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ABSTRACT 

Previous studies exposing fish to xenoestrogens have demonstrated vitellogenin (VTG) 

induction, delayed gametogenesis, altered sex distribution, and decreased reproductive 

performance, with a majority of those studies focusing on exposure to single chemicals.  The 

objective of this study was to determine the effects of binary mixtures of a weak estrogen 

receptor agonist, nonylphenol (NP) and a potent estrogen receptor agonist, 17α-ethinylestradiol 

(EE) on sex distribution, gametogenesis, VTG induction, heat shock protein 70 (HSP70) 

expression and reproductive capacity in zebrafish (Danio rerio).  Fish were exposed from 2 to 60 

days post-hatch (dph) to nominal concentrations of 10 or 100 µg/l NP (NP10 or NP100, 

respectively), 1 or 10 ng/l EE (EE1 or EE10, respectively), 1 ng/l EE + 10 or 100 µg/l NP 

(EE1+NP10 or EE1+NP100, respectively), 10 ng/l EE + 10 or 100 µg/l NP (EE10+NP10 or 

EE10+NP100, respectively) or solvent control (0.01% acetone v/v) in a static-renewal system 

with replacement every 48h.  At 60 dph, fish from each treatment were euthanized for 

histological examination of gonads, and whole body VTG and HSP70 levels.  Remaining fish 

were reared in clean water until adulthood (240 dph) for breeding studies.  In all EE10 exposure 

groups (EE10, EE10+NP10 and EE10+NP100), increasing NP concentration acted less than 

additively to the action of EE in terms of VTG induction at 60 dph.  Similarly, a less than 

additivity of effect was observed with egg production, where EE1+NP100 exposure resulted in 

significantly more eggs produced per breeding trial than EE1 alone.  Histological staging of 

oogenesis revealed suppressed gametogenesis in females at 60 dph.  There were no differences 

among treatment groups in whole body HSP70 expression in 60 dph fish or in gonadal HSP70 

expression in adult fish.  Although there was no statistical evidence of non-additivity, breeding 

trials in adults revealed significant reductions in egg viability, egg hatchability and/or F1 swim-

up success, suggesting that developmental exposures to xenoestrogens may cause irreversible 
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effects on egg quality and progeny even after depuration.  In conclusion, these results suggest 

that environmentally relevant mixtures of NP and EE can produce additive or non-additive 

effects depending on the particular response being determined and the respective exposure 

concentrations of each chemical. Thus, it is recommended that caution be exercised in ecological 

risk assessments when assuming additivity in piscine responses to xenoestrogen mixtures. 
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CHAPTER 1 
INTRODUCTION 

1.1 Vertebrate Endocrine System  

In humans and other vertebrates, many physiological systems within the organism 

interact closely with each other to maintain a homeostatic environment in order to achieve 

functional healthy individuals.  Some of the more noteworthy of these include the central 

nervous, cardiovascular, immune and endocrine systems.  The endocrine system is particularly 

important as it regulates many of the body's functions, including growth and development, 

metabolism, regulation of the internal environment (temperature, water balance, ions), and 

reproduction.  The endocrine system is a complex network of specialized cells and glands that 

behaves as a communication system by releasing hormones, the natural chemical messengers, 

from endocrine glands into the bloodstream in response to stimuli.  Endocrine glands are ductless 

glands; major examples include the pituitary, pineal, thyroid and adrenal glands, pancreas, as 

well as the reproductive glands; ovaries and testes.  Other non-endocrine organs - such as the 

brain, heart, lungs, kidneys, liver, thymus, skin, and placenta - also produce and release 

hormones.  Hormones act on their target cells by controlling one of the three following 

processes: (1) the rates of enzymatic reactions, (2) the transport of molecules across cell 

membranes, or (3) gene expression and protein synthesis (Silverthorn, 1988). 

The endocrine system works in close relation with the nervous system, particularly the 

hypothalamus.  The hypothalamus, located in the lower central part of the brain, is composed of 

specialized cells and functions as the main link between the endocrine and nervous systems.  The 

hypothalamus controls the pituitary gland through the production and discharge of releasing 
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hormones from hypothalamic nerve cells that either stimulate or suppress hormone secretions 

from the pituitary.  Examples of releasing hormones include thyrotropin-releasing hormone, 

corticotropin-releasing hormone, gonadotropin-releasing hormone and growth hormone releasing 

hormone (Silverthorn, 1988). 

The pituitary is often called the “master gland” as it produces hormones that control 

several other endocrine glands.  Examples of pituitary hormones include growth hormone, 

thyroid-stimulating hormone, adrenocorticotropic hormone, prolactin and gonadotropins (follicle 

stimulating hormone (FSH) and luteinizing hormone (LH)) (Silverthorn, 1988). 

Among the pituitary hormones, FSH and LH are of particular importance due to their 

involvement in reproduction.  In most fish species studied to date, there are two gonadotropins, 

termed GtH I and GtH II, which are analogous to mammalian FSH and LH, respectively 

(Swanson et al., 1991).  Gonadotropin I is involved in gametogenesis and steroidogenesis, while 

GtH II is involved in the final maturation stages of gametogenesis.  Similar to other vertebrates, 

these piscine gonadotropins stimulate the production of sex steroids, which then act on target 

tissues to regulate processes such as gametogenesis, reproduction, sexual phenotype, and 

behaviour (Arcand-Hoy and Benson, 1998).  The link between the hypothalamus, pituitary and 

gonad in vertebrates has been termed the hypothalamic-pituitary-gonadal axis and is under the 

influence of feedback mechanisms (Figure 1.1).  For instance, ovary-produced estrogen can 

affect the hypothalamus positively (upregulation) or negatively (downregulation), depending on 

the current need of the hormone necessary to fulfill the physiologic and reproductive 

requirements of the fish (Arcand-Hoy and Benson, 1998).  Consequently, any disruptions in the 

hypothalamus-pituitary-gonadal axis that cause hormone level changes could potentially lead to 

reproductive impairment. 
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Figure 1.1 Interrelationship of the piscine hypothalamic-pituitary-gonadal axis.  The synthesis 
and release of sex steroid hormones, thyroid hormones, and corticosteroid hormones are under 
the control of the hypothalamus and pituitary.  The gonadotropins (GtH I, GtH II) both have an 
influence on the synthesis of sex steroids, which in turn regulate reproduction, phenotype, and 
behavior.  The thyroxine (T4) to triiodiothyronine (T3) conversion may be inhibited by elevated 
plasma sex steroids and cortisol.  The effect of gonadotropin-mediated events such as oocyte 
development and maturation may be enhanced by the presence of T4.  The hypothalamic-
pituitary-gonadal axis is ultimately controlled by feedback systems (dotted-line).  TSH, thyroid-
stimulating hormone; GtH I, gonadotropin I; GtH II, gonadotropin II; ACTH, 
adrenocorticotropic hormone. (Reproduced and adapted from Arcand-Hoy and Benson, 1998) 
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1.2 Sources and Types of Xenoestrogens 

Increasing concerns have arisen over chemicals found in the environment which are able 

to impair sexual differentiation and other hormone regulated processes by mimicking or blocking 

the action of natural hormones, potentially causing adverse human and ecological health effects.  

Because of their ability to imitate, inhibit, or alter the activity of endogenous hormones, thereby 

interfering with normal endocrine system functions, they have been aptly termed “endocrine 

disrupting chemicals” (EDC).  Sources of EDCs vary widely, ranging from the manufacturing 

and disposal of industrial and agricultural chemicals to medical and household products 

(Daughton and Ternes, 1999).  Some EDCs are released into the environment inadvertently, as in 

the case of industrial byproducts and discharges, while others, such as pesticides, are released 

intentionally into the environment in controlled amounts.  For pharmaceuticals, household 

chemicals, other consumables and biogenic hormones, they are usually released into the 

environment after passing through sewage treatment plants, which generally are not equipped to 

remove them from the effluent (Halling-Sorensen et al., 1998).  Examples of chemicals with 

known endocrine disrupting property include certain pesticides, phthalates, phytoestrogens, and 

pharmaceuticals (Kavlock et al., 1996; Tyler et al., 1998). 

Presently, estrogenic EDCs, also known as xenoestrogens, are receiving the most 

attention after speculation that they may contribute towards the observed increased incidence of 

human reproductive disorders.  Examples include testicular cancer, cryptorchidism (one or both 

testicles that have not descended), hypospadias (displacement of urethral opening) and decreased 

sperm counts in males as well as breast cancers in females; however, no conclusive evidence has 

been obtained so far to support this hypothesis (Rivas et al., 1997; Allen et al., 1999; Safe, 2000).  

Nevertheless, studies conducted on wildlife species of fish, birds, reptiles and mammals have 

shown various degrees of physiological as well as histological alterations.  The observed effects 
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include decreased reproductive fitness, demasculinization, feminization, decreased hatchability 

of eggs, modification of the immune system, and increased cancer incidence (Colborn et al., 

1993; Fry, 1995; Kavlock et al., 1996; Tyler et al., 1998).  For example, in Lake Apopka, 

Florida, an aquatic environment known to have been contaminated with a spill of organochlorine 

pesticides from a chemical waste site, increased plasma 17β-estradiol (E2) concentration and 

abnormal ovarian morphology were observed in female alligators (Alligator mississippiensis), 

while abnormal germ cells in testes, reduced penis size and lowered testosterone levels were 

detected in male alligators (Guillette et al., 1994; Guillette et al., 1995; Guillette et al., 1996).  

Meanwhile, feminization of gulls has been linked to exposure to DDT and DDE, organochlorine 

pesticides known to induce estrogenic effects (Fry and Toone, 1981).  In marine gastropod 

species, imposex (females possessing male characteristics) has been associated with exposure to 

tributyltin, the active ingredient used in antifouling paints in marine vehicles (Ellis and Pattisina, 

1990).  In fish, where a great number of recent studies have focused, estrogenic exposures led to 

changes in plasma hormone concentrations (Khan and Thomas, 1998) and gonadal size (Jobling 

et al., 1996; Ashfield et al., 1998), development of ovotestis (gonad that contains both ovarian 

follicles and testicular tubular elements) (Gray and Metcalfe, 1997) as well as induction of 

vitellogenin (VTG), an egg yolk precursor normally found in the blood of maturing females, in 

male fish (Jobling et al., 1996). 

Based on their origin, xenoestrogens can be categorized into four broad groups; natural 

steroidal, synthetics, phytoestrogens and other estrogenic industrial compounds.  Examples of 

natural steroidal estrogens include the endogenous vertebrate hormone E2 and its metabolites, 

estrone and estriol. Diethylstilbestrol and 17α-ethinylestradiol (EE) are good representatives of 

synthetic estrogens.  Phytoestrogens are botanically derived, such as β-sitosterol, found in many 
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plants including rice bran, wheat germ, corn oils, and soybeans.  Lastly, estrogenic industrial 

compounds include a wide variety of chemicals whose estrogenicity is often uncovered 

inadvertently, for instance 4-nonylphenol (NP).  NP was discovered to leach from the 

polystyrene containers used during the development of a screening assay for estrogenic 

compounds (Soto et al., 1991).  The estrogenic potencies of these chemicals vary greatly and 

differences between some of them can reach several orders of magnitude (MacLatchy et al., 

1997; Mazur and Adlercreutz, 1998; Islinger et al., 1999; Servos, 1999; Lindholst et al., 2000).  

Overall, due to natural and synthetic estrogens’ stronger affinity towards the estrogen receptor 

(ER), they are much more potent than phytoestrogens and estrogenic industrial compounds, 

however, environmental concentrations of phytoestrogens and estrogenic industrial compounds 

are generally much higher than that of natural and synthetic estrogens (Spengler et al., 2001). 

Xenoestrogens can also be divided, based on their mode of action, into receptor agonists 

and antagonists.  Agonists mimic the action of endogenous hormones, inducing receptor-

mediated responses while antagonists act oppositely and block the responses of the same 

pathway (Danzo, 1997; Cheek and McLachlan, 1998).  The lipophilicity of some xenoestrogens 

also allows trans-generational toxicity to occur when the chemicals are transferred maternally to 

their offspring.  Polychlorinated biphenyls have been demonstrated to accumulate in the oocytes 

of female fish, which could lead to subsequent exposure of their progeny to these compounds 

(Olsson et al., 1999; Metcalfe et al., 2000). 

Although xenoestrogens come from a wide array of chemical classes, most do share a 

structural commonality of having phenol ring(s) which allows them to be highly lipophilic, 

highly bioaccumulative, and have long half-lives (Danzo, 1997).  These characteristics allow 
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them to accumulate in fatty tissues of organisms and persist in the environment (McLachlan et 

al., 1984). 

Another common feature shared amongst xenoestrogens is their ability to bind to ERs, 

though each bind with differing affinity.  Most environmental estrogens bind to ERs with an 

affinity at least three (Sumpter and Jobling, 1995), and typically four to six (Lee and Peart, 1998) 

orders of magnitude less than the endogenous estrogen, E2.  However, because of their ability to 

bioaccumulate and persist in the environment, relatively weak estrogenic compounds may 

accumulate to a high enough concentrations to induce estrogen-mediated responses. 

Wastewater from sewage treatment plants is a common and major source of 

xenoestrogens, including NP and EE in the USA (Kolpin et al., 2002).  Many studies have 

demonstrated that sewage effluents are estrogenic to fish (Purdom et al., 1994; Larsson et al., 

1999; Svenson et al., 2002).  Nonylphenol is a degradation product of nonylphenol 

polyethoxylates of the alkylphenol polyethoxylate (APnEO) family.  APnEO are North 

America’s second largest class of nonionic detergents in commercial production (Naylor et al., 

1992; White et al., 1994).  Their broad applications include the manufacturing of plastics, 

pesticides, herbicides, paints, cosmetics and cleaning products (Talmage, 1994).  Worldwide 

APnEO production has been estimated to be >0.3 Mt yr-1 (White et al., 1994) with 0.2Mt yr-1 in 

the United States (Ahel and Giger, 1985; Naylor et al., 1992).  One of the reasons why APnEOs 

and their degradation products have received much concern and research interest is their 

environmental persistence, as they have been identified in relatively high concentrations in 

industrial sewage effluents and in sediments in lakes and rivers in Europe (Jobling and Sumpter, 

1993; Sumpter and Jobling, 1995; Jobling et al., 1996; Nimrod and Benson, 1996). 
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1.2.1 Xenoestrogen: Nonylphenol 

Nonylphenol polyethoxylates (NPEOs) are the most extensively used of the APnEO 

family.  The annual production of NPEOs from the US, Western Europe, and Japan totaled 

around 0.35 Mt (Ahel et al., 1994).  In 1989, NPEO usage in Canada was 6.0 kt, with the number 

expected to rise with time (Bennie et al., 1998).  Their general structure consist of a phenol core 

connected to one of many hydrophobic, branched, isomeric nonyl moieties via o, m, or p 

substitution, and a hydrophilic ethoxylate chain ether linked at the phenolic oxygen (John and 

White, 1998) (structure detailed in Figure 1.2).  The s in NPEOs denotes the number of ethylene 

glycol (EO) units present in the molecule with NP representing nonylphenol (John and White, 

1998).  Nonylphenol polyethoxylates themselves do not exhibit any estrogenic activity.  

However, during wastewater treatment, they are biodegraded to shorter homologs; ones 

containing fewer number of EO units, which are estrogenically active and eventually discharged 

into the aquatic environment.  The first stage of NPEO biodegradation is relatively efficient.  In 

this process, Pseudomonas putida, a strain of bacteria normally found in the activated sludge 

portion of the wastewater treatment system, drives the progressive conversion of parent NPEOs 

into short-chain ethoxylates, such as 4-nonylphenoxyacetic acid and 4-nonylphenol diethoxylate 

via hydrolytic removal of EO on the NPEOs (Field and Reed, 1996; John and White, 1998; 

Bennie, 1999).  A further degradation process of the resultant compounds to NP, the fully 

deethoxylated form, occurs in anaerobically stabilized sewage sludge (Bennett and Metcalfe, 

1998).  Nonylphenol and lower homologs of NPEOs are more persistent and lipophilic than the 

parent NPEOs, thus the level of toxicity increases as the biodegradation process proceeds (Ahel 

et al., 1994; Liber et al., 1999; Lye et al., 1999; Maguire, 1999). 
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Figure 1.2 Chemical structures of nonylphenol polyethoxylate and nonylphenol. 

Recent research has identified NP as the most significant degradation product of NPEO 

because of its estrogenicity, toxicity, enhanced resistance toward biodegradation, and 

bioaccumulation in aquatic organisms (Talmage, 1994; Bennie, 1999; Liber et al., 1999).  

Studies conducted on several fish species have shown NP to induce development of ovotestes 

while delaying testicular development and inhibiting spermatogenesis in males, cause increased 

levels of VTG and zona radiata protein in both males and females, and altered gonadosomatic 

indices (Jobling et al., 1996; Gray and Metcalfe, 1997; Arukwe et al., 1998; Arukwe et al., 2000; 

Kinnberg et al., 2000).  In Atlantic Canada, the use of NP as a solvent/emulsifier in pesticide 

spraying has been implicated for the declining Atlantic salmon population (Fairchild et al., 

1999).  In the U.S., a study conducted by the Alkylphenol & Ethoxylates Program Panel of the 

U.S. Chemical Manufacturers Association found great variability between measurements of 

environmental concentrations of NP from different sample sites.  In sites downstream of 

industrial or wastewater treatment facilities, the mean NP concentrations in water was 0.12 μg/l 

with the maximum concentration observed being 64 μg/l. Sixty percent of the test sites showed 

less than detectable NP levels (Talmage, 1994).  The amount of NP in the sediments of the same 

bodies of water showed much variability with measurements between 2.9-2960 μg/kg, with a 
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mean of 161.9 μg/kg (Talmage, 1994).  NP levels in receiving waters of sewage treatment 

facilities measured in the range of 325-1000 μg/l (Talmage, 1994). 

1.2.2 Xenoestrogen: 17α-ethinylestradiol 

Another common xenoestrogen found in sewage treatment plants is EE (structure detailed 

in Figure 1.3); a potent synthetic estrogen and one of the most commonly used active ingredients 

in oral contraceptives (Purdom et al., 1994).  The majority of EE is excreted from humans as 

glucuronide conjugates, some of which revert back to the parent EE via microbial β-

glucuronidase activity during wastewater treatment (Desbrow et al., 1998).  Measurements taken 

from sewage treatment plant effluents around the world report EE concentrations ranging from 

non-detectable to 0.38 ng/l in the rivers Thames, Calder, and Aire, UK (Williams et al., 1999), 

non-detectable to 7.0 ng/l (Desbrow et al., 1998), and non-detectable to 42 ng/l  at sewage 

treatment plants in Ontario, Canada (Ternes et al., 1999).  Similar to NP, in fishes exposed to EE, 

increased VTG production along with reduction in gonadosomatic index were evident in males 

and females, as well as alterations in female gonadal physiology, and altered testis histology in 

males (Van den Belt et al., 2002).  Of particular concern is the exposure to xenoestrogens or 

other EDCs during early developmental stages since many of the endocrine feedback 

mechanisms that are present in adults may not be fully developed in juveniles.  Consequently, 

adverse effects may be observed at doses lower than those seen in adults. 
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Figure 1.3 Chemical structures of the endogenous estrogen 17β-estradiol (E2) and synthetic 
estrogen 17α-ethinylestradiol (EE). 

1.3 Target Receptor: Estrogen Receptor 

As aforementioned, one commonality amongst xenoestrogens is the ability to interact 

with ERs, which are found either at the cell surface or the cell nucleus of various target tissues.  

Nuclear ERs are ligand-dependent transcription factors belonging to the steroid/thyroid/retinoic 

acid superfamily.  All members of this family share a basic structure consisting of six domains 

(A-F).  These are the variable N-terminal domain (A/B), a highly conserved zinc-finger 

containing domain that binds DNA (C or DBD), a variable hinge region (D), a well-conserved 

ligand binding domain (E or LBD), and a variable C-terminal region (F).  When ligand binds to 

the receptor, the conformation of the LBD is changed, inducing receptor dimerization.  

Subsequently, the receptor-ligand dimer interacts with specific sequences in the target gene, 

modulating its transcription (Hewitt and Korach, 2002). 

In mammals, two ER subtypes, ERα and ERβ have been identified.  In fish, piscine ERs 

share a number of commonalities with their mammalian homologues, with two major 
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differences.  First, in addition to the full-length ERα, an isoform lacking the A domain and 

containing a ligand-independent transactivation function has been isolated in fish as well as in 

other oviparous species.  This isoform is mainly, if not solely, expressed in the liver and is 

believed to play a role in hepatic vitellogenesis (Melamed and Sherwood, 2005).  Secondly, 

recent research have demonstrated that most teleost fish, including the zebrafish (Danio rerio), 

possess two distinct forms of ERβ, ERβa and ERβb, encoded by two distinct genes (Hawkins and 

Thomas, 2004). 

1.4 Biochemical Indicators of Xenoestrogen Exposure and Effect 

1.4.1 Vitellogenin 

Induction of protein transcription and translation is one of the most studied responses to 

xenoestrogen exposures; specifically, vitellogenin (VTG) and zona radiata (eggshell) proteins in 

oviparous vertebrates have gained wide acceptance as reliable biomarkers for xenoestrogen 

exposures (Tyler et al., 1996; Arukwe et al., 1997b). 

Vitellogenin is a calcium-binding phospholipoglycoprotein vital in the reproduction 

process of oviparous vertebrates.  Its classification as a phospholipoglycoprotein indicates the 

important functional groups that it possesses; lipids, several carbohydrates, and phosphate groups 

(Mommsen and Walsh, 1988; Silversand and Haux, 1995).  As well, the maturing oocytes 

receive most of its mineral supplies as a result of the ion-binding capability of VTG.  Produced 

in the liver, VTG is synthesized and released under hormonal regulation through the 

hypothalamic-pituitary-gonadal-liver axis.  17β-estradiol, the endogenous estrogen, is the 

primary hormone that stimulates the release of VTG from the liver into the blood.  It then 

traverses to the ovaries where it is cleaved into phosvitin and lipovitellin, which are incorporated 

into the yolk of growing oocytes as a source of nutrients for embryos (Mommsen and Walsh, 

1988; Nicholas, 1999).  In sexually maturing female fish, VTG levels rise gradually, and in some 
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species plasma concentrations can reach several milligrams per milliliter (Copeland et al., 1986; 

Tyler et al., 1996).  In contrast, VTG concentration is very low or absent in male and juvenile 

fish, but can be induced upon xenoestrogen exposure (Sumpter and Jobling, 1995; Folmar et al., 

1996; Jobling et al., 1996; Tyler et al., 1998).  It is important to note that although males do carry 

the VTG gene, endogenous E2 levels in male fish  are usually too low to induce the production 

of VTG (Flouriot et al., 1993). 

1.4.2 Heat Shock Protein 70 (HSP70) and Apoptosis 

Although useful as a biomarker of exposure, VTG induction does not offer much insight 

regarding the cause(s) of observed adverse effects associated with xenoestrogen exposures.  

Recent studies have suggested that apoptosis and heat shock protein 70 (HSP70) induction may 

be involved with the observed toxicity of estrogenic compounds and other toxicants (Janz et al., 

1997; Weber and Janz, 2001; Weber et al., 2002a; Weber et al., 2002b; Yoo and Janz, 2003).  

Thus, further investigation on the relationships between apoptosis, HSP70 induction, and 

estrogenic toxicity is warranted towards a better understanding of how estrogenic compounds are 

affecting the fish reproductive system. 

Apoptosis is a physiological process whereby cells are induced to die; i.e. programmed 

cell death.  It is thought that apoptosis can act as an early cellular indicator of toxicity where 

apoptotic induction occurs at lower toxicant concentrations and may switch to necrosis (a 

pathological condition) at higher concentrations (Robertson and Orrenius, 2000).  There are two 

main reasons why inducible cell suicide exists.  First, apoptosis is needed for proper 

development as is mitosis.  For example, in the formation of the fetal fingers and toes, apoptosis 

is required to remove the tissue between them.  Second, apoptosis is needed to destroy cells that 

pose a threat to the integrity of the organism such as in the cases of viral infection, DNA damage 

and carcinoma.  While the signals triggering apoptosis may vary widely between species, tissues 
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and conditions, the intracellular apoptotic process is highly evolutionarily conserved 

(McConkey, 1998).  An example of this high conservation includes the specific DNA 

fragmentation at internucleosomal sites (Gavrieli et al., 1992).  Occurrence of apoptosis can be 

detected by measuring the specific DNA fragmentation in histological sections using terminal 

dideoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (Gavrieli et al., 1992; Tilly and 

Perez, 1997).  Various studies have demonstrated increased cellular apoptosis in fish ovarian 

follicular cells, skin, medial yolk vein, thymocytes and hepatocytes after exposure to a variety of 

toxicants (Janz et al., 1997; Marty et al., 1997; Cantrell et al., 1998; Piechotta et al., 1999; Janz et 

al., 2001; Weber and Janz, 2001). 

