaccinated with OVA-TEXO, OVA-TEXO/IL-21 or control ConA-T. The mice 
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were sacrificed 3 weeks after tumor cell challenge. (B) The average number of lung metastatic 

tumor colonies were counted. *p < 0.05 versus cohorts of ConA-T cells. (C) H&E staining of the 

lung tissues. The lung tissues of immunized mice were fixed in 10% neutral-buffered formalin 

and then embedded in paraffin. Tissue sections were stained with H&E and examined by 

microscopy. Magnification, ×100. One representative experiment of two is shown.  
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