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ABSTRACT

Air-to-air heat exchangers can be used to preheat ventilating air 

and hence increase the winter ventilation rate in livestock barns; 

however, frost accumulation is a major problem in this application. 

Currently available frost control systems operate based on some 

combination of time, core pressure drop, or exhaust air temperature. 

These systems do not result in an optimal rate of heat transfer, 

independent of barn temperature and relative humidity. 

In th is project, a frost contro1 strategy based on the measured 

instantaneous rate of heat transfer was stud ied. The contra1 strategy 

involved measuring the temperature rise of the cold air stream and 

controlling the rate of heat transfer by positioning a damper to 

regulate the mass flow rate of the cold air stream. 

As an aid to the design of the controller, a simulation model was 

developed. The model was based on an existing steady-state model of a 

condensing heat exchanger. The model was enhanced and changed in order 

that it could predict the thermal performance of a heat exchanger over 

time as frost formed in the heat exchanger. 

Exper iments were conducted wi th a 472 L/s plate-type commerc ia1 

heat exchanger. The experiments were used to ca 1ibrate the heat 

exchanger simulation, to validate the simulation model, and to test the 

proposed frost control strategy. 

The simulation model was useful in developing the control strategy 

and in establishing the control parameters for the prototype controller. 

Also, the simulation showed that it was not possible to continuously 

maintain a constant rate of heat transfer which approached the maximum 
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poss ib le heat transfer rate ava i lab le from the heat exchanger. The 

simulation did show that a time average rate of heat transfer approach­

; ng the maximum pass ib le heat transfer rate was poss ib le. The ca1i­

brated heat transfer model did satisfactorily predict the general trends 

of the controlled heat exchanger operation. However, there were enough 

differences between the experimental results and simulation results that 

significant redevelopments to the simulation heat and mass transfer 

model will be necessary to obtain good agreement. 

In the prototype tests, the prototype controller was confirmed to 

operate satisfactorily under four widely differing input conditions. 

Three control parameters were identified as being critical to the design 

of a heat transfer opt imi zing contro ller; the amount of heat transfer 

degradation permitted before a defrost is initiated, the maximum cold 

a;r stream mass -flow rate through the heat exchanger permitted just 

following a defrost; and the rate at which the supply air flow rate is 

changed. 

The proposed control strategy directly measures the instantaneous 

rate of heat transfer. This enables the optimal average heat recovery 

to be obtained over a wide range of input conditions. Further develop­

ment is necessary to estab1ish the opt ima 1 contro1 parameters and to 

complete development of a marketable heat exchanger frost controller. 
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1. HEAT EXCHANGERS IN AGRICULTURE 

The heat produced in a confinement livestock facility by the 

animals and the lighting equipment is removed by outside air infiltra­

tion, by heat conduction through the building shell and by exhausted 

ventilation air. During most of the year the heat balance ventilation 

rate is sufficient to maintain moisture and odor control in the build­

ing, but during the winter the heat produced by the animals and the 

lighting equipment is not always sufficient to permit proper ventilation 

for moisture and odor control while still maintaining an acceptable 

indoor air temperature. Farmers have dealt with this problem either by 

permitting the building environment to be cold, wet and foul smelling or 

by providing supplemental heat which permits higher ventilation rates. 

The use of heat exchangers provides an alternative to· costly supp lemen­

tal heat .. 

1.1 Early Heat Exchanger Research 

Giese and Downing (1950) and Giese and Ibrahim (1950) developed and 

tested a she 11 and tube heat exchanger. The exchanger cons isted of a 

large outside duct with a number of pipes running down the centre of the 

duct. The heat exchanger was run in two configurations. The first 

configuration was a parallel flow arrangement where the fresh air flowed 

in the small tubes. The second arrangement was a counterflow arrange­

ment where the exhaust air was carried in the small tubes. 

The plate type of heat exchanger was then investigated in an 

attempt to achieve greater heat transfer capacity, to reduce the space 

requirement and to meet a number of other economic considerations. 
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The plate type of heat exchanger, consisting of a number of highly con­

ductive plates which separate the hot and cold fluids, had been success­

fully used in industry and was therefore considered possibly useful in 

agriculture. 

The exchanger deve loped by Giese and Bond (1952) was constructed 

from sheets of corrugated aluminum roofing separated by leather spacers. 

Thirty-two sheets of corrugated aluminum were used. Each sheet was 660 

mm X 1829 mm. The heat transfer surface was est imated to be 34 m2. 

Giese and Bond concluded that an improved heat exchanger design had been 

developed since it was more compact than the earlier shell and tube 

exchanger. 

1.2 Thermosiphon Heat Exchanger 

After the work of Giese in the early 1950s, little new work was 

done with agricultural heat exchangers until the mid 1970s when Larkin 

et ale (1975) introduced the use of a thermosiphon heat exchanger in a 

poultry house. 

The thermos iphon heat exchanger was a bank of finned heat pipes. 

The evaporator portion of the heat pipe was in the hot (exhaust) air 

stream and the condenser portion was in the cold (supply) air stream. 

The evaporation and condensation of the working fluid transfered the 

heat from the hot air stream to the cold air stream. This arrangement 

was viable because the thermal conductivity of the heat pipe was several 

orders of magnitude greater than a solid copper bar of equivalent dia­

meter. 

The thermosiphon heat exchanger was simple, easy to clean and com­

pact. These advantages made the thermosiphon more attractive than the 
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plate type heat exchanger for use in livestock facilities. The thermo­

siphon heat exchanger was probably not widely used because it was more 

expensive thana plate type heat exchanger with equivalent capacity. 

The problems associated with the thermosiphon heat exchanger were 

fouling and freezing of the exhaust air passages (Larkin et al., 1975). 

The freeze-up prob1em was remedied by insta11 ing a thermostat wh ich 

switched the in let fan off when the exhaust s ide temperature decreased 

below 1.7°C. The performance of the controller was described in detail 

by Larkin et ale (1975). 

Larkin and Turnbull (1977) discussed the effects of core fouling on 

the heat exchanger performance. They showed that with proper choice of 

exhp.ust air fi 1ters and the correct rna i ntenance of the f i 1ters dust 

foul ing would degrade the heat exchanger performance by on ly six per­

cent. 

The economic benefits of the thermosiphon heat exchanger were cal­

culated by Larkin and Turnbull (1979). The general conclusion of the 

economic analysis was that for facilities of sufficiently high inside 

temperature and sufficiently high ventilation requirements the thermo­

siphon heat exchanger was economically viable. 

1.3 Rock Bed Heat Exchangers 

Rock bed heat exchangers are regenerat ive heat exchangers. The 

s imp lest regenerat ive heat exchanger system cons ists of two regenera­

tors. The hot air stream flows through one regenerator warming the 

regenerative material while the cold air stream flows through the other 

regenerator cooling its regenerative material. The heat exchanger 

provides heat continuously by alternating the air streams between the 

two regenerators. 
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Witz et a1. (1976) stud ied the performance of a rock bed heat 

exchanger used to heat a building which housed beef animals. The heat 

exchanger performed well for outside temperatures above -26°C but frost 

accumulation became a problem at colder temperatures. Witz et ale found 

that by applying salt to the rocks the frost accumulation problem could 

be solved. 

Lampman and Moysey. (1984) performed field tests on a rock bed 

exchanger which consisted of two 1200 mm square insulated boxes. This 

exchanger was installed in a swine barn. The depth of the rocks ;n the 

boxes was 300 mm. The measured and calculated heat exchanger sensible 

effectivenesses were compared and adequate agreement was found. 

Sensible effectiveness values of 60% or better were achieved. Lampman 

and Moysey pointed out, as Witz et ale did, the problem of frost 

accumulation. 

1.4 McGinnis Shell and Tube Heat Exchanger 

A 2350 LIs shell and tube heat exchanger was developed by McGinnis 

et al. (1983). The heat exchanger shell was 1.2 m x 1.2 m x 2.5 m. 

Within the shell were 196 polyethylene tubes 50 mm in diameter and 1.5 m 

long. The exhaust air was circulated through the tubes while supply air 

flowed around the outside of the tubes. 

The unit was installed in a 1000 hog finishing barn and tested 

during the winter of 1980. During the testing it was found that fouling 

was not a problem since condensation in the unit tended to clean the 

tubes. The recommended cleaning schedule according to McGinnis et ale 

(1983) was an inside washing once during, and once at the end of the 

heating season. 

The heat exchanger tested did experience ice formation but the 

vertical tube orientation and the smooth tube walls tended to facilitate 

the dispersal of the ice. As well, the heat exchanger was fitted with an 
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automatic defrost controller that would stop the supply air flow if the 

pressure in the exhaust plenum exceeded 100 Pa. However, for the tests 

conducted the automatic defrost was not utilized. The measured effec­

tiveness of the heat exchanger was around 30 percent. McGinnis et al. 

(1983) a1so made measurements on a 36 tube prototype heat exchanger. 

The effectiveness of this unit averaged 32 percent over the test period. 

McGinni's (1984) developed a mathematical model of a shell and tube, 

crossflow-counterflow heat exchanger. The model was developed by 

dividing the heat exchanger into a number of control volumes. For each 

control volume, an energy balance and a mass balance were written. The 

energy balance was performed by equating the change in enthalpy of the 

two air streams with the heat transferred between the two airstreams. 

The mass balance equation was used to compute the rate of condensation 

which in turn was used in the energy balance equations to compute the 

outlet temperature of the supply air stream and the outlet temperature 

of the exhaust air stream. The temperatures were computed in an 

interative fashion. The development of the heat transfer coefficients 

and the diffusion coefficients was discussed by McGinnis. 

Limited test results were presented to compare the mode1 and the 

working unit. Comparison of the heat exchanger effectiveness and the 

heat recovery rate ind icated good agreement between the mode1 and the 

working unit. 

1.5 Recent Work with Agricultural Heat Exchangers 

Sokhansanj et a1. (1980) presented a method to size a heat 

exchanger for a particular barn. The inter-relationship of ventilation 

rate, heat exchanger size and supplemental heat required was shown. 

Criteria were developed to evaluate the economic value of different 
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heat exchangers for a turkey growing building. 

A compact, cross-flow heat exchanger was deve loped and tested by 

Swift et ale (1981). The heat exchanger drew exhaust air from a 100-cow 

da ;ry barn and provided warmed fresh a;r to an attached ca lf nursery. 

The heat exchanger was run significantly unbalanced which almost 

eliminated freeze up problems. Experimental results showing the outlet 

air stream temperatures, the heat exchanger effectiveness and the heat 

transfer rate were given. 

A central ventilation heat recovery system for an eight room 

farrowing-nursery facility was developed and studied by Meyer et ale 

(1983). In addition to the eight rooms housing the livestock, two other 

rooms were used for vent i lat ion. One room, the heat exchanger room, 

contained eight 300 mm diameter polytubes. The polytubes carried fresh 

air from the attic through the length of the exchanger room. At the 

same time warm inside air was drawn through the heat exchanger room and 

exhausted to the outdoors; thus, the heat exchanger room was mere ly a 

1arge heat exchanger. The tempered co ld air from the heat exchanger 

room was moved through a second room and then di stributed to the eight 

rooms housing the livestock. Meyer et ale cited advantages of the 

polytube heat exchanger including greater surface area, fewer leaks, 

lower costs and higher effect iveness compared to a ho llow wa 11 heat 

exchanger. 

Plans for home built heat exchangers for agricultural facilities 

are available. Hodgkinson and Small (1984) outlined a design procedure 

for a home built heat exchanger which has a single cold air passage and 

a single warm air passage. The thermal performance of three different 

home built heat exchangers was reported by Hodgkinson and Small. 
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Most engineers cite energy savings as the primary justification for 

the use of heat exchangers. Thornton (1983) after surveying 46 Alberta 

farmers found that only four percent of them bought heat exchangers to 

save energy. Most bought heat exchangers to dry out the barn and to 

improve ventilation. Thornton also monitored the performance of three 

commerc ia1 heat exchangers and one home bu; 1t heat exchanger. He 

provided specific comments about the operation of' the four heat 

exchangers individually and general comments applicable to all the heat 

exchangers. 

Saskatchewan Agriculture (1983) provided a bulletin which addressed 

a wide range of topics regarding the use of heat exchangers in livestock 

facilities. Their bulletin discussed: 

(1) principles of ventilating and heating livestock buildings, 

(2) different types of heat exchangers available, 

(3) commercially available heat exchangers, 

(4) heat exchanger effectiveness, 

(5) sizing a heat exchanger, 

(6) air distribution in the barn, and 

{7} economics of heat exchangers. 

The bulletin contains sufficient breadth to make it a very good place to 

start when cons idering the use of a heat exchanger in a 1ivestock 

facility. 

1.6 Frost Control in Agricultural Heat Exchangers 

The literature dealing with agricultural heat exchangers over and 

over mentions the problems associated with frost accumulation. Three 

general methods have been identified to control the frost accumulation. 



8 

The methods identified were outside air preheat, air flow rate imbalance 

and defrost cycle. 

Sufficiently preheating the outside air ensures that all the sur­

faces of the heat exchanger core are above DOC. Since a11 the core 

surfaces are above DOC no frost can accumulate. The primary drawback of 

this method is that the thermodynamic potential of the heat exchanger is 

reduced. The advantage of th is method is that the heat exchanger 

operates continuously without interruption. 

The air flow rate imbalance method, similar to the preheat method, 

keeps the surfaces of the heat exchanger core above DOC. The surfaces 

are kept above DOC by reducing the cold air stream flow rate. The cold 

air stream flow rate can be reduced by restrict ing the flow or by 

bypassing some of the flow. The Blackhawk, Koenders and Better Air 

commercial heat exchangers control frost accumulation by air flow rate 

imbalance. The air flow rates are imbalanced by manually dampering down 

the flow of cold air. Mackay Equipment Sales Ltd., Saskatoon, using a 

Z-Duct commercial heat exchanger experimented with a different air flow 

rate imbalance method. Their method imbalanced the air flow rates by 

bypass i ng a port ion of the co ld air stream around the heat exchanger. 

The amount of bypass was automat ica lly contro lled based on the out let 

temperature of the hot air stream. Van Lambalgen et ale (1986) studied 

this control strategy and showed that it does not control frost accumu­

lation. The major drawback of the air flow rate imbalance method except 

for the Mackay Equipment Sales Ltd. system is that more air is withdrawn 

from the building than is returned and thus the additional outside air 

must be brought in through separate vents. 

Defrosting the heat exchanger periodically keeps in check the 
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adverse effects of frost. The major problem with defrosting is deciding 

how long to let the frost form before defrosting and secondly how long 

to let the heat exchanger defrost. The simplest method of defrost is a 

timed defrost cycle. Del-Air commercial heat exchangers use a timed 

defrost. Defrosting is accomplished by reversing the cold air fan motor 

for eight minutes every hour. This method is simple but is not very 

efficient except under the worst frost forming conditions. A much more 

efficient method is to measure the pressure drop aross the hot side of 

the heat exchanger and init iate defrost whenever the pressure drop 

exceeds some threshold va lue. The defrost is terminated when the 

pressure drop reduces to the pressure drop of an unfrosted heat 

exchanger. Van Lambalgen et al. (1986) tested a pressure controlled 

defrost system and found it very efficient but expensive to implement. 

Defrost can be accomplished by reducing the cold air stream flow rate 

or by increasing the cold air stream temperature. 

The three general methods for controlling frost- accumulation 

mentioned above have all been used in agricultural heat exchangers in 

some form or another but no controller has yet been developed which is 

both inexpensive and efficient. 



2. OBJECTIVES 

The winter ventilation of intensive livestock houses can be very 

costly. Consequently, most livestock houses are ventilated at very low 

rates during the winter. Ventilation at such low rates generally 

results in less than ideal conditions for the animals housed. Heat 

exchangers can be used to permit higher ventilation rates without higher 

heat ing costs, but heat exchanger use is not without prob lems. Frost 

tends to accumulate in the exhaust air passages of the heat exchanger. 

The accumulation of frost causes the exhaust air flow through the heat 

exchanger to be restricted and the effective conductivity of the heat 

exchanger plates to be reduced. 

The rna i n object i ve of th is study was to invest igate the frost 

formation process in a heat exchanger and to design and test a suitable 

frost contro1 strategy that wou 1d max imi ze the overa 11 rate of heat 

transfer in a heat exchanger. A1though severa1 methods are avai lab le 

for controlling the heat transfer in a heat exchanger, imbalanced air 

flow rates was selected. The air flow rates were imbalanced by 

modulating a damper which bypassed a portion of the cold air stream 

around the heat exchanger (see Figure 2.1). 

Specifically, the following two hypotheses were tested: 

(1) An existing computer model developed by Besant and Bugg 

(1981), with modification, will simulate the thermal perform­

ance of a heat exchanger operating under frost forming condi­

tions and under frost control. 

- 10 ­
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FIGURE 2.1

Heat Exchanger and Bypass
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(2) A controller can be designed and implemented on a plate type 

commercial heat exchanger operating under frosting conditions 

that will find and continuously maintain a constant rate of 

heat transfer. The constant rate of heat transfer ach ieved 

will approach the maximum thermodynamic potential of the heat 

exchanger and will increase the efficiency of the heat 

exchanger compared to commonly used frost control strategies. 

The heat exchanger chosen to be modelled and tested was a 472 LIs 

capacity Z-Duct commercia1 heat exchanger. This heat excha~ger was 

selected because an 1180 LIs capacity heat exchanger of identical 

construction was insta1led in the Univers ity of Saskatchewan Campus 

Dairy Barn. This larger heat exchanger could have been used to field 

test the controller. The exact physical properties of the heat 

exchanger are given in Table 2.1. Figure 2.2 shows the heat exchanger 

overall dimensions. Figure 2.3 labels the different airstreams entering 

and leaving the heat exchanger. 
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TABLE 2.1

Heat Exchanger Physical Data

DESIGNER 
DesChamps Laboratories Inc. 
5-8 Merry Lane 
E. Hanover, N.J. 

MANUFACTURER 
Fabrication Z-Air Inc. 
690 Place Trans-Canada 
Longueuil, Quebec 

MODEL 74-1000AA6 DAV 

SPECIFICATIONS* 

Spacing of Exchanger Surfaces 

Fouling Factor 

5.4 mm 

0.0 m2 K/W 

Thickness of Exchanger Surfaces** 0.152 mm 

Conductivity of Core Materia1** 208 W/mK 

Length of Exchanger Surfaces 

Width of Exchanger Surfaces 

Number of Hot Passages 

Number of Cold Passages 

0.880 m 

0.408 m 

49 

50 

Number of Heat Exchange Surfaces 98 

* Measured unless otherwise noted. 
** Private communication with DesChamps Laboratories Inc. 
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Heat Exchanger Overall Dimensions
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Heat Exchanger A1r streams 
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3. HEAT EXCHANGER COMPUTER MODEL 

3.1 literature Review 

Summarized below is the literature that was found to relate to the 

development of a frosting .and condensing heat exchanger model. 

3.1.1 Dry Heat Exchanger Model 

Calculation of the heat transferred between two single phase fluids 

in a counterflow heat exchanger is well known and can be found in most 

introductory heat transfer texts such as Karlekar and Desmond (1977). 

The ability of the heat exchanger to transfer heat is determined by 

the overall heat transfer coefficient. 

1 1 t 1
-=-+.J2.+-+R 3. 1 
U hh. k h Fp c 

where 

U = overall heat transfer coefficient (W/m2 K) 

hh = convection heat transfer coefficient on the hot side 

(W/m2 K) 

hc = convection heat transfer coefficient on the cold side 

(W/m2 K) 

t p = separating wall thickness(m) 

kp = separating wall thermal conductivity (W/m K) 

RF = fouling factor (m2 K/W) 

The heat transferred by a heat exchanger can be calculated if the 

heat exchanger effectiveness is known. The heat exchanger effectiveness 

is defined as: 

r-temperature change of the flUid] 
~ with minimum capacity rate

E = r: the largest temperature ~
c:ifference in the heat e~Change~

- 16 ­
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The effectiveness of a counterflow heat exchanger with only 

sensible heat transfer is calculated using equation 3.2. 

, - ex{ -GAlCm1n)[' _[ cm1n/Cmax ]J)= 3.2 

where 

E =heat exchanger effectiveness 

U =overall heat transfer coefficient (W/m2 K) 

A = heat transfer area (m2) 

=minimum heat capacity rate (W/K)Cmin 
Cmax =maximum heat capacity rate (W/K) 

The heat transfer rate is calculated using equation 3.3. 

Q = E r. (Th • - T . ) 3.3
iTI1n ,1 C,1 

where 

Q = heat transfer rate (W) 

e = heat exchanger effectiveness 

emin =minimum heat capacity rate (W/K) 

Th,i = temperature of the hot fluid at the inlet (K) 

Tc,i = temperature of the cold fluid at the inlet (K) 

Knowing the heat capacity rates, the heat transfer rate, and the 

inlet fluid temperatures, then the outlet fluid temperatures can be 

calculated. 

3.1.2 Condensing Heat Exchanger Models 

Calculation of the heat transfer rate in a condensing heat 

exchanger can proceed in roughly two directions. The heat transfer rate 

can be calculated using the log mean enthalpy difference and Colburn j 

factors or by using control volume equations. 
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Guillory and Mcquiston (1973) showed how the log mean enthalpy 

difference' and the Colburn j factors could be used to design a 

condensing coil. 

Guillory and Mcquiston started their analysis by pointing out that 

the most common methods used to design dehumidifying coils involve an 

analogy between the dry coil operation and the wet coil operation. 

3.4 

where 

= heat transferred by a dry coil (W) 

= sensible convective heat transfer coefficient 

(W/m2 K) 

A = heat transfer area (m2) 

8tm = log mean temperature difference (K) 

Karlekar and Desmond (1977) derived the log mean temperature dif­

ference. 

3.5 

where 

Qi = heat transferred by a wet coil (W) 

hi = entha lpy convect ive heat transfer coefficient 

(kg/m2sec) 

A = heat transfer area (m2) 

Aim = log mean enthalpy difference (J/kg) 

As Guillory and Mcquiston pointed out, this method can be justified on 

theoretical grounds since the diffe~ential energy conservation equation 

for sensible heat transfer and the differential energy conservation 

equation for total energy transfer in a system involving mass diffusion 
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are mathematically identical. The sensible convective heat transfer 

coefficient in Equation 3.4 was related to the enthalpy convective heat 

transfer coefficient using Equation 3.6. 

3.6 

where 

hi = enthalpy convective heat transfer coefficient 

(kg/m2sec ) 

ht = sensible convective heat transfer coefficient 

(W/m2 K) 

Cp = specific heat at constant pressure (J/kg K) 

But measurements made by Guillory and Mcquiston (1973) showed that for 

the range of Reynolds numbers tested the use of dry heat transfer data 

in the design of wet exchangers can result in the heat transfer area 

being overestimated and the pressure drop being underestimated. 

Mcquiston (1976), Tree and Helmer (1976), Mcquiston (1978a) and 

McQu iston (1978b) presented the Co lburn j factors for para lle' plate 

exchangers and for a variety of plate-fin-tube coils. These studies 

indicated that the heat and mass transfer coefficients could be affected 

by the presence of condensation. 

Anonymous (1965) and Demetri and Siegel (1970) describe a finite 

difference model developed from the control volume equations that 

predicted the dynamic therma 1 performance of a compact heat exchanger 

with condensation occurring. The model divided the heat exchanger into 

two parts. One part, called the precooling region, was where both the 

hot and cold fluid were in a single phase. The second part, called the 

condensing region, was where one of the fluids was condensing. Though 

it was not entirely clear it appeared that the boundary between the 

precooling region and the condensing region occurred at the point where 
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the condensing fluid bulk temperature reached the dewpoint. The energy 

equations and the specific heat equation in the wet region were dif­

ferent from those used in the dry region. The energy equations had an 

extra term which accounted explicitly for the condensation. The speci­

fic heat equation contained an enhancement to recognize the increase in 

specific heat due to the condensation. An extension of the work of 

Anonymous (1965) and Demetri and Siegel (1970) was given by Duleba and 

Lloyd (1977). 

Another heat exchanger mode1 wh ich broke the heat exchanger into a 

wet region and a dry region was developed by Besant and Bugg (1981). 

The model consisted of seven equations that were solved simultaneously. 

Three of the equations described the heat transfer in the dry region and 

three other equations described the heat transfer in the wet region. 

The seventh equation of the set defined the interface between the dry 

and the wet regions. The heat transfer coefficient in the wet region 

was calculated by multiplying the dry heat transfer coefficient by an 

enhancement factor to account for the condensation. 

3.7 

where 

hwet = enhanced convective heat transfer coefficient 

(W/m2 K) 

i =moist air stream enthalpy (J/kg) 

T = moist air stream temperature (K) 

hdry = convective heat transfer coefficient for a noncon­

densing flow (W/m2 K) 

Cp = specific heat of the moist air stream (J/kg K) 

W = humidity ratio 
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Maclaine-cross and Banks (1981) developed a linear approximate 

mode1 for wet surface heat exchangers. The mode1 was based on ten 

assumptions, the most important assumptions being: 

(1) the specific enthalpy of moist air was a linear function of the air 

temperature and the air humidity ratio; 

(2) the moisture content of the air in equilibrium with the water 

surface was a linear function of the surface temperature. 

Equations for the moist air wet bulb depression and the moist air wet 

bulb outlet temperature were developed. The model of Maclaine-cross and 

Banks provided a simplified method for calculating the outlet conditions 

from a wet plate heat exchanger. 

Kettleborough and Hsieh (1983) also developed a model for a wet 

plate heat exchanger. Their model was formulated by dividing the plate 

area into a number of small elements. Each element was divided into 

three control volumes: one represented the air stream to which the 

1iquid water evaporated, another represented the separating plate and 

water film and the third control volume represented the unsaturated air 

stream. For each control volume a heat and mass balance was done. The 

analysis assumed that the sensible heat transfer coefficient in the wet 

passages had approximately the same characteristics as the sensible heat 

transfer coefficient in the dry passages. The mass transfer coefficient 

was determined using the Lewis relation. Kettleborough and Hsieh solved 

the equations on a computer and showed their calculations to be eight 

percent higher than measurements made by Pescod (1968) and Chan (1973). 

Heat transfer through an impermeable wall between a condensing flow 

and a noncondensing flow results in a problem when using the control 

volume equations. The heat transfer involving the condensing flow 
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should be analyzed using enthalpy potential but the heat transfer 

involving the dry fluid should be analyzed using temperature potential. 

