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Abstract:

Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the
Poisson algebra associated with a �nite-dimensional symplectic manifold (�phase space�). His algorithm
gives a non-commutative, but associative, product (a so-called �star-product�) between smooth phase
space functions parameterized by Planck's constant ~, which is treated as a deformation parameter.
In the limit as ~ goes to zero, the star product commutator goes to ~ times the Poisson bracket, so
in this sense his method provides a quantization of the algebra of classical observables. In this work,
a generalization of Fedosov's method is developed which applies to the in�nite-dimensional symplectic
�manifolds� that occur in Lagrangian �eld theories. We show that the procedure remains mathematically
well-de�ned, and we explain the relationship of the method to more standard perturbative quantization
schemes in quantum �eld theory.
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Introduction

It is well known that the quantization of classical systems is, in many cases, not a straightforward pro-
cedure, and, furthermore, usually su�ers from certain ambiguities. In the case of a mechanical system
de�ned on a �nite-dimensional phase space spanned by coordinates pq, pq, one usually proceeds by rep-
resenting the quantum operators corresponding to q and p by the multiplication and the di�erential
operators Q � q and P � i~B{Bq. It arises the problem of how to consistently assign a quantum operator
to a general phase space function fpq, pq because the quantum operators no longer commute. In practice,
one typically deals only with a restricted class of phase space functions such as the Hamiltonian (often

of the form Hpq, pq � p2

2m � V pqq) su�ering only from mild �if any� ordering ambiguities. However, this
is an issue for general phase space functions.

It is, of course, legitimate to take the viewpoint that the quantum observables are simply the (self-
adjoint) elements of the algebra generated by pQ,P q, (the CCR, Weyl, or resolvent [? ] �-algebras,
depending on the precise framework) and that one can worry about the classical limit later. However,
this procedure only works for simple (linear) phase spaces, and problems also occur when one passes to
in�nite-dimensional phase spaces, such as for Klein-Gordon, or gauge theory, especially in versions of
such theories exhibiting self-interactions.
At some level, these problems can be ascribed to �Haag's theorem� [? ], which states that the repre-
sentation of the canonical commutation relations (CCR) is no longer unique in the in�nite-dimensional
setting1. Instead, the determination of the representation is, in a sense, a dynamical problem which
must be solved as part of the construction of the quantum theory. One manifestation of these issues
is the appearance of the well-known �renormalization� procedures in quantum �eld theory, which seem
unavoidable if one wants to give proper mathematical sense to the naive quantization procedures extrap-
olated from �nite-dimensional quantum mechanical systems (with linear phase space).

An alternative approach to quantization which is both somewhat more general than that sketched
above and well-adapted to quantum �eld theory �as we shall see� is �deformation quantization�. As
before, the input is a �nite-dimensional phase space S equipped with a Poisson bracket tf, gu between
phase space functions f, g. However, rather than trying to promote these to operators in some way or
other, one tries to �deform� the algebraic structure on space of phase space functions C8pSq in such a
way that the Poisson bracket is recovered in the limit ~Ñ 0. More precisely, one looks for an associative
product �~ (called �star product� in this context) on C8pSq depending on Planck's constant, which is
now considered as a deformation parameter2. To have a correspondence with the Poisson bracket, one
postulates that pf �~ g� g �~ fq{~Ñ tf, gu and that f �~ g Ñ fg as ~Ñ 0. Since the underlying space of
functions, C8pSq, is unchanged, the ordering problem seems to have disappeared at �rst glance. On the
other hand, the precise de�nition of the product �~ is now no longer evident, and one has in fact many
possible ways to de�ne �~ consistent with these requirements. Thus, one can say that the ambiguities
have simply been shifted into the precise de�nition of the associative structure on C8pSq, and one might
be tempted to conclude that not much has been gained after all.

This impression is, however, incorrect. Firstly, the framework of deformation quantization is more
general than the usual one, since one does not assume, even, the existence of an underlying symplectic
structure σ on S (i.e., closed, non-degenerate 2-form), but only a Poisson structure, and one certainly

1The Stone-von Neumann theorem [? ? ] no longer holds.
2Often ~ is treated as a �formal parameter� in the sense that the objects considered are formal series in ~, i.e. ~ does

not take any numerical value. Questions of the convergence of the series are thereby avoided/ignored.
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does not have to assume that S is a linear space with constant symplectic structure σ � dqi ^ dpi as for
the CCR-algebra.
Also, the framework is naturally embedded into the algebraic framework of deformations of algebras,
for which natural notions of equivalence are available. Indeed, considering �as seems perfectly natural�
di�erent deformations to be equivalent if they lead to isomorphic algebras, one gets a classi�cation of
non-equivalent star products in terms of certain cohomological data on pS, σq [? ? ? ? ? ? ? ? ].
Furthermore, as we shall review, there exist very natural geometrical constructions of star products that
are not only very appealing from the mathematical viewpoint, but also give new insights into the nature
of the quantization problem. Finally, and most importantly for us, deformation quantization seems also
to be very well-adapted to the �eld theoretic setting, i.e. to the quantization of �eld theories.
The connection between quantum �eld theory and deformation quantization was investigated for the �rst
time by Dito [? ? ] and, in the algebraic approach to quantum �eld theory, has been made transparent
in the paper [? ] by Dütsch and Fredenhagen. The essence of their paper is the observation that
the Wick-product in free quantum �eld theory (e.g. Klein-Gordon theory) can be viewed as a certain
special kind of star product on the space of classical functionals on phase space. More precisely, the
authors suggest to view the Klein-Gordon �eld ϕpxq, x P R4, as an �evaluation functional� on phase
space S � tclassical smooth solutions to p��m2qu � 0u, de�ned by ϕpxqrus � upxq. They observe that
S carries a natural Poisson structure. This structure is inherited from the Lagrangian formulation of the
theory and is sometimes also called �Peierls-bracket� [? ]. They then proceed by de�ning a star product,
setting

ϕpx1q �~ ϕpx2q � ϕpx1qϕpx2q � ~ωpx1, x2q1, (1)

where the product ϕpx1qϕpx2q is the usual product of evaluation functionals, i.e. ϕpx1qϕpx2qrus �
upx1qupx2q, and where ω is the so-called �Wightman function� (vacuum 2-point function) of the Klein-
Gordon �eld, i.e.

ωpx, yq �
1

p2πq2

»
V
�
δ4pp2 �m2q exppipµpx� yqµqdp

As they continue to show, this de�nes consistently a star product on the space of (polynomial) evaluation
functionals on S, which are more precisely functions F : S Ñ C of the form

F �

»
Mn

fpx1, . . . , xnqϕpx1q . . . ϕpxnqdx1 . . . dxn, (2)

where f can even be a distribution with certain well-described singularities such as a delta distribution.
The above procedure looks unfamiliar to a �eld theorist at �rst sight, but becomes natural if we observe
that the product rule is precisely �Wick's theorem� if we formally identify

ϕpx1q . . . ϕpxnq Ø: ϕ̂px1q . . . ϕ̂pxnq :,

where the hat denotes the usual �eld operator on Fock-space, and where the double dots : � � � : mean
normal ordering. In fact, this correspondence precisely de�nes a Hilbert-space representation of the
associative algebra W, generated by these F 's under the star product.

Apart from clarifying the connection between �ordinary� quantization using Fock-space methods and
deformation quantization, the construction of [? ] has several advantages. First of all, the resulting
algebra W is, as an abstract algebra, independent of any choices such as a vacuum state. Indeed, the
only datum entering the construction is ω, and it is shown that passing to a new ω1 within a certain
natural class (�Hadamard states�, see def. ?? below), yields an isomorphic algebra W 1. This is a strong
conceptual advantage if one wants to consider a Klein-Gordon �eld on a general Lorentzian manifold M ,
where no preferred structures such as a vacuum state are available [? ? ? ? ? ].
Another advantage of the formalism is that, within W, there are contained not only observables such as
ϕpxq, but also the Wick powers ϕpxqk and their �time-ordered products�. These in turn are the building
blocks of the usual perturbative series for a corresponding interacting quantum �eld theory.
The authors of [? ] indeed go on to explain in detail how such series are constructed within W using the
methods of �causal perturbation theory� [? ? ? ? ] (based on earlier ideas by Epstein and Glaser [? ])
on Minkowski space. It turns out that these constructions can also be generalized to a general globally
hyperbolic curved Lorentzian manifold M [? ? ? ? ? ].
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Even though the constructions of [? ? ? ? ? ? ? ? ? ? ] (for reviews see [? ? ? ]) are
mathematically clear and rigorous, a conceptually unsatisfactory aspect remains. The point is that,
although the construction precisely follows the philosophy of deformation quantization in the case of
linear �eld theories, one deviates from it in the case of interacting theories. Indeed, what one con-
structs are perturbative series in W for the observables in the interacting theory, but the star prod-
uct �~ remains that given by eq. (??) for the underlying free theory. On the other hand, according
to the philosophy of deformation quantization, it would be more natural to keep the observables un-
changed, but rather deform the underlying star product now taking also into account the self-interaction
of the �eld. According to this approach, one would hence start more naturally with the �phase space�
S � tclassical smooth solutions to p� � m2qφ � λ

3!φ
3 � 0u of the theory with interactions encoded in

the non-linear term λ
3!φ

3. As for λ � 0, this space carries a natural symplectic structure, hence Poisson
bracket, inherited from the underlying Lagrangian formulation. The task would then be to deform this
Poisson bracket according to the general rules for deformation quantization. This star product would
certainly not be the same as for the free theory (??), but how to construct it? Also, once it has been
constructed, what is the relation to the construction of [? ? ? ? ? ? ? ? ? ? ]?

In this work, we address and answer these two questions. In order to do so, we go back to the
case of a �nite-dimensional symplectic manifold pS, σq and review how one can construct a deforma-
tion quantization there. The method which we will follow is that pioneered by Fedosov [? ? ]
and elaborated upon by many other people [? ? ? ? ]. Our main result will be that a vari-
ant of his method can also be applied in the in�nite-dimensional setting of �eld theory, i.e. to S �
tclassical smooth solutions to p��m2qφ� λ

3!φ
3 � 0u, and we will be able to say how this construction

relates to that via causal perturbation theory of [? ? ? ? ? ? ? ? ? ? ]. In order to explain our
methods and results in more detail, we must however �rst outline the essential ideas of Fedosov's method
in �nite dimensions (a more detailed outline is given for the convenience of the reader in chapter ??).

We start considering as phase space a �nite-dimensional symplectic manifold pS, σq. We denote
phase space points by x. Fedosov's method can be explained as follows. Choose an arbitrary but �xed
x. The cotangent space V �

x � T�x S with symplectic form σx clearly is a linear phase space (of dimension
n � dimpSq) with constant symplectic form. For polynomial functions F pyq, Hpyq on this linear phase
space V �

x �not on S�, one de�nes a star product by

F 
x H � m
�
expp~ωijx Byi b Byj qpF bHq

�
, (3)

or equivalently by
yi 
x y

j � yiyj � ~ωijx ,

where yi, i � 1, . . . , n are coordinates on V �
x �not S� and where ωijx is a complex tensor such that its

imaginary part is the symplectic form σijx on V �
x and its real part Gijx is a positive de�nite (real) inner

product on V �
x . The choice is made in such a way that pJxqij � Gikx pσxqkj is a complex structure on

V �
x . The product 
x can be extended to formal power series F pyq, Hpyq, i.e. roughly speaking we allow

polynomials in y1, . . . , yn of in�nite degree3. The algebra of formal power series F pyq on V �
x with product


x is denoted by Wx. We may repeat this construction for any other point x if we provide such an ωx
at each point of S, i.e. if S is equipped with an almost-Kähler structure (the section x ÞÑ ωx is called
almost-Kähler section), and thereby get an algebra Wx for all x P S. The union of these algebras de�nes
a bundle over S, and the product in each �bre evidently gives a product between the sections of this
bundle.
The next step in the scheme is to de�ne a �at derivative operator D in this bundle. The derivative oper-
ator is constructed order by order in ~. Its zeroth order (in ~) part is the natural geometric connection
∇ associated with the almost-Kähler structure ω, and the higher order corrections can be constructed
recursively. They depend on the yi, the curvature tensor Rijkl, the torsion tensor T ijk and an increasing
number of covariant derivatives of theses two tensors.
The �at sections inW relative to D form a sub algebra of all sections. Furthermore, it is seen that for any
smooth phase space function f on S, there exists a corresponding smooth �at section F in W such that

3More rigorously, for n � 1 the ring of formal power series Crry1ss is the direct product CN, i.e. the sequences pa0, a1, . . . q
with possibly in�nitely many non-vanishing elements (conventionally written also as

°
n¤0 any

n), equipped with the ring
structure panqnPN � pbnqnPN � pan � bnqnPN and panqnPNpbnqnPN � p

°
k¤n an�kbkqnPN. See eg. [? ].

3



Fx � fpxq1�Op~q for each x P S. If we denote by τ the projection of F onto its part proportional to the
section 1, then we can also characterize the relation between F and f by τF � f . The correspondence
f Ø F is in fact one-to-one.
The desired star product on C8pSq is now de�ned as follows. For f, h P C8pSq, �rst �nd the �at sec-
tions F,H ofW under this correspondence, then form F 
H via the �berwise product (??), then project
F 
H onto the part proportional to the section 1, i.e. acting with the map τ . The projection is a for-
mal power series in ~ with functions on S as coe�cients. This provides the star product f �h :� τpF 
Hq.

We have presented Fedosov's method in such a way that the analogies to �eld theory suggest them-
selves: in �eld theory, S is the space of solutions of the theory, i.e. a �point� φ P S is a (smooth)
solution to p� �m2qφ � λ

3!φ
3 � 0. TφS is the space of solutions of the linearized equations around φ,

i.e. solutions u to p��m2 � λ
2φ

2qu � 0. T�φ S is the space of linear functionals from linearized solutions
to R, e.g. functionals ϕpxq of the form ϕpxqrus � upxq, or more generally functions F of the form (??).
The �berwise product 
 corresponds to (??), where ωφ is now a chosen 2-point function in for each φ
for the linear Klein-Gordon theory described by the equation p��m2 � λ

2φ
2qu � 0. The functions F of

the form (??) together with the product 
φ de�ne an algebra Wφ, and the union of these �bres forms a
bundle W over S, just as in the �nite-dimensional case. Thus, we are in principle set to start Fedosov's
construction in the �eld theory setting.

However, it is far from evident that this will make any actual mathematical sense. Obvious potential
problems that come to mind are:

1. The �manifold� S is clearly in�nite-dimensional in the �eld theory setting. Thus, we need to �rst
de�ne a suitable manifold structure on S, which will depend on the behaviour of solutions to the
non-linear Klein-Gordon equation. As is well-known, even if this can be achieved, we are left with
the task of giving a precise meaning to bundles like pT�Sqbn entering the recursion procedure
in Fedosov's method. In the in�nite-dimensional case, such tensor products could have a priori
di�erent meanings. For instance, they could mean various distribution spaces in n space-time
variables. Experience from ordinary perturbative quantum �eld theory suggests that very singular
distributions should be expected to occur.

2. We need to show that the recursion procedure in Fedosov's method, which involves taking an
increasing number of �derivatives� along S, can be carried through. In the in�nite-dimensional
setting, index contractions such as in σsiRijklRjmnrGjmGknylyr dxs (a typical example of a W-
valued 1-form appearing in the construction of D) would formally become �integrals� over space-
time (�continuous index summation�). Such integrals of distributions have no a priori reason to
make any sense.

3. Even if the above problems can be solved, it is a priori highly unclear what would be the relation
of the quantization scheme to more standard methods.

4. In quantum �eld theory, there is a well-de�ned notion of space-time locality (�Einstein causality�)
meaning that quantum �eld observables localized at space-like related regions should commute.
For the free �eld theory with product (1), this property is evident because ωpx, yq � ωpy, xq if x, y
are space-like to each other. However, if we follow Fedosov's algorithm in the context of interacting
quantum �eld theories � assuming even this can be done � there is no guarantee that space-time
locality will hold. Indeed, there is no analogue of space-time locality in �nite-dimensional systems,
hence this property is very far from being manifest in the quantum �eld theory generalization of
Fedosov's method.

In this work, we propose a possible solution to these issues. We proceed in the following manner:

1. We propose a notion of smoothness for functions on S (or more generally, for sections in the bundle
W Ñ S), which we call �on-shell W -smoothness�. This notion encapsulates the following ideas.
First of all, a function on S (or section in W) should be extendible to a function (or section)
on the space C8pMq, i.e. it should not only be de�ned for smooth solutions φ of the non-linear
Klein-Gordon equation, but also for arbitrary smooth functions φ. Of course, there could be many
extensions of a given function (or section) on S. We require that there exists an extension such that
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for any ν P N the ν-th Gateaux derivative (i.e. the variational derivative in φ) of the extension not
only exists, but de�nes a distribution on Mn with a certain restricted �wave-front set�. In the case
of sections in W, we also require the extension to have a speci�c form. The terminology �on-shell�
refers to the fact that it is made for functions (or sections) on the solution space S, and the letter
`W ' is used throughout this work for a sequence of sets tWnunPN, where Wn is in the cotangent
bundle T�Mn, appearing in the wave front condition.

2. It turns out that the notion of on-shell W smoothness has the desired properties for our purposes:
We can show that it behaves well under the products 
, and derivatives. In particular, we can
show that the in�nite-dimensional analogues of the curvature tensors Rijkl, the torsion tensor
T ijk, and their covariant derivatives are on-shell W -smooth (for a suitable choice of the �tensor�
ω on S). Using such results, we can show furthermore that these properties su�ce to construct
the in�nite-dimensional analogue of the �at Fedosov connection D order by order in ~, and that
this connection maps on-shell W -smooth sections into on-shell W -smooth sections. The methods
of microlocal analysis give a convenient calculus for the wave front set of the various distributions
that come up in this construction and are instrumental in demonstrating these results.

3. We then show that di�erent (suitable) choices ω, ω1 give �gauge equivalent� Fedosov connections
D,D1 on the bundles W,W 1. This result will enable us to see how Fedosov's method in quantum
�eld theory is related to more standard methods of quantization. The method which can be
compared most easily with Fedosov's method is that of �causal perturbation theory� [? ? ? ?
? ]. In this method, one constructs, for each classical (local, polynomial function) F pφq on S
a corresponding quantum observable. This observable is de�ned separately for each φ P S and
is denoted by F̂φ. Here, the notation re�ects a splitting of the quantum �eld into a �classical
background� φ P S and a �quantum �uctuation� ϕ. The quantity F̂φ is an element of Wφ, and is
constructed by a perturbation series involving retarded products of the interaction. This interaction
is obtained by expanding the Lagrangian Lpφ� ϕq in ϕ keeping only the part that is higher than
quadratic in the ��uctuation�, ϕ, which is treated �as an operator�. In λφ4-theory, this would
be Vφpϕq � p λ3!φϕ

3 � 1
4!ϕ

4q. In the simplest case when the classical observable is the �eld itself,
F pφq � φ, the corresponding quantum observable would be given by

φ̂pxq � φpxq1� ϕpxq �
¸
n¥1

piλqn

~nn!

»
dy1 . . . dynRn,φpϕpxq,Vφpy1q b � � � b Vφpynqqloooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

perturbation series

. (4)

A precise de�nition of meaning of the terms in the perturbation series (�Retarded products� Rn,φ)
is recalled in sec. ??.
It is possible to show with our methods that the map φ ÞÑ F̂φ is, in fact, an on-shell W -smooth
section in W. The �rst guess might be that this section is �at with respect to the Fedosov connec-
tion D, but this turns out to be not the case. However, we shall show that it is �gauge equivalent�
in a natural sense to a �at section in W. We therefore obtain two di�erent algebras of �at sections
with respect to the Fedosov connection D: one consists of the �at sections obtained via the corre-
spondence τ in Fedosov's method, while the other is generated by the �at sections obtained acting
with the �gauge equivalence� on any possible F̂ .

4. The �at sections of the type (??) appearing in causal perturbation theory are known to satisfy
Einstein causality [? ]. It follows that the corresponding �at sections relative to a general Fedosov
operator D related via �gauge equivalence� also respect Einstein causality, as gauge equivalence
respects the product structure 
.

The approaches to the quantization of �eld theories described and compared in this work are not
the only possible ones. Another possibility is to take as the fundamental input the so-called operator
product expansion (OPE) [? ? ? ? ? ]. (This framework seems to work best in the context of Euclidean
quantum �eld theories, i.e. versions of the theory on a Riemannian manifold). In this approach, the
�product� is encoded in a set of �structure functions�. More precisely, the OPE is an expansion of the
form

OA1px1q � � �OAnpxnq �
¸
C

CCA1,...,Anpx1, . . . , xnqOCpxnq,
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where the OA for a �basis� of local functionals of the basic �eld (i.e. they are monomials in φ, Bφ, B2φ, . . .
in the present setting). The meaning of the sum and the equality is that both sides should be equal when
inserted into a suitable correlation function of the Euclidean theory, see [? ? ? ] for more details and
explanations. �Associativity� is encoded in a set of highly non-trivial consistency conditions between the
coe�cient functions CCA1,...,An

, see [? ? ].
The OPE framework looks rather di�erent at �rst sight from that presented here, where the ultimate
goal is to construct a star-product �~ of the interacting theory, rather than a corresponding set of coe�-
cient functions. Nevertheless, the two approaches are closely related. This becomes more evident if one
expands the OPE coe�cients out in a deformation parameter, which can be ~ (or also other parameters,
such as the coupling, λ, or even 1{N in a theory with N -component �elds transforming e.g. under
OpNq). The di�erent expansion orders in ~ of the OPE coe�cient functions then correspond to the
di�erent expansion orders of the product �~, and so, in a sense, the coe�cients C are to be seen as the
�structure constants� of the product �~, i.e. both approaches are complementary. The OPE approach
seems to be more geared towards Euclidean quantum �eld theory and its advantage is that the algebraic
structure is directly linked to the short distance properties of correlation functions. The methods de-
scribed in this thesis (Fedosov's method, causal perturbation theory) are more naturally geared to the
Lorentzian quantum �eld theories and nicely emphasize the dependence on any classical backgrounds.
Thus, the two methods are, in a sense, complementary. A formal proof of their equivalence would be
highly desirable. This should certainly be possible, since also Euclidean quantum �eld theories have a
Hamiltonian formulation, which is underlying Fedosov's strategy.

For the convenience of the reader, we now summarize the contents of this work.

Chapter ??: We begin this chapter by restating the programme of deformation quantization in sec. ??.
Then, in sec. ??, we outline the variant of Fedosov's method applicable to almost-Kähler manifolds, i.e.
symplectic manifolds pS, σq with an additional almost-complex structure J compatible with the sym-
plectic form. In particular, we present the two fundamental results in this context: there is a unique
Fedosov connection D determined by σ, J (or equivalently, the corresponding almost-Kähler section ω)
and certain auxiliary data (thm. ??), and how the star product corresponding to σ, J is constructed using
the one-to-one correspondence between smooth functions on S and smooth �at sections with respect to
D (thm. ??).
In the last section, sec. ??, we consider for a given symplectic manifold pS, σq two di�erent almost-Kähler
sections ω, ω1 both compatible with the same σ. We give a proof of the equivalence (in the sense of
def. ??) of the star products corresponding to ω and ω1 (for the same choice of auxiliary data). In
particular, we give an explicit construction of the gauge equivalence between the Fedosov connections
corresponding to ω and ω1 (thm. ??).

Chapter ??: In sec. ??, we present the deformation quantization of free Klein-Gordon �eld theory,
following the approach of [? ]. We recall the notion of Hadamard 2-point function (def. ??). Then, we
de�ne the algebra W (def. ??) as the space (??) of sequences of (Crr~ss-valued) compactly supported
symmetric distributions with wave-front set bounded by the sets tWnu de�ned by (??) (modulo distribu-
tions obtained by acting with the Klein-Gordon operator) equipped with the product 
 given by eq. (??)
in terms of a (pure) Hadamard 2-point function ω. This product 
 can be viewed as a star product
for the Poisson structure given by the Peierls bracket (??). We summarize the similarities to Fedosov's
method in Table ??.
In sec. ??, we discuss the interacting Klein-Gordon �eld. We will not directly extend Fedosv's method
to the interacting Klein-Gordon theory yet, but rather we present the approach based on causal per-
turbation theory. The idea is to �x a background φ and expand the classical action of the interacting
Klein-Gordon theory around φ. For each φ, the quadratic part of the expansion gives a linear theory
and, similarly as in the free case, we can construct the algebra Wφ once a (pure) Hadamard 2-point
function ωφ is provided. The higher than quadratic part is treated as the interaction. Then, for any local
functional (def. ??), its corresponding quantum interacting �eld in φ is the element F̂φ P Wφ de�ned
by the Haag series (eq. ??), given in terms of the retarded-products. (This gives the precise structure
of the perturbation series (??).) We recall the axiomatic de�nition of the retarded products ??-?? and
the characterization of their �renormalization ambiguities� (thm. ??). We conclude this section proving
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that the map φ ÞÑ F̂φ which assigns to a background φ the quantum interacting �eld in φ corresponding
to a local functional satis�es a functional equation (eq. (??)), which has a striking similarity with the
�atness condition DF̂ � 0 for the Fedosov connection D in �nite dimensions. This gives the �rst hint
of the relation between Fedosov's method and the causal perturbative approach to interacting quantum
�eld theories.

Chapter ??: In this chapter, we show that Fedosov's procedure can be directly implemented in the
in�nite-dimensional framework of a Klein-Gordon quantum �eld theory with a non-linear equation of
motion. In sec. ??, we de�ne rigorously the in�nite-dimensional manifold S of the smooth solutions to the
λφ4-interacting Klein-Gordon equation on ultra-static space-times exploiting the global well-posedness of
the initial value problem of the corresponding non-linear equation of motions (see app. ??). The tangent
space TφS is de�ned in terms of smooth solutions of the linearized equation around φ. The de�nitions
of the cotangent space T�φ S and its tensor powers bWT�φ S are given in terms of compactly supported
distributions with wave-front set bounded by a set Wn modulo distributions obtained by acting with the
Klein-Gordon operator for the linearized equation of motion around φ (see (??)). We provide the de�-
nition of on-shell W -smoothness for functionals on S (see def. ??) or more general sections on bnWT

�S
(see def. ??). This notion of smoothness is tailored to the choice of the sets tWnunPN and it will be
su�cient to guarantee the well-de�niteness of the tensor product (prop. ??), the di�erential (prop. ??)
and the Poisson bracket (prop. ??) as maps acting on on-shell W -smooth sections which preserve the
on-shellW -smoothness property. We conclude this section de�ning the bundleW, its on-shellW -smooth
sections, C8

W pS,Wq, and the on-shell W -smooth forms with values in W, ΩpS,Wq.
In sec. ??, we provide this geometrical framework with two important on-shell W -smooth sections: the
symplectic form σ (thm. ??) and an almost-Kähler structure ω5 � � 1

2µ�
i
2σ (thm. ??). For the latter,

it is required a tight control on the dependence of the pure Hadamard 2-point function ωφ with respect
to the background φ, which is formalized in the notion of �admissible� assignment φ ÞÑ ωφ (see def. ??).
It is also proved that there exists a non-trivial φ ÞÑ ωφ satisfying such requirements.
In sec. ??, we prove that the product 
φ in each �bre Wφ de�ned in terms of an admissible ωφ preserves
the on-shell W -smoothness and therefore provides an algebra structure 
 for C8

W pS,Wq (prop. ??) and
ΩW pS,Wq (prop. ??).
In sec. ??, we de�ne the in�nite-dimensional analogue ∇W of the Yano connection ∇ in �nite dimension.
∇W is shown to be aW -smooth covariant derivative (in the sense of def. ??) which preserves the sections
σ and µ (prop. ??). Then, we extend ∇W to a derivative operator on ΩpS,Wq (prop. ??).
In sec. ??, after de�ning the Fedosov operators, we prove the in�nite-dimensional analogue of Fedosov's
theorems (thm. ??). In particular, we show that there is a unique Fedosov W -smooth connection DW

corresponding to σ, ω5 and the W -smooth connection ∇W .

Chapter ??: The last chapter is devoted to the relation between the perturbative approach to quan-
tum �eld theory of sec. ?? and Fedosov's method in in�nite-dimensions constructed in chapter ??. In
particular, the aim is to understand eq. (??) in the light of Fedosov quantization. In sec. ??, we prove
that the operator ∇R � x�, δ

δϕy appearing in (??) is precisely the Fedosov connection with respect to
the �retarded 2-point function�, or �in-state�, (thm. ??). We then extend the results obtained in sec. ??
for the �nite-dimensional context to our in�nite-dimensional case. In particular, we prove that the two
Fedosov W -connections corresponding to di�erent choices of 2-point functions as in lemma ?? are gauge
equivalent (thm. ??). We then conclude that the map φ ÞÑ F̂φ, which is an on-shell W -smooth section
(as proved in sec. ??), is gauge equivalent to a �at section with respect the Fedosov connection corre-
sponding to any admissible assignment of (pure Hadamard) 2-point functions (in the sense of def. ??).
Finally, we check that �at sections obtained by acting with the gauge equivalence on F̂ satisfy Einstein
causality (prop. ??). In this sense, Fedosov's method respects Einstein Causality.
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Chapter 1

Fedosov deformation quantization of

�nite-dimensional manifolds

1.1 Deformation quantization

There are several possible approaches to the quantization of a classical system. Among these, we fo-
cus in this work on deformation quantization. This approach was introduced in the form used here by
Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [? ? ? ], although antecedents can be found in
earlier investigations e.g. by Weyl [? ] and Moyal [? ]. In these papers, quantization is considered
as a deformation of the structure of the algebra of classical observables, rather than as a change in the
nature of the observables themselves. Thus, mathematically, the approach has a close relationship to the
theory of deformations of algebraic structures as described e.g. by Gerstenhaber in [? ]. For a summary
of the general approach, we refer to [? ] and the references therein. The basic set-up of deformation
quantization is as follows.

The input is a �nite-dimensional Poisson manifold pS, t�, �uq, which is a manifold S equipped with a
bilinear, skew-symmetric map t�, �u : C8pSq � C8pSq Ñ C8pSq satisfying the Jacobi identity and the
Leibniz rule with respect to the pointwise multiplication of functions, i.e.

ttf, gu, hu � cyclic permutations � 0, tf, ghu � tf, guh� tf, hug.

By C8pSqrr~ss one denotes the space of formal power series in ~ whose coe�cients are smooth complex
valued functions, i.e. each element can be written as

fpx, ~q �
¸
k¥0

~kfkpxq,

with coe�cients fkpxq P C8pSq. The formal power series form a ring: such series are added and multiplied
in the usual way (as if they were converging power series) but we ignore questions of convergence not
assuming that ~ takes any numerical value. Deformation quantization consists in providing an associative
algebra structure on C8pSqrr~ss, a so-called star-product �, which satis�es the following conditions:

1. For any f, h P C8pSq, it holds

f � h �
¸
k¥0

~kCkpf, hq, (1.1)

where Ck are C-bilinear (di�erential) operators on C8pSq. Eq. (??) extends Crr~ss-linearly to
C8pSqrr~ss.

2. The algebra C8pSqrr~ss equipped with the star-product � is a formal deformation of the commu-
tative algebra of functions C8pSq equipped with the pointwise multiplication, i.e. C0pf, hq � fh.

3. The product � satis�es the correspondence principle, i.e. C1pf, hq � C1ph, fq � itf, hu.

9



In the this chapter we consider a special case of Poisson manifolds. We focus on symplectic manifolds.
A symplectic manifold pS, σq is an even dimensional manifold S with a 2-form σ � σijdx

i ^ dxj , called
symplectic form, that is non-degenerate, i.e. v � 0 if and only if σpv, v1q � 0 for any vector �eld v1, and
closed, i.e. dσ � 0. Such a 2-form induces a Poisson bracket according to the usual rules of Hamiltonian
mechanics: if E :� σijBi ^ Bj is the inverse of the symplectic form, one sets tf, hu :� Epdf, dhq.
The existence of a deformation quantization for �nite-dimensional symplectic manifolds was established
by De Wilde and Lecomte [? ]. Later these results were conceptualized by Omori, Maeda, Yoshioka [? ]
and, in particular, by Fedosov [? ? ]. In this chapter, we will follow a variant of Fedosov's construction
which has the advantage that it can be generalized to quantum �eld theories as will be discussed in later
sections. As an aside, it is worth mentioning that the existence of a deformation quantization for the
more general case of �nite-dimensional Poisson manifolds was proved by Kontsevich [? ], but this work
is not relevant for us here, since we will always be given a symplectic form.

1.2 Fedosov's method

The Fedosov's method, as described in his original paper [? ], only requires as input a symplectic
structure σ. In our application of the method to quantum �eld theory, it will be necessary to consider a
variant of his method, described by Karabegov and Schlichenmaier in [? ]. This variant uses as input a
positive semide�nite section ω � ωijBi b Bj of Cb TS b TS such that

Imωij �
1

2
σij , Reωij �

1

2
Gij , (1.2)

where G � GijBi b Bj is the inverse of a Riemannian metric µ � Gijdx
i b dxj on S. In other words,

ω �
1

2
G�

i

2
E,

where E � σijBi ^ Bj is the inverse of the symplectic form σ. Positive semide�nite means that for an
arbitrary section t of Cb T�S we have

ωpt̄, tq ¥ 0. (1.3)

This condition is equivalent to a Cauchy-Schwarz-type inequality for G and E, i.e.

|Ept1, t2q| ¤ pGpt1, t1qGpt2, t2qq
1{2

, (1.4)

for any pair t1, t2 of real valued sections of T�S. As we will discuss extensively later, the tensor �eld
ω can be interpreted as the �nite-dimensional analogue of a 2-point function of a quasi-free state in the
quantum �eld theory setting. We assume also that ω de�nes an almost-complex structure compatible
with the symplectic form σ, i.e. there exists a section J : TS Ñ TS such that

J2 � �id, σpJv, Jwq � σpv, wq, µpv, wq � σpJv,wq.

In local coordinates, the almost-complex structure is given by

J ij � Gi`σ`j � �σi`G`j .

In other words, we assume that S is an almost-Kähler manifold and we call such ω an almost-Kähler-
section. As we will see, this condition will correspond to ω being pure in quantum �eld theory setting.
Of course, for a given σ, there are many such corresponding ω's. These ambiguities are discussed in
sec. ?? below.
Note that ω corresponds to the hermitian form ω5 on Cb T�S b T�S given by

ω5 :� �σikω
k`σ`jdx

i b dxj �
1

2
µ�

i

2
σ, (1.5)

and conditions (??) and (??) imply

ω5pū, uq ¥ 0, |σpu1, u2q| ¤ pµpu1, u1qµpu2, u2qq
1{2

,

for any section u of Cb TS, and for any pair u1, u2 of real valued sections of TS.

The basic example is S � R2d with constant almost-Kähler structure. In this case, the desired
deformation quantization, denoted by � � 
 from now on, is elementary to describe.
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Remark 1 (basic example). Assume that S � R2d and that σ is the standard constant symplectic
form, i.e.

pσijq �

�������
0 1 . . . 0 0
�1 0 . . . 0 0
...

...
...

...
0 0 . . . 0 1
0 0 . . . �1 0

������

in a suitable basis. Let ωij be any constant complex hermitian matrix with the properties just described,
for instance ωij � 1

2G
ij � i

2σ
ij with

pGijq �

�������
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0
0 0 . . . 0 1

������
.
We de�ne the star product � � 
 by

f 
 h :� m
�
expp~ωijBi b Bjqpf b hq

�
, (1.6)

where m is the pointwise multiplication, mpf, hq � fh, and where the exponential is understood in the
sense of formal power series.

The construction above will serve as a model for the case of general almost-Kähler manifolds. For
this purpose, we �rst reformulate the construction. For Fedosov's method, we actually need the above
star product not for general smooth functions on S � R2d, but in fact only for formal power series in 2d
coordinates,

Crry1, . . . , y2dss � Cb
à
n¥0

_nR2d,

where
À

denotes the direct product, and where _n denote the symmetrized n-fold tensor product. As
usual in formal deformation quantization, the complex coe�cients are then further promoted to power
series in the formal parameter ~.

De�nition 1. The formal Wick algebra W �WpR2d, ωq is the vector space

Crry1, . . . , y2dssrr~ss � Crr~ss b
à
n¥0

_nR2d (1.7)

equipped with the star-product 
 de�ned by eq. (??). More explicitly, for the monomials t � ti1...iny
i1 � � � yin

and s � si1...imy
i1 � � � yim , the component of t 
 s in Crr~ss b _jR2d is given by

pt 
 sqj �

� ~k
n!m!

k!pn� kq!pm� kq!
t`1...`ki1,...in�ks`11...`1k,in�k�1,...ijω

`1`
1
1 � � �ω`k`

1
kyi1 � � � yin�kyin�k�1 � � � yij

(1.8)

if j � n�m� 2k for k ¤ n,m, otherwise pt 
 sqj � 0.

It is useful and natural in the context of def. ?? to introduce two gradings, called the symmetric degree
degs and the formal degree deg~. They are de�ned by

degspy
iq :� 1, deg~p~q :� 1,

and extended to W in the natural way. We de�ne also the total degree Deg :� 2 deg~� degs.

Remark 2. The product 
 preserves the total degree Deg and therefore we can �ltrate the formal Wick
algebra W with respect to the total degree Deg. It follows that if we decompose t
s in terms homogeneous
in Deg, then each of these terms is a �nite sum of products of components of t, s homogeneous in Deg with
degree not greater than k. Note that each element in the formal Wick algebra W which is homogeneous
in Deg is a �nite sum of elements homogeneous in degs and deg~. Therefore, each of these products of
components of t, s homogeneous in Deg further decomposes into a �nite sum of terms as in eq. (??), for
some appropriate components of t, s homogeneous in degs, deg~.
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In addition to the product 
, the algebra W has a natural involutive, anti-linear, �-operation, which
we denote by :1. For the monomial t � ti1...i`y

i1 � � � yi` P Crry1, . . . , y2dssrr~ss, it is de�ned by

t: :� ti1...i`y
i1 � � � yi` ,

where the overbar denotes complex conjugation. Note that each yi is by de�nition hermitian with respect
to :. It is easy to check that the operation : satis�es

pt 
 sq: � s: 
 t:,

as required.

We now review Fedosov's method, as adapted to almost-Kähler manifolds in the work of Karabegov
and Schlichenmaier [? ]. As in the original approach by Fedosov, there are three main steps:

1. For each x P S, de�ne the so-called formal Wick polynomial �-algebra pWx, 
xq (associated with
ωx) for the cotangent space T�x S. This de�nes a bundle of associative algebras, called W. The
space of smooth sections of W is denoted by C8pS,Wq. It is an associative algebra with respect
to a product, called 
, which is naturally induced by the product 
x on each �ber.

2. In the bundle W, construct a �at covariant derivative D, called �Fedosov connection�, which is
compatible with the product 
 in the sense that the Leibniz rule holds:

Dpt 
 sq � pDtq 
 s� t 
 pDsq,

where t, s are smooth sections onW. Furthermore, D is compatible with the hermitian conjugation
operation : on W in the sense that

pDtq: � Dpt:q.

