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Abstract:

Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the
Poisson algebra associated with a finite-dimensional symplectic manifold (“phase space”). His algorithm
gives a non-commutative, but associative, product (a so-called “star-product”) between smooth phase
space functions parameterized by Planck’s constant 7, which is treated as a deformation parameter.
In the limit as & goes to zero, the star product commutator goes to A times the Poisson bracket, so
in this sense his method provides a quantization of the algebra of classical observables. In this work,
a generalization of Fedosov’s method is developed which applies to the infinite-dimensional symplectic
“manifolds” that occur in Lagrangian field theories. We show that the procedure remains mathematically
well-defined, and we explain the relationship of the method to more standard perturbative quantization
schemes in quantum field theory.
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Introduction

It is well known that the quantization of classical systems is, in many cases, not a straightforward pro-
cedure, and, furthermore, usually suffers from certain ambiguities. In the case of a mechanical system
defined on a finite-dimensional phase space spanned by coordinates (g, p), one usually proceeds by rep-
resenting the quantum operators corresponding to ¢ and p by the multiplication and the differential
operators @ = g and P = ihd/dq. It arises the problem of how to consistently assign a quantum operator
to a general phase space function f(g, p) because the quantum operators no longer commute. In practice,
one typically deals only with a restricted class of phase space functions such as the Hamiltonian (often

of the form H(q,p) = % + V(q)) suffering only from mild —if any— ordering ambiguities. However, this
is an issue for general phase space functions.

It is, of course, legitimate to take the viewpoint that the quantum observables are simply the (self-

adjoint) elements of the algebra generated by (@, P), (the CCR, Weyl, or resolvent [? | =-algebras,
depending on the precise framework) and that one can worry about the classical limit later. However,
this procedure only works for simple (linear) phase spaces, and problems also occur when one passes to
infinite-dimensional phase spaces, such as for Klein-Gordon, or gauge theory, especially in versions of
such theories exhibiting self-interactions.
At some level, these problems can be ascribed to “Haag’s theorem” [? ], which states that the repre-
sentation of the canonical commutation relations (CCR) is no longer unique in the infinite-dimensional
setting!. Instead, the determination of the representation is, in a sense, a dynamical problem which
must be solved as part of the construction of the quantum theory. One manifestation of these issues
is the appearance of the well-known “renormalization” procedures in quantum field theory, which seem
unavoidable if one wants to give proper mathematical sense to the naive quantization procedures extrap-
olated from finite-dimensional quantum mechanical systems (with linear phase space).

An alternative approach to quantization which is both somewhat more general than that sketched
above and well-adapted to quantum field theory —as we shall see— is “deformation quantization”. As
before, the input is a finite-dimensional phase space S equipped with a Poisson bracket {f, g} between
phase space functions f,g. However, rather than trying to promote these to operators in some way or
other, one tries to “deform” the algebraic structure on space of phase space functions C*(S) in such a
way that the Poisson bracket is recovered in the limit i — 0. More precisely, one looks for an associative
product ; (called “star product” in this context) on C*(S) depending on Planck’s constant, which is
now considered as a deformation parameter?. To have a correspondence with the Poisson bracket, one
postulates that (f g —g*n f)/h — {f, g} and that f ;g — fg as i —> 0. Since the underlying space of
functions, C*(S), is unchanged, the ordering problem seems to have disappeared at first glance. On the
other hand, the precise definition of the product *; is now no longer evident, and one has in fact many
possible ways to define x5 consistent with these requirements. Thus, one can say that the ambiguities
have simply been shifted into the precise definition of the associative structure on C*(S), and one might
be tempted to conclude that not much has been gained after all.

This impression is, however, incorrect. Firstly, the framework of deformation quantization is more
general than the usual one, since one does not assume, even, the existence of an underlying symplectic
structure o on S (i.e., closed, non-degenerate 2-form), but only a Poisson structure, and one certainly

IThe Stone-von Neumann theorem [? ? ]| no longer holds.
20ften 1 is treated as a “formal parameter” in the sense that the objects considered are formal series in %, i.e. A does
not take any numerical value. Questions of the convergence of the series are thereby avoided/ignored.



does not have to assume that S is a linear space with constant symplectic structure o = dq* A dp; as for
the CCR-algebra.

Also, the framework is naturally embedded into the algebraic framework of deformations of algebras,
for which natural notions of equivalence are available. Indeed, considering —as seems perfectly natural—
different deformations to be equivalent if they lead to isomorphic algebras, one gets a classification of
non-equivalent star products in terms of certain cohomological data on (S,o) [? 2 2 2 2 72 7 7 ].
Furthermore, as we shall review, there exist very natural geometrical constructions of star products that
are not only very appealing from the mathematical viewpoint, but also give new insights into the nature
of the quantization problem. Finally, and most importantly for us, deformation quantization seems also
to be very well-adapted to the field theoretic setting, i.e. to the quantization of field theories.

The connection between quantum field theory and deformation quantization was investigated for the first
time by Dito [? ? | and, in the algebraic approach to quantum field theory, has been made transparent
in the paper [? ]| by Diitsch and Fredenhagen. The essence of their paper is the observation that
the Wick-product in free quantum field theory (e.g. Klein-Gordon theory) can be viewed as a certain
special kind of star product on the space of classical functionals on phase space. More precisely, the
authors suggest to view the Klein-Gordon field p(x),z € R*, as an “evaluation functional” on phase
space S = {classical smooth solutions to (O —m?)u = 0}, defined by ¢(z)[u] = u(z). They observe that
S carries a natural Poisson structure. This structure is inherited from the Lagrangian formulation of the
theory and is sometimes also called “Peierls-bracket” [? |. They then proceed by defining a star product,
setting

p(x1) *p p(2) = p(@1)P(72) + hw(z1, 22)1, (1)

where the product ¢(x1)p(z2) is the usual product of evaluation functionals, i.e. ¢(x1)p(z2)[u] =
u(x1)u(xs), and where w is the so-called “Wightman function” (vacuum 2-point function) of the Klein-

Gordon field, i.e.
1 .
w(z,y) = W JV* (54(p2 — m2) exp(ipu(x —y)*)dp

As they continue to show, this defines consistently a star product on the space of (polynomial) evaluation
functionals on .S, which are more precisely functions F' : S — C of the form

F = flay, .. zn)p(xr) .. p(an)dey ... day, (2)
Mn
where f can even be a distribution with certain well-described singularities such as a delta distribution.
The above procedure looks unfamiliar to a field theorist at first sight, but becomes natural if we observe
that the product rule is precisely “Wick’s theorem” if we formally identify

plar) - plan) o @) .. @len) 3,

where the hat denotes the usual field operator on Fock-space, and where the double dots : --- : mean
normal ordering. In fact, this correspondence precisely defines a Hilbert-space representation of the
associative algebra W, generated by these F’s under the star product.

Apart from clarifying the connection between “ordinary” quantization using Fock-space methods and
deformation quantization, the construction of [? | has several advantages. First of all, the resulting
algebra W is, as an abstract algebra, independent of any choices such as a vacuum state. Indeed, the
only datum entering the construction is w, and it is shown that passing to a new w’ within a certain
natural class (“Hadamard states”, see def. 7?7 below), yields an isomorphic algebra W'. This is a strong
conceptual advantage if one wants to consider a Klein-Gordon field on a general Lorentzian manifold M,
where no preferred structures such as a vacuum state are available [? 2 7 2 7 ].

Another advantage of the formalism is that, within W, there are contained not only observables such as
¢(x), but also the Wick powers ¢(x)* and their “time-ordered products”. These in turn are the building
blocks of the usual perturbative series for a corresponding interacting quantum field theory.

The authors of [? | indeed go on to explain in detail how such series are constructed within W using the
methods of “causal perturbation theory” [? ? 7 ? | (based on earlier ideas by Epstein and Glaser [? ])
on Minkowski space. It turns out that these constructions can also be generalized to a general globally
hyperbolic curved Lorentzian manifold M [? 2 7 7 7 |.



Even though the constructions of [? 2 2 2 2 2 7 7 7 7 | (for reviews see [? 7 7 |) are
mathematically clear and rigorous, a conceptually unsatisfactory aspect remains. The point is that,
although the construction precisely follows the philosophy of deformation quantization in the case of
linear field theories, one deviates from it in the case of interacting theories. Indeed, what one con-
structs are perturbative series in W for the observables in the interacting theory, but the star prod-
uct x; remains that given by eq. (??) for the underlying free theory. On the other hand, according
to the philosophy of deformation quantization, it would be more natural to keep the observables un-
changed, but rather deform the underlying star product now taking also into account the self-interaction
of the field. According to this approach, one would hence start more naturally with the “phase space”
S = {classical smooth solutions to (0 — m?)¢ — %¢3 = 0} of the theory with interactions encoded in
the non-linear term %d)‘g. As for A\ = 0, this space carries a natural symplectic structure, hence Poisson
bracket, inherited from the underlying Lagrangian formulation. The task would then be to deform this
Poisson bracket according to the general rules for deformation quantization. This star product would
certainly not be the same as for the free theory (?7?), but how to construct it? Also, once it has been
constructed, what is the relation to the construction of [? 2 2?22 7222 2 2 |?

In this work, we address and answer these two questions. In order to do so, we go back to the
case of a finite-dimensional symplectic manifold (S,0) and review how one can construct a deforma-
tion quantization there. The method which we will follow is that pioneered by Fedosov [? 7 |
and elaborated upon by many other people [? ? ? ? ]. Our main result will be that a vari-
ant of his method can also be applied in the infinite-dimensional setting of field theory, i.e. to S =
{classical smooth solutions to (O — m?)¢ — %qﬁf” = 0}, and we will be able to say how this construction
relates to that via causal perturbation theory of [? 2 7 2 2 2 2 ? ? ? ]|. In order to explain our
methods and results in more detail, we must however first outline the essential ideas of Fedosov’s method
in finite dimensions (a more detailed outline is given for the convenience of the reader in chapter ?7?).

We start considering as phase space a finite-dimensional symplectic manifold (S,c). We denote
phase space points by x. Fedosov’s method can be explained as follows. Choose an arbitrary but fixed
x. The cotangent space V¥ = T*S with symplectic form o, clearly is a linear phase space (of dimension
n = dim(S)) with constant symplectic form. For polynomial functions F'(y), H(y) on this linear phase
space V* —not on S—, one defines a star product by

Fe, H=m (exp(hw? 0, ® 0, )(FQH)), (3)

or equivalently by

yoey =y'y’ +hw,
where y*,i = 1,...,n are coordinates on V;* —not S— and where w¥ is a complex tensor such that its
imaginary part is the symplectic form ¢ on V* and its real part G¥ is a positive definite (real) inner
product on V;*. The choice is made in such a way that (J;)'; = G*(0,)x; is a complex structure on
V¥. The product e, can be extended to formal power series F'(y), H(y), i.e. roughly speaking we allow
polynomials in ¢!, ..., 4" of infinite degree3. The algebra of formal power series F'(y) on V;* with product
e, is denoted by W,. We may repeat this construction for any other point x if we provide such an w,
at each point of S, i.e. if S is equipped with an almost-Kdihler structure (the section z — w, is called
almost-Kahler section), and thereby get an algebra W, for all x € S. The union of these algebras defines
a bundle over S, and the product in each fibre evidently gives a product between the sections of this
bundle.
The next step in the scheme is to define a flat derivative operator D in this bundle. The derivative oper-
ator is constructed order by order in f. Its zeroth order (in /) part is the natural geometric connection
V associated with the almost-Kahler structure w, and the higher order corrections can be constructed
recursively. They depend on the y, the curvature tensor R’;x;, the torsion tensor 7% and an increasing
number of covariant derivatives of theses two tensors.
The flat sections in W relative to D form a sub algebra of all sections. Furthermore, it is seen that for any
smooth phase space function f on S, there exists a corresponding smooth flat section F in W such that

3More rigorously, for n = 1 the ring of formal power series C[[y']] is the direct product CV, i.e. the sequences (ag, a1, - -.)
with possibly infinitely many non-vanishing elements (conventionally written also as <0 any™), equipped with the ring
structure (an)nen + (bn)nen = (an + bn)nen and (an)nen(bn)nen = (Zkgn @ — kb )nen. See eg. [? ].
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F, = f(x)14+ O(h) for each = € S. If we denote by 7 the projection of F' onto its part proportional to the
section 1, then we can also characterize the relation between F' and f by 7F = f. The correspondence
f e F is in fact one-to-one.

The desired star product on C*(S) is now defined as follows. For f,h € C*(S), first find the flat sec-
tions F, H of W under this correspondence, then form F' e H via the fiberwise product (??), then project
F e H onto the part proportional to the section 1, i.e. acting with the map 7. The projection is a for-
mal power series in h with functions on S as coefficients. This provides the star product f*h := 7(F e H).

We have presented Fedosov’s method in such a way that the analogies to field theory suggest them-
selves: in field theory, S is the space of solutions of the theory, i.e. a “point” ¢ € S is a (smooth)
solution to (O —m?)¢ — ;6> = 0. TS is the space of solutions of the linearized equations around ¢,
i.e. solutions u to (O —m? — §¢*)u = 0. T3S is the space of linear functionals from linearized solutions
to R, e.g. functionals ¢(x) of the form (z)[u] = u(x), or more generally functions F' of the form (?7?).
The fiberwise product e corresponds to (??), where wy is now a chosen 2-point function in for each ¢
for the linear Klein-Gordon theory described by the equation (0 —m? — %qﬁz)u = 0. The functions F of
the form (??) together with the product e, define an algebra W, and the union of these fibres forms a
bundle W over S, just as in the finite-dimensional case. Thus, we are in principle set to start Fedosov’s
construction in the field theory setting.

However, it is far from evident that this will make any actual mathematical sense. Obvious potential
problems that come to mind are:

1. The “manifold” S is clearly infinite-dimensional in the field theory setting. Thus, we need to first
define a suitable manifold structure on S, which will depend on the behaviour of solutions to the
non-linear Klein-Gordon equation. As is well-known, even if this can be achieved, we are left with
the task of giving a precise meaning to bundles like (7*S)®" entering the recursion procedure
in Fedosov’s method. In the infinite-dimensional case, such tensor products could have a priori
different meanings. For instance, they could mean various distribution spaces in n space-time
variables. Experience from ordinary perturbative quantum field theory suggests that very singular
distributions should be expected to occur.

2. We need to show that the recursion procedure in Fedosov’s method, which involves taking an
increasing number of “derivatives” along S, can be carried through. In the infinite-dimensional
setting, index contractions such as in UsiRijklemmGijk"ylyT dz?® (a typical example of a W-
valued 1-form appearing in the construction of D) would formally become “integrals” over space-
time (“continuous index summation”). Such integrals of distributions have no a priori reason to
make any sense.

3. Even if the above problems can be solved, it is a priori highly unclear what would be the relation
of the quantization scheme to more standard methods.

4. In quantum field theory, there is a well-defined notion of space-time locality (“Einstein causality”)
meaning that quantum field observables localized at space-like related regions should commute.
For the free field theory with product (1), this property is evident because w(z,y) = w(y,z) if z,y
are space-like to each other. However, if we follow Fedosov’s algorithm in the context of interacting
quantum field theories — assuming even this can be done — there is no guarantee that space-time
locality will hold. Indeed, there is no analogue of space-time locality in finite-dimensional systems,
hence this property is very far from being manifest in the quantum field theory generalization of
Fedosov’s method.

In this work, we propose a possible solution to these issues. We proceed in the following manner:

1. We propose a notion of smoothness for functions on S (or more generally, for sections in the bundle
W — S), which we call “on-shell W-smoothness”. This notion encapsulates the following ideas.
First of all, a function on S (or section in W) should be extendible to a function (or section)
on the space C*(M), i.e. it should not only be defined for smooth solutions ¢ of the non-linear
Klein-Gordon equation, but also for arbitrary smooth functions ¢. Of course, there could be many
extensions of a given function (or section) on S. We require that there exists an extension such that

4



for any v € N the v-th Gateaux derivative (i.e. the variational derivative in ¢) of the extension not
only exists, but defines a distribution on M™ with a certain restricted “wave-front set”. In the case
of sections in W, we also require the extension to have a specific form. The terminology “on-shell”
refers to the fact that it is made for functions (or sections) on the solution space S, and the letter
‘W’ is used throughout this work for a sequence of sets {W,,}nen, where W, is in the cotangent
bundle T*M", appearing in the wave front condition.

2. It turns out that the notion of on-shell W smoothness has the desired properties for our purposes:
We can show that it behaves well under the products e, and derivatives. In particular, we can
show that the infinite-dimensional analogues of the curvature tensors R';j;, the torsion tensor
Tk, and their covariant derivatives are on-shell W-smooth (for a suitable choice of the “tensor”
w on S). Using such results, we can show furthermore that these properties suffice to construct
the infinite-dimensional analogue of the flat Fedosov connection D order by order in A, and that
this connection maps on-shell W-smooth sections into on-shell W-smooth sections. The methods
of microlocal analysis give a convenient calculus for the wave front set of the various distributions
that come up in this construction and are instrumental in demonstrating these results.

3. We then show that different (suitable) choices w,w’ give “gauge equivalent” Fedosov connections
D, D’ on the bundles W, W’. This result will enable us to see how Fedosov’s method in quantum
field theory is related to more standard methods of quantization. The method which can be
compared most easily with Fedosov’s method is that of “causal perturbation theory” [? 7 ? ?
? ]. In this method, one constructs, for each classical (local, polynomial function) F(¢) on S
a corresponding quantum observable. This observable is defined separately for each ¢ € S and
is denoted by F‘¢. Here, the notation reflects a splitting of the quantum field into a “classical
background” ¢ € S and a “quantum fluctuation” ¢. The quantity ﬁ‘¢ is an element of Wy, and is
constructed by a perturbation series involving retarded products of the interaction. This interaction
is obtained by expanding the Lagrangian £(¢ + ¢) in ¢ keeping only the part that is higher than
quadratic in the “fluctuation”, ¢, which is treated “as an operator”. In A¢*-theory, this would
be Vy(p) = (309> + L¢*). In the simplest case when the classical observable is the field itself,
F(¢) = ¢, the corresponding quantum observable would be given by

30) = o+ @) + X B [y R (o) Vo) @+ ©Val)). ()

-~
perturbation series

A precise definition of meaning of the terms in the perturbation series (“Retarded products” R, )
is recalled in sec. ?7?.

It is possible to show with our methods that the map ¢ — F¢, is, in fact, an on-shell W-smooth
section in W. The first guess might be that this section is flat with respect to the Fedosov connec-
tion D, but this turns out to be not the case. However, we shall show that it is “gauge equivalent”
in a natural sense to a flat section in WW. We therefore obtain two different algebras of flat sections
with respect to the Fedosov connection D: one consists of the flat sections obtained via the corre-
spondence 7 in Fedosov’s method, while the other is generated by the flat sections obtained acting
with the “gauge equivalence” on any possible F.

4. The flat sections of the type (??) appearing in causal perturbation theory are known to satisfy
Einstein causality [? ]. It follows that the corresponding flat sections relative to a general Fedosov
operator D related via “gauge equivalence” also respect Einstein causality, as gauge equivalence
respects the product structure e.

The approaches to the quantization of field theories described and compared in this work are not
the only possible ones. Another possibility is to take as the fundamental input the so-called operator
product expansion (OPE) [? ? 7 ? ? ]|. (This framework seems to work best in the context of Euclidean
quantum field theories, i.e. versions of the theory on a Riemannian manifold). In this approach, the
“product” is encoded in a set of “structure functions”. More precisely, the OPE is an expansion of the
form

OAl (xl) T OAn (SCn) = Z Cgl,..A,An (zla cee ,In)OC(fEn),
C
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where the O 4 for a “basis” of local functionals of the basic field (i.e. they are monomials in ¢, d¢, 6, . ..
in the present setting). The meaning of the sum and the equality is that both sides should be equal when
inserted into a suitable correlation function of the Euclidean theory, see [? ? ? | for more details and
explanations. “Associativity” is encoded in a set of highly non-trivial consistency conditions between the
coeflicient functions C’EI,MA"’, see [ 7 ].

The OPE framework looks rather different at first sight from that presented here, where the ultimate
goal is to construct a star-product *; of the interacting theory, rather than a corresponding set of coeffi-
cient functions. Nevertheless, the two approaches are closely related. This becomes more evident if one
expands the OPE coefficients out in a deformation parameter, which can be % (or also other parameters,
such as the coupling, A, or even 1/N in a theory with N-component fields transforming e.g. under
O(N)). The different expansion orders in % of the OPE coefficient functions then correspond to the
different expansion orders of the product 5, and so, in a sense, the coefficients C' are to be seen as the
“structure constants” of the product *5, i.e. both approaches are complementary. The OPE approach
seems to be more geared towards Euclidean quantum field theory and its advantage is that the algebraic
structure is directly linked to the short distance properties of correlation functions. The methods de-
scribed in this thesis (Fedosov’s method, causal perturbation theory) are more naturally geared to the
Lorentzian quantum field theories and nicely emphasize the dependence on any classical backgrounds.
Thus, the two methods are, in a sense, complementary. A formal proof of their equivalence would be
highly desirable. This should certainly be possible, since also Euclidean quantum field theories have a
Hamiltonian formulation, which is underlying Fedosov’s strategy.

For the convenience of the reader, we now summarize the contents of this work.

Chapter ?7: We begin this chapter by restating the programme of deformation quantization in sec. 7?.
Then, in sec. 7?7, we outline the variant of Fedosov’s method applicable to almost-Kahler manifolds, i.e.
symplectic manifolds (S,0) with an additional almost-complex structure J compatible with the sym-
plectic form. In particular, we present the two fundamental results in this context: there is a unique
Fedosov connection D determined by o, J (or equivalently, the corresponding almost-K&hler section w)
and certain auxiliary data (thm. ??), and how the star product corresponding to o, J is constructed using
the one-to-one correspondence between smooth functions on .S and smooth flat sections with respect to
D (thm. ?7?).

In the last section, sec. 77, we consider for a given symplectic manifold (S, o) two different almost-Kéahler
sections w, w’ both compatible with the same 0. We give a proof of the equivalence (in the sense of
def. ?7?) of the star products corresponding to w and w’ (for the same choice of auxiliary data). In
particular, we give an explicit construction of the gauge equivalence between the Fedosov connections
corresponding to w and w’ (thm. ?7?).

Chapter 77: In sec. 7?7, we present the deformation quantization of free Klein-Gordon field theory,
following the approach of [? ]. We recall the notion of Hadamard 2-point function (def. ??). Then, we
define the algebra W (def. ??) as the space (?7) of sequences of (C[[h]]-valued) compactly supported
symmetric distributions with wave-front set bounded by the sets {W,,} defined by (??) (modulo distribu-
tions obtained by acting with the Klein-Gordon operator) equipped with the product e given by eq. (?7?)
in terms of a (pure) Hadamard 2-point function w. This product e can be viewed as a star product
for the Poisson structure given by the Peierls bracket (??). We summarize the similarities to Fedosov’s
method in Table ?7.

In sec. 77, we discuss the interacting Klein-Gordon field. We will not directly extend Fedosv’s method
to the interacting Klein-Gordon theory yet, but rather we present the approach based on causal per-
turbation theory. The idea is to fix a background ¢ and expand the classical action of the interacting
Klein-Gordon theory around ¢. For each ¢, the quadratic part of the expansion gives a linear theory
and, similarly as in the free case, we can construct the algebra W, once a (pure) Hadamard 2-point
function wg is provided. The higher than quadratic part is treated as the interaction. Then, for any local
functional (def. ??), its corresponding quantum interacting field in ¢ is the element F¢ € W, defined
by the Haag series (eq. ??), given in terms of the retarded-products. (This gives the precise structure
of the perturbation series (?7).) We recall the axiomatic definition of the retarded products ??-?? and
the characterization of their “renormalization ambiguities” (thm. ??). We conclude this section proving
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that the map ¢ — 13'¢ which assigns to a background ¢ the quantum interacting field in ¢ corresponding
to a local functional satisfies a functional equation (eq. (??)), which has a striking similarity with the
flatness condition DF = 0 for the Fedosov connection D in finite dimensions. This gives the first hint
of the relation between Fedosov’s method and the causal perturbative approach to interacting quantum
field theories.

Chapter ??7: In this chapter, we show that Fedosov’s procedure can be directly implemented in the
infinite-dimensional framework of a Klein-Gordon quantum field theory with a non-linear equation of
motion. In sec. 77, we define rigorously the infinite-dimensional manifold S of the smooth solutions to the
A¢*-interacting Klein-Gordon equation on ultra-static space-times exploiting the global well-posedness of
the initial value problem of the corresponding non-linear equation of motions (see app. ?7). The tangent
space TS is defined in terms of smooth solutions of the linearized equation around ¢. The definitions
of the cotangent space T;‘S and its tensor powers WT(;‘S are given in terms of compactly supported
distributions with wave-front set bounded by a set W,, modulo distributions obtained by acting with the
Klein-Gordon operator for the linearized equation of motion around ¢ (see (??)). We provide the defi-
nition of on-shell W-smoothness for functionals on S (see def. ??) or more general sections on X}, 7*S
(see def. ??). This notion of smoothness is tailored to the choice of the sets {W,,},en and it will be
sufficient to guarantee the well-definiteness of the tensor product (prop. ??), the differential (prop. ?7)
and the Poisson bracket (prop. ??) as maps acting on on-shell W-smooth sections which preserve the
on-shell W-smoothness property. We conclude this section defining the bundle W, its on-shell W-smooth
sections, Cy; (S, W), and the on-shell W-smooth forms with values in W, Q(S, W).

In sec. 7?7, we provide this geometrical framework with two important on-shell W-smooth sections: the
symplectic form o (thm. ??) and an almost-Kihler structure w” = —1u + o (thm. ??). For the latter,
it is required a tight control on the dependence of the pure Hadamard 2-point function wg with respect
to the background ¢, which is formalized in the notion of “admissible” assignment ¢ — wy (see def. ?7).
It is also proved that there exists a non-trivial ¢ — w satisfying such requirements.

In sec. 77, we prove that the product e, in each fibre Wy defined in terms of an admissible wg preserves
the on-shell W-smoothness and therefore provides an algebra structure e for Cyf; (S, W) (prop. ??) and
Qw (S, W) (prop. ?7?).

In sec. ??, we define the infinite-dimensional analogue V" of the Yano connection V in finite dimension.
VW is shown to be a W-smooth covariant derivative (in the sense of def. 7?) which preserves the sections
o and p (prop. ?77). Then, we extend VW to a derivative operator on Q(S, W) (prop. 77?).

In sec. ??, after defining the Fedosov operators, we prove the infinite-dimensional analogue of Fedosov’s
theorems (thm. ??). In particular, we show that there is a unique Fedosov W-smooth connection D"
corresponding to o, w” and the W-smooth connection V" .

Chapter ?7: The last chapter is devoted to the relation between the perturbative approach to quan-
tum field theory of sec. ?? and Fedosov’s method in infinite-dimensions constructed in chapter ??. In
particular, the aim is to understand eq. (??) in the light of Fedosov quantization. In sec. 7?7, we prove
that the operator VI — (., %} appearing in (?7?) is precisely the Fedosov connection with respect to
the “retarded 2-point function”, or “in-state”, (thm. ??). We then extend the results obtained in sec. 77
for the finite-dimensional context to our infinite-dimensional case. In particular, we prove that the two
Fedosov W-connections corresponding to different choices of 2-point functions as in lemma ?? are gauge
equivalent (thm. ??). We then conclude that the map ¢ — ﬁ}p, which is an on-shell W-smooth section
(as proved in sec. 77?), is gauge equivalent to a flat section with respect the Fedosov connection corre-
sponding to any admissible assignment of (pure Hadamard) 2-point functions (in the sense of def. 77).
Finally, we check that flat sections obtained by acting with the gauge equivalence on F satisfy Einstein
causality (prop. ??). In this sense, Fedosov’s method respects Einstein Causality.






Chapter 1

Fedosov deformation quantization of
finite-dimensional manifolds

1.1 Deformation quantization

There are several possible approaches to the quantization of a classical system. Among these, we fo-
cus in this work on deformation quantization. This approach was introduced in the form used here by
Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [? ? ? |, although antecedents can be found in
earlier investigations e.g. by Weyl [? | and Moyal [? ]. In these papers, quantization is considered
as a deformation of the structure of the algebra of classical observables, rather than as a change in the
nature of the observables themselves. Thus, mathematically, the approach has a close relationship to the
theory of deformations of algebraic structures as described e.g. by Gerstenhaber in [? ]. For a summary
of the general approach, we refer to [? | and the references therein. The basic set-up of deformation
quantization is as follows.

The input is a finite-dimensional Poisson manifold (S, {-,-}), which is a manifold S equipped with a
bilinear, skew-symmetric map {-,-} : C*(S) x C*(S) — C*(S) satisfying the Jacobi identity and the
Leibniz rule with respect to the pointwise multiplication of functions, i.e.

{{f,9},h} + cyclic permutations =0, {f,gh} = {f, g}th + {f, h}g.

By C*(S)[[/]] one denotes the space of formal power series in h whose coefficients are smooth complex
valued functions, i.e. each element can be written as

fla,h) = 37 B fr(x),

k=0

with coefficients fi(z) € C™(S). The formal power series form a ring: such series are added and multiplied
in the usual way (as if they were converging power series) but we ignore questions of convergence not
assuming that & takes any numerical value. Deformation quantization consists in providing an associative
algebra structure on C™(S)[[h]], a so-called star-product , which satisfies the following conditions:

1. For any f,h e C*(S), it holds
f*h = Z hkckr(fa h)a (11)

k=0

where C}, are C-bilinear (differential) operators on C*(S). Eq. (??) extends C[[A]]-linearly to
Cr(S)[IA-

2. The algebra C*(S)[[]] equipped with the star-product * is a formal deformation of the commu-
tative algebra of functions C™(S) equipped with the pointwise multiplication, i.e. Co(f,h) = fh.

3. The product  satisfies the correspondence principle, i.e. Ci(f,h) — Ci(h, f) = i{f, h}.

9



In the this chapter we consider a special case of Poisson manifolds. We focus on symplectic manifolds.
A symplectic manifold (S, ) is an even dimensional manifold S with a 2-form ¢ = ¢;;dz’ A dz?, called
symplectic form, that is non-degenerate, i.e. v = 0 if and only if o(v,v") = 0 for any vector field v’, and
closed, i.e. do = 0. Such a 2-form induces a Poisson bracket according to the usual rules of Hamiltonian
mechanics: if E :=0%0d; A 0; is the inverse of the symplectic form, one sets {f, h} := E(df, dh).

The existence of a deformation quantization for finite-dimensional symplectic manifolds was established
by De Wilde and Lecomte [? |. Later these results were conceptualized by Omori, Maeda, Yoshioka [? ]
and, in particular, by Fedosov [? ? ]. In this chapter, we will follow a variant of Fedosov’s construction
which has the advantage that it can be generalized to quantum field theories as will be discussed in later
sections. As an aside, it is worth mentioning that the existence of a deformation quantization for the
more general case of finite-dimensional Poisson manifolds was proved by Kontsevich [? |, but this work
is not relevant for us here, since we will always be given a symplectic form.

1.2 Fedosov’s method

The Fedosov’s method, as described in his original paper [? |, only requires as input a symplectic
structure o. In our application of the method to quantum field theory, it will be necessary to consider a
variant of his method, described by Karabegov and Schlichenmaier in [? |. This variant uses as input a
positive semidefinite section w = w¥d; ® d; of C®T'S ® T'S such that

1 1
Imw" = =¥, Rew" = =GY, (1.2)
2 2
where G = G"0; ® d; is the inverse of a Riemannian metric y = G;;dz’ ® dz’ on S. In other words,
1 7
=-G+-E,
YTev Ty

where E = ¢%0; A 0; is the inverse of the symplectic form o. Positive semidefinite means that for an
arbitrary section ¢ of C® T*S we have

w(t,t) = 0. (1.3)
This condition is equivalent to a Cauchy-Schwarz-type inequality for G and FE, i.e.
|E(ty, t2)] < (G(t1, 01)G(ta, 12))"?, (1.4)

for any pair t1,ts of real valued sections of T*S. As we will discuss extensively later, the tensor field
w can be interpreted as the finite-dimensional analogue of a 2-point function of a quasi-free state in the
quantum field theory setting. We assume also that w defines an almost-complex structure compatible
with the symplectic form o, i.e. there exists a section J : T'S — T'S such that

J? = —id, o(Jv, Jw) = o(v,w), p(v,w) = o(Jv,w).
In local coordinates, the almost-complex structure is given by
Jij = Gwagj = —O'Mng.

In other words, we assume that S is an almost-Kdihler manifold and we call such w an almost-Kdhler-
section. As we will see, this condition will correspond to w being pure in quantum field theory setting.
Of course, for a given o, there are many such corresponding w’s. These ambiguities are discussed in
sec. 77 below.

Note that w corresponds to the hermitian form W on CRT*S®T*S given by

i

W = —aikwkzogjdxi ®dr’ = §,u — 50, (1.5)
and conditions (??) and (??) imply
W’ (@, u) =0, o (un, un)| < (e, ur ) pa(us, us)) 2,

for any section v of C® TS, and for any pair uy, us of real valued sections of T'S.

The basic example is S = R?? with constant almost-Kéhler structure. In this case, the desired
deformation quantization, denoted by * = e from now on, is elementary to describe.

10



Remark 1 (basic example). Assume that S = R?? and that o is the standard constant symplectic
form, i.e.

0 1 0 O
-1 0 0 O
(0¥) = Do D
o o0 ... 0 1
o o0 ... =1 0

in a suitable basis. Let w™ be any constant complex hermitian matriz with the properties just described,
for instance w" = %G” + 50" with

1 0 0 0
0 1 0 0
G =1|: :
0 0 1 0
0 0 0 1

We define the star product * = e by
foh:=m(exp(hw’0; ® 0;)(f ®h)), (1.6)

where m is the pointwise multiplication, m(f,h) = fh, and where the exponential is understood in the
sense of formal power series.

The construction above will serve as a model for the case of general almost-Kdhler manifolds. For
this purpose, we first reformulate the construction. For Fedosov’s method, we actually need the above
star product not for general smooth functions on S = R??, but in fact only for formal power series in 2d
coordinates,

Clly',....4* ] =2 C® (—B VIR,
nz=0
where @ denotes the direct product, and where v denote the symmetrized n-fold tensor product. As
usual in formal deformation quantization, the complex coefficients are then further promoted to power
series in the formal parameter .

Definition 1. The formal Wick algebra W = W(R?4,w) is the vector space
Clly*,....y* A = C[[r]] ® D v "R* (1.7)

n=0

equipped with the star-product e defined by eq. (77). More explicitly, for the monomialst = t;, _; y™ -y’
and s = s;,._;, Yy -y, the component of t ¢ s in C[[h]] ® VIR?? is given by

(tos) =
(1.8)

k
=h R0 = k)l(m — k)!teli..ekil,...in,kSeg.i.e;c,in,kﬁ,...ijw

S O A R PO Sy P R 71
w kY Y Y )

if j =n+m— 2k for k < n,m, otherwise (t e s)’ = 0.

It is useful and natural in the context of def. 7?7 to introduce two gradings, called the symmetric degree
deg, and the formal degree deg;. They are defined by

degs(yi) = 13 dEgh(h) = 1;
and extended to W in the natural way. We define also the total degree Deg := 2 deg;, + deg,.

Remark 2. The product e preserves the total degree Deg and therefore we can filtrate the formal Wick
algebra W with respect to the total degree Deg. It follows that if we decompose te s in terms homogeneous
in Deg, then each of these terms is a finite sum of products of components of t, s homogeneous in Deg with
degree not greater than k. Note that each element in the formal Wick algebra VW which is homogeneous
in Deg is a finite sum of elements homogeneous in deg, and degy. Therefore, each of these products of
components of t,s homogeneous in Deg further decomposes into a finite sum of terms as in eq. (?7), for
some appropriate components of t,s homogeneous in deg,, degy,.
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In addition to the product e, the algebra W has a natural involutive, anti-linear, *-operation, which
we denote by . For the monomial ¢t = t;, _;,y" ---y* € C[[y',...,y*]][[A]], it is defined by

i1,

tT = tzlwy ) 'yuv

where the overbar denotes complex conjugation. Note that each g is by definition hermitian with respect
to 7. It is easy to check that the operation T satisfies

(tes)l =5t etl,
as required.

We now review Fedosov’s method, as adapted to almost-K&hler manifolds in the work of Karabegov
and Schlichenmaier [? |. As in the original approach by Fedosov, there are three main steps:

1. For each x € S, define the so-called formal Wick polynomial x-algebra (W,,e,) (associated with
w,) for the cotangent space T;*S. This defines a bundle of associative algebras, called W. The
space of smooth sections of W is denoted by C*(S,W). It is an associative algebra with respect
to a product, called e, which is naturally induced by the product e, on each fiber.

2. In the bundle W, construct a flat covariant derivative D, called “Fedosov comnection”, which is
compatible with the product e in the sense that the Leibniz rule holds:

D(tes)=(Dt)es+te(Ds),

where ¢, s are smooth sections on WW. Furthermore, D is compatible with the hermitian conjugation
operation T on W in the sense that
(Dt)" = D(t").

This condition is usually not emphasized, but it is necessary to provide the space of flat sections
in C*(S,W), denoted by ker D, with the natural structure of a =-sub-algebra of C* (S, W).

3. The last step consists in defining an isomorphism 7 between ker D and C*(S)[[#]], and, finally,
proving that a deformation quantization is given by the star-product defined by

frh=1(r71(f)er™ (h),

Since the inverse 77! can be shown to be compatible with the #-operation on W in the sense that

(rH T =771,

the algebra (C*(S)[[h]], *) equipped with the complex conjugation f — fT:= >, h¥f; is indeed
a =-algebra.

We now explain in more detail how the above steps are carried out. We begin by defining the formal
Wick algebra at x € S, which is given by our local model in def. ?? replacing R?? with the cotangent
space T.¥S, and w with w, (the value of the almost-Kahler section at x) in eq. (??) i.e.

W, = W(TES,w,).
Thus, as a vector space, W, is the formal symmetric algebra over T.*S with values in C[[A]], i.e.

W, =C[[h]]®@ @ v"TrS, (1.9)

n=0

(compare with (??)). To simplify the notation, we introduce the symmetric tensor fields yit ---yi» =
dz® v -+ v dzin. In other words, 3! are commuting variables similarly as before. Hence, an element of
W, can be again identified with ¢ = (t°,¢,...), where t° € C[[R]], and where, for n > 0,

N a0t
U ="ty i Y Y

IThe star symbol is already over-used.

12



with t;, ., € C[[A]] symmetric. Similarly as before we can introduce the symmetric degree deg,, the
formal degree deg; and the total degree Deg.

The Wick product in W,, denoted by e, is defined as in eq. (??) using w,, i.e. the value at x of the
complex tensor field w. Again the product is interpreted as given with respect to the Deg-filtration (see
remark ??). The bundle of formal Wick algebras is defined as the disjoint union of all the fibers W,,, i.e.

W= | [{z} x W,

zeS

Because W is just given by tensor products of the cotangent bundle, it has the structure of a smooth
vector bundle. The product defined in each fiber induces naturally an associative product on the space
of smooth sections of WW? denoted by C* (S, W), namely for any ¢, s smooth sections on W we set

(tes)(x) :=t(x) o, s(x). (1.10)

The product e is smooth in the sense that the product of two smooth sections gives another smooth
section. This follows from the smoothness of w. Finally, each algebra W, is also a =-algebra with
hermitian conjugation operation f and, therefore, the prescription

t'(@) i= (t()'

provides the structure of a x-algebra for the space of smooth sections of W.

We are still far from completing the deformation quantization of C**(.S). In fact, instead of defining
a star product on C*™(S)[[h]], we have given an algebra structure on the much larger space of sections
C*(S,W) in the algebra bundle W. The key idea of Fedosov is to get around this problem by defining
a special flat covariant derivative and restricting to the corresponding flat sections. These flat sections
are then put into correspondence with functions on S. We now outline the procedure.
Since we assume that S is an almost-Kéhler manifold, we have the Riemannian metric y = G;jda’ v dad.
Let V be the Levi-Civita connection with respect to u, i.e. V is the unique torsion-free connection such
that 6;1 = 0. In local coordinates, the Christoffel symbols of this connection take the well-known form

o 1
Fkij = iGM (61-ng + 6jGig — 6gGij) .

Because the bundle W is a formal series of tensor products of T*S (with values in C[[%]]), the Levi-Civita
connection extends (C[[7]]-linearly) to a torsion-less covariant derivative on WV, which is denoted again
by V.

In general this connection is not flat and it does not satisfy the Leibniz rule with respect to the product e
unless Vo = 0, i.e. unless S is a K&hler manifold. The second issue can be solved by passing to another
natural connection defined by Yano in [? |. Introduce the Nijenhuis tensor by

N(v,w) := [v,w] + J[Jv,w] + J[v, Jw] — [Jv, Jw],
for v, w vector fields. In local coordinates takes the form
N* 35 = (06" )T 5 + T 0(0:0%5) = (9% 5) T 5 = T*e(0;J%).
The following proposition is proved in [? |:
Proposition 2 (Yano Connection). Let (S,c0,J) be an almost-Kdhler manifold. There is a unique
connection V, called Yano connection, such that
1

Vu=0, Vo=0, and T(v,w)= —ZN(U,IU) (1.11)
for v, w vector fields on S, where T'(v,w) = V,w—V,v—[v,w] is the torsion tensor. In local coordinates
the Christoffel symbols of V are
1

T =1% - 3

2To be precise, one should consider elements in the space (P,,5oC*(S, v"T*S))[[h]], rather than in the space
C*(S,W). Abusing the notations, we identify these two notions.

(N*ij + G (N Gy + N7 ;Gr)) - (1.12)
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In general, the torsion of the Yano connection does not vanish (nor does the curvature). In fact, it
vanishes precisely when N = 0, i.e. when S is a Kahler manifold. In this case, the Yano connection
coincides with the Levi-Civita connection. We can naturally extend V to a covariant derivative on W.
Because V annihilates both ¢ and p, and, therefore, w, it follows that V satisfies the Leibniz rule with
respect to the product e. Furthermore, V is compatible with the conjugation { because by construction
the Christoffel symbols of V are real. In other words, if £, s are smooth sections of W, then it holds

V(tes)=(Vt)es+te(Vs), V(I = (V).

To implement Fedosov’s idea, we would like to have a flat connection satisfying the Leibniz rule which
is compatible with the conjugation f. The Yano connection is not generally flat and, consequently, we
need to consider yet another connection. The construction of a flat connection becomes more natural
if we consider the algebra of W-valued forms on S. The W-valued k-forms are smooth sections of
(AFT*S)®@W? and they form a vector space denoted by Q¥(S,W). Hence, a k-form ¢ with values in W
consists of a sequence (0 t%1 . ), where

R =t i AT A A da @ yTt ey (1.13)
and where ¢;,...i,.5,..5, : S — C[[]] are smooth functions anti-symmetric in the first %k indices and
symmetric in the remaining n indices.

We can extend canonically the degrees deg,, deg; and Deg to forms with values in W. In addition,
we define the anti-symmetric degree deg, as deg, dz’ := 1. The space of W-valued forms of arbitrary
anti-symmetric degree is denoted by

dim S
QS W) = @ QF (S, w).
k=0

An element ¢ in Q(S, W) is a collection (£*™)x—o,... dim s:nen Where t*™ is the same as (??). It is clear
that the anti-symmetric degree does not exceed the dimension of the manifold S. The product e can
be extended to a product on (S,V) in the following way. Consider two deg,-homogeneous elements
in Q(S,W). Without loss of generality, they can be written as t ® A\, s ® X, where t,s € C*(S, W),
and X € QF(S), N € Q¥(S), i.e. A and X are two ordinary forms (with values in C) of rank k and k'
respectively. The product is then defined as

(t@N o (s@N):=(tes)®(AAN)e Q" (S W). (1.14)

The definition of the product e extends to forms with values in the formal Wick algebra W using the
deg,-filtration. The algebra (Q(S, W), e) inherits the structure of an associative algebra. Furthermore,
this product e is bi-graded with respect to the gradings deg, and Deg.

We can extend the Yano connection to (S, W) in a natural way by defining for t € C* (S, W), A € Q¥(S)

V(@A) = (Vit) ® (dz' A \) +t®d), (1.15)
where d is the ordinary exterior differential acting on differential forms. Following further the procedure

outlined by Fedosov, we introduce the operators § and §—! on Q(S, W), called “Fedosov operators”. Let
t € Q(S, W) with deg, t = k and deg, t = n, then we define 5t,5 1t by

St 1= da’ A dyit, (1.16)
and L
-1 o myjla(azj)t ]@ # O
ot { 0 otherwise (1.17)

In the previous formula, i, (d,; ) means the contraction of the vector field d,; with the first anti-symmetric
index of t. It is clear that § increases by one the anti-symmetric degree while reducing by one the

3To be precise, one should consider elements in the space (B,5oC*(S, AFT*S ® v"T*S)) [[A]], rather that in the
space QF(S,W). Abusing the notations, we identify these two notions.
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symmetric degree of a given element homogeneous in deg,, deg,. The operator §~! is doing the opposite.
More explicitly, we can write

k.n ; . . i
(5t)k+1’"_1 = nti2~~~ik+1%(iljl-~J'n—1)dg€l1 O A . (1.18)
0 otherwise
and
k: k7n i . i - j e "71
(57175)]671’7”1 = mt[il---ik_ljl];j2~~jn+1dm“ A Adrtt @yt yr k20 . (1.19)
0 otherwise

The following identities involving §, 6 ~* and V are essential for the construction of the Fedosov connection
and can be proved by direct computation, see [? ].

Lemma 3. Let T' and R be the elements in Q(S, W) respectively constructed from the torsion tensor T
and the Riemann tensor R of the Yano connection V and defined by

~ 1 . . . ~ 1 . . L
T:= io-jlzTeilléd:Ezl Adx? ®y’t, R:= ZajlgRéjzimdx“ Adx"? @Yty (1.20)
The following relations hold:
(i) 6 = %ad.(é’la),
(ii) 62 = (671)2 =0,
(iii) 6V + V6 = L ad.T,
(iv) V*=—1+ ad. R,
(v) 6T =0, VI =R, and VR = 0,

where ad.(t) :=[t,]s is the adjoint action defined via the deg,-graded commautator in Q(S,W).
Moreover, the Fedosov operators satisfy a Hodge-type decomposition

(vi) 661 +0715 + 7 =id,
where T is the projection on the deg,,deg, = 0 part of Q(S,W).

Following Fedosov, one makes the following ansatz for our desired flat connection operator, called D:

)
D:=V—5+ﬁad.(r), (1.21)
where r = ! is a suitable 1-form with values in W that we need to construct. A sufficient condition on
r to ensure the flatness of D is

Vr—ér—k%ror—R—T:Q, (1.22)

where Q is a closed 2-form valued in C[[A]], i.e. Q = 3,_, h"Q) and each Q is a real valued closed
2-form on S.

The following theorems are modifications of the original results of Fedosov [? , thm. 3.2 and thm. 3.3]
to connections with non-vanishing torsion (as discussed in [? ]) and to non-trivial Q and s (as detailed

in[?]).
Theorem 4 (Fedosov’s First Theorem). There is a unique element r € Q'(S, W) satisfying the equa-
tion (??) for any closed C[[h]]-valued 2-form Q under the requirements

rert @ Z 0 2 (5L = g8 (1.23)

where %) denotes the component homogeneous in Deg of degree k, and where s € C*(S,W) is some
arbitrary self-adjoint element with Degs > 3.

Consequently, the Fedosov connection D defined via eq. (??) is flat, satisfies the Leibniz rule with respect
to the product e, and is compatible with the hermitian conjugation operation .
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Note that the Fedosov connection D depends only on the following input: the (non-flat) Yano connection,
which in turn depends on J and G or, equivalently, o and G, the closed form 2 on S taking values in
C[[#]], and the datum s (subject only to the constraint Degs > 3). We refer to 2 and s as “auziliary
data”. We will mostly use the first Fedosov theorem for the case of Q = s = 0, but it will occasionally
be necessary to have the more general form with non-vanishing auxiliary data.

Once we have defined the Fedosov connection, we can perform the last step in the construction of the
deformation quantization, which is encoded in the following theorem (see [? ]).

Theorem 5 (Fedosov’s Second Theorem). Let T be the projection of a smooth section on W onto its
component with deg, = 0. For each f € C*(S)[[h]], there exists a unique t € C*(S, W) such that

Dt =0, i.e. tekerD, Tt = f.

In other words, the restriction to C™(S,W) nker D of the projection T is a bijection. Let us denote its
inverse by
=1 C*7(9)[[h]] = C*(S,W) N ker D.
Then
frhi= () 0T (1)
is a star-product, and the standard conjugation map f — [ gives (C*(S)[[A]],*) the structure of a
x-algebra, i.e. (f xh) =hx* f.

Proof. The proof of this theorem is given in [? ]| with the exception of the statement concerning the
hermitian conjugation. This can be seen as follows. First of all, we notice that 7(t") = 7(t), simply
because t! = (t9,...) for any t = (t°,...) € C*(S,W). Then, for any f € C*(S)[[h]] the sections

771(f) and (771(f))T satisfy
Dir YN =D () =0=Dr'(f), N =W H)=F=17'(]).

As consequence of the first part of the theorem, there is a unique D-flat section in C'* (S, W) such that
f is its component with deg, = 0. Therefore, 771(f) = (771(f))', which implies straightforwardly the
statement about the =-algebra structure. O

We conclude this section by giving some details concerning the construction, see [? 7 ? |.

Remark 3. 1. The W-valued 1-form r is constructed iteratively. For the case Q2 = 0 = s, it is defined

by
@ g1, ) gt (1% rvr - L r<2>> ,
3+0) _ g1 042 i 0 +2 0—0'+2
P38+ — 5 (Vr( )_ﬁzr( ) ol )>.
<l
2. The map 7~ is a formal quantization map, in the sense that it takes a classical observable f €

C*(S) to an element in the non-commutative algebra C*(S,W) n ker D. Moreover, 7 1(f) is
constructed iteratively

(DO =1,
(T—lf)(2+1) =51 (v(T—lf)(é) i ;:LEZZ[T(Z'JJ)’ (T—lf)é—é’].> )

3. Fedosov’s theorems, even in their generalized versions with non-vanishing data Q and s, are valid
if instead of the Wick product e, we consider the Weyl-Moyal product o, defined on W, as

tot' :=m <exp (iza;jayi ® ay,) t®t’) : (1.24)

The product o is given (fiberwisely) by the same formula as (77), except that w" is now replaced
by i/20%. The definition is extended to forms with values in W similarly as done in (??) for the
product e (trivial action on the anti-symmetric part). One can directly check that relations ?7-77
in lemma ?? still hold for the product ¢. The reason why we do not use ¢ throughout this work is
that it is not suitable for generalization to quantum field theories.
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1.3 Equivalence of the Fedosov quantization of two different almost-
Kahler structures

The construction of the star product on (S, o) we outlined in the previous section depends on a choice of
almost-Kahler structure J, or equivalently of the almost-Kéhler section w. Consider a given symplectic
manifold (S, 0) endowed with two different almost-Kéhler sections w and w’ compatible with the same
o. It is then natural to ask how the corresponding star-products (quantizations) are related. We will
answer this question in the present section. Our analysis is based on a construction of Neumaier [? |.
The author was concerned with the case that J, J’ define two Kéhler structures, whereas we need to
consider the almost-Ké&hler situation.

We first make a general definition.

Definition 6. Consider two deformations (C*(S)[[A]],*x) and (C™(S)[[R]],*) of the classical alge-
bra (C™(95),{-,-}). The star-products are called equivalent if there is an isomorphism of algebras B :

(A %) = (C=(S[[A]], *) such that
B =id+hB, + *By + ...,
where each By is given by a map C*(S) — C™(S) which vanishes on constant functions.

We would like to decide whether two star-products on two almost-Kahler manifolds, obtained using
Fedosov’s method, are equivalent, and we would also like to give explicitly the corresponding isomor-
phisms. For this, we must look at Fedosov’s construction associated with the two given almost-K&hler
sections w,w’. Following the previous subsection, we refer to G, o, V, T, and R as the Riemannian
metric, the Wick product, the Yano connection, its torsion, and its Riemann tensor corresponding to w.
Similarly, G’, o', T" and R’ are the corresponding quantities associated with w’. As vector spaces, the
algebras Q(S, W) and Q(S, W’) coincide. The difference is in the choice of the product, respectively o and
o’. Fedosov’s construction, in particular the first Fedosov theorem (thm. ??), provides for the algebra
Q(S, W) a flat connection D = —§ + V —i/had.(r) corresponding to the first almost-K&hler section w,
and similarly for Q(S,W’) a flat connection D' := —§ + V' — i/had. (r') corresponding to the second
almost-Kahler section w’. The connections D and D’ are uniquely determined by w and respectively w’
if we assume, as we will, that the associated auxiliary data €2, s and respectively ', s’ are zero. We first
observe:

Lemma 7. Q(S, W) and Q(S,W') are isomorphic as algebras.

Proof. We first consider W(R?",w) with constant w, i.e. with constant Kihler structure J with respect
to a fixed constant symplectic form o, and W(R?",w’), where w’ corresponds to another constant Kéhler
structure J’ with respect to the same symplectic form o. These two algebras are isomorphic and the
isomorphism «a : W(R?", w) — W(R?", ') is explicitly given by

a = exp (Z(w - w')ijayié’yg) . (1.25)

For a monomial ¢;, ; y® ---y' we have

A phal

a(til..,inyil . yin) — )|ti1...in (w/ _ w)(iliz . (w/ _ w)izk—ﬂékyizk+1 . yin). (126)

&2k (n — 2k

The same construction then gives an isomorphism «, : W, — W, for any fiber. Since both w and
w’ are smooth sections, and since the algebra structures e and e’ are defined fiberwise, we obtain an
isomorphism « for C*(S, W) and C™ (S, W').

We can extend naturally the map defined in (??), (??) as an isomorphism Q(S, W) — Q(S, W), i.e. we
allow non-trivial anti-symmetric degree. This concludes the proof. O

The Fedosov connection D’ on W can be pulled back to a connection on W via the bundle map
a. We denote this pull-back by D := a~!D’a. Concerning this connection D%, we have the following
result.
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Lemma 8. D® is a Fedosov connection. More precisely, D% coincides with the covariant derivative
obtained from Fedosov’s first theorem (thm. ??) with respect to the product e and characterized by the
following input data: the Yano connection V, Q% = 0 and s* € C*(S, W) with Degs® > 3 given by (?7).

Proof. First of all, D* as a map C* (S, W) — Q!(S, W) is linear by definition. Since D’ is flat, it follows
immediately that D is also flat, (D%)? = o~ }(D’)?a = 0.

By definition, a is an algebra isomorphism W — W', therefore t o s = o *((at) o' (as)) for any t,s €
C*(S,W). The Leibniz rule follows from this consideration and the properties of D', i.e.

D¥(tes)=(a'D')((at) o' (as)) = a " {(D'at) o' (as) + (at) o' (D'as)}
= (D) es+te (D).

By definition «, (and also a™!) acts as the identity on the elements of Q(S, W) with deg, = 0. Therefore,
De(f) = df for any f e C*(S5). Keeping this in mind, it follows as a particular case of the Leibniz rule
that D*(f - t) = f - D*(t) + df ®t, i.e. the linear map D is indeed a connection.

To prove that D® is a Fedosov connection, first we note that da = ad as follows from ?? and the
definitions involved. It is clear that we can rewrite the derivative D® = a~!D’« in the following form

D =—-§+a"'Va+ %ad.(a‘lr’). (1.27)

We express the difference between V and o'V« as
a 'Va=V - %ad.(C), (1.28)

where 1
C:= 50’]-12(]_—‘/ - F)szdxz ® yjlyj27 (]‘29)
and where I',TV are the Christoffel symbols (??) for the Yano connections corresponding to w and w’

respectively. Then, one finds that D® can be written as:

D= 54V + %ad.(ra), (1.30)

where 7* = 17’ — C. The map a~! changes neither the total degree Deg nor the antisymmetric degree
deg,, then r* is Deg > 2 and re(0) = e = 0. A direct computation shows that

§C=T-T", o 'R =R+vC~— %CoC, (1.31)

and then we straightforwardly obtain

1 - N

or® = a~lor' =00 = a T (V' — RN =T" + 2o’ o'4') = (T = T)

7

= (@ 'WVa) (@)= R-T+ —(a" ') o (") + (R— a"'R) (1.32)

St

=Vr°‘—f%—’f’+%r°‘ora.

Therefore, the derivative D% coincides with the flat covariant derivative obtained from Fedosov’s first
theorem with respect to the product e and is uniquely defined by the input data V, Q¢ := 0, and

s ="l —671C, (1.33)
as we wanted to prove. O

Since D and D = a~!D’«a are derivative operators for the same algebra Q(S, W) (both satisfy the
Leibniz rule with respect to the product ), we can compare them, unlike D and D’. Our claim is that
they are gauge equivalent, in the sense explained below, and this implies that the star-products *, *’ on
C*(S)[[A]] are equivalent.
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Theorem 9. There exists a smooth section H € C*(S,W) such that DegH >3, TH =0, H' = H and

D = exp (; ad.(H)) a"'Daexp <—; ad.(H)> . (1.34)

In particular, a solution H for (7?) is uniquely determined by a closed 1-form 0 € Q*(S)[[h]]. For 6 =0
the solution H =Y, H® (where DegH*) = k) is given by

HO = g = g@ —
1 A —_— (1.35)
5t =)y yy” = I =)y’ = 071C,

H® =
and by the following recursive definition for H*) with k > 3

3i 1 —
(k+1) — —1 (k) _ v —1 (2+£) (2+2) (k 2)
H 5 (VH - [C’,H ] n hg[?ua ) H ]_+
k—2 i A
+a ()R =) = N, ( ) [H) . [H™) O, .. ]+ (1.36)
A=2 L1+ +f; k+2X—2

Ak—2—X
+ Z "A< > 2, 2 [H, . [H a7 () —r<2+f>].--~]'>’

0=0 0y +-F+ly=k—0+2X—2

where C' is given by eq. (??), and where the numbers {; are all taken > 3. The numbers ny are defined
recursively through eq. (77).

Furthermore, the Fedosov star-products x and ' are equivalent and the isomorphism B : (C*(S)[[h]], *) —
(CF(S)[[R]], *') is explicitly given by

B(f) := Taexp <; ad.(H)> =), (1.37)

Here 771 is the “quantization map” as defined in the Fedosov’s second theorem (thm. 77).

Proof. The proof is very similar to the one presented in [? , prop. 3.2 ii], [? , prop. 3.5.3, 3.5.4]. The
set-up considered in these reference differs to our case mainly for two points: (1) it is assumed that Kahler
manifold S and the connection V is torsion free (while in our case we cannot exclude a non-vanishing
torsion), and (2) an equivalence of the type (??) is derived not for D, D%, but for a more general pair of
Fedosov connections D1, Dy corresponding to auxiliary data (21, s1), (€22, s2) such that Q; —Qy = df for
a general 0 € Q'(S)[[A]] (in our case 6 is necessarily closed). The argument exploited in [? ? | consists
in rewriting eq. (??) in a form suitable for applying the fixed-point theorem with respect to the total
degree.

We proved in lemma ?7? that D® : QF(S, W) — QFF1(S W) respects the product e. As an algebraic
consequence of this fact* and the assumptions on H, it holds that

exp (;L ad.(H)) aD'a texp (—; ad.(H)) =

; 1 ; F
—pr— L, (2 e (h ad.(H>) (D“H)) (1.38)

k=0
=D — —ad, — o(H D*H) | .
- ad <r e +Z k+1) <had( )> ( ))
k=0
Therefore, eq. (7?) holds for the section H if and only if there is an element 6 € Q!(S)[[A]] such that
; k
- JH)) (D°H) =9, 1.
r r+1§0k+1)<had()>( ) =10 (1.39)

4In the terminology of [? |, D® is a “e-superderivative” and then eq. (??) is given by [? , lemma 1.3.20].
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i.e. the section in Q(S, W) given by the left-hand side of (?7) must be in the center of the algebra.
Although in [? , lemma 3.5.1] the author considered the case of V torsionless, an inspection of his proof
shows that the presence of a non-vanishing torsion can at most affect the following equation used in the
aforementioned lemma

This equation is still valid in our case as can be seen directly from the definitions of r and r% and,
consequently, the results of [? , lemma 3.5.1] are valid also in our case. In particular, it is necessary for
eq. (??) to be solvable that 6 is closed because df = Q@ — Q> = 0.

Making use of the Hodge-type decomposition ?? and the assumption 7H = 0, we get that H is a solution
to eq. (?7?) if H solves the following equation

. SN A
H=05" <9 +VH + %ad.(ro‘)(H) + Y (;) (ada (H))* (r™ — r)) : (1.40)

A=0

where n, are real numbers such that >}, nxz* is the inverse of the formal power series >, 1/(k + 1)!zF,
i.e. n) are defined recursively by

A

1
=1 = — —— NN\ 1.41
ng ) NA>0 /\Zzll v+ 1)!71,\ A (1.41)

Now proceeding as in the proof of [? , prop. 3.2 ii], [? , prop. 3.5.3, 3.5.4]. We first notice that the
right-hand side of eq. (??) is in the form L(H), where L is a contracting map with respect to the total
degree. Therefore, the fixed point theorem guarantees the existence and the uniqueness of the solution
H to eq. (??7). Arguing as in the aforementioned references, we verify that such H solves eq. (??) and
necessarily also eq. (?7?).

Finally, the map B defined via (?7) is indeed a star-isomorphism as follows immediately from (??) and
the definitions of «, * and «’. O

Remark 4. There are already several results in the literature relating the gauge equivalence of certain
star products based on cohomological considerations. One associates to a star-product * on a symplectic
manifold its Deligne’s characteristic class cl(x) € i/h[o] + H3g(S)[[A]], where H3x(S)[[h]] are formal
power series in fi with values in the de Rham cohomology of S. According to [? | this class consists of
two different parts

Cl(+) = cols) + 3(+),

namely, the zero-th order term co(*), and the Deligne’s intrinsic class

iw=3 5 (1) ao,

k=0

which can be constructed in terms of local derivation (see e.g. [T 7 |). By construction the zero-th order
term do(x) in the formal power series is o], while the first order term dy(*) vanishes. As proven in [?
|, the Deligne’s characteristic class specifies uniquely the equivalence class of a given star-product. Said
differently, two star-products are equivalent if and only if their Deligne’s characteristic classes coincide.
For the star-products *, *' we are considering, computing the corresponding Deligne’s characteristic
classes and checking that they coincide® is another possible line of argument leading to thm. 77, but
without explicit formula for H.

5Tn a nutshell it is just needed to adapt [? ? | to connections with non-vanishing torsion and to combine with the direct
computation of ¢ presented in [? ].
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Chapter 2

Reformulation of perturbative quantum
field theory

Quantum field theories are often based on classical field theories described by a Lagrangian or Hamilto-
nian. Such theories, thus, have a symplectic structure at the classical level. Therefore, it is conceivable
that Fedosov’s method of quantization could be applied to such systems. The difference to the symplec-
tic manifolds discussed so far is, of course, that in a field theoretic setting, the manifold S is infinite-
dimensional as it corresponds to the space of classical solutions of the equations of motion, or their initial
data. However, even ignoring this point, if one looks at standard presentations of the quantization of
field theories, the connection to Fedosov’s method is absolutely not evident even at a purely formal level.
The purpose of this work is to explain this connection. This is straightforward for free quantum fields
theories—all we need to do is to properly interpret [? |. We are going to present the details in sec. ??. The
situation is much more involved for interacting quantum field theories. For those, we will first present
the method of causal perturbation theory (see [? 2 2 2 2 2 2 72 2 7 ]) in sec. ??7. At the end of this
section, we present an interesting consequence of the principle of perturbative agreement which gives a
first hint to a possible connection to Fedosov’s method. This connection will then be established step by
step in the remaining sections.

2.1 Free scalar field in curved spacetime

We present our formalism first for the free, real, scalar, Klein-Gordon field on a Lorentzian manifold
(M, g). This case should be thought of as the “model case” in the same sense as the basic example of
remark 7?7 is the “model case” in the finite-dimensional framework. The Klein-Gordon field is denoted
by ¢ in the following. The field equation (with source) is

j=(0-m?-v)p, (2.1)
where 0 is the d’Alembertian operator (wave operator) associated with the metric g, where j € C* (M) is
some fixed source, and v € C*(M) is some smooth external potential. In order for this theory to behave
reasonably, we need to assume that the underlying space-time (M, g) is a globally hyperbolic manifold
(see e.g. [? ])- This means that M has a smooth Cauchy surface, i.e. a surface ¥ such that every
causal, inextendible curve intersects ¥ precisely once. Under this assumption, as proved e.g. in [? ], the
Klein-Gordon equation has a unique solution ¢ for any choice of initial data (¢,p) € CF(2) x CJ(2)
satisfying

el =g, Onpls = p.

Here 0, is the normal derivative to ¥. The hallmark of the Klein-Gordon equation is the causal prop-
agation of disturbances: if (¢,p) = 0 and if the support of j is contained in some subset O < M, then
the support of the corresponding solution ¢ is contained in J*(0) U J~(O), where J*(O) denote the
causal future/past of O. The solutions of the Klein-Gordon equation can be obtained in terms of the
advanced /retarded fundamental solutions E4/T. The action E4/%(j) on a compactly supported smooth
source j € C (M) is defined by demanding that ¢ = E4/%(j) is the unique solution to the Klein-Gordon
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equation (?7?) having initial data (g, p) = 0 on some Cauchy surface in the future/past of the support of j.
The advanced and retarded fundamental solutions are continuous functions EA/% : C& (M) — C* (M),
and so, as a consequence of the Schwartz Kernel theorem (see e.g. [? ]), E4/® may be viewed alternatively
as distributions on M x M. In the distributional sense, we have

(O —m? =), BB (21, 22) = 8(x1,20),  supp (EYE(21,22)) € {(21,22) € M|y € JT (22)},

and
EA/R(Jfl, .IQ) = ER/A(Z‘Q, .171).

Furthermore, the wave-front sets of E4/% are well-known (see [? |) and they take the form
WE(EAEY = cAE(M), (2.2)
where the sets C4/% (M) are defined by
CAR(M) = { (w1, w23, ko) € T*M s w1 € T ¥ (w3), (w1, k1) ~ (w2, ko) or @1 = 22,1 = ~kz} . (2.3)

The causal propagator, also called “commutator function” in some references, is the quantity

E=E* - E~R
In the distributional sense, E is a bi-solution for the homogeneous (j = 0) Klein-Gordon equation (?7)
and it is anti-symmetric, E(z1,22) = —E(x2,x1). A well-known computation (see [? ]) implies that
WF(E({El, 3?2)) = {(3&‘1,{)32; k1, /{‘2) € T*M2 : (.Tl, ]{71) ~ ({EQ, —k‘g)} . (24)

Let S be the space of smooth, spatially compact solutions to the Klein-Gordon equation (??). For
j = 0, this space is obviously linear. Let us focus, for the moment, on this case. We will show that S
carries a natural symplectic form and we will describe a way to realize the construction of the finite-
dimensional “model case”, i.e. the basic example of remark 77, for case of this homogeneous Klein-Gordon
equation. For each f € Cf(M), let p(f) be the map S — R which assigns to a smooth solution u € S of
the homogeneous Klein-Gordon equation, i.e. (O —m? —v)u = 0, its f-weighted average, namely

o(f)[u] = jM F(@)u(z)dz.