Kreid et ale (1978) presented a method whereby the heat transfer 

parameters in the dry region were modified so that the enthalpy poten­

tial was applied throughout the heat exchanger. Besant and Bugg (1981) 

took an oppos ite approach and modified the heat transfer parameters in 

the wet region so that the temperature potent ia1 was app1ied throughout 

the heat exchanger. 

3.1.3 Frost Formation 

The difficulty in modelling the frost formation in a heat exchanger 

was well expressed by Gates et ale (1967): 

The analytical problems involved in analyzing a 
.cooling coil under frosting conditions are made 
quite complex by the continually changing geometry
due to the increase in frost layer th ickness. In 
addition, the 'problem is three dimensional and 
transient in nature. (p. 1.2.1) 

The 1iterature wh ich was ava i lab le on frost propert ies and frost 

formation is discussed below. 

3.1.3.1 Early Work 

Beatty et ale (1951) predicted the frost height by representing the 

frost layer as a conduction resistance of uniform conductivity. The 

heat delivered to the frost-air interface was assumed to be all 

conducted through the frost layer. 

.) = k (tf - )h ( • t s 3.8• 1 -'f f, a ---­
x 
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where

hi =coefficient of enthalpy transfer (kg/sec) 

i a = bulk air stream enthalpy (J/kg) 

if = entha lpy of saturated air at the frost-a ir interface 

temperature (J/kg) 

kf = thermal conductivity of frost (Wm/K) 

tf = temperature at air-frost interface (K) 

t s = temperature of metal surface (K) 

x = frost thickness (m) 

Stoecker (1957), when studying a finned coil operating under frost 

formi ng cond it ions, indicated that the factors most affected by frost 

formation are the heat transfer coefficient and the pressure drop across 

the coil. The tests performed by Stoecker showed that the overall heat 

transfer coefficient increased initia lly and then slowly decreased as 

the frost accumulated. For constant vo lume flow the pressure drop 

across the core increased at an increasing rate with time. Stoecker 

(1960) examined the frost forming on a bare tube under natural convec­

t ion. He observed that the first frost that formed was granular and 

fluffy but that as time progressed the frost became increasingly like 

ice. 

The work of Beatty and Stoecker represents some of the early work 

addressing the problems associated with frost formation in refrigeration 

and air conditioning equipment. 

3.1.3.2 Frost Models 

Yonko and Sepsy (1967) proposed a frost mode 1 wh ich mode lled the 

frost as a cubic lattice of uniform spherical ice particles in a sur­

rounding gas. The thermal conductivity as a function of frost density 
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was predicted by Yonko and Sepsy's model and found to agree reasonably 

well with the measurements made by other researchers. Biguria and 

Wenzel (1970) predicted the thermal conductivity of frost using 

equations developed by other researchers for the conductivity of a 

two-phase composite material. Both Yonko and Sepsy, and Biguria and 

Wenzel modelled the frost layer as a composite material without 

considering the processes occurring in the frost. 

Brian et al. (1969) used heat and mass balance equations to predict 

the frost density and height. The difficulty with the mode 1 was that 

initial values of frost density and frost thermal conductivity had to be 

inputted. Brian et ale (1970) extended the model to permit density 

gradients in the frost layer. 

Parish and Sepsy (1972) numerically modelled the frost forming on a 

cylinder. They assumed the frost layer was composed of cylindrical 

shells. Each shell was broken into a number of annular segments. The 

frost properties were assumed uniform in each segment. Using this frost 

model and three boundary equations, the energy, momentum, diffusion and 

continuity equations, the frost height was numerically solved for. 

Yamakawa and Ohtani (1972) proposed two frost mode 1s. In both 

mode ls the frost layer was cons idered composed of frost co lumns and 

the frost thermal conductivity was input. In one model, the 

conductivity of the frost columns was an average experimentally measured 

frost conductivity. In the other model the frost columns were ice and 

the thermal conductivity was taken as the thermal conductivity of ice 

multiplied by a correction factor. For both models, the frost layer 

properties were predicted by applying heat and mass transfer equations. 
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Jones and Parker (1975) proposed a model that treated the frost 

layer as a porous substance. Water vapor was considered to be 

transported to the surface like any other surface but the vapor 

transported through the surface was divided into two parts. Some of the 

vapor diffused into the layer and increased the frost density while the 

remainder collected on the surface and increased the frost height. The 

unique feature of their model was that it did not require constant 

inputs such as airstream humidity ratio but could accommodate 

nonconstant inputs. 

Hayashi et al. (1977) studied the frost layer growth by considering 

the frost layer to be a co llect ion of ice co lumns. Hayash i et a1. 

assumed that after the initial frost columns were deposited the frost 

grew from the base of the co lumns and the top of the co lumns without 

increasing the column diameter. Yamakawa and Ohtani (1972), who also 

used an ice column frost model, had assumed the diameters of the frost 

columns increased as the frost grew. 

An equation for the frost growth rate was developed by Schneider 

(1978). In order to develop this equation he assumed that the frost was 

a collection of needles through which all the latent heat of sublimation 

was conducted. 

3.1.3.3 Frost Growth Eguat10ns 

The simplified frost model of Scheider (1978) lead to an equation 

for the frost height on a cooled tube. 
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where 

XF = frost thickness (mm) 

kl = thermal conductivity of water-ice (W/mm K) 

lth 
s = latent heat of sublimation (J/kg)

P~l =density of water-ice (kg/mm3)

1: = time (s) 

t F = frost surface temperature (K) 

t w =wall temperature (K)

P - PF
II = pI _ pI (ratio of supersaturation) 3. 10 

F 

where

P = partial vapor pressure of air (Pa)

pi = vapor pressure of saturated air (Pa)
pi
F = pressure of saturated vapor at the frost surface 

temperature (Pa) 

t - t M 
Ft = 1 + 0.052 t- t 3. 11 

M W 

where 

t = air temperature (K) 

t M = melting point temperature of water-ice (K) 

t w = wall temperature(K) 

Equation 3.9 was derived based on experiments on a cylindrical tube of 

47.5 mm 0.0. The tests were run over a range of air velocities from 1.2 

m/s to 10 mis, air temperatures from 5°C to 15°C, relative humidities 

from 50 percent to 100 percent and tube temperatures between -5°C and 

-30°C. Schneider compared the calculated frost thickness with the 

experimentally measured values of other researchers and found good 
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agreement. Schneider observed that the frost thickness was independent 

of the test surface, vapor pressure difference between the air stream 

and the frost surface; and the Reyno lds number. The key factors he 

found were the ratio of supersaturation and the capacity of the frost to 

conduct the heat of sublimation. 

White and Cremers (1981) developed equations for frost thickness 

and density. They pointed out that after an initial transient period 

the rates of heat transfer and condensation became constant. They also 

showed that for steady overa11 heat and mass transfer the dens ity and 

frost thickness both increased with the square root of time. 

Measurements were made to show the validity of the square root 

relation. 

Experiments performed by Schulte and Howell (1982) on a flat plate 

showed that the frost thickness was generally greatest near the leading 

edge of the plate and decreased along the length of the plate. Schulte 

and Howell specifically studied the effect of the airstream turbulence 

intensity on the frost growth rate. They found that the turbulence 

i ntens ity had no measureab 1e effect on the frost growth rate but that 

the air stream humidity ratio, the air stream velocity and the plate 

temperature had a significant effect on the frost growth rate. 

A dimensional analysis of the key parameters that influenced frost 

density and frost growth was done by Tokura et al. (1983). An 

experimental study was carried out on a cooled vertical plate in free 

convection and correlations were developed between the different 

dimensionless parameters. 

O'Neal and Tree (1984) studied the effect of various parameters on 

the rate of frost growth and the frost density on a vertical plate. 

Tests were performed for plate temperatures from -5°C to -12°C, air 

humidity ratios from 0.00382 to 0.00514, Reynolds numbers from 4400 to 
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15900 and air temperatures from 5°C to 12°C. An empirical correlation 

relating frost height to; time, Reynolds number, plate temperature and 

air humidity was developed by O'Neal and Tree. 

t 0.663 0 393 T -T 0.705 W-W 0.098 
= o. 466 (1 hr) Re· ( .~ p) (~ 0) 3. 12xf 

o 0 

where 

Xf = frost height (mm) 

t = time (hr) 

Re =Reynolds number (based on hydraulic ~iameter)

To = freezing temperature of water (K) 

Tp = plate temperature (K) 

Wo = humidity ratio of saturated air at O°C 

Wa = humidity ratio of the air stream 

3.1.3.4 Density and Thermal Conductivity of Frost 

Hosoda and Uzuhashi (1967) developed an experimental equation 

relating the frost density to the cooling surface temperature and the 

air stream velocity. 

p = 340 I t p I -0.445 + 85V 3. 13 

where

p =density of frost (kg/m3)

t p = cooling surface temperature (OC)

V = air stream velocity (m/s)

Equation 3.13 was developed for air temperatures between O°C and 10°C, 

air humidities between 50 percent and 80 percent, and air velocities of 

1 mIs, 3 m/s and 5 m/s. 

Yonko and Sepsy (1967) summarized the investigations of frost 
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thermal conductivity and frost density by other researchers. Yonko and 

Sepsy also made their own measurements and devised their own correlation 

of frost thermal conductivity and frost density. 

kf =0.0242 + 7.22E-04 p + 1.18E-06 2 3. 14p 

where 

kf = frost conductivity (Wim K) 

p = frost density (kg/m3) 

p < 577 kg/m3 

Brian et al. (1969) studied frost formation on a copper plate at 

-193°C. His studies showed that the rate of the densification of the 

frost layer was very sens it ive to the frost surface temperature; the 

colder the frost surface, the less dense the frost. 

The frost d.ensity as a function of airstream velocity, airstream 

humidity, plate temperature, boundary layer (untripped - artificially 

tripped) and frost surface temperature was measured by Bigura and Wenzel 

(1970). They found for moist air flow over a brass plate that the 

density varied along the plate. As well they found that for the lowest 

air velocities and the lowest frost surface temperatures the lowest 

frost densities resulted. 

Other investigations of the correlation of frost density with frost 

thermal conductivity were done by Yamakawa et al. (1972), Gatchilov and 

Ivanova (1979) and Marinyuk (1980). 

3.1.3.5 Pressure loss 

Experimental results showing the pressure drop across a heat 

exchanger as a function of frost accumulation are not very abundant. 
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Using coils with fin spacings of 6.4 mm and 2.8 mm Stoecker (1957) 

measured the constant volume flow rate pressure drop across the coil as 

a function of the weight of frost on the coil. The measurements 

indicated that the pressure drop increased at an increasing rate as the 

weight of frost accumulation increased. 

Pressure drop measurements made on extended surface heat exchangers 

with fin spacings between 2.1 mm and 12.7 mm and with between one and 

six tube rows lead Gates et al. (1967) to the following equation: 

3. 15 

where 

~p = pressure drop across the coil (Pa) 

~Pi = pressure drop across the coil when unfrosted (Pa) 

M = exponent which relates pressure drop with time 

(hr- 1) 

= time (hr) 

Gates et a1. deve loped tab les of the exponent M for different heat 

exchanger configurations. The conditions under which this equation 

applies were not clearly outlined by Gates et al. 

The flow-stream pressure-drop through a heat exchanger core can be 

calculated using a relation given by Kays and London (1984). 

2
G vl 2 A vv2 m 

~P =-2-- [(K + 1 - 0' ) + 2 (- - 1) + f - - 3. 16 
c vl Ac v, 

2 v2 
- (1 - 0' - K )...-]e···· v

1 
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where 

Ap = pressure difference (Pa) 

G = exchanger flow stream mass velocity (W/Ac)(kg/m2s ) 

vl = specific volume of entering fluid (m3/kg) 

v2 = specific volume of leaving fluid (m3/kg) 

vm = mean specific volume (m3/kg) 

Kc = contraction loss coefficient for flow at heat ex­

changer entrance 

= ratio of free flow area to frontal area 

(Ac/Afr) 

f = mean friction factor, defined on the basis of local 

surface shear stress 

A = exchanger total heat transfer area on one side (m2) 

A = exchanger minimum free-flow area (m2)c 

Afr = exchanger total frontal area (m2) 

Ke = expans ion loss coeffic ient for flow at heat exchanger 

exit 

W = mass'flow rate (kg/s) 

Using the Kays and London relation, but neglecting the terms 

containing K and Ke, Huffman and Sepsy (1967) developed anc 
expression for the mean friction factor nondimensionalized. 

Measurements were made and the nondimensionalized friction factor was 

plotted against nondimensional time. The results obtained were for fin 

tube exchangers. 

Pressure drop measurements were also made by Gatchilov and Ivanova 

(1979) but with finned air coolers with fin spacings of 7.5 mm, 10 mm 

and 15 mm. The measurements showed a simi lar form to those given by 

Stoecker (1957). 
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3.2 Heat Exchanger Model 

After reviewing the literature, it was clear that no model was 

available which would simulate the thermal performance of a frosting and 

condensing heat exchanger. The literature which seemed most useful 

dea lt primari ly with the theory of frost format ion on flat plates of 

uniform and constant temperature. However, this literature did not 

answer what the effect of frost was on the heat and mass transfer 

coefficients, how the degradation of the return air stream mass flow 

rate could be predicted as frost accumulated in a heat exchanger and how 

the frost melting process could be modelled. 

The deve lopment of the frost ing and condens ing mode 1 started with 

an available condensing heat exchanger model. A model of the frosting 

process was deve loped and inserted into the condens i ng heat exchanger 

model. After considerable changes to both the condensing heat exchanger 

mode1 and the frost model the frost i ng and condens i ng heat exchanger 

model described below resulted. 

3.2.1 Condens1ngHeat Exchanger 

Following Demetri and Siegel (1970) and using the model developed 

by Besant and Bugg (1981) the condensing heat exchanger was modelled by 

treating the heat exchanger as two separate parts. The heat exchanger 

was divided at the section where the hot fluid bulk mean temperature 

reached its dewpoint temperature. One part of the exchanger was dry and 

the other part of the exchanger was wet. Figure 3.1 shows the processes 

that were assumed to occur in the heat exchanger [(1-2-3-4) and 

(8-7-6-5)] and the processes that were known [American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (1979)] to occur 

in the heat exchanger [(1-4') and (8-7-6-5)]. The ideal process (1-4) 

assumed that the air was uniformly and perfectly contacted while in 

practice (1-4') temperature and water vapor concentration gradients 

occurred normal to the flow direction. 
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Heat Exchanger Processes 
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2 

conditions of the moist hot air (return air) entering the heat 
exchanger 

condition of the moist hot air leaving the dry region 

3 condition of the moist hot air entering the wet region 

4 

4' 

5 

6 

condition of the moist hot air (exhaust air) leaving the heat 
exchanger 

actual condition of the moist hot air (exhaust air) leaving 
the heat exchanger 

condition of the cold air (supply air) leaving the heat 
exchanger 

condition of the cold air entering the dry region 

7 condition of the cold air leaving the wet region 

8 condition 
exchanger 

of the cold air (outside air) entering the heat 
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An iteration and bisection method was used to find the position of 

the interface between the wet and dry reg ;ons. The pos;t ion of the 

interface and the temperature of the co ld air stream at the interface 

were guessed. The guessed interface position and the cold air interface 

temperature were used to calculate a new cold air interface temperture. 

If the guessed cold air interface temperature was within O.loC of the 

calculated cold air interface temperature then the iteration was 

stopped, otherwise the calculated cold air interface temperature became 

the guessed cold air interface temperature and the iteration was 

repeated. When the iterat ion was camplete the temperature of the hot 

air stream at the interface was also known. Since the boundary between 

the wet and dry region was, by definition, the place where the hot air 

stream reached the dewpoint temperature, then the hot air stream 

temperature calculated needed to agree with the hot air stream dewpoint 

temperature. If the two temperatures did not agree within O.loC, then, 

using the bisection method, a new position of the wet and dry region 

interface was calculated. Using the last calculated cold air 

temperature at the interface and the new pos it ion of the interface of 

the wet and dry region the solution process was repeated by solving for 

the cold air stream temperature at the new interface position. 

The heat transferred in each region was calculated by first 

calculating the heat exchanger effectiveness for the region using 

Equation 3.2. The overall heat transfer coefficient was computed using 

Equat ion 3. 1. In the dry region RF was equa1 to zero or the thermal 

res istance of the frost if any was present. In the wet reg ion RF was 

equal to the thermal resistance of the water film plus any additional 

thermal resistance due to frost present. A water film of 0.2 mm was 

used [~1aclaine-cross and Banks (1981)]. Applying Equation 3.3 to each 

region separately the heat transfer rate in each region was calculated. 
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The thermophysical properties of the fluids and the heat transfer 

parameters were calculated at eight locations in the heat exchanger. 

The eight locations were the four entrances to the two regions and the 

four exits to the two regions (see Figure 3.1). The properties were 

evaluated at the mixed mean temperature and no correction was made for 

the wall to fluid temperature difference. The heat transfer in each 

region and the outlet temperatures from each region were calculated 

using the average convective heat transfer coefficients and heat 

capacity rates of the inlet and the outlet of each side of the two 

regions. 

The specific heat of the hot fluid at the entrance to and the exit 

from the wet region and the convective heat transfer coefficients at the 

entrance to and the ex it from the wet region were enhanced to account 

for the condensation. 

3.2.2 Convective Heat Transfer Coefficients 

Shah and London (1974) present the laminar flow sens ib le heat 

transfer coeffic ient for laminar duct flow forced convect ion. The 

boundary condit ions were assumed to be midway between constant ax ia1 

wa 11 heat flux with constant periphera1 wa 11 tel)1perature and constant 

wa 11 temperature periphera lly as we 11 as ax ia lly. The heat transfer 

coefficient was the average given for the two boundary conditions. 

Nu = 7.9 Re <2300 3. 17 
2b/2a = 0 

where 

Nu = Nusselt number 

Re =Reynolds number (based on hydraulic diameter) 

2b = the plate separation (0.0054 m) 

2a = the plate width (0.408 m) 
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The solution is for fully developed flow (passage length/passage 

hydraulic diameter >100) but in this case passage length/passage 

hydraulic diameter was 81. 

Besant and Bugg (1981) used a relationship given by Petukhov and 

Popov (1963) for the Nusselt number for turbulent flow in a tube to 

calculate the Nusselt number for turbulent flow in a heat exchanger 

passage. 

fr/8 Re PrNu =--------- 3. 18 
1.07 + l2.7Vfr/8 (pr2/3 - 1) 

where 

Nu =Nusselt number 

fr = coefficient of frictional resistance (see Equation 

3. 19) 

Re =Reynolds number 

Pr =Prandtl number 

-2fr = (1.82 * Log [Re] - 1.64) 3.19lO 

The equation has an error of five to six percent for Re from 104 

to 5.1 X 107 and Pr from 0.5 to 200 assuming constant physical 

properties. Kays and Leung (1963) and Shibani and Ozisik (1977) 

developed solutions for the Nusse1t number in turbulent flow between 

parallel plates. Neither solution was used because the boundary 

conditions used to obtain these solutions did not apply. 
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Equation 3.17 was used to calculate the heat transfer coefficient 

for laminar flow and Equation 3.18 was used to calculate the heat 

transfer coefficient for turbulent flow. In the transition region 

(2300 < Re < 10 000), the Nusselt number was calculated by linear 

interpolation. 

Equations 3.17 and 3.18 assume that the fluid is flowing through a 

smooth walled channel. Figure 3.2 shows a schematic of the actual flow 

passages. The flow passages have cons iderab le contours wh ich may have 

resulted in the enhancement of the heat transfer coefficient. 

A check was made to see if a correct ion to the convect ion heat 

transfer coefficient should be applied for entrance effects. Assuming 

the lowest Reynolds number in the heat exchanger was 1000 and using 

Equation 3.20 [Burmeister (1983)J an estimate of the entrance length was 

made. 

Leo ~ 0.05 Re 3.20 
h 

where 

Le = entrance length (m) 

Dh = hydraulic diameter (m) 

Re =Reynolds number 

Since, for Re = 1000, the entrance length was approximately 0.54 m, a 

significant part of the 0.880 m heat exchanger length, a correction for 

entrance effects was needed. Equat ion 3.21 given by Rohsenow and 

Hartnett (1973) was used to correct the average Nusse lt number for 

entrance effects. 

3.21 



38

LARGE 
CONICAL DIMPLE 

CONTINUOUS 
BENDS 

NOTE' 

- DRAWING IS A CROSS - SECTION 
AT THE MOST CONTOURED 
SECTION OF HEAT EXCHANGER. 

- THE SEQUENCE OF DIMPLES 
REPEATS BOTH IN ELEVATION 
AND DEPTH. 

- THE BENDS ARE CONTINUOUS 
IN DEPTH AND REPEAT IN 
ELEVATION. 

50mm 

FIGURE 3.2

Heat Exchanger Surface Contours



39 

where 

NUm = mean Nusselt number 

NuCX) = Nusselt number for fully developed flow 

C = 6 (abrupt contraction entrance) 

L = heat exchanger length (m) 

D = passage hydraulic diameter (m) 

Rather than applying the correction universally to all eight of the 

convective heat transfer coefficients as the equation implies, the 

enhancement (C*D/L) was mu lt ip1ied by four and app1ied to just the 

convective heat transfer coefficients at the return air entrance and the 

outside air entrance. This was done so that the frost growth rate at 

the return air entrance was more representative than if the correction 

was app 1ied throughout. Shah and London (1976) added cred ib i 1ity to 

this approach because they showed that the Nusselt number is signifi­

cantly enhanced in the first few centimeters of the passage entry. 

The convection heat transfer coefficients calculated using 

Equations 3.17 and 3.18 are for noncondensing flow. At locations 3 and 

4 in Figure 3.1 however, condensation was occurring. 

Much work has been done in the area of condensation heat transfer. 

Merte (1973) and Burmeister (1983) both gave comprehensive studies of 

condensation heat transfer. But despite the wealth of information on 

condensation heat transfer 1ittle has been done regarding the 

condensation of water vapor from air at atmospheric pressure. Denny et 

al. (1971) came closest when they studied the effects of noncondensable 

gas on laminar film condensation of vapor undergoing forced flow along a 

vertical plate. But the largest air mass fraction considered by Denny 

et al. was 0.1 which is considerably lower than all air water processes 

at atmospheric pressure. 
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The convective heat transfer coefficient in the condensing region 

.=.::1 1 1 3.22 

was determined by multiplying the dry convection heat transfer 

coefficient by an enhancement factor. The method given by Thre lke ld 

(1970) was used. 

dn = 
h 
c (. - . ) 

dA C s,wp,a 

where 

q = heat transfer (W) 

A = heat transfer area (m2) 

hc = dry convection heat transfer coefficient (W/m2 K) 

Cp,a = specific heat at constant pressure of moist air 

per unit mass of dry air (J/kg K) 

i =enthalpy of dry air per unit mass of dry air (J/kg K) 

is,w = enthalpy of saturated moist air per unit mass of 

dry air evaluated at the water film temperature 

(J/kg K) 

By multiplying the right side of Equation 3.22 by (Th - Tw)/ 

(Th - Tw) and separating out the dry heat transfer, the enhancement 

factor was obtained. 

1 (; - ;s w) 
3.23e =--C-- (T - ; ) 

p,a h w 

where 

Th = the moist air temperature (K) 

Tw = the temperature of the water film (K) 

Multiplying the dry convection heat transfer coefficient by the 

enhancement factor gave the convective heat transfer coefficient used in 

the condensing region (Locations 3 and 4, Figure 3.1). 
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3.2.3 Frost Formation in the Heat Exchanger 

The frost model assumed the frost format ion was peripherally and 

axially identical between all the hot side heat exchanger passages and 

that the frost height could be calculated based on the plate temperature 

and the time since the frost began forming regardless of the frost layer 

past history. 

The frost was calculated at 42 locations along the heat exchanger 

length (see Figure 3.3). Twenty-one of the locations were equally 

spaced starting at the entrance plane and ending at the exit plant of 

the dry region. The other 21 locations were equally spaced starting at 

the entrance plane and ending at the exit plane of the wet region. At 

each of the 42 points the air temperature on the hot side, the air tem­

perature on the cold side, the convection heat transfer coefficient on 

the hot side, and the convection heat transfer coefficient on the cold 

side were calculated by linear interpolation between the region end 

points. Using the interpolated hot side air temperature, the local 

thermophysical properties, humidity ratio and Reynolds Number were 

calculated. 

The frost height was calculated at each location using the equation 

developed by O'Neal and Tree (1984), Equation 3.12. The plate tempera­

ture required in Equation 3.12 was calculated using Equation 3.24. 

3.24 
1 t p t f t c 1 

+ + + + 
h k k hhc p kf c 

where 

Tp = plate temperature (K) 

Tc = cold air stream temperature (K) 

Th = hot air stream temperature (K) 
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hc = cold side convective heat transfer coefficient 

(W/m2 K) 

hh = hot side convective heat transfer coefficient 

(W/m2 K) 

t c = condensate thickness (0.0 in the dry region; 0.002 m 

in the wet region) 

t f = frost thickness (m) 

t p = plate thickness (m) 

kc = condensate conductivity (0.5745 W/m K) 

kf = frost conductivity (0.01 W/m K)

kp = plate conductivity (W/m K)

An iterative solution was used to solve for the frost height and the 

plate temperature. The solution proceeded by first estimating the plate 

temperature. If the plate temperature was greater than or equa1 to 

273.16 K then the frost height was set to zero. If the plate 

temperature was less than 273. 16 K, the time variab le in the frost 

height equation was advanced and the new frost height was calculated. If 

the humidity ratio of the hot side air stream was less than the humidity 

ratio of a saturated air stream whose temperature was 273.16 K then the 

frost time was not advanced but a new frost height was calculated. The 

calculated frost height was substituted into Equation 3.24 and a new 

plate temperature was calculated. If the old plate temperature and the 

new plate temperature agreed within O.loC then a solution for the frost 

height and the plate temperature was achieved. Otherwise another 

iteration was performed starting with the new plate temperature. 

The use of O'Neal and Tree's equation implied that only frost and 

no ice formed in the exchanger. This assumption seemed reasonable since 

the heat exchanger tests were set up so that the condensate flowed into 

the warmer part of the heat exchanger under the action of gravity. 
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The frost which accumulated in the heat exchanger acted as a 

thermal resistance. Despite the wide variety of frost models available, 

the simple model of Beatty et al. (1951) was used to calculate the frost 

thermal resistance. 