This condition is usually not emphasized, but it is necessary to provide the space of �at sections
in C8pS,Wq, denoted by kerD, with the natural structure of a �-sub-algebra of C8pS,Wq.

3. The last step consists in de�ning an isomorphism τ between kerD and C8pSqrr~ss, and, �nally,
proving that a deformation quantization is given by the star-product de�ned by

f � h :� τ
�
τ�1pfq 
 τ�1phq

�
,

Since the inverse τ�1 can be shown to be compatible with the �-operation on W in the sense that

pτ�1pfqq: � τ�1pf :q,

the algebra pC8pSqrr~ss, �q equipped with the complex conjugation f ÞÑ f : :�
°
k ~kfk is indeed

a �-algebra.

We now explain in more detail how the above steps are carried out. We begin by de�ning the formal
Wick algebra at x P S, which is given by our local model in def. ?? replacing R2d with the cotangent
space T�x S, and ω with ωx (the value of the almost-Kähler section at x) in eq. (??) i.e.

Wx :�WpT�x S, ωxq.

Thus, as a vector space, Wx is the formal symmetric algebra over T�x S with values in Crr~ss, i.e.

Wx � Crr~ss b
à
n¥0

_nT�x S, (1.9)

(compare with (??)). To simplify the notation, we introduce the symmetric tensor �elds yi1 � � � yin :�
dxi1 _ � � � _ dxin . In other words, yix are commuting variables similarly as before. Hence, an element of
Wx can be again identi�ed with t � pt0, t1, . . . q, where t0 P Crr~ss, and where, for n ¡ 0,

tn � ti1...iny
i1
x � � � y

in
x ,

1The star symbol is already over-used.
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with ti1...in P Crr~ss symmetric. Similarly as before we can introduce the symmetric degree degs, the
formal degree deg~ and the total degree Deg.
The Wick product in Wx, denoted by 
x, is de�ned as in eq. (??) using ωx, i.e. the value at x of the
complex tensor �eld ω. Again the product is interpreted as given with respect to the Deg-�ltration (see
remark ??). The bundle of formal Wick algebras is de�ned as the disjoint union of all the �bers Wx, i.e.

W :�
§
xPS

txu �Wx.

Because W is just given by tensor products of the cotangent bundle, it has the structure of a smooth
vector bundle. The product de�ned in each �ber induces naturally an associative product on the space
of smooth sections of W2 denoted by C8pS,Wq, namely for any t, s smooth sections on W we set

pt 
 sqpxq :� tpxq 
x spxq. (1.10)

The product 
 is smooth in the sense that the product of two smooth sections gives another smooth
section. This follows from the smoothness of ω. Finally, each algebra Wx is also a �-algebra with
hermitian conjugation operation : and, therefore, the prescription

t:pxq :� ptpxqq:

provides the structure of a �-algebra for the space of smooth sections of W.

We are still far from completing the deformation quantization of C8pSq. In fact, instead of de�ning
a star product on C8pSqrr~ss, we have given an algebra structure on the much larger space of sections
C8pS,Wq in the algebra bundle W. The key idea of Fedosov is to get around this problem by de�ning
a special �at covariant derivative and restricting to the corresponding �at sections. These �at sections
are then put into correspondence with functions on S. We now outline the procedure.
Since we assume that S is an almost-Kähler manifold, we have the Riemannian metric µ � Gijdx

i_dxj .
Let ∇̊ be the Levi-Civita connection with respect to µ, i.e. ∇̊ is the unique torsion-free connection such
that ∇̊µ � 0. In local coordinates, the Christo�el symbols of this connection take the well-known form

Γ̊kij �
1

2
Gk` pBiG`j � BjGi` � B`Gijq .

Because the bundleW is a formal series of tensor products of T�S (with values in Crr~ss), the Levi-Civita
connection extends (Crr~ss-linearly) to a torsion-less covariant derivative on W, which is denoted again
by ∇̊.
In general this connection is not �at and it does not satisfy the Leibniz rule with respect to the product 

unless ∇̊σ � 0, i.e. unless S is a Kähler manifold. The second issue can be solved by passing to another
natural connection de�ned by Yano in [? ]. Introduce the Nijenhuis tensor by

Npv, wq :� rv, ws � JrJv,ws � Jrv, Jws � rJv, Jws,

for v, w vector �elds. In local coordinates takes the form

Nk
ij � pB`J

k
iqJ

`
j � Jk`pBiJ

`
jq � pB`J

k
jqJ

`
i � Jk`pBjJ

`
iq.

The following proposition is proved in [? ]:

Proposition 2 (Yano Connection). Let pS, σ, Jq be an almost-Kähler manifold. There is a unique
connection ∇, called Yano connection, such that

∇µ � 0, ∇σ � 0, and T pv, wq � �
1

4
Npv, wq (1.11)

for v, w vector �elds on S, where T pv, wq � ∇vw�∇wv�rv, ws is the torsion tensor. In local coordinates
the Christo�el symbols of ∇ are

Γkij :� Γ̊kij �
1

8

�
Nk

ij �GkspNr
siGrj �Nr

sjGriq
�
. (1.12)

2To be precise, one should consider elements in the space
�À

n¥0 C
8pS,_nT�Sq

�
rr~ss, rather than in the space

C8pS,Wq. Abusing the notations, we identify these two notions.
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In general, the torsion of the Yano connection does not vanish (nor does the curvature). In fact, it
vanishes precisely when N � 0, i.e. when S is a Kähler manifold. In this case, the Yano connection
coincides with the Levi-Civita connection. We can naturally extend ∇ to a covariant derivative on W.
Because ∇ annihilates both σ and µ, and, therefore, ω, it follows that ∇ satis�es the Leibniz rule with
respect to the product 
. Furthermore, ∇ is compatible with the conjugation : because by construction
the Christo�el symbols of ∇ are real. In other words, if t, s are smooth sections of W, then it holds

∇pt 
 sq � p∇tq 
 s� t 
 p∇sq, ∇pt:q � p∇tq:.

To implement Fedosov's idea, we would like to have a �at connection satisfying the Leibniz rule which
is compatible with the conjugation :. The Yano connection is not generally �at and, consequently, we
need to consider yet another connection. The construction of a �at connection becomes more natural
if we consider the algebra of W-valued forms on S. The W-valued k-forms are smooth sections of
p^kT�Sq bW3 and they form a vector space denoted by ΩkpS,Wq. Hence, a k-form t with values in W
consists of a sequence ptk,0, tk,1, . . . q, where

tk,n � ti1���ik;j1���jndx
i1 ^ � � � ^ dxik b yj1 � � � yjn , (1.13)

and where ti1���ik;j1���jn : S Ñ Crr~ss are smooth functions anti-symmetric in the �rst k indices and
symmetric in the remaining n indices.
We can extend canonically the degrees degs, deg~ and Deg to forms with values in W. In addition,
we de�ne the anti-symmetric degree dega as dega dx

i :� 1. The space of W-valued forms of arbitrary
anti-symmetric degree is denoted by

ΩpS,Wq :�
dimSà
k�0

ΩkpS,Wq.

An element t in ΩpS,Wq is a collection ptk,nqk�0,...,dimS;nPN where tk,n is the same as (??). It is clear
that the anti-symmetric degree does not exceed the dimension of the manifold S. The product 
 can
be extended to a product on ΩpS,Wq in the following way. Consider two dega-homogeneous elements
in ΩpS,Wq. Without loss of generality, they can be written as t b λ, s b λ1, where t, s P C8pS,Wq,
and λ P ΩkpSq, λ1 P Ωk

1

pSq, i.e. λ and λ1 are two ordinary forms (with values in C) of rank k and k1

respectively. The product is then de�ned as

ptb λq 
 psb λ1q :� pt 
 sq b pλ^ λ1q P Ωk�k
1

pS,Wq. (1.14)

The de�nition of the product 
 extends to forms with values in the formal Wick algebra W using the
dega-�ltration. The algebra pΩpS,Wq, 
q inherits the structure of an associative algebra. Furthermore,
this product 
 is bi-graded with respect to the gradings dega and Deg.
We can extend the Yano connection to ΩpS,Wq in a natural way by de�ning for t P C8pS,Wq, λ P ΩkpSq

∇ptb λq :� p∇itq b pdxi ^ λq � tb dλ, (1.15)

where d is the ordinary exterior di�erential acting on di�erential forms. Following further the procedure
outlined by Fedosov, we introduce the operators δ and δ�1 on ΩpS,Wq, called �Fedosov operators�. Let
t P ΩpS,Wq with dega t � k and degs t � n, then we de�ne δt, δ�1t by

δt :� dxi ^ Byit, (1.16)

and

δ�1t :�

"
1

n�ky
jiapBxj qt k � 0

0 otherwise
(1.17)

In the previous formula, iapBxj q means the contraction of the vector �eld Bxj with the �rst anti-symmetric
index of t. It is clear that δ increases by one the anti-symmetric degree while reducing by one the

3To be precise, one should consider elements in the space
�À

n¥0 C
8pS,^kT�S b_nT�Sq

�
rr~ss, rather that in the

space ΩkpS,Wq. Abusing the notations, we identify these two notions.
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symmetric degree of a given element homogeneous in dega,degs. The operator δ
�1 is doing the opposite.

More explicitly, we can write

pδtqk�1,n�1 :�

#
ntk,ni2...ik�1;pi1j1...jn�1q

dxi1 ^ � � � ^ dxik�1 b yj1 � � � yjn�1 n � 0

0 otherwise
(1.18)

and

pδ�1tqk�1,n�1 :�

#
k

n�k t
k,n
ri1...ik�1j1s;j2...jn�1

dxi1 ^ � � � ^ dxik�1 b yj1 � � � yjn�1 k � 0

0 otherwise
(1.19)

The following identities involving δ, δ�1 and∇ are essential for the construction of the Fedosov connection
and can be proved by direct computation, see [? ].

Lemma 3. Let T̂ and R̂ be the elements in ΩpS,Wq respectively constructed from the torsion tensor T
and the Riemann tensor R of the Yano connection ∇ and de�ned by

T̂ :�
1

2
σj1`T

`
i1i2dx

i1 ^ dxi2 b yj1 , R̂ :�
1

4
σj1`R

`
j2i1i2dx

i1 ^ dxi2 b yj1yj2 . (1.20)

The following relations hold:

(i) δ � 2i
~ ad
pδ

�1σq,

(ii) δ2 � pδ�1q2 � 0,

(iii) δ∇�∇δ � i
~ ad
T̂ ,

(iv) ∇2 � � i
~ ad
R̂,

(v) δT̂ � 0, ∇T̂ � δR̂, and ∇R̂ � 0,

where ad
ptq :� rt, �s
 is the adjoint action de�ned via the dega-graded commutator in ΩpS,Wq.
Moreover, the Fedosov operators satisfy a Hodge-type decomposition

(vi) δδ�1 � δ�1δ � τ � id,

where τ is the projection on the degs,dega � 0 part of ΩpS,Wq.

Following Fedosov, one makes the following ansatz for our desired �at connection operator, called D:

D :� ∇� δ �
i

~
ad
prq, (1.21)

where r � r: is a suitable 1-form with values in W that we need to construct. A su�cient condition on
r to ensure the �atness of D is

∇r � δr �
i

~
r 
 r � R̂� T̂ � Ω, (1.22)

where Ω is a closed 2-form valued in Crr~ss, i.e. Ω �
°
k¥1 ~kΩk and each Ωk is a real valued closed

2-form on S.
The following theorems are modi�cations of the original results of Fedosov [? , thm. 3.2 and thm. 3.3]
to connections with non-vanishing torsion (as discussed in [? ]) and to non-trivial Ω and s (as detailed
in [? ]).

Theorem 4 (Fedosov's First Theorem). There is a unique element r P Ω1pS,Wq satisfying the equa-
tion (??) for any closed Crr~ss-valued 2-form Ω under the requirements

r � r:, rp0q � rp1q � 0, pδ�1rqpkq � spkq, (1.23)

where rpkq denotes the component homogeneous in Deg of degree k, and where s P C8pS,Wq is some
arbitrary self-adjoint element with Degs ¥ 3.
Consequently, the Fedosov connection D de�ned via eq. (??) is �at, satis�es the Leibniz rule with respect
to the product 
, and is compatible with the hermitian conjugation operation :.
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Note that the Fedosov connection D depends only on the following input: the (non-�at) Yano connection,
which in turn depends on J and G or, equivalently, σ and G, the closed form Ω on S taking values in
Crr~ss, and the datum s (subject only to the constraint Degs ¥ 3). We refer to Ω and s as �auxiliary
data�. We will mostly use the �rst Fedosov theorem for the case of Ω � s � 0, but it will occasionally
be necessary to have the more general form with non-vanishing auxiliary data.
Once we have de�ned the Fedosov connection, we can perform the last step in the construction of the
deformation quantization, which is encoded in the following theorem (see [? ]).

Theorem 5 (Fedosov's Second Theorem). Let τ be the projection of a smooth section on W onto its
component with degs � 0. For each f P C8pSqrr~ss, there exists a unique t P C8pS,Wq such that

Dt � 0, i.e. t P kerD, τt � f.

In other words, the restriction to C8pS,Wq X kerD of the projection τ is a bijection. Let us denote its
inverse by

τ�1 : C8pSqrr~ss Ñ C8pS,Wq X kerD.

Then
f � h :� τ

�
τ�1pfq 
 τ�1phq

�
is a star-product, and the standard conjugation map f ÞÑ f gives pC8pSqrr~ss, �q the structure of a
�-algebra, i.e. pf � hq � h � f .

Proof. The proof of this theorem is given in [? ] with the exception of the statement concerning the
hermitian conjugation. This can be seen as follows. First of all, we notice that τpt:q � τptq, simply
because t: � pt0, . . . q for any t � pt0, . . . q P C8pS,Wq. Then, for any f P C8pSqrr~ss the sections
τ�1pfq and pτ�1pfqq: satisfy

Dpτ�1pfqq: � pDτ�1pfqq: � 0 � Dτ�1pfq, τpτ�1pfqq: � ττ�1pfq � f � ττ�1pfq.

As consequence of the �rst part of the theorem, there is a unique D-�at section in C8pS,Wq such that
f is its component with degs � 0. Therefore, τ�1pfq � pτ�1pfqq:, which implies straightforwardly the
statement about the �-algebra structure.

We conclude this section by giving some details concerning the construction, see [? ? ? ].

Remark 3. 1. The W-valued 1-form r is constructed iteratively. For the case Ω � 0 � s, it is de�ned
by

rp2q � δ�1T̂ , rp3q � δ�1

�
R̂�∇rp2q � i

~
rp2q 
 rp2q



,

rp3�`q � δ�1

�
∇rp`�2q �

i

~
¸
`1¤`

rp`
1�2q 
 rp`�`

1�2q

�
.

2. The map τ�1 is a formal quantization map, in the sense that it takes a classical observable f P
C8pSq to an element in the non-commutative algebra C8pS,Wq X kerD. Moreover, τ�1pfq is
constructed iteratively

pτ�1fqp0q � f,

pτ�1fqp`�1q � δ�1

�
∇pτ�1fqp`q �

i

~
¸
`1¤`

rrp`
1�2q, pτ�1fq`�`

1

s


�
.

3. Fedosov's theorems, even in their generalized versions with non-vanishing data Ω and s, are valid
if instead of the Wick product 
, we consider the Weyl-Moyal product �, de�ned on Wx as

t � t1 :� m

�
exp

�
i
~
2
σijx Byi b Byj



tb t1



. (1.24)

The product � is given (�berwisely) by the same formula as (??), except that ωij is now replaced
by i{2σij. The de�nition is extended to forms with values in W similarly as done in (??) for the
product 
 (trivial action on the anti-symmetric part). One can directly check that relations ??-??
in lemma ?? still hold for the product �. The reason why we do not use � throughout this work is
that it is not suitable for generalization to quantum �eld theories.
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1.3 Equivalence of the Fedosov quantization of two di�erent almost-

Kähler structures

The construction of the star product on pS, σq we outlined in the previous section depends on a choice of
almost-Kähler structure J , or equivalently of the almost-Kähler section ω. Consider a given symplectic
manifold pS, σq endowed with two di�erent almost-Kähler sections ω and ω1 compatible with the same
σ. It is then natural to ask how the corresponding star-products (quantizations) are related. We will
answer this question in the present section. Our analysis is based on a construction of Neumaier [? ].
The author was concerned with the case that J, J 1 de�ne two Kähler structures, whereas we need to
consider the almost-Kähler situation.

We �rst make a general de�nition.

De�nition 6. Consider two deformations pC8pSqrr~ss, �q and pC8pSqrr~ss, �1q of the classical alge-
bra pC8pSq, t�, �uq. The star-products are called equivalent if there is an isomorphism of algebras B :
pC8pSqrr~ss, �q Ñ pC8pSqrr~ss, �1q such that

B � id� ~B1 � ~2B2 � . . . ,

where each B` is given by a map C8pSq Ñ C8pSq which vanishes on constant functions.

We would like to decide whether two star-products on two almost-Kähler manifolds, obtained using
Fedosov's method, are equivalent, and we would also like to give explicitly the corresponding isomor-
phisms. For this, we must look at Fedosov's construction associated with the two given almost-Kähler
sections ω, ω1. Following the previous subsection, we refer to G, 
, ∇, T , and R as the Riemannian
metric, the Wick product, the Yano connection, its torsion, and its Riemann tensor corresponding to ω.
Similarly, G1, 
1, T 1 and R1 are the corresponding quantities associated with ω1. As vector spaces, the
algebras ΩpS,Wq and ΩpS,W 1q coincide. The di�erence is in the choice of the product, respectively 
 and

1. Fedosov's construction, in particular the �rst Fedosov theorem (thm. ??), provides for the algebra
ΩpS,Wq a �at connection D � �δ �∇� i{~ ad
prq corresponding to the �rst almost-Kähler section ω,
and similarly for ΩpS,W 1q a �at connection D1 :� �δ � ∇1 � i{~ ad
1pr

1q corresponding to the second
almost-Kähler section ω1. The connections D and D1 are uniquely determined by ω and respectively ω1

if we assume, as we will, that the associated auxiliary data Ω, s and respectively Ω1, s1 are zero. We �rst
observe:

Lemma 7. ΩpS,Wq and ΩpS,W 1q are isomorphic as algebras.

Proof. We �rst consider WpR2n, ωq with constant ω, i.e. with constant Kähler structure J with respect
to a �xed constant symplectic form σ, andWpR2n, ω1q, where ω1 corresponds to another constant Kähler
structure J 1 with respect to the same symplectic form σ. These two algebras are isomorphic and the
isomorphism α :WpR2n, ωq ÑWpR2n, ω1q is explicitly given by

α � exp

�
~
2
pω � ω1qijByiByj



. (1.25)

For a monomial ti1...iny
i1 � � � yin , we have

αpti1...iny
i1 � � � yinq �

rn{2s¸
k�0

~kn!

p2kq!pn� 2kq!
ti1...inpω

1 � ωqpi1i2 � � � pω1 � ωqi2k�1i2kyi2k�1 � � � yinq. (1.26)

The same construction then gives an isomorphism αx : Wx Ñ W 1
x for any �ber. Since both ω and

ω1 are smooth sections, and since the algebra structures 
 and 
1 are de�ned �berwise, we obtain an
isomorphism α for C8pS,Wq and C8pS,W 1q.
We can extend naturally the map de�ned in (??), (??) as an isomorphism ΩpS,Wq Ñ ΩpS,W 1q, i.e. we
allow non-trivial anti-symmetric degree. This concludes the proof.

The Fedosov connection D1 on W 1 can be pulled back to a connection on W via the bundle map
α. We denote this pull-back by Dα :� α�1D1α. Concerning this connection Dα, we have the following
result.
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Lemma 8. Dα is a Fedosov connection. More precisely, Dα coincides with the covariant derivative
obtained from Fedosov's �rst theorem (thm. ??) with respect to the product 
 and characterized by the
following input data: the Yano connection ∇, Ωα � 0 and sα P C8pS,Wq with Degsα ¥ 3 given by (??).

Proof. First of all, Dα as a map C8pS,Wq Ñ Ω1pS,Wq is linear by de�nition. Since D1 is �at, it follows
immediately that Dα is also �at, pDαq2 � α�1pD1q2α � 0.
By de�nition, α is an algebra isomorphism W Ñ W 1, therefore t 
 s � α�1ppαtq 
1 pαsqq for any t, s P
C8pS,Wq. The Leibniz rule follows from this consideration and the properties of D1, i.e.

Dαpt 
 sq � pα�1D1qppαtq 
1 pαsqq � α�1
 
pD1αtq 
1 pαsq � pαtq 
1 pD1αsq

(
� pDαtq 
 s� t 
 pDαsq.

By de�nition α, (and also α�1) acts as the identity on the elements of ΩpS,Wq with degs � 0. Therefore,
Dαpfq � df for any f P C8pSq. Keeping this in mind, it follows as a particular case of the Leibniz rule
that Dαpf � tq � f �Dαptq � df b t, i.e. the linear map Dα is indeed a connection.
To prove that Dα is a Fedosov connection, �rst we note that δα � αδ as follows from ?? and the
de�nitions involved. It is clear that we can rewrite the derivative Dα � α�1D1α in the following form

Dα � �δ � α�1∇1α� i

~
ad
pα

�1r1q. (1.27)

We express the di�erence between ∇ and α�1∇1α as

α�1∇1α � ∇� i

~
ad
pCq, (1.28)

where

C :�
1

2
σj1`pΓ

1 � Γq`ij2dx
i b yj1yj2 , (1.29)

and where Γ,Γ1 are the Christo�el symbols (??) for the Yano connections corresponding to ω and ω1

respectively. Then, one �nds that Dα can be written as:

Dα � �δ �∇� i

~
ad
pr

αq, (1.30)

where rα � α�1r1�C. The map α�1 changes neither the total degree Deg nor the antisymmetric degree
dega, then r

α is Deg ¥ 2 and rαp0q � rαp1q � 0. A direct computation shows that

δC � T̂ � T̂ 1, α�1R̂1 � R̂�∇C �
i

~
C 
 C, (1.31)

and then we straightforwardly obtain

δrα � α�1δr1 � δC � α�1p∇1r1 � R̂1 � T̂ 1 �
i

~
r1 
1 r1q � pT̂ � T̂ 1q

� pα�1∇1αqpα�1r1q � R̂� T̂ �
i

~
pα�1r1q 
 pα�1r1q � pR̂� α�1R̂1q

� ∇rα � R̂� T̂ �
i

~
rα 
 rα.

(1.32)

Therefore, the derivative Dα coincides with the �at covariant derivative obtained from Fedosov's �rst
theorem with respect to the product 
 and is uniquely de�ned by the input data ∇, Ωα :� 0, and

sα :� δ�1α�1r1 � δ�1C, (1.33)

as we wanted to prove.

Since D and Dα � α�1D1α are derivative operators for the same algebra ΩpS,Wq (both satisfy the
Leibniz rule with respect to the product 
), we can compare them, unlike D and D1. Our claim is that
they are gauge equivalent, in the sense explained below, and this implies that the star-products �, �1 on
C8pSqrr~ss are equivalent.
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Theorem 9. There exists a smooth section H P C8pS,Wq such that DegH ¥ 3, τH � 0, H: � H and

D � exp

�
i

~
ad
pHq



α�1D1α exp

�
�
i

~
ad
pHq



. (1.34)

In particular, a solution H for (??) is uniquely determined by a closed 1-form θ P Ω1pSqrr~ss. For θ � 0
the solution H �

°
Hpkq (where DegHpkq � k) is given by

Hp0q � Hp1q � Hp2q � 0

Hp3q �
1

2
σj1`pΓ

1 � Γq`j2j3y
j1yj2yj3 �

~
4
J`kpΓ

1 � Γqkj`y
j � δ�1C,

(1.35)

and by the following recursive de�nition for Hpkq with k ¡ 3

Hpk�1q � δ�1

�
∇Hpkq �

3i

2~

�
C,Hpkq

�


�

i

2~

k�3̧

`�0

�
3α�1pr1qp2�`q � rp2�`q, Hpk�`q

�


�

� α�1pr1qpkq � rpkq �
k�2̧

λ�2

nλ

�
i

~


λ ¸
`1�����`λ�k�2λ�2

rHp`1q, . . . rHp`λq, Cs
 . . . s
�

�
k�2̧

λ�2

nλ

�
i

~


λ k�2�λ¸
`�0

¸
`1�����`λ�k�`�2λ�2

rHp`1q, . . . rHp`λq, α�1pr1qp2�`q � rp2�`qs
 . . . s


�
,

(1.36)

where C is given by eq. (??), and where the numbers `i are all taken ¥ 3. The numbers nλ are de�ned
recursively through eq. (??).
Furthermore, the Fedosov star-products � and �1 are equivalent and the isomorphism B : pC8pSqrr~ss, �q Ñ
pC8pSqrr~ss, �1q is explicitly given by

Bpfq :� τα exp

�
i

~
ad
pHq



τ�1pfq, (1.37)

Here τ�1 is the �quantization map� as de�ned in the Fedosov's second theorem (thm. ??).

Proof. The proof is very similar to the one presented in [? , prop. 3.2 ii], [? , prop. 3.5.3, 3.5.4]. The
set-up considered in these reference di�ers to our case mainly for two points: (1) it is assumed that Kähler
manifold S and the connection ∇ is torsion free (while in our case we cannot exclude a non-vanishing
torsion), and (2) an equivalence of the type (??) is derived not for D,Dα, but for a more general pair of
Fedosov connections D1, D2 corresponding to auxiliary data pΩ1, s1q, pΩ2, s2q such that Ω1�Ω2 � dθ for
a general θ P Ω1pSqrr~ss (in our case θ is necessarily closed). The argument exploited in [? ? ] consists
in rewriting eq. (??) in a form suitable for applying the �xed-point theorem with respect to the total
degree.
We proved in lemma ?? that Dα : ΩkpS,Wq Ñ Ωk�1pS,Wq respects the product 
. As an algebraic
consequence of this fact4 and the assumptions on H, it holds that

exp

�
i

~
ad
pHq



αD1α�1 exp

�
�
i

~
ad
pHq



�

� Dα �
i

~
ad


�¸
k¥0

1

pk � 1q!

�
i

~
ad
pHq


k
pDαHq

�

� D �
i

~
ad


�
r � rα �

¸
k¥0

1

pk � 1q!

�
i

~
ad
pHq


k
pDαHq

�
.

(1.38)

Therefore, eq. (??) holds for the section H if and only if there is an element θ P Ω1pSqrr~ss such that

r � rα �
¸
k¥0

1

pk � 1q!

�
i

~
ad
pHq


k
pDαHq � θ, (1.39)

4In the terminology of [? ], Dα is a �
-superderivative� and then eq. (??) is given by [? , lemma 1.3.20].
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i.e. the section in Ω1pS,Wq given by the left-hand side of (??) must be in the center of the algebra.
Although in [? , lemma 3.5.1] the author considered the case of ∇ torsionless, an inspection of his proof
shows that the presence of a non-vanishing torsion can at most a�ect the following equation used in the
aforementioned lemma

Dαprα � rq �
i

~
prα � rq 
 prα � rq.

This equation is still valid in our case as can be seen directly from the de�nitions of r and rα and,
consequently, the results of [? , lemma 3.5.1] are valid also in our case. In particular, it is necessary for
eq. (??) to be solvable that θ is closed because dθ � Ω� Ωα � 0.
Making use of the Hodge-type decomposition ?? and the assumption τH � 0, we get that H is a solution
to eq. (??) if H solves the following equation

H � δ�1

�
θ �∇H �

i

~
ad
pr

αqpHq �
¸
λ¥0

nλ

�
i

~


λ
p ad
pHqq

λ
prα � rq

�
, (1.40)

where nλ are real numbers such that
°
λ nλx

λ is the inverse of the formal power series
°
k 1{pk � 1q!xk,

i.e. nλ are de�ned recursively by

n0 � 1, nλ¡0 � �
λ̧

λ1�1

1

pλ1 � 1q!
nλ�λ1 . (1.41)

Now proceeding as in the proof of [? , prop. 3.2 ii], [? , prop. 3.5.3, 3.5.4]. We �rst notice that the
right-hand side of eq. (??) is in the form LpHq, where L is a contracting map with respect to the total
degree. Therefore, the �xed point theorem guarantees the existence and the uniqueness of the solution
H to eq. (??). Arguing as in the aforementioned references, we verify that such H solves eq. (??) and
necessarily also eq. (??).
Finally, the map B de�ned via (??) is indeed a star-isomorphism as follows immediately from (??) and
the de�nitions of α, � and �1.

Remark 4. There are already several results in the literature relating the gauge equivalence of certain
star products based on cohomological considerations. One associates to a star-product � on a symplectic
manifold its Deligne's characteristic class clp�q P i{~rσs � H2

dRpSqrr~ss, where H2
dRpSqrr~ss are formal

power series in ~ with values in the de Rham cohomology of S. According to [? ] this class consists of
two di�erent parts

clp�q � c0p�q �
i

~
dp�q,

namely, the zero-th order term c0p�q, and the Deligne's intrinsic class

dp�q �
8̧

k�0

1

k!

�
~
i


k
dkp�q,

which can be constructed in terms of local derivation (see e.g. [? ? ]). By construction the zero-th order
term d0p�q in the formal power series is rσs, while the �rst order term d1p�q vanishes. As proven in [?
], the Deligne's characteristic class speci�es uniquely the equivalence class of a given star-product. Said
di�erently, two star-products are equivalent if and only if their Deligne's characteristic classes coincide.
For the star-products �, �1 we are considering, computing the corresponding Deligne's characteristic
classes and checking that they coincide5 is another possible line of argument leading to thm. ??, but
without explicit formula for H.

5In a nutshell it is just needed to adapt [? ? ] to connections with non-vanishing torsion and to combine with the direct
computation of c0 presented in [? ].
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Chapter 2

Reformulation of perturbative quantum

�eld theory

Quantum �eld theories are often based on classical �eld theories described by a Lagrangian or Hamilto-
nian. Such theories, thus, have a symplectic structure at the classical level. Therefore, it is conceivable
that Fedosov's method of quantization could be applied to such systems. The di�erence to the symplec-
tic manifolds discussed so far is, of course, that in a �eld theoretic setting, the manifold S is in�nite-
dimensional as it corresponds to the space of classical solutions of the equations of motion, or their initial
data. However, even ignoring this point, if one looks at standard presentations of the quantization of
�eld theories, the connection to Fedosov's method is absolutely not evident even at a purely formal level.
The purpose of this work is to explain this connection. This is straightforward for free quantum �elds
theories�all we need to do is to properly interpret [? ]. We are going to present the details in sec. ??. The
situation is much more involved for interacting quantum �eld theories. For those, we will �rst present
the method of causal perturbation theory (see [? ? ? ? ? ? ? ? ? ? ]) in sec. ??. At the end of this
section, we present an interesting consequence of the principle of perturbative agreement which gives a
�rst hint to a possible connection to Fedosov's method. This connection will then be established step by
step in the remaining sections.

2.1 Free scalar �eld in curved spacetime

We present our formalism �rst for the free, real, scalar, Klein-Gordon �eld on a Lorentzian manifold
pM, gq. This case should be thought of as the �model case� in the same sense as the basic example of
remark ?? is the �model case� in the �nite-dimensional framework. The Klein-Gordon �eld is denoted
by ϕ in the following. The �eld equation (with source) is

j � p��m2 � vqϕ, (2.1)

where � is the d'Alembertian operator (wave operator) associated with the metric g, where j P C8pMq is
some �xed source, and v P C8pMq is some smooth external potential. In order for this theory to behave
reasonably, we need to assume that the underlying space-time pM, gq is a globally hyperbolic manifold
(see e.g. [? ]). This means that M has a smooth Cauchy surface, i.e. a surface Σ such that every
causal, inextendible curve intersects Σ precisely once. Under this assumption, as proved e.g. in [? ], the
Klein-Gordon equation has a unique solution ϕ for any choice of initial data pq, pq P C8

0 pΣq � C8
0 pΣq

satisfying
ϕ|Σ � q, Bnϕ|Σ � p.

Here Bn is the normal derivative to Σ. The hallmark of the Klein-Gordon equation is the causal prop-
agation of disturbances: if pq, pq � 0 and if the support of j is contained in some subset O � M , then
the support of the corresponding solution ϕ is contained in J�pOq Y J�pOq, where J�pOq denote the
causal future/past of O. The solutions of the Klein-Gordon equation can be obtained in terms of the
advanced/retarded fundamental solutions EA{R. The action EA{Rpjq on a compactly supported smooth
source j P C8

0 pMq is de�ned by demanding that ϕ � EA{Rpjq is the unique solution to the Klein-Gordon
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equation (??) having initial data pq, pq � 0 on some Cauchy surface in the future/past of the support of j.
The advanced and retarded fundamental solutions are continuous functions EA{R : C8

0 pMq Ñ C8pMq,
and so, as a consequence of the Schwartz Kernel theorem (see e.g. [? ]), EA{R may be viewed alternatively
as distributions on M �M . In the distributional sense, we have

p��m2 � vqx1E
A{Rpx1, x2q � δpx1, x2q, supp pEA{Rpx1, x2qq � tpx1, x2q PM

2|x1 P J
	px2qu,

and
EA{Rpx1, x2q � ER{Apx2, x1q.

Furthermore, the wave-front sets of EA{R are well-known (see [? ]) and they take the form

WFpEA{Rq � CA{RpMq, (2.2)

where the sets CA{RpMq are de�ned by

CA{RpMq :�
!
px1, x2; k1, k2q P 9T�M2 : x1 P J

	px2q, px1, k1q � px2,�k2q or x1 � x2, k1 � �k2

)
. (2.3)

The causal propagator, also called �commutator function� in some references, is the quantity

E � EA � ER.

In the distributional sense, E is a bi-solution for the homogeneous (j � 0) Klein-Gordon equation (??)
and it is anti-symmetric, Epx1, x2q � �Epx2, x1q. A well-known computation (see [? ]) implies that

WFpEpx1, x2qq �
!
px1, x2; k1, k2q P 9T�M2 : px1, k1q � px2,�k2q

)
. (2.4)

Let S be the space of smooth, spatially compact solutions to the Klein-Gordon equation (??). For
j � 0, this space is obviously linear. Let us focus, for the moment, on this case. We will show that S
carries a natural symplectic form and we will describe a way to realize the construction of the �nite-
dimensional �model case�, i.e. the basic example of remark ??, for case of this homogeneous Klein-Gordon
equation. For each f P C8

0 pMq, let ϕpfq be the map S Ñ R which assigns to a smooth solution u P S of
the homogeneous Klein-Gordon equation, i.e. p��m2 � vqu � 0, its f -weighted average, namely

ϕpfqrus :�

»
M

fpxqupxqdx.

Thus, ϕpfq de�nes an element in the dual S�. More generally, we may consider �observables� of the form
ϕbnpf pnqq de�ned by

ϕbnpf pnqqrus :�

»
Mn

f pnqpx1, . . . , xnqupx1q � � �upxnqdx1 . . . dxn,

where u P S, and where f pnq is a smooth, complex-valued, symmetric function of compact support on
Mn. In a moment we will even allow certain distributional f pnq's. Note that as a functional on solutions
ϕbnpf pnqq � 0 if the f pnq's satisfy the relation

f pnqpx1, . . . , xnq � p��m2 � vqxih
pnqpx1, . . . , xnq (2.5)

for some smooth hpnq of compact support. It follows, in particular, that f p1q ÞÑ ϕpf p1qq de�nes a mapping
C8

0 pMq{p��m2 � vqC8
0 pMq Ñ S�. Thus, in this sense, we can say that

C8
0 pMq{p��m2 � vqC8

0 pMq � S�. (2.6)

We will often use this relation in the following. We may alternatively write the observable ϕbnpf pnqq in
the form

ϕbnpf pnqq �

»
Mn

f pnqpx1, . . . , xnqϕpx1q � � �ϕpxnqdx1 . . . dxn, (2.7)

where ϕpxq : S Ñ R is viewed as the evaluation functional ϕpxqrus � upxq for u P S. Thus, ϕbnpf pnqq is
a function S Ñ C, or alternatively, can be viewed as an element of a suitable closure of the (complex)
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symmetric algebra of S�. For any pair of observables t, s of this form, we can de�ne a Poisson bracket
tt, su, the Peierls bracket, by demanding that

tϕpxq, ϕpyqu :� Epx, yq, (2.8)

and extending t�, �u to elements of the form (??) by the Leibniz rule. This Poisson bracket comes from
a symplectic structure, explicitly the symplectic structure σ : S � S Ñ R de�ned by

σpu1, u2q :�

»
Σ

u1pzq
ÐÑ
Bnu2pzqdΣpzq, (2.9)

for two solutions u1, u2 P S. Formula (??) does not depend on the choice of Cauchy surface Σ in M
as can be proved using the Stokes theorem (see e.g. [? ]). The commutator function E is a bisolution
and so, by the identi�cation (??), it can formally be viewed as a map E : S� � S� Ñ R, by setting
Epϕpxq, ϕpyqq � Epx, yq. Moreover, the causal propagator E can be interpreted as the inverse of σ :
S � S Ñ R in the following sense: as proved in [? , lemma 3.2.1 part (3)]1, for any u P S and any
f P C8

0 pMq we have

σpu,Epfqq �

»
M

fpxqupxqdx. (2.10)

These relations will be elaborated more and will be reinterpreted in terms of the in�nite-dimensional
geometry on S in sec. ??.

Next, we de�ne a star-product for this symplectic structure. Our construction is going to follow the
one given in the basic example (remark ??). In particular, we want to produce an analogue of the formal
Wick algebra (??). For this, it is necessary to introduce the concept of a pure Hadamard 2-point function
ω, which will play the same role as the constant complex hermitian matrix ωij in the �nite-dimensional
context of the basic example (remark ??). Because this concept is of vital importance for the entire rest
of this paper, we formalize the de�nition of a Hadamard 2-point function following [? ].

De�nition 10. A Hadamard 2-point function ω is a C-valued distribution on M �M satisfying the
following properties:

1. ω is a bi-solution for the homogeneous Klein-Gordon equation, i.e.

p��m2 � vqxωpx, yq � p��m2 � vqyωpx, yq � 0.

2. The anti-symmetric part of ω is i{2 times the causal propagator, i.e.

ωpx, yq � ωpy, xq � iEpx, yq.

3. ω is positive (semi-de�nite) in the sense that it holds»
M

ωpx, yqfpxqfpyq ¥ 0,

where f is the complex conjugate of f .