Thus, ¢(f) defines an element in the dual S*. More generally, we may consider “observables” of the form
©®*(f(")) defined by

<P®n(f(n))[u] 1= f . f(")(a:1, oo xp)u(ey) - u(ey)dey .. day,

where u € S, and where f() is a smooth, complex-valued, symmetric function of compact support on
M™. In a moment we will even allow certain distributional f(")’s. Note that as a functional on solutions
©®7(f(M)) = 0 if the f(")’s satisfy the relation

F (2, w) = (O —m? —0), A (2, ... ) (2.5)

for some smooth h(™) of compact support. It follows, in particular, that () — o(f (1)) defines a mapping
CE(M)/(O—m? —v)C (M) — S*. Thus, in this sense, we can say that

CEH (M) /(O —m? —v)CF (M) < S*. (2.6)

We will often use this relation in the following. We may alternatively write the observable ¢®"(f (")) in
the form

P = Mn F™ (2, an) (@) - p(zn)dey . . . dan, (2.7)

where ¢(z) : S — R is viewed as the evaluation functional ¢(x)[u] = u(x) for u € S. Thus, E®(f™) is
a function S — C, or alternatively, can be viewed as an element of a suitable closure of the (complex)
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symmetric algebra of S*. For any pair of observables ¢, s of this form, we can define a Poisson bracket
{t, s}, the Peierls bracket, by demanding that

{le(@),0v)} = E(z,y), (2.8)

and extending {-,-} to elements of the form (??) by the Leibniz rule. This Poisson bracket comes from
a symplectic structure, explicitly the symplectic structure o : S x .S — R defined by

o(uy,ug) = J; ul(z)(ﬁ_;ug(z)dﬂ(z), (2.9)

for two solutions wui,us € S. Formula (??) does not depend on the choice of Cauchy surface ¥ in M
as can be proved using the Stokes theorem (see e.g. [? ]). The commutator function E is a bisolution
and so, by the identification (??), it can formally be viewed as a map E : S* x S* — R, by setting
E(p(z),o(y)) = E(x,y). Moreover, the causal propagator E can be interpreted as the inverse of o :
S x S — R in the following sense: as proved in [? , lemma 3.2.1 part (3)]!, for any v € S and any
feC¥(M) we have

o(u, E(f)) = fM F@)u(z)da. (2.10)

These relations will be elaborated more and will be reinterpreted in terms of the infinite-dimensional
geometry on S in sec. 77.

Next, we define a star-product for this symplectic structure. Our construction is going to follow the
one given in the basic example (remark ??). In particular, we want to produce an analogue of the formal
Wick algebra (??). For this, it is necessary to introduce the concept of a pure Hadamard 2-point function
w, which will play the same role as the constant complex hermitian matrix w% in the finite-dimensional
context of the basic example (remark ??). Because this concept is of vital importance for the entire rest
of this paper, we formalize the definition of a Hadamard 2-point function following [? |.

Definition 10. A Hadamard 2-point function w is a C-valued distribution on M x M satisfying the
following properties:

1. w is a bi-solution for the homogeneous Klein-Gordon equation, i.e.

(O—-m? —v)w(z,y) = (0 -m? —v),w(z,y) = 0.

2. The anti-symmetric part of w is i/2 times the causal propagator, i.e.
W(Z, y) - W(y, IIZ) = ZE(:L'> y)

3. w is positive (semi-definite) in the sense that it holds
| wwi@iw=o.
M

where f is the complex conjugate of f.

4. w satisfies the “Hadamard condition”, namely

WF(w) = C[q] := {(Jc,y; ko ky) € T*M? : (2, k) ~ (y, —k,) and ky € v;} . (2.11)
We can decompose the 2-point function (c.f. (??)) as

Imw(z,y) = %E(x,y), Rew(z,y) = %G(w,y), (2.12)

INote that in the reference the symplectic structure has the opposite sign.

23



where G is a real-valued and symmetric distribution on M x M. We should think of w(z,y) as analogous
to w¥, E(z,y) as analogous to o and G(x,y) as analogous to G% in the basic example of remark ??.
Positivity of w (cf. (??)) is now equivalent to the condition (cf. (?7?))

|E(f.h)] < (G(f, /)G(h,h))"/?, (2.13)

for all f,he CF(M)/(0—m? —v)CF (M) < S*. In the finite-dimensional case, we assumed in addition
that w" defines a constant almost-Kihler structure. The analogue of this condition in the infinite-
dimensional context consists in requiring w to be pure, see e.g. [? 7 ? |. As discussed in these references,
the 2-point function w is pure if and only if eq. (??) is saturated, i.e.

[E(f M)

G ) = s )

We next define the analogue of the algebra W. This algebra will include the ¢®"(f(™)) defined in eq. (?7),
but for later purposes, we need to extend the class of allowed smearing () beyond smooth symmetric
functions of compact support. The extended class of f(™)’s is defined in terms of wave front sets. For
any n, we define

W, := T*M"\(C}' u C}), (2.14)
where C+ are the subsets of T*M™ defined by

CE = {(@1, - i krs o k) €T*M™ ki € Vo Wi or Ik ¢ V, kg € V) (2.15)
We define the corresponding spaces of distributions as
Ely(M™) = {f™ distributions of compact support with WF(f™) c W,,}. (2.16)
Arguing as in (?7), we view
X, S* = &y (M™) /(0 — m? — 0)Efy (M™) (2.17)

as a completion of the algebraic tensor product ®™S*. In the above formula, we mean that we quotient
out distributions in the form (??). Now we can define the formal Wick algebra W(S,w) for this infinite-
dimensional context imitating the finite-dimensional case. More precisely, as vector space, W(S,w) is
defined by

W(S,w) i= CIIHI © @ viyS* = CIIH] © @ P* &y (M™)/(0 — m® — )P &y (M), (2.18)

n=0 n=0

where vij,S* denotes the totally symmetric elements in (??). By P* we mean the symmetrization.
In other words, W(S,w) is the vector space? of sequences t = (t°,¢!,...) where t° € C[[h]] and t" €
C[[h]] ® v S* (cf. (?7)). We stress that it is not required that only finitely many elements of the
sequence (t°,¢%,...) are non-zero. Based on the analogy with the finite-dimensional case, there is an
obvious way to define the gradings deg,, deg;, Deg in the field theory context, namely

degp h:=1, deg,t":=nfor t" € vij,S*, Deg:=2deg, +deg, . (2.19)

In order to avoid heavy notation, we will often identify an equivalence class in XJj;,S™ with a represen-
tative, i.e. we will identify ¢” with a distribution t" € &£f;,(M™) in its class. Any other representative
then differs by a distribution in (O — m? — v)&[,(M™), and we must be careful that our subsequent
constructions do not depend on the given choice of the representative in the equivalence class.

We summarize our construction:

Definition 11. As a vector space, the algebra W(S,w) is defined to be the vector space (??) equipped
with the gradings (?7). The product e is defined by analogy with eq. (??) in the finite-dimensional case:

2 Addition and scalar multiplication are defined componentwise.
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let t, s be two elements in VW homogeneous in deg,, respectively deg,t = n and deg, s = m, we define
the deg, = j part of t s by

(tos)(wy,...,2;) = hk%n7m7kp+ J’ ) (21, ooy 2y Ty e e ey T k) X
M2
(2.20)

k

m / / / 7

X 8" (21, ey 2y Tk 1y - - ) | | w(zg, zp)dzedzp,
=1

if j =n+m—2k for k <n,m, and (t e s)7 = 0 otherwise. By P* we mean the symmetrization operator
acting on the free variables x1,...,x;. The combinatorial factor €, m 1 = m is the same

appearing in (?7). Making use of the Deg-filtration, the product e extends to all W.

Despite the strong analogy with the finite-dimensional case, there is one significant difference: we have
to prove that formula (??) actually makes mathematical sense, because the right-hand side involves
products and compositions of distributions. Products of distributions are generally not automatically
well-defined. However, as discussed in thm. ?? in appendix ??, if the wave-front sets of the factors satisfy
a certain relative condition, the multiplication condition (??), the product makes sense in a canonical
way. Similarly, the compositions of distributions are well-defined provided that the distributions involved
satisfy an additional condition, the integration condition (??). As a corollary of thm. ??, we get the
following result (which will be extensively used in this work) for distributions with wave-front sets
bounded by a W set as in (?7?).

Lemma 12. Consider a distribution 6 € D'(M™) and a distribution 0’ € D'(M™) such that their wave-
front sets are contained in W, respectively W,,. Then, the product 0(x1,...,2z,..., )01, -2, ., Ym)
is well-defined and it satisfies the following wave-front set estimate

WE(0-0')  Wsm_1.

If in addition the integration condition holds, for example if one distribution has compact support, then
the composition SM O(x1y.. 2,y @n)0(Y1, ..oy 2y oo, Ym)dz is well-defined and it satisfies the following
wave-front set estimate

WF(@o00)c Wpim_2. (2.21)

Proof that eq. (?7) is well-defined. The argument is similar to that presented in [? , thm. 2.1], but is
adapted to our more stringent wave-front set restrictions compared to the one considered in [? |. For
sake of completeness, we provide the full proof. Let t" and s™ be two representatives, i.e. two compactly
supported distributions with WF(¢") ¢ W,, and WF(s™) ¢ W,,,. By definition WF(w) € C* c W5. For
any k < m, the composition

k
Wk 0 5™ (21, ..., 2k {Timn_r}) 1= J ) s 2 ATk ) H w(ze, 2p)dzp (2.22)
MF =1

is a well-defined distribution with wave-front set contained in W, as a consequence of lemma ?7. As
a consequence of the Hadamard condition, the wave-front set of distribution (??) can contain only
elements of the type (21,- .., 2k, (Tisn_k);D1s- -+, Pk (Kisn_k)) € Wy, with p, € V't or p, = 0. Clearly
WEF(w® 0 s™),, ., < (V')* and then it does not intersect WF(t"),, . ., by definition of W,. It
follows that we can apply thm. 7? and we get that for any & < m,n, the composition in z,..., 2
of t" with w®* o s™ is well-defined as a (compactly supported) distribution in 1, ...,y m_ox and
WE(t" o (w® 0 5™)) € Wiy tm_ok- '

Because w is a bi-solution, the equivalence class [(¢ ¢ s)7] in vi;,S* defined by eq. (??) does not depend
on the choice of the representative of t” and s™. This concludes the proof that the product e in def. 7?7
is well-defined. O

In the algebraic approach to quantum field theory, one defines the algebraic states as positive, normal-
ized linear functionals on the algebra of observables®. In our context, the underlying field C is replaced
by the ring C[[A]], so a state on W is a C[[A]]-linear functional w : W, — C[[A]]* which is normalized

31n the finite-dimensional context, the concept of algebraic states is discussed in [? ? ].
4 Any attempt to consider C-linear positive functionals w : W — C is affected by serious convergence problems.
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to 1, in the sense that w(1) = 1. In this context, by positive we mean that w(t" e t) is a positive element
in R[[A]] for any ¢ € Wy, where an element Y, ., h*ay € R[[R]] is positive if the first non-vanishing real
coefficient ay, is positive. A state w is equivalently defined in terms of all its n-point functions, i.e. the
distributions w,, such that

o fi(@r) .. fulen)wn (T, ..o xp)dey . day, = w(e(f1) e - e o(fr)),

where f1,..., f, are test functions on M. The positivity condition of the state w becomes a complicated
hierarchy of conditions on w,, the simplest of which is the positivity of the 2-point function, i.e. wy(f, f) =
0 for any test function f.

Once a Hadamard 2-point function w(z,y), in the sense of def. ??, is provided, we can define a state
requiring that all the n-point functions with n odd vanish and all the n-point functions with n even are
given by appropriate combinations of tensor products of w(x,y), i.e.

wa(z,y) = w(x,y), Wn($17~-~,$2n)=2 H w(xs, z;5),

I (ig)el

where I is any possible arrangement of {1,...,2n} into a collection disjoint pairs (4,j) such that i < j.
Such a state is called a quasi-free Hadamard state. By abuse of notation, we will identify a quasi-free
Hadamard state w with its 2-point function w(z,y) in the following.

As in the finite-dimensional case, the product e can be viewed as a star-product for the Peierls
bracket {-,-} defined by FE, see eq. (??) (for further details, see [? ]). The analogies between the finite
and infinite-dimensional cases are summarized in the following table.

finite-dim linear QFT

S 3y vector in R?? S 3 u smooth sol. of K-G eq. (??) with j =0
o(u,v) = o4ju’v’ constant symp. form | o(u,v) = {; ud, vdS

t e R4, te CF(M)/(O—m? —v)CF (M) c S*,

t(y) = t;y* where t; € R* t(u) = §,, t(x)u(x), where t(x) € t € CF (M)
ot E(x1,x9)

w¥ almost-Kihler pos. Hermitian form, | w(z,z2) pure Hadamard quasi-free state

2Imw = g%, 2Imw(xy,x9) = E(x1,x2),

2Rew’ = G inv. metric 2Rew(x1,x2) = G(x1,x2) symm. distr.
> ti i,y -y observables >, @ (t™) observables

{y'. '} =o¥ {e(@1), p(x2)} = E(x1,22)

W(S.w) = Cl[H)] @ @, - V"B, W(S,w) = ClIH] © B,z iy 5°
t=(t,...) t=(tt,...)

t™ symmetric covariant tensor t" e PYEL(M™) /(O —m? — v)PTE],(M™),
with coefficients in C[[A]], with coefficients in C[[A]],

e given by (77) e given by (77)

Table 2.1: Analogies between the finite-dimensional framework and the linear quantum field theory
setting.

A difference to the finite-dimensional case is that in the infinite-dimensional setting, we need to
discuss the topological structure of the formal Wick algebra W. In finite dimensions there is only one
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reasonable topology, while many inequivalent definitions are a priori available if S is a space of smooth
functions. The formal Wick algebra W has a natural notion of convergence (not actually a topology)
that is inherited from the wave-front set condition satisfied by the distributions in &£, (see (?7)). This
topological structure is defined as follows. Firstly, we provide the distribution spaces &£y, (M™) with
the notion of convergence obtained from the Hérmander pseudo-topology (see def. ?? and prop. 77 in
appendix ?7). In more detail, a sequence (t¢)een © &y (M™) converges to t € &y, (M™), written ¢, Wy t, if
it holds t, — t in the weak sense and it holds At, — At in the sense of C§° (M) for any pseudo-differential
operator A on M™ with Char(A) ¢ T*M™\W,,. Because W is basically the direct product of spaces
Ey (M™), the topological structure on &£y, (M™) we have just introduced naturally leads to a notion of

sequential convergence also for YW. We denote it by ¥ . One can show that:

1. The algebra W is closed under taking the sequential completion with respect to the notion of

w
convergence —.

2. The product e and the f-conjugation are continuous.

We emphasize that, in the infinite-dimensional context, our choice of distribution spaces (representing
suitable closures) is, a priori, only one among many possibilities to get a well defined analogue of the
algebra W in the finite-dimensional case. Our choice is guided by experience from perturbative quantum
field theory and will turn out to be suitable for our purposes in the following sections. In the literature,
seeeg. [? T 7 7 7 7 7 7 7 ], aless restrictive wave-front set condition is imposed, namely in
formula (??) the set W, is replaced with 7*M™\ (V)" U (V )"). Our choice will be motivated in
sec. 7?7 when we generalize Fedosov’s method to an infinite-dimensional geometry based on such restric-
tive constraints on the wave-front sets.

So far we have discussed a linear quantum field theory. This framework suffices to treat the linearised
theory around a classical “background” solution ¢ to a non-linear equation, as we explain in more detail
in the next section. In the following, we need to consider also the more general situation where the
“background” is not a solution. This more general framework requires a slight generalization of the
formal Wick algebra. Namely, we allow a non-vanishing smooth source j in (??), i.e. we want to
implement on the quantum algebra W the condition that ¢ is a solution to the inhomogeneous equation
(O—m?—v),0(x) = j(z). To do so, we consider C[[h]] @0y (M™) and we quotient out the elements
t=(t%¢t,...) in form

" (@1, ..., Tp) = Z(D —m® =)y, hi (21, ... Tn)— (2.23)

- Z j(Z)hZJrl(ZEl,...,Ik,z7xk+1,...,In)dZ
—ovYM

for a collection {hl'}, ;en of smooth compactly supported functions. Note that for the inhomogeneous
case the equivalence relation compares distributions with different symmetric degrees, i.e. it cannot be
written as a relation on each &, (M™) (c.f. (7?)). The modified algebra W (cf. (7?)) is then defined as
a vector space by

n=0

W(S,w) = C[[A]] ® (@ IP’*%V(M”)) J([O—m? —v—joid), (2.24)

where we mean that we now quotient out the new relations eq. (??). The product on the algebra is
defined as before by formula (??), which is seen to give a consistent definition.
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2.2 Interacting Klein-Gordon equation, quantization a la “causal
perturbation theory”

In the previous section we have described the “deformation quantization” of a linear, scalar Klein-Gordon
field. If there is no source, the solution space has a linear structure, while it has an affine structure if
there is a source. As we discussed, under these circumstances the deformation quantization procedure is
a precise analogue of the quantization of the finite-dimensional classical symplectic manifold described
as our “model case” in the basic example (remark ??). The situation changes drastically if we want to
apply deformation quantization to a non-linear Klein-Gordon equation of the type

(O-—m?)o—V'(¢) =0, (2.25)

which is the Euler-Lagrange equation of the action

1(6) = JM <;|V¢(x)|3 s Imto(a? + Ve, gb(x))) dz. (2.26)
Here, V(¢) is a potential, which we will typically take to be of the form V = %qﬁ‘l, where \ could be
a smooth function of x or just a constant. It seems natural to try to apply Fedosov method to get
a deformation quantization of this system by proceeding along the lines described in the classical case
in sec. 7?7, where S would now be the space of solution to the non-linear Klein-Gordon theory. We
will indeed do this below in sec. 7?7, after the necessary concepts in infinite-dimensional geometry will
have been introduced in sec. ?7-77. However, to get a better perspective of the construction, and to
relate it to more conventional constructions in quantum field theory, we will present here first a different
approach which is based, roughly speaking, on the ideas of “causal perturbation theory” in the sense of

The starting point of this type of perturbation theory is to fix some “background” ¢ € C*(M), and to
expand the classical action around ¢. It is not assumed at this stage that ¢ is a solution to the non-linear
Klein-Gordon equation, although we will be interested in that case later on. We first consider the action
I(¢ + ¢) up to quadratic order in the “perturbation” ¢. Thus, letting

1 d

(p)
[ ( ) ' lep ( € ) . 0? ( )

we consider the “free” action 1" + 1V + If), i.e. up to quadratic terms in . The zeroth order term
evidently does not depend on ¢ at all, and so does not contribute to the equations of motion for ¢. The
variation of the first term with respect to ¢ of the first order term vanishes if ¢ itself is a solution to the
background Klein-Gordon equation, and otherwise gives a source in the equation of motion of ¢. Thus,
the equation of motion for the theory corresponding to the truncated action Iéo) + Iél) + If) is:

[O—m?—vslp =jo,  vs(x) =V"(8(x)),  Jsla) = (O —m*)d(z) = V'(¢(x)). (2.28)

Note that in general j, is not compactly supported. However, we are interested in the case where the
background ¢ is a smooth solution to the non-linear equation and in this case j, simply vanishes. We
have already explained how to quantize this theory for fixed background ¢ in the previous section. These
constructions give an algebra W, the formal Wick algebra for the background ¢:

Definition 13. For an arbitrary background ¢, consider a pure Hadamard 2-point function wg with

respect to the linearised KG-equation [0 —m? — vy]p = 0. The algebra W, is defined as in Def. 77 of

Sec. 7?7 for the 2-point function wy with the modification given by formula (77).

Of course we need to say how to incorporate the corrections arising from the higher-than-quadratic

parts in the action, Iép ) for p > 2. These corrections are organized in certain (formal) series, which are
valued in the algebra Wy. In order to describe these series in more detail, we first make some definitions.

Definition 14. Let F be a functional C* (M) — C.

e F' is called W-smooth if the following two conditions hold:
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1. All its Gateaux derivatives exist in the sense of distributions on the appropriate Cartesian
power of M, i.e. for any ¢ € C*(M) and any v € N, it holds

al/
Oeq ... &’el,F <¢ + ;Eihi)

N R C)
- JM” 5ol oy W) - h(B)dy - dy,

where 6V F(¢9)/0"¢ is a symmetric distribution in E, (M) (see (?7?)), and where hq,..., h,
are arbitrary smooth functions.

617...,€u=0

2. The Gateaux derivatives depend smoothly on ¢ in the following sense: consider a smooth
1-parameter family of backgrounds R 3 € — ¢(¢) (in the topology on C*(M)), and view
OVF(¢(€)/0d(y1) - -0 (yy) as a distribution in the variables €, y1, ..., y,, i.e. as a distribution
on R x M". It is required that its wave-front set satisfies

OV F(p(e))
WE <5¢(y1) 00 (yy)

where W, is the set defined by (7).

>CR><{O}><WV,

e F' is said to be polynomial if all the Gateuzr derivatives of sufficiently high degree vanish.

e F is said to be compactly supported if its support, defined as the closed set
supp I := {p € M|VU 3 p,3¢,¢ # ¢ € C* (M),suppy) < U, F(¢ + ¥) # F ()},
18 compact.

e F' is said to be additive if for any ¢1,¢pa, ¢35 € C*(M) such that supp ¢1 N supp o3 = & and
G1, B3, ¢1 + 3 # b2 it holds

F(p1 + ¢p2 + ¢3) = F(d1 + ¢p2) — F(p2) + F(¢2 + ¢3).

The set of W-smooth, additive, polynomial functionals of compact support is denoted Fioc(M) and the
elements are called local functionals®.

It can be shown® that every local functional in Floc(M) must have the form

F(¢)=| P(z,¢é(z),Vo(z),...,V"(z),...)dz, (2:29)
M
where P is a polynomial with smooth compactly supported coefficients, and with degree locally bounded
on compact sets. Among such functionals, a prime example is a local self-interaction of the form

1

=1, Mz)o(x)de, (2.30)

| veona

where ) is smooth and of compact support on M. Here, A plays the role of a “coupling function” that
can, for example, be smoothly switched on and off.

In the “causal approach” to the quantization of the theory described classically by the action I(¢)
(cf. (?7)), one proceeds as follows. First, one fixes an arbitrary smooth background ¢ which solves

5Smooth, additive, polynomial functionals with compact support are indeed local in the sense of [? 7 ), i.e.
supp (0VF(¢)/0¢") < A, and WF(6"F(¢)/é¢¥) L TA,, where A, = {(z,...,z) € M"} is the diagonal in M. The
first condition follows form [? , prop. 2.3.11], while the second one is a consequence of the fact that any smooth, additive,
polynomial functional with compact support is in the form (?7).

6Since W1 = (&, local functionals in Fj,.(M) are indeed microlocal functional in the sense of [? ]| and, hence, the
statement is a consequence of [? , prop. 2.3.12].
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eq. (?7?). For such ¢, one considers the free theory described by the quadratic part of the action If)(gp),
see (?7). For the corresponding equation of motion

[O—m® —vgle =0 (2.31)
cf. (?7)), one picks a pure Hadamard 2-point function ws and defines the corresponding algebra
¢ g alg
Wy := W ({ smooth solutions of eq. (?7) },wy), (2.32)

as explained in the preceding section.

For any local functional F' € Fj,.(M) one next wishes to define a corresponding “interacting field
observable” associated to the full action I(¢ + ¢) (??). One denotes by

= M1 (p) = ) p'f LY (« (2.33)

p>2

the part of I(¢ + ¢) higher than quadratic in ¢”. Then, one writes the quantum field observable 13‘¢(<p)
associated to F'(¢) (cf. (?7?)) in the interacting theory as the series

“Fy(e i]' ,E]JHH[ Pola). £ ()], ,uwcg“wm] x

. (2.34)

x 0(x0, 10, . .. ,yn)da:dyl o dyy”,

where 73¢(m o(x),Vo(z),...) is the density for F(¢ + ), $us 73¢ x)dx = F(¢ + ¢), and where
0(x9,...,29) is the product of the Heaviside step-functions ]_[Z L0 ?ﬂ) For example if x € M

and F(¢) = ¢(x), then ¢(z) formally satisfies the interacting Klein-Gordon equation (?7).

There are several problems with eq. (??):

1. The integrand is not a well-defined distribution because the commutators are too singular to be
multiplied by (2,49, ...,9%) (this follows e.g. from the wave-front set calculus). This is a mani-
festation of the usual UV-divergences in perturbative quantum field theories.

2. The dy,-integrals can suffer from IR-divergences, e.g. if m = 0 and M = (R* 7) the Minkowski
space-time.

3. The series }; cannot be expected to converge.

Note that the third problem does not affect us (or rather, is ignored), because we only work with formal
series in /i, so we only need to make sense of the individual terms appearing in eq. (??). Dealing with the
second problem in general requires further analysis and depends on the choices of (M, g), V and ¢. We
sidestep this issue by choosing compactly supported interactions, e.g. (??) with A compactly supported.
The first problem needs to be dealt with by some form of “renormalization”.

Our approach to the renormalization problem is to characterize the integrand in eq. (??) axiomatically,
keeping as many formal properties as possible. In a second step, we will then prove that there exists a
non-trivial solutions to these prescribed axioms. This program is called “causal perturbation theory” [?
? 7 7 7 ]. It turns out that one has to formulate quite a few axioms to characterize the integrand on
the right-hand side of eq. (?7) with sufficient precision. The objects to be characterized by these axioms
are called retarded products and formally correspond to

“Ruo (Fo+ 011 (0) @ @1 (0)) =

= f [ .. [P¢(m), ﬁ;pl)(yl)] b ,Egbp")(yn)] 0(z°, 40, ... y0)dady; . .. dy,”.
Mn+1 L2

o

(2.35)

"So that 1(6 + ) = 1§ () + I (0) + 1.7 () + Vo(0)-
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The terminology is due to the support property of (??): the retarded product (??) vanishes if none of

the terms C((f) has the support in the causal past of the support of Py(x). This support property is
encoded in the causality axiom ??. The other axioms ??-?? are described in detail below and similarly
encode other properties that formally hold for (?7?).

We now present the abstract properties of the retarded products. A prescription for retarded products
is a collection of maps
Rig * Fioe(M) @ Fioe(M)®™ — Wy (M, g)

given for every value of n > 0, for every ¢ € C™(M), and for every globally hyperbolic manifold
(M,g). For ¢, A\ € C*(M) we first define the formal Wick algebra W[g, m, ¢, A] as in def. ??, where
the underlying Klein-Gordon equation (??) is characterized by (?7?), i.e. vy = %(;52. In principle, for an
arbitrary smooth ¢, we should construct the formal Wick algebra with respect to the inhomogeneous
Klein-Gordon equation (??), but ultimately we want to consider ¢ a smooth solution to eq. (?7?)), so we
restrict to the formal Wick algebra corresponding to the homogeneous Klein-Gordon equation (??) also
when ¢ is not a solution.

The desired properties that the retarded products are supposed to satisfy are:

(RO) Initial conditions:
If F e Fioo(M) is independent of ¢ then R, 4(F;...) = Fd,o1.

If f e G5 (M) then Ro4(§,, f(2)e(x)) = §; f(2)p(x)dx € We.

(R1) Locality/covariance:
Consider an isometric embedding ¢ : (M',¢') — (M,g), i.e. ¢’ = +*¢ and a background ¢’ on
M' such that ¢’ = 1*¢. It can be proved that wy = t*wg is a Hadamard 2-point function for
the linearised Klein-Gordon equation in (M’, g') around ¢’, where the “mass” and the coupling are
now m’ = (*m and A’ = (*A. One defines the corresponding algebra Wj, = W[g',m', ¢', \']. Let
Q, : W(;, — W, be the natural injective #-homomorphism corresponding to ¢ (see [? ]). Then, it

should hold
o, | Ry ¢ F;®Hj =R, 4 L*F;®L*Hj .
Jj=1 j=1
(R2) Scaling:

The retarded products scale almost homogeneously (in the sense of [? , def. 4.2]) under a rescaling
g +— A2g where A € R and under the corresponding rescaling of m, V', ¢ and ¢ chosen in such a
way that the truncated action I(;O) + I;l) + If) is invariant, i.e. m — Am, o = Ay, ¢ — A¢p and A
does not scale®. More precisely, let o : (W[A™2g, Am, Ag, \], A%wy) — W[g, m, ¢, \],ws) be the
canonical homomorphism between two formal Wick algebras at different scales introduced in [?
lemma 4.2], then there exists some N > 0 such that

aN n
AR g R F:X)H; | =0.
aN IOgA OA n,[A=2g,Am,A¢p,\] 7j<>::<>1 J

In the formula above dg is the engineering dimension of the retarded product, which is defined as
follows (see [? ? |). The functionals F, Hi,..., H, can be written as F = §, f(x)®o ¢(x)dz and
H; = §,, h;j(x)®; 4(x)dx for any j = 1,...,n, where f,hi,..., h, are compactly supported tensor
fields, and where ®4 are monomials in the classical field ¢, its symmetrized covariant derivatives,
the metric, arbitrary curvature tensors, the functions m and ¢ and their symmetric covariant
derivatives. We assign to each ®4 an engineering dimension

de, = #(factors of @) + #(factors of m) + #(factors of ¢) + #(derivatives)+

+ 2 x #(factors of curvature) + #(“up” indices) — #(“down” indices).

[

The engineering dimension dg is just the sum dg, , +do, , +- - +ds, ,-

8The last is a consequence of the choice V(¢) = %(154. Different choices for the interaction could require a rescaling of
A
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(R3) Microlocal spectrum condition:
Let wy be any quasi-free Hadamard state on W,?, i.e. WF(ws 4) = C™. Let

WR,n,t,b(y;xla s 7xn) = We < ( é) j @ SC] )) ) (236)

for any ®, monomials in the classical field ¢, its symmetrized covariant derivatives, the metric,
arbitrary curvature tensors and the background ¢. Then, we require that

WF(WR,n,¢) < Cﬁrn[g]a

where CE[g] is the set defined by

Cﬁn[g] = {(y, T1yeeesTnsqy Koy kn) € T*M™*! : 3 decorated graph ¢
with external vertex y and with internal vertices x1,...,xy,

such that x; € J~ (y)Vj (2.37)

g= D, pe)— D, pely), kj= pe(x;) — pe(;)

e:s(e)=y e:xt(e)=y e:s(e)=x; eit(e)=x;

Following [? ? 7 ], a decorated graph ¢ is an embedded graph in M with vertices y1,...,ys,
T1...,Tn, where y1,...,y, are “external vertices” and x1,...,x, are “internal vertices”, and with
edges connecting the vertices given by oriented null-geodesic curves. The valence of a vertex in
the graph is here restricted to be less or equal to the number of field factors appearing in the
corresponding classical functionals ®. An abstract ordering < of the vertices is chosen (not related
to the causal structure of M). It is required that the ordering satisfies 1 < --- < x, for the
internal vertices, while no restrictions are imposed for the external vertices. For each edge e we
call source (denoted by s(e)) the smaller endpoint with respect to < and we call target (denoted
by t(e)) the bigger endpoint with respect to <. We consistently impose an orientation for the
null-geodesic corresponding to e in such a way that the curve starts at s(e). Each edge is equipped
with a future-directed covector field p. which is cotangent and coparallel to the geodesic curve
associated to the edge e.

(R4) Smoothness:
The retarded products have a smooth functional dependence on g,m7 ¢, \ in the following sense.
Consider the smooth 1-parameter families {0} ey {M®}eeq, {09 }seq and (A} eq, where Q
an domain in RP. Furthermore, let {o.) }SEQ be a collection of quasi-free Hadamard states w() for
the algebras Wy = W|g () m) (5) A\(*)] such that the 2-point functions w'®) (x1,x5), seen as a
distribution in Q x M?2, satlsﬁes

WF(w*) (21, 2,)) © {(57961,562;97 ki, ko) € T*(Q x M?) : (1,221, ko) € CD[Q(S)]}.

(s)

For any n, the collection {wg)n(y; T1,...Tpn)}seq, where wy,’ is defined asin (?7), can be interpreted
as a distribution in the variables (s,y,x1,...2,). We require that this distribution satisfies

WF(”E{L) c {(57y7x17'"7In;pap7kla"'akn) € T*(A X Mn) :
(Y, 21, Tn; D k1, kn) € Cﬁ_n[g(s)]}.

Furthermore, if we consider variations only of the background ¢, i.e. ¢® = g, m®) = m and
M) =\ and if {w(®)} cq is a collection of quasi-free Hadamard states such that WF(w(®) (z1,25))

Q x {0} x C*, then we have WF(wg%)n) cQx {0} xCE,.

9We are free to use the 2-point function of wy to define the Wick product ey, exploiting the fact that two 2-point
functions satisfying the Hadamard condition differ only for a smooth function, and such smooth function induces an
isomorphism of the formal Wick algebra (see [? ]).
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(R5) Analyticity':
Similarly, we require that for analytic families of analytic metric, masses, backgrounds and couplings
(and analytic V), the expectation value of the retarded products in an analytic family of states
varies analytically in the same sense as 77, replacing the smooth wave-front set with the analytic
wave-front set (see appendix ?7).

(R6) Symmetry:
The map R, ¢ is symmetric in the last n entries.

(R7) Unitarity:
We require that

n T n
Rn’qg (F,@Hj> = (—1)”Rn’¢ <F, ®HJ> ,
j=1 j=1

where F' denotes complex conjugation, i.e. if the local functional F' is F(¢) = {,, P(x)dx for a

polynomial P as in (??), then F is defined by F(¢) := §,, P(z)dz.

(R8) Causality:
If (Ujsupp Hj) n J~(supp F) = &, then Ry, 4(F;®]_H;) = 0.

(R9) Flield independence:
Let u be a (space-like compact) smooth solution of Psu = 0, then

J

5 n 5 .
<’U,, @>Rn7¢ (Fa > HJ) = Rn@ <<u7 é-(p>F;®j:1Hj> +

= )
+ 3 (oo Do),
where (u, §/d¢) acts on Wy as'!

n

{u, %}g@"(f(")) = nj FO @y, ) ulan (@) - o) dy . day, (2.38)

whereas (u,0/0p) acts on Fioc(M) as the Gateaux derivative along the direction of w.

(R10) Leibniz rule/Action Ward Identities:
R, ¢ commutes with the derivatives, i.e.

Vi, B, (P1,6(21) @ - @ P (7)) = R p(P1,6(71) @+ @ Vi, @4 (7) @ - - @ Py ().

(R11) GLZ (Glaser-Lehmann-Zimmermann) formula:
Forn > 2

n—1 n—1
Rns (F;F’@ ® Hj> — R, (F';F@ ® Hj> =

j=1 j=1
= Z Rn,qﬁ (F,@Hz> 7Rn,¢ (FI; ® HJ)] .
el Jelc [P

Ic{l,....n—2}
The final key property of retarded products is the principle of perturbative agreement discussed in [?
|. This principle can be invoked to relate the quantum field defined by the retarded products {R,, 4}
and {R,, 4} for different backgrounds ¢, ¢’ as follows. The quantum field theories corresponding to the

quadratic actions If), Ig) are both exactly solvable and trivially

(2.39)

1260) = 170) + | 50w = vo)@)pla)de = I (0) + Vo (9 (2.40)

1074 is worth mentioning that a recent result [? | suggests that the analyticity condition can be dropped.
HEquivalently {u, %) = [, ¢(fg)]e for any f, € CF(M) such that u = Ey(fs).
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If V is compactly supported as in eq. (??), the second term in the right-hand side is a local functional
V.4 (), which we may choose to treat perturbatively via the series (??), where £(P) is now 3 (Vg —vg) 2.
Of course, there is no need to do this really, because the theory can be defined “exactly” proceeding with
I(Ef) in the first place. If we demand that the two procedures gives the “same” result, then we get non-
trivial relations between {Ry ,} and {Ry »}.

We now state these relations in a precise manner. First, we note that the retarded products {R¢ .} and
{Ry n} take values in different algebras, Wy and Wy. So before we can compare them, we must first
define a suitable isomorphism between these algebras. This isomorphism is constructed following [? |.
First, we fix a Hadamard 2-point function wg with respect to the Klein-Gordon operator O — m? (in
the case of a static space-time wg can be chosen as the ground state). Then, we construct the so-called
retarded state (or “in state”) with respect to wy, denoted by w(f. This state is uniquely characterized by
the fact that for all z,y ¢ J*(supp \) the corresponding 2-point function satisfies

wf(m,y) = wo(x,y). (2.41)

This requirement is consistent because wf(w, y) is a 2-point function with respect to (O —m? —vy) and

ve(z) = V"(¢(x)) = 2\(x)¢?(z) vanishes for x ¢ J* (supp A). The complement of the region J* (supp A)
contains a Cauchy surface. Therefore, the requirement (??) uniquely defines the quasi-free state wl
because its 2-point function obeys a hyperbolic equation in both the entries (see [? 7 ]). We can
similarly construct the retarded state wg; (with respect to wyg) for the background ¢'.

We next define our algebras Wy = W(M, wf’), Wy = W(M, wf;) by constructing the product via the
Hadamard 2-point functions of the retarded states just described. The desired isomorphism ag; o -
Wy — Wy is then constructed as follows. Let ¢ = (t"),en be an element of W, with deg;, = 0. Let us
identify each ¢", which is an equivalence class in &, (M™)/(0 —m?v)&f, (M™) (see (77?)), with one of its
representatives in &jy,(M™). Then, we define O‘gd by

afl (") = [ (45 ,)%" ] (2.42)

and then we extend aﬁ(b, by C[[A]]-linearity to the whole algebra W,. The distribution Ag,(ﬁ, € D(M?)
is uniquely characterized by demanding that:

1. ag & 18 a homomorphism of algebras.
2. of satisfies the “cocycle condition”

a$,¢//a$¢/ = a$¢u. (243)

3. Outside the future of the support of vg, vy the map O‘ﬁaﬁ’ is the identity.

It turns out that A, must be given explicitly by'?

Aﬁqﬁ,(f) =—(O-m?— Vg ) (CS£¢,(f)) , (2.44)

where S* is defined by

B (f1. fa) = j By lA11(2) 9 Eolf21(2)d5(2), (2.45)

where ¥ _ is a Cauchy surface in the complement of J¥ (supp A), and where c is a “(retarded) regularized
step function” with respect to ¥_, i.e. a smooth function with values in [0, 1] such that ¢ =1in J~(X_)
and ¢ = 0 in J*(X,) for a Cauchy surface X, in the complement of J~ (suppA). The situation is
sketched in fig. 77.

After these preparations, we can now formulate the principle of perturbative agreement.

12We make use of the Schwartz kernel theorem (see e.g. [? ]) to identify distributions D/(X x Y) with continuous
functionals C3°(X) — D'(Y).
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Figure 2.1: Choice of ¥ and ¢ adapted to supp V.

(R12) Principle of perturbative agreement for variations of the background ¢:
Let {¢(S)}seg be a smooth 1-parameter family of backgrounds, where €2 is an open interval of 0
and where ¢ := ¢(°). Let Fj5, G be local functionals depending (WW-smoothly) on the background
¢'2. We require that

a n
75 %0000 (Rw(” (F¢(s), ®Gj,¢(s>>) =
j=1

. 91(2) oF
) ) $(=)
- F. ) . .
5 R0 w@?Gm ® . |t fins ( 25 a®Gm> +

J
+ Z Rns <F¢; 07::) ® ®Gj7¢) .
=1 2

To simplify the notation (here and in appendix ??) we always consider the derivative 0/ds as
evaluated at 0, unless stated otherwise.

We refer to [? | for an explanation why this encodes the heuristic idea discussed around eq. (?7?).

The fundamental result is that there exists a prescription for retarded products satisfying ?7?7-77,
and that these axioms uniquely define the maps {R, 4} up to well-characterized “finite renormalization
ambiguities”:

Theorem 15. There exists a prescription Ry = {R, ¢}nen for retarded products which satisfies ax-
ioms 77-27 and ?7.

Moreover, if R, = {R;L@}”EN is another prescriptions for the retarded products which satisfies the ax-
ioms 7?-77, then there exists a hierarchy Dy = {Dy, ¢ }nen of maps

D+ Froo(M)®" — Fioc(M)[[H]],
which satisfies

1

i
Rib (F;exp® (hH>> = Ry (F + Dy (F®exp® H) ; €XPg <h (H + D(expg, H)))) ,
and the following properties:
¢ D, o(F1®--®F,) is of order O(h).

® Di4(1) =0, Dig(p(f)) =0.

e D, , are local/covariant functionals in the following sense: let + : M — M’ be any causality
and orientation preserving isometric embedding between two space-times, i.e. 1*g' = g, then 1* o
D;, g = Dngo (1*)®".

13In particular, we are interested in F, = I(;p) defined above in (?77).
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o For any monomials ®1 4,...,Pn 4 as in 77, the distribution D, ¢(P14(21) @ -+ @ Pp p(xy)) is
supported on the diagonal and it satisfies the wave-front set condition

WEF(Dpg)la,,, LTAn 1.

Furthermore, D,, 4 depends smoothly (even analytically) on the background ¢, i.e. for a smooth
(repsectively analytic) family R 3 s — ¢, of backgrounds it holds

WF(Dn7¢S)|RXAn+1 J_ T(R X An+1)’

(where the smooth wave-front set WF must be replaced with the analytic wave-front set WF 4 in
the analytic case).

o D, 4 depends only polynomially on the Riemann curvature tensor, and the functions m, ¢ and ¢
(as well as their covariant derivatives).
Moreover, D,, 4 satisfies the following scaling constraint: there exists N such that

oN -
W log AN Dno(@16(5) @ @By g(2)) =0,
where dp = Zj dg, denotes the engineering dimension.
e D, 4 is symmetric.
o Forue C*(M), it holds
Yol TN T ’ " "
j= =1 j#e
Remember that (u,0/0p) acts on Fioc as the Gateaux derivative in the direction u.

o D, 4 commutes with the derivative, i.e.
Vi Do (®1,6(21) @+ ® Py (1)) = Dip(P1,6(21) @+ ® Vi i (1) @+ + - ® Py (1))

A proof of this theorem can be be given following the methods of [? ]. Compared to the existing construc-
tions in the literature, a non-trivial extra point is that the axiom 77, i.e. the principle of perturbative

We now construct the interacting fields, referring to the literature [? 7 7 ? ? | for more details. In
our perturbative setting, interacting quantum fields are given by formal power series in the algebra Wy
involving retarded products as we already anticipated in (??). The precise definition is as follows:

Definition 16. Let F € Fioc be a local observable, and let V' be a potential with compact support such as
Vix,d(x)) = %)\(I)qﬁ‘l(:r), where A has compact support. For each background configuration ¢ € C* (M),
the corresponding interacting quantum field observable (with respect to the action Iéf) +Zp>2 Iép)) s an
element E, € W, defined by the Haag series [? 7 |

Foim Yo Y Ruo (FO+ el 1P (0@ -0 10(), (2.46)
p

nz=0 1yeeeyPn>2
where {R,, 4} denote the retarded products in the background ¢.

The definition of F¢ just presented makes precise formula (?7).

We now want to investigate how the interacting field changes under a change of background ¢. We can
understand this in the light of the principle of perturbative agreement ??. Let ¢ be a smooth solution to
the background equations of motion eq. (??) and let u be a smooth solution to the linearized equation (?7)
around ¢. We consider a map S 3 ¢ — t4 € Wy which satisfies the following smoothness properties: for
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any test functions fi,. .., f,, and for any smooth map € — ¢(¢) € S, € — ty )(E¢(€)(f1)® ‘®@Fge)(fn))
is smooth, where ¢} is the deg, = n part of {;. We may define its “retarded directional derivative in the
direction of u” as

(2.47)

d
(Vut), = %( .6 (to)

where of is the same map as that defined in the principle of perturbative agreement ??, and where
R 3 € — ¢(e) € S is a smooth map such that ¢(0) = ¢ and d¢(e)/de|c=o = u. We call VF the “retarded
connection”. From the cocycle condition (??) it follows immediately that the retarded connection is flat.

e=0

We focus now on the case V(¢) = #¢* with A € C* (M) and we consider a smooth global solution ¢
to the corresponding background equation (?7), i.e.

(O —m?)¢ — %/\& =0. (2.48)

Regarding the existence of smooth global solutions of eq. (??), at least for ultra-static space-times with
compact Cauchy surfaces, we refer to appendix ??. Let u be a smooth solution to the linearised equations
at ¢, i.e.

(O—-m?— %/\QSQ)U =0. (2.49)

Let F be a local observable, and let 13‘¢ € W, be the corresponding quantum observable defined by the
series (?7). We think of u as a “tangent vector” at ¢ to the “manifold” of smooth non-linear solutions (the
rigorous definitions of the infinite-dimensional geometry will be provided in chapter ??). We compute:

. i i ko
(ViF),= D X {h% (Fw ) I () @ QL&}’”(@) -

P10, PE>

k
+R¢,<<u7 ¢+<p,(>_§l >
+ 2&( (& + 9): u, (;>Ifj)(<p)®®fé’”)(<p))}7

i<k 1]

where (u, §/d¢) is the Gateaux derivative in ¢ along the direction w. This formula can be simplified as
follows. Using (??) and (??), it holds

<u,%>1; (¢) = Cu, >I<”“><so>, G, %>F<¢+¢>=<u,%>w+m.

Next, we apply the field-independence axiom ?? to pull the operator (u, %} in front of everything. We
summarize the above computation by the following result.

Theorem 17. Let F be a local observable in Fioe(M) and ¢ — E, as in eq. (72). Then, for any smooth
solution u to the linearised equation (??7) we have

(V{f —u, (;;>> F=0. (2.50)

The operator VI — (. §/¢) clearly has a striking similarity with Fedosov connection (??), noting that
{-,6/6¢) is equal to the Fedosov operator ¢ (see (?7?)) in the present context. Furthermore, from this
point of view, the condition (??) simply means that the interacting observables F' are, as functions of
the background solution ¢, flat sections in the “algebra bundle” LigzW, (more carefully defined below
in sec. 77). We thereby get a first hint that the “standard” method of quantization based on retarded
products — while looking completely different at first sight— might have something to do with Fedosov
quantization. In the following sections, we will describe a version of Fedosov’s method appropriate for
the setting of field theory. Then we will investigate the relation of these methods in chapter 77.

37



38



Chapter 3

Fedosov quantization for quantum field
theory

In this chapter, we prove that it is indeed possible to implement Fedosov’s procedure in the infinite-
dimensional framework of a quantum field theory for non-linear equations of motion, but many new ideas,
which are going to be extensively explained, are required. In sec. 7?7, we first characterize rigorously
the infinite-dimensional symplectic manifold of the smooth solutions of the non-linear (more precisely,
A¢*-interacting) Klein-Gordon equation on an ultra-static space-time with compact Cauchy surfaces.
We then define the geometric set-up to discuss Fedosov’s scheme in infinite dimensions. In particular,
we provide the appropriate notion of smoothness, called “on-shell W-smoothness”, and the definitions of
the corresponding covariant tensor bundles necessary for constructing the vector space structure of the
formal Wick algebra. In sec. 7?7, we provide two concrete on-shell W-smooth tensor fields corresponding
respectively to the symplectic structure and the almost-K&hler structure. In sec. 7?7, we discuss the
algebra structure of the formal Wick algebra. In particular, we define the product of on-shell W-smooth
sections on the formal Wick algebra and, more generally, of on-shell W-smooth forms with values in the
formal Wick algebra. The appropriate notion of covariant derivative is presented in sec. 7?7. We define
two concrete covariant derivatives, corresponding to the Levi-Civita connection and the Yano connection
in the finite-dimensional case. The non-trivial results proved in sec. ?? and ?? concern the consistency of
the product and, respectively, the covariant derivatives with the notion of on-shell W-smoothness. With
the description of setting completed, we state and prove the infinite-dimensional version of Fedosov’s
theorems in sec. 77.

The remaining task will be then to explain the precise relationship between this construction and the
construction based on the “causal perturbation theory” described in sec. ??. This question will be
addressed in chapter ?7.

3.1 The manifold structure of S

We have already highlighted in sec. 7?7 the formal similarities between Fedosov quantization for finite-
dimensional almost-K#hler manifolds and perturbative quantization in the case of the free field (see
table ?7). At the end of sec. 7?7, we have seen a hint that these formal analogies can be extended to
interacting models. Throughout the rest of the work we substantiate this.

For technical reasons, we consider only the case of the interaction V(¢) = %(b‘l, where A € C§*(M).
The analogue of the classical underlying almost-K&hler manifold, .S, is the topological space of smooth
solutions to the non-linear Klein-Gordon equation

. A
S = {¢<—: C*(M): (0—-m*)¢ + §q§3 = o}.
Smooth solutions u to the linearised equation around a background ¢ € S are naturally viewed as tan-
gent vectors to S, i.e. elements u € TyS. The algebra Wy can next be defined for all ¢ € S as the
corresponding algebra in the finite-dimensional situation. It is modelled over the symmetrized tensor

powers of T;S, and the product is given in terms of a suitable smooth assignment S 3 ¢ — wg, where
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each wy is a pure Hadamard 2-point function. This provides the analogue of the almost-K&hler structure
for S. In particular, we may choose wy as the retarded state wf with respect to the unique ground state
wo (cf. (?7)). In this case, we will see in sec. ?? then, that the operator VZ — (- §/6¢), defined at the
end of sec. 77, is roughly speaking the Fedosov connection associated with this particular almost-K&hler
structure. However, in order to turn these formal analogies into precise mathematical ones, we must be
careful about the infinite-dimensional nature of S. Thus, we will begin by equipping S with the structure
of an infinite-dimensional Fréchet manifold, and then we will define precisely the bundles over S needed
in Fedosov’s method, namely T'S, T*S, and W, and their differentiable structures. This will be done in
the rest of the present section.

First of all, we recall the definition of “Fréchet spaces” and of “Fréchet manifolds”. A Fréchet space is
a locally convex vector space, i.e. a vector space equipped with a family of countably many seminorms
such that the topology is induced by this family of seminorms. One can define naturally a metric for
a Fréchet space!. A Fréchet space is required to be complete with respect to this metric. The space
of smooth functions over a finite-dimensional manifold endowed with the compact-open topology?, also
called “topology of uniform convergence on compact set of M”, is the prime example of a Fréchet space,
see e.g. [? ].
A Fréchet manifold is a topological space F modelled upon Fréchet spaces, in the same way as a smooth?
n-dimensional manifold is a topological space modelled upon R™. More precisely, in the Fréchet manifold
context, an atlas is a collection of charts {(Uy, pa)}aca, where {Ua }aea is an open covering the topological
space F' and each p, is an homeomorphism from U, into an open subset of a Fréchet space &,.
We would now like to equip the space S of smooth solutions to (??) with the structure of a Fréchet
manifold. To define the manifold structure of S, we use a description of S in terms of initial data. To
avoid excessive technicalities, we shall restrict attention, from now on, to space-times (M, g) that are
spatially compact, i.e. have a compact Cauchy surface X, and carry an ultra-static metric

g = —dt* + hjjdz'da? (3.1)

where the spatial part h does not depend on the global time coordinate ¢. As is shown in appendix 77
(prop. ?7), in this situation (and probably more generally, too) for each set of smooth initial data
(¢,p) € C*(X) x C*(X) there exists a unique, globally defined, smooth solution ¢ € S such that

q=9lz,  p=0ndls.

This correspondence naturally establishes an isomorphism between S and the space & := C* (X)@C* (X).
The linear space & has the structure of a Fréchet space when equipped with the canonical topology
defined by the direct sum of the Fréchet seminorm of each copy of C*(X), see e.g. [? , Chapter 10].
The isomorphism between solutions and initial data thereby induces a Fréchet manifold structure on S.
By the continuous dependence of the solution ¢ on its initial data, proved in appendix ?? (prop. ?7),
it follows that the topology on S induced by the compact open topology on C* (M) is compatible with
that manifold structure. In detail, let p: S — & be defined as the “restriction map”, i.e.

By existence and uniqueness of the initial value problem for (??), this map has an inverse, U : & — S,
the “time evolution map”. If we endow S ¢ C* (M) with the relative topology, and & with the canonical
Fréchet topology we discussed, then the map U is continuous (prop. ??). By definition, it therefore
provides a global chart of S.

LOnce chosen a family of seminorms {pn}ney generating the topology of the Fréchet space %, the metric is defined by

L —n pn(f_h)
e

for f,he Z.

2In appendix ??, we review explicitly the definition of the compact-open topology.
3Transition maps between two overlapping charts are smooth.
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Since S is a Fréchet manifold, it comes with a natural notion of smoothness*. However, for our

purposes below, we will require a stronger notion. Recall that a function F' : C*(M) — C was called
W-smooth (def. ??) if all its Gateaux derivatives exist in the sense of distributions on the appropriate
Cartesian power of M, if their wave-front sets are contained in corresponding W sets (77?), and if they
depend continuously on ¢. The appropriate strengthened notion of smoothness for functionals on S is
to require the existence of a W-smooth extension on C*(M):

Definition 18. A functional F' : S — C is called on-shell W-smooth if there is an extension F .
C*(M) - C of F, i.e. F(¢) = F(¢) for all ¢ € S, which is W-smooth, i.e. the following conditions
holds:

W1) For all v € N, the v-th Gateauz derivative 8" F,/6¢(y1)...06(y,) exists as compactly supported
¢
symmetric distribution in MY and

5 Fy

WE 5600 - o)

cW,. (3.3)

(W2) Let R 3 € — ¢(e) € C*(M) be smooth and view §”ﬁ'¢(€)/6¢(y1)...5¢(yy) as a distribution in
R x MY, i.e. in the variables €,y,...,y,. For all v €N, it is required to satisfy

6" Fy(e)

WEA 5600 .. o)

c R x {0} x W,. (3.4)

The space of on-shell W-smooth functionals is denoted by C;(.S).

For a W-smooth extension F, all Gateaux derivatives exist as compactly supported distributions on
suitable Cartesian powers of M by definition. Therefore, if we feed 6F,/d¢ with a smooth solution u to
the linearised wave equation (?7?) at ¢, we expect to be able to define a covariant derivative along S. We
will provide this construction in more generality for covariant tensor fields below in def. 77.

We next introduce the tangent bundle of S, denoted by T'S, in the standard way. Let ¢ € S and
consider the set of all smooth curves v : I — S such that v(0) = ¢, where I is an open interval around
0 in R. A tangent vector at ¢ is identified with one of the equivalence classes of such curves, where two
curves v, are defined to be equivalent if it holds

d d

ZFOO)| = ZFGE)|

for any on-shell W-smooth function F' : S — C. The tangent space 1,5 is defined as the collection of
all such tangent vectors. Note that this definition coincides with the usual “kinematic” definition of the
tangent space for finite-dimensional manifolds 5. Since the elements of S are the smooth solutions of
equation (??), we can alternatively characterize the tangent space TS as the space of smooth solutions
to the linearised equation at ¢, namely

T¢S >~ {u € C%(M) : P¢u = 0},

4In the context of manifolds modelled on locally convex vector spaces, there are in general many inequivalent notions
of smoothness. Let .%1,.%5 be two locally convex spaces and let ¢ < %1 be an open subset. The most common definition
of smoothness, in some references called Michal-Bastiani smoothness, states that a continuous map F : & — %5 is smooth
if for any v the v-th Gateaux derivative exists as a continuous maps & x .} — Fo. If % < .71 is a subset, not necessarily
open, then a continuous map F : % — % is said to be smooth if there is & > % open and a smooth map F : 0 — %,
extending F'. A problem with this definition is that, for completely arbitrary U, the directional derivatives of F' depend
on the extension chosen. More details are presented in [? ? |, and also discussed in [? 7 ? ]. For general locally convex
spaces, this notion of smoothness is not equivalent to the notion C*-open smoothness of [? |. However, in the context of
Fréchet spaces, which is our setting, these coincide.

5In infinite dimensions one has to be careful and in general has to distinguish between “kinematic tangent vector”, i.e.
given as velocity of curves, and “operational tangent vector”, i.e. given as bounded derivations of local smooth functions.
These concepts do not coincide unless the locally convex space which models the infinite-dimensional manifold is reflexive [?
, thm. 28.7]. In our situation, reflexivity does not hold.
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2 %(b?. The tangent bundle is defined as the disjoint union of

where we used the notation Py := 0 —m
its fibers,
TS =| | Tys. (3.5)

$eS

For any Fréchet manifold, the kinematic tangent bundle inherits a natural topology and a natural man-
ifold structure. In our case, these structures are particularly easy to describe, because S can be covered
by a single chart via initial data. More precisely, we define the map U : £ ® & — T'S by

U((Q1,p1)7 (q2,p2)) := (U(q17p1)7UU(QLPI)(qQ)pQ))?

where ug : & 3 (g,p) — uy(q,p) € TypS maps the Cauchy data ¢,p into the unique smooth solution
ug (g, p) of the linear equation (??) such that pous(q,p) = ¢ and prue(q, p) = p°.
The topology of T'S is defined as the topology induced by the Frechet topology of & @ & and the map
U7 It is easy to see that (& @ &, U ) is a global chart for T'S. In fact, U is bijective and its inverse is
“(¢,u) := (p(¢), p(u)) because the Cauchy problems for both eq. (??) and its linearisation eq. (?7)
are well-posed. By construction the maps U and U ! are continuous. Note that the continuity prop-
erties of ¢ +— wuy(g,p) proved in appendix ?7 (prop. ??) imply that U is continuous also if we endow
TS © C*(M) @ C*(M) with the relative topology. With respect to this topology U~! is continuous
too. Thus, the relative topology on T'S is compatible with the natural topology induced by the global
chart.

We would next like to define the cotangent bundle T*S and its tensor powers. A well-known issue in
infinite dimensions is that there is no natural manifold structure for the cotangent bundle. For instance,
if we define the cotangent space as the topological dual of the tangent space, then we can endow the
cotangent, bundle with a vector bundle structure, but generally not with a smooth manifold structure. If
we consider the stronger category of manifolds modelled on Banach spaces, i.e. complete normed vector
spaces, the issue can be resolved, as discussed in [? , Remark I1.3.5]. But for the case of manifolds
modelled on a Fréchet space there is no natural definition. A similar problem arises for the tensor powers
of the cotangent bundle. The key point is that, to define the tensor product of locally convex spaces,
we need to take the completion of the algebraic tensor product of these spaces with respect to some
topology. In [? ], the authors proved that choosing the bornological completion, i.e. the finest locally
convex topology such that the canonical tensor map is bounded, allows one to construct the full theory
of calculus for locally convex spaces . For the purposes of this work, a more direct approach, based on
the specific infinite-dimensional structure we are considering, is preferable.

In our concrete case, S is a set of smooth functions and T3S for any background ¢ is a linear space of
smooth functions. The topological dual space of TS is a space of distributions, and similarly for the
dual space of ®"TS. For our constructions below, we cannot consider arbitrary distributions, because
we would like to define on these spaces a product structure in order to define the algebras W;. Actually,
we had already encountered this problem when we defined the algebra W(S,w) (??) in sec. ?? that serves
as a model for WW4. We shall proceed in the exact same way. For each fixed ¢ € S, we note that any
compactly supported distribution ¢t on M, modulo compactly supported distributions of the form Pgt’
gives rise to a well-defined linear form on 7S, i.e. on smooth solutions of associated with the operator
Py. Similar statements hold true for distributions of more variables. By analogy with our discussion in
sec. 7?7, we therefore define

B0 TS o= Efy (M™)/ PoEly (M), (3.6)
which we can interpret as a completion of the algebraic tensor product ®"T7}S viewed as tensor product
of smooth functions. In the above quotient, we mean that the Klein-Gordon operator Py can act on any
argument as in (?7).
The bundle corresponding to (??) is defined as the set-theoretic union of its fibers, i.e.

By T*S = | | & T3S, (3.7)
PeS

6Asin [? ], the uy can be expressed in terms of the causal propagator as uy(q,p) = Ey[ppp— p}q], where £o,1: E(B) =
E'(M) are the “adjoints” of po,1 : C* (M) — C*(X), i.e. they are defined by {pf, ,t, f) = (¢, po,1f) for any t € £'(X) and
feC*(M).

Le. a subset O ¢ T'S is open if and only if U~1(O) c & @ & is open.
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c=1
Figure 3.1: Choice of c.

We need to equip T*S and more generally the bundles [xI"T*S with a smooth structure, i.e. we need to
define the notion of smooth sections on these bundles.

For the purpose of discussing the smooth structure, it will be convenient to have an alternative
characterization of the fibers of the covariant tensor bundles. In order to set up this characterization,
we first introduce a special distributional integral kernel o, that will appear throughout the following
sections. We begin by choosing two disjoint Cauchy surfaces ¥,¥_, such that X, is in the future of
Y _. Then, consider a function ¢ € C*(M) such that ¢(M) < [0,1], ¢ = 0in J*(X;) and ¢ = 1 in
J7(X_). Roughly speaking, ¢ is a smoothed out version of the step function that jumps from 1 to 0
across the Cauchy surface ¥_. See fig. ?? for a sketch of the situation. Then, we put

oc(x1,22) 1= —(Oc(x1))d(x1, 22) — 2(Ve(xr), VO(z1, x2))g, (3.8)

where V is the Levi-Civita connection with respect to the space-time metric g, and where (-,-), is the
contraction with g. For later use, we notice that the wave-front set of o, satisfies the following bound:

WF(o.) © {(xl,xg;kzl,k:g) ET*M?: 21 =aae J-(5,) A JH(E), ki = —/@} c Wo. (3.9)

Next, we consider the composition

(00 0 Ey)(x) = jM 0ol, 2) (2 y)dz,

for any cut-off function c as in eq. (??), where Ey is the causal propagator of P,. This distribution will
be extensively used in the construction of our infinite-dimensional setting.

Lemma 19. For any cut-off function ¢ as in eq. (?7), (0.0 Ey)(x,y) is a well-defined distribution which
has wave-front set in W and which is compactly supported in x.

Proof. We first notice that the wave-front set of o. is estimated by (?7?), the wave-front set of Ey is
given by (?7?), and they are both contained in Ws. Furthermore, o, is compactly supported and so the
integration condition (??) is fulfilled. All the hypotheses of lemma ?? are satisfied and thus (c.0Ey)(z,y)
is a well-defined distribution which has wave-front set in W5. The support property of (o, o Ey)(x,y) is
a straightforward consequence of the fact that o. is compactly supported. O

The following lemma establishes that (??) is basically an equivalent way of writing the standard sym-
plectic form on 73S and that E, o o, is the identity on each TS, or, in other words, that Ey is the
left inverse of 0. on T,S. We also show some useful consequences of these two important facts. We
present the results for a more general situation than 755, namely for the space of smooth solutions u of
Pyu=(0-m?—3¢?)u =0 for ¢ € C*(M) and not just for ¢ € S.

Lemma 20. Let ¢ € C*(M) and ¢ be a cut-off function as in eq. (??). Then, for any two smooth
solutions uy,us to Pyui g = 0 and for any Cauchy surface X, it holds

f ul(:ﬂ)(&’_n)uz(x)dﬁ(x) :f uy(x1)oc(x1, v2)ua(z2)drides. (3.10)
by M?
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Furthermore, for any smooth u such that Pyu = 0 we have

u(z) = JMQ Eg(z,y1)0(y1, y2)u(y2)dy1dys. (3.11)

1t also holds
Ey(x1,22) = JMQ Ey(z1,y1)00(y1, y2) By (y2, 2)dy1dys, (3.12)
for any cut-off function ¢ as in eq. (?7), and
(Byoou)o(Eyoo.) = Eyoo,, (3.13)
for any cut-off functions ¢,c as in eq. (77).

Proof. The proof of (?7) follows easily from the Stokes theorem.
As proved in [? , lemma 3.2.1 part (3)]%, we have

j f@)u(@)de = —o(B(f),u) = f F(2) Eolr, 2) Sru(2)dS(2),
M >

for any test function f and any Cauchy surface X. Using eq. (??), then eq. (?7?) follows.
Since E4(f) is a smooth Pg-solution for any f € C* (M), eq. (??) is a straightforward consequence of

eq. (77).
Finally, eq. (??) is just a corollary of (?7?). O

For later, we note that in the more general situation where w1, us are arbitrary smooth functions, not
necessarily solutions to Pyui e =0, eq. (??) becomes

lf ) ’LL1(1'1)0'C(£L'1,ZL’Q)’LLQ(ZL’Q)diL’leL'Q =
M

- [ w Tz - [

_ B

(3.14)

(Ppur)(z)c(z)us(x)dr + JB ui(x)c(x) (Ppue)(z)dx,

where c is a cut-off function as in eq. (?7), i.e. cis identically 1 in the past of a Cauchy surface ¥_ and is
identically 0 in the future of a Cauchy surface 3, and where B is the compact region J (X )nJH(X_).
If uy,ug are arbitrary smooth functions, not necessarily solutions to Pgu; 2 = 0, then it follows that the
integral {, ul(x)((f:ug (2)dX(x) is not any more independent to the choice of the Cauchy surface ¥. In
particular, if ¥’ is another Cauchy surface which is in the (strict) past of the Cauchy surface 3, then it
holds

f Iul(x)(a)UQ(x)dx = f

P

7

uy (2) O us (2)dE(z) +J ,(P¢u1)(:r)u2(x)dm - J ui(z)(Pyug)(x)dz, (3.15)
where B’ is the compact region J+(X) n J~(X).

The desired alternative description of the cotangent bundle and its tensor powers is given by the
following proposition, which is presented again (as in lemma ??) for a generic smooth function ¢.

Proposition 21. Let ¢ be any cut-off function as in (??). For any ¢ € C*(M) and any n € N the
spaces (0. 0 Ey)®"EL(M™) and &, (M™)/PyEl,(M™) are naturally isomorphic. The isomorphism is
given by (77).

In case ¢ € S, we thus have <y, TS ~ (0. o Eg)®nEl (M™).

Proof. First, we show that the space of distributions (o, 0 Ey)®" o &y, (M™) is actually well-defined. We
already established in lemma ?? that the distribution (0. o Ey)(x,y) has wave-front set contained in Wy
and is compactly supported in z. Thus, using lemma ?7 we see that the composition of (0.0 E,)®" with
a distribution in &fy,(M™) is well-defined and (o, o E,)®"Ef, (M™) < &, (M™).

The desired isomorphism between (0. o E,)®"E};,(M™) and &}, (M™)/PsEfy(M™) is given by

(00 0 Eg)®" € (M™) 3 (0 0 Eg)®"t > [1] € Ely (M™)/ Py (M™). (3.16)

8Note that in the reference the symplectic structure has the opposite sign.
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First, we need to check that the proposed definition is actually consistent. It is sufficient for this purpose
to prove that if (0. 0 E,)®"t = 0, then [t] = [0], i.e. t € Ps&fy, (M™).

For n = 1, the distributional space &, (M) is just C§*(M). If we assume that (0.0 Ey)f = 0 for a certain
feCy (M), then using eq. (??), we have necessarily

0= (Epoo0.0Ey)f =Es(f).

As proven in [? , lemma 3.2.1 part (2)], E4(f) = 0 if and only if f € P,Ci°(M) as we desired to show.
For n > 1, the proof is a bit more involved. We present explicitly only the case n = 2, but exactly the
same argument can be adapted to the general case. Using the hypothesis (o0 E,;)®?*t = 0, we write ¢ as

t=t—(0.0Eg)ot+(cc0oEy)ot—(0.0Ey)oto(Eyoo.)