3.25 

where 

RF = frost thermal resistance (m2 K/W) 

t F = frost thickness (m) 

kF = frost thermal conductivity (W/m K) 

Once the frost thermal resistance at each location was calculated 

then an average thermal resistance for the dry region and the wet region 

was computed. The average frost resistance for each region was equal to 

the average of the average frost resistance of the first 10 locations in 

the region and the average frost resistance of the last 11 locations in 

the region. For the purposes of computing the averages all the 

locations had a weight of one except locations 0, 20, 21 and 41 which 

had a weight of one-ha If. These locat ions had a weight of one-ha lf 

because they represented only half the area compared to the other 

locations in the same region (see Figure 3.3). 

The effect of the frost thermal resistance was integrated into the 

condensing heat exchanger model by including an extra term in the 

overall heat transfer coefficient. The final form of Equation 3.1 was 

Equat ion 3.26. 

3.26 
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where 

U =overall heat transfer coefficient (W/m2 K) 

hh = convect ive heat transfer coefficient on the hot side 

(W/m2 K) 

t p = plate thickness (m) 

kp = plate thermal conductivity (W/m K) 

hc = convect ive heat transfer coeffic ient on the co ld side 

(W/m2 K) 

t c = thickness of the water film (0.0 in the dry region: 

0.2 mm in the wet region) 

kc =water thermal conductivity (O.5745 W/m K) 

tF = frost thickness (m) 

kF = frost thermal conductivity (0.01 W/m K) 

The transient thermal effects of the frost accumulation were neglected. 

These effects were neglected because the frost conductivity was assumed 

small and thus the frost density was small. 

Thus, the frost height was computed at 42 locations in the heat 

exchanger. The computed frost height was converted to thermal 

resistance, an average frost thermal resistance was computed for the wet 

and dry regions and fina lly the average frost res istance in each reg ion 

was integrated into the heat exchanger mode1 through the overa11 heat 

transfer coefficient computed for each region. 

The heat exchanger mode 1 assumed that the frost .front and the 

condensat ion front were orthogona1 to an ax; s along the length of the 

heat exchanger. Entrance effects probably significantly skewed the two 

fronts. Figure 3.4 shows the locations of the assumed fronts while 

Figure 3.5 shows the fronts when entrance effects were considered. 
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Figures 3.1 and 3.3 show an incompatibility between the condensing 

heat exchanger and the frost forming process because the condensing heat 

exchanger was analyzed by dividing the heat exchanger into two regions 

while the frost formation was analyzed by dividing the heat exchanger 

into 42 locations. 

3.2.4 Pressure Drop and Mass Flow Eguations 

The equation given by Kays and London (1984), Equation 3.16, was 

used to calculate the pressure drop across the heat exchanger core. The 

loss coefficients Kc was set equal to 9.225 and the loss coefficient 

Ke was set equal to 0.400. It must be noted that the term in Equation 

3.16 which contained Kc was held constant as frost accumulated when in 

actual fact it varied slightly as frost accumulated. 

The friction factors in Equation 3.16 were calculated in a way 

simi lar to the convect ion heat transfer coefficients. If the Reyno lds 

number was less than 2300 then the friction factor for laminar flow· 

[Shah and London (1974)] was used. 

f = 24.0 (Laminar Flow) 3.27Re 

where 

f = fanning friction factor 

Re =Reynolds number 

If the Reynolds number was greater than 10000 then the equation for 

turbulent flow given by Petukhov and Popov (1963) was used. 

fr = (1.82 * Lo910 [Re] - 1.64) -2 (Turbulent Flow) 3.19 
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where 

fr = coefficient of frictional resistance 

Re =Reynolds number 

If the Reynolds number was greater than 2300 but less than 10000 a 

linear interpolation was done between Equation 3.27 (Re = 2300) and 

Equation 3.19 (Re = 10000). 

As frost accumulated in the heat exchanger the minimum free flow 

area of the heat exchanger decreased and the pressure drop across the 

exchanger increased. Equation 3.28 gives the heat exchanger minimum 

flow area. 

A =W* ($ - FHMAX) * NH 3.28c 

where 

A = exchanger minimum free-flow area (m2)c 

W = width of the exchanger (m) 

$ = exchanger surface spacing (m) 

FHMAX = maximum thickness of frost in the exchanger (m). 

NH = number of hot passages 

Equation 3.28 implied that all the hot side air passages were completely 

coated with a uniform film of frost FHMAX/2.0 thick. 

The frost accumulation not only caused the pressure drop across the 

heat exchanger to increase but also caused the return air mass flow rate 

to decrease. In order to develop an equation for the return air mass 

flow rate, it was assumed that the return air fan developed a constant 

pressure and that only the heat exchanger pressure volume 
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characteristics changed as the frost accumulated while the remainder of 

the duct work carrying the hot side air followed a typical system curve 

(volume flow rate is proportional to the square root of pressure). 

Thus, it was possible to develop Equation 3.29 for the return air mass 

flow rate. 

P 1/2
F - p) * OMF.RH * (1 + W) 3.29M= ( P

F

where 

M =mass flow (kg/s) 

PF = fan stat ic pressure minus the pressure drop across 

the exchanger when no frost was accumulated (Pa) 

AP = pressure drop across the heat exchanger minus the 

pressure drop across the exchanger when no frost was 

accumulated (Pa) 

OMFRH = mass flow at beginning of the test before any frost 

accumulation had occurred (kg dry air/s) 

W = humidity ratio of the return air stream 

Us ing an incrementa l-search method Equat ions 3. 16 and 3.29 were 

solved for the return air mass flow rate. 

on mass fraction. 
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z + WZ a wz = 3.30
1 + W 

where 

Z = thermophysical property of the mixture 

Za = thermophysical property of the dry air alone 

Zw = thermophysical property of the water vapor alone 

W = humidity ratio 

The thermophysical properties of dry air were found by linear 

interpolation from tables given by Karlekar and Desmond (1977). The 

thermophysical properties of the water vapor were taken from Haar et ale 

(1984). The specific heat of steam at l2.5°e and a pressure of 0.014503 

bar was used to represent the specific heat of the water vapor at all 

temperatures. The Prandt1 number and thermal conductivity of saturated 

steam at l2.5°e represented these properties for all temperatures. The 

specific heat, Prandt1 number and thermal conductivity of the water 

vapor represented a sma 11 contribution to the air/water mixture and 

therefore interpolation was not required. The presence of water vapor 

significantly affected the kinematic viscosity of the mixture. The 

kinematic viscosity of saturated steam at O.Oloe and at 30 0 e was found. 

For temperatures between O.Oloe and 30 0 e linear interpolation was used. 

For temperatures below O.Ol°e the value at O.Oloe was used since no 

tabulated data below O.Ol°e were available. 

The humidity ratio was calculated using the saturation vapor 

pressures given in ASHRAE (1985). The humidity ratio, density and 

enthalpy of the air were found using equations given by Wilhelm (1976). 

The heat capacity rate was computed using equation 3.31. 
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di
C = m­ 3.31dT 

where

C = heat capacity rate (J/K s)

m =mass flow rate (k9dry airls)

i =enthalpy of the air (J/k9dry air)

T = temperature of the air (K)

di/dT was computed by differentiating the equation for enthalpy given by 

Wilhelm (1976), Equation 3.32. 

i = 1.006t+ W(2501+ 1.775t) -sooe ~ t ~ ll00 e 3.32 

where

i = enthalpy .of moist air (KJ/k9dry air)

t = temperature of air (Oe)

W = humidity ratio

3.3 Simulation 

The condens ing and frost ing heat exchanger mode 1 described above 

computed the thermal performance of the heat exchanger at any instant in 

time. In order to study the thermal performance of the heat exchanger 

over time the heat exchanger model was solved at successive time steps. 

A mode1 of the frost contro1ler was added to the time series heat 

exchanger model to complete the simulation. The simulation was written 

in FORTRAN and run on the University of Saskatchewan College of 

Engineering, VAX 11/780. The detailed operation of the simulation is 

described below. 
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The simulation first read from disk the heat exchanger physical 

properties, the controller parameters (see Section 4) and the table of 

temperature versus saturation vapor pressure for water. Before the time 

series operation of the heat exchanger was started, the program 

initialized certain variables, the operating conditions were manually 

inputted and the return air stream dewpoint was calculated. 

At the beginning of each time iteration the heat exchanger core 

temperatures were checked to see if they were all above DOC and the heat 

exchanger surfaces were checked to see if they were dry. If both 

cond it ions ex i sted and time was greater than zero hours, the frost 

height, the frost time and the frost thermal resistance were set equal 

to zero throughout the heat exchanger. 

Providing the time was greater than zero hours, the next step was 

to calculate the frost properties. The frost height and frost thermal 

resistance were calculated at 42 locations in the heat exchanger (see 

Figure 3.3). Twenty-one of the locations were in the dry region and 21 

of the locat ions were in the wet region. Four average frost therma1 

resistances were calculated which were later used in calculating the 

overall heat transfer coefficient. 

Next, using an iteration/bisection method the interface between the 

wet region and the dry region was calculated. The air temperatures at 

the interface, at the two out lets and the heat transfer rate in each 

region were calculated. 

If the heat exchanger was completely dry, then the subroutine which 

calculated the heat transfer rate in the wet region was bypassed and the 

subroutine which ca lculated the heat transfer rate in the dry region 

represented the entire heat exchanger. The condition of a completely 
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dry heat exchanger usually occurred during defrost.

If the heat exchanger had a wet region, the heat transfer rate in 

the dry region and the heat transfer rate in the wet region were summed 

together to give the overall heat transfer rate. At the end of the heat 

transfer calculations, the time, the outlet air temperature, the heat 

transfer rate, the core temperature, the percentage of the exchanger 

which was dry, the two mass flow rates, the location of the frost front, 

the pressure drop across the hot side of the exchanger and the largest 

frost height in the heat exchanger were written to the disk and the 

terminal. 

If the time was zero hours and the core temperatures were all above 

GOC the simulation was stopped. If not the controller model was per­

mitted to operate. The controller model performed one of three possible 

funct ions: exhaust air temperature set, heat transfer rate man itoring 

or defrost. The controller operation is described in greater detail in 

Section 4.3. 

If the time limit for the simulation had not been exceeded then 

the time was incremented and control was transferred to the beginning of 

the time series loop. 

Flow charts describing the overall simulation, the dry heat ex­

change subrout ine, the wet heat exchange subrout ine and the. frost sub­

routine are given in Appendix A. 



4. FROST CONTROLLER DEVELOPMENT 

The goal of the frost controller design was to develop a controller 

which would find and continuously maintain a constant rate of heat 

transfer which approached the thermodynamic potential of the heat 

exchanger. The heat transfer rate at the thermodynamic potential of the 

heat exchanger was the heat transfer rate which occurred when the 

maximum available rate of flow of outside air passed through the heat 

exchanger and no frost was accumulated in the heat exchanger core. The 

controller developed was implemented on a 472 LIs capacity Z~Duct

commercial heat exchanger. The frost was controlled using imbalanced 

air flow rates. The air flow rates were imbalanced by bypassing some of 

the outside air past the heat exchanger. 

4.1 Background Development 

At the onset of the contro1 strategy deve lopment, it was assumed 

that the maximum cont inuQus rate of heat transfer occurred when the 

largest outside air mass flow rate was selected which did not cause 

frost to accumulate. This could have been achieved by reducing the 

outside air mass flow rate until the entire heat exchanger core remained 

above aoc. But examination of the available literature seemed to 

indicate that if some frost was present in the heat exchanger the 

increased surface roughness would significantly increase the heat 

transfer rate. Huffman and Sepsy (1967) wrote: 

A cursory examinat ion of heat exchanger performance
under frosting conditions indicates that in the 
early stages of frost formation the heat transfer 
coefficient, including both the air and frost 
thermal resistance increases, resulting in a from a 
surface roughening due to the initial frost 
formation; however, as the frost layer thickens the 
frost therma 1 res istance increases, resu 1t ing ina 
decrease in the heat transfer coefficient. Hence, 
the heat transfer coefficient increases, then 
decreases with time. 

Schulte and Howell (1982), referring to Stoecker (l957) wrote: 

~ 54 ­
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Stoecker verified that a light frost buildup (i.e.,
0.91 kg to 1.36 kg (2 to 3 lbs) of overall frost 
buildup on the close finned coil) actually increases 
the overa 11 heat transfer coefficient. However, 
frost buildups over this amount cause the 
coefficient value to decline. 

This evidence suggested that the outside air mass flow should be 

controlled based on the rate of heat transfer. 

A heat flux meter would have been a logical way to monitor the heat 

transfer rate but developing and insta 11 ing a sensor that would not 

affect the therma 1 performance of the heat exchanger was cons idered 

impossible. 

Since only sensible heat transfer existed on the cold side of the 

heat exchanger the heat transfer rate was given by Equation 4.1. 

4. 1 

where 

Q = rate of heat transfer (kW) 

m =mass flow rate of dry air (kg/s) 

Tc,in = temperature of the outside air stream (OC) 

Tc,out = temperature of the supply air stream (OC) 

By monitoring m, Tc,in and Tc,out the heat transfer 

rate could be monitored. This seemed possibly the key in developing a 

controller that would obtain the maximum continuous rate of heat 

transfer from the heat exchanger. 

Draper and Li (1951) and Li (1952) developed an optimizing control­

ler for an internal combustion engine that would adjust the air supply 

and the spark ignition to get optimum performance under varying load 

conditions with constant engine speed and constant fuel flow rate. This 

kind of optimizing controller seemed precisely what was required. The 
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given inputs would be the return air stream mass flow rate, the return 

air stream temperature, the return air stream relative humidity and the 

outside air stream temperature. The variable input was the outside air 

mass flow rate. 

An alternative to measuring the rate of heat transfer and control 

based on it was to develop an adaptive controller. An adaptive 

controller would run a model of the heat exchanger in real time and 

would predict the optimum outside air mass flow rate. The development 

of the frosting and condensing heat exchanger model described in Section 

3 was started in the hope of developing an adaptive controller but the 

complexity of the model meant the development of a practical adaptive 

controller was impossible. 

Instead it was decided that an optimizing controller based on the 

work of Draper and Li would be developed and that a computer model of a 

condensing and frosting heat exchanger would be developed to aid in the 

controller development. 

4.2 Optimizing Controller 

Li (1952) described four different optimizing controllers. The 

peak-holding controller was selected as the most suited to achieve the 

maximum rate of heat transfer from the heat exchanger. The peak holding 

controller monitored the heat transfer rate and changed the outside air 

mass flow rate through the heat exchanger in a stepwise fashion. The 

direction of the steps was reversed whenever the heat transfer rate 

decreased a prescribed amount from the maximum heat t~ansfer rate which 

had occurred since the last direction change. In this way the control­

ler would seek the maximum rate of heat transfer and continuously 

operate the heat exchanger within a small error band of the optimum heat 

transfer rate (see Figure 4.1). 
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The starting outside air mass flow rate, the step size, the amount 

the heat transfer was permitted to decrease before the step direct ion 

was reversed, and the length of time between contro1 act ions were the 

independent control parameters identified. An earlier version of the 

heat exchanger mode 1 than was described in Sect ion 3 was used to find 

the best combination of control parameters for a range of different 

input conditions. But no matter what combination of controller para­

meters that were selected, the model showed that the controller would 

not bring the heat exchanger to a stable state at which it could operate 

continuously. What was observed was that the return air mass flow rate 

decreased at a decreasing rate until the return air mass flow rate pre­

dicted by the model began to oscillate. Figures 4.1 to 4.4 show respec­

tively the outside air mass flow rate, the heat transfer rate, the 

return air mass flow rate, and the pressure drop across the hot side of 

the heat exchanger as a function of time. These figures illustrate the 

typica1 heat exchanger performance that was observed with optimizing 

control. The run was terminated at 5.7 hours becguse the maximum frost 

height was nearly one-half the plate spacing and the results were begin­

ning to oscillate. The results were computed for one particular com­

bination of input conditions (see Table 4.l) using the heat exchanger 

model described in Section 3 with one change and using the best combina­

tion of controller parameters (see Table 4.2) determined with the 

earlier version of the model. The one change made to the model was made 

to equation 3.28. In equation 3.28 the maximum frost thickness in the 

exchanger (FHMAX) was multiplied by two. Without this change the heat 

exchanger model would predict some return air mass flow when the frost 

accumulation in the heat exchanger passages had blocked the passages. 

Equation 3.28 was used otherwise in the simulation because it gave the 

best agreement between the measured pressurk drop and the predicted 

pressure drop. 
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TABLE 4.1 

RUN 0 Input Conditions* 

Outside Air Mass 
(kg/s) 

Temperature (OC) 

Relative Humidity (%) 

(kg/s) 

Temperature (OC) 

Relative Humidity (%) 

Flow Rate 

Outside Air 

Outside Air 

Return Air 
Flow Rate 

Return Air 

Mass 

p 

Return Air 

Atmospheric
Pressure (kPa) 

*'oased on an ex 

0.43 

-23.2 

100.0 

0.33 

12.7 

78.3 

95.2 

erlmental run.

TABLE 4.2

RUN 0 Controller Parameters

Change in Outside 
Air Mass Flow Rate 
(kg/s per step)
(InRut Hunting Zone 
[Figure 4. 1]) 

0.01646 

Heat Transfer 
Rate Decrease for 
Direction Change (kW)
(Output Hunting Zone 
[Figure 4.1]) 

O. 175 

Time Between 
Control Actions (hr) 

0.5 
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The simulation results indicated that a stable state could not be 

found at which the heat exchanger could be operated continuously. But 

close examination of the equation given by O'Neal and Tree (1984) for 

frost growth on a plate, Equation 3.12, shows clearly that some frost 

accumulation and a stable state cannot coexist. Repeating Equation 

3. 12: 

where 

xf = frost height (mm) 

t = time (hr)

Re =Reynolds number (based on hydraulic diameter)

To = freezing temperature of water (K)

Tp = plate temperature (K) 

Wo = humidity ratio of saturated air at aoc 
Wa = humidity ratio of the air stream 

Since the Reynolds number was greater than zero and the return airstream 

humidity ratio was greater than the humidity ratio of saturated air at 

aoc then if the time approached infinity (continuous operation) then the 

heat exchanger core temperature must approach aoc. But this corresponds 

to exactly the first contro1 strategy that was proposed but which was 

discarded because other researchers had pointed out that some frost 

accumulation enhances the heat transfer rate. Thus it is not possible 

to develop a controller which continuously maintains a constant rate of 

heat transfer approach i ng the max imum thermodynami c potent ia1 of the 

heat exchanger. 

Hypothesis Two given in Section 2 was rejected. A small amount of 

frost accumulation is beneficial but maintaining a small amount of frost 

indefinitely is not possible. By using a defrost cycle the heat 
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exchanger could be operated in the range of maximum performance but then 

defrosted when the frost accumulation significantly degraded the heat 

exchanger performance. A defrost control strategy was finally selected 

as the best possible frost control strategy to be tested. Recognizing 

that timed defrost and pressure contro1led defrost were not wi thout 

problems, it was decided that measuring the instantaneous rate of heat 

transfer and using this to initiate defrost could lead to a superior 

heat exchanger frost controller. 

4.3 Frost Controller Tested 

The defrost controller permitted the heat exchanger to be operated 

in the range of maximum performance. Once the frost accumulation 

degraded the rate of heat transfer a prescribed amount the frost was 

removed by a defrost cycle. Control was achieved by modulating the 

amount of outside air which passed through the heat exchanger. A bypass 

duct and a system of dampers were used to modulate the amount of outside 

air which flowed through the exchanger. The performance of the heat 

exchanger was monitored using Equation 4.1. The controller operated by 

continuously following a series of three phases: exhaust air 

temperature set, heat transfer rate monitoring and defrost. The 

operation of the defrost controller was simulated using the exchanger 

model given in Section 3 before it was tested. A description of the 

defrost controller tested (experiment controller) and the defrost 

controlled simulated (simulation controller) is presented below. 

The experiment controller and the simulation controller were 

digital controllers that performed a control action every 360 seconds. 

The control action of the experiment controller and the simulation 

controller differed at start up. The experiment controller started 1080 
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seconds earlier than the simulation controller. During the first 720 

seconds the bypass damper was completely open and three measurements of 

all the data channels were made. 

The first common control action was to completely close the bypass. 

Th; s permitted the heat exchanger performance to be measured at fu 11 

flow (baseline measurement). After the baseline measurement a defrost 

was initiated. The defrost involved bypassing more and more outside air 

unt i 1 the core temperature exceeded O°C. The core temperature was 

computed in the experimental tests by averaging the three temperatures 

measured by the three temperature sensors mounted in the co ld air 

passages of the heat exchanger. These sensors were mounted so that they 

very nearly measured the coldest core temperatures in the heat 

exchanger. The modulation of the outside air flow rate was controlled 

using a proportional controller. An alternate control method would have 

been to open the bypass damper completely in a single step. This method 

was not used because it was fe lt that with proport iona1 contro1 the 

bypass damper would not in some cases completely open during defrost and 

thus some minimum rate of heat transfer would be maintained even during 

defrost. Equation 4.2a was the proportional control equation used in 

the simulation and Equation 4.2b was the proportional control equation 

used in the experimental runs. 

dm = (1.0 - Tc) * G * OMFRC 4.2a 

where 

dm = change in outside air mass flow rate (kg/s) 

Tc = core temperature at the outside air inlet (OC) 

G = controller gain (0.020 OC-1) 

OMFRC = cold air mass flow rate with no bypass (kg/s) 

dd = (1.0 - Tc) * C5 * D 4.2b 

where 
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dd =change in damper position (steps) 

Tc =core temperature calculated by averaging the 

temperature at three positions close to the outside air 

inlet (OC) 

C5 = controller gain [0.020 0C-' RUN 1, 0.0149 °C-l 

RUN 2, RUN 3, RUN 4 (see Section 5.2.4)] 

o = pos it ion range of the bypass damper [280 steps RUN 1, 

209 steps RUN 2, RUN 3, RUN 4 (see Section 5.2.4)] 

It should be noted that the simulation controller set the core 

temperature to O.loC if the outside air mass flow rate through the heat 

exchanger was less than 0.007 kg/sa Without this change the simulation 

predicted very long defrost times which did not seem reasonable. 

Once the' heat exchanger had been defrosted then the flow of co ld 

air through the heat exchanger was incr.eased. The mass flow rate of 

cold air was increased until the exhaust air temperature was within 

1.O°C of 2.5°C. The mass flow rate of outside air was increased using 

proportional control action. The maximum available outside air mass 

flow rate was not automatically selected because it was assumed that if 

the exhaust air stream temperature reached less than O°C the exhaust air 

passages would freeze closed very quickly due to ice accumulation. 

Equation 4.3a was the control equation used in the simulation and 

Equation 4.3b was the control law used in the experiments. 

dm = (2.5 - Te) * G * OMFRC 4.3a 

where 
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dm = change ;n mass flow rate (kg/s) 

Te =exhaust air stream temperature (OC) 

G = controller gain (0.020 °C-l ) 

OMFRC = cold air mass flow rate with no bypass (kg/s) 

dd = {2.5 - Te> * C5 * D 4.3b 

where 

dd =change in damper position (steps) 

Te = exhaust air stream temperature (OC) 

C5 = controller gain [0.020 0C-l RUN 1, 0.0149 0C-l 

RUN 2, RUN 3, RUN 4 (see Section 5.2.4)] 

D = position range of the bypass damper [280 steps RUN 1, 

209 steps RUN 2, RUN 3, RUN 4 (see Section 5.2.4)] 

Th is phase of the contro1 action was ca lled exhaust air temperature 

set. 

The last phase of the controller operation was monitoring the heat 

transfer rate. During this phase the mass flow rate of the cold 

air stream was unchanged. Thus the temperature change of the co ld 

air stream was a direct measure of the heat transfer rate. The maximum 

heat transfer rate and the maximum temperature change occurred at the 

start of the phase and both decreased as the frost accumulated. When 

the temperature rise of the cold airstream had reduced by 2.5°C a 

defrost was initiated and the control cycle repeated. 

In order to accommodate fluctuations of the outside airstream 

temperature and the return air stream temperature a correct ion factor 

was applied to the cold airstream temperature change. 
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4.4

where 

T5 = normalized cold air stream temperature change (OC) 

Ts 
To 

TR 

= supply air stream temperature (OC) 

= outside air stream temperature (OC) 

= return air stream temperature (OC) 

Equation 4.4 

effectiveness 

was 

was 68 

developed assuming 

percent and the cold 

that the 

air stream 

heat e

had the 

xchanger 

minimum 

heat capacity rate. The manufacturer stated that at rated flow the. heat 

exchanger effectiveness is 68 percent. The correction term in Equation 

4.4 was developed using Equation 3.3. 

A summary of the controller settings used are given in Table 4.3. 

The controller flow chart is given in Figure 4.6. 

TABLE 4.3 

Summary of Controller Settings 

Control error for the cold airstream 
temperature change (OC) 

-2.5 

Exhaust airstream set point
temperature (OC) 

2.5 

Control gain* (0C-' ) 

Defrost set point temperature 
(OC) 

0.0200 
0.0149 

0.0 

Time interval between control 
actions (5) 

360 

* [0.0200 0C-' RUN 1, 0.0149 °C-1 RUN 2, RUN 3,
RUN 4 (See Section 5.2.4)]. 
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5. PROTOTYPE TESTS 

The prototype tests were conducted at the Prairie Agricu ltura1 

Machinery Institute (PAMI), Humboldt, Saskatchewan. PAMI have 

experience in, and equipment for, testing heat exchangers. 

A Z-Duct Model 74-1000AA6 commercial heat exchanger was used in the 

tests. The laboratory test results were compared with the therma 1 

performance predicted by the computer model in order to test Hypothesis 

One given in Section Two. 

Prototype tests were a1so conducted to see if a heat transfer 

optimizing frost control strategy could be implemented on a commercial 

heat exchanger installation tested in a laboratory environment. 

5.1 Experimental Test Conditions 

The test conditions were selected by identifying all of the 

independent input variables and the range of each of these variables. 

The independent inputs are those that affect the formation of frost 

in a heat exchanger. Those factors affecting the formation of frost on 

a uniform temperature single parallel plate heat exchanger were given by 

Q1Neal and Tree (1984) (Equation 3.12) as Reynolds number, plate 

temperature, air stream humidity ratio and the length of time since the 

start of frost formation. Since the heat exchanger to be tested was a 

series of plates, similar factors were likely to influence frost 

formation in it. Thus air stream mass flow rates, fluid temperatures at 

the inlets, return air relative humidity and length of time since start 

of frost formation were the independent variables identified. 