4. ω satis�es the �Hadamard condition�, namely

WFpωq � C�rgs :�
!
px, y; kx, kyq P 9T�M2 : px, kxq � py,�kyq and kx P V

�
x

)
. (2.11)

We can decompose the 2-point function (c.f. (??)) as

Imωpx, yq �
1

2
Epx, yq, Reωpx, yq �

1

2
Gpx, yq, (2.12)

1Note that in the reference the symplectic structure has the opposite sign.
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where G is a real-valued and symmetric distribution onM �M . We should think of ωpx, yq as analogous
to ωij , Epx, yq as analogous to σij and Gpx, yq as analogous to Gij in the basic example of remark ??.
Positivity of ω (cf. (??)) is now equivalent to the condition (cf. (??))

|Epf, hq| ¤ pGpf, fqGph, hqq
1{2

, (2.13)

for all f, h P C8
0 pMq{p��m2 � vqC8

0 pMq � S�. In the �nite-dimensional case, we assumed in addition
that ωij de�nes a constant almost-Kähler structure. The analogue of this condition in the in�nite-
dimensional context consists in requiring ω to be pure, see e.g. [? ? ? ]. As discussed in these references,
the 2-point function ω is pure if and only if eq. (??) is saturated, i.e.

Gpf, fq � sup
h�0

|Epf, hq|2

Gph, hq
.

We next de�ne the analogue of the algebraW. This algebra will include the ϕbnpf pnqq de�ned in eq. (??),
but for later purposes, we need to extend the class of allowed smearing f pnq beyond smooth symmetric
functions of compact support. The extended class of f pnq's is de�ned in terms of wave front sets. For
any n, we de�ne

Wn :� 9T�MnzpC�
n Y C�

n q, (2.14)

where C�
n are the subsets of T�Mn de�ned by

C�
n :� tpx1, . . . , xn; k1, . . . , knq P 9T�Mn : ki P V

�
@i or D!kj R V , ki�j P V

�
u. (2.15)

We de�ne the corresponding spaces of distributions as

E 1W pMnq � tf pnq distributions of compact support with WFpf pnqq �Wnu. (2.16)

Arguing as in (??), we view

bnW S� :� E 1W pMnq{p��m2 � vqE 1W pMnq (2.17)

as a completion of the algebraic tensor product bnS�. In the above formula, we mean that we quotient
out distributions in the form (??). Now we can de�ne the formal Wick algebra WpS, ωq for this in�nite-
dimensional context imitating the �nite-dimensional case. More precisely, as vector space, WpS, ωq is
de�ned by

WpS, ωq :� Crr~ss b
8à
n�0

_nWS
� � Crr~ss b

8à
n�0

P�E 1W pMnq{p��m2 � vqP�E 1W pMnq, (2.18)

where _nWS
� denotes the totally symmetric elements in (??). By P� we mean the symmetrization.

In other words, WpS, ωq is the vector space2 of sequences t � pt0, t1, . . . q where t0 P Crr~ss and tn P
Crr~ss b _nWS

� (cf. (??)). We stress that it is not required that only �nitely many elements of the
sequence pt0, t1, . . . q are non-zero. Based on the analogy with the �nite-dimensional case, there is an
obvious way to de�ne the gradings degs, deg~, Deg in the �eld theory context, namely

deg~ ~ :� 1, degs t
n :� n for tn P _nWS

�, Deg :� 2 deg~� degs . (2.19)

In order to avoid heavy notation, we will often identify an equivalence class in bnWS
� with a represen-

tative, i.e. we will identify tn with a distribution tn P E 1W pMnq in its class. Any other representative
then di�ers by a distribution in p� � m2 � vqE 1W pMnq, and we must be careful that our subsequent
constructions do not depend on the given choice of the representative in the equivalence class.
We summarize our construction:

De�nition 11. As a vector space, the algebra WpS, ωq is de�ned to be the vector space (??) equipped
with the gradings (??). The product 
 is de�ned by analogy with eq. (??) in the �nite-dimensional case:

2Addition and scalar multiplication are de�ned componentwise.
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let t, s be two elements in W homogeneous in degs, respectively degs t � n and degs s � m, we de�ne
the degs � j part of t 
 s by

pt 
 sqjpx1, . . . , xjq :� ~kCn,m,kP�
»
M2k

tnpz1, . . . , zk, x1, . . . , xn�kq�

� smpz11, . . . , z
1
k, xn�k�1, . . . , xjq

k¹
`�1

ωpz`, z
1
`qdz`dz

1
`,

(2.20)

if j � n�m� 2k for k ¤ n,m, and pt 
 sqj � 0 otherwise. By P� we mean the symmetrization operator
acting on the free variables x1, . . . , xj. The combinatorial factor Cn,m,k �

n!m!
k!pn�kq!pm�kq! is the same

appearing in (??). Making use of the Deg-�ltration, the product 
 extends to all W.

Despite the strong analogy with the �nite-dimensional case, there is one signi�cant di�erence: we have
to prove that formula (??) actually makes mathematical sense, because the right-hand side involves
products and compositions of distributions. Products of distributions are generally not automatically
well-de�ned. However, as discussed in thm. ?? in appendix ??, if the wave-front sets of the factors satisfy
a certain relative condition, the multiplication condition (??), the product makes sense in a canonical
way. Similarly, the compositions of distributions are well-de�ned provided that the distributions involved
satisfy an additional condition, the integration condition (??). As a corollary of thm. ??, we get the
following result (which will be extensively used in this work) for distributions with wave-front sets
bounded by a W set as in (??).

Lemma 12. Consider a distribution θ P D1pMnq and a distribution θ1 P D1pMmq such that their wave-
front sets are contained inWn, respectivelyWm. Then, the product θpx1, . . . , z, . . . , xnqθpy1, . . . , z, . . . , ymq
is well-de�ned and it satis�es the following wave-front set estimate

WFpθ � θ1q �Wn�m�1.

If in addition the integration condition holds, for example if one distribution has compact support, then
the composition

³
M
θpx1, . . . , z, . . . , xnqθpy1, . . . , z, . . . , ymqdz is well-de�ned and it satis�es the following

wave-front set estimate
WFpθ � θ1q �Wn�m�2. (2.21)

Proof that eq. (??) is well-de�ned. The argument is similar to that presented in [? , thm. 2.1], but is
adapted to our more stringent wave-front set restrictions compared to the one considered in [? ]. For
sake of completeness, we provide the full proof. Let tn and sm be two representatives, i.e. two compactly
supported distributions with WFptnq �Wn and WFpsmq �Wm. By de�nition WFpωq � C� �W2. For
any k ¤ m, the composition

pωbk � smqpz1, . . . , zk, txi¡n�kuq :�

»
Mk

smpz11, . . . , z
1
k, txi¡n�kuq

k¹
`�1

ωpz`, z
1
`qdz

1
` (2.22)

is a well-de�ned distribution with wave-front set contained in Wm as a consequence of lemma ??. As
a consequence of the Hadamard condition, the wave-front set of distribution (??) can contain only
elements of the type pz1, . . . , zk, pxi¡n�kq; p1, . . . , pk, pki¡n�kqq P Wm with p` P V � or p` � 0. Clearly
WFpωbk � smqz1,...,zk � pV �qk and then it does not intersect WFptnqz1,...,zk by de�nition of Wn. It
follows that we can apply thm. ?? and we get that for any k ¤ m,n, the composition in z1, . . . , zk
of tn with ωbk � sm is well-de�ned as a (compactly supported) distribution in x1, . . . , xn�m�2k and
WFptn � pωbk � smqq �Wn�m�2k.
Because ω is a bi-solution, the equivalence class rpt 
 sqjs in _jWS

� de�ned by eq. (??) does not depend
on the choice of the representative of tn and sm. This concludes the proof that the product 
 in def. ??
is well-de�ned.

In the algebraic approach to quantum �eld theory, one de�nes the algebraic states as positive, normal-
ized linear functionals on the algebra of observables3. In our context, the underlying �eld C is replaced
by the ring Crr~ss, so a state on W is a Crr~ss-linear functional ω : Wφ Ñ Crr~ss4 which is normalized

3In the �nite-dimensional context, the concept of algebraic states is discussed in [? ? ].
4Any attempt to consider C-linear positive functionals ω : W Ñ C is a�ected by serious convergence problems.
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to 1, in the sense that ωp1q � 1. In this context, by positive we mean that ωpt: 
 tq is a positive element
in Rrr~ss for any t PWφ, where an element

°
k¥0 ~kak P Rrr~ss is positive if the �rst non-vanishing real

coe�cient ak is positive. A state ω is equivalently de�ned in terms of all its n-point functions, i.e. the
distributions ωn such that»

Mn

f1px1q . . . fnpxnqωnpx1, . . . , xnqdx1 . . . dxn :� ωpϕpf1q 
 � � � 
 ϕpfnqq,

where f1, . . . , fn are test functions on M . The positivity condition of the state ω becomes a complicated
hierarchy of conditions on ωn, the simplest of which is the positivity of the 2-point function, i.e. ω2pf, fq ¥
0 for any test function f .
Once a Hadamard 2-point function ωpx, yq, in the sense of def. ??, is provided, we can de�ne a state
requiring that all the n-point functions with n odd vanish and all the n-point functions with n even are
given by appropriate combinations of tensor products of ωpx, yq, i.e.

ω2px, yq � ωpx, yq, ωnpx1, . . . , x2nq �
¸
I

¹
pi,jqPI

ωpxi, xjq,

where I is any possible arrangement of t1, . . . , 2nu into a collection disjoint pairs pi, jq such that i   j.
Such a state is called a quasi-free Hadamard state. By abuse of notation, we will identify a quasi-free
Hadamard state ω with its 2-point function ωpx, yq in the following.

As in the �nite-dimensional case, the product 
 can be viewed as a star-product for the Peierls
bracket t�, �u de�ned by E, see eq. (??) (for further details, see [? ]). The analogies between the �nite
and in�nite-dimensional cases are summarized in the following table.

�nite-dim linear QFT

S Q y vector in R2d S Q u smooth sol. of K-G eq. (??) with j � 0

σpu, vq � σiju
ivj constant symp. form σpu, vq �

³
Σ
u
ÐÑ
BnvdΣ

t P R2d, t P C8
0 pMq{p��m2 � vqC8

0 pMq � S�,

tpyq � tiy
i where ti P R2d tpuq �

³
M
tpxqupxq, where tpxq P t � C8

0 pMq

σij Epx1, x2q

ωij almost-Kähler pos. Hermitian form, ωpx1, x2q pure Hadamard quasi-free state

2 Imωij � σij , 2 Imωpx1, x2q � Epx1, x2q,

2 Reωij � Gij inv. metric 2 Reωpx1, x2q � Gpx1, x2q symm. distr.°
n ti1...iny

i1 � � � yin observables
°
n ϕ

bnptnq observables

tyi, yju � σij tϕpx1q, ϕpx2qu � Epx1, x2q

WpS, ωq � Crr~ss b
À

n¥0_
nR2d, WpS, ωq � Crr~ss b

À
n¥0_

n
WS

�

t � pt0, t1, . . . q t � pt0, t1, . . . q

tn symmetric covariant tensor tn P P�E 1W pMnq{p��m2 � vqP�E 1W pMnq,

with coe�cients in Crr~ss, with coe�cients in Crr~ss,


 given by (??) 
 given by (??)

Table 2.1: Analogies between the �nite-dimensional framework and the linear quantum �eld theory
setting.

A di�erence to the �nite-dimensional case is that in the in�nite-dimensional setting, we need to
discuss the topological structure of the formal Wick algebra W. In �nite dimensions there is only one
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reasonable topology, while many inequivalent de�nitions are a priori available if S is a space of smooth
functions. The formal Wick algebra W has a natural notion of convergence (not actually a topology)
that is inherited from the wave-front set condition satis�ed by the distributions in E 1W (see (??)). This
topological structure is de�ned as follows. Firstly, we provide the distribution spaces E 1W pMnq with
the notion of convergence obtained from the Hörmander pseudo-topology (see def. ?? and prop. ?? in

appendix ??). In more detail, a sequence pt`q`PN � E 1W pMnq converges to t P E 1W pMnq, written t`
WnÑ t, if

it holds t` Ñ t in the weak sense and it holds At` Ñ At in the sense of C8
0 pMq for any pseudo-di�erential

operator A on Mn with CharpAq � T�MnzWn. Because W is basically the direct product of spaces
E 1W pMnq, the topological structure on E 1W pMnq we have just introduced naturally leads to a notion of

sequential convergence also for W. We denote it by W
Ñ. One can show that:

1. The algebra W is closed under taking the sequential completion with respect to the notion of

convergence W
Ñ.

2. The product 
 and the :-conjugation are continuous.

We emphasize that, in the in�nite-dimensional context, our choice of distribution spaces (representing
suitable closures) is, a priori, only one among many possibilities to get a well de�ned analogue of the
algebraW in the �nite-dimensional case. Our choice is guided by experience from perturbative quantum
�eld theory and will turn out to be suitable for our purposes in the following sections. In the literature,
see e.g. [? ? ? ? ? ? ? ? ? ], a less restrictive wave-front set condition is imposed, namely in

formula (??) the set Wn is replaced with T�MnzppV
�
qn Y pV

�
qnq. Our choice will be motivated in

sec. ?? when we generalize Fedosov's method to an in�nite-dimensional geometry based on such restric-
tive constraints on the wave-front sets.

So far we have discussed a linear quantum �eld theory. This framework su�ces to treat the linearised
theory around a classical �background� solution φ to a non-linear equation, as we explain in more detail
in the next section. In the following, we need to consider also the more general situation where the
�background� is not a solution. This more general framework requires a slight generalization of the
formal Wick algebra. Namely, we allow a non-vanishing smooth source j in (??), i.e. we want to
implement on the quantum algebra W the condition that ϕ is a solution to the inhomogeneous equation
p��m2�vqxϕpxq � jpxq. To do so, we consider Crr~ssb`n¥0E 1W pMnq and we quotient out the elements
t � pt0, t1, . . . q in form

t0 � �

»
M

jpzqh1
1pzqdz,

tnpx1, . . . , xnq �
ņ

i�1

p��m2 � vqxih
n
i px1, . . . , xnq�

�
ņ

k�0

»
M

jpzqhn�1
k px1, . . . , xk, z, xk�1, . . . , xnqdz

(2.23)

for a collection thni un,iPN of smooth compactly supported functions. Note that for the inhomogeneous
case the equivalence relation compares distributions with di�erent symmetric degrees, i.e. it cannot be
written as a relation on each E 1W pMnq (c.f. (??)). The modi�ed algebra W (cf. (??)) is then de�ned as
a vector space by

WpS, ωq � Crr~ss b

�
8à
n�0

P�E 1W pMnq

�
{p��m2 � v � j � idq, (2.24)

where we mean that we now quotient out the new relations eq. (??). The product on the algebra is
de�ned as before by formula (??), which is seen to give a consistent de�nition.
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2.2 Interacting Klein-Gordon equation, quantization à la �causal

perturbation theory�

In the previous section we have described the �deformation quantization� of a linear, scalar Klein-Gordon
�eld. If there is no source, the solution space has a linear structure, while it has an a�ne structure if
there is a source. As we discussed, under these circumstances the deformation quantization procedure is
a precise analogue of the quantization of the �nite-dimensional classical symplectic manifold described
as our �model case� in the basic example (remark ??). The situation changes drastically if we want to
apply deformation quantization to a non-linear Klein-Gordon equation of the type

p��m2qφ� V 1pφq � 0, (2.25)

which is the Euler-Lagrange equation of the action

Ipφq �

»
M

�
1

2
|∇φpxq|2g �

1

2
m2φpxq2 � V px, φpxqq



dx. (2.26)

Here, V pφq is a potential, which we will typically take to be of the form V � λ
4!φ

4, where λ could be
a smooth function of x or just a constant. It seems natural to try to apply Fedosov method to get
a deformation quantization of this system by proceeding along the lines described in the classical case
in sec. ??, where S would now be the space of solution to the non-linear Klein-Gordon theory. We
will indeed do this below in sec. ??, after the necessary concepts in in�nite-dimensional geometry will
have been introduced in sec. ??-??. However, to get a better perspective of the construction, and to
relate it to more conventional constructions in quantum �eld theory, we will present here �rst a di�erent
approach which is based, roughly speaking, on the ideas of �causal perturbation theory� in the sense of
Epstein-Glaser [? ] following [? ? ? ? ? ? ? ].

The starting point of this type of perturbation theory is to �x some �background� φ P C8pMq, and to
expand the classical action around φ. It is not assumed at this stage that φ is a solution to the non-linear
Klein-Gordon equation, although we will be interested in that case later on. We �rst consider the action
Ipφ� ϕq up to quadratic order in the �perturbation� ϕ. Thus, letting

I
ppq
φ pϕq :�

1

p!

dp

dεp
Ipφ� εϕq

����
ε�0

, (2.27)

we consider the �free� action Ip0qφ � I
p1q
φ � I

p2q
φ , i.e. up to quadratic terms in ϕ. The zeroth order term

evidently does not depend on ϕ at all, and so does not contribute to the equations of motion for ϕ. The
variation of the �rst term with respect to ϕ of the �rst order term vanishes if φ itself is a solution to the
background Klein-Gordon equation, and otherwise gives a source in the equation of motion of ϕ. Thus,
the equation of motion for the theory corresponding to the truncated action Ip0qφ � I

p1q
φ � I

p2q
φ is:

r��m2 � vφsϕ � jφ, vφpxq � V 2pφpxqq, jφpxq � p��m2qφpxq � V 1pφpxqq. (2.28)

Note that in general jφ is not compactly supported. However, we are interested in the case where the
background φ is a smooth solution to the non-linear equation and in this case jφ simply vanishes. We
have already explained how to quantize this theory for �xed background φ in the previous section. These
constructions give an algebra Wφ, the formal Wick algebra for the background φ:

De�nition 13. For an arbitrary background φ, consider a pure Hadamard 2-point function ωφ with
respect to the linearised KG-equation r� �m2 � vφsϕ � 0. The algebra Wφ is de�ned as in Def. ?? of
Sec. ?? for the 2-point function ωφ with the modi�cation given by formula (??).

Of course we need to say how to incorporate the corrections arising from the higher-than-quadratic
parts in the action, Ippqφ for p ¡ 2. These corrections are organized in certain (formal) series, which are
valued in the algebraWφ. In order to describe these series in more detail, we �rst make some de�nitions.

De�nition 14. Let F be a functional C8pMq Ñ C.

• F is called W -smooth if the following two conditions hold:
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1. All its Gateaux derivatives exist in the sense of distributions on the appropriate Cartesian
power of M , i.e. for any φ P C8pMq and any ν P N, it holds

Bν

Bε1 . . . Bεν
F

�
φ�

¸
i

εihi

������
ε1,...,εν�0

�

�

»
Mν

δνF pφq

δφpy1q � � � δφpyνq
h1py1q � � �hνpyνqdy1 . . . dyν ,

where δνF pφq{δνφ is a symmetric distribution in E 1W pMνq (see (??)), and where h1, . . . , hν
are arbitrary smooth functions.

2. The Gateaux derivatives depend smoothly on φ in the following sense: consider a smooth
1-parameter family of backgrounds R Q ε ÞÑ φpεq (in the topology on C8pMq), and view
δνF pφpεqq{δφpy1q � � � δφpyνq as a distribution in the variables ε, y1, . . . , yν , i.e. as a distribution
on R�Mν . It is required that its wave-front set satis�es

WF

�
δνF pφpεqq

δφpy1q � � � δφpyνq



� R� t0u �Wν ,

where Wν is the set de�ned by (??).

• F is said to be polynomial if all the Gateux derivatives of su�ciently high degree vanish.

• F is said to be compactly supported if its support, de�ned as the closed set

suppF :� tp PM |@U Q p, Dφ, ψ � φ P C8pMq, suppψ � U,F pφ� ψq � F pφqu ,

is compact.

• F is said to be additive if for any φ1, φ2, φ3 P C8pMq such that suppφ1 X suppφ3 � H and
φ1, φ3, φ1 � φ3 � φ2 it holds

F pφ1 � φ2 � φ3q � F pφ1 � φ2q � F pφ2q � F pφ2 � φ3q.

The set of W -smooth, additive, polynomial functionals of compact support is denoted FlocpMq and the
elements are called local functionals5.

It can be shown6 that every local functional in FlocpMq must have the form

F pφq �

»
M

Ppx, φpxq,∇φpxq, . . . ,∇nφpxq, . . . qdx, (2.29)

where P is a polynomial with smooth compactly supported coe�cients, and with degree locally bounded
on compact sets. Among such functionals, a prime example is a local self-interaction of the form»

M

V px, φpxqqdx �
1

4!

»
M

λpxqφpxq4dx, (2.30)

where λ is smooth and of compact support on M . Here, λ plays the role of a �coupling function� that
can, for example, be smoothly switched on and o�.

In the �causal approach� to the quantization of the theory described classically by the action Ipφq
(cf. (??)), one proceeds as follows. First, one �xes an arbitrary smooth background φ which solves

5Smooth, additive, polynomial functionals with compact support are indeed local in the sense of [? ? ]), i.e.
supp pδνF pφq{δφνq � ∆ν and WFpδνF pφq{δφνq K T∆ν , where ∆ν � tpx, . . . , xq P Mνu is the diagonal in M . The
�rst condition follows form [? , prop. 2.3.11], while the second one is a consequence of the fact that any smooth, additive,
polynomial functional with compact support is in the form (??).

6Since W1 � H, local functionals in FlocpMq are indeed microlocal functional in the sense of [? ] and, hence, the
statement is a consequence of [? , prop. 2.3.12].
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eq. (??). For such φ, one considers the free theory described by the quadratic part of the action Ip2qφ pϕq,
see (??). For the corresponding equation of motion

r��m2 � vφsϕ � 0 (2.31)

(cf. (??)), one picks a pure Hadamard 2-point function ωφ and de�nes the corresponding algebra

Wφ :�W pt smooth solutions of eq. (??) u, ωφq , (2.32)

as explained in the preceding section.

For any local functional F P FlocpMq one next wishes to de�ne a corresponding �interacting �eld
observable� associated to the full action Ipφ� ϕq (??). One denotes by

Vφpϕq :�
¸
p¡2

I
ppq
φ pϕq �

¸
p¡2

1

p!

»
M

Lppqφ pxqdx, (2.33)

the part of Ipφ� ϕq higher than quadratic in ϕ7. Then, one writes the quantum �eld observable F̂φpϕq
associated to F pφq (cf. (??)) in the interacting theory as the series

�F̂φpϕq :�
8̧

n�0

in

~nn!

¸
pi¡2

»
Mn�1

�
. . .

�
Pφpxq,Lpp1qφ py1q

�

φ
, . . . ,Lppnqφ pynq

�

φ

�

� θpx0, y0
1 , . . . , y

0
nqdxdy1 . . . dyn�,

(2.34)

where Pφpx, ϕpxq,∇ϕpxq, . . . q is the density for F pφ � ϕq, i.e.
³
M
Pφpxqdx � F pφ � ϕq, and where

θpx0
1, . . . , x

0
nq is the product of the Heaviside step-functions

±n
i�1 θpx

0
i � x0

i�1q. For example if x P M
and F pφq � φpxq, then φ̂pxq formally satis�es the interacting Klein-Gordon equation (??).

There are several problems with eq. (??):

1. The integrand is not a well-de�ned distribution because the commutators are too singular to be
multiplied by θpx0, y0

1 , . . . , y
0
nq (this follows e.g. from the wave-front set calculus). This is a mani-

festation of the usual UV-divergences in perturbative quantum �eld theories.

2. The dyi-integrals can su�er from IR-divergences, e.g. if m � 0 and M � pR4, ηq the Minkowski
space-time.

3. The series
°
n cannot be expected to converge.

Note that the third problem does not a�ect us (or rather, is ignored), because we only work with formal
series in ~, so we only need to make sense of the individual terms appearing in eq. (??). Dealing with the
second problem in general requires further analysis and depends on the choices of pM, gq, V and φ. We
sidestep this issue by choosing compactly supported interactions, e.g. (??) with λ compactly supported.
The �rst problem needs to be dealt with by some form of �renormalization�.

Our approach to the renormalization problem is to characterize the integrand in eq. (??) axiomatically,
keeping as many formal properties as possible. In a second step, we will then prove that there exists a
non-trivial solutions to these prescribed axioms. This program is called �causal perturbation theory� [?
? ? ? ? ]. It turns out that one has to formulate quite a few axioms to characterize the integrand on
the right-hand side of eq. (??) with su�cient precision. The objects to be characterized by these axioms
are called retarded products and formally correspond to

�Rn,φ
�
F pφ� ϕq; I

pp1q
φ pϕq b � � � b I

ppnq
φ pϕq

	
�

�

»
Mn�1

�
. . .

�
Pφpxq,Lpp1qφ py1q

�

φ
, . . . ,Lppnqφ pynq

�

φ

θpx0, y0
1 , . . . , y

0
nqdxdy1 . . . dyn�.

(2.35)

7So that Ipφ� ϕq � I
p0q
φ pϕq � I

p1q
φ pϕq � I

p2q
φ pϕq � Vφpϕq.
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The terminology is due to the support property of (??): the retarded product (??) vanishes if none of

the terms Lppqφ has the support in the causal past of the support of Pφpxq. This support property is
encoded in the causality axiom ??. The other axioms ??-?? are described in detail below and similarly
encode other properties that formally hold for (??).

We now present the abstract properties of the retarded products. A prescription for retarded products
is a collection of maps

Rn,φ : FlocpMq b FlocpMqbn ÑWφpM, gq

given for every value of n ¥ 0, for every φ P C8pMq, and for every globally hyperbolic manifold
pM, gq. For φ, λ P C8pMq we �rst de�ne the formal Wick algebra Wrg,m, φ, λs as in def. ??, where
the underlying Klein-Gordon equation (??) is characterized by (??), i.e. vφ � λ

2φ
2. In principle, for an

arbitrary smooth φ, we should construct the formal Wick algebra with respect to the inhomogeneous
Klein-Gordon equation (??), but ultimately we want to consider φ a smooth solution to eq. (??)), so we
restrict to the formal Wick algebra corresponding to the homogeneous Klein-Gordon equation (??) also
when φ is not a solution.
The desired properties that the retarded products are supposed to satisfy are:

(R0) Initial conditions:
If F P FlocpMq is independent of ϕ then Rn,φpF ; . . . q � Fδn,01.
If f P C8

0 pMq then R0,φp
³
M
fpxqϕpxqq �

³
M
fpxqϕpxqdx PWφ.

(R1) Locality/covariance:
Consider an isometric embedding ι : pM 1, g1q ãÑ pM, gq, i.e. g1 � ι�g and a background φ1 on
M 1 such that φ1 � ι�φ. It can be proved that ω1φ1 � ι�ωφ is a Hadamard 2-point function for
the linearised Klein-Gordon equation in pM 1, g1q around φ1, where the �mass� and the coupling are
now m1 � ι�m and λ1 � ι�λ. One de�nes the corresponding algebra W 1

φ1 � Wrg1,m1, φ1, λ1s. Let
αι : W 1

φ1 Ñ Wφ be the natural injective �-homomorphism corresponding to ι (see [? ]). Then, it
should hold

αι

�
Rn,φ1

�
F ;

mâ
j�1

Hj

��
� Rn,φ

�
ι�F ;

nâ
j�1

ι�Hj

�
.

(R2) Scaling:
The retarded products scale almost homogeneously (in the sense of [? , def. 4.2]) under a rescaling
g ÞÑ Λ�2g where Λ P R and under the corresponding rescaling of m, V , ϕ and φ chosen in such a
way that the truncated action Ip0qφ � I

p1q
φ � I

p2q
φ is invariant, i.e. m ÞÑ Λm, ϕ ÞÑ Λϕ, φ ÞÑ Λφ and λ

does not scale8. More precisely, let σΛ : pWrΛ�2g,Λm,Λφ, λs,Λ2ωφq Ñ pWrg,m, φ, λs, ωφq be the
canonical homomorphism between two formal Wick algebras at di�erent scales introduced in [? ,
lemma 4.2], then there exists some N ¥ 0 such that

BN

BN log Λ
Λ�dR�4pn�1qσΛRn,rΛ�2g,Λm,Λφ,λs

�
F ;

nâ
j�1

Hj

�
� 0.

In the formula above dR is the engineering dimension of the retarded product, which is de�ned as
follows (see [? ? ]). The functionals F,H1, . . . ,Hn can be written as F �

³
M
fpxqΦ0,φpxqdx and

Hj �
³
M
hjpxqΦj,φpxqdx for any j � 1, . . . , n, where f, h1, . . . , hn are compactly supported tensor

�elds, and where Φφ are monomials in the classical �eld ϕ, its symmetrized covariant derivatives,
the metric, arbitrary curvature tensors, the functions m and φ and their symmetric covariant
derivatives. We assign to each Φφ an engineering dimension

dΦφ � #pfactors of ϕq �#pfactors of mq �#pfactors of φq �#pderivativesq�

� 2�#pfactors of curvatureq �#p�up� indicesq �#p�down� indicesq.

The engineering dimension dR is just the sum dΦ0,φ
� dΦ1,φ

� � � � � dΦn,φ .

8The last is a consequence of the choice V pφq � λ
4!
φ4. Di�erent choices for the interaction could require a rescaling of

λ.
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(R3) Microlocal spectrum condition:
Let ωφ be any quasi-free Hadamard state on Wφ

9, i.e. WFpω2,φq � C�. Let

ωR,n,φpy;x1, . . . , xnq :� ωφ

�
Rn,φ

�
Φφpyq;

nâ
j�1

Φj,φpxjq

��
, (2.36)

for any Φφ monomials in the classical �eld ϕ, its symmetrized covariant derivatives, the metric,
arbitrary curvature tensors and the background φ. Then, we require that

WFpωR,n,φq � CR1�nrgs,

where CRn rgs is the set de�ned by

CR1�nrgs :�
!
py, x1, . . . , xn; q, k0, . . . , knq P 9T�Mm�1 : D decorated graph G

with external vertex y and with internal vertices x1, . . . , xn

such that xj P J
�pyq@j

q �
¸

e:speq�y

pepyq �
¸

e:tpeq�y

pepyq, kj �
¸

e:speq�xj

pepxjq �
¸

e:tpeq�xj

pepxjq

,.- .

(2.37)

Following [? ? ? ], a decorated graph G is an embedded graph in M with vertices y1, . . . , y`,
x1 . . . , xn, where y1, . . . , y` are �external vertices� and x1, . . . , xn are �internal vertices�, and with
edges connecting the vertices given by oriented null-geodesic curves. The valence of a vertex in
the graph is here restricted to be less or equal to the number of �eld factors appearing in the
corresponding classical functionals Φ. An abstract ordering   of the vertices is chosen (not related
to the causal structure of M). It is required that the ordering satis�es x1   � � �   xn for the
internal vertices, while no restrictions are imposed for the external vertices. For each edge e we
call source (denoted by speq) the smaller endpoint with respect to   and we call target (denoted
by tpeq) the bigger endpoint with respect to  . We consistently impose an orientation for the
null-geodesic corresponding to e in such a way that the curve starts at speq. Each edge is equipped
with a future-directed covector �eld pe which is cotangent and coparallel to the geodesic curve
associated to the edge e.

(R4) Smoothness:
The retarded products have a smooth functional dependence on g,m, φ, λ in the following sense.
Consider the smooth 1-parameter families tgpsqusPΩ, tmpsqusPΩ, tφpsqusPΩ and tλpsqusPΩ, where Ω
an domain in Rp. Furthermore, let tωpsqusPΩ be a collection of quasi-free Hadamard states ωpsq for
the algebras Wφpsq �Wrgpsq,mpsq, φpsq, λpsqs such that the 2-point functions ωpsqpx1, x2q, seen as a
distribution in Ω�M2, satis�es

WFpωpsqpx1, x2qq �
!
ps, x1, x2; ρ, k1, k2q P 9T�pΩ�M2q : px1, x2; k1, k2q P C�rgpsqs

)
.

For any n, the collection tωpsqR,npy;x1, . . . xnqusPΩ, where ω
psq
R,n is de�ned as in (??), can be interpreted

as a distribution in the variables ps, y, x1, . . . xnq. We require that this distribution satis�es

WFpω
psq
R,nq �

!
ps, y, x1, . . . , xn; ρ, p, k1, . . . , knq P 9T�pΛ�Mnq :

py, x1, . . . , xn; p, k1, . . . , knq P CR1�nrgpsqs
)
.

Furthermore, if we consider variations only of the background φ, i.e. gpsq � g, mpsq � m and
λpsq � λ, and if tωpsqusPΩ is a collection of quasi-free Hadamard states such that WFpωpsqpx1, x2qq �

Ω� t0u � C�, then we have WFpω
psq
R,nq � Ω� t0u � CR1�n.

9We are free to use the 2-point function of ωφ to de�ne the Wick product 
φ, exploiting the fact that two 2-point
functions satisfying the Hadamard condition di�er only for a smooth function, and such smooth function induces an
isomorphism of the formal Wick algebra (see [? ]).
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(R5) Analyticity10:
Similarly, we require that for analytic families of analytic metric, masses, backgrounds and couplings
(and analytic V ), the expectation value of the retarded products in an analytic family of states
varies analytically in the same sense as ??, replacing the smooth wave-front set with the analytic
wave-front set (see appendix ??).

(R6) Symmetry:
The map Rn,φ is symmetric in the last n entries.

(R7) Unitarity:
We require that

Rn,φ

�
F ;

nâ
j�1

Hj

�:

� p�1qnRn,φ

�
F ;

nâ
j�1

Hj

�
,

where F denotes complex conjugation, i.e. if the local functional F is F pφq �
³
M
Ppxqdx for a

polynomial P as in (??), then F is de�ned by F pφq :�
³
M
Ppxqdx.

(R8) Causality:
If pYjsuppHjq X J�psuppF q � H, then Rn,φpF ;bnj�1Hjq � 0.

(R9) Field independence:
Let u be a (space-like compact) smooth solution of Pφu � 0, then

xu,
δ

δϕ
yRn,φ

�
F ;

nâ
j�1

Hj

�
� Rn,φ

�
xu,

δ

δϕ
yF ;bnj�1Hj



�

�
ņ

j�1

Rn,φ

�
F ;H1 b � � � xu,

δ

δϕ
yHj � � � bHn



,

where xu, δ{δϕy acts on Wφ as11

xu,
δ

δϕ
yϕbnpf pnqq :� n

»
Mn

f pnqpx1, . . . , xnqupx1qϕpx2q � � �ϕpxnqdx1 . . . dxn, (2.38)

whereas xu, δ{δϕy acts on FlocpMq as the Gateaux derivative along the direction of u.

(R10) Leibniz rule/Action Ward Identities:
Rn,φ commutes with the derivatives, i.e.

∇xiRn,φpΦ1,φpx1q b � � � b Φn,φpxnqq � Rn,φpΦ1,φpx1q b � � � b∇xiΦi,φpxiq b � � � b Φn,φpxnqq.

(R11) GLZ (Glaser-Lehmann-Zimmermann) formula:
For n ¥ 2

Rn,φ

�
F ;F 1 b

n�1â
j�1

Hj

�
�Rn,φ

�
F 1;F b

n�1â
j�1

Hj

�
�

�
¸

I�t1,...,n�2u

�
Rn,φ

�
F ;

â
iPI

Hi

�
, Rn,φ

�
F 1;

â
jPIc

Hj

��

φ

.

(2.39)

The �nal key property of retarded products is the principle of perturbative agreement discussed in [?
]. This principle can be invoked to relate the quantum �eld de�ned by the retarded products tRm,φu
and tRm,φ1u for di�erent backgrounds φ, φ1 as follows. The quantum �eld theories corresponding to the

quadratic actions Ip2qφ , I
p2q
φ1 are both exactly solvable and trivially

I
p2q
φ1 pϕq � I

p2q
φ pϕq �

»
M

1

2
pvφ1 � vφqpxqϕpxq

2dx � I
p2q
φ pϕq � Vφ,φ1pϕq (2.40)

10It is worth mentioning that a recent result [? ] suggests that the analyticity condition can be dropped.
11Equivalently xu, δ

δϕ
y � r�, ϕpfφqs
 for any fφ P C

8
0 pMq such that u � Eφpfφq.
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If V is compactly supported as in eq. (??), the second term in the right-hand side is a local functional
Vφ,φ1pϕq, which we may choose to treat perturbatively via the series (??), where Lppq is now 1

2 pvφ1�vφqϕ
2.

Of course, there is no need to do this really, because the theory can be de�ned �exactly� proceeding with
I
p2q
φ1 in the �rst place. If we demand that the two procedures gives the �same� result, then we get non-
trivial relations between tRφ,nu and tRφ1,nu.
We now state these relations in a precise manner. First, we note that the retarded products tRφ,nu and
tRφ1,nu take values in di�erent algebras, Wφ and Wφ1 . So before we can compare them, we must �rst
de�ne a suitable isomorphism between these algebras. This isomorphism is constructed following [? ].
First, we �x a Hadamard 2-point function ω0 with respect to the Klein-Gordon operator � � m2 (in
the case of a static space-time ω0 can be chosen as the ground state). Then, we construct the so-called
retarded state (or �in state�) with respect to ω0, denoted by ωRφ . This state is uniquely characterized by
the fact that for all x, y R J�psuppλq the corresponding 2-point function satis�es

ωRφ px, yq � ω0px, yq. (2.41)

This requirement is consistent because ωRφ px, yq is a 2-point function with respect to p��m2 � vφq and
vφpxq � V 2pφpxqq � 1

2λpxqφ
2pxq vanishes for x R J�psuppλq. The complement of the region J�psuppλq

contains a Cauchy surface. Therefore, the requirement (??) uniquely de�nes the quasi-free state ωRφ
because its 2-point function obeys a hyperbolic equation in both the entries (see [? ? ]). We can
similarly construct the retarded state ωRφ1 (with respect to ω0) for the background φ1.
We next de�ne our algebras Wφ � WpM,ωRφ q, Wφ1 � WpM,ωRφ1q by constructing the product via the
Hadamard 2-point functions of the retarded states just described. The desired isomorphism αRφ,φ1 :
Wφ Ñ Wφ1 is then constructed as follows. Let t � ptnqnPN be an element of Wφ with deg~ � 0. Let us
identify each tn, which is an equivalence class in E 1W pMnq{p��m2vqE 1W pMnq (see (??)), with one of its
representatives in E 1W pMnq. Then, we de�ne αRφ,φ1 by

αRφ,φ1pt
nq :�

��
ARφ,φ1

�bn
tn
�
, (2.42)

and then we extend αRφ,φ1 by Crr~ss-linearity to the whole algebra Wφ. The distribution ARφ,φ1 P DpM2q
is uniquely characterized by demanding that:

1. αRφ,φ1 is a homomorphism of algebras.

2. αR satis�es the �cocycle condition�

αRφ1,φ2α
R
φ,φ1 � αRφ,φ2 . (2.43)

3. Outside the future of the support of vφ, vφ1 the map αRφ,φ1 is the identity.

It turns out that ARφ,φ1 must be given explicitly by12

ARφ,φ1pfq :� �p��m2 � vφ1q
�
cSRφ,φ1pfq

�
, (2.44)

where SR is de�ned by

SRφ,φ1pf1, f2q :�

»
Σ�

Eφ1rf1spzq
ÐÑ
BnEφrf2spzqdΣpzq, (2.45)

where Σ� is a Cauchy surface in the complement of J�psuppλq, and where c is a �(retarded) regularized
step function� with respect to Σ�, i.e. a smooth function with values in r0, 1s such that c � 1 in J�pΣ�q
and c � 0 in J�pΣ�q for a Cauchy surface Σ� in the complement of J�psuppλq. The situation is
sketched in �g. ??.
After these preparations, we can now formulate the principle of perturbative agreement.