3.17
=({id—oc0FEy)ot+ (0.0FEy)oto(id — Eyoo0,). (8:17)

Let us focus on the distribution (id — 0. 0 Ey4) o t. By construction, it is compactly supported. We
show that the composition E(f/ By (id — 0.0 Ey) ot is a well-defined distribution with wave-front set

contained in W5. In fact, the wave-front sets of E;‘/ R are estimated, respectively, by the sets CA/f

defined in (??). By definition, C4/® are subsets of Wy. As already show in lemma (??), the distribution
(0c 0 Ey)(x,y) has wave-front set contained in W5 and it is compactly supported in z. By hypothesis, ¢
is a distribution in &}, (M™). Therefore, all the compositions Eq’?/ R ot and E:;/ Bo(os0 E,) ot satisfy
the integration condition (??) and involve distributions with wave-front sets contained in Ws. Thus, we
can apply lemma ?? and we conclude that E:;/ Bo (id — 0. 0 Ey) ot is indeed a well-defined distribution
with wave-front set contained in Wh.

As a consequence of eq. (77), it holds

(Bf —Ef)o(id—o0.0FEy) ot =0. (3.18)

By the support properties of the advanced/retarded propagators E;‘/ R, it follows from (??) that Eg‘ o
(id — 0. 0 Ey) o t must be a compactly supported distribution.
Summing up, we obtained that E;;‘ o(id—o.0Ey)ot € & (M?). With a similar argument, we can prove
that (0.0 Eg)oto(id—Egoo.)o0 E(‘; € &y (M?).
Finally, if we set hy := E;;‘ o(o.0Es—id)ot and hy := (0.0 Ey)oto(Egoo. —id)o ng, then it follows
that

t= (P¢ ® 1)h1 + (]. ®P¢)h2,

so t € Py&l;(M?) and the map (?7) is consistently defined.
To conclude the proof, we notice that the map (??) is clearly surjective and it is injective because
(0.0 E4)®" vanishes when acting on P&l (M™). O

The following lemma clarifies the dependence on the cut-off ¢ of the alternative description of the cotan-
gent space and its tensor powers we have just presented in prop. ??.

Lemma 22. Let ¢, be two cut-off functions satisfying the properties required by eq. (?7), then for any
te &y (M™) and any ¢ € C* (M) it holds

(O’C o) E¢)®nt ~ (O’CI o E¢)®nt, (319)
where ~ means that the distributions differ by an element in Py&f, (M™).
Proof. By eq. (??7), we have that
(0c 0 Bg)®"((0c 0 E)®"t — (00 0 Eg)®"t) = (0c 0 Eg)®"t — (0 0 Eg)®"t = 0.

Arguing as in the proof of prop. ??, we have (0.0 E,)®"t — (00 0 E)®"t € Py&ly,(M™) as we desired to
show. O

We next wish to define the notion of smooth sections for the cotangent bundle 7*S and, more
generally, for the bundles [X["T™*S. It turns out that the best way to define this smooth structure for our
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purposes is again via the notion of “on-shell W-smoothness”. Above in def. 7?7, we had already defined
the notion of an on-shell W-smooth function F' : S — C, and we now essentially repeat this definition
for sections on [XI"T*S, which are called “covariant sections of rank n”. First of all, given a covariant
section t : S — X, T*S, we say that ¢t : C* (M) — &}, (M") is an extension of ¢ if for all ¢ € S and
UL, ..., Un € TyS it holds

to(ur, ..., un) =tp(ur,..., un), (3.20)
where ¢4 is understood as a distributional representative of the equivalence class in }}VT;‘S .
Definition 23. A covariant section t : S — X}, T*S is called on-shell W -smooth if there is a W -smooth

extension t : C* (M) 3 ¢ > ty € (0.0 Ey)®"El,(M™) for some cut-off function c as in eq. (??), by which
we mean an extension such that:

(W1) For all v € N, the v-th Gateauz derivative §"ty(x1,...,2,)/00(y1)...0¢(y,) exists as distribution
of compact support in M"Y and it holds

lg(@rs s Tn) - _
WE ( oY1) - - d(yw) ) Witws (3.21)

(W2) Let R 3 € — ¢(c) € C*(M) be smooth and we view 6"ty(c)(x1,...,2,)/60(y1)...00(yy) as a
distribution in R x M™"Y, i.e. with respect to the variables €,x1,...,Tn,y1,...,Yy,. For all v e N,
it required to satisfy

(5l’t~¢(6)(1’1,...,$n) - y » .
WF( 50(y1) - o(n) ) R0} X Wt (3.22)

We denote the space of on-shell W-smooth covariant sections of rank n by Cy (S, Xy, T*S).
A on-shell W-smooth k-form is a totally anti-symmetric element in C%, (S, <FT*S). The space of on-shell
W -smooth k-forms is denoted by Q5 (S5).

We want to prove that the notion of on-shell TV-smoothness is independent of the choice of the cut-off
function, in the sense that if an extension satisfying ??, ?? can be found for a specific ¢ as in eq. (?7?),
then it can be found also for any other cut-off function ¢’ of the same kind. For this purpose, we to
investigate the variational derivatives of the causal propagator.

Proposition 24. For any ¢ € C*(M), and for any v € N, the v-th Gateaux derivative

5”E¢(I1, xg)
6d(y1) ... 09(yy)

is a well-defined distribution which satisfies the following properties:

1. The distribution 6" Eg(x1,22)/00(y1) ... 00(yy) is compactly supported in yi,...,y., more precisely
Y1, .-, Y must belong to supp A, where A enters via Py = O — m? — ’2\¢ .

2. It holds

0" By(z,2)
WF(5¢(y1)---5¢(yu)> Xavw, (3.23)

where the set X2y, is defined as

Xoyy = {(371,!1)2,:1/17 Ykl ko, pr, .. py) € TEMYT?
pL=py+pl,....p,=p,+p! and I a permutation 7 of {1,...,v} such that
(@1351) ~ (Yr(1)s —Pr(ry) o (21, k1) = (Yr(1) (1)) or k1,pﬂ 1 =20
(yw(i);PZ(i)) ~ (yﬂ—(i+1)§ —P;(i+1)) or (yﬂ(z) Pﬂ (4) ) (Yr (i+1)> Pw(i+1))
OF Plriy Pr(ie1) = 0

(3.24)

(Y ()i Pr(y) ~ (T25 —k2) 0T Yr(y) = T2, D5,y = —k2 o1 iy, ko = 0}-
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3. Let R 3 € = ¢(e) € C* (M) be smooth and view 0" Eye)(21,72)/0¢(y1) - -+ 66(y,) as a distribution
in R x M2V, It holds

5”E¢(5)(1‘1,3J2) c y y
WF<5¢(y1)”_5¢(yy)> R x {0} x Xo,,. (3.25)

Proof. The causal propagator is by definition Fy = E(f — Ef and, consequently, the properties 1,2,3
follow from the corresponding properties 1,2,3 of 5”E$/ R/6¢” proved in prop. ?? of appendix ?7?. O

The following technical lemma clarifies the relation between the sets W, we defined by (??) and the sets
Xo4, described in (?7).

Lemma 25. For any v
X2+1/ < W2+V-

Proof. We proceed by induction in v.

The induction starts at v = 1. Let (x1,22,y; k1, ke, p) be an element of Xo.;. If we assume that two
of the covectors ki, ko, p belong to v (respectively V), then the third is necessarily contained in V'
(respectively V+) by the definition of X5, 1. Thus, X217 € Ws,1 as we needed to prove.

We then prove the induction step: suppose that X5, € Ws,,. holds for any ¢/ < v, then we show that
Xoy, © Wayy. Let (z1, 22,91, .-, Yu; k1, k2,01, ..., p,) be an element in X5 ,,. By the definition of Xo,,,
it follows that there exists a permutation m of {1, ..., v} and decompositions p; = p} +p,...,p, = pl,+p}
such that the relations in the right-hand side of (??) are satisfied. This means that

(.%'17 Yew)s Yn(1)s -+ s Yn(v)s k17pf;r vy Pre(1)s- -+ 7p7'r(l/—1)) € X2+V
)

(3.26)

(yw(u);pi'r(,)) ~ (225 —k2) O Yr(y) = xg,p;'r(y) = —kg or pl,/r(l,) =k =0.
We prove by reductio ad absurdum that (z1,22,y1,. -, yw; k1, k2, P1,--.,D0) € Way,, ie. if we assume
that all covectors ky, ko, p1,...,p,+1 belong to &l (or all belong to V'), except at most one which can

be space-like, then we get a contradiction. We present the argument for V+, the other situation can be
treated similarly.

We consider three cases separately: (a) k1, k2, Dr(1),- - Pr(v) € v except at most one covector among
k1,Px(1), - - - Pr(v—1) Which can be space-like, (b) k2 is space-like and k1, pr(1), - - Pr(v) € VJr, and (¢) pr(yy
. . =+
is space-like and k1, k2, pr(1),-- - Prv-1) €V .

(a) As a consequence of the assumptions and the inductive hypothesis Xo,,_1 © Waoy,_1, it must
1"

. =+ o —+ . . —+
necessarily hold p;(l’) ¢ V. Since pr,) = p;(”)ftpﬂ(”) e V' by assumption, we obtain p’T’r(V) eV
and p” ) * 0. Moreover, we also assume ks € V. We clearly get a contradiction with the second
requirement of (?7).

(b) By assumption all ki,pr(1),-- Pr(v) € V+, and so the inductive hypothesis Xo,, 1 € Woy,_1
- = o —+ . .
implies that p’Tr(V) e V . Since pr) = p;(y) + p;;(y) € V' by assumption, we have again that

p;’r(y) e V"' and p;’r(y) # 0. Since ko is assumed to be space-like, we obtain again a contradiction

with the second requirement of (?7).

(c) As for the case (b), it follows from the assumption and the inductive hypothesis that p/, ) € V.

Since pr(,) = Py, + Py, is space-like by assumption, we obtain p ,, ¢ V. Since ko € V' by
assumption, also for the case (c¢) we get a contradiction with the second requirement of (?7?).

This concludes the proof. O

With these two results at our disposal, we show that the notion of on-shell W-smoothness is inde-
pendent of the choice of the cut-off function c.
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Lemma 26. Let c be a cut-off function as in eq. (?7) and let t: C* (M) 3 ¢ — t4 € (0.0 Ey)®"El (M™)
be a W-smooth extension of an on-shell W-smooth section t : S — X,/ T*S. For any other cut-off
function ¢ as in eq. (??), the map

CF (M) 36+ (00 0 By)®"i, € (00 0 By)®"Ely (M™) (3.27)
is a W-smooth extension of t in the sense of def. ?7.

Proof. We first show that the map (??) is consistently defined. In fact, by the properties of (o, o Ey)
given in lemma (?7), it holds t, € (0. 0 Ey)®" &l (M™) < E,(M™) and thus (0. o E,)®"t, is indeed an
element of (0. o E4)®"&f,(M™).

Next, we prove that the map (?7) is an extension of ¢, i.e. for any ¢ € S and uy,...,u, € TS it holds

to(ui, ..., un) = (00 0 Eg)®"ty) (u1, ..., up). (3.28)
The right-hand side of the equation (??) above can be rewritten as
((UC/ o E¢)®n£¢) (ul, . ,’U,n) = £¢7 ((E¢ o O’CI)’U,l, ey (E¢ o acz)un) = t~¢(u1, e ,’U,n),

where we used the fact that (E, 00 )u; = u; for any i = 1,...,n, see eq. (?7). Since t, is by hypothesis
an extension of ¢, it follows that eq. (??) is satisfied as we needed to prove.

To conclude the proof, we need to show that (o o E¢)®”t~¢ satisfies the conditions 7?7, 77 of def. ?7.
In order to show ??, we compute 6" (0 o Es)®"t,/5¢" by distributing the variational derivatives among
the factors of (0. 0 E4)®"14. It follows that §” (0. o Ey)®"t,/6¢" is a finite sum of terms in the form

n INd g () §INelE, (2
[ Mot peteer) ottt )
M2 G 5¢| Il({yT}TENi) 5@ tl({yr}reNt)

2

doy ... dx)dat ... dx)

no

(3.29)

where Ny, ..., N, N; is a partition of {1,...,v}. To establish that (. 0 E,;)®"t, satisfies ?? it is sufficient
to show that each term (??) is a well-defined distribution in &}, (M™).

By construction, o is a compactly supported distribution and its wave-front set is contained in Ws.
As a consequence of the estimate (??) and lemma ??, we have that WF(§IVil B, /5¢IVil) is contained
in Wyyn,| for any i. By hypothesis, ty is a W-smooth extension and so it satisfies condition ?? of
def. 77, i.e. 5|Nf‘t~¢/6q5wt| is a compactly supported distribution and its wave-front set is contained in
Whysin,|- These considerations imply that we can apply lemma ?? and so the distribution (?7) is a
well-defined distribution with wave-front set in W, ,,. To verify the condition ?? we still need to prove
that the distribution (??) is of compact support. This follows from the fact that o and §/Velz,/5¢l V¢!
are compactly supported and the fact that WF(6|Ni‘E¢/6¢‘Ni|) is compactly supported in the variables
(yr)ren, (see (2) of prop. ?7). )

In order to prove ?7, let R 3 € — ¢(e) € C™ (M) be smooth and consider §"(cy 0 Eg(e))® () /00"
as a distribution in R x M™*”. To prove 7?7, we need to show that the wave-front set of §"(c. o
E¢(€))®"t~¢(e)/6¢” is contained in R x {0} x W,,;,. We use a similar argument as the one presented
for the proof of ??. More precisely, we notice that §” (o o E¢(€))®”t~¢(€)/5¢” is again a finite sum of
terms in the form (??), with the only difference that ¢ is replaced by ¢(€) in any occurrence. Then,
estimates (??) and lemma ?? imply that WF(J‘N”EME)/(SQS'N”) is contained in R x {0} x Wy |,|, and, by
hypothesis, the wave-front set of 5|Nt‘t~¢(6)/5¢|Nf‘ is bounded by R x {0} x W54 |n,|- To conclude that 77
holds for (ou o E¢(E))®"t~¢(e), we just need to use the wave-front set calculus (thm. ??). This concludes
the proof. O

The first operation we introduce on on-shell W-smooth covariant sections is the tensor product.

Proposition 27. Let t,s be two on-shell W-smooth covariant field of rank respectively n and m. For
any ¢ € S, we define (t® s)y € ""™T5S as
(t®8)p =1ty ® S4. (3.30)

Note that, by abuse of notation, we identify an equivalence class in K*T3S = Ejy (M*)/Py&ry (M*) with
one of its representatives.

The map S 3 ¢ — (t® )y is an on-shell W-smooth covariant section of rank n +m.

Furthermore, @ is a bilinear map Cyf (S, &5, T*S) x CF (S, T*S) — CF (S, &y ™T*S).
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Proof. Let ¢ be a cut-off function as in eq. (?7). By lemma ?7?, we can choose two W-smooth extensions
t,5 of t,s in the sense of def. ?? such that for any ¢ € C* (M) we have t, € (0. 0 Ey)®"El,(M™) and
54 € (0.0 Ep)®mEL(M™) for the same fixed c. The desired extension of (f ® s) is defined by

t®s), =1ts ®3y, (3.31)

for any ¢ € C*(M). Since (W, x Wp,) u ({0} x W,,) u (W,, x {0}) € Wiy im, the estimate of the
wave-front set of the tensor product of two distributions (see thm. ?? in appendix ??) implies that
ty ® 54 € (0c 0 Eg)® e (M™™),

By hypothesis, t~¢ and 54 satisfy conditions 7?7, ?7. Then, by distributing the variational derivatives onto

—~—

the factors in £y ® 3, it follows again from thm. ?? that we have (t ® s),, satisfies conditions ??, ?7.
Finally, ® is linear by definition. O

Based on def. ?? and def. 7?7, we next define a natural derivative operator ¢ acting on on-shell -
smooth functions or covariant sections via the Gateaux derivative of a corresponding extension. Looking
at these definitions, it is clear that the extensions depend on a choice of the cut-off function c satisfying
the properties required by eq. (??). This choice will also be reflected in the definition of 0.

Remark 5. The situation is simpler for functions F' € Cy;(S) (rather than covariant sections). In this
case, we can show that along directions in T4S the first Gateauz derivative of all possible extensions
of F coincide. More precisely, consider two extensions Fy, Fy of the same on-shell W -smooth function
F. Obviously, (Fy — F5)(¢) = 0 for any ¢ € S. Let u be an element of TyS and consider the smooth
non-linear solution ¢. = U(p(¢p) + ep(u)), i.e. the unique smooth solution of the non-linear eq. (77)
corresponding to the Cauchy data p(¢) + ep(u), where p is the restriction map (??). Because u is a
smooth solution of the linearised eq. (??) around ¢ € S, it holds that ¢. = ¢ + eu + o(e?) and, therefore,
we can conclude that

J <5F1(q>) B 5ﬁ2(¢)> wdy = LB — B)o+ew)| = LB —B)e)| =0 (332
M

de e=0

do(y)  do(y) de

e=0

Before stating the definition of @ for on-shell W-smooth covariant sections, we need to prove that for any
¢ € C*(M) and for any fi, fo € C*(M) the map

dEs(x, 21

)_ - 5E¢($7$2)

Moz (E“%x” 5(y)

> f1(71) fa(we)dwdrady (3.33)

is a smooth solution with respect to Py = O—m? —V"(¢). Actually, we prove the following more general
result, which will be needed later on.

Lemma 28. For any ¢ € C*(M) let Ay, By be two distributions in D'(M?) such that:
o Ay(x1,x2), By(z1,2) are bi-solutions with respect to Py.
e WF(Ay), WF(By) € Ws.

o The Gateaux derivatives 6A(x1,x2)/0d(y), 6B(x1,22)/00(y) are compactly supported distributions

in y and they satisfy
5A¢(:C1,I2)) <5B¢(ZE1,I2)>
WF|————— ) WF | ———= Wi.
( 6o(y) )’ soly) )=

Then, for any f1, f2 € CF(M), the map

dBy(x, x1)
6p(y)

is a smooth solution with respect to Py.

0A,(x, x2)

Moz (Aa%xg

M3 >f1($1)f2($2)d331d9€2dy (3.34)
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Proof. We first prove that the map (?7) is actually a well-defined smooth function. By hypothesis, we
can apply lemma ?? and conclude that the composition of distributions

5B¢(x,x1)_ . 0As(x, x2)
J,, (o0 P — Bt 5 )

is a well-defined distribution with wave-front set contained in W3. By smearing this distribution in x1, zo
with the two compactly supported functions fi, fo, we obtain the map (?7). We get a distribution in «
with wave-front set in {(z, 1, x2; k,0,0) € W3}. However, by definition, W3 cannot contain any elements
in the form (z,x1,x2;k,0,0) and so the map (??) is a smooth function.

Since Pq(fl)A(b(xl, x9) = 0, it follows that

(@1) (1)
(01) 0Ag(x1,2) 0P Ag(1,22) - JP; B
Fo sply) 5 (y) 5 (y) Ag(@1,22) = My)d(y)d(y, ©1) A (21, 22).

A similar result holds for By. It follows that if we act with the operator P4 on the function (?7), then
we obtain

fM (Ao (f2) (1), y)MY)¢(y) By (f1)(y) — Bo(f1)(9)(x, y)My)d(y) A (f2)(y)) dy = 0,

and this concludes the proof. O

According to prop. 77, the causal propagator E, satisfies the conditions required by lemma ??, and,
therefore, the map (??) is indeed a smooth solution respect to P,.

We now consider on-shell W-smooth covariant sections in the sense of def. 7?7 and we define the
derivative operator ¢ acting on these sections.

Proposition 29. Let ¢ be a fized cut-off function as in eq. (7?) and t be an on-shell W-smooth covariant
section of rank n. For ¢ € C*(M), let ty € (0. 0 Eg)®"El,(M™) be an extension of t as in def. ?7.
Define

== e W Ots(xh, o al ) )
(at)¢'('r17"'7xn+l) = - E(JCOE¢)(xi7xi) 6¢(.’17l1) dIl...dl'n+1, (335)

—~—

If ¢ € S, then the distribution (0t),, does not depend on the choice of the extension ty in (0.0E,)®"EL (M™).
Moreover, it defines an on-shell W-smooth covariant section 0t with rank (n + 1) by restriction to
(TS)®n+1 e

—_—~

() p(ur, ... upt1) == (0t) y(ur,. .., upt1) Vo €S, uj € TyS. (3.36)

Note that 0t depends on the choice of c. 0 is a linear map O (S, K, T*S) — CF (S, Kt ' T*S9).
We define the map d : Q%,(S) — Q’&fl(S) acting via anti-symmetrisation P~ on 0, i.e.

It satisfies the following properties:
(1) The section dt does not depend on the choice of the cut-off ¢, unlike 0.

(2) For any F € C(S), ¢ € S and u € TS, dF,(u) coincides with the directional derivative of F'
along u.

(8) For t,s on-shell W-smooth forms with rank respectively k and k' it holds that d(t A s) = dt A s +
(=1)¥t A ds, where A is the anti-symmetrisation of the map ® defined in prop. 77.

(4) d is flat, i.e. d*> = 0.
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Proof. First of all, we verify that formula (??) provides a well-defined distribution which belongs to
&l (M™H1). The wave-front set of (0. o E,) is bounded by Ws as shown in lemma ??. By hypothesis,
we have WF(8t4/0¢) € W,41. By construction, o. is compactly supported. Therefore, the claim is a
consequence of lemma, 77,

We next show that any two W-smooth extensions #; 4,24 € (0. 0 Eg)®"E},(M™) of the same on-shell

—_—~

W-smooth covariant section ¢ for our fixed choice of ¢ give the same (dt) , for ¢ € S. After smearing with
arbitrary test functions f1,..., fn+1, the difference between the distributions (??) corresponding to the
extensions t1, to is

(001) = (Ph2)y| (1, fusn) =

= jM(Eqﬁ 000 fl)(xl)L {(t1.0 — t2.6) (Eg00c0 f2),...,(Eg00c0 fry1))} —

5¢>(~T1) (3 37)
3(Eyooco fi)(xs) '
D T A 1002 1) (e
X (2?1@ — EQ,¢)(IQ, . ,In_;,_l)d:lil . dIn+1,

where we applied the Leibniz rule for the variational derivative. We need to prove that the (évtl —

5Vt2)¢(f1, ..+, fn+1) vanishes if ¢ belongs to S.

Due to (0.0 Ey)(0.0 Ey) = 0.0 E4 (see (??)), we have (t1 4 — t2.4) = (0.0 E3)®"(t1 4 — t2,4) since, by
hypothesis, we assume #; 4,72 4 € (0.0 Ey)®"EL,(M™). Then, the distribution (0.0 Ey)®" (1,4 —t2,4) is
identically zero for ¢ € S because #;,, are extensions of the same on-shell W-smooth section (see (?7?)).
Thus, the second term on the right-hand side of (??) must vanish if ¢ € S. The first term in (?77?) is the
Gateaux derivative along the smooth Py-solution Ey4 o o, o f1 of the W-smooth function C* (M) 35 ¢ —
(t1o —t2.6)(Ego0c0 fa),...,(Ego0.0 fnr1)) which is identically zero whenever ¢ € S. Arguing as in
remark ??, we conclude that for ¢ € S also the first term in (??) vanishes. Thus, we have verified the
independence with respect to the choice of the extension.

To prove that 0t is an on-shell W-smooth section, we need to show that (6f\17) » satisfies the conditions 77, 77
of def. ?? for any ¢ € C*(M).
To show 7?7, we need to compute the v-th Gateaux derivative by distributing the functional derivative

—~—

6/6¢(y) over the various factors on the right-hand side of (7?). It follows that 6" (dt) ,/0¢(y1) - - - dé(yy)
is a linear combination of terms in the form

f 5NN (0, 0 By)(ai, ) SN (Lt L)
a1 0N ({yrbren,)  00(2h)00 N ({yy }ren,)

de’ .. .dx), 4, (3.38)

where Ny, Ny,..., N,.1 is a partition of {1,...,v}. The wave-front set of §Ni|E,/64IVNil is estimated
in (??). The wave-front set of o, is estimated in (??). The wave-front set of oINVel+17,/5¢INel+1 is
contained in W,, |y, 41 since, by hypothesis, f¢ satisfies 7?. We can then apply lemma ?? and lemma ??
and thereby we find that the distribution (??) is well-defined and its wave-front set is contained in
Wii14w. Thus, the requirement ?7 holds.

In order to show ??, let R 3 € — ¢(e) € C* (M) be continuous, and consider 6”51545(6)/542)” as a distribution
in R x M"™+1*¥, This distribution is again a linear combination of terms in the form (??) with the only
difference that ¢ is replaced by ¢(¢) everywhere. The wave-front set of 5‘Nf|+1f¢(€)/5¢‘Nt|+1 is contained in
R x {0} x Wy 4|n,|+1 because, by hypothesis, t, satisfies 7?. Formula (?7) implies that 5‘Ni‘E¢(€)/5¢|Ni‘
is contained in R x {0} x Wy n,. Thus, using the wave-front set calculus (thm.??), it follow that
5”5154)(6) /6¢" has wave-front set contained in R x {0} x W,,,1,, which is precisely condition ??.

Since the map d is defined simply by acting with 0 followed by an anti-symmetrization, it is clearly
well-defined.

We prove that d satisfies (1)-(4).

(1) To prove that d does not depend on the choice of the cut-off function ¢, we first need to investigate
the dependence of 0 on c. Let be ¢, are two cut-off functions satisfying the properties required
by eq. (??), i.e. there exist Cauchy surfaces X1 and X/, such that ¢ = 0 on J*(¥;), ¢ =1 on

—~

J (3-), ¢ =0o0n J"(X]),and ¢ =1 on J (X). We write (dt) for the distribution defined by
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eq. (77) for the cut-off ¢ and for a W-smooth extension t, € (0. 0 E5)®"Ef,(M™) of t. Due to the
fact that (0. 0 Ey)(0. 0 Ey) = 0.0 Ey (see eq. (7?)), we have that

—~ ntd 5((0. 0 Eg)® i) (2h, ...
0t)y(z1,.. . 7p =J UCOE (Ezu i < 2 ’ n+1 dl’ 339
(0t) ¢ (21 +1) . H o)(i, ) 5o H

We write (0t) for the distribution defined by eq. (??) using the cut-off ¢’ and a W-smooth extension
of 1, € (00 0 Ey)®" & (M™) of t. As proved in lemma ??, the distribution (0 o Eg)®"t, is a W-
smooth extension for ¢ with respect to the cut-off ¢/. We have shown at the beginning of this proof
that @T)' does not depend on the choice of the W-smooth extension in ’Zb of t, therefore we can
use (0 0 Eg)®t, as extension for ¢t where #, is the same extension as in (?7), i.e.

n+1 ~
(oty 5((00 0 Eg)®4) (wh, .. 2l y)
(0t) y(x1, .- Tps1) ZanH I[l(o-cz o Eg)(x;, x}) ¢ 6¢(¢;11)2 +1 Hdz;

It now follows from lemma ?7 that

((ré’vt)d) —(ﬁé’\t?qj) (1, Tpt1) =

n+1 n 340)
8 ((0c 0 By)®" — (00 0 Ey)® )t¢> (

A ||choE T, T (zh,....2), ||dm1,

an+1 i:1( ¢)( ) 5¢($Cl) 2 +1

where ~ means “equal up to distributions in P&, (M™1)”. We can express (0. 0 E4)®" — (0 o
E4)®™ as

((O’c 0 Eg)®" — (04 0 E¢)®") (T, Ty Y1y ey Yn) =

Z (1‘[ o oE¢)(aﬁi,yi)) ((0c — o) 0 By) (x5, ) <H(000E¢)(9¢4,y@)> .

01

Using eq. (?7), it holds (0. 0 Ey)((0. — o) 0 Eg) = 0. Eq. (??) thereby becomes

<®¢ - Eb\tj;d’) (.fl, e 7$n+1) =
~ Til ﬁ(0c0E¢)(%m2)M(xj,zj)x
£ Mn+2 )

og(x)
X f¢(x'2,...,zj,...,x;ﬁl)dzjnda:; (3.41)
n+1
< 3 [ oo Bawnat) (000 Boo (00 =000 5% ) (515
j=2 JM?2 o(x)
X to(Tay .y 2jy e Tpyp1)da)dz;,

where we used (0.0 Ey)(0.0Ey) = 0.0 E, (see eq. (??)) and the fact that £ € (0,0 Ey)®&l, (M™)
by hypothesis. We now substitute

0E4(x,2) 5E£(x,z) 5ER(x z)
sop(y)  do(y) 5o(y
= B3 (2, y)Ay)o(v) Ef (v, 2) — B (2, ) MN»)o(y) EL (y, 2).-

for the variational derivative of Ey. Then, we need to analyse E4 o (0, — o) © E:;/ B in order to
simplify further eq. (?7?). It follows from eq. (??) that for any test functions f1, fo we have

(Eyo (00— 00) o By ™) (fr, f2) =
J Ey(f1) 0 E,'" dZ+J Eo(f1)0n B (f2)ds+

(3.42)
N f (Bo(£2)) @)elz) fo ) — f (Es(f2) (@) (@) fol)da
B B’
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where B =J (X)) nJt(X_) and B’ = J~(¥,) n J*(X"). Let us choose another pair of Cauchy
surfaces ¥, such that ¥ is in the (strict) future of both ¥, ,3’, and ¥”, is in the (strict) past
of both ¥_, ¥’ . We identify by B” the space-time region J~ (X’ ) n J*(X”). We can use eq. (?7)
to rewrite the first two integrals in the right-hand side of eq. (??) in terms of the Cauchy surface
¥’ . We obtain

(Bso (0c = 00) o BN ) = | (Bali)@)le - ¢)(o) fala)da. (3.43)

Notice that the domain of the integration in the right-hand side of eq. (??) can be extended to the
whole M because ¢ — ¢’ = 0 outside B”. Using eq. (??), we conclude that the following relation
holds

((0’\{) - (0\t)7¢) (1, Tnt1) &
n+1
f (00 0 Eo)(21,9)(0 0 Bg) (25, ))AW)(y) (¢ — ) (@) Ealy, 2)x  (3:44)

X t¢(x2, ey 2y, T )dydz;.

The right-hand side of eq. (??) does not vanish in general. Thus, we see explicitly that 0t(¢)
depends on the choice of the cut-off. Nevertheless, the right-hand side of eq. (??) is a finite sum of
distributions that are symmetric in 1, 2;. Therefore, it follows that

- (((%) ,— (@0y ¢) ~ 0. (3.45)
where P~ denotes the anti- symmetrlzatlon Because the on-shell W-smooth form dt is defined by
restriction to (T'S)®"+1 of (dt) (6t) the relation (??) implies that d¢ does not depend on the

choice of the cut-off c.

Let ¢ € S and u € TyS. For any on-shell W-smooth functional F', it holds

AN ’ 5F ’
dF () = JM (B=(F), ) (2)u(a)dz = JM2u(x)(UCOE¢)(a:,x ) ¢((j,;da:dx
_ 5F(¢)
- | @5
where we simply apply eq. (??). Then, arguing as in remark ??, we have
d - d - d d
dFy(u) = iFW + eu) » = &F(@) . = &F(ﬁbe) - = gFW + eu) o

where ¢, is the unique solution of the non-linear eq. (??) with Cauchy data p(¢) + ep(u). Thus,
we have verified that property (2) holds.

It can be easily seen that (3) is just a straightforward consequence of the definition of d, the
definitions the tensor product ®, and the Leibniz rule for the variational derivative.

—_—

To show that d is flat, it is sufficient to prove that the off-shell extension (d(dt)) vanishes. This
can be shown by direct calculation. In fact, by definition, we have

(d(dt))¢ Tlyeo- a’;n+2) =

n+2 5 R
JM"“ [ [0 oo a) g {diotas, - o) [T

/
n+2 (346)

J H (0coEy)(xs,x xh)x
M2n+3

XL ﬁ(a OE)(/ )(5t~¢($é,, n+2 de de
50(a)) e Bo)(@) ) =5 ) ,

j=2
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where c is a fixed cut-off function as in eq. (?7), and where t, € (0.0 E,)®"E},(M™) is a W-smooth
extension of the on-shell W-smooth section ¢. Next, applying the Leibniz rule for the variational
derivative and using eq. (?7?), it follows that

(d(dt) y(T1, ... Tns2) =

=IP’_J (0c0 Ey)(x1,x}) x
M2

5 nt2 5t n "
R R e P O

j=2
6(00 ° Eti?)(x?, mIQ) o E roon
5o(a)) (0c 0 Eg)(ay, a5)x (3.47)

P j (00 0 Ey) (21, 2))
Mn+3

n+2 "
Oty(xs, ..., x
H oc 0 Ey)(xj,x%) o} ‘;’(ﬁ( n n2) dz' dzhda? Hdm”—
=3 Lo
n+2
8(0c 0 Ey) (e, 27)
P Z J nis UCOE¢' x17x1) < 6(25(1'3) (OCOE(Zﬁ)('r/Z’xZ)X
Sto(xh, ... z"
x [ [(oc 0 By)(xs,27) o g¢($,/) "+2)dzgdzgdx;;ﬂdx;!
J#t 2 J
Using the fact that we anti-symmetrize in all variables x1, ..., 2,2, we rewrite the second term in

the equation (??) above as

1p- B e o B)@a) 600 By)(a,2)
_ QP J,Mn+3 |:( c E¢)( lvy) 5¢(y) ( ¢ E¢)( 27y) 5¢( ) ]

n+2 (348)

" 6t~¢(xg> ) JJZ+2 "
x (0.0 Ey)(z,x5) H (0c 0 Ey)(xj,x7) ) dydzdzs H dx;
i=3 2

Note that the term in the bracket [...] is a Ps-solution in z as a consequence of lemma ??. Since
oc 0 Ey is the identity on Py-solutions (see eq. (??)), then it follows that the distribution (??) is

equal to
1 §(oc 0 E¢)(x2, 5) 6(0c © Eg) (1, 35/2/)]
— =P o.0 FEy)(xq, — (0c0 Ey)(x2, X
n+2 g "
ot
x H oc 0 Ey)(xj, %) Amz;é( Tns2) dydaz? Hdag”
b [ (oo By, Nt Do ) ﬁ(a o By)(ay, ) x
Mn+2 ¢ ¢ b 5¢($11) j=3 ‘ AN
5f¢(x’3’,...,x;fb+2 ”
X 2 dr dx;
soap) H

A similar argument holds also for the last term in eq. (??). Putting together and applying again
the Leibniz rule of the variational derivative, we finally have

(/(\j) ( f n+2( )( ,) SZ ( 37 . 2

1) . n | | c© 1y g | |

d dt "El, ./,C +2 , 11 g E¢ Ti, L 5 ) de

This concludes the pI'OOf. O

Now, we can discuss what is meant by “deformation quantization” in the infinite-dimensional context
we provided. The notion of smoothness we are considering in this framework is the concept of on-shell
W-smoothness. Thus, we consider deformations of the commutative algebra (Cy}(S),-), where - is the
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pointwise product. Note that the pointwise product is a well-defined bilinear map Cy;(S) x Cyy(S) —
Cyi(S) because it is just a special case of the tensor product of on-shell W-smooth covariant section
discussed in prop. ??, namely for covariant sections with rank 0. For this commutative algebra, we define
the Poisson structure as follows:

Proposition 30. Let Fy, F» € Cj(S). For any ¢ € C* (M), we define

(3.49)

0T

(Fi, P}y = B, ((OFY), © (0F),

If p € S, then the distribution {1::1,\17’/2}(15 does not depend on the choice for the cut-off function ¢ and the
extensions of Fy, Fy implicit in the definition of (6\1?5, (’0??)

Moreover, (?7) defines an on-shell W-smooth function { I, Fa} simply by {F1, Fo}, 1= {F1, F2} 4 for any
¢peS.

Furthermore, {-,-} is a Poisson bracket Cy};(S)xCy;(S) — Cy; (S) for the commutative algebra (C(S), -).

—~—— —

Proof. First of all, we notice that if ¢ € .S, then (6F1)¢, (6F2)¢ does not depend on the choice of the
extensions F, Fb, as we already proved in prop. ?7.

Next, we show that {FTF‘Q} » does not depend on the choice of the cut-off functions. Let Fy, F» be
W-smooth extensions of Fy, Fy in the sense of def. ??. For any ¢ € C* (M), consider the distributions
(6\l71/)¢ € (0.0 Ey)&l, (M) and (6\}72/)¢ € (0w 0 E4)El, (M) as given by eq. (2?) in terms of F, Fy and for
two possibly different cut-off functions ¢, ¢’ as in eq. (??). Since Ey oo, 0 Ey = Ey (see eq. (77)), we
have

— OF OF.
{F1, Fo}y, = J’M2 5¢(;T)(E¢°0cOE¢OUc'OE¢)($17$2)Wz)dJS1dﬂﬁ2 530)
N N 3.50
5F, 5Fy,
_ By (21, 9)——2% dop, dacs,
Jo Bty Pt ) e

which implies that {m}d) does not depend on ¢ even for ¢ € C*(M) and not just for ¢ € S.

In order to prove that S 3 ¢ — {Fl,F2}¢ is an on-shell W-smooth functional, we have to verify that
{F1, Fy}, satisfies conditions ??, ?2 of def. 77,

To show ??, we need to compute the v-th Gateaux derivative of {m} by distributing the functional

derivative §/0¢(y) over the factors in the right-hand side of eq. (??). It follows that 6"{1?’1,\1?2}45/5425” is
a finite sum of terms in the form

J 5|N1\+1ﬁ~1,¢ 6‘N2|E¢(x1,z2) 5\N3\+1ﬁ27¢
a2 06(x1)00 N ({yr}rem, ) 061Nz ({yrbrens,) 00(2)61Ns ({y, drens )

where N7, No, N3 form a partition of {1,...,v}. The wave-front set of 5‘N2‘E¢/5¢|N2| is contained in
Wo|n,| as follows from (??) and lemma ??. By hypothesis, f’1,¢,ﬁ27¢ satisfies 7?7, and so the wave-
front sets of the compactly supported distributions 5|N1|+1f~7'1,¢/5¢|N1|+1 and 5‘N3|+1]527¢/5¢‘N3|+1 are
contained in W)n,|+1 and in W|y,|41 respectively. Then, we can apply lemma 7?7 to prove that each
term (??) is a well-defined distribution and its wave-front set is contained in W,. Furthermore, the
distribution (??) is compactly supported as follows from the support properties of the distributions

involved. Thus, 6”{@}#{5@3” € &, (M) which is precisely the condition ?7?.

To show ??,let R 3 € — ¢(e) € C*(M) be continuous, and consider SV{FE}¢(E)/5¢” as a distribution
in R x M¥. This distribution is again a linear combination of terms in the form (?7?) with the only
difference that ¢ is replaced by ¢(¢). By hypothesis, 1517(;5, ﬁ‘27¢ satisfies 77, and so the wave-front sets of
5|N1\+1ﬁ1,¢(€)/5¢\N1\+1 and 6|N3|+1ﬁ27¢(5)/6¢w3‘+1 are contained in R x {0} x Wy, 11 and in R x {0} x
W|nN|+1 respectively. Formula (?77) implies that 6‘N2‘E¢(5)/6¢|N2‘ is contained in R x {0} x W5 |n,|. Thus,

dl‘ldl‘g, (351)

by the wave-front set calculus (thm. ??), we have that 5”{}7"1,\}72} #(e)/00" has wave-front set contained
in R x {0} x W, which is precisely condition ??.
We have verified that ¢ — {F, F'}, is a well-defined on-shell W-smooth function.
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We notice that eq. (?7?) implies that {m} » coincides precisely with the Peierls bracket (??), which is
a Poisson structure as established in [? ]. Therefore, {-,-} is a Poisson bracket for the algebra Cy; (S).
This concludes the proof. ]

In our infinite-dimensional setting, the notion of deformation quantization is the same as for finite
dimensions, sec. 7?7, with the only adjustment that on-shell W-smoothness replaces ordinary smoothness
everywhere.

Definition 31. A deformation quantization on S consists in providing an associative algebra structure,
the star-product *, on CJ;(S)[[R]] such that F x F' = F' - F' 4+ o(h), and [F, F'], = ik{F, F'} + o(h).

As already mentioned, our intention is to define a deformation quantization on S by mimicking
Fedosov’s construction in finite dimensions reviewed throughout sec. 7?. Following this logic, we define
in our infinite-dimensional framework the bundle of formal Wick algebras and its smooth sections.
These notions are natural, basically functorial, generalizations of the definitions of the covariant tensor
bundle (??) and on-shell W-smooth covariant tensor fields (def. ??). The formal Wick algebra W, is
defined as a vector space (cf. (??)) in terms of the algebraic direct product

Wy = Cl[h]] ® @ vy TS,

n=0

where V{}VT;S denotes the totally symmetric elements of TVLVT;‘S . Let us consider the bundle

W= | | W,.
¢peS
An on-shell W-smooth section on this bundle is a sequence (t°,t!,...), where each t" is a C[[A]]-valued

totally symmetric on-shell W-smooth covariant section with rank n. We denote the space of such sections
by Cy7 (S, W). Similarly as in the finite-dimensional case, we introduce on W, and then canonically on
Cy (S, W), the symmetric degree deg,, the formal degree deg;,, and the total degree Deg, which are
defined by

deg,t" :=n, deg,h:=1, Deg:=deg,+2degy, (3.52)

where t" € C (S, viyT*S). Exactly as in finite dimensions, a Deg-homogeneous element ¢ has only
finitely many non-zero elements ¢" in (¢°,#!,...) and each " is a polynomial in .

Other natural definitions from the finite-dimensional setting may then also be generalized. In particular,
W-valued k-forms are defined as on-shell W-smooth sections in the bundle

|| clii© @ aviTys,
¢S nz0
where /\v];[’,"Tq’f S denotes the elements of @;’"T;S which are anti-symmetric in the first &k entries and
symmetric in the remaining n. More precisely, a W-valued on-shell W-smooth k-form is a sequence
(k0 tk-1 ) where each t*™ is a C[[A]]-valued on-shell W-smooth covariant section with rank (k + n),
anti-symmetric in the first k& entries and symmetric in the remaining n. The space of such W-valued
forms is denoted by QF,(S,W). The three degrees defined by (??) extend to the space of W-valued
k-forms. In addition, we can introduce the anti-symmetric degree deg,. Namely, we have
deg, tF" :=n, deg,t*":=Fk, deg,h:=1, Deg:=deg, +2deg;, (3.53)
where t*" € O (S, AVFNT*S).
Finally, we introduce the space of W-valued (on-shell W-smooth) forms with arbitrary anti-symmetric
degree, i.e. the direct product
Quw (S, W) := D 2y (S, W).
k=0
In contrast to the finite-dimensional setting, where the anti-symmetric degree cannot exceed the dimen-
sion of S, in the infinite-dimensional deg, does not have a maximum value. An element ¢ in Qu (S, W) is
a collection (tk’")keNmeN where tF" is the same as before. It is clear that a W-valued on-shell W-smooth
form ¢ which is homogeneous in both Deg and deg, is a finite collection of covariant sections homogeneous
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in deg,, deg;, deg,, i.e. only finitely many t* appearing in the array defining ¢ are non-zero, and those
which do not vanish are polynomial in 4. The Deg-filtration is one cornerstone of Fedosov’s method in
the finite-dimensional setting, and it will be fundamental also in our infinite-dimensional construction.

In the following sections ?7?-7? we will provide the notions needed to rigorously translate the construc-
tion of the Fedosov connection into the infinite-dimensional framework. This line of argument results in
thm. ??, which provides the infinite-dimensional version of Fedosov quantization, thm. ?? and thm. ??.

3.2 Examples of on-shell W-smooth tensor fields on S

In the previous section, we have discussed the manifold structure of S, i.e. the space of smooth solutions
to (O —m?)¢p — %gb?’ = 0, and we have defined various bundles over S and the corresponding notions of
smooth (more precisely, on-shell W-smooth) sections. We would now like to give concrete examples for
such sections which generalize the covariant tensor fields o;;, Gij, and w;; = oywoy; = —3Gyj + Loy;
in the finite-dimensional case.

3.2.1 Symplectic structure on S

For each ¢ € S and each pair uy,us € T3S of solutions to the linearized equations around ¢, we consider
the standard symplectic structure

og(u1,ug) := f g O, upd, (3.54)
)

and its associated distributional kernel o, € &f;,(M?) defined by eq. (?7). Moreover, o, is anti-symmetric
and is the analogue of the tensor (o,);; in finite dimensions.

As we already proved in lemma 77, the distribution Ey o o, gives the identity on 7S. Thus, the causal
propagator E, is the analogue of the tensor (0,)¥ in finite dimensions.

Concerning the dependence of o4 on ¢, we have:

Theorem 32. The map S 3 ¢ — 0y is an on-shell W-smooth 2-form, which we denote by o.
Furthermore, o is closed as an on-shell W-smooth form, i.e. do = 0, where d is defined as in prop. ?7.

Proof. To prove that the map S 3 ¢ — 0y is on-shell W-smooth, we define for any ¢ € C*(M) and
for a fixed cut-off function c as in eq. (??) a distributional kernel 6,4(z,y) € (0. o Ey)®2Ef,(M?) which
provides an extension in the sense of eq. (??) of the symplectic structure Ty, S x T3S 3 (u,v) — 04 (u,v)
for ¢ € S, and which fulfils the requirements of def. ??. We set

2
Go(T1,22) 1= J H(O’c o Eg) (x4, 2})oc(2}, xh)dx day = (0.0 Ego 0.0 Egoo.)(x1,22). (3.55)
M? 5
For any ¢ € C*(M), the distribution (?7?) is in (0. 0 E4)®2&f;,(M?) because o, is compactly supported
and its wave-front set is contained in W5, see the estimate (??). Making use of eq. (?7?), we can rewrite
0¢ as
Gg(x1,22) = (0c 0 Eg 0 0¢) (21, x2). (3.56)
Then, the map C*(M) 3 ¢ — 64 is indeed an extension of S 5 ¢ — o, as can be verified directly using
eq. (??) and eq. (??). In fact, for any ¢ € S and for uy,us € Ty S, it holds

Gg(u1,u2) = (0c 0 By 0 o) (ur, uz) = oc(ur, u2) = f ul;z)quE = og(u1,u2).
b

To conclude the proof of the on-shell W-smoothness of S 3 ¢ — o0, we need to check that &, satisfies
the properties 7?7, 7?7 in def. ?77.

In order to prove 77, we need to compute the v-th Gateaux derivative of 4. By distributing the
variational derivative on the factors in the right-hand side of eq. (??), it follows

5”5’¢($1,1’2) _ 5V(0'COE¢OO'C)(.’E1,£L'2) :f o (xl ;[;/) 5”E¢(£L'Il,$12)
5¢(y1) ... 60 (yn) 5¢(y1) - .. 69 (yn) az T p(yn) L 5b(yy)
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oc(xhy, xe)da dahy. (3.57)




By formula (??) and lemma 77, we know that the wave-front set of 6 Ey4/6¢" is contained in Wa,,.
Since o, is compactly supported and its wave-front set is contained in W5, lemma ?? implies that
WEF(664/0¢") < Way,. Because o, is compactly supported and 6" Ey(x1,z2)/0¢" (y1,-..,yy) is com-
pactly supported in yi,...,y, (see (2) in prop ??), we conclude that 6“G4/6¢" € &j,(M?T"), which is
precisely the requirement ?7.

To prove 72, let R 3 € — ¢(e) € C*(M) be smooth. We argue similarly as just done for ?? starting
again from eq. (??) and using in this case formula (??) and thm. ??. It follows that 6" G4()/d¢", viewed
as a distribution in R x M?*¥ has wave-front set contained in R x {0} x Wa,,, which is precisely the
condition ?77. This concludes the proof of S 3 ¢ +— o4 being an on-shell W-smooth 2-form.

We now argue that o is closed, i.e. do = 0. According to prop. 77, the exterior derivative d is defined
by anti-symmetrization of 0. Thus, it is sufficient to show do = 0. For our fixed cut-off function ¢, the
off-shell extension 55(;), given by eq. (??), does not depend on the choice of the extension &4. There-
fore, we are free to chose as extension the distribution (??). As a consequence of eq. (?7?), it holds
ocoEy00.0FE300.=0,0FE,00.. Then, applying the Leibniz rule, we obtain

d(ocoEgoa.)(wy,x2) oo 05(000E¢000) .
i = (oo oo M) ot

<W 0oEgo ac) (w1, 22).

By repeatedly applying the last equation, it holds

d(0c 0 By 0 0c) (w3, 23)

3
Oog(x1,x2,23) = st E(O’C o Ey) (x4, xf) e dz' dzhdal
d(oco Egyoo0.)(x,x3)
= 0.0 Ey)(zq, 2 - dz —
R R 1

0(oc.0Ey 00, (3.58)
— J.M(Uc o Ey)(z1,2%) <(&¢)(;)) oFEyo0 ac> (w2, x3)dz)—
1
d(oc.oEyo0 oc)>
— 0.0 Ey)(xq, 2! (O'COE o~ "% (g, x3)d!
| (o0 Bty (000 By o SO0 ) o s
=0,
as we wanted to prove. This concludes the proof. O

3.2.2 Almost-K&hler structure on S

We define an almost-Ké&hler structure on S. This will be provided by a choice of pure Hadamard 2-
point function wy for each ¢ € S. By definition of a 2-point function (see def. ??), w, decomposes into
1Gg + 5By (cf. (77)) where Gy is a real-valued positive definite symmetric distribution. Thus, wy for ¢
smooth non-linear solution in S is the analogue of the tensor given by w¥ = 1G¥ + Lo, where z is a
point in a finite-dimensional almost-Ké&hler manifold. Given any such 2-point function wg for any ¢ € S,
we define its action on a pair of smooth solutions ui,us € TS for the linearised Klein-Gordon equation

by the “symplectic smearing”, i.e. we set

wh,(u1, ug) = L ] Uy (21) O wep (21, 22) On tn (22)d% (21 ) (22), (3.59)
X

where ¥ is a Cauchy surface.

Formula (?7) is actually well-defined as can be seen from the following argument. Any w in TS is a
by definition a smooth Pj-solution. Therefore, the restriction to ¥ of u and its normal derivative d,u
are smooth functions on the compact surface . We must show that the restrictions to ¥ x X of the
distribution wg(z1,x2) and its normal derivatives ar(fl)w¢(x1,x2), 6,(Lm2)w¢(x1,x2), 6,(f1)67(f2)w¢(x17m2)
are well-defined. This can be shown as follows. Since differential operators do not change the wave-front
set of a distribution (see thm. ?? in appendix ??), the wave-front sets of wg and its normal derivatives
are contained in the set C*, given by (??). By definition, C= does not contain elements (1, z2; k1, k2)
with ki, ko time-like. On the other hand, the normal bundle of the Cauchy surface ¥ must contain only
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time-like co-vectors because ¥ is a space-like surface. Thus, it follows from thm. 77 that the restrictions
are well-defined.

The analogies to the finite-dimensional case. We now explain in detail the analogies to the finite-
dimensional case. More precisely, we want to establish that wz, is the analogue of the finite-dimensional
Hermitian tensor 1 )

i

(Wa)ij = (02)iews (02 )kj = —5(Ga)ij + 5(0a)ij-

In the second equality, we used the fact G;; = —UMG”“U;W» which is a consequence of the almost-K&hler
structure.
By definition of o4 (see (77)), w’, corresponds to (04)iwt*(02) ;. Furthermore, by the results obtained

in sec. 77, it immediately follows that the imaginary part of wzﬁ is %ad). To establish the claimed analogy,

we will show that the real part of w; is —% s, where pg is the inner product on TS which is the inverse
of Gy. In other words, py corresponds to (G);;. This condition is equivalent to the almost-K&haler
condition J2 = —1 for Ji; = G*0y;. So,

Wy = —lud) + io¢. (3.60)
¢ 2 2

First, we give an equivalent description of w;:

Lemma 33. The quantity WZ& can be written as

wh (1, u) = (0c 0wy 0 o) (u, u2)

3.61
= J uy (@1)0c(x1, ) )we (2, 25) o (2h, T2 )us (22)dry da| drodal,. (3.61)
M4
Proof. We begin by showing that
M 32> J W (1, 22) O U (22)dE(22) (3.62)
b

is a well-defined smooth Pjy-solution. Note that Pfl)w¢(x1,22) = 0 by definition. Thus, we need to
show that the map (??) is a well-defined smooth function. The normal bundle of the Cauchy surface
Y contains only time-like covectors. As a consequence of thm. 77, the distributions wg, d,wg, which
both have wave-front sets contained in C¥, can be restricted to M x 3. The wave-front sets of both the
restrictions are bounded by

{(l’l,xg;kl,kg) € T*(M X E) : E|t,’l7 € R, such that (,Tl,kl) ~ ((t7$2)7—(7’],k‘2)),k‘1 € V+}

Since uz|y and d,us|y are smooth functions on the compact manifold ¥, it follows form thm. ?? that
the distribution {y, we (1, 22)?,;1@ (22)d¥(z2) is well-defined and that it has empty wave-front set, as we
wanted to show.

Next, we apply formula (??) of lemma ?? to the right-hand side of eq. (??7) and we obtain

w;(ul, ug) = JMQ JZ ug (@1)oc(@1, 7 )we (2], 29) O ua(22) day da, A5 (22). (3.63)

Now, the map M 3z — §,, u(x1)(0c 0 wy)(x1,x2)dzy is a smooth function as follows using the wave-
front set calculus (thm. ??) and the wave-front sets of o, (given by (??)) and wy (given by the Hadamard
condition). This smooth function is a Pg-solution because P(*2)wy(z1,22) = 0 by definition. Applying
formula (?7) to the right-hand side of eq. (??), we obtain eq. (?7?). O

Concerning the claim, it follows from lemma ?7? that we have
pi (1, u9) = —2Rew’ (ug,up) = — (0, 0 Gy ooc)(ur, us)

3.64
= —f w(x1)oe(z1, 21) G (2], 2h)oc(ah, X2 )us(v2)dry da duodat, (3.64)
M4
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Next, we prove the following two facts: (a) pe € V%VT;‘S is a real inner product, i.e. a real symmetric
bilinear form on 7,5 which is positive definite, and (b) the distribution —(o.0Gyo0.)(z,y) € & (M?) is
the “inverse” of G4 (z,y) in the same sense as o.(z,y) is the “inverse” of Ey(z,y), namely for any u € T3S
it holds

u(z) = — e Gy(z,y)(0c0 Gy 0 o) (y, 2)u(z)dydz. (3.65)
Proving (a) is quite straightforward. By construction, pg is real, symmetric and bilinear. The positive
definite property follows from the fact that the 2-point function w, is positive semidefinite? and the fact
that the symplectic structure oy is non-degenerate.
The proof of (b) relies on the fact that wy is chosen to be pure. It is known (see e.g. [? ? 7 |) that a
pure 2-point function induces a complex structure on (the completion of) TS in the following way. The
inequality (??) guarantees the existence and uniqueness of the continuous extension of the symplectic
structure on the Hilbert completion of T3S with respect to the real inner product ;4. We denote this
real Hilbert space by H4. The Riesz lemma implies that there exists a unique operator J, on Hg, such
that o4(0,0) = pe(u, Jyv) for any 4,0 € Hy. Because the 2-point function wy is pure, it follows that
ker J; = & as shown e.g. in [? , Appendix A]. Furthermore, it follows that J, satisfies Ji = —id,
Jqf = —Jy, where (-)* denotes the Hilbert adjoint defined by (4, and, consequently,

U¢(J¢’ft, ’lA)) = M¢(ﬁ, ﬁ) (366)

Because ker Jy = &, and because o4 is non-degenerate, Jy is uniquely defined by eq. (??). For any
u € TyS, we can write
J¢(u) = (G¢ o Uc)(u)a (367)

because

7((Gg 0 0c)(u),0) = 04((Gy 0 0c) (w), limvy) = —lim oy (vn, (G © 0c)(u)) = lim pug(u, vn)

/L¢(U, ﬁ)a

for any smooth u € T, S, for any ¥ € H,, and for any sequence {v,}nen € TyS such that ¢ = lim, v,.
Since J, is the unique operator which satisfies eq. (??), it follows that eq. (??) holds for any u € T,S.
Finally, because Jy is anti-involutive and it maps 7,5 into T3S, we have

ide)s = —(G¢ O 05)2; (368)
which implies eq. (??) as we wanted to prove.

For later use, we state the following remark:

Remark 6. The result can be generalized replacing TyS by the space of smooth solutions of Pyu = 0,
where ¢ is now any arbitrary smooth function in C” (M) (not necessarily in S), and where wy now is a
pure Hadamard 2-point function corresponding to the operator Py. In particular, for any ¢ € C* (M), it
holds

—Gpo00,0Gs=—-Gyo0.0Gy00.0E, = Ey, (3.69)

where eq. (7?) and eq. (?77) were used.

The on-shell W-smoothness of the almost-Kihler section. So far, our considerations have been
for an arbitrary but fixed ¢ € S and a corresponding WZs- What we will need is some information about
the dependence of wg on ¢.

According to our general framework, ¢ — WZS should be on-shell W-smooth. First of all, it is unclear a
priori how to get such an on-shell W-smooth section. As we will see in a moment, it is sufficient for this
purpose to find an assignment C™(M) 5 ¢ — wy, where wy, is a pure Hadamard 2-point function with
respect to Py, such that for any v the Gateaux derivative 6"wg(x1, 22)/00(y1) - - - 0¢(y,) is a well-defined
distribution which is compactly supported in ¥, ..., 4, and satisfies the following conditions:

%In particular, we use |Ey(f,h)| < (G4(f, f)Go(h,h))"/? for any f,h e CF (M) (cf. eq. (27)).
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e It holds

8wy (1, x2) )
WF | ———————F— ) € Way,. 3.70
<5¢(y1) - 69(yw) o (370)
e Let R 5 e ¢e) € (M) be smooth. We can view 0”wy () (21, 72)/0¢(y1) - - - 66(y,) as a distri-
bution in €, 21,22, ¥1,. .., Yy, and it holds
WF <5VWWM> C R x {0} x Wa (3.71)
8(y1) 66 (yy) v

It is not obvious that such assignment exists.

Also, as we will see later, we need for our subsequent construction (in particular for prop. ??) more
stringent constraints on the dependence of wg on ¢. The conditions that will work are collected in the
following definition.

Definition 34. An assignment C™ (M) 3 ¢ — wy, where wy is a pure Hadamard 2-point function with
respect to Py, is called admissible if for any v the Gateauz derivative §"wg(x1,22)/00(y1) - dp(y,) is a
well-defined distribution which is compactly supported in vy, ...,y, and satisfies the following conditions:

(w1) It holds

_wy(rn, @) )
WF<5¢(y1)---5¢(yu)) Zatu, (3.72)

where the sets Zo, are defined by
Zysy = T*M*"\(CF, L G5, (3.73)
and where C;fy are the subset of T*M>**" defined by

%5 r v T —+
Cgfy = {(131,%2791, ik ko, pr, e py) €TEMEY ki ¢V p eV

. B . (3.74)

or ki €V ki # 0,3 pr ¢V, pyprs € V—}.

(w2) Let R 3 € ¢(e) € C7 (M) be smooth. We can view 6" wy(e) (w1, 2)/6¢(y1) -+ - 06(y,) as a distribu-

tion in €,T1, T2, Y1, .., Y, and it holds
0¥ wg(ey (w1, T2) >
WF [ — 2072 ) - Ry (0} x Zo. . 3.75
(o 0> 2 (37)

These new conditions 7?7, 77 imply the previous ones because
ZQ+V C W2+V7 (376)

as follows from the definitions of Z5,, (??) and Way, (?7).

Of course, it is even less obvious that an admissible assignment ¢ +— w, exists. We will therefore
provide one now. We construct a pure Hadamard 2-point function wy for each ¢ € C* (M) using the well-
known procedure of “space-time deformation” developed by Fulling, Narcowich, Sweeny and Wald [? ?
]. For this, we pick a reference pure Hadamard 2-point function wy for the free theory on the background
¢ = 0, i.e. with respect to the Klein-Gordon operator Py = O — m?2. We could basically choose any
pure Hadamard 2-point function we want, but for the sake of being explicit, we take the ground state.
As explained e.g. in [? , §7] (see also [? , sec. 3.4]), the 2-point function of the ground state in an
ultra-static space-time is given by

afio o) = =5 (A =0 Bo(), A3} = i0)En(f) (3.77)

where A is the square root of the unique self-adjoint extension of the operator —A(") +m? on X (see [?
1), and where A" is the Laplacian associated with the metric » on ¥ as in eq. (??). It is well-known
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that this formula defines a pure Hadamard 2-point function with respect to Py = O — m?, see e.g. |7 ,

corollary 3.16]. Next, we choose two Cauchy surfaces ¥, %, such that ¥_ is in the past of ¥, and a
smooth function ¢_ such that ¢_ = 0 in the past of ¥_ and ¢_ = ¢ in the future of ¥.. We define a
2-point function w_ with respect to P,_ =0 —m? — Vi requiring that w_(z,y) := wo(z,y) for x,y in
the past of ¥_. Finally, we define a 2-point function w, with respect to P, = O0—m? — V¢/>I by demanding
that wy(z,y) := w_(x,y) for z,y in the future of ¥y. Applying the results of [? ? ], it follows that w_
and wy are Hadamard 2-point functions. Furthermore, they are pure because wy is chosen pure. We can
clearly perform this construction for any ¢ € C*(M). To make the construction completely canonical,
we only need to specify how we choose ¢_ for a given ¢. This can be done by introducing an arbitrary
smooth cut-off function x which is 1 in the future of ¥, and 0 in the past of ¥, and then setting
¢ 1= X0.

We present a different representation of the 2-point function wg just constructed, which will be more
efficient for computing the variational derivatives of wg.

Lemma 35. We choose four Cauchy surfaces 44 such that
Y <Y <YI_ <Yy <Y <X, (3.78)

where < the ordering is understood in terms of the causal structure. We consider two smooth cut-off
functions c+ as in eq. (7?) and such that c+ = 0 in the future of X4+ and c+ = 1 in the past of ¥4_.
Let ¢ be an arbitrary smooth function. The 2-point function wy(x1,x2) defined previously can be written
in terms of cy as

we(x1,T2) = (E¢ 00, 0Ey o0, owgoo._ oEg oo, o E¢) (z1,22) (3.79)

where 0., are the distributional kernels defined in eq. (?7) respectively for c+, and where Ey_ is the
causal propagator for the Klein-Gordon operator Py_.

Proof. We proceed by showing first that the 2-point function w_ can be written as
w_(x1,29) = (E(;L 00, OWwyo o, O Em) (z1,x2). (3.80)

The support of o._ is contained in K_ x K_ where K_ is a compact subset in J~(X_)\X_. In the past
of ¥_ it holds Ps_ = P, because ¢_ = x¢ and because the smooth function x vanishes in the past of
Y _. Therefore, when the right-hand side of (??) is smeared with two test functions fi, fo € C{°(M)
supported in the past of ¥_, we can replace E4_ with Ey. As a consequence of eq. (??) and the fact
that wyg is a bi-solution with respect to Py, it necessarily holds

(Eg_o0o0c owgooe oEy ) (fi,f2) = (Eoooe owgooe oEy) (fi, f2) = wol(f1, f2),

which is exactly what we have to show to prove eq. (?7) since the 2-point function w_ is defined by the
requirement w_ (z,y) = wo(x,y) for z,y in the past of X_.
As a consequence of eq. (?7?), the right-hand side of eq. (?7) can be rewritten as

(E¢ 00c, OW_ 00, O E¢) (z1,22). (3.81)

We now proceed by showing that the distribution (??) coincides with wg. The support of o, is contained
in K x K| where K is a compact subset of J*(X1)\X. In the future of ¥ it holds P, = P4_ because
¢_ = x¢ and because the smooth function y is equal 1 in the future of ¥,. When the distribution (??)
is smeared with two test functions f1, fo € C§°(M) supported in the future of ¥, we can replace Ey
with E4_ in (??). Using again eq. (??) and the fact that w_ is a bi-solution with respect to Py_, it
necessarily holds

(E¢oac+ 0By o0, owgoo. oEy oo, oE¢) (f1, f2) =
= (E¢— ©0c, OW—00¢, OE¢—) (f17f2) = w—(flaf2)7

which is exactly what we have to show to prove eq. (??) because the 2-point function wy is defined by
the requirement wy(z,y) = w_(z,y) for z,y in the future of X ;. This concludes the proof. O
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Remark 7. The definition of ws depends only on the choice of the Cauchy surfaces ¥+ and the cut-off
function x. Therefore, eq. (??) holds for any choice of the four Cauchy surface Y44, as long as the
causal ordering (?77?) holds, and for any choice of the cut-off c+ as in the statement of lemma ?7.

Using the representation provide by (??), we can prove the following result.

Proposition 36. Let C* (M) 3 ¢ — wy be the assignment given by the pure Hadamard 2-point functions
wg as in (7?). This assignment is admissible in the sense of def. 77.

Proof. To prove that ¢ — wy is admissible, we compute the v-th Gateaux derivatives of wy by distributing
the functional derivatives over the various factors on the right side of (??). The key advantage of
formula (??) is that the only places where ¢ occurs are in the causal propagators Ey or E4_. Thus, we
obtain that §”wgs/d¢” is a linear combination of terms in the form

6‘N1‘E¢ (5‘N2‘E¢7
— 7 < 00¢, O — 77— 900, Owpo
ST (g hrens) 0 5 (g} e
(3.82)
5INs B, sINdE, )
OO0, O —% 775 <090, O —% 77— 77— < x1,T2),
5¢|N3|({yr}reN3) - 5¢|N4|({yT}7“€N4)
where Ny, Na, N3, Ny form a partition of {1,...,v}. Tt is not clear a priori that (??), and so also

0wy /dd”, is well-defined, since compositions of distributions are involved. To show this, we proceed
using the wave-front set calculus (thm. ?7?).
It follows from prop. ??'° that 6/V:IEy/5¢!V:l and §IN:E,_ /64INil satisfy

O By (1, 2) SN, (21, 22)
F(wﬂﬂq%h@m>fWF<&WwG%%ﬁw) < Xot|n;|-

Furthermore, the wave-front set of wy is contained in C*, by the Hadamard condition, and the wave-front
sets of the compactly supported distributions o., are given by (??). Then, we apply thm. ?? to get that
each distribution (??), and, therefore, also 5”w¢_/5¢", is well-defined.

We need to show that 6“wg(x1,22)/0¢(y1)---0¢(y,) is compactly supported in yi,...,3,. For this
purpose, we first recall that the distributions 5‘N1"E¢/5¢|N'i| and 5‘Ni‘E¢7 /§¢‘Ni‘ are compactly supported
in the y’s variables as proved in prop. ??. It follows that each term (??) is compactly supported in
Y1,---,Yv, and, therefore, the same holds for §”wgs/d¢” which is precisely what we needed to show.

In order to prove that ¢ — wy is admissible we need to show that the conditions 77, 77 of def. 7?7 are
fulfilled.