Heat shock proteins are highly conserved proteins that are synthesized by the cells of all 

organisms studied so far (Jaattela, 1999; Whitley et al., 1999), including fish (Iwama et al., 

1998).  There are three major HSP families: HSP90 (85-90 kDa), HSP70 (68-73 kDa), and low 

molecular weight HSPs (16-47 kDa).  During normal unstressed condition, they play crucial 

roles in protein metabolism by acting as chaperones to assure proper folding and transport of 

newly formed polypeptides, as well as taking part in the repair and/or degradation of altered or 

denatured proteins (Kiang and Tsokos, 1998).  Heat shock protein induction has been proposed 

as a biochemical indicator of toxicant exposure in aquatic organisms (Iwama et al., 1998).  

Among the HSP families, HSP70 subfamily is the best characterized and contains a highly 

stress-inducible isoform encoded by the HSP70 gene.  Varieties of metals (Ryan and Hightower, 

1994; Williams et al., 1996; Yoo and Janz, 2003), bleached kraft pulp mill effluents (Janz et al., 

1997; Vijayan et al., 1998; Janz et al., 2001), and aryl hydrocarbon receptor (AhR) agonists 

(Weber and Janz, 2001) have been reported to induce HSP70 expression in fish.  Weber and Janz 

(2001) reported a negative relationship between expression of HSP70 and apoptosis in ovaries of 
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juvenile channel catfish (Ictalurus punctatus) exposed to β-naphthoflavone and 

dimethylbenz[a]anthracene.  Gurbuxani et al. (2003) recently demonstrated that HSP70 can 

inhibit apoptosis by neutralizing and interacting with apoptosis-inducing factor, providing a 

plausible explanation for Weber and Janz’s (2001) observed negative relationship between 

HSP70 expression and apoptosis. 

Frequently used methods to determine HSP70 expression are via Northern and Western 

blots, in addition to linking HSP70 gene promoters to reporter genes in transfected cells 

(Salminen et al., 1996; Braeckman et al., 1999; Ait-Aissa et al., 2000; Tully et al., 2000).  More 

recently, transgenes were developed to provide a simpler and faster technique of detecting 

HSP70 expression.  Transgenes allow for easier observation of gene expression in vivo by fusing 

a reporter gene to a stress-inducible promoter.  Stable germline transgenic zebrafish were 

recently shown to be possible (Amsterdam et al., 1995; Halloran et al., 2000).  Green fluorescent 

protein (GFP), originally isolated from the jellyfish Aequorea victoria has been incorporated into 

zebrafish to produce a line of transgenic zebrafish carrying the HSP70-eGFP construct.  This 

HSP70-eGFP reporter gene was demonstrated to be a reliable and dose-dependent indicator of 

cadmium exposures (Blechinger et al., 2002).  This stable line of transgenic zebrafish has been 

maintained over many generations and may prove to be a useful tool in determining the 

mechanism(s) of toxicity associated with xenoestrogen exposures. 

1.5 Zebrafish (Danio rerio) 

Fish have long been used as sentinels for various types of toxicological studies including 

risk assessment.  For the present study, zebrafish was chosen to evaluate the effects of 

xenoestrogens, namely EE and NP, on the fish reproductive system.  Zebrafish is a small fresh 

water tropical fish originating from the streams of South-eastern Himalayan region.  It is popular 

among the aquarium hobbyist and readily available in pet stores.  In the scientific community, it 
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has also enjoyed a steady gain in recognition as a choice model for vertebrate developmental and 

genetic studies.  Its value in fish biology, toxicology and pharmaceutical research has also been 

widely recognized (Lele and Krone 1996).  Consequently, an extensive knowledge base of 

morphological, physiological, biochemical and histological information at all early 

developmental stages as well as in juveniles and adults of both sexes has been accumulated.  

Combined with the advancements in mapping of its genome, zebrafish has proven to be an 

invaluable research species.  As a result of its popularity as an animal model, its optimal 

breeding conditions and maintenance techniques have been determined and publicized 

(Westerfield, 1995).  Its popularity is evident through the dramatic increase in the number of 

publications using this species; going from about 100 annually in the early 1990s to around 3,500 

per year in recent times (Hill et al., 2005). 

Zebrafish is an undifferentiated gonochorist, where genotypic males go through a period 

of transitory hermaphroditism during the juvenile developmental stage (Takahashi, 1977).  Other 

gonochoristic teleosts that undergo a similar process include sea bass (Dicentrarchus labrax), 

European eel (Anguilla anguilla), and several other antabantids (Blazquez et al., 1998).  All 

gonads of zebrafish begin with development of ovary-like tissues.  Soon afterwards, future 

females continue to develop ovaries, while in future males, the ovarian tissues degenerate and 

disappear, followed by the development of testicular tissues at 23-25 days post hatch (dph).  

Simply put, even the males pass through an ovary-like stage before the final development of 

male gonads.  Full sex reversal and testicular formation occurs by 40 dph (Takahashi, 1977; 

Uchida et al., 2002).  Therefore time of exposure is as critical as type of compounds exposed in 

determining the effect of xenoestrogens.  Several studies have reported that exposing zebrafish to 

xenoestrogens during the critical period of sexual differentiation results in altered sex 
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distribution, suppressed gonad development, induction of VTG, and development of ovotestes 

(Andersen et al., 2003; Hill and Janz, 2003; Orn et al., 2003). 

Zebrafish is an attractive alternative animal model for several reasons.  First, adult 

zebrafish are small, hardy and relatively inexpensive to maintain.  Its small size also allows for 

minimal number of slides needed for complete histological evaluation of major organs (Lele and 

Krone, 1996; Spitsbergen and Kent, 2003).  Under optimal conditions, zebrafish can be bred 

continuously year-round and females lay large quantities of eggs daily.  As well, the eggs are 

transparent and externally fertilized, making easy close observations on the embryo of the 

different developmental stages taking place; going from a fertilized egg into a larval fish in a 

relatively short time span of 2 to 4 days.  Another benefit of this species is the rapid generation 

cycle; the time from eggs to mature adults is only 12 -14 weeks, which is advantageous when 

performing multi-generation reproductive studies.  Studies involving chemical exposures during 

the early developmental stages can be easily performed using the zebrafish as well since the 

embryos develop outside of the mothers, and chemical exposure assays can be carried out by 

simply placing the eggs in aqueous solutions containing the chemical (Westerfield, 1995).  

Furthermore, the European scientific community, the Organization for Economic Co-operation 

and Development (OECD) and the United States Environmental Protection Agency (US EPA) 

have all recommended the use of zebrafish as a primary model for investigations involving 

exposure to xenoestrogens and other endocrine disrupting compounds in fishes. 

1.6 Research Scope 

Hill and Janz (2003) had previously exposed developing zebrafish to differing levels of 

the weak estrogen receptor agonist, NP (10, 30, or 100 μg/l nominal) or the potent estrogen 

receptor agonist, EE (1, 10, 100 ng/l nominal) to determine concentration dependent effects on 

sex distribution, gonad morphology, VTG induction and breeding success.  Fish were exposed 
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from 2 to 60 dph, and after day 60, the surviving fish were reared in clean water until reaching 

adulthood at 120 dph for breeding studies.  The results showed a concentration dependent 

increase in the number of fish with underdeveloped gonads in EE and NP exposure groups while 

incidences of ovotestes were associated with NP exposures.  Induction of VTG was also evident 

at 30 and 100 μg/l NP and 10 ng/l EE.  Although no significant deviation in sex distribution were 

observed in adults at 160 dph, significant reductions in the percent of fertilized eggs, hatchability 

and swim-up success at 10 ng/l EE and 100 μg/l NP were recorded from breeding trials of adult 

fish from 120 to 160 dph (Hill and Janz, 2003).  These results indicate that functional endpoints 

(breeding success) may be a more sensitive indicator than morphological endpoints (length, 

weight and condition factor) in adult zebrafish exposed to xenoestrogens during sexual 

differentiation and early gametogenesis.  The study also focused on histological examination of 

gametogenesis and organ toxicity of the exposed zebrafish.  It found that exposure to NP (≥ 100 

µg/l nominal) and EE (≥ 1 ng/l nominal) from 2 to 60 dph led to concentration-dependent 

suppression of gametogenesis in both male and female zebrafish.  Severe kidney pathology was 

also evident in 60dph zebrafish at a threshold of 10 ng/l EE.  Fish from the same group that had 

been reared in clean water from 60 to 300 dph exhibited normal testes and lacked signs of liver 

or kidney histopathology.  However, zebrafish exposed developmentally to 100 µg/l NP 

exhibited increased ovarian follicle atresia at 300dph (Weber et al., 2003).  Atresia is a process 

where ovarian follicles lose their integrity, degenerate, and are subsequently eliminated prior to 

ovulation (Byskov, 1978).  Apoptosis of granulosa cells that provide hormonal support for the 

oocyte has been determined to be the primary molecular mechanism for ovarian follicular atresia 

in mammals and most likely other vertebrates as well (Tilly et al., 1991; Hughes and Gorospe, 

1991; Hsueh et al., 1994). 
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Thus far, the majority of research on effects of xenoestrogens on aquatic species has 

focused primarily on exposure to single chemicals, despite the fact that they are more likely to be 

exposed to combinations of such compounds in the environment.  Furthermore, studies 

examining the impacts of xenoestrogens in fish have thus far mostly evaluated morphological 

changes, but as evidenced by several studies (Bayley et al., 1999; Toft and Baatrup, 2001; Hill 

and Janz, 2003; Weber et al., 2003) functional changes may be better indicators in studying 

developmental exposure to estrogens in fish.  Although there has been an increased effort to 

understand mixture toxicity of xenoestrogens (Thorpe et al., 2001; Thorpe et al., 2003; Brian et 

al., 2005), few studies have investigated in vivo effects of xenoestrogen mixtures on early 

development and subsequent reproduction. 

Additionally, despite the recent intense efforts to identify and develop reliable biomarkers 

to evaluate the effect of xenoestrongens on aquatic organisms, so far, there have only been 

biomarkers of exposure (VTG and zona radiata induction).  Therefore, in order to better 

understand the toxic mechanism of xenoestrogens on the fish reproductive system, research is 

needed to identify biomarkers that are capable of relating exposure to impaired reproductive 

capability.  Evaluation of HSP70 expression as well as apoptosis induction may contribute 

towards the development of reliable biomarkers of effect. As demonstrated by Gurbuxani et al., 

(2003) as well as in fish by Weber and Janz (2001), HSP70 expression appears to affect the level 

of apoptotic cell death in the vertebrate gonad. 

1.7 Research Objectives 

The objectives of the present study were to: 

1. Determine the effects of developmental exposure to binary mixtures of EE and 

NP on VTG induction, HSP70 expression, gametogenesis, sex distribution, and 

reproductive fitness of zebrafish.     
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2. Determine the possible mechanism of the observed reproductive failure via  

 correlating HSP70 induction and incidence of gonadal cell (ovary and testis)  

 apoptosis.   

1.8 Hypotheses 

The formulated hypotheses for the objectives are as follows: 

1. The effects of exposure to the binary mixtures will be less than additive. While 

EE is the more potent estrogen receptor agonist of the two, NP occurs in the 

environment at concentrations several orders of magnitude higher than EE. The 

higher concentration of NP may act as functional antagonist to EE by blocking 

EE’s ability to bind to estrogen receptors.   

2. The decrease in reproductive function of xenoestrogen - exposed zebrafish is due 

to degeneration of gonads brought on by apoptosis. Fish which exhibit a decrease 

in reproductive function after xenoestrogenic exposures would exhibit a higher 

incidence of apoptosis and lower HSP70 expression in gonadal cells. 
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CHAPTER 2 
MATERIAL AND METHODS 

2.1 Test Compounds  

17α-Ethinylestradiol (17α-ethinyl-1,3,5[10]-estratriene-3,17β-diol; 98% purity) and 4-

nonylphenol (technical grade) were obtained from Sigma-Aldrich (St. Louis, MO, USA).  Stock 

solutions of EE and NP were prepared in HPLC-grade acetone.  Solvent concentration was kept 

at 0.01% v/v nominal throughout the experiment. 

2.2 Experimental Animals  

2.2.1 Wild-type Zebrafish 

Adult wild-type zebrafish for breeding stock were purchased from Petland, a local pet 

supply store (Saskatoon, SK, Canada) and housed in a temperature (28 ± 1°C) and photoperiod 

(16 h light: 8 h dark) controlled environmental chamber at the Toxicology Centre at University 

of Saskatchewan.  Approximately two hundred fish were divided evenly between ten 40 l glass 

aquaria supplied with dechlorinated tap water (pH: 7.7; conductivity: 380 µS/cm; hardness: 128 

mg/l CaCO3; alkalinity: 78 mg/l CaCO3; dissolved organic carbon: 2.5 mg/l; total dissolved 

solid: 210.8 mg/l).  Aeration and filtration were provided by Biofoam sponge filters (Hagen, 

Montreal, QC, Canada).  Fish were fed twice per day with Nutrafin Max flake food (Hagen, 

Montreal, QC, Canada) in the morning, supplemented with freshly hatched brine shrimp 

(Artemia nauplii) in the evening.  Fish were acclimated to laboratory conditions for 4 weeks 

prior to breeding. 
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2.2.2 HSP70-eGFP Transgenic Zebrafish 

Twelve adult HSP70-eGFP transgenic zebrafish were generously donated by Dr. Patrick 

Krone of the Department of Anatomy and Cell Biology at University of Saskatchewan.  They 

were housed in one 40 l glass aquarium under the same maintenance conditions prescribed for 

the wild-type zebrafish. 

2.3 Parental Breeding 

Wild-type adults were bred to obtain eggs for the exposure experiments.  Plastic 

spawning trays covered by meshed lid (with artificial spawning plants attached) were placed in 

tanks in the afternoon of the day prior to breeding.  On the following day, at 1 h after the start of 

the light cycle, spawning trays were removed from the tanks.  Eggs were collected and placed 

into plastic Petri dishes containing sterile salt-based egg water (60 mg/l Instant Ocean salts) 

(Westerfield, 1995) and assessed for viability under a dissecting microscope.  Fertilized eggs are 

translucent while non- fertilized ones appear opaque.  Fertilized eggs were then divided into 

25ml sterile glass Petri dishes with approximately 50 eggs per dish and rinsed using egg water to 

remove any waste matter.  The egg water was changed daily to prevent growth of mold or 

bacteria.  Fertilized eggs were held in sterile glass Petri dishes until hatch.  Petri dishes used for 

the incubation of eggs were washed and rinsed with acetone, followed by a thorough rinse with 

ddH20.  The Petri dishes were then wrapped in aluminum foil and autoclaved at 110°C for 15 

min.  They were stored in the temperature controlled environmental chamber until use. 

Adult HSP70-eGFP transgenic zebrafish were bred to obtain eggs using the same method 

as the wild-type zebrafish described above. 

2.4 Juvenile Zebrafish Care 

Prior to starting the 60dph exposure experiment, efforts were devoted to creating a 

maintenance routine that ensured optimum survival rate of the juvenile zebrafish, particularly 
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during the critical 7-10 day period following the onset of exogenous feeding.  See Appendix A 

for a description of the various conditions and feeding regimens employed for these experiments. 

2.5 Exposure Assays 

Newly hatched fry were held in sterile glass Petri dishes (50 fry per dish) containing egg 

water.  At 2 days post-hatch (dph), fry were exposed to nominal concentrations EE (1 or 10 ng/l; 

denoted EE1 or EE10), NP (10 or 100 μg/l; denoted NP10 or NP100), EE + NP (1 ng/l + 10 μg/l, 

1 ng/l + 100 μg/l, 10 ng/l + 10 μg/l, or 10 ng/l + 100 μg/l; denoted EE1+NP10, EE1+NP100, 

EE10+NP10, or EE10+NP100) or acetone solvent (control) at a 1 μl/10 ml total dilution in 

system water (Figure 2.1).  There were three replicates of each test chemical concentration and 

solvent control.  A 100% water change was performed every 48 h from 2 to 60 dph.  Fresh 

acetone or test chemicals were added at the time of each water change.  Two sets of glassware 

were assigned to each treatment group, and were used to house only the assigned group to 

prevent any cross-contamination.  From 2 to 30 dph, fry were fed an alternating diet of 

Paramecium multimicronucleatum or freshly hatched brine shrimp three times daily.  If present, 

any debris, waste matter or dead fry were removed manually via a Pasteur pipette.  At 7 dph, fry 

were transferred to aerated 250 ml beakers.  At 30 dph, fry were transferred to aerated 1 l glass 

beakers, and an alternating diet of flake food and newly hatched brine shrimp was provided twice 

daily.  Chemical exposures continued until 60 dph.  At 60 dph, 42 fish (14 fish per replicate) 

from each treatment group were randomly selected for measurement of lengths, weights, 

histological examination of the gonads, HSP70, VTG and apoptosis determinations.  Remaining 

fish were transferred to 20 l glass aquaria and reared in dechlorinated municipal tap water to 

allow a six month depuration period until 240 dph, at which time breeding trials were conducted 

(Figure 2.2). 
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The initial culture of Paramecium multimicronucleatum was supplied by The Bug Farm 

(San Rafael, CA, USA).  The culture was maintained by adding the starter culture to a 1 l glass 

beaker containing 15-20 boiled wheat kernels in 900 ml dechlorinated water.  Every two weeks, 

a new culture was started by adding paramecium from the previously established cultures to 

another 1 l glass beaker containing boiled wheat berries in 900 ml dechlorinated water.  Cultures 

were kept in the environmental chamber where warm temperature (28 ± 1 ºC) and light exposure 

ensured optimum growth. 

Brine shrimp (Artemia nauplii) were hatched daily in the environmental chamber.  In the 

afternoon prior to the collection of freshly hatched brine shrimp, 1 teaspoon of brine shrimp eggs 

(San Francisco Bay Brand, Newark, CA, USA) were added to 1 l of water containing 30 g 

Instant Ocean salts in a separatory funnel.  The water was constantly agitated and aerated via an 

air stone attached to an aquarium air pump.  The eggs were allowed to hatch overnight.  On the 

following day, the aeration was turned off and the freshly hatched brine shrimp would collect at 

the bottom of the beaker due to their weight, while empty egg shells floated to the top.  Since 

brine shrimp are phototropic, a table lamp was directed towards the bottom of the beaker to 

attract them.  Subsequently, brine shrimp were collected and fed to the fish. 
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Figure 2.1  Exposure schematic.  Three replicates (50 fish per replicate) of each treatment were 
carried out from 2 to 60 dph.  EE, ethinylestradiol; NP, nonylphenol. 
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2-60 dph:  
EXPOSURE 

60-240 dph:  
NO EXPOSURE 

Biochemical: whole-body VTG, whole-body 
HSP70 and gonad cell apoptosis. 
Developmental: Sex distribution and gonad 
histology. 
Morphometric: Length, weight, and 
condition factor. 

Functional: Fecundity, 
egg quality, and swim-
up success of fry (F1). 

Figure 2.2  Experimental design.  Exposure to EE, NP, EE+NP or control from 2 to 60 dph.  At 
60 dph, 42 fish (14 fish per replicate) from each treatment group were randomly selected for 
measurement of biochemical endpoints (whole-body VTG induction, whole-body HSP70 
expression, gonadal apoptosis), developmental endpoints (sex distribution and gonad histology), 
and morphometric endpoints (lengths, weights, and condition factor)  Remaining fish were 
reared in dechlorinated municipal tap water to allow a six month depuration period until 240 dph 
for reproductive studies to evaluate functional endpoints (fecundity, egg quality, and swim-up 
success of the F1 generation).  EE, ethinylestradiol; NP, nonylphenol; VTG, vitellogenin. 

2.6 Histology 

At 60 dph, 21 fish from each treatment were euthanized with an overdose of MS-222 (3-

aminobenzoic acid ethyl ester, methanesulfonate salt).  Body weights and lengths were recorded, 

and condition factors were calculated using the following formula (Ricker, 1975):  

[(body weight (g)/length (mm)3] × 100,000                                                                   (2.1) 

Fish were then fixed in Bouin’s solution (Ricca Chemical, Arlington, TX, USA) for 24 h 

and subsequently transferred to 70% ethanol.  Whole fish were dehydrated through a graded 

series of ethanol (three consecutive cycles of 70% ethanol for 15 min, 2 h and 2h, followed by 2 

h in 80% ethanol, 2 h in 95% ethanol, three consecutive 2 h-cycles in absolute ethanol, then two 

consecutive 40 min-cycles in xylene) and embedded in paraffin wax using Fisher Histomatic 
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Tissue Processor model 165 (Fisher Scientific, Hampton, NH, USA). The paraffin-embedded 

specimens were sent to Prairie Diagnostics at the University of Saskatchewan (Saskatoon, SK, 

Canada) for sectioning. Longitudinal 5 μm sections along the entire dorso-ventral axis were 

taken with a microtome at 20 μm increments, and collected onto glass slides. 

2.6.1 Hematoxylin and Eosin Staining 

The slide-mounted sections were deparaffinized and stained with hematoxylin and eosin 

with the following protocol.  Deparaffinization was achieved by soaking the sections in xylene 

twice at 2 min each.  The sections were then hydrated by soaking in absolute ethanol for 2 min, a 

1-sec dip in another absolute ethanol bath, a 1-sec dip in 95% ethanol, and a 1-sec dip in 70% 

ethanol.  The staining process begun by first soaking the sections in hematoxylin for 5 min, 

followed by 3 1-sec dips in tap water, a quick dip in acid alcohol, immersed in warm tap water 

for 6 min, 4 quick dips in ddH2O and concluded with soaking in eosin for 3 min.  Sections were 

rinsed with tap water to remove any extra stain.  Sections were then dehydrated by a 1-sec dip in 

70% ethanol, a 1-sec dip in 95% ethanol, a 1-sec dip in absolute ethanol and a 2-min soaking in 

another absolute ethanol bath.  Two additional soaks in xylene for 2 and 5 min were performed 

before the cover slips were mounted on the sections with Permount (Fisher Scientific, Hampton, 

NH, USA).  The slides were allowed to dry overnight under a fume hood.  Slides were then 

analyzed blind of treatment with a light microscope to evaluate the presence or absence of gonad 

tissue and determine the phenotypic sex. 

2.6.2 Terminal Dideoxynucleotidyl Transferase dUTP Nick End Labeling 

Prior to starting this assay, the incubator, oven, tubes and benchtop used were thoroughly 

disinfected with ethanol.  As well, only sterilized pipette tips were used. 

Additional sections from the previously-sectioned paraffin-embedded specimens were 

taken with a microtome, and collected onto glass slides for TUNEL staining.  The slides were 
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deparaffinized by incubating at 60°C in a drying oven for 30 min.  The slides were hydrated by 

first soaking in xylene (replaced everyday) for two 5-min sessions.  Following the xylene soaks, 

the slides were soaked in 100% isopropanol for 5 min.  This step was repeated for an addition 5 

min.  The slides were subsequently soaked in 90% isopropanol for 3 min, 80% isopropanol for 3 

min, 70% isopropanol for 3 min and concluding with a 3-min soak in sterile reagent-grade water 

(replaced everyday). 

The slides were placed in a Shandon immunohistochemistry tray, topped with a bead of 

citrate digestion buffer (0.1 M trisodium citrate), and covered with Shandon cover slips while 

ensuring no air bubbles were present.  Each slide was rinsed with 100 µl citrate digestion buffer.  

This was repeated two more times.  The slides were then placed in a microwave and heated for 

30 sec.  Immediately after, slides were rinsed with 100 µl ice-cold ddH2O.  This was repeated 

two additional times.  For the positive control slide, 100 µl DNase working solution was added 

and incubated at room temperature for 10 min.  One ml of DNase working solution was made up 

of 980 µl of DNase buffer (30 mM Tris base, 140 mM potassium cacodylate, 4 mM 

MgCl2⋅6H2O, pH 7.2), 10 µl of 10 mM dithiothreitol and 10 µl of DNase I (Roche 

10776785001).  The positive control slide was washed three times with 200 µl sterile water (5 

min between each wash).  All slides were pre-incubated with 95 µl 1x TdT substrate solution for 

20 min at room temperature.  The 1x TdT substrate solution was made from the following recipe: 

25 mM Tris HCl, 200 mM cacodylic acid, 5 mM cobalt chloride, pH 6.6.  On the day of assay, 1 

µl per ml of TdT substrate solution of dUTP-fluorescein (Roche 11373242910) was added.  The 

mixture was protected from light with aluminum wrap and stored on ice.  The negative control 

slide was treated with 100 µl of 1x TdT substrate solution while the other slides were each 

treated with 100 µl of TUNEL reaction mixture (995 µl 1x TdT substrate solution and 5 µl TdT 
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enzyme (Roche 03333566001) to make 1 ml).  All slides were placed in a humidified incubator 

at 37°C for 120 min.  Afterwards, the slides were rinsed three times with 100 µl TBS at room 

temperature; 5 min in between each rinse.  The slides were then incubated with 100 µl per slide 

of 3% BSA in TBS for 30 min at room temperature.  Ninety-five µl of Converter-AP solution 

(Roche 11684809910) was added to each slide and incubated at 37°C for 60 min.  Subsequently, 

each slide was rinsed three times with 100 µl TBS at room temperature; 5 min in between each 

rinse.  The slides were each incubated with 100 µl NBT/BCIP working solution for 60 min at 

room temperature.  During the 60-min incubation, three additional treatments of 100 µl 

NBT/BCIP working solution were added to each slide at 15-min intervals.  The NBT/BCIP 

working solution was made by diluting the NBT/BCIP stock solution (Roche 11681451001) 1:50 

with dilution buffer (0.1 M Tris base, 0.05 M MgCl2, 0.1 M NaCl, pH 9.5).  Due to the light 

sensitive nature of the color development process, lights were turned off and the slides covered 

with aluminum foil.  The color development was stopped by rinsing slides with 200 µl TE at 

room temperature.  This was repeated two additional times with 1 min in between each rinse. 