12We make use of the Schwartz kernel theorem (see e.g. [? ]) to identify distributions D1pX � Y q with continuous
functionals C80 pXq Ñ D1pY q.
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c � 0

c � 1

Σ�

Σ�
suppλ

Figure 2.1: Choice of Σ� and c adapted to suppV .

(R12) Principle of perturbative agreement for variations of the background φ:
Let tφpsqusPΩ be a smooth 1-parameter family of backgrounds, where Ω is an open interval of 0
and where φ :� φp0q. Let Fφ, Gφ be local functionals depending (W -smoothly) on the background
φ13. We require that

B

Bs
αRφpsq,φ

�
Rn,φpsq

�
Fφpsq ,

nâ
j�1

Gj,φpsq

��
�

�
i

~
Rn�1,φ

��Fφ;
â
j

Gj,φ b
BI

p2q

φpsq

Bs

�
�Rn,φ

�
BFφpsq

Bs
;
â
j

Gj,φ

�
�

�
ņ

`�1

Rn,φ

�
Fφ;

BG`,φpsq

Bs
b
â
j�`

Gj,φ

�
.

To simplify the notation (here and in appendix ??) we always consider the derivative B{Bs as
evaluated at 0, unless stated otherwise.

We refer to [? ] for an explanation why this encodes the heuristic idea discussed around eq. (??).

The fundamental result is that there exists a prescription for retarded products satisfying ??-??,
and that these axioms uniquely de�ne the maps tRn,φu up to well-characterized ��nite renormalization
ambiguities�:

Theorem 15. There exists a prescription Rφ � tRn,φunPN for retarded products which satis�es ax-
ioms ??-?? and ??.
Moreover, if R1φ � tR1n,φunPN is another prescriptions for the retarded products which satis�es the ax-
ioms ??-??, then there exists a hierarchy Dφ � tDn,φunPN of maps

Dn,φ : FlocpMqbn Ñ FlocpMqrr~ss,

which satis�es

R1φ

�
F ; expb

�
i

~
H




� Rφ

�
F �Dφ

�
F b expbH

�
; expb

�
i

~
�
H �DpexpbHq

�


,

and the following properties:

• Dn,φpF1 b � � � b Fnq is of order Op~q.

• D1,φp1q � 0, D1,φpϕpfqq � 0.

• Dn,φ are local/covariant functionals in the following sense: let ι : M Ñ M 1 be any causality
and orientation preserving isometric embedding between two space-times, i.e. ι�g1 � g, then ι� �
D1
n,ι�φ � Dn,φ � pι

�qbn.

13In particular, we are interested in Fφ � I
ppq
φ de�ned above in (??).
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• For any monomials Φ1,φ, . . . ,Φn,φ as in ??, the distribution Dn,φpΦ1,φpx1q b � � � b Φn,φpxnqq is
supported on the diagonal and it satis�es the wave-front set condition

WFpDn,φq|∆n�1
K T∆n�1.

Furthermore, Dn,φ depends smoothly (even analytically) on the background φ, i.e. for a smooth
(repsectively analytic) family R Q s ÞÑ φs of backgrounds it holds

WFpDn,φsq|R�∆n�1
K T pR�∆n�1q,

(where the smooth wave-front set WF must be replaced with the analytic wave-front set WFA in
the analytic case).

• Dn,φ depends only polynomially on the Riemann curvature tensor, and the functions m, φ and ϕ
(as well as their covariant derivatives).
Moreover, Dn,φ satis�es the following scaling constraint: there exists N such that

BN

BN log Λ
Λ�dDDn,φpΦ1,φpx1q b � � � b Φn,φpxnqq � 0,

where dD �
°
j dΦj denotes the engineering dimension.

• Dn,φ is symmetric.

• For u P C8pMq, it holds

xu,
δ

δϕ
yDn,φ

�
nâ
j�1

Fj

�
�

ņ

`�1

Dn,φ

�
xu,

δ

δϕ
yF` b

â
j�`

Fj

�
.

Remember that xu, δ{δϕy acts on Floc as the Gateaux derivative in the direction u.

• Dn,φ commutes with the derivative, i.e.

∇xiDn,φpΦ1,φpx1q b � � � b Φn,φpxnqq � Dn,φpΦ1,φpx1q b � � � b∇xiΦi,φpxiq b � � � b Φn,φpxnqq.

A proof of this theorem can be be given following the methods of [? ]. Compared to the existing construc-
tions in the literature, a non-trivial extra point is that the axiom ??, i.e. the principle of perturbative
agreement, can be consistently imposed with ??-??. This is proved in appendix ??.

We now construct the interacting �elds, referring to the literature [? ? ? ? ? ] for more details. In
our perturbative setting, interacting quantum �elds are given by formal power series in the algebra Wφ

involving retarded products as we already anticipated in (??). The precise de�nition is as follows:

De�nition 16. Let F P Floc be a local observable, and let V be a potential with compact support such as
V px, φpxqq � 1

4!λpxqφ
4pxq, where λ has compact support. For each background con�guration φ P C8pMq,

the corresponding interacting quantum �eld observable (with respect to the action I
p2q
φ �

°
p¡2 I

ppq
φ ) is an

element F̂φ PWφ de�ned by the Haag series [? ? ]

F̂φ :�
¸
n¥0

in

~nn!

¸
p1,...,pn¡2

Rn,φ

�
F pφ� ϕq; I

pp1q
φ pϕq b � � � b I

ppnq
φ pϕq

	
, (2.46)

where tRn,φu denote the retarded products in the background φ.

The de�nition of F̂φ just presented makes precise formula (??).

We now want to investigate how the interacting �eld changes under a change of background φ. We can
understand this in the light of the principle of perturbative agreement ??. Let φ be a smooth solution to
the background equations of motion eq. (??) and let u be a smooth solution to the linearized equation (??)
around φ. We consider a map S Q φ ÞÑ tφ PWφ which satis�es the following smoothness properties: for
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any test functions f1, . . . , fn, and for any smooth map ε ÞÑ φpεq P S, ε ÞÑ tnφpεqpEφpεqpf1qb� � �bEφpεqpfnqq
is smooth, where tnφ is the degs � n part of tφ. We may de�ne its �retarded directional derivative in the
direction of u� as �

∇Rut
�
φ

:�
d

dε
αRφpεq,φptφpεqq

����
ε�0

. (2.47)

where αR is the same map as that de�ned in the principle of perturbative agreement ??, and where
R Q ε ÞÑ φpεq P S is a smooth map such that φp0q � φ and dφpεq{dε|ε�0 � u. We call ∇R the �retarded
connection�. From the cocycle condition (??) it follows immediately that the retarded connection is �at.

We focus now on the case V pφq � λ
4!φ

4 with λ P C8
0 pMq and we consider a smooth global solution φ

to the corresponding background equation (??), i.e.

p��m2qφ�
1

3!
λφ3 � 0. (2.48)

Regarding the existence of smooth global solutions of eq. (??), at least for ultra-static space-times with
compact Cauchy surfaces, we refer to appendix ??. Let u be a smooth solution to the linearised equations
at φ, i.e.

p��m2 �
1

2
λφ2qu � 0. (2.49)

Let F be a local observable, and let F̂φ P Wφ be the corresponding quantum observable de�ned by the
series (??). We think of u as a �tangent vector� at φ to the �manifold� of smooth non-linear solutions (the
rigorous de�nitions of the in�nite-dimensional geometry will be provided in chapter ??). We compute:

�
∇Ru F̂

	
φ
�

¸
k¥0

ik

~kk!

¸
p1,...,pk¡2

#
i

~
Rφ

�
F pφ� ϕq; xu,

δ

δφ
yI
p2q
φ pϕq b

kâ
i�1

I
ppiq
φ pϕq

�
�

�Rφ

�
xu,

δ

δφ
yF pφ� ϕq;

kâ
i�1

I
ppiq
φ pϕq

�
�

�
¸
j¤k

Rφ

�
F pφ� ϕq; xu,

δ

δφ
yI
ppjq
φ pϕq b

â
i�j

I
ppiq
φ pϕq

�+
,

where xu, δ{δφy is the Gateaux derivative in φ along the direction u. This formula can be simpli�ed as
follows. Using (??) and (??), it holds

xu,
δ

δφ
yI
ppq
φ pϕq � xu,

δ

δϕ
yI
pp�1q
φ pϕq, xu,

δ

δφ
yF pφ� ϕq � xu,

δ

δϕ
yF pφ� ϕq.

Next, we apply the �eld-independence axiom ?? to pull the operator xu, δ
δϕy in front of everything. We

summarize the above computation by the following result.

Theorem 17. Let F be a local observable in FlocpMq and φ ÞÑ F̂φ as in eq. (??). Then, for any smooth
solution u to the linearised equation (??) we have�

∇Ru � xu,
δ

δϕ
y



F̂ � 0. (2.50)

The operator ∇R � x�, δ{δϕy clearly has a striking similarity with Fedosov connection (??), noting that
x�, δ{δϕy is equal to the Fedosov operator δ (see (??)) in the present context. Furthermore, from this
point of view, the condition (??) simply means that the interacting observables F̂ are, as functions of
the background solution φ, �at sections in the �algebra bundle� \φWφ (more carefully de�ned below
in sec. ??). We thereby get a �rst hint that the �standard� method of quantization based on retarded
products � while looking completely di�erent at �rst sight� might have something to do with Fedosov
quantization. In the following sections, we will describe a version of Fedosov's method appropriate for
the setting of �eld theory. Then we will investigate the relation of these methods in chapter ??.
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Chapter 3

Fedosov quantization for quantum �eld

theory

In this chapter, we prove that it is indeed possible to implement Fedosov's procedure in the in�nite-
dimensional framework of a quantum �eld theory for non-linear equations of motion, but many new ideas,
which are going to be extensively explained, are required. In sec. ??, we �rst characterize rigorously
the in�nite-dimensional symplectic manifold of the smooth solutions of the non-linear (more precisely,
λφ4-interacting) Klein-Gordon equation on an ultra-static space-time with compact Cauchy surfaces.
We then de�ne the geometric set-up to discuss Fedosov's scheme in in�nite dimensions. In particular,
we provide the appropriate notion of smoothness, called �on-shell W -smoothness�, and the de�nitions of
the corresponding covariant tensor bundles necessary for constructing the vector space structure of the
formal Wick algebra. In sec. ??, we provide two concrete on-shell W -smooth tensor �elds corresponding
respectively to the symplectic structure and the almost-Kähler structure. In sec. ??, we discuss the
algebra structure of the formal Wick algebra. In particular, we de�ne the product of on-shell W -smooth
sections on the formal Wick algebra and, more generally, of on-shell W -smooth forms with values in the
formal Wick algebra. The appropriate notion of covariant derivative is presented in sec. ??. We de�ne
two concrete covariant derivatives, corresponding to the Levi-Civita connection and the Yano connection
in the �nite-dimensional case. The non-trivial results proved in sec. ?? and ?? concern the consistency of
the product and, respectively, the covariant derivatives with the notion of on-shell W -smoothness. With
the description of setting completed, we state and prove the in�nite-dimensional version of Fedosov's
theorems in sec. ??.
The remaining task will be then to explain the precise relationship between this construction and the
construction based on the �causal perturbation theory� described in sec. ??. This question will be
addressed in chapter ??.

3.1 The manifold structure of S

We have already highlighted in sec. ?? the formal similarities between Fedosov quantization for �nite-
dimensional almost-Kähler manifolds and perturbative quantization in the case of the free �eld (see
table ??). At the end of sec. ??, we have seen a hint that these formal analogies can be extended to
interacting models. Throughout the rest of the work we substantiate this.
For technical reasons, we consider only the case of the interaction V pφq � λ

4!φ
4, where λ P C8

0 pMq.
The analogue of the classical underlying almost-Kähler manifold, S, is the topological space of smooth
solutions to the non-linear Klein-Gordon equation

S �

"
φ P C8pMq : p��m2qφ�

λ

3!
φ3 � 0

*
.

Smooth solutions u to the linearised equation around a background φ P S are naturally viewed as tan-
gent vectors to S, i.e. elements u P TφS. The algebra Wφ can next be de�ned for all φ P S as the
corresponding algebra in the �nite-dimensional situation. It is modelled over the symmetrized tensor
powers of T�φ S, and the product is given in terms of a suitable smooth assignment S Q φ ÞÑ ωφ, where
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each ωφ is a pure Hadamard 2-point function. This provides the analogue of the almost-Kähler structure
for S. In particular, we may choose ωφ as the retarded state ωRφ with respect to the unique ground state
ω0 (cf. (??)). In this case, we will see in sec. ?? then, that the operator ∇R � x�, δ{δϕy, de�ned at the
end of sec. ??, is roughly speaking the Fedosov connection associated with this particular almost-Kähler
structure. However, in order to turn these formal analogies into precise mathematical ones, we must be
careful about the in�nite-dimensional nature of S. Thus, we will begin by equipping S with the structure
of an in�nite-dimensional Fréchet manifold, and then we will de�ne precisely the bundles over S needed
in Fedosov's method, namely TS, T�S, and W, and their di�erentiable structures. This will be done in
the rest of the present section.

First of all, we recall the de�nition of �Fréchet spaces� and of �Fréchet manifolds�. A Fréchet space is
a locally convex vector space, i.e. a vector space equipped with a family of countably many seminorms
such that the topology is induced by this family of seminorms. One can de�ne naturally a metric for
a Fréchet space1. A Fréchet space is required to be complete with respect to this metric. The space
of smooth functions over a �nite-dimensional manifold endowed with the compact-open topology2, also
called �topology of uniform convergence on compact set of M �, is the prime example of a Fréchet space,
see e.g. [? ].
A Fréchet manifold is a topological space F modelled upon Fréchet spaces, in the same way as a smooth3

n-dimensional manifold is a topological space modelled upon Rn. More precisely, in the Fréchet manifold
context, an atlas is a collection of charts tpUα, ραquαPA, where tUαuαPA is an open covering the topological
space F and each ρα is an homeomorphism from Uα into an open subset of a Fréchet space Eα.
We would now like to equip the space S of smooth solutions to (??) with the structure of a Fréchet
manifold. To de�ne the manifold structure of S, we use a description of S in terms of initial data. To
avoid excessive technicalities, we shall restrict attention, from now on, to space-times pM, gq that are
spatially compact, i.e. have a compact Cauchy surface Σ, and carry an ultra-static metric

g � �dt2 � hijdx
idxj , (3.1)

where the spatial part h does not depend on the global time coordinate t. As is shown in appendix ??
(prop. ??), in this situation (and probably more generally, too) for each set of smooth initial data
pq, pq P C8pΣq � C8pΣq there exists a unique, globally de�ned, smooth solution φ P S such that

q � φ|Σ, p � Bnφ|Σ.

This correspondence naturally establishes an isomorphism between S and the space E :� C8pΣq`C8pΣq.
The linear space E has the structure of a Fréchet space when equipped with the canonical topology
de�ned by the direct sum of the Fréchet seminorm of each copy of C8pΣq, see e.g. [? , Chapter 10].
The isomorphism between solutions and initial data thereby induces a Fréchet manifold structure on S.
By the continuous dependence of the solution φ on its initial data, proved in appendix ?? (prop. ??),
it follows that the topology on S induced by the compact open topology on C8pMq is compatible with
that manifold structure. In detail, let ρ : S Ñ E be de�ned as the �restriction map�, i.e.

φ ÞÑ pq, pq :� pρ1pφq, ρ0pφqq. (3.2)

By existence and uniqueness of the initial value problem for (??), this map has an inverse, U : E ÞÑ S,
the �time evolution map�. If we endow S � C8pMq with the relative topology, and E with the canonical
Fréchet topology we discussed, then the map U is continuous (prop. ??). By de�nition, it therefore
provides a global chart of S.

1Once chosen a family of seminorms tpnunPN generating the topology of the Fréchet space F , the metric is de�ned by

dpf, hq :�
¸
nPN

2�n
pnpf � hq

1 � pnpf � hq
.

for f, h P F .
2In appendix ??, we review explicitly the de�nition of the compact-open topology.
3Transition maps between two overlapping charts are smooth.
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Since S is a Fréchet manifold, it comes with a natural notion of smoothness4. However, for our
purposes below, we will require a stronger notion. Recall that a function F : C8pMq Ñ C was called
W -smooth (def. ??) if all its Gateaux derivatives exist in the sense of distributions on the appropriate
Cartesian power of M , if their wave-front sets are contained in corresponding W sets (??), and if they
depend continuously on φ. The appropriate strengthened notion of smoothness for functionals on S is
to require the existence of a W -smooth extension on C8pMq:

De�nition 18. A functional F : S Ñ C is called on-shell W -smooth if there is an extension F̃ :
C8pMq Ñ C of F , i.e. F̃ pφq � F pφq for all φ P S, which is W -smooth, i.e. the following conditions
holds:

(W1) For all ν P N, the ν-th Gateaux derivative δν F̃φ{δφpy1q . . . δφpyνq exists as compactly supported
symmetric distribution in Mν and

WF

�
δν F̃φ

δφpy1q . . . φpyνq

�
�Wν . (3.3)

(W2) Let R Q ε ÞÑ φpεq P C8pMq be smooth and view δν F̃φpεq{δφpy1q . . . δφpyνq as a distribution in
R�Mν , i.e. in the variables ε, y1, . . . , yν . For all ν P N, it is required to satisfy

WF

�
δν F̃φpεq

δφpy1q . . . φpyνq

�
� R� t0u �Wν . (3.4)

The space of on-shell W -smooth functionals is denoted by C8
W pSq.

For a W -smooth extension F̃ , all Gateaux derivatives exist as compactly supported distributions on
suitable Cartesian powers of M by de�nition. Therefore, if we feed δFφ{δφ with a smooth solution u to
the linearised wave equation (??) at φ, we expect to be able to de�ne a covariant derivative along S. We
will provide this construction in more generality for covariant tensor �elds below in def. ??.

We next introduce the tangent bundle of S, denoted by TS, in the standard way. Let φ P S and
consider the set of all smooth curves γ : I Ñ S such that γp0q � φ, where I is an open interval around
0 in R. A tangent vector at φ is identi�ed with one of the equivalence classes of such curves, where two
curves γ, γ̃ are de�ned to be equivalent if it holds

d

dε
F pγpεqq

����
ε�0

�
d

dε
F pγ̃pεqq

����
ε�0

,

for any on-shell W -smooth function F : S Ñ C. The tangent space TφS is de�ned as the collection of
all such tangent vectors. Note that this de�nition coincides with the usual �kinematic� de�nition of the
tangent space for �nite-dimensional manifolds 5. Since the elements of S are the smooth solutions of
equation (??), we can alternatively characterize the tangent space TφS as the space of smooth solutions
to the linearised equation at φ, namely

TφS � tu P C8pMq : Pφu � 0u,

4In the context of manifolds modelled on locally convex vector spaces, there are in general many inequivalent notions
of smoothness. Let F1,F2 be two locally convex spaces and let O � F1 be an open subset. The most common de�nition
of smoothness, in some references called Michal-Bastiani smoothness, states that a continuous map F : O Ñ F2 is smooth
if for any ν the ν-th Gateaux derivative exists as a continuous maps O �Fν

1 Ñ F2. If U � F1 is a subset, not necessarily

open, then a continuous map F : U Ñ F2 is said to be smooth if there is O � U open and a smooth map F̃ : O Ñ F2

extending F . A problem with this de�nition is that, for completely arbitrary U , the directional derivatives of F depend
on the extension chosen. More details are presented in [? ? ], and also discussed in [? ? ? ]. For general locally convex
spaces, this notion of smoothness is not equivalent to the notion C8-open smoothness of [? ]. However, in the context of
Fréchet spaces, which is our setting, these coincide.

5In in�nite dimensions one has to be careful and in general has to distinguish between �kinematic tangent vector�, i.e.
given as velocity of curves, and �operational tangent vector�, i.e. given as bounded derivations of local smooth functions.
These concepts do not coincide unless the locally convex space which models the in�nite-dimensional manifold is re�exive [?
, thm. 28.7]. In our situation, re�exivity does not hold.
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where we used the notation Pφ :� ��m2 � λ
2φ

2. The tangent bundle is de�ned as the disjoint union of
its �bers,

TS �
§
φPS

TφS. (3.5)

For any Fréchet manifold, the kinematic tangent bundle inherits a natural topology and a natural man-
ifold structure. In our case, these structures are particularly easy to describe, because S can be covered
by a single chart via initial data. More precisely, we de�ne the map 9U : E ` E Ñ TS by

9Uppq1, p1q, pq2, p2qq :� pUpq1, p1q, uUpq1,p1qpq2, p2qq,

where uφ : E Q pq, pq ÞÑ uφpq, pq P TφS maps the Cauchy data q, p into the unique smooth solution
uφpq, pq of the linear equation (??) such that ρ0uφpq, pq � q and ρ1uφpq, pq � p6.
The topology of TS is de�ned as the topology induced by the Frèchet topology of E ` E and the map
9U7. It is easy to see that pE ` E , 9Uq is a global chart for TS. In fact, 9U is bijective and its inverse is
9U�1pφ, uq :� pρpφq, ρpuqq because the Cauchy problems for both eq. (??) and its linearisation eq. (??)
are well-posed. By construction the maps 9U and 9U�1 are continuous. Note that the continuity prop-
erties of φ ÞÑ uφpq, pq proved in appendix ?? (prop. ??) imply that 9U is continuous also if we endow
TS � C8pMq ` C8pMq with the relative topology. With respect to this topology 9U�1 is continuous
too. Thus, the relative topology on TS is compatible with the natural topology induced by the global
chart.

We would next like to de�ne the cotangent bundle T�S and its tensor powers. A well-known issue in
in�nite dimensions is that there is no natural manifold structure for the cotangent bundle. For instance,
if we de�ne the cotangent space as the topological dual of the tangent space, then we can endow the
cotangent bundle with a vector bundle structure, but generally not with a smooth manifold structure. If
we consider the stronger category of manifolds modelled on Banach spaces, i.e. complete normed vector
spaces, the issue can be resolved, as discussed in [? , Remark II.3.5]. But for the case of manifolds
modelled on a Fréchet space there is no natural de�nition. A similar problem arises for the tensor powers
of the cotangent bundle. The key point is that, to de�ne the tensor product of locally convex spaces,
we need to take the completion of the algebraic tensor product of these spaces with respect to some
topology. In [? ], the authors proved that choosing the bornological completion, i.e. the �nest locally
convex topology such that the canonical tensor map is bounded, allows one to construct the full theory
of calculus for locally convex spaces . For the purposes of this work, a more direct approach, based on
the speci�c in�nite-dimensional structure we are considering, is preferable.
In our concrete case, S is a set of smooth functions and TφS for any background φ is a linear space of
smooth functions. The topological dual space of TφS is a space of distributions, and similarly for the
dual space of bnTφS. For our constructions below, we cannot consider arbitrary distributions, because
we would like to de�ne on these spaces a product structure in order to de�ne the algebras Wφ. Actually,
we had already encountered this problem when we de�ned the algebraWpS, ωq (??) in sec. ?? that serves
as a model for Wφ. We shall proceed in the exact same way. For each �xed φ P S, we note that any
compactly supported distribution t on M , modulo compactly supported distributions of the form Pφt

1

gives rise to a well-de�ned linear form on TφS, i.e. on smooth solutions of associated with the operator
Pφ. Similar statements hold true for distributions of more variables. By analogy with our discussion in
sec. ??, we therefore de�ne

bnWT
�
φ S :� E 1W pMnq{PφE 1W pMnq, (3.6)

which we can interpret as a completion of the algebraic tensor product bnT�φ S viewed as tensor product
of smooth functions. In the above quotient, we mean that the Klein-Gordon operator Pφ can act on any
argument as in (??).
The bundle corresponding to (??) is de�ned as the set-theoretic union of its �bers, i.e.

bnW T�S :�
§
φPS

bnWT
�
φ S. (3.7)

6As in [? ], the uφ can be expressed in terms of the causal propagator as uφpq, pq � Eφrρ
1
0p�ρ

1
1qs, where ρ

1
0,1 : E 1pΣq Ñ

E 1pMq are the �adjoints� of ρ0,1 : C8pMq Ñ C8pΣq, i.e. they are de�ned by xρ10,1t, fy � xt, ρ0,1fy for any t P E 1pΣq and
f P C8pMq.

7I.e. a subset O � TS is open if and only if 9U�1pOq � E ` E is open.
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c � 0

c � 1

Σ�

Σ�

Figure 3.1: Choice of c.

We need to equip T�S and more generally the bundles bnT�S with a smooth structure, i.e. we need to
de�ne the notion of smooth sections on these bundles.

For the purpose of discussing the smooth structure, it will be convenient to have an alternative
characterization of the �bers of the covariant tensor bundles. In order to set up this characterization,
we �rst introduce a special distributional integral kernel σc that will appear throughout the following
sections. We begin by choosing two disjoint Cauchy surfaces Σ�,Σ�, such that Σ� is in the future of
Σ�. Then, consider a function c P C8pMq such that cpMq � r0, 1s, c � 0 in J�pΣ�q and c � 1 in
J�pΣ�q. Roughly speaking, c is a smoothed out version of the step function that jumps from 1 to 0
across the Cauchy surface Σ�. See �g. ?? for a sketch of the situation. Then, we put

σcpx1, x2q :� �p�cpx1qqδpx1, x2q � 2p∇cpx1q,∇δpx1, x2qqg, (3.8)

where ∇ is the Levi-Civita connection with respect to the space-time metric g, and where p�, �qg is the
contraction with g. For later use, we notice that the wave-front set of σc satis�es the following bound:

WFpσcq �
!
px1, x2; k1, k2q P 9T�M2 : x1 � x2 P J

�pΣ�q X J�pΣ�q, k1 � �k2

)
�W2. (3.9)

Next, we consider the composition

pσc � Eφqpx, yq �

»
M

σcpx, zqEφpz, yqdz,

for any cut-o� function c as in eq. (??), where Eφ is the causal propagator of Pφ. This distribution will
be extensively used in the construction of our in�nite-dimensional setting.

Lemma 19. For any cut-o� function c as in eq. (??), pσc �Eφqpx, yq is a well-de�ned distribution which
has wave-front set in W2 and which is compactly supported in x.

Proof. We �rst notice that the wave-front set of σc is estimated by (??), the wave-front set of Eφ is
given by (??), and they are both contained in W2. Furthermore, σc is compactly supported and so the
integration condition (??) is ful�lled. All the hypotheses of lemma ?? are satis�ed and thus pσc�Eφqpx, yq
is a well-de�ned distribution which has wave-front set in W2. The support property of pσc �Eφqpx, yq is
a straightforward consequence of the fact that σc is compactly supported.

The following lemma establishes that (??) is basically an equivalent way of writing the standard sym-
plectic form on TφS and that Eφ � σc is the identity on each TφS, or, in other words, that Eφ is the
left inverse of σc on TφS. We also show some useful consequences of these two important facts. We
present the results for a more general situation than TφS, namely for the space of smooth solutions u of
Pφu � p��m2 � λ

2φ
2qu � 0 for φ P C8pMq and not just for φ P S.

Lemma 20. Let φ P C8pMq and c be a cut-o� function as in eq. (??). Then, for any two smooth
solutions u1, u2 to Pφu1,2 � 0 and for any Cauchy surface Σ, it holds»

Σ

u1pxq
ÐÑ
Bnu2pxqdΣpxq �

»
M2

u1px1qσcpx1, x2qu2px2qdx1dx2. (3.10)
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Furthermore, for any smooth u such that Pφu � 0 we have

upxq �

»
M2

Eφpx, y1qσcpy1, y2qupy2qdy1dy2. (3.11)

It also holds

Eφpx1, x2q �

»
M2

Eφpx1, y1qσcpy1, y2qEφpy2, x2qdy1dy2, (3.12)

for any cut-o� function c as in eq. (??), and

pEφ � σc1q � pEφ � σcq � Eφ � σc, (3.13)

for any cut-o� functions c, c1 as in eq. (??).

Proof. The proof of (??) follows easily from the Stokes theorem.
As proved in [? , lemma 3.2.1 part (3)]8, we have»

M

fpxqupxqdx � �σpEpfq, uq �

»
Σ

fpxqEφpx, zq
ÐÑ
BnupzqdΣpzq,

for any test function f and any Cauchy surface Σ. Using eq. (??), then eq. (??) follows.
Since Eφpfq is a smooth Pφ-solution for any f P C8pMq, eq. (??) is a straightforward consequence of
eq. (??).
Finally, eq. (??) is just a corollary of (??).

For later, we note that in the more general situation where u1, u2 are arbitrary smooth functions, not
necessarily solutions to Pφu1,2 � 0, eq. (??) becomes»

M2

u1px1qσcpx1, x2qu2px2qdx1dx2 �

�

»
Σ�

u1pxq
ÐÑ
Bnu2pxqdΣpxq �

»
B

pPφu1qpxqcpxqu2pxqdx�

»
B

u1pxqcpxqpPφu2qpxqdx,
(3.14)

where c is a cut-o� function as in eq. (??), i.e. c is identically 1 in the past of a Cauchy surface Σ� and is
identically 0 in the future of a Cauchy surface Σ�, and where B is the compact region J�pΣ�qXJ

�pΣ�q.
If u1, u2 are arbitrary smooth functions, not necessarily solutions to Pφu1,2 � 0, then it follows that the
integral

³
Σ
u1pxq

ÐÑ
Bnu2pxqdΣpxq is not any more independent to the choice of the Cauchy surface Σ. In

particular, if Σ1 is another Cauchy surface which is in the (strict) past of the Cauchy surface Σ, then it
holds»

Σ1

u1pxq
ÐÑ
Bnu2pxqdx �

»
Σ

u1pxq
ÐÑ
Bnu2pxqdΣpxq �

»
B1

pPφu1qpxqu2pxqdx�

»
B1

u1pxqpPφu2qpxqdx, (3.15)

where B1 is the compact region J�pΣ1q X J�pΣq.

The desired alternative description of the cotangent bundle and its tensor powers is given by the
following proposition, which is presented again (as in lemma ??) for a generic smooth function φ.

Proposition 21. Let c be any cut-o� function as in (??). For any φ P C8pMq and any n P N the
spaces pσc � Eφq

bnE 1W pMnq and E 1W pMnq{PφE 1W pMnq are naturally isomorphic. The isomorphism is
given by (??).
In case φ P S, we thus have bnWT

�
φ S � pσc � Eφq

bnE 1W pMnq.

Proof. First, we show that the space of distributions pσc �Eφqbn � E 1W pMnq is actually well-de�ned. We
already established in lemma ?? that the distribution pσc �Eφqpx, yq has wave-front set contained in W2

and is compactly supported in x. Thus, using lemma ?? we see that the composition of pσc �Eφqbn with
a distribution in E 1W pMnq is well-de�ned and pσc � EφqbnE 1W pMnq � E 1W pMnq.
The desired isomorphism between pσc � EφqbnE 1W pMnq and E 1W pMnq{PφE 1W pMnq is given by

pσc � Eφq
bnE 1W pMnq Q pσc � Eφq

bnt ÞÑ rts P E 1W pMnq{PφE 1W pMnq. (3.16)

8Note that in the reference the symplectic structure has the opposite sign.
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First, we need to check that the proposed de�nition is actually consistent. It is su�cient for this purpose
to prove that if pσc � Eφqbnt � 0, then rts � r0s, i.e. t P PφE 1W pMnq.
For n � 1, the distributional space E 1W pMq is just C8

0 pMq. If we assume that pσc �Eφqf � 0 for a certain
f P C8

0 pMq, then using eq. (??), we have necessarily

0 � pEφ � σc � Eφqf � Eφpfq.

As proven in [? , lemma 3.2.1 part (2)], Eφpfq � 0 if and only if f P PφC8
0 pMq as we desired to show.

For n ¡ 1, the proof is a bit more involved. We present explicitly only the case n � 2, but exactly the
same argument can be adapted to the general case. Using the hypothesis pσc �Eφqb2t � 0, we write t as

t � t� pσc � Eφq � t� pσc � Eφq � t� pσc � Eφq � t � pEφ � σcq

� pid� σc � Eφq � t� pσc � Eφq � t � pid� Eφ � σcq.
(3.17)

Let us focus on the distribution pid � σc � Eφq � t. By construction, it is compactly supported. We

show that the composition E
A{R
φ � pid � σc � Eφq � t is a well-de�ned distribution with wave-front set

contained in W2. In fact, the wave-front sets of EA{Rφ are estimated, respectively, by the sets CA{R

de�ned in (??). By de�nition, CA{R are subsets of W2. As already show in lemma (??), the distribution
pσc �Eφqpx, yq has wave-front set contained in W2 and it is compactly supported in x. By hypothesis, t

is a distribution in E 1W pMnq. Therefore, all the compositions EA{Rφ � t and EA{Rφ � pσc � Eφq � t satisfy
the integration condition (??) and involve distributions with wave-front sets contained in W2. Thus, we

can apply lemma ?? and we conclude that EA{Rφ � pid� σc �Eφq � t is indeed a well-de�ned distribution
with wave-front set contained in W2.
As a consequence of eq. (??), it holds

pEAφ � ERφ q � pid� σc � Eφq � t � 0. (3.18)

By the support properties of the advanced/retarded propagators EA{Rφ , it follows from (??) that EAφ �
pid� σc � Eφq � t must be a compactly supported distribution.
Summing up, we obtained that EAφ � pid�σc �Eφq � t P E 1W pM2q. With a similar argument, we can prove
that pσc � Eφq � t � pid� Eφ � σcq � E

A
φ P E 1W pM2q.

Finally, if we set h1 :� EAφ � pσc �Eφ� idq � t and h2 :� pσc �Eφq � t � pEφ � σc� idq �EAφ , then it follows
that

t � pPφ b 1qh1 � p1b Pφqh2,

so t P PφE 1W pM2q and the map (??) is consistently de�ned.
To conclude the proof, we notice that the map (??) is clearly surjective and it is injective because
pσc � Eφq

bn vanishes when acting on PφE 1W pMnq.

The following lemma clari�es the dependence on the cut-o� c of the alternative description of the cotan-
gent space and its tensor powers we have just presented in prop. ??.

Lemma 22. Let c, c1 be two cut-o� functions satisfying the properties required by eq. (??), then for any
t P E 1W pMnq and any φ P C8pMq it holds

pσc � Eφq
bnt � pσc1 � Eφq

bnt, (3.19)

where � means that the distributions di�er by an element in PφE 1W pMnq.

Proof. By eq. (??), we have that

pσc � Eφq
bnppσc � Eφq

bnt� pσc1 � Eφq
bntq � pσc � Eφq

bnt� pσc � Eφq
bnt � 0.

Arguing as in the proof of prop. ??, we have pσc �Eφqbnt� pσc1 �Eφqbnt P PφE 1W pMnq as we desired to
show.

We next wish to de�ne the notion of smooth sections for the cotangent bundle T�S and, more
generally, for the bundles bnT�S. It turns out that the best way to de�ne this smooth structure for our
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purposes is again via the notion of �on-shell W -smoothness�. Above in def. ??, we had already de�ned
the notion of an on-shell W -smooth function F : S Ñ C, and we now essentially repeat this de�nition
for sections on bnT�S, which are called �covariant sections of rank n�. First of all, given a covariant
section t : S Ñ bnWT

�S, we say that t̃ : C8pMq Ñ E 1W pMnq is an extension of t if for all φ P S and
u1, . . . , un P TφS it holds

tφpu1, . . . , unq � t̃φpu1, . . . , unq, (3.20)

where tφ is understood as a distributional representative of the equivalence class in bnWT
�
φ S.

De�nition 23. A covariant section t : S Ñ bnWT
�S is called on-shell W -smooth if there is a W -smooth

extension t̃ : C8pMq Q φ ÞÑ t̃φ P pσc �Eφq
bnE 1W pMnq for some cut-o� function c as in eq. (??), by which

we mean an extension such that:

(W1) For all ν P N, the ν-th Gateaux derivative δν t̃φpx1, . . . , xnq{δφpy1q . . . δφpyνq exists as distribution
of compact support in Mn�ν and it holds

WF

�
δν t̃φpx1, . . . , xnq

δφpy1q . . . φpyνq



�Wn�ν ; (3.21)

(W2) Let R Q ε ÞÑ φpεq P C8pMq be smooth and we view δν t̃φpεqpx1, . . . , xnq{δφpy1q . . . δφpyνq as a
distribution in R�Mn�ν , i.e. with respect to the variables ε, x1, . . . , xn, y1, . . . , yν . For all ν P N,
it required to satisfy

WF

�
δν t̃φpεqpx1, . . . , xnq

δφpy1q . . . φpyνq

�
� R� t0u �Wn�ν ; (3.22)

We denote the space of on-shell W -smooth covariant sections of rank n by C8
W pS,b

n
WT

�Sq.
A on-shellW -smooth k-form is a totally anti-symmetric element in C8

W pS,b
kT�Sq. The space of on-shell

W -smooth k-forms is denoted by ΩkW pSq.

We want to prove that the notion of on-shell W -smoothness is independent of the choice of the cut-o�
function, in the sense that if an extension satisfying ??, ?? can be found for a speci�c c as in eq. (??),
then it can be found also for any other cut-o� function c1 of the same kind. For this purpose, we to
investigate the variational derivatives of the causal propagator.

Proposition 24. For any φ P C8pMq, and for any ν P N, the ν-th Gateaux derivative

δνEφpx1, x2q

δφpy1q . . . δφpyνq

is a well-de�ned distribution which satis�es the following properties:

1. The distribution δνEφpx1, x2q{δφpy1q . . . δφpyνq is compactly supported in y1, . . . , yν , more precisely
y1, . . . , yν must belong to suppλ, where λ enters via Pφ � ��m2 � λ

2φ
2.

2. It holds

WF

�
δνEφpx1, x2q

δφpy1q � � � δφpyνq



� X2�ν , (3.23)

where the set X2�ν is de�ned as

X2�ν :�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�Mν�2 :

p1 � p11 � p21, . . . , pν � p1ν � p2ν and D a permutation π of t1, . . . , νu such that

px1; k1q � pyπp1q;�p
1
πp1qq or px1, k1q � pyπp1q,�p

1
πp1qq or k1, p

1
πp1q � 0

pyπpiq; p
2
πpiqq � pyπpi�1q;�p

1
πpi�1qq or pyπpiq, p

2
πpiqq � pyπpi�1q,�p

1
πpi�1qq

or p2πpiq, p
1
πpi�1q � 0

pyπpνq; p
2
πpνqq � px2;�k2q or yπpνq � x2, p

2
πpνq � �k2 or p2πpνq, k2 � 0

)
.

(3.24)
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3. Let R Q ε ÞÑ φpεq P C8pMq be smooth and view δνEφpεqpx1, x2q{δφpy1q � � � δφpyνq as a distribution
in R�M2�ν . It holds

WF

�
δνEφpεqpx1, x2q

δφpy1q � � � δφpyνq



� R� t0u �X2�ν . (3.25)

Proof. The causal propagator is by de�nition Eφ � EAφ � ERφ and, consequently, the properties 1,2,3

follow from the corresponding properties 1,2,3 of δνEA{Rφ {δφν proved in prop. ?? of appendix ??.