To prove that condition ?7 is satisfied, we notice that thm. ?? does not only ensure that §”wg/d¢" is
well-defined, but even provides the following upper bound for the wave-front set of 0wy /0¢":

5”w¢,($1,x2) )
WF (2 @elTnT2) \ Cy X, Wy, 3.83
<6¢<yl>---5¢<yy) 2w © Xow © Way (3.83)

where the set Y5, , is defined by

Yo,, = {(ml,xg,yl, ik ko py, . py) € TEMYT?
p1=py +pi,...,p, =p, +p! and I permutation of {1,...,v} such that
(@1551) ~ (Yr(1); —Plr(1)) OF 1 = Yr(1), k1 = —Pray OF k1, p(yy =0
(U (iys Priy) ~ Wn(id1)s =Plr(is1)) OF Yn(i) = Yn(i1)s Pr(iy = ~Pr(i) (3.84)
O Prr(iy» Pre(iv1) = 0
(Y ()i Prwy) ~ (T25 —k2) OF Yr(y) = T2, () = —ka o1 Pl(,), k2 =0
Iq € {k1,p},...,pl} s.t. g€V or ¢ =0}.

10Although prop. ?? (and prop. ??, on which the proof of prop. ?? relies) only concerns Ey, analogous results, with
obvious modifications, hold for Ey_.
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The sets X5, and Yay, differ precisely by the last condition of formula (?7?), which is a consequence of
the fact that wqg satisfies the Hadamard condition.
As a consequence of the estimate (??), to prove the wave-front set estimate (??) of condition ?? it is
sufficient to prove

Y2+V c Z2+V)

ie. Yai, N CQQJ:/ = and Y4, N 021;” = ¢, as follows from the definition of the set Z5., (?7).

We focus on the proof of Yo,, n C’QQJ::, = . Let (x1,22,Y1,---,Yu; k1, ko, p1,-..,p,) be an element in
Y21, so there are decompositions p, = p!. + p/ for all r and a permutation 7 of {1,...,v} satisfying the
requirements of (?7). Because of the definition of C2* (?7?), it is sufficient to consider the following two
cases: (a) p1,...,Dy € V+, and (b) there exists s such that p; is space-like and p, € v for any r # s. For
this two cases separately we will show that the configuration (x1,x2,y1,- ., yu; k1, ke, p1,-..,Dy) cannot
be in C3%, i.e. for (a) we will prove that ks € V', while for (b) we will verify that ks = 0 or ky ¢ v

(a) We first assume p7 = 0 for a certain j. Because p, € V" for all r, it follows that k, € V . This
implies that (z1,22,v1,...,Yu; k1, k2,1, ..., p,) cannot belong to C;:;
Next, we consider p” # 0 for all . We show that if ko ¢ V |, which is a necessary condition
for the configuration to be in C’QQJ:, under the assumption (a), then we contradict the hypothesis
(r1, 22,91, -, Yui k1, k2, p1, ..., pu) € You,. In fact, ko ¢ V' implies that k; ¢ V+, pl ¢ V" for
any r, and, furthermore, p/. ¢ V' for any r. However, this configuration is not compatible with
the last condition in the definition of the set Y5,,. Thus, there is no element of Y5, satisfying
condition (a) that is also contained in 022::,, as we wanted to prove.

(b) Again we first assume that there exists a certain j such that p;( = 0. If the permutation = is such
that 7=1(s) = 771(4), then similarly as before we can conclude that k2 € V' . On the other hand,
if 7=1(s) < 7~1(5), it follows that ko = 0 or k» ¢ V , as one can directly check. In both cases
(x1,22,Y1,- -, Yu; k1, ko, p1,-..,py) violates the requirements to be an element of CQQJ:,

Next, we consider p? # 0 for all . We show that if ky € v and ke # 0, which is a necessary
condition for the configuration to be in CQQJ:”V under the assumption (b), then we contradict the

hypothesis (z1,22,y1,- -, Yu; k1, k2, p1,-..,0v) € Yai,. In fact, ko € V" and ko # 0 imply that we

have o
pef T
T* M\V

71__
71'_

)z e{ A OEE O
Hr)y < 7=i(s) " T*M\V 7= Yr) < 77 Y(s)

and necessarily %y ¢ v However, all the configurations above violate the last condition in the
definition of Y54,. Thus, there is no element of Y., satisfying condition (b) that is also contained
in C37, as we wanted to prove.

This concludes the proof of Y21, n C’QZJIJ = J. A similar argument implies also Y24, N 021;, = &, and,
as discussed above, this is enough to conclude that WF(6"wg/d¢") < Zy4, as we wanted to show.
Finally, to prove the condition ??, let R 3 ¢ — ¢(¢) € C*(M) be smooth and view §"wg()/d¢"” as a
distribution in R x M2*¥. This distribution is again a linear combination of terms in the form (??), with
the only difference that ¢, ¢_ are replaced by ¢(¢), d—(e) = xd(¢). As proved in prop. 77, the following
upper bounds hold:

0" Eg (o) (21, 2) ) (5”E¢_<e>(x1,xz)>
WE 500000 )V E 5o -~ 5000 R Xosy.
F<5¢(y1)---5¢>(yu) W 500 0000 ) © X A0} X

Using again thm. ?? and the fact that Yo,, < Z54,, it follows

8 We(e) (z1,22) )
WF| ————~ | c R x {0} xYo,, cR x {0} x Z5,, 3.85
<5¢(y1) w060 (yy) 0} x Yas 0} x Zov (3.85)
which is precisely what we need to show. This concludes the proof. O

After establishing that the class of admissible assignments ¢ — wg, in the sense of def. 77, is not
empty, we prove that S 3 ¢ — wZﬁ provides an on-shell W-smooth Kéhler structure.
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Theorem 37. Let ¢ — wy be an admissible assignment in the sense of def. ?7. For any ¢ € S, let ""Z)
as in eq. (7?) for the 2-point function wy of the assignment chosen. The map S 3 ¢ — wqbb is an on-shell
W -smooth section in C ®%,VT*S, denoted by W’

Furthermore, the map S 3 ¢ — g = 2Rew’ is an on-shell W-smooth symmetric covariant section
of rank 2 which is also positive definite. In other words, i is an on-shell W-smooth metric satisfying
eq. (22), i.e. W’ is an on-shell W-smooth Kdihler structure.

Proof. In order to prove that S 3 ¢ — w; is an on-shell W-smooth section, we need to define a distribution
&125 € (0. 0 Ey)®2EL,(M?) for a fixed cut-off ¢ as in eq. (??) such that: (a) it is well-defined for any
¢ e C*(M), (b) it is an extension of WZsa in the sense of eq. (?7), and (c) it satisfies conditions 7?7, ?? of
def. ??7. We set

0325(1‘1, Tg) i= f (0c 0 Ep)®2(x1, 29, 27, 25) (00 0 wy 0 0.) (2, h)d 21 dchy. (3.86)
M?

To prove (a), we note that both distributions wy and Ey are defined for any ¢ € C*(M). By definition,
0. is a compactly supported distribution with wave-front set contained in Wy, see (?7). Since wy is
a Hadamard 2-point function, its wave-front set is contained in C= < W5 by definition. We apply
lemma ?? and we conclude that o, o wy o 0. is a well-defined distribution in &J;,(M?). Thus, we have
@) € (0. 0 By)®2E, (M?) as we wanted to prove.

To show (b), we notice that (I)(bb can be rewritten as

(1)25 =0, 0wy 00, (3.87)

as a consequence of eq. (??) and the fact that the 2-point function wy is a bi-solution with respect to the
operator P, by definition. Comparing eq. (??) with the equivalent description of wz) given in lemma 77
by eq. (??), we conclude that necessarily w;(ul,uQ) = (I)Z)(ul,uz) for any ¢ € S and any wu,us € TpS.
This is precisely the condition required for JJ; to be an extension of w; and thus we have verified the
requirement (b).

For (c), we need to prove that for any v € N the distribution §” (. owg 0 0.)/d¢” is compactly supported
and

5V(UCOW¢OCTC)(:171,I2) 5”(acow¢(€) oo.)(z1,22)
WF ( So(yr) -+ 06(yy) > c Wayy, WF ( 501 00w ) c Rx {0} x Wy, (3.88)

for any ¢ € C*(M) and any R 3 ¢ — ¢(e) € C*(M) smooth. For this purpose, it is sufficient that the
assignment C*(M) 3 ¢ — wy is such that, for any v, 6"we(z1,x2)/00(y1) - - dé(y,) is a well-defined

distribution which is compactly supported in 1, ...,%, and
5”&14)(1’1,1'2) > ( 5VW¢(€)($1,£E2) )
WF| ————————F— ) cWayy, WF| ————7= ] cR x {0} x Way,. 3.89
<5¢(y1) - 0¢(yy) = 5 (y1) - -+ 59 (yw) (OF x Was (3:89)

These conditions on ¢ — wy, are sufficient for our purpose: " (o, 0wy 0 0.)/d¢” is compactly supported
because of the support properties of the distributions involved, whereas the requirements (??) can be
obtained from (??) using the fact that the wave-front set of o, is contained in W5 and by applying
lemma ?7? (for the first estimate) or the more general thm. ?? (for the second estimate).

As follows form eq. (??), any admissible assignment C* (M) 3 ¢ — wg, in the sense of def. 77, satisfies
all the sufficient requirements above. Thus, we proved that the section S 3 ¢ — wz) is on-shell W-smooth.

Finally, the on-shell W-smoothness of S 3 ¢ — p4 and the decomposition W’ = —%u + %a are straight-
forward consequences of eq. (?7), eq. (?7?) and the fact that both the sections S 3 ¢ — WZﬁ (just proved)
and S 3 ¢ — 04 (thm. ??) are on-shell W-smooth. This concludes the proof. O

3.3 The algebra structure of the on-shell W-smooth sections on

W.

In the previous sections, we have introduced the notion of on-shell W-smooth sections. In particular, we
defined the space of on-shell W-smooth sections on the bundle W, Cyj; (S, W), and the space of on-shell
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W-smooth forms with values in W, Qu (S, W), which replace the spaces C*(S, W) and Q(S, W) in
the finite-dimensional context. We provided three important concrete examples of on-shell W-smooth
sections, namely the symplectic form o, the almost-Kihler structure w” and the associated metric p.
To guarantee the on-shell TW-smoothness, we considered w” constructed from an admissible assignment
C*(M) 3 ¢ — wy in the sense of def. 77.

Proceeding along the lines of the Fedosov quantization scheme, we now provide an algebra structure for
Cy (S, W), the formal Wick product, and then we will extend it to Qu (S5,)V) in a canonical way. The
product is defined fiberwise, just as in the finite-dimensional case (see formula (??)), making use of the
almost-Kahler structure. However, in the infinite-dimensional case it is not evident a priori that the
product of on-shell W-smooth sections defines again an on-shell W-smooth section. It is the purpose of
this section to shown that.

In the finite-dimensional case, for each z € S, with S an almost-Kahler manifold, the algebraic
structure of W, is provided by the product e, defined as in eq. (??) using the complex matrix w¥, i.e.
the value at z of the complex tensor field w. In the infinite-dimensional setting, for each non-linear
solution ¢ € S, the product e, on W is defined as in eq. (?7) using the pure Hadamard 2-point function
wg(21,22). We assume that wg comes from an admissible assignment C* (M) 3 ¢ +— wg, which also
gives an almost-Kihler structure w”. The same argument we presented to prove the well-definiteness for
the product of def. 7?7, see in particular the discussion after lemma 7?7, applies in each fiber Wy for the
product ey. As already mentioned, we induce a product for smooth sections in W from the product on
the fibers. More precisely, for any ¢, s € Cjj; (S, W) and for any ¢ € S we define

(t o S)¢ = t¢ ®h S (390)

What is not immediately evident is that S 3 ¢ — (t e s)4 is on-shell W-smooth. The proof of this
claim relies on the fact that the pure Hadamard 2-point function wy for ¢ € S comes from an admissible
assignment.

Proposition 38. Let C* (M) 3 ¢ — wy be an admissible assignment in the sense of def. ??. Then, the
corresponding fiberwise product e endows Cy, (S, W) with the structure of an associative algebra. More
explicitly, let t and s be two on-shell W -smooth sections on W, then the map

59¢H(t08)¢€W¢,
is an on-shell W -smooth section on W.

Proof. Let t and s be two on-shell W-smooth sections in Cyj; (S, W) homogeneous in the symmetric
degree deg, and in the formal degree degy,, with deg,t = n and deg, s = m. The product (tes), is given

by the sequence ((t o s)g, (te s)é), ...) where, by definition, (t e s) is

k
(tos)yy(z1,...,x;) =h"G i PT J t (215 ey Zhy Tl e vy T k) (H we(ze, zé)) X
=1

M2k
(3.91)

k

! ! !

X S¢(215 oy 2y Tk 1y - - » Tj) | | dzedz
=1

if j =m +n—2k for some k < m,n, and (te s)é = 0 otherwise. By P* we mean that a symmetrization

acts on the free variables z1,...x;. In the formula above, €, 1.1 = m is the same combi-

natorial factor appearing in eq. (??) and in eq. (??). Note that, by abuse of notation, we identify an
equivalence class in v, TFS = PT &, (M*)/PyP* &y (M*) with one of its representative in P&y, (M*).
The equivalence classes corresponding to (??) do not depend on the choice of representative for ¢ and s
because wy is a bi-solution with respect to Pp.

To prove that the product e preserves the on-shell W-smoothness, it is sufficient to show that for any j
the map S 2 ¢ +— (te S)fﬁ is an on-shell W-smooth section with rank j for any ¢, s on-shell W-smooth sec-
tions homogeneous in deg, and in deg;. In fact, we can extend the result to on-shell W-smooth sections
not necessarily homogeneous exploiting the Deg-filtration and the fact that each section homogeneous
in Deg is a finite collection of terms homogeneous in deg, and in deg;, (see the discussion at the end of
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section 77). We consider for the rest of the proof j = m +n — 2k, where k < m,n, because otherwise
(t @ 5)};, vanishes by construction and thus it is trivially an on-shell W-smooth section.

Let us fix a cut-off function ¢ as in eq. (??). To prove that (¢ e s)¢ is an on-shell W-smooth section, we
need to provide for any ¢ € C* (M) a distribution mj such that (a) it belongs to (c.0E4)® o0&y, (M),

(b) it is an extension of (tes)?, (up to a factor AF*desnt+degr =) in the sense of eq. (??), and (c) it satisfies
the requirements 7?7, 7?7 of def. 77.

For any ¢ € C*(M), wy satisfies the conditions ??, ?? of def. ?7 by hypothesis. Let #, € (oo
E4)® &l (M™) and 5, € (0. 0 E»)®™Ef,(M™) be two extensions of ¢, s (up to factors 79°8» ¢ and hdesn s

respectively), consequently f¢ and §4 satisfy the requirements 7?7, 7?7 of def. 77. We define (?Ts)fb by

—~——

k
(tOS)é = n’m’k]PH_ t~¢(21,...,Zk,$1,...7l‘n,k) HW¢(2’4,22) X
M2k

=1 (3.92)

X S(21s -y 2 Tnektly -y TN) H dzedzy.
To prove (a), we first note that WF(wy) = C® < Wy by definition. Then, as a consequence of the

hypotheses on t4, §5 we can apply lemma ?? and we have that formula (??) is a well-defined distribution
in (0, 0 E4)® 0 £y (M),

In order to show (b), let ¢ € S and let uq,...,u; € T,S. Because uq,...,u; are Py-solutions and wy is
a bi-solution with respect to Pp, it holds that (t e s)j (u1,...,u;) does not depend on the choice of the

extensions ?,, §4. Furthermore, (?:JSM is an extension of (t . 3)¢ (up to a factor hE+desnt+dess ) gince
f¢ and 5, are extensions of ¢t and s (up to factors hdeent and Ade8n S respectively).

To conclude that (¢ e s)7 is indeed an on-shell W-smooth section, we need to check (c), i.e. that (/t\o—/s)fj)
satisfies the requirements ?7, 77 of def. 7?. We first compute the v-th Gateaux derivative of (775);
by distributing the variational derivatives on the factors in the right-hand side of (?7). It holds that
6”(150/_\8/);@1, oo x)/00(y1) ... 6¢(y,) is a finite sum of terms in the form

J SINUE, (21, 21, {Ticn—k))
. 3¢Vt ({yren, })

|N"|w¢ (20, 2)) 5‘NS|§¢(Z’1,.. s 2y {Tisn—k})
(H 3N ({yren, }) 5N ({yren, }) H deedzy,

where Ny, Ny, N1, ..., Ny is a partition of {1,...,v}. We show that each distribution (??) is a well-defined

compactly supported distribution. This is sufficient to conclude that §” (/t\-ds)fls /6¢¥, which is a finite sum
of terms as (?7), is also a well-defined compactly supported distribution.
We consider first the auxiliary distribution ©4 on Mm+v=INe| defined by

(3.93)

Op(21,- -5 2k {Tisn—t s {Yrene}) =

= k SINEwy (20, 25) \ OWVel54(2, .o 2t {Tisn)) .
= ka <Zl—[1 5¢|Nz|({y7_eNZ}) 6¢‘NS|({Z/T'€NS}) dzy ...dz,.

By hypothesis, wy is an admissible assignment. Therefore, §!Velwy (24, 2,)/0¢!™Ve! (y,en,) is compactly
supported in (y)ren,, and its wave-front set is bounded by Z |y, (this is estimate (?7) of condition 77)
which is contained in Wy |y, (see (??)). By hypothesis, 3, satisfies ??, therefore §1V:15,/5¢N:! is a
compactly supported distribution with wave-front set in W, |n,|. Then, applying lemma ?7, we have
that © is a well-defined distribution which is compactly supported in (2;~,—x) and in (y,eng) as follows
from the support properties of the distributions involved.

In order to prove that each (??) is a well-defined distribution, it is sufficient to show that the composition
of 6INilty /5Nt with @, exists in the sense of the wave-front set calculus (thm. ??), i.e. we need to
prove that the multiplication condition (??) and the integration condition (?7?) hold.

The integration condition is satisfied due to the support properties of 5‘Nf|f¢/5¢)|Nt‘ and Oy.
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In this case, the multiplication condition reads

<5Nt|£¢(z1, ooy 2l {Tign—k})
6N ({yren, })

) N WFI(®¢(21, ceey 2k {xi>n—k}7 {yreNf}))zl,...,zk =
zZ1 Zk

seees®k

(3.94)
= .
Using the wave-front set calculus (thm. ??) and the fact that WF(51V+/5,/5¢1V:!) is contained in W, n),
we can estimate the second set appearing in the left-hand side of eq. (?7) by
WEF' (©4) 2.2 © {(zl, ey 2k =y, —Qk) € T*Mfo} S3(2, e 2 A Q) € W
5|N£‘w¢(22722) >} (3.95)
6¢|N[|({yrENe}) 7

Since 61Vtlw, /661Nl is estimated by Zoy v, = T* MHINI\(CYE 0 CyT ), it holds that

(ZZ7 Zéa (y’r’EN[); qe, _QZa (07 ceey O)) € WF (

5‘NZ|W¢(2:€, 22)
0Nl ({yren, })

By definition, the set W}, does not contain elements (21, ..., 2}; 4}, ..., q}) in T* M* with all the covectors
qi,...,q, which are future directed. Thus, we have WF'(0,).,,. ., = &. This implies that the multi-
plication condition is verified and so the distribution (??) is well-defined. Furthermore, by the support
properties of §/NtlZ, /541Nl and Oy, it follows that each (??) is compactly supported as we wanted to
prove.

Next, we proceed by showing that each distribution (?7?) satisfies conditions ??, ?? given in def. ?7.

(20, 20, (Yren, ); 96, —qp, (0,...,0)) € WF < ) =q € V+\O, —q, eV \0. (3.96)

This is sufficient to ensure that §” (to/_\_s/)é/éqb”, which is a finite sum of terms in the form (?7?), satisfies
conditions 77, 7?7 as we needed to prove.

To verify the condition ??, we need to show that the wave-front set of the distribution (??) is con-
tained in Wj,. Let (z1,...,25,y1,---,Yv; k1,.-.,k,D1,...,D,) be an element of the wave-front set of
distribution (??). The wave-front set calculus (thm. ??) implies that there must be

k
(Zla"'7Zkazll,'~'7Z;c;qla"'7q]€aqlla"'7q;c)ET*M2 3
such that
(Zla"'7Zk77x17"‘7xn7k7(y’r‘ENt);_q17"'7_qk7k17"'7knfk7(pT€Nt)) EW7L+‘Nt|
or qi,... 7qk7k17' . '7kn7kap7‘€Nt =0
(Ze7zéa (yTENe);qfv _q27 (pTENg)) € ZQ+|N5| for e = 17 .. '7k (3 97)
or qe, 4y, Pren, =0
(lev"'7Z;<;7xn—k+1""5xj7(yTENs);qlla"'7q;<;7kn—k+17'"akja(preNs)) € W’m+|Nb|
or qllv .. 7Q;€7kn7k+17" 'akjvpreNS =0

We used the estimate (??) for the wave-front set of §/Velw, /661Nl and the estimate (?7) for the wave-
front sets of §1Velt, /5¢INel and §1Ve5, /5Nl

Notice that (z1,...,2;,91,--.,Yw; k1,.. ., kj,p1,...,py) is contained in W;, as we need to prove, if we
show that k1,...,k;, p1,...,p, cannot be all causal future-directed or all causal past-directed except at
most one covector which is space-like.

We argue via reductio ad absurdum: we prove that if we assume that all the covectors ki,...,k;,
p1,...,p, are causal future-directed except at most one covector which is space-like, we contradict the
hypotheses.

We consider two cases separately: (a) all covectors ki,...,k;,p1,...,p, belong to v except at most
one k; or one p, with r € N; U Ny which is space-like, or (b) there exists an ¢’ and a 7’ € Ny such that

pr is space-like while all the remaining covectors ki, ..., k; and p, with r # " are in v

a) Since we assume p, € VY for any r € Ny for any ¢, we have ¢i,...,q, € vt by definition of the
sets Zay, (see (??7) and (?7)). By the assumption (a), we have kn_g41,...,kj, Dren, € el except
at most one covector which can be space-like. However, these configurations are incompatible with
the conditions (??) because the co-vectors in W,,, |y, cannot be all causal future-directed except
at most one space-like. Therefore, the assumption (a) is incompatible with the hypotheses as we
wanted to prove.
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b) Since we assume p, € V' for any r # ', it follows by definition of the sets Zy, that ¢ be-
longs to V' for any ¢ # (', while we have gy ¢ V or g, = 0. By the assumption (b), we
have kp_k4+1,...,kj,Pren, € V. As before, these configurations are incompatible with the con-

ditions (??), thus also the assumption (b) is incompatible with the hypotheses as we wanted to
prove.

Similarly, we can prove that ki,...,k;,p1,...,p, cannot be all causal past-directed except at most one
covector which is space-like. This is enough to conclude that condition ?? holds for each distribution (?7),

and consequently also for the distribution 5”@0/\:9/)2) /0.

To prove ??, let R 3 € — ¢(e) € C*(M) be smooth. The distribution §”(t e s);(e)/éqb” can be expressed
as a finite combination of terms in the form (??) with ¢ replaced by ¢(¢) everywhere. By hypothesis,
wy satisfies condition 7?7 in def. 7?7, therefore the wave-front set 5‘N”w¢(e)/5¢|N"" is bounded by R x
{0} x Zs4 |, (this is estimate (??) of ??). Furthermore, by hypothesis, f4(c), S4(c) satisfy condition ??
in def. 77, therefore the wave-front sets of the distributions 5‘Nf|t~¢(€)/(5¢wt| and 5‘Ns|§¢(€)/5¢w5| are
contained respectively in R x {0} x W, n,) and R x {0} x W, |n,| (estimate (77)). Arguing similarly
as done in the proof of ??, i.e. using the wave-front set calculus (thm. ??), we have that wave-front set
of each term (??) in ¢(e), viewed as distributions in the variables €, z1,...,2j,y1,...,y, € R x M7 is

contained in R x {0} x W;,,, which is precisely the requirement of ??. Consequently also 6”(t e s)é(e)/é(b”
satisfies the condition ??. This concludes the proof. O

The Fedosov construction we reviewed in sec. ?? actually requires that the algebraic structure over
sections on W is extended to forms with values in W, see eq. (?7). Similarly, in our infinite-dimensional
setting we present the straightforward extension of the fiberwise product (??) on Quw (S, ) based on
the gradings (??). In detail, we consider firstly t € Q% (S, W) and s € Q% (S, W) such that both of
them are homogeneous in the symmetric degree deg, and in the formal degree deg;. In particular, we
set deg,t = n and deg, s = m. For such on-shell W-smooth fields, we define the product (¢ e s)4 as the

sequence ((t e s)’;fkl’o, (te s)’;;rkl’l, ...), where (¢ o s)’;Jrkl’j is given by
k+k'j
(t. S)¢+ ’](ylu"'7yk+k'a‘r17"'7xj) =
‘
= W', ]P’+]P’_f t e YR By ey Bl Ly ey Ty wel(zi, 2)) | x
n,m,t N2 ¢(y1 Yk 21 0y L1 n Z) U <¢)( 7 1) (398)
i=1
¢
x S¢(yk+17 s Yk+E lea ) Zé7xn—€+l7 s 71‘N) Hd?«’zdz:,
i=1
it j =n+m —2¢for { <n,m, otherwise (t o s)§+k"j = 0. In the above formula, €, ¢ = WM

is the same combinatorial factor appearing in eq. (??). By P* P~ we mean that a symmetrization acts
on the free variables = and an anti-symmetrization acts on the free variables y. Similarly as for eq. (77),
by abusing the notation, we identify an equivalence class in /\vléf,"T(;‘S (i.e. the elements in ’;[f ”T;‘S
which are anti-symmetric in the first k entries and symmetric in the remaining n) with one of its rep-
resentatives, which are distributions in &y, (M k+n) anti-symmetric in the first & entries and symmetric
in the remaining n. The equivalence classes corresponding to eq. (??) do not depend on the choice of
representative for ¢ and s.

The product e respects the Deg-grading, i.e. the total degree of the product of two factors is equal to
the sum of the total degrees of the factors involved. The definition (??) extends to a map Q¥,(S, W) x
QF (S, W) — Q';Jkl(S, W) making use of the Deg-filtration and the fact that any form homogeneous in
the total degree Deg and in the antisymmetric degree deg, decomposes in finitely many terms homo-
geneous in deg,, deg, and deg,. The product extends further to Qu (S, W) x Quw (S, W) — Qu (S, W)
canonically even though the deg,-grading does not not admit a maximum value as in the infinite-
dimensional case. With a similar argument as the one we presented before for Cyj; (S, W), we can prove
that the product of two on-shell W-smooth forms is an on-shell W-smooth form. We summarize these
results in the following proposition.

Proposition 39. The product e defined by formula (?7) defines on Qu (S, W), i.e. the space of on-shell
W -smooth forms with values in W, the structure of an associative algebra.
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3.4 W-smooth covariant derivatives on S

In sec. 77, we have defined sections ¢ + o4, ¢ — pg and ¢ — wz) of the bundle C ® X%, 7*S that can
be viewed as analogues of the tensor fields o;;, G;; and w;; on the bundle CQ T*S ® T*S in Fedosov’s
construction for finite-dimensional S. We have shown that the sections ¢ — o4, ¢ — g and ¢ — wz)
satisfy the key property of on-shell W-smoothness. From these sections, we define a covariant derivative
VW that is well-defined on on-shell W-smooth sections and which preserves on-shell W-smoothness.
This covariant derivative is also compatible with the algebraic structure we have discussed in sec. 7?7
and it is analogous to the Yano connection V in the finite-dimensional case. The connection VW will
serve as the starting point for Fedosov’s construction in the infinite-dimensional setting, just as the Yano
connection did in the finite-dimensional case.

Our construction will be rather pedestrian. In the finite-dimensional setting, any affine connection (and
in particular the Yano-connection) can be written as V,v; = 0;u; — I‘fjvk, where ¢ is a flat connection
such as e.g. the flat connection associated with a fixed local coordinate system. We are going to choose
the flat derivative operator ¢ defined in prop. ?? as our analogue for d; in the infinite-dimensional setting.
The remaining task is then to show that the connection coefficients Fi—“j have an appropriate counterpart,
in infinite dimensions, and that the connection V" thus obtained is well defined on on-shell W-smooth
tensor fields. This will be the case if ¢ — wy is chosen to be admissible in the sense of def. 7?7, as will be
assumed throughout.

First we present the general definition of covariant derivatives in our setting.

Definition 40. A W-covariant derivative is a linear map 2% : C{ (S, &5, T*S) — O (S, &Ky ' T*S)
such that on C;(5), i.e. forn =0, it equals 0 defined in prop. 77, and such that it satisfies the Leibniz
rule, i.e. for any t,s on-shell W-smooth covariant sections with rank n and, respectively, m, it holds

IVt®s)=(2V)@s+t® (2" s), (3.99)
where @ is the tensor product given in prop. 77.

We start defining the infinite-dimensional analogue VW of the Levi-Civita connection. This is a
W-covariant derivative which preserves the on-shell W-smooth covariant section p, i.e. VW = 0, and
it is torsion-free, i.e. for any t € Cy; (S, T*5)

TNV () := P~ (VWt) — dt = 0, (3.100)
where P~ denotes anti-symmetrization. In order to define ?W, we proceed as follows. For any ¢ €
C* (M), we first construct the infinite-dimensional analogue I'y of the Christoffel symbols of the finite-
dimensional Levi-Civita connection. Then, we define V = ¢+ I", and we check that this maps the space
of on-shell W-smooth covariant sections of rank n into the space of on-shell W-smooth covariant sections

of rank n+1, i.e. we need to construct a suitable extension %Wt(i) and check 7?7, ?? of def. 7?7. Finally, we
check that the proposed definition satisfies also the other requirements to be a W-covariant derivative.
The choice of I'y is made such that V is torsion-free and preserves pu.

Proposition 41. Let ¢ be a cut-off function as in eq. (?7) and let ¢ — wy be an admissible assignment.
For any ¢ € C* (M), we define the distribution I's € D'(M?) by

[ (21, 2o, 3) i= ! T1.2 6(ogcoGyooc)(z,a3)  d(ocoGyooc)(za,2)
Folonaa. ) QJMG¢( . ){ dp(x2) op(x3) (3.101)
B 6(0c0G¢oac)(x2,z3)}d :
6¢(2) ’

where G is the symmetric part of the 2-point function wy, and where o, is the distribution (?7?).
For any t € Cy, (S, &%, T*S), we define

(th)¢(xla s 7xn+1) =
— n+1

= (0t)4(x1,. .., Tnt1) — Z fMS(ac 0 Ey)(z1,2))(0c 0 By)(wj, ) To(z, 2, 7)) x (3.102)

/ /
X ty(Tay. .oy 24, . Tpy1)dzdaldz;,
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where ty € (0. 0 E4)®"El,(M™) is an extension of t, and where (af\lfs¢ € (000 Ey)®HLEL (M) is the
extension of 0t defined by eq. (?7) with respect to the fized choice of c. The distribution (??) defines an
on-shell W -smooth covariant section V'Vt with rank (n + 1) by restriction to (T'S)®" "1, i.e.

(VY g(ur, . tng1) = (VW) ,(ur, .. uns1) Vo€ S, us € TyS. (3.103)

The section VWVt does not depend on the extension t nor the choice of the cut-off c.
Finally, VWV is a W -covariant derivative which preserves y and which is torsion-free.

Proof. We begin by proving that for any ¢ € C* (M) the distribution (@Wt)d) given by eq. (?77?) is well-
defined and belongs to (. 0 Ey)®" "1/, (M™*1). To show this, we first prove that for any ¢ € C*(M)
the distribution f‘¢,(a:1,a:2,x3) given by eq. (??) is well-defined, is compactly supported in o, z3, and
has wave-front set contained in W3. By definition Gy (z1,22) is the symmetric part of the distribution
wg(x1,x2), which is an admissible assignment in the sense of def. ??. Therefore, the estimate (?7?)
for wy implies that the wave-front set of G4/d¢ is contained in Ws. The distribution o. defined by
eq. (??) is a distribution in &J;,(M?) which does not depend on ¢. Then, applying lemma ?? to the
right-hand side of eq. (??), it follows that the distribution I', is well-defined and its wave-front set is
contained in Ws3. Furthermore, f‘¢(ac1, Z9,x3) is compactly supported in x5, x3 because o, is compactly
supported by definition, and because 0Gy(x1,z2)/0¢(y) is compactly supported in y as follows from
the fact that dwy(z1,x2)/d¢(y) is compactly supported in y by hypothesis. By construction, ((?5(25 is in
(0. 0 Bg)® &L, (M™1). By what we already know about I's, and because 4 € (0, 0 Eg)®" &}y (M™),
it follows from lemma ?? that the second term in eq. (??) is also a well-defined distribution in (o, o

Eg)®ntiel (M™+1). Thus, we have (%Wt)d) € (0.0 Eg)®" 1l as we wanted to prove.

Next, we prove that (VW¢) » defines an on-shell IW-smooth covariant section. For this purpose we need

to show that (a) for any ¢ € S and any u; € TS, (%Wt)d)(ul, ..., Up+1) does not depend on the choice of
the extensions t4 € (0. 0 Ey)®"E&l,(M™) and (’(?Vt)(b € (0.0 Eg)® gl (M), and (b) (%Wt)d) satisfies

—~—

conditions 77, 7?7 of def. ?7. As we have already proved in prop. 77, (675)(15 satisfies both the conditions
(a) and (b) above. Therefore, we need to show that the second term in (??) also does.

(a) By definition, G is a bi-solution with respect to P,. We have already proved that f‘¢(x1, Zo,x3) is
compactly supported in xo, x3 and its wave-front set is contained in W3. Therefore, for any smooth
functions f, h we have that

M > T — J 2 f‘(b(.%‘l,l‘g, $3)f($2)h($3)d$2d$3
M

is smooth because there is no element in W3 in the form (x1, z9, z3; k1,0,0), and it is a Py-solution
by construction. Now, let 1 4,724 € (0. 0 Ep)®"El, (M™) be two W-smooth extensions of t. We
compute the difference of between the second term in (??) corresponding to #; 4 and #2 5. When
evaluated at ¢ € S and smeared with wu;,...,u, 1 € TyS, this difference reads

n+1
> f ] uy (2)u; ()0 (27, @1, 25) (E1,6 — t2,6) (U2, - -+, 25, - Ung1) =0,
. _ M

because for any ¢ € S the two extension #; 4 and 2 s must coincide by construction when smeared
with smooth Pj-solutions. This implies that the second term in (??) satisfies the requirement (a)
as we wanted to show.

(b) To prove that the conditions ??, ?? are satisfied, we compute the v-Gateaux derivative of the
second term of eq. (??7) by distributing the variational derivatives on its factors. It can be easily
seen that this v-Gateaux derivative is a finite sum of appropriate compositions of o., Gateaux
derivatives of Fy and Gateaux derivatives of G4. The idea is to prove that each term in this
decomposition satisfies the conditions ??, ?7. Rather than displaying explicitly these terms and
computing their wave-front sets, we just outline the main arguments needed for this purpose and
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omit the tedious but entirely straightforward details, which parallel those already presented e.g. in
the proof of prop. ?7.

To prove ??, we apply lemma ?? and use the fact that ¢ satisfies 7? by hypothesis, together with
the estimate (?7?) of the wave-front set of 6" Ey/d¢" (proved in prop. 7?), the estimate of the wave-
front set of 6" G4/0¢” induced by the estimate (?7?), the wave-front set of o. computed in (??) and
the support properties of the distributions involved.

Let R 3 € — ¢(e) € C*(M) be smooth. To show that ?? holds, one shall apply thm. ?? instead
of lemma ?? and use the fact that ¢ satisfy ?? by hypothesis, together with the estimate (?7) of
the wave-front set of 0" Ey)/d¢” (proved in prop. ??7) and the estimate of the wave-front set of
0"Gy(e)/d¢” induced by the estimate (?7).

Therefore, the second term in (?7) satisfies the requirement (b) as we claimed.

So, we have proved that VWt is a well-defined on-shell W-smooth covariant section.
Next, we show that VWt does not depend on the choice of the cut-off function c. It is sufficient to prove
that for any functions ¢, ¢ as in eq. (?7), it holds

—_—~—— e~

(VW) — (VW) ~ 0, (3.104)

where the prime refers to a quantity defined with respect to the cut-off ¢’ instead of ¢, and where ~ means
“equal up to distributions in PsE&, (M™+1)” exactly as in lemma ??. The difference (VVt), — (%Wt)’(ﬁ

consists in two terms. One is (315¢ - @\t?qﬁ, while, using lemma 77, the other can be written as

n+1
- N/ / 3.105
-2 f (00 © Eo) (@1,2)(00 0 o), 75) (B = %) (25,05, ) x (3.105)
X te(T2, ..\ 24, L) day da’idz;.
We will show that it holds
((%Wt) ,— (%) ¢>> - <(¢Wt)' ,— (at) ¢) ~— ((615) ,— (0t ¢) : (3.106)

which clearly implies the validity of formula (??). For this purpose, we first need to rewrite the right-hand
side of formula (??). We express the difference F¢, — F as

(fd’ - F;&) (x1,22,23) 1=

_ 1 SAGy(z,3)  0AGy(12,2)  6AGy(w2,x3) (3.107)
- 2JMG¢(x1’ ){ d6(x2) | 0p(ws) 56(2) }d2>

where

AGy:=0,0Gy00,—0p0Gp000 =0,0Gy0(0c—0c)~+ (0c—0w)0Ggo0e.

As a consequence of eq. (??), 0. — o~ vanishes if it is smeared with P4-solutions. Thus, AGy4 also
vanishes when it is smeared with Py-solutions, because G4 is a bi-solution with respect to Py. It follwos

G¢OAG¢OE¢ =0= E¢OAG¢OE¢.
Using this result and the Leibniz rule for the variational derivative, we rewrite the right-hand side of
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formula (?7) as

_g:lf (0c 0 Ey) (1, 2)) (0 0 Ey) (2, 2 ]){<AG¢ 6;?¢)>(x;72j)+

0G4 -
(AG¢, Sol’ )> (], zj)} to(T2, ..oy 2Zj, e Tpy1)day dafydz;—
n+1

, 0E4 00, ,
“3 2 J S oo Baenst) (Gao 00,0 ST ) it

oFE c -
+J (0c0 Eg)(zj, ) (G¢°AG¢O 5;(;5 ) (Zjaﬂcl)did}%(xzw-ijw-wwnH)dZﬁ
M j

1 §o,0E,
3 H(gﬁf >¢°AG¢°E¢°”)(“””")+

(3.108)

5E¢ OO0,

+|o.0FE,0AGy0 ————
( P 60(2)

> (xl,:cj)} G2, 2j)te (22, .., 25, . Tn1)dz;dz).

Since G is a bi-solution, it follows from eq. (??) that Gy o 0. 0 E4 = G4. Exploiting this result and
again the fact that 0. — o~ vanishes when smeared with Pj-solutions, the first and the last term in
formula (?7) equal

0Go(z,v2) _ (o 0Es (W1 02)
c(ﬂc1,y1){E¢(y17y3) 56(ys) Go(25,93) o) }

X ((0c—0p) 0 Gy ooc)(ya, ajj)f¢(x27 s Zjy e Tt ) Ay dyadysdzi+

1S 0G (2, y2) SEs(y1,12)
+ZJM4”C(%’“){E¢(*””%) Soly) ) T }X

X ((6c —0e) 0 Gy ooe)(y, x1)1§¢(x27 Cey 2y Tl ) dyr dyadysdz;.

(3.109)

The bi-distributions Ey and G satisfies the hypotheses of lemma 77 and, therefore, it follows that for
any ¢ € C*(M) and any fi, fo € C§*(M) the function

= T M_ T M T 25)dx d
M3z JM <E¢( 1Y) 59(s) Go(z2,9) 56(1) )fl( 1) fo(w2)dw1dzs (3.110)

is a smooth Py-solution. Thus, the distribution given by formula (??) vanishes because o, — o vanishes
when smeared with Py-solutions. On the other hand, the second term in formula (??) can be written as

0Ey(y2, 7)) 0By (1 25)
5(ys) Eg(y2,y3) 50(ys)

X ((0c—0p)0Ggoowo G¢)(z’-, 2i)te(Tay .oy 2, ,xnﬂ)dyldygdy;;dzjdz;-—

—Tilf (0c0 Ey)(x1,2Y) | 0 O, o(o—0e)oGyoa.0Gy | (xj,25)x
c q5 s 41 c 5¢(x1) c c ¢ c [ 7077

X te(T2y .y Ziy ey T )da)dz;.

n+1
J. xlayl) {E¢(ylay3) }O—C(yQazj)X

(3.111)

The function

6Ey(w2,2) . 0E4(x1, )
Mo [ (Bulon 2205 - Bytan) S

is a smooth Py-solution as follows from lemma ??. Thus, the first term in (??) vanishes because o. — o

> fl (Z‘l)fg(xg)dl‘ldxg
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vanishes when smeared with Py-solutions. Summing up, we obtain

<(@Wt)¢ - (67)¢) - ((%Wt)'ﬁs - (’a\tn) ~

n+1 SE
Z f (0c0 Ey)(z1,2}) (O’C ¢ (UC—UCI)OG¢OUCOG¢> (xj,2)x

dp(h)
X t¢(x2,...,zz Tpir)dadz;
n+1
= % |, o anad) (oue b0 (0 = 0u) 0 By ) (21,5)x 3412
6op(x7)
X te(T2y .y 2jy ey Tpyr)dad2;

5(0 — O'CI) o E¢
dp(xh)

n+1
~ f (00 0 By) (w1, 2})(00 0 By)(z5,2}) (4], 20)

! ! /! /!
x te(Thy .o 24y ) Thyp1)drydrdz;.

We used eq. (?7), the Leibniz rule for the variational derivative, and the fact that Eyo(o.—o0)oE, = 0.
As follows from eq. (?7), the last line of eq. (?7) coincides with —((dt), — (dt)’,). This is precisely what
we wanted to show. Thus, we have verified that Vit is independent on the choice of the cut-off c.

By construction, VW reduces to 8 if n = 0 and it satisfies the Leibniz rule (??). Thus, VW is a
W-covariant derivative.

Finally, we need to show that VW is torsion-free and preserves u. The torsion of vw necessarily
vanishes, because I'y(z1, 2, x3) is symmetric in z3, x3 by definition.
Because we have already proved that V" depends neither on the choice of the extension nor on the

choice of the cut-off ¢, to show that VW = 0, it is sufficient to prove that %W/% = 0, where %W,uqﬁ is
given by eq. (??) for a specific W-smooth extension of p and an arbitrary but fixed cut-off function c¢ as
in eq. (?7). If we chose the distribution o, 0 G4 o o, as our W-smooth extension of p, (we have proved
in thm. ?? that this is allowed), then, using eq. (??), we get

—~—

(@Wu) (331,5527153) =

5(00 ° G</7 © UC)(an 563) T
||O’COE Zi, T, dxdxodrs+
JMs ¢)( ) 5¢(x1) 1Udbgllg
+ Pt

e [ (000 Ea)ar,atoz o Eo)onn) {

0(0c0 Gy 00c)(2,Y)
6¢(x7)

! /
+5(O—c o G¢ o O_C)(x17 Z) _ 5(Uc 9] G¢ ] O—c)(xlay) } (G¢ 00,0 G¢ ° GC)(Z,x3)dx/1dde
6 (y) 6¢(2) (3.113)
5(JCOG¢ OUC)({EQ,(E3) g0
0.0 Ey)(x;, x; dxdxodrs+
JMs H ¢>)( ) 5o(x)) 1@l 0L
6(0c0Ggyooc)(2,y)
- P} ¢ © Ey)(x1,21)(0c 0 Ey) (22, ° :
e [ (000 a1, ) (000 Bolan,g) { 72 G 2B
8(0c0Gyo0c)(¥h,2)  8(0co Gy oacxxa,y)} ,
— FEyoo.)(z,x3)dxidydz
=0,
where P, is the symmetrization in the variables 29, 23. This concludes the proof. O

We point out that the W-covariant derivative VW for any admissible assignment ¢ — wy does
not preserve the on-shell W-smooth 2-form ¢ and thus the infinite-dimensional analogue of the Levi-
Civita connection is not compatible in general with the Wick product e, just as in the finite-dimensional
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situation. We overcome this problem just as for finite-dimensional almost-Kéhler manifolds: we define a
new W-covariant derivative V" corresponding to the finite-dimensional Yano connection. In particular,
VW is required to preserve both the on-shell W-smooth covariant fields 4 and o. The procedure to define
this W-covariant, derivative is similar to the construction we have presented for vW.

Proposition 42. Let ¢ be a cut-off function as in eq. (77) and let ¢ — wy be an admissible assignment.
For any ¢ € C* (M), we define the distribution T's € D'(M?3) by

5 1
Ly(x1, 29, 23) :=Ty(x1, 22, 23) — éj (Egooc)(x1, 2)Ny(2z, 22, x3)dz+
M (3.114)
+ 8P;_27I3 J Go(x1,2)Ng(2', 2, 23) (0. 0 Gy 0 0.) (2, w3)dzd2’,
M2
where Pm zs 15 the symmetrization in the variables x2, 3, where f¢ is the distribution defined by for-
mula (? ), where Ny, € D'(M?3) is the distribution defined by
_ 0(Gyooe)(xy,x
Ng(x1,22,23) _2Px2,x3J' { (G 6(/)(),2() ! 2)(G¢oac)(z,x3)+
5(Cis 002)(2,20) (3.115)
oo )(z,x3
+ (Gpooe)(zy, 2 ¢ _Zcln }dZ,
(G0 00)(an,2) T T
where P is the anti-symmetrization in the variables xo, 3, where Gy is the symmetric parts of the

2-point function wgy, and where o, is the distribution (77).
For any t € Cy, (S, X%, T*S), we define

(th) (x17 B xn+1) =
n+1

(015) (T1,.. s Tns1) ZJ s (0c 0 Ey)(21,21)(0c © Ey) (x5, ])F(z)('z]?‘rl?mj)x (3.116)

to(2, ..., 25, .. .'L'n+]_)dx1dxjd2j7

where ty € (0, 0 Ey)®"El(M™) is an extension of t, and where @¢ € (000 Ey)®HLEL (M) is the
extension of 0t defined by eq. (??) with respect to the fized choice of c.

The distribution (??) defines an on-shell W -smooth covariant section VWt of rank (n+ 1) by restriction
to (TS)®" T je.

(VV8)g(ur, - tns1) == (VW) (g, .. uns1) V€S, us € TS, (3.117)

The section VW't does not depend on the choice of the extension t nor the cut-off c.
Finally, VW is a W-covariant derivative which preserves p and o.

Proof. We begin by proving that for any ¢ € C* (M), the distribution (VW) given by eq. (??) is well-
defined and belongs to (0. 0 E,)®" & (M™*1). To show this, we first prove that for any ¢ € C*(M)
the distribution Ng(x1,22,x3) given by eq. (??) is well-defined, is compactly supported in x9,x3, and
has wave-front set contained in W3. By definition Gy (z1,22) is the symmetric part of the distribution
wg (21, x2) which is an admissible assignment in the sense of def. ??. Therefore, the estimate (??) for wy
implies that the wave-front set of 0G4/d¢ is contained in Ws3. The distribution o. defined by eq. (?7)
is a distribution in &}, (M?) which does not depend on ¢. Then, applying lemma ?? to the right-hand
side of eq. (??), it follows that the distribution Ny is well-defined and its wave-front set is contained
in W5. Furthermore, Ny(z1,22,23) is compactly supported in z3,x3 because o, is by definition com-
pactly supported, and because §G(x1, z2)/0¢(y) is compactly supported in y because dwg(x1, 22)/0¢(y)
is compactly supported in y by hypothesis.

We have already shown in the proof of pro p. 7?7 that f¢(:1c1, x2,x3) given by eq. (?7?) is well-defined,
is compactly supported in zo,x3, and has wave-front set contained in W3. Using the result just pre-
sented for Ny, lemma ??, and the support properties of the distributions involved, we conclude that also
Ty(x1,x2,23) given by eq. (??) is a well-defined distribution which has compact support in z2, 3 and
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which has its wave-front set contained in W3. By construction, (dt), is in (0. 0 Eg)® 1 (M™+1). By

what we already know about I'y, and because t, € (0. 0 E)®"&l,(M™) by hypothesis, it follows form
lemma ?7? that the second term in eq. (??) is also a well-defined distribution in (o0 Ey)®" 1l (M),

—

Thus, we have (VWt), € (0.0 E4)®nt1gl as we wanted to prove.

—

To prove that (VW) defines an on-shell W-smooth covariant section, we need to show that (a) for

—~——

any ¢ € S and any u; € TpS, (VW) (u1,...,un+1) does not depend on the choice of the extensions

ty € (0.0F4)®" &l (M™) and (0f\tJ)¢ € (0.0E4)®nTLEL (M™F1), and (b) (W)(b satisfies conditions 77, 77

—_—~

of def. 7?. As we have proved in prop. 77, (dt),, satisfies both the conditions (a) and (b) above. Therefore,
we need to show that the second term in (?7?) also does.

(a) By definition, Gy and Ey4 are bi-solutions with respect to P,. We have already proved that
'y (21,22, z3) is compactly supported in z2, x3 and its wave-front set is contained in W3. Therefore,
for any smooth functions f, h we have that

M > T — f F(zs(SCl,l‘g, Jfg)f(xg)h(l’g)ddigdl?g
M2

is smooth because there is no element in W3 in the form (x1, z9, z3; k1,0,0), and it is a Py-solution
by construction. Now, let 1 4,724 € (0. 0 Ep)®"El, (M™) be two W-smooth extensions of t. We
compute the difference of the second term in (??) corresponding to #; 4 and 3 4. When evaluated
at ¢ € S and smeared with wy,...,un11 € TS, this difference reads

n+1
D [ ey Tl 5, 05) 1 — o) 2 tnn) =
i—o JM

because for any ¢ € S the two extension £I,¢> and t~2,¢ must coincides by construction when smeared
with smooth Pj-solutions. This implies that the second term in (??) satisfies the requirement (a)
as we wanted to show.

(b) To prove that the conditions ??, 7?7 are satisfied, we compute the v-Gateaux derivative of the
second term of eq. (??) by distributing the variational derivatives on the factors that compose this
term. Similarly as for v (see prop. ??), it can be easily seen that the v-Gateaux derivative of
the second term of eq. (??) can be decomposed into a finite sum of appropriate compositions of
o, Gateaux derivatives of E, and Gateaux derivatives of Gg. The same argument we sketched in
the proof of prop. ?? implies that each term in this decomposition satisfies 7?7, ??. Therefore, the
second term in (?7?) satisfies the requirement (b) as we claimed.

Thus, VWt is a well-defined on-shell W-smooth covariant section.

Next, we show that VWt does not depend on the choice of the cut-off function c. It is sufficient to
prove that for any functions ¢, ¢’ as in eq. (?7?), it holds

—_—~—~—

(VW) — (VW) , ~ 0 (3.118)

where the prime refers to a quantity defined with respect to the cut-off ¢’ instead of ¢, and where ~
means “equal up to distributions in P¢€{,V(M"+1)” exactly as in lemma 77,

Because Vt has already been shown to be independent of ¢ (see prop. ?7?), we can equivalently write
eq. (7?) as

—~—
o

(770, - (@0, - (@0, - (777, ) ~o. (3.119)

By using lemma 77 and the extensions (%Wt)q5 and (%ﬁft)q5 provided respectively by eq. (??) and
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eq. (??7), we obtain

(70, - 70, - (@07, - 70y, ) =

n+1

d 3.120
~ 2 f (7 0 Bo) w1, #4) (00 0 Bo) (o 5) { (o = Tg) = (T =T ) } (ot x - B120)
X ty(T2,. ., 24, Ty )daydalidz;.
Next, we notice that the difference between f¢ and I'y can be written as
. 1
<F¢ - F¢) (21,22, 23) = gf (Eg 0 oc)(x1, 2)Ny(2, 22, x3)d2—
M (3.121)

xr2,Tr3

- f]P’+ J Gy(21,2) (Ng(2', 2,22) (00 0 Gy 0 00)(2', x3)) dzdz’,

After a closer inspection of eq. (??) and eq. (??), we notice that to prove eq. (?7?) it is sufficient to verify

JM4 HE¢ zi,x;) (0o(], 2)Ng (2, 2, 25) — o (2, 2) Ny (2, %, %)) dzda’y datydaly = 0. (3.122)
i=1

As we already mentioned in the proof of prop. 77, it follows straightforwardly from eq. (??) that 0. — o
vanishes if smeared with P,-solutions. Therefore, it holds Ey o (0, — o) o G, = 0. Using this result and

the definition of the distribution Ny (given by eq. (??)), we can rewrite (up to a factor 2) the left-hand
side of eq. (?7?) as

0G
JM4ﬂE¢ i, T3Py 4 [(Uc 0 Gy)(x5, 2) ((oc — o) o 6¢>(j) oo > (z 1,3:2)] dzda! datydarly +
: [ 5G
+ J HE¢ (zi,25)P, L | (G ooe)(z,25) (O’C o —2 o (o, — Jc/)) (;U'l,xé)] dzdz dzhydxl+
MY 2% | 5¢(2)
i i (3.123)
¢

I
stHE¢ Ti, X 1)]P’ ) _(acoG¢o(oc—ac/)o

o ac> (z'l,mg)] dr' dzhdy+

3
- IButrates  [reo (Gooow o 20 0 e 00) ) (. 08)] s,

=1 N

We now show that (1) the first term in (??) vanishes, (2) the fourth term in (??) vanishes, and (3) the
sum of the second and the third terms in (??) also vanishes.

(1) Because G satisfies the hypotheses of lemma ?7?, it follows that the map

= x ﬂx x) — x ﬂx T T - 1 da
Maae [ (Golar) s (@) = Golan) s @1,0) ) ulon) e dydordes

is a smooth Pg-solution for any test functions fi, fo. Thus, the first term in (??) vanishes.

(2) Applying the Leibniz rule for the variational derivative, it follows from the equation G4 o (0. —
oe) o Eg =0 that it holds

§(Gy o (0 — o) © Ey)
5o (y)

- (526(";) o(0e—0w)o E¢> (z1,22) + <G¢ o(0c—0w)o 52?5)) (21, 22).

Because G4 is a bi-solution with respect to Py, it follows from eq. (??) that G4 0 0 0 Gy =
Gy 00,0 Gy, and so it follows from eq. (??) that we have

0=

(Sﬂl,xz)
(3.124)

—Ggoor0Ggo0.0Ey =Ey. (3.125)
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Using eq. (?7) and eq. (?7), we express the last term in (?7) as

0Ey(2,x3) d0Ey(z, z2)
fw (Ego (0. —0w))(z1,2) {E¢(y,m2)6¢(y) - E¢(y,x3)w} dzdy.

Since E4 satisfies the hypotheses of lemma 77, it follows that the map

M>z+— JM <E¢(x1,y)(§f$(x2, x) — E¢($2,y)(§f&(:ﬂ1, m)) f1(21) fo (o) dydx, day

is a smooth Py-solutions for any test function f1, fo. Thus, also the last term in (?7?) vanishes.

Next, we focus on the second and the third terms of of eq. (??). Using eq. (??) and the fact that
Ggoo.0 Ey =Gy, we write the second term of eq. (?7) as

SE,(z,
JMZ) (Egoo.0Ggo(0.—0u))(w1,2)P, .. [G¢(y, xg);;)a;m] dzdy.

Since Gy o0 0. 0 By = G, using the Leibniz rule for the variational derivative, we have

((;f(; oJCOE¢> (w1, 23) + (G¢ 000 %) (21, 22) = W

Then, this result implies that the third term of eq. (??) equals

- J (Eyo0o.0Ggo(0c—0u))(w1,2)P,, .. [E¢(x2, y)M dzdy.
2 dp(y)

Adding the second and the third terms, we obtain

0E4(z,
[ (BaoouoGoo 0= aenon 2185, [Goly ) Tetetz)

which vanishes because, by lemma ?7?, the map

— z ﬂx z) — z 9By
o [ (Eston ) s on) = Coten s

is a smooth Pyg-solution for any test functions fi, fa.

(ﬂflal‘)) fi(xr) fa(xe)dydaydas

Summing up, we have that (??) vanishes, i.e. we verified eq. (??). As already mentioned, this implies
that VWt is independent of the choice of the cut-off c.

By construction, the map V" is a W-covariant derivative. Therefore, to conclude the proof, we need
to show that V" preserves both the covariant sections u and o.

We have already proved that V" i does depend neither on the choice of the > extension nor on the choice
of the cut-off. Then, to show that VW = 0, it is sufficient to prove that (VW) , =0, where (VWp),
is given by eq. (?7?) for a specific W-smooth extension of y and an arbitrary but fixed cut-off function ¢
as in eq. (??). If we choose 0. 0 Gy 0 0. as our W-smooth extension of j, (we have proved in thm. ??
that this is allowed), then it follows

(VW) 4 (21, 2, 73) =

= (ﬁwﬂ)(b(xl; Lo, x3) — 2PI2,13 J Q(O—c S E¢)($17$/1)(Uc oGy ooc)(xe,2)X (3.126)
M‘
x (Do = 1) (2.2, ) (Es © 0.)(y, w5 dydz
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As we have already proved in prop. ?? (see eq. (?7)), (ﬁwu)q5 vanishes. We need to show that the
second term in eq. (??) also vanishes. By the definition of T'y (see eq. (??)), and since Ny (1,22, 23) is
anti-symmetric in xs, z3, we have

P—x:,azg J 2(G¢ © JC)(:EQVZ) (Fd) - f¢) (vala y)E¢(y,x3)dydz =
M

1

= _g]P’;E"Q’I3 J 2(G¢ o00c)(x2,2)Ny(z, 21,y)Ey(y, x3)dydz+
M

1
+ glP’Iz,m f 2(G¢ 00.0Gg)(x2,Y)Ng(z,y,21)(0c 0 Gy 0 0. 0 Ey)(z,x3)dydz
M

1

—gpig,zg JM2 (Ggooe)(wa, 2)Ng(z,21,y)Eg(y, x3)dydz—

1
— §Ph || Bolwap)Na(eg 1) 00 0 Go) )y
M2

1

= _gp-;z)g;?, J (G¢v o Uc)(x% Z) (N¢(Z7 xlay) + N¢(Z,y,$1)) E¢(y,$3)dyd2 =0,
M2

where we used Ey00.0Gy = Gy, which follows from eq. (??), and Gy00.0Gy = Egoo.0G4s00.,0Gy =
—Ey4, which is a consequence of eq. (??). Therefore, also the second term in eq. (??) vanishes, as we
needed to prove. - -

To show that VW o = 0, similarly as before, it is sufficient to prove that (VWo), =0, where (VWo), is
given by eq. (??) for a specific W-smooth extension of o and an arbitrary but fixed cut-off function ¢ as
in eq. (?7). If we choose 0. 0 Ey 0 0. as our extension (we have proved in thm. ?? that this is allowed),
then we obtain

(VWo) (21,20, 73) =

= (00) (w1, 2, 73) + 2P, . J (0c0 Ey)(z1,71) (00 0 By 0 0c) (2, 2)L (2,27, y) x (3.127)
M3

x (Eg 0 0c)(y, v3)drydydz.

—_—~

As we have already proved in thm. 7?7 (see eq. (??)), (do), vanishes. The second term in eq. (??) also
vanishes as can be checked by direct calculation. The essential point is proving that it holds

d(oc0Gyoo.)(z,x5)
0= E®3 poo G ' c 9 c v3)
A ¢ ($1,$2,933,1‘1,172,$3) |:(O'CO ¢)($2,2’) 6¢($’1)
0(cc0Gyooe)(z,xh)
— (000 Gy)(xh, 2) 5(;)(x’1) 2\ dzdx dolydat,
which is a consequence of the Leibniz rule of the variational derivative, eq. (?7) and eq. (??). This
concludes the proof. O

As the analogy with the finite-dimensional setting suggests, the torsion of the W-covariant derivative
VW is in general non-zero. Actually, we can compute the torsion explicitly:

T (t)g =P~ (VVt)y — (dt)y
1

T4 J (0c © Bg)®* (21, w2, 21, 25) No (2, 2, 25) (0 © B ) (2, 2t (2) dzdr’ da'yday,
M4

(3.128)

for any t € Cyj (S, T*S5).

We conclude this section by discussing the extension of the covariant derivative VW to Cy (S, W), the
on-shell W-smooth sections on the algebra bundle W, and further to Qy (S, W), the W-valued forms.
We can extend V" as a map Oy (S, W) — Q,(S,W) by the following canonical procedure. Let
t € C™(S,W) be a section homogeneous in both the degrees deg, and deg;, with deg, t = n. This means

79



that ¢ is a complex section in vI,T*S (up to a factor h4°8nt). The on-shell W-smooth form VW¢ is
defined by the sequence (VW )20 (VWH)L.1 ), where (VWVt)1¢ =0 if £ # n and

S3¢- (V) (1,21, 2n) = PT(VVH) (g1, 21, ).

By abuse of notation, we identify an equivalence classes in /\v‘l/{,"T(;‘S (i.e. the elements in WlT;‘S

which are symmetric in the last n entries) and in WlT(;"S with their distributional representatives.

We implicitly assumed that VWA = 0. We note that V'V, as a map acting on sections in C{; (S, W)
homogeneous in deg, and degy,, preserves the total degree Deg. Thus, it extends as a map Cy, (S, W) —
Qi (S, W) via the Deg-filtration and the fact that every on-shell W-smooth section C; (S, W) which is
homogeneous in Deg is a finite collection of on-shell W-smooth sections homogeneous in deg, and degy,.
In other words, the extension is performed purely algebraically in the very same way the Yano connection
in the finite-dimensional case is extended to sections on the formal Wick algebra (see sec. 77).

The extension of the covariant derivative VW as an operator Qy (S, W) — Qu- (S, W) and its properties
are discussed in the following proposition:

Proposition 43. Let ¢ be a cut-off function as in eq. (77) and let ¢ — wy be an admissible assignment.
For any tgs € Q% (S, W) homogeneous in degy, and in deg, (with deg,t = n), we define

(th)d’(yla ey Yk+1, L1y 7xn1) =

—~

= P+P_(6t)¢(y1, e Ykt Ty Ty) — PTPT J 3(UC 0 Eg)(y1,91)(0c 0 Eg)(x1, x]) % (3.129)
M

x Dz, y1, 26 (Yas - - oy Yks1, 2, Tay - -+, Ty )d2dy da,
where Ty is the distribution given by eq. (77) corresponding to wy, where ty € (0.0 Ey)®"El,(M™) is an
extension of t (up to hient), and where (67)¢ € (0.0 Ey)®FLel (ML) is the extension (up to hiesnt)
of 0t defined by eq. (7?) with respect to the fized choice of c.
The distribution (??) defines a W-valued k + 1-form homogeneous in degy, and in deg, (with deg,t =n)
by restriction to (T'S)®"Tk+1 i e. denoted by

—

(VW) g (V1o Vg1, U1, - Uy = (VW) (01, vk, ut, - un) Vo €S viyu; € TS, (3.130)

The section VWt does not depend on the choice of the cut-off c.
VW is a bilinear map VWV : Q8 (S, W) — QEFL(S,W) for any k which satisfies the Leibniz rule with
respect to the product o (?7), i.e.

VW(tes)=(VWt)es+ (—1)te (VWs), (3.131)

for any t € QF,(S,W) and s € Qk,(S,W). Consequently VWV extends to Qu (S, W) as a deg,-graded
derivative which preserves the Deg-grading.

Proof. Arguing similarly as done for prop. ?? and exploiting the symmetry properties in eq. (?7?), we
can prove that (VWt), is a well-defined distribution which defines via eq. (??) a W-valued k + 1-form
homogeneous in deg;, and in deg, independently of the choice of c.

By construction, VW increases by one the degree deg, and preserves the total degree Deg. Exploiting
the Deg-filtration of Q% (S, W) and the fact that each W-valued k-form homogeneous in Deg is a finite
collection of k-forms homogeneous in deg, and in deg,, the connection V" extends canonically to a map
QF, (S, W) — QEFL(S,W). Then, V'V extends further to Qu (S, W) — Quw (S, W) in a standard way.
Finally, we show that V" satisfies the Leibniz rule with respect to the product e (??). As a consequence
of VWo =0 and VW = 0, it follows that for any cut-off ¢ as in eq. (??) we have

0 =J (O'COE¢)®3(y,l‘ll,(£12,yl7$1,$2)><
M2

)
x < We (2, 25) + J, we(z,25) (2], Y, 2) + we(a], 2)Ty(zh, Y, z)dz) dy'dx’| dxl,.
M

5¢(y’)
As can be checked by direct computation, this result implies that V" must satisfy eq. (??) and this
concludes the proof. O
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3.5 The W-smooth Fedosov connection and Fedosov’s theorems
for QFT

In this section, we conclude our infinite-dimensional version of the Fedosov quantization scheme. In
the previous sections, sec. 7?-?7, we defined and discussed all the geometrical notions needed, with the
exception of the infinite-dimensional analogues of the Fedosov operators 4,61, see (?7), (??), which are
provided now. Then, we prove that Fedosov’s theorems (thm. ?? and thm. ??) extend to the infinite-
dimensional framework we have set up. This result relies on two fundamental facts:

o ‘Analytic’ properties: VW, §, 71, and the product e preserve the on-shell W-smoothness, i.e. these
operators map on-shell W-smooth forms into on-shell W-smooth forms.

o ‘Algebraic’ properties: The algebraic identities of lemma ??, which are used in the finite-dimensional
proof, are preserved in the infinite-dimensional context.

Therefore, in infinite dimensions, the Fedosov’s theorems can be proved repeating the same algebraic
argument used in the proofs in the finite-dimensional case.

First we define the Fedosov operators 8,6~ in our infinite-dimensional setting. The Fedosov operator
51 QE (S, W) — QEFL(S, W) (cf. (77)) is defined by its action on k-forms homogeneous in deg, as

(5t)’;+1’"(y1, UKL T, e Tn) = (n 1)]P’*t];’"+1(y1, e Uk Ykt 1y Ty e e X)), (3.132)

for n + 1 = deg,t, while (62)¥*1" = 0 otherwise. Here P~ acts as an anti-symmetrization on the y-
variables. Note that, by abuse of notation, we identify an equivalence class in C[[A]] ® A vk’”T;S (i.e.
the elements in C[[A]] ® ’;J"T(;‘S which are anti-symmetric in the first k& entries and symmetric in the
remaining n) with one of its C[[R]]-valued distributional representatives in &/, (M**"). Because 6t is a
finite sum, it is clearly well-defined and it extends to 4, (S, W) by using the Deg-filtration and the fact
that each form homogeneous in the total degree Deg decomposes into a finite sum of terms homogeneous
in deg,. The map J can be extended further to Qy (S, W) in a standard way.

Using the same procedure the operator 51 : Q% (S, W) — Qi1 (S,W) (cf. (?7)) is defined by

k

+tk,n71
n+k-1

(571t)5;1’”(y1,...,yk,l;xl,...,xn) 1= o Wi Y1, T T2, ) (3.133)

for n — 1 = deg,t and k # 0, while (§~'¢)*~1" = 0 otherwise. Here P* acts as a symmetrization on
the z-variables. Because § !t involves only finitely-many terms, it is well-defined and it can be extended
canonically to Qu (S, W), similarly as for ¢.

Concerning the infinite-dimensional version of lemma ?7?, which collects all the necessary algebraic
relations to prove Fedosov’s theorems, we adopt again the pedestrian approach we have already used in
the previous sections. In finite dimensions, the torsion tensor and the Riemann curvature tensor of the
Yano connection, more precisely the contractions of the aforementioned tensors with the symplectic form
(cf. (??)), appear in the relations between 6, ! and V we are interested in. We are going to show that
such tensors have appropriate infinite-dimensional counterparts.