The slide-mounted sections were dehydrated and counter-stained by first dipping in eosin 

working solution (1% (w/v) eosin Y solid, 78% (v/v) 95% ethanol, 0.5% glacial acetic acid) for 

10 sec.  The slides then were immersed in 70% isopropanol for 30 sec, 90% isopropanol for 5 

min, 100% isopropanol for 3 min (twice) and xylene for 2 min (twice).  A drop of Permount was 

added to each slide and mounted with a cover slip.  The slides were allowed to dry overnight 

under a fume hood.  The slides were examined using an Olympus AH-2 light microscope. 

2.7 Gametogenesis 

Staging of oogenesis and spermatogenesis in hematoxylin and eosin-stained histological 

sections was conducted following the quantitative method described by Weber et al. (2003).  

Staging of the ovarian development was performed on sections of histologically determined 
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female fish.  With 200 × magnification using an Olympus AH-2 light microscope, the number of 

ovarian follicles at oogonial (smallest in size, with relatively larger nucleus contained in 

eosinophilic ooplasm) and previtellogenic (small in size, basophilic ooplasm and large nucleus 

with visible chromatin and single somatic cell layer) stages were enumerated.  The percent of 

follicles at each developmental stage was calculated as a percent of the total number of follicles 

in each view.  Four replicate views were evaluated in a blind fashion for each fish. 

Staging of the testicular development was performed on sections of histologically 

determined male fish.  Using an Olympus AH-2 light microscope at 1000 × magnification, the 

number of spermatocysts containing spermatogonia (eosinophilic cytoplasm with relatively large 

nucleus), primary or secondary spermatocytes (thread-like or condensed chromatin, respectively, 

with relatively smaller cytoplasm that does not take up dye) and spermatids or mature sperm 

(tightly packed nuclear material lacking surrounding cytoplasm and with a developed tail) stages 

were enumerated.  The percent of spermatocysts at a given developmental stage was calculated 

as a percent of the total number of spermatocysts in each view.  Four replicate views were 

evaluated in a blind fashion for each fish. 

2.8 Sixty Days Post-hatch Whole Body Vitellogenin Determination 

The remaining 60 dph fish were stored at -80°C until determinations of VTG and HSP70.  

Vitellogenin levels were determined using a commercial ELISA kit for zebrafish VTG (Biosense 

Laboratories SA, Bergen, Norway) in 60 dph zebrafish whole body homogenates.   

Sixty dph zebrafish were homogenized 1:3 (w:v) with ice cold working PBS buffer.  

Working PBS buffer was made by first diluting 10X PBS buffer (10.9 g Na2HPO4, 3.2 g 

NaH2PO4, 90 g NaCl, and 1 l ddH2O) 1:10 with ddH2O to create 100 ml 1X PBS buffer.  The 1X 

PBS buffer was then formulated to contain 1% BSA and 1mM 2-aminoethyl-benzenesulfonyl 
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fluoride  (AEBSF).  The homogenates were centrifuged for 15 min at 3,000g and 4°C.  

Following centrifugation, the supernatant was withdrawn and stored at -80 °C. 

As per manufacturer’s instruction, duplicate 100 µl of each homogenate sample (diluted 

appropriately to yield readings in the detection range of the VTG standard curve; dilution factor 

ranged from 1:20 to 1:1,000,000) was pipetted into the wells of the 96-well ELISA plate pre-

coated with a capture antibody that specifically binds to VTG.  Eight serial concentrations of the 

VTG standard were added in duplicate to each plate.  The plate was incubated for 60 mins at 

room temperature.  Each well was then washed 3 times with 200 µl washing buffer (PBS, 0.05% 

Tween-20).  Subsequently, 100 µl diluted detecting antibody was added to each well and 

incubated for 60 mins at room temperature.  The plate was washed 3 times with 200 µl washing 

buffer per well.  To each well, 200 µl diluted secondary antibody was added and incubated for 60 

mins at room temperature.  Each well was then washed 5 times with 200 µl washing buffer, 

followed by the addition of 100 µl OPD-peroxidase substrate solution.  The plate was incubated 

in the dark, covered with aluminum foil, for 30 minutes at room temperature.  The color 

development was stopped with the addition of 50 µl 2M H2SO4 to each well.  The absorbance 

was subsequently read at 492 nm with a microplate reader.  Vitellogenin concentrations 

measured were normalized to the weight (g) of the corresponding sample, taking into account the 

dilution of the sample.  Results were expressed as mg VTG per g body weight. 

2.9 Sixty Days Post-hatch Whole Body HSP70 Determination 

Whole body homogenates of 60 dph zebrafish were prepared to determine HSP70 

expression using Western blotting.  Individual fish were homogenized in 200 μl ice cold buffer 

(50 mM HEPES, 150 mM NaCl, 1 mM EGTA, 1.5 mM MgCl2, 1% v/v Triton X-100, 10% v/v 

glycerol, pH 7.5) containing protease inhibitors (0.1 mg/ml AEBSF, 20 μg/ml soybean trypsin 

inhibitor, and 1.9 μg/ml aprotinin).  Samples were gently mixed for 1 h at 4°C, and then 
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centrifuged for 25 min at 5,200 rpm and 4°C.  Following centrifugation, the supernatant was 

withdrawn and stored at -80 °C.  The protein concentration of each sample was determined (DC 

Protein Assay, BioRad, Hercules, CA, USA) using bovine serum albumin as standard.   

Proteins (30 μg protein per lane) were separated using 10% sodium dodecylsulfate 

polyacrylamide gel electrophoresis (SDS-PAGE).  The solution for the separating gel was made 

from the following ingredients: 16.0 ml lower stock solution (1.5 M Tris HCl, 0.4% SDS to pH 

8.8), 21.36 acrylamide/Bis stock (30%/0.8% w/v), 26.36 ml ddH2O, 320 µl 10% ammonium 

persulfate and 28 µl TEMED.  The solution was vortex mixed prior to and after the addition of 

TEMED.  The solution was subsequently poured into the casting case and the separating gel was 

cast.  One ml of butanol was layered to the top of the separating gel solution; this allows removal 

of any air bubbles at the top of the gel and ensures this part of the gel does not dry out.  Upon 

polymerization of the separating gel after 30 min, the butanol was poured out of the casting case, 

and the gel was rinsed with ddH2O.  At this point, the solution for the stacking gel was prepared 

using the following items: 5.0 ml upper stock (0.5 M Tris HCl, 0.4% SDS to pH 6.8), 3.0 ml 

acrylamide/Bis stock (30%/0.8% w/v), 12.0 ml ddH2O, 60 µl 10% ammonium persulfate and 20 

µl TEMED.  The stacking gel solution was vortex mixed prior to and after the addition of 

TEMED.  A 15-well comb was inserted into the casting case prior to the addition of the stacking 

gel solution.  Air bubbles were removed by gently tapping and/or reinserting the comb.  To 

ensure the wells were of the proper depth, additional stacking gel solution was periodically 

added as the stacking gel begun to polymerize.  Upon complete polymerization of the stacking 

gel, the homogenized samples were diluted 1:1 with 2x SDS sample buffer (0.05 M Tris-base, 

1% SDS, 0.01% bromophenol blue, and ddH2O to 100.0 ml).  Immediately before use, β-

mercaptoethanol was added to the SDS sample buffer at a concentration of 20 µl per 1.0 ml 
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buffer.  Prior to loading into the stacking gel, the diluted samples were heated at 80°C for 10 min 

with a heating block.  In lane #1, 6 µl of kaleidoscope marker (Santa Cruz Biotechnology, Santa 

Cruz, CA, USA) was added to provide a molecular weight standard.  Samples were loaded into 

the other lanes using gel-loading pipette tips.  Additional 2x SDS sample buffer was added to 

ensure equal volume in each well.  The electrophoresis chamber was filled with running buffer 

(247.8 mM Tris base, 1.918 M glycine, 1% SDS and ddH2O to 4 l, then diluted 1:10 with 

ddH2O) and proteins were separated at 64 mA for 4 hours at room temperature.  Following 

separation, proteins were transferred to 0.45 μm nitrocellulose membranes (BioRad) while 

immersed in transfer buffer (25 mM Tris base, 192 mM glycine, 20% methanol, 0.1% SDS and 

ddH2O to 5 l) for 17 hours at 4°C, at 30 V. 

Membranes were then blocked for 1 h in a 5% skim milk (BioRad) solution in TBS-T.  

Membranes were probed with a 1:5,000 dilution of a monoclonal mouse anti-bovine HSP70 

antibody (Sigma-Aldrich H5147) in 1% skim milk/TBS-T for 1 h at room temperature.  The 

membranes were then washed three times (5, 10 and then 15 min) with 100 ml TBS-T at room 

temperature.  Membranes were then incubated at room temperature with a 1:2,000 dilution of 

horseradish peroxidase-conjugated goat anti-mouse secondary antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) in 1% skim milk/TBS-T solution for 1 h at room 

temperature.  The membranes were then washed three times (5, 10 and then 15 min) with 100 ml 

TBS-T at room temperature.  Membranes were visualized using NBT/BCIP color development.  

Immediately before use, 300 µl of NBT stock (0.1 g NBT, 1.4 ml DMSO and 0.6 ml ddH2O) and 

165 µl of BCIP stock solution (0.1 g BCIP and 2 ml ddH2O) were added to 50 ml of NBT/BCIP 

reaction buffer (100 mM Tris, 100 mM NaCl, 50 mM MgCl2⋅6H2O to 1 l, pH 9.5).  The 

membranes were then incubated with the NBT/BCIP developing solution in a tinfoil-covered 
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tray on a shaker for 70 min.  The color development reaction was stopped upon the addition of 

0.2 M EDTA (pH 7.0).  HSP70 immunoreactive bands were quantitated by densitometry using 

an Epson 4180 scanner and Scion image beta (version 4.02) software. 

2.10 Reproductive Studies at 240 Days Post-hatch 

Upon completion of the exposure study at 60 dph, the remaining fish were reared in 

dechlorinated municipal tap water and allowed a 6 month depuration period, at which time the 

reproductive study commenced.  Three replicates of 15 breeding trials were conducted.  For each 

replicate, 12 randomly selected fish from each treatment were placed into a breeding tank.  Each 

trial consisted of placing spawning trays into the breeding tanks to induce spawning behavior, 

followed by egg collection the next day.  Fish were rested 2 days (absence of spawning trays in 

the tank) between trials.  Assessed parameters included total cumulative egg production, total 

number of eggs per breeding trial, percent viability (percentage of total eggs that were fertilized), 

percent hatchability (percentage of total fertilized eggs that hatched), and percent swim-up 

success (as percentage of fertilized eggs).  Following the breeding trials, fish from each treatment 

were euthanized, weights and lengths were recorded, and individual fish were sexed under a 

dissecting microscope.  The gonads of each fish were removed and weighed to determine the 

gonadosomatic index (GSI), calculated as: 

(weight of the gonads in mg) / (weight of the total body in mg) × 100                         (2.3) 

Ovaries and testes dissected from adult fish were used to determine gonadal HSP70 

expression as described for 60 dph fish. 

2.11 Statistical Analysis 

All data were tested for normality using the Kolmogorov-Smirnov test.  If assumptions of 

normality and equal variance held true, then two-way analysis of variance (ANOVA) was 

performed to assess if any interaction exists between EE and NP on the examined endpoints.  
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The different levels of EE were categorized into EE0, EE1, and EE10 while levels of NP were 

categorized into NP0, NP10, and NP100, creating a 3x3 two-away ANOVA matrix (Table 2.1).  

If an interaction was detected, further one-way ANOVA followed by Tukey’s post-hoc test was 

conducted to assess the significance of these effects.  If assumptions of normality and equal 

variance failed, non-parametric Kruskal-Wallis one-way ANOVA on Ranks test was used 

followed by Multiple Comparison versus the respective control groups (Dunn’s method).  Chi-

square analysis was used to identify differences in sex distribution between control and each 

treatment group.  Statistical significance was set at α = 0.05. 

Table 2.1  3x3 Two-way ANOVA matrix for evaluating the interaction effects between EE and 
NP on the examined endpoints.  EE, ethinylestradiol; NP, nonylphenol. 
 EE0 EE1 EE10 

NP0 EE0NP0  
(Control) 

EE1NP0  
(EE1) 

EE10NP0  
(EE10) 

NP10 EE0NP10  
(NP10) 

EE1NP10  
(EE1+NP10) 

EE10NP10  
(EE10 + NP10) 

NP100 EE0NP100  
(NP100) 

EE1NP100  
(EE1 + NP100) 

EE10NP100  
(EE10 + NP100) 
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CHAPTER 3 
RESULTS 

3.1 Sixty Days Post-hatch Survival 

Mean survival rates from 2-60 dph were 77.3 ± 3.7% (CON); 77.3 ± 4.1% (NP10); 61.3 ± 

12.9% (NP100); 83.3 ± 5.7% (EE1); 78.7 ± 5.7 (EE10); 61.3 ± 10.7 (EE1+NP10); 74.0 ± 2.3% 

(EE1+NP100); 74.7 ± 9.3% (EE10+NP10) and 88.0 ± 3.1% (EE10+NP100).  There were no 

significant differences in the 60 dph survival rate among treatments (Fig. 3.1). 
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Figure 3.1  Percent survival of 60 days post-hatch zebrafish.  Percent survival observed at 60 
days post-hatch in zebrafish exposed to 10 or 100 µg/l nonylphenol (NP10 or NP100 
respectively), 1 or 10 ng/l 17α-ethinylestradiol (EE1 or EE10 respectively), 1ng/l 17α-
ethinylestradiol + 10 µg/l nonylphenol (EE1+NP10), 1ng/l 17α-ethinylestradiol + 100 µg/l 
nonylphenol (EE1+NP100), 10ng/l 17α-ethinylestradiol + 10 µg/l nonylphenol (EE10+NP10), 
10ng/l 17α-ethinylestradiol + 100 µg/l nonylphenol (EE10+NP100) or solvent control (CON, 
0.01% acetone v/v) from 2 to 60 days post-hatch.  Initial clutch size was 50 fish per replicate, 
with three replicates per treatment.  Data are means ± SEM, one-way ANOVA followed by 
Tukey’s test. 

3.2 Sixty Days Post-hatch Sex Distribution and Gonad Histology 

3.2.1 Control Zebrafish 

Histological evaluation of gonads from whole mount sections of control zebrafish at 60 

dph showed a sex distribution of 29.4% female and 53.0% male (Fig. 3.2) with respective normal 

ovarian and testicular ultrastructure and progression of gametogenesis.  In the ovaries, a greater 
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part of the gonad tissue was made up of previtellogenic oocytes (81.7 ± 2.3%; Fig. 3.3), 

surrounded by oogonia and early oocyte stages (18.3 ± 2.3%) in the caudal and cranial 

peripheries (Fig. 3.4b).  In histologically determined males, 88.9% showed a full spectrum of 

sperm cell differentiation stages (Fig. 3.4a).  Gonad staging was conducted on all histologically 

determined males.  However, due to the lack of males in the majority of the treatment groups, 

statistical analysis was not performed.  In addition to the identified male and female, 17.6% of 

the control fish were classified as having undifferentiated gonads, containing primordial germ 

cells with no discernable cells characteristic of either sex (Fig. 3.4c). 
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Figure 3.2  Sex distribution of 60 days post-hatch zebrafish.  Sixty days post-hatch zebrafish 
were exposed to 10 μg/l nonylphenol (NP10; n = 19), 100 μg/l nonylphenol (NP100; n = 16), 1 
ng/l 17α-ethinylestradiol (EE1; n = 19), 1 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol 
(EE1+NP10; n = 14), 1 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE1+NP100; n = 14), 
or solvent control (CON, 0.01% acetone v/v; n = 17) from 2 to 60 days post-hatch.  No 
discernable gonadal tissues were observed in groups exposed to 10 ng/l 17α-ethinylestradiol 
(EE10), 10 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE10+NP10), or 10 ng/l 17α-
ethinylestradiol + 100 μg/l nonylphenol (EE10+NP100).  Significantly different from control 
using chi-square test: ** P < 0.001; *** P < 0.0005.  Und: undifferentiated gonad. 
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Figure 3.3  Ovarian oogenesis staging of 60 days post-hatch female zebrafish.  Percent 
distribution of different stages of ovarian follicle development in zebrafish exposed from 2 to 60 
days post-hatch to 10 or 100 μg/l nonylphenol (NP10; n = 11 or NP100; n = 16 respectively), 1 
ng/l 17α-ethinylestradiol (EE1; n = 17), 1 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE1 
+ NP10; n = 14), 1 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE1 + NP100; n = 12) or 
solvent control (CON; n = 5).  Four replicate views were evaluated blinded at 200 × 
magnification in each fish and results were calculated using the mean value from each (n) fish.  
Numerical values (mean ± S.E.M) for the percent of total at each stage of ovarian follicle 
development observed are indicated adjacent to the corresponding pie area.  Significantly 
different from solvent control using one-way ANOVA followed by Tukey’s test: * P<0.05. 
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Figure 3.4  Representative hematoxylin and eosin-stained gonad sections of 60 days post-hatch 
zebrafish.  (a) Testis of control male at 800 × magnification, (b) ovary of control female at 320 × 
magnification, (c) undifferentiated gonad (inside white box) of a fish exposed to 1 ng/l 17α-
ethinylestradiol from 2 to 60 days post-hatch at 800 × magnification. Sc: Spermatocyte; Sg: 
spermatogonia; M: mature sperm; PV: previtellogenic follicle; Oo: oogonia. 

3.2.2 Nonylphenol-only Exposure 

Fish exposed to NP10 had 57.9% female, 26.3% male, and 15.8% undifferentiated, which 

was significantly different from the control group (P < 0.001; Fig. 3.2).  In females, the ovaries 

contained mainly previtellogenic oocytes (64.3 ± 7.0%) with the rest being oogonia and early 

oocyte stages (35.7 ± 7.0%; Fig. 3.3).  Among the histologically determined males exposed to 

NP10, differences in the level of testicular development was observed among fish, with 

approximately 60% showing the full array of sperm cell differentiation and 40% exhibiting only 

the early stages of differentiation.  Fish exposed to NP100 were 100% female, with the ovaries 

consisting of 38.8 ± 6.9% previtellogenic oocytes and 61.2 ± 6.9% oogonia (Fig. 3.2).  The sex 
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distribution and ovarian gametogenesis of the NP100 group were significantly different from the 

control (P < 0.0005 and P <0.05, respectively).  No evidence of ovotestes was present in either 

of the two NP-only treatments. 

3.2.3 Ethinylestradiol-only Exposure 

The sex distribution of EE1-exposed fish was significantly different when compared with 

the control (P < 0.0005), with the majority being female (89.4%), while 5.3% male and 5.3% 

undifferentiated made up the remaining population (Fig. 3.2).  The ovaries were comprised 

mainly of oogonia (60.5 ± 6.4%) with 39.5 ± 6.4% previtellogenic oocytes, which was 

significantly different than the control (P < 0.05; Fig. 3.3).  The single fish identified 

histologically as male had testes displaying only the early stages of sperm cell differentiation.  

There were no discernable gonadal tissues present in fish exposed to 10 ng/l of EE (Fig. 3.2).  No 

evidence of ovotestes was present in either of the two EE-only treatments. 

3.2.4 Binary Mixture Exposure 

Fish exposed to EE1+NP10 resulted in 100% female (Fig. 3.2), whose ovaries contained 

a roughly equal portion of oogonia and previtellogenic oocytes (56.8 ± 6.3% and 43.2 ± 6.3% 

respectively; Fig 3.3).  In the EE1+NP10 exposure group, sex distribution and ovarian 

gametogenesis were significantly different from the control (P < 0.0005 and P < 0.05, 

respectively).   Exposure to EE1+NP100 produced 85.8% female, 7.1% male and 7.1% 

undifferentiated; this distribution was significantly different when compared with the control (P 

< 0.0005).  The ovaries in this group contained 57.4 ± 6.2% oogonia and 42.6 ± 6.2% 

previtellogenic oocytes, which was significantly different than the control (P < 0.05).  The one 

individual identified as having testes showed the full range of sperm cell differentiation stages.  

There were no discernable gonadal tissues present in fish exposed to treatment groups containing 
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10 ng/l of EE (EE10, EE10+NP10 and EE10+NP100; Fig 3.2).  No evidence of ovotestes was 

present in any of the binary treatments. 

3.3 Sixty Days Post-hatch Length, Weight, and Condition Factor 

At 60 dph, only fish in treatments containing 10 ng/l of EE (EE10, EE10+NP10 and 

EE10+NP100), the same groups that showed no discernable gonadal tissues, exhibited decreased 

length and weight, but higher condition factor, compared with control fish (Table 3.1; P < 0.001 

for all except condition factor of EE10+NP100, where P < 0.01) .  The remaining treatments 

were not significantly different in length, weight, or condition factor compared with the control 

(Table 3.1). 

Table 3.1  Length, weight, and condition factor of 60 days post-hatch zebrafish.  Length, weight, 
and condition factor determined in 60 days post-hatch zebrafish exposed to 10 or 100 μg/l 
nonylphenol (NP10 or NP100 respectively), 1 or 10 ng/l 17α-ethinylestradiol (EE1 or EE10), 1 
ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE1+NP10), 1 ng/l 17α-ethinylestradiol + 100 
μg/l nonylphenol (EE1+NP100), 10 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol 
(EE10+NP10), or 10 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE10+NP100), or 
solvent control (0.01% acetone v/v) from 2 to 60 days post-hatch. 
Treatment Length (mm) Weight (mg) Condition factor 

Control (n = 42) 12.5 ± 0.3 13.5 ± 0.9 0.66 ± 0.01 

NP10 (n = 42) 13.2 ± 0.3 15.6 ± 0.9 0.64 ± 0.01 

NP100 (n = 42) 13.0 ± 0.4 16.5 ± 1.5 0.78 ± 0.14 

EE1 (n = 42) 12.7 ± 0.2 13.4 ± 0.7 0.66 ± 0.04 

EE10 (n = 42) 9.1 ± 0.2*** 6.3 ± 0.3*** 0.84 ± 0.03*** 

EE1+NP10 (n = 42) 13.3 ± 0.4 17.3 ± 1.3 0.69 ± 0.01 

EE1+NP100 (n = 42) 12.3 ± 0.4 13.5 ± 1.1 0.68 ± 0.01 

EE10+NP10 (n = 42) 9.5 ± 0.2*** 7.8 ± 0.6*** 0.84 ± 0.03*** 

EE10+NP100 (n = 42) 10.0 ± 0.2*** 7.8 ± 0.4*** 0.76 ± 0.02** 

Data are mean ± SEM. Significantly different from control using Dunn’s multiple comparisons: 
**P < 0.01 and ***P < 0.001. 
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3.4 Sixty Days Post-hatch Vitellogenin Induction 

At 60 dph, the gender of fish used for VTG analyses was not determined due to the 

species’ lack of prominent sexual dimorphism at this developmental stage.  Therefore, the VTG 

concentrations presented here are mean values of combined genetic male and female fish.  Two-

way ANOVA indicated that both NP and EE alone had a significant effect on 60 dph VTG 

induction (P < 0.0005 and < 0.0001 respectively).  Furthermore, there was a significant 

interaction between EE and NP on VTG induction (P < 0.0001).  Subsequently, one-way 

ANOVAs were conducted on each subgroup to examine the effect of different levels of NP 

(NP0, NP10 or NP100) at each level of EE (EE0, EE1 or EE10) on VTG induction at 60 dph 

(Fig. 3.5).   

In the absence of EE (EE0), whole body VTG levels in the NP100-exposed, but not 

NP10-exposed, zebrafish were significantly greater than the control group (P < 0.05; Fig. 3.5).  

In the presence of 1ng/l EE, the addition of 10 µg/l NP (EE1+NP10) increased the VTG 

significantly (P < 0.05) when compared to EE1 alone.  However, with the addition of 100 µg/l 

NP, the VTG level in EE1+NP100 was not significantly different from EE1 (Fig. 3.5).  Analysis 

from the EE10-exposed groups showed that VTG induction in EE10+NP100 was significantly 

lower than EE10+NP10 (P < 0.05) as well as EE10 (P < 0.001) exposure groups (Fig. 3.5).  One-

way ANOVA comparing EE-only exposure groups with the control indicated that VTG 

induction in EE1 was not significantly different than the control group, while EE10 had a 

significantly higher VTG induction than the control group (P < 0.001). 
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Figure 3.5  Whole body vitellogenin concentration of 60 days post-hatch zebrafish.  Sixty days 
post-hatch (dph) zebrafish were exposed to 10 or 100 μg/l nonylphenol (NP10 or NP100 
respectively; n = 10), 1 or 10 ng/l 17α-ethinylestradiol (EE1 or EE10 respectively; n = 10), 1 ng/l 
17α-ethinylestradiol + 10 μg/l nonylphenol (EE1+NP10; n = 9), 1 ng/l 17α-ethinylestradiol + 
100 μg/l nonylphenol (EE1+NP100; n = 10), 10 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol 
(EE10+NP10; n = 11), or 10 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE10+NP100; n 
= 10), or solvent control (CON, 0.01% acetone v/v; n = 10) from 2 to 60 days post-hatch.  Data 
are mean ± SEM.  Two-way ANOVA indicates a significant interaction between EE and NP on 
60 dph VTG (P < 0.001).  Subsequent one-way ANOVA of each subgroup, followed by Tukey’s 
test:  (a) Significant difference between NP100 and control (P < 0.05); (b) significant difference 
between EE1+NP10 and EE1 (P < 0.001); (c) significant difference between EE10+NP100 and 
EE10+NP10 (P < 0.05); (d) significant difference between EE10+NP100 and EE10 (P < 0.001). 