- 69 ­
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The large number of independent inputs meant a large number of 

trials would be required to identify all the effects of the independent 

variables. The outside air mass flow and the return air mass flow were 

fixed at the maximum the test setup would develop. This led to 

imbalanced air flows which is not how the manufacturer suggests the heat 

exchanger be used. The outs ide air temperature was a1so fixed by the 

maximum cooling capacity of the refrigeration plant. The heat exchanger 

was operated with imbalanced flow at maximum flow and the coldest 

outs ide air temperature because a11 these factors were expected to 

enhance the rate of frost formation. The return air temperature and the 

return air relative humidity were the only remaining independent inputs. 

In most livestock houses the room air temperature will be between 10°C 

and 22°C and the room air humidity will be between 50% and 90%. The 

permutation' of these two independent inputs at their two extremes 

suggested the four tria ls that were done. Table 5.1 summarizes the 

actual test conditions used. 

The length of each test was chosen so that several defrost cycles 

could be observed during the test. 

5.2 Experimental Equipment 

5.2.1 Overall Test Setup 

The test setup is shown in Figure 5.1. The dimensions of the test 

setup are shown in Figure 5.2. In order to describe the test setup the 

air flow through the system will be traced. 

Air entered on the exhaust side through the conditioning box where 

the relative humidity and temperature were adjusted to the test require­

ments. The air then passed through the fan to boost the static 
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TABLE 5.1

Experimental Test Conditions

PARAMETER UNITS RUN 1 RUN 2 RUN 3 RUN 4 

OUTSIDE AIR MASS FLOW RATE kg/s 0.43 

-23.8 

100.0 

0.44 

-24.8 

100.0 

0.45 

-26.9 

100.0 

0.45 

-26.4 

100.0 

OUTSIDE AIR TEMPERATURE °C 

OUTSIDE AIR RELATIVE HUMIDITY 

RETURN AIR MASS FLOW RATE 

0'
10 

kg/s 0.31 

24.0 

77.9 

0.32 

25.3 

41.7 

0.33 

12.8 

76.9 

0.33 

13.1 

45.5 

RETURN AIR TEMPERATURE °C 

RETURN AIR RELATIVE HUMIDITY 01 
/0 

TEST DURATION* hr 4.5 

93.2 

8.0 

94.4 

7.0 

95.2 

10.0 

95.1ATMOSPHERE PRESSURE kPa 

*The test duration was selected in order to provide at least three 
complete controller cycles. Repeating the control cycle three times 
was felt to sufficiently demonstrate continuous operation of the 
controller. 
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pressure. Next the air passed through the code tester where the air wet 

and dry bulb temperatures and the air vo lume flow rate were measured. 

The air then passed through a straight section of duct to a temperature 

measurement section where eight individual temperatures were measured on 

an equal area grid. The air then passed through the exhaust side of the 

heat exchanger. After leaving the heat exchanger the air passed through 

a second temp~rature measurement section. Fo llowing the temperature 

mesurement section a sample of air was drawn into a psychrometer box 

where the wet and dry bu lb temperature of the air were measured. The 

air was then exhausted back into the laboratory. 

The cold air entered on the supply side from the environment room. 

Th;s co ld air could proceed either through the bypass or through the 

heat exchanger. Air going to the heat exchanger", entered a flow tube 

where the volume flow was accurately measured using a venturi flow 

meter. The air then passed through a temperature measurement sect ion 

and into the supply side of the heat exchanger. After leaving the heat 

exchanger the air passed through another temperature measurement 

section. After passing through a long section of duct this air was 

mixed with the air which passed through the bypass. The mixed air was 

drawn through a code tester and a fan and then was exhausted back into 

the environment room. 

In addition to the four temperature measurement sections shown in 

Figure 5.1 a number of individual temperature sensors were placed in the 

heat exchanger core. 

Most of the temperatures and the supply side volume flow rates were 

recorded by a control and data acquisition system (described in Section 

5.2.8). These data were used by the controller to drive a stepper motor 

which modulated the bypass dampers. 
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5.2.2 Air Flow Measurement 

5.2.2.1 Supply Air Mass Flow Measurement 

The supply air mass flow rate was measured using a venturi 

(Fielding Crossman and Associates Limited, Wi llowda le, Ontario). The 

venturi was designed to measure mass flow rates very accurately between 

170 m3/hr and 1700 m3/hr. A device with such a large range was 

selected because it was known that the outside air mass flow would be 

modulated over a large range by the frost controller. 

Figure 5.1 shows the venturi mounted in the overall test set up. 

The venturi was inserted in size 6, schedule 40 pipe and supported 

between ANSI Class 125 flanges. The venturi was mounted following the 

guidelines given by Bean (1971) except that the upstream pipe length was 

9.2 diameters rather than the recommended 10 diameters. A converging 

section immediately pr~ceeded the pipe supporting the venturi and a 

diverging section immediately followed the pipe supporting the venturi 

(see Figure 5.1). 

The differential pressure output from the venturi was measured by a 

pressure transducer and demodulator (OP103 Pressure Transducer and 

C010l Demodulator, Validyne, Northridge, California). The demodulator 

gave a O~5V signal which was accepted by the controller. 

Given the differential pressure developed by the venturi, the 

atmospheric pressure and the fluid temperature, the mass flow rate was 

calculated. Following Bean (1971), an equation relating mass flow to 

different ia1 pressure, atmospher ic pressure and temperature was 

developed. 

m = 1.610 x 10~3 5. 1 
T + 273.15 
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where m =mass flow rate (kg/s)

hw =differential pressure (mm w.c.)

Pa = atmospheric pressure (Pa)

T = air temperature (OC)

To verify the correct operation of the venturi, the mass flow rate 

was measured using a pitot static traverse at four different flow rates. 

Since the venturi had never been used before, its operation was verified 

to ensure it was be ing used correct ly. Each traverse cons i sted of 20 

readings taken along two diameters at centers of equal area. This 

followed the recommendation of ASHRAE (1985). The traverse was 

performed in a 200 mm inside diameter pipe connected upstream of Section 

A in Figure 5.1. The traverse was done 8.6 diameters from the pipe 

entrance and 7.4 diameters from the pipe exit. Care was taken to ensure 

no leakage occurred between the traverse section and the venturi 

section. 

Tab1e 5.2 shows the ca1ibrat ion resu lts obta ined. The errors in 

the traverse measurements were computed using ASHRAE (1976). The error 

calculations included the error in temperature, atmospheric pressure, 

.manometer reading and pipe diameter. 

Duct leakage will cause a difference in the mass flow measured and 

the mass flow through the heat exchanger. To reduce the leakage a bead 

of silicone caulking was placed between all the mating surfaces. As 

well almost all of the connections were cleat connections. To verify 

that no leakage was occurring a pitot static traverse was performed. 

The traverse was performed by connecting the pipe used to calibrate the 
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venturi at Sect ion B in Figure 5. 1. A traverse cons isting of 10 

readings was taken along one diameter at centers of equal area. The 

measurements were made 8.6 diameters from the pipe entrance and 7.4 

diameters from the pipe exit. The mass flow measured was 0.427 kg/s ± 

0.024 kg/s. To verify that no leakage was occurring this measurement 

was compared with the mass flow measured by the venturi. The venturi 

mass flow was 0.44 kg/s. Thus, within the measurement error the duct 

leakage was taken as negligible. 

TABLE 5.2 

VENTURI CALIBRATION 

TOTAL 
AVERAGE 

TEMPERATURE 
(OC) 

TRAVERSE 
MASS FLOW 

(kg/s) 

VENTURI 
~1ASS FLOW 

(kg/s) 

TRAVERSE 
ERROR 

(kg/s) 

1 

2 

3 

4 

21.2 

21.4 

21.5 

21.6 

0.423 

0.354 

0.258 

0.084 

0.42 

0.35 

0.25 

0.08 

+0.011 

+0.010-
+0.010 

+0.014-

5.2.2.2 Exhaust Air Mass Flow Measurement 

The exhaust air mass flow rate was measured by a nozzle station. 

The nozzle station, consisting of four nozzles was designed and built by 

PAMI [Begin and Frehlich (1982)] and is part of their standard heat 

exchanger test equipment. 
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The differential pressure output from the nozzle station was read 

by a manometer (Type 4 and Type 5 Air Flow Testing Set, AirFlow Develop­

ments Ltd., Mississauga, Ontario). This manometer permitted the dif­

ferential pressure to be read to + 0.25 mm water column. The actual 

calculation of the mass flow rate was done using a PAMI developed 

computer program. 

The mass flow rate computed by the PAMI developed program was com­

pared to the mass flow rate measured by a pitot tube traverse. The 

comparison was done at a single operating point. The traverse was done 

us ing the same round tube used to verify the venturi. The tube was 

connected to the exhaust duct work at Sect ion C in Figure 5. 1. The 

traverse consisted of 20 readings taken along two diameters at centers 

of equal area and was performed 8.6 diameters from the pipe entrance and 

7.4 diameters from the pipe exit. Since the nozzle station was upstream 

of the heat exchanger and the traverse was done downstream of the 

exchanger the effects of leakage could not be avoided. However, since 

the exhaust ductwork was shorter than, and sea led in the same way as, 

the supply ductwork it was expected to have the same leakage properties 

as the supply air ductwork. No leakage was detected in the supply air 

ductwork so none was expected in the exhaust air ductwork. The mass 

flow rate calculated from the nozzle data by the PAMI program was 0.542 

kg/s. The pitot tube traverse indicated a mass flow of 0.514 ! 0.0'1 

kg/s. Since, the mass flow rate from the nozzle data was not within the 

experimental error of the pitot-static traverse a multiplier correction 

of 0.948 was applied to all mass flows measured by the nozzle apparatus. 
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5.2.3 Temperature Measurement 

5.2.3.1 Air Temperature Measurement 

The air temperatures at the inlet and outlet on both sides of the 

heat exchanger were measured in the heat exchanger tests. The 

temperature sensor used in these tests (AD590KF, Analog Devices, 

Norwood, Mass.) was a two terminal integrated circuit temperature 

transducer wh ich produced an output current proport iona1 to abso lute 

temperature. The sensor had good linearity and could be operated over a 

wide power supply voltage range. The sensors were prepared for use in a 

damp environment.by sealing the sensors and their leads with a thermally 

conductive epoxy (Delta Cast 153, 84 Hardener, Wakefield Engineering, 

Wakefield, Mass.). All the sensors were calibrated prior to use (see 

Append ix B). The sensors were ca1ibrated to an accuracy of between :!:. 

O.88°C and +O.97°C at the 98 percent confidence level (see Appendix 8, 

Table 8.2). 

ASHRAE (1975) indicated that when the air stream temperature and 

velocity are reasonably uniform the duct can be divided into equal areas 

and the temperature can be measured at the center of each area. The 

arithmetic average of the temperatures will represent the temperature at 

the section. The ducts used in this experiment were rectangular of 

dimensions 578 mm by 228 mm. The duct was divided into eight equal 

areas. Each area was 144 mm by 114 mm. At the center of each area a 

temperature sensor was placed. In order to verify the uniformity of the 

air ve locity an 18 point equa1 area pitot tube traverse was performed 

very close to the four temperature measurement sections (see Figure 

5.1). The average velocity and the standard deviation of the velocity 

were computed at each section. The results are shown in Table 5.3. 
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TABLE 5.3 

VELOCITY DISTRIBUTION 

VaOCI1Y TRAVERSE r.£A9..Rffi 

TRAVERSE 
TYPICJ.t TEM'. 
sm. lEV. 

(OC) 

f\£J.\N 
vaOCI1Y 

(rrv's) 

VELOCI1Y 
sm. OEV. 

(rnls) 

~

ERROR 
(m/s) 

MASS 
FLCM 

(kg/s) 

Ml\SS 
FLCM 

(kg/s) 

ourSlDE AIR* 0.25 4.196 o.~ -ID.923-
0.551 0.430 

SUPPLY AIR 2.67 3.463 0.300 -ID.062 -ID.052 -ID.Ol1 

RElURN AIR 0.21 2.746 1.197 -ID.069 

0.360 0.303 
EXHPUST AIR 1.11 2.367 0.174 -ID.092 -ID .063 iD.011 

* Flew \\as very lllsteady. 

Tab1e 5.3 a1so gives the typica1 standard deviat ion of the individua1 

temperature measurements at each section found during the tests. Table 

5.3 shows that the air velocity was most nonuniform at the entrance to 

the heat exchanger but this was the location where the temperature was 

most uniform. Thus an arithmet ic average of the temperature sensors 

would be representat ;ve of the temperature at those sect ;ons. The 

outlet sections were shown to have nonuniform temperature. However, the 

temperatures measured by the eight sensors at each of these sect ions 

consistently gave a distribution such that the four middle temperatures 

agreed with each other and the section average temperature while the 

four outside temperatures varied equally from the section average. The 

two temperatures on one side of the section were noticeably above the 

average and the two temperatures on the opposite side of the section 

were noticeably below the average. The velocity distribution was 
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uniform across the center of the section and decreased close to the duct 

walls. The nature of the temperature and velocity distributions 

indicated that an arithmetic average of the eight temperatures across 

the outlet sections was representative of the bulk air temperature. 

Thus, at the four temperature measurement sections given in Figure 5.1 

the air stream bulk temperature was computed as the arithmetic average 

of the eight measurements at the section. 

5.2.3.2 Core Temperature Measurement 

Two sets of measurements of the heat exchanger core temperature 

were made. One set of measurements was used as i.nput to the contro1 

algorithm. Another set of measurements was made to get an estimate of 

the heat exchanger core temperature distribution. 

Six AD590KF sensors were used by the controller. The sensors were 

calibrated as described in Appendix B. The sensors were mounted in the 

heat exchanger by cementing them to the core with a thermally conductive 

adhesive (Loctite Corp., Newingon, CT.). To ensure that the sensors 

remained in place, a 25 mm square piece of aluminum tape was placed over 

each sensor. The placement of the sensors is shown in Figure 5.3. 

(The location of section A-A is shown in Figure 2.1). Three of the 

sensors were placed in the exhaust air passages near the exhaust outlet 

and the remaining three sensors were placed in the supply air passages 

near the supply inlet. 

The average temperature measured by the three sensors in the supply 

passages was used by the controller as the core temperature. The aver­

age temperature measured by the three sensors in the exhaust passages 

was recorded for later comparison but was not used by the controller. 
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The second set of core temperature sensors were used to get a 

better understanding of the core temperature distribution. Five Type T 

thermocouples were installed in the same manner as the AD590KF core 

sensors. All five sensors were mounted in the supply side passages (see 

Figure 5.3). The thermocouples were read with a hand held Type T 

Thermocouple Thermometer (Model 8110-25, Cole Panmer Instr. Corp., 

Chicago, Ill.). The thermometer display precision was + O.5°C but the 

accuracy was expected to be .±. 2.0°C. 

5.2.3.3 PAMI Temperature Measurement 

The wet and dry bulb temperatures of the return air stream and the 

exhaust air stream were measured with the PAMI temperature measurement 

equ; pment. The wet and dry bu1b temperatures were measured us i ng two 

psychrometric boxes. The boxes were identical to the kind described in 

ASHRAE (1975). Before the return air stream wet and dry bulb 

temperatures were measured the return air passed through a mixing 

device. A sample of the mixed air was drawn through a psychrometric box 

where the wet and dry bulb temperatures were measured. The air velocity 

; n the psychrometr ic box was 5. 1 m/s. A second psychrometr ic box was 

used to measure the wet and dry bulb temperatures of the exhaust air 

stream. The air was drawn from the air stream through a sampling 

device. An attempt was made to measure the air velocity in this box but 

the velocity was so low it could not be measured. Thus the wet bulb 

reading of the exhaust air stream could have been in considerable 

error. 
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The sensors used by PAMI were Type T thermocoup les. Before be i ng 

used in this experiment, the four thermocouples in the psychrometric 

boxes were calibrated against the glass stick thermometer discussed in 

Appendix B. The thermocouples were bundled together around the 

thermometer and the bundle was submerged in a pail of room temperature 

water for five hours. At the end of the five hours, the reading on the 

glass thermometer was 17.5°C. The thermocouple monitor was adjusted 

such that all four thermocouple readings indicated l7.5°C ± D.loC. This 

calibration procedure ensured matched thermocouples. 

5.2.4 Bypass Damper System Calibration 

Dampers often do not give a change in flow proport iona1 to the 

change in position. The nonlinear operation of the damper can 

dramatically affect a control strategy which relies on the adjustment of 

a damper to control flow. Since the control strategy tested in this 

experiment utilized a modulated bypass, it was necessary to calibrate 

the damper system. 

The damper system consisted of two dampers connected through a 3:1 

gear reduct ion to a stepper motor. The stepper motor and dampers are 

shown in Figure 5.1. The range of operation of the damper system was 

280 steps. The results of the damper calibration are shown in Figure 

5.4. The damper position adjustment in the range from 170 steps to 240 

steps was of no value in controlling the flow since a change in position 

did not change the flow rate. For RUN 1, the controller selected damper 

positions throughout the entire damper position range and passed through 

steps 170 to 240 quickly. 
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The contro ller made no attempt to carefu l,ly contro1 the flow between 

damper positions 170 steps and 240 steps but only passed through this 

range. For RUN 2, RUN 3 and RUN 4, the controller attempted to reach an 

operating state between damper positions 170 steps and 240 steps. Since 

the damper system gave very nonlinear flow control in this damper 

pos it ion range the contro1 software was altered for RUN 2, RUN 3 and 

RUN 4 so that the damper was moved from step 170 to step 241 as if a 

single step had occurred. This change meant that the damper range was 

reduced from 280 steps to 209 steps. The change in the damper system 

range did not affect the comparison of the results of RUN 1 with the 

results of RUN 2, RUN 3 and RUN 4 because of changes made to the 

controller gain. 

5.2.5 Condensate Measurement 

Cooling of the return air stream in the heat exchanger caused con­

densation to form. Condensate from the heat exchanger was collected so 

that an energy balance could be calculated for the heat exchanger. 

The heat exchanger was fitted with a drain on the exhaust side of 

the core. The condensate flowing from the drain was collected in a pail 

and weighed every 30 minutes on an electronic scale (Type 1404, Sar­

torius, West Germany). Condensate measurements were made for all runs 

except RUN 1 when the scale failed shortly after the test started. 

5.2.6 Duct Insulation 

The heat exchanger test setup was insulated to prevent heat leaks. 

Twenty-five millimeter thick fiberglass insulation with foil backing was 

used. Figure 5.1 shows the areas of the test setup which were 

insulated. 

The sect ion of duct from the venturi to the nearest temperature 

measurement section was double insulated. This was done to ensure that 
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the air temperature used in the computation of the outside air mass flow 

rate was as close to the air temperature in the venturi as possible. 

The error in mass flow rate measurement due to heat leakage was 

calculated to be 0.2 percent at most. 

The ductwork between the heat exchanger out lets and the nearest 

temperature measurement sections were single insulated. The temperature 

measurements made on the exhaust side of the heat exchanger were con­

s istently 0.3 °C above the air temperature at the exchanger out1et. On 

the supp ly side of the heat exchanger the temperature measurement was 

between O.loC and 0.6°C above the outlet air temperature. The smallest 

error was in RUN 1 and the largest error was in RUN 4. A11 the 

temperature error est imates were ca1cu1ated us ing methods descr ibed by 

ASHRAE (1985). 

5.2.7 Measurement of Pressure Drop Across the Core 

The pressure drop across the heat exchanger core on the exhaust 

s ide was measured because it was indicat ive of the amount of frost 

accumulated. 

Two pressure taps were placed in the return air duct (Figure 

5.1). Both taps were placed 178 mm from the heat exchanger. One was on 

top of the duct in the middle and the other was on the bottom of the 

duct in the middle. 

In the same manner two more pressure taps were placed in the 

exhaust air duct. Both taps were placed 476 mm from the heat exchanger. 

One tap was on top of the duct in the middle and the other was on the 

bottom of the duct in the middle. 

Each pair of pressure taps were manifolded and connected to 

opposite sides of a manometer (Type 4 and Type 5 Air Flow Testing Set, 

AirFlow Developments Ltd., Mississauga, Ontario). 
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5.2.8 Control and Data Acquisition System 

The control and data acquisition system consisted of a computer 

controller board, an AID convertor board, and a terminal. 

The computer controller (BCC52, Micromint Inc., Cedarhurst, N.Y.) 

was a stand alone single board microcomputer which was programmable in 

Basic. This board permitted a reasonably complicated control and data 

acquisition algorithm to be implemented without the large development 

effort required for most digital control and data acquisition systems. 

The signa1s from the temperature sensors and the pressure trans­

ducer were received by a l2-bit AID convertor (BCC30, Micromint Inc., 

Cedarhurst, N.Y.) which was bus compatible with the computer controller. 

The AID convertor had 16 channels available but only two were used. One 

channel was connected to the temperature sensor multiplexer and a second 

channel was connected to the pressure transducer demodulator. 

The large number ofAD590KF temperature sensors and the limited 

number of AID channels required that the signals from the temperature 

sensors be multiplexed. The signals were multiplexed to a single AID 

channel. The multiplexer was constructed similar to the matrix multi­

plexer suggested by Analog Devices in their AD590 product literature. 

A terminal (Model 100, Radio Shack, Barrie, Ont.) was required to 

program the computer controller. The terminal and the computer 

controller were connected through RS232C ports. The terminal permitted 

programs to be up loaded to the computer contro ller and for data to be 

downloaded to the terminal. 

Data were transferred from the terminal to a floppy disk after each 

test and then, via a modem, to a mainfra~e computer (VAX 11/780, College 

of Engineering). 
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5.3 Experimental Test Procedure 

The steps followed in performing the tests are given in Appendix C. 

The data were recorded during each test in the following manner: 

Starting when the test commenced and every 30 minutes thereafter the 

following manual readings were taken and recorded: 

(a) time of measurement (local time) 

(b) return air dry bulb temperature (OC) 

(c) return air wet bulb temperature (OC) 

(d) exhaust air dry bulb temperature (OC) 

(e) exhaust a~r wet bulb temperature (OC) 

(f) exhaust air mass flow rate (g/s) 

(g) core pressure drop on the exhaust side (in w.c.) 

(h) weight of condensate collected since the last reading (g) 

(i) core thermocouple temperature sensors (OC) 

(j) cold room temperature (OC) 

(k) control error [RUN 2, RUN 3 and RUN 4](OC) 

Starting when the test commenced and every six minutes thereafter the 

following readings were made by the controller: 

(a) all of the temperature sensors 

(b) pressure transducer. 

The data were processed and the following results recorded: 

(a) time (hrs) from start of test 

(b) average outside air temperature (OC) 
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(c) average supply air temperature (OC) 

(d) average return air temperature (OC) 

(e) average exhaust air temperature (OC) 

(f) mass flow rate of supply air (g/s) 

(g) heat transfer rate (kW)[computed following Equation 4.1] 

(h) average supply side core temperature (OC) 

(i) average exhaust side core temperature (OC) 

(j) damper position (counts) 

(k) control signal (OC) 

(1) pressure transducer output (counts/lO) 

(m) one-fifth of the raw temperature data. (Eight channels of the 

forty available were recorded. The eight channels corres­

ponded to either all the temperature measurements from one of 

the temperature measurement sect ions or' six core temperature 

measurements, the pressure transducer output and a blank 

channel. Memory limitations did not permit more data to be 

recorded). 



6. RESULTS, COMPARISONS AND DISCUSSION 

6.1 Results of Optimizing Controller Operation 

The theory (see Section 4.2) and the simulation work demonstrated 

that an optimizing controller could not be developed. In order to 

verify that an opt imizing contro ller would not funct ion a test run was 

done at one particular set of input conditions (see Table 4.1). The 

control strategy used was identical to the one described in Section 4.2 

and the controller parameters used were the best combination of 

controller parameters (see Table 4.2) determined with the earlier 

version of the heat exchanger model. The test began by closing the 

bypass damper completely and forcing all of the available outside air 

through the heat exchanger. At the next control time all the 

temperature sensors and the pressure transducer were read. This reading 

was a baseline measurement and corresponds to the sharp spike shown in 

all the results. After the baseline measurement, the test proceeded by 

first defrosting the heat exchanger core and then slowly increasing the 

outside air mass flow rate. Figures 6.1 and 6.2 show the outside air 

mass flow rate and the heat transfer rate measured in the test. The 

figures show that the outside air mass flow rate had reached a plateau 

at which either increasing or decreasing the outside air mass flow rate 

did not stop the degradation of the heat transfer rate. The other 

indications of uncontrolled frost accumulation were that the core 

pressure drop had increased from 107 Pa to 927 Pa and that the return 

air stream mass flow rate had decreased from 0.33 kg/s to 0.19 kg/s. 

These test results indicated that a stab le state at wh ich the heat 

exchanger could be operated continuously could not be found using the 

optimizing controller tested. 

- 91 ­



92 

RUN 0 
o OUTSIDE AIR MASS FLOW RATE' 

,.0.5 

---r----------..-.--.,..,------,-,-----, 
2 4 6 8 10 

TIME (hr) 

FIGURE 6.1

Optimizing Controller: Measured Outside Air Mass Flow Rate

RUN 0 
o !:IEAT TRANSFER RA:...:.;T~E _ 

15 

~
LaJ 
~ 10
a::
a::
LaJ 
La.. 
(f) 
Z 
<r= 5 

~
LaJ
::I:

O-e----.....,-----~_·_-__,_----r-I-·----,1 
o 2 4 6 8 10 

TIME, (hr) 

FIGURE 6.2 

Optimizing Controller: Measured Heat Transfer Rate 



93 

6.2 Results of Defrost Controller Operation 

The defrost controller operated by continuously following a series 

of three phases: defrost, exhaust air temperature set and heat transfer 

rate monitoring. The defrost involved bypassing more and more outside 

air unt i1 the core temperature exceeded 0°c. Once the heat exchanger 

was defrosted then the flow of outs ide air through the heat .exchanger 

was increased. The mass flow rate of outs ide a'ir was increased unt i1 

the exhaust air temperature was within 1.O°C of 2.5°C (exhaust air 

setpoint temperature). The last phase of the controller operation was 

monitoring the heat transfer rate. Since during this phase the outside 

air mass flow rate was constant, the temperature change of the cold air 

stream was a direct measure of the heat transfer rate. Once the change 

in the temperature of the cold air stream had reduced by 2.5°C (control 

error for the cold air stream temperature change) a defrost was initi­

ated and the control cycle repeated. The opening of the bypass damper 

for defrost and the closing of the bypass damper for exhaust air tem­

perature set were both contro lled using proport iona1 contro1. The 

defrost contro ller was tested at four different sets of input condi­

tions. The results showed that for the four conditions tested the 

controller could operate indefinitely and maintain a constant average 

rate of heat recovery (see Figures 6.3 to 6.6). 