Lemma 44. For any ¢ € C*(M) and any cut-off ¢ as in eq. (27), we define the distributions Ty and
R¢ as

~ 1 B 2
Tolyr,y2;0) 1= =SBy J’M4 [ [(oc 0 Es)(wi,4)) (0 0 Eg)(,2") x

L1 (3.134)

K3

x oc(2', 2) Ny (2341, y5)dzda' dyy dyb,
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and

~

2
R¢(y1,y2;x17x2): 7]P:17m2 Y1, y2f H UCOE¢ yzayl H UCOE¢ xj,xj)x

)
x oc(a1,2) { J Ty(z, 2, 2")(Es 0 00)®2(2, 2"y, ay)de'dz" + (3-135)

do(v1) Jare

# [ Tl T ) iyt
M

where Ny and T'y, are defined by eq. (??) and eq. (77), and where o, is given by eq. (77).

By restriction to ¢ € S, the distributions (?7) and (??) define two totally homogeneous on-shell W -
smooth W-valued 2-forms S 3 ¢ — T¢ and S 3 ¢ — R¢ In particular, deghT degy, R=0, deg, T =1,
and deg, R =2. The two on-shell W -smooth W-valued 2-forms T and R do not depend on the choice of
the cut-off c.

Moreover, the results 7?-?? listed in lemma 7?7 for finite dimensions translate to infinite dimensions.

Proof. To prove that the distributions T¢ and }% define, by restriction to ¢ € S, two on-shell W-

smooth W-valued 2-forms, we need to show that 7', Ry are well-defined distributions respectively in
(0. ® E4)®3&[,(M?) and (0. ® E)®1E[,(M*), anti-symmetric in the y-variables and symmetric in the

z-variables, and that T¢, f%¢ satisfy conditions 77, 7?7 in def. ?7. The proof of these two facts is ultimately
a consequence of the machinery of composition of distributions (thm. ?? and lemma ?7?), the definition
of T'y (eq. (7)) and Ny (eq. (??)), together with the properties of the distributions Ey, 0., G4 and their
directional derivatives (eq. (?7), eq. (??) and eq. (??)).

We first show that the on-shell W-smooth W-valued forms 7" and R do not depend on the choice of the
cut-off ¢. Let assume that relations 7?7 and ?7? hold in our infinite-dimensional set-up, i.e.

VY - VW6 = zad T (V)T = —SadlR.
It was proved in prop. 77 that V" does not depend on the choice of the cut-off. The same holds for &
by definition. Therefore, if ¢, ¢’ are two cut-off functions as in eq. (??), the difference T—T1 and R— R
(where 17, R’ are the quantities corresponding to the cut-off ¢), are on-shell W-smooth W-valued forms
with deg, # 0 such that
ady (T —T") =0 = ad, (R — R').

As proved in lemma [? | prop. 2.1], it follows from the definition of the product e on Q(S, W) that the
center of the algebra is Quw (S5), i.e. an element t € Qu (S, W) satisties ad.t = 0 if and only if ¢ has
deg, = 0. Thus, we conclude that both ' — 7" and R — R’ vanish as we needed to prove.

The last part of the lemma, namely the fact that results ??-?? listed in lemma ?? translate unaltered
in our infinite-dimensional set-up, can be proved by tedious direct computations. Rather than displaying
the details of these computations which are qualitatively similar to those presented e.g. in the proof of
prop. 7?7 and prop. 7?7, we present to the reader the basic arguments on which the computations rely.
Formula 7?7, which means that the Fedosov operators are nilpotent, and eq. 7?7, i.e. the Hodge-type
decomposition §6! + 6716 + 7 = id, are simply a matter of interplay of symemtrization and anti-
symmetrization operators and, therefore, these properties hold also in the infinite-dimensional case.
The proof of formula ??, i.e. § = 3 ad,(07'0), follows from the fact that (6~'0)4 can be identified with
1(0.0 Eyo0.)(x,y) as a consequence of thm. ?? and from the fact that for any ¢ € Q¥(S, W) and any
¢ € S, the deg,-homogeneous part of ad.(6 'o)(t), with deg, = n is proportional to

j (JCOE¢OUC)(Z yl)E¢(Z Z) k (yQa"'7yk+1azlax17"‘7xn)d2dzl'

M2

Here t%™ is any W-smooth extension of the on-shell W-smooth section t*™ in the sequence defining
the form ¢ = (%), ,en (by abuse of notation, we identify equivalence classes with their distributional
representatives).

To prove formula ??, i.e. §VV + VW4 = £ ad, (T)), we notice first that using 6 = 2l ad, (67 '0) and the
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fact that V' is a deg,-derivation in Qu (S, W) (as proved in prop. ?7), it follows that 6V + VW4 =

2 ade (VW (07'0)). Using the fact that do = 0 (as shown in the proof of thm. ??), it follows that
2(VW(6~10)) = T which concludes the proof.
Checking eq. 77, i.e. (VW)? = —% ad.(R) is more involved. It can be done by computing the two sides

of the equation acting on a deg,-homogeneous k-form. Making use of the Leibniz rule and the flatness
of the exterior derivative d defined in prop. 7?7, we can verify that the two sides coincides.

Finally, the last three formulas ?? hold as a consequence of eq. 7?7, the flatness of d, the Leibniz rule,
the fact that VW0 = 0 and do = 0. O

Summing up, we have constructed the following dictionary between the finite-dimensional framework
of sec. 7?7 and our infinite-dimensional framework.

finite-dim infinite-dim

S finite-dim manifold S smooth sol. of the non-lin. eq. (??) on M
T, S tangent space at x € .5, TS smooth sol. of lin. eq. (??) at p € 5,
®"T;S tensor power of the cotangent space TS, | Iy, TS defined by (?7?),

W, = ClIH] @@, -, v"TES Wi = CIIH @@, 20 Vi T3S

Smoothness, On-shell W-smoothness, def. 2?7 and def. 77,
d exterior derivative d defined in prop. 7?7

Formal Wick product e Product e defined in prop. 7?7

o symplectic form On-shell W-smooth 2-form o

defined in thm. ??

u compatible metric On-shell W-smooth symm. section p

defined in thm. ??

V Yano connection on W-valued forms VW defined in prop. ??
0 Fedosov operator, d defined by (?7?),
5~ “inverse” Fedosov operator 51 defined by (?7)

Table 3.1: The dictionary between the finite-dimensional case and our infinite-dimensional setting.

Continuing our pedestrian approach, we keep following the finite-dimensional Fedosov method out-
lined in sec. ??, in particular we can make the same ansatz (??) for the Fedosov connection and we can
translate the results obtained in sec. 77 for finite dimension in our infinite-dimensional setting.

Theorem 45 (Fedosov’s First and Second Theorems in oo-dim). The Fedosov’s theorems (thm. 77 and
thm. ?7) hold in our infinite-dimensional setting. In particular, we can add to the dictionary the following
entry:

D Fedosov flat connection < DV := VW —§ + ﬁ ad (r), (3.136)

with v € O}, (S, W) denoting the unique solution for
VW’I"—(ST’-F%T’OT’—R—T:Q (3.137)

subject to the requirements r = 1, 10 = (1) = 0, (5*17“)(7’“) = s where r*) and s*) denote the
components of the sections r and s homogeneous in Deg of degree k, where Q € Q2,(S, W) is closed
(d2=0) and deg,Q = 0 (i.e. it belongs to C[[h]] ® Q3,(S)), and where s is some arbitrary self-adjoint
element in C; (S, W) with Degs > 3.

The infinite-dimensional translation of the second Fedosov theorem provides a deformation quantization
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(Cw (SR, %), in the sense explained in sec. 7?7. More precisely, for a given F € Cy;(S)[[]], there
exists a unique section Fe C{ (S, W) which is flat with respect to the DV, i.e. DWE =0, and which
satisfies TE = F. We define by 7' the map F — F. Then, we obtain a star product = by defining
FxG=1(r"'Fe77'Q) for any F,G € Ci:(S)[[A]].

Proof. Fedosov’s construction is iterative and only uses the operators VW, 8,071, e together with the
“auxiliary data” €2, s and the W-valued forms T,R. Since the former preserve on-shell W-smoothness
(see prop. ?? and prop. ??), and since the latter are on-shell W-smooth, we never leave the space
Qw (S, W) when we iteratively construct r®) with k > 2, and when we act with the projection 7 onto
the component with deg,,deg, = 0 or with its iteratively defined inverse 7—! (see e.g. the explicit
iterative constructions of r and 77! discussed in remark ??). Lemma ?? ensures that the fundamental
algebraic relations in finite dimensions extend to our infinite-dimensional framework: the core of the
proofs of the finite-dimensional Fedosov theorems is the fized-point theorem applied to the total degree
Deg, see [? 7 7 ]. Since we have exactly the same algebraic structure, the finite-dimensional proofs can
be repeated step by step in the infinite-dimensional setting. Thus, the claims follow automatically. [

As in finite dimensions, the Fedosov connection D" (77) depends only on the following input data:
The infinite-dimensional counterpart of the Yano-connection V"' (not necessarily flat), the closed on-
shell W-smooth form € on S taking values in C[[A]], and the datum s (subject only to Degs > 3). As
done in finite dimensions, Q) and s are collectively denoted by “auxiliary data”.
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Chapter 4

The relation between perturbative
quantum field theroy and Fedosov’s
approach in infinite dimensions

In this chapter, we discuss the relation between the perturbative approach to algebraic quantum field
theory we reviewed in chapter ?? and Fedosov’s approach for on-shell W-smooth sections we developed
throughout chapter ??. In particular, we would like to understand eq. (??) in the light of the infinite-
dimensional formalism of chapter 77.

At the end of sec. 77, we conjectured that the derivative VI — (-, 6/5p) defined in terms of the retarded
connection (??) is precisely the Fedosov connection associated with the assignment ¢ — wf where wf is
the (pure Hadamard) retarded 2-point function defined by eq. (?7). We will prove this result rigorously
in sec. ??. In addition, we will prove that the Fedosov derivative D" constructed using the procedure
of sec. 77 for an admissible assignment of (pure Hadamard) 2-point functions ¢ — wy (as in def. ??) is
“gauge equivalent” to VI — (-, §/¢) (in the sense described below in sec. 77?).

This equivalence opens the door to understand the relation between the way of quantising a field theory as
described in chapter 77, and Fedosov’s method: let S 3 ¢ — Fd, be the quantum observable corresponding
to the local functional F' given by the Haag’s formula (??). As we have seen in thm. ??, this defines a
flat section for VE —(-,§/6¢). In sec. 72, we will show that S 3 ¢ — F}, is actually an on-shell TW-smooth
section. Since DV and V% — (-, §/6p) are gauge equivalent, we can find a gauge transformation such
that the gauge-transformed section ¢ — F' is D" -flat. Finally, we prove that these sections F' satisfies
Einstein causality.

To make our arguments independent of subtle “IR-issues”, we will assume throughout this chapter that
V(p) = §,, 1A (@)¢(x)?, where A € CF"(M) is fixed.

4.1 Gauge equivalence of perturbative quantum field theory and
Fedosov’s approach in infinite dimensions

As mentioned in the introduction, we focus on the derivative V—(-, %> defined in terms of the retarded

connection (?7). We will prove here that it is equal to the Fedosov connection D" associated to the
assignment ¢ — w¢ The construction of the Fedosov connection outlined in sec. 7?7 requires that the
assignment ¢ — w¢ , where w¢ is the (pure Hadamard) retarded 2-point function defined by eq. (?7?), is
admissible in the sense of def. 77. As we will show, this is indeed true.

After we have settled this point, we can apply the construction outlined throughout sec. ??-7? to ¢ — w(f.
In particular, we can define the product et (? ) the W-connection VW (??), and the Fedosov deriva-
tive DWW ('7‘7) with respect to the product ¢ and characterized by VW together with the auxiliary
data Qf = 0, s = 0. Then, we will verify that the Fedosov derivative D" corresponding to the famlly
of retarded 2-point functions coincides, as derivative on (Cfj (S, W), o), with the derivative VE—{-, 5@

First of all, we note that the Fedosov operator ¢ (given by eq. (??)) when acting on on-shell W-smooth
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sections on W equals by definition the operator (-, %) (given by eq. (?7?)). In fact, we have

(0t)g(vsur,...,up) = (n+1) J to(y,z1, ..., xn)v(y)ur(xr) - - - up(xy)dyde: . .. day,
Mn+1

= <<U, 5(;>t¢>) (U1 ey up),

for any t € Cyj, (S, W) with deg, = n + 1, for any ¢ € S, and for any v, u1,...,u, € TS.

Next, we prove that the assignment ¢ — wf, where wf is the (pure Hadamard) retarded 2-point
function defined by eq. (?7?), is admissible in the sense of def. ??. For this purpose, it is sufficient to show
that for any ¢ € C* (M) the 2-point function w® can be written in the form (??), because, as already
proved in lemma ??, any 2-point function in the form (??) gives an admissible assignment.

Lemma 46. For any ¢ € C* (M), the 2-point function wf' of the retarded state defined via (??) can be
written in the form (?7).

Proof. The argument we are going to present exploits that the coupling A has compact support. We
fix two Cauchy surfaces X4 such that ¥, does not intersect the causal future of supp A and ¥ < ¥,
where the ordering < is understood in terms of the causal structure. We choose an arbitrary smooth
cut-off function y which equals 1 in the future of ¥, and 0 in the past of ¥_. As in sec. ??, we define
¢— = x¢. Then, we choose four further Cauchy surfaces ¥4 such that ¥, does not intersect the
(causal) future of supp A\, and ¥__ < ¥_, <¥_ <3, <¥_, <X, asin lemma ??. We consider two
smooth cut-off functions ¢4 such that ¢ = 0 in the future of ¥4, and ¢+ = 1 in the past of ¥, _. We
show that for these choices of ¥ and ¢y, we have

Wf(ml,xz) = (E¢ 0o, 0By o0, owyoo._ oEy oo, OE¢) (z1,22), (4.1)

where wq is the 2-point function of the ground state with respect to the Klein-Gordon operator Py =
O — m?, i.e. the distribution (?7), and where the distributions 0., are defined by (??) in terms of the
cut-off functions c4+. Clearly, proving this claim verifies the statement of the lemma.

As already mentioned in lemma ?7?, the right-hand side of eq. (??) is a pure Hadamard 2-point function
with respect to the Klein-Gordon operator Py = O0—m?— %gbz. By construction, the supports of both the
distributions o, are contained in J~(supp A)\supp A x J~(supp A)\supp A. Since in J~(supp A)\supp A
we have V(¢_) = 0, we can replace in the right-hand side of eq. (??) F4_ with Ey. Using eq. (?7?)
together with the fact that wg is a bi-solution for Py, we can rewrite the right-hand side of eq. (??) as

(E¢OO'C+ oFy o0, owyoo. oEy oo, OE¢) (x1,22) = (E¢OUC+ oW O 0cy OE¢) (z1,22).

Let f,h be two test function whose support does not intersect the causal future of supp A. As a conse-
quence of lemma, 77 and the support properties of 0., it follows

(Epo0oc, owgooe, oEy)(f,h)=uwo(f h).

The retarded state is uniquely determined by the requirement wf = wp on M\J " (supp ). Thus, we
proved that the 2-point functions (E4o0., 0 Ey_oo._owgoo._ oEy oo, oFEy) and wﬁ coincide in an
open region which contains a Cauchy surface. Because these two distributions obey the same hyperbolic
equation, we conclude that they must coincide on the whole space-time M as we wanted to prove. [J

As corollary of the previous lemma, the whole construction exposed in sec. 77-?7 applies to ¢ — wf.
In particular, we can define the product * (??), the Yano W-connection VW (2??), and the corre-
sponding Fedosov derivative DWW (?7) associated to V"W and the auxiliary data QF =0, s = 0.
We would like to show that on C}5 (S, W) the Fedosov connection D" equals the connection V#—4. For
this purpose, we first show that V¥ is a W-covariant derivative, i.e. that it is a map C*(S, {}VT;)“ S) —
C*(S, WIT;‘S) satisfying the conditions of def. ??. Using the Deg-filtration on C} (S, W) and the
fact that any section in Cyj; (S, W) homogeneous in Deg is a finite sum of sections homogeneous in deg,
and in degy, we can extend® V% to a derivative Cj (S, W) — Qb (S, W).

'We impose C[h]-linearity.
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The retarded connection V# was defined by (??) in sec. ??. For any on-shell W-smooth covariant
section ¢ of rank n, for any ¢ € S, and for any v € T,,S, we have

d
(Viit)y = E% ), pte(e) L

where R 3 € — ¢(€) € S is a smooth map such that ¢(0) = ¢ and d¢(e)/de|e=0 = v.
It is not immediately clear that the map V%, defined fiberwise by

(VE) g (v, 11,y un) = (VE) g (U, un),

for any ¢ € S, for any v, uq,...,un € TS, is a map Cy (S, K, T*S) — Cyr (S, TVL[;AT*S) satisfying the
conditions to be a WW-derivative given in def. ??. In the following lemma, we rewrite V in an equivalent
form, which resolves this issue.

Lemma 47. Let ¢ be a cut-off as in (??) such that ¢ vanishes in the future of a Cauchy surface ¥ such
that Xy n JT(supp\) = & and c¢ is identically 1 in the past of an arbitrary Cauchy surface ¥_ in the
past of ¥ (clearly X_ is also in the (strict) past of supp A). Then, we have

R _ 0
where 0 is defined as in prop. 7?7 for this specific cut-off c.

Proof. Let ¢ € S and v,us,...,u, € T,S. Fist of all, we notice that for any t € Cy (S, X}, T*S) we can
equivalently write

d -
(vRt)¢(’U7 ULy ,Un) = ((iea§+€v’¢[t¢+ev] ) (ul, ‘e 7U,n)7 (42)
e=0

where t € (0.0 E,)®"&l,(M™) is an extension of ¢ satisfying the requirements of def. ??, and where [£,]
denotes the equivalence class in &y, (M™)/PsEl,(M™) corresponding to Z,. Here, we do not require that
the cut-off ¢ as in eq. 77 satisfies also the stricter conditions of the hypothesis of the lemma. We used
the fact that any smooth map R 3 ¢ — ¢(€) € S such that ¢(0) = ¢ and d¢(¢)/de|.—o = v necessarily
satisfies @(€) = ¢ + ev + o(€?).

By the definition of the isomorphism ot (see (??), (?7) and (??)), the right-hand side of eq. (?7) depends
neither on the choice of the extension f nor on the choice of the cut-off appearing implicitly in £ and in
a® throughout AR (see (77)). So we are free to use a cut-off ¢ which satisfies the requirements in the
hypothesis of this lemma, since it satisfies all the conditions required by eq. (??) and eq. (?7?).

For any ¢ € S and any v,uq,...,u, € C*(M), we obtain

n
(VRt)¢(va Upy.- s U J *P :61) P () ( J E¢?E¢+ev) t~¢+ev (xla cee ,l‘n) x

x up(w1) ... up(xy)dz) ... da),

= %chl) . Pdg%) {(c-Ep00.0Epier)®tpren} (21, .. xn)u(z1) ... u(zy)dey ... dz, (4.3)
- f Pq(sml) .. .Pdgmn) <(c . E¢)®n 515 ) (z1,...,zp)v(Y)ur(z1) - .. up(zy)dydey ... dz, (4.4)
e 50(0)
Sty
st 00(Y) (@1, xn)v(Y)ur (1) - . up (zy)dyday . . . da,. (4.5)

To get to line (?7?), we used the following consequence of eq. (?7):
(Egpoo.0Ey)(x,y) J. Ey(x ,2)On Ey(z,y)dX(z f Ey(x,2) p )E¢/(z y)dz, (4.6)

where ¢, ¢’ are arbitrary smooth functions, and where B = J*(X_) n J (2, ) is the closed space-time
region bounded by ¥4 and ¥_. The second term in eq. (??) vanishes because P, = Py on the support
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of ¢ (in fact, A = 0 on suppc) and Ey is a bi-solution with respect to Pg. Line (?7) was obtained by
recalling the definition of Gateaux derivative and by noticing that (0. o Ey)t, =ty for any ¢ € C*(M)
because t, € (0. 0 Ey)®"Ef,(M™) by construction and (0. o Eg)? = (0. 0 Eg) by (??). Then, to get to
line (??) we used the following equation

J Ey(x1,2) Py (c(2)Eg(2,22)) dz = | Ey(21,2)0n Eg(2,22)dS(2) = Eg(x1,22),

M bl

which can easily be verified using Stokes theorem and eq. (?7).

Now, line (??) is precisely (0t)s(v,u1,...,u,) as one can see by comparing directly with the definition
of dt (see (??)). This concludes the proof. O

Note that 0 depends on the choice of the cut-off, and so the equivalence V = ¢ holds only for the
specific ¢ we choose. Nevertheless, lemma ?? implies that (VIt), is in T‘,LVT;‘(S"H), because this is

—_~—

true for (0t),. Furthermore, we conclude that S 3 ¢ — (V1) is on-shell W-smooth because (9t) defined
by (?7) for a cut-off ¢ satisfying the hypothesis of lemma ?? provides an off-shell extension for (V1t),
and satisfies conditions ??, 77 in def. ?7 (as already proved in prop. 7?). It also follows that V' satisfies
the conditions to be a W-covariant derivative listed in def. ?77.

The equivalence V = 9 for a cut-off ¢ as in lemma ?? also implies the next result:

Theorem 48. The connection VT —§ coincides with D™V as derivative on (C7(S, W), oTt).

Proof. By definition, the Fedosov derivative DWW = VEW —§4 L ad, (r?), where VW is the Yano W-
connection associated to ¢ — wg. Therefore, to prove the theorem, we need to check that V coincides
with VAW 4 £ ad, (rf).

Remember that an on-shell W-smooth W-valued 1-form is a sequence (in n) of C[[%]]-valued on-shell
W-smooth covariant sections of rank n + 1 which are symmetric in the last n variables. The claim is
equivalent to the statement

(Vi) = (VR’Wt+ Z(ad,R(T‘R)t> , (4.7)
h @

for any ¢ € S and any t € C}j;(S,W). We proceed by showing that eq. (??) holds order by order in deg,
and deg;,. For fixed degrees deg, and
degr (set deg, = n), both side of eq. (??7) are equivalence classes in Efy, (M™)/Pp&fy,(M™) (up to the
adequate power of f).
We proved in prop. ?7 and in thm. ?? that V"¢ and £(ad.=(r"*)t) do not depend on the choice of the
cut-off function ¢ as in (??) which implicitly appear in the definitions of these two on-shell W-smooth
I-forms with values in . The same holds for (V¢) as a consequence of lemma ??. Because of the
independence of the cut-off, it is sufficient to show that eq. (??) holds when both side are computed in
terms of a specific cut-off ¢, i.e.

—_ i ~ .
(VR0) oo 01, - s0n) > (VRT0) (g2, ) + 7 (adan(R)E) (o, o), (48)

where ~ means “equal up to a distribution in P4&j, (M n+1) symmetric in the last n variables” for each

degree deg, = n, and where r is a W-smooth off-shell extension (in the sense of def. ??) of the on-shell
W-smooth W-valued 1-form 7. Note that the individual terms in (??) depend on a cut-off ¢ for general
peC”(M).

To prove (?7?), we can thus use, in particular, the cut-off function ¢ we used before in lemma ??7: we
demand that ¢ € C* (M) vanishes in the future of a Cauchy surface X, such that ¥, nJ T (supp \) = &
and c is identically 1 in the past of an arbitrary Cauchy surface ¥_ in the past of ¥, (clearly ¥ _ is also
in the past of supp A). We note that for a cut-off ¢ of this type, the distribution o, defined in eq. (?7)
is supported in K x K, where K is a compact set contained in J~ (supp A)\supp A. It follows from the
definition of the retarded 2-point function w that

0.0 wf 00, = 0,0wWpyo 0. (4.9)

Noticing that the right-hand side of eq. (??) does not depend on ¢, it follows trivially that all its Gateaux
derivatives vanish. This motivates our choice of c.
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We next present the extensions (V#W¢), and ad,r ( #)ts in terms such cut-off c. Looking at the
definition (??), we see that in the present situation 1t holds

(VEWY), = (0t),. (4.10)

This follows because (Wt) » differs from (F&Vt) » by a finite sum of terms involving the distribution I‘g

given by eq. (??) in terms of the retarded 2-point function wf. By definition, Ff; is a finite sum of

distributions involving §(o. o wf o 0.)/d¢ which vanishes for the specific choice of ¢ used here. Thus,
eq. (??) holds for our c.
The fact that Fg identically vanishes for this choice of ¢, has another consequence. The on-shell W-

smooth W-valued forms 7% and RE corresponding to the retarded 2-point function wf are defined via
the distributions (??) and, respectively, (??), specialized to w(f. Since we proved in lemma ?7? that 7%

and RP does not depend on the choice of the cut-off appearing in the distributions (??) and (?7), we
can choose the same cut-off ¢ we defined before. For both eq. (??) and eq. (??), the right-hand side
depends on T'f. Thus, it follows straightforwardly that 7% and R vanish. By the Fedosov’s theorem
(thm. ?7), the on-shell W-smooth W-valued 1-form 7% is the unique section in Qi (S, W) which solves
VEWpR_gpRy LpReltplt_ RE_TR — 0 subjected to the requirements % = (rR)t, (#B)(0) = 0 = (#R)(V)
and 6178 = 0. Since T® = 0 and RE = 0, it follows that ' = 0 is a solution, and, therefore, the
unique solution. Thus, we have that the part of ad,g(v:\é@fd) with deg, = n is simply the 0 distribution

(up to a distribution in P,&f, (M™*!) symmetric in the last n variables).
On the other hand, we already proved in lemma ?? that V = ¢ for the specific cut-off c. Therefore, we
have _ . o

VRt¢ ~ (6t)¢ =~ VR7Wt¢, (4.11)

where ~ means “equal up to a distribution in P&, (M™!)”, and where our specific cut-off ¢ is chosen.
This concludes the proof. O

In finite dimensions, we proved the existence of a gauge equivalence between two Fedosov connections
corresponding to two different almost-Kahler structures (see thm. ??). We now investigate how this result
translates in our infinite-dimensional framework. Let ¢ — wy and ¢ — wfb be two admissible assignments
in the sense of def. 7?7 of two pure Hadamard 2-point functions for any ¢ € C*(M). We will prove that
the corresponding Fedosov derivatives D" and D’ are gauge equivalent. Combining this result with
thm. ??, it follows that the covariant derivative V¥ — ¢ is gauge equivalent to the Fedosov connection
corresponding to any admissible assignment ¢ — wg of a pure Hadamard 2-point function wyg for any
¢ € C*(M). We follow the pedestrian approach we already used throughout this paper: we provide
the appropriate infinite-dimensional counterpart of any object appearing in the argument presented in
sec. 7?7 for finite dimensions.

We proceed defining first the infinite-dimensional analogue of the isomorphism « between formal Wick
algebras introduced in lemma ??. In the following, we denote by W and W(’;S respectively the formal
Wick algebra with respect to the product e, induced by wg and the formal Wick algebra with respect
to the product e} induced by wy. Consistently we denote Cy (S, W), Cy-(S, W), and more generally
Quw (S, W), Qu (S, W), the algebras of the on-shell W-smooth sections on the corresponding bundles.

Let t be a element in Wy homogeneous in deg,, with deg, ¢ = n, and in degy, i.e. t € C[h] ® v}, T} 5.

We define oy (t) € Wi as the sequence (ag(t)%, ag(t)', ... ), where each ay(t)? is given by

Oé(t,(t)n_%(l‘l, N ,xnfgg) =

L ¢ 4.12
:P+(n—h2£;i(2€)!J,Mzz t(zl,...,Zgg,xl,...,xn_% H ¢—w¢ Zgi_l,ZQi)dZ1...dZQi. ( )
for 0 < ¢ < [n/2], while s (t)7 = 0 otherwise. Note that, by abuse of notation, we identify a class in C[A]®
Xy T3 S by one of its (C[h]-valued) distributional representative in C[h] @ P* &y, (M*). The distribution
on the right-hand side of eq. (??) is well defined: by definition, ¢ is a distribution in P*&{;,(M™) (up
to a factor A%°&nt), and, by construction, the difference of the two Hadamard 2-point functions wg — W
is a smooth function. We can apply thm. ?? to conclude that the composition in the right-hand side
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is well-defined and defines a distribution in &, (M"2¢) (up to a factor h4°8: T*). Furthermore, the
equivalence class in C[] @ Xy 2KT*S correspondlng to a(t)g 2¢ does not depend on the choice of the
distributional representative of ¢ because both wy and wj, are bi-solution with respect to P.

Using the filtration of W, with respect to the total degree Deg and, then, exploiting the fact each element
of Wy homogeneous in Deg is a finite collection of elements homogeneous in deg, and degy, the map
ag 1t ay(t) defined via (77) uniquely extends to a map Wy — Wj. Furthermore, as in the finite-
dimensional case, it can be easily checked that a4 is an isomorphism Wy — WQ) for any ¢ € S.
Following the finite-dimensional construction, we would next like to define an isomorphism between
Cy (S, W) and Cy (S, W') using the maps «, defined on each fiber W:

Proposition 49. Let t be a section in Cy;(S,W). For any ¢ € S, we define

a(t)¢ = a¢(t¢). (413)

The map o is an isomorphism Cy (S, W) — Cy (S, W), i.e. a(tes) = a(t) o afs) for any t,s €
C*(S,W), and it preserves the conjugation operation f, i.e. a(t)’ = a(t?).

Proof. The subtle point is proving that the proposed definition (??) preserves the on-shell W-smoothness.
Once this has been established, « is necessarily an isomorphism because ay is an isomorphism which
preserve the f-operation in the fibers and both the algebraic structure and the f-operation for the on-shell
W-smooth sections on W and W' are defined fiberwise.

To prove that « respects the on-shell WW-smoothness, we need to provide for any on-shell W-smooth
section ¢ an extension of a(t), in the sense of def. ??, i.e. such that the conditions ??, ?? hold. Actually,
exploiting the filtration of the algebra C};, (S, W) with respect to the total degree Deg and the fact that
each section homogeneous in Deg is a finite collection of sections homogeneous in deg, and degy, it is
sufficient to prove the claim for an on-shell W-smooth section ¢ homogeneous in deg, and deg;. We
assume deg_t = n.

Let ¢ be an arbitrary but fixed cut-off function as in eq. (??) and let C*(M) 3 ¢ — t4 € (0.0
Ey)®nEl, (M”) be an extension of ¢ (up to a factor h9°&n ) in the sense of def. 2. For any ¢ € C* (M),

we define oz(t)é5 (0.0 Ey)®IE],(M7) by

a(t);f*%(xl, . ,xn,%) =
¢ 4.14)
n! ~ (
= m JMM t¢(2:1, ey 2203 Ty ey T—2p 21:[1 Wy — w¢ Zgi_l, Zgi)dzl ... dzoy.

for £ such that 0 < ¢ < [n/2], while a( ) s = 0 otherwise. It is straightforward to verify that the sequence
of a(t)}, (up to a suitable factor of %) is indeed an extension of af(t).
To conclude the proof, we need to show that (¢ )3# satisfies the conditions 72, 77 of def. 77. We restrict to
7 = n—2{ because otherwise a(t) s =0 and the conditions are trivially satisfied. In order to verify 7?7, 27,
we first rewrite a(t)g 2t in an equivalent form. Since both wg and wy are bi-solutions with respect to
Py, it follows from eq. (??) that

wy —wly = By 00e, 0 (wy —wly)ooc, oEy, (4.15)

where ¢4 is a smooth cut-off function as in eq. (??) such that ¢y = 1in J*(X;) and ¢y =0in J(X_)
for two Cauchy surfaces ¥4 such that ¥ < ¥, < supp A, where the ordering < is understood in terms of
the causal structure. We denoted by B the compact region comprised between the two Cauchy surfaces
Y,and ¥_,ie. B=J"(Xy)nJT(X_). Note that B nsupp A = ¢J. It follows

a(t)Z’”(xl, ey Tpzp) =
20 ‘
n!
= iju 1:[ Ocy © Eg)(2, 2 ])t¢(z1, s 290, X1+ T2t 11:[1 We —w¢ (22i—1, 22i) %
X Hdzjdzj.
J

(4.16)
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In other words, the distribution a(t)g*% is (up to a numerical factor) the composition of the compactly
supported distribution

@4)(21, ey B2y Ty 7l'n,2g) =
20
= J . H(O’C+ o Ey)(2j, z;)tgs(z'l, e P Ty T 20)d2y ... d2og
M28 5

Jj=1

(4.17)

with the distributions (wg — w;)(zgi_l, 29;)-

The distribution ©4 satisfies conditions 7?7, 7?7 of def. 77. This claim follows from lemma ?? and thm. 77
recalling the properties of Ey (prop. ?7), the wave-front set o., (given by (??)) and the fact that
ty satisfies conditions 77, 77 of def. 77 by hypothesis. Furthermore, the support of the distribution
Oy(21,...,220,%1,...,Tn_2¢) and its Gateaux derivatives §"Oy(21,...,22¢,21,...,Zn_2¢)/d¢” contains
only elements with z1,..., 29, € B.

We proceed establishing the following estimates for the variational derivatives of the difference wy — wé)
exploiting eq. (?7).

Lemma 50. For any v € N, it holds

6" (wg — wy) (21, 22) B
WF( So(y1) - .- 66 (yy) )mm =g (4.18)

Furthermore, for x1,x2 € B it holds

6Y (we—w ) (z1,x
(@1, 22, Y1, -, Yus b, k2, 1, - ) € WE (W)

(v ip ; )ECJF }:>k1,k2€‘/17 (4.19)
1y -5 Yvy IRRIEY %7 V_
where CE are the set defined by (?7).

Proof. By hypothesis, ¢ — wy and ¢ — w; are two admissible assignments in the sense of def. ?7.
Therefore, they satisfy the estimate (?7) of condition ?7?, i.e.

5VLU¢ (SUW;
F F{— Zoyy.
W ( (5(;5’/ > 7VV < 5¢V C Loy
Since 6" (wy — wy)/0¢” is just the difference of §"wy/6¢"” and 6w, /64", the following estimate follows
straightforwardly
8 (wg — wlh)
WF <(5¢V ¢ > c Z?+v~

By construction, (wy — wg)(21,22) is symmetric, and, therefore, 6" (wy — wg)(21,22)/0¢" is symmetric
in x1,xs. Thus, we have

5V o
WF (W) P Zors, (4.20)

where

IP+Z2+V = {(xlax27y1a v ayn;k17k27pl7' .. 7pl/) € ZQ+V :

(m27x17y17 vy Yny k27 klvpla e 7pl/) € Z2+l/} (421)
r v 2; 2;— 1; 1;—
= T*M>** \(C2+J; VGRS Cz++u v,

To get the last line, we used the definition of Z5,, (??) in terms of the sets C’;fu (??). It follows that if

(1, %2, Y1, -« s Yn; k1, k2,0,...,0) is in WF(§”(w_ —w’)/0¢"), then it must have kq, ks € VAV = {0}.
However, by definition the wave-front set does not contain elements with vanishing covectors, and,
therefore, condition (??) indeed holds.

Next, we notice that the estimate (??) is not enough to prove condition (??). One can easily see from (?7)
that if (x1, 2,91, - -, Yo k1, k2, p1, - . ., pu) belongs to WF(6” (w_—w’ ) /6¢") with (y1,...,Yu;P1,.--,Pv) €

C# and x1, 79 € B, then it follows from (??) that (ki, ko) ¢ VXV
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To strengthen this bound, we use eq. (??). We can compute the v-th Gateaux derivative of wy — w; by
distributing the variational derivatives on the factors appearing in the right-hand side of eq. (?7). By
doing so, we have that ¢"(w_ —w’)/d¢" is a finite sum of terms in the form

JIMIE, 52l (wy — ) 51Nl
— T %0, v %0, O T ,Ta), 4.
<6¢Nll<{yr}rem) T [(TA B R LT e ) R

where N1, No, N3 form a partition of {1,...,v}.

Because 0., is compactly supported, and because of the estimates of the wave-front set of 0., (given
by (??)), 0VilEy/5¢Nil (given by (??)) and V2l (wy — w:b)/éng'Nz' (given by (?7)), it follows from
thm. (??) that each term (??) is well-defined.

Next, we show that if (21,22, (Yren, ), - - - » Yo k1, k2, (Pren,)) belongs to WE(§INi By /56INil) with x1, 29 €
B, then ki, ks must be both null covectors. For |N;| = 0, this claim is a consequence of the fact
that the wave-front set of the causal propagator (??) contains only null covectors. For |N;| > 0,
we have y, € supp A for any r € N; as follows from prop. ??. Now, the estimate (?7) implies that
(71,22, (YreN,)s - - Yvi k1, k2, (Pren,)) is contained in the set Xy n,|, and so, by the definition of X5 |y,
(see (?7?)), there must be (y',p'), (v",p") € T*M for certain points y',y” among {y,cn,} such that

(1‘17]61) ~ (yla _pl)a €T = y/a ki = _pl7 klapl =0
(y"p") ~ (w2, k2), y' = x9,p" = —ky, P’ k=0

Since, by hypothesis, x1, z2 belongs to B and B is disjoint to supp J, it follows that k1, ko must be null
covectors as we wanted to prove.

This result implies that any element (z1,22,¥1,-..,Y;k1,k2,D01,...,Dy) With 21,29 € B which is in
the wave-front set of each distribution (??) must be such that ki, ko are null covectors, as can be
seen by applying the wave-front set calculus thm. ??. Thus, a similar result holds for any element
(x1,%2,Y1, -, Yv; k1, k2,1, ..,p,) of the wave-front set of 6" (w_ —w’)/d¢” with x1,25 € B.

Finally, combining this with the constraints imposed by estimate (??) we derived before, namely that each
(xlax%yla s Yus kla k27p17 cee 7pu) in WF(§V(W—_WL)/6¢V) with T1,%2 € B and (yla s YuiP1s - apV) €
CZ* must have (ky, ks) ¢ VXV Thus, it follows that condition (??) holds, as we wanted to show. O

To prove that 07(5)2_215 satisfies conditions 7?7, ?? of def. ??, we compute its v-th Gateaux derivative
distributing the variational derivatives onto each factors of the right-hand side of eq. (??). If follows that

5”0?6/)2_%/&;5” is a finite sum of terms in the form

J 5\Nt|@¢(z1,...,zM,xl,...,acn,Qe) 5‘Ni‘(w_ _OJI_)(Z%_I’Z%)d,Zl.‘.dZQE, (423)
K2¢

3N ({yren, }) SN ({yv,en. })

where Ny, Ny,..., Ny is a partition of {1,...,v}.

First of all, we notice that each of the terms (?7?) is a well-defined distribution. In fact, both the
multiplication condition (??) and the integration condition (??) of thm. 77 are satisfied: the first holds
because of (??) we proved in lemma ??, while the second holds because 6|Nt‘®¢/6¢‘N*| is a compactly
supported distribution. Thus, by applying thm. ??, it follows that the distribution (??) is well-defined.

—_—~

To show that oz(t);f*% satisfies condition 77, it is sufficient to prove that the wave-front set of each
term (?7?) is contained in W, _os+,. In other words, it is sufficient to show that there is no element

(1, Tn—20,Y1s- - Yu; K1y oy kn_20,01,-..,py) of the wave-front set of (??) such that the all covectors
—+ . . .

ki,...,kn_20,p1,--.,p, belong to V™ except at most one which is space-like. By the wave front set

calculus (thm. ??), if (x1,..., Tn-20,Y1,--->Yv; k1, - kn—20,01,---,P) is an element of the wave-front

set of (??), then there must exist

. x 7 r2¢
(21,...,2227(]1,...,(]2@)ET M ’

such that zq,..., 290 are in B and it holds
(Zlv e 3R XLy ey Tn—20, (yT‘ENt,); —q1,.-.,—q2¢, kla sy kn—2€7 (pT‘ENf,)) € Wn+|Nt‘
or Q1,-~-,Q2£7k1,~-',kn—2éapreNt:0 (424)

(22i—1, 221> (YreN: ); Q2i—1, @2is (Pren: ) € WE(OWVel(w_ — w' ) /5¢l Vil fori=1,...,¢
Or G2;—1,92i,PreN; = 0
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We used the fact that O, satisfies 77, and so WF(§IV1/@,/641Vtl) is contained in Ws N, |-

. . . —t
Now, we prove the claim by reductio ad absurdum: if all covectors k1, ..., k,_2¢,p1,--.,p, belong to V'
except at most one which is space-like, then lemma 77 implies that the covectors qi,...,¢o are in VT,
However, these configurations are incompatible with the conditions (??), and so we get a contradiction

as we wanted to show. This concludes the proof that a(t)g 2 satisfies condition ?7?.

To prove ??, let R 3 € — ¢(e) € C* (M) be smooth. The distribution 6”« ( )" 25/59%)” can be expressed

as a finite sum of terms in the form (??) with ¢ replaced by ¢(e) everywhere Arguing similarly as
done for the proof of 77, but now using the fact that O, satisfies 77, it follows that the wave-front

set of each term (?7?) in ¢(e€), viewed as distributions in the variables €,21,...,Zp_2¢,Y1,..., Y, € R X
M”_Q“”, is contained in R x {0} x W,,_op,, which is precisely the requirement of ??. Consequently,
also 6"« ( )" 2t/5¢" satisfies the condition ??. This concludes the proof. O

To proceed, we need to the extend the isomorphism « to forms with values in W. In finite dimen-
sions such extension is straightforward. In the framework of on-shell W-smooth sections, the desired
extension is provided by the following canonical construction. We consider first ¢ € Q¥,(S, W) such that
t is a section homogeneous in deg, and deg, with deg,t = n, we define a(t) € Q¥ (S, W) as the se-
quence (a(t)*0 a(t)®!,...) where a(t)f;’j e C[h]l® A v‘li;jT;‘S is defined by the following distributional
representative:

oz(t)’;’"_%(yl, YRS TL, ey Ty 2p) P=

htn! _ i
= (n_2€)1(2£)'P+P jMZZ t¢(yl,~--,yk721,---7Z2e,$17--~7ﬂ?n—24 1_{ w¢—w¢, Zgi_l,ZQi)dzl...dZQg,
1=

(4.25)

for 0 < ¢ < [n/2], and a(t)g’j = 0 otherwise. Arguing similarly as before for (??), it can be seen that
the right-hand side of (??) is well-defined.

Using the filtrations with respect to deg, and Deg of the algebra Qy (S, W), it follows that (??) gives
a map acting on the whole algebra. By construction, it also preserves the total degree Deg. Finally,
using a similar argument as the one presented for the proof of prop. 77, we can verify that « defines an
isomorphism Qu (S, W) — Quw (S, W’). In other words, we proved the following proposition, which is
the infinite-dimensional analogue of lemma ?7:

Proposition 51. The map « defined by (??) is an isomorphism Qu (S, W) — Quw (S, W'), i.e. a(tes) =
a(t) o' a(s) for any t,s € Q(S, W), and it preserves the conjugation operation i, i.e. a(t)" = a(t).

Continuing our pedestrian approach, we next provide the infinite-dimensional analogue of lemma ?7.

Proposition 52. D" := aD'"a~! is a Fedosov W-connection. More precisely, DV coincides
with the derivative obtained from Fedosov’s first theorem (thm. 7?) with respect to the product e and is
uniquely characterized by the following input data: the connection VW and the auziliary data Q = 0,
5% where s* is a certain on-shell W -smooth section on W with Degs® > 3.

Proof. Repeating the argument given in finite dimensions, it holds that D*W is a flat deg,-graded
derivation of Qu (S, W). In fact, we notice that D' preserves the on-shell W-smoothness because D'V,
a and a~! do so. Moreover, the algebraic relations needed in the finite-dimensional proof persist in
infinite dimensions. All that is required is that « is an isomorphism Qu (S, W) — Qu (S, W') and D'V
is a flat deg,-graded derivation of Qu/ (S, W’).

What remains to be done is to establish the infinite-dimensional analogue of the elements r* and s
defined by (??) and by (??). Looking at the recursive formula (??), we see that r* is determined to all
orders once is given C as in (??). To make this iterative machine work in infinite dimensions, we must
show that the infinite-dimensional analogue of C' is on-shell W-smooth.

The W-valued 1-form C' is actually homogeneous in deg, and deg; with deg, C' = 2 and

degrC = 0. We provide a suitable extension for C' and check that this satisfies ??, 7?7 of def. ?7.

For any ¢ € C*(M) and for an arbitrary cut-off ¢ as in eq.(?7?), we define the extension by:

1
Colpraryan) = 5P [ (000 B0t/ ) (o0 Eo)(an,a})(oc 0 Bo)az, )

x o(x1,2)(Dy — T4) (2,4, 25)dzdy’ dzy davy,

(4.26)
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where I'y, I', are defined by (?7?) for wy, wy, respectively.

It is a consequence of lemma 7?7, lemma 77, the definition of the distributions F¢,F;5, and the esti-
mates (7?), (27), (2?) and (??) that Cy is a well-defined distribution in (0.0 Ey)®3 0 &/, (M?3) symmetric
in the last two variables which satisfies the requirements 77, 7?7 of def. ??7. In other words, we have that
C is a well-defined on-shell W-smooth W-valued 1-form.

Furthermore, the following the identities hold

avVWal =vV - %ad.(C), sC=T-17", VWC - %0 eC=aR - R (4.27)

These are obtained by the same algebraic manipulations as in the finite-dimensional case (cf. (??), (?7)).
As in the finite-dimensional case, it then follows

DWW = 5+ aV'Va ! + %ad.(ar') =-5+VV + %ad.(ro‘),

where 7 = ar’ — C' is a section in Qi (S, W) with total degree Deg > 2 (cf. (?7)). Since the on-shell W-
smoothness is preserved, and since the algebraic relations needed in the finite-dimensional proof persist
in infinite dimensions, we can repeat the same argument already given in sec. ?? (cf. (?7)) to show

o =VWre* —R-T + %r“ o7 5l =5 = tar' —671C. (4.28)

Fedosov’s first theorem (thm. ?7) ensures that 7* is the unique solution of the system (??). Thus, D*V

coincides with the Fedosov derivative with respect to the product e, uniquely characterized by the input
data VWV, Q¥ =0, s = 5 lar' — 671C. O

Finally, we can prove the existence of the gauge equivalence between the two Fedosov W-connections
DW and D'V, i.e. the infinite-dimensional analogue of theorem ?7.

Theorem 53. Let ¢ — wy and ¢ — w(’b be two admissible assignment in the sense of def. ?7. There
exists an on-shell W-smooth section H € Cyj;(S, W) such that DegH >3, TH = 0, HY = H and

DY = exp (—; ad.(H)) aD™a lexp (; ad.(H)) . (4.29)

In particular, a solution H for eq. (?7?) is uniquely determined by a closed on-shell W-smooth 1-form

0 € Qw (9)[[n]]-

Proof. The iterative construction of H for § = 0 given by (??), (??) is valid also in the infinite-dimensional
case, with the obvious substitutions, because the input is on-shell W-smooth and all iteration steps only
involve the operations o, V'V and § which preserves this properties. O

We conclude this section deriving two straightforward corollaries of thm. ?? and thm. ??. Let ¢ — wf
the admissible assignment given by the retarded 2-point function for any ¢ (we proved in lemma ?? that
this assignment is indeed admissible in the sense of def. ??), and let ¢ — w’¢ be any other admissible

assignment. We have shown in thm. ?7 that D% = V# —§. Now, if F is a local functional and if
S2¢— F¢ is the corresponding quantum observable (viewed as a section in the bundle W) defined by
the Haag’s series (??), then we have seen in thm. ?? that DW-FF = 0. Combining with eq. (??), we get
the following result:

Proposition 54. Let F be a local functional and let S 5 ¢ — F¢ € Wy be the on-shell W -smooth section
given by the Haag’s formula (?7), where the formal Wick algebra Wy is defined for any ¢ € S in terms
of the retarded 2-point function wqf”. Let ¢ — w; be any admissible assignment in the sense of def. 7 of

a pure Hadamard 2-point function w(’i, for any ¢ € C* (M) with corresponding Fedosov connection DV .

Let Fé, be the element in Wy given by
B o= texp (Ladon(H)) Ey.
¢ = Qg exp(ha .x(H) e
Then, the map F': S 3 ¢ — ﬁ4/> € Wé) is an on-shell W-smooth section and
D'V =0.
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What we still have to prove is that S 3 ¢ — F’¢ € Wy is an on-shell W-smooth section. Once we have
established that, the map F’: S 3 ¢ F(; € W,, must be on-shell W-smooth because a~! (as proved in
prop. ?7), the product e, and exp(% ad,r(H)) (as a consequence of the on-shell W-smoothness of H
given by thm. ??) preserve on-shell W-smoothness.

Proving that S 3 ¢ — F¢ € Wy is on-shell W-smooth is rather lengthy. Therefore, we devote the entire
following section sec. ?? to it. However, before we do that, we point out the following corollary of
prop. 77, which shows how space-times locality (Einstein causality) can be implemented:

Proposition 55. Let I, Fy be two local functionals and let ¢ — W;s an admissible assignment in the
sense of def. ?7). Let C; (S, W') be the algebra of on-shell W-smooth sections in the local Wick algebra
corresponding to the product o' defined as in prop. ?7 in terms of the assignment ¢ — o.)(’p. We have that

E7 o' F} = F} o' F! if the support of Fy and Fy are space-like separated, i.e. supp Fy n J(supp Fy) = .

Proof. Let ¢ — wf be the admissible assignment corresponding to the retarded 2-point function and

let C% (S, W) be the algebra of on-shell W-smooth sections corresponding to the product e which

is defined as in prop. ?7 in terms of ¢ — wf;. By construction, « is an isomorphism Cyf (S, W) —

Cyi(S,W'), while exp(+ ad,z(H)) is an endomorphism of Cf, (S, WF). It follows

nAA — { r- 7 — { n
I o F) = <a¢1 exp (h ad,R(H)> Fl) . <a¢1 exp (h ad,R(H)> Fg)

oy exp (; ad.R(H)> (F " ).

(4.30)

The sections ﬁ'l, F are given by the Haag’s formula (?7), and, therefore, can be expressed as form@l series
of retarded products. Because of the GLZ formula 77 (see sec. 77), it follows that I ef' [, = [, ef [y if the
support of Fy and F; are space-like separated, see e.g. [? ]. The claim then follows straightforwardly. [

4.2 On-shell W-smoothness of S 35 ¢ — F¢ € W

In chapter ??, when we discussed the perturbative approach to the quantization of interacting massive
scalar theory around a classical background (sec. ??) we provided an axiomatic characterization of
prescriptions for retarded products {R,, ¢ : Floc @FE™ W tnen for each ¢ € S. The Haag formula (77)

loc
for Fy expresses this quantity in terms of retarded products for each ¢ € S. Thus, if we can show that
each retarded product S 3 ¢ — R, 4 is on-shell W-smooth, S 3 ¢ — Fe W is also on-shell W-smooth.
We will indeed show:

Theorem 56. For any local fuctionals F,Hy,...,H,, there exists a prescription for retarded products
such that the assignment S 3 ¢ — Ry, 4(F(¢ +¢),®7_H;(¢ + ¢)) € Wy is on-shell W-smooth.

On-shell W-smoothness requires that there are extensions of these maps to C*(M), which we have
a sufficient microlocal control on their variational derivatives, more precisely the conditions 7?7, 7?7 in
def. ?7. It is far from obvious that such requirements are satisfied a priori.

We begin the proof of thm. ?? by noticing that it is sufficient to prove that there exists a prescription
for time-ordered products {T}, 4 : F2" — Wy }nen satisfying the axioms (T1)-(T10), and (T11c) defined
in [? ] ( and the axiom (T1la) necessary in the proof of the consistency of (T11lc) with the other
axioms, see appendix ??), and such that the assignment S 5 ¢ — T, 4[®" Fi(¢ + ¢)] € W, is an
on-shell W-smooth section for any local functionals Fi, ..., F,,. Indeed, once such prescription for the
time-ordered products is provided, it is well-known that a prescription for retarded products satisfying

the axioms ??-?7 and ?? (see sec. 7?) can be defined by

Rn,¢<FaQn<>Hk) =) (—1)I'TI|,¢l®Hi

k=1 1e{1,..n} iel

*¢ Tjre|+1,0 lF® & Hj]

jelIe

(4.31)

F@@Hj]7

jeIe

= 2 Z (_1)[T|11\7¢ l@ Hn] 0 11,0

I Lioeeul=I i€l

=) Hn] *s Tirej41,6

ie€ly
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where T denotes the anti-time-ordered product, see e.g. [? , (T7)]. The on-shell W-smoothness is clearly
preserved because the product e, preserves this notion of smoothness as we have already proved in
prop. ?7.

The strategy of our proof consists in the followings steps:

1. In sec. 77, we present some preliminary technical results we will need later on in the proof. We

first consider the case of a generic space-time (M, g) (not necessarily ultra-static nor with compact
Cauchy surfaces), and let m, ¢, \ € C*(M). In this general setting, we investigate a particular
distribution, the Hadamard parametrix H, defined by (??) with respect to the linear operator
P, = 0—m? — 5¢?. More precisely, we are interested in the variational derivatives of Hy,
especially their microlocal behaviour and their scaling properties under a rescaling of g, m, ¢, A.
This will be done in lemma ?7.
Then, we restrict to the more specific situation of an ultra-static space-time (M, g) with compact
Cauchy surfaces, a constant m and a compactly supported A, i.e. the setting we consider throughout
sec. 77-77 and in sec. 7?. In this situation, we discuss the properties of the difference dy := wg—Has
between the retarded 2-point function wf given by eq. (?7) and the Hadamard parametrix Hy. In
particular, lemma ?? and lemma ?7? provide a microlocal control on the variational derivatives of
dg sufficient for our purposes in the following steps.

2. With these technical results at our disposal, we begin the proof of the existence of a prescription
for time-ordered products which has the desired on-shell W-smoothness and satisfies the axioms
(T1)-(T10) and (T11c). Actually, we consider first local functionals which do not involve covariant
derivatives and we consequently demand that only axioms (T1)-(T9) are fulfilled. The first step,
presented in sec. 77, is to provide a prescription for time-ordered products of one functional F'.
Following [? ? ], this is done considering the Wick powers defined in terms of the Hadamard
parametrix Hy. We then use lemma 7?7 to prove that S 3 ¢ — Ti 4[F(¢ + ¢)] € W, is on-shell
W-smooth for any local functional F' which does not contain covariant derivatives.

3. In sec. 7?7, we discuss time-ordered products of more factors Fi,..., F,, (not involving covariant
derivatives). We formulate sufficient conditions, collected in lemma ??, to ensure the on-shell
W-smoothness of any map S 3 ¢ — T, »[®, Fi(¢ + ¢)] € Wys. We formulate these sufficient
conditions in terms of the Wick expansion with respect to the retarded 2-point function wf.

4. In sec. 7?7, we review the procedure outlined in [? | to define the time-ordered products inductively
starting from the Wick powers. The construction, which needs to be given for generic space-time
(M,g) and arbitrary smooth functions m, ¢, A, relies on three fundamental concepts: the local
Wick expansion (see eq. (?7?)), i.e. the Wick expansion in terms of the normal ordering with
respect to the Hadamard parametrix Hy, the scaling expansion (see eq. (??)) for the distributional
coefficients of the Wick expansion outside the total-diagonal, and the control of the extensions of
such distributions provided by their scaling properties.

5. In sec. 77, we prove additional properties, listed in prop. ?7, for the variational derivative of the
distributional coefficients appearing in the local Wick expansion. The proof of these conditions
relies on the fundamental properties of the Hadamard parametrix H4 we prove in lemma ?77.

6. The purpose of sec. 77 is to prove that any prescription of time-ordered products constructed
following the procedure of [? | satisfying the sufficient conditions of lemma ??. This is done in
prop. ?7.

7. The last part, sec. 7?7, is devoted to two issues. First, we discuss the extension to local functionals
which involve covariant derivatives and we prove the existence of an on-shell W-smooth time-
ordered products prescription satisfying the Leibniz rule axiom (T10) (see [? ]) in addition to
axiom (T1)-(T9). Then, we prove the existence of a W-smooth prescription for time-ordered
products that satisfies also the principle of perturbative agreement, i.e. we require axiom (T11c)
(and axiom (T11a)) in addition to axiom (T1)-(T10).
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4.2.1 Properties of the Hadamard parametrix and the difference of the Hadamard
parametrix and the retarded 2-point function

Let (M,g) be a generic space-time and let m, ¢, A be generic functions in C*(M). We consider the
Klein-Gordon operator Py = 0 — m? 1)\¢2 Let U c M be a convex normal neighbourhood, i.e. for
any two points in U there is a unique geodesic connecting the two points. The Hadamard parametriz is
a distribution on U x U which is a bi-solution for P4 up to a smooth function and which is in the form

uo(z1, x2)

H¢(IE1,$2) = . (1‘1 Ig)

+v(z1,22) In(oc (21, 22)), (4.32)

where ug and v smooth functions defined in terms of the so called Hadamard coefficients described in
a moment, where o (1, 22) := o(x1,22) + ie(T(x1) — T(x2)), where T is a global time coordinate, and
where o (1, z2) denotes the (signed) square of the geodesic distance from x; to xs, i.e.

1 1/2 2
o(x1,x9) = £ (L dt) . (4.33)

The curve v, 4, : [0,1] = M is a parametrization of the unique geodesic connecting x1,x2 such that
Vor.zz(0) = 1 and 7y, 5,(1) = 2. The sign in the definition of o(zq,x2) is “47 or “—7 if ~,, ., is
time-like or space-like, respectively. The definition eq.(??) is given by an “e-prescription”: for any f test
function in U x U, Hy(f) is defined by first computing it for € > 0, and then taking the limit ¢ — 0.
The first Hadamard coefficient ug is the “Van Vleck-Morette determinant”

AR, 2y () A7, 0, ()
dt dt

Guv (Vay ,T2 ()

1
2

det (6,(f1)61(,x2)0(:v1, xz))

Vdet (g, (x)) det(g, (y)) (4.34)

Uo(.’Ehl'Q) =

which is a strictly positive smooth function and depends on the metric g in a local and covariant way.
For k > 0 the coefficient uy = ur[g,m,$,A] (the dependence on the metric g, the mass m, the
background ¢ and the coupling A is emphasized) are given by the following recursive formula:

uo(w1, 2
Ug k+1(21, T2) J J tk ’lfo zl x; 5(2’,%1@2@))13(; )u¢}k(2,m2)dzdt. (4.35)

Since ugp[g] depends locally and covariantly on the metric g, each ug j depends in a local and covariant
way on g, m, ¢, A

Concerning the scaling behaviour, note that uo[A~2g] = uo[g] and ur[A~2g, Am, Ag, N] = A% ui[g, m, ¢, ]
for any A > 0.

On a real analytic space-time and for real analytic data m,¢,\, we can define vy := >, _, Ugp k4107
This series converges as shown e.g. in [? |. In principle, we would like to define v, similarly also for
space-times and data m, ¢, A which are only smooth. However, the series need not converge in this case.
Following [? | (see also [? ? ]), we overcome this problem defining instead

o(1,22) 1= Y (0(21,72) /o ug k1 (1, 22) oM (21, 22), (4.36)
k=0

where ¢ : R — R is a compactly supported smooth function and {a}xren is a sequence of real number
which are introduced to ensure the convergence of the series. More precisely, v is chosen such that
P(x) =1 for |x| < 1/2 and ¢(z) = 0 for |z| > 1 and ay, tends to zero sufficiently fast.

Let us collect some properties of the Hadamard parametrix:

e The distribution Hy = H[g, m, ¢, A] is local and covariant in the following sense: let ¢ : M’ — M be
causality-preserving isometric embedding between the space-times (M’, ¢') and (M, g), i.e. ¢’ = 1*g,
and let f be a test function supported in U’ x U’ where (U’ c U, then it follows

(" Hlg,m, ¢, A]) (f) = H[t"g, % m, 1%, *A](f). (4.37)

97



e As proved in [? |, the wave-front set of Hy can be estimated by
WF(Hg) < C™9llyxu (4.38)

where C* is the set defined by (??). Furthermore, every Hadamard 2-point function differs from
H, by a smooth function, as shown also in [? |.

If {g©),(m?)®), ¢ A} are smooth 1-parameter families, then H[g(®), m{*) ¢(=) \()] can be
interpreted as a distribution in R x U x U and it holds that

WF(H[Q(S)am(s)a¢(s)a>\(s)]($17$2)) c {(5@1,962;/), ki, ko) € T*(R xUxU):
(4.39)

($1, X9, k’1, kg) € CD[Q(S)]} .

Less trivially, when the Hadamard parametrix is restricted to the total diagonal As in U x U,

which can be done as a consequence of the estimate (??) and thm. ?7, it holds in addition that

WF (H[g<s>,m<s>7 &), A<s>](mh$2))

1 T(R x As). 4.40
on, LT® < 2) (4.40)
If we vary smoothly only the background ¢, it i.e. for fixed g,m, A and for a smooth 1-parameter
family {¢(®)}, then the following estimate, stronger than (??), holds

WF (Hf;)(:cl, xQ)) R x {0} x C™[g]lyvp - (4.41)

e As we mentioned before, on real analytic space-times and for real analytic data m, ¢, A, the cut-off
1 appearing in the series expansions of vy, formula (?7?), can be omitted because the series without
the cut-off already converges. Consequently, H[g, m, ¢, A] scales homogeneously up to logarithmic
terms under the rescaling of (g, m, ¢, \) as before:

AT2H[A™2g,Am, Ap,\] = H[g,m, ¢, \] + In A? (Z wes1[g, m, @, /\]O'Z> .

£=1

e Finally, for any choice of analytic 1-parameter families {g(*), m(*), ¢{*) A()} estimates (?7), (??)
and (??) can strengthened replacing the smooth wave-front set with the analytic wave-front set
(see appendix 77).

In order to prove the W-smoothness of the time-ordered product, the results just outlined are not enough.
We need a microlocal control also for the variational derivatives of the Hadamard parametrix. Using
eq. (??) and eq. (??), we can express §” Hy/0¢" for any v > 0 by

" Hlg, m?, ¢, Al(z1, 22) -
5o(y1) - .- 00(yy)

B kzz:ow(a(xl’ T2)/ ) 5”“%;[(91/’17; .7.(]?5,;\(];56)17 ) o" (21, 33) In(oc (21, 22)).

(4.42)

where x1,z2 belongs to the same convex normal set U.

Due to the presence of 6Yuy/0¢" in the formula above, we are interested in providing estimates for the
variational derivatives of the Hadamard coefficients. We present some useful properties of 6Yuy/d¢” in
the following lemma:

Lemma 57. The distribution 6"ug /0¢" vanishes whenever v > 2k. Furthermore, if (x1,Z2,y1,...,Yv)
is in the support of 8" ug k(x1,22)/dé(y1) ... 06 (yy), then the points y1,...,y, must belong to the unique
geodesic connecting x1, Ts.

The distribution 6" uy/0¢"[g, m, ¢, \] is a locally covariant distribution which scales homogeneously with
degree 2k + 3v under the rescaling (g, m, ¢, \) — (A"2g, A2m?, A¢, \).

We have

_up(T1,22) 1\ _ ou
e <5¢(y1)-~5¢(yu)> Creulg: Al (4.43)
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where

Cslg, Al = {(xl,xg,yl, e Yui k1, ko, p1, ..., pu) € T*U2ty . y¢ € supp A V¢
3 a partition {L,,} of {1,...,v} with L, proper,|L,,| <2
for each L., 3T,, € [0, 1] mal = T
Yo = Yar,a0(Tm) VL€ Ly,

—k1 = 2(1 - Tm) Z Hyé’wlp& —ky = ZTm Z Hyf’xzpé} ’

m LeL, m LELm,

(4.44)

and where 11, denotes the parallel transport along the unique geodesic connecting x,y.
For any smooth 1-parameter families {g(s),m(s), &), )\(5)}, it holds that

_Oun(1,22) o) () 4(9) \(6) 445
5¢(y1)---¢(yu)[g AT )

is a distribution jointly in s and in x1,x2,Y1,--.,Yy- Thus, we trivially have
<6Duk[g<s>,m<s>,¢<s>,A<s>](x1,x2>> _
6d(y1) - - 09 (yy)
= {(57331,332’91, e Yus Py kla kQapla ce. 7pV) € T*(R X U2+V) :

(331#52’1/17 e 7yu;k1>k2ap1a e 7pl/) € CngV[g(S)a)‘(S)]} .

Furthermore, for any smooth R 3 s — ¢(s) € C*(M) it holds that

e (w(yl)..w(yy)) R {0} x Ciln AL (4.46)

Proof. The proof of these properties is given by induction in k exploiting the iterative definition for the
Hadamard coefficients given by eq. (??) and the initial condition for ug.

By definition the Van Vleck-Morette determinant does not depend on ¢, therefore the hypotheses are
trivially satisfied for k£ = 0.

Now, assume the results of the lemma ?7? hold for all orders < k. We can compute 6" ugy1,4/0¢"
distributing the variational derivatives on the right-hand side of eq. (??). Since Py is at most quadratic
in ¢, all derivatives 6" Ps/d¢” with v > 2 vanish, so it holds

oY 0" Ug k+1(T1, T2) 1‘1,33‘2 J J k'UfO 1‘1,332
= 2y Vw1, t))x
Mok L) 5 1)
Y ug (2, x vy (2, 22)
% p(z)# b,k 24
{ * 56(nn) - - 00(ys) Za¢ () 06" ({yrrei}) (4.47)

52P(2) 51’_QU¢ k(Z 332)
5L dzd
+Z 5¢(yz)5¢(yg) 5¢”2({yr¢i,j})} -

It follows from this expression and the inductive hypothesis that 6“uy g+1/6¢" vanishes if v > 2k + 2 or
if the points y1, . .., 4, do not belong to the unique geodesic connecting x; and zo, as we wanted to prove.

The locally covariance property and the homogeneous scaling of §”ug 1 /d¢” are also consequence of
this expression and the inductive hypothesis.

We come to the proof of estimate (??). The distribution in the right-hand side of eq. (??) is the
composition in z of two distribution, namely the distributions in z, 21, z2 given by

U0($1,$2)

1
wo(z, 72) L 82, Yo aa (D), (4.48)

99



and the distribution in z,x1, 22, y1,...,y, given by

(z)_0"ug (2, 2) 3 P 5=y 4 (z,2)

P¢ 5¢(y1) . (5¢(yy) + e §|I|({yr¢1}) 5¢Vim({yr$l}) ) (449)

where the sum is over the subsets I of {1,...,v} containing 1 element or 2 distinct elements.

To obtain the estimate (??) for the wave-front set of 6Yug x+1/0¢", we proceed providing estimates for
the wave-front set of these two distributions and then use the wave-front set calculus (thm. 77?).

Let us focus first on the distribution (??). Consider the distribution §(2, 7z, z,(¢)) in R x U3. Using
thm. ?? for the wave-front set of the pull-back of a distribution, it follows

WE(B(2, %2, 0 (1)) © { (82,01, 2237, 0, bt ) € T*(0 x U%) 2 2 = 7y, (1),
_kl = (1 - t)Hz,a:l q, _k2 = tHz,mzan = _q(ﬁ/ajl,a:g (t))} .