3.5 Sixty Days Post-hatch Whole Body HSP70 Induction 

Two-way ANOVA indicated that individual treatments of EE or NP had no significant 

effect on 60 dph whole body HSP70 expression.  As well, there was no interaction detected 

between EE and NP on HSP70 expression (Fig. 3.6). 
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Figure 3.6  Whole body heat shock protein 70 expression of 60 days post-hatch zebrafish.  
Whole body heat shock protein 70  expression determined using Western blotting of 60 days 
post-hatch zebrafish exposed to 10 or 100 μg/l nonylphenol (NP10 or NP100 respectively), 1 or 
10 ng/l 17α-ethinylestradiol (EE1 or EE10 respectively), 1 ng/l 17α-ethinylestradiol + 10 μg/l 
nonylphenol (EE1+NP10), 1 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE1+NP100), 10 
ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE10+NP10), or 10 ng/l 17α-ethinylestradiol + 
100 μg/l nonylphenol (EE10+NP100), or solvent control (CON, 0.01% acetone v/v) from 2 to 60 
days post-hatch.  (a) Representative immunoblot.  Lane 1: NP10; lane 2: NP100; lane 3: CON; 
lane 4: EE1+NP10; lane 5: EE1+NP100; lane 6: EE10+NP10 (b) Densitometry of 
immunoreactive bands.  Data are mean optical density (OD) ± S.E.M, one-way ANOVA 
followed by Tukey’s test. 

3.6 Sixty Days Post-hatch Gonadal Apoptosis 

Unfortunately, excessive amounts of tissue were sectioned from the preserved samples 

for the 60 dph sexing and gonadal staging, leaving very little to no gonadal tissues in the 
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remaining samples.  Of the slides that were TUNEL stained, none contained gonadal tissues 

upon microscopic examination. 

3.7 Adult Breeding Experiments 

After a recovery period of 6 months in clean water, zebrafish were assessed for their 

reproductive fitness at 240 dph.  A successful breeding event was defined as the production of 

one or more eggs.  The highest percentage of successful trials was in the control group with 

95.6% (43/45; 43 successful breeding events out of 45 conducted, Fig. 3.7a), and the lowest 

percentage of successful trials was observed in the EE10+NP10 group with 0% (0/45).  The 

percentages of successful trials in other groups were as follows: NP10 (88.9%; 40/45), NP100 

(88.9%; 40/45), EE1 (71.1%; 32/45), EE10 (40.0%; 18/45), EE1+NP10 (86.7%; 39/45), 

EE1+NP100 (86.7%; 39/45), and EE10+NP100 (57.8%; 26/45).  From the 45 breeding trials 

conducted in each treatment, it appeared that fish from groups exposed to 10 ng/l EE, alone or in 

combination, were the most adversely affected with respect to cumulative egg production.  

Zebrafish exposed to EE10, EE10+NP10, and EE10+NP100 had the lowest cumulative egg 

production, with 1965, 0, and 1808 eggs, respectively (Figure 3.7b).  Control, NP10, and 

EE1+NP100 groups had the highest cumulative egg production, with 10,752, 11,275, and 12,754 

eggs, respectively.  Data from the remaining groups include EE1 with 4926 eggs, NP100 with 

6705 eggs, and EE1+NP10 with 8545 eggs (Fig. 3.7b). 

Two-way ANOVA of the mean number of eggs produced per breeding trial indicated that 

EE-only treatments significantly decreased egg production (P < 0.0001).  Although treatments of 

NP alone did not significantly affect the egg production, a significant interaction between NP 

and EE on egg production was detected (P < 0.0001).  Subsequent one-way ANOVA conducted 

on the EE0 subgroups indicated that neither NP10 nor NP100 had a significant impact on egg 

production (Fig. 3.7c).  In 1 ng/l EE-exposed fish, the addition of 10 µg/l NP (EE1+NP10) did 
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not significantly influence egg production when compared with EE1, however the addition of 

100 µg/l NP (EE1+NP100) increased egg production significantly when compared with EE1 (P 

< 0.01; Fig. 3.7c).  With the EE10-containing groups, egg production from EE10+NP10 was 

significantly decreased when compared with EE10 and EE10+NP100 (P < 0.01 for both), while 

no significant difference was detected between EE10 and EE10+NP100.  One-way ANOVA 

comparing the control group with EE-only groups indicated that both EE1 and EE10 had 

significantly reduced mean egg production (P < 0.001 for both; Fig. 3.7c).  

One of the criteria for two-way ANOVA is that the sample size of each of the examined 

populations had to be greater than 1.  Since zebrafish exposed to EE10+NP10 did not produce 

any eggs during the 45 breeding trials conducted, there were no subsequent data on egg viability 

and hatchability, as well as swim-up success of the F1 generation.  Consequently, two-way 

ANOVA was not performed on these endpoints.  However, with one-way ANOVA, it was 

demonstrated that fish previously exposed to 10 μg/l of NP did not exhibit any significant 

differences in viability (78.7 ± 2.0%), hatchability (90.6 ± 1.9%) or F1 swim-up success (80.6 ± 

2.2%) when compared with the control (80.1 ± 2.4% viability, 84.2 ± 3.0% hatchability, and 89.9 

± 1.2% swim-up success; Fig. 3.7d).  Fish exposed to EE1 had a significant decrease in egg 

viability (63.6 ± 4.2%, P < 0.01) but no differences in hatchability (85.5 ± 3.6%) or swim-up 

success (81.8 ± 3.6%) when compared with the control. Fish in the NP100 and the EE1+NP10 

exposure groups showed significant reductions in F1 swim-up success (74.7 ± 2.8% and 73.2 ± 

2.5% respectively, P < 0.001) but no differences in viability (75.5 ± 2.8% and 71.6 ± 3.2% 

respectively) and hatchability (78.0 ± 2.7% and 88.6 ± 2.4% respectively) of eggs as compared 

to the control.  Groups EE1+NP100 and EE10+NP100 produced fish that showed significant 

reductions in egg viability (63.2 ± 3.8% and 62.6 ± 3.7% respectively, P < 0.001) and F1 swim-
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up success ( 71.6 ± 3.4% and 69.9 ± 4.5% respectively, P < 0.001) but not hatchability (85.6 ± 

2.8% and 84.9 ± 3.1% respectively) compared with the control.  Fish exposed to EE10 showed 

significant reductions in egg viability (51.4 ± 7.1%, P < 0.001), hatchability (64.4 ± 7.1%, P < 

0.01) and F1 swim-up success (59.1 ± 4.0%, P < 0.001) when compared with the control. 
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Figure 3.7  (a) Percent of successful breeding trials, (b) total cumulative number of eggs 
spawned, (c) mean number of eggs produced per breeding trial, and (d) percent fertilized eggs 
(fertilized eggs), percent hatch (hatchability), and percent F1 swim-up success (swim-up) 
determined using adult (240 dph) zebrafish previously exposed to 10 or 100 μg/l nonylphenol 
(NP10 or NP100 respectively), 1 or 10 ng/l 17α-ethinylestradiol (EE1 or EE10), 1 ng/l 17α-
ethinylestradiol + 10 μg/l nonylphenol (EE1+NP10), 1 ng/l 17α-ethinylestradiol + 100 μg/l 
nonylphenol (EE1+NP100), 10 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE10+NP10), 
or 10 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE10+NP100), or solvent control (CON, 
0.01% acetone v/v) from 2 to 60 days post-hatch.  Two-way ANOVA indicated a significant 
interaction between EE and NP on mean number of eggs produced (P < 0.0001).  Subsequent 
one-way ANOVA, followed by Tukey’s test, indicated: (a) significant difference between 
EE1+NP100 and EE1 (P < 0.01); (b) significant difference between EE10+NP10 and EE10 (P < 
0.01); (c) significant difference between EE10+NP10 and EE10+NP100 (P < 0.01).  
Significantly different from solvent control using one-way ANOVA followed by Tukey’s test: ** 
P < 0.01; *** P < 0.001. 

3.8 Adult Sex Distribution 

At the end of the reproductive trials, the gender of fish from all treatments were 

determined under a dissecting microscope.  The control group had 58.7% males and 41.3% 

females (Fig. 3.8). The NP10 exposure group contained 53.8% males and 46.2% females, while 

NP100 contained 75.8% males and 24.2% females, which was statistically significant when 

compared with the control (P < 0.05).  The EE1 exposure group consisted of 61.2% males and 

38.8% females, whereas the EE10 exposure group had a predominantly male population with 

92.2% males and 7.8% females, which was significantly different from the control (P < 0.0005).  

The EE1+NP10 group was comprised of 70.0% males and 30.0% females, and EE1+NP100 

contained 64.3% males and 35.7% females.  Neither of these groups had a significantly different 

sex distribution when compared with the control group.  Both of the EE10-containing mixture 

exposure groups had a primarily male population with EE10+NP10 having 98.0% males and 

2.0% females (significantly different from the control, P < 0.0005), and EE10+NP100 consisting 

of 93.1% males and 6.9% females (significantly different from the control, P < 0.0005). 
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Figure 3.8  Sex distribution of adult zebrafish.  Sex distribution of adult zebrafish previously 
exposed to 10 or 100 μg/l nonylphenol (NP10; n = 52 or NP100; n = 33 respectively), 1 or 10 
ng/l 17α-ethinylestradiol (EE1; n = 64 or EE10; n = 63 respectively), 1 ng/l 17α-ethinylestradiol 
+ 10 μg/l nonylphenol (EE1+NP10; n = 40), 1 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol 
(EE1+NP100; n = 42), 10 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE10+NP10; n = 49), 
or 10 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE10+NP100; n = 72), or solvent control 
(CON, 0.01% acetone v/v; n = 63) from 2 to 60 days post-hatch.  Significantly different from 
control group using chi-square test: * P < 0.05; *** P < 0.0005. 

3.9 Adult Length, Weight, Condition Factor and Gonadosomatic Index 

Fish in the highest binary exposure group (EE10+NP100) had significantly lower weights 

(P < 0.05) and shorter lengths (P < 0.05), but no difference in condition factor when compared 

with the control (Table 3.2a).  Fish in the NP100 exposure group were not significantly different 

in lengths or weights, but had a significantly higher condition factor when compared with the 

control (P < 0.05).  The remaining treatments exhibited no significant differences in length, 
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weight, or condition factor. With the exception of significantly lower GSI in EE10 adult males, 

no differences in GSI from any treatments were observed when compared with the control (Table 

3.2b). 

Table 3.2  (a) Length, weight, and condition factor and (b) gonadosomatic index (GSI) 
determined in adult zebrafish previously exposed to 10 or 100 μg/l nonylphenol (NP10 or NP100 
respectively), 1 or 10 ng/l 17α-ethinylestradiol (EE1 or EE10), 1 ng/l 17α-ethinylestradiol + 10 
μg/l nonylphenol (EE1+NP10), 1 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol 
(EE1+NP100), 10 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE10+NP10), or 10 ng/l 17α-
ethinylestradiol + 100 μg/l nonylphenol (EE10+NP100), or solvent control (0.01% acetone v/v) 
from 2 to 60 days post-hatch. 
Treatment Weight (mg) Length (mm) Condition factor 
(a)    

Control (n = 63) 616 ± 34 39.6 ± 0.5 0.94 ± 0.01 
NP10 (n = 52) 596 ± 39 39.2 ± 0.6 0.93 ± 0.02 
NP100 (n = 33) 631 ± 29 39.3 ± 0.4 1.02 ± 0.02* 
EE1 (n = 67) 580 ± 31 39.1 ± 0.4 0.93 ± 0.02 
EE10 (n = 65) 535 ± 43 38.1 ± 0.6 0.87 ± 0.02 
EE1+NP10 (n = 39) 649 ± 33 40.1 ± 0.4 0.98 ± 0.02 
EE1+NP100 (n = 39) 634 ± 28 39.5 ± 0.3 1.01 ±0.02 
EE10+NP10 (n = 49) 580 ± 22 39.9 ± 0.3 0.91 ± 0.02 
EE10+NP100 (n = 72) 484 ± 24* 37.6 ± 0.4* 0.87 ± 0.02 

 
Treatment Female (n) Male (n) 
(b)   

Control 17.9 ± 1.1 (26) 1.3 ± 0.1 (37) 
NP10 15.0 ± 1.6(24) 1.1 ± 0.1 (28) 
NP100 13.9 ± 1.9 (8) 1.5 ± 0.1 (25) 
EE1 16.2 ± 1.2 (26) 1.1 ± 0.1 (38) 
EE10 16.7 ± 5.3 (5) 1.0 ± 0.1 (58)* 
EE1 + NP10 18.9 ± 1.8 (11) 1.4 ± 0.1 (28) 
EE1 + NP100 17.9 ± 1.6 (12) 1.3 ± 0.1 (27) 
EE10 + NP10 N/A 1.4 ± 0.1 (47) 
EE10 + NP100 15.1 ± 2.8 (5) 1.1 ± 0.1 (67) 

Data are mean ± SEM. Significantly different from control group: * P < 0.05. 
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3.10 Adult Gonadal HSP70 Expression 

There were no significant differences in the levels of gonadal HSP70 expression among 

treatments in adult zebrafish (Fig. 3.9). 

 (a) 

(b) 

 

Figure 3.9  Gonadal heat shock protein 70 (HSP70) expression of adult zebrafish.  Gonadal heat 
shock protein 70 expression in adult zebrafish previously exposed to 10 or 100 μg/l nonylphenol 
(NP10 or NP100 respectively), 1 or 10 ng/l 17α-ethinylestradiol (EE1 or EE10), 1 ng/l 17α-
ethinylestradiol + 10 μg/l nonylphenol (EE1+NP10), 1 ng/l 17α-ethinylestradiol + 100 μg/l 
nonylphenol (EE1+NP100), 10 ng/l 17α-ethinylestradiol + 10 μg/l nonylphenol (EE10+NP10), 
or 10 ng/l 17α-ethinylestradiol + 100 μg/l nonylphenol (EE10+NP100), or solvent control (CON, 
0.01% acetone v/v) from 2 to 60 days post-hatch.  (a) Representative Western blot of HSP70 
expression in adult zebrafish gonadal tissues.  Lanes 1, 3, 5 and 7: CON; lane 2: EE10+NP100; 
lanes 4 and 6: EE1+NP100; (b) Densitometry of immunoreactive bands.  Data are mean optical 
density (OD) ± S.E.M, one-way ANOVA followed by Tukey’s test.
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CHAPTER 4 
DISCUSSION 

4.1 Effects of Ethinylestradiol and Nonylphenol on 60 Days Post-hatch Zebrafish 

It is generally assumed in aquatic ecotoxicology investigations that mixtures of 

xenoestrogens act in an additive manner.  The major finding of the present study was that NP, a 

weak ER agonist, can behave both additively and non-additively when in combination with a 

potent ER agonist, EE, at environmentally relevant concentrations.  This was particularly evident 

with VTG induction, a direct gene expression product following ER activation, in 60 dph 

zebrafish.  Upon closer examination with one-way ANOVA on the effect of different levels of 

NP (NP0, NP10, and NP100) at each level of EE (EE0, EE1, and EE10), it was found that at 1 

ng/l EE, the addition of 10 µg/l NP (EE1+NP10) increased the VTG induction significantly when 

compared to EE1 alone, exhibiting additivity of effects as neither EE1 nor NP10 alone resulted 

in significant VTG induction when compared with the control.  However, in the EE1+NP100 

exposure group, where the NP concentration increased from 10 μg/l to 100 μg/l while keeping 

the EE concentration constant at 1 ng/l, the level of VTG observed was significantly lower than 

that of EE1+NP10, and statistically insignificant when compared with EE1.  This demonstrated 

that during exposure of zebrafish to 1 ng/l EE, lower levels of NP (NP10) appeared to act 

additively with EE in terms of VTG induction, while higher levels of NP (NP100) appeared to 

antagonize the action of EE, inducing lower levels of VTG.  The antagonistic effect of NP was 

even more pronounced with mixture groups containing the higher EE concentration (10 ng/l).  

Fish exposed to 10 ng/l of EE + 100 µg/l of NP had a significantly lower VTG level when 

compared with the EE10 + NP10 group and the EE10 alone group. 
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One possible explanation for the observed non-additivity at certain combinations of EE + 

NP is that the EE and NP molecules are simply adhering to the mass action law in receptor 

binding.  Using environmentally relevant concentrations where NP generally occurs at 

approximately ≥ 1,000 times greater concentrations than EE, the higher concentration of NP 

would theoretically allow NP a better chance of competing with EE for the available ER binding 

sites.  Consequently, in binary mixtures of EE+NP at environmentally relevant levels, the 

addition of NP would allow NP to bind to some of the ER that would otherwise have been 

occupied by EE if EE was acting alone.  The increase in NP concentration would therefore 

increase the proportion of ERs bound to NP.  Since NP has been shown to be a weak or partial 

ER agonist, meaning that it binds to ER but produces a diminished response (e.g. VTG 

induction) compared to a full agonist like EE, the lower overall response induced by the binary 

mixture of NP and EE would be due to NP’s weaker estrogenicity in comparison to EE.  

Therefore, NP may not be acting as an ER antagonist in the classical sense, i.e. binding to the ER 

and inhibiting ER-dependent responses.  However, by its very nature as a weak or partial ER 

agonist, it may be lowering ER-dependent responses in binary mixtures of NP and EE where its 

concentration is high enough that it can displace EE binding to the ER, resulting in, in this case, 

lower VTG induction than when EE was acting alone.  This hypothesis also allows us to explain 

the additive effect at a lower EE + NP concentration (EE1 + NP10), since at these lower EE + 

NP concentrations, ER are not as saturated, allowing all EE and NP molecules to bind and elicit 

each compound’s respective level of estrogenicity.  It is important to note however that the 

decreased VTG associated with increasing NP concentration in treatments containing 10 ng/l of 

EE (EE10, EE10+NP10 and EE10+NP100) is relative within those groups: the addition of NP to 
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10 ng/l of EE did not decrease VTG levels lower than that observed in groups containing 1 ng/l 

of EE (EE1, EE1+NP10 and EE1+NP100). 

There are few studies that have examined in vivo xenoestrogen mixture toxicity in fish.  

Nonylphenol was reported to act additively in binary mixtures with E2, at concentrations below 

their individual LOECs, on VTG induction in juvenile female rainbow trout (Oncorhynchus 

mykiss) (Thorpe et al., 2001).  Despite possible differences in species sensitivity to NP, lifestage 

sensitivity (3 months old vs. newly hatched), sex (female vs. mixed population) and duration of 

exposure (14 vs. 60 days), the result by Thorpe et al. (2001) is in agreement with our low EE + 

NP (EE1 + NP10) data where exposure to each compound alone did not induce significant 

increases in VTG, while combination of the two resulted in a significant increase.  It is also 

possible that the discrepancy in the observed effect of binary xenoestrogen mixtures between the 

two studies may be due to the different source of NP utilized in each study.  It has been shown 

that technical grade NP contains approximately 20 p-substituted isomers; each possessing their 

own estrogenic potency.  Using the MVLN cell assay, a method which determines ER binding 

affinity via MCF-7 human breast carcinoma cells transfected with an ER controlled luciferase 

reporter gene, it was established that the estrogenicity of the studied isomers were not equal; the 

relative potency was found to be: p353-NP > p33-NP = p363-NP > p252-NP > P22-NP = P262-

NP (Preuss et al., 2006).  Therefore, with manufacturers producing NP mixtures containing their 

own relative proportions of isomers, the overall estrogenicity of technical grade NP from two 

companies could differ greatly from one another.  For instance, the same study also utilized the 

MVLN cell assay to assess the relatively estrogenicity of two commercially available technical 

p-NP mixtures, p-NP Fluka (85% purity, Fluka Germany) and p-NP Acros (99% purity, Aldrich 
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Germany)  It was demonstrated that the Aldrich mixture was about 1.18 times more potent than 

the Fluka mixture (Preuss et al., 2006). 

Furthermore, in addition to being a weak ER agonist, NP has been shown to interact with 

cytochrome P450 enzymes such as the CYP1A subfamily in fish (Arukwe et al., 1997a; 

Hasselberg et al., 2005).  The expression of CYP1A1 is regulated by aryl hydrocarbon receptor 

(AhR) through which some AhR agonists have been shown to be anti-estrogenic (Hahn, 2002).  

As well, recent reports have shown that some AhR agonists directly induce estrogenic activity 

through AhR-ERα crosstalk (Abdelrahim et al., 2006; Liu et al., 2006; Shipley and Waxman, 

2006).  By exposing juvenile Atlantic salmon (Salmo salar) to nominal concentrations of 5, 15, 

50 µg/l NP or ethanol control statically for 7 days, Meucci and Arukwe (2006) reported that 

CYP1A1 and AhR mRNA levels in the 5 and 15 µg/l NP-exposed groups were temporally 

decreased at day 3 post-exposure while significantly induced at day 7, compared to the control 

group.  In fish exposed to 50 µg/l NP, CYP1A1 mRNA levels were decreased at days 3 and 7.  In 

spite of the decreased CYP1A1 mRNA levels at day 7, AhR mRNA was significantly increased 

(Meucci and Arukwe, 2006).  The aforementioned studies highlight the complex nature of NP’s 

interaction with different receptor (signal transduction) pathways and the resulting difficulty 

involved with predicting its estrogenicity. 

Recent studies that have examined xenoestrogen mixture toxicity in other species or 

tissues and have also reported departure from additivity of responses.  Xie et al. (2005) utilized a 

rainbow trout VTG assay to evaluate the estrogenicity of four herbicides, two alkylphenol 

ethoxylate-containing surfactants, and binary mixtures of herbicides with the surfactants.  They 

observed that 2,4-D alone displayed estrogenic activity via VTG induction and in binary 

mixtures with target prospreader activator (TPA), an alkylphenol ethoxylate -containing 
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surfactant, exhibited greater than additive VTG response at the lowest concentrations tested, but 

a less than additive response at the highest combined concentrations.  However, the results are 

complicated by the fact that 2,4-D contains trace quantities of several dioxin-like compounds 

which may bind to AhR and interfere with the overall estrogenic response.  In addition, the 

surfactant TPA may contain components other than alkyphenol ethoxylate that can also affect the 

observed estrogenic response.  Another recent study (Rajapakse et al., 2004) utilized the in vitro 

E-SCREEN assay to evaluate mixture toxicity of six xenoestrogens: E2, EE, NP, octylphenol 

(OP), genistein and bisphenol A.  E-SCREEN measures the effect of these chemicals on the 

proliferation of estrogen-dependent MCF-7 human breast cancer cells. It was demonstrated that 

the presence of NP and OP was associated with the antagonism observed in five- and six-

component mixtures.  It should be noted, however, that the endpoint measured via E-SCREEN 

may not necessarily be exclusively estrogenic as the number of cancer cells produced within a 

given amount of time takes into account the number of cells produced through ER activation as 

well as cells lost through cytotoxicity.  The authors reported that higher concentrations of NP and 

OP were accompanied by a marked decrease in cell numbers.  The decrease may be attributed to 

cytotoxicity, and may or may not be ER-mediated as there are numerous ways in which 

chemicals can exert growth-restricting or cytotoxic effects (Rajapakse et al., 2004). 

An additional factor to consider when evaluating the nature of the interaction(s) between 

compounds in mixture toxicity studies is that the type of interaction may be dependent on the 

particular biological response(s) measured.  Teles et al. (2004) investigated the effect of binary 

mixtures of β–naphthoflavone (BNF), an AhR agonist, combined with either E2 or NP on 

juvenile sea bass (Dicentrarchus labrax).  Their endpoints included biotransformation responses 

by measuring liver cytochrome P450 content (P450), ethoxyresorufin-O-deethylase (EROD), and 
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glutathione S-transferase (GST) activities, effects on the endocrine function via determination of 

plasma cortisol and glucose levels, and genotoxicity through assessing the erythrocytic nuclear 

abnormalities (ENA) frequency.  It was demonstrated that with respect to plasma glucose 

concentration, a synergistic interaction was evident between BNF and NP, while sporadic 

antagonism was found between BNF and E2 after a 4h exposure.  Liver EROD activity was not 

significantly altered by single E2 or NP exposure, however, when combined with BNF, both 

were able to induce EROD activity.  While NP exposure alone was able to significantly increase 

liver P450 content, its action appeared to be antagonized with the addition of BNF.  As well, 

upon evaluating genotoxicity, single E2 exposure did not induce an ENA increase, while 

mixtures of E2+BNF displayed a significant induction (Teles et al., 2004).  Based on these 

observations, it is important to be aware that the type of interaction between compounds in 

mixture toxicity studies may differ depending on the particular biological response(s) measured. 