The following technical lemma clari�es the relation between the sets Wν we de�ned by (??) and the sets
X2�ν described in (??).

Lemma 25. For any ν

X2�ν �W2�ν .

Proof. We proceed by induction in ν.
The induction starts at ν � 1. Let px1, x2, y; k1, k2, pq be an element of X2�1. If we assume that two

of the covectors k1, k2, p belong to V
�
(respectively V

�
), then the third is necessarily contained in V

�

(respectively V
�
) by the de�nition of X2�1. Thus, X2�1 �W2�1 as we needed to prove.

We then prove the induction step: suppose that X2�ν1 �W2�ν1 holds for any ν1   ν, then we show that
X2�ν �W2�ν . Let px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq be an element inX2�ν . By the de�nition ofX2�ν ,
it follows that there exists a permutation π of t1, . . . , νu and decompositions p1 � p11�p

2
1, . . . , pν � p1ν�p

2
ν

such that the relations in the right-hand side of (??) are satis�ed. This means that

px1, yπpνq, yπp1q, . . . , yπpνq; k1, p
1
πpνq, pπp1q, . . . , pπpν�1qq P X2�ν

pyπpνq; p
2
πpνqq � px2;�k2q or yπpνq � x2, p

2
πpνq � �k2 or p2πpνq � k2 � 0.

(3.26)

We prove by reductio ad absurdum that px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P W2�ν , i.e. if we assume

that all covectors k1, k2, p1, . . . , pν�1 belong to V
�
(or all belong to V

�
), except at most one which can

be space-like, then we get a contradiction. We present the argument for V
�
, the other situation can be

treated similarly.
We consider three cases separately: (a) k1, k2, pπp1q, . . . pπpνq P V

�
except at most one covector among

k1, pπp1q, . . . pπpν�1q which can be space-like, (b) k2 is space-like and k1, pπp1q, . . . pπpνq P V
�
, and (c) pπpνq

is space-like and k1, k2, pπp1q, . . . pπpν�1q P V
�
.

(a) As a consequence of the assumptions and the inductive hypothesis X2�ν�1 � W2�ν�1, it must

necessarily hold p1πpνq R V
�
. Since pπpνq � p1πpνq� p

2
πpνq P V

�
by assumption, we obtain p2πpνq P V

�

and p2πpνq � 0. Moreover, we also assume k2 P V
�
. We clearly get a contradiction with the second

requirement of (??).

(b) By assumption all k1, pπp1q, . . . pπpνq P V
�
, and so the inductive hypothesis X2�ν�1 � W2�ν�1

implies that p1πpνq P V
�
. Since pπpνq � p1πpνq � p2πpνq P V

�
by assumption, we have again that

p2πpνq P V
�
and p2πpνq � 0. Since k2 is assumed to be space-like, we obtain again a contradiction

with the second requirement of (??).

(c) As for the case (b), it follows from the assumption and the inductive hypothesis that p1πpνq P V
�
.

Since pπpνq � p1πpνq � p2πpνq is space-like by assumption, we obtain p2πpνq R V
�
. Since k2 P V

�
by

assumption, also for the case (c) we get a contradiction with the second requirement of (??).

This concludes the proof.

With these two results at our disposal, we show that the notion of on-shell W -smoothness is inde-
pendent of the choice of the cut-o� function c.
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Lemma 26. Let c be a cut-o� function as in eq. (??) and let t̃ : C8pMq Q φ ÞÑ t̃φ P pσc �Eφq
bnE 1W pMnq

be a W -smooth extension of an on-shell W -smooth section t : S Ñ bnWT
�S. For any other cut-o�

function c1 as in eq. (??), the map

C8pMq Q φ ÞÑ pσc1 � Eφq
bnt̃φ P pσc1 � Eφq

bnE 1W pMnq (3.27)

is a W -smooth extension of t in the sense of def. ??.

Proof. We �rst show that the map (??) is consistently de�ned. In fact, by the properties of pσc � Eφq
given in lemma (??), it holds t̃φ P pσc �EφqbnE 1W pMnq � E 1W pMnq and thus pσc1 �Eφqbnt̃φ is indeed an
element of pσc1 � EφqbnE 1W pMnq.
Next, we prove that the map (??) is an extension of t, i.e. for any φ P S and u1, . . . , un P TφS it holds

tφpu1, . . . , unq �
�
pσc1 � Eφq

bnt̃φ
�
pu1, . . . , unq. (3.28)

The right-hand side of the equation (??) above can be rewritten as�
pσc1 � Eφq

bnt̃φ
�
pu1, . . . , unq � t̃φ ppEφ � σc1qu1, . . . , pEφ � σc1qunq � t̃φpu1, . . . , unq,

where we used the fact that pEφ �σc1qui � ui for any i � 1, . . . , n, see eq. (??). Since t̃φ is by hypothesis
an extension of t, it follows that eq. (??) is satis�ed as we needed to prove.
To conclude the proof, we need to show that pσc1 � Eφqbnt̃φ satis�es the conditions ??, ?? of def. ??.
In order to show ??, we compute δνpσc1 �Eφqbnt̃φ{δφν by distributing the variational derivatives among
the factors of pσc1 � Eφqbnt̃φ. It follows that δνpσc1 � Eφqbnt̃φ{δφν is a �nite sum of terms in the form»

M2n

n¹
i�1

σc1pxi, x
1
iq
δ|Ni|Eφpx

1
i, x

2
i q

δφ|Ni|ptyrurPNiq

δ|Nt|t̃φpx
2
1, . . . , x

2
nq

δφ|Nt|ptyrurPNtq
dx11 . . . dx

1
ndx

2
1 . . . dx

2
n, (3.29)

whereN1, . . . , Nn, Nt is a partition of t1, . . . , νu. To establish that pσc1�Eφqbnt̃φ satis�es ?? it is su�cient
to show that each term (??) is a well-de�ned distribution in E 1W pMnq.
By construction, σc1 is a compactly supported distribution and its wave-front set is contained in W2.
As a consequence of the estimate (??) and lemma ??, we have that WFpδ|Ni|Eφ{δφ

|Ni|q is contained
in W2�|Ni| for any i. By hypothesis, t̃φ is a W -smooth extension and so it satis�es condition ?? of
def. ??, i.e. δ|Nt|t̃φ{δφ|Nt| is a compactly supported distribution and its wave-front set is contained in
Wn�|Nt|. These considerations imply that we can apply lemma ?? and so the distribution (??) is a
well-de�ned distribution with wave-front set in Wn�ν . To verify the condition ?? we still need to prove
that the distribution (??) is of compact support. This follows from the fact that σc1 and δ|Nt|t̃φ{δφ|Nt|

are compactly supported and the fact that WFpδ|Ni|Eφ{δφ
|Ni|q is compactly supported in the variables

pyrqrPNi (see (2) of prop. ??).
In order to prove ??, let R Q ε ÞÑ φpεq P C8pMq be smooth and consider δνpσc1 � Eφpεqqbnt̃φpεq{δφν

as a distribution in R � Mn�ν . To prove ??, we need to show that the wave-front set of δνpσc1 �
Eφpεqq

bnt̃φpεq{δφ
ν is contained in R � t0u � Wn�ν . We use a similar argument as the one presented

for the proof of ??. More precisely, we notice that δνpσc1 � Eφpεqqbnt̃φpεq{δφν is again a �nite sum of
terms in the form (??), with the only di�erence that φ is replaced by φpεq in any occurrence. Then,
estimates (??) and lemma ?? imply that WFpδ|Ni|Eφpεq{δφ

|Ni|q is contained in R�t0u�W2�|Ni|, and, by
hypothesis, the wave-front set of δ|Nt|t̃φpεq{δφ|Nt| is bounded by R� t0u �W2�|Nt|. To conclude that ??
holds for pσc1 � Eφpεqqbnt̃φpεq, we just need to use the wave-front set calculus (thm. ??). This concludes
the proof.

The �rst operation we introduce on on-shell W -smooth covariant sections is the tensor product.

Proposition 27. Let t, s be two on-shell W -smooth covariant �eld of rank respectively n and m. For
any φ P S, we de�ne ptb sqφ P b

n�mT�φ S as

ptb sqφ :� tφ b sφ. (3.30)

Note that, by abuse of notation, we identify an equivalence class in b
T�φ S � E 1W pM
q{PφE 1W pM
q with
one of its representatives.
The map S Q φ ÞÑ ptb sqφ is an on-shell W -smooth covariant section of rank n�m.
Furthermore, b is a bilinear map C8

W pS,b
n
WT

�Sq � C8
W pS,b

m
WT

�Sq Ñ C8
W pS,b

n�m
W T�Sq.
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Proof. Let c be a cut-o� function as in eq. (??). By lemma ??, we can choose two W -smooth extensions
t̃, s̃ of t, s in the sense of def. ?? such that for any φ P C8pMq we have t̃φ P pσc � EφqbnE 1W pMnq and
s̃φ P pσc � Eφq

bmE 1W pMmq for the same �xed c. The desired extension of ptb sq is de�ned by

�ptb sqφ :� t̃φ b s̃φ, (3.31)

for any φ P C8pMq. Since pWn � Wmq Y pt0u � Wmq Y pWn � t0uq � Wn�m, the estimate of the
wave-front set of the tensor product of two distributions (see thm. ?? in appendix ??) implies that
t̃φ b s̃φ P pσc � Eφq

bn�mE 1W pMn�mq.
By hypothesis, t̃φ and s̃φ satisfy conditions ??, ??. Then, by distributing the variational derivatives onto

the factors in t̃φ b s̃φ, it follows again from thm. ?? that we have �ptb sqφ satis�es conditions ??, ??.
Finally, b is linear by de�nition.

Based on def. ?? and def. ??, we next de�ne a natural derivative operator B acting on on-shell W -
smooth functions or covariant sections via the Gateaux derivative of a corresponding extension. Looking
at these de�nitions, it is clear that the extensions depend on a choice of the cut-o� function c satisfying
the properties required by eq. (??). This choice will also be re�ected in the de�nition of B.

Remark 5. The situation is simpler for functions F P C8
W pSq (rather than covariant sections). In this

case, we can show that along directions in TφS the �rst Gateaux derivative of all possible extensions

of F coincide. More precisely, consider two extensions F̃1, F̃2 of the same on-shell W -smooth function
F . Obviously, pF̃1 � F̃2qpφq � 0 for any φ P S. Let u be an element of TφS and consider the smooth
non-linear solution φε :� Upρpφq � ερpuqq, i.e. the unique smooth solution of the non-linear eq. (??)
corresponding to the Cauchy data ρpφq � ερpuq, where ρ is the restriction map (??). Because u is a
smooth solution of the linearised eq. (??) around φ P S, it holds that φε � φ� εu� opε2q and, therefore,
we can conclude that»

M

�
δF̃1pφq

δφpyq
�
δF̃2pφq

δφpyq

�
upyqdy �

d

dε
pF̃1 � F̃2qpφ� εuq

����
ε�0

�
d

dε
pF̃1 � F̃2qpφεq

����
ε�0

� 0. (3.32)

Before stating the de�nition of B for on-shell W -smooth covariant sections, we need to prove that for any
φ P C8pMq and for any f1, f2 P C

8
0 pMq the map

M Q x ÞÑ

»
M3

�
Eφpy, x2q

δEφpx, x1q

δφpyq
� Eφpy, x1q

δEφpx, x2q

δφpyq



f1px1qf2px2qdx1dx2dy (3.33)

is a smooth solution with respect to Pφ � ��m2�V 2pφq. Actually, we prove the following more general
result, which will be needed later on.

Lemma 28. For any φ P C8pMq let Aφ, Bφ be two distributions in D1pM2q such that:

• Aφpx1, x2q, Bφpx1, x2q are bi-solutions with respect to Pφ.

• WFpAφq,WFpBφq �W2.

• The Gateaux derivatives δApx1, x2q{δφpyq, δBpx1, x2q{δφpyq are compactly supported distributions
in y and they satisfy

WF

�
δAφpx1, x2q

δφpyq



,WF

�
δBφpx1, x2q

δφpyq



�W3.

Then, for any f1, f2 P C
8
0 pMq, the map

M Q x ÞÑ

»
M3

�
Aφpy, x2q

δBφpx, x1q

δφpyq
�Bφpy, x1q

δAφpx, x2q

δφpyq



f1px1qf2px2qdx1dx2dy (3.34)

is a smooth solution with respect to Pφ.
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Proof. We �rst prove that the map (??) is actually a well-de�ned smooth function. By hypothesis, we
can apply lemma ?? and conclude that the composition of distributions»

M

�
Aφpy, x2q

δBφpx, x1q

δφpyq
�Bφpy, x1q

δAφpx, x2q

δφpyq



dy

is a well-de�ned distribution with wave-front set contained inW3. By smearing this distribution in x1, x2

with the two compactly supported functions f1, f2, we obtain the map (??). We get a distribution in x
with wave-front set in tpx, x1, x2; k, 0, 0q PW3u. However, by de�nition, W3 cannot contain any elements
in the form px, x1, x2; k, 0, 0q and so the map (??) is a smooth function.

Since P px1q
φ Aφpx1, x2q � 0, it follows that

P
px1q
φ

δAφpx1, x2q

δφpyq
�
δP

px1q
φ Aφpx1, x2q

δφpyq
�
δP

px1q
φ

δφpyq
Aφpx1, x2q � λpyqφpyqδpy, x1qAφpx1, x2q.

A similar result holds for Bφ. It follows that if we act with the operator Pφ on the function (??), then
we obtain»

M

pAφpf2qpyqδpx, yqλpyqφpyqBφpf1qpyq �Bφpf1qpyqδpx, yqλpyqφpyqAφpf2qpyqq dy � 0,

and this concludes the proof.

According to prop. ??, the causal propagator Eφ satis�es the conditions required by lemma ??, and,
therefore, the map (??) is indeed a smooth solution respect to Pφ.

We now consider on-shell W -smooth covariant sections in the sense of def. ?? and we de�ne the
derivative operator B acting on these sections.

Proposition 29. Let c be a �xed cut-o� function as in eq. (??) and t be an on-shell W -smooth covariant
section of rank n. For φ P C8pMq, let t̃φ P pσc � Eφq

bnE 1W pMnq be an extension of t as in def. ??.
De�ne

�pBtqφpx1, . . . , xn�1q :�

»
Mn�1

n�1¹
i�1

pσc � Eφqpxi, x
1
iq
δt̃φpx

1
2, . . . , x

1
n�1q

δφpx11q
dx11 . . . dx

1
n�1, (3.35)

If φ P S, then the distribution �pBtqφ does not depend on the choice of the extension t̃φ in pσc�Eφq
bnE 1W pMnq.

Moreover, it de�nes an on-shell W -smooth covariant section Bt with rank pn � 1q by restriction to
pTSqbn�1, i.e.

pBtqφpu1, . . . , un�1q :� �pBtqφpu1, . . . , un�1q @φ P S, ui P TφS. (3.36)

Note that Bt depends on the choice of c. B is a linear map C8
W pS,b

n
WT

�Sq Ñ C8
W pS,b

n�1
W T�Sq.

We de�ne the map d : ΩkW pSq Ñ Ωk�1
W pSq acting via anti-symmetrisation P� on B, i.e.

�pdtqφ :� P��pBtqφ
It satis�es the following properties:

(1) The section dt does not depend on the choice of the cut-o� c, unlike B.

(2) For any F P C8
W pSq, φ P S and u P TφS, dFφpuq coincides with the directional derivative of F

along u.

(3) For t, s on-shell W -smooth forms with rank respectively k and k1 it holds that dpt ^ sq � dt ^ s �
p�1qkt^ ds, where ^ is the anti-symmetrisation of the map b de�ned in prop. ??.

(4) d is �at, i.e. d2 � 0.
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Proof. First of all, we verify that formula (??) provides a well-de�ned distribution which belongs to
E 1W pMn�1q. The wave-front set of pσc � Eφq is bounded by W2 as shown in lemma ??. By hypothesis,
we have WFpδt̃φ{δφq � Wn�1. By construction, σc is compactly supported. Therefore, the claim is a
consequence of lemma ??.
We next show that any two W -smooth extensions t̃1,φ, t̃2,φ P pσc � EφqbnE 1W pMnq of the same on-shell

W -smooth covariant section t for our �xed choice of c give the same �pBtqφ for φ P S. After smearing with
arbitrary test functions f1, . . . , fn�1, the di�erence between the distributions (??) corresponding to the
extensions t̃1, t̃2 is��pBt1qφ � �pBt2qφ� pf1, . . . , fn�1q �

�

»
M

pEφ � σc � f1qpx1q
δ

δφpx1q

 
pt̃1,φ � t̃2,φq ppEφ � σc � f2q, . . . , pEφ � σc � fn�1qq

(
�

�
n�1̧

i�2

»
Mn�1

pEφ � σc � f1qpx1q
δpEφ � σc � fiqpxiq

δφpx1q

¹
j�i

pEφ � σc � fjqpxjq�

� pt̃1,φ � t̃2,φqpx2, . . . , xn�1qdx1 . . . dxn�1,

(3.37)

where we applied the Leibniz rule for the variational derivative. We need to prove that the p�Bt1 ��Bt2qφpf1, . . . , fn�1q vanishes if φ belongs to S.
Due to pσc �Eφqpσc �Eφq � σc �Eφ (see (??)), we have pt̃1,φ � t̃2,φq � pσc �Eφq

bnpt̃1,φ � t̃2,φq since, by
hypothesis, we assume t̃1,φ, t̃2,φ P pσc �EφqbnE 1W pMnq. Then, the distribution pσc �Eφqbnpt̃1,φ � t̃2,φq is
identically zero for φ P S because t̃1, t̃2 are extensions of the same on-shell W -smooth section (see (??)).
Thus, the second term on the right-hand side of (??) must vanish if φ P S. The �rst term in (??) is the
Gateaux derivative along the smooth Pφ-solution Eφ � σc � f1 of the W -smooth function C8pMq Q φ ÞÑ
pt̃1,φ � t̃2,φqppEφ � σc � f2q, . . . , pEφ � σc � fn�1qq which is identically zero whenever φ P S. Arguing as in
remark ??, we conclude that for φ P S also the �rst term in (??) vanishes. Thus, we have veri�ed the
independence with respect to the choice of the extension.
To prove that Bt is an on-shellW -smooth section, we need to show that �pBtqφ satis�es the conditions ??, ??
of def. ?? for any φ P C8pMq.
To show ??, we need to compute the ν-th Gateaux derivative by distributing the functional derivative
δ{δφpyq over the various factors on the right-hand side of (??). It follows that δν�pBtqφ{δφpy1q � � � δφpyνq
is a linear combination of terms in the form»

Mn�1

n�1¹
i�1

δ|Ni|pσc � Eφqpxi, x
1
iq

δφ|Ni|ptyrurPNiq

δ|Nt|�1t̃φpx
1
2, . . . , x

1
n�1q

δφpx11qδφ
|Nt|ptyrurPNtq

dx11 . . . dx
1
n�1, (3.38)

where Nt, N1, . . . , Nn�1 is a partition of t1, . . . , νu. The wave-front set of δ|Ni|Eφ{δφ|Ni| is estimated
in (??). The wave-front set of σc is estimated in (??). The wave-front set of δ|Nt|�1t̃φ{δφ

|Nt|�1 is
contained in Wn�|Nt|�1 since, by hypothesis, t̃φ satis�es ??. We can then apply lemma ?? and lemma ??
and thereby we �nd that the distribution (??) is well-de�ned and its wave-front set is contained in
Wn�1�ν . Thus, the requirement ?? holds.
In order to show ??, let R Q ε ÞÑ φpεq P C8pMq be continuous, and consider δν rBtφpεq{δφν as a distribution
in R�Mn�1�ν . This distribution is again a linear combination of terms in the form (??) with the only
di�erence that φ is replaced by φpεq everywhere. The wave-front set of δ|Nt|�1t̃φpεq{δφ

|Nt|�1 is contained in
R� t0u �Wn�|Nt|�1 because, by hypothesis, t̃φ satis�es ??. Formula (??) implies that δ|Ni|Eφpεq{δφ|Ni|

is contained in R � t0u � W2�|Ni|. Thus, using the wave-front set calculus (thm.??), it follow that

δν rBtφpεq{δφν has wave-front set contained in R� t0u �Wn�1�ν which is precisely condition ??.
Since the map d is de�ned simply by acting with B followed by an anti-symmetrization, it is clearly
well-de�ned.
We prove that d satis�es (1)-(4).

(1) To prove that d does not depend on the choice of the cut-o� function c, we �rst need to investigate
the dependence of B on c. Let be c, c1 are two cut-o� functions satisfying the properties required
by eq. (??), i.e. there exist Cauchy surfaces Σ� and Σ1

� such that c � 0 on J�pΣ�q, c � 1 on

J�pΣ�q, c1 � 0 on J�pΣ1
�q, and c

1 � 1 on J�pΣ1
�q. We write �pBtq for the distribution de�ned by
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eq. (??) for the cut-o� c and for a W -smooth extension t̃φ P pσc �EφqbnE 1W pMnq of t. Due to the
fact that pσc � Eφqpσc � Eφq � σc � Eφ (see eq. (??)), we have that

�pBtqφpx1, . . . , xn�1q �

»
Mn�1

n�1¹
i�1

pσc � Eφqpxi, x
1
iq
δppσc � Eφq

bnt̃φqpx
1
2, . . . , x

1
n�1q

δφpx11q

¹
i

dx1i. (3.39)

We write �pBtq1 for the distribution de�ned by eq. (??) using the cut-o� c1 and aW -smooth extension
of t̃1φ P pσc1 � Eφq

bnE 1W pMnq of t. As proved in lemma ??, the distribution pσc1 � Eφqbnt̃φ is a W -
smooth extension for t with respect to the cut-o� c1. We have shown at the beginning of this proof
that �pBtq1 does not depend on the choice of the W -smooth extension in t̃1φ of t, therefore we can
use pσc1 � Eφqbnt̃φ as extension for t where t̃φ is the same extension as in (??), i.e.

�pBtq1φpx1, . . . , xn�1q �

»
Mn�1

n�1¹
i�1

pσc1 � Eφqpxi, x
1
iq
δppσc1 � Eφq

bnt̃φqpx
1
2, . . . , x

1
n�1q

δφpx11q

¹
i

dx1i.

It now follows from lemma ?? that��pBtqφ ��pBtq1φ	 px1, . . . , xn�1q �

�

»
Mn�1

n�1¹
i�1

pσc � Eφqpxi, x
1
iq
δ ppσc � Eφq

bn � pσc1 � Eφq
bnq t̃φ

δφpx11q
px12, . . . , x

1
n�1q

¹
i

dx1i,
(3.40)

where � means �equal up to distributions in PφE 1W pMn�1q�. We can express pσc � Eφqbn � pσc1 �
Eφq

bn as �
pσc � Eφq

bn � pσc1 � Eφq
bn

�
px1, . . . , xn, y1, . . . , ynq �

�
ņ

j�1

�¹
i j

pσ1c � Eφqpxi, yiq

�
ppσc � σc1q � Eφqpxj , x

1
jq

�¹
`¡i

pσc � Eφqpx`, y`q

�
.

Using eq. (??), it holds pσc � Eφqppσc � σc1q � Eφq � 0. Eq. (??) thereby becomes��pBtqφ ��pBtq1φ	 px1, . . . , xn�1q �

�
n�1̧

j�2

»
Mn�2

n�1¹
i�1

pσc � Eφqpxi, x
1
iq
δpσc � σc1q � Eφ

δφpx11q
px1j , zjq�

� t̃φpx
1
2, . . . , zj , . . . , x

1
n�1qdzj

¹
i

dx1i

�
n�1̧

j�2

»
M2

pσc � Eφqpx1, x
1
1q

�
σc � Eφ � pσc � σc1q �

δEφ
δφpx11q



pxj , zjq�

� t̃φpx2, . . . , zj , . . . , xn�1qdx
1
1dzj ,

(3.41)

where we used pσc �Eφqpσc �Eφq � σc �Eφ (see eq. (??)) and the fact that t̃ P pσc �EφqbnE 1W pMnq
by hypothesis. We now substitute

δEφpx, zq

δφpyq
�
δEAφ px, zq

δφpyq
�
δERφ px, zq

δφpyq

� EAφ px, yqλpyqφpyqE
A
φ py, zq � ERφ px, yqλpyqφpyqE

R
φ py, zq.

for the variational derivative of Eφ. Then, we need to analyse Eφ � pσc � σc1q � E
A{R
φ in order to

simplify further eq. (??). It follows from eq. (??) that for any test functions f1, f2 we have

pEφ � pσc � σc1q � E
A{R
φ qpf1, f2q �

� �

»
Σ�

Eφpf1q
ÐÑ
BnE

A{R
φ pf2qdΣ�

»
Σ1
�

Eφpf1q
ÐÑ
BnE

A{R
φ pf2qdΣ�

�

»
B

pEφpf1qqpxqcpxqf2pxqdx�

»
B1

pEφpf1qqpxqc
1pxqf2pxqdx

(3.42)
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where B � J�pΣ�q X J
�pΣ�q and B1 � J�pΣ1

�q X J
�pΣ1

�q. Let us choose another pair of Cauchy
surfaces Σ2

� such that Σ2
� is in the (strict) future of both Σ�,Σ

1
� and Σ2

�, is in the (strict) past
of both Σ�,Σ

1
�. We identify by B2 the space-time region J�pΣ2

�q X J
�pΣ2

�q. We can use eq. (??)
to rewrite the �rst two integrals in the right-hand side of eq. (??) in terms of the Cauchy surface
Σ2
�. We obtain

pEφ � pσc � σc1q � E
A{R
φ qpf1, f2q �

»
B2

pEφpf1qqpxqpc� c1qpxqf2pxqdx. (3.43)

Notice that the domain of the integration in the right-hand side of eq. (??) can be extended to the
whole M because c � c1 � 0 outside B2. Using eq. (??), we conclude that the following relation
holds ��pBtqφ ��pBtq1φ	 px1, . . . , xn�1q �

�
n�1̧

j�2

»
M2

pσc � Eφqpx1, yqpσc � Eφqpxj , yqλpyqφpyqpc� c1qpyqEφpy, zjq�

� t̃φpx2, . . . , zj , . . . , xn�1qdydzj .

(3.44)

The right-hand side of eq. (??) does not vanish in general. Thus, we see explicitly that Btpcq

depends on the choice of the cut-o�. Nevertheless, the right-hand side of eq. (??) is a �nite sum of
distributions that are symmetric in x1, xj . Therefore, it follows that

P�
��pBtqφ ��pBtq1φ	 � 0. (3.45)

where P� denotes the anti-symmetrization. Because the on-shell W -smooth form dt is de�ned by
restriction to pTSqbn�1 of �pdtq � P��pBtq, the relation (??) implies that dt does not depend on the
choice of the cut-o� c.

(2) Let φ P S and u P TφS. For any on-shell W -smooth functional F , it holds

dFφpuq �

»
M

�
P��pBF qφ	 pxqupxqdx � »

M2

upxqpσc � Eφqpx, x
1q
δF̃ pφq

δφpx1q
dxdx1

�

»
M

upxq
δF̃ pφq

δφpx1q
dx,

where we simply apply eq. (??). Then, arguing as in remark ??, we have

dFφpuq �
d

dε
F̃ pφ� εuq

����
ε�0

�
d

dε
F̃ pφεq

����
ε�0

�
d

dε
F pφεq

����
ε�0

�
d

dε
F pφ� εuq

����
ε�0

,

where φε is the unique solution of the non-linear eq. (??) with Cauchy data ρpφq � ερpuq. Thus,
we have veri�ed that property (2) holds.

(3) It can be easily seen that (3) is just a straightforward consequence of the de�nition of d, the
de�nitions the tensor product b, and the Leibniz rule for the variational derivative.

(4) To show that d is �at, it is su�cient to prove that the o�-shell extension p�dpdtqq vanishes. This
can be shown by direct calculation. In fact, by de�nition, we have�pdpdtqqφpx1, . . . , xn�2q �

� P�
»
Mn�2

n�2¹
i�1

pσc � Eφqpxi, x
1
iq

δ

δφpx11q

!rdtφpx12, . . . , x1n�2q
)¹

i

dx1i

� P�
»
M2n�3

n�2¹
i�1

pσc � Eφqpxi, x
1
iq�

�
δ

δφpx11q

#
n�2¹
j�2

pσc � Eφqpx
1
j , x

2
j q
δt̃φpx

2
3, . . . , x

2
n�2q

δφpx12q

+¹
i

dx1i
¹
j

dx2j ,

(3.46)
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where c is a �xed cut-o� function as in eq. (??), and where t̃φ P pσc �EφqbnE 1W pMnq is aW -smooth
extension of the on-shell W -smooth section t. Next, applying the Leibniz rule for the variational
derivative and using eq. (??), it follows that

�pdpdtqqφpx1, . . . , xn�2q �

� P�
»
Mn�2

pσc � Eφqpx1, x
1
1q�

�
δ

δφpx11q

#
n�2¹
j�2

pσc � Eφqpxj , x
2
j q
δt̃φpx

2
3, . . . , x

2
n�2q

δφpx22q

+
dx11

¹
j

dx2j�

� P�
»
Mn�3

pσc � Eφqpx1, x
1
1q
δpσc � Eφqpx2, x

1
2q

δφpx11q
pσc � Eφqpx

1
2, x

2
2q�

�
n�2¹
j�3

pσc � Eφqpxj , x
2
j q
δt̃φpx

2
3, . . . , x

2
n�2q

δφpx22q
dx11dx

1
2dx

2
2

¹
j

dx2j�

� P�
n�2̧

`�3

»
Mn�3

pσc � Eφqpx1, x
1
1q
δpσc � Eφqpx`, x

1
`q

δφpx11q
pσc � Eφqpx

1
`, x

2
` q�

�
¹
j�`

pσc � Eφqpxj , x
2
j q
δt̃φpx

2
3, . . . , x

2
n�2q

δφpx22q
dx11dx

1
`dx

2
`

¹
j

dx2j

(3.47)

Using the fact that we anti-symmetrize in all variables x1, . . . , xn�2, we rewrite the second term in
the equation (??) above as

�
1

2
P�

»
Mn�3

�
pσc � Eφqpx1, yq

δpσc � Eφqpx2, zq

δφpyq
� pσc � Eφqpx2, yq

δpσc � Eφqpx1, zq

δφpyq

�
�

� pσc � Eφqpz, x
2
2q
n�2¹
j�3

pσc � Eφqpxj , x
2
j q
δt̃φpx

2
3, . . . , x

2
n�2q

δφpx22q
dydzdx22

¹
j

dx2j

(3.48)

Note that the term in the bracket r. . . s is a Pφ-solution in z as a consequence of lemma ??. Since
σc � Eφ is the identity on Pφ-solutions (see eq. (??)), then it follows that the distribution (??) is
equal to

�
1

2
P�

»
Mn�2

�
pσc � Eφqpx1, yq

δpσc � Eφqpx2, x
2
2q

δφpyq
� pσc � Eφqpx2, yq

δpσc � Eφqpx1, x
2
2q

δφpyq

�
�

�
n�2¹
j�3

pσc � Eφqpxj , x
2
j q
δt̃φpx

2
3, . . . , x

2
n�2q

δφpx22q
dydx22

¹
j

dx2j

� �P�
»
Mn�2

pσc � Eφqpx1, x
1
1q
δpσc � Eφqpx2, x

2
2q

δφpx11q

n�2¹
j�3

pσc � Eφqpxj , x
2
j q�

�
δt̃φpx

2
3, . . . , x

2
n�2q

δφpx22q
dx11dx

2
2

¹
j

dx2j

A similar argument holds also for the last term in eq. (??). Putting together and applying again
the Leibniz rule of the variational derivative, we �nally have

�pdpdtqqφpx1, . . . , xn�2q � P�
»
Mn�2

n�2¹
i�1

pσc � Eφqpxi, x
1
iq
δ2t̃px13, . . . , x

1
n�2q

δφpx11qδφpx
1
2q

¹
i

dx1i � 0.

This concludes the proof.

Now, we can discuss what is meant by �deformation quantization� in the in�nite-dimensional context
we provided. The notion of smoothness we are considering in this framework is the concept of on-shell
W -smoothness. Thus, we consider deformations of the commutative algebra pC8

W pSq, �q, where � is the

54



pointwise product. Note that the pointwise product is a well-de�ned bilinear map C8
W pSq � C8

W pSq Ñ
C8
W pSq because it is just a special case of the tensor product of on-shell W -smooth covariant section

discussed in prop. ??, namely for covariant sections with rank 0. For this commutative algebra, we de�ne
the Poisson structure as follows:

Proposition 30. Let F1, F2 P C
8
W pSq. For any φ P C

8pMq, we de�ne

�tF1, F2uφ :� Eφ

��pBF1qφ b
�pBF2qφ

	
. (3.49)

If φ P S, then the distribution �tF1, F2uφ does not depend on the choice for the cut-o� function c and the

extensions of F̃1, F̃2 implicit in the de�nition of �pBF1q,�pBF2q.

Moreover, (??) de�nes an on-shell W -smooth function tF1, F2u simply by tF1, F2uφ :� �tF1, F2uφ for any
φ P S.
Furthermore, t�, �u is a Poisson bracket C8

W pSq�C
8
W pSq Ñ C8

W pSq for the commutative algebra pC8
W pSq, �q.

Proof. First of all, we notice that if φ P S, then �pBF1qφ,
�pBF2qφ does not depend on the choice of the

extensions F̃1, F̃2, as we already proved in prop. ??.
Next, we show that �tF1, F2uφ does not depend on the choice of the cut-o� functions. Let F̃1, F̃2 be
W -smooth extensions of F1, F2 in the sense of def. ??. For any φ P C8pMq, consider the distributions�pBF1qφ P pσc �EφqE 1W pMq and �pBF2qφ P pσc1 �EφqE 1W pMq as given by eq. (??) in terms of F̃1, F̃2 and for
two possibly di�erent cut-o� functions c, c1 as in eq. (??). Since Eφ � σc � Eφ � Eφ (see eq. (??)), we
have

�tF1, F2uφ �

»
M2

δF̃1φ

δφpx1q
pEφ � σc � Eφ � σc1 � Eφqpx1, x2q

δF̃2φ

δφpx2q
dx1dx2

�

»
M2

δF̃1φ

δφpx1q
Eφpx1, x2q

δF̃2φ

δφpx2q
dx1dx2,

(3.50)

which implies that �tF1, F2uφ does not depend on c even for φ P C8pMq and not just for φ P S.
In order to prove that S Q φ ÞÑ tF1, F2uφ is an on-shell W -smooth functional, we have to verify that�tF1, F2uφ satis�es conditions ??, ?? of def. ??.

To show ??, we need to compute the ν-th Gateaux derivative of �tF1, F2u by distributing the functional

derivative δ{δφpyq over the factors in the right-hand side of eq. (??). It follows that δν �tF1, F2uφ{δφ
ν is

a �nite sum of terms in the form»
M2

δ|N1|�1 rF1,φ

δφpx1qδφ|N1|ptyrurPN1
q

δ|N2|Eφpx1, x2q

δφ|N2|ptyrurPN2
q

δ|N3|�1 rF2,φ

δφpx2qδφ|N3|ptyrurPN3
q
dx1dx2, (3.51)

where N1, N2, N3 form a partition of t1, . . . , νu. The wave-front set of δ|N2|Eφ{δφ
|N2| is contained in

W2�|N2| as follows from (??) and lemma ??. By hypothesis, rF1,φ, rF2,φ satis�es ??, and so the wave-

front sets of the compactly supported distributions δ|N1|�1 rF1,φ{δφ
|N1|�1 and δ|N3|�1 rF2,φ{δφ

|N3|�1 are
contained in W|N1|�1 and in W|N3|�1 respectively. Then, we can apply lemma ?? to prove that each
term (??) is a well-de�ned distribution and its wave-front set is contained in Wν . Furthermore, the
distribution (??) is compactly supported as follows from the support properties of the distributions

involved. Thus, δν �tF1, F2uφ{δφ
ν P E 1W pMνq which is precisely the condition ??.

To show ??, let R Q ε ÞÑ φpεq P C8pMq be continuous, and consider δν �tF1, F2uφpεq{δφ
ν as a distribution

in R �Mν . This distribution is again a linear combination of terms in the form (??) with the only
di�erence that φ is replaced by φpεq. By hypothesis, rF1,φ, rF2,φ satis�es ??, and so the wave-front sets of
δ|N1|�1 rF1,φpεq{δφ

|N1|�1 and δ|N3|�1 rF2,φpεq{δφ
|N3|�1 are contained in R� t0u �W|N1|�1 and in R� t0u �

W|N3|�1 respectively. Formula (??) implies that δ|N2|Eφpεq{δφ
|N2| is contained in R�t0u�W2�|Ni|. Thus,

by the wave-front set calculus (thm. ??), we have that δν �tF1, F2uφpεq{δφ
ν has wave-front set contained

in R� t0u �Wν which is precisely condition ??.
We have veri�ed that φ ÞÑ tF, F 1uφ is a well-de�ned on-shell W -smooth function.
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We notice that eq. (??) implies that �tF1, F2uφ coincides precisely with the Peierls bracket (??), which is
a Poisson structure as established in [? ]. Therefore, t�, �u is a Poisson bracket for the algebra C8

W pSq.
This concludes the proof.

In our in�nite-dimensional setting, the notion of deformation quantization is the same as for �nite
dimensions, sec. ??, with the only adjustment that on-shell W -smoothness replaces ordinary smoothness
everywhere.

De�nition 31. A deformation quantization on S consists in providing an associative algebra structure,
the star-product �, on C8

W pSqrr~ss such that F � F 1 � F � F 1 � op~q, and rF, F 1s� � i~tF, F 1u � op~q.

As already mentioned, our intention is to de�ne a deformation quantization on S by mimicking
Fedosov's construction in �nite dimensions reviewed throughout sec. ??. Following this logic, we de�ne
in our in�nite-dimensional framework the bundle of formal Wick algebras and its smooth sections.
These notions are natural, basically functorial, generalizations of the de�nitions of the covariant tensor
bundle (??) and on-shell W -smooth covariant tensor �elds (def. ??). The formal Wick algebra Wφ is
de�ned as a vector space (cf. (??)) in terms of the algebraic direct product

Wφ � Crr~ss b
à
n¥0

_nWT
�
φ S,

where _nWT
�
φ S denotes the totally symmetric elements of bnWT

�
φ S. Let us consider the bundle

W �
§
φPS

Wφ.