The frost controller was not only to maintain a constant time 

averaged rate of heat transfer but the rate of heat transfer ach ieved 

was to approach the maximum thermodynamic potential of the heat 

exchanger. At the beginning of each run the maximum thermodynamic 

potential of the heat exchanger was measured by closing the bypass and 

measuring the rate of heat transfer at the maximum outside air mass flow 
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TABLE 6.1

Heat Exchanger Thermodynamic Potential

RUN 

Heat Transfer Rate: 
Baseline Measurement 

(kW) 
A 

1 14.7 

2 12.7 

3 10.6 

4 9.3 

Heat Transfer Rate: 
Beginning of Heat Transfer 
Rate Monitoring Phase (kW) 

B 

13.4 

10.0 

5.7 

3.7 

~* 100B 

(%) 

91 

79 

54 

40 

rate. Since this measurement (basel ine measurement) WQS done at the 

beg1nn1ng of each run the heat exchanger was virtua11y frost free. 

Comparing the base1ine measurement with the heat transfer rate at the 

beginning of the heat transfer monitoring phase of the controller cycle 

indicated how close the heat exchanger was operated to its maximum 

thermodynamic potential. Table 6.1 shows the results of this 

comparison. 

In RUN 1 the outside air mass flow rate was the maximum available 

but for the other three runs it was not. The controller did not select 

a larger outs ide air mass flow rate for RUNS 2, 3 and 4 because the 

exhaust air setpoint temperature (2.5°C) had been reached before the 

maximum outside air mass flow rate available was achieved. Selecting 

a lower exhaust air setpoint temperature would increase the outside air 

mass flow rate and increase the percentages (given in Column 3, Table 

6.1) for RUNS 2,3 and 4. But, selecting a lower exhaust air setpoint 

temperature increases the ,rate of frost accumulation. 
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The closeness of agreement between the two heat transfer rates 

given in Table 6.1 also depends on how quickly the outside air mass flow 

rate is increased from the low flow rate during defrost to the maximum 

flow rate during the heat transfer monitoring phase of the control 

cycle. The slower the change in outside air mass flow rate the more 

frost accumulates before the maximum mass flow rate of outside air is 

achieved. The accumulated frost causes the heat transfer to be degraded 

and thus the maximum heat transfer rate for an unfrosted heat exchanger 

cannot be achieved. 

Table 6.1 only compares instantaneous rates of heat transfer but to 

completely evaluate the controller performance the time average rate of 

heat transfer must be considered. The third stage of the controller 

cycle was the heat transfer rate monitoring stage. During this stage 

the mass flow rate of outs ide air was constant and the largest that 

occurred during the controller cycle. Also, the heat transfer rate was 

the maximum that occurred during the controller cycle. The percentage 

of the total control cycle the controller operated with the heat 

exchanger at a constant outside air mass flow rate was calculated. The 

results are shown in Table 6.2. 

TABLE 6.2

Controller Operating Fraction

RUN 
Percentage of Controller 

Cycle at Constant 
Outside Air Mass Flow Rate 

(%) 

1 35 

2 56 

3 43 

4 74 



98 

The percentage of the contro ller cyc le at a constant outs ide air mass 

flow rate represents the fraction of the controller cycle when 

significant heat transfer is occurring. Increasing the control error 

for the cold air stream temperature change will increase the percentage 

of the controller cycle at constant outside air mass flow rate, but the 

control error cannot be increased indefinitely because at some point 

more frequent defrosting actually would increase the time average rate 

of heat transfer. 

The effect of changing the exhaust air setpoint temperature and the 

control error for the cold air stream temperature change can be seen by 

considering Figure 6.7. Decreasing the exhaust air setpoint temperature 

causes h to approach the max imum thermodynami c potent ia1 of the heat 

exchanger. But as h increases, the rate of frost accumulation also 

i. ncreases and the slope alb decreases further. If the contro1 error for 

the co ld air stream temperature change is increased then the time 

between defrosts increases (i .e., 1 becomes larger). As 1 increases 

however the length of defrost becomes longer (i.e., m becomes larger). 

Figure 6.8 shows the heat transfer rate for an optimized defrost 

contro ller. Since hand 1 are both larger, the time average rate of 

heat transfer is increased when compared with the time average rate of 

heat transfer shown in Figure 6.7. 

The overall effectiveness of the controller developed was evaluated 

by comparing the maximum possible heat transfer rate measured with the 

baseline measurement to the average heat transfer rate achieved. Table 

6.3 compares the two heat transfer rates. 



----

99 

lIJ 
l­
e(
a:: 
a:: 
lIJ 
IJ. 
U) 

Z 
e(
a:: 
l-

I­
e( 
lIJ 
:c 

lIJ 
l­
e(
a:: 
a:: 
lIJ 
IJ. 
U) 

Z «a:: 
l-

I­
e( 
IJJ 
:c 

MAXIMUM HEAT TRANSFER RATE--.............. _-------_._..... __ ..... -.--.-.

., 
h b

TIME 

FIGURE 6.7 

Heat Transfer Rate with Nonoptimized Defrost Controller 

MAXIMUM HEAT TRANSFER RATE--.. -._------_..-..~-_._._------ --­..... ..... 

---1 
h r 

1-'- ----...- m 

AVERAGE HEAT
TRANSFER RATE 

TIME 

FIGURE 6.8 

Heat Transfer Rate with Optimized Defrost Controll~r



100 

TABLE 6.3 

Comparison of Maximum and Average Heat Transfer Rates 

RUN Maximum Possible 
Heat Transfer 

Rate (kW) 
A 

Average Heat 
Transfer Rate 
Achieved (kW) 

B 

8.61 14.7 

2 12.7 6.4 

3 10.6 3.7 

4 9.3 2.8 

B * 100 
A 

(%) 

59 

50 

35 

30 

It is expected, based on the comparison of Figure 6.7 and Figure 6.8, 

that the percentage of maximum heat transfer rate achieved could be 

increased by permitting more frost to accumulate before defrost (i.e., 

increasing the control error for the cold air stream temperature change) 

and by permitting a higher heat transfer rate during the heat transfer 

rate monitoring state of the controller cycle (i.e., a lower exhaust air 

setpoint temperature). 

6.3 Comparison of Simulation Results and Experimental Results 

The heat exchanger model was calibrated based on the experimental 

test results. The model calibration involved selecting the frost 

thermal conductivity and the return air fan pressure. 

The frost therma 1 conduct ivity significant ly affected the results 

of the simulation because the frost thermal conductivity affected both 
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the length of time the controller operated in the heat transfer monitor­

ing state and the outside air mass flow rate during the heat transfer 

monitoring state. The frost thermal conductivity used in Equation 3.25 

was 0.01 W/m K. This frost thermal conductivity was selected because it 

gave the best agreement between the model predictions and the 

experimental results of the length of time the controller operated in 

the heat transfer monitoring state and of the outside air mass flow rate 

during the heat transfer monitoring state. The ava i lab le 1iterature 

(Section 3.1.3.4) suggested that the frost therma 1 conductivity was 

significantly greater. For example, Yonko and Sepsy's (1967) equation 

(Equation 3.14), which was representative of the available literature, 

indicated a minimum frost thermal conductivity of 0.024 W/m K, 2.4 times 

greater. Also, since frost is an air ice mixture it was expected that 

the frost thermal conductivity should be less than the conductivity of 

ice (2.34 W/m K at -10°C) but greater than the conductivity of air 

(0.023 W/m K at -10°C). 

Examination of the fan curve and the fact that the return air mass 

flow rate never decreased more than 10 percent from the mass flow rate 

with no frost accumulation, it was assumed that the fan operated at a 

constant pressure. The fan pressure se lected from the fan curve was 

2815 Pa. It was found that the equations used to calculate the return 

air mass flow rate only significantly affected the pressure drop across 

the hot side of the heat exchanger core and they did not affect the heat 

exchanger thermal performance. 
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The first hypothesis in Section 2 stated that a computer model 

could be developed that would simulate the thermal performance of a heat 

exchanger operating under frost forming conditions and which was 

operated with frost control. This hypothesis will be tested by 

comparing different thermal performance parameters predicted by the 

simulation with those measured in the tests. The detailed simulation 

results are presented in Appendix D. The graphs in Appendix 0 show the 

outside air mass flow rate, the heat transfer rate, the exhaust air 

stream temperature, the supply air stream temperature and the heat 

exchanger core temperature near the outs ide air stream in let a11 as a 

function of time for the four RUNS. Appendix E shows the detailed 

experimenta1 test results. The results are presented so that direct 

comparison can be made to the results in Appendix D. In Appendix E two 

core temperatures are given, one was the core temperature measured on 

the hot s ide of the heat exchanger core and the other was the core 

temperature measured on the cold side of the heat exchanger core. 

Comparison of the heat exchanger thermal performance calculated by 

the simulation and measured in the tests was complicated by the 

controller action. Direct comparison of the time between defrosts, the 

heat transfer rate, the air stream out let temperatures and the core 

temperature was difficult because the outside air mass flow rate through 

the heat exchanger was not the same between the simulation results and 

the test results for all the RUNS. Equation 4.1 indicates how mass flow 

rate would affect the outlet temperature. Table 6.4 compares the 

outside air mass flow rate selected by the simulation controller and the 

outside air mass flow rate selected by the experimental controller. 
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TABLE 6.4

Outside Air Mass Flow Rate During the Heat

Transfer Monitoring State

Simulation Results 
RUN (kg/s) 

A 

1 0.43 

2 0.44 

3· 0.16 

4 0.10 

Experimental Results 
(kg/s) 

B 

0.43 

0.34 

o. 19 

O. 12 

A 
8 

1.00 

1.29 

0.84 

0.83 

The mass flow rates in Table 6.4 were the mass flow rates which occurred 

during the heat transfer monitoring phases of the controller cycle. 

Only in RUN 1 was the outside air mass flow rate selected by both 

controllers the same. The two mass flow rates were the same in this RUN 

because both the s imu 1at ion contro 11er and the exper iment contro11 er 

reached the maximum outs ide air mass flow rate before the exhaust air 

temperature setpoint was reached. 

The average time of the heat transfer monitoring phase of the 

control cycle was compared between the simulation results and the test 

results. During the heat transfer monitoring phase the outside air mass 

flow rate was constant and frost accumulated at its maximum rate. The 

average time operated in the heat transfer monitoring state (line 1, 

Figure 6.7) between the simulation results and the test results is 

compared in Table 6.5. 
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TABLE 6.5

Time Controller Operated in the Heat Transfer

Monitoring State*

Simulation Results 
RUN (hr) 

A 

1 0.90 

2 1.17 

3 1.41 

4 2.55 

* (Line 1, Figure 6.7)

Experimental Results 
(hr) 
B 

0.31 

0.62 

0.72 

2.21 

A
B

2.90 

1.89 

1.96 

1.15 

Table 6.5 shows that for all RUNS the predicted time was greater than 

the measured time and that the best agreement occurred for RUN 4. 

It was found that the outs ide air mass flow rate during the heat 

transfer monitoring phase of the controller cycle and the length of the 

heat transfer monitoring phase were closely tied to the heat exchanger 

heat transfer mode1. The heat transfer mode 1 depended cr it ica lly on 

the frost thermal conductivity selected. The frost thermal conductivity 

that was se lected gave the best overa 11 agreement between the outs ide' 

air mass flow rate during the heat transfer monitoring phase of the con­

troller cycle and the time of the heat transfer monitoring phase between 

the simulation results and the test results for all four RUNS. It was 

found that decreasing the frost thermal conductivity decreased the 

outside air mass flow rate but increased the time of the heat transfer 

monitoring phase and vice versa. Tables 6.4 and 6.5 show that even 

though the best frost thermal conductivity was selected poor agreement 

between the simulation results and the test results were found. 
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Thus a computer model was not developed which would simulate the thermal 

performance of a heat exchanger operating under frost forming conditions 

and which was operated with frost control (i.e., Hypothesis One in 

Section 2 was rejected). RUN 4 displayed the best agreement. Figures 

6.9 to 6.16 compare respectively the outside air mass flow rate, the 

heat transfer rate, the out let air stream temperatures and the heat 

exchanger core temperature between the simulation results and the test 

results for RUN 4. Figure 6.13 and Figure 6.14 show the exhaust air 

temperature plotted with the supply air temperature. The superposition 

of the two curves does not imply any direct relationship between the two 

temperatures. Figure 6.15 was the core temperature ca lculated using 

Equat ion 3.24. Figure 6. 16 compares the core temperature measured by 

the sensors mounted on the cold side of the heat exchanger core with the 

core temperature measured by the sensors mounted on the hot side of the 

heat exchanger core. The difference between the two temperatures was a 

measure of the influence of the convective heat transfer on the side of 

the sensor which was not in contact with the heat exchanger core. The 

average of the two core temperatures in Figure 6.16 can be compared with 

the core temperature in Figure 6.15. 

Several aspects of the heat exchanger simulation were expected to 

have contributed to the less than perfect agreement between the 

simulation predictions and the experimental results. 

The fro~t growth equation used in the simulation was Equation 3.12 

developed by O'Neal and Tree (1984). This equation was developed for 

frost growth in a parallel plate heat exchanger with a plate spacing of 

12.7 mm, a typical wall temperature variation of +0.5°C and flow 

Reynolds numbers between 4400 and 15900. But the heat exchanger tested 

had a plate spacing of 5.4 mm, a typical plate temperature variation 

greater than 10°C and flow Reyno lds numbers less than 2300. These 
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differences may have significantly contributed to the disagreement 

found. 

The sensible heat transfer in the wet region was calculated using 

the dry convection heat transfer coefficient. But Guillory and 

McQuiston (1973) as well as others had pointed out that the presence of 

condensate may significantly affect the convection heat transfer 

coefficient. The mass transfer coefficient was computed based on the 

convection heat transfer coefficient (see Equation 3.23) but no experi­

menta1 data was found that confirmed that this equation was va1id for 

flow in a thin passage. The uncertainty in the heat and mass transfer 

coefficients may also have contributed to the disagreement. 

The heat and mass transfer processes in the heat exchanger were 

modelled using temperature potential but Kreid et al. (1978) pointed out 

that enthalpy potent ia1 may be a more appropriate way to mode1 heat 

transfer in a heat exchanger which has both wet and dry passages. 

The heat exchanger was modelled by dividing the heat exchanger into 

a wet region and a dry region. The frosting process was modelled by 

dividing the heat exchanger into 42 locations. These two models were 

blended together by represent ing the fros't as a simp le conduct ion 

resistance in the overall heat transfer equation (Equation 3.26). But 

the frost layer participated intimately in the heat and mass transfer 

processes which occurred in the hot air stream passages. A superior 

approach would probably have been to break the heat exchanger into many 

sma 11 contro1 vo lumes as Kett leborough and Hs ieh (1983) did and then 

apply one of the more sophisticated frost models [Jones and Parker 

(1975)] discussed in Section 3.1.3.2. 

The frost accumulation in the heat exchanger was assumed to be one 
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dimensional but since the air entered orthogonal to the length of the 

heat exchanger, exitted orthogonal to the length of the heat exchanger 

and since the height of the entrance and exit planes were a significant 

part of the heat exchanger length the flow was two dimensional. The two 

dimensional nature of the flow would cause frost to accumulate much more 

quick ly than was pred icted by the mode1 in certa in areas of the heat 

exchanger {near the outside air entrance}. The two dimensional 

accumulation of frost would cause the flow pattern inside the heat 

exchanger to be altered. The important aspect of the flow pattern 

alteration would be that less and less of the warm moist air would pass 

through the co ldest part of the heat exchanger as frost accumulated. 

Since the model developed was a one dimensional model, alteration of the 

flow patterns in the heat exchanger could not be predicted and this 

effect was subsequently not accounted for. Thus the heat transfer rate 

degradation with frost accumulation could have resulted from the 

combined effect of the increased thermal resistance due to frost 

accumulation and the shift of the warm moist air flow pattern, the later 

effect being possibly the most significant. 

Despite the lack of good agreement between the simulation results 

and the test results the heat exchanger simulation was essential in 

developing the frost controller because the simulation was able to 

pred ict the therma1 performance trends of the heat exchanger. The 

trends predicted caused the viability of the optimizing controller to be 

quest ioned and the va lue of the defrost contro1 to be stud ied. The 

simulation also aided in the selection of the defrost controller 

setpoints and gains. 

The comparison between the simulation results and the test results 

was completed by comparing the heat transfer rate, the outlet air stream 

temperatures, the core temperature, the minimum return air stream mass 
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flow rate and the maximum pressure drop across the hot side of the heat 

exchanger core for the four runs. 

Table 6.6 compares the average heat transfer rate during the heat 

transfer rate monitoring phase of the controller cycle between the simu­

lation predictions and the experimental results. 

TABLE 6.6 

Average Heat Transfer Rate Comparison 

RUN 

1 

2 

3 

4 

Model Predictions 
(kW) 

11.4 

8.8 

5.0 

3.5 

Experimental Results 
(kW) 

12.7 

9.5 

5.4 

3.3 

Table 6.7 compares the exhaust air temperature and the supply air 

temperature between the simulation predictions and the experimental 

results. The comparison was made just prior to defrost. 

TABLE 6.7 

Outlet Air Stream Temperature Comparison 

Exhaust Air 
Stream Temperature 

sup¥1 y Air
Stream emperature 

RUN Simulation 
Prediction 

(OC) 

Experimental
Results 

(OC) 

Simulation 
Prediction 

(OC) 

Experimental
Results 

(OC) 

1 

2 

3 

4 

9.5 

6.4 

3.9 

2.9 

7.7 

4. 1 

3.7 

2.5 

1.2 

-6.6 

2.9 

7.7 

4. 1 

1.2 

0.8 

0.8 
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The difference between the outlet temperatures predicted by the simula­

tion and those measured in the experiment can be explained by the dif­

ferences in the heat transfer rate and the outside air mass flow rate. 

The heat exchanger core temperatures were measured near the outside 

air inlet and the exhaust air outlet. Table 6.8 compares the measured 

core temperatures with the predicted core temperature just prior to 

defrost. The difference in the core temperature measured on the hot 

s ide and the core temperature measured on the co ld side was due to the 

influence of the convection heat transfer from the bulk air stream to 

the temperature sensor. 

TABLE 6.8 

Core Temperature Comparison 

Core Temperature Core Temperature Core Temperature
RUN Predicted Measured on the Measured on the 

(OC) Hot Side (OC) 

-8.8 

Cold Side (OC) 

-18.81 -17.2 

2 -19.7 -13.4 -21.6 

3 -20.6 -6.6 -18.1 

4 -19.7 -9. 1 -21.6 

The return air stream mass flow rate and the pressure drop across 

the hot side of the heat exchanger core were calculated by the 

simulation and measured in the tests. The minimum flow rates and 

maximum pressure drops are given in Table 6.9. Since the mass flow rate 

and the pressure drop were measured every 30 minutes in the tests the 

minimums and maximums given in Table 6.9 for the measured minimum mass 

flow rate and the measured maximum pressure drop may not correspond to 

the most extreme conditions. 
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TABLE 6.9 

Minimum Return Air Stream Mass Flow Rate and Maximum 

Pressure Drop Across the Hot. Side of the Heat Exchanger 

. 

RUN 
Predicted 

Minirrun M3ss F10N 
Rate (kg/s) 

Predicted 
MJxirrun Pressure 

Drop (Pa) 

Measured 
Minirrun Mass F10N 

Rate (kg/s) 

M:asured 
MJxirrun Pressure 

0rqJ (Pa) 

1 

2 

3 

4 

0.307 

0.314 

0.324 

0.324 

115 

162 

153 

165 

0.2SB 

0.200 

0.319 

0.317 

199 

289 

224 

197 

The pressure drop ca1cu1ated was cons istent ly be low the pressure 

drop measured. Corresponoingly the minimum mass flow rate calculated 

w~s consistenty above the minimum mass flow measured. Closer agreement 

between the pressure drops and the mass flows could have been achieved 

by slightly altering the calculation of the exchanger minimum free-flow 

area (Equat ion 3.28) • This was not done because neither the pressure 

drop nor the return air mass flow rate were found to significantly 

affect the heat exchanger therma1 performance when compared with the 

effect of the frost thermal conductivity. 

6.4 Additional Experimental Results 

6.4.1 Core Temperature Distribution 

In order to gain an insight into the temperature distribution five 

thermocouples were placed on the heat exchanger core. The distribution 

of the thermocoup les was shown in Figure 5.3. The temperature of the 

three thermocouples mounted in a row were generally within 1°C of their 

average temperature. This indicated that the core temperature was 
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probably quite uniform across the width of the core. The temperature of 

the thermocouple placed closest to the outside air inlet was always 

within a few degrees of the outside air stream temperature except during 

defrost. The temperature of the thermocouple placed closest to the 

,cen~er of the core varied between 1°C and 4°C from the average tempera­

ture of the three in line thermocouples. The most variation among the 

thermocouple temperatures generally occurred just after defrost and the 

least variation generally occurred just prior to defrost. 

6.4.2 Condensate Accumulation 

For RUN 1, condensate cont inuous ly flowed from the heat exchanger 

with the greatest release occurring during the defrost period. For 

RUN 2, RUN 3 and RUN 4 condensate flowed from the heat exchanger on ly 

during the defrost periods. Table 6.10 shows the average amount of 

condensate re leased during the defrost periods for RUN 2, RUN 3 and 

RUN 4. RUN 1 is not shown in Table 6.10 because the weigh scale failed 

during the test and no condensate measurements were made. 

TABLE 6.10 

Average Condensate Release 

RUN Average Condensate Release 
(kg/defrost) 

2 

3 

4 

2.471 

2.386 

0.462 
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6.4.3 Heat Transfer Rate Balance

The heat re leased by the hot air stream should equa1 the heat 

absorbed by the cold air stream if no heat is lost to the environment. 

An energy ba1ance was done for RUN 1, RUN 2, RUN 3 and RUN 4. 

For each run an energy ba lance was performed at two different times. 

The times were selected as much as possible close to midway between 

successive defrosts so that the cold air stream mass flow rate had been 

constant for some time. 

The rate of heat absorption by the cold air stream was computed by 

the control and data acquisition system (CDAS). Equation 6.1 was used 

for the calculation. 

6. 1 

where 

Qc = rate of heat absorption by the cold air stream (kW) 

mc =mass flow rate of the cold air stream (kg/s) 

Cp = specific heat at constant pressure of dry air 

(1.006 kJ/kg) 

Ts = supply air stream temperature (OC) 

To = outside air stream temperature (OC) 

Hand calculations verified that the CDAS correctly computed the rate of 

heat absorption. Due to duct heat gains the supply air stream 

temperature measured was slight1y greater than the supp1y air stream 

temperature at the heat exchanger exit. To obtain the true rate of heat 

absorption a correction was applied. Table 6.11 shows the heat 

absorption rate measured by the CDAS, the heat absorption rate corrected 

for the supply air stream temperature error and the expected errors of 

the measurements. 



117 

TABLE 6.11

Heat Transfer Rate Balance

RUN 

Time 

(hr) 

Q
Co1d 

(kW) 

QCo1d 
Corrected 

(kW) 

QHot 

(kW) 

QHot 
Corrected 

(kW) 
Difference 

(kW) 

1 

2.0 12.839 12.791 
+0.329 

13.913 14.074 1.283 

3.0 12.595 12.547 
+0.329 

11.861 12.022 0.525 

2 

2.1 9.867 9.780 
+0.316 

9.932 10.093 0.313 

5.0 9.154 9.067 
+0.316 

9.289 9.450 0.383 

3 

2.4 5.282 5. 198 
+0.345 

5.461 5.622 0.424 

6.0 5.339 5.255 
+0.345 

5.226 5.387 o. 132 

4 

1.4 3.861 3.798 
+0.397 

3.990 4. 151 0.353 

8. 1 3.108 3.045 
+0.397 

3.856 4.017 0.972 

The rate of heat re lease from the hot air stream was ca lculated 

using Equation 6.2. 

6.2
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where 

Qh = rate of heat release by the hot air stream (kW) 

mh = return air stream mass flow rate (kg dry air/s) 

hin = enthalpy of the return air stream (kJ/kg dry air) 

= entha lpy of the exhaust air stream (kJ/kg dry air)hout 

hF =enthalpy of frost (-341.78 kJ/kg) 

dm = rate of accumulation of frost (kg/s) 

A term to represent the vo lume flow rate of 1iquid water was not 

included in Equation 6.2 because the enthalpy of liquid water was nearly 

o kJ/kg. 

The return air enthalpy was calculated using the wet and dry bulb 

air temperatures measured by the PAMI Temperature Measurement Equipment 

(PTME) and the dry bulb air temperature measured by the CDAS. The two 

measurement systems were used because the return air stream experienced 

a temperature increase between the PTME and the CDAS. The temperature 

rise was due to a large pressure drop between the two measurement 

points. The wet and dry bulb temperatures measured by the PTME were 

used to calculate the return air stream humidity ratio. The humidity 

rat io and the dry bu 1b temperature measured by the CDAS were together 

used to calculate the return air stream enthalpy. 

The exhaust air stream enthalpy was calculated differently for 

RUN 4 compared to the other three Runs. For RUN 1, RUN 2 and RUN 3 the 

exhaust air stream was observed to be foggy. The fog indicated that the 

air stream relative humidity was 100 percent. The wet and dry bulb 

temperatures measured by the PTME indicated that the relative humidity 

was between 80 and 90 percent. The discrepancy was due to the poor 
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resolution of the dry bulb temperature. The dry bulb temperature had 

poor resolution because the thermocouple sensor failed shortly after the 

start of RUN 1 and was replaced with the glass stick thermometer 

described in Appendix B. The glass stick thermometer could only be read 

to + 0.5°C. Assuming 100 percent relative humidity and using the dry 

bulb temperature measured by the CDAS the exhaust air stream enthalpies 

were calculated for RUN 1, RUN 2 and RUN 3. For RUN 4 the exhaust air 

stream relative humidity was less than 100 percent since no fog was 

observed. The PTME wet and dry bulb temperatures were used to calculate 

the exhaust air stream entha lpy. But it was observed that a 1.6°C 

difference existed between the dry bulb temperature measured by the PTME 

and the dry bulb temperature measured by the CDAS. For RUN 2 and RUN 3 

the difference was 0.4°C and for RUN 1 even less. Water accumulation on 

the CDAS temperature sensors may have caused the differences between the 

two dry bulb temperatures. 

Due to heat gains in the exhaust air stream duct the heat release 

rate calculated using Equation 6.2 had to be corrected to account for 

the heat gain. Table 6.11 shows the calculated heat release rate and 

the heat release rate corrected for the exhaust duct heat loss. 

Table 6.11 shows the difference between the heat release rate from 

the hot air stream and the heat absorption rate to the cold air stream. 