In particular, responses closely linked with gene expression, such as VTG induction, will likely 

produce different patterns of mixture toxicity when compared to more complex, integrative 

responses such as reproduction.  A similar trend of non-additivity in the present study was 

observed in certain responses determined in the adult breeding experiments.  Specifically, 

exposure to NP100 in the presence of EE1 abolished the decreased mean egg production 

observed with EE1 alone.  Similarly, in the EE10 exposure groups, the addition of 100 µg/l NP 

(EE10 + NP100) resulted in egg production that was not significantly different from EE10 alone.  

These results collectively suggest that lower levels of NP (NP10) may have acted additively in 

the presence of 10 ng/l EE, while higher levels of NP (NP100) did not further reduce the mean 

egg production, instead, resulted in mean egg production that was similar to EE10. 
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4.2 Reproductive Studies of 240 Days Post-hatch Zebrafish 

Results from the breeding trials also highlighted the toxicity of early life stage exposure 

to 10 ng/l of EE in zebrafish.  After a 6 month period of depuration, there was a persistent impact 

on several reproductive parameters.  Treatments containing 10 ng/l of EE (EE10, EE10+NP10 

and EE10+NP100) resulted in the lowest cumulative number of eggs produced during the 

duration of the breeding trial, and the same three groups possessed the three lowest percentages 

of successful breeding trials.  Other studies investigating the breeding success in zebrafish 

exposed during sexual differentiation to environmentally relevant concentrations of 

xenoestrogens have reported a similar reduction in reproductive fitness. Hill and Janz (2003) 

exposed zebrafish from 2 to 60 dph to nominal concentrations of 10–100 μg/l of NP or 1–100 

ng/l of EE, then raised in clean water from 60 to 120 dph, and reported that the NP–100 μg/l 

group had decreased egg hatchability and swim–up success, while EE–10 ng/l resulted in 

decreased egg viability and hatchability as well as swim–up success.  Another study reported that 

the exposure of zebrafish embryos to nominal concentrations of 10 or 25 ng/l of EE until 90 days 

post–fertilization (dpf) and allowed to recover in clean water for 5 months, resulted in a reduced 

number of spawning females as well as reduced egg production (Van den Belt et al., 2003).  

Fenske et al. (2005) evaluated the reproductive capacities of zebrafish exposed to 3 ng/l EE from 

either 0–42 dpf follow by 76 d depuration or 0–118 dpf followed by 58 d depuration.  They 

reported that there were no significant effects on the reproductive fitness of the fish exposed 

from 0–42 dpf, which differs from present study where exposure to a lower EE concentration (1 

ng/l) from 2–60 dph, followed by six months of depuration, resulted in a significant decrease in 

egg viability.  However, this may be explained by the difference in the duration of exposure, and 

is supported by their finding that zebrafish exposed for a longer period, from 0–118 dpf, had 

decreased egg production and fertilization success (Fenske et al., 2005).  This further indicates 
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the need to account for the length of exposure in assessing the effects of xenoestrogens, 

particularly when overlapping the period of sexual differentiation and gametogenesis.   

Other fish models such as medaka (Oryzias latipes) and fathead minnow (Pimephales 

promelas) have also been utilized in similar investigations.  Medaka exposed to 0.2 or 2 ng/l of 

EE from 2-5 dph until sexual maturity (between four and six months of age) displayed normal 

mating behavior and reproductive success, while males exposed to 10 ng/l of EE exhibited 

suppressed reproductive behavior, and females had poor reproductive success (Balch et al., 

2004).  In fathead minnow exposed to 0.2 or 1.0 ng/l of EE from 0–301 dph, no effects on female 

egg production were reported (Lange et al., 2001).  The variation seen in estrogenic sensitivity 

highlights the importance of taking into account species differences when evaluating the effects 

of xenoestrogen exposure in fish. 

The incorporation of fecundity evaluation in studies examining the impact of 

xenoestrogen exposures during early development is regarded as a crucial step forward towards a 

better understanding of the extent of effects.  However, caution should be noted when measuring 

reproductive endpoints such as daily egg production since natural variation in fecundity exists, as 

seen in the present as well as other studies (Lange et al., 2001; Brion et al., 2004; Nash et al., 

2004).  This emphasizes the need for multiple replications to minimize this inherent variability.  

Further caution should be observed when attempting to correlate the reduction in reproductive 

success to early life stage xenoestrogen exposures.  Unlike VTG induction, the measurement of 

reproductive fitness is not a direct estrogen-specific response, but rather an integrative one 

involving not only the endocrine and reproductive systems.  Other factors such as the 

physiological and health status of the fish could have critical implications.  This is especially true 

in studies where fish are allowed a depuration period after inappropriate exposure to 
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xenoestrogens during early development.  In these studies, the fish appeared to recover and 

continued with normal gonadal development with no apparent differences in GSI, yet decreased 

in reproductive success was still detected (Hill and Janz, 2003; Van den Belt et al., 2003; Brion 

et al., 2004).  The present study observed similar results, and with the exception of the 

significantly lowered GSI in EE10 adult males, no differences in GSI from any treatments were 

observed when compared with the control.  Several authors have suggested that a disruption in 

mating behaviour could help explain such reproductive failure (Gray et al., 1999; Bjerselius et 

al., 2001; Balch et al., 2004), however, behavioural changes may or may not be a direct effect of 

xenoestrogen exposures. 

4.3 Sex Distribution and Gonad Development in Zebrafish 

The results from the reproduction experiments in the present study were partly explained 

upon subsequent determination of the adult sex distribution.  The EE10+NP10 group had only 

one female at the end of the reproductive trials, which most likely contributed to the observed 

lack of egg production from that group.  Two other groups that experienced significantly 

decreased mean egg production per breeding trial when compared with the control group also 

contained lower numbers of females, 7.8% (n=5) in EE10 and 6.9% (n=5) in EE10+NP100, 

when examined after completion of the reproductive studies.  Interestingly, these three groups 

with the lowest female:male ratios and lowest mean egg production per breeding trial were the 

same groups that did not present any visible gonadal tissues during the 60 dph histological 

examination.  The EE1-exposed fish also produced a significantly lower mean number of eggs 

per breeding trial, but the sex distribution was not significantly different from that of the control 

group.  A similar trend of lower mean egg production per breeding trial and skewed sex 

distribution towards males, although neither was statistically significant, was also observed in the 

NP100 group.   
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The sex distribution of all treatment groups, excluding the EE10-containing groups which 

had no discernable gonadal tissues, were all skewed towards more females at the 60 dph 

histological examination.  However, histological examination after the adult breeding trials 

revealed that the sex distribution of these groups did not deviate significantly from the control 

group.  From these observations, it appears that when zebrafish are exposed during early 

development to concentrations of xenoestrogens that are below 10 ng/l EE, namely the groups 

EE1, NP10, EE1+NP10, and EE1+NP100, the effects of xenoestrogen exposure on sexual 

differentiation are reversible following a period of depuration.  Other studies have reported a 

similar trend, where sex  distribution of zebrafish exposed to xenoestrogens during early 

development was skewed towards more female, but more males developed after cessation of 

xenoestrogen exposures (Hill and Janz, 2003; Fenske et al., 2005).  One possible explanation for 

this observation may lie in the nature of zebrafish gonad differentiation.  Zebrafish are 

undifferentiated gonochorists whereby all gonads begin development as immature ovaries 

consisting solely of oogonia and primary growth stage oocytes (Takahashi, 1977).  Eventually, 

some will continue their development into mature ovaries while the rest differentiate into testes 

(Takahashi, 1977; Uchida et al., 2002).  Although the exact nature of what triggers the 

differentiation of the early immature ovaries into either mature ovaries or testes is not yet clear, 

increasing evidence is suggesting that it may be influenced by endogenous androgen and 

estrogen levels.  Studies in fish have shown that inhibition of the cytochrome P450 aromatase 

complex, the enzyme responsible for converting androgens into estrogens, during early 

differentiating stages can lead to development as phenotypic males in genetic females (Piferrer et 

al., 1993; Kitano et al., 2000; Kroon and Liley, 2000).  In zebrafish, the presence of sex steroids 

has been shown to induce gonadal feminization or masculinization after manipulation of 
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aromatase (Fenske and Segner, 2004).  Therefore, it is likely that the gonadal development of 

genetic males during the early stage were suppressed as a result of xenoestrogen exposures, and 

after a period of depuration, the gonads of these males were able to resume their differentiation 

into testes.  This explains the observation of apparent all-female populations at 60 dph in EE1, 

NP10, EE1+NP10, and EE1+NP100, as they included both genetic females with developing 

ovaries as well as genetic males with arrested gonadal maturation.   

To a more severe extent, with a higher concentration of EE, fish in groups containing 10 

ng/l EE (EE10, EE10+NP10 and EE10+NP100) experienced an increased suppression of 

gonadal development in that no discernable gonadal tissues were present when examined at 60 

dph.  The lack of visible gonadal tissues could potentially be due to divesting the energy 

normally reserved for gametogenesis into VTG production, as these three groups had the highest 

VTG induction amongst all treatments.  The sex  distribution in the EE10 exposure groups at the 

end of the breeding experiments were all predominately male, which can be attributed to the 

possibility that females may be more sensitive to higher concentrations of xenoestrogens and 

especially chronic exposure, thus experiencing higher mortality.  Generally, compared to male 

fish, females are more metabolically stressed due to the higher energy investment needed for egg 

production.  With the additional stress of xenoestrogen exposures (i.e. as seen in the high EE 

exposure groups), it is possible that the females in groups containing 10 ngl/l of EE (EE10, 

EE10+NP10, and EE10+NP100) experienced further energy expenditure and depletion leading 

to their death.  Unfortunately, this study was unable to sufficiently test the hypothesis of sex-

specific sensitivity to xenoestrogen exposures.  Due to the lack of prominent sexual dimorphism 

in zebrafish, gender is not easily determined by visual inspection, therefore during the depuration 

period, an accurate account of sex distribution could not be determined unless the fish were 
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examined histologically.  As well, when a fish dies, its body cavity, especially the ovaries are 

quickly consumed by other fish soon after, often leaving very little evidence of their demise.  

Thus, if any carcasses were still left behind, the gender of the dead fish would have been very 

difficult to establish. 

The plasticity of zebrafish gonadal development was demonstrated through the reversal 

of sex distribution seen with the adult zebrafish after being exposed from 2 to 60 dph to various 

concentrations of EE, NP and EE+NP and allowed a six month depuration.  In addition, upon 

measuring the adult GSI, with the exception of the significantly lowered GSI in EE10 adult 

males, no differences in GSI from any treatments were observed when compared with the 

control.  Despite this apparent recovery, further evidence of reduced reproductive fitness, other 

than the aforementioned decreased daily and overall egg production, were observed.  Eggs 

produced by fish in groups EE10, EE1+NP100 and EE10+NP100 experienced decreased 

viability when compared with the control.  Decreased hatchability in EE10 was also observed.  

As well, the swim-up success of the F1 generation from groups EE10, EE1+NP10, EE1+NP100 

and EE10+NP100 was significantly reduced.  This illustrates that inappropriate exposure to 

xenoestrogens during the critical period of gonadal development and sexual differentiation, even 

after a long period of depuration, may have irreversible effects on the reproductive system.  

Further research is warranted to elucidate the mechanism(s) of both the cause of the reproductive 

failure and the transgenerational effects. 

4.4 HSP70 and Apoptosis 

Another biochemical endpoint examined in the current study was the expression of 

HSP70 in whole body juveniles and adult gonads to investigate the feasibility of correlating 

HSP70 responses with estrogenic exposures in zebrafish.  There were no significant differences 

between treatments in the level of whole body HSP70 expression in the 60 dph fish.  Although 
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some studies have reported elevated levels of piscine HSP70 as well as other heat shock proteins 

associated with exposure to various environmental stressors including heavy metals, industrial 

effluents, pesticides, and polycyclic aromatic hydrocarbons, it is noteworthy that the majority of 

studies evaluated the response in cell lines, primary cell cultures or specific tissues and not of the 

whole animal (Basu et al., 2002).  Other studies have indicated that the HSP response can differ 

among tissues (Smith et al., 1999; Rabergh et al., 2000), which may help explain the lack of 

significant differences in whole body HSP70 levels between the groups in this study since the 

measurement accounted for not only specific tissue types but the whole animal.  There were also 

no significant differences between treatments in the gonadal HSP70 expression of the adult 

zebrafish at the end of the reproductive study.  It is likely that 6 months of depuration after the 60 

day exposure period was sufficient time for HSP70 to return to basal levels.  Based on these 

results, whole body HSP70 does not appear to be a viable biomarker for chronic xenoestrogen 

exposure due to possible variations among tissues.   

Originally, juvenile HSP70-eGFP zebrafish were proposed to be exposed to EE, NP, 

EE+NP or control from 2 to 60 dph in a parallel experiment with juvenile wild-type zebrafish.  

Unfortunately, due to the poor reproductive performance of the adult HSP70-eGFP transgenic 

zebrafish broodstock, no juvenile transgenic zebrafish were available for the exposure study.  

Otherwise, it would have served as a valuable model to determine if exposure to xenoestrogen(s) 

induces any tissue-specific HSP70 expression.  This study also proposed to evaluate gonadal cell 

death via TUNEL staining, however, since excessive amount of sections were taken for H&E 

staining from the preserved samples, the majority of samples did not have sufficient gonadal 

tissues remaining for TUNEL.  This prevented the effort to determine if the observed adverse 

effects from xenoestrogen exposure were linked to stress on the reproductive system.  

69 



 

Nevertheless, the whole body HSP70 results should serve as a basis for concentrating future 

efforts on examining tissue-specific HSP70 expression as well as gonadal apoptosis in order to 

better understand the mechanism(s) of the observed reproductive toxicity associated with 

exposure to xenoestrogens.  

4.5 Duration of Exposure 

The length of exposure for the present study was set at 60 days.  Previous studies have 

demonstrated that 60 dph is sufficient time for the complete sexual differentiation in zebrafish.  

Takahashi (1977) reported that complete sex reversal and testicular formation occurs by 40 dph.  

Uchida et al. (2002) also reported a gonad transformation period 3-4 weeks after hatching, with 

the total disappearance of all oocytes in genetic males occurring by the end of 4 weeks.  

However, in the current study, 18% of the control fish at 60 dph possessed undifferentiated 

gonads.  Andersen et al. (2004) reported similar results when studying the effects of the anti-

estrogen ZM 189,156 and the aromatase inhibitor fadrozole on juvenile zebrafish. They 

described that at 60 dph, the water and solvent control groups had 14% and 24% of fish 

possessing undifferentiated gonads, respectively.  Other studies have also reported the presence 

of undifferentiated gonads in control zebrafish at 60 dph (Hill and Janz, 2003; Orn et al., 2003).  

The variation observed in timing of the gonad maturation period between the studies may be 

attributed to strain differences and/or the different rearing conditions of each respective study 

(Orn et al., 2003).  Maack et al. (2003) suggested that stocking density, feeding conditions, social 

factors and water temperature, and not strain differences, may affect the timing of sexual 

development in zebrafish.  It is also possible that the particular batch of fish used in the present 

study might not have been fully developed at 60 dph, as Maack et al. (2003) observed that high 

inter-individual variability exists in the timing of sex differentiation within each strain with no 

obvious correlation to body mass.  This appears to be the most likely explanation for the present 
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study as the body mass of the control fish at 60 dph was similar to the control fish in Van Den 

Belt et al. (2003), while less than the controls in Andersen et al. (2004), Hill and Janz (2003), 

and Orn et al. (2003), with no apparent correlation to each respective level of undifferentiated 

gonads.  In the present study, we also observed the lack of visible gonad tissues at 60 dph in fish 

from exposure groups containing 10 ng/l of EE (EE10, EE10+NP10 and EE10+NP100). 

Andersen et al. (2003) also observed 60 dph zebrafish with no visible gonads when exposed to 

15.4 ± 1.4 ng/l EE from hatch to 60 dph.  As well, Van Den Belt et al. (2003) reported a 

concentration-dependent increase in the number of fish with no discernable gonads when 

exposed to 0.1, 1, 10 or 25 ng/l of EE from hatch until 3 months post-hatch.  One possible 

explanation, as mentioned above, could be that the energy required for VTG production (and 

potentially other ER-dependent gene products) is quite high, thus the energy normally devoted to 

gonad development may be diverted to VTG synthesis.  Consequently, groups exhibiting high 

VTG induction would yield more individuals with small or underdeveloped gonads.   These 

results suggest that the delay in the maturation process associated with EE exposures in zebrafish 

is both concentration- and duration- dependent.
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CHAPTER 5 
CONCLUSIONS 

In summary, the current results, derived from exposing zebrafish to binary mixtures of 

the xenoestrogens EE and NP from 2 to 60 dph, demonstrated that: 

 

• Depending on relative exposure concentrations, the effect of binary mixtures of 

EE + NP on VTG induction can be additive or non-additive.  Higher levels of NP 

in the presence of EE appeared to antagonize the action of EE, inducing lower 

levels of VTG than when EE was acting alone. 

• Similar non-additive effects were observed with mean number of eggs produced 

per breeding trial from adult fish that were allowed to recover in clean water for 6 

months after the exposure experiment.  Fish in the EE1 exposure group produced 

significantly lower number of eggs compared with the control group while the 

addition of NP in EE1+NP10 and EE1+NP100 exposure groups resulted in egg 

production that were not significantly different from the control group. 

• Examination of the adult fish after the breeding trials revealed that groups 

previously exposed to 10 ng/l of EE (EE10, EE10+NP10 or EE10+NP100) had 

sex  distribution that skewed towards more males.  We hypothesize this may be 

the result of female zebrafish being more sensitive towards chronic xenoestrogen 

exposures, and in the process accruing more stress, leading to subsequent death. 

• Despite the recovery of  zebrafish in terms of sex distribution, GSI, and condition 

factor, in NP100, EE1, EE1+NP10 and EE1+NP100, breeding trials revealed 
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significant reductions in egg viability and hatchability as well as F1 swim-up 

success.  These results suggest persistence of impairment in reproductive fitness. 

• Sixty days may not be of sufficient time to encompass the completion of zebrafish 

gonad maturation; especially in xenoestrogen studies where those compounds 

have been demonstrated to interfere with / delay the maturation process. 

• Overall, based on the results of this study it is recommended that caution be 

exercised in ecological risk assessments when assuming additivity of fish 

responses to xenoestrogen mixtures.
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APPENDIX A 
JUVENILE ZEBRAFISH CARE 

1 Coleps Infestation 

Originally, fertilized eggs were incubated in plastic Petri dishes (50 eggs per dish) filled 

with dechlorinated tap water.  Subsequent to hatching, fry were fed finely-crushed Nutrafin Max 

flake food.  It was noted that the number of fry would decrease dramatically over a period of 7 to 

10 days.  In most cases, no signs of their demise were present; it appeared that the fry had simply 

vanished.  By 14 dph, the mortality rate was 100%.  Upon closer inspection using a dissecting 

microscope, the presence of coleps was recorded.  Coleps are free-living freshwater protozoa that 

are known to swarm freshly hatched fry and consume its body in as little as 1 h, leaving virtually 

no evidence of the attack.  The infestation of Coleps was eliminated by incubating the eggs and 

raising the fry in sterilized egg water. 

2 Barrier vs. No-Barrier 

After the implementation of egg water usage for incubation, the mortality rate of fry was 

not as dramatic as when the fry were incubated in dechlorinated tap water (62.1 ± 4.1% vs. 11.4 

± 1.7% at 7 dph), nonetheless, the survival rate of fry remained suboptimal (12.1 ± 2.0% at 

21dph).  It was hypothesized that perhaps the reduced survival rate of fry were due to stress 

induced by being housed in Petri dishes which are transparent, thus were subjected to 

disturbances caused by experimenters performing daily maintenance of the environmental 

chamber.  Cylindrical-shaped visual barriers were constructed out of paper and placed around 

some Petri dishes to examine if; 1) the observed suboptimal survival rate was brought on by 

stress due to visual stimulus, and 2) if the survival rate would increase upon placement of the 
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barrier.  There was no improvement in survival rate from groups with the barrier when compared 

to groups without the barrier at 21 dph (17.6 ± 1.9% vs. 23.2 ± 3.1% respectively). 

3 Feeding Regimen 

Further investigation revealed that fry were not eating the finely-crushed Nutrafin Max 

flake food, resulting in starvation and eventual mortality.  Since the newly hatched fry are quite 

transparent in appearance, the lack of food intake into a fry’s stomach can be easily observed by 

the naked eye.  This hypothesis of lack of food intake offered a possible explanation for the 

gradual mortality rate, unlike the rapid mortality rate experienced with Coleps infestation.  

Several feeding regimen were employed to determine the optimum diet that ensures high 

survival rate. 

3.1 Microencapsulated Feed 

A microencapsulated powder feed specifically formulated for larval fish was gifted by 

Dr. Patrick Krone of the Department of Anatomy and Cell Biology at University of 

Saskatchewan.  Prior to feeding, the powder feed was mixed with egg water to create a slurry 

solution.  Using a Pasteur pipette, a drop of the solution was fed to each Petri dish.  It did not 

appear that the fry were eating the food as the survival rate remained suboptimal at 21 dph (23.9 

± 2.9%).  Furthermore, the slurry caused the incubation water to become cloudy, necessitating a 

water change after each feeding, which proved unfeasible since the 60 dph exposure experiment 

proposed to have a water change every 48 h to minimize stress on the larval fish due to handling. 

3.2 Hard-Boiled Chicken Egg Yolk 

Hard-boiled egg yolk was mixed with egg water to make a slurry solution similar to the 

microencapsulated powder feed/egg water solution.  The results were similar to the 

microencapsulated feed (25.3 ± 2.8% survival at 21 dph), with fish not eating the food as well as 
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requiring a water change after each feeding.  The survivorship of the larval zebrafish remained 

suboptimal with this diet. 

3.3 Paramecium multimicronucleatum and Brine Shrimp (Artemia franciscana sp.) 

As outlined in Chapter 2, the optimum feeding regimen was the combination of 

Paramecium multimicronucleatum and freshly hatched brine shrimp.  At 2 dph, using a Pasteur 

pipette, 2 drops of paramecium culture were fed to each Petri dish twice daily.  As mentioned 

previously, due to the transparent appearance of larval zebrafish, it was possible to monitor their 

food intake by observing them with the naked eye.  The paramecium cultures maintained for this 

study were green in color, thus paramecium intake by the fry was characterized by green rotund 

abdomen. At 7 dph, the larval zebrafish were fed a combination of paramecium (twice daily) and 

freshly hatched brine shrimp (once daily).  One hour after the brine shrimp feeding, uneaten 

brine shrimp were removed from the Petri dish.  The mixed diet was maintained from 7 to 14 

dph.  By 14 dph most, if not all, were able to eat brine shrimp.  By 21dph, the mean survival rate 

of the 15 batches tested was 83.2 ± 2.3 %. 

To summarize, in conjunction with incubating in sterile egg water, a mixture of two live 

foods, paramecium and brine shrimp, were demonstrated to yield better survival rate of larval 

zebrafish than the other diets tested. 
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APPENDIX B 
JUVENILE ZEBRAFISH MAINTENANCE AND CARE STUDY DATA 

 
 
Treatment: incubation with dechlorinated tap water, fed finely crushed Nutrafin Max flake food 
Trials Total  # of fry at 0 

dph 
Total  # of fry at 7 
dph 

% Survival at 7 dph 

1 542 32 5.9 
2 165 2 1.2 
3 426 46 10.8 
4 275 34 12.4 
5 674 89 13.2 
6 648 124 19.1 
7 134 24 17.9 
8 516 37 7.2 
9 846 126 14.9 
10 325 59 18.2 
11 812 184 22.7 
12 273 35 12.8 
13 385 0 0.0 
14 276 25 9.1 
15 297 16 5.4 
By 14 dph, mortality rate for all trials were 100%. 
 