We used the fact that the unique geodesic 7, 5, : [0,1] — U connecting z1, z2 can be extended uniquely
to a sufficiently small open interval O c R containing [0, 1]. By definition, ug is a strictly positive smooth
function. Thus, ug(z1, z2)/ue(z,z2) is a smooth function and so does not contribute to the computation
of the wave-front set. The distribution (??) can be equivalently written as

uo(r1,22) [ ps _ (@, m2) N
) Jy 10 A )i = 2O [ 0000 00O (450

The right-hand side of eq. (??) is the composition in the variable ¢ of the distribution t*6(¢)0(1 —t) with
0(2, Yoy 2, (t)). Since WF((2,Vay .0, (t))): = & (we mean the projection onto the ¢-component of the
wave-front set), it follows from the wave-front set calculus (thm. ??) that the composition is well-defined
and, furthermore, it holds

WF (“O(“”lx“‘) Jl dtt’“é(zml,xz(t)o c

UO(ZVTQ) 0
c {(Z7$179€2;q7k1,k2) e T*(U?):

dte [07 1]7 2= Vzy,22 (t)v —k1 = (]- - t)Hz,zlqv —ko = tHz,x2Q70 = _Q(;Yzl,zg (t))
OI‘Z=I1,]€2 =0,k1 =4dq, OI‘ZZIQ,kl ZO,ICQ Zq}

Let us next discuss the distribution (??). By the inductive hypothesis, for any v the wave-front set of
0" ug /0¢" is contained in C3', ,[g, A]. Since Pd(f) is a differential operator, its action on a distribution does
not enlarge the wave-front set (see thm. ?? in appendix ??). On the other hand, the terms 5Pdgz)/5¢>(yi)
and 52Pf)/(5q5(yi)5¢(yj) are given by the distributions —A(2)¢(2)d(z,y;) and —A(2)d0(2,y:,y;) respec-
tively.

Then, using the wave-front set calculus (thm. ??) we can estimate the wave-front set of the distribu-

tion (??). By the definition of C3'_,[g, A], see (?7), it can be checked easily that (2,2, y1,..., YT, ¢, k2, D1, - - -

is an element of the wave-front set of distribution (?7?) if there exists a subset I < {1,...,r} among
&, {1}, {i,j}, there exists a collection {L,,} of proper subsets of {1,...,v}\I where each L,, containing
at most two elements, and there exists a non-decreasing collection {T5,,} of real numbers T,,, € [0, 1] such
that

Yr ESUPPAVT,  Yier = 2, YeeL,, = Vz,x2 (T7TL)7

and

—q= Zpi +Z(1 - Tm) Z Hyg,zpéa

iel m LeLm,
—h2 = 21T D) Typaape
m el .,

Now, we focus on the distribution given by the right-hand side of eq. (??). Using the wave-front
set calculus (thm. ??) and the results just presented, we obtain the following necessary condition for
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(z1,22,Y1,- -+, Yu; k1,k2,p1,...,D) to be in the wave-front set of the right-hand side of eq. (??): there
exists a subset I < {1,...,v} among &, {i}, {i,j}, there exists a collection {L,,} of proper subset of
{1,...,v}\I where each L,, containing at most two elements, there exists a non-decreasing collection
{Tn} of real numbers T, € [0,1], and there exists ¢ € [0, 1] such that

Yr € SUPp )\VT‘, Yiel = Vx1,x0 (t)a YeeL,, = PYle,w(t)ﬂiz (Tm)7

and

— k= (1 - t)znyuﬂflpl +Z(1 - t)(]' - Tm) Z Hye,fmp@

el m leLy,

—ky =t )\ Ty, aupi + D (T +t(1 = Ta)) D) Ty, e

el m leL,

We proceed defining a new collection of subsets {L!,} and a corresponding collection of geodesic param-
eters {T) } given respectively by

Ly I=¢g L I=yg
n-{ 7 Lo ={ 77

I otherwise L,,_1 otherwise

and
o _[T=t+t I=g o _[Tal=t)+t =0
L7t otherwise m ) Ty 1(1—¢) 4+t otherwise
It follows
e, = Varas(Th)s  —k1 =D (1=T) > My, wpe,  —ko = 2. Tp, > Ty, mypr,
m el m telr,
and consequently the right-hand side of eq. (??) defines a distribution in x1, x2, 41, ..., ¥, which has a

wave-front set contained in C3, ., as we wanted to prove.

A similar argument can be presented to prove the estimates (?7) and (??). Now, in the inductive
formula (??), g,m, ¢, A depend smoothly on a parameter s. Note that the geodesic v depends on s.
Nevertheless, one finds that the proof still goes through without non-trivial modifications. This conclude
the proof. O

The following results for the variational derivatives of the Hadamard parametrix follows from for-
mula (??) and lemma ?? for the variational derivatives of the Hadamard coefficients.

Lemma 58. Let Hy be the Hadamard parametriz given by (??) in the convex normal subset U < M.
For any v, 8" Hy(x1,22)/6¢(y1) ... 66(y,) is a locally covariant distribution® supported in U™V, which
vanishes unless yi1,...,y, € supp \.

We have - . |
g,m,Q, xT1,T2
WF< 56 (y1) - 06(yy) > < Zowgllpz+o (4.51)

where the set Zoy,, is defined by (??). On the total diagonal, a stronger bound holds:

6”H[g7m7¢,>\](1'1,1j2)
WF( 50(01) - 06(yn) >

L TAsy. (4.52)

Aoy

Moreover, for any choice of smooth 1-parameter families {g®), m(®), () ()} it holds

5VH[9(3) , m(s)’ (b(s)7 )\(S)](xl’ $2) )
WE < 5900n) - 3(u) <

< {(8,1‘17$2,y1,... 7yV;p7k15k2ap1a" '7p1/) € T*(R X U2+l/) :

(4.53)

(x17$2ay17 e 7yu;k17k23p1a e 7pl/) € Z2+l/[g(8)]} )

2In principle, the distribution 6” Hy /8¢ is defined in U? x M".
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and in addition

VHT6(8) . m(3) . p(s) A(s)
WF (5 H[g"",m'®) ¢! A ]($1,$2)) LT(R x Agp). (4.54)

5¢(y1) - .- 59 (yw)
In the case of variations of only the background ¢, the following stronger bound is satisfied:

5VH[ga m, ¢(S)7 /\](1‘1, .732)
WE < 56(u1) - 00(us)

Finally, in any real analytic space-time and for real analytic data m,p, N, 6" H/5¢"[g, m, $, A] scales
almost homogeneously with degree 2 + 3v under the rescaling (g, m?, ¢, \) — (A"2g, Am,Ag, \).

Aoty

> CR x {0} x Zotu[g]lyos - (4.55)

Proof. We first note that the each term on the right-hand side of eq. (??) is a product of distributions,
and, therefore, it is not a priori well-defined. Using the estimate (??), for any k we have

0" ug (1, x2) )
WE 2 Lok T2) =&
<6¢(y1) cee 5¢(y1/) T1,T2 @

Thus, as a consequence of the wave-front set calculus (thm. ??) each term on the right-hand side of
eq. (??) is well-defined.

The fact that §“ Hy/d¢" is locally covariant is a consequence of formula (?7), the fact that 6“uy p/d¢” is
locally covariant for any v as proved in lemma ??, and the fact that In(o.), ¥(o/ay) and o* are clearly
locally covariant. Furthermore, the support properties of 6”ug 1/0¢” follow from the support properties
of 6¥ug /09", see lemma 77,

We now prove estimate (??). Let (z1,z2,91,-..,%,; k1, k2,p1,.-.,p,) be an element of the wave-front
set of one of the terms in the right-hand side of eq. (??). As proved in [? ], the wave-front set of In(c.)
is C=[g]|v=, i-e. the restriction to U? of the set defined in (??). Furthermore, the estimate (??) holds
for §"ug /00" as proved in lemma ??. The wave-front set calculus (thm. ??) implies that there exist
decompositions k1 = k] + k{ and ke = k% + k% such that it holds

{ (1,22, Y1, -, Yus K5, kS, D1, - pu) € CYpy, or KY, KD, Pl =0, (4.56)
(z1,22; kY, ky) € C* or kY ki =0, '

where C3, , is the set (?7). As straightforward consequences of the definitions of C3,, and C*, it follows
that if p, isin V' for all r, then we have ko € V, while if p, is space-like and p, isin V for all  # s, then
we have ko = 0 or kg ¢ V™. This implies precisely (z1,22,y1,-.-,Yv; k1,k2,01,...,D0) ¢ Cgfy, where
Cg:u is defined by (??). With a similar argument, we obtain (x1, 2, y1,...,Yv; k1, k2, p1,...,Dv) & Czlfy,

where 021;, is defined by (??). By the definition of the set Za1, (??), it thus follows that estimate (?7)
holds, as we wanted to prove.

We can prove estimates (??) and (??) with similar arguments based on estimates (??) and, respec-
tively, (?7), instead of (?7).

To prove that the requirement (?7?) is satisfied, we consider an element (z, x, z, ..., z; k1, k2, p1,. .., Dy)
of the wave-front set of the right-hand side of eq. (??). Similarly as before, the wave-front calculus
(thm. ??) implies that there exist decompositions k; = k7 + k{ = k1 and ko = kb + £

(xvxaxa"'7x;kllvk/27p17"'7pV EC5L+V or kllvk127p;":05 457
(x,x; kY, k5) € C= or kY, ki = 0. (4.57)

Since all the points coincide, it follows from the definitions of C¥,,, (??) and C* (?7?) that —k{ —k5 = Y pr
and kY + k% = 0. This clearly implies that (?7?) holds.

We can verify the requirement (??) adapting, in a fairly obvious way, the argument just presented to
the case of smooth families ¢(8), m(®) @) \(),

Finally, the almost homogeneous scaling of 6* H/§¢"[g, m, ¢, A] under the rescaling of (g, m, @, A) in
any real-analytic space-time and for real analytic data m, ¢, A is a direct consequence of the following
three facts: §"u/d¢"[g, m, ¢, A] scales homogeneously with degree 2k + 3v, the factors (o /ay), which
spoil the scaling properties, are absent if the space-time is real-analytic, and o scales with degree —2. [
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So far, we have not made any assumptions on the space-time (M, g) and we required only that m, ¢, A
are smooth functions. In the remaining part of this subsection we consider (M, g) to be an ultra-static
space-time with compact Cauchy surfaces, m constant, and A € C{°(M). We consider the retarded
2-point function wg defined by (?7) with respect to Py = O—m? — %qﬁ? As shown in lemma 77, w(f can
be written in the form (??) and therefore ¢ — wf’ is an admissible assignment in the sense of def. ??,
as a consequence of lemma ?7. We want to present some properties of the difference dy = wg‘: — Hy,
where H; Hadamard parametrix with respect to Py, in particular we want to control the wave-front set
of 6"dy/0¢" and 6dy(c)/0¢" for any smooth map R 3 € — ¢(¢) € C*(M).

Since H, is defined only in U x U, where U is a convex normal set in M, also dy4 is defined only in
U x U by construction. Because wg, is a Hadamard 2-point function, dy is a smooth function in (x1, z2)
(see [? ]), and it is symmetric in x1,zo. Furthermore, for any smooth map R 3 ¢ — ¢(¢), the map
(6,71, 72) = dg(e)(21,72) is jointly smooth. In fact, since dyc) (w1, 22) is smooth in 1,z for any fixed
€, it follows that WF (dyc)(71,72)) < {(s,21,22;,0,0) € T*(R x M2)}. On the other hand, dg(c) is the
difference of w(f(e) and H () which both have wave-front sets contained in R x {0} x C=. Thus, it follows
that WF(dy (o) (21,72)) = &, as we wanted to show.

Since ¢ — w is an admissible assignment, w(f must satisfy the estimate (??) and estimate (??) for a
smooth family of backgrounds R 3 € — ¢(¢) € C*(M). In principle, we could combine these estimates
for wf with the estimates (??) and (??) for Hy to get bounds for the wave-front sets of 6Vd,/d¢” and
6Vdg(ey/0¢”. However, such bounds are not sharp enough for the applications we are going to need in
the next subsections. The following lemma gives better bounds:

Lemma 59. Let U be a convex normal set sufficiently small such that it holds U € U’ for another convex
normal set U' and there exist three Cauchy surfaces ¥, , 3, % which satisfies:

e X nJtTU)=g and 24+ nJ(U) = .

o All the three Cauchy surfaces have non-trivial intersections with U’. Furthermore, J= (X4 nU’) N
Y.c¥ nU andUcJ (Z4qe nU).

Consider d, defined on U?. It holds
5”d¢(l‘1,$2) ) d
WF | —F————F7—= ) cC3,,, 4.58
(5 sotur) = (459

where

Ce,, = {($17$2ay17~-~7yu;/€17k2,p1,-~-,pu) e T*(U? x M) :
ifpr € Vor, then ki, ko€ V' (4.59)
if Aps space-like, p,. € Vi Vr # s, then ky, ko ¢ Vi and k1 + ko ¢ Vi if 1 = arg} .

In addition, for any smooth map R 3 € — ¢(€) € C*(M), the following bound is satisfied

(5”d¢(5)($1,$2) c y y d
WF(M(yl)mM(yy)) R x {0} x C{,,. (4.60)

Proof. We first prove the estimate (??). We exclude two situations for which estimate (??) is trivially
verified. Note that whenever U n J*(supp\) = &, we know that §”ds/d¢" vanishes, because outside
J*(supp \) the function dy does not depend on ¢ as follows from the definitions of Hy and w‘f. From
now on we can assume that U n J " (supp \) # . By the support properties of 6’“(.0(?/5@5” (see lemma ?7
and lemma ?7) and §"Hy/0¢"” (see lemma ?7), the distribution 6"dg(z1,22)/0¢(y1) ... 0é(y,), which is

defined on U? x MY, vanishes unless y1,...,y, € Supp A.

We now discuss the remaining non-trivial possibilities by distinguishing two cases: (a) first we as-
sume that at least one variable among ¥,...,4, does not belongs to U, and then (b) we assume
(x1,22,Y1,...,y,) € UV T2

For case (a), since at least one of the variables yi,...,y, does not belong to U, the distribution
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8" Hy(z1,22)/06(y1) - .. 66(y,) vanishes because the support of §“ Hy /3¢ is contained in U?™ as proved
in lemma ??. Thus, we can rewrite the variational derivatives of dy as
0Vdy(z1,22) 5'/0-)(1;(1317902)
0(y1) .- 06(yw)  00(y1) ... 0 (yy)

Because 6Vdg(x1,22)/0¢" is symmetric in z1, 2, and because of the restriction on the wave-front set of
5”w£”/5¢” given by estimate (?7?) (see lemma ?? and lemma ?7?), it follows

§”d¢(x17x2) > +
WF(éqs(yl)...w(yV) “F

where the set in the rlght hand side is defined by (?7). Slmllarly as done in lemma 7?7, we con-

clude that if p, is in V™ for all r, then We have ky,ko € v , while if p is space-like and pr 1S in

V for any r # s, then we haveky, ky ¢ V . This is precisely what we have to show to prove that
(z1,22,Y1,- -, Yu; k1, k2,Dp1,...,D,), under the assumptions (a), belongs to C’ngV.
For the case (b), the proof is more involved. The argument we are presented is inspired by the one

presented in [? , lemma 6.2] (see also [? , Appendix A]). Since wf‘ is a bi-solution with respect to P,

and since Hy (defined in the convex neighbourhood U’) is a bi-solution with respect to P, modulo a
smooth function, it follows that in U’ x U’ the functions G((;’Q)(zl, z9) defined by

G (z1,22) = PV (W8 — Hy) (21, 22) = —PSV Hy (1, 22),

GP (21, 2) = PU(WF = Hy)(1,2) = =P Hy (21, 2),

are smooth. We can write G((;’Q) explicitly in terms of the Hadamard coefficients similarly as done in [?
, lemma 2.4.3] for the formal fundamental solutions of the Klein-Gordon equation:

G (21,22) = ({1 = 0(0/000)} Py (tg,0410™ In(00)) (21, 22)+

+ 2 (wlo/an) = wlo/ar)} (P uspin)o" In(0) (1, 22) -

k>no
-2 Z (V Y(o/ag), V! )(U¢,k+1ak ln(ae)))g (21, 20)+ (4.61)
k>no
+ Z ((D(Z U/ak)> u¢7k+10k ln(ae)) (21,22),
k>no

where ng is an arbitrary fixed value. To get this, one uses the recursive definition of wy.

Each term of eq. (??) contains a cut-off which is supported where In(c.) is smooth. Due to the properties
of the Hadamard coeffiecients proved in lemma ??, in particular estimate (??), we obtain the following
estimate using the wave-front set calculus:

5uG(1,2)(21 )
WF [ 2 5 :

where C3, , is the same set defined by (?7). A similar estimate holds for the smooth function Gf) (21, 22)
defined by

G((;))(Zl,ZQ) = Pézg)Gél)(zl,zg) = Pd()zl)Gf)(zth) = —quzl)Pézg)H¢(z1,22).

Next, we exploit the hypotheses on the convex normal sets U, U’ and on the Cauchy surfaces ¥4, %, ,
see fig. 77 for a sketch of the situation. We denote by N and by B the following sets:

N:i=J (UnS,)nJ (), B:=J (Z4)nN.

Let ¢ be a smooth cut-off function such that ¢(M) c [0,1], ¢c=1in J(X_) and ¢ =0 in J*(X;). For
any fi1, fo € C*(M) such that supp fi,supp fo € U we consider the following distribution in U’ x U’

B (@1, w2) 1= B (f1)(w1) 0, dg (w1, 22) 0 B (fo) (w2) (4.63)
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Figure 4.1: The set-up of U, U’.

It follows from the Stokes’s theorem and the properties of the advanced propagator E(‘;‘ that it holds

L . EA(f1) (1) 0n dy(1,22) O EL(fo) (2)dE (1) dE (a2) = f 0"0 By (w1, T2)day do

NxN
= GV EL (F1), f2) + G (o xw ES(£2)) — dg(fr, £2) — G (W B (1), xv S (£2)),

where yy is the characteristic function of the domain N. Thus, the terms in the last line are integrals
over N x N,

Using repeatedly eq. (??) and the fact that suppc n supp f12 = &, we then obtain the following
decomposition:

do(f1, f2) = Dh¢(f1, f2) + Do,o(fr, f2) + Ds,6(f1, f2) + Duo(f1, f2),

where 91 4, P24, 93,6, Z4,4 are defined respectively by

.@1,¢(f1, fg) = (E;;E 00,0 d¢ 00,0 Ef)(fl, fg), (464)
Doo(fr. f2) = (B - xn) 0 G) (1. fo), (4.65)
Ps.5(11, 1) == (G o (xw  BD))(f1, fo), (4.66)

and

Das(fr, f2) = f B2 (fi)(@1)(0c 0 G (w1, w2)e(w) B (fo) (w2)day dao —

MxB

—fB BL@)e(e)(GF 0 o) (e, w2) B (f2) 2) dwdra— (4.67)
—((BF - xx) 0 G o (x - ED)(f1, fo).

We treat each 21,4, %2 4, 3,4, Pa,4 separately. We first compute their v-th variational derivatives on
U¥*2. Then, we prove that any element (x1, %2, y1,%,; k1, k2, p1,...,p,) of the wave-front sets of these
variational derivatives must have ky, ko € Vit pr € V' for any r, while it must have ki, ko ¢ Vi and,
when x1 = 9, k1 + ko 2 Vi if there exists a space-like p, and if p,. is in Vi for all r # s.

P1,4) The distribution o, defined by (??) for the specific ¢ we chose, is such that suppo. € B x B. We
compute 6“2 ,/0¢" by distributing the variational derivatives on each factor in the right-hand
side of (??). By the support properties of the variational derivatives of the Hadamard parametrix
(see lemma ?7), we have §"dy/d¢” = 5”w§/5¢" on B2 x U". Since the wave-front set of 0. is given

by (??), and since the estimates (?7) hold for the wave-front sets of 5"E2/R/5¢>V, the wave-front
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D2,6)

D1,¢)

set calculus (thm. ??) implies the following bound:
WF ( 8" Dy p(21,72) )
5p(y1) - .- 60 (yw)
c {(ml,xg,yl,...,yu;kl,kg,pl,...,p,,) e T*M**" . x1,20,y1,...,y €U
ANy, Ny, N3 partition of {1,...,v} and (z,q), (2, ¢') € T* M such that z,z € B and
(xla (yTENl) kla —q, (p’r‘ENl)) € X2+‘N1‘7 or k17QupTEN1 = 07
(2,2 (yrena)1 0 =4, (Pren,)) € WE(8N2lwf/5¢IN21) or g, ¢/ pren, = 0,
(Zla T2, (yTENg); qla k27 (pTENg)) € X2+\N3\7 or qla k27p'f€N3 = 0} .

c
Ul/+2

Let (1,2, Y1, - -, Yu; k1, k2, p1,- .., py) be an element in WF(6¥ 21 /0¢" |yv+2). Using estimate (?7)
for the 0w R/&é” and the definition of the set X5, given by (??), it follows that if p, is in V™ for

any r, then we have k1, kg Al . While, if py is space-like and if p, is in 7 for any r # s, then

we have ki € vt Jko ¢ V or vice versa. These configurations satisfies the conditions we want to
verify.

We again compute the §” % /0¢" by distributing the variational derivatives on each factor in the
right-hand side of (??). Using the wave-front set calculus (thm. ??) together with the estimates (?7?)
and (?7?), we obtain

WF( 0 Do, (1, T2) )
5¢(y1) - .- 69 (yv)
c {(3317:102,1/17...,y,,;kl,kg,pl,...,pl,) eT*M** . 21, 20,y1,...,yp €U
Ny, Ny partition of {1,...,v} and (z,q) € T*M such that z € N and
(w1, 2, (Yren, ) k1, =4, (Pren,)) € Xoyn,| OF k1,¢, pren, =0,

Uv+2

(Z7 x2, (y’r‘ENQ); q, kQa (p'rENQ)) € C;+‘N2‘ or g, k27p’r‘€N2 = 0} .

Let (1,22, Y1, .., Yv; k1, k2, p1, ..., pu) be an element in WF(6¥ %5 4/0¢" |yv+2). As can be directly
checked, it follows from the definitions of the sets X2+,, (given by (??)) and C3,,, (given by (?7))

that if p, is in V for any r, then we have ky, ko € v Whlle if there exists a space-like covector

ps and if p, is in V for any r # s, then we have ki, ko ¢ V and, when z1 = x9, k1 + ko ¢ V*.
This is exactly what we wanted to show.

The same argument as before can be applied in this case. In particular, by distributing the
variational derivatives on each factor in the right-hand side of (?7), we get

WF( 0" D3 (1, 2) >
6p(y1) - 0¢(yv)
c {(a:l,zg,yl,...,yu;kl,kg,pl,...,py) eT*M** . 21, 20,y1,...,yp €U
N1, N, partition of {1,...,v} and (z,q) € T*M such that 2 € N and
(21,2, (Yreny )i k1, =4, (Preny)) € Coy | OF K1, g, pren, = 0,
(2, %2, (Yrens); @ ko, (Pren,)) € Xog|ng| OF ¢, ko, pren, = 0}

Ul/+2

Let (z1,%2,Y1,---,Yv; k1,k2,D1,-..,p,) be an element in WF(6¥ 5 4/d¢" |yv+2). We obtain again
that if p,. is in 7 for any r, then we have ki, ks € V. While, if there exists a space-like p, and
if p, is in Vi for any r # s, then we have ky, ko ¢ Vi and, when xy = zo, k1 + ko ¢ Vi. This is
exactly what we wanted to prove.

Since c is by construction a smooth function, and since the wave-front set of 5"GS) /d¢” is contained
in C¥_,, the same arguments used for 2, %5, Z5 allow us to conclude that the for the last term
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9, we have

c {(zl,mg,yl,...,yy;kl,k}g,pl,...,pu) e T*M**" . x1,20,y1,...,yp €U
ANy, Na, N3 partition of {1,...,v} and (z,q), (2’,¢') € T*M such that z,z € N and
(w1, 2, (Yren, ); k1, =4, (Pren,)) € Xoy Ny, OF k1, ¢, pren, =0,
(2,2"(yrens); @5 =4’ (Prens)) € C3'y ny)s OF €543 Pren, =0,
(2", 22, Yrens )i €' k2, (Drens ) € Xogny), o ¢ k2, pren, = 0} .

C
Uv+2

Let (z1,22,¥1,- .-, Yv; k1, k2, p1,...,p,) be an element WF(6” Py 4/0¢" |v+2). The estimate above
implies that if p, is in Vi, then we have kq, ko € v While, if there exists a space-like ps and if
pr 18 in Vi for any r # s, then we have ki, ko ¢ Vi and, when x1 = xo, k1 + ko ¢ Vi. This is
precisely what we wanted to show.

This concludes the proof of estimate (?7).

The estimate (??) concerning the smooth variation of the background € — ¢(¢€) is proved repeating
the same argument just shown, up to some minor modifications: there is an explicit dependence on € in
all the distributions depending on ¢ and consequently we need to use estimates (??), (??) and (??) and
instead of estimates (?7), (??) and (??). This concludes the proof of the lemma. O

The last result we present in this subsection is the following corollary of lemma ?7:

Lemma 60. 6"dy(z,2)/0¢(y1)...00(y,) exists as distribution in x,y1,...,y, and

_ Ovdg(w,z) c obA
W <5¢(y1)~-.5¢(yy)> Cirlal, (4.68)

where

CfLrAv[g] = {(xvyla"'ayu;kaplv"'vpl/) ET*MIJH/ : prr evi V’f', then k ev;

if Aps space-like, p, € Vi Vr # s, then k ¢ Vi} .

For any smooth map R 3 € — ¢(e) € C*(M), it holds

M cR x o oA
WF<5¢(y1)...5¢(yy)> R {0} x €y g (4.69)

Proof. Using the estimate (??) for the wave-front set of 6d,/0¢"”, we obtain that

5”d¢($1,l’2) >
WE (agb(yl) 00 ),

c {(x1,x2; k1, ko) € T*(M2) (1,22, Y155 Yui Ky ke, 0,...,0) € 62d+u} =g.
Therefore, the wave-front set calculus (thm. ??) implies that 6¥dg(z1,22)/0¢(y1) ... 0¢(y,) can be con-
tracted with the delta distribution §(z, x1, x2) and, furthermore, that the wave-front set of the contraction

is bounded by (?7?).

A similar argument, based on estimate (?77) for the wave-front set of §”dy)/d¢", shows that the
distribution 6" dy(e)(z,7)/6¢(y1) - .. 06(y, ) satisfies the bound (??). This concludes the proof. O
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4.2.2 Proof of the on-shell W-smoothness of the Wick power corresponding
to " (f)

Let (M,g) be an ultra-static space-time and let m be constant, A € C§°(M), while ¢ is a generic
function in C*(M). We begin by defining the “Wick powers” of the linear field theory corresponding to
P, = 0 —m? — $¢? following the prescriptions given in [? ? ]. The Wick power corresponding to the
classical functional F(p) = ©*(f), where f € Ci° (M), is also viewed as a time-ordered product with one
factor and so it is denoted by Ti 4[F(®)]. It is by definition the element in Wy = W[g, m, ¢, A] given by

T1le"(f)] = Mf(fﬂ) L ¥ () 1y, do

= f(x1)0(x1,. .. on) s p(xr) - - (ar) m, doy ... day,
ME

(4.70)
= S(-1yw (zﬂ) f @)@, @, w ) (@, @) X
r ME—2j+1
X p(z1) - p(Tr—25) Wl dxdxy ...dxg_oj,
where d; = wg — Hy, and where the sum is taken over j < [k/2]. Here : --- Wl denotes the normal
ordered Wick products with respect to the retarded 2-point function wf (defined by eq.(?7)) and : -+~ :p7,

denotes the normal ordered Wick products with respect to the Hadamard parametrix H, (defined by
eq. (7?7)). The product of Wy is defined in terms of w(‘f. Then, for any t € P&}, (M"), we identify,

similarly as done in [? |, the normal ordering of ¢ respect to wf with the equivalence class of ¢ in Wy,
i.e. we set

J ) Hwr, o mn) o(@) - p(an) ip doy - do, = 1] € PHEN(M™)/Py&ly (M™).

Let U be a convex normal set. In our context, for any ¢t € PY&,(M™) with support in U™, the normal
ordering of ¢ with respect to the Hadamard parametrix Hy in U x U is defined by

j t(wy, . m0) s p(wr) - o(xn) g, dry ... dey, =

J
= Z (=1)H (ij) l]P’J’J t(zl,...7zj7x1,...,xn,gj)Hd(b(zm,hzm)dzl...dZQj ,
M?2i

i<[n/2] i=1

where the right-hand side is an element in C[h] @ @<, Pt EY, (M) /PPt El (M.

Following the formalism we developed in sec. 77, each element in Wy can be identified with a sequence of
distributions, where the (-th entry is an element in C[[A]]® (0.0 E,)®‘Ely, (M?), and where c is a cut-off
function as in eq. (??). Going through the definitions, we find that the Wick power T3 4[0*(f)] € W,
corresponds to the sequence (£} )een given by

e » N o _
i cow (V) (00 0 E)® 2 ((f 024 ) 0 (dy 0 6)9) i £ =k — 2] @)
0 otherwise

where (dy 0 0)(z) = dy(w, ). Note that we have 19 = (=1)F2RF2S, | f(2)dg(, ) ?dx € C[h] if k is
even, and j = 0 otherwise.

The Wick power Tj 4[¢"(f)] for ¢ € S (and fixed m constant and A\ € CZ(M)) corresponds to the
sequence (tg, t;, ...), where té is just ff; evaluated for ¢ € S. In other words, we can consider the Wick
powers constructed for ¢ € C* (M) as extensions of the corresponding the Wick powers constructed with
respect to ¢ € S.

Proposition 61. The section S 3 ¢ — T1 4[p"(f)] is on-shell W -smooth.

Proof. We need to prove that each t}, satisfies conditions ??, 77 in def. ??. Making use of the wave-front
set calculus (thm. ?? and lemma ?7), the properties of the causal propagator Ey (prop. ?7?) and the
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definition of 0. (eq. (??)), it follows that it is sufficient to prove that for any ¢ the following estimates
hold:

WF (5Vdf;)(x7 x) W o
56(y1) ... 00(yy) < W, (4.72)
and )
%\ ) Cp oo x
’ <5¢(y1) . 5¢(yu)> R {0} x W, (4.73)

for any R 3 € — ¢(e) € C*(M) smooth.
To verify these estimates, we compute 6”dy(x,2)/66(y1) ... d6(y,) by distributing the Gateaux deriva-
tives on each factor dy(z,z). It follows that 6”dy(z,z)¢/5¢(y1) . ..66(y,) is a finite sum of terms in the
form

‘Né"d(b Jj x)

4
H 5¢‘Ne' {yreN,/ })

=1

(4.74)

where Ni,..., N, form a partition of {1,...,v}. The wave-front set of §/Ve'ldy(z, 2)/6¢I V¢! is estimated
by (??) of lemma ?? and, thus, we obtain

WE (5N ldy(z, 2) /60N, = &5,

Therefore, the product of distributions (?7?) is well-defined as a consequence of the wave-front set calculus
(thm. ??).

We now focus on the proof of estimate (?7). It follows from wave-front set calculus that whenever
(9155 Y Ky 01, .o, p0) € T(MPFY) is in the wave-front set of (?7), there exists a decomposition
E=kW +... 4+ kO and for any ¢ = 1,...,¢ it must hold

(, (Y)ren, )i K, (0r)ren,, ) € WE(SINedy(z, 2) /60! ) or k) p, = 0.

We prove that (z,y1,...,%u;k,p1,...,p,) cannot belong to the set Cf., defined by (??). In order to do
that, we split the proof in the following two cases: (a) if all covectors py,...,p, belongs to V+, then we
get ke V , and (b) if there exists an s € Ny» for a certain ¢/ such that p, is space-like whereas p,. is in
V' for any r # s, then we have k ¢ v

(a) It follows from estimate (??) that if p, is in V' for any r, then we have k), ... k() € V. Thus,
k must bein V , as we wanted to prove.

(b) Since p, 1s in V"' for any r ¢ s where s € Ny», estlmate (??) implies k) € V'~ with ¢ # ¢”, and
3Gy ¢ v Thus, putting together, we obtain k ¢ V™ as we needed to prove.

With a similar argument, based on estimate (?7), we can show that (x,y1,...,%.;k,p1,...,p,) does
not belong to C,, either. Thus, by definition, we prove (z,y1,...,%u;k,p1,...,pv) € Wiy, which is
precisely what is needed to verify estimate (?7).

The proof of estimate (??) can be obtained with a similar argument as the one just presented, based
on estimate (?7?) instead of estimate (?7). This concludes the proof. O

The map ¢ — T1 4[©"(f)] is still on-shell W-smooth if we promote the test function f to be a W-
smooth map C* (M) 3 ¢ — fy € Ci°(M). For any F local functional functional not involving covariant
derivatives, F'(¢ + ¢) is a sum of local functionals in this generalized form. Thus, it is clear that the
argument just presented implies that S 3 ¢ — T4 4[F (¢ + ¢)] is on-shell W-smooth.

4.2.3 Sufficient condition for the on-shell W-smoothness of the time-ordered
product of ®;0" (f;)

As before, let (M, g) be any ultra-static space-time and let m be constant, A € Ci° (M), while ¢ is a
generic function in C*(M). We would like to show that the n-fold time-ordered product defines an
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on-shell W-smooth section ¢ — T, 4[® ;0% (f;)] € Wy. For n = 1, we have already seen in sec. ?? that
this is true. We now consider the case n > 1.

We make use of the Wick expansion in terms of normal ordering with respect to the retarded 2-point
function wg, given in (?7?). As shown in [? |, we obtain the following expansion:

T lé‘ﬁki( ] J’ filxy) - fn(zn) n¢l®g@ ]dml .dx,,
i=1

= Z (¥) fi(zr) - fulan)mp (@1, . zp) ljl Ri=di( Wl Hdl‘z

j<k Mn

(4.75)
= Z G‘) f <H filxs)o(ay, xgl), cey xgkij"))> T i(T1,. .., xn)X
3 Mn+k=jl| i
X : H go(xgl)) e cp(xgki_ji)) Wl H dxidxgl) e dxgki_ji),
where we used the multi-index notation k = (k1, ..., k), and where the combinatorial factor appearing

is just () := (1) (bm).
Just as the Wick powers, the time-ordered product T,, [®¢"*i (f;)] € W, can be identified in the formalism
we developed in section 7?7 with a sequence of distributions (té)geN for any ¢ € C*(M). Each of these

distributions ff; can be expressed as the finite sum

G = Z (Jk) (0c0 Ey)® (f1- 0@+ ® fn-0) 0Ty, (4.76)

i<k, [k—j|=¢

where ¢ is a cut-off function as in eq. (??), and ¢ € C*(M).

The time-ordered product T, 4[®;" (f;)] for ¢ € S corresponds to the sequence (¢3¢}, ...) where ¢/, is
just £}, evaluated for ¢ € S.

Similarly the proof of prop. ?7? for the time-ordered products with one factor, we can formulate sufficiently
conditions on the distributional coefficients of the Wick expansion to imply the on-shell W-smoothness
of the time-ordered products.

Lemma 62. To establish that the section S 3 ¢ — T, 4[®;0"(f;)] is on-shell W -smooth it is sufficient
to show that the distributional coefficients {14;}; of the Wick expansion with respect to the state wy
satisfy

(SVT¢7j($1, e ,J}n)>
W ( §o(y1) ... 66 (yy) < Watw, (4.77)

and

6VT¢(S)J($17 v 7.'17»”)
WF( 50(n) - 00(u) ) SR x {0} x Wy, (4.78)

for any R 3 s — ¢(s) € C*(M) smooth.

Proof. Making use of the wave-front set calculus (thm. ?? and lemma ?7), the properties of the causal
propagator Ey (prop. 77), and the definition of o, (eq. (?7)), it follows that the estimates (??) and (??)
imply that each fﬁb as in eq. (?7) satisfies the requirements 7?7, ?? of def. ??. This is precisely what is
needed to conclude that S 3 ¢ — T, 4[®i¢" (fi)] is on-shell W-smooth. O

Once estimates (??) and (?77) are proved, ¢ — T}, 4[®;" (f;)] will be on-shell W-smooth even if we
promote the test functions fi,..., fy to be W-smooth map C*(M) 3 ¢ — f; 4 € C5*(M). Thus, we
have established that the on-shell W-smoothness of S 3 ¢ — Tj, 4[®;F;(¢ + ¢)] for local functionals F;
not containing covariant derivatives will follow from (??) and (??).

It is the purpose of the following subsections to prove that these sufficient conditions indeed hold.
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4.2.4 Review of the construction of the time-ordered products of n > 1 local
functionals

In order to verify the sufficient conditions of lemma ?7, we need to specify exactly how the distributions
Te; are constructed. We review the procedure presented in [? | to define them. To do so, we need
to consider a generic space-time (M, g) and generic smooth functions m, ¢, A € C*(M). We consider a
product e, for W[g, m, ¢, A] defined in terms of an admissible assignment ¢ + w, where wy is a pure
Hadamard 2-point function (such 2-point function always exists, as proved by the deformation argument
we presented in ??). Note that the retarded 2-point function cannot be defined for such general space-
times.

The construction proceeds by induction on the number of the factors n of the time-ordered products. At
the n-th induction order, we assume the a prescription for defining the time-ordered products has been
constructed satisfying (T1)-(T9) for < n factors. The inductive hypothesis is already know to hold for
n = 1 factor (Wick powers).

The induction step relies on the causal factorization axiom (T8). Due to this property, the time-ordered
product Ty ¢[®;0" (fi)] = §uy0 f1(z1) ++ frul(@n) Tn o [®1¢(;)]dzy . . . dxy, can be expressed as a finite
sum of e,-products of time-ordered products involving fewer factors whenever f; ®---® f, is supported
outside the total diagonal. Thus, the induction hypothesis fully determines T}, »[®;¢" (z;)] outside the
total diagonal A,,. The axioms (T1)-(T9) are satisfied in this domain.

In [? ] is provided an extension to the whole M™ which is compatible (T1)-(T9). Actually, as explained
in [? , sec. 3.1], it is sufficient to require that the extension satisfies axioms (T1)-(T5) and (T9), because
then the axioms (T6)-(T7) can be imposed by simple redefinitions and (T8) is automatically ensured by
construction.

To characterize the extension, we now assume that f; ® --- ® f,, is supported in a set U, sufficiently
close to the total diagonal. In detail, let U, be a neighbourhood of the total diagonal in M™ such that
Z1,...,%, belong to a convex normal neighbourhood U if (x4, ..., x,) € U,. We can define the Hadamard
parametrix Hy in U, see eq. (??). Then, we expand T}, »[®;0" (f;)] in terms of the normal ordering
with respect to the Hadamard parametrix, i.e.

Tn7¢ l®1¢kl( ‘| Z (_]k lf fl xl fn(xn)T¢J Tlye.0y T HSDIQ Ji xz ‘Hy Hdzz

izk i=1
:Z (Jk) J [ke—j] (I Ifi(wi)(s(xi,xz('l)a~~~7x§ki_ﬁ))> ng(xl""axn)x (4.79)
A Mn+lk—j .
J

X H(p (k_]l : dezdac Z(lj’),

where T¢f{j are certain distributional coefficients. This expansion is called local Wick expansion.

By comparing with formula (??), we conclude that the distributions ng are all identically 1 for n = 1.
It is proved in [? , sec. 3.2] that any definition of time-ordered products satisfying axioms (T3) and (T9)
admits a local Wick expansion with coeflicients ng satisfying

WF (7[g,m. ¢, A]) < CL[g], (4.80)

where CI' is defined in terms of decorated graphs similarly as done for CZ in formula (??), namely

cT[q] :={(x17...7mn;k1,...,kn) € T* M1

3 decorated graph ¢ with vertices z1,...,z,
(4.81)

ki= ), peleg) = D5 pely)

e:s(e)=x; eit(e)=x;

where, in this context, a decorated graph ¢ is understood as an embedded graph in M with vertices
T1...,T, and with edges connecting the vertices given by oriented null-geodesic curves. The valence of
a vertex x; in the graph is restricted to be less or equal to j;. For an edge e, we denote the endpoints by
Tg(ey (called source) and xy. (called target) if s(e) < t(e). We consistently impose an orientation for the
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null-geodesic corresponding to e in such a way that the curve starts at s(e). Each edge is equipped with
a future-directed covector field p. which is cotangent and coparallel to the geodesic curve associated to
the edge e. The field p, is future/past directed if z;() is in the future/past of 2.

Conversely, if a prescription for time-ordered products admits a local Wick expansion with distributional
coefficients satisfying the wave-front set condition above, then it satisfies the axioms (T3) and (T9).
Because of the inductive hypothesis, the time-ordered product T}, 4[®;¢" (z;)] is known to satisfy all the
axioms (T1)-(T9) on U, \A,, i.e. outside the total diagonal A,,, but inside the neighbourhood U,,. Thus,
it can be defined by a local Wick expansion with distributional coefficients Tgl’(o defined on U, \A,,.

As a consequence of the causal factorization axiom (T8), the distribution Tgl’(o is fully determined by
terms {Tgi}i corresponding to time-ordered products with less than n factors and appropriate powers of
the Hadamard parametrix. More precisely, Tgi(o can be expressed as a finite sum of terms in the form

f[(l‘l,...,l‘n)Tgi(({Ea)ae[)Tdn LL’b be[c H H¢ .%‘a,l'b “b, (482)
ael,belc
where I is a proper subset of {1,...,n}, and where n,;, are natural numbers such that k, = i, +Zb€[c Nab

for a € I and ky = iy, + 3., 7ap for b € I¢. In the formula above, {f;}; is a partition of unity subordinate
to the covering {Cr}; of U,\A,, where C7 is the open set defined by

Cr={(x1,...,0,) €Uy : 2, ¢ Jt(xp)Va e I,be I°}. (4.83)

As explained in [? , sec. 3.3], a time-ordered product T}, 4[®;¢" ( :)] which satisfies axioms (T1)-(T5)

and (T9) on the whole U, is defined by providing an extension T¢’k on Uy, of the distribution Tg 1’(0 such

that:

(t1) The distributions 7[g,m, ¢, A] are locally covariant: let (M, g) and (M’,¢") be two space-times,
let « : M’ — M be a causality-preserving isometric embedding, i.e. ¢’ = +*g, and let f be a test
function supported in a sufficiently small neighbourhood of the total diagonal in (M’)™. Then, it
holds

(*7ic' [g,m, 0, A1) () = 1 [¥g, *m, 6, AL (). (4.84)

(t2) The distributions 7f[g, m, ¢, A] scale almost homogeneously with degree |k| under the rescaling
(g,m,d,\) — (A"2g, Am, Ap, \), i.e. it holds

ATd [A gvAm Ao, ] = 7—k g,m (bu Z ﬁé 97 »¢7>\]7

for certain locally covariant distributions (;, and for a certain N € N.

(t3) It holds
WF (1 [g,m, ¢, A]) < CF'[g].

(t4) For any choice of smooth 1-parameter families {g(®), m(®) @) A} 7 [g(5) m(s) ¢() A()] is a
distribution on R x U,, and consequently it trivially satisfies

WF (Tlf[[g(s),m(s), &%), )\(S)D c {(s,xl, Ty py k. k) € T*(R x M™) :
(1, Tn; k1, k) € C};[g(s)]} )
Less trivially, we require

WF (Tlff [9, m®, ¢, )\(S)]) LT(R x A,),

RxA,

and, in case of a smooth variation of only the background ¢, we also require

WF (7 [g,m, ), \]) © R x {0} x CF[g].
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(t5) If we assume that {g®), m(®) ¢() X} are analytic 1-parameter families, then the distribution
i [g(s),m(s),cﬁ(s),)\(s)] varies analytically, i.e. it satisfies analogous bounds as before in ??-7?
with the smooth wave-front set replaced by the analytic wave-front set.

As the notation suggest the requirements ??-?? correspond to the axioms (T1)-(T5).

These claims can be proved using the argument presented in [? |. Even though in the aforementioned
paper the authors only consider the case of massless scalar field (the only dependence of the distributional
coefficients {74;}; is on the metric g), the method can be adapted to the case considered here (the
scalar field theory corresponding to the linear operator 0 — m? — %qbQ) with obvious modifications. The
cornerstone of the method is the microlocal control on the Hadamard parametrix, see 7?7, under smooth
and analytic variation of the parameters of the theory. In the setting we are considering here, such
microlocal control still holds, in the form (??) and (?7?) and their analytic counterparts.

For the purpose of proving prop. 7?7, we will need the following technical lemma.

Lemma 63. For any n = 2, we have
Crlgl = Crtlgl n [l
where

cTit[g] = {(:cl, Tk, k) €TEM™ s if kysi; €V then

L . . (4.85)
T =T,k + K eV’ orua # xj, ki eV’ or k; EV+}.

Proof. We prove CL'[g] = CLi*[g] by induction on the number n of the variables. For n = 2 the assump-
tion can be verified straightforwardly. We proceed assuming that the claim holds for any n’ < n, and
then we prove that the statement holds also for n.

Let (x1,...,%n;k1,...,k,) be an element of CI[g], corresponding to a decorated graph ¢. If all

the points x,...,z, coincide, then the covectors ki,...,k, must satisfy > k; = 0 and so we have
(1, Tni k1, ..., kn) € CHH[g].
Now, if not all the points coincide, there must exists a proper subset I < {1,...,n} such that (1) all the

Z, with a € I coincide and it holds z;, # x, for b € I¢, and (2) for any x;, with b ¢ I which is connected
in the graph ¢ with a point x, with a € I, it holds z, € I (z,). By the definition of decorated graph,
the covector k, for a € I is given by

ka = Z pab|xa - Z pb’a|xa + Z paa'|xa - Z pa”a|xa .

belc,b>a,abe¥ belcb'<a,ab’'€ed a’el,a’'>a,aa’€9 a"el,a"<a,a” ae¥

For any b € I¢, we define the covector kj by

kpo=kv— > Dualy, + D Pabl,, - (4.86)

ael,a>b,bac¥ a’el,a’<b,a’be¥d

Note that kj — ky € V" because by construction the null covector field py, is past directed and the null
covector pgp is future directed. Furthermore, we have k) = k; if in the graph ¢ the vertex z; is not
connected to any vertex x, with a € I.

We claim that ((zs)pere; (K )pere) is in CT’J;—U\ [g]. In fact, it corresponds to the decorated graph obtained
from ¢ removing the vertices x, with a € I and the edges with one of these points as source or target.
This is clearly enough to prove the claim. By the inductive hypothesis, it follows that ((xs)eere; (K} )vere)
belongs to Cgf‘rﬂ [g]-

In order to prove that (1, ...,an: k1, ..., k) belongs to CTi*[g], we now assume k; € V' for any £ # i, j
and we prove that if z; # x;, then either k; or k; is in V', whereas we have k; + kj € Voifa, = z;. We
need to consider only the following two cases: (a) 4,5 ¢ I, and (b) ¢ € I, and j ¢ I. In fact, if we assume
i,jelandk eV forany ¢ # i34, then all covectors k; with b € I¢ belong to V. However, this

. . . . . . T;
configuration violates the inductive hypothesis since ((zp)pere; (kp)perc) belongs to Cgf\fl[g] c Cn_le[g].
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(a) The assumption k, € V' for any £ # i, j implies that it holds k, € V' for any b e I with b # i, j
since kj, —kj € V. By the inductive hypothesis, it must hold either kieV orkjeV ifz; #xj,
otherwise kf + k% € V' if ; = x;. Because both kj — k; and k% — k; belong to V™", it follows either

kieV orkjeV ifa;#x;, whereas k; + k; €V if z; = z;, as we needed to prove.

(b) By hypothesis, z; # x;, so we have to verify that the assumption k, € V' for any ¢ # i,j implies
either k; € V. or k; € V . It follows from this assumption that for any b € I¢ with b % j it
holds kj € V. Because ((23)pere; (K} )oere) € C;Fflrﬂ[g], it follows that k% must be in V' . Because
K —kje 7V we obtain kj eV, which is enough to prove the claim.

Finally, we notice that CL[g] = CI*"[g] can be proved with a similar argument by time-reversal. In

more detail, if (z1,...,2,;k1,...,ky,) is an element of CL[g] with z; = -+ = x,,, then it can be proved
that (x1,...,2Zn;k1,...,k,) belongs to CLi~[g] arguing exactly as before. If not all the points z1, ..., 2,
coincides, we consider a subset J < {1,...,n} such that: (1) all the points z, with a € J coincide and

it holds x, # x, for b € J¢, and (2) for any x;, with b ¢ J which is connected in the graph ¢ with
a point z, with a € J, it holds z, € I~ (x,) if b € J°. Then, we remove from the decorated graph
corresponding to (z1,...,Tn;k1,...,k,) the vertices z, € J. Proceeding similarly as before, we obtain
that (21,...,2n;k1,...,kn) € CLi"[g] as we needed to prove. O

As an immediate corollary of ??, ?? and this lemma, we get that
WF (1 [g,m, ¢, A]) € CIFg] n CL[g] © Walgl, (4.87)
and for any smooth 1-parameter family {¢(*)}

WF (g, m, 61, A1) € R x {0} x (CT™*[g] 0 €T [g]) < R x {0} x Wi[g]. (4.88)

We used the fact CI** < CF which is a straightforward consequence of the definitions of the set in-
volved (??) and, respectively, (??), and the definition of the set W,, (?7?).

We continue the review of how T}, 4(®;¢" (f;)) is constructed. The fundamental step is to define the
extension T(Zf{k of Té{l’(o to the diagonal, as also done in [? |.
Firstly, we fix a point « € M. For any sufficiently small convex normal neighbourhood U of = we can
consider Tgf as a distribution on the sub-manifold {z} x U"~!/(z,...,z). A priori the restriction of
a distribution on a sub-manifold is not well-defined. However, WF(Tgf ) does not contain elements
(1,...,2n; k,0,...,0) and these elements span the co-normal bundle of {z} x U"~1/(x,...,x). Then,
using thm. ??, the restriction is well-defined.

Condition ??3 implies that Tgf can be rewritten as a Taylor expansion, the so called scaling expansion
0,H

of 7.7, ie.
L1
mie g m. 6.\ (2, ) = 35 56009 m. 6. N](,) + 1 g m. 6. N (), (4.89)
=0""
where
d" ou
0?[9, m, ¢a /\] (SC, ) = @Tk) [9(5)7 m(S)7 ¢(S)7 A(S)](gjv ) ) (490)
s=0
0 1 1 L dL+1 o0l
rrlg.m, ¢, A|(z, ) := fj ds (1 —s)" 57", m, 6 A (z, )|, (4.91)
L J, dst+ a0
where the families {g(*), m(®), ¢(*) A(*)} are defined by
g =s2kg m® =sm, ¢ =stp, A = xA (4.92)

3As a matter of fact the weaker estimate where CT [g] is replaced by Ci ' [g] n CL* ™ [g] is sufficient.
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and where ¢4 is the diffeomorphism in U which shrinks the Riemannian coordinates with respect to « by
the factor s*.

The extension is now performed using the decomposition (??). It is well-known (see e.g. [? , thm.
5.2]) that it is not necessary the case that the extension of a distribution to the diagonal exists nor that
the extension is unique. However, in our situation, the scaling expansion guarantees the existence of an
extension and, furthermore, allows a complete characterization of the non-uniqueness of such extension.
The point is that for a sufficiently large L we have sufficient control over the singular behaviour of 69
with ¢ < L and of 7% near (z,x,...,z). More precisely, the relevant properties of 9 and r9 are:

i) Both 69 and ¢ are distributions on U"~!\(x,...,z) defined in terms of g,m, ¢, \ in a local and
covariant way. Namely, eq. (?7?) holds for any diffeomorphis ¢ which preserves x.

ii) The distribution 69 can be expressed as

0719, m, ¢, Al(z,) = D0V [g,m, ¢, ;... 1() - (e [g])*u!D) (), (4.93)

where o, : U — R?* maps a point in U to its Riemannian normal coordinates with respect to ,
and where u(9)? are certain tensor valued distributions on R*"~1\{0} invariant under the Lorentz
transformations. Here, C’(Z)(x) is a sum of monomials constructed with the metric g, the Riemann
tensor and its symmetrized covariant derivatives®, the “mass” m? + \(x)¢?(z) and its symmetrized
covariant, derivatives. Cg) is required to scale homogeneously with degree ¢ under the rescaling of
(g,m,d,\) = (A=2g, Am,Ap, \). We emphasize that 02(25 depends on the background ¢ only via

the coefficients C(gf) .

iii) The distribution u(Y° scales almost homogeneously with degree |k| — ¢ under rescalings of the
coordinates.

iv) As distributions on U,,\A,,, both 02 and T%’ P scale almost homogeneously with degree d under the
rescaling (g, m, ¢, \) — (A=2g, Am, A, \).

v) The remainder term 7? has a scaling degree less than |k|— L —1 under rescalings of the coordinates.

These properties are just the properties proved in [? , thm. 4.1], adjusted in an obvious way to reflect
the presence of non-trivial m, ¢, A in the theory we are discussing here.

As explained in [? , sec. 4.2], the extensions of §° and r9 to the total diagonal are constructed
exploiting these properties.
First, we construct an extension for ). Making use of eq. (?7), it will be sufficient to extend u0 to
a Lorentz invariant distribution u(© in R*™~1 which scales almost homogeneously with degree |k| — ¢
under rescalings of the coordinates. Such extension u() always exists, but it is non-unique as proved
in [? , lemma 4.1] making use of |[? , thm. 5.2]. The ambiguity of the extension u(*) corresponds the
renormalization freedom, which is characterized in the same reference. The extension 6, of 9 can be then
constructed replacing u*¥) with one of the possible extensions u(*) in the right-hand side of eq. (??).
Next, we focus on the remainder term r%. If we choose L > |k| + 4(n — 1), then, for any = € M,
the distribution 7? (x,-) has a scaling degree less than 4(n — 1) — 1 with respect to a rescaling of the
coordinates. As a consequence of [? , thm. 5.2], there exists a unique extension of 7% (z, -) with the same
scaling degree for any x € M. This unique extension is defined by the weak limit

rL,e(f) = jhj{i 7"%,¢(ij)7 (4.94)

where f is a test function in M™ with the support sufficiently close to the total diagonal A,,, and where
0; is a sequence of functions with support in U™\A,, such that g, is identically 1 outside a neighbourhood
Oj of A, with Oj shrinking to A, as j — . Because of the scaling properties of 7 > the limit exists

4For y € U, described by its Riemannian coordinates &, with respect to x, tsy is the point corresponding to the
Riemannian coordinates s~1£; with respect to .
5We consider the covariant derivative with respect to the Levi-Civita connection of the metric g.
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and it does not depend on the choice of the cut-off g; (see [? , thm. 5.2]). The desired distribution Tgk

extending Tg’f is defined as
1
o=, p00o 7L (4.95)
=0""

for L > |k| —4(m — 1). Such qu{k satisfies the conditions ?7-77, and, therefore, also the weaker condi-
tions (??), (??), as can be proved following the argument given in [? , sec. 4.3].

4.2.5 Properties of the variational derivatives of the distributional coeffi-
cients {7/"};

In sec. 77, we presented two sufficient conditions for ¢ — T), 4[®;¢" (f;)] to be on-shell W-smooth. These
conditions require sufficient microlocal control on the variational derivatives of the distributions {7, ;};,
i.e. the distributional coefficient of the Wick expansion with respect to the retarded 2-point function, for
(M, g) ultra-static space-time with compact Cauchy surface, m constant, ¢ a general smooth function
and compactly supported coupling constant A.

As explained in the introduction, we first consider a neighbourhood U,, € M™ of the total diagonal as
in sec. 7?7, i.e. U,, is small enough to ensure that for any (x1,...,x,) € U, it holds z1,...,z, € U for a
convex normal set U ¢ M. In U,,, we prove that the Gateaux derivatives of the distributional coefficients
{ng }; of the local Wick expansion have the desired sufficient microlocal control. To do this, we enhance
the inductive construction of the distribution Té{i (governed by the conditions ??-?7?) to constrain the
variational derivatives (5”7'(25j /6¢”. In detail, we demand the additional conditions for any v:

(6t0) We require
supp (5”7’%(@, @) /60 (Y1) . 09 (yw)) |(:,;1 """" enye, © Apyy,

and
supp (5”7-%(1*1, cey X)) [0P(y1) - . 5¢(yy)) |(m17.__7mn)eU" c Uty

where U is a normal convex subset of M sufficiently small that we can apply lemma ?7?.

(6t1) We demand that 6”73H/5¢V[g,m,¢, A] is a locally covariant distribution. Let (M, g) and (M’,g")
be two ultra-static space-times with compact Cauchy surfaces and let « : M’ — M be a causality-
preserving isometric embedding, i.e. ¢’ = (*g. Then, for any test function f supported in a

sufficiently small neighbourhood of the total diagonal in (M’)"*" it holds that

ovrH e
(L* 5(;53]/ [g,m, ¢, A]) (f) = 5¢JV [t*g, v m, " p, " N](f).

(6t2) The distribution (5”TjH/§¢”[ ,m, ¢, A] scales almost homogeneously with degree |j| + 3v + 4 under
the rescaling (g, m, ¢, \) — (A"2g, Am, Ag, \).

(6t3) Tt holds
WE (87 /66" [g,m, 6, X]) < C5F[g) o C7 [g], (4.96)

where

Ciﬁy_ﬁ[g] = {(Ih'"aznay17"'ayu;k17"'aknvplv"'7pl/) ET*MnJrV :

if prss € Vi7ps space-like, then (ki,...,k,) ¢ (Vi)”
if p. € V;i, then (z1,...,2n;k1,...,kn) € C55i[g]} ,

with CI+[g] defined by eq. (??). Furthermore, we require

WF (5”7_jH/5¢V)|AW+U LT(Ans).
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(6t4) For any smooth 1-parameter families {g(*), m(®), (=), \(®)} the quantity (5”7'jH/6¢” [¢¢), m) ¢l=) X
is a distribution on R x U™*” and consequently it trivially satisfies

WE (57166 [g), m(), 6 A)])
< {(579317 ey Ty Yl -5 Yo P kla s akﬂhph cee 7py) € T*(R X Mn+V) : (497)
(.Tl, ey Tmy Y1, 7yu;k17 e 7kmap1a cee 7p1/) € Cilt[g(g)] N Cz:;[g(g)]} .
Less trivially, we require

WE (877f[g"),m*), 6), X)) /66" )

1TMR x Apyy),
Ex Ay, (R x Apyiy)

and, in case of a smooth variation only of the background ¢, we require

WE (571 66" [g,m, 6*), \]) € R x {0} x (C35 [] ~ €21, [a]) - (4.98)

As one can see, properties 7?7 and 7?7 give a microlocal control on the variational derivatives of ng. On
the other hand, at this stage it does not seem clear why we have to impose also the other properties. We
will see that these extra properties play an important role in the proof.

To prove these properties, we follow the inductive construction of ng. The induction counter is n,
the number n of the factors ¢/'(f1),...,©’»(f,) in the time-ordered product. For n = 1, i.e. for the
Wick product, a direct inspection of eq. (?7?) reveals that ng = 1 and so the properties ??-77 hold
trivially.

We assume that the variational derivatives of ng, for any j' corresponding to time-ordered products
with less than n factors exist and satisfy properties ?7-7?7. We prove that this is also the case for the
variational derivatives of ng for any j corresponding to time-ordered products with n factors.

As outlined in sec. 7?7, for a fixed j the distribution ng is an extension to the total diagonal of the
distributional coefficients ng,o of the local Wick expansion of T}, 4[®:¢’ (z;)] in U,\A,. In particular,

after fixing a point © € M, the distribution Tfj’o(x, -) can be expressed as in formula (??) for L >
ljl — 4(n — 1) in terms of the distributions 02¢(x, -), given by (??), and the remainder 7'27L(a:, -) given
by (??). Using eq. (??), we can express 92,(75(:5, -) in terms of the distributions u(©° and the tensor fields

Cg). The extension ng is constructed as in eq. (??) providing an extension for each uw®9, for which
there is not an unique choice, and for the remainder 7*2,) .(z,-), for which there is a unique choice since it
scales with degree less than 4(n — 1) under rescaling of the coordinates.

We note that the distributions ()% do not depend on the background ¢ € C* (M), therefore the same
ut®9 appears in the factorizations of 708 for different background ¢. We can choose the extension u(*)
independently of the background ¢ € c* (M). So, we have

5”ng(x,x2, e Ty)

5o(y1) - 0(y)
704 (x)
b

L
1 « (0 0"ry r(x,x2,. .., Ty)
= — ——— () u T2yeonyIp + : )
Y <Z 5ol bl ()T ) L e )
where L is chosen again to be greater than [j| + 4(n — 1).
We aim to prove that the right-hand side of eq. (?7?) is a well-defined distribution in U™ which satisfies

the properties ?7?-7?. To do so, we proceed by the following three steps:

1. First, we investigate the properties satisfied by 5”7’550/5&’, where Tfjo denotes ng outside the

diagonal A,,.

(4.99)

2. Then, we prove that 5”T¢f{j(x, -)/0¢"(+) is an extension to the total diagonal of 5”ng0(:£, /06" (+)
once a point x € U is fixed.

3. Finally, we show that the desired properties ?7-?7 hold for 5”7’%(% -)/0¢" (-) exploiting the step 2.

The logic behind this argument is the same adopted in [? |, and reviewed in sec. ??, to prove that the
extension rp, 4 of the remainder term T’OL,¢> exists, is unique, and satisfies the properties 77-77.
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Step 1. We begin by proving the following result for ngoz

Lemma 64. For any j and any v, the distribution 5”7’%’0/5# is well-defined in U""\A, y, and, in

Proof. As discussed in sec. 77, Tfj’o, as a distribution on U,\A,,, can be expressed as a finite sum
of products of Td{{i corresponding to time-ordered products with less than n factors and powers of the
Hadamard parametrix, see (??). Then, we compute 5”Tf 0 /d¢” by distributing the variational derivatives

on each factor of the terms (?7). It follows that (5”7’550(@, ces @) /0P(y1) ... 00(y,) is a finite sum of
terms in the form

SINHTIL (2a)aer) SN2 1L (2 )biere) 7 OWNere Hy(wa, 2)
Tn, '
6¢‘N1‘((y7‘)T€N1) 6¢|N2|((yT)TEN2) ael,belcv=1 6¢|Na'b’vl((y7“)7‘e]\/avb,v)

fr(zy, ..., (4.100)

where I is a proper subset of {1,...,n}, where f;is asin (??), and where N1, Na, {Ng b v }ael berc ven,, are
a partition of {1,...,r} made of disjoint subsets. Now, since Tgi((xa)ag) and Tfi,((xb)blep) correspond
to time-ordered products with less than n factors, the variational derivatives of these two distributions
satisfy the properties ?7?7-?7 by the inductive hypothesis.

We proceed proving that each terms in the form (?7?) satisfies the conditions ?? -??. This is clearly

sufficient to imply that also 5"75’0/5&’ does.

(6t0) Outside the diagonal, this condition requires that: (1) if (z1,...,2Zn,y1,--.,%,) is in the support
of the distribution (??) where (z1,...,z,) belongs to U™, then (z1,...,Zn,y1,-..,y,) belongs to
U™ \A, 4., and (2) there is no element (x1,...,Zn,¥1,-..,¥y,) in the support of the distribu-
tion (??) such that (z1,...,z,) belongs to A,,.

The requirement (2) holds because the functions {f;}; for a partition of unity subordinate to the
covering {C;}; defined by (??), and so it holds supp fr n A,, = & by construction.

To prove that requirement (1) is satisfied, we notice that 5|N1‘T£i/6¢w1| and 5|N2|Tgi,/5¢‘N2‘
satisfies condition ?? by the inductive hypothesis. As proved in lemma ??, for z;,20 € U,
0V Hy(x1,22)/00(y1) . .. 06(y, ) identically vanishes if y1, . .., y, do not belongs to the unique geodesic
segment connecting x1,zs. Since U is a normal convex set, y1,...,y, must belong to U. It follows
that each of the terms in the form (??) satisfies (1) and this concludes the proof of condition ??.

(6t1) Since 6N g, m, ¢, \]/60!M11 and 61Nz [g, m, p, \]/64IV2! are locally covariant by hypothesis,
the claim follows from the fact that § H[g, m, ¢, A]/d¢" is locally covariant as shown in lemma ??.

(6t3) The wave-front set calculus implies that an element (z1,...,Zn, Y1, -, Yui; k1, -+ kny D15 .., D) Of
the wave-front set of (?7?) necessarily satisfies the following requirements:
kaer =KL+ D0 D) kb kere =k 4+ D k., (4.101)
belc vsnap a€l v<Nap
and

({Em Tp, (yT)TENrJ,,b,U 5 k(f,b,'l}’ ktﬁb,v’ (pT)TGNa,,h,u) € WF((slNa’b’v‘H¢/5¢|Na’b’v|)
or kib’v, kﬁb’v,pr =0,

((@a)aer, (Yr)renys (k)aer, (pr)ren,) € WE (SN /51N 4.102
or kI p, =0, (4.102)

((xo)vere, (Yr)rens; (kE Jvere, (Dr)ren,) € WE(8IN2I7 [T, /56IN2T)
or k‘éc,pr = 0.

We prove now that (x1,...,Zn, Y1, Yu; k1,.. ., kn,p1,...,pv) is contained in ng [g]. By defini-
tion, we need to show that the following two requirements are satisfied: (a) if it holds k; € V" for
any £ # i,j and p, € V™ for and any r, then it holds k; € V' or k; e V  whenever x; # x4, while
it holds k; + k; € V  in case z; = xj, and (b) if there exists s such that p, is space-like and p, is
VY for any r # s, then not all kq,...,k, are in v
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(6t4)

(a) Because of estimate (??) and because p, isin V' for any r by hypothesis, we have ki, eV
for any a, b, v. We distinguish three possibilities, namely i,j € I, i€ I and j ¢ I, and 4,5 ¢ I.
In the first situation, it holds k; € V' forallbe I by hypothesis. As we already mentioned,
it holds kﬁbw €V for any a,b,v. Therefore, it follows from eq. (7?) that kgc must be in V
for all b € I°. However, these configurations are incompatible with the fact that Tgi, satisfies
the estimate (??) by hypothesis. So we cannot assume k¢, p, € V" for any r and for any
{#14,5 with 4,5 € I.
If i e I and j ¢ I, then we have k; € V' for any b € I¢ such that b # j by hypothesis.
Exploiting again eq. (??) and the fact that k2

a,b,v
k" e V" for any b € I° such that b # j. Since the estimate (??) holds for 4% by hypothesis,

R .
a,j,v

is in V'~ for all possible a,b,v, we have

it follows that kjl.c must belong to V. Because k isin V' for all @ and v, implies that

k;, defined via eq. (?7), is in V" and this verifies the requirements (a).
Finally, if 4,5 ¢ I, then we have k;, € V" for any b € I° such that b # ¢,5 by hypothesis.

Therefore, it must also hold &} € V", defined via eq. (2?), for any b € I° such that b # 4, j
R

a,b,v

whenever x; # x; it holds k!" € V' or kI" € V', while in case z; = z; it holds k!" + kI e V.

because k isin V' for all possible a, b, v. In this case, the estimate (??) of Tfi, implies that

Using again the fact that kﬁb,v €V for all possible a, b, v and eq. (77), we obtain k; € V  or
kj eV whenever x; # z;j, and k; + k; €V if x; = z;, which are precisely the requirements
we need to prove.

(b) Let us assume p, € V" for any r # s and pg space-like. We distinguish the following cases: the

index s of the unique space-like covector p; is either in Ny U Ny or there exists a’,b’, v such
that s € Ny . In both cases, we prove by reductio ad absurdum that we cannot assume

ke € V™ for all ¢.