The large difference in heat transfer rates at 2.0 hours in RUN 1 was 

attributed to the rapidly changing conditions. Since the manual 

measurements could not all be made at the same instant and since the RUN 

was very near defrost the difference resulted. In RUN 4 the large error 

was probably linked to the dry bulb temperature discrepancy mentioned 

earlier. The heat transfer rate balances done at the other six times 

showed good agreement. The good agreement lends confidence to the 

experimental results. 



7. CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this study was to investigate the frost 

formation process in a heat exchanger and to design and test a suitable 

frost contro1 strategy that would maximize the overa 11 rate of heat 

transfer in a heat exchanger. To meet this object ive two hypothes is 

were tested. 

The first hypothesis was: 

An existing computer model developed by Besant and 
Bugg (1981), with modification, will simulate the 
therma1 performance of a heat exchanger operat i ng
under frost forming conditions and under frost 
contro1. 

A computer model of a frosting and condensing heat exchanger was 

developed. Comparison of the test results with the simulation 

predictions showed considerable agreement in spite of many simplifying 

assumptions. The most significant differences were that the model 

predicted longer times between defrosts and different outside air mass 

flow rates during the frost accumulation periods. Although the trends 

of behavior were predicted, a computer model was not developed which 

wou 1d s imu 1ate the therma1 performance of a heat exchanger operat i ng 

under frosting conditions and under frost control (i.e., Hypothesis One 

was rejected). The expected reasons for the lack of agreement were: 

(1) the frost growth equat ion used was not deve loped for the 

conditions under which it was applied, 

(2) the heat and mass transfer coefficients used in the condensing 

region of the heat exchanger were developed theoretically and 

not verified experimentally, 

- 120 ­
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(3) the heat and mass transfer processes were modelled using 

temperature potential while possibly enthalpy potential may 

have been used more appropriately, 

(4) the heat exchanger was modelled as two regions and the 

frosting process was superimposed on the condensing heat 

exchanger model while a model which broke the exchanger into 

many small control volumes with an integrated frost model may 

have given better results, 

(5) the assumption of one dimensional frost growth may have 

significantly contributed to the disagreement.

The second hypothesis tested was:

A contro ller can be des igned and imp 1emented on a 
plate type commercial heat exchanger operating under 
frosting conditions that will find and continuously 
ma inta ina constant rate of heat transfer. The 
constant rate of heat transfer achieved wi 11 
approach the maximum thermodynamic potential of the 
heat exchanger and wi 11 increase the efficiency of 
the heat exchanger compared to common ly used frost 
control strategies. 

The second hypothesis was rejected because it was shown that a constant 

rate of heat transfer approaching ~he maximum thermodynamic potential of 

the heat exchanger could not be achieved continuously if the heat 

exchanger was operated under frosting conditions. The experimental 

tests performed demonstrated that a vi ab le frost contro1ler had been 

des igned and that the contro1 strategy deve loped has the abi 1ity to 

rna inta in from the heat exchanger a constant time average rate of heat 

transfer approaching the maximum thermodynamic potential of a heat 

exchanger. The tests did show however that the contro ller was not 

optimized. The factors identified as being important in developing an 

optimum controller were: 
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(1) The Exhaust Air Setpoint Temperature 

The lower the exhaust air setpoint temperature the greater the 

maximum outside air mass flow rate, the greater the rate of 

heat transfer but also the greater the rate of frost accumula­

tion. 

(2) The Control Error for the Cold Air Stream Temperature Change 

The larger this control error the longer the time between 

defrosts but correspondingly the longer the defrost. 

(3) The Gains Used in the Proportional Control Phases of the 

Control Cycle 

Increasing the proportional control gains and the addition of 

integral control could be used to increase the rate at which 

the contro1ler moves to and moves from the defrost ing phases 

of the controller cycle. 

All three factors are interconnected and how all three would be changed 

to achieve the optimum controller is yet to be attempted. 

Two summary conclusions have emerged from the present work: 

(1) The heat exchanger model developed has prepared the foundation 

and pointed out the key parameters in developing a condensing 

and frosting heat exchanger model but much work is still 

required before such a model would be developed. Future work 

on the development of the heat exchanger model would proceed 

by evaluating the importance of the five simplified assump­

tions identified in this section. 
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(2) The frost contro1 strategy tested is superior to a11 other 

agricultural frost control strategies and can be aplied to any 

heat exchanger irrespective of flow configuration. But 

further heat exchanger modelling and testing will be required 

to develop a controller which optimizes the overall rate of 

heat transfer. The three controller parameters identified in 

this section would need to be adjusted simultaneously in order 

to obtain the optimum controller. The effect of varying inlet 

temperatures (the validity of Equation 4.4) would also need to 

be investigated. The development of an off-the-shelf con­

troller which could be used on any heat exchanger is possible 

but the hardware development and packaging are yet to be done. 
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Dry Exchange Flow Chart 
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Wet Exchange Flow Chart 
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Frost Module Flow Chart 
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AD590KF Temperature Sensor Calibration
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AD590KF Temperature Sensor Calibration 

Calibration of the temperature sensors required the selection of a 

temperature standard. Since no standard with current ca1ibrat ion was 

available, three different thermometers were compared and one selected 

as a standard. The three thermometers compared were: 

(1) Thermocouple Simulator/Calibrator (Model 1100, Ectron, San 

Diego, California) 

(2) Glass Stick Thermometer (#15-030, Fisher Scientific Co.) 

(3) Digital Thermometer (Model 2802A, Hewlett Packard). 

The three thermometers were compared by suspending them in a temperature 

controlled, circulating glycol bath. The bath temperature was found to 

be very well controlled and uniform. The three thermometers were com­

pared at three different temperatures. The results achieved are given 

in TableS.l •. The results indicate very close agreement among the three 

thermometers. The Thermocouple Simulator/Calibrator was selected as the 

standard for calibration of the AD590KF's because of the ease of use. 

The A/D board used was of the continuous convert type rather than 

the integrating type. As a result 60 Hz noise was present in the tem­

perature measurements. The noise was eliminated by reading each sensor 

256 times over a time period which was a multiple of the 60 Hz period. 

During ca 1ibrat ion it was observed that the temperature measure­

ments would drift. The drift was linked to current leakage from the 

sensor leads. Since a current change of one microamp corresponded to a 

O.loC temperature change a small current leakage was significant. The 

current leakage was partially eliminated by suspending the sensors in a 
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high volume resistivity fluid. In the actual tests, the current leakage 

was taken to be small because each sensor was individually suspended in 

the air stream and air has a very high volume resistivity. 

The temperature sensors were calibrated by wrapping them in a close 

bund le. A Type T thermocoup le connected to the Thermocoup le 

Simulator/Calibrator was placed in the center of the bundle. The bundle 

was placed in a plastic freezer bag. The bag was squeezed tight and the 

remaining air was forced out by filling the bag with white mineral oil. 

The bag of sensors was suspended in the glycol bath. The sensors were 

placed in a freezer bag fi lled with minera1 0; 1 rather than suspended 

directly in the glycol bath in order to reduce the effects of current 

leakage. 

The sensors were calibrated at three different temperatures 

-24.15°C, +O.75°C and +25.25°C. The calibration at +0.75°C was done in 

two steps. An initial scan of all the temperature sensors was made 

followed 300 seconds later by four additional scans every 30 seconds. 

The calibration reading for each sensor was obtained by averaging the 

measurements made in the final four scans. The first scan measurements 

were compared with the average measurements of the final four scans to 

check for thermal stability. Calibration at +25.25°C and -24.l5°C was 

done over 10 hour period. This was done in order to assess measurement 

drift. The maximum measurement and the minimum measurement made by each 

sensor during the 10 hour period was recorded. For each sensor, the 

average of the maximum measurement and the minimum measurement was the 

calibration reading. The range of the measurements made by each sensor 

was a measure of the sensor repeatability. 
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The factors affecting the accuracy of each sensor were calibration 

standard error, sensor nonlinearity between calibration points, sensor 

repeatability error and bath nonuniformity. The calibration standard 

error was the accuracy given in ASHRAE (1975) for a Type T thermocouple. 

The sensor nonlinearity was computed from an applications note (Analog 

Devices, Norwood, Mass.). The repeatabi 1ity error was taken as the 

variation of the temperature measurements found for calibration at 

+25.25°C and -24.l5°C. The bath nonuniformity error was the difference 

in temperature between the calibration standard and a thermometer 

suspended in the glycol bath. This error was only present at the lowest 

calibration temperature because the system mixing the glycol bath was 

much less efficient at this calibration temperature. The calibration 

errors found at the calibration extremes are given in Table B.2. 
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TABLE B.l

CALIBRATION STANDARDS

THERMOMETER 

FIRST 
COMPARISON 

POINT 
(OC) 

SECOND 
COMPARISON 

POINT 
(OC) 

THIRD 
COMPARISON 

POINT 
(OC) 

THERMOCOUPLE SIMULATORI 
CALIBRATOR 

-25.6 + 0.1 +0.5 + O. 1 +25.5 + 0.1 

GLASS STICK THERMOMETER 

DIGITAL THERMOMETER 

-25.5 + 0.5 +1.0 + 0.5 +25.5 + 0.5 

-25.5 + 0.1 +0.7 + 0.1 +25.5+0.1 

TABLE B.2

CALIBRATION ERRORS

CALIBRATION CALIBRATION 
ERROR -24.15°C +25.25°C 

CALIBRATION +0.83 +0.83 

NONLINEARITY +0.20 +0. 10 

REPEATABILITY +0.19 +0.50 

BATH NONUNIFORMITY +0. 15 0.00 

TOTAL +0.88 +0.97 
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APPENDIX C

Test Procedure



150 

Test Procedure

Prior to commencing tests:

(1) Assemble the ductwork following drawing 198501. Seal all joints 

with silicon caulking. 

(2) Install the motor and drive system. Ensure the dampers are 

properly synchronized. Record in the test log: 

(a) Number of steps from full closed to full open. 

(b) The backlash (in steps) of the drive system. 

(3) Connect the code testers and make connection to the refrigeration 

system and the conditioner box. 

(4) Red line drawing 198501 or record in the test log the dimensions 

and location of equipment. 

(5) Insta11 four pressure taps on the exhaust side, two on the entry 

and two on the exit. Record arrangement in test log. 

(6) Insulate the ductwork and record on drawing 198501 the insulation 

provided. 

(7) Take extensive photos of the test arrangement. 

(8) Record the details of the PAMI refrigeration system, i.e., 

capacity~manufacturer.

(9) Record details of the PAMI conditioner box. 

(10) Record details of the PAMI code testers. 

(a) Dry and Wet bulb accuracies. 

(b) Volume/mass flow accuracy. 
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(ll) Record specification, accuracy and calibration information of the 

condensate weigh scale. 

(12) Adjust the fixed bypass dampers to give flow for full heat 

exchange or full bypass. 

(13) Adjust the supply fan to give maximum flow or 0.55 kg/s whichever 

is lesser. Set the exhaust fan to give balanced flow or maximum 

flow whichever is lesser. Do at ambient conditions. 

For each individual test run: 

{l} Assure pressure lines are free of blockage. 

{2} Start the exhaust fan operat ing and the condit ioner box. Let 

stabilize. 

{3} Check and record the full scale setting of the pressure 

transducer. 

{4} Read a11 temperature sensors once and record the ambient 

temperatures measured. 

(5) Record run parameters. 

{6} Record the controller parameters. 

(7) Record atmospheric pressure. 

(8) Delete memory files. 

{9} Adjust the drive system to full bypass of supply air. 

(10) Exhaust is running full exchange. 
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(11) Start supply side fan running and let run full bypass for few 

minutes. 

(12) Sa lance and zero PAMI manometer. Start PAMI data acquisition 

system operating. 

(13) Start the data acquisition system operating. Start making entries 

in the data sheets. 

(14) Record time of test start. 

(15) In test log, record frost that is observed formi ng in the core. 

Take photos where possible. 

(16) Monitor the motor current and adjust to ensure no motor burn out. 

(17) Record time of test end. 

(18) After the test period, transfer data to the disk drive using the 

file name given in table. 

(19) Record all file names used. 
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APPENDIX D

Simulation Results
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APPENDIX E

Experimental Results
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RUN 2 

0.51 
~.... 
Ul 
~ 0.4 

w 
f­
<t 
0::
~ 0.3

~
rn 
~ 0.2 
::E 
0:: 

« 
w 0.1
c
rn
f­
:J 

'0 0.0- ---.----r---.. -----.--r- --- --.-...----..---_. -, 
o 2 4 6 8 10 

TIME (hr) 
FIGURE E.5 

RUN 2: Measured Outside Air Mass Flow Rate 
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RUN 2: Measured Outlet Temperatures 
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RUN 3: Measured Outside Air Mass Flow Rate
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APPENDIX F

Simulation Listing
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PROGRAM AMENDMENT 

The turbulent friction factor (coefficient of frictional resis­

tance) must be divided by 4 in order to calculate the heat exchanger 

pressure drop. The turbulent friction factor (coefficient of frictional 

resistance) is correct for calculation of the convective heat transfer 

coefficient. 
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******************************************************************* 
* * 
* SIMUIATION OF A CONDENSING AND FROSTING * 

AIR TO AIR HFAT* * 
EXCHANGER* * 

* * 
******************************************************************* 
* * 
* * 
*---------------------DIMENSION MATRICES---·-----------------------* 
* * 
* DIMENSION A(7,7),B(7) * 

DIMENSION 00(7) 
* * 
*--------------------SET UP COMMON BLOCKS-----~-------------------*
* * 

COMMON/CBLKl/T(8),PROP(5,8),PWS(8),PW(8),DPWSDT(8) 
# ,DWDT(8),DENTDT(8),C(8),RE(8),H(8),F(8),S~PP(61)

COr-t1ON/CBLK2/XX,XXLOW,XXHIGH 
CCMMON/CBLK3/KTA, rcrw, ¥:VA, KVW, PRA ,PRW,CPA, CPW 
COr-t1ON/CBLK4/W(8) , PA'IM, RIHMHI ,RLHMCl 
CCMMON/CBLK5/MFRH,MFRC,NH,NC,WDTH,S,CMFRH,CMFRC 
COMMON/CBLK6/DEWPT 
COMMON/CBLK7/NS,L,DW,KW,TEMPlN(4),TEMPSU(4) 
COMMON!CBLK8!RF,Q,DC,KC,NFLP~

COMMON/CBLK9/TIME,TISTEP,TIEND,CT,DLMASS,CONERR,PEAKQ,CONDIR, 
# NSTFLG,CNTlME,CNTSTP,CGAIN,NS2FLG 

CG1MON/CBLKI0/FROSlli(0 :41) , FROSI'T (0 :41) ,00C( 4) ,PFAN, FSCOND, 
# DHTC(0:41),DHCEND(4),FHMAX,XOMAX,FROSTP,DPO,TOTDP 

C(lIlM()N/CBLKll/UDRY, UWET , QDRY ,CWET 
COMMON!CBLK12/ISTFLG 
COMMON/CBLK13jPWSW(4),PWW(4),WW(4),ENHH(4) 
RFAL KW, L,MFRH, MFRC, KC, KTA, K'IW, KVA, KVW, I.MI'D, NI'U , IT~-vrMP
INI'EX3ER cr ,FL 
CHARACI'ER*15 FNAME 

* * 
******************************************************************* 
* * 

MAIN PROGRAM* * 
* * 
*************************************************************k***** 
* * 

* 
REQUEST REVISION OF GEavlEI'RIC OR PHYS lCAL DATA * 

* * 
* * 

WRlTE(5,10lJ) 
100 FORMAT( I 00 YOU WISH 10 REVISE THE GECMETRlC OR PHYSICAL ' 

# 'DATA? (lOR 0)',$) 
READ(5,300) J 

300 FORMAT(Il) 
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11 

IF(J.EQ.l) CALL DESCRP
OPEN(UNIT=22, FILE= f XCHGR. OAT f , STA'IUS=' OLD' )
READ(22,*) S
READ(22, *) RF
READ( 22 , *) rw
READ(22,*) KW
READ(22,*) L
READ(22,*) WDIH
READ(22, *) NH
READ(22,*) NC
READ(22. *) NS
CLa3E (UNIT=22)

* * 
*--------------READ TIME SERIES DATA-------------------------- --* 
* * 

OPEN(UNIT=22,FILE='CONTRL.DAT',STATUS='OLD') 
READ(22,*) TISTEP 
READ(22, *) TIEND 
READ(22,*) CGAIN 
READ(22,*) DLMASS 
READ(22, *) CCNERR 
READ(22,*) CNTSTP 
CIDSE(UNIT=22) 

* * 
*---------------SET TIME TO ZERO----------------·-----------------* 
* * 

TIME=O.O 
* 

*----------SET FLAG DETAILED PRIN'IOUT OR SHORT PRINTOUT- .-----* 
* * 

NFLPRr=l 
* * 
*----------SET FROST MOWLE TIME AND FROST HEIGHT 10 ZERO--·------* 
* ALSO SET·THE HEAT TRANSFER COEF ENHANCEMENT 'IO ONE * 
* * 

FRrOLD=O.O
FRHOLD=O.O
DO 11 1=1,4
mC(I)=O.O
ENHH(I)=O.O
CONTINUE
FROSTP=O.O
FHMAX=O.O
xa1AX=O.O

* * 
*----------INITIALIZE CONTROL MODULE PARAMETERS ..----------------* 
* * 

PFAKQ=O.O
CONDIR=I.0
NSTFll3=O
CNTIME=O.O
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* * 
*-------INITIALIZE THICKNESS OF COODENSATE FIIM------------ --_..* 
* * 

OC=O.0002
KC=0.5745

* * 
*------------INITIALIZE THE ENHANCEMENT MATRIX--------------------* 
* * 

ENHH(3)=1.0
ENHH(4)=1.0

* * 
*---------LDAD SATURATlOO VAPOR PRESSURE MATRIX--------------- ..--* 
* FRCM ASHRAE FUND SI 85 * 
* * 

OPEN(UNIT=22,FlLE='SVAPP.DAT ' ,STATUS='OLD ' )
00 59 1=1,60,4
READ(22,*) SVAPP(I),SVAPP(I+1),S~P(I+2),S~PP(I+3)

59 CONTINUE 
READ(22,*) SVAPP(61) 
CLOSE (UNIT=22) 

* * 
*---------------INPUT OF OPERATIONAL DATA------- .----------------* 
* * 

WRITE(5,2) 
2 FORMAT(' NOW, INPUf THE OPERATIONAL mTA AS REQUESTED') 

WRITE(5,4) 
4 FORMAT(lOX, 'COLD AIR: ' ) 

WRITE(5,6) 
6 FORMAT (14X; I MASS FI..CWRATE (DRY) (KG/SEC) = I , $) 

READ( 5 , *) MFRC 
CMFRC=MFRC 
WRITE (5, 10) 

10 FORMAT(l4X,'INLET TEMPERATURE (DEGREES C)='$) 
READ(5,*) T(8) 
WRITE(5,14) 

14 FORMAT(14X,'RELATIVE HUMIDITY (PERCENTAGE)='$) 
READ(5,*) RLHMCI 
WRITE(5,20) 

20 FORMAT(/,lOX, 'HOT AIR: ' ) 
WRITE(5,22) 

22 FORMAT(14X,'MASS FDOWRATE (DRY) (KG/SEC)='$) 
READ ( 5 , *) MFRH 
~RH=MFRH

WRITE(5,26) 
26 FORMAT(14X, 'INLET TEMPERATURE (DEGREES C) =' $ ) 

READ(5,*) T(l) 
WRITE(S,30) 

30 FORMAT(14X, 'RELATIVE HUMIDITY (PERCENTAGE) =' $ ) 
READ(S,*) RLHMHI 
WRITE(S,33) 

33 FORMAT(/ , lOX, 'ATMOSPHERIC PRESSURE (KILDPASCALS) =' $) 
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READ (5, *) PA'IM
WRITE(S, 35)

3S FORMAT(/,IOX, 'FAN STATIC PRESSURE (PASCAIS)='$) 
READ(S, *) PFAN 
WRITE(S,36) 

36 FORMAT( lOX,' FrosT CONDUCTIVITY (W/M C)=' $ ) 
READ(5,*) FSCOND 
WRITE(S,34) 

34 FORMAT(/,IOX,'FILE TO OUTPUT ~TA TO=',$) 
READ(S,*) FNAME 
OPEN(UNIT=22,STATUS='NEW' ,FILE=FNAME) 
WRITE (22 , 309 ) 

309 FORMAT( IX,' TIME " 'TH our' ,2X, 'TC OUT' ,2X,' Q ',2X, 
# 'TP IN', 2X, 'TP our' , 3X, 'DRYFRA ' , IX, 'MFRC' ,2X, 'MFRH' , 
# IX, 'FST FOS' , 2X, ,DP t I 3X, I FHMAX I , / , I) 

T(I)=T(l)+273.16
T(8)=T(8)+273.16
RLHMHI=RLHMHI/I00
RLHMCI=RLHMCI/I00

* * 
*------------cHECK OF INPUTTED DATA-----------------------------* 
* * 

IF(T(1)-T(8» 110,130,130 
110 WRITE(S,111) 
III FORMAT( /, I , I PLEASE CORROCT INPUT ~TA', I ,13X, 'COLD INlEI' " 

# 'CANNaI' BE WARMER THAN HOT INLET!') 
GarO 999 

130 IF(RLHMCI.GT.l .OR. RLHMHI.Gr.l) GOID 140 
GOlD ISO 

140 WRITE(S,141) 
141 FORMAT( /,/, I PLEASE CORRECT INPUT DATA' II ,13X, 'RELATIVE', 

# 'HUMIDITY CANNOT BE GREATER THAN 100%! ') 
GOTO 999 

* * 
*-----cALCULATION OF THE D~POINT OF THE HOT ENTERING AIR------* 
* * 
150 T(2)=T(1) 

T(3)=T(1) 
T(4)=T(1) 
T(S)=T(8) 
T(6)=T(8) 
T(7)=T(8) 
CALL SATVAP 
CALL HUMRAT 
IF(W(1)-.0038) 180,190,190 

180 DEWPT=S.994+12.41*ALOG(PW(1»+.4273*(ALOG(PW(1»)**2 
GOTO 191 

190 DEWPT=6.983+14.38*ALOG(PW(1»+1.079*(ALOG(PW(1»)**2 
191 DEWPT=DEWPT+273.16 
* * 
*-------INITIALIZE THE INTERFACE TEMPERATURE ON THE HOT----------* 
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* SIDE EQUAL TO THE DEWPOINT * 
* * 

ITFIMP=DEWPT 
* * 
*-------INITIALIZE THE PLATE TEMPERATURES------------------------* 
* * 

TEMPSU(1)=(T(1)+T(5»/2.0-273.16
TEMPSU(2)=(T(2)+T(6»/2.0-273.16
TEMPSU(3)=(T(3)+T(7»/2.0-273.16
TEMPSU( 4) =(T( 4 )+T (8) )/2.0-273.16

* * 
*-------00 LOOP FOR TIME SERIES----------------------------------* 
* * 

DO 1000 TLME=O,TIEND,TISTEP
IF(TIME.EQ.O) GO'IO 151
IF(TEMPIN(4) .GE.O.O.AND.xx..m.L) CALL REINIT
CALL FROST

* * 
*-----INITIALIZE THE DRY LENGTH XX LIMITS SET INITIAL XX-------* 
* * 
151 XXLOW=O.O 

XXHIGH=L 
xx.=L*(T(I)-DEWPT}/(T(1)-T(8» 
IF(XX.GI' .L) GOTO 270 

* * 
*-------INITIALIZE STABILITY F~G--------------------------------*
* * 

ISTFLG=O 
* * 
*-------INITIAL ASSUMPTION OF REQUIRED TEMPERATURE------------ .--* 
* * 

T(2)=T(I)
T(3)=T(l)
T(4)=T(1)
T(5)=T(8)
T(6)=T(8)
T(7)=T(8)
GOrO 261

* * 
*--------INI'ERPO~TION TO FIND XX----------------------------------* 
* * 
260 ITFTMP=DEWPT 

IF (ABS (ITFIMP-T (2) ) •LT. 0.1) GOI'O 250 
XXHOLD=XX 
IF( (ITFIMP-T(2» .Gr.O.O) XX=(XX+XXLOW)/2.0 
IF ( (ITFTMP-T (2) ) .GT. 0.0) XXHIGH=XXHOLD 
IF ( (ITF'IMP-T (2) ) •LT. 0.0 •AND. (XX/L) .GT. 0.98) GOI'O 270 
IF{ (ITFTMP-T(2» .LT.0.0) XX={XX+XXHIGH)/2.0 
IF ( (ITF'IMP-T (2 ) ) •LT•0.0) XXLOW=XXHOLD 

* * 
*-----------SCAN THE INTERFACE TEMPERATURE-------------------------*



178 

* * 
261 T(6)=T(8) 

GO'ID 262 
170 T(6)=(T(6)+T(7»/2.0 

IF(T(6).GT.T{7» ISTFLG=1 
IF{T(6).GT.T(7» WRITE{6,891) T(6),T(7) 

891 FORMAT{ lX,' STABILITY FLAG SET: T6= ,F8.2, I T7= • ,F8.2)I 

262 CALL DRY 
T(3)=T(2) 
CALL WET 

* * 
*--------cHECK IF THE INTERFACE TEMPERATURES MATCH---------------* 
* * 

IF(ABS(T(6)-T(7».LT.0.1) GOTO 260 
GOTO 170 

** 
*--------TO HANDLE COMPLETELY DRY HEAT EXCHANGER--------------------* 
* * 
270 XX=L 

T(6)=T(8) 
CALL DRY 
CWET=O.O 
T(4)=T(2) 

* * 
*---------CACULATE PERFORMANCE PARAMETERS---------------------------* 
* * 
250 Q=QDRY+cWET 

oCC=XX/L*( (C(5 )+C 6) )/2 )+(1-XX/L) *( {C (7 )+C ( 8 ) )/2 )( 

EFF=Q/(CC*(T(1)-T{8) » 
UA=WOTH*NS*{UDRY*XX+UWET*(L-XX»
IF«T(1)-T(5».LE.0.0) GOmO 253
LMTD=«T(1)-T(5»-(T(4)-T(8»)/(ALOG«T(1)-T(5»/(T(4)-T(8»»
CF=Q/(UA*I.MTD)

253 T(4)=T(4)-273.16 
T(5 )=T( 5 )--273 .16 
QIF=QDRY/Q*100 
Q2F=<;.WET/Q*100 
DRYFRA=XX/L*100 
WErFRA=(L-XX)/L*100 
IF(C{1).GT.C(8» mID 251 
CMIN=C(l) 
QvW{=C(~)

GOIO 252 
251 CM[N=C(8) 

CMAX=C(l) 
252 R=CMIN/CMAX 

NW=UA/CMIN 
IF(NFLPRT.EQ.1) mID 301 

* * 
.. ,*-----------OUTPUI' OF RESULTS-------------------------------- _.-* 

* * 
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WRITE(5,21) 
21 FORMAT( 34X,' STEADY STATE RUNNING COODITIONS' ) 

WRITE(5,44} 
44 FORMAT ( 33X,'*********************************') 

WRITE(5,5S} 
55 FORMAT( I, lOX, 'ourLET TEMPERATURES; , } 

WRITE(5,66) 
66 FORMAT( 9X,'----------------------') 

WRITE (5, 77) T(4 ) 
77 FORMAT( 15X,'Har AIR=' , F6. 2,' DEGREES C. I ) 

WRITE(5,88) T(5} 
88 FORMAT ( 15X,' COLD AIR=' , F6. 2,' DEGREES C.') 