An on-shell W -smooth section on this bundle is a sequence pt0, t1, . . . q, where each tn is a Crr~ss-valued
totally symmetric on-shellW -smooth covariant section with rank n. We denote the space of such sections
by C8

W pS,Wq. Similarly as in the �nite-dimensional case, we introduce on W, and then canonically on
C8
W pS,Wq, the symmetric degree degs, the formal degree deg~, and the total degree Deg, which are

de�ned by
degs t

n :� n, deg~ ~ :� 1, Deg :� degs�2 deg~, (3.52)

where tn P C8
W pS,_

n
WT

�Sq. Exactly as in �nite dimensions, a Deg-homogeneous element t has only
�nitely many non-zero elements tn in pt0, t1, . . . q and each tn is a polynomial in ~.
Other natural de�nitions from the �nite-dimensional setting may then also be generalized. In particular,
W-valued k-forms are de�ned as on-shell W -smooth sections in the bundle§

φPS

Crr~ss b
à
n¥0

^_k,nW T�φ S,

where ^_k,nW T�φ S denotes the elements of bk�nW T�φ S which are anti-symmetric in the �rst k entries and
symmetric in the remaining n. More precisely, a W-valued on-shell W -smooth k-form is a sequence
ptk,0, tk,1, . . . q where each tk,n is a Crr~ss-valued on-shell W -smooth covariant section with rank pk� nq,
anti-symmetric in the �rst k entries and symmetric in the remaining n. The space of such W-valued
forms is denoted by ΩkW pS,Wq. The three degrees de�ned by (??) extend to the space of W-valued
k-forms. In addition, we can introduce the anti-symmetric degree dega. Namely, we have

degs t
k,n :� n, dega t

k,n :� k, deg~ ~ :� 1, Deg :� degs�2 deg~, (3.53)

where tk,n P C8
W pS,^_

k,nT�Sq.
Finally, we introduce the space of W-valued (on-shell W -smooth) forms with arbitrary anti-symmetric
degree, i.e. the direct product

ΩW pS,Wq :�
à
k¥0

ΩkW pS,Wq.

In contrast to the �nite-dimensional setting, where the anti-symmetric degree cannot exceed the dimen-
sion of S, in the in�nite-dimensional dega does not have a maximum value. An element t in ΩW pS,Wq is
a collection ptk,nqkPN;nPN where tk,n is the same as before. It is clear that aW-valued on-shell W -smooth
form t which is homogeneous in both Deg and dega is a �nite collection of covariant sections homogeneous
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in dega,deg~,degs, i.e. only �nitely many tk,n appearing in the array de�ning t are non-zero, and those
which do not vanish are polynomial in ~. The Deg-�ltration is one cornerstone of Fedosov's method in
the �nite-dimensional setting, and it will be fundamental also in our in�nite-dimensional construction.

In the following sections ??-?? we will provide the notions needed to rigorously translate the construc-
tion of the Fedosov connection into the in�nite-dimensional framework. This line of argument results in
thm. ??, which provides the in�nite-dimensional version of Fedosov quantization, thm. ?? and thm. ??.

3.2 Examples of on-shell W -smooth tensor �elds on S

In the previous section, we have discussed the manifold structure of S, i.e. the space of smooth solutions
to p��m2qφ� λ

3!φ
3 � 0, and we have de�ned various bundles over S and the corresponding notions of

smooth (more precisely, on-shell W -smooth) sections. We would now like to give concrete examples for
such sections which generalize the covariant tensor �elds σij , Gij , and ωij � σi`ω

`kσkj � � 1
2Gij �

i
2σij

in the �nite-dimensional case.

3.2.1 Symplectic structure on S

For each φ P S and each pair u1, u2 P TφS of solutions to the linearized equations around φ, we consider
the standard symplectic structure

σφpu1, u2q :�

»
Σ

u1
ÐÑ
Bnu2dΣ, (3.54)

and its associated distributional kernel σc P E 1W pM2q de�ned by eq. (??). Moreover, σφ is anti-symmetric
and is the analogue of the tensor pσxqij in �nite dimensions.
As we already proved in lemma ??, the distribution Eφ � σc gives the identity on TφS. Thus, the causal
propagator Eφ is the analogue of the tensor pσxqij in �nite dimensions.
Concerning the dependence of σφ on φ, we have:

Theorem 32. The map S Q φ ÞÑ σφ is an on-shell W -smooth 2-form, which we denote by σ.
Furthermore, σ is closed as an on-shell W -smooth form, i.e. dσ � 0, where d is de�ned as in prop. ??.

Proof. To prove that the map S Q φ ÞÑ σφ is on-shell W -smooth, we de�ne for any φ P C8pMq and
for a �xed cut-o� function c as in eq. (??) a distributional kernel σ̃φpx, yq P pσc � Eφqb2E 1W pM2q which
provides an extension in the sense of eq. (??) of the symplectic structure TφS � TφS Q pu, vq ÞÑ σφpu, vq
for φ P S, and which ful�ls the requirements of def. ??. We set

σ̃φpx1, x2q :�

»
M2

2¹
i�1

pσc � Eφqpxi, x
1
iqσcpx

1
1, x

1
2qdx

1
1dx

1
2 � pσc � Eφ � σc � Eφ � σcqpx1, x2q. (3.55)

For any φ P C8pMq, the distribution (??) is in pσc � Eφqb2E 1W pM2q because σc is compactly supported
and its wave-front set is contained in W2, see the estimate (??). Making use of eq. (??), we can rewrite
σ̃φ as

σ̃φpx1, x2q � pσc � Eφ � σcqpx1, x2q. (3.56)

Then, the map C8pMq Q φ ÞÑ σ̃φ is indeed an extension of S Q φ ÞÑ σφ as can be veri�ed directly using
eq. (??) and eq. (??). In fact, for any φ P S and for u1, u2 P TφS, it holds

σ̃φpu1, u2q � pσc � Eφ � σcqpu1, u2q � σcpu1, u2q �

»
Σ

u1
ÐÑ
Bnu2dΣ � σφpu1, u2q.

To conclude the proof of the on-shell W -smoothness of S Q φ ÞÑ σφ, we need to check that σ̃φ satis�es
the properties ??, ?? in def. ??.
In order to prove ??, we need to compute the ν-th Gateaux derivative of σ̃φ. By distributing the
variational derivative on the factors in the right-hand side of eq. (??), it follows

δν σ̃φpx1, x2q

δφpy1q . . . δφpyνq
�
δνpσc � Eφ � σcqpx1, x2q

δφpy1q . . . δφpyνq
�

»
M2

σcpx1, x
1
1q

δνEφpx
1
1, x

1
2q

δφpy1q . . . δφpyνq
σcpx

1
2, x2qdx

1
1dx

1
2. (3.57)
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By formula (??) and lemma ??, we know that the wave-front set of δνEφ{δφν is contained in W2�ν .
Since σc is compactly supported and its wave-front set is contained in W2, lemma ?? implies that
WFpδν σ̃φ{δφ

νq � W2�ν . Because σc is compactly supported and δνEφpx1, x2q{δφ
νpy1, . . . , yνq is com-

pactly supported in y1, . . . , yν (see (2) in prop ??), we conclude that δν σ̃φ{δφν P E 1W pM2�νq, which is
precisely the requirement ??.
To prove ??, let R Q ε ÞÑ φpεq P C8pMq be smooth. We argue similarly as just done for ?? starting
again from eq. (??) and using in this case formula (??) and thm. ??. It follows that δν σ̃φpεq{δφν , viewed
as a distribution in R �M2�ν , has wave-front set contained in R � t0u �W2�ν , which is precisely the
condition ??. This concludes the proof of S Q φ ÞÑ σφ being an on-shell W -smooth 2-form.
We now argue that σ is closed, i.e. dσ � 0. According to prop. ??, the exterior derivative d is de�ned
by anti-symmetrization of B. Thus, it is su�cient to show Bσ � 0. For our �xed cut-o� function c, the
o�-shell extension �Bσφ, given by eq. (??), does not depend on the choice of the extension σ̃φ. There-
fore, we are free to chose as extension the distribution (??). As a consequence of eq. (??), it holds
σc � Eφ � σc � Eφ � σc � σc � Eφ � σc. Then, applying the Leibniz rule, we obtain

δpσc � Eφ � σcqpx1, x2q

δφpyq
�

�
σc � Eφ �

δpσc � Eφ � σcq

δφpyq



px1, x2q�

�

�
δpσc � Eφ � σcq

δφpyq
� Eφ � σc



px1, x2q.

By repeatedly applying the last equation, it holds

�Bσφpx1, x2, x3q �

»
M3

3¹
i�1

pσc � Eφqpxi, x
1
iq
δpσc � Eφ � σcqpx

1
2, x

1
3q

δφpx11q
dx11dx

1
2dx

1
3

�

»
M

pσc � Eφqpx1, x
1
1q
δpσc � Eφ � σcqpx2, x3q

δφpx11q
dx11�

�

»
M

pσc � Eφqpx1, x
1
1q

�
δpσc � Eφ � σcq

δφpx11q
� Eφ � σc



px2, x3qdx

1
1�

�

»
M

pσc � Eφqpx1, x
1
1q

�
σc � Eφ �

δpσc � Eφ � σcq

δφpx11q



px2, x3qdx

1
1

� 0,

(3.58)

as we wanted to prove. This concludes the proof.

3.2.2 Almost-Kähler structure on S

We de�ne an almost-Kähler structure on S. This will be provided by a choice of pure Hadamard 2-
point function ωφ for each φ P S. By de�nition of a 2-point function (see def. ??), ωφ decomposes into
1
2Gφ �

i
2Eφ (cf. (??)) where Gφ is a real-valued positive de�nite symmetric distribution. Thus, ωφ for φ

smooth non-linear solution in S is the analogue of the tensor given by ωijx � 1
2G

ij
x �

i
2σ

ij
x , where x is a

point in a �nite-dimensional almost-Kähler manifold. Given any such 2-point function ωφ for any φ P S,
we de�ne its action on a pair of smooth solutions u1, u2 P TφS for the linearised Klein-Gordon equation
by the �symplectic smearing�, i.e. we set

ω5φpu1, u2q :�

»
Σ�Σ

u1pz1q
ÐÑ
Bnωφpz1, z2q

ÐÑ
Bnu2pz2qdΣpz1qdΣpz2q, (3.59)

where Σ is a Cauchy surface.
Formula (??) is actually well-de�ned as can be seen from the following argument. Any u in TφS is a
by de�nition a smooth Pφ-solution. Therefore, the restriction to Σ of u and its normal derivative Bnu
are smooth functions on the compact surface Σ. We must show that the restrictions to Σ � Σ of the
distribution ωφpx1, x2q and its normal derivatives Bpx1q

n ωφpx1, x2q, B
px2q
n ωφpx1, x2q, B

px1q
n B

px2q
n ωφpx1, x2q

are well-de�ned. This can be shown as follows. Since di�erential operators do not change the wave-front
set of a distribution (see thm. ?? in appendix ??), the wave-front sets of ωφ and its normal derivatives
are contained in the set C�, given by (??). By de�nition, C� does not contain elements px1, x2; k1, k2q
with k1, k2 time-like. On the other hand, the normal bundle of the Cauchy surface Σ must contain only
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time-like co-vectors because Σ is a space-like surface. Thus, it follows from thm. ?? that the restrictions
are well-de�ned.

The analogies to the �nite-dimensional case. We now explain in detail the analogies to the �nite-
dimensional case. More precisely, we want to establish that ω5φ is the analogue of the �nite-dimensional
Hermitian tensor

pωxqij :� pσxqi`ω
`k
x pσxqkj � �

1

2
pGxqij �

i

2
pσxqij .

In the second equality, we used the fact Gij � �σi`G
`kσkj which is a consequence of the almost-Kähler

structure.
By de�nition of σφ (see (??)), ω5φ corresponds to pσxqi`ω`kx pσxqkj . Furthermore, by the results obtained

in sec. ??, it immediately follows that the imaginary part of ω5φ is
1
2σφ. To establish the claimed analogy,

we will show that the real part of ω5φ is � 1
2µφ, where µφ is the inner product on TφS which is the inverse

of Gφ. In other words, µφ corresponds to pGxqij . This condition is equivalent to the almost-Kähaler
condition J2 � �1 for J ij � Gi`σ`j . So,

ω5φ � �
1

2
µφ �

i

2
σφ. (3.60)

First, we give an equivalent description of ω5φ:

Lemma 33. The quantity ω5φ can be written as

ω5φpu1, u2q � pσc � ωφ � σcqpu1, u2q

�

»
M4

u1px1qσcpx1, x
1
1qωφpx

1
1, x

1
2qσcpx

1
2, x2qu2px2qdx1dx

1
1dx2dx

1
2.

(3.61)

Proof. We begin by showing that

M Q x1 ÞÑ

»
Σ

ωφpx1, z2q
ÐÑ
Bnu2pz2qdΣpz2q (3.62)

is a well-de�ned smooth Pφ-solution. Note that P px1q
φ ωφpx1, z2q � 0 by de�nition. Thus, we need to

show that the map (??) is a well-de�ned smooth function. The normal bundle of the Cauchy surface
Σ contains only time-like covectors. As a consequence of thm. ??, the distributions ωφ, Bnωφ, which
both have wave-front sets contained in C�, can be restricted to M �Σ. The wave-front sets of both the
restrictions are bounded by

tpx1, x2; k1, k2q P 9T�pM � Σq : Dt, η P R, such that px1, k1q � ppt, x2q,�pη, k2qq, k1 P V
�u.

Since u2|Σ and Bnu2|Σ are smooth functions on the compact manifold Σ, it follows form thm. ?? that
the distribution

³
Σ
ωφpx1, z2q

ÐÑ
Bnu2pz2qdΣpz2q is well-de�ned and that it has empty wave-front set, as we

wanted to show.
Next, we apply formula (??) of lemma ?? to the right-hand side of eq. (??) and we obtain

ω5φpu1, u2q �

»
M2

»
Σ

u1px1qσcpx1, x
1
1qωφpx

1
1, z2q

ÐÑ
Bnu2pz2qdx1dx

1
1dΣpz2q. (3.63)

Now, the map M Q x2 ÞÑ
³
M
upx1qpσc � ωφqpx1, x2qdx1 is a smooth function as follows using the wave-

front set calculus (thm. ??) and the wave-front sets of σc (given by (??)) and ωφ (given by the Hadamard
condition). This smooth function is a Pφ-solution because P px2qωφpx1, x2q � 0 by de�nition. Applying
formula (??) to the right-hand side of eq. (??), we obtain eq. (??).

Concerning the claim, it follows from lemma ?? that we have

µφpu1, u2q � �2 Reω5pu1, u2q � �pσc �Gφ � σcqpu1, u2q

� �

»
M4

u1px1qσcpx1, x
1
1qGφpx

1
1, x

1
2qσcpx

1
2, x2qu2px2qdx1dx

1
1dx2dx

1
2,

(3.64)
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Next, we prove the following two facts: (a) µφ P _2
WT

�
φ S is a real inner product, i.e. a real symmetric

bilinear form on TφS which is positive de�nite, and (b) the distribution �pσc �Gφ �σcqpx, yq P E 1W pM2q is
the �inverse� of Gφpx, yq in the same sense as σcpx, yq is the �inverse� of Eφpx, yq, namely for any u P TφS
it holds

upxq � �

»
M2

Gφpx, yqpσc �Gφ � σcqpy, zqupzqdydz. (3.65)

Proving (a) is quite straightforward. By construction, µφ is real, symmetric and bilinear. The positive
de�nite property follows from the fact that the 2-point function ωφ is positive semide�nite9 and the fact
that the symplectic structure σφ is non-degenerate.
The proof of (b) relies on the fact that ωφ is chosen to be pure. It is known (see e.g. [? ? ? ]) that a
pure 2-point function induces a complex structure on (the completion of) TφS in the following way. The
inequality (??) guarantees the existence and uniqueness of the continuous extension of the symplectic
structure on the Hilbert completion of TφS with respect to the real inner product µφ. We denote this
real Hilbert space by Hφ. The Riesz lemma implies that there exists a unique operator Jφ on Hφ, such
that σφpû, v̂q � µφpû, Jφv̂q for any û, v̂ P Hφ. Because the 2-point function ωφ is pure, it follows that
ker Jφ � H as shown e.g. in [? , Appendix A]. Furthermore, it follows that Jφ satis�es J2

φ � �id,
J�φ � �Jφ, where p�q� denotes the Hilbert adjoint de�ned by µφ, and, consequently,

σφpJφû, v̂q � µφpû, v̂q. (3.66)

Because ker Jφ � H, and because σφ is non-degenerate, Jφ is uniquely de�ned by eq. (??). For any
u P TφS, we can write

Jφpuq � pGφ � σcqpuq, (3.67)

because

σφppGφ � σcqpuq, v̂q � σφppGφ � σcqpuq, lim
n
vnq � � lim

n
σφpvn, pGφ � σcqpuqq � lim

n
µφpu, vnq

� µφpu, v̂q,

for any smooth u P TφS, for any v̂ P Hφ, and for any sequence tvnunPN � TφS such that v̂ � limn vn.
Since Jφ is the unique operator which satis�es eq. (??), it follows that eq. (??) holds for any u P TφS.
Finally, because Jφ is anti-involutive and it maps TφS into TφS, we have

idTφS � �pGφ � σcq
2, (3.68)

which implies eq. (??) as we wanted to prove.

For later use, we state the following remark:

Remark 6. The result can be generalized replacing TφS by the space of smooth solutions of Pφu � 0,
where φ is now any arbitrary smooth function in C8pMq (not necessarily in S), and where ωφ now is a
pure Hadamard 2-point function corresponding to the operator Pφ. In particular, for any φ P C8pMq, it
holds

�Gφ � σc �Gφ � �Gφ � σc �Gφ � σc � Eφ � Eφ, (3.69)

where eq. (??) and eq. (??) were used.

The on-shell W -smoothness of the almost-Kähler section. So far, our considerations have been
for an arbitrary but �xed φ P S and a corresponding ω5φ. What we will need is some information about
the dependence of ωφ on φ.
According to our general framework, φ ÞÑ ω5φ should be on-shell W -smooth. First of all, it is unclear a
priori how to get such an on-shell W -smooth section. As we will see in a moment, it is su�cient for this
purpose to �nd an assignment C8pMq Q φ ÞÑ ωφ, where ωφ is a pure Hadamard 2-point function with
respect to Pφ, such that for any ν the Gateaux derivative δνωφpx1, x2q{δφpy1q � � � δφpyνq is a well-de�ned
distribution which is compactly supported in y1, . . . , yν and satis�es the following conditions:

9In particular, we use |Eφpf, hq| ¤
�
Gφpf, fqGφph, hq

�1{2
for any f, h P C80 pMq (cf. eq. (??)).
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• It holds

WF

�
δνωφpx1, x2q

δφpy1q � � � δφpyνq



�W2�ν . (3.70)

• Let R Q ε ÞÑ φpεq P C8pMq be smooth. We can view δνωφpεqpx1, x2q{δφpy1q � � � δφpyνq as a distri-
bution in ε, x1, x2, y1, . . . , yν and it holds

WF

�
δνωφpεqpx1, x2q

δφpy1q � � � δφpyνq



� R� t0u �W2�ν . (3.71)

It is not obvious that such assignment exists.

Also, as we will see later, we need for our subsequent construction (in particular for prop. ??) more
stringent constraints on the dependence of ωφ on φ. The conditions that will work are collected in the
following de�nition.

De�nition 34. An assignment C8pMq Q φ ÞÑ ωφ, where ωφ is a pure Hadamard 2-point function with
respect to Pφ, is called admissible if for any ν the Gateaux derivative δνωφpx1, x2q{δφpy1q � � � δφpyνq is a
well-de�ned distribution which is compactly supported in y1, . . . , yν and satis�es the following conditions:

(ω1) It holds

WF

�
δνωφpx1, x2q

δφpy1q � � � δφpyνq



� Z2�ν , (3.72)

where the sets Z2�ν are de�ned by

Z2�ν :� 9T�M2�νzpC2;�
2�ν Y C1;�

2�νq, (3.73)

and where Ci;�2�ν are the subset of T�M2�ν de�ned by

Ci;�2�ν :�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�M2�ν : ki R V

	
, pr P V

�

or ki P V
�
, ki � 0, D! pr1 R V , pr�r1 P V

�
)
.

(3.74)

(ω2) Let R Q ε ÞÑ φpεq P C8pMq be smooth. We can view δνωφpεqpx1, x2q{δφpy1q � � � δφpyνq as a distribu-
tion in ε, x1, x2, y1, . . . , yν and it holds

WF

�
δνωφpεqpx1, x2q

δφpy1q � � � δφpyνq



� R� t0u � Z2�ν . (3.75)

These new conditions ??, ?? imply the previous ones because

Z2�ν �W2�ν , (3.76)

as follows from the de�nitions of Z2�ν (??) and W2�ν (??).

Of course, it is even less obvious that an admissible assignment φ ÞÑ ωφ exists. We will therefore
provide one now. We construct a pure Hadamard 2-point function ωφ for each φ P C8pMq using the well-
known procedure of �space-time deformation� developed by Fulling, Narcowich, Sweeny and Wald [? ?
]. For this, we pick a reference pure Hadamard 2-point function ω0 for the free theory on the background
φ � 0, i.e. with respect to the Klein-Gordon operator P0 � � � m2. We could basically choose any
pure Hadamard 2-point function we want, but for the sake of being explicit, we take the ground state.
As explained e.g. in [? , �7] (see also [? , sec. 3.4]), the 2-point function of the ground state in an
ultra-static space-time is given by

ω0pf1, f2q � �
1

2

�
pA

1
2 � iBnqE0pf1q, A

� 1
2 pA

1
2 � iBnqE0pf2q

	
L2pΣq

, (3.77)

where A is the square root of the unique self-adjoint extension of the operator �∆phq �m2 on Σ (see [?
]), and where ∆phq is the Laplacian associated with the metric h on Σ as in eq. (??). It is well-known
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that this formula de�nes a pure Hadamard 2-point function with respect to P0 � � �m2, see e.g. [? ,
corollary 3.16]. Next, we choose two Cauchy surfaces Σ�,Σ� such that Σ� is in the past of Σ�, and a
smooth function φ� such that φ� � 0 in the past of Σ� and φ� � φ in the future of Σ�. We de�ne a
2-point function ω� with respect to Pφ� � ��m2 � V 2

φ�
requiring that ω�px, yq :� ω0px, yq for x, y in

the past of Σ�. Finally, we de�ne a 2-point function ωφ with respect to Pφ � ��m2�V 2
φ by demanding

that ωφpx, yq :� ω�px, yq for x, y in the future of Σ�. Applying the results of [? ? ], it follows that ω�
and ωφ are Hadamard 2-point functions. Furthermore, they are pure because ω0 is chosen pure. We can
clearly perform this construction for any φ P C8pMq. To make the construction completely canonical,
we only need to specify how we choose φ� for a given φ. This can be done by introducing an arbitrary
smooth cut-o� function χ which is 1 in the future of Σ� and 0 in the past of Σ�, and then setting
φ� :� χφ.
We present a di�erent representation of the 2-point function ωφ just constructed, which will be more
e�cient for computing the variational derivatives of ωφ.

Lemma 35. We choose four Cauchy surfaces Σ�� such that

Σ��   Σ��   Σ�   Σ�   Σ��   Σ��, (3.78)

where   the ordering is understood in terms of the causal structure. We consider two smooth cut-o�
functions c� as in eq. (??) and such that c� � 0 in the future of Σ�� and c� � 1 in the past of Σ��.
Let φ be an arbitrary smooth function. The 2-point function ωφpx1, x2q de�ned previously can be written
in terms of c� as

ωφpx1, x2q �
�
Eφ � σc� � Eφ� � σc� � ω0 � σc� � Eφ� � σc� � Eφ

�
px1, x2q (3.79)

where σc� are the distributional kernels de�ned in eq. (??) respectively for c�, and where Eφ� is the
causal propagator for the Klein-Gordon operator Pφ� .

Proof. We proceed by showing �rst that the 2-point function ω� can be written as

ω�px1, x2q �
�
Eφ� � σc� � ω0 � σc� � Eφ�

�
px1, x2q. (3.80)

The support of σc� is contained in K� �K� where K� is a compact subset in J�pΣ�qzΣ�. In the past
of Σ� it holds Pφ� � P0 because φ� � χφ and because the smooth function χ vanishes in the past of
Σ�. Therefore, when the right-hand side of (??) is smeared with two test functions f1, f2 P C

8
0 pMq

supported in the past of Σ�, we can replace Eφ� with E0. As a consequence of eq. (??) and the fact
that ω0 is a bi-solution with respect to P0, it necessarily holds�

Eφ� � σc� � ω0 � σc� � Eφ�
�
pf1, f2q �

�
E0 � σc� � ω0 � σc� � E0

�
pf1, f2q � ω0pf1, f2q,

which is exactly what we have to show to prove eq. (??) since the 2-point function ω� is de�ned by the
requirement ω�px, yq � ω0px, yq for x, y in the past of Σ�.
As a consequence of eq. (??), the right-hand side of eq. (??) can be rewritten as�

Eφ � σc� � ω� � σc� � Eφ
�
px1, x2q. (3.81)

We now proceed by showing that the distribution (??) coincides with ωφ. The support of σc� is contained
in K��K� where K� is a compact subset of J�pΣ�qzΣ�. In the future of Σ� it holds Pφ � Pφ� because
φ� � χφ and because the smooth function χ is equal 1 in the future of Σ�. When the distribution (??)
is smeared with two test functions f1, f2 P C

8
0 pMq supported in the future of Σ�, we can replace Eφ

with Eφ� in (??). Using again eq. (??) and the fact that ω� is a bi-solution with respect to Pφ� , it
necessarily holds �

Eφ � σc� � Eφ� � σc� � ω0 � σc� � Eφ� � σc� � Eφ
�
pf1, f2q �

�
�
Eφ� � σc� � ω� � σc� � Eφ�

�
pf1, f2q � ω�pf1, f2q,

which is exactly what we have to show to prove eq. (??) because the 2-point function ωφ is de�ned by
the requirement ωφpx, yq � ω�px, yq for x, y in the future of Σ�. This concludes the proof.
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Remark 7. The de�nition of ωφ depends only on the choice of the Cauchy surfaces Σ� and the cut-o�
function χ. Therefore, eq. (??) holds for any choice of the four Cauchy surface Σ��, as long as the
causal ordering (??) holds, and for any choice of the cut-o� c� as in the statement of lemma ??.

Using the representation provide by (??), we can prove the following result.

Proposition 36. Let C8pMq Q φ ÞÑ ωφ be the assignment given by the pure Hadamard 2-point functions
ωφ as in (??). This assignment is admissible in the sense of def. ??.

Proof. To prove that φ ÞÑ ωφ is admissible, we compute the ν-th Gateaux derivatives of ωφ by distributing
the functional derivatives over the various factors on the right side of (??). The key advantage of
formula (??) is that the only places where φ occurs are in the causal propagators Eφ or Eφ� . Thus, we
obtain that δνωφ{δφν is a linear combination of terms in the form�

δ|N1|Eφ
δφ|N1|ptyrurPN1q

� σc� �
δ|N2|Eφ�

δφ|N2|ptyrurPN2q
� σc� � ω0�

�σc� �
δ|N3|Eφ�

δφ|N3|ptyrurPN3
q
� σc� �

δ|N4|Eφ
δφ|N4|ptyrurPN4

q

�
px1, x2q,

(3.82)

where N1, N2, N3, N4 form a partition of t1, . . . , νu. It is not clear a priori that (??), and so also
δνωφ{δφ

ν , is well-de�ned, since compositions of distributions are involved. To show this, we proceed
using the wave-front set calculus (thm. ??).
It follows from prop. ??10 that δ|Ni|Eφ{δφ|Ni| and δ|Ni|Eφ�{δφ

|Ni| satisfy

WF

�
δ|Ni|Eφpx1, x2q

δφ|Ni|ptyrurPNiq



,WF

�
δ|Ni|Eφ�px1, x2q

δφ|Ni|ptyrurPNiq

�
� X2�|Ni|.

Furthermore, the wave-front set of ω0 is contained in C�, by the Hadamard condition, and the wave-front
sets of the compactly supported distributions σc� are given by (??). Then, we apply thm. ?? to get that
each distribution (??), and, therefore, also δνωφ{δφν , is well-de�ned.
We need to show that δνωφpx1, x2q{δφpy1q � � � δφpyνq is compactly supported in y1, . . . , yν . For this
purpose, we �rst recall that the distributions δ|Ni|Eφ{δφ|Ni| and δ|Ni|Eφ�{δφ

|Ni| are compactly supported
in the y's variables as proved in prop. ??. It follows that each term (??) is compactly supported in
y1, . . . , yν , and, therefore, the same holds for δνωφ{δφν which is precisely what we needed to show.
In order to prove that φ ÞÑ ωφ is admissible we need to show that the conditions ??, ?? of def. ?? are
ful�lled.
To prove that condition ?? is satis�ed, we notice that thm. ?? does not only ensure that δνωφ{δφν is
well-de�ned, but even provides the following upper bound for the wave-front set of δνωφ{δφν :

WF

�
δνωφpx1, x2q

δφpy1q � � � δφpyνq



� Y2�ν � X2�ν �W2�ν , (3.83)

where the set Y2�ν is de�ned by

Y2�ν :�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�Mν�2 :

p1 � p11 � p21, . . . , pν � p1ν � p2ν and Dπ permutation of t1, . . . , νu such that

px1; k1q � pyπp1q;�p
1
πp1qq or x1 � yπp1q, k1 � �p1πp1q or k1, p

1
πp1q � 0

pyπpiq; p
2
πpiqq � pyπpi�1q;�p

1
πpi�1qq or yπpiq � yπpi�1q, p

2
πpiq � �p1πpi�1q

or p2πpiq, p
1
πpi�1q � 0

pyπpνq; p
2
πpνqq � px2;�k2q or yπpνq � x2, p

2
πpνq � �k2 or p2πpνq, k2 � 0

Dq P tk1, p
2
1, . . . , p

2
νu s.t. q P V

� or q � 0
(
.

(3.84)

10Although prop. ?? (and prop. ??, on which the proof of prop. ?? relies) only concerns Eφ, analogous results, with
obvious modi�cations, hold for Eφ� .
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The sets X2�ν and Y2�ν di�er precisely by the last condition of formula (??), which is a consequence of
the fact that ω0 satis�es the Hadamard condition.
As a consequence of the estimate (??), to prove the wave-front set estimate (??) of condition ?? it is
su�cient to prove

Y2�ν � Z2�ν ,

i.e. Y2�ν X C2;�
2�ν � H and Y2�ν X C1;�

2�ν � H, as follows from the de�nition of the set Z2�ν (??).
We focus on the proof of Y2�ν X C2;�

2�ν � H. Let px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq be an element in
Y2�ν , so there are decompositions pr � p1r � p

2
r for all r and a permutation π of t1, . . . , νu satisfying the

requirements of (??). Because of the de�nition of C2,�
ν (??), it is su�cient to consider the following two

cases: (a) p1, . . . , pν P V
�
, and (b) there exists s such that ps is space-like and pr P V

�
for any r � s. For

this two cases separately we will show that the con�guration px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq cannot

be in C2;�
2�ν , i.e. for (a) we will prove that k2 P V

�
, while for (b) we will verify that k2 � 0 or k2 R V

�
.

(a) We �rst assume p2j � 0 for a certain j. Because pr P V
�
for all r, it follows that k2 P V

�
. This

implies that px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq cannot belong to C2;�
2�ν .

Next, we consider p2r � 0 for all r. We show that if k2 R V
�
, which is a necessary condition

for the con�guration to be in C2;�
2�ν under the assumption (a), then we contradict the hypothesis

px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P Y2�ν . In fact, k2 R V
�
implies that k1 R V

�
, p2r R V

�
for

any r, and, furthermore, p1r R V
�
for any r. However, this con�guration is not compatible with

the last condition in the de�nition of the set Y2�ν . Thus, there is no element of Y2�ν satisfying
condition (a) that is also contained in C2;�

2�ν , as we wanted to prove.

(b) Again we �rst assume that there exists a certain j such that p2j � 0. If the permutation π is such

that π�1psq ¥ π�1pjq, then similarly as before we can conclude that k2 P V
�
. On the other hand,

if π�1psq   π�1pjq, it follows that k2 � 0 or k2 R V
�
, as one can directly check. In both cases

px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq violates the requirements to be an element of C2;�
2�ν .

Next, we consider p2r � 0 for all r. We show that if k2 P V
�
and k2 � 0, which is a necessary

condition for the con�guration to be in C2;�
2�ν under the assumption (b), then we contradict the

hypothesis px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P Y2�ν . In fact, k2 P V
�
and k2 � 0 imply that we

have

p2r P

#
V
�
zt0u π�1prq ¥ π�1psq

T�MzV
�

π�1prq   π�1psq
p1r P

#
V
�

π�1prq ¡ π�1psq

T�MzV
�

π�1prq ¤ π�1psq

and necessarily k1 R V
�
. However, all the con�gurations above violate the last condition in the

de�nition of Y2�ν . Thus, there is no element of Y2�ν satisfying condition (b) that is also contained
in C2;�

2�ν , as we wanted to prove.

This concludes the proof of Y2�ν XC2;�
2�ν � H. A similar argument implies also Y2�ν XC1;�

2�ν � H, and,
as discussed above, this is enough to conclude that WFpδνωφ{δφ

νq � Z2�ν as we wanted to show.
Finally, to prove the condition ??, let R Q ε ÞÑ φpεq P C8pMq be smooth and view δνωφpεq{δφ

ν as a
distribution in R�M2�ν . This distribution is again a linear combination of terms in the form (??), with
the only di�erence that φ, φ� are replaced by φpεq, φ�pεq � χφpεq. As proved in prop. ??, the following
upper bounds hold:

WF

�
δνEφpεqpx1, x2q

δφpy1q � � � δφpyνq



,WF

�
δνEφ�pεqpx1, x2q

δφpy1q � � � δφpyνq



� R� t0u �X2�ν .

Using again thm. ?? and the fact that Y2�ν � Z2�ν , it follows

WF

�
δνωφpεqpx1, x2q

δφpy1q � � � δφpyνq



� R� t0u � Y2�ν � R� t0u � Z2�ν , (3.85)

which is precisely what we need to show. This concludes the proof.

After establishing that the class of admissible assignments φ ÞÑ ωφ, in the sense of def. ??, is not
empty, we prove that S Q φ ÞÑ ω5φ provides an on-shell W -smooth Kähler structure.
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Theorem 37. Let φ ÞÑ ωφ be an admissible assignment in the sense of def. ??. For any φ P S, let ω5φ
as in eq. (??) for the 2-point function ωφ of the assignment chosen. The map S Q φ ÞÑ ω5φ is an on-shell

W -smooth section in Cbb2
WT

�S, denoted by ω5.
Furthermore, the map S Q φ ÞÑ µφ � 2 Reω5 is an on-shell W -smooth symmetric covariant section
of rank 2 which is also positive de�nite. In other words, µ is an on-shell W -smooth metric satisfying
eq. (??), i.e. ω5 is an on-shell W -smooth Kähler structure.

Proof. In order to prove that S Q φ ÞÑ ω5φ is an on-shellW -smooth section, we need to de�ne a distribution

ω̃5φ P pσc � Eφq
b2E 1W pM2q for a �xed cut-o� c as in eq. (??) such that: (a) it is well-de�ned for any

φ P C8pMq, (b) it is an extension of ω5φ, in the sense of eq. (??), and (c) it satis�es conditions ??, ?? of
def. ??. We set

ω̃5φpx1, x2q :�

»
M2

pσc � Eφq
b2px1, x2, x

1
1, x

1
2qpσc � ωφ � σcqpx

1
1, x

1
2qd

1x1dx
1
2. (3.86)

To prove (a), we note that both distributions ωφ and Eφ are de�ned for any φ P C8pMq. By de�nition,
σc is a compactly supported distribution with wave-front set contained in W2, see (??). Since ωφ is
a Hadamard 2-point function, its wave-front set is contained in C� � W2 by de�nition. We apply
lemma ?? and we conclude that σc � ωφ � σc is a well-de�ned distribution in E 1W pM2q. Thus, we have
ω̃5φ P pσc � Eφq

b2E 1W pM2q as we wanted to prove.

To show (b), we notice that ω̃5φ can be rewritten as

ω̃5φ � σc � ωφ � σc, (3.87)

as a consequence of eq. (??) and the fact that the 2-point function ωφ is a bi-solution with respect to the
operator Pφ by de�nition. Comparing eq. (??) with the equivalent description of ω5φ given in lemma ??

by eq. (??), we conclude that necessarily ω5φpu1, u2q � ω̃5φpu1, u2q for any φ P S and any u1, u2 P TφS.

This is precisely the condition required for ω̃5φ to be an extension of ω5φ and thus we have veri�ed the
requirement (b).
For (c), we need to prove that for any ν P N the distribution δνpσc �ωφ �σcq{δφν is compactly supported
and

WF

�
δνpσc � ωφ � σcqpx1, x2q

δφpy1q � � � δφpyνq



�W2�ν , WF

�
δνpσc � ωφpεq � σcqpx1, x2q

δφpy1q � � � δφpyνq



� R�t0u�W2�ν , (3.88)

for any φ P C8pMq and any R Q ε ÞÑ φpεq P C8pMq smooth. For this purpose, it is su�cient that the
assignment C8pMq Q φ ÞÑ ωφ is such that, for any ν, δνωφpx1, x2q{δφpy1q � � � δφpyνq is a well-de�ned
distribution which is compactly supported in y1, . . . , yν and

WF

�
δνωφpx1, x2q

δφpy1q � � � δφpyνq



�W2�ν , WF

�
δνωφpεqpx1, x2q

δφpy1q � � � δφpyνq



� R� t0u �W2�ν . (3.89)

These conditions on φ ÞÑ ωφ are su�cient for our purpose: δνpσc � ωφ � σcq{δφν is compactly supported
because of the support properties of the distributions involved, whereas the requirements (??) can be
obtained from (??) using the fact that the wave-front set of σc is contained in W2 and by applying
lemma ?? (for the �rst estimate) or the more general thm. ?? (for the second estimate).
As follows form eq. (??), any admissible assignment C8pMq Q φ ÞÑ ωφ, in the sense of def. ??, satis�es
all the su�cient requirements above. Thus, we proved that the section S Q φ ÞÑ ω5φ is on-shellW -smooth.

Finally, the on-shell W -smoothness of S Q φ ÞÑ µφ and the decomposition ω5 � � 1
2µ�

i
2σ are straight-

forward consequences of eq. (??), eq. (??) and the fact that both the sections S Q φ ÞÑ ω5φ (just proved)
and S Q φ ÞÑ σφ (thm. ??) are on-shell W -smooth. This concludes the proof.

3.3 The algebra structure of the on-shell W -smooth sections on

W.

In the previous sections, we have introduced the notion of on-shell W -smooth sections. In particular, we
de�ned the space of on-shell W -smooth sections on the bundle W, C8

W pS,Wq, and the space of on-shell
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W -smooth forms with values in W, ΩW pS,Wq, which replace the spaces C8pS,Wq and ΩpS,Wq in
the �nite-dimensional context. We provided three important concrete examples of on-shell W -smooth
sections, namely the symplectic form σ, the almost-Kähler structure ω5 and the associated metric µ.
To guarantee the on-shell W -smoothness, we considered ω5 constructed from an admissible assignment
C8pMq Q φ ÞÑ ωφ in the sense of def. ??.
Proceeding along the lines of the Fedosov quantization scheme, we now provide an algebra structure for
C8
W pS,Wq, the formal Wick product, and then we will extend it to ΩW pS,Wq in a canonical way. The

product is de�ned �berwise, just as in the �nite-dimensional case (see formula (??)), making use of the
almost-Kähler structure. However, in the in�nite-dimensional case it is not evident a priori that the
product of on-shell W -smooth sections de�nes again an on-shell W -smooth section. It is the purpose of
this section to shown that.