Assume s € N7 U Ny. Because of estimate (??7) and because p, is in V™ for and any r # 8, we
have kfib,v € V for all possible a,b,v. If we assume ki,...,k, € V+, then eq. (?7) implies
that kéc must belong to VY for any b € I°. However, these configurations are incompatible

with the fact that Tgi, satisfies estimate (??), as we wanted to show.
Next, we assume that there exist a’,’,v’ such that s € N, ;.. Because of estimate (?7)

. —+
and because we assume p; space-like whereas p,. € V= for any r # s, then we must have

kf’b)\ e V. for any (a,b,v) # (a’,b',v') and k(}f’,b’,v’ ¢ V™. If we assume ki,...,ky € V+,
then we get k!° € V' for any b e I° such that b # b’ and kL ¢ V_, because k. satisfies the
following equation
A SR " P
(a,v)#(a’,v")

However, these configurations are incompatible with fact that Tgi, satisfies estimate (?7), as
we wanted to show.

With a similar argument we can prove that any element (1, ..., Tn, Y1, Yu; K1y oy kn, D1y -5 D0)
of the wave-front set of distribution (??) is contained in ij,; [g], i.e. that the following requirements
are satisfied: (a) if k, € V for all € # 4,5 and p, € V_ for all 7, then it holds k; € V' or k; € V"
whenever x; # ;, while it holds k; + k; € V7 in case x; = xj, and (b) if there exists p, space-like
and p, is in V' for all » # s, then not all ky,...,k, are in V . For this purpose, we use the
estimate (?7?) to derive constraints for krib,v (whereas in the argument just presented we used the

same estimate for k¥, ), while eq. (??) and the conditions (?7) are used to derives constraints on

a,b,v
kI and k, for a € I (whereas in the argument just presented we focused on k{* and kj for b e I¢).
Putting everything together, it follows that each term (?7?) satisfies condition ?7.

This condition can be verified similarly as just done for condition ??. In fact, for any smooth
function R 3 € — ¢(e) € C*(M), the distribution 5”7£;gj/5¢(y1) ...0¢(yy) is a finite sum of
terms in the form (??) with the only difference that ¢ is replaced by ¢(e¢) everywhere. We can
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prove estimate (?7) adapting the argument we just presented to prove ??: now we make use of
estimate (??) of lemma ?7? for 6" Hy()/d¢", and the fact that for any i and any v the quantity
ovrh (e).i ./0¢"” corresponding to a time-ordered product less than n factors satisfies estimates (?7?)
by the inductive hypothesis.

(6t2) We assume first that (M, g) is a real analytic space-time and m, ¢, A are analytic. We know from

lemma ?? that for any v the distribution 0" Hy/d¢" is a locally covariant distribution which scales
almost homogeneously with degree 2 + 3v under the rescaling (g,m,d,\) — (A=2g,Am,Ap,\). B
the inductive hypothesis, all the distributions §”7, /6¢” corresponding to time-ordered products
with less than n factors are locally covariant dlstrlbutlons which scale almost homogeneously with
degree || + 3v under the rescaling (g, m, ¢, \) — (A~2g, Am,A¢, \). Thus, formula (?7) implies
that 5”7’ /5¢” must be a locally covariant distribution which scales almost homogeneously with
degree 25 j¢ + 3v under the rescaling (g, m, ¢, \) — (A=2g, Am, Ap, \).
To extend the validity of the almost homogeneous scaling in the more general smooth case, we
notice that we can approximate any arbitrary smooth metric in the neighbourhood U @ M of
x by a sequence {¢'¥)}sen of real analytic metrics (see [? |[proof of thm. 4.1]), and similarly
we approximate the smooth functions m, ¢, X in U by sequences of real analytic functions. More
precisely, we mean that

sup [Vay -+ - Va,gu () = Va, .. Val,qffy)( ) <27 Vi< n.

zeU

Similar bounds hold for m, ¢, A and their approximations via sequences of real analytic functions.
We consider a generic symmetric smooth function ¥ : R — [0, 1] supported in [—1, 1] which satisfies
in addition 1 —(z) = w(l —2) for all 2 € [0,1]. We define a smooth family {A(*)} of metrics by
setting A0 := g and h®) := 3 (|1/s| —n)g"™. We proceed similarly for m,¢, \. The almost

homogeneous scaling holds for all s # 0 and, therefore, by the smoothness properties of 5"7’¢ K /5¢"
it continues to hold for s = 0.

This concludes the proof of lemma 77. O

Step 2. Let us fix z € U. We can make use of the Taylor expansion (??) and the formula (??), to
write 6”7’530(30, 1)/d¢¥ as

5”7'4” (x,z9,...,2p)

So(y1) - .- 66(yy)

L 1 51/0 ( ) . 5”7’2L(:5,x2,...,xn)

where Cg) (z), u® are as in eq. (??), and where rg,L(x, -) is as in eq. (?7).

(4.103)

By construction, C(gf) is a sum of monomials constructed from the metric g(z), the Riemann tensor in z
and its symmetrized covariant derivatives, the functions m, A, ¢ in x and their covariant derivatives. Thus,

the distribution §”C ( )/d¢” exists and it is given by derivatives of the delta distribution 6(z,y1,...,yy)
multiplied by sums of monomials in the same form as before.

Since both the distributions 5”ng0(£, )/6¢¥ () and (C(gf) (2)/5¢" () - (o) *u® ) (-) are well-defined in
Urtv=I\(z,...,z), it follows straightforwardly that this is true also for "9 ; (z,-)/d¢"(-).

We consider the 1-parameter families {g(*), m(*), ¢(*), \()} defined by (??). As a corollary of lemma ??,
in particular, because of property ??, we know that

5V75’0[g(8)7m(5), P, A)]

59~ (")
can be interpreted as a family of distributions on U™*~1\(z,...,z) parametrized by (s,z). When
smeared with a test function f, V7 0[g(s), m), &) A /5¢¥ (x, f) is smooth in (s, x) as a consequence

120



of the wave-front set calculus (thm. ??) and the estimate (?7) of property ??. The following equations
are consequences of this result:

f) v OH
(z ) *,,0(£) _ 61’02(%') _ d* o't [ ’ >¢ ]( o)
Z 5¢V ((az)*u® D) () = 5o () " dst 55 () n (4.104)
and
5V7”L¢ 5L db+t 5 g™ m) ¢ A9](x,-)
v ds (1 ~ (4.105)
5(;5 Ll f dsL+1 5¢ ( ) »

These two distributions 669 (z,-)/5¢”(-) and 5”7"L¢( z,-) /64" (+), defined in U™V ~1\(z,..., x), satisfy
(0

properties ??7-?7 as can be easily seen. It follows straightforwardly from the properties of ¢,  and
u®) that each distribution (Cq(f) (2)/5¢" () - ((cz)*ulD)(-) satisfies ?2-??7 and so the distribution
§V09(z,-)/5¢" () also does. Furthermore, we conclude that also 5”1" /09" satisfies the properties ??-77,
as a simple consequence of eq. (??) and the fact that both 6”79 ; /6¢” and 6769 /6¢" satisfy ?7-77.

We want to show that the terms in the right-hand side of eq. (??) are extens1ons of the terms that
appear in the right-hand side of eq. (?7). Because u® is an extension of u ) to R¥"=1) we have that
(6”0{;@(a:)/5¢”(-))-((ozx)*u(e))(-) is trivially an extension to U"*~! of (5" p (:z:)/&b"(-))-((ozx)*uo([))(-).
It remains to be shown that the distribution 6”ry 4/0¢" is obtained by extending to the total diagonal
the distribution 6”79 /5¢” As we have already experienced discussing the extension of T¢ % in sec. 77,
it is not necessary that an extension of a distribution to the dlagonal exists nor that such extension is
unique. Nevertheless, we will show that, for any fixed z, §"r% 7.6/0¢" (x,-) scales with degree less than
4(n + v) under the rescaling of the coordinates and, therefore, it must have a unique extension.

First, we prove that, for any z, 6“r% (x,°)/6¢"(-) has scaling degree less or equal than [j| +3v — L —1
with respect to the rescahng of the coordinates. The idea is to adapt the argument presented in [? |
thm. 4.1 (v)] to this situation. Since 5”T£j0/5¢y has an almost homogeneous scaling with degree |j| + 3v
with respect to (g,m, \, ¢) — (A=2g, Am, Ap, \), we have

5V . AL+1 1 svr0H
XA %ﬁ)t=L!meemLG?3$0M“”AnlA o A9 (a, )

s=A1(4.106)
= ALF1=3il=3) Z (In® Ay 1 4(A, 2, ),

where 1/)2“1, is the distribution in R x U x U~ \(z, ..., ) defined by

wg,L,¢)(A7 xz, ) =

H,0
1 ! : ! S - S S
[/ 1=t (2570 = =30y [, A )
T 0L Y0,
s=Ap,e=1
Let f be a test function in U"~!'*" such that its support does not contain the point (z,...,x). It

follows from the properties ?? and ?? of §” gH/&ﬁ” that 1/)@ r.¢(Ax, f) is smooth in A in a sufﬁmently
small neighbourhood of zero. Once we have established these results, it follows from eq. (?7) that
§vrd (®,)/68"(-) has scaling degree less or equal than |j| +3v — L — 1, as we wanted to prove.

Since we choose L > |j| + 4(n — 1), this implies that §“r% (@) /09" () scales with degree less that
4(n—1)+3v—1 for any x, and so 6“9 (x,)/68" () has a unique extension to the total diagonal. Outside
A4y, the distribution 677y, 4(z,-)/6¢"(-) exists and coincides with 6779 (x,°)/0¢"(-). Furthermore, it
must have a scaling degree less then 4(n — 1) + 3v — 1 for any z. Because any non-trivial distribution
supported on A, 1 must be a linear combination of delta distributions and its derivative, which have
scaling degree not greater than 4(n + v — 1), we conclude that §"ry, 4/d¢" coincides with the extension
of 0r] 4(x,7)/6¢" (), ie

1/0

JVTL7¢
s )= Jim, 5¢

(9, 1), (4.107)
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where f is a test function in M™" with support sufficiently close to the total diagonal A, ,, and
where ¥; is sequence of functions with support in U"*"\A, ., such that ¢, is identically 1 outside a
neighbourhood O; of A,,1, with O; shrinking to A, 4, as j — co. The right-hand side of (??) does not
depend on the choice of the functions ¥; because of the scaling properties of 5”1"%@/5” (see [? , thm.
5.2]).

Step 3. As we mentioned in the overview of the argument at the beginning of this subsection, to prove
that ng satisfies properties ??7-??, we make use of the fact that the right-hand side of eq. (??) is an
extension to the total diagonal of the right-hand side of eq. (??) (which satisfies properties ?7?-?? outside
the total diagonal).

We fist focus on the terms §”C ( )/8¢" () - (o) *ulD)(-) and we prove the following result:

Lemma 65. Fach distribution

51/0(@)( )
az)*u) (), 4.108
o () - () *ut?) () (4.108)
where C(Z 1S as in eq. ("") and u¥) is a Lorentz invam’ant emtension of u® which scales almost

Proof. The distribution (??) is an extensions to the total diagonal of the distribution (5” ( ) /0¥ () -

((az)*ul®)(-) defined in U™ **~"\(z,...,x). Before, in Step 2, we proved that each ((5” ( ) /0" (7)) -

((ap)*u®®)(-) satisfies the properties ??-?? outside the total diagonal. We can adapt the argument
presented in [? , sec. 4.3] to prove that (??) satisfies the conditions ??7-2? on U™+~ 1

(6t0) Since 6¥C ( )/0d(y1) - - 5¢)(yl,) is proportional to d(x,y1, ..., Yy, ), it vanishes unless all the points
Z,Y1,- ..,y coincide. Thus, §*C ( /86" () - (o) *ul?)(+) satisfies condition 7.

(6t1) The Lorenz-invariance of u®) implies the locally covariance of a*u(®). The term §"C ( )oY
is also locally covariant because it is given by derivatives of the delta distribution §(z, yl, ceY)
multiplied by a sum of monomials constructed from the metric g(x), the Riemann tensor in = and
its symmetrized covariant derivatives, the functions m, A, ¢ in = and their covariant derivatives.

Combining these two results we obtain that 5"0(;5) (2)/6¢" () - (o) *ulD)(-) satisfies property ??.

(6t2) Exactly as in [? |, we can conclude that a*u(® has an almost homogeneous scaling with degree
lj| — ¢ with respect to a rescaling of the metric (other rescalings do not affect a*w). Since C’g)(z)
and &(x,1,...,y,) scale homogeneously respect to a rescaling (g, m,®,\) — (A~2g, Am, Ap, \)

respectively with degree ¢ and 4(v + 1), it follows that 5”0;5) (x)/0¢" scales homogeneously with
degree |j| + 3v + 4. Combining everything together we get precisely condition ??.

(6t3) Outside the diagonal, we already know that (6“ ( )/6¢" () - ((ap)*ul®)(+) satisfies the condi-
tion ??7. We show that condition ?? holds also on the total diagonal. Similarly as done in [? ],
making use of the wave-front set calculus, we obtain the following estimate

o) .
WF ( 5¢) ) (a*u)) c {(x?$25'"7xn7y1a"'7yl/;kak27"'7knap1a"'7pu) € T*Mn-H/

rT=y ==Y, To,...,Tp €U,
0 ac( z) ! 0 ;c( i) !
——ZZ:]D@-F;[ aaxx ] & ki=[ aamj ] &,
(ag(x2), ... ax(zn); &2y, &n) € WF(u)}.

In eq. (??), da,(x;)/0x denotes the matrix of partial derivatives of a,(z;) with respect z at a fixed
x;, while da,(x;)/0x; denotes the matrix of partial derivatives of o, (x;) with respect to z; at a
fixed x. When x and z; coincide, such matrices satisfy do; (z;)/0x = —day,(x;)/0x;.Consequently, it

holds &+, p¢+>; ki = 0 on the total diagonal A,,4,. In other words, we proved WF(5”C’(§)€)/6¢”-

(4.109)
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a*u)|a,,, 1 TApyy, and, thus, the wave-front set condition ?? holds for JVCg)(x)/(SQSV(.) .
((a)*u'9)(-) on the total diagonal.

(6t4) Outside the diagonal, we already know that 5”0;2) () /60" (+) - ((az)*ul®)(-) satisfies the condi-
tions ??. To prove that the conditions still hold on the total diagonal, we can follow a similar
argument as the one given for ??. That is indeed possible because o, is the inverse of the expo-
nential map and, therefore, it depends only on the metric in the appropriate smooth sense, wu is
independent of g, m, A, ¢, and 5”0{55[) /0¢” is given by derivatives of the delta distribution multi-
plied by sum of monomials constructed from the metric g, the Riemann tensor and its symmetrized
covariant derivatives, the functions m, A\, ¢ and their covariant derivatives.

This concludes the proof of lemma ?7? O

Now, we focus on the term §”ry 4/0¢", i.e. the v-th variational derivatives of the remainder term.
As we will see, proving the conditions 7?7 and ?? for the wave-front set of the extension of the remainder
term is much more complicated than proving the same conditions for the extensions of the factors in the
Taylor series as just done in lemma ??. The reason is that we lack an explicit form of §¥rp, 4/0¢”. We
proceed adapting to our situation the argument used in [? , prop. 4.1]: we show that the properties of
6“1 4/0¢" provide suitable bounds for the wave-front set of the extension 6”7y, 4/3¢".

Proof. Since §”ry, 4/d¢" is the unique extension to the total diagonal of the distribution 5”7”0L,¢(x, /06" (+)
which satisfies the properties ??7-77, we need to verify that the properties holds also on the total diagonal.

(6t0) We argue by reductio ad absurdum: we assume that there exists an element (z1,...,2Zn, y1,.-., %)
in the support of 6“7 4/d¢" such that (z1,...,2,) € Ay, but (z1,...,Tn, Y15+, Y) & Dpsy.
Since (Z1,...,Zn,Y1,---,Yy) is not an element of the total diagonal, it must belong to the sup-

port of 5”7’%’45/5425”. However, this is incompatible with the fact that 5”r%,¢/5¢" satisfies 7?7 out-
side A, 4+,, which precisely implies that the support 6"7‘%7 ¢/5¢” does not contain any element
(T1, - Ty Y1y Yp) & Dpry with (z1,...,2,) € A,. This concludes the proof of property ?7.

(6t1) The locally covariance of the unextended distribution §"ry s(,)/0¢"(-) implies that the distri-
butions 6"rr 4(x,)/d¢" (-)[¢* (g, m, &, A)] and t*6"rr o(x,-) /00" (-)[g, m, $, A] coincide outside the
total diagonal. The difference between these two distributions must be supported on the total
diagonal and must have a scaling degree less than 4(n — 1) + 3v — 1 since each of the distribu-
tions has a scaling less than 4(n — 1) + 3v — 1. However, a distribution supported on the total
diagonal must be a sum of the delta distribution and its covariant derivatives, which are distribu-
tions with a scaling degree not less than 4(n — 1 + v). Thus, 6"rp 4(x,-)/d¢"(-)[¢* (g, m, ¢, A)] and
6V rr gz, ) /007 (-)[g, m, ¢, A] coincide also on the diagonal, which precisely means that 6Vrr, 4/d¢”
is locally covariant.

(6t2) Using a similar argument as the one presented for the proof of 77, we can prove that §”rr, 4/5¢"
scales almost homogeneously under rescaling of g, m, ¢, A.

Proving that §"r, 4/0¢" satisfies the properties 7?7 and ?? on the diagonal is more involved. We follow
the argument of [? , prop. 4.1], adapted to our context:

Lemma 67. It holds

LTAny. (4.110)

An+u

wr (T

Furthermore, for any smooth 1-parameter families {g(s),m(s), o), )\(S)} we have

LT(R % Apiy). (4.111)
RXAn+u

ovry, ¢[g(s),m(5), ¢(S)7 )\(S)](xl o ’xn)>
WF d
( 6p(y1) - - - 66(yv)
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Proof. Asin [? , prop. 4.1], we proceed by induction on the number of variables n, i.e we assume that
estimate (??) holds for all §“rp, ¢(z1,...,2n)/0¢(y1)...0(y,) with n’ < n.

First, we need to show a constraint on closure in T*(R x U™) of the wave-front set of 5”&3; /0¥, As
a consequence of lemma 77, it holds

LT(R x Apyy), (4.112)
RXA"/_FV

ol
W ( 6¢V (57$1,y17 v 7yl/) : ((aiﬂl [g(S)])*u(Z))(x% s a‘rn’))

for any n’ < n. Here and in the following we use the notation f(s,z,...) = f[g*), m{®), ¢} X&) |(x,...).
Using the estimate (??) and the inductive hypothesis on the variational derivatives of the remainder term,

we obtain
§”Tfi
WF (S Ty e Ty YLy e ey Yu)

1 T(R X Anl+y).
RXAn/_H/

g

Since 6”7'550/6& can be expressed as a finite sum of terms in the form (??), and since the estimate (?7?)
holds for any variational derivatives of the Hadamard parametrix, arguing similarly as done for formulas
(86),(87) of [? ], we conclude that it holds

L _H,0

WF <55:Zj (5,215 oy Ty Y ,yl,)> LT(R x Anyy), (4.113)
RxAp 4y

where the overbar denote the closure in T*(R x U™).

Now, we identify x = zy € U with its coordinate in a smooth chart, while & = (z2,...,Zn,y1,---, %)

with the Riemannian normal coordinates relative to x;. In this notation, the total diagonal corresponds

to & = 0. We identify distributions in (x1,...,Zn,¥1,-..,y,) € M™” with distribution in (z,£) € X x =,

where X is an open set in R*, and where = is an open neighbourhood of the origin in RA(n+v=1),

We chose an arbitrary xo in X and a smooth function in the form x(z, &) = x'(z)x"(£), where x' € CF(X)

is identically 1 in a neighbourhood of zg, where x” vanishes in a neighbourhood of 0 and it is identically

1 outside a larger neighbourhood. Sufficiently close to (z¢,0), we can choose as the cut-off 9J; in the

definition of the extension §”ry, 4/d¢" (see eq. (??)) to be ¥; = (x)2i, where (-)9; denotes the pull-back

by the map (,&) — (z,27¢€). .

In order to prove formula (??), we need to show that (zg,& = 0;ko,n0) € T*(X X E) is not contained

in WF(8"rp, 4/0¢") if ko # 0. By the definition of wave-front set (see def. ??) and the specific choice of

the cut-off ¥, it is sufficient to show that there exists a conic neighbourhood F of (kg,7) such that for

any (k,n) € F and any N, j € N it holds that

|F ((B)as - 72,6) (k)| < (const) v272(L + k[ + [n]) ™, (4.114)

where F(-) denotes the Fourier transform, and where h is the compaclty supported function defined by
h(z, &) := x(z,€) — x(z,2¢). The Fourier transform on the left-hand side of (??) can be rewritten as

F ((B)ar - 0712 /067 (ym) = 279000 F (- (60, /66 )oms) (R, 27P).  (4.115)
Using the definition of (6”1/1)27,:7(1)(/\7 x,&) given by eq. (??), it follows that the right-hand side of eq. (?7?)

can be expressed as

2 MmN F (B (8¥19 /06" )2=5) (K, 279n) = 277 3 (jIn2)*F (h- (6“¢)? 1 4) (277, k,277n), (4.116)
£

where F’ denote the Fourier transform with respect to the variable z and &.

We proceed proving that for any closed conic set F’ in R x R* x R*"*+*=1) which does not contain
elements in the form (0,0, 7n) there is a neighbourhood Ky c R x X x Z of (0, 2, 0) such that for all ¢ it
holds

WF((5”w)2,L,¢) N (Ko x F') = .

We consider as parameter 5 := (g, u,z) € Py x Py x P3 =: P where P; is a small neighbourhood of 1 in
R, where P, is a small neighbourhood of 0 in R, and where P5 is a convex normal neighbourhood of z
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with respect to g, which is then identified with a subset of R* using the same coordinate chart used to
identify = with a vector in R*. Let ¢, , be the diffcomorphism which shrinks the Riemannian normal
coordinates with respect to = of a point in P53 by a factor p. In terms of this family of diffeomorphisms,
we construct the following smooth families, parametrized by s € P

97 = (ep) kg M i=epm, O = (et 0, AT =k

x,p

The estimate (??), derived for a parameter s € R, can be generalized to

s OH |
WF( (S 331>~--7£Umy1>~--»yu)>

LT(P x Any). (4.117)

PxApmtr

5¢v

We can rewrite the action of (6“9)) ; 4 on f € Ci"(R x (U""\A,,1,)) as

(0"9)0 1,6(f) =
sve0H (4.118)
= (w*&;[g“%m(s), o, A<S>]> (o5 -n) e ((‘BH @La,.0) 1))
where 7 : (€, 14, Z1,...,y) — (5= (&, p,® = 1), %1,...,y,) € P x U™ where tDW® ig the transpose of

the operator D@ defined by
1
D® = (€0 +d - V)",

and where ‘R(%) is the transpose of the map R(¥) : C(R) — C*(R) defined by

(RPf)(A) - jdm— YE@E L) (Ap).

The wave-front set of R, seen as a distribution on R? via the Schwartz kernel theorem, does not
contain any element in the form (A, As;0,p) € T(R?) as shown in the proof of [? , prop. 4.1]. Using
the wave-front set calculus and the estimate (?77?), we obtain from eq. (??) the following constraint

1L T(R x Apys).

RxApto

WE((8"9)7 1)
Once R x (U™\A,,+,) is identified with a subset of R x X x (Y\0), the previous result reads

v 1 TR xX .
WD 100, oy L T X X x 10})
We conclude that the open set T*(R x X x E)\WF((6 1/))5 L.¢) contains a set of the form Ko x I where
F’ can be any closed cone which do not contain elements in the form (0,0,m) and Ky is a sufficiently
small neighbourhood of (0, zo, 0).

With a suitable redefinition of the cut-off, we can consider h € C§*(Ky) and, then, for all (p, k,n) € F” it
holds

|F (- (8")o 1) (P, k)| < (const)n (1 + [p| + [k] + [n]) =

We match the choice of the cones F and F' such that (p,k,277n) € F' for all (k,n) € F, for all j, and
for all p # 0. In particular, there must exist C' > 0 such that for any (k,n) € F' it holds |k| > C|n| and
C # 0. In fact, if these requirements did not hold, then F’ would contain elements in the form (0, 0,7)
contradicting the hypotheses on F’.

Finally, we can rewrite eq. (?7) as

F (hoi '5V7“%,¢/5¢V) (k,n) = (27T)71/227j2(j In 2)Zfdp e E (h- (5V¢)2,L,¢) (p, k,27m),
7

and then it holds

| F (s - 81 4/66") (ky)| < (comst)y2 /(1 + [k]) ™Y < (const)y2 /(1 + [k| + [n]) ™

125



for all (k,n) € F, and for all natural numbers N and j. This concludes the proof of estimate (?7)

The argument just presented can be generalized to the case of smooth variations of g, m, ¢, A, and so
it follows that also estimate (?7?) also holds. This concludes the proof of the lemma ?7. O

The results of lemma ?? are precisely what we need to show to conclude that the wave-front condi-
tions ??, ?? hold for §"rp 4/d¢", because we have already proved in Step 2 that §”ry, 4/5¢" satisfies the
conditions ??, ?? outside the total diagonal. O

Summing up the results of lemma ?? and lemma ??, we have:

Proposition 68. Let U, be a neighbourhood of the total diagonal A,, such that for any (z1,...,x,) € Uy
the point x1,...,x, are contained in a normal convex subset U c M sufficiently small that we can apply
lemma ?7?. For any j, the distributional coefficient TfJ of the local Wick expansion of T), s[®i¢" (x:)] in
Z/{n is such that for any v € N its Gateauw derivative 5”T¢J(x1, cos @) /00(y1) - 00 (yy) is a well-defined

4.2.6 The distribution coefficients 7, ; satisfy the sufficient conditions for the
on-shell W-smoothness of ¢ — T, ,[®:¢" (f;)]

In this subsection, we prove that the sufficient conditions for an on-shell W-smooth ¢ — Tn,¢[®igak'i (f)]
we introduced in sec. 7?7 are satisfied:

Proposition 69. Let (M,g) be an ultra-static space-time with compact Cauchy surfaces, let m be a
constant, let ¢ be a general smooth function, and let X be a compactly supported coupling constant. We
have

07 (x1,. .., Tn)
W < 5¢(yjl) . 00(yy) > < Wht. (4.119)

Furthermore, for any R 3 € — ¢(¢) € C* (M) smooth, we have

5UT¢ (Il,...7l‘n)
WF< 56(01) . 00(0) )cRx{O}an+y. (4.120)

Proof. We first prove the estimates (??) and (??) in a neighbourhood U, of the total diagonal sufficiently
small that the hypotheses of prop. 77 are satisfied, then we prove that these estimates hold also outside
Un.

Let us consider T}, ,[®;¢" (z;)] inside U,,. In this space-time domain, we can define its Wick expansion
with respect to the retarded 2-point function wf, given by (??) in terms of the distributions {7 j}j<k,
and its local Wick expansion with respect to the Hadamard parametrix Hy, given by eq. (??) in terms
of the distributions {ng }i<k. Since both these two expansions must give T}, 4[®i¢" (z;)], there is a
relation between the collections of distributions {7y ;}j<k and {7/ }j<k. More precisely, this relation is
given by the following formula:

T (1,0 Tn Z Z anab,J,J’hZ T¢J (x1,...,2n Hd O (Xa,xp), (4.121)

JV'<i{nav} a<b

where dgy = wl? s — Hg, where the sum > (nas) is taken over all possible family of natural numbers {nqp}.<p
such that j, = j/ + Zc(naC + Neq), and Where % are certain combinatorial factors.

The right-hand side of eq. (??) is well-defined because dy is a smooth function.

For any smooth map R 3 € — ¢(e) € C*(M) a similar decomposition holds, namely we just need to
replace ¢ by ¢(€) everywhere in eq. (?7). Because dy(c) (21, 72) is jointly smooth in €, z1, 22 as proved
in sec. 7?7, the decomposition is again well-defined. Using formula (??) and its analogue for smooth
variations of the background ¢, we can prove the following lemma:

Lemma 70. The distributions {7, ;}; satisfy estimates (??) and (??) in U,.
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Proof. As seen in sec. 77, the distributions {Tdi[j }; satisfy condition ?? and ??. Using lemma 77 we can
conclude that for any j we have

WE(r)h) c Clt nCli™ c Wy, WE(7fl,) ;) © R x {0} x CiF A Cli™ < R x {0} x Wy,

for any smooth map R 3 € — ¢(e) € C*(M). Since dy € C*(M?) and dy() € C*(R x M?), using the
wave-front set calculus (thm. ??), we conclude that estimates (??) and (??) hold for v = 0.

To prove the estimate (??) for v > 0, we need to compute 6”7, ;/0¢" by distributing the varia-
tional derivatives on each factor in the right-hand side of eq. (??). It follows that the distribution
1y (x1, .., 20)/00(y1) ... 0¢(y,) is a finite sum of terms in the form (up to a constant factor)

6‘N|T .'L' Tab 5|Nab'u|d
G/ \T1s s T H I1 6(Za, Tp)
. 4.122
5¢‘N‘ {yT}”’GN a<bv=1 6¢‘Nabv‘ {y }TENabv) ( )

where N, {Ng b v }a<b v<n,, gives a disjoint partition of {1,...,v}. To prove estimate (??), it is sufficient
to show that each distribution (??) has a wave-front set contained in W, ..

Let (x1,...,@n, Y1, Yu;k1,... kn,p1,...,p,) be an element of the wave-front set of the distribu-
tion (??). By the wave-front set calculus (thm. ??), it must hold

i

k _kl+z Z k1b7’+2 Z ka1v+zki,i,v; (4123)
v=1

b>1v<n;p a<i V<Ngq

kf,bqéa,v

(Ta, Ty, (yT)TENa,b,v; kg,b,m kclzi:b,m (pT)TENa,b,v) € WF((S‘NQ’b'D|d¢>/5¢|NQ’b’“‘)
or kﬁbw, k§7b7v,pr =0

(Tq, (yr)reNa,a,v;ka,a,va (p'f')"'ENa,a,u) € WF(‘S‘N{’"G’“‘dtb(xaa xa)/d(bwa’"""l)
or kaampr =0

(5517 sy Ty (:’h)reN; kll cee 7kn7 (pr)reN) € WF(lelTH /6¢‘N‘)
or ki,...,kl,,pr = 0.

where kL and kg o, satisfy

a,b#a,v’

We prove that (z1,...,%n,Y1,-..,Yu;k1,..., kn,D1,...,p,) cannot belong to the set C;',  defined by (?7).

n+v
By definition of )/ ,,, we need to consider just the following two cases: (a) all the covectors ki, ..., ky,p1, ...
are causal future-directed except at most one among k1, ..., k,, prey which can be space-like, and (b)

there exist a’ € I, b’ € I°, v < ngyy such that one and only one covector p, with s € Ny p o is space-like
whereas the other covectors are all causal future-directed. We prove that neither of these two cases can
be realized:

(a) Since, we assume p,. € V" for any r € Ny, and for any a, b, v, the estimates (??) and (??) for the
wave-front set of 0”dy (1, x2)/0¢” and §”dy(x, x)/0¢" (see lemma ?? and in lemma ??) imply that
kL kR

S b By and ko a0 belong to V' for any a,b,v. Because we also assume k1, ..., Ky, p1, ..., py €
v except at most one covector among {ki,...,kn} or {p,},eny which can be space-like, eq. (?7)
implies that all k7,...,k!, must be in v except for at most one kj, which can be space-like.
Actually, kj can be space-like only if k is space-like. However these configurations are incompatible
with condition ?? for the variational derivatives of 7' ThlS concludes the proof that the case (a)

cannot be realized.

(b) We first assume that there exist a’,b’,v" with b’ # a’ such that the unique space-like covector py
among pi,...p, has s € Ny per . Since we assume p, € V" for all r # s, using estimates (?7?)
kR

and (??) (see lemma ?? and in lemma ?7), we obtain kcﬁ’b,,vl,kﬁb,m, ¢ V" and kL a b

a,b,v?

ka.aw €V for any (a,b,v) # (a/,b',v'). Since, by hypothesis, k; is in V' for all £, eq. (2?) implies
Ky kb, €V, Ky +kE L eV KayeV' . (4.124)

If 2, # x1, condition ?? requires that either &/, or kj, is in V' . Thus, we conclude that the
requirement (??) cannot be realized. On the other hand, if z,s = zy, then estimate (??) implies
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ko + RS ¢ V", whereas condition ?? for §v74%/0¢" requires ki, + ki, € V. It follows that
the requirements (??) cannot be fulfilled also in this case.

Now, we assume that there exist a’, v’ such that the unique space-like covector ps has s € Ngs 4747
By hypothesis, k¢, p, are in V' for any ¢ and any r # s. Thus, we obtain kg o ¢ v’ using
the estimates (??), (??) (see lemma ?? and in lemma ??) and the hypotheses on kg,pr. Similarly

as just done for the case b’ # ', it follows from the assumptions chosen that all k- kf,bw and

all k,, with (a,v) # (a/,v') are in V . Then, eq. (??) implies the following conditions which
replace (?7?) in this case:

a,b,v?

Ko+ karaw €V, K€V . (4.125)

These conditions (??) are incompatible with property ?? for the variational derivatives of ng. This
concludes the proof that the case (b) cannot be realize.

With a similar argument we can prove that (z1,...,2Zn,y1,.-,Yu; k1, kn,P1,-..,D) cannot belong
to the set C,,,,, defined by (??). By the definition of the set W,,4, as the complement of C;\, , U C,,,

see eq. (?7), we have proven that each distribution (?7?) has wave-front set contained in W, ,. Thus,
we proved estimate (?7?) in U,,.

To prove estimate (?7) for v > 0, let be R 3 ¢ — ¢(e) € C*(M) smooth. The distribution
To(e)j is defined as in eq. (?7) with ¢ replaced by ¢(e) everywhere, i.e. 74 ; is a finite sum of
products of Tﬁe)d, < and dg(e) with appropriate coefficients. For any v, the variational derivatives
0" Toe)3(T15 -+, T0) /00(y1) - .. 06(y,) is a finite sum of terms in the form (??) with the only difference
that d) is replaced by ¢(€) everywhere. We can show that estimate (??) holds, adapting the argument
we used to prove estimate (?7): instead of using estimates (?7), (??) and condition ??, we use esti-

mates (?7), (??) and estimate (??) of condition ??. This conclude the proof of lemma ??. O

To conclude the proof of prop. 7?7, we still need to prove the claims outside the neighbourhood U,,
of the total diagonal:

Lemma 71. The distributions {7, ;}; satisfy estimates (??) and (??) outside U,

Proof. We proceed by induction on the number n of the factors involved in the time-ordered prod-
uct T, 4[®7 " (x;)] corresponding to the distributions {7, ;}j<k. For n = 1, a direct inspection of
formula (??) defining the Wick product shows that

oy [ dylax)if § =25
7o.5(®) = { 0 otherwise. (4.126)

In the proof of prop. 77, we have already proved that dg(z, x)j' satisfies estimates (??) and (?7?), which
are precisely estimates (?7) and (??) for n = 1.

We now assume that 74 ; corresponding to time-ordered products with less than n factor satisfies both
estimates (??) and (??). Since (x1,...,%,) does not belong to the neighbourhood U, of the total
diagonal, we use the causal factorization axiom (T8) to express 7, ;(x1,...,,) as finite sum of terms in
the form

fr(@e, w0765 ((Ta) aer)To 5 (20 bere) H Wf@% zp)" (4.127)
acl,bele

where I < {1,...,n} proper, where {fr}; is a partition of unity subordinate to the covering {Cr}; of
M™A,, defined by (??), where i,i’ and {nq} satisfy jo = iq + X.(Rac + Nea) for a € I and j, =
iy, + 2. (npe + nep) for b e I¢. We compute 0”74 5/0¢" by distributing the Gateaux derivatives among
the factors of (??). In detail, 6¥74 ;(x1,...,2,)/0¢(y1) ... d¢(y,) is given by a finite sum of terms in the
form

Fr(m . 5‘Nl‘7’¢,i({xae1}) ‘Tdnf ({zvere}) 1—[ 1—[ 5‘N‘”“|w¢($a7$b)

) 4.128
" 5¢)|N1|({yreN1}) 5|N2 {y €N2} ael,belc v<nap 6¢‘NO " 1)‘ {yTEN‘l b ”}) ( )
where N1, No,{Ng .} form a disjoint partition of {1,...,v}.
We now prove the estimate (?7?) by verifying it on each term in the form (??). Let (z1,...,Zn, Y1, -, Yo k1, - - -
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be an element in the wave-front set of the distribution (??). The wave-front set calculus (thm. ??) implies
that there exist the following decompositions

ko =K, + > kb k=k+ > k., (4.129)

belc,v<nap acl,v<ngp
and it holds

(Tas Tos Ur)reNo o3 KLy s By s (Pr)ren, ., ) € WE (6N wllt /5l No el
or k«f,b,w kf,b,wpr =0

((za)aer, (Yr)renys (Kg)aers (Pr)ren, ) € WF(CSlNlle,i/dQs‘Nll)
or ki ,p, =0

((zp)vere, (Yr)rens)s (kg vere, (Pr)rens) € WF(5|N2|7-£F/5¢\N2\)
or ky,pr =0

Remember that the estimate (??) holds for wf; because ¢ — wf‘ is an admissible assignment as follows
lemma ?? and lemma 77,

We prove by reductio ad absurdum that (z1,...,Zn,91,...,Yu; k1,...,kn,p1,...,p,) cannot belong to
the set Cf ., defined by (??). We consider the following two cases separately: (a) all the covectors
ki,...,kn,D1,-..,p, are causal future-directed except at most one among ki, ..., kn,pren,un, Which
can be space-like, and (b) there exist a’ € I, V' € I¢, v' < nyyy such that one covector ps with s € Ny pr o
is space-like whereas the other covectors are all causal future-directed. We show that both of the two

cases contradict the inductive hypothesis.

(a) Since we assume p, € VY for any r € Ngp» and any a,b,v, the estimate (??) implies kf;bw eV’
for all a,b,v. Furthermore, using eq. (?7?), we obtain

b=k = Y kR, (4.130)

ael, v<ngyp

By hypothesis, the covectors ky, p, with b € I¢ and r € N5 belong to &l except at most one which is
space-like. It follows that all the covectors k], p, with b€ I° and r € N; must belong to v except
at most one which is space-like. However, these configurations are incompatible with the inductive
hypothesis on Tﬁi,, more precisely they violate the requirement WF(5|N2‘Tgi,/5¢‘N2|) < Wire|+ny |-
This is precisely what we wanted to show.

(b) By hypothesis, the unique space-like covector is ps for a certain s € Ny pr v Since we assume p, €

V" for any r # s and p, space-like, estimate (??) implies kf}b’v eV for all (a,b,v) # (a’,b',0"),

whereas kf,,b,w, ¢ v Combining these results with the assumption ki,...,k, € V" and using
eq. (?7?), we obtain kj € V' for any b # b and kj, ¢ V . By hypothesis, p, is in V' for any
r € Ny. Therefore, we obtain again that all the covectors kj, p, with b € I° and r € N, must belong

toV " except at most one which is space-like. Thus, the assumptions (b) contradicts the inductive
hypothesis on Tgi, as we wanted to show.

With a similar argument we can prove that (z1,...%n,y1,.--,Yu; k15, kn,p1,-..,p,) does not belong
to C,,,, defined by (??). Thus, by definition of the sets W,, see (??), the wave-front set of each term
in (?7?) is contained in W,,,, which is precisely what is needed to prove estimate (?7).

The proof of estimate (??) can be obtained with a similar argument as the one just presented, based on

estimates (??) and (??) (the latter is a consequence of the fact that ¢ +— w is an admissible assignment
as proved in lemma ?? and lemma ?7?) instead of estimates (??) and (?7). O
This concludes the proof of prop. ?7. O

4.2.7 Local functionals involving covariant derivatives and fulfilment of ax-
ioms (T10) and (T11c)

In this subsection, we first extend the previous construction to the case of local functional containing
covariant derivatives. In particular, we verify that there is a prescription which in addition satisfies the
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Leibniz-rule axiom (T10) and which still satisfies the W-smoothness requirement. In this context, we
consider more general local functionals in the form

F@)=ffu»0@»«vrwm»~«Vqu»=jfwrou011«vwwm»%' (4.131)

J

where (V)" is a short-hand notation for the symmetrized r-th covariant derivative (namely, the Levi-
Civita connection of g), where k = (Ko, k1, ... ) is a multi-index, where C'is an arbitrary curvature tensor,
where f is a smooth compactly supported tensor field, and where “” means “contractions of space-time
indices” (note that there are no free space-time indices in F(¢)). Any possible local functional can be
written as a finite sum of terms in form (??). To simplify the notation in the following, we denote
[1;((V) )i by V*p and C - V¥ by ®.

As proved in [? |, prop. 3.1], there exists a prescription for time-ordered products satisfying also the
Leibniz-rule axiom (T10). The construction is given inductively on the number of factors involved in the
time-ordered product similarly as the case discussed in sec. ?7.

First of all, we note that the Leibniz-rule axiom (T10) can be imposed consistently with the axiom
(T1)-(T9) on time-ordered products involving only one factor. This is done by defining the Wick mono-
mial Ty 4[f - @] as in eq. (??), but the distribution f(z)é(z,z1,...,2x—2,) is now replaced by a more
general distribution in the form f(z) - C(2) - (Vi)™ -+ (Vay ) 72" 0(z, 21, . . ., Tp—20), and dg (21, 22)
is replaced by an appropriate product of its symmetrized covariant derivatives (V)" (Va,)" do (21, 2)-
This definition is the same presented in [? , eq. (60)-(61)]. The modification just outlined does not
affect the proof of the on-shell W-smoothness because the operator V{(#¢) commutes with the variational
derivative §/0¢(y) and differential operators do not enlarge the wave-front set (see thm. ?7?).

Next, we consider time-ordered products T}, 4[®!_; fi-®;] with n > 1. As already mentioned the construc-
tion is given by induction on the number of factors involved. Assuming that the time-ordered products
satisfying the axioms (T1)-(T10) and involving less than n factors are already given, one constructs
the time-ordered products involving n factors by proceeding similarly as done in sec. ??: exploiting the
causal factorization axiom (T8), the inductive hypothesis fixes the time-ordered products for local func-
tionals ®j—, f; - ®; supported outside the total diagonal. Then, in a sufficiently small neighbourhood of
the total diagonal one performs the local Wick expansion. By the causal factorization axioms (T8) and
the inductive hypothesis, the distributional coefficients of the local Wick expansion are known outside
the total diagonal. The time-ordered products with n factors are obtained by constructing extensions of
these distributional coefficients on the total diagonal which implement axiom (T1)-(T5) and (T10). As
already pointed out in sec. ?7, it is proved in [? ][sec. 3.1] that axioms (T6)-(T7) can be enforced by
simple redefinitions and axiom (T8) holds by construction.

We need to show what is the constraint imposed by axiom (T10) on the distributional coefficients of the
local Wick expansion. In this context, the local Wick expansion of T), 4[®,fi - ®;], for fi®---® fn
supported in a sufficiently small neighbourhood of the total diagonal, is given by (cf. (?7))

Th¢ l@ fi- ‘Pi] =The
i=1

X fiCi - VWP]
i=1

= chal...anj Hfi(l”i) 'Tf[@)ici VY¥l(xq,...,2p) va_aisﬂ(%) ‘H, dT1 ... dTy
My i=1

(4.132)
=Z%mmf [T - (V) (V) 8 g, ) al))-
MY i Ti
- Tf[@)ici -V¥ol(x1,. .., xp) H gp(wil)) . -gp(mgéi)) ‘H, H dxidwl(.l) .. d:rgei),
i=1 i
where the sum is over the multi-indices such that o; < k;, where 6o, . .o, = ol where ! =

agl...a,!, and where ¢; = |k; — a;|. In this setting, the distributional coefficients are the distributions
Tf [®:C;- VY] = C1®- - -®C’m-7'f [®:; V¥ p]. Note that this is consistent with the situation discussed in
sec. 77. In fact, Tf [®:C; - (V)*ip] with a; = (5;,0,...) and C; =1, i.e. Tf[@igoji], is the distributional
coefficient ng of the local Wick expansion defined by (??) for a time-ordered product of local functionals
not involving covariant derivatives.
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As proved in [? , prop. 3.1], the Leibniz-rule axiom (T10) imposes the following additional constraint
for the distributional coefficient of the local Wick expansion

vijf[®i(I)i](l'1,...,(En) = Tf[q)l ®®VI](I)] ®<I)n]($1,,{1,'m) (4133)

As explained in the proof of [? , prop. 3.1], the suitable extensions are obtained by induction on the
number of covariant derivatives acting on ¢. Ultimately, the extension is provided combining the proce-
dure based on the scaling expansion, as in sec. 77, and using (??) to define the right-hand side for the
so-called “Leibniz depended” part (for more details see [? , prop. 3.1]).

Because the operator V., commutes with the variational derivative §/0¢(y), and because differential
operators do not enlarge the wave-front set (see thm. ??), it follows that we can adapt the argument
given in sec. 77 and we have that the variational derivatives 5”Tf [®;®;]/d¢" satisfy the conditions ?7-77
we defined in sec. 77.

Using the analogue of eq. (??) in this context, in a sufficiently small neighbourhood of the diagonal, we
express the distributional coefficients 74[®;C; - V¥i¢] of the Wick expansion with respect to the retarded
2-point function in terms of (V)™ (Va,) ™ dg (21, 2p), for appropriate rq, 74, and Tf [®:C; - Vi), with
o) < o;. We can extend the argument used in lemma ?? to the more general case of local functionals
containing covariant derivatives proving that the distributional coefficient of the Wick expansion with
respect to the retarded 2-point function satisfies estimates (??) and (??) in a sufficiently small neighbour-
hood of the total diagonal. The causal factorization axiom (T8) implies that this result must hold also
outside this neighbourhood, as can be checked similarly as we did in lemma ??. Thus, there exists a pre-
scription for time-ordered product satisfying axioms (T1)-(T10) and the desired on-shell W-smoothness,
in the sense of thm. ?7.

To conclude the proof of thm. 7?7, we need to show that if we start with a time-ordered prescription
satisfying axioms (T1)-(T10) and the W-smooth condition, then the changes of prescription required
to impose the axiom (T1lc) (see app. ??7) preserve the W-smooth condition. Actually, in the proof of
the consistency of axiom (T11c) with (T1)-(T10), we need axiom (T11a), which is enforced also using a
change of prescription for time-ordered products, see [? |.

Let {T ¢ }tnen and {T}, ,}nen be two prescription for time-ordered products satisfying axioms (T1)-(T10)
for a fixed background ¢ € C*™(M). These two prescriptions must be related by a hierarchy of maps
{Dn,4}nen in the following way:

n n k
. [@ F] _1,, [@ F] c Y T [@ D (@ Fj) 8® F] s
=1 =1

i+1 TIou--ulp={1,....,n} Jel, i€ly

where the linear maps D,, 4 : ®" Fioc — Floc Satisfy the properties listed in thm. ??. In particular, D,, 4
can be written as

Dn.g (@ i ‘bi) () = Dpo <® f:C; - vm@)
=1 i=1

zz%almanJfl(xl)---fn(xn)-c¢[®i0i-Va"go](xl,...,mn)HV”i_O‘i(p(xi)dxl...da:n,

i=1

where the sum is over the multi-indices such that o; < k;, and where %, ., is the same factor
that appears in (??). Each distribution cy[®;C; - V¥¢] = C1---C,, - cp[®; V] can be expressed
as a sum of terms which are products of derivatives of the delta distribution and polynomials in the
Riemann tensor, m, A\, ¢ and their covariant derivatives. Because of this polynomial behaviour in ¢ and
in its covariant derivatives, a redefinition of the time-ordered prescription cannot spoil the on-shell W-
smoothness. Therefore, we can conclude that any time-ordered prescription satisfying axioms (T1)-(T10),
(T11a) and (T11c) (under the assumption that for any ¢ € C* (M) the product e, in W, is given in terms
of the retarded 2-point function wf)® gives on-shell W-smooth maps S 3 ¢ — T, 4[®F, Fi(¢ + )] € Wy
for any local functional F;.

6 As a matter of fact, it suffices that the algebra structure is given in terms of an admissible assignment ¢ +— wg in the
sense of def. 7.
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Conclusions and outlook

We conclude by presenting an overview of the results obtained in this work and indicate some open issues
and possible directions for future investigations. Our main result is that we succeeded in constructing a
deformation quantization for a class functionals on the smooth solutions to the non-linear Klein-Gordon
equation on the space-time M which parallels a construction of Fedosov (devised originally for finite-
dimensional phase spaces). We then compared this approach to the causal approach to perturbative
quantum field theory.

We started by constructing a geometrical framework for the set S of these solutions. The cornerstones

of our set-up are the definition of the formal Wick algebra bundle W = LigegWWy over S, and the notion
“on-shell W-smoothness” for functions on S, sections in W, or, more generally, forms with values in W.
The elements of the formal Wick algebra W, are ultimately identified (up to formal power series in the
formal parameter i) with sequences of distributions on M™ which satisfy a certain restriction of the
wave-front set given by the collection {W,,} of sets W,, € T* M™. The product e, in Wy, is constructed in
terms of a pure Hadamard 2-point function wys. We imposed a further constraint considering only a par-
ticular class of assignments ¢ — wy, named “admissible assignments”, which have a specific dependence
on ¢. Using the methods of microlocal analysis, we were able to show that the fiberwise product endows
the space of on-shell W-smooth sections in WW and, more generally, on-shell W-smooth forms with values
in W with a well-defined algebra structure, the product e.
Then, we proved that the recursion procedure to define the flat Fedosov connection in finite dimensions
can be performed also in our infinite-dimensional set-up . The resulting connection DV is flat, preserves
the on-shell W-smoothness, and is determined by the choice of the assignment ¢ — w, (and some aux-
iliary data). We obtained a deformation quantization of the set of on-shell W-smooth functions on S
using the product e and inverting the map 7 that projects a flat on-shell W-smooth section in W into
its S — C[[A]] part, similarly as done in finite dimensions.

We showed that different choices of (admissible) assignments ¢ — w, and ¢ — w(’ﬁ give “gauge

equivalent” Fedosov connections DW, D'" . This reflects in our set-up the equivalence of the Fedosov
connections in finite dimensions corresponding to two different almost-Kéhler structures which are both
compatible with the same symplectic form. The gauge transformation is determined by the same recur-
sion procedure as in the finite-dimensional case. The new result is that this recursion process remains
well-defined in the infinite-dimensional setting.
We then investigated the relation of Fedosov’s approach to quantum field theory with the method of
“causal perturbation theory”. In the latter method, for each classical local polynomial function F' on .S,
one constructs using Haag’s formula its corresponding quantum observable F¢ € Wy for each classical
background ¢ € S. We proved that the map ¢ — F¢ is on-shell W-smooth and it is “gauge equivalent” to
a section F” in W which is flat with respect to the Fedosov connection D'V corresponding to a generic
admissible assignment ¢ +— w;ﬁ. The flat sections of the form £ generate an algebra, with respect to the
product e, and we proved that Einstein causality holds in this algebra.

Our results leave plenty of room for further investigations. First of all, we point out that we have
constructed the infinite-dimensional set-up only for scalar field theories on ultra-static space-times with
compact Cauchy surface with interactions given by a potential in the form V(¢) = {A(z)¢*(z), where A
is a smooth compactly supported “coupling constant”. Considering more general space-times and poten-
tials could affect the infinite-dimensional manifold structure we have assigned to S. In our construction,
in fact, the manifold structure of S is related to the initial value problem of the non-linear equation of
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motion, which, in general, is not a priori globally well-defined for smooth (compactly supported) Cauchy
data in arbitrary M.

Another prospect is investigating further the relations between the sections 7/~'F and F' for a lo-
cal functional F. Both of them are flat sections with respect to the same Fedosov connection D'V
corresponding to an admissible assignment ¢ — wfb. A priori these two sections differ since their com-

ponents proportional to the section 1 are not equal. This fact is not surprising because to define F
we have implicitly chosen one of the many admissible (due to renormalization freedom) prescriptions
for the retarded products, while that is not the case for 7'~'F, which is essentially unique. Never-
theless, there is a remaining freedom in defining the on-shell W-smooth section H that appears in
Fr=q? exp(# ada , (H ))F. This freedom is characterized by the choice of a closed 1-form 6 with values

in C[[72]]- It would be interesting to see if it is possible to choose # such that F” and 7/~ F would coincide.

It would also be interesting to analyse the problem of convergence in & of the star product. In our
set-up, the star product for the algebra of functionals on the solutions S is constructed in terms of the
Wick product e for the algebra (flat) sections on formal Wick algebra bundle W. Roughly speaking, for
a fixed ¢ € S, the formal Wick algebra W, can be interpreted as the algebra of formal polynomials on
TS, i.e. it is not just a formal series in the parameter /2, but also in the degree of the polynomials. For
increasing order in h, also the polynomial order required for our constructions increases. Therefore, to
even start talking about convergence, one has to replace “polynomials” by some class of more general
“functions”. The aim would then be to find a suitable topology to get hopefully convergence of the various
series in A. It is not obvious, however, how this could be done in practice, even in the finite-dimensional
case. One approach in this direction has been suggested in [? |. It would be interesting to see if it is
possible to adapt this construction to our set-up. This must be left for a future work.

Another open direction is to extend our construction to quantum field theories with fermionic fields

and/or gauge fields. For fermionic fields, two rather different approaches come to mind. On the one
hand, one could consider “classical” fermions, i.e. solutions to a Dirac-type equation, possibly non-linear.
Whenever the Cauchy problem is well-posed (which it is clearly a non-trivial question), one can provide
an infinite-dimensional manifold structure for the set S of solutions to the non-linear equation. The
tangent space TS at a fixed solution ¢ of the non-linear equation would be again identified with the so-
lutions of the linearised equation around ¢. Similarly as for the scalar case we discussed here, the causal
approach to the quantization of fermionic field theories (see [? 7 ? 7 |) might be expected to provide
guidelines how to define T}'S, [y, 77 S and Wj in the infinite-dimensional setting for the fermionic case.
For the linear Dirac equation, one still has the notion of the causal propagator and Hadamard 2-point
functions (see [? ]). The main differences with the scalar field seem to be the following: (1) the algebra
of classical observable has a graded structure, which should be also incorporated in Fedosov’s method,
and (2) the fundamental notions in our infinite-dimensional set-up, in particular the notion of on-shell
W-smoothness, need to be extended to vector-valued distributions.
There is, on the other hand, also a different possible approach. One could avoid introducing “classical”
fermions —which seems, after all, physically questionable— and introduce them only at the quantum level.
This idea could be realized as follows: one considers for instance a supersymmetric theory containing
both bosonic and fermionic degrees of freedom. Instead of considering all the possible solutions to the
equations of motions, one defines the classical solutions S as those with vanishing fermionic components.
Nevertheless, the fermionic degrees of freedom will appear at the linearised level, i.e. in the tangent
space T,S at a classical (bosonic) solution ¢, and, therefore, also in the formal Wick algebra. It is not
clear to us if and how Fedosov’s method can be implemented in this situation.

For gauge fields, the equations of motion are not hyperbolic, so one cannot directly proceed construct-
ing perturbatively the quantum field. It is, however, well understood how to circumvent this problem by
adding further fields (the ghost, anti-ghost, and auxiliary fields) to the theory in order to make the equa-
tions of motion hyperbolic. At the classical level, the unphysical fields can be removed by a symmetry,
called “BRST-symmetry”, which restores the gauge invariance: the gauge invariant classical observables
are obtained as the cohomology (with respect to the BRST-operator) of the auxiliary algebra containing
also the unphysical fields. This can be viewed as a symplectic-reduction of the unphysical phase space.
To quantize this theory, one proceeds by defining the deformation quantization of the auxiliary algebra
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and a suitable deformed extension of the BRST-operator. This sophisticated and complex procedure is
described in [? ? | in the framework of the algebraic approach to quantum field theory. It is not obvious
to us how our approach can be adapted to this case. There are some results in the literature, e.g. [? |,
for the finite-dimensional case, and maybe this could be used as a guideline for the case of field theory.
We must leave this, too, to a future investigation.
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Appendix A

Introduction to wave-front set

The notion of wave-front set is a useful characterization of the singularities of a given distribution. It is
well-known that the decay properties of the Fourier transform of a (compactly supported) distribution
are related with its smoothness. More precisely, a distribution u € D'(X), where X is an open set of R",
fails to be smooth at the point z € X if and only if the Fourier transform of xu is not rapidly decreasing
for any test function y with a support sufficiently close to x. The idea behind the wave-front set is to
refine this characterization of the singularities of a distribution by providing also the directions along
which the Fourier transform fails to be rapidly decreasing. This perspective, usually referred as “microlo-
cal analysis”, has a local character and can be extended to the case where X is a smooth manifold. This
concretely means that the wave-front set of u, which is denoted by WF(u), is a subset of the cotangent
bundle T* X with the zero section removed.

We present in this appendix only the necessary results in microlocal analysis we need for the context
of our work. We essentially follow [? ? ] (see also [? ]), which we refer to for proofs. For our pur-
poses, the main advantage of the wave-front set is that it can be used to extend several operations on
smooth functions to distributions. A priori, operations like restricting distributions to submanifolds and
multiplying distributions are not well-defined. However, we can formulate sufficient conditions in terms
of the wave-front set such that these operations on distributions are well-defined. For restrictions of
distributions to submanifolds, this will be done in thm. ??, while, for multiplications of distributions,
this will be done in thm. ??. The argument deeply relies on the notion of convergence for distributions
with the wave-front set bounded in a closed cone, the so-called Hérmander pseudo-topology (def. ?7).
Furthermore, the notion of wave-front set is particularly useful to characterize the solutions to linear
partial differential equations. This perspective is adopted e.g. in [? ]| and in [? ], to quote some
fundamental works for quantum field theory which we extensively used in this thesis. In this appendix
we present just two basic results (thm. ?? and thm. ??) which provide bounds for the wave-front sets of
solutions of linear partial differential equations.

We then present another important notion of microlocal analysis: we define the pseudo-differential op-
erators. Using pseudo-differential operators, it is possible to formulate an equivalent definition of the
wave-front set and also an equivalent definition of the Hormander pseudo-topology (prop. ?7).

Finally, we conclude this appendix by providing the definition of analytic wave-front set, which charac-
terizes the points (and the directions) in which a distribution fails to be analytic.

We begin by defining the wave-front set of a distribution v € D’(X), where X is an open set in R™.
For this purpose, we first define the set X(v) for any compactly supported distribution v € £'(X) as the
cone of all n € R™\0 having no conic neighbourhood V' such that, for any £ € V' and for any N € N, it
holds

[Fu(© < ¢V (1 + )T,

where F denotes the Fourier transform. It follows that v is smooth if and only if ¥(v) = . We can
proceed now with the definition of the wave-front set.

Definition 72. Let u be a distribution in D'(X). The wave-front set of u is the closed cone in X x (R™\0)
defined by
WF(u) := {(z,£) € X x (R™0) : § € Xp(u)},

137



where, for a given x € X, ¥,(u) is the set defined by

Se =) S(xu), (A.1)

where Ny is taken over all possible functions x € C§*(X) such that x(z) # 0.
It follows straightforwardly that « € C* (M) if and only if WF(u) = .

To illustrate def. ??, we proceed by presenting explicitly the wave-front set of two rather common
distributions on X: the delta distribution é and the Heaviside step function 6. Their wave-front set can
be easily computed and it holds

WEF(5) = WF(0) = {(z,) € X x (R"\0) : 2 = 0}

The presence of singularities is the main obstruction to define directly operations as multiplying
distributions, composing distributions, restricting distributions to submanifolds, and, more generally,
acting on distributions via the pull-back of smooth maps. As explained in [? |, this problem can be
circumvent by continuously extending the definitions given for the smooth case if the wave-front sets of
the distributions involved satisfy certain conditions. In this way, we also obtain bounds for the wave-front
sets of the resulting distributions, i.e. we provide the so-called wave-front set calculus. For this purpose,
we need to a notion of convergence! for distributions in D’(X) with the wave-front set bounded by a
closed cone I' in X x (R™\0). This space of distributions is denoted by D(X). The suitable notion of
convergence, called Hérmander pseudo-topology, is defined as the following:

Definition 73. Let X be an open set in R™, and let T be a closed cone in X x (R™\0). A sequence of
distributions (uj)jen C Dp(X) converges to a distribution v € Dp(X) if and only if

uj — u weakly, and  sup |EN|F(pu)(&) — Flou;)(€) - 0 VN eN,
eV

where ¢ € C (M), and where V is a closed cone such that (supp (¢) x V) nT' = &.

We first review the definition of the pull-back of a smooth map on a distribution. Let X < R™ and
Y < R™ be two open sets, and let f : X — Y be smooth. If u € C*(Y'), then the pull-back f*u e C*(X)
is defined by f*u(z) = u(f(z)) for any x € X. The extension of the pull-back on distributions is given
by the following theorem:

Theorem 74 (Thm. 8.2.4in [? ]). Let X c R™ and Y < R™ be two open sets, and let f : X — 'Y be
smooth. If ue D'(Y) is a distribution such that

WF(u) n Ny = &, (A.2)
where Ny is the set of normals to f defined by
Ny = {(f(2),n) €Y x (R™0) : " f'(2)n = 0},

then the pull-back f*u is uniquely defined as distribution in D'(X). Furthermore, for any u satisfy-
ing (?7), it holds

WE(f*u) < f*WF(u) = {(z,"f'(z)) € X x (R™\0) : (f(=),1) € WF(u)}.

One of the most important consequence of this theorem is that it allows to extend the notion of wave-
front set for distributions on a smooth manifold X. In particular, thm. 7?7 implies that we can define the
wave-front set of a distribution u € D’(X) by simply patching the wave-front set defined in the coordinate
charts of an atlas of the manifold. We obtain that WF(u) < -T*X. Furthermore, thm. ?? is also valid
(with some obvious changes?®) if X and Y are smooth manifolds.

If X is a (embedded) submanifold (e.g. an hypersurface) in the smooth manifolds Y and f is the inclusion

IThis a weaker notion than a topology, since many different topologies can give the same notion of convergence.
2E.g. X x (R™\0) and Y x (R™\0) must be replaced by the bundle 7% X and T*Y.
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map, then thm. 77 provides a sufficient condition to uniquely defined the restriction of a distribution
u € D'(Y) to X. Namely, it is required that there is no overlap between WF(u) and Nx, where Nx is
the normal bundle of X _

Ny = {(x,g) €T*X : (6, T, X) = 0} :

and where (-, -) is the natural pairing between the cotangent space T* X and the tangent space T, X.

Let us consider tensor products of distributions. This operation is always well-defined and we can
estimate the wave-front set of the tensor product of two distributions by the wave-front sets of the
distributions involved.

Theorem 75 (Thm. 8.2.9 in [? [). Let X,Y be two smooth manifolds. Consider the distributions
u € D'(X) and v € D'(Y). The tensor product u ® v’ is a well-defined distribution in D'(X xY) such
that

WF(u®u') ¢ (WF(u) x WF(u')) U ((supp (u) x {0}) x WF(u')) u (WF(u') x (supp (u’) x {0})).

We next discuss the case of point-wise multiplications of distributions and compositions of distribu-
tions. Products of distributions are generally not automatically well-defined. However, if the wave-front
sets of the factors satisfy a certain relative condition, called multiplication condition, then the product
makes sense in a canonical way due to [? , thm. 8.2.10]. A similar result, [? , thm. 8.2.14], ensures
that the compositions of distributions are well-defined if the distributions involved satisfy an additional
condition, called integration condition.

Theorem 76 (Thm. 8.2.10 and thm. 8.2.14 in [? |). Let X,Y,Z be smooth manifolds. Consider
the distributions v € D'(X x Z) and u' € D'(Z xY). We adopt the following notation WF'(u) :=
{(z,z;k,—q) € WF(u)} and WF(u(z,2)), = {(2,q) € T*Z : (x,2;0,q) € WF(u)}. If u,u satisfy the
multiplication condition

WF(u(z,2)). n WF' (v (2,y)). = &, (A.3)

then the product u(x, z)u'(z,y) (or simply u - ') can be defined as a distribution D'(X x Z xY) and
WF(u-vu') c {(a:,z,y; kod +q",p) eT*(X xY x Z): (z,2:k,¢') € WF(u) or k,q' =0,
and (z,y;¢",p) € WF(W) or ¢",p = 0}.
Moreover, if u,u’ satisfy also the integration condition
supp (u-u') 3 (z,2,y) = (z,y) € X x Y is a proper map®, (A.4)

then the composition §, u(x,z)u'(z,y)dz (or simply uwou') can be defined as distribution in D'(X xY)
and

WF(uou') c {(amy;k,p) eT*(X xY):3(z,q) € T*Z, such that (z, 2 k,—q) € WF(u) or k,q = 0,
and (z,y;q,p) € WF(u') or p,q = 0}.
As mentioned at the beginning of this chapter, techniques based on wave-front set and microlocal
analysis are useful to characterize solutions to linear partial differential equations. Far from being
exhaustive, we present here just some basic, but still important, results. First, we show the interplay

between wave-front set and differential operators. The following theorem just collects formula [? , 8.1.11]
and its weak converse [? , thm. 8.3.1].

Theorem 77 (8.1.11 and thm. 8.3.1in [? ]). Let X be a smooth n-dimensional manifold and let P be
a smooth differential operator of order m in X*. For any u € D'(X) it holds

WF(Pu) € WF(u),

3The inverse image of any compact set is compact.
4In local coordinate, it holds P(®) = Z\a\sm aa(r)0y, where an are smooth functions, and where 0% =
(0,1)%1 -+ (Dgn )om.
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and
WF(u) € WF(Pu) n Char(P),

where Char(P) is the characteristic set of the differential operator P which is defined by
Char(P) = {(z,€) € T*(X) : Pu(2,€) = 0},

and where P,,(x,€) is the principal symbol of P°
Another important result, we will use in appendix ??, is the so-called propagation of singularities.

Theorem 78 (Thm. 8.3.3’in [? | and thm. 6.1.1 in [? |). Let X be a smooth manifold and let P be a
smooth differential operator whose principal symbol is real-valued. If the distributions u, f € D'(X) are
such that Pu = f, then WF(u)\WF(f) is invariant under the action of the Hamiltonian vector field b
associated to the principal symbol of P, which is defined in local coordinates by

. OPm(2,§) @ 0Ppn(,8) 0
W’g)'_z< 0ad 0& 0 agf)‘

It is worth mentioning that there is an equivalent definition for the wave-front set in terms of another
fundamental notion in microlocal analysis: the pseudo-differential operators (see [? ? ]).

Definition 79. Let X be an open set in R™, and let m be a real number. A function a € C*(X x R™)
is a symbol of order m if for any compact set K < X and any o, B there exist a constant Cx o8 such
that

|08 a(z, )| < Crc.ap(1 + €)1, (A.5)

for any v € K and any £ € R™. The set of the symbol of order m is denoted by S™(X,R™).
Let a be a symbol in S™(X,R™). The corresponding pseudo-differential operator A of order m is the
continuous linear map C§*(X) — C*(X) defined by

1

Aw)(@) = oo | ale FWOCE (A6)

for any w e C(X). The set of pseudo-differential operators is denoted by OPS™(X,R"™).