 
Treatment: incubation with egg water, fed finely crushed Nutrafin Max flake food 
Trials Total  # of fry 

at 0 dph 
Total  # of fry 
at 7 dph 

% Survival at 7 
dph 

Total  # of 
fry at 21 
dph 

% Survival 
at 21 dph 

1 250 170 68.0 15 6.0 
2 310 213 68.7 25 8.1 
3 231 115 49.8 14 6.1 
4 340 232 68.2 56 16.5 
5 315 178 56.5 16 5.1 
6 369 271 73.4 61 16.5 
7 643 457 71.1 0 0.0 
8 410 168 41.0 126 30.7 
9 583 327 56.1 82 14.1 
10 618 294 47.6 41 6.6 
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11 519 149 28.7 72 13.9 
12 632 521 82.4 125 19.8 
13 310 187 60.3 53 17.1 
14 549 396 72.1 73 13.3 
15 815 715 87.7 61 7.5 
 
 
Treatment: incubation with egg water, fed finely crushed Nutrafin Max flake food 
Trials Total  # of fry 

at 0 dph 
Total  # of fry 
at 7 dph 

% Survival at 7 
dph 

Total  # of 
fry at 21 
dph 

% Survival 
at 21 dph 

1 250 170 68.0 15 6.0 
2 310 213 68.7 25 8.1 
3 231 115 49.8 14 6.1 
4 340 232 68.2 56 16.5 
5 315 178 56.5 16 5.1 
6 369 271 73.4 61 16.5 
7 643 457 71.1 0 0.0 
8 410 168 41.0 126 30.7 
9 583 327 56.1 82 14.1 
10 618 294 47.6 41 6.6 
11 519 149 28.7 72 13.9 
12 632 521 82.4 125 19.8 
13 310 187 60.3 53 17.1 
14 549 396 72.1 73 13.3 
15 815 715 87.7 61 7.5 
 
 
Treatment: incubation with egg water, fed finely crushed Nutrafin Max flake food &paper barrier  
Trials Total  # of fry at 0 

dph 
Total  # of fry at 21 
dph 

% Survival at 21 dph 

1 78 7 9.0 
2 159 34 21.4 
3 194 50 25.8 
4 195 32 16.4 
5 163 39 23.9 
6 180 20 11.1 
7 126 19 15.1 
8 74 8 10.8 
9 61 11 18.0 
10 129 31 24.0 
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Treatment: incubation with egg water, fed finely crushed Nutrafin Max flake food & no paper 
barrier  
Trials Total  # of fry at 0 

dph 
Total  # of fry at 21 
dph 

% Survival at 21 dph 

1 185 51 27.6 
2 116 11 9.5 
3 80 15 18.8 
4 211 57 27.0 
5 50 10 20.0 
6 74 14 18.9 
7 80 7 8.8 
8 172 54 31.4 
9 103 42 40.8 
10 214 63 29.4 
 
 
Treatment: incubation with egg water, fed microencapsulated powder feed 
Trials Total  # of fry at 0 

dph 
Total  # of fry at 21 
dph 

% Survival at 21 dph 

1 189 11 5.8 
2 421 142 33.7 
3 396 48 12.1 
4 368 124 33.7 
5 319 86 27.0 
6 374 36 9.6 
7 371 90 24.3 
8 265 104 39.2 
9 282 19 6.7 
10 209 39 18.7 
11 311 66 21.2 
12 172 58 33.7 
13 272 71 26.1 
14 419 137 32.7 
15 380 127 33.4 
 
 
Treatment: incubation with egg water, fed crushed hard-boiled egg yolk 
Trials Total  # of fry at 0 

dph 
Total  # of fry at 21 
dph 

% Survival at 21 dph 

1 213 12 5.6 
2 171 46 26.9 
3 322 125 38.8 
4 206 31 15.0 
5 144 17 11.8 
6 115 37 32.2 
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7 162 42 25.9 
8 334 107 32.0 
9 237 76 32.1 
10 135 16 11.9 
11 330 127 38.5 
12 210 64 30.5 
13 134 35 26.1 
14 185 27 14.6 
15 182 67 36.8 
 
 
Treatment: incubation with egg water, fed paramecium and freshly hatched brine shrimp 
Trials Total  # of fry at 0 

dph 
Total  # of fry at 21 
dph 

% Survival at 21 dph 

1 186 156 83.9 
2 235 187 79.6 
3 201 165 82.1 
4 248 231 93.1 
5 103 67 65.0 
6 328 284 86.6 
7 110 95 86.4 
8 238 197 82.8 
9 203 184 90.6 
10 263 167 63.5 
11 113 100 88.5 
12 94 85 90.4 
13 156 124 79.5 
14 317 297 93.7 
15 219 180 82.2 
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APPENDIX C 
SIXTY DAYS POST-HATCH DATA 

 

Treatment: Control 
Sample # Length (mm) Weight (mg) Condition Factor1

5-1-1 15.12 21 0.61 
5-1-2 15.94 25 0.62 
5-1-3 12.18 12 0.66 
5-1-4 15.18 19 0.54 
5-1-5 16.88 28 0.58 
5-1-6 14.14 16 0.57 
5-1-7 12.67 14 0.69 
5-1-8 11.00 10 0.75 
5-1-9 14.89 21 0.64 
5-1-10 11.97 10 0.58 
5-1-11 11.97 12 0.70 
5-1-12 10.63 7 0.58 
5-1-13 15.99 24 0.59 
5-1-14 11.64 12 0.76 
5-2-1 14.29 19 0.65 
5-2-2 9.00 5 0.69 
5-2-3 11.18 9 0.64 
5-2-4 11.53 11 0.72 
5-2-5 9.63 6 0.67 
5-2-6 8.90 6 0.85 
5-2-7 12.71 12 0.58 
5-2-8 9.52 8 0.93 
5-2-9 12.00 12 0.69 
5-2-10 12.79 14 0.67 
5-2-11 13.77 15 0.57 
5-2-12 10.27 8 0.74 
5-2-13 14.96 21 0.63 
5-2-14 15.36 25 0.69 
5-3-1 9.54 7 0.81 
5-3-2 12.82 14 0.66 
5-3-3 10.85 10 0.78 
5-3-4 10.19 6 0.57 
5-3-5 13.19 14 0.61 
5-3-6 13.89 15 0.56 
5-3-7 13.89 19 0.71 
5-3-8 10.76 9 0.72 
5-3-9 10.17 7 0.67 
5-3-10 12.41 13 0.68 
5-3-11 13.75 17 0.65 
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5-3-12 12.81 12 0.57 
5-3-13 11.17 9 0.65 
5-3-14 12.42 11 0.57 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: NP10 
Sample # Length (mm) Weight (mg) Condition Factor1

3-1-1 18.24 36 0.59 
3-1-2 14.84 19 0.58 
3-1-3 11.89 10 0.59 
3-1-4 14.58 19 0.61 
3-1-5 14.58 18 0.58 
3-1-6 14.58 19 0.61 
3-1-7 15.57 22 0.58 
3-1-8 10.35 7 0.63 
3-1-9 12.55 12 0.61 
3-1-10 11.38 10 0.68 
3-1-11 13.51 14 0.57 
3-1-12 14.16 16 0.56 
3-1-13 12.50 12 0.61 
3-1-14 13.15 16 0.70 
3-2-1 12.54 14 0.71 
3-2-2 13.82 19 0.72 
3-2-3 13.82 17 0.64 
3-2-4 14.21 19 0.66 
3-2-5 15.51 22 0.59 
3-2-6 15.51 22 0.59 
3-2-7 13.45 17 0.70 
3-2-8 11.88 15 0.89 
3-2-9 10.72 9 0.73 
3-2-10 13.75 18 0.69 
3-2-11 12.52 11 0.56 
3-2-12 11.33 8 0.55 
3-2-13 12.67 14 0.69 
3-2-14 9.67 7 0.77 
3-3-1 10.65 9 0.75 
3-3-2 12.21 12 0.66 
3-3-3 13.65 18 0.71 
3-3-4 14.72 18 0.56 
3-3-5 15.25 21 0.59 
3-3-6 14.45 17 0.56 
3-3-7 10.39 9 0.80 
3-3-8 12.77 13 0.62 
3-3-9 13.91 15 0.56 
3-3-10 14.41 20 0.67 
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3-3-11 16.75 26 0.55 
3-3-12 13.39 13 0.54 
3-3-13 10.93 9 0.69 
3-3-14 12.62 15 0.75 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: NP100 
Sample # Length (mm) Weight (mg) Condition Factor1

4-1-1 17.09 29 0.58 
4-1-2 8.44 40 6.65 
4-1-3 15.67 23 0.60 
4-1-4 14.71 19 0.60 
4-1-5 13.08 13 0.58 
4-1-6 14.22 19 0.66 
4-1-7 11.75 11 0.68 
4-1-8 12.97 12 0.55 
4-1-9 14.19 20 0.70 
4-1-10 10.23 5 0.47 
4-1-11 12.84 13 0.61 
4-1-12 12.70 14 0.68 
4-1-13 20.10 53 0.65 
4-1-14 18.45 34 0.54 
4-2-1 12.39 12 0.63 
4-2-2 10.27 6 0.55 
4-2-3 14.17 18 0.63 
4-2-4 13.90 16 0.60 
4-2-5 11.98 13 0.76 
4-2-6 14.14 20 0.71 
4-2-7 9.69 6 0.66 
4-2-8 8.38 4 0.68 
4-2-9 9.54 6 0.69 
4-2-10 12.91 17 0.79 
4-2-11 14.73 21 0.66 
4-2-12 11.91 10 0.59 
4-2-13 11.91 11 0.65 
4-2-14 13.10 15 0.67 
4-3-1 14.38 19 0.64 
4-3-2 13.62 16 0.63 
4-3-3 12.04 11 0.63 
4-3-4 14.66 21 0.67 
4-3-5 9.87 6 0.62 
4-3-6 14.40 18 0.60 
4-3-7 10.43 8 0.71 
4-3-8 12.96 14 0.64 
4-3-9 9.36 5 0.61 
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4-3-10 13.75 17 0.65 
4-3-11 14.94 23 0.69 
4-3-12 10.27 8 0.74 
4-3-13 17.29 33 0.64 
4-3-14 13.32 15 0.63 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: EE1 
Sample # Length (mm) Weight (mg) Condition Factor1

1-1-1 10.12 7 0.68 
1-1-2 14.97 21 0.63 
1-1-3 12.03 10 0.57 
1-1-4 15.51 22 0.59 
1-1-5 11.44 8 0.53 
1-1-6 13.29 14 0.60 
1-1-7 15.55 22 0.59 
1-1-8 14.15 17 0.60 
1-1-9 13.01 14 0.64 
1-1-10 12.77 12 0.58 
1-1-11 11.02 8 0.60 
1-1-12 12.09 10 0.57 
1-1-13 13.79 16 0.61 
1-1-14 12.92 14 0.65 
1-2-1 10.50 8 0.69 
1-2-2 14.50 20 0.66 
1-2-3 14.00 18 0.66 
1-2-4 11.00 10 0.75 
1-2-5 12.00 12 0.69 
1-2-6 12.00 13 0.75 
1-2-7 12.00 10 0.58 
1-2-8 12.00 10 0.58 
1-2-9 11.50 11 0.72 
1-2-10 11.00 7 0.53 
1-2-11 14.00 17 0.62 
1-2-12 14.00 16 0.58 
1-2-13 10.50 8 0.69 
1-2-14 13.00 15 0.68 
1-3-1 14.00 17 0.62 
1-3-2 15.00 20 0.59 
1-3-3 12.00 13 0.75 
1-3-4 14.00 16 0.58 
1-3-5 12.00 12 0.69 
1-3-6 14.00 17 0.62 
1-3-7 13.00 14 0.64 
1-3-8 13.00 13 0.59 
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1-3-9 13.00 13 0.59 
1-3-10 11.00 9 0.68 
1-3-11 14.00 16 0.58 
1-3-12 11.50 10 0.66 
1-3-13 11.00 8 0.60 
1-3-14 9.00 15 2.06 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: EE10 
Sample # Length (mm) Weight (mg) Condition Factor1

2-1-1 9.43 6 0.72 
2-1-2 10.46 8 0.70 
2-1-3 9.77 6 0.64 
2-1-4 10.51 9 0.78 
2-1-5 11.03 9 0.67 
2-1-6 9.62 7 0.79 
2-1-7 9.62 7 0.79 
2-1-8 8.84 5 0.72 
2-1-9 9.75 7 0.76 
2-1-10 9.37 6 0.73 
2-1-11 8.67 5 0.77 
2-1-12 8.00 3 0.59 
2-1-13 7.70 3 0.66 
2-1-14 8.69 5 0.76 
2-2-1 11.00 10 0.75 
2-2-2 10.50 9 0.78 
2-2-3 7.92 3 0.60 
2-2-4 8.85 5 0.72 
2-2-5 9.71 7 0.76 
2-2-6 9.83 12 1.26 
2-2-7 10.23 8 0.75 
2-2-8 10.20 8 0.75 
2-2-9 7.53 5 1.17 
2-2-10 8.42 5 0.84 
2-2-11 8.90 7 0.99 
2-2-12 8.22 6 1.08 
2-2-13 8.00 5 0.98 
2-2-14 8.00 7 1.37 
2-3-1 10.50 10 0.86 
2-3-2 11.50 11 0.72 
2-3-3 8.00 4 0.78 
2-3-4 8.00 4 0.78 
2-3-5 9.00 6 0.82 
2-3-6 8.00 5 0.98 
2-3-7 9.00 6 0.82 
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2-3-8 7.00 3 0.87 
2-3-9 9.00 5 0.69 
2-3-10 8.00 4 0.78 
2-3-11 9.00 6 0.82 
2-3-12 8.00 5 0.98 
2-3-13 7.00 5 1.46 
2-3-14 10.00 9 0.90 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: EE1+NP10 
Sample # Length (mm) Weight (mg) Condition Factor1

6-1-1 16.16 28 0.66 
6-1-2 16.63 29 0.63 
6-1-3 15.26 21 0.59 
6-1-4 11.34 9 0.62 
6-1-5 11.66 10 0.63 
6-1-6 10.83 8 0.63 
6-1-7 14.06 19 0.68 
6-1-8 13.55 14 0.56 
6-1-9 12.35 13 0.69 
6-1-10 13.25 15 0.64 
6-1-11 11.36 12 0.82 
6-1-12 13.66 19 0.75 
6-1-13 10.00 7 0.70 
6-1-14 11.52 9 0.59 
6-2-1 11.46 11 0.73 
6-2-2 16.41 27 0.61 
6-2-3 17.97 41 0.71 
6-2-4 15.53 25 0.67 
6-2-5 11.17 10 0.72 
6-2-6 16.19 27 0.64 
6-2-7 10.95 11 0.84 
6-2-8 16.84 31 0.65 
6-2-9 10.02 7 0.70 
6-2-10 12.10 13 0.73 
6-2-11 15.60 26 0.68 
6-2-12 14.28 19 0.65 
6-2-13 16.68 32 0.69 
6-2-14 11.71 11 0.69 
6-3-1 9.23 5 0.64 
6-3-2 10.26 11 1.02 
6-3-3 16.33 30 0.69 
6-3-4 16.01 25 0.61 
6-3-5 13.52 19 0.77 
6-3-6 13.52 20 0.81 
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6-3-7 11.67 15 0.94 
6-3-8 12.22 13 0.71 
6-3-9 16.69 27 0.58 
6-3-10 11.25 9 0.63 
6-3-11 10.84 11 0.86 
6-3-12 12.60 14 0.70 
6-3-13 13.87 15 0.56 
6-3-14 10.42 8 0.71 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: EE1+NP100 
Sample # Length (mm) Weight (mg) Condition Factor1

7-1-1 13.35 14 0.59 
7-1-2 15.61 22 0.58 
7-1-3 12.52 13 0.66 
7-1-4 12.74 13 0.63 
7-1-5 11.41 8 0.54 
7-1-6 14.84 21 0.64 
7-1-7 11.20 11 0.78 
7-1-8 18.35 40 0.65 
7-1-9 13.92 15 0.56 
7-1-10 16.42 26 0.59 
7-1-11 12.97 14 0.64 
7-1-12 15.22 20 0.57 
7-1-13 15.22 21 0.60 
7-1-14 12.22 11 0.60 
7-2-1 10.88 9 0.70 
7-2-2 12.76 15 0.72 
7-2-3 13.58 17 0.68 
7-2-4 10.08 9 0.88 
7-2-5 9.21 7 0.90 
7-2-6 11.35 10 0.68 
7-2-7 12.52 13 0.66 
7-2-8 14.47 20 0.66 
7-2-9 11.23 11 0.78 
7-2-10 9.18 4 0.52 
7-2-11 11.87 13 0.78 
7-2-12 10.44 8 0.70 
7-2-13 15.21 23 0.65 
7-2-14 8.93 5 0.70 
7-3-1 11.49 11 0.73 
7-3-2 8.95 5 0.70 
7-3-3 10.13 8 0.77 
7-3-4 14.21 18 0.63 
7-3-5 9.21 5 0.64 
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7-3-6 13.2 15 0.65 
7-3-7 9.59 6 0.68 
7-3-8 14.3 17 0.58 
7-3-9 10.64 9 0.75 
7-3-10 12.8 15 0.72 
7-3-11 9.25 5 0.63 
7-3-12 10.55 10 0.85 
7-3-13 9.92 7 0.72 
7-3-14 14.03 22 0.80 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: EE10+NP10 
Sample # Length (mm) Weight (mg) Condition Factor1

8-1-1 11.89 13 0.77 
8-1-2 9.34 6 0.74 
8-1-3 10.20 7 0.66 
8-1-4 10.02 7 0.70 
8-1-5 9.03 6 0.81 
8-1-6 10.54 11 0.94 
8-1-7 9.11 5 0.66 
8-1-8 9.35 7 0.86 
8-1-9 8.65 6 0.93 
8-1-10 8.65 5 0.77 
8-1-11 8.49 4 0.65 
8-1-12 7.92 4 0.81 
8-1-13 7.28 2 0.52 
8-1-14 9.19 5 0.64 
8-1-15 8.03 5 0.97 
8-2-1 7.86 4 0.82 
8-2-2 7.28 3 0.78 
8-2-3 7.85 5 1.03 
8-2-4 9.13 7 0.92 
8-2-5 9.60 9 1.02 
8-2-6 12.04 15 0.86 
8-2-7 9.96 9 0.91 
8-2-8 9.40 7 0.84 
8-2-9 11.14 11 0.80 
8-2-10 9.12 6 0.79 
8-2-11 10.12 11 1.06 
8-2-12 10.32 11 1.00 
8-2-13 9.05 5 0.67 
8-2-14 11.11 12 0.88 
8-2-15 10.12 9 0.87 
8-3-1 13.51 21 0.85 
8-3-2 8.75 6 0.90 
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8-3-3 8.75 5 0.75 
8-3-4 11.48 13 0.86 
8-3-5 8.97 5 0.69 
8-3-6 9.82 9 0.95 
8-3-7 12.92 16 0.74 
8-3-8 8.00 8 1.56 
8-3-9 10.54 9 0.77 
8-3-10 8.66 4 0.62 
8-3-11 9.19 8 1.03 
8-3-12 9.19 6 0.77 
8-3-13 9.51 9 1.05 
8-3-14 8.85 6 0.87 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
 
 
Treatment: EE10+NP100 
Sample # Length (mm) Weight (mg) Condition Factor1

9-1-1 12.06 13 0.74 
9-1-2 9.04 5 0.68 
9-1-3 9.04 5 0.68 
9-1-4 11.07 8 0.59 
9-1-5 9.78 7 0.75 
9-1-6 9.78 8 0.86 
9-1-7 10.8 9 0.71 
9-1-8 11.18 9 0.64 
9-1-9 9.71 5 0.55 
9-1-10 11.39 12 0.81 
9-1-11 9.42 5 0.60 
9-1-12 10.56 8 0.68 
9-1-13 12.39 13 0.68 
9-1-14 9.30 6 0.75 
9-2-1 8.30 5 0.87 
9-2-2 9.94 9 0.92 
9-2-3 9.29 6 0.75 
9-2-4 10.93 9 0.69 
9-2-5 10.38 8 0.72 
9-2-6 11.15 11 0.79 
9-2-7 8.43 5 0.83 
9-2-8 12.05 15 0.86 
9-2-9 9.22 5 0.64 
9-2-10 11.64 12 0.76 
9-2-11 10.31 10 0.91 
9-2-12 9.36 7 0.85 
9-2-13 8.16 4 0.74 
9-2-14 9.89 8 0.83 
9-3-1 10.42 12 1.06 
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9-3-2 9.39 7 0.85 
9-3-3 8.29 4 0.70 
9-3-4 10.26 8 0.74 
9-3-5 9.84 7 0.73 
9-3-6 9.21 4 0.51 
9-3-7 10.21 8 0.75 
9-3-8 9.63 8 0.90 
9-3-9 9.63 5 0.56 
9-3-10 9.89 7 0.72 
9-3-11 9.87 9 0.94 
9-3-12 8.70 6 0.91 
9-3-13 10.63 8 0.67 
9-3-14 8.96 7 0.97 
1Condition Factor = [(body weight (g)/length (mm)3] × 100,000
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APPENDIX D 
SIXTY DAYS POST-HATCH GONADAL STAGING DATA 

 
 
Blind 
# 

Sample 
# 

Sex Oo PreV % Oo % 
PreV 

Sg Sc St %Sg %Sc %St 

44 1-1-07 F 34 1 97.14 2.86       
47 1-1-08 F 54 30 64.29 35.71       
50 1-1-09 F 42 39 51.85 48.15       
82 1-1-10 F 35 4 89.74 10.26       
61 1-1-11 F 71 141 33.49 66.51       
51 1-1-12 F 37 183 16.82 83.18       
58 1-1-14 F 77 117 39.69 60.31       
90 1-2-08 F 9 3 75.00 25.00       
70 1-2-09 F 40 29 57.97 42.03       
77 1-2-10 F 23 69 25.00 75.00       
81 1-2-11 F 15 2 88.24 11.76       
29 1-2-13 F 68 7 90.67 9.33       
9 1-2-14 M     20 7 0 74.10 26.00 0
75 1-3-03 F 38 106 26.39 73.61       
48 1-3-04 F 55 3 94.83 5.17       
83 1-3-05 F 74 78 48.68 51.32       
33 1-3-06 F 17 12 58.62 41.38       
91 1-3-07 F 53 23 69.74 30.26       
35 3-1-08 F 167 346 32.55 67.45       
76 3-1-10 M     28 3 0 90.30 9.70 0
7 3-1-12 F 145 179 44.75 55.25       
31 3-1-14 F 308 104 74.76 25.24       
64 3-2-09 M     57 5 0 91.90 8.10 0
102 3-2-10 M     42 59 6 39.30 55 5.61
100 3-2-12 M     94 13 1 87.00 12.00 0.93
79 3-2-13 F 122 319 27.66 72.34       
59 3-2-14 F 113 375 23.16 76.84       
2 3-3-01 F 240 45 84.21 15.79       
20 3-3-02 F 88 256 25.58 74.42       
60 3-3-03 F 69 218 24.04 75.96       
16 3-3-04 F 54 292 15.61 84.39       
28 3-3-05 F 69 236 22.62 77.38       
86 3-3-06 M     108 157 106 29.10 42.00 28.60
88 3-3-07 F 86 395 17.88 82.12       
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66 4-1-08 F 35 140 20.00 80.00       
72 4-1-09 F 13 24 35.14 64.86       
71 4-1-10 F 21 85 19.81 80.19       
57 4-1-11 F 51 60 45.95 54.05       
13 4-1-14 F 94 19 83.19 16.81       
74 4-2-10 F 36 17 67.92 32.08       
68 4-2-12 F 25 7 78.13 21.88       
36 4-2-13 F 23 4 85.19 14.81       
62 4-2-14 F 106 8 92.98 7.02       
1 4-3-01 F 64 22 74.42 25.58       
52 4-3-02 F 41 2 95.35 4.65       
53 4-3-03 F 37 76 32.74 67.26       
22 4-3-04 F 78 147 34.67 65.33       
25 4-3-06 F 243 58 80.73 19.27       
99 4-3-07 F 98 7 93.33 6.67       
34 4-3-11 F 98 152 39.20 60.80       
10 5-1-09 M     112 35 7 72.70 23.00 4.55
92 5-1-10 M     146 14 3 89.60 8.60 1.84
12 5-1-11 M     86 21 10 73.50 18.00 8.55
67 5-1-12 F 121 607 16.62 83.38       
5 5-1-13 F 121 326 27.07 72.93       
48 5-1-14 F 88 431 16.96 83.04       
94 5-2-01 M     66 50 49 40.00 30.00 29.70
49 5-2-08 F 38 240 13.67 86.33       
65 5-2-10 M     49 9 0 84.50 16.00 0
38 5-2-11 F 56 267 17.34 82.66       
54 5-2-12 M     65 8 5 83.30 10.00 6.41
96 5-3-03 M     32 41 35 29.60 38.00 32.40
23 5-3-05 M     72 77 84 30.90 33.00 36.10
14 5-3-06 M     22 69 48 15.80 50.00 34.50
42 6-1-01 F 39 175 18.22 81.78       
55 6-1-08 F 31 12 72.09 27.91       
63 6-1-09 F 55 8 87.30 12.70       
80 6-1-10 F 69 50 57.98 42.02       
45 6-1-12 F 88 15 85.44 14.56       
78 6-2-09 F 48 49 49.48 50.52       
37 6-2-12 F 16 12 57.14 42.86       
40 6-2-13 F 41 150 21.47 78.53       
41 6-2-14 F 40 24 62.50 37.50       
4 6-3-01 F 31 63 32.98 67.02       
85 6-3-02 F 14 6 70.00 30.00       
97 6-3-03 F 49 4 92.45 7.55       
26 6-3-05 F 61 57 51.69 48.31       
27 6-3-07 F 74 126 37.00 63.00       
8 7-1-12 M     49 4 5 0.84 6.9 8.62
73 7-1-13 F 85 57 59.86 40.14       
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43 7-1-14 F 46 17 73.02 26.98       
32 7-2-08 F 21 15 58.33 41.67       
30 7-2-10 F 8 20 28.57 71.43       
87 7-2-13 F 45 15 75.00 25.00       
98 7-2-14 F 24 5 82.76 17.24       
84 7-3-01 F 27 45 37.50 62.50       
39 7-3-02 F 66 167 28.33 71.67       
21 7-3-04 F 60 51 54.05 45.95       
6 7-3-05 F 82 48 63.08 36.92       
15 7-3-06 F 51 96 34.69 65.31       
24 7-3-07 F 29 2 93.55 6.45       
Oo: oogonia 
% Oo: percent oogonia 
PreV: previtellogenic 
% PreV: percent previtellogenic 
Sg: spermatogonia 
% Sg: percent spermatogonia 
Sc: primary or secondary spermatocyte 
% Sc: percent primary or secondary spermatocyte 
St: spermatid 
% St: percent spermatid
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APPENDIX E 
ADULT ZEBRAFISH (240 DPH) DATA 