In the �nite-dimensional case, for each x P S, with S an almost-Kähler manifold, the algebraic
structure of Wx is provided by the product 
x de�ned as in eq. (??) using the complex matrix ωijx , i.e.
the value at x of the complex tensor �eld ω. In the in�nite-dimensional setting, for each non-linear
solution φ P S, the product 
φ onWφ is de�ned as in eq. (??) using the pure Hadamard 2-point function
ωφpx1, x2q. We assume that ωφ comes from an admissible assignment C8pMq Q φ ÞÑ ωφ, which also
gives an almost-Kähler structure ω5. The same argument we presented to prove the well-de�niteness for
the product of def. ??, see in particular the discussion after lemma ??, applies in each �ber Wφ for the
product 
φ. As already mentioned, we induce a product for smooth sections in W from the product on
the �bers. More precisely, for any t, s P C8

W pS,Wq and for any φ P S we de�ne

pt 
 sqφ :� tφ 
φ sφ. (3.90)

What is not immediately evident is that S Q φ ÞÑ pt 
 sqφ is on-shell W -smooth. The proof of this
claim relies on the fact that the pure Hadamard 2-point function ωφ for φ P S comes from an admissible
assignment.

Proposition 38. Let C8pMq Q φ ÞÑ ωφ be an admissible assignment in the sense of def. ??. Then, the
corresponding �berwise product 
 endows C8

W pS,Wq with the structure of an associative algebra. More
explicitly, let t and s be two on-shell W -smooth sections on W, then the map

S Q φ ÞÑ pt 
 sqφ PWφ,

is an on-shell W -smooth section on W.

Proof. Let t and s be two on-shell W -smooth sections in C8
W pS,Wq homogeneous in the symmetric

degree degs and in the formal degree deg~, with degs t � n and degs s � m. The product pt
 sqφ is given
by the sequence ppt 
 sq0φ, pt 
 sq

1
φ, . . . q where, by de�nition, pt 
 sqjφ is

pt 
 sqjφpx1, . . . , xjq �~kCn,m,kP�
»
M2k

tφpz1, . . . , zk, x1, . . . , xn�kq

�
k¹
`�1

ωφpz`, z
1
`q

�
�

� sφpz
1
1, . . . , z

1
k, xn�k�1, . . . , xjq

k¹
`�1

dz`dz
1
`

(3.91)

if j � m� n� 2k for some k ¤ m,n, and pt 
 sqjφ � 0 otherwise. By P� we mean that a symmetrization

acts on the free variables x1, . . . xj . In the formula above, Cn,m,k �
n!m!

k!pn�kq!pm�kq! is the same combi-
natorial factor appearing in eq. (??) and in eq. (??). Note that, by abuse of notation, we identify an
equivalence class in _


WT
�
φ S � P�E 1W pM
q{PφP�E 1W pM
q with one of its representative in P�E 1W pM
q.

The equivalence classes corresponding to (??) do not depend on the choice of representative for t and s
because ωφ is a bi-solution with respect to Pφ.
To prove that the product 
 preserves the on-shell W -smoothness, it is su�cient to show that for any j
the map S Q φ ÞÑ pt
sqjφ is an on-shell W -smooth section with rank j for any t, s on-shell W -smooth sec-
tions homogeneous in degs and in deg~. In fact, we can extend the result to on-shell W -smooth sections
not necessarily homogeneous exploiting the Deg-�ltration and the fact that each section homogeneous
in Deg is a �nite collection of terms homogeneous in degs and in deg~ (see the discussion at the end of
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section ??). We consider for the rest of the proof j � m � n � 2k, where k ¤ m,n, because otherwise
pt 
 sqjφ vanishes by construction and thus it is trivially an on-shell W -smooth section.

Let us �x a cut-o� function c as in eq. (??). To prove that pt 
 sqjφ is an on-shell W -smooth section, we

need to provide for any φ P C8pMq a distribution �pt 
 sqjφ such that (a) it belongs to pσc�Eφqbj�E 1W pM jq,

(b) it is an extension of pt
sqjφ (up to a factor ~k�deg~ t�deg~ s) in the sense of eq. (??), and (c) it satis�es
the requirements ??, ?? of def. ??.
For any φ P C8pMq, ωφ satis�es the conditions ??, ?? of def. ?? by hypothesis. Let t̃φ P pσc �
Eφq

bnE 1W pMnq and s̃φ P pσc �EφqbmE 1W pMmq be two extensions of t, s (up to factors ~deg~ t and ~deg~ s

respectively), consequently t̃φ and s̃φ satisfy the requirements ??, ?? of def. ??. We de�ne �pt 
 sqjφ by

�pt 
 sqjφ :� Cn,m,kP�
»
M2k

t̃φpz1, . . . , zk, x1, . . . , xn�kq

�
k¹
`�1

ωφpz`, z
1
`q

�
�

� s̃φpz
1
1, . . . , z

1
k, xn�k�1, . . . , xN q

k¹
`�1

dz`dz
1
`.

(3.92)

To prove (a), we �rst note that WFpωφq � C� � W2 by de�nition. Then, as a consequence of the
hypotheses on t̃φ, s̃φ we can apply lemma ?? and we have that formula (??) is a well-de�ned distribution
in pσc � Eφqbj � E 1W pM jq.
In order to show (b), let φ P S and let u1, . . . , uj P TφS. Because u1, . . . , uj are Pφ-solutions and ωφ is

a bi-solution with respect to Pφ, it holds that �pt 
 sqjφpu1, . . . , ujq does not depend on the choice of the

extensions t̃φ, s̃φ. Furthermore, �pt 
 sqjφ is an extension of pt 
 sqjφ (up to a factor ~k�deg~ t�deg~ s) since
t̃φ and s̃φ are extensions of t and s (up to factors ~deg~ t and ~deg~ s respectively).

To conclude that pt 
 sqj is indeed an on-shell W -smooth section, we need to check (c), i.e. that �pt 
 sqjφ
satis�es the requirements ??, ?? of def. ??. We �rst compute the ν-th Gateaux derivative of �pt 
 sqjφ
by distributing the variational derivatives on the factors in the right-hand side of (??). It holds that

δν�pt 
 sqjφpx1, . . . , xjq{δφpy1q . . . δφpyνq is a �nite sum of terms in the form»
M2k

δ|Nt|t̃φpz1, . . . , zk, txi¤n�kuq

δφ|Nt|ptyrPNtuq
�

�

�
k¹
`�1

δ|N`|ωφpz`, z
1
`q

δφ|N`|ptyrPN`uq

�
δ|Ns|s̃φpz

1
1, . . . , z

1
k, txi¡n�kuq

δφ|Ns|ptyrPNsuq

k¹
`�1

dz`dz
1
`,

(3.93)

where Nt, Ns, N1, . . . , Nk is a partition of t1, . . . , νu. We show that each distribution (??) is a well-de�ned

compactly supported distribution. This is su�cient to conclude that δν�pt 
 sqjφ{δφν , which is a �nite sum
of terms as (??), is also a well-de�ned compactly supported distribution.
We consider �rst the auxiliary distribution Θφ on Mm�ν�|Nt| de�ned by

Θφpz1, . . . , zk, txi¡n�ku, tyrPNct uq :�

�

»
Mk

�
k¹
`�1

δ|N`|ωφpz`, z
1
`q

δφ|N`|ptyrPN`uq

�
δ|Ns|s̃φpz

1
1, . . . , z

1
k, txi¡n�kuq

δφ|Ns|ptyrPNsuq
dz11 . . . dz

1
k.

By hypothesis, ωφ is an admissible assignment. Therefore, δ|N`|ωφpz`, z1`q{δφ
|N`|pyrPN`q is compactly

supported in pyrqrPNi , and its wave-front set is bounded by Z2�|N`| (this is estimate (??) of condition ??)
which is contained in W2�|N`| (see (??)). By hypothesis, s̃φ satis�es ??, therefore δ|Ns|s̃φ{δφ|Ns| is a
compactly supported distribution with wave-front set in Wm�|Ns|. Then, applying lemma ??, we have
that Θφ is a well-de�ned distribution which is compactly supported in pxi¡n�kq and in pyrPNct q as follows
from the support properties of the distributions involved.
In order to prove that each (??) is a well-de�ned distribution, it is su�cient to show that the composition
of δ|Nt|t̃φ{δφ|Nt| with Θφ exists in the sense of the wave-front set calculus (thm. ??), i.e. we need to
prove that the multiplication condition (??) and the integration condition (??) hold.
The integration condition is satis�ed due to the support properties of δ|Nt|t̃φ{δφ|Nt| and Θφ.
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In this case, the multiplication condition reads

WF

�
δ|Nt|t̃φpz1, . . . , zk, txi¤n�kuq

δφ|Nt|ptyrPNtuq



z1,...,zk

XWF1pΘφpz1, . . . , zk, txi¡n�ku, tyrPNct uqqz1,...,zk �

� H.

(3.94)

Using the wave-front set calculus (thm. ??) and the fact that WFpδ|Ns|s̃φ{δφ
|Ns|q is contained inWm�|Ns|,

we can estimate the second set appearing in the left-hand side of eq. (??) by

WF1pΘφqz1,...,zk �
!
pz1, . . . , zk;�q1, . . . ,�qkq P T

�Mk
t0u : Dpz11, . . . , z

1
k; q11, . . . , q

1
kq PWk

pz`, z
1
`, pyrPN`q; q`,�q

1
`, p0, . . . , 0qq P WF

�
δ|N`|ωφpz`, z

1
`q

δφ|N`|ptyrPN`uq


*
,

(3.95)

Since δ|N`|ωφ{δφ|N`| is estimated by Z2�|N`| �
9T�M2�|N`|zpC2;�

2�|N`|
Y C1;�

2�|N`|
q, it holds that

pz`, z
1
`, pyrPN`q; q`,�q

1
`, p0, . . . , 0qq P WF

�
δ|N`|ωφpz`, z

1
`q

δφ|N`|ptyrPN`uq



ñ q` P V

�
z0,�q1` P V

�
z0. (3.96)

By de�nition, the setWk does not contain elements pz11, . . . , z
1
k; q11, . . . , q

1
kq in T

�Mk with all the covectors
q11, . . . , q

1
k which are future directed. Thus, we have WF1pΘφqz1,...,zk � H. This implies that the multi-

plication condition is veri�ed and so the distribution (??) is well-de�ned. Furthermore, by the support
properties of δ|Nt|t̃φ{δφ|Nt| and Θφ, it follows that each (??) is compactly supported as we wanted to
prove.
Next, we proceed by showing that each distribution (??) satis�es conditions ??, ?? given in def. ??.

This is su�cient to ensure that δν�pt 
 sqjφ{δφν , which is a �nite sum of terms in the form (??), satis�es
conditions ??, ?? as we needed to prove.
To verify the condition ??, we need to show that the wave-front set of the distribution (??) is con-
tained in Wj�ν . Let px1, . . . , xj , y1, . . . , yν ; k1, . . . , kj , p1, . . . , pνq be an element of the wave-front set of
distribution (??). The wave-front set calculus (thm. ??) implies that there must be

pz1, . . . , zk, z
1
1, . . . , z

1
k; q1, . . . , qk, q

1
1, . . . , q

1
kq P T

�M2k,

such that$''''''&''''''%

pz1, . . . , zk, x1, . . . , xn�k, pyrPNtq;�q1, . . . ,�qk, k1, . . . , kn�k, pprPNtqq PWn�|Nt|

or q1, . . . , qk, k1, . . . , kn�k, prPNt � 0
pz`, z

1
`, pyrPN`q; q`,�q

1
`, pprPN`qq P Z2�|N`| for ` � 1, . . . , k

or q`, q1`, prPN` � 0
pz11, . . . , z

1
k, xn�k�1, . . . , xj , pyrPNsq; q

1
1, . . . , q

1
k, kn�k�1, . . . , kj , pprPNsqq PWm�|Ns|

or q11, . . . , q
1
k, kn�k�1, . . . , kj , prPNs � 0

(3.97)

We used the estimate (??) for the wave-front set of δ|N`|ωφ{δφ|N`| and the estimate (??) for the wave-
front sets of δ|Nt|t̃φ{δφ|Nt| and δ|Ns|s̃φ{δφ|Ns|.
Notice that px1, . . . , xj , y1, . . . , yν ; k1, . . . , kj , p1, . . . , pνq is contained in Wj�ν as we need to prove, if we
show that k1, . . . , kj , p1, . . . , pν cannot be all causal future-directed or all causal past-directed except at
most one covector which is space-like.
We argue via reductio ad absurdum: we prove that if we assume that all the covectors k1, . . . , kj ,
p1, . . . , pν are causal future-directed except at most one covector which is space-like, we contradict the
hypotheses.
We consider two cases separately: (a) all covectors k1, . . . , kj , p1, . . . , pν belong to V

�
except at most

one ki or one pr with r P Nt YNs which is space-like, or (b) there exists an `1 and a r1 P N`1 such that

pr1 is space-like while all the remaining covectors k1, . . . , kj and pr with r � r1 are in V
�
.

a) Since we assume pr P V
�
for any r P N` for any `, we have q11, . . . , q

1
k P V

�
by de�nition of the

sets Z2�ν (see (??) and (??)). By the assumption (a), we have kn�k�1, . . . , kj , prPNs P V
�
except

at most one covector which can be space-like. However, these con�gurations are incompatible with
the conditions (??) because the co-vectors in Wm�|Ns| cannot be all causal future-directed except
at most one space-like. Therefore, the assumption (a) is incompatible with the hypotheses as we
wanted to prove.
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b) Since we assume pr P V
�

for any r � r1, it follows by de�nition of the sets Z2�ν that q1` be-

longs to V
�

for any ` � `1, while we have q1`1 R V
�

or q1`1 � 0. By the assumption (b), we

have kn�k�1, . . . , kj , prPNs P V
�
. As before, these con�gurations are incompatible with the con-

ditions (??), thus also the assumption (b) is incompatible with the hypotheses as we wanted to
prove.

Similarly, we can prove that k1, . . . , kj , p1, . . . , pν cannot be all causal past-directed except at most one
covector which is space-like. This is enough to conclude that condition ?? holds for each distribution (??),

and consequently also for the distribution δν�pt 
 sqjφ{δφν .
To prove ??, let R Q ε ÞÑ φpεq P C8pMq be smooth. The distribution δν�pt 
 sqjφpεq{δφν can be expressed
as a �nite combination of terms in the form (??) with φ replaced by φpεq everywhere. By hypothesis,
ωφ satis�es condition ?? in def. ??, therefore the wave-front set δ|N`|ωφpεq{δφ|N`| is bounded by R �

t0u � Z2�|N`| (this is estimate (??) of ??). Furthermore, by hypothesis, t̃φpεq, s̃φpεq satisfy condition ??

in def. ??, therefore the wave-front sets of the distributions δ|Nt|t̃φpεq{δφ|Nt| and δ|Ns|s̃φpεq{δφ
|Ns| are

contained respectively in R� t0u �Wn�|Nt| and R� t0u �Wm�|Ns| (estimate (??)). Arguing similarly
as done in the proof of ??, i.e. using the wave-front set calculus (thm. ??), we have that wave-front set
of each term (??) in φpεq, viewed as distributions in the variables ε, x1, . . . , xj , y1, . . . , yν P R�M j�ν , is

contained in R�t0u�Wj�ν which is precisely the requirement of ??. Consequently also δν�pt 
 sqjφpεq{δφν
satis�es the condition ??. This concludes the proof.

The Fedosov construction we reviewed in sec. ?? actually requires that the algebraic structure over
sections on W is extended to forms with values in W, see eq. (??). Similarly, in our in�nite-dimensional
setting we present the straightforward extension of the �berwise product (??) on ΩW pS,Wq based on
the gradings (??). In detail, we consider �rstly t P ΩkW pS,Wq and s P Ωk

1

W pS,Wq such that both of
them are homogeneous in the symmetric degree degs and in the formal degree deg~. In particular, we
set degs t � n and degs s � m. For such on-shell W -smooth �elds, we de�ne the product pt 
 sqφ as the

sequence ppt 
 sqk�k
1,0

φ , pt 
 sqk�k
1,1

φ , . . . q, where pt 
 sqk�k
1,j

φ is given by

pt 
 sqk�k
1,j

φ py1, . . . , yk�k1 , x1, . . . , xjq :�

� ~`Cn,m,`P�P�
»
M2`

tφpy1, . . . , yk; z1, . . . , z`, x1, . . . , xn�`q

�¹̀
i�1

ωφpzi, z
1
iq

�
�

� sφpyk�1, . . . , yk�k1 ; z
1
1, . . . , z

1
`, xn�`�1, . . . , xN q

¹̀
i�1

dzidz
1
i,

(3.98)

if j � n�m� 2` for ` ¤ n,m, otherwise pt 
 sqk�k
1,j

φ � 0. In the above formula, Cn,m,` �
n!m!

`!pn�`q!pm�`q!

is the same combinatorial factor appearing in eq. (??). By P�,P� we mean that a symmetrization acts
on the free variables x and an anti-symmetrization acts on the free variables y. Similarly as for eq. (??),
by abusing the notation, we identify an equivalence class in ^_k,nW T�φ S (i.e. the elements in b

k�n
W T�φ S

which are anti-symmetric in the �rst k entries and symmetric in the remaining n) with one of its rep-
resentatives, which are distributions in E 1W pMk�nq anti-symmetric in the �rst k entries and symmetric
in the remaining n. The equivalence classes corresponding to eq. (??) do not depend on the choice of
representative for t and s.
The product 
 respects the Deg-grading, i.e. the total degree of the product of two factors is equal to
the sum of the total degrees of the factors involved. The de�nition (??) extends to a map ΩkW pS,Wq �

Ωk
1

W pS,Wq Ñ Ωk�k
1

W pS,Wq making use of the Deg-�ltration and the fact that any form homogeneous in
the total degree Deg and in the antisymmetric degree dega decomposes in �nitely many terms homo-
geneous in dega, degs and deg~. The product extends further to ΩW pS,Wq � ΩW pS,Wq Ñ ΩW pS,Wq
canonically even though the dega-grading does not not admit a maximum value as in the in�nite-
dimensional case. With a similar argument as the one we presented before for C8

W pS,Wq, we can prove
that the product of two on-shell W -smooth forms is an on-shell W -smooth form. We summarize these
results in the following proposition.

Proposition 39. The product 
 de�ned by formula (??) de�nes on ΩW pS,Wq, i.e. the space of on-shell
W -smooth forms with values in W, the structure of an associative algebra.

69



3.4 W -smooth covariant derivatives on S

In sec. ??, we have de�ned sections φ ÞÑ σφ, φ ÞÑ µφ and φ ÞÑ ω5φ of the bundle C b b2
WT

�S that can
be viewed as analogues of the tensor �elds σij , Gij and ωij on the bundle Cb T�S b T�S in Fedosov's
construction for �nite-dimensional S. We have shown that the sections φ ÞÑ σφ, φ ÞÑ µφ and φ ÞÑ ω5φ
satisfy the key property of on-shell W -smoothness. From these sections, we de�ne a covariant derivative
∇W that is well-de�ned on on-shell W -smooth sections and which preserves on-shell W -smoothness.
This covariant derivative is also compatible with the algebraic structure we have discussed in sec. ??
and it is analogous to the Yano connection ∇ in the �nite-dimensional case. The connection ∇W will
serve as the starting point for Fedosov's construction in the in�nite-dimensional setting, just as the Yano
connection did in the �nite-dimensional case.
Our construction will be rather pedestrian. In the �nite-dimensional setting, any a�ne connection (and
in particular the Yano-connection) can be written as ∇ivj � Bivj � Γkijvk, where B is a �at connection
such as e.g. the �at connection associated with a �xed local coordinate system. We are going to choose
the �at derivative operator B de�ned in prop. ?? as our analogue for Bi in the in�nite-dimensional setting.
The remaining task is then to show that the connection coe�cients Γkij have an appropriate counterpart
in in�nite dimensions, and that the connection ∇W thus obtained is well de�ned on on-shell W -smooth
tensor �elds. This will be the case if φ ÞÑ ωφ is chosen to be admissible in the sense of def. ??, as will be
assumed throughout.

First we present the general de�nition of covariant derivatives in our setting.

De�nition 40. A W -covariant derivative is a linear map DW : C8
W pS,b

n
WT

�Sq Ñ C8
W pS,b

n�1
W T�Sq

such that on C8
W pSq, i.e. for n � 0, it equals B de�ned in prop. ??, and such that it satis�es the Leibniz

rule, i.e. for any t, s on-shell W -smooth covariant sections with rank n and, respectively, m, it holds

DW ptb sq � pDW tq b s� tb pDW sq, (3.99)

where b is the tensor product given in prop. ??.

We start de�ning the in�nite-dimensional analogue ∇̊W of the Levi-Civita connection. This is a
W -covariant derivative which preserves the on-shell W -smooth covariant section µ, i.e. ∇̊Wµ � 0, and
it is torsion-free, i.e. for any t P C8

W pS, T
�Sq

T p∇̊qptq :� P�p∇̊W tq � dt � 0, (3.100)

where P� denotes anti-symmetrization. In order to de�ne ∇̊W , we proceed as follows. For any φ P
C8pMq, we �rst construct the in�nite-dimensional analogue Γ̊φ of the Christo�el symbols of the �nite-
dimensional Levi-Civita connection. Then, we de�ne ∇̊ � B� Γ̊, and we check that this maps the space
of on-shellW -smooth covariant sections of rank n into the space of on-shellW -smooth covariant sections

of rank n�1, i.e. we need to construct a suitable extension �̊∇W tφ and check ??, ?? of def. ??. Finally, we
check that the proposed de�nition satis�es also the other requirements to be a W -covariant derivative.
The choice of Γ̊φ is made such that ∇̊ is torsion-free and preserves µ.

Proposition 41. Let c be a cut-o� function as in eq. (??) and let φ ÞÑ ωφ be an admissible assignment.

For any φ P C8pMq, we de�ne the distribution Γ̊φ P D1pM3q by

Γ̊φpx1, x2, x3q :� �
1

2

»
M

Gφpx1, zq

"
δpσc �Gφ � σcqpz, x3q

δφpx2q
�
δpσc �Gφ � σcqpx2, zq

δφpx3q
�

�
δpσc �Gφ � σcqpx2, x3q

δφpzq

*
dz,

(3.101)

where Gφ is the symmetric part of the 2-point function ωφ, and where σc is the distribution (??).
For any t P C8

W pS,b
n
WT

�Sq, we de�ne�
p∇̊W tqφpx1, . . . , xn�1q :�

� �pBtqφpx1, . . . , xn�1q �
n�1̧

j�2

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφqpxj , x

1
j q̊Γφpzj , x

1
1, x

1
jq�

� t̃φpx2, . . . , zj , . . . xn�1qdx
1
1dx

1
jdzj ,

(3.102)
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where t̃φ P pσc � Eφq
bnE 1W pMnq is an extension of t, and where �pBtqφ P pσc � Eφqbn�1E 1W pMn�1q is the

extension of Bt de�ned by eq. (??) with respect to the �xed choice of c. The distribution (??) de�nes an
on-shell W -smooth covariant section ∇̊W t with rank pn� 1q by restriction to pTSqbn�1, i.e.

p∇̊W tqφpu1, . . . , un�1q :�
�
p∇̊W tqφpu1, . . . , un�1q @φ P S, ui P TφS. (3.103)

The section ∇̊W t does not depend on the extension t̃ nor the choice of the cut-o� c.
Finally, ∇̊W is a W -covariant derivative which preserves µ and which is torsion-free.

Proof. We begin by proving that for any φ P C8pMq the distribution �
p∇̊W tqφ given by eq. (??) is well-

de�ned and belongs to pσc � Eφqbn�1E 1W pMn�1q. To show this, we �rst prove that for any φ P C8pMq

the distribution Γ̊φpx1, x2, x3q given by eq. (??) is well-de�ned, is compactly supported in x2, x3, and
has wave-front set contained in W3. By de�nition Gφpx1, x2q is the symmetric part of the distribution
ωφpx1, x2q, which is an admissible assignment in the sense of def. ??. Therefore, the estimate (??)
for ωφ implies that the wave-front set of δGφ{δφ is contained in W3. The distribution σc de�ned by
eq. (??) is a distribution in E 1W pM2q which does not depend on φ. Then, applying lemma ?? to the
right-hand side of eq. (??), it follows that the distribution Γ̊φ is well-de�ned and its wave-front set is
contained in W3. Furthermore, Γ̊φpx1, x2, x3q is compactly supported in x2, x3 because σc is compactly
supported by de�nition, and because δGφpx1, x2q{δφpyq is compactly supported in y as follows from

the fact that δωφpx1, x2q{δφpyq is compactly supported in y by hypothesis. By construction, �pBtqφ is in

pσc � Eφq
bn�1E 1W pMn�1q. By what we already know about Γ̊φ, and because t̃φ P pσc � EφqbnE 1W pMnq,

it follows from lemma ?? that the second term in eq. (??) is also a well-de�ned distribution in pσc �

Eφq
bn�1E 1W pMn�1q. Thus, we have �

p∇̊W tqφ P pσc � Eφqbn�1E 1W as we wanted to prove.

Next, we prove that �
p∇̊W tqφ de�nes an on-shell W -smooth covariant section. For this purpose we need

to show that (a) for any φ P S and any ui P TφS,
�
p∇̊W tqφpu1, . . . , un�1q does not depend on the choice of

the extensions t̃φ P pσc �EφqbnE 1W pMnq and �pBtqφ P pσc �Eφqbn�1E 1W pMn�1q, and (b) �
p∇̊W tqφ satis�es

conditions ??, ?? of def. ??. As we have already proved in prop. ??, �pBtqφ satis�es both the conditions
(a) and (b) above. Therefore, we need to show that the second term in (??) also does.

(a) By de�nition, Gφ is a bi-solution with respect to Pφ. We have already proved that Γ̊φpx1, x2, x3q is
compactly supported in x2, x3 and its wave-front set is contained inW3. Therefore, for any smooth
functions f, h we have that

M Q x1 ÞÑ

»
M2

Γ̊φpx1, x2, x3qfpx2qhpx3qdx2dx3

is smooth because there is no element in W3 in the form px1, x2, x3; k1, 0, 0q, and it is a Pφ-solution
by construction. Now, let t̃1,φ, t̃2,φ P pσc � EφqbnE 1W pMnq be two W -smooth extensions of t. We
compute the di�erence of between the second term in (??) corresponding to t̃1,φ and t̃2,φ. When
evaluated at φ P S and smeared with u1, . . . , un�1 P TφS, this di�erence reads

n�1̧

j�2

»
M2

u1px
1
1qujpx

1
j q̊Γφpzj , x

1
1, x

1
jqpt̃1,φ � t̃2,φqpu2, . . . , zj , . . . un�1q � 0,

because for any φ P S the two extension t̃1,φ and t̃2,φ must coincide by construction when smeared
with smooth Pφ-solutions. This implies that the second term in (??) satis�es the requirement (a)
as we wanted to show.

(b) To prove that the conditions ??, ?? are satis�ed, we compute the ν-Gateaux derivative of the
second term of eq. (??) by distributing the variational derivatives on its factors. It can be easily
seen that this ν-Gateaux derivative is a �nite sum of appropriate compositions of σc, Gateaux
derivatives of Eφ and Gateaux derivatives of Gφ. The idea is to prove that each term in this
decomposition satis�es the conditions ??, ??. Rather than displaying explicitly these terms and
computing their wave-front sets, we just outline the main arguments needed for this purpose and
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omit the tedious but entirely straightforward details, which parallel those already presented e.g. in
the proof of prop. ??.
To prove ??, we apply lemma ?? and use the fact that t̃ satis�es ?? by hypothesis, together with
the estimate (??) of the wave-front set of δνEφ{δφν (proved in prop. ??), the estimate of the wave-
front set of δνGφ{δφν induced by the estimate (??), the wave-front set of σc computed in (??) and
the support properties of the distributions involved.
Let R Q ε ÞÑ φpεq P C8pMq be smooth. To show that ?? holds, one shall apply thm. ?? instead
of lemma ?? and use the fact that t̃ satisfy ?? by hypothesis, together with the estimate (??) of
the wave-front set of δνEφpεq{δφν (proved in prop. ??) and the estimate of the wave-front set of
δνGφpεq{δφ

ν induced by the estimate (??).
Therefore, the second term in (??) satis�es the requirement (b) as we claimed.

So, we have proved that ∇̊W t is a well-de�ned on-shell W -smooth covariant section.
Next, we show that ∇̊W t does not depend on the choice of the cut-o� function c. It is su�cient to prove
that for any functions c, c1 as in eq. (??), it holds

�
p∇̊W tqφ �

�
p∇̊W tq1φ � 0, (3.104)

where the prime refers to a quantity de�ned with respect to the cut-o� c1 instead of c, and where � means

�equal up to distributions in PφE 1W pMn�1q� exactly as in lemma ??. The di�erence �
p∇̊W tqφ � �

p∇̊W tq1φ
consists in two terms. One is �pBtqφ ��pBtq1φ, while, using lemma ??, the other can be written as

� �
p∇̊W tqφ � �pBtqφ
�

� �
p∇̊W tq1φ ��pBtq1φ
 �

� �
n�1̧

j�2

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφqpxj , x

1
jq
�

Γ̊φ � Γ̊1φ

	
pzj , x

1
1, x

1
jq�

� t̃φpx2, . . . , zj , . . . xn�1qdx
1
1dx

1
jdzj .

(3.105)

We will show that it holds� �
p∇̊W tqφ � �pBtqφ
�

� �
p∇̊W tq1φ ��pBtq1φ
 � �

��pBtqφ ��pBtq1φ	 , (3.106)

which clearly implies the validity of formula (??). For this purpose, we �rst need to rewrite the right-hand
side of formula (??). We express the di�erence Γ̊φ � Γ̊1φ as

�
Γ̊φ � Γ̊1φ

	
px1, x2, x3q :�

� �
1

2

»
M

Gφpx1, zq

"
δ∆Gφpz, x3q

δφpx2q
�
δ∆Gφpx2, zq

δφpx3q
�
δ∆Gφpx2, x3q

δφpzq

*
dz,

(3.107)

where

∆Gφ :� σc �Gφ � σc � σc1 �Gφ � σc1 � σc �Gφ � pσc � σc1q � pσc � σc1q �Gφ � σc1 .

As a consequence of eq. (??), σc � σc1 vanishes if it is smeared with Pφ-solutions. Thus, ∆Gφ also
vanishes when it is smeared with Pφ-solutions, because Gφ is a bi-solution with respect to Pφ. It follwos

Gφ �∆Gφ � Eφ � 0 � Eφ �∆Gφ � Eφ.

Using this result and the Leibniz rule for the variational derivative, we rewrite the right-hand side of
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formula (??) as

�
1

2

n�1̧

j�2

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφqpxj , x

1
jq

"�
∆Gφ �

δGφ
δφpx11q



px1j , zjq�

�

�
∆Gφ �

δGφ
δφpx1jq

�
px11, zjq

+
t̃φpx2, . . . , zj , . . . , xn�1qdx

1
1dx

1
jdzj�

�
1

2

n�1̧

j�2

»
M

"»
M

pσc � Eφqpx1, x
1
1q

�
Gφ �∆Gφ �

δEφ � σc
δφpx11q



pzj , xjqdx

1
1�

�

»
M

pσc � Eφqpxj , x
1
jq

�
Gφ �∆Gφ �

δEφ � σc
δφpx1jq

�
pzj , x1qdx

1
i

+
t̃φpx2, . . . , zj , . . . , xn�1qdzj�

�
1

2

n�1̧

j�2

»
M

#�
δσc � Eφ
δφpz1jq

�∆Gφ � Eφ � σc

�
px1, xjq�

�

�
σc � Eφ �∆Gφ �

δEφ � σc
δφpz1jq

�
px1, xjq

+
Gφpz

1
j , zjqt̃φpx2, . . . , zj , . . . , xn�1qdzjdz

1
j .

(3.108)

Since Gφ is a bi-solution, it follows from eq. (??) that Gφ � σc � Eφ � Gφ. Exploiting this result and
again the fact that σc � σc1 vanishes when smeared with Pφ-solutions, the �rst and the last term in
formula (??) equal

�
1

2

n�1̧

j�2

»
M4

σcpx1, y1q

"
Eφpy1, y3q

δGφpzj , y2q

δφpy3q
�Gφpzj , y3q

δEφpy1, y2q

δφpy3q

*
�

� ppσc � σc1q �Gφ � σcqpy2, xjqt̃φpx2, . . . , zj , . . . , xn�1qdy1dy2dy3dzi�

�
1

2

n�1̧

i�2

»
M4

σcpxj , y1q

"
Eφpy1, y3q

δGφpzj , y2q

δφpy3q
�Gφpzj , y3q

δEφpy1, y2q

δφpy3q

*
�

� ppσc � σc1q �Gφ � σcqpy2, x1qt̃φpx2, . . . , zj , . . . , xn�1qdy1dy2dy3dzj .

(3.109)

The bi-distributions Eφ and Gφ satis�es the hypotheses of lemma ?? and, therefore, it follows that for
any φ P C8pMq and any f1, f2 P C

8
0 pMq the function

M Q x ÞÑ

»
M

�
Eφpx1, yq

δGφpx2, xq

δφpyq
�Gφpx2, yq

δEφpx1, xq

δφpyq



f1px1qf2px2qdx1dx2 (3.110)

is a smooth Pφ-solution. Thus, the distribution given by formula (??) vanishes because σc�σc1 vanishes
when smeared with Pφ-solutions. On the other hand, the second term in formula (??) can be written as

1

2

n�1̧

j�2

»
M5

σcpx1, y1q

"
Eφpy1, y3q

δEφpy2, z
1
jq

δφpy3q
� Eφpy2, y3q

δEφpy1, z
1
jq

δφpy3q

*
σcpy2, xjq�

� ppσc � σc1q �Gφ � σc1 �Gφqpz
1
j , zjqt̃φpx2, . . . , zj , . . . , xn�1qdy1dy2dy3dzjdz

1
j�

�
n�1̧

j�2

»
M2

pσc � Eφqpx1, x
1
1q

�
σc �

δEφ
δφpx11q

� pσc � σc1q �Gφ � σc �Gφ



pxj , zjq�

� t̃φpx2, . . . , zi, . . . , xn�1qdx
1
1dzj .

(3.111)

The function

M Q x ÞÑ

»
M

�
Eφpx1, yq

δEφpx2, xq

δφpyq
� Eφpx2, yq

δEφpx1, xq

δφpyq



f1px1qf2px2qdx1dx2

is a smooth Pφ-solution as follows from lemma ??. Thus, the �rst term in (??) vanishes because σc�σc1
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vanishes when smeared with Pφ-solutions. Summing up, we obtain� �
p∇̊W tqφ � �pBtqφ
�

� �
p∇̊W tq1φ ��pBtq1φ
 �

� �
n�1̧

j�2

»
M2

pσc � Eφqpx1, x
1
1q

�
σc �

δEφ
δφpx11q

� pσc � σc1q �Gφ � σc �Gφ



pxj , zjq�

� t̃φpx2, . . . , zi, . . . , xn�1qdx
1
1dzj

�
n�1̧

j�2

»
M2

pσc � Eφqpx1, x
1
1q

�
σc �

δEφ
δφpx11q

� pσc � σc1q � Eφ



pxj , zjq�

� t̃φpx2, . . . , zj , . . . , xn�1qdx
1
1dzi

� �
n�1̧

j�2

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφqpxj , x

1
jq
δpσc � σc1q � Eφ

δφpx11q
px1i, ziq�

� t̃φpx
1
2, . . . , zj , . . . , x

1
n�1qdx

1
1dx

1
jdzj .

(3.112)

We used eq. (??), the Leibniz rule for the variational derivative, and the fact that Eφ�pσc�σc1q�Eφ � 0.

As follows from eq. (??), the last line of eq. (??) coincides with �p�pBtqφ��pBtq1φq. This is precisely what

we wanted to show. Thus, we have veri�ed that ∇̊t is independent on the choice of the cut-o� c.

By construction, ∇̊W reduces to B if n � 0 and it satis�es the Leibniz rule (??). Thus, ∇̊W is a
W -covariant derivative.

Finally, we need to show that ∇̊W is torsion-free and preserves µ. The torsion of ∇̊W necessarily
vanishes, because Γ̊φpx1, x2, x3q is symmetric in x2, x3 by de�nition.
Because we have already proved that ∇̊Wµ depends neither on the choice of the extension nor on the

choice of the cut-o� c, to show that ∇̊Wµ � 0, it is su�cient to prove that �̊∇Wµφ � 0, where �̊∇Wµφ is
given by eq. (??) for a speci�c W -smooth extension of µ and an arbitrary but �xed cut-o� function c as
in eq. (??). If we chose the distribution σc �Gφ � σc as our W -smooth extension of µφ (we have proved
in thm. ?? that this is allowed), then, using eq. (??), we get

�
p∇̊Wµqφpx1, x2, x3q �

�

»
M3

3¹
i�1

pσc � Eφqpxi, x
1
iq
δpσc �Gφ � σcqpx

1
2, x

1
3q

δφpx11q
dx11dx

1
2dx

1
3�

� P�x2,x3

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφqpx2, yq

"
δpσc �Gφ � σcqpz, yq

δφpx11q
�

�
δpσc �Gφ � σcqpx

1
1, zq

δφpyq
�
δpσc �Gφ � σcqpx

1
1, yq

δφpzq

*
pGφ � σc �Gφ � σcqpz, x3qdx

1
1dydz

�

»
M3

3¹
i�1

pσc � Eφqpxi, x
1
iq
δpσc �Gφ � σcqpx

1
2, x

1
3q

δφpx11q
dx11dx

1
2dx

1
3�

� P�x2,x3

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφqpx2, yq

"
δpσc �Gφ � σcqpz, yq

δφpx11q
�

�
δpσc �Gφ � σcqpx

1
1, zq

δφpyq
�
δpσc �Gφ � σcqpx

1
1, yq

δφpzq

*
pEφ � σcqpz, x3qdx

1
1dydz

� 0,

(3.113)

where P�x2,x3
is the symmetrization in the variables x2, x3. This concludes the proof.

We point out that the W -covariant derivative ∇̊W for any admissible assignment φ ÞÑ ωφ does
not preserve the on-shell W -smooth 2-form σ and thus the in�nite-dimensional analogue of the Levi-
Civita connection is not compatible in general with the Wick product 
, just as in the �nite-dimensional
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situation. We overcome this problem just as for �nite-dimensional almost-Kähler manifolds: we de�ne a
new W -covariant derivative ∇W corresponding to the �nite-dimensional Yano connection. In particular,
∇W is required to preserve both the on-shellW -smooth covariant �elds µ and σ. The procedure to de�ne
this W -covariant derivative is similar to the construction we have presented for ∇̊W .

Proposition 42. Let c be a cut-o� function as in eq. (??) and let φ ÞÑ ωφ be an admissible assignment.
For any φ P C8pMq, we de�ne the distribution Γφ P D1pM3q by

Γφpx1, x2, x3q :� Γ̊φpx1, x2, x3q �
1

8

»
M

pEφ � σcqpx1, zqNφpz, x2, x3qdz�

�
1

8
P�x2,x3

»
M2

Gφpx1, zqNφpz
1, z, x2qpσc �Gφ � σcqpz

1, x3qdzdz
1,

(3.114)

where P�x2,x3
is the symmetrization in the variables x2, x3, where Γ̊φ is the distribution de�ned by for-

mula (??), where Nφ P D1pM3q is the distribution de�ned by

Nφpx1, x2, x3q :� 2P�x2,x3

»
M

"
δpGφ � σcqpx1, x2q

δφpzq
pGφ � σcqpz, x3q�

� pGφ � σcqpx1, zq
δpGφ � σcqpz, x3q

δφpx2q

*
dz,

(3.115)

where P�x2,x3
is the anti-symmetrization in the variables x2, x3, where Gφ is the symmetric parts of the

2-point function ωφ, and where σc is the distribution (??).
For any t P C8

W pS,b
n
WT

�Sq, we de�ne

�p∇W tqφpx1, . . . , xn�1q :�

� �pBtqφpx1, . . . , xn�1q �
n�1̧

j�2

»
Mn�2

pσc � Eφqpx1, x
1
1qpσc � Eφqpxj , x

1
jqΓφpzj , x

1
1, x

1
jq�

t̃φpx2, . . . , zj , . . . xn�1qdx
1
1dx

1
jdzj ,

(3.116)

where t̃φ P pσc � Eφq
bnE 1W pMnq is an extension of t, and where �pBtqφ P pσc � Eφqbn�1E 1W pMn�1q is the

extension of Bt de�ned by eq. (??) with respect to the �xed choice of c.
The distribution (??) de�nes an on-shell W -smooth covariant section ∇W t of rank pn� 1q by restriction
to pTSqbn�1, i.e.

p∇W tqφpu1, . . . , un�1q :� �p∇W tqφpu1, . . . , un�1q @φ P S, ui P TφS. (3.117)

The section ∇W t does not depend on the choice of the extension t̃ nor the cut-o� c.
Finally, ∇W is a W -covariant derivative which preserves µ and σ.

Proof. We begin by proving that for any φ P C8pMq, the distribution �p∇W tqφ given by eq. (??) is well-
de�ned and belongs to pσc � Eφqbn�1E 1W pMn�1q. To show this, we �rst prove that for any φ P C8pMq
the distribution Nφpx1, x2, x3q given by eq. (??) is well-de�ned, is compactly supported in x2, x3, and
has wave-front set contained in W3. By de�nition Gφpx1, x2q is the symmetric part of the distribution
ωφpx1, x2q which is an admissible assignment in the sense of def. ??. Therefore, the estimate (??) for ωφ
implies that the wave-front set of δGφ{δφ is contained in W3. The distribution σc de�ned by eq. (??)
is a distribution in E 1W pM2q which does not depend on φ. Then, applying lemma ?? to the right-hand
side of eq. (??), it follows that the distribution Nφ is well-de�ned and its wave-front set is contained
in W3. Furthermore, Nφpx1, x2, x3q is compactly supported in x2, x3 because σc is by de�nition com-
pactly supported, and because δGφpx1, x2q{δφpyq is compactly supported in y because δωφpx1, x2q{δφpyq
is compactly supported in y by hypothesis.
We have already shown in the proof of pro p. ?? that Γ̊φpx1, x2, x3q given by eq. (??) is well-de�ned,
is compactly supported in x2, x3, and has wave-front set contained in W3. Using the result just pre-
sented for Nφ, lemma ??, and the support properties of the distributions involved, we conclude that also
Γφpx1, x2, x3q given by eq. (??) is a well-de�ned distribution which has compact support in x2, x3 and
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which has its wave-front set contained in W3. By construction, �pBtqφ is in pσc �Eφqbn�1E 1W pMn�1q. By
what we already know about Γφ, and because t̃φ P pσc � EφqbnE 1W pMnq by hypothesis, it follows form
lemma ?? that the second term in eq. (??) is also a well-de�ned distribution in pσc �Eφqbn�1E 1W pMn�1q.

Thus, we have �p∇W tqφ P pσc � Eφqbn�1E 1W as we wanted to prove.

To prove that �p∇W tqφ de�nes an on-shell W -smooth covariant section, we need to show that (a) for

any φ P S and any ui P TφS, �p∇W tqφpu1, . . . , un�1q does not depend on the choice of the extensions

t̃φ P pσc�Eφq
bnE 1W pMnq and �pBtqφ P pσc�Eφqbn�1E 1W pMn�1q, and (b) �p∇W tqφ satis�es conditions ??, ??

of def. ??. As we have proved in prop. ??, �pBtqφ satis�es both the conditions (a) and (b) above. Therefore,
we need to show that the second term in (??) also does.

(a) By de�nition, Gφ and Eφ are bi-solutions with respect to Pφ. We have already proved that
Γφpx1, x2, x3q is compactly supported in x2, x3 and its wave-front set is contained inW3. Therefore,
for any smooth functions f, h we have that

M Q x1 ÞÑ

»
M2

Γφpx1, x2, x3qfpx2qhpx3qdx2dx3

is smooth because there is no element in W3 in the form px1, x2, x3; k1, 0, 0q, and it is a Pφ-solution
by construction. Now, let t̃1,φ, t̃2,φ P pσc � EφqbnE 1W pMnq be two W -smooth extensions of t. We
compute the di�erence of the second term in (??) corresponding to t̃1,φ and t̃2,φ. When evaluated
at φ P S and smeared with u1, . . . , un�1 P TφS, this di�erence reads

n�1̧

j�2

»
M2

u1px
1
1qujpx

1
jqΓφpzj , x

1
1, x

1
jqpt̃1,φ � t̃2,φqpu2, . . . , zj , . . . un�1q � 0,

because for any φ P S the two extension t̃1,φ and t̃2,φ must coincides by construction when smeared
with smooth Pφ-solutions. This implies that the second term in (??) satis�es the requirement (a)
as we wanted to show.

(b) To prove that the conditions ??, ?? are satis�ed, we compute the ν-Gateaux derivative of the
second term of eq. (??) by distributing the variational derivatives on the factors that compose this
term. Similarly as for ∇̊ (see prop. ??), it can be easily seen that the ν-Gateaux derivative of
the second term of eq. (??) can be decomposed into a �nite sum of appropriate compositions of
σc, Gateaux derivatives of Eφ and Gateaux derivatives of Gφ. The same argument we sketched in
the proof of prop. ?? implies that each term in this decomposition satis�es ??, ??. Therefore, the
second term in (??) satis�es the requirement (b) as we claimed.

Thus, ∇W t is a well-de�ned on-shell W -smooth covariant section.

Next, we show that ∇W t does not depend on the choice of the cut-o� function c. It is su�cient to
prove that for any functions c, c1 as in eq. (??), it holds

�p∇W tqφ � �p∇W tq1φ � 0 (3.118)

where the prime refers to a quantity de�ned with respect to the cut-o� c1 instead of c, and where �
means �equal up to distributions in PφE 1W pMn�1q� exactly as in lemma ??.
Because ∇̊t has already been shown to be independent of c (see prop. ??), we can equivalently write
eq. (??) as � �p∇W tqφ � �

p∇̊W tqφ



�

� �p∇W tq1φ � �
p∇̊W tq1φ



� 0, (3.119)

By using lemma ?? and the extensions �
p∇̊W tqφ and �p∇W tqφ provided respectively by eq. (??) and
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eq. (??), we obtain� �p∇W tqφ � �
p∇̊W tqφ



�

� �p∇W tq1φ � �
p∇̊W tq1φ



�

�
n�1̧

j�2

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφqpxj , x

1
jq
!�

Γ̊φ � Γφ

	
�
�

Γ̊1φ � Γ1φ

	)
pzj , x

1
1, x

1
jq�

� t̃φpx2, . . . , zj , . . . xn�1qdx
1
1dx

1
jdzj .

(3.120)

Next, we notice that the di�erence between Γ̊φ and Γφ can be written as�
Γ̊φ � Γφ

	
px1, x2, x3q �

1

8

»
M

pEφ � σcqpx1, zqNφpz, x2, x3qdz�

�
1

8
P�x2,x3

»
M2

Gφpx1, zq
�
Nφpz

1, z, x2qpσc �Gφ � σcqpz
1, x3q

�
dzdz1,

(3.121)

After a closer inspection of eq. (??) and eq. (??), we notice that to prove eq. (??) it is su�cient to verify»
M4

3¹
i�1

Eφpxi, x
1
iq
�
σcpx

1
1, zqNφpz, x

1
2, x

1
3q � σc1px

1
1, zqN

1
φpz, x

1
2, x

1
3q
�
dzdx11dx

1
2dx

1
3 � 0. (3.122)

As we already mentioned in the proof of prop. ??, it follows straightforwardly from eq. (??) that σc�σc1
vanishes if smeared with Pφ-solutions. Therefore, it holds Eφ � pσc�σc1q �Gφ � 0. Using this result and
the de�nition of the distribution Nφ (given by eq. (??)), we can rewrite (up to a factor 2) the left-hand
side of eq. (??) as»

M4

3¹
i�1

Eφpxi, x
1
iqP�x12,x13

�
pσc �Gφqpx

1
3, zq

�
pσc � σc1q �

δGφ
δφpzq

� σc



px11, x

1
2q

�
dzdx11dx

1
2dx

1
3�

�

»
M4

3¹
i�1

Eφpxi, x
1
iqP�x12,x13

�
pGφ � σcqpz, x

1
3q

�
σc �

δGφ
δφpzq

� pσc � σc1q



px11, x

1
2q

�
dzdx11dx

1
2dx

1
3�

�

»
M3

3¹
i�1

Eφpxi, x
1
iqP�x12,x13

��
σc �Gφ � pσc � σc1q �

δGφ
δφpx12q

� σc



px11, x

1
3q

�
dx11dx

1
2dx

1
3�

�

»
M3

3¹
i�1

Eφpxi, x
1
iqP�x12,x13

�
σc �

�
Gφ � σc1 �

δGφ
δφpx12q

� pσc � σc1q



px11, x

1
3q

�
dx11dx

1
2dx

1
3.

(3.123)

We now show that (1) the �rst term in (??) vanishes, (2) the fourth term in (??) vanishes, and (3) the
sum of the second and the third terms in (??) also vanishes.

(1) Because Gφ satis�es the hypotheses of lemma ??, it follows that the map

M Q x ÞÑ

»
M

�
Gφpx1, yq

δGφ
δφpyq

px2, xq �Gφpx2, yq
δGφ
δφpyq

px1, xq



f1px1qf2px2qdydx1dx2

is a smooth Pφ-solution for any test functions f1, f2. Thus, the �rst term in (??) vanishes.

(2) Applying the Leibniz rule for the variational derivative, it follows from the equation Gφ � pσc �
σc1q � Eφ � 0 that it holds

0 �
δpGφ � pσc � σc1q � Eφq

δφpyq
px1, x2q

�

�
δGφ
δφpyq

� pσc � σc1q � Eφ



px1, x2q �

�
Gφ � pσc � σc1q �

δEφ
δφpyq



px1, x2q.

(3.124)

Because Gφ is a bi-solution with respect to Pφ, it follows from eq. (??) that Gφ � σc1 � Gφ �
Gφ � σc �Gφ, and so it follows from eq. (??) that we have

�Gφ � σc1 �Gφ � σc � Eφ � Eφ. (3.125)
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Using eq. (??) and eq. (??), we express the last term in (??) as»
M2

pEφ � pσc � σc1qqpx1, zq

"
Eφpy, x2q

δEφpz, x3q

δφpyq
� Eφpy, x3q

δEφpz, x2q

δφpyq

*
dzdy.

Since Eφ satis�es the hypotheses of lemma ??, it follows that the map

M Q x ÞÑ

»
M

�
Eφpx1, yq

δEφ
δφpyq

px2, xq � Eφpx2, yq
δEφ
δφpyq

px1, xq



f1px1qf2px2qdydx1dx2

is a smooth Pφ-solutions for any test function f1, f2. Thus, also the last term in (??) vanishes.

(3) Next, we focus on the second and the third terms of of eq. (??). Using eq. (??) and the fact that
Gφ � σc � Eφ � Gφ, we write the second term of eq. (??) as»

M2

pEφ � σc �Gφ � pσc � σc1qqpx1, zqP�x2,x3

�
Gφpy, x3q

δEφpz, x2q

δφpyq

�
dzdy.

Since Gφ � σc � Eφ � Gφ, using the Leibniz rule for the variational derivative, we have�
δGφ
δφpyq

� σc � Eφ



px1, x2q �

�
Gφ � σc �

δEφ
δφpyq



px1, x2q �

δGφpx1, x2q

δφpyq
.

Then, this result implies that the third term of eq. (??) equals

�

»
M2

pEφ � σc �Gφ � pσc � σc1qqpx1, zqP�x2,x3

�
Eφpx2, yq

δGφpz, x3q

δφpyq

�
dzdy.

Adding the second and the third terms, we obtain»
M2

pEφ � σc �Gφ � pσc � σc1qqpx1, zqP�x2,x3

�
Gφpy, x3q

δEφpz, x2q

δφpyq
�

� Eφpx2, yq
δGφpz, x3q

δφpyq

�
dzdy,

which vanishes because, by lemma ??, the map

M Q x ÞÑ

»
M

�
Eφpx1, yq

δGφ
δφpyq

px2, xq �Gφpx2, yq
δEφ
δφpyq

px1, xq



f1px1qf2px2qdydx1dx2

is a smooth Pφ-solution for any test functions f1, f2.

Summing up, we have that (??) vanishes, i.e. we veri�ed eq. (??). As already mentioned, this implies
that ∇W t is independent of the choice of the cut-o� c.

By construction, the map ∇W is a W -covariant derivative. Therefore, to conclude the proof, we need
to show that ∇W preserves both the covariant sections µ and σ.
We have already proved that ∇Wµ does depend neither on the choice of the extension nor on the choice
of the cut-o�. Then, to show that ∇Wµ � 0, it is su�cient to prove that �p∇Wµqφ � 0, where �p∇Wµqφ
is given by eq. (??) for a speci�c W -smooth extension of µ and an arbitrary but �xed cut-o� function c
as in eq. (??). If we choose σc � Gφ � σc as our W -smooth extension of µφ (we have proved in thm. ??
that this is allowed), then it follows

�p∇Wµqφpx1, x2, x3q �

�
�
p∇̊Wµqφpx1, x2, x3q � 2P�x2,x3

»
M3

pσc � Eφqpx1, x
1
1qpσc �Gφ � σcqpx2, zq�

�
�

Γφ � Γ̊φ

	
pz, x11, yqpEφ � σcqpy, x3qdx

1
1dydz

(3.126)
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As we have already proved in prop. ?? (see eq. (??)), �
p∇̊Wµqφ vanishes. We need to show that the

second term in eq. (??) also vanishes. By the de�nition of Γφ (see eq. (??)), and since Nφpx1, x2, x3q is
anti-symmetric in x2, x3, we have

P�x2,x3

»
M2

pGφ � σcqpx2, zq
�

Γφ � Γ̊φ

	
pz, x1, yqEφpy, x3qdydz �

� �
1

8
P�x2,x3

»
M2

pGφ � σcqpx2, zqNφpz, x1, yqEφpy, x3qdydz�

�
1

8
P�x2,x3

»
M2

pGφ � σc �Gφqpx2, yqNφpz, y, x1qpσc �Gφ � σc � Eφqpz, x3qdydz

� �
1

8
P�x2,x3

»
M2

pGφ � σcqpx2, zqNφpz, x1, yqEφpy, x3qdydz�

�
1

8
P�x2,x3

»
M2

Eφpx2, yqNφpz, y, x1qpσc �Gφqpz, x3qdydz

� �
1

8
P�x2,x3

»
M2

pGφ � σcqpx2, zq pNφpz, x1, yq �Nφpz, y, x1qqEφpy, x3qdydz � 0,

where we used Eφ �σc �Gφ � Gφ, which follows from eq. (??), and Gφ �σc �Gφ � Eφ �σc �Gφ �σc �Gφ �
�Eφ, which is a consequence of eq. (??). Therefore, also the second term in eq. (??) vanishes, as we
needed to prove.
To show that ∇Wσ � 0, similarly as before, it is su�cient to prove that �p∇Wσqφ � 0, where �p∇Wσqφ is
given by eq. (??) for a speci�c W -smooth extension of σ and an arbitrary but �xed cut-o� function c as
in eq. (??). If we choose σc � Eφ � σc as our extension (we have proved in thm. ?? that this is allowed),
then we obtain

�p∇Wσqφpx1, x2, x3q �

��pBσqφpx1, x2, x3q � 2P�x2,x3

»
M3

pσc � Eφqpx1, x
1
1qpσc � Eφ � σcqpx2, zqΓφpz, x

1
1, yq�

� pEφ � σcqpy, x3qdx
1
1dydz.

(3.127)

As we have already proved in thm. ?? (see eq. (??)), �pBσqφ vanishes. The second term in eq. (??) also
vanishes as can be checked by direct calculation. The essential point is proving that it holds

0 �

»
M4

Eb3
φ px1, x2, x3, x

1
1, x

1
2, x

1
3q

�
pσc �Gφqpx

1
2, zq

δpσc �Gφ � σcqpz, x
1
3q

δφpx11q
�

� pσc �Gφqpx
1
3, zq

δpσc �Gφ � σcqpz, x
1
2q

δφpx11q

�
dzdx11dx

1
2dx

1
3,

which is a consequence of the Leibniz rule of the variational derivative, eq. (??) and eq. (??). This
concludes the proof.

As the analogy with the �nite-dimensional setting suggests, the torsion of the W -covariant derivative
∇W is in general non-zero. Actually, we can compute the torsion explicitly:

T p∇qptqφ � P�p∇W tqφ � pdtqφ

� �
1

4

»
M4

pσc � Eφq
b2px1, x2, x

1
1, x

1
2qNφpz

1, x11, x
1
2qpσc � Eφqpz

1, zqtφpzqdzdx
1
1dx

1
2dx

1
3,

(3.128)

for any t P C8
W pS, T

�Sq.

We conclude this section by discussing the extension of the covariant derivative ∇W to C8
W pS,Wq, the

on-shell W -smooth sections on the algebra bundle W, and further to ΩW pS,Wq, the W-valued forms.
We can extend ∇W as a map C8

W pS,Wq Ñ Ω1
W pS,Wq by the following canonical procedure. Let

t P C8pS,Wq be a section homogeneous in both the degrees degs and deg~, with degs t � n. This means
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that t is a complex section in _nWT
�S (up to a factor ~deg~ t). The on-shell W -smooth form ∇W t is

de�ned by the sequence pp∇W tq1,0, p∇W tq1,1, . . . q, where p∇W tq1,` � 0 if ` � n and

S Q φ ÞÑ p∇W tq1,nφ py1, x1, . . . , xnq � P�p∇W tqpy1, x1, . . . , xnq.

By abuse of notation, we identify an equivalence classes in ^_1,n
W T�φ S (i.e. the elements in b

n�1
W T�φ S

which are symmetric in the last n entries) and in b
n�1
W T�φ S with their distributional representatives.

We implicitly assumed that ∇W~ � 0. We note that ∇W , as a map acting on sections in C8
W pS,Wq

homogeneous in degs and deg~, preserves the total degree Deg. Thus, it extends as a map C8
W pS,Wq Ñ

Ω1
W pS,Wq via the Deg-�ltration and the fact that every on-shell W -smooth section C8

W pS,Wq which is
homogeneous in Deg is a �nite collection of on-shell W -smooth sections homogeneous in degs and deg~.
In other words, the extension is performed purely algebraically in the very same way the Yano connection
in the �nite-dimensional case is extended to sections on the formal Wick algebra (see sec. ??).
The extension of the covariant derivative ∇W as an operator ΩW pS,Wq Ñ ΩW pS,Wq and its properties
are discussed in the following proposition:

Proposition 43. Let c be a cut-o� function as in eq. (??) and let φ ÞÑ ωφ be an admissible assignment.
For any tφ P ΩkW pS,Wq homogeneous in deg~ and in degs (with degs t � n), we de�ne

p�∇W tqφpy1, . . . , yk�1, x1, . . . , xn1q :�

� P�P��pBtqφpy1, . . . , yk�1, x1, . . . , xnq � P�P�
»
M3

pσc � Eφqpy1, y
1
1qpσc � Eφqpx1, x

1
1q�

� Γφpz, y
1
1, x

1
1qt̃φpy2, . . . , yk�1, z, x2, . . . , xnqdzdy

1
1dx

1
1,

(3.129)

where Γφ is the distribution given by eq. (??) corresponding to ωφ, where t̃φ P pσc �EφqbnE 1W pMnq is an

extension of t (up to ~deg~ t), and where �pBtqφ P pσc �Eφqbn�1E 1W pMn�1q is the extension (up to ~deg~ t)
of Bt de�ned by eq. (??) with respect to the �xed choice of c.
The distribution (??) de�nes a W-valued k� 1-form homogeneous in deg~ and in degs (with degs t � n)
by restriction to pTSqbn�k�1, i.e. denoted by

p∇W tqφpv1, . . . vk�1, u1, . . . , unq :� �p∇W tqφpv1, . . . vk�1, u1, . . . , unq @φ P S, vi, uj P TφS. (3.130)

The section ∇W t does not depend on the choice of the cut-o� c.
∇W is a bilinear map ∇W : ΩkW pS,Wq Ñ Ωk�1

W pS,Wq for any k which satis�es the Leibniz rule with
respect to the product 
 (??), i.e.

∇W pt 
 sq � p∇W tq 
 s� p�1qkt 
 p∇W sq, (3.131)

for any t P ΩkW pS,Wq and s P Ωk
1

W pS,Wq. Consequently ∇W extends to ΩW pS,Wq as a dega-graded
derivative which preserves the Deg-grading.

Proof. Arguing similarly as done for prop. ?? and exploiting the symmetry properties in eq. (??), we

can prove that p�∇W tqφ is a well-de�ned distribution which de�nes via eq. (??) a W-valued k � 1-form
homogeneous in deg~ and in degs independently of the choice of c.
By construction, ∇W increases by one the degree dega and preserves the total degree Deg. Exploiting
the Deg-�ltration of ΩkW pS,Wq and the fact that each W-valued k-form homogeneous in Deg is a �nite
collection of k-forms homogeneous in degs and in deg~, the connection ∇W extends canonically to a map
ΩkW pS,Wq Ñ Ωk�1

W pS,Wq. Then, ∇W extends further to ΩW pS,Wq Ñ ΩW pS,Wq in a standard way.
Finally, we show that ∇W satis�es the Leibniz rule with respect to the product 
 (??). As a consequence
of ∇Wσ � 0 and ∇Wµ � 0, it follows that for any cut-o� c as in eq. (??) we have

0 �

»
M2

pσc � Eφq
b3py, x11, x

1
2, y

1, x1, x2q�

�

�
δωφ
δφpy1q

px11, x
1
2q �

»
M

ωφpz, x
1
2qΓφpx

1
1, y

1, zq � ωφpx
1
1, zqΓφpx

1
2, y

1, zqdz



dy1dx11dx

1
2.

As can be checked by direct computation, this result implies that ∇W must satisfy eq. (??) and this
concludes the proof.
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3.5 The W -smooth Fedosov connection and Fedosov's theorems

for QFT

In this section, we conclude our in�nite-dimensional version of the Fedosov quantization scheme. In
the previous sections, sec. ??-??, we de�ned and discussed all the geometrical notions needed, with the
exception of the in�nite-dimensional analogues of the Fedosov operators δ, δ�1, see (??), (??), which are
provided now. Then, we prove that Fedosov's theorems (thm. ?? and thm. ??) extend to the in�nite-
dimensional framework we have set up. This result relies on two fundamental facts:

• `Analytic' properties: ∇W , δ, δ�1, and the product 
 preserve the on-shellW -smoothness, i.e. these
operators map on-shell W -smooth forms into on-shell W -smooth forms.

• `Algebraic' properties: The algebraic identities of lemma ??, which are used in the �nite-dimensional
proof, are preserved in the in�nite-dimensional context.

Therefore, in in�nite dimensions, the Fedosov's theorems can be proved repeating the same algebraic
argument used in the proofs in the �nite-dimensional case.

First we de�ne the Fedosov operators δ, δ�1 in our in�nite-dimensional setting. The Fedosov operator
δ : ΩkW pS,Wq Ñ Ωk�1

W pS,Wq (cf. (??)) is de�ned by its action on k-forms homogeneous in degs as

pδtqk�1,n
φ py1, . . . , yk�1;x1, . . . , xnq :� pn� 1qP�tk,n�1

φ py1, . . . , yk; yk�1, x1, . . . , xnq, (3.132)

for n � 1 � degs t, while pδtq
k�1,n � 0 otherwise. Here P� acts as an anti-symmetrization on the y-

variables. Note that, by abuse of notation, we identify an equivalence class in Crr~ss b ^_k,nT�φ S (i.e.

the elements in Crr~ss bb
k�n
W T�φ S which are anti-symmetric in the �rst k entries and symmetric in the

remaining n) with one of its Crr~ss-valued distributional representatives in E 1W pMk�nq. Because δt is a
�nite sum, it is clearly well-de�ned and it extends to ΩkW pS,Wq by using the Deg-�ltration and the fact
that each form homogeneous in the total degree Deg decomposes into a �nite sum of terms homogeneous
in degs. The map δ can be extended further to ΩW pS,Wq in a standard way.
Using the same procedure the operator δ�1 : ΩkW pS,Wq Ñ Ωk�1

W pS,Wq (cf. (??)) is de�ned by

pδ�1tqk�1,n
φ py1, . . . , yk�1;x1, . . . , xnq :�

k

n� k � 1
P�tk,n�1

φ py1, . . . , yk�1, x1;x2, . . . , xnq (3.133)

for n � 1 � degs t and k � 0, while pδ�1tqk�1,n � 0 otherwise. Here P� acts as a symmetrization on
the x-variables. Because δ�1t involves only �nitely-many terms, it is well-de�ned and it can be extended
canonically to ΩW pS,Wq, similarly as for δ.

Concerning the in�nite-dimensional version of lemma ??, which collects all the necessary algebraic
relations to prove Fedosov's theorems, we adopt again the pedestrian approach we have already used in
the previous sections. In �nite dimensions, the torsion tensor and the Riemann curvature tensor of the
Yano connection, more precisely the contractions of the aforementioned tensors with the symplectic form
(cf. (??)), appear in the relations between δ, δ�1 and ∇ we are interested in. We are going to show that
such tensors have appropriate in�nite-dimensional counterparts.

Lemma 44. For any φ P C8pMq and any cut-o� c as in eq. (??), we de�ne the distributions
r̂
Tφ andr̂

Rφ as

r̂
Tφpy1, y2;xq :� �

1

8
P�y1,y2

»
M4

2¹
i�1

pσc � Eφqpyi, y
1
iqpσc � Eφqpx, x

1q�

� σcpx
1, zqNφpz; y

1
1, y

1
2qdzdx

1dy11dy
1
2,

(3.134)
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and

r̂
Rφpy1, y2;x1, x2q :�

1

4
P�x1,x2

P�y1,y2

»
M5

2¹
i�1

pσc � Eφqpyi, y
1
iq

2¹
j�1

pσc � Eφqpxj , x
1
jq�

� σcpx
1
1, zq

"
δ

δφpy11q

»
M2

Γφpz, z
1, z2qpEφ � σcq

b2pz1, z2, y12, x
1
2qdz

1dz2 �

�

»
M

Γφpz, y
1
2, z

1qΓφpz
1; y11, x

1
2qdz

1

*
dy11dy

1
2dx

1
1dx

1
2dz,

(3.135)

where Nφ and Γφ are de�ned by eq. (??) and eq. (??), and where σc is given by eq. (??).
By restriction to φ P S, the distributions (??) and (??) de�ne two totally homogeneous on-shell W -
smooth W-valued 2-forms S Q φ ÞÑ T̂φ and S Q φ ÞÑ R̂φ. In particular, deg~ T̂ ,deg~ R̂ � 0, degs T̂ � 1,

and degs R̂ � 2. The two on-shell W -smooth W-valued 2-forms T̂ and R̂ do not depend on the choice of
the cut-o� c.
Moreover, the results ??-?? listed in lemma ?? for �nite dimensions translate to in�nite dimensions.

Proof. To prove that the distributions r̂
Tφ and r̂

Rφ de�ne, by restriction to φ P S, two on-shell W -

smooth W-valued 2-forms, we need to show that r̂
Tφ,

r̂
Rφ are well-de�ned distributions respectively in

pσc b Eφq
b3E 1W pM3q and pσc b Eφq

b4E 1W pM4q, anti-symmetric in the y-variables and symmetric in the

x-variables, and that r̂Tφ, r̂Rφ satisfy conditions ??, ?? in def. ??. The proof of these two facts is ultimately
a consequence of the machinery of composition of distributions (thm. ?? and lemma ??), the de�nition
of Γφ (eq. (??)) and Nφ (eq. (??)), together with the properties of the distributions Eφ, σc, Gφ and their
directional derivatives (eq. (??), eq. (??) and eq. (??)).
We �rst show that the on-shell W -smooth W-valued forms T̂ and R̂ do not depend on the choice of the
cut-o� c. Let assume that relations ?? and ?? hold in our in�nite-dimensional set-up, i.e.

δ∇W �∇W δ � i

~
ad
T̂ ,

�
∇W

�2
� �

i

~
ad
R̂.

It was proved in prop. ?? that ∇W does not depend on the choice of the cut-o�. The same holds for δ
by de�nition. Therefore, if c, c1 are two cut-o� functions as in eq. (??), the di�erence T̂ � T̂ 1 and R̂� R̂1

(where T̂ 1, R̂1 are the quantities corresponding to the cut-o� c1), are on-shell W -smooth W-valued forms
with degs � 0 such that

ad
pT̂ � T̂ 1q � 0 � ad
pR̂� R̂1q.

As proved in lemma [? , prop. 2.1], it follows from the de�nition of the product 
 on ΩpS,Wq that the
center of the algebra is ΩW pSq, i.e. an element t P ΩW pS,Wq satis�es ad
t � 0 if and only if t has
degs � 0. Thus, we conclude that both T̂ � T̂ 1 and R̂� R̂1 vanish as we needed to prove.

The last part of the lemma, namely the fact that results ??-?? listed in lemma ?? translate unaltered
in our in�nite-dimensional set-up, can be proved by tedious direct computations. Rather than displaying
the details of these computations which are qualitatively similar to those presented e.g. in the proof of
prop. ?? and prop. ??, we present to the reader the basic arguments on which the computations rely.
Formula ??, which means that the Fedosov operators are nilpotent, and eq. ??, i.e. the Hodge-type
decomposition δδ�1 � δ�1δ � τ � id, are simply a matter of interplay of symemtrization and anti-
symmetrization operators and, therefore, these properties hold also in the in�nite-dimensional case.
The proof of formula ??, i.e. δ � 2i

~ ad
pδ
�1σq, follows from the fact that pδ�1σqφ can be identi�ed with

1
2 pσc � Eφ � σcqpx, yq as a consequence of thm. ?? and from the fact that for any t P ΩkpS,Wq and any
φ P S, the degs-homogeneous part of ad
pδ

�1σqptqφ with degs � n is proportional to»
M2

pσc � Eφ � σcqpz, y1qEφpz, z
1qt̃k,n�1
φ py2, . . . , yk�1, z

1, x1, . . . , xnqdzdz
1.

Here t̃k,n is any W -smooth extension of the on-shell W -smooth section tk,n in the sequence de�ning
the form t � ptk,nqk,nPN (by abuse of notation, we identify equivalence classes with their distributional
representatives).
To prove formula ??, i.e. δ∇W �∇W δ � i

~ ad
pT̂ q, we notice �rst that using δ � 2i
~ ad
pδ

�1σq and the
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fact that ∇W is a dega-derivation in ΩW pS,Wq (as proved in prop. ??), it follows that δ∇W �∇W δ �
2i
~ ad
p∇W pδ�1σqq. Using the fact that Bσ � 0 (as shown in the proof of thm. ??), it follows that
2p∇W pδ�1σqq � T̂ which concludes the proof.
Checking eq. ??, i.e. p∇W q2 � � i

~ ad
pR̂q is more involved. It can be done by computing the two sides
of the equation acting on a degs-homogeneous k-form. Making use of the Leibniz rule and the �atness
of the exterior derivative d de�ned in prop. ??, we can verify that the two sides coincides.
Finally, the last three formulas ?? hold as a consequence of eq. ??, the �atness of d, the Leibniz rule,
the fact that ∇Wσ � 0 and Bσ � 0.

Summing up, we have constructed the following dictionary between the �nite-dimensional framework
of sec. ?? and our in�nite-dimensional framework.

�nite-dim in�nite-dim

S �nite-dim manifold S smooth sol. of the non-lin. eq. (??) on M

TxS tangent space at x P S, TφS smooth sol. of lin. eq. (??) at φ P S,

bnT�x S tensor power of the cotangent space T�x S, bnWT
�
φ S de�ned by (??),

Wx � Crr~ss b
À

n¥0_
nT�x S Wφ � Crr~ss b

À
n¥0_

n
WT

�
φ S

Smoothness, On-shell W -smoothness, def. ?? and def. ??,

d exterior derivative d de�ned in prop. ??

Formal Wick product 
 Product 
 de�ned in prop. ??

σ symplectic form On-shell W -smooth 2-form σ

de�ned in thm. ??

µ compatible metric On-shell W -smooth symm. section µ

de�ned in thm. ??

∇ Yano connection on W-valued forms ∇W de�ned in prop. ??

δ Fedosov operator, δ de�ned by (??),

δ�1 �inverse� Fedosov operator δ�1 de�ned by (??)

Table 3.1: The dictionary between the �nite-dimensional case and our in�nite-dimensional setting.

Continuing our pedestrian approach, we keep following the �nite-dimensional Fedosov method out-
lined in sec. ??, in particular we can make the same ansatz (??) for the Fedosov connection and we can
translate the results obtained in sec. ?? for �nite dimension in our in�nite-dimensional setting.

Theorem 45 (Fedosov's First and Second Theorems in 8-dim). The Fedosov's theorems (thm. ?? and
thm. ??) hold in our in�nite-dimensional setting. In particular, we can add to the dictionary the following
entry:

D Fedosov �at connection Ø DW :� ∇W � δ �
i

~
ad
prq, (3.136)

with r P Ω1
W pS,Wq denoting the unique solution for

∇W r � δr �
i

~
r 
 r � R̂� T̂ � Ω (3.137)

subject to the requirements r � r:, rp0q � rp1q � 0, pδ�1rqpkq � spkq, where rpkq and spkq denote the
components of the sections r and s homogeneous in Deg of degree k, where Ω P Ω2

W pS,Wq is closed
pdΩ � 0) and degs Ω � 0 (i.e. it belongs to Crr~ss b Ω2

W pSq), and where s is some arbitrary self-adjoint
element in C8

W pS,Wq with Degs ¥ 3.
The in�nite-dimensional translation of the second Fedosov theorem provides a deformation quantization
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pC8
W pSqrr~ss, �q, in the sense explained in sec. ??. More precisely, for a given F P C8

W pSqrr~ss, there
exists a unique section F̂ P C8

W pS,Wq which is �at with respect to the DW , i.e. DW F̂ � 0, and which

satis�es τF̂ � F . We de�ne by τ�1 the map F ÞÑ F̂ . Then, we obtain a star product � by de�ning
F �G � τpτ�1F 
 τ�1Gq for any F,G P C8

W pSqrr~ss.

Proof. Fedosov's construction is iterative and only uses the operators ∇W , δ, δ�1, 
 together with the
�auxiliary data� Ω, s and the W-valued forms T̂ , R̂. Since the former preserve on-shell W -smoothness
(see prop. ?? and prop. ??), and since the latter are on-shell W -smooth, we never leave the space
ΩW pS,Wq when we iteratively construct rpkq with k ¡ 2, and when we act with the projection τ onto
the component with dega,degs � 0 or with its iteratively de�ned inverse τ�1 (see e.g. the explicit
iterative constructions of r and τ�1 discussed in remark ??). Lemma ?? ensures that the fundamental
algebraic relations in �nite dimensions extend to our in�nite-dimensional framework: the core of the
proofs of the �nite-dimensional Fedosov theorems is the �xed-point theorem applied to the total degree
Deg, see [? ? ? ]. Since we have exactly the same algebraic structure, the �nite-dimensional proofs can
be repeated step by step in the in�nite-dimensional setting. Thus, the claims follow automatically.

As in �nite dimensions, the Fedosov connection DW (??) depends only on the following input data:
The in�nite-dimensional counterpart of the Yano-connection ∇W (not necessarily �at), the closed on-
shell W -smooth form Ω on S taking values in Crr~ss, and the datum s (subject only to Degs ¥ 3). As
done in �nite dimensions, Ω and s are collectively denoted by �auxiliary data�.
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Chapter 4

The relation between perturbative

quantum �eld theroy and Fedosov's

approach in in�nite dimensions

In this chapter, we discuss the relation between the perturbative approach to algebraic quantum �eld
theory we reviewed in chapter ?? and Fedosov's approach for on-shell W -smooth sections we developed
throughout chapter ??. In particular, we would like to understand eq. (??) in the light of the in�nite-
dimensional formalism of chapter ??.
At the end of sec. ??, we conjectured that the derivative ∇R � x�, δ{δϕy de�ned in terms of the retarded
connection (??) is precisely the Fedosov connection associated with the assignment φ ÞÑ ωRφ where ωRφ is
the (pure Hadamard) retarded 2-point function de�ned by eq. (??). We will prove this result rigorously
in sec. ??. In addition, we will prove that the Fedosov derivative DW constructed using the procedure
of sec. ?? for an admissible assignment of (pure Hadamard) 2-point functions φ ÞÑ ωφ (as in def. ??) is
�gauge equivalent� to ∇R � x�, δ{δϕy (in the sense described below in sec. ??).
This equivalence opens the door to understand the relation between the way of quantising a �eld theory as
described in chapter ??, and Fedosov's method: let S Q φ ÞÑ F̂φ be the quantum observable corresponding
to the local functional F given by the Haag's formula (??). As we have seen in thm. ??, this de�nes a
�at section for ∇R�x�, δ{δϕy. In sec. ??, we will show that S Q φ ÞÑ F̂φ is actually an on-shellW -smooth
section. Since DW and ∇R � x�, δ{δϕy are gauge equivalent, we can �nd a gauge transformation such
that the gauge-transformed section φ ÞÑ F̂ 1

φ is DW -�at. Finally, we prove that these sections F̂ 1 satis�es
Einstein causality.
To make our arguments independent of subtle �IR-issues�, we will assume throughout this chapter that
V pφq �

³
M

1
4!λpxqφpxq

4, where λ P C8
0 pMq is �xed.

4.1 Gauge equivalence of perturbative quantum �eld theory and

Fedosov's approach in in�nite dimensions

As mentioned in the introduction, we