WRITE(5,99} 
99 FORMAT ( 1,10X, 'PERFORMANCE PARAMETERS:') 

WRITE(5,27} 
27 FORMAT( 9X,'--------------------------') 

WRlTE(5,37) Q 
37 FORMAT( 15X, 'HEAT EXCHANGE RATE=' ,F9.2,' WATTS. I} 

WRITE (5, 47) QIF 
47 FORMAT( 20X,F4.1,'%',' THROUGH DRY REGION.') 

WRITE(5,57) Q2F 
57 FORMAT ( 20X,F4.1,'%',· THROUGH WET REGION.') 

WRITE (5, 6,) EFF 
67 FORMAT( 15X, 'EFFECTIVENESS=' ,F4.2) 

WRITE(S,87) CF 
87 FORMAT( 15X, 'CORRECTION FAcroR=' ,F5.3} 

WRITE (5, 97) IMTD 
97 FORMAT ( 15X,'LOG MEAN TEMPERATURE DIFFERENCE=',F5.2,'DEGREES C') 

WRITE (5, 96) R 
96 FORMAT{ 15X, 'RATIO OF HEAT CAPACITY RATES=, ,F5.3) 

WRITE (5,86) NTU 
86 FORMAT ( 15X,' NUMBER OF TRANSFER UNITS=,,F4. 2 ) 

WRITE(5,513) 
513 FORMAT( 1,10X, 'EXCHANGE SURFACE CONDITIONS:') 

WRITE(5,514} 
514 FORMAT( 9X,' --.--------------------------- , ) 

WRITE(5, 515) DRYFRA 
515 FORMAT ( 15X,'DRY AREA FRACTION=',F5.2,'%') 

WRITE (5, 516) WETFRA 
516 FORMAT( 15X, 'WET AREA FRACTION=' ,F5. 2, '%' ) 

WRITE(5,517)TEMPIN(4) 
517 FORMAT( I, lOX, 'CORE TEMPERATURE = " F5.1,' DEGREES C') 

IF(NFLPRT.EQ.O) GOTO 999 
301 WRITE(5,302) TIME, T(4) ,T(5) ,Q, TEMPIN (4) ,TEMPIN (1 ) ,DRYFRA,MFRC,MFRH, 

# FROSTP, 'IOTDP , FHMAX 
302 FORMAT( F8.3,F6.2,2X,F6.2,2X,F7.0,2X,F6.2,2X,F6.2,2X,F6.2, 

# lX,F5.4,lX,F5.4,lX,F5.4,lX,F6.l,F8.7} 
WRITE(22,302) TLME,T(4),T(5),Q,TEMPIN(4),TEMPIN(1),DRYFRA,MFRC,MFRH, 

# FROSTP, 'IOTDP, FHMAX 
WRlTE(22,3l1) (T(I),I=1,8)

311 FORMAT ( lOX, 'TEMPERATURES ',8(2X,F8.2»
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WRITE (22, 304) (C( I) ,1=1,8) 
304 FORMAT ( lOX, 'HEAT CAPACITY RATES ',8(2X,F8.1» 

~TE(22,30S) (RE(I),I=1,8) 
305 FORMAT( lOX, I REYNOLOO NUMBER , ,8 (2X, F8.1 ) ) 

WRITE(22,306) (DENTDT(I),I=1,8) 
306 FORMAT( 10X,'DI/DT ',8(2X,F8.1» 

WRITE (22, 307) (H (1),1=1,8) 
307 FORMAT( lOX, 'HEAT TRANSFER COEF ',8(2X,F8.4» 

WRITE(22,308) (TEMPIN(I),I=1,4),(DHC(I),I=1,4) 
308 FORMAT( lOX, 'PLATE TEMPERATURES ',4(lX,FS.2),' DHC " 

4(lX,F8.S» 
WRITE(22,312) (TEMPSU(I),I=1,4),(ENHH(I),I=1,4) 

312 FORMAT ( lOX,' SURFACE TEMPERATURES' ,4 (IX, F8. 2) " ENHH', 
# 4(lX,F8.S» 

WRITE(22,31S) (W(I),I=l,S) 
315 FORMAT( lOX,' HlMIDITY RATIOS ',8(lX,F8.6» 

WRlTE(22,316) (WW(I),I=1,4) 
316 FORMAT( lOX,' PLATE HUMIDITY RATIO', 4 (IX, F8 •6 ) ) 

WRlTE(22,317) (PW(I),I=1,8) 
317 FORMAT ( lOX,' PW ',8(lX,F8.6» 

WRITE(22,318) (PWS(I),I=1,8) 
318 FORMAT( lOX, 'PW2 ',8(lX,F8.6» 

WRITE (22,319) (PWSW( I) ,1=1,4) 
319 FORMAT( lOX, 'PWSW ',8(lX,F8.6» 

WRITE (22, 310) FHMAX,XOMAX, (IECEND(I), 1=1, 4) 
310 FORMAT( lOX,' FHMAX ',F8. 7,' X~ ',F8.6, I DHCEND " 

4(IX,F8.6» 
~TE(22,320) (PROP(1,I),I=1,8) 

320 FORMAT ( 10X,'CONDUCTIVITY ',8(lX,F8. 7» 
WRITE(22,321) (PROP(2,I) ,1=1,8) 

321 FORMAT ( lOX, 'VISCOSITY , , 8 ( IX, E9. 3 ) ) 
WRlTE(22,322) (PROP(3,I),I=1,8) 

I322 FORMAT ( lOX,' PRANDrL NUMBER ,8(lX,F8.6» 
WRITE(22,323) (PROP(4,I),I=1,8) 

323 FORMAT ( lOX, 'SPECIFIC HEAT ',8(lX,F8.l» 
WRITE (22, 324) (PROP(S,I),I=1,8) 

I324 FORMAT ( lOX,' DENSITY ,8 (IX, F8. S) ) 
T(4)=T(4)+273.16 
T(S)=T(S)+273.16 
IF(T]ME.EQ.0.0.ANO.TEMPIN(4).GT.0.0) GOTO 998 

999 CALL CGlTROL 
1000 CONTINUE 
998 WRITE(22,303)OMFRC,T(8),RLHMCI,OMFRH,T(1),RLHMHI,PATM,FSCOND,PFAN 
303 FORMAT ( 9(2X,F10.4» 

CIDSE(UNIT=22) 
END 

***************************************************************** 
* * 
* SUBROUTINE:SATVAP * 

!HIS SUBROUTINE CALCULATES THE SATURATION ** 
VAPOR PRESSURE AT EACH POINT IN THE HEAT* * 
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EXCHANGER.* * 
* * 
***************************************************************** 
* * 
* * 

SUBrourINE S~P
C<»10N/CBLK1/T(S) ,PROP (5 ,S) ,IWS(S) ,EW( S) ,DFWSDI'(S)

# ,DWDT(8),DENTDI'(8),C(8),RE(S),H(S),F(S),S~P(61)

COMMON/CBLK7jNS,L,DW,KW,TEMPIN(4),TEMPSU(4)
COMMON/CBLK13/PWSW(4),PWW(4),WW(4),ENHH(4)
REAL L,KW
00 10 1=1,8
TT=T(I)-273.16+31.0
J=INT(Tr)
PWS(I)=(TT-J)*SVAPP(J+1)+(J+1-TT)*SVAPP(J)

10 CONTINUE 
00 40 1=3,4 
Tr=TEMPSU(I)+31.0 
J=INT(TT) 
PWSW(I)=(TT-J)*S~PP(J+1)+(J+1-TT)*SVAPP(J)

40 CONTINUE 
RE'llJRN 
END 

***************************************************************** 
* * 
* SUBROUTINE:HUMRAT * 
* THIS SUBROUTINE FINDS THE HUMIDITY RATIO AT * 
* EACH POINT IN THE HEAT EXCHANGER. * 
* * 
***************************************************************** 
* * 
* * 

SUBROUTINE HUMRAT 
COMMON/CBLK1/T(S),PROP(S,S),EWS(S),PW(S),DPWSDT(S) 

# ,DWDT(S),DENTDT(8),C(8),RE(S),H(S),F(S),S~P(61)

COMMON/CBLK4/W(8),PAtM,RLHMHI,RLHMCI 
COMMCN/CBLK6/DEWPr 
COMMON/CBLK13/PWSW(4),PWW(4),WW(4),ENHH(4) 
IX> 10 I=S,S 

FW(I)=PWS(S)*JRLHMCI 
W(I)=.6219S*(PW(I)/(PATM-PW(I») 

10 CONTINUE 
IX> 20 1=1,2

PW(I)=PWS(l)*RLHMHI
W(1)=.62198*(FW(I)/(PATM-PW(I»)

20 CONTINUE 
00 30 1=3,4 

IF(T(I).LE.DEWPI') PW(I)=PWS(I) 
1F(T(I).GT.DEWPT) PW(I)=PWS(l)*RLHMHI 
W(I)=.6219S*(PW(I)/(PATM-PW(I») 

30 CONTINUE 
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10 

OJ 40 1=3,4
:EWW( I }=PWSW( I}
WW(I}=.62198*(PWW(I}/(PATM-PWW(I}}}
IF(WW( I) .GT.W( I}) W( I }=W( I}

CONTINUE
RETURN
END

************************************************************************* 
**

*
*
*
*
*
*
*
*
*

SUBROUI'INE: PROPS 
THIS SUBROUTINE CALCULATES THE FOLIDWING PROPERTIES 

AT EACH RUNT IN THE HEAT EXCHANGER: 
DENSITY

KINEMATIC VISCOSITY
PRANDrL NUMBER
'IHERMAL. COODUCTIVITY
HEAT CAPACITY

*
*
* 
*
* 
*
*
*
*

*************************************************************************
*
* 

*
* 

SUBROUTINE PROPS 
COMMON/CBLKl/T(8),PROP(5,8),PWS(8),:PW(8),DPWSDT(8) 

# ,DWDT(8},DENTDr(8),C(8),RE(8),H(8),F(8),SVAPP(61) 
CCHvtON/CBLK3/KTA,K'IW ,KVA,KVW ,PRA,PRW,CPA,CIW 
COMMOO/CBLK4/W(8) , PATM, RLHMHI , RlliMCI 
REAL IcrA, K'lW , IWA, KVW 
00 10 1=1,8 

CALL PRPINT(T(I» 
PROP{l,I)={KTA+W(I)*IcrW)/(l-+W{I» 
PROP(2,I)=(KVA+W(I)*KVW)/{l+W(I» 
PROP(3,I)={PRA~(I)*PRW)/(1-+W(I»

PROP(4,I)=(CPA+W(I)*CPW)/(1+W(I» 
PROP{5,I)=PATM*1000.0/(287.0*T(I)*(1.0+1.6078~(I»}

CONTINUE
RETURN
END

******************************************************************* 
**

*
*
*
*

SUBROOTINE ENHANCE 
SUBROUTINE 10 CACUIATE WE HEAT TRANSFER 
FOR MASS TRANSFER,THE PrATE 'TEMPERATURE 

*
*
*

AND THE FrosT WATER INTERFACE TEMPERATURE * 
**

*******************************************************************
**

SUBROUTINE ENHANCE 
COMMON/CBLK1/T(8),PROP(5,8),PWS(8),PW(8),DPWSDr(8) 

# ,DWDT(8),DENTDr(8),C(8},RE(8},H(8),F(8),SVAPP(61) 
COMMON/CBLK4/W( 8) , PATM, RLHMHI, RLHMCI 
COMMON/CBLK7/NS,L,DW,KW,TEMPIN(4),TEMPSU(4) 
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COMMON/CBLKI3/PWSW(4),PWW(4),WW(4),ENHH(4)
REAL L,KW
00 10 1=3,4
TB--T(I )-273.16
'IW=TEMPSU (I )
HB=1006*TB+W(I)*(2S01000+177S*TB)
HW=1006*TW+WW(I)*(2501000+1775*TW)
ENHH(I)=(HB-HW)/(PROP(4,I)*(TB-'IW) )

10 CONTINUE 
RETURN 
END 

******************************************************************* 
* * 

SUBROUTINE: ENTHAL* * 
THIS SUBROtJrINE FINffi THE RATE OF CHANGE OF* * 
EN1HALPY AT EACH POINT IN THE HEAT EXCHANGER.* * 

* * 
******************************************************************* 
* * 
* * 

SUBROUTINE ENTHAL 
COMMON/CBLKI/T(S),PROP(S,S),PWS(S),PW(S),DPWSDT(S) 

# ,DWDT(S),DENTDT(S),C(S),RE(S),H(8},F(8),S~P(61)

COMMON/CBLK4/W(8),PATM,RLHMHI,RLHMCI 
COMMON/CBLKI3/PWSW(4),PWW(4),WW(4),ENHH(4) 
00 10 1=3,4 
TT=T(I)-273.16+31.0 
J=INT(TI') 
DPWSDT(I)=S~P(J+l)-SVAPP(J)

10 CONTINUE 
00 40 1=1,S 

DWDT(I)=.6219S*PATM*DPWSDT(I)/«PATM-PWS(I»**2) 
DENTDT(I)=1006+177S*W(I)+177S*DWDr(I)*(T(I)-273.16 

# )+2S01000*DWDT(I) 
40 CONTINUE 
100 REl'URN 

END 
****************************~******************************************

* * 
* SUBROUTINE:HTCPRT * 
* THIS SUBROurINE FINDS THE HEAT CAPACITY * 
* AT EACH roINT IN THE HEAT EXCHANGER. * 
* * 
*********************************************************************** 
* * 
* * 

SUBROUTINE HTCPRT 
COMMON/CBLKl/T(8),PROP(5,8),PWS(8),PW(8),DPWSDT(8) 

# ,DWDT(8),DENTDT(8),C(8),RE(8),H(8),F(8),SVAPP(61) 
CavtMON/CBLKS/MFRH,MFRC,NH,NC,WDI'H,S,(litFRH,OMFRC 
REAL MFRH, MFRC 
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00 10 1=1,8
IF(I.LE.4) GOTO 20
C(I)=MFRC*OENTDT(I)
ooro 10

20 C(I)=MFRH*DENTDr(I) 
10 CONTINUE 

REWRN 
END 

********************************************************************** 
* * 
* SUBROUTINE:REYNLO * 
* THIS SUBROUTINE FINDS THE REYNOLCS NUMBER * 
* AT EACH POINT IN THE HEAT EXCHANGER. * 
* * 
********************************************************************** 
* * 
* * 

SUBROOTINE REYNLD . 
COMMON/CBLK1/T(8),PROP(5,8),PWS(8),PW(8),DPWSDT(8) 

# ,DWDr(8),DENTDT(8),C(8),RE(8),H(8),F(8),SVAPP(61) 
C~/CBLK4;W(8) ,PA'IM,RLHMHI, RLHMCI 
COMMCN/CBLK5/MFRH ,MFRC, NH, NC,WDIH, S,OMFRH, OMFRC 
REAL MFRH, MFRC 
00 10 1=1,4 

RE(I)=MFRH/NH*(1~(I»*2/(PROP(5,I)*PROP(2,I)~)

10 CONTINUE 
00 20 1=5,8 

RE(I)=MFRC/NC*(1~(I»*2/(PROP(5,I)*PROP(2,I)~)

20 CONTINUE 
REWRN 
END 

********************************************************************* 
* * 
* SUBROUTINE: FRICFC * 
* THIS SUBROUTINE FINDS THE FRICTICl\l FAC'IOR AT * 
* EACH POINT IN THE HEAT EXCHANGER. * 
* * 
********************************************************************* 
* * 
* * 

SUBROUTINE FRICFC
CCMMON/CBLK1/T(8 ) , PROP (5 ,8 ) ,EWS (8 ) ,EW(8) , DPWSDT(8) .

# ,DWDT(8),DENTDT(8),C(8),RE(8),H(8),F(8),S~P(61)

00 10 1=1,8
IF(RE(I).LT.2300.0) GOTO 2
IF(RE(I).GT.10000.0) GOTO 1

* * 
*------THE TRANSITION FROM LAMINAR TO TURBULENT IS ASSUMED--------* 
* TO OCCUR FROM RE 2300-10000 : IN THIS REGION A LINEAR * 
* INTERPOLATION IS IXl\lE * 
* * 
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*----------FRICTION FACTOR TRANSITIONAL LLMITS--------------------* 
* * 

FL=24.0/2300
FU=(1.82*ALOGI0(10000.0)-1.64)**-2
IF(FU.LT •• 033) FU=.033

* * 
*----------TRANSITIONAL FRICTION FACTOR--------·- ------------------* 
* * 

F(I)=(RE(I)-2300.0)/7700.0*FU+(10000.0-RE(I»/7700.0*FL 
001'0 10 

* * 
*---------TURBULENT FRICTION FACTOR-------------------------------* 
* . * 
1 F(I)=(1.82*ALOGIO(RE(I»-1.64)**-2 

IF(F(I).LT••033) F(I)=.033 
GO'IO 10 

* * 
*----------LAMlNAR HEAT TRANSFER--------------------~--------------*
* * 
2 F(I)=24.0/RE(I) 
10 CONTINUE 

REWRN 
END 

********************************************************************* 
* * 
* SUBROUTINE:TRNCOF * 
* '!HIS SUBROUTINE FINDS THE HEAT TRANSFER * 
* COEFFICIENT AT EACH POINT IN THE HEAT EXCHANGER. * 
* * 
********************************************************************* 
* * 
* * 

SUBROUTINE TRNCOF 
COMMON/CBLKI/T(8),PROP(5,8),PWS(8),PW(8),DPWSDT(8) 

# , r:wor (8 ) , DENTDr (8) ,C(8 ) ,RE (8 ) , H(8 ) , F ( C3 ) , SVAPP (61 ) 
OOMMON/CBLK4/W(8),PATM,RLHMHI,RLHMCI 
COMMON/CBLKS/MFRH ,MFRC, NH, NC ,WDIH, SH ,OMFRH, OMFRC 
COMMON/CBLKIO/FROSTH(0:41),FROSTT(0:41),DHC(4),PFAN,FSCOND, 

# DHTC(0:41),DHCEND(4),FHMAX,XOMAX,FROSTP,DPO,TOTDP 
COMMON/CBLKI3/PWSW(4),PWW(4),WW(4),ENHH(4) 
REAL MFRH ,MFRC 
00 10 1=1,8 

* * 
*------CORRECT PASSAGE SIZE FOR FROST ACCUMULATION----------------* 
* * 

IF(I.EQ.l) S=SH-2*FROSTH(S)
IF(I.EQ.2) S=SH-2*FROSTH(15)
IF(I.EQ.3) S=SH-2*FROSTH(25)
IF(I.EQ.4) S=SH-2*FROSTH(35)
IF(I.GE.5) S=SH
IF(RE(I).LT.2300.0) GOTO 2
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IF(RE(I).GT.I0000.0) GOTO 1
* * 
*-- ---THE TRANSITION FROM lAMINAR TO 'lURBULENT IS ASSUMED--·----* 
* TO OCCUR FROM RE 2300-10000 : IN THIS REGION A LINEAR * 
* INTERPOLATION IS OONE * 
* * 
*---------HEAT TRANSFER TRANSITIONAL LIMITS---------------------* 
* * 

HL=PRQP(1,I)*7.888/(2*S)
FU=(1.82*ALOGI0(10000.0)-1.64)**-2
IF(FU.LT •• 033) FU=.033
HU=PROP(I,I)*(FU/8)*10000.0*

# PROP(3,I)/(2*S*(1.07+12.7*(FU/8)**.5*
# (PROP(3,I)**.66666-1»)

* * 
*----------TRANSITIONAL HEAT TRANSFER COEFFICIENT-----------------* 
* * 

H(I)=(RE(I)-2300.0)/7700.0*HU+(10000.0-RE(I»/7700.0*HL 
ooro 10 

* * 
*---------TURBULENT HEAT TRANSFER---------------------------------* 
* * 
1 H(I)=PROP(I,I)*(F(I)/8)*RE(I)* 

# PROP(3,I)/(2*S*(1.07+12.7*(F(I)/8)**.5* 
# (PROP(3,I)**.66666-1») 

GO'IO 10 
* * 
*----------LAMINAR HEAT TRANSFER-----------------------------------* 
* * 
2 H(I)=PROP(1,I)*7.888/(2*S) 
10 CONTINUE 

00 20 1=3,4 
H(I)=H(I)*ENHH(I) 

20 CONTINUE 
* * 
*-----ENHANCE '!HE HEAT TRANSFER COEFFICIENT FOR ENTRANCE EFFECTS---* 
* * 

H(I)=H(I)*1.3
H(8)=H(8)*1.3
RE'IURN 
END 

******************************************************************** 
* * 

SUBROUTINE:PRPINT* * 
'!HIS SUBROurINE INTERroLATES TO FIND THE FOLI.CMING* * 

* PROPERTIES OF AIR AND WATER AT ANY TEMPERATURE * 
BE'IWEEN 200 K AND 350 K INCLUSIVE:* * 

* lliERMAL CONDUCTIVITY * 
KINEMATIC VISCOSITY* * 

* PRANDI'L NUMBER * 
* HFAT CAPACITY * 
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* * 
******************************************************************** 
* * 
* * 

SUBROUTINE PRPINT(T)
COMMON/CBLK3/IcrA, IcrW, KVA, KVW ,PAA, PRW,CPA,cpw
REAL KTA, K'IW, IWA, KVW
IF(T.GT.2S0) GOrO 10

CPA=(T-200)/50*-.8+1006.1 
Kv.A=«T-200)/50*2+7.49)*IE-6 
IcrA=(T-200)/50*.00418+.01809 
PRA= (T-200)/50*-.OI7+. 739 

GOTO 20 
10 IF(T.GT.300) GOI'O 30 

CPA=(T-250)/50*.4+1005.3 
KVA=«T-250)/50*6.19+9.49)*lE-6 
IcrA=(T-250)/50*.00397+.02227 
PAA={T-250)/50*-.014+.722 

GOI'O 20 
30 CPA=(T-300)/SO*3.3+1005.7 

KVA={(T-300)/SO*S.08+15.68)*lE-6 
KTA=(T-300)/50*.00379+.02624 
PRA=(T-300)/50*-.011+.708 

* * 
*--------PROPERTIES OF STEAM NBS/NRC TABLES--------------- -----* 
*. * 
20 CIW=1896.0 

K'IW=O.01777 
IF(T.LE.273.17) KVW=I.899E-3 
IF(T.GT.273.17) KVW=(T-273.17)/30.0*-1.570E-3+1.899E-3 
PRW=I.006 

60 RETURN 
END 

****************************************************************** 
* * 
* SUBROUTINE: DESCRP * 
* THIS SUBROUTINE DESCRIBES THE DATA FILE WHICH * 
* CONTAINS THE NECESSARY GmIETRIC AND PHYSICAL DATA * 
* FOR THE FIAT PlATE COUNTER-FIDW HEAT EXCHANGER. * 
* * 
****************************************************************** 
* * 
* * 

SUBROUTINE DESCRP 
WRITE (5, 10) 

10 FORMAT ( /,/,/,4X, 'THE GEClv1ETRIC AND PHYSICAL mTA OF THE' 
# 'HEAT EXCHANGER IS DESCRIBED IN A mTA FILE') 

WRITE(5,20) 
20 FORMAT( 'NAMED XCHGR.mT. REVISIONS ARE MADE 'IO WIS mTA' 

# • BY EDI'ITING THIS Df\TA FILE. I ) 

WRITE (5, 30) 
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30 FORMAT ( 1,1, 7X, 'EDIT LINE #', 28X, 'QUANTITY' , 3lX, 'UNITS r ) 

WRITE (5,40) 
40 FO~( 6X,'-------------',26X,'----------',29X,'-------') 

WRITE(S,50) 
50 FORMAT ( IIX, r 100' ,23X, 'SPACING OF X' 'CHGR SURFACES' ,2IX, 

# 'METERS' ) 
WRITE(S,60) 

60 FORMAT ( l1X, '200' ,23X, 'FOULING FACI'OR' , 36X, '-') 
WRITE(S,70) 

70 FORMAT ( llX,' 300' ,23X, 'THICKNESS OF X' 'CHGR SURFACES' , lOX, 
# 9X, 'METERS' ) 

WRITE(S,80) 
80 FORMAT( llX,' 400' ,23X, 'CONIl.JCTIVITY OF SURFACES', 2SX, 

# 8X, 'W/(M@2 K)' ) 
WRITE(S,90) 

90 FORMAT( IlX, '500' ,23X, 'LENGTH OF X' 'CHGR SURFACES' ,13X, 
# 9X, 'METERS' ) 

WRITE(S,lOO) 
100 FORMAT ( 1lX, '600' ,23X, 'WIDI'H OF X' 'CHGR SURFACES' ,14X, 

# 9X, 'METERS') 
WRITE (5, 110) 

110 FORMAT ( 11X, '700' ,23X, 'NUMBER OF Har PASSAGES' ,16X, 
# 12X,'-') 

WRITE(S,120) 
120 FORMAT ( llX,' 800' ,23X, 'NUMBER OF COLD PASSAGES' ,1SX, 

# l2X,'-') 
WRITE(5,130) 

130 FORMAT ( llX, '900' ,23X, 'NUMBER OF X' 'CHGR SURFACES' ,13X, 
# 12X, '_I ) 

RE'IURN 
END 

* * 
******************************************************************* 
* * 

SUBROUTINE TO CACUIATE THE CORE* * 
TEMPERATURE AT I.OCATION 4 TO* * 
DETERMINE IF FROST IS FORMING* * 

* * 
******************************************************************* 
* * 

SUBROUrINE lTEMP
CCMIDN/CBLKI/T (8 ) ,PROP (5,8) ,ms (8 ) , FW (8 ) , DIWSIJr (8 ) ,

1 1l'IDr (8 ) , DENTIJr (8 ) , C (8 ). , RE (8) , H(8 ) ,F ( 8) ,SVAPP ( 61 ) 
C<M-1ON/CBLK2,/XX,XXLCW,XXHIGH 
Ca4MON/CBLKS/MFRH ,MFRC, NH, NC,WDIH,8, OMFRH, OMFRC 
COMMON/CBLK7jNS,L,DW,WW,TEMPIN(4),TEMPSU(4) 
COMMON/CBLK8/RF,Q,DC,KC,NFLPRT 
COMMON/CBLKIO/FROSTH(0:41),FROSTT(0:41),DHC(4),PFAN,FSCOND, 