 

Treatment: Control 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

5-01 M 38.6 395 0.69 0.710 
5-02 M 36.5 401 0.83 1.097 
5-03 M 37.1 387 0.76 1.187 
5-04 M 37.4 363 0.70 1.046 
5-05 M 44.3 811 0.94 2.676 
5-06 M 38.6 442 0.77 0.837 
5-07 F 47.0 1099 1.06 10.332 
5-08 M 45.4 861 0.92 2.254 
5-09 M 39.4 475 0.78 0.947 
5-10 F 44.1 924 1.08 13.040 
5-11 F 45.5 1199 1.28 18.562 
5-12 F 48.1 1172 1.05 10.920 
5-13 F 45.2 1253 1.36 32.184 
5-14 F 46.8 1200 1.17 16.686 
5-15 F 45.6 1063 1.12 11.725 
5-16 F 45.6 1346 1.42 19.100 
5-17 M 40.2 558 0.86 1.470 
5-18 M 36.1 486 1.03 1.665 
5-19 M 35.8 386 0.84 0.751 
5-20 M 43.6 836 1.01 1.818 
5-21 M 36.2 491 1.04 1.325 
5-22 M 44.0 868 1.02 1.487 
5-23 M 35.0 352 0.82 1.081 
5-24 M 37.0 435 0.86 1.128 
5-25 F 34.6 284 0.68 18.035 
5-26 M 37.6 402 0.76 1.395 
5-27 F 35.4 331 0.75 20.182 
5-28 M 39.3 534 0.88 0.881 
5-29 F 33.0 307 0.85 17.634 
5-30 F 35.7 382 0.84 13.799 
5-31 M 41.2 703 1.00 1.566 
5-32 F 33.8 328 0.85 26.821 
5-33 F 34.5 364 0.88 20.561 
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5-34 F 37.0 395 0.78 17.046 
5-35 M 31.8 308 0.96 0.845 
5-36 M 37.4 458 0.87 1.047 
5-37 M 38.6 467 0.81 1.264 
5-38 F 37.4 435 0.83 21.905 
5-39 M 41.5 603 0.85 0.995 
5-40 F 38.0 401 0.73 27.001 
5-41 M 38.3 444 0.79 0.789 
5-42 M 38.8 471 0.81 1.402 
5-43 M 38.5 434 0.76 1.013 
5-44 M 38.4 485 0.86 0.763 
5-45 M 40.1 572 0.89 1.136 
5-46 M 40.2 504 0.78 1.032 
5-47 M 38.5 477 0.83 1.490 
5-48 F 41.0 698 1.01 22.841 
5-49 F 42.2 934 1.24 12.236 
5-50 F 37.4 544 1.04 23.217 
5-51 F 39.8 853 1.36 17.713 
5-52 M 40.5 595 0.89 0.891 
5-53 F 44.6 935 1.06 14.202 
5-54 F 38.5 688 1.21 17.212 
5-55 F 40.4 626 0.95 16.621 
5-56 F 39.9 842 1.33 13.507 
5-57 F 41.2 820 1.17 13.218 
5-58 M 39.4 517 0.85 1.470 
5-59 M 41.2 599 0.85 1.368 
5-60 M 40.8 558 0.82 1.542 
5-61 M 39.0 588 0.99 1.650 
5-62 M 40.2 586 0.90 1.724 
5-63 M 38.9 549 0.94 1.238 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
 
 
Treatment: NP10 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

3-01 F 47.5 1086 1.01 12.923 
3-02 F 46.7 1091 1.07 19.388 
3-03 F 45.3 1119 1.20 16.537 
3-04 F 43.6 877 1.06 15.733 
3-05 F 49.3 1523 1.27 19.048 
3-06 F 44.6 1205 1.36 28.983 
3-07 M 45.4 802 0.86 1.358 
3-08 M 42.2 655 0.87 0.901 
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3-09 M 42.6 697 0.90 1.563 
3-10 F 43.0 834 1.05 12.478 
3-11 F 43.1 932 1.16 18.143 
3-12 F 41.3 818 1.17 16.789 
3-13 M 41.6 657 0.91 1.477 
3-14 M 41.4 688 0.97 1.569 
3-15 M 34.1 355 0.89 0.761 
3-16 M 39.3 514 0.85 1.303 
3-17 M 42.6 801 1.04 1.910 
3-18 M 39.9 588 0.92 2.126 
3-19 M 40.9 798 1.17 1.717 
3-20 M 35.3 347 0.79 0.663 
3-21 M 42.5 714 0.93 1.429 
3-22 F 41.0 900 1.30 42.946 
3-23 M 35.9 406 0.88 0.591 
3-24 M 40.1 653 1.02 1.271 
3-25 F 32.3 379 1.13 14.828 
3-26 F 35.8 476 1.04 17.489 
3-27 M 38.9 432 0.74 0.486 
3-28 M 36.2 326 0.69 0.582 
3-29 M 38.3 471 0.84 0.743 
3-30 F 32.1 270 0.82 11.428 
3-31 F 36.3 426 0.89 9.195 
3-32 M 38.1 392 0.71 0.740 
3-33 M 35.2 325 0.75 0.277 
3-34 F 38.4 491 0.87 9.037 
3-35 M 41.1 607 0.88 1.614 
3-36 M 37.3 411 0.79 0.657 
3-37 M 35.3 334 0.76 0.658 
3-38 M 40.1 505 0.78 0.931 
3-39 F 34.1 351 0.89 6.530 
3-40 M 35.7 307 0.68 0.325 
3-41 M 41.1 615 0.89 1.236 
3-42 F 35.7 390 0.86 12.510 
3-43 F 37.3 529 1.02 12.077 
3-44 F 45.7 950 0.99 11.360 
3-45 M 36.7 368 0.75 0.979 
3-46 F 37.0 398 0.79 2.865 
3-47 M 36.2 332 0.70 0.663 
3-48 M 37.4 408 0.78 0.981 
3-49 F 33.9 367 0.94 11.959 
3-50 F 34.9 390 0.92 11.707 
3-51 F 35.5 374 0.84 9.749 
3-52 F 31.6 285 0.90 16.052 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
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3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
 
 
Treatment: NP100 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

4-01 M 39.9 601 0.95 1.231 
4-02 M 37.1 447 0.88 0.694 
4-03 M 38.8 626 1.07 1.678 
4-04 M 39.4 543 0.89 1.252 
4-05 M 39.6 570 0.92 1.297 
4-06 F 42.5 1045 1.36 12.758 
4-07 M 35.6 466 1.04 0.943 
4-08 M 39.5 588 0.95 1.530 
4-09 M 37.9 574 1.05 1.098 
4-10 M 41.8 759 1.04 1.160 
4-11 F 40.0 854 1.34 18.954 
4-12 F 45.9 1161 1.20 15.580 
4-13 M 37.6 451 0.85 1.331 
4-14 F 44.7 857 0.96 11.520 
4-15 M 38.9 529 0.90 1.418 
4-16 M 37.9 507 0.93 0.928 
4-17 M 37.9 478 0.88 1.568 
4-18 F 38.9 539 0.92 13.198 
4-19 M 38.0 580 1.06 0.966 
4-20 F 38.1 533 0.96 3.023 
4-21 F 40.9 795 1.16 11.789 
4-22 M 36.2 549 1.16 1.238 
4-23 M 38.1 591 1.07 1.150 
4-24 M 40.5 591 0.89 1.574 
4-25 M 40.3 643 0.98 1.338 
4-26 M 38.4 610 1.08 1.477 
4-27 M 37.6 471 0.89 1.358 
4-28 M 38.9 672 1.15 2.038 
4-29 M 40.4 755 1.15 1.377 
4-30 M 40.0 611 0.95 1.079 
4-31 F 41.7 742 1.02 10.371 
4-32 M 38.0 536 0.98 1.175 
4-33 M 37.7 549 1.02 1.549 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
 
 
Treatment: EE1 
Sample # Sex1 Length (mm) Weight (mg) Condition GSI3
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Factor2

1-01 M 42.4 765 1.00 N/A4

1-02 M 45.5 745 0.79 N/A4

1-03 F 45.1 1080 1.18 25.278 
1-04 F 43.4 1045 1.28 20.861 
1-05 F 45.9 1445 1.49 27.820 
1-06 F 47.5 1205 1.12 18.340 
1-07 M 38.7 473 0.82 N/A4

1-08 M 44.1 812 0.94 0.985 
1-09 F 43.9 921 1.09 9.989 
1-10 F 46.3 1096 1.10 16.971 
1-11 F 46.1 1182 1.21 15.821 
1-12 F 48.3 1262 1.12 19.572 
1-13 M 38.0 439 0.80 1.139 
1-14 M 42.5 826 1.08 0.969 
1-15 F 38.4 692 1.22 20.376 
1-16 M 37.5 510 0.97 1.176 
1-17 M 36.5 424 0.87 0.943 
1-18 M 36.0 381 0.82 0.787 
1-19 M 39.5 510 0.83 1.373 
1-20 F 39.8 616 0.98 14.935 
1-21 F 41.7 604 0.83 12.583 
1-22 M 35.3 393 0.90 1.018 
1-23 M 35.8 289 0.63 0.692 
1-24 M 38.9 473 0.80 0.846 
1-25 M 37.8 436 0.81 1.147 
1-26 F 34.7 329 0.78 12.158 
1-27 M 40.2 572 0.88 0.874 
1-28 M 39.5 457 0.74 0.656 
1-29 M 38.2 436 0.78 0.917 
1-30 M 39.2 443 0.74 1.354 
1-31 M 40.2 484 0.74 1.033 
1-32 M 35.8 417 0.91 0.959 
1-33 M 38.1 433 0.78 0.693 
1-34 M 37.8 443 0.82 0.677 
1-35 M 36.8 414 0.83 1.932 
1-36 M 38.6 500 0.87 0.600 
1-37 F 39.3 642 1.06 11.215 
1-38 M 37.1 465 0.91 1.720 
1-39 F 37.4 672 1.28 22.619 
1-40 F 35.2 361 0.83 8.587 
1-41 M 39.0 513 0.87 1.365 
1-42 F 37.1 475 0.93 12.211 
1-43 M 40.1 546 0.85 1.648 
1-44 F 36.2 503 1.06 21.471 
1-45 F 35.2 279 0.64 3.226 
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1-46 M 36.0 377 0.81 0.796 
1-47 M 36.8 462 0.92 1.082 
1-48 F 30.3 216 0.78 10.185 
1-49 F 41.3 632 0.90 10.443 
1-50 M 37.6 454 0.86 0.881 
1-51 M 34.6 380 0.92 0.789 
1-52 M 37.9 475 0.88 1.684 
1-53 M 36.2 407 0.86 0.983 
1-54 F 37.5 594 1.13 15.657 
1-55 M 40.3 610 0.93 1.311 
1-56 F 38.8 486 0.84 12.346 
1-57 F 33.9 364 0.93 22.802 
1-58 M 35.4 440 0.99 1.591 
1-59 F 39.4 583 0.96 11.492 
1-60 M 38.1 433 0.79 1.155 
1-61 M 38.9 493 0.84 1.420 
1-62 M 39.4 505 0.82 0.990 
1-63 M 37.2 390 0.76 0.769 
1-64 M 38.4 499 0.88 0.802 
1-65 M 38.1 554 1.00 1.083 
1-66 F 40.2 733 1.13 20.737 
1-67 F 40.5 740 1.11 23.919 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
4These fish were the first three male fish dissected.  Due to inexperience, testes were not properly 
identified and saved. 
 
 
Treatment: EE10 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

2-01 M 38.2 535 0.96 1.308 
2-02 M 39.7 568 0.91 1.056 
2-03 M 41.1 609 0.88 0.985 
2-04 M 38.9 584 0.99 1.027 
2-05 F 39.8 690 1.10 10.00 
2-06 M 33.6 350 0.92 0.857 
2-07 M 40.8 723 1.06 1.521 
2-08 M 40.3 607 0.93 1.153 
2-09 M 41.1 684 0.99 0.877 
2-10 M 41.6 674 0.94 1.335 
2-11 M 41.6 696 0.97 1.293 
2-12 M 38.9 556 0.95 1.799 
2-13 M 39.8 609 0.96 0.821 
2-14 M 35.0 408 0.95 0.980 
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2-15 M 33.8 286 0.74 0.699 
2-16 F 31.4 236 0.76 4.661 
2-17 M 33.6 344 0.91 0.581 
2-18 M 35.7 299 0.66 1.003 
2-19 M 39.1 398 0.67 N/A4

2-20 M 32.0 271 0.83 0.738 
2-21 M 35.3 368 0.84 0.272 
2-22 M 32.3 253 0.75 0.395 
2-23 M 34.0 280 0.72 0.714 
2-24 M 40.3 573 0.88 1.222 
2-25 M 31.7 250 0.78 0.400 
2-26 M 34.3 356 0.88 0.562 
2-27 M 38.4 555 0.98 2.162 
2-28 M 36.9 340 0.68 0.294 
2-29 M 40.8 580 0.86 0.517 
2-30 M 30.6 234 0.82 0.427 
2-31 M 34.1 323 0.82 0.310 
2-32 M 40.3 372 0.57 0.269 
2-33 M 35.2 308 0.71 0.325 
2-34 F 29.2 222 0.89 9.910 
2-35 M 36.1 438 0.93 0.685 
2-36 M 36.6 316 0.64 0.316 
2-37 M 31.1 209 0.70 0.718 
2-38 M 35.6 322 0.72 0.373 
2-39 M 37.4 372 0.71 0.269 
2-40 M 31.6 238 0.75 0.462 
2-41 M 37.2 239 0.46 N/A4

2-42 M 35.0 353 0.83 0.850 
2-43 M 33.2 281 0.77 0.640 
2-44 M 32.0 329 1.00 0.425 
2-45 M 36.4 409 0.84 0.734 
2-46 M 35.0 333 0.77 0.691 
2-47 M 39.7 451 0.72 0.864 
2-48 M 34.6 295 0.71 0.949 
2-49 M 35.9 336 0.73 1.222 
2-50 M 37.5 417 0.79 1.342 
2-51 M 36.7 362 0.73 0.800 
2-52 M 34.8 326 0.78 0.522 
2-53 M 34.9 349 0.82 0.918 
2-54 M 42.1 801 1.07 1.785 
2-55 M 46.2 1041 1.05 1.470 
2-56 M 47.2 1018 0.97 1.846 
2-57 M 44.0 839 0.99 1.156 
2-58 M 44.0 780 0.92 1.192 
2-59 M 43.4 742 0.91 1.118 
2-60 M 46.0 1110 1.14 1.495 
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2-61 M 47.8 1066 0.98 2.045 
2-62 F 50.5 1974 1.54 28.579 
2-63 F 49.3 1794 1.50 30.308 
2-64 M 47.9 1133 1.03 2.532 
2-65 M 45.0 944 1.04 1.980 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
4The testes of these fish were too small to be weighed and preserved. 
 
 
Treatment: EE1+NP10 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

6-01 M 38.7 511 0.89 0.821 
6-02 M 42.6 640 0.83 1.328 
6-03 M 39.4 543 0.89 1.272 
6-04 M 38.1 478 0.87 1.045 
6-05 M 36.8 374 0.75 1.257 
6-06 F 43.1 693 0.87 11.652 
6-07 M 40.1 551 0.86 1.289 
6-08 F 39.3 568 0.93 12.052 
6-09 M 39.9 535 0.84 1.120 
6-10 M 40.1 605 0.94 2.298 
6-11 M 37.4 558 1.07 1.094 
6-12 M 37.2 473 0.92 1.439 
6-13 M 39.0 604 1.02 1.274 
6-14 M 39.8 578 0.92 1.870 
6-15 M 39.9 592 0.93 1.014 
6-16 M 39.6 578 0.93 1.418 
6-17 M 39.2 546 0.91 1.704 
6-18 M 38.3 569 1.01 1.494 
6-19 M 39.4 516 0.84 1.259 
6-20 M 38.9 521 0.89 2.072 
6-21 M 40.0 534 0.84 1.460 
6-22 F 41.3 727 1.03 18.422 
6-23 M 38.9 556 0.94 1.078 
6-24 M 40.1 607 0.94 1.911 
6-25 M 37.5 497 0.94 1.608 
6-26 F 44.1 1103 1.29 26.605 
6-27 M 37.7 524 0.97 1.814 
6-28 F 42.4 1129 1.48 20.417 
6-29 M 40.4 680 1.03 1.353 
6-30 M 39.6 568 0.92 1.321 
6-31 M 39.0 535 0.90 1.215 
6-32 M 33.0 288 0.80 0.382 
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6-33 F 44.5 842 0.96 9.529 
6-34 F 44.4 1163 1.32 23.163 
6-35 F 42.1 864 1.16 23.586 
6-36 F 45.3 1158 1.25 26.786 
6-37 F 39.9 754 1.19 19.548 
6-38 M 43.1 855 1.07 1.766 
6-39 F 43.0 888 1.12 15.713 
6-404 F N/A N/A N/A N/A 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
4One carcass with partial ovary was found during daily check-up.  No available weight and 
length information as the carcass was partially decomposed when discovered. 
 
 
Treatment: EE1+NP100 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

7-01 F 39.1 633 1.06 22.671 
7-02 M 39.5 565 0.92 1.150 
7-03 M 36.2 449 0.95 1.090 
7-04 M 37.5 501 0.95 1.476 
7-05 M 39.6 538 0.86 0.781 
7-06 M 37.9 570 1.05 1.826 
7-07 M 39.3 519 0.86 1.369 
7-08 M 40.1 637 0.99 1.382 
7-09 M 39.2 572 0.95 1.504 
7-10 F 40.0 725 1.14 21.390 
7-11 M 37.4 482 0.92 1.059 
7-12 M 36.9 453 0.90 1.169 
7-13 M 38.8 474 0.81 0.950 
7-14 M 36.3 466 0.97 1.587 
7-15 M 38.5 486 0.85 1.215 
7-16 F 42.9 841 1.07 12.724 
7-17 M 39.4 490 0.80 1.491 
7-18 M 39.4 599 0.98 1.702 
7-19 M 38.5 531 0.93 1.243 
7-20 M 36.9 473 0.94 0.909 
7-21 M 37.7 457 0.86 1.509 
7-22 M 38.8 630 1.08 1.443 
7-23 F 44.8 972 1.08 19.449 
7-24 F 42.4 930 1.22 10.823 
7-25 M 39.1 617 1.04 1.992 
7-26 F 41.1 838 1.21 24.766 
7-27 F 38.8 748 1.29 13.444 
7-28 M 40.7 662 0.98 1.707 
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7-29 F 39.4 930 1.52 23.621 
7-30 F 44.1 1131 1.32 25.277 
7-31 F 41.8 910 1.25 14.228 
7-32 F 41.7 765 1.05 14.828 
7-33 F 41.1 758 1.09 11.124 
7-34 M 38.7 590 1.02 1.169 
7-35 M 39.1 491 0.82 1.139 
7-36 M 38.6 503 0.87 1.015 
7-37 M 39.9 683 1.07 1.143 
7-38 M 39.5 552 0.90 1.577 
7-39 M 38.5 548 0.96 1.260 
7-404 F N/A N/A N/A N/A 
7-414 F N/A N/A N/A N/A 
7-424 F N/A N/A N/A N/A 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
4Three carcasses with partial ovary were found on three separate occasions during daily check-
up.  No available weight and length information as the carcass was partially decomposed when 
discovered. 
 
 
Treatment: EE10+NP10 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

8-01 M 43.6 740 0.89 1.744 
8-02 M 41.4 696 0.98 1.637 
8-03 M 44.4 914 1.05 1.389 
8-04 M 40.9 662 0.97 1.857 
8-05 M 42.9 699 0.89 1.802 
8-06 M 39.0 643 1.08 1.337 
8-07 M 41.2 686 0.98 1.471 
8-08 M 41.8 681 0.93 2.276 
8-09 M 41.6 675 0.94 1.970 
8-10 M 39.9 617 0.97 1.750 
8-11 M 39.1 517 0.87 1.045 
8-12 M 44.0 774 0.91 1.758 
8-13 M 41.2 697 1.00 2.153 
8-14 M 39.9 540 0.85 1.501 
8-15 M 43.0 729 0.92 1.564 
8-16 M 40.0 656 1.02 1.250 
8-17 M 36.7 449 0.91 0.735 
8-18 M 37.3 495 0.96 1.374 
8-19 F 38.7 861 1.49 22.033 
8-20 M 38.4 499 0.88 1.503 
8-21 M 37.8 583 1.08 1.217 
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8-22 M 36.6 327 0.67 0.642 
8-23 M 44.3 785 0.90 1.604 
8-24 M 38.8 527 0.90 1.216 
8-25 M 41.4 554 0.78 1.660 
8-26 M 40.0 558 0.88 1.362 
8-27 M 36.4 463 0.96 0.973 
8-28 M 43.1 740 0.92 2.217 
8-29 M 35.7 355 0.78 0.733 
8-30 M 36.9 522 1.04 1.705 
8-31 M 38.8 486 0.83 1.461 
8-32 M 37.6 416 0.78 1.348 
8-33 M 40.7 71 0.11 12.669 
8-34 M 38.2 514 0.92 0.818 
8-35 M 42.4 662 0.87 1.708 
8-36 M 40.9 599 0.88 1.253 
8-37 M 39.5 484 0.79 1.095 
8-38 M 40.4 651 0.99 1.629 
8-39 M 41.7 595 0.82 1.562 
8-40 M 39.2 599 0.99 1.402 
8-41 M 37.1 433 0.85 1.108 
8-42 M 39.2 532 0.88 1.578 
8-43 M 34.7 323 0.77 1.175 
8-44 M 42.5 598 0.78 1.271 
8-45 M 39.9 642 1.01 1.309 
8-46 M 35.4 371 0.83 0.782 
8-47 M 37.9 473 0.87 0.909 
8-48 M 40.2 564 0.87 1.703 
8-49 M 40.5 765 1.15 0.484 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100 
 
 
Treatment: EE10+NP100 
Sample # Sex1 Length (mm) Weight (mg) Condition 

Factor2
GSI3

9-01 F 43.8 1349 1.60 25.400 
9-02 F 47.0 1186 1.14 16.061 
9-03 M 44.2 782 0.91 2.047 
9-04 M 42.0 864 1.16 3.205 
9-05 M 41.6 813 1.13 2.214 
9-06 M 43.4 822 1.00 1.802 
9-07 M 44.6 820 0.93 1.769 
9-08 M 42.7 791 1.02 1.706 
9-09 M 43.6 790 0.95 2.191 
9-10 M 44.2 901 1.05 2.008 
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9-11 F 39.6 675 1.09 9.242 
9-12 F 36.2 497 1.05 12.155 
9-13 M 39.1 445 0.75 1.192 
9-14 M 37.0 378 0.75 1.163 
9-15 M 36.3 411 0.86 0.779 
9-16 M 36.8 416 0.84 1.082 
9-17 F 36.5 391 0.81 12.832 
9-18 M 39.0 460 0.78 0.717 
9-19 M 38.5 463 0.81 0.928 
9-20 M 34.8 322 0.76 0.404 
9-21 M 35.2 488 1.12 1.025 
9-22 M 36.7 405 0.82 0.939 
9-23 M 36.3 478 1.00 0.774 
9-24 M 36.7 379 0.77 0.792 
9-25 M 36.5 395 0.81 0.659 
9-26 M 35.8 380 0.83 0.711 
9-27 M 34.8 400 0.95 0.475 
9-28 M 33.0 298 0.83 0.571 
9-29 M 37.9 443 0.81 1.220 
9-30 M 36.1 308 0.66 0.389 
9-31 M 39.1 528 0.88 1.251 
9-32 M 38.3 522 0.93 1.706 
9-33 M 38.1 465 0.84 1.462 
9-34 M 37.9 446 0.82 1.121 
9-35 M 40.0 561 0.88 1.711 
9-36 M 37.5 427 0.81 1.102 
9-37 M 39.3 481 0.79 0.770 
9-38 M 34.4 264 0.65 0.834 
9-39 M 37.5 439 0.83 0.956 
9-40 M 38.2 434 0.78 0.691 
9-41 M 37.7 435 0.81 1.633 
9-42 M 35.4 341 0.77 1.495 
9-43 M 39.2 505 0.84 1.168 
9-44 M 40.4 492 0.75 0.786 
9-45 M 40.1 484 0.75 1.012 
9-46 M 39.6 554 0.89 0.938 
9-47 M 38.6 420 0.73 0.810 
9-48 M 38.1 457 0.83 1.072 
9-49 M 40.4 557 0.84 1.384 
9-50 M 36.6 374 0.76 0.669 
9-51 M 33.8 289 0.75 0.762 
9-52 M 34.5 314 0.77 0.638 
9-53 M 34.4 317 0.78 1.105 
9-54 M 34.8 335 0.79 0.984 
9-55 M 39.4 470 0.77 1.298 
9-56 M 36.2 425 0.90 1.084 
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9-57 M 32.8 310 0.88 0.580 
9-58 M 33.9 320 0.82 0.781 
9-59 M 35.4 359 0.81 0.445 
9-60 M 35.1 448 1.03 1.383 
9-61 M 31.4 239 0.77 0.836 
9-62 M 31.2 230 0.75 0.436 
9-63 M 36.1 347 0.74 0.806 
9-64 M 39.0 516 0.87 1.163 
9-65 M 37.5 432 0.82 0.625 
9-66 M 35.0 406 0.95 0.763 
9-67 M 35.4 421 0.95 1.759 
9-68 M 35.6 429 0.95 0.886 
9-69 M 37.4 425 0.81 0.705 
9-70 M 36.7 411 0.83 0.681 
9-71 M 34.0 341 0.87 0.880 
9-72 M 34.4 351 0.86 0.855 
1Sex: M = male, F = female 
2Condition Factor = [(body weight (g)/length (mm)3] × 100,000 
3GSI (Gonadosomatic index) = (gonad weight (mg)) / (body weight (g)) × 100
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APPENDIX F 
ADULT REPRODUCTIVE STUDY DATA 

 
 
Treatment: Control 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 133 109 82.0 108 99.1 84 77.1 77.8 
2 107 100 93.5 100 100.0 95 95.0 95.0 
3 35 32 91.4 30 93.8 21 65.6 70.0 
4 280 152 54.3 151 99.3 144 94.7 95.4 
5 140 0 0.0 0 N/A N/A N/A N/A 
6 166 133 80.1 74 55.6 57 42.9 77.0 
7 153 130 85.0 130 100.0 122 93.8 93.8 
8 34 33 97.1 33 100.0 33 100.0 100.0 
9 52 43 82.7 4 9.3 4 9.3 100.0 
10 98 90 91.8 90 100.0 85 94.4 94.4 
11 740 631 85.3 360 57.1 342 54.2 95.0 
12 102 76 74.5 75 98.7 70 92.1 93.3 
13 0 N/A N/A N/A N/A N/A N/A N/A 
14 496 389 78.4 342 87.9 341 87.7 99.7 
15 127 99 78.0 94 94.9 85 85.9 90.4 
16 200 156 78.0 104 66.7 84 53.8 80.8 
17 224 167 74.6 137 82.0 126 75.4 92.0 
18 317 290 91.5 238 82.1 224 77.2 94.1 
19 251 188 74.9 140 74.5 128 68.1 91.4 
20 328 289 88.1 249 86.2 224 77.5 90.0 
21 246 197 80.1 157 79.7 145 73.6 92.4 
22 212 167 78.8 84 50.3 84 50.3 100.0 
23 298 238 79.9 237 99.6 215 90.3 90.7 
24 291 262 90.0 152 58.0 150 57.3 98.7 
25 169 145 85.8 115 79.3 95 65.5 82.6 
26 136 85 62.5 76 89.4 56 65.9 73.7 
27 150 120 80.0 115 95.8 105 87.5 91.3 
28 167 142 85.0 94 66.2 88 62.0 93.6 
29 227 169 74.4 156 92.3 132 78.1 84.6 
30 160 112 70.0 106 94.6 95 84.8 89.6 
31 246 230 93.5 118 51.3 95 41.3 80.5 
32 515 468 90.9 374 79.9 372 79.5 99.5 
33 261 219 83.9 205 93.6 184 84.0 89.8 
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34 9 6 66.7 6 100.0 5 83.3 83.3 
35 357 324 90.8 285 88.0 256 79.0 89.8 
36 561 478 85.2 462 96.7 405 84.7 87.7 
37 0 N/A N/A N/A N/A N/A N/A N/A 
38 934 711 76.1 705 99.2 524 73.7 74.3 
39 387 367 94.8 315 85.8 297 80.9 94.3 
40 364 250 68.7 247 98.8 244 97.6 98.8 
41 310 277 89.4 275 99.3 214 77.3 77.8 
42 47 40 85.1 40 100.0 40 100.0 100.0 
43 552 449 81.3 438 97.6 398 88.6 90.9 
44 74 69 93.2 55 79.7 47 68.1 85.5 
45 96 76 79.2 55 72.4 52 68.4 94.5 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
 
 
Treatment: NP10 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 27 26 96.3 26 100.0 18 69.2 69.2 
2 27 11 40.7 11 100.0 8 72.7 72.7 
3 3 0 N/A N/A N/A N/A N/A N/A 
4 142 129 90.8 89 69.0 72 55.8 80.9 
5 19 16 84.2 16 100.0 10 62.5 62.5 
6 64 62 96.9 61 98.4 42 67.7 68.9 
7 64 58 90.6 58 100.0 32 55.2 55.2 
8 0 N/A N/A N/A N/A N/A N/A N/A 
9 14 13 92.9 12 92.3 12 92.3 100.0 
10 0 N/A N/A N/A N/A N/A N/A N/A 
11 0 N/A N/A N/A N/A N/A N/A N/A 
12 201 143 71.1 143 100.0 103 72.0 72.0 
13 32 28 87.5 25 89.3 22 78.6 88.0 
14 146 91 62.3 76 83.5 68 74.7 89.5 
15 208 162 77.9 162 100.0 134 82.7 82.7 
16 621 497 80.0 477 96.0 398 80.1 83.4 
17 35 26 74.3 22 84.6 20 76.9 90.9 
18 175 129 73.7 129 100.0 95 73.6 73.6 
19 151 118 78.1 113 95.8 87 73.7 77.0 
20 437 321 73.5 314 97.8 258 80.4 82.2 
21 51 44 86.3 38 86.4 37 84.1 97.4 
22 633 466 73.6 376 80.7 287 61.6 76.3 
23 484 394 81.4 373 94.7 302 76.6 81.0 
24 211 185 87.7 185 100.0 124 67.0 67.0 
25 436 278 63.8 278 100.0 229 82.4 82.4 
26 0 N/A N/A N/A N/A N/A N/A N/A 
27 884 779 88.1 650 83.4 554 71.1 85.2 
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28 176 173 98.3 118 68.2 94 54.3 79.7 
29 465 387 83.2 371 95.9 246 63.6 66.3 
30 211 177 83.9 177 100.0 137 77.4 77.4 
31 564 314 55.7 301 95.9 247 78.7 82.1 
32 399 340 85.2 310 91.2 312 91.8 100.6 
33 538 449 83.5 419 93.3 387 86.2 92.4 
34 392 315 80.4 305 96.8 302 95.9 99.0 
35 87 65 74.7 55 84.6 43 66.2 78.2 
36 967 859 88.8 800 93.1 687 80.0 85.9 
37 618 372 60.2 350 94.1 298 80.1 85.1 
38 798 474 59.4 332 70.0 402 84.8 121.1 
39 415 330 79.5 325 98.5 285 86.4 87.7 
40 68 53 77.9 53 100.0 41 77.4 77.4 
41 0 N/A N/A N/A N/A N/A N/A N/A 
42 270 228 84.4 217 95.2 217 95.2 100.0 
43 11 9 81.8 8 88.9 4 44.4 50.0 
44 132 98 74.2 62 63.3 37 37.8 59.7 
45 99 65 65.7 35 53.8 22 33.8 62.9 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
 
 
Treatment: NP100 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 36 31 86.1 20 64.5 12 38.7 60.0 
2 12 10 83.3 8 80.0 5 50.0 62.5 
3 248 170 68.5 132 77.6 112 65.9 84.8 
4 1 1 100.0 1 100.0 0 0.0 0.0 
5 115 65 56.5 61 93.8 47 72.3 77.0 
6 103 53 51.5 45 84.9 26 49.1 57.8 
7 0 N/A N/A N/A N/A N/A N/A N/A 
8 87 71 81.6 68 95.8 52 73.2 76.5 
9 2 2 100.0 1 50.0 1 50.0 100.0 
10 0 N/A N/A N/A N/A N/A N/A N/A 
11 47 46 97.9 41 89.1 30 65.2 73.2 
12 393 315 80.2 296 94.0 267 84.8 90.2 
13 0 N/A N/A N/A N/A N/A N/A N/A 
14 187 140 74.9 69 49.3 47 33.6 68.1 
15 486 316 65.0 241 76.3 203 64.2 84.2 
16 196 153 78.1 133 86.9 108 70.6 81.2 
17 714 600 84.0 569 94.8 498 83.0 87.5 
18 273 175 64.1 140 80.0 97 55.4 69.3 
19 114 71 62.3 57 80.3 31 43.7 54.4 
20 82 61 74.4 37 60.7 35 57.4 94.6 
21 262 242 92.4 156 64.5 122 50.4 78.2 
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22 260 214 82.3 190 88.8 175 81.8 92.1 
23 325 270 83.1 183 67.8 143 53.0 78.1 
24 179 132 73.7 108 81.8 84 63.6 77.8 
25 403 341 84.6 325 95.3 268 78.6 82.5 
26 63 52 82.5 48 92.3 30 57.7 62.5 
27 117 80 68.4 60 75.0 28 35.0 46.7 
28 39 21 53.8 13 61.9 10 47.6 76.9 
29 113 93 82.3 57 61.3 52 55.9 91.2 
30 0 N/A N/A N/A N/A N/A N/A N/A 
31 44 8 18.2 4 50.0 3 37.5 75.0 
32 28 21 75.0 15 71.4 10 47.6 66.7 
33 359 348 96.9 258 74.1 198 56.9 76.7 
34 43 38 88.4 38 100.0 32 84.2 84.2 
35 18 14 77.8 9 64.3 8 57.1 88.9 
36 2 2 100.0 2 100.0 2 100.0 100.0 
37 340 281 82.6 266 94.7 205 73.0 77.1 
38 63 26 41.3 11 42.3 8 30.8 72.7 
39 300 133 44.3 83 62.4 56 42.1 67.5 
40 213 172 80.8 160 93.0 124 72.1 77.5 
41 143 110 76.9 100 90.9 61 55.5 61.0 
42 248 183 73.8 101 55.2 73 39.9 72.3 
43 0 N/A N/A N/A N/A N/A N/A N/A 
44 46 35 76.1 34 97.1 30 85.7 88.2 
45 1 1 100.0 1 100.0 0 0.0 0.0 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
 
 
Treatment: EE1 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 160 102 63.8 70 68.6 66 64.7 94.3 
2 179 155 86.6 139 89.7 124 80.0 89.2 
3 0 N/A N/A N/A N/A N/A N/A N/A 
4 252 224 88.9 224 100.0 215 96.0 96.0 
5 202 195 96.5 194 99.5 185 94.9 95.4 
6 0 N/A N/A N/A N/A N/A N/A N/A 
7 125 102 81.6 102 100.0 95 93.1 93.1 
8 107 99 92.5 99 100.0 57 57.6 57.6 
9 181 141 77.9 141 100.0 102 72.3 72.3 
10 3 2 66.7 2 100.0 0 0.0 0.0 
11 91 30 33.0 25 83.3 23 76.7 92.0 
12 289 99 34.3 98 99.0 85 85.9 86.7 
13 18 13 72.2 12 92.3 10 76.9 83.3 
14 0 N/A N/A N/A N/A N/A N/A N/A 
15 0 N/A N/A N/A N/A N/A N/A N/A 
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16 132 68 51.5 64 94.1 41 60.3 64.1 
17 212 164 77.4 132 80.5 112 68.3 84.8 
18 143 30 21.0 30 100.0 24 80.0 80.0 
19 119 63 52.9 50 79.4 48 76.2 96.0 
20 0 N/A N/A N/A N/A N/A N/A N/A 
21 102 37 36.3 30 81.1 23 62.2 76.7 
22 53 17 32.1 17 100.0 14 82.4 82.4 
23 0 N/A N/A N/A N/A N/A N/A N/A 
24 0 N/A N/A N/A N/A N/A N/A N/A 
25 175 150 85.7 132 88.0 110 73.3 83.3 
26 0 N/A N/A N/A N/A N/A N/A N/A 
27 9 5 55.6 5 100.0 3 60.0 60.0 
28 21 9 42.9 7 77.8 7 77.8 100.0 
29 764 416 54.5 384 92.3 342 82.2 89.1 
30 269 204 75.8 189 92.6 116 56.9 61.4 
31 2 0 0 0 N/A N/A N/A N/A 
32 113 87 77.0 54 62.1 51 58.6 94.4 
33 0 N/A N/A N/A N/A N/A N/A N/A 
34 148 90 60.8 52 57.8 47 52.2 90.4 
35 179 133 74.3 113 85.0 95 71.4 84.1 
36 83 56 67.5 41 73.2 40 71.4 97.6 
37 486 324 66.7 312 96.3 287 88.6 92.0 
38 238 117 49.2 75 64.1 71 60.7 94.7 
39 47 40 85.1 40 100 25 62.5 62.5 
40 23 17 73.9 16 94.1 16 94.1 100 
41 1 1 100 0 0 N/A N/A N/A 
42 0 N/A N/A N/A N/A N/A N/A N/A 
43 0 N/A N/A N/A N/A N/A N/A N/A 
44 0 N/A N/A N/A N/A N/A N/A N/A 
45 0 N/A N/A N/A N/A N/A N/A N/A 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
 
 
Treatment: EE10 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 0 N/A N/A N/A N/A N/A N/A N/A 
2 48 0 0.0 0 N/A N/A N/A N/A 
3 1 1 100.0 0 0.0 N/A N/A N/A 
4 0 N/A N/A N/A N/A N/A N/A N/A 
5 45 15 33.3 9 60.0 5 33.3 55.6 
6 0 N/A N/A N/A N/A N/A N/A N/A 
7 64 22 34.4 15 68.2 7 31.8 46.7 
8 69 26 37.7 12 46.2 4 15.4 33.3 
9 143 75 52.4 20 26.7 12 16.0 60.0 
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10 169 123 72.8 85 69.1 54 43.9 63.5 
11 0 N/A N/A N/A N/A N/A N/A N/A 
12 34 3 8.8 3 100.0 3 100.0 100.0 
13 0 N/A N/A N/A N/A N/A N/A N/A 
14 2 0 0.0 0 N/A N/A N/A N/A 
15 34 14 41.2 4 28.6 2 14.3 50.0 
16 145 97 66.9 78 80.4 32 33.0 41.0 
17 66 20 30.3 12 60.0 7 35.0 58.3 
18 72 56 77.8 46 82.1 28 50.0 60.9 
19 35 26 74.3 26 100.0 15 57.7 57.7 
20 0 N/A N/A N/A N/A N/A N/A N/A 
21 196 182 92.9 153 84.1 94 51.6 61.4 
22 0 N/A N/A N/A N/A N/A N/A N/A 
23 0 N/A N/A N/A N/A N/A N/A N/A 
24 413 270 65.4 227 84.1 124 45.9 54.6 
25 0 N/A N/A N/A N/A N/A N/A N/A 
26 0 N/A N/A N/A N/A N/A N/A N/A 
27 0 N/A N/A N/A N/A N/A N/A N/A 
28 0 N/A N/A N/A N/A N/A N/A N/A 
29 0 N/A N/A N/A N/A N/A N/A N/A 
30 0 N/A N/A N/A N/A N/A N/A N/A 
31 0 N/A N/A N/A N/A N/A N/A N/A 
32 0 N/A N/A N/A N/A N/A N/A N/A 
33 356 283 79.5 259 91.5 187 66.1 72.2 
34 0 N/A N/A N/A N/A N/A N/A N/A 
35 0 N/A N/A N/A N/A N/A N/A N/A 
36 0 N/A N/A N/A N/A N/A N/A N/A 
37 0 N/A N/A N/A N/A N/A N/A N/A 
38 73 42 57.5 21 50.0 15 35.7 71.4 
39 0 N/A N/A N/A N/A N/A N/A N/A 
40 0 N/A N/A N/A N/A N/A N/A N/A 
41 0 N/A N/A N/A N/A N/A N/A N/A 
42 0 N/A N/A N/A N/A N/A N/A N/A 
43 0 N/A N/A N/A N/A N/A N/A N/A 
44 0 N/A N/A N/A N/A N/A N/A N/A 
45 0 N/A N/A N/A N/A N/A N/A N/A 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
 
 
Treatment: EE1+NP10 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 324 247 76.2 244 98.8 202 81.8 82.8 
2 44 37 84.1 37 100.0 28 75.7 75.7 
3 221 193 87.3 193 100.0 145 75.1 75.1 

125 



 

4 59 49 83.1 47 95.9 42 85.7 89.4 
5 104 100 96.2 99 99.0 84 84.0 84.8 
6 319 267 83.7 258 96.6 213 79.8 82.6 
7 23 21 91.3 20 95.2 17 81.0 85.0 
8 75 62 82.7 59 95.2 41 66.1 69.5 
9 20 15 75.0 15 100.0 5 33.3 33.3 
10 121 107 88.4 105 98.1 67 62.6 63.8 
11 35 33 94.3 33 100.0 25 75.8 75.8 
12 222 195 87.8 195 100.0 124 63.6 63.6 
13 0 N/A N/A N/A N/A N/A N/A N/A 
14 0 N/A N/A N/A N/A N/A N/A N/A 
15 368 282 76.6 272 96.5 182 64.5 66.9 
16 20 18 90.0 18 100.0 8 44.4 44.4 
17 34 11 32.4 11 100.0 10 90.9 90.9 
18 602 422 70.1 378 89.6 284 67.3 75.1 
19 359 231 64.3 203 87.9 178 77.1 87.7 
20 73 64 87.7 61 95.3 45 70.3 73.8 
21 505 374 74.1 356 95.2 310 82.9 87.1 
22 132 98 74.2 87 88.8 43 43.9 49.4 
23 155 112 72.3 87 77.7 61 54.5 70.1 
24 234 156 66.7 128 82.1 97 62.2 75.8 
25 28 23 82.1 17 73.9 11 47.8 64.7 
26 90 54 60.0 23 42.6 14 25.9 60.9 
27 282 70 24.8 45 64.3 27 38.6 60.0 
28 0 N/A N/A N/A N/A N/A N/A N/A 
29 486 287 59.1 122 42.5 79 27.5 64.8 
30 80 14 17.5 13 92.9 7 50.0 53.8 
31 169 92 54.4 89 96.7 71 77.2 79.8 
32 189 73 38.6 48 65.8 35 47.9 72.9 
33 33 20 60.6 18 90.0 11 55.0 61.1 
34 380 305 80.3 254 83.3 188 61.6 74.0 
35 328 273 83.2 202 74.0 176 64.5 87.1 
36 607 472 77.8 335 71.0 284 60.2 84.8 
37 202 143 70.8 131 91.6 116 81.1 88.5 
38 778 586 75.3 540 92.2 458 78.2 84.8 
39 26 16 61.5 15 93.8 14 87.5 93.3 
40 2 2 100.0 2 100.0 2 100.0 100.0 
41 19 7 36.8 7 100.0 3 42.9 42.9 
42 0 N/A N/A N/A N/A N/A N/A N/A 
43 0 N/A N/A N/A N/A N/A N/A N/A 
44 0 N/A N/A N/A N/A N/A N/A N/A 
45 797 664 83.3 512 77.1 405 61.0 79.1 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
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Treatment: EE1+NP100 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 102 80 78.4 73 91.3 34 42.5 46.6 
2 0 N/A N/A N/A N/A N/A N/A N/A 
3 533 355 66.6 323 91.0 218 61.4 67.5 
4 212 154 72.6 154 100.0 116 75.3 75.3 
5 56 48 85.7 48 100.0 42 87.5 87.5 
6 293 253 86.3 249 98.4 205 81.0 82.3 
7 1 1 100.0 1 100.0 0 0.0 0.0 
8 545 402 73.8 402 100.0 304 75.6 75.6 
9 0 N/A N/A N/A N/A N/A N/A N/A 
10 98 57 58.2 57 100.0 31 54.4 54.4 
11 376 284 75.5 284 100.0 194 68.3 68.3 
12 38 33 86.8 31 93.9 17 51.5 54.8 
13 37 24 64.9 23 95.8 11 45.8 47.8 
14 28 17 60.7 15 88.2 14 82.4 93.3 
15 133 55 41.4 40 72.7 18 32.7 45.0 
16 197 128 65.0 126 98.4 87 68.0 69.0 
17 81 46 56.8 43 93.5 25 54.3 58.1 
18 0 N/A N/A N/A N/A N/A N/A N/A 
19 193 28 14.5 20 71.4 8 28.6 40.0 
20 18 5 27.8 3 60.0 1 20.0 33.3 
21 589 447 75.9 277 62.0 189 42.3 68.2 
22 296 220 74.3 132 60.0 96 43.6 72.7 
23 0 N/A N/A N/A N/A N/A N/A N/A 
24 404 212 52.5 212 100.0 128 60.4 60.4 
25 21 3 14.3 3 100.0 3 100.0 100.0 
26 287 182 63.4 178 97.8 105 57.7 59.0 
27 268 178 66.4 178 100.0 124 69.7 69.7 
28 442 284 64.3 221 77.8 211 74.3 95.5 
29 340 138 40.6 45 32.6 41 29.7 91.1 
30 0 N/A N/A N/A N/A N/A N/A N/A 
31 781 687 88.0 470 68.4 416 60.6 88.5 
32 338 320 94.7 172 53.8 158 49.4 91.9 
33 1028 698 67.9 658 94.3 624 89.4 94.8 
34 161 8 5.0 8 100.0 6 75.0 75.0 
35 272 186 68.4 159 85.5 125 67.2 78.6 
36 1272 740 58.2 671 90.7 584 78.9 87.0 
37 17 0 0.0 0 N/A N/A N/A N/A 
38 436 278 63.8 151 54.3 137 49.3 90.7 
39 134 104 77.6 96 92.3 92 88.5 95.8 
40 969 789 81.4 781 99.0 629 79.7 80.5 
41 444 309 69.6 250 80.9 203 65.7 81.2 
42 257 170 66.1 137 80.6 128 75.3 93.4 
43 935 778 83.2 740 95.1 641 82.4 86.6 
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44 122 91 74.6 67 73.6 42 46.2 62.7 
45 0 N/A N/A N/A N/A N/A N/A N/A 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
 
 
Treatment: EE10+NP100 
Trials Total 

Eggs 
Fertilized 
Eggs 

% 
Fertilized

Hatched % 
Hatched 

Swim-
ups 

S/E1 S/H2

1 0 N/A N/A N/A N/A N/A N/A N/A 
2 0 N/A N/A N/A N/A N/A N/A N/A 
3 0 N/A N/A N/A N/A N/A N/A N/A 
4 0 N/A N/A N/A N/A N/A N/A N/A 
5 0 N/A N/A N/A N/A N/A N/A N/A 
6 0 N/A N/A N/A N/A N/A N/A N/A 
7 0 N/A N/A N/A N/A N/A N/A N/A 
8 14 9 64.3 8 88.9 5 55.6 62.5 
9 0 N/A N/A N/A N/A N/A N/A N/A 
10 125 94 75.2 90 95.7 64 68.1 71.1 
11 3 2 66.7 2 100.0 2 100.0 100.0 
12 9 9 100.0 9 100.0 4 44.4 44.4 
13 0 N/A N/A N/A N/A N/A N/A N/A 
14 16 7 43.8 4 57.1 1 14.3 25.0 
15 120 77 64.2 69 89.6 47 61.0 68.1 
16 112 61 54.5 33 54.1 24 39.3 72.7 
17 50 32 64.0 30 93.8 27 84.4 90.0 
18 0 N/A N/A N/A N/A N/A N/A N/A 
19 117 73 62.4 54 74.0 43 58.9 79.6 
20 23 12 52.2 12 100.0 8 66.7 66.7 
21 92 68 73.9 52 76.5 37 54.4 71.2 
22 106 79 74.5 69 87.3 58 73.4 84.1 
23 37 24 64.9 23 95.8 18 75.0 78.3 
24 40 31 77.5 27 87.1 22 71.0 81.5 
25 183 134 73.2 102 76.1 84 62.7 82.4 
26 5 2 40.0 1 50.0 0 0.0 0.0 
27 106 71 67.0 71 100.0 52 73.2 73.2 
28 0 N/A N/A N/A N/A N/A N/A N/A 
29 76 42 55.3 40 95.2 28 66.7 70.0 
30 101 53 52.5 47 88.7 32 60.4 68.1 
31 92 75 81.5 72 96.0 61 81.3 84.7 
32 37 17 45.9 13 76.5 9 52.9 69.2 
33 18 12 66.7 12 100.0 9 75.0 75.0 
34 117 52 44.4 43 82.7 31 59.6 72.1 
35 138 111 80.4 65 58.6 48 43.2 73.8 
36 0 N/A N/A N/A N/A N/A N/A N/A 
37 0 N/A N/A N/A N/A N/A N/A N/A 
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38 0 N/A N/A N/A N/A N/A N/A N/A 
39 5 0 0.0 N/A N/A N/A N/A N/A 
40 0 N/A N/A N/A N/A N/A N/A N/A 
41 66 54 81.8 53 98.1 44 81.5 83.0 
42 0 N/A N/A N/A N/A N/A N/A N/A 
43 0 N/A N/A N/A N/A N/A N/A N/A 
44 0 N/A N/A N/A N/A N/A N/A N/A 
45 0 N/A N/A N/A N/A N/A N/A N/A 
1S/E = ratio of # of swim-ups to # of fertilized eggs 
2S/H = ratio of # of swim-ups to # hatched 
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