Let reviews some of the properties of pseudo-differential operators. A pseudo-differential operator A in
OPS™(X,R"™) extends to an operator £'(X) — D’'(X) (see [? ]). Since any pseudo-differential operator A
in OPS™(X,R") is continuous, by the Schwartz kernel theorem, it follows that there exists a distribution
K4 e D'(X x X) such that {(A(u),v) = (K4,u ®v) for any test functions u,v. Exploiting the last fact,
we say that a pseudo-differential operator A is properly supported if the maps supp K4 3 (z,y) — z € X
and supp K4 3 (z,y) — y € X are proper.

We can extended the definition of pseudo-differential operators to the case of a smooth n-dimensional
manifold X by simply patching pseudo-differential operators defined in the coordinate charts of an
atlas of the manifold. More explicitly, a continuous linear map A : C*(X) — C*(X) is a pseudo-
differential operator of order m on X if for every coordinate chart (U, ) of a given atlas of X it holds
that u — (¢~ 1)*Ap*(u) is a pseudo-differential operator in OPS™(o(U),R™). We denote by ¥™(X)
the space of pseudo-differential operators of order m on the smooth manifold X.

Similarly, the definitions of symbols in S™(X,R") extends to the manifold case. In detail, a symbol
S™(T*X) is a smooth function a € C*(T*X) such that in any coordinate chart (U, ¢) of a given atlas
of X, the pull-back of a to T*p(U) = ¢(U) x R™ is in S™(T*X).

We want to extend the notion of principal symbol of a differential operator to pseudo-differential op-
erators. We first notice that the restriction of a pseudo-differential operator A to a coordinate chart
(U, ¢) determines a symbol ay in S™(p(U),R™) up to terms in S~ (p(U),R™). By patching together
the symbols ay corresponding to the coordinate charts of an atlas of X, we obtain that A determine a
symbol a in S™(T*X) up to terms in S™ 1(T*X). The equivalence class [a] € S™(T*X)/S™ 1(T*X)
is known as principal symbol of the pseudo-differential operator A.

As already mentioned, we can equivalently define the wave-front set of a distribution on X using pseudo-
differential operators. As proven in [? , thm. 18.1.27], it holds

51n local coordinate, it holds Py (x, &) = i™ Ylo=m dalT)E™.

140



Proposition 80. Let X be a smooth manifold and let u be a distribution in D'(X). We have

WF(u) = (] Char(A), (A.7)
A

where (1), is taken over all the properly supported pseudo-differential operators on X of order m, where
Char(A) is the characteristic set of A, namely the set

Char(4) = TX\ {(a:o,go) € TX : 3T conic set containing (zo, &) such that
la(x, &) < €1+ &)™ for (z,£) € V with || > €},

and where a s the principal symboll of A.

We can also rewrite the Hérmander pseudo-topology using pseudo-differential operators.

Proposition 81. The sequence (u;)jen € Dp(X) converges to u € Dp(X) in the Hormander pseudo-
topology if and only if
u; — u weakly, and Au; - Au in C*(X),

for any properly supported pseudodifferential operator A with T' n WF(A) = &, where the set WF(A) is
defined as

WF(A) := {(x,g) eT*X : (z,7:6,€) € WF(KA)}.

We conclude this section discussing the notion of analytic wave-front set. Roughly speaking, the
notion of wave-front set of a distribution characterized the points in which a distribution fails to be
smooth. The analytic wave-front set is instead related to the failure of a distribution to be analytic. Let
X be an open set in R™ and let be z( a fixed point in z. As proved in [? , prop. 8.4.2], a distribution
u € ¢D'(X) is analytic in a neighbourhood U of z( if and only if there exists a bounded sequence of
compactly supported distributions u; € £'(U) such that all the u; coincide with « in U and it holds

|Fun (&) < €7 (1|J€r|‘7) (A.8)

for any j and for fixed constant €. The definition of analytic wave-front set is given in terms of this
characterization of the analyticity.

Definition 82. Let X be an open set in R™, and let u be a distribution in D'(X). The analytic wave-
front set of u, denoted by WF 4(u), is the complement in X x (R™\0) of the set of (xo,&y) such that there
exist an open neighbourhood U of xg, a conic neighbourhood T' of &, and a sequence (u;)jen © E'(X)
such that all the u; coincide with w in U and for every £ € T’ the inequality (?7) holds.

It is proved in [? , sec. 8.5] that there is a counterpart for the analytic wave-front set of the wave-front
set calculus we discussed above (with some modifications imposed by the stronger analytic requirements).
In particular, there is a counterpart of thm. ?? (under the hypothesis that f is now a real-analytic func-
tion) for the analytic wave-front set, and this result allows to extend the notion of wave-front set for
distributions on a real analytic manifold X.

6More precisely, a is any representative in the equivalence class defining the principal symbol of A.
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Appendix B

Proof of theorem 77

In this appendix, we present the proof for the consistency of axioms ?7-?7 thm. ??. As already men-
tioned, it is well-known that there exists a prescription for retarded products satisfying axioms ?77-77.
The assertion follows e.g. from [? ]. Here, the authors proved the existence of a prescription for time-
ordered products satisfying the corresponding axioms (T1)-(T10) (and also axiom (T11a), which will be
required later) of [? |. The retarded products are obtained from the time-ordered products by

Rpm.é <®F<>:Z)HJ> = Z (—D)!"ITp 4 l@m] o6 Tire 4.0 l@F ® X H, 1 (B.1)

Ic{l,....m} lel jele

where T denotes the anti-time-ordered product, see e.g. [? , (T7)]. Note that in sec. 7?7 we used the
alternative notation Ry, ¢ = Ri m ¢

We claim that it indeed follows from (T1)-(T10) that ??-?7 hold: the proof is not complicated and
one can see that one by one the axioms (T1)-(T10) imply their counterparts ??-??. The requirement
Ro,4(¢(f)) = ¢(f), which is the second “initial condition” in axiom ??, is a consequence of the implicit
assumption 11 4(¢(f)) = ©(f). The GLZ formula ?? and the requirement R, 4(A4,®;H;) = Adn 1,
which is the first “initial condition” in axiom ??, are consequence of the definition (?7).

We want to construct a prescription for the retarded products which satisfies also ??. This will follow
if the time-ordered products satisfies the following condition:

0

aS <7¢ n¢s l®F1¢s

1(2)
n,l,qb <®F1¢7 ) ZTn¢l®Fz¢®a b 17 (B2)

e

where ¢ is a smooth 1-parameter family of backgrounds such that ¢9 = ¢. As already stated in
sec. 7?7, the derivative 0/ds is always evaluated in s = 0. This additional condition on the time-ordered
product corresponds in [? | to the formulation of the principle of perturbative agreement for an external
potential variation (T1lc), i.e. for a variation in the p?-term of the Lagrangian. However, it was not
demonstrated in [? | that condition (T1lc) can actually be imposed. We now fill this gap following an
analogous argument as given in [? | for the proof of condition (T11b).

Consider local fuctionals in the form

Fi,as:foi(x)' (2 dm—f fi(@) - Cip(z) - (V)™ p(2) - - (V)" p(2)do,

where f; is a generic compactly supported tensor field, and where Cy is a generic tensor depending
polynomially on the metric, the curvature tensors, m?, ¢ and their derivatives. Then, we define

i
— 7 fn1e (@ Fi; @2(’%)) -
)

0
D”,¢(h¢;f17"'7fn) = CY¢S,¢T” bs

_ZTn<¢>

@Fzm

6Fg ¢,S

(B.3)

®Fz¢®

i#L
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where hy is the compactly supported smooth function defined by

_ g, (2)

ho(w) = et (B4)
which implies
o1y
2 _ s
Plhs) = . (8.5)

Thus, eq. (?7) holds if D,, 4 = 0.

In order to simplify the notation, in the following we do not explicitly write the dependence on ¢ and
we just denote by the subscript s the dependence on ¢, in local functionals, time-ordered products or
retarded products.

We first note that trivially Dy = 0. Arguing as in [? |, we proceed by induction in the number N of
factors of ¢ and its derivatives that appear in the collection Fi, ..., F,, and prove that a prescription
{T}, } nen for the time-ordered products, which gives D, (< N) = 0, can be adjusted to a new prescription
{T} }nen such that D/ (< N) = 0. More precisely, the new prescription is defined by subtracting D,,(N)
from the corresponding time-ordered products. We must show that the replacement we just described
is admissible, i.e. consistent with the renormalization freedom characterizing the non-uniqueness of the
time-ordered products prescription given originally in [? ? | or, more concisely, in [? , thm. 2]. To show
this, we must prove the following conditions (see [? 7 ]):

(d1) D, is a functional of h, fi,..., f, supported on the total diagonal A, 1.
(d2) D, is a c-number, i.e. D, = cl € W.

(d3) D, is local and covariant and scales almost homogeneously with scaling degree equal to the sum
of the engineering dimensions of the classical functionals Fi, ..., F,.

(d4) D,, vanishes if one of the entries is in the form o(f) = {,, f(z)p(x).
(d5) D, is a distribution with smooth dependence upon the metric and the background ¢.
(d6) D, has the appropriate symmetry.
As we have already mentioned, the new prescription {7 },en is defined by
T’rll-&-l |f)02(h’) ® ®F11 = dInta l¢2(h) ® ®F11 + QZDn(ha f17 LR fn)a
i=1 i=1

if one of the factor in the time-ordered product is ¢?(h) for a function h as in (??), and simply by
T) @ F;] =T, [®_1 F;] otherwise. This new prescription {7} },en satisfies D), (h; f1,..., fn) = 0. We

Proof of ??. For a given h as in (??), choose f1,..., f, such that the support of h® f1 ®- - ® f,, does
not intersect the total diagonal A, ;. We must be in one of the following cases:

(a) There is a Cauchy surface ¥ such that supph c J*(X) and supp f; ¢ J (X) for all 7.
(b) The same as (a), but with “4” and “—” interchanged.

(¢) There is a Cauchy surface X and a proper subset I c {1,...n} such that supph c J*(X), supp f;
J*(X) for i € I, and supp f; < J~(X) for j ¢ I.

(d) The same as (c), but with “+” and “—” interchanged.

In case (a), the infinitesimal variation ?(h) of the quadratic term I(?) of the action occurs in the future
of the support of all the functionals F; and, therefore,

_ETTW
‘
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by the definition of the isomorphism o (see (?7)). The remaining term in (??) also vanish because of
the support properties of the retarded product. Thus, necessarily D,, = 0.

In case (b), because of the separation of the support of the infinitesimal variation & and the supports
of the functionals F; ... F,, the third term in (??) must vanish and the “time-reversed” version of (?7)
holds, i.e.

F,
%aivd’T”’s l® F“] ZT”¢ l@Fz 6 ® d M*} =0,
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where aé ¢ 18 the isomorphism of Wy — Wy constructed similarly as done for alt ¢ 1dentifying those
algebras in a neighbourhood of a Cauchy surface not intersecting the past of the support of the 1nteract10n
V, i.e. via the so-called “advanced state” (or “out-state”). Using the explicit formula (?7) for o® (and
its analogue for o), we get that for any t € Wy it holds

G 4 i [orf?
gai7¢o(a¢s,¢) 1t:l as 5 .

=t =

Under the hypothesis of (b), it follows

0 0F,
%OéquﬁTn,s l@ Fi,s] _ZTn7¢ l@FZ ¢® €¢91 —
v 4

1#L

0 _ 0Fy4,
:gags)¢o(a£m¢) oa¢ T l@F} Zangl@de)@ @M)]

1L

o2, +0

h

| ®F
m(mw)

where we also used the causal factorization property (T8) for the time-ordered products and formula (?7).
Therefore, we have D,, =

Finally, it is similarly seen in cases (¢) and (d) that D, = 0 holds as consequence of the causal factor-
ization properties for the time-ordered products, the inductive hypothesis, and the fact that o4 are
#-isomorphisms. The details are similar as in [? , sec. 6.2.2], so we omit.

We have proved that D,,(h, f1,---, fn) = 0 if the support of h® f1 ®- - - ® f,, does not intersect the total
diagonal A, ;1. This clearly implies that the functional D,, must be supported on the total diagonal as
we wanted to prove.

Proof of 77. We proceed first by giving an equivalent characterization of c-numbers in Wy, which
corresponds to [? , prop. 2.1] in our framework.

Lemma 83. Let t be an element of Wy such that [t,o(f)]s, = 0 for any f € C5"(M), where ©(f) is the
equivalence class in C(M)/(0 —m? —vy)C§ (M) corresponding to f. It holds t = c1 with ¢ € C[[h]].

Proof. Due to the Deg-filtration, any element ¢ € W, is identified with the series’ };, Zﬁzo tF)n where
each ¢t} is homogeneous in the total degree Deg and in the symmetric degree deg,, i.e. t*)" is a
symmetric distribution in &f,(M™) (modulo elements of the ideal defined by (O —m? —vg)&f, (M™)) u
to a factor which is a power of . Since [-,o(f)].,, seen as a map on Wy, preserves the Deg-grading and
reduces by 1 the deg,-grading, [t,o(f)]., vanishes if and only if [tR)n ©(f)]s, vanishes for all k,n > 0.
By definition of the product ey, it is equivalent to require

J Ey(xy, 2 )5 (2 2y, ... n)dz' = 0.
M

IWe used an informal notation here. The series should be interpreted as a sequence of distributions in 5(/‘,.
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By the definition of the causal propagator, this implies
J E(f(xl, V(S ag, L n)de = J Ef(ay, AR A P
M M
Therefore, the distribution s defined by

s(x1, ... 1) = J E(f(xl, EE (S wg L an)de
M

is compactly supported by the support properties of E;l/ R, and by the hypotheses on t(*)". Moreover,
applying lemma ??, we have that s is a distribution in &}, (M™) because WF(Ef/R) = CAE < Wy, and
because t(F)™ e £, (M™) by hypothesis. It follows

t®m (g e,) =PT(O —m? — Vg)z, S(Z1,. .., Tn),

which means that ¢(¥):» belongs to the ideal defined by O —m? — Vg, 1.€. t®)" must be the zero element
in the quotient space Wy. So we conclude that the non-trivial elements ¢ € Wy such that [t, o(f)]., = 0
for any f € C§ (M) must have deg, ¢t =0, i.e. t = cl for a c € C[[A]], which is precisely what we wanted
to show. O

In the light of the previous lemma, we need to prove that for any f € C{°(M), the quantity D,, commutes
with ¢(f). The fact that ags,¢ is an algebra homomorphism implies that

0 0
l&sags’¢T7L’s l@ Fi,s] a@(f)] = %Ofﬁ,¢ [Tn,s l@ Fi,s‘| 7@s(f)] -

. . (B.7)

&[efor] ]

Because of the explicit definition of o given by (?7), it holds

g o(#6.(f) = (@ =m® —vs) E{(f), (B.8)

up to a compactly supported smooth function in (0O —m? —v,)C§" (M ). We can pull the derivative 0/0s
inside the commutator in the second term of the right-hand side of eq. (??) above. Using the formula (?7)
for the variations the advanced propagator E;;‘ with respect to the background ¢, we then rewrite such

T il [ forfoe]

The commutator property (T9) of the time-ordered products allows us to rewrite eq. (??) as

0 L 0
la 7(z;iz—‘ns ®Fzs 7@(f)] =2h2 aiags,qun,s <Es() >Ffs®®Fzs
5 . (=1 s E34
: (B.9)
+ih Y T | (E(REA(f)), >Fe®®F
l=1 £l

The first term in the right-hand side of eq. (??) contains less than N factors of the field ¢. Therefore,
by inductive hypothesis, it follows

o1
__ZRn,l <<E >F£®®Fz7a>
7 S

a R
[as%an,s

®Fi,s ) P
[ . i#L
‘ OFy 4
—ih Y T, CE(f): 5 >Fg® R E® ~ (B.10)
0,0 #£4 EINA
—thT ®F® ()5 >Ff5 +mZT (E(REA(f)), —>F5®®F
i£L =1 i#L
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Using the commutator property (T9) and the explicit expression for 0E;/0s given by (?7?), it follows that
the second, the third, and the last terms in the right-hand side of eq. (??) can be rewritten as

2 [Tn [@ Fi®—> ] ,w(f)] —ih )Ty [@ F; @ CER(hE(f)), 5(;>F61 .

Y4 ¢ i#L

Using the commutator property (T9) and the formula (??) which give R,, ,,, in terms of the time-ordered
products, we have

R,m(éﬂ;éffj),m] —inY R (<E >Fe®®Fz,®H>

I E34 i

Fin S R <®Fi;<E<f s ®®H)
r=1 i

VESS

for any local functionals F;, H;. Applying this result, we can rewrite the first term of the right-hand side

of eq. (?7?) as
2)
_ZRn,l (<E >F€®®an61): nl(@FmagS ) (f)]
Z L]
5 oI
+Rn,1 <®F1a<E(f)v&p> Os )

[E34

Since {E(f), 5/5<p>6ls(2)/65 = p(2hE(f)) and since hE(f) € C*(M), axiom (T11a) implies

R (®Fz,<E 0 >a§s ) "R T, [@F ® M hE(f)), 6(ZD>F£]-

1 £l

7®
nl <®F7.7)7 (f)] +

3l fpret]]

1£L

Putting together, we have obtained

0
l%a$§,¢Tn,s l@ FLS‘| ) @(f)] ﬁ

i.e. that [Dy,,o(f)]e = 0 for any f € C§°(M). Therefore, by lemma ??, D,, is a c-number as we needed
to prove.

Proof of ??7. The proof is based on the locality /covariance property (T1), the scaling property (T2) for
the time-ordered products, and the fact that the map of is well-behaving under isometric embeddings
and rescalings. The details of the proof are the same as in [? , sec. 6.2.3], so we omit.

Proof of ??. Let F), be the functional ¢(f) where f € Ci°(M) and let Fy,..., F,,_1 be arbitrary local
functionals. Under this hypothesis, eq. (??) reads

n—1

® Fj s ®e(f)

0
Dn(h; fr, -y fae1, ) = a%ans
j=1

_EK:T

Note that ¢(f), as functional C* (M) 3 ¢ — §,, f(x)¢(x)dz, does not depend on ¢, i.e. dp(f)/ds = 0.
Using axiom (T1la), we rewrite each term appearing in the right-hand side of eq. (??). For the last

Rm(@F ®e(f ())

(B.11)

X Fj (f)l,
Jj#ELn
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term, we obtain

ET7zl . (f)}:
(=1 J#Ln
_ZRn 11(®F'®a§“ ) Z_:
®

j#Ln VEIND)
) — aFg
=ih Z Z To1 |<ET(f ) >F F® Os +
{=1r#4n Jj#b,rn
n—1 n—1
. 0 0Fys aFg s
R >
-Hh;an ® F; @<CE (f)»@> s _Z@ X F;®
=1 Jj#Ln =1 J#ln

We rewrite the second term in the right-hand side of eq. (?7?) as

i n—1 61(2) n—1 (2)
- ﬁRn,l <® Fj ®<p(f) ) Z Rn 1,1 <<E ( 7>F ® ® >

Jj#ETN

n—1 (2)
+Zh2 Tn—l l<ER(hER( )) 7>F ® ® F‘| _ﬁW( n 1,1 (®F37>

r=1 Jj#ETM Jj#En

+o(hEA(f)) @ Tua

X F;

J#EN

We used the definition of hy and the definition of R, ; in terms of time-ordered products.
Finally, the first term in the right-hand side of (??) reads

0
%agsyd’Tnﬂs <E5( ) >Frs ® ® F] s

J#ETNM

n—1 n—1

) 0
@1 Fis ®</>(f)] = ih ), 5506 Tn1,s
J= r=1

—(hE*(f)) ® Tns

) Fis

J#EN

X F;

0
- So(f) a ad)s,d)Tn 1,s
j#En

where we used formula (??) and the fact that the map 045;,, » is an isomorphism of algebras.
Putting together, we have that the quantity D,, corresponding to the functionals Fy, ..., F,_1,¢(f) can
be written in terms of D,,_1, which vanishes by the inductive hypothesis, in detail

n—1
Dn(Fy,.. . Foo1,@(f)) = ih Y Doy (Fl,...,<ER(f), 6(;>Fr,...,Fn1)

- (,O(f) o anl(Flv .. .,anl)
= 0.

Here we used the notation D, (F1, ..., F,) for the element in W given by the right-hand side of eq. (?7).
This is precisely condition 77.
Proof of ?7. We need to show that D,, is a distribution on M™*+! and it satisfies the following condi-

tions:

e It holds
WF(Dn’¢)|An+1 L TA 1. (B.12)

e Let R 3 €— ¢ be smooth (respectively analytic). It holds

WEF(Dys)axa,,, L TR x Appr), (B.13)

(where the smooth wave-front set is replaced with the analytic wave-front set in the analytic case).
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Since Dy, 4 is a c-number, it is equal to its expectation value in any state of Wg. To simplify, we consider a
quasi-free state wy such that its 2-point function coincides in M\J* (supp v) with a fixed pure Hadamard
2-point function wy with respect to Py = O — m?. We can still conclude, following the same argument
as in lemma 77, that it must hold wy = Eg 0 0., owg 0 0., o Ey. We write D, 4 as

Dyoo(hg; fioo o fn) = rng(hes f1, -5 fn) — %Wd) (Rn,1,¢ (@ Fi,¢;802(h¢))> , (B.14)

where 1y, ¢(hg, fi,..., fn) is defined by

0 0F,
’I“n7¢(h¢,f1,...,fn) =Wy (asaii’¢T7L’¢s l@F@¢!|> —ZW¢ < n,¢ [®F7¢® ;%]) , (B.15)
i 14

[ E4

To prove the properties (??) and (??), we show that each term in the right-hand side of eq. (??) satisfies
the desired properties.

As a straightforward consequence of the microlocal spectrum condition ??, the last term in eq. (?7)
is a well-defined distribution which satisfies the wave-front set condition (??). The condition (??) can
be treated similarly: if we consider a background ¢. depending smoothly (respectively analytically) on
e and a corresponding family of quasi-free states {w(®'} depending smoothly (respectively analytically)
on ¢ in the sense of ?? (respectively ?7?), then the smoothness property ?? (respectively the analyticity
property ??) imply that the last term in D,, 4_, given by eq. (??) with the obvious changes due to the
dependence upon ¢, satisfy condition (?7?) (respectively its analytic counterpart).

To prove that D,, satisfies the conditions (??) and (??), we then need to show that r, 4(hg, f1,..., fn)
does. We notice first that whenever hy ® fi ® -+ ® f, are supported outside the diagonal, then
D,(hg; f1,--., fn) vanishes. Therefore, r,(hg, f1,- - fn) equals minus the second and the third terms
in (?7). Consequently, it must be a well-defined distribution since both the second and the third terms
are already known to be well-defined distributions. So we need to investigate r,, near the total diagonal
An+1~

For this purpose, we assume that hy ® f1 ®---® f, is supported in neighbourhood of the total diagonal
A, 11 sufficiently small that supp (hy ® f1 ® -+ ® f,) € U™™!, where U is a convex normal subset of
M. Actually, we require that U is sufficiently small to satisfy the hypotheses of lemma ??. Under this
assumption we can express the time-ordered product using the local Wick expansion (see (?7?)):

T [@ F¢] =
:chal...an JMHfZ 25 7'4) [®1 Q¢ " v 90] Zlyeey & anl i Zz : ¢d21...dzn (B]_ﬁ)

o(x5) i, dzy ... dzpday ... dxy,

\,
:1~
I

—ZJ HC“,) (zi) fi( zz)w(b(zl,..  Zny L1y ey
M+

j=

where Hy is the Hadamard parametrix (?7), where : - - - : g, is the ordering with respect to the Hadamard
parametrix, and where wf; are suitable distributions locally and covariantly constructed from the metric,
depending on ¢ via vg. Note, in particular, that each wﬁ) is a finite sum of appropriate products of
distributions Tf and derivatives of the delta distribution. Note that the dependence of F; 4 on ¢ is

encoded in the dependence of C; 4 on ¢, so it does not affect wé.
Inserting eq. (?7?) into the definition of r,, (?7?), we find

rn7¢(h¢,f17"'vfn) :%1¢ +%2¢

L
_ZJ HC#, 2 fz(zl)w¢(zl,...,zmxl,..., Ty) wg <; Qg g H(p xj) ) Hdzindxj+
Mty 8 j=1 i j
¢
+ZJ HCMJ (zi) fi z,) S(zl,...,zn,xl,...,zg)wd, <:Hg0(:17j) :H¢)Hdzindxj.
4 J

Mn+l j=1
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We analyse the two terms %) 4, %2 4 separately and we prove that each of them satisfies the require-
ments (??) and (?7?).

To prove the claim for %, 4, we first need to rewrite it. Let wy, be the unique quasi-free Hadamard
state with respect to P, such that w,, coincides with wy on M\J*(K), where K denotes the region in
which vy, and vy differ (at most the whole support of the interaction, which is compact by hypothesis).
Necessarily, it holds wg, = Ey, 0 0., 0wy oo, o Ey . Inside the convex normal set U, we define the
difference dy, (21,y) = we,(z,y) — Hg,(x,y). Then, % 4 reads

n

H,p = Z Z J Hci,¢(2i)f(zi)w$s(zla ey 2y Ty we)% Hd¢s (Ta,zp) Hdzi Hd:rj. (B.17)
ab % J

¢ {ab} VM i1

We what to express #; 4 as a distributional kernel in U"*! evaluated on hy ® f1 ® -+ ® f,,. To do so,

we need to prove
0 (5d¢($17 .'1,'2)
= Ml ANl el B.1
Os d¢7s (1'17.’172) L\/[ 6U¢(y) h¢(y)dy7 ( 8)

for a well-defined distribution dd,/dv, for which we have sufficient microlocal control.
Making use of the results of appendix ?7, in particular eq. (?7), one can see that the advanced /retarded
propagators satisfies

0 0 0B (21, 22)
LB ) = [ BN P B g ayay - [ e
s M 68

dy,
Os " 5U¢(y) ¢(y) Y
5EA/R
WF< 5 ) < Xoi1,

and, then, we have

Ve

where the set X541 is given by (??). Since we chose wy = Ey 0 0. 0wy 0 0. © Ey, where wy is a pure
Hadamard 2-point function with respect to Py = 0 — m?, it follows

0 f dwe (1, x2)
M

FRE (z1,72) = 505(0)

5 he(y)dy,

and, similarly as in lemma ?7?, we also have

WF (M) C ZQ_;,_l7
5’04,

where the set Z5,4 is defined by (?7).
Furthermore, we can modify the argument of lemma ?? to obtain

0 _ 6u¢7k(x1,x2)
%%s,k(whxz) = JM W

where duy /dv, is a well-defined distribution which satisfies

§
() <.

Vg

he(y)dy,

where the set C3', is given by (??). Then, following the argument of lemma ??, we have

0 0H (x4,
%H@(xlva) - J OHy(21,29)

M vs(y) holv)dy,

where dHy/6vy is a well-defined distribution which satisfies

§H. H
WF <¢”“) C Zoy1,  WF (54”“>
(5U¢ (57}¢

1 TAs.
As
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By the results just proved for dwg/dvs and 6Hy/dve, we conclude that ddg/dvy is a well-defined dis-
tribution. We can adapt the argument used in lemma ?? to obtain the following upper bound for its

wave-front set:
<5d¢ )
dvg

This microlocal condition corresponds to [? , lemma 3.6] in our framework.

Next, we note that by construction wg is a finite sum of products of the distributional coefficients Tf
and derivatives of the delta distribution. The wave-front sets of the distributional coefficients Tf of the
local Wick expansion are estimated by the set CT defined in (??) (see (??) in sec. ?? based on [? 7 ]).
Therefore, using the wave-front set calculus (thm. ??), we have

< {(y,z1, 2250, k1, k) 1 y = ¥ = 22, p+ k1 + kg = 0}. (B.19)
Az

WF(w(t;)) C{(Zla'"7z’n7$17-~-7*/L'Z;q17"'>Qn7k17"'>kf) € T*(Mn-i_e) :

3 partition [; u--- 1 l, ={1,...,¢} such that z; = z; Vi€ I; and

(21, s 20504+, q),) € Ch where ¢f = q; + > k;

i€l

We then estimate the wave-front set of the distributional kernel %1 4(y; #1, . . ., 2,) corresponding to (??)
by using the wave-front set calculus (thm. ??). It follows from the estimates we provided for WF(wé)
and for WF(ddy/0vg), that WE(Z1)|a,.., L TApy1, ie. that condition (??) holds. By considering
the background ¢ depending smoothly (or analytically) on a further parameter, we can show that also
condition (??) holds.

To prove the claim for %5 4, we notice that, inside U™, %> 4 reads

n

H2,p = Z 2 J HQ@(Zi)f(Zi)a%wgs(zb R AT PRI 7 Hd¢(xa,xb) Hdzi dej. (B.20)
ab i J

7 {ab} Me+n

Since the distributional coefficients of the local Wick expansion Tf depend on ¢ only via vg, it follows
that each wi, which is a finite sum of products of Tf and derivatives of the delta distribution, satisfies

0 ¢ (s'LUé(Zl,...,Zn,lL'l,...,fE[)
< e Zny By ey g) = he(y)dy.
Os ’LU¢S (217 y Zny L1 J?g) JM 5v¢(y) ¢'(y) Y

Following the argument presented in sec. 7?7 (for time-ordered products of functionals which do not involve
covariant derivatives) and the generalization discussed in sec. 7?7, we have the following restrictions on
wave-front set of 67(‘;[ /6vg:

WF (Swf/dvs) < Ciif nChy, WE (Swf/vg)] L TAs,
where the sets Cfﬁ are defined in (??). Using the wave-front set calculus (thm. ??) and the fact that d,
is a smooth function, we conclude that the distributional kernel %5 4(y, 21, . .., 2, ) corresponding to (??)
is such that WF(%2,4)|a,.,, L TAyn41, as we wanted to prove.

By considering the background ¢ depending smoothly (or analytically) on a further parameter, we can
show that also condition (??) holds for %5 4. This concludes the proof of ??.

Proof of 77. It follows form the definition of D,, 4 together with the symmetry properties of the time-
ordered products (T6) that D,, 4(hg; fi,..., fn) is symmetricin fi,..., f,,. Because hy appears on a com-
pletely different footing than f;, the non-trivial question is about the behaviour of D, 4(hg; f1,..., fn)

when hy is exchanged with f;. More precisely, consider two smooth families {(bgl)} and {qbg)} such that

dv(p)

SO @) ._
(Z)S:O - ¢s:0 - ¢7 h/¢ = as
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We want to prove

AD; (A h?)) := Dy (KM K — Dy (K2 V) = 0, (B.21)

and, for n > 2, also
AD (MY WD fo o fo) i= D (R0, fo, oo ) = Dp(B@ 0D fo L f,) =0, (B.22)
where D, (hV; 1), f5, ..., f,) is understood as the c-number given by eq. (??) for the local functional

Fy = @*(h?).

Following the same argument presented in [? , eq. (248)] or [? , prop. 3.7], once it is proved eq. (??),
then eq. (??) would be a consequence of the flatness of V. Therefore, we focus on the case n = 1. More
explicitly, AD;(h(), h(?)) is given by

4 i
1 2y _ Y R 2,7 (2) _Jd g 0 (1) £]
ADURT, AT = Foaw o Tgm [90 (h¢gl>)] 75 %@ 11, 6@ [@ (%g))]
i i
— 3B (902(71@)); @Q(h(l))) + R ((pQ(h(l));(pQ(h(Q))) _

6 2 2 a 2 1
-1 [63%0 (h;g)l)) +T 257 (hfb()z)) :
It follows from the properties ?? and ?? of Dy that AD; is a c-number distribution supported on the
total diagonal in M x M which satisfies the wave-front set constraints (??) and (??). Moreover, the
properties ?? and ?? of D; imply that AD; is covariantly constructed out of g, m? and vy, and scales
almost homogeneously with degree 4 under the rescaling of g, m, ¢, A. Therefore, AD; is necessarily in

the form
ny

ADy (R, h®) = JM PO(@) (Vo 2P ) (@) (2) = (1 2),
r=1

where ny is a finite number, where C'#'--# are polynomials of scaling dimension 4 constructed from the
metric, the Riemann tensor, m?, v, and their derivatives. However, there are no tensors C' with the
correct dimension that give a non-vanishing AD;. This concludes the proof of condition ?? and the
consistency of the principle of perturbative agreement for variations of the background ¢.

152



Appendix C

Continuity properties of the non-linear
and the linearized Cauchy problems

In the first part of this appendix, we discuss some aspects of the initial value problem for the non-linear
equation of motion (??) corresponding to the A¢*-theory for the ultra-static space-time

M=RxY,  g=—dt®+hydr'da?,

where ¥ is a 3-dimensional compact Riemannian manifold. We will prove that the initial value problem
for smooth (global in time) solutions with smooth Cauchy data on ¥ is well-posed. Then, we will show
that the map which takes smooth Cauchy data ¢, p and gives their corresponding unique smooth solution
¢ is continuous.

In the second part of this appendix, we fix a solution ¢ for the non-linear equation, and we consider the
linearized equation (?7). For this linear equation, it is known that the initial value problem for smooth
(global in time) solutions with smooth Cauchy data is well-posed. We will show that the unique smooth
solution ug(q, p) of the linearised equation in ¢ corresponding to a fixed pair of smooth Cauchy data ¢, p,
depends continuously on ¢.

C.1 Continuity properties of the non-linear Cauchy problem

We first prove by well-known methods the existence and the uniqueness of a global smooth solution
¢ € C*(R x X) to the initial value problem

¢tt(t7x) - (A(h)¢)(tax) + m2¢(tax) = _%A(taz)d)g(tax)v
¢|t=0 =4q, (Cl)
btli=0 = p,

where ¢,p € C*(X), where A" denotes the Laplace operator for (3, h), and where (-); denotes the
partial derivative with respect to the coordinate t. We assume m > 0 and that ) is a positive constant
or a non-negative cutoff function in C§*(R x X) such that

)\t (t, JJ)
A(t, x)

sup
(t,z)eERx X

It is easy to see that this class of cut-off functions is not empty.

Then, we prove that the map that associates a pair of smooth Cauchy data to the corresponding solution
is continuous with respect to the natural Fréchet topology on & = C*(X)@®C*(X) and the compact-open
topology on C*(R x X).

Global well-posedness of the non-linear Cauchy problem. The second order partial differential
equation in (?7) is hyperbolic and quasi-linear, therefore it is well-known that the initial value problem

is well-posed locally [? , prop. 3.1 in chapter 16]. More precisely, it is known that there exists a closed
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interval I < R around 0 such that the system (??) for ¢ € H*T}(X) and p € H*(X) with s > 3/2 + 1
admits a unique local solution

peC(I,H (D)) n CHI, H (X)), (C.2)

where H*(X) refers to the L?-Sobolev spaces [? , sec. 1 and 6 in chapter 13], [? ]| for the compact
Riemannian manifold (X, k), i.e. H*(X) it is the completion of C*(3) with respect to the norm

: }
5= o7 fI2d 1h> :
1/ Z (LK Y f 2 dvo

where ") denotes the Levi-Civita covariant derivative on (X, k), and where | - |, is the natural norm for
tensor fields on ¥ defined via the Riemannian metric A'. Here and in the following, we always consider
integer Sobolev orders s.

We remind the reader about the following well-known properties (see e.g. [? , chapter 4], [? , chapter 13
and 16], and [? ]) of the Sobolev spaces on a compact manifold:

e The Sobolev norm | - | g= is equivalent to the norm given by | A® - | .2, where A is the square root
of the unique self-adjoint extension of the operator m? — A on ¥.

e We have
Ifhllms < C\floelbla: +C | hlpe| flm-

where || - |r» is the usual supremum norm, and where ¢, ¥’ are constants depending on s.

e It holds H**1(X) ¢ H*(X), i.e. for any f € H*(X) it holds | f| s < €|f|m-+1, for a constant &
depending on s.

e For s > 2, we have H*(X) ¢ L*(X), i.e. for any f € H*(X), it holds |f|r» < | f|mu=, for a
constant ¥ depending on s.

e For any k, it holds H*(X) ¢ C*(X) if s > 3/2 + k.
e For any s > 3/2, the space H*(X) is an algebra if equipped with the pointwise product.

The size of the time interval in which the local solution exists is controlled by the Sobolov norms, see [?
, prop. 8.5 in ch. 13 and thm. 3.5 in ch. 16]. Namely, there must exist a maximal T* € (0, +00] such
that any other local existence interval I is contained in (—=7*,7*) and

im (0@, )ma+r + [det; ) [m2) = co0. (C.3)

t—+T*

Indeed, whenever the limit is finite, the local initial value problem can be posed again for the initial
data ¢(T*,-), (T, ) and so T™* is not maximal. We now show that the initial value problem we are
considering is well-posed:

Proposition 84. There ezists a global, unique, smooth solution ¢ € C*(R x X) of the system (?7) for
smooth Cauchy data q,p € C*(X).

Proof. The proof is based on standard results, we give the argument for completeness. Let ¢ be a local
solution of (??). We choose t in the interval of local existence. Because A does not depend on ¢ by
definition, it follows that

1

S A6 + 1476100, 32) = =5 (A DG, A0 (1, ) (C4)

I More explicitly, | - |, is defined for k-rank covariant tensor field ¢ by

[t7 () == R (@) - R (@) g (2) b o ().
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Using the Cauchy-Schwartz inequality for the L?-norm and the properties of the Sobolev spaces on
compactly supported manifolds, for s > % we obtain

d
- (lett, Whper + 106t ) F:) | <

(const) | A*(A(t, )67 (¢, ) |2 A*¢e (t, )| 12

(const) [A(, )¢ (£, )l re+1 |92 (t, -) | =

(const) (supp yeg | A(t, )| ro+1) |97 (E, ) | rosr | e (t, ) s
(const) [ ¢* (¢, )l o1 [ G2 (t, ) |+

(const) [6(t, )7 [o(t, ) mresr | de(t, ) s

G Nt )L (1908, s + Ie(t)Fre) -

where (const) and ¥'“ are appropriate constants depending on s and, eventually, on A via supp ;g |A(t, ) | g+1,
which is necessarily finite because A € Cf°(R x X). The Bellman-Gronwall inequality (see e.g. [? ] or [?
, thm.3 in ch. XII]) implies that

INCINCININ O IN A

t
lot Mpeer + 10e(t, e < (lalFreer + Il ) exp (%L ¢>(T,-)I%nd7> : (C.5)

We emphasize that the constant ¢ is independent of ¢. If we can show that for any time ¢ in the domain
of local existence the L*-norm is finite, then the global existence of a solution with Sobolev regularity as
in (?7?) for the initial value problem follows as a consequence of (??) and the condition on the maximal
time T* of local existence given by (?7?).

The first step is to get a bound on a suitably defined energy. It follows from (??) for s = 0 that

i (10098 + 1009 + 5 (0,00 2 ) = 5 (8,00

We define the energy as:

1
6(¢7 t) = Hd)(t? )”%—Il + Hd)t(ta )H%Z + g (/\(ta ')a ¢4(ta '))Lz
We can therefore bound the growth of e(¢,t) by
d _ 1 )\t(t7) ) 4 ) 1 )\t(t,iﬂ) . 4 .
0| = 5| (Geete) <5 an (SRR 0),00.0),.

< 6" e(¢, 1),

where the constant 4*=° is independent of ¢ and is proportional to SUDP (¢ z)erxx [At/A| which is finite by
hypothesis. We can apply again the Bellman-Gronwall inequality to obtain

e(¢,1) = e(4,0) exp (¢°7°1) ,
where e(¢,0) is the “energy” of the initial data, namely
1
e(¢,0) = alip + pl7= + 3 (A0, () 12 -

Starting form (??) with s = 1 and exploiting the properties of the Sobolev norms, we obtain

1

5 6 + 1401012 | = 3 1A ), 4010 ) o] <

< (const) [ At )o* (t ) de (¢, ) e

< (const) sup ( > Supl(a(h))j/\(t,z)lh> 167t M oot ) e

teR §=0,1 €D

< (const) (|A¢* (¢, )72 + | @e(t, )| F)
< Ceonst) (11966 M3 + 216" s + ot )
< (const) (||¢(t7 MNisllo™ Sla(t, e + ot )G + et ')||§11) ;
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where (const) are appropriate constants which does not depend on ¢ (remember that A € C5°*(R x X)). In
the last step we used the Holder inequality?. As a consequence of the Sobolev embedding H' (X)) ¢ L%(X)
and the Kato inequality® we get

(1600 Y+ 1u(t, ) )| < =16 i (1066, e + 1ot ) ()
<6 Te(0,07 exp (€°7°0) ([0t M + [0t ) ). (C9)

where ¢°=Y and €°=! are appropriate constants independent of t. Applying again the Bellmann-
Gronwall’s inequality, we obtain

lo(t Mz + et Mz < (lalze + IplEn) exp (€77 e(6,0)* (exp(4°7") — 1)) .

It follows from the result just proved that the L™-norm of ¢(¢,-) is finite for any finite time ¢. In fact,
using the Sobolev embedding theorem H?(X) ¢ L*(X) we obtain

lot. )7 < Clot, Mz <€ (lalie + IplEn) exp (€77 e(4,0)* (exp(4°7") — 1)) . (C.10)

Since the right-hand side of the inequality (??) is finite for any finite value of ¢, we conclude that for any
s > 0 there exists a global solution u € C°(R, H**1(X)) n C1(R, H*(X)) for initial value problem

b1t — Ap +m?p = —A¢?
Plt=o = q€ HsH(X) n H?2(D) (C.11)
btli=0o =p€ H?(X) n Hl(z)

Note that H**1(X) n H?(X) ¢ H**1(X) and H*(X) n HY(X) ¢ H*(X) for any s > 1.

We are interested in the initial value problem (??) corresponding to smooth data ¢, p, and, for such
data, we now establish that the solution is globally defined and smooth. Since X is compact, it follows
that the smooth data g, p must satisfy ¢ € H**1(X) and p € H*(X) for any s > 0. It follows that there

exists a unique solution ¢ for the initial value problem (77) in CO(R, H**1(X)) n CY(R, H*(X)) for any
s> 1. For any s > 3/2 the space H*(X) equipped with the point-wise product forms an algebra, it holds

1
Pt = Ap —m?¢p — §>\¢3 e C°(R, H*(%)).
Taking an increasing number of derivatives of our partial differential equation and arguing in a similar

way, we get
be ﬂ ﬂ CE Hs+1 E( ))

s>5 3 f<s+1

If we rearrange the intersections defining the set above choosing s = 2k + 1 and ¢ = k for any k € N,
then we get

se () () C'RHEHTTHR)) ﬂck(R,Hk+2(2)) (C.12)
3>§ l<s+1
cﬂck R,C™(% ﬂck (RxX)=C*RxY), (C.13)
where we used H*(X) ¢ C*¥(X) if s > 3/2 + k. This concludes the proof. O
2In detail, for p,q > 0 are such that 1/p + 1/q = 1 it holds
06 e, N3z = [ (606 -0M6%) (taddze) = 0 [ 6*(t0) (6000 06) (t,2)d(0) (C6)
3 P
<9 (J #*(t, z)dZ(m)) v (j \a<h>¢|iq(t,x)d2(x)> 5. (©.7)
>z =

The claimed result is obtained choosing p = 3/2 and g = 3.
31n detail, let £ — X be a vector bundle and assume it is equipped with a Riemannian metric e. Then, for any section
£ on E, the Kato’s Inequality reads

jdlglel? < 10 4.
Specializing it for &€ = (") ¢, which is a section on the cotangent bundle T*X — %, we get

16112 < 2L (1M g} + 0™ 1a™M g|y[2) d < 2 L (10M8f2 + 1(2™M)2613 ) = < 20l1%2.
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Continuous dependence of solutions on initial data: Having established that the initial value
problem (??) is well-posed, we now want to prove the continuity of the map

&=CT(E)@C"(%) 3 (¢,p) = U(g,p) € S © C* (M),

i.e. the map that assigns to each pair of Cauchy data the corresponding unique smooth global solution.
We recall the construction of the topologies involved. First consider C*(X) with X a finite-dimensional
manifold. The compact-open topology on C*(X) is the topology of uniform convergence of functions
and all their derivatives on any compact set K < X. More precisely, this topology is induced by the
supremum seminorms defined as

1/2
P —sup<2| D rI( ) ,

zeK

where e is some Rimannian metric on X, where (9())7 denotes the j-th covariant derivative defined in
terms of the Levi-Civita connection of e, and where | - | is the natural norm for tensors defined via
the metric e (see footnote ??). By the Sobolev embedding theorem, the compact-open topology can be
generated by another family of seminorms, the local Sobolev seminorms defined as

1/2
i (f <ZJ |(04))7 f|2dvol'® ) , (C.14)

where dvol® is the volume form with respect to the Riemannian metric e. Both the supremum seminorms
and the Sobolev seminorms are separating, i.e. if f # 0, then there exist n, K such that p.. /g n  (f) # 0.
If the manifold X is locally compact, then there exists a countable family of compact sets { K, },en, such
that K, is contained in the interior of K, 1 and u, K, = X. Evidently both ¥ and M = R x ¥ satisfy

this condition. We can extract from each of the families of seminorms defined before a countable family,

(CH(X)) ._  (CT(X))
Le. Pojan = PuyH K, n

and, furthermore, gives on C*(X) the structure of a Fréchet space.

Since ¥ is compact, pgg:(z:))(_) is equivalent to |- ||z». Therefore, the Fréchet topology on & = C*(X)®

C*(X) is given by the family of seminorms

. The compact-open topology does not depend on the choice of e and { K, } nen,

P (a,p) := lla] g + [pllen-

On C*(M), one is free to choose e = dt* + h;;dz'dr? and K, = I, x ¥, where I, is the interval
(=(T 4+ n), T + n) for a fixed T. The compact-open topology on C*(M) is defined in terms of the
seminorns

1/2
PO @) = pi, (6 <Z f Y ¢ldvol e’)

1/2
< f (6t)k¢|§dvol(e)) .
k,j<n I, ><E

(C.15)

We evidently have

1/2
PO (9) < (const) sup( Y ||<<at>'f¢><t,->zj-k>

tel, k.j<n

1/2
< (const) SHP( > ((f%)’“(b)(t,-)%s) ;

teln \ 4 'szn

where (const) is a constant which depend on n but not on t.

The compact-open topology on C* (M) induces a topology on the set S ¢ C* (M) of the smooth solutions
of the initial value problem (?7).

It follows immediately that if p(C (M))(gb) — 0 for any n, then necessarily |¢(¢,)||g= — 0 for any s and
any fixed ¢. In other words, the restriction to the surface {t} x ¥ is a continuous map C*(M) —» C*(X).
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Proposition 85. The map U : & — S < C*(M) is continuous with respect to the topologies we
introduced before.

Proof. We need to verify the following implication

2 ((a,p) = (d,9) = 0VE = pl& Mg ¢ >0V,

where ¢ and ¢’ are the unique solutions corresponding respectively to initial data (¢, p) and (¢’,p’). Since
¢, ¢' are solutions to the same non-linear equation, it follows that d := (¢ — ¢’) is a smooth solution for
the following initial value problem

dy + (m? = AM)d = —Lxpg'd — 5 Ad?
dli=o = q¢— ¢ € C*(2) (C.16)
dilt=0 =p—p' € C* (%)

We can adapt the same argument based on the Gronwall-Bellmann inequality we used in (??) to obtain
LRI AE A CAGD] RS

t
< (lg = q'lFre40 + lp =2 I:) exp <‘€J; (L + lo (7, M e + 167, -)|‘}{5+1)d7> ;

for any s > 1/2, and for a positive constant ¢ independent of ¢ (depending, however, on s and on \). We
extensively used the properties of the Sobolev norms. Since ¢ and ¢’ are smooth solutions, both ¢(t, -)
and ¢'(t,-) are H**1-bounded for any finite time t. It follows that we have the following bound:

ld(t, ) 7een + lde(t, e < DIF(2),
(&)

where D, simply denotes ps ' (¢ — ¢',p — p’), while F denotes the continuous and positive function

Fu(t) i= exp (% [ 1ot s + 16, ->|zs+l>dr) .

Thus, we have proved that for s > 3/2 the following bounds hold

ld(t, )7e < Di_yFoa(t),

(C.17)
ldi(t, )= < DIFs(t).

Using the fact that d is a solution for (??) and the properties of the Sobolev norms, we obtain the
following bound for s > 3/2:

due(t, )% <
< (const) (Im? = ADYd(E, e + ALV (L) e + IAE ) (06 D)(E, ) ) (C.18)
< (const) (1 + 6(t, )&= + 6/ (t Mare)*) [, )] 2o,

where (const) are constants depending on s and on A. Since ¢ and ¢’ are smooth solutions with smooth
Cauchy data, 1+ ||¢(¢,-)|%. + [|¢'(t,-)|%. is a continuous function in ¢. Furthermore, using the esti-
mates (?7), we can rewrite the inequality (?7?), as

Idie(t, )Ee < D2aFos(t), (C.19)
where the function F5 ; is given by
Fas(t) =€ (L+ ] 6(t, ) [ + 10/ (t ) [1re) Fora (0),
To obtain bounds of the form (??) for higher order time-derivatives of d, one takes further derivatives

in ¢ of the partial differential equation dy = —(m? — AM)d — A¢p¢'d — 4,d°. Repeating these kinds of
arguments, one can show inductively that for any order & (and for any Sobolev order s > 3/2) there is
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a continuous function Fy ¢(t) which depends continuously on [|(d¢)"é(¢,)||m= and ||(0r)"¢' (¢, )| m= with
n < k — 2, such that it holds

1) d(t, ) 7o < D2k 1 Frs(D)-

This last result implies the following bound:

1/2
pfgc J(M))(d) <€ sup ( Z D§+k1Fk,s(t)> ’

t€le \ g s<p

where % is an appropriate constant independent of ¢t. Now, if Dy — 0 for any k, then necessarily
(C™(M))
Dy (d)

— 0, as we wanted to prove. O
C.2 Continuity in ¢ of the Cauchy problem for the linearized
equation around ¢

Let now ¢ € S, i.e. ¢ is a smooth solution of the initial value problem (??). It is well-know that the
Cauchy problem for the linearized equation, i.e.

uge(t, ) — (AMu) (¢, z) + (m? + %)\(t,x)q’)Q(t, x))u(t,x) =0,
uli=0 = ¢, (C.20)
ut|t=0 =D

is globally well-posed for v € C*(R x X) and ¢,p € C*(X). We denote by us(g, p) the unique solution
of (??) and we investigate its dependence on ¢ € S:

Proposition 86. For any p,q € C*(X), the map
S 3¢ uy(q,p) € TS
is continuous in the topologies for S and TS induced by the compact-open topology of C*(M).

Proof. We consider the more general case of a background ¢ € C* (M) not necessarily a solution of the
initial value problem (??). In particular, let ¢ and ¢’ be in C* (M), and let ¢,p € C*(X). We define the
smooth function d := ug(q,p) — ug (g, p). We need to prove the following implication:

p M o—¢) sk = P @) s ove

Since ug(q,p) and ug (g, p) are the unique solutions of the initial value problem (??) with data ¢,p
respectively for ¢ and ¢’, we deduce that d is a global smooth solution for the following initial value
problem

dtt(tvx) + (m2 - A(h))d(tvm) = —)\(t,x)q§2(t,x)d(t,x) - )‘(t7 x)(¢(t,x) - ¢,(tvx))j¢7¢'(ta Z‘)
dlt=0 =0 (C.21)
dilt=0 = 0

where j o := (¢ + ¢ )ug (¢, p). Exploiting the properties of the Sobolev norms, we obtain from (??) the
following inequality for s > 3/2:

d
= (It ) gess + et Er)| < A (1At o + et ) [F-) + B(2), (C.22)
where A(t), B(t) are defined by

A(t) <M (1+ ot )e) |

and

Hs,

B(t) < €P|(¢ = ¢)(t, ) -

Joner ()]
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where €4, %P are appropriate constants. Since ¢, ¢’ and Je,¢ are smooth functions, it follows that A(t)
and B(t) are finite for all t. Now we fix a time ¢. As a consequence of inequality (??), for any 7 € [0,¢+1]
we obtain

T

| (7, M Freer + lde(r, )7 < MpT + MAL (17 ) e + e, ) ) dr,

with M4 and Mp respectively the maximum of A and B in [0,¢ + 2]. We apply a slight generalization
of the Gronwall-Bellman inequality (see [? , thm. 3 ch. XII]) and we get

t
14t ) yees + 1t e < M (t M f  exp(Ma(t - T'») ar'.

The fact that p,(fcw(M)) (p—¢') — 0 for any k implies that |(¢ —¢')(¢, )| g+ — O for any finite ¢, and then
B(t) — 0. This means that both [|d(¢,-)||%. and ||d¢(t,-)||%. (for a sufficiently large order s) must vanish
in the limit. Arguing as in prop. ??, we can prove similar results for |(0;)*d(t,)|%. for higher order k.

Finally, making use of formula (?7), we can conclude that p¢(d) is bounded by a quantity which vanishes
if pl@ M (¢ — ¢} — 0 for any k. O
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Appendix D

Background dependence of the

propagators E:;l/ i

In this appendix, we investigate the behaviour of E(f/ R, the advanced /retarded propagators with respect

to the operator P, = O — m? — V”(¢), under variations of the background ¢ € C*(M). We assume
that V is a local functional, e.g. V(¢) = {,, 1 A(2)¢*(z)dx with A € C§(M). First of all we recall the

defining relations of E;‘/ R,

Péxl)Eg/R(xl,xg) = 0(z1,22) = P;xz)Eg/R(xl,xg) supp (E;l/R(f)) c J¥(supp f) VfeCy(M).

Let ¢ be a fixed smooth function. Consider a smooth map R 3 s — ¢(s) € C*(M) such that ¢(0) = ¢.

We regard E(?(/j(xh x5) as distributions in D'(R x M?), i.e. in the variables s, 21, xo. From the wave-front

set of the advanced /retarded propagators, see (??), it follows

WE(ET) {(57331,362; pok1 ko) € TH(R x M2)|(z1, 20: k1, ko) € cA/R(M)} : (D.1)
where the set CA/%(M) is defined by eq. (?7?).

The estimate (??) does not put any restriction on the s-part of the wave-front set, i.e. it does not impose
any control on the dependence under variations of the background. We prove a stronger bound:

Proposition 87. It holds

WE(E) (w1, 22)) © R x {0} x CA/*. (D.2)
Proof. We present explicitly the proof of the claim for the advanced propagator E(‘;. The proof relies on
the propagation of singularities for hyperbolic partial differential equations and the Hadamard expansion
for the advanced propagator. Except for some obvious adjustments, the argument we are presenting holds
also for the retarded propagator Eéf.
First of all, we prove that it would be sufficient to prove the claim for z1, x5 both contained in the same
convex normal set U. Let (s, 1, 22;p, k1, k2) be an element of WF(E;;‘((;%). Assume that 1, x2 do not
belong to the same convex normal neighbourhood U. By the estimate (??), we have (1, k1) ~ (22, —k2).
By definition, E;‘(S)(:cl, x9) satisfies the following equation

PV ES (21, 22) = (w1, m2) = Py By (w1, 32).

The propagation of singularities (see thm. ?? in appendix ??) implies that WF(E:;{?)\(R x {0} x WF(4))
is invariant under the action of the Hamiltonian vector field b associated to the principal symbol of the

differential operator P(;a(cj)), namely

(s, 21,023 p o ) = 5 () () — 20 (k) =
$,T1,X2;P,K1,R2) ‘= axg 2 )2\ 2 I/a(kZ)’u QZQ 2 Vaxu.
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Since b depends only on o, ko, it follows that if (s, z1, z2; p, k1, k2) is contained in WF(E;‘(/_;D”), then there

is (s, x1,25; p, k1, k) in WF(E;(/.) ) such that (x4, k%) ~ (22, k2). For any convex normal neighbourhood

U of z1, we are free to choose x5 € U.
Next, we prove the estimate (??) for x1,x2 in the same convex normal set U. In U 2. we can construct
the advanced Hadamard parametrix, i.e. a bi-distribution H(‘;(z, y) on U x U such that:

e It is a fundamental Py-solution modulo smooth functions, i.e.
PV H (1, 2) = 01, 00) + G Dwn,wa), P H M (w1,1) = 81, 22) + G4 (a1, 12),

for some Gﬁ(l’z) e C*(U?).

e Its support satisfies
supp (HJ'(f)) € J ™ (supp f) n U

for any test function f supported in U.

Inside U x U, we can trivially decompose E(‘;‘ in Hg‘ + dg, where dg = E:;‘ — H(‘;. The advantage of
this decomposition is that dg(zl,xg) is smooth in (z1, z2) (it is shown in [? |, proof of prop. 2.5.1] that
d* must be C* for any k), and H (‘;‘ is locally and covariantly constructed in terms of the metric and
m? + V"(¢). We proceed by showing that both HJj(z1,22) and dj, (z1,22) separately satisfy the
estimate (77).

Following [? ? ], the advanced Hadamard parametrix is

Hf(th) 1= ug(@1, 22)0(0 (21, 22))0(— (2] — 25))+

+ O (U(xl,xz)) Ug a1 (w1, 22)0 (21, 22)F0(—0 (21, 22))0(— (29 — 23)),

k=0 Xk

where o is the signed squared geodesic distance (??), and where uy 4 are the Hadamard coefficients
defined recursively by formula (??) starting from ug defined by (??). Here, ) : R — R is a compactly
supported smooth function and {ay }ren is a sequence of real number which are introduced to ensure the
convergence of the series in case (M, g) is not a real analytic space-time. More precisely, v is chosen such
that ¢ (z) = 1 for |z| < 1/2 and ¢ (z) = 0 for |z| > 1 and, for increasing k, a; tends to zero sufficiently
fast such that the series converges in the sense of [? , lemma 2.4.2].

For any k, the function uy 4(s) (71, 22) is jointly smooth in s, 21,25 as can be proved by induction on &
using the recursive definition (?7?). The wave-front sets of the distributions §(o (21, z2)), 0(—(z§ — 23))
and 0(—o(x1,x2)) can be explicitly computed, and, using the wave-front set calculus (thm. ??), it follows
that H (’;‘( s)(xh x9) satisfies the following wave-front set condition:

WF(HJ)(21,22)) € R x {0} x C*p2.

To conclude the proof, it is sufficient to prove that dys)(z1,x2) is jointly smooth in s, 1, 2. First, we
note that by construction

T Al T A2
Py ddg onme) = G n,wa), Pl (e, 2) = G (@, 22).

The remainders G2(1,2) can be calculated explicitly (see [? , lemma 2.4.3]) and, furthermore, one can
show that the Gﬁ((sl)’z) (z,y) are jointly smooth in s, z,y.

We are free to choose U sufficiently small such that U € U’ for another normal convex set U’ and such
that there must be two Cauchy surfaces 3, and 3 which satisfy X4 nU’ # Fand S nJF(U) = &J. We
consider a cut-off function y € C§*(M) such that x(M) c [0,1], x =1in U, and ¥4+ n J¥(suppx) = &.
In this set-up, consider the advanced propagator E)ib(-)’ the advanced Hadamard parametrix H >1<4¢(-)’ the
remainder terms GQ&’)Q) and the difference quS(.) defined in R x U’ x U’ with respect to the operator
Py =0—m? —V"(x¢). These distributions fulfil similar properties of their counterparts E:;‘(_), H;‘(i),

G;l((;’Q) and d;‘(_) (defined in R x U x U) corresponding to Py4. Since x is identically 1 in U, we claim
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that in R x U x U the distributions E;?qs(.) and qus(.) coincide with their counterparts E;‘(.) and H;‘(.).
For E;<4¢(~)’ the claim follows from the uniqueness of the advanced propagator in U x U and the fact
that Py = Py in U. For H ;‘4)(.), the claim is a consequence of the fact that the Hadamard coefficients

U, ¢(21,22) depend on ¢ only along the geodesic connecting x1 and z2, which is contained in U if
x1,x9 € U because U is a convex normal set. It clearly follows that d;‘ () and dq‘?(,) must coincide in
RxUxU.

Next, we proceed arguing similarly as in [? , lemma 6.2]. For any test functions f, f2 supported in U,
we have

dﬁ(S)(fl’fQ) = ngb(s)(fl?fz)
- L_xz_ (EQ¢(s)f1)(Z1)(9_n)df¢(s)(217 22) 0 (B2 () f2) (22)dZ(21)dS(22) —
= G (B s 2) = G (1 By f2) =

—§GX¢ (X¢(s)f1,f2)—§GX¢ (f15 Pyo(s) f2)-

(D.3)

By construction, there must be a neighbourhood of ¥_ sufficiently small such that xy = 0 in this
neighbourhood. Therefore, for z1, x5 sufficiently close to ¥_ the function dA (s )($1,I2) coincides with

d4 (w1, 72), and so it does not depend on s. As we already discussed G, ( )(xl, x2) are jointly smooth
in s, 71, 2. We use the estimate (?7?) for the wave-front set of Ex (S)(:Ul, xg) In particular, we note that
it cannot contain elements (s, z1,x2;p, k1, k2) with k; = 0 or ko = 0. Then, using the wave-front set
calculus (thm. ??) and eq. (?7?), we find that dA (xl,xg) is jointly smooth in s, 1,29, for z1, 29 € U.
Putting together the results we derived for HA and dA , it follows that WF(E:;‘(.)) c R x {0} x Cp2
as we wanted to prove.

A similar argument holds for the retarded product. O

We next want to compute the directional derivative of E;;‘ in ¢ € C*(M) along the direction h €
C*(M), i.e.
d
%E(f—&-eh(fla f2)

e=0

for any fi, fo € C°(M). Because € — ¢ + €h is clearly a smooth function, the estimate. (??) of prop. 77
holds and, thus, we can apply the Leibniz rule for the directional derivative to obtain

d
0= %E:;Jreh(fla Py ienf2)

= <f17 —Pyienfo

d
) + @E:;ﬂh(fh&sfz)
e=0

e=0 e=0

Then, it follows

d
T Even(f1 Pofo)

= —EZ; (fla —Pyyenfo

) — B, iV (0)fa).
e=0

e=0

We would like to replace fs by Ej;‘( f2) in the formula above. However, this cannot be done since the

smooth function Ej;‘( f2) is not compactly supported. To circumvent this issue we choose a partition of
unity {¢,} for M. In detail, we get

d

d
&E(A’;‘FEh(fla f2)

d
= (kE£+eh(f1,P¢E$(f2))‘ I —E4, n(f1, Py Z UnEJ (f2))
0 neN 0

e=0

d
= 2 B anlf1, PobnBL (£2))

= B (f1, hV"($)EL (f2)).

= D EA(F1, WV (9)Un EL(f2))

0

We used the fact that the sum in the equation above contains only a finite number of non-vanishing terms
because E(‘;‘Hh(fl, P¢wnE£(f2)) vanishes if supp,, does not intersect the compact set J~(supp f2) n
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JT(supp f1). Summing up we have proved that

SEA (x4,
%E‘fﬁh(ﬁ’ f2) = JMS h(y) 621, 2] f1(x1) fo(w2)dydzydas,

do(y)

e=0

where
5E£ (1‘17 1‘2)

do(y)

which is a well-defined distribution in D’(M?3). Since V is a compactly supported functional, it follows
that the distribution 6 B4 (1, 22)/0¢(y) is compactly supported in y. An analogous result (with A < R)
holds for the retarded propagator.

From the estimate (??) and the wave-front set calculus (thm. ??), it follows that

1= B (21,9)V"(9) () Ef (y, x2) (D.4)

6EA/R(.T1,.’1?2) 5EA/€R(:C17I2)
WF (‘W c Xo41, WF % c R x {0} x Xo41,

where the set X5, is defined by (??), where R 3 € — ¢(¢) € C*(M) is a smooth map, and where
5E$(/§(:z:1, x2)/0¢(y) is viewed as a distribution in the variables €, z1, z2,y.

We can compute Gateaux derivatives of higher orders by simply distributing the variational derivatives
onto each factor appearing on the right-hand side of eq. (??). Again from the support properties of the
interaction V and the wave-front set calculus (thm. ??) we obtain the following results:

Proposition 88. For any ¢ € C* (M), and for any v € N, the v-th Gateaux derivative

5VE$/R(.’E1, 1’2)
6d(y1) ... 09(yv)

is a well-defined distribution which satisfies the following properties:

1. The distribution 6”E$/R(x1, 22)/06(y1) - .. 6¢(y,) is compactly supported in yi,...,y,t.

v EA R (4,
WF (‘M) C Xoir, (D.5)

2. It holds

where X, is defined by (?7).

3. Let R 3 € — ¢(€) € C*(M) be smooth and view (5"E2(/§(;U1,x2)/5¢(y1) - 00(y,) as a distribution
in R x M2V, It holds

(5VE;54(/:)%(£E171'2)

WE 5600) - s0(u)

c R x {0} x Xo,,. (D.6)

Mt V(g) =Sy ﬁ)\(x)¢>4(x)d:p for X € C37(M), it holds that yi,...,y, must belong to supp A.
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List of symbols

S Smooth solutions to the non-linear Klein-Gordon equation. Page 39

T4S Tangent space of S at ¢ € S, i.e. the space smooth solutions to the linearised equation around ¢.
Page 41

P4 Klein-Gordon type operator for the linearised equation around ¢. Page 42

{,‘VT;‘S The (completion of the) n-fold tensor product of the cotangent space T(;“S at the solution ¢ € S.
Page 42

Ely (M™) Compactly supported distributions on M"™ with wave-front sets contained in the set W,,. Page
24

Wy The formal Wick algebra at the solution ¢ € S. Page 56
W, Set related to wave-front set estimates. Page 24
Xo4, Set related to wave-front set estimates. Page 46

Za+1, Set related to wave-front set estimate. Page 61

Cyi(S) On-shell W-smooth functionals. Page 41

Cy (S, &I, T*S) On-shell W-smooth covariant sections of rank n. Page 46

2

Ciy

Qw

(
(
¥-(S) On-shell W-smooth k-forms. Page 46
( ) On-shell W-smooth sections in the formal Wick algebra bundle W. Page 56
(

S, W
S, W) On-shell W-smooth form with values in the formal Wick algebra W. Page 56

we Pure Hadamard 2-point function associated to the Klein-Gordon type operator Py. Page 28
wk Retarded 2-point function. Page 34
E4 Causal propagator associated to the Klein-Gordon type operator Py. Page 43

0. Distributional kernel for the standard symplectic form associated to linear Klein-Gordon-type equa-
tions. Page 43

wgﬁ On-shell W-smooth Kéhler structure on S corresponding to an admissible assignment ¢ — wy of
2-point function. Page 58

o4 On-shell W-smooth symplectic structure on S. Page 57
G4 Symmetric part of the pure Hadamard 2-point function wg. Page 58

Hy Hadamard parametrix with respect to the Klein-Gorndon type operator P,;. Page 97

0 Derivative operator acting on on-shell W-smooth covariant sections. Page 50

(t e s)g Wick product on sections in Cyj; (S, W). Page 66
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VW W-covariant derivative (in the sense of def. 77) corresponding to the Levi-Civita connection. Page
71

VW W-covariant derivative (in the sense of def. ??) corresponding to the Yano connection. Page 80
0 Fedosov operator on on-shell W-smooth forms. Page 81

5~ “Inverse” Fedosov operator on on-shell W-smooth forms. Page 81

DY Fedosov connection on on-shell W-smooth forms. Page 83

VE Retarded derivative. Page 37

F Quantum observable corresponding to F' defined via Haag’s formula. Page 36

a Isomorphism C; (S, W') — C (S, W). Page 89

P* Symmetrization/Antisymmetrization operator. Pages 24, 50
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