# DHTC(0:4l),DHCEND(4),FHMAX,XOMAX,FROSTP,DPO,TOTDP 
REAL ~,L,MFRH,MFRC,KC

* * 
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*--------cACULATE THE PLATE TEMPERATURE-----------------------------* 
* * 

001 1=1,4
RES=l/H (I+4 )+rM/KW
REST=RES+1/H(I}+DHCEND(I)
IF(I •Gr• 2) REST=REST+OC/KC
DT=(T(I}-T(I+4)}*(RES/REST)
TEMPIN(I}=DT+T(I+4)-273.16

* * 
*-------cACULATE SURFACE TEMPERATURE OF THE FROST---------------* 
* * 

RES=RES+DHCEND(I) 
IF (I. Gr. 2) RES=RES+DC/KC 
Dr= (T (I) -T (I+4) )*(RES/REST) 
TEMPSU(I)=DT+T(I+4}-273.16 

1 CONTINUE 
00 2 1=1,4 

IF (MFRC. LE. 0.007) TEMPIN(I) =0.1 
2 CONTINUE 

IF (XX. m. L) TEMPIN (3) =TEMPIN (2 ) 
IF(XX.EQ.L) TEMPIN(4 )=TEMPIN (2) 
IF(XX.m.L) TEMPSU(3 )=TEMPSU (2 ) 
IF(XX.EQ.L) TEMPSU(4)=TEMPSU(2) 
RETURN 
END 

**************************~******************************************

* * 
* SUBROUI'INE: DRY * 
* '!HIS SUBROUTINE CACULATES THE PARAMETERS FOR '!HE * 
* DRY PORTION OF THE HEAT EXCHANGER * 
* * 
********************************************************************* 
* * 

SUBROUTINE DRY 
COMMON/CBLKl/T(8),PROP(S,8),PWS(8),PW(8),DPWSDT(8) 

# , r:wor(8) , DENTDr (8) ,C(8) ,RE (8) ,H( 8 ) , F(8 ) ,SVAPP(61 ) 
COMMON/CBLK2/XX,xxr...c:w,XXHIGH 
COMMOO/CBLKS/MFRH ,MFRC, NH, NC,WDTH,S,OMFRH,OMFRC 
OOMMON/CBLK7jNS,L,DW,KW,TEMPIN(4),TEMPSU(4) 
COMMOO/CBLK8/RF ,Q, OC, KC, NFLPRT 
COMMON/CBLK9/T]ME,TISTEP,TIEND,CT,DLMASS,CONERR,PEAKQ,CONDIR, 

# NSTFLG,CNTIME,CNTSTP,CGAIN,NS2FLG 
OOMMON/CBLKIO/FROSTH(O :41) ,FROS'IT(0:41) ,mC(4) ,PFAN,FSCOND, 

# DHTC(0:41),DHCEND(4),FHMAX,XOMAX,FROSTP,DPO,TOTDP 
CG1MON/CBLK11/UDRY, UWEr,QDRY, (:wEI' 
COMMON/CBLK12/ISTFLG 
REAL KW,L,NTU,roc,MFRH,MFRC,LMTD 
IF( ISTFLG.EQ.l) GOTO 6 
IF (TIME.GT.0.0) CALL ITEMP 
CALL SATVAP 
CALL HUMRAT 
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CALL PROPS
CALL ENTHAL
CALL HTCPRI'
CALL REYNLD
CALL FRICFC
CALL TRNCOF

6 HH={H(1)+H(2»/2.0 
HC={H(5)+H{6»/2.0 
CH={C(1)+C(2»/2.0 
CC=(C(5)+C(6»/2.0 
DHCH={DHC(1)+DHC{2»/2.0 
IF {CH.GI' .CC) GOTO 2 
CMIN=CH
CMAX=CC
GOI'O 3 

2 Q1IN=CC 
CMAX=CH 

3 R=Qt1IN/CMAX 
UDRY=l/(l/HH+l/HC+RF+IM/KW+DHCH) 
NW=UDRY*NS*WDrH*XX/CMIN 
EFF=(l-EXP(-NTU*(l-R»)/(l~R*EXP{-NTU*(l-R»)

QDRY=EFF*CMIN*{T(1)-T{6» 
THO=T(l)~DRY/rn

TCO=QDRY/CC+T (6·)
T(2)=THO
T(5)=TCO
RETIJRN
END

********************************************************************* 
* * 
* SUBROUTINE:WET * 
* THIS SUBROUTINE CACUIATES THE PARAMETERS FOR THE * 
* WET PORTION OF THE HEAT EXCHANGER * 
* * 
********************************************************************* 
* * 

SUBROUTINE WET 
COMMON/CBLKl/T(8),PROP{5,8),PWS{8),PW(8),DPWSDT(8) 

# ,IlVIJI' (8) ,DENTDT (8) ,C(8) ,RE(8) ,H(a) ,F( 8) ,SVAPP( 61) 
CCMMOO/CBLK2/XX, XXLOW ,XXHIGH 
COMMON/CBLK5;MFRH,MFRC,NH,NC,WDcrH,S,OMFRH,OMFRC 
COMMON/CBLK7/NS,L,DW,row,TEMPIN(4),TEMPSU(4) 
CCM-10N/CBLK8/RF, Q, r:c, Ke, NFLPRT 
OOMMON/CBLKIO/FROSTH(O:41),FROSTT(O:41),DHC(4),PFAN,FSCOND, 

# DHTC(O:41),DHCEND(4),~,XOMAX,FROSTP,DPO,TOTDP

<D1MON/CBLKlljUDRY,UWE'r,QDRY,(WET 
CG1MON/CBLK12/ISTFI.G 
REAL ~,L,NTU,KC,MFRH,MFRC,LMTD
IF(ISTFIG.EQ.l) OOTO 6 
CALL ITEMP 
CALL SATVAP 
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CALL HUMRAT 
CALL PROPS
CALL ENrHAL
CALL HTCPRT
CALL REYNLD
CALL FRICFC
CALL ENHANCE
CALL TRNCOF

6 HH=(H(3)+H(4»/2.0 
HC=(H(7)+H(8»/2.0 
CH=(C(3)+C(4»/2.0 
CC=(C(7)+C{8»/2.0 
DHCH=(DHC(3}+DHC(4})/2.0 
IF{CH.GT.CC) GGI'O 2 
CMIN=CH 
CMAX=CC 
GOIO 3 

2 CMIN=CC 
CMAX=CH 

3 R=CMIN/CMAX 
UWET=1/(1/HH+1/HC+RF-HJW/KW+DCjKC+DHCH) 
NIU=UWET*NS*WDIH* (L-XX) /CMIN 
EFF=(l-EXP(-NTU*(l-R»)/(l-R*EXP(-NTU*(l-R») 
0WET=EFF*CMIN*(T(3)-T(8» 
THo--T (3 )-QWET/CH 
TCO=<;WET/CC+T(8) 
T(4)=THO 
T(7)=TCO 
RETURN 
END 

******************************************************************* 
* * 
* SUBROUTINE REINIT * 
* IF THE EXIT PLATE TEMPERAWRE IS GREATER THAN DC * 
* FOR THE CONDENSING PORI'ION Bur THE EXCHANGER IS DRY * 
* SET WE FROST HEIGHT AND TIME TO ZERO * 
******************************************************************* 
* * 

SUBROUTINE REINIT 
COMMON/CBLK10/FROSTH(0:41),FROSTT(0:41),DHC(4),PFAN,FSCOND, 

# DHTC(0:41),DHCEND(4),FHMAX,XOMAX,FROSTP,DPO,TOI'DP 
00 1 1=0,41 
FROS1H(I)=O.O 
FRosrr( I) =0.0 
DHTC(I)=O.O 

1 CONI'INUE 
REWRN 
END 

******************************************************************* 
* * 
* SUBROUTINE FROST * 
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* A SUBROurINE TO CACUIATE THE FROST HEIGHI', '!HE * 
CHANCE IN HEAT TRANSFER COEFFICIENT AND THE CHANGE * 
IN MASS FI.DiJ RATE* * 

* * 
******************************************************************* 
* * 

SUBIDUTINE FROST
CCl1MOO/CBLK1/T(8) ,PROP (5,8 ) , PWS (8) , IW(8 ) , DEWSur (8 )

# , OVDr (8) ,DENTDT (8 ) ,C(8 ) , REN (8) ,H(8) , F(8 ) ,SVAPP (61 ) 
CCMMON/CBLK2/XX,XXI1l'J,XXHIGH 
COMMOO/CBLK3/KTA, K'IW, KVA, KVW, PRA, PRW,CPA,CPW 
CCMMON/CBLK4/W( 8) ,PA'IM,RlHMHI ,RLHMCI 
COMMOO/CBLKS/MFRH ,MFRC, NH, NC,WIJIH,S,OMFRH, OMFRC 
COMMON/CBLK7/NS,L,DW,row,TEMPIN(4),TEMPSU(4) 
COMMON/CBLK8/RF,Q,]X, KC, NFLPRT 
COMMON/CBLK9/TIME,TISTEP,TIEND,CT,DLMASS,CONERR,PEAKQ,CONDIR, 

# NSTFIG, CNTIME, CNTSTP ,CGAIN, NS 2FLG 
OOMMON/CBLK10/FROSTH(O:41),FROSTT(O:41),DBC(4),PFAN,FSCOND, 

# DHTC(O:41),DHCEND(4),FHMAX,XOMAX,FROSTP,DPO,TOTDP 
REAL ~,L,MFRH,MFRC,KC,K,KV,KTA,KTW,~,KVW,]WT,M,M2,M3,

# DHTCT(4),IT(4) 
* * 
*---------INITIALIZE VARlABLES--------~----------------------------*
* * 

WO=0.62198*(0.61117/(PATM-0.61117»
TO=273.16
TPI.ASI'=273.17
FHMAX=O.O
XOMAX=O.O
DP=O.O
TPFLG=O.O
FROSTP=O.O
RE=O.O
KV=O.O
DEN=O.O
00 24 1=1,4
IT(I)=O
DHTCT(I)=O.O
DHC(I)=O.O

24 CONTINUE 
* * 
*---------00 LOOP TO CACULATE FROST CONDITIONS ~ A----------------* 
* NUMBER OF POINTS IN '!HE HEAT EXCI:I1'NGER * 
* * 

00 1 1=0,41
IF(I.LE.20) DELXO=XX/20.0
IF(I.GT.20) DELXO={L-XX)/20.0
IF(DELXO.m.O.O) ooro 1
IF{ I. LE. 20) XO=DELXO*I
IF(I.GT.20) XO=DELXO*(I-21)+XX

* * 
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*--------ESTIMATE THE PLATE TEMPERATURE------------------------·-* 
* * 

IF(I.LE.20) TP=(TEMPIN(2)*XO+TEMPIN(l)*(XX-XO»/XX 
IF( I .G'T.20) TP=(TEMPIN( 4) *(XO-XX)+TEMPIN(3) *(L-XO) )/(L-XX) 
TP=TP+273.16 

* * 
*---------cACUIATE THE HOT AIR TEMPERATURE------------------------* 
* * 

IF(I.LE.20) TA=(T(2) *Xo+T(I) *(XX-XO) )/XX 
IF( I.GI' .20) TA=(T( 4) *(Xo-XX)+T(3) *(L-XO) )/(L-XX) 

* * 
*---------~CUI.ATE THE COLD AIR TEMPE~-----------------------*
* * 

IF( I.LE.20) TC=(T( 6)*XO+T (5 )* (XX-XO) ),IXX 
IF( I.GT. 20) TC=(T(8) *(XO-XX)+T (7 )*(L-XO) )/(L-XX) 

* * 
*-----------cACUIATE '!HE HOT SIDE HEAT TRANSFER COEFFICIENI'--------* 
* * 

IF(I.LE.20) HH=(H(2)*XO+H(I)*(XX-XO»jXX 
IF(I.GT.20) HH=(H(4)*(Xo-XX)+H(3)*(L-XO»/(L-XX) 

* * 
*---------~CULATE THE COLD SIDE HEAT TRANSFER COEFFICIENT--------* 
* * 

IF(I.LE.20) HC=(H(6)*XO+H(5)*(XX-XO»jXX 
IF(I.GT.20) HC=(H(8)*(XO-XX)+H(7)*(L-XO»/(L-XX) 

* * 
*----------cACULATE'!HE LO~ HUMIDITY RATIQ----------------------* 
* * 

TT~-273.16+31.0

J=INT(TI) 
PWSF=(TI-J)*S~P(J+l)+(J+I-TT)*SVAPP(J)

IF(I.EQ.O) PWF=PWSF*RLHMHI
IF(I.GT.20) PWF=PWSF
~=.62198*(PWF/(PATM-PWF»

* * 
*---------CHECK IF PLATE TEMPERATURE OC OR GREATER-----------------* 
* * 
18 IF(TP.GE.273.16) FROS'IH(I)=O.O 

IF(TP.GE.273.16) FROSTT(I)=O.O 
IF(TP.GE.273.16) DHTC(I)=O.O 
IF(TP.GE.273.16) GO'IO 5 

* * 
*---------FOR THE PLATE TEMPERATURE LESS THAN OC-------------------* 
* * 
*---------cACULATE THE THERMAL CONDUCTIVITY------------------------* 
* KINEMATIC VISCOSITY * 
* PRANDI'L NUMBER * 
* DENSITY * 
* REYNOLDS NUMBER * 
* OF THE FREE STREAM AIR * 
* * 
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CALL PRPINI'(TA)
K =(KTA~*KTW)/(l~A)

KV =(KVA+WA*KVW)/(l+WA)
PR =(PRAiWA*PRW) /(l-+WA)
DEN=PATM*1000.0/(287.0*TA*(1.0+1.6078*~»

* * 
*--------REYNOLDS NUMBER IS CACUIATED ON THE PAST MFRH---------* 
* * 

RE=MFRH,lNH* (1+WA) *2/ (DEN*KV*WDIH ) 
* * 
*-------CHECK IF DEWPOINT BElOW FREEZING: IF THE------------* 
* CASE THEN THE FROST COVER REMAINS UNCHANGED * 
* * 

IF(WA.LE.WJ) GOro 9 
* * 
*--------cACULATE THE FROST TIME ---------------------------------* 
* * 

FROSTT(l)=FROSTT(l)+TISTEP 
* * 
*-------CHECK IF PLATE TEMPERATURE OC OR GREATER----------------* 
* * 
9 IF(TP.GE.273.16) FROSTH(I)=O.O 

IF(TP.GE.·273.16) FROSTI(l )=0.0 
IF(TP.GE.273.16) DHTC(l)=O.O 
IF{TP.GE.273.16) GOTO 5 

* * 
* A) FROST HEIGHT * 
* * 

IF(WA.LE.ID) FH=FROSTH(I)
IF(WA.LE.WO) ooro 19
FH=O.466*(FROSTT(I)**O.663)*(RE**0.393)*

# «(TO-TP)/TO)**0.705)*«(WA-ID)!WO)**0.098)/1000.0 
* * 
* B) FROST DENSITY * 
* * 
* * 
* C) FROST 'IHERMAL CONDUCTIVITY * 
* * 
19 COND=FSCOND 
* * 
* D) FROST THERMAL RESISTANCE * 
* * 

DHI'C(I)=FH/COND 
RES=l/HC+J:W/KW 
IF(I.LE.20) REST=RES+1/HH+DHTC(I) 
IF(I.GT.20) REST=RES+1/HH+DHTC(I)+DC/KC 
DT=(TA-TC) *(RES/REST) 
TPNEW=Dr+TC 
IF(ABS(TP-TPNEW) .LT.O.IO) GOlD 12 
IF(TP.LT.273.16.AND.TPNEW.GT.273.16) TPFLG=I.0 
IF (TPFIG. EO.1.0) TPHOLD=TP 
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TP=TPNEW 
GOrO 9 

* * 
*--------IOCATIOO OF FROST FRONI'-----------------------------·--* 
* * 
12 IF (FROSTP.EQ. 0.0 ) FROSTP=XO 
* * 
*------ENSURE FROST CANNar GO BACKWARD IN TIME-----------------* 
* EXCEPI' DURING DEFROST * 
* * 

IF(NsrFLG.EQ.O.AND.FH.LT.FROSTH(I» FROSTH(I)=FH 
IF(NSTFIG.EQ.0.AND.TIME.GT.1.0) OOTO 1G 
IF(FH.GT.FROSTH( I» FROSTH(I )=FH 

1G IHI'C(I)=FROSTH(I)/COND 
5 CIT=1.0 

IF(I.EQ.0.OR.I.EQ.20.0R.I.EQ.21.0R.I.EQ.41) CIT=O.5 
IF( I .EQ. O.OR. I.EQ. 20.0R. I .EQ.21.0R. I.EQ. 41) DHTC( I)=DHTC(I) *0.5 

* * 
*----.--cACUIATE AN AVERAGE HEAT TRANSFER RESISTANCE----- .-----* 
* * 

IF (TPFLG. EQ.1.0) TP=TPHOLD
TPFLG=O.O
IF( I.LT.10) Me=l
IF(I.GE.10.AND.I.LE.20) MC=2
IF(I.GE.21.AND.I.LE.30) Me=3
IF(I.GT.30) MC=4
DHTCT(MC)=DHTCT(MC)+DHTC(I)
IT(MC)=IT(MC)+cIT

* . IF«TEME-2.58).GT.O.O) WRITE(22,853) I,TP,TA,TC,HH,HC,WA,DEN, 
# KV,RE,IHI'C(I),FROSTT(I),FROSTH(I)* 

*853 FORMAT( IX,' I " 12,' TP " F6. 2,' TA " F6. 2,' TC " F6. 2, t HH t, 
* # F6.2,· HC ',FG.2,' ~ ·,F6.5,· D ·,F6.4,' V',E9.3, 
* # ' RE ',F6.1,· DHTC ',FG.5,' FT ',FG.4,t FH ',F6.5) 

IF(I.EQ.O) DHCEND(1)=DHTC(O)*2.0 
IF(I.m.20) DHCEND(2)=DHTC(20)*2.0 
IF(I.EQ.21) DHCEND(3)=DHTC(21)*2.0 
IF(I.EQ.41) DHCEND(4)=DHTC(41)*2.0 
IF(FROSTH (I ) •Gr. FHMAX) FHMAX=FROSTH (I ) 
IF (FROSTH(I ) •EO. FHMAX) XQMAX=:XO 
TPLAST=TP 

1 CONTINUE 
IMI'=4 
IF(DELXO.EQ.O) IMT=2 
00 7 I=l,IMT 
DHC(I)=DHTCT(I)/IT(I) 

7 CONTINUE 
IF(DELXO.EQ.O) DHCEND(4)=DHCEND(2) 

** 
*------cACULATE A NEW MASS FlO'l RATE ON THE Har SIDE------------* 
* * 

V1=1.OjPROP(5,1) 
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V2=1.0/pROP(S,4)
C9=9.S
09=CMFRH

* * 
*--------cACULATE AN AVERAGE PASSAGE SPACING---------------------* 
* * 

FHAVE=FHMAX
Al=wDTH*(S-FHAVE)*NH
A=WD'IH*L*2.0*NH
00 22 M=OMFRH,0,-O.0005
G=M* (1+W( 1) )/Al
F9=(F(1)+F(2)+F(3)+F(4»/4.0
Zl=1.05*C9
Z2=2.0*(V2/VI~I.0)

Z3=F9*(A/AI )*( (VI+V2 )/(2.0 *VI) )
Z4=-0.35*V2jVI
DP=(G**2.0*Vl/2.0)*(Zl+Z2+Z3+Z4)
IF (TIME .EO.TISTEP) DOO=DP
DP=DP-DPO
IF(DP.GE.(PFAN-DOO» GOTO 22
M2=«(PFAN-DPO)-DP)/(PFAN-DPO»**0.S*OMFRH*(I~(I»

IF(ABS(M*(1~(I»~2).LT.09) 09=ABS(M*(I~(I»-M2)

IF (ABS (M* (1 +W (I) )-M2) •LT. 09) TOTDP=DP+DOO 
IF(AES(M*(I~(1»-M2).EQ.09) M3~

IF(AES(M*(I+W(I) )-M2) .GI'.09) GOI'O 23 
22 CONTINUE 
23 MFRH=M3 

REI'URN 
END 

******************************************************************* 
* * 
* SUBROUTINE CONTROL * 
* OPTIMIZATION SUBROUTINE * 
* * 
******************************************************************* 
* SUBROurINE CONTROL 
* OOMMON/CBLKSjMFRH,MFRC,NH,NC,wtITH,S,CMFRH,OMFRC 
* COMMON/CBLK7jNS,L,DW,row,TEMPIN(4),TEMPSU(4) 
* Ca1MON/CBLK8/RF,Q,OC,KC,NFLPRT 
* OOMMON/CBLK9/TIME,TISTEP,TIEND,CT,DLMASS,CONERR,PEAKQ,CONDIR, 
* # NSTFDG,CNTIME,CNTSTP,CGAIN,NS2FDG 
* REAL KW,L,MFRH,MFRC,KC 
** * 
**--------PROPORTIONAL CONTROL SECTION-----------------------------* 
** * 

IF(NSTFLG.EQ.I) GOI'O I* 
* IF(TEMPIN(4).GI'.0.0) NSTFLG=I 

IF(NSTFLG.EQ.l) CNTIME=TlME* 
* IF (NSTFLG.EQ.I ) GOIO 2 

DMASS=(1.O-TEMPIN(4»*CGAIN*OMFRC* 
* IF(IW\SS.GE.MFRC) DMASS=MFRC/2.0 
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MF~=MFRC-~S* 
GOI'O 11* 

** * 
**-------------QPTIMALIZING CONTROL SECTION------------------------* 
** * 
* IF( (TIME-eNTIME) .LT .CNTSTP) GOrO 11 
* CNTIME=CNTIME+CNTSTP 
*2 WRITE(5,5) Q,PEAKQ
*5 FORMAT( 5X,'Q= ',FI2.2,' PEAKQ= ',FI2.2)
* IF (Q.GT•PEAKQ) PEAKQ=Q 
* DELTA=PEAKQ-Q 
* IF{DELTA.GT.CONERR) CONDIR=CONDIR*-1.0 
* IF (DELTA.GT .CONERR) PEAKQ=Q 
* MFRC=MFRC+DIMASS*CONDIR 
* IF (MFRC.GT•cm'RC) MFRC=OMFRC 
*11 RETURN 
* END 
****************************************************************** 
* * 
* SUBROUXINE CONTROL * 
* MONI'IORS THE CHANGE OF THE SUPPLY AIR TEMPERATURE * 
* THROUGH THE HEAT EXCHANGER AND DEFrosTS THE EXCHANGER IF * 
* IT INCREASES OR DECREASES SIGNIFICANTLY * 
* * 
****************************************************************** 

SUBROUTINE CCNrROL 
COMMON/CBLKI/T(8),PROP(5,8},PWS(8),PW(8),DPWSDr(8) 

# ,DWDr(8),DENTDT(8),C(8),RE(8),H(8),F(8),SVAPP(61) 
C~N/CBLK2;XX,xxr..cw,XXHIGH

COmON/CBLK5/MFRH ,MFRC, NH,NC ,WIJrH,S, OMFRH, OMFRC 
OOMMON/CBLK7/NS,L,DW,row,TEMPIN(4),TEMPSU(4) 
COMMON/CBLK8/RF,Q,DC,KC,NFLPRT 
COMMON/CBLK9/TIME,TISTEP,TIEND,CT,DLMASS,CONERR,HOLDT,CONDIR, 

# NSTFLG,CNTIME,CNTSTP,CGAIN,NS2FLG
REAL KW, L, MFRH,MFOC ,KC

* * 
*--------eHECK IF DEFROST IS REQUIRED-----------------------------* 
* * 
* NS'IFLG INDICATES DEFROST IS REQUIRED * 

NS2FLG INDICATES IF EXHAUST TEMPERATURE MUST BE RAISED ** 
* * 

IF(TIME. LT•CNI'IME) GOI'O 3
CNTIME=CNTIME+CNTSTP
IF(TIME.EQ.O.O) ooro 1
IF(NSTFLG.EQ.O) GOTO 1

2 IF(NS2FLG.EQ.O) GOI'O 4 
IF(CONDIR.EQ.l.O) HOLDI'~(5)-T(8)
IF(OONDIR.EQ.l.O) CONDIR=O.O 
Dr=(T(5 )-T(8) )-HOLDI' 
IF(DT. LT. CONERR) NSTFLG=O 
IF(DT.GT.2.0) NSTFLG=O 
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IF(NSTFLG.EQ.O) GO'IO 1 
ooro 3 

* * 
* ----ASSURE EXHAUST OUTLET TEMPERATURE IS GREATER THAN O. SC- .--* 

* * 
4 DMASS=(2.S-(T(4)-273.16))*CGAIN*OMFRC 

MFRC=MFRC-Il4ASS 
IF (MFRC. GT.OMFRC) MFRC=OMFRC 
IF (MFRC .EQ.OMFRC) NS2FLG=1 
IF(ABS(275.667T(4)).LT.l.0) NS2FLG=1 
ooro 3 

* * 
* --------DEFROST CyCLE-------------------------------------------*
*1 * 
11 NS2FIG=O 

IF (TEMPIN(4 ) .GT.O.O.OR.MFRC.LE.O.007) NSTFLG=1 
IF(TEMPIN(4).GT.O.O.OR.MFRC.LE.O.007) CONDIR=I.0 
IF (NSTFLG. EO.l) GOTO 2 
WRITE(S,II) 

11 FORMAT ( lOX, I DEFROST CYCLE') 
1l'1ASS= ( 1. O-TEMPIN( 4 ) )*CGAIN*CJ4FRC 
IF (!>tASS .GE. MFRC ) a4ASS=MFRC/2. 0 
MFRC=MFRC-LMASS 

3 RE'IURN 
END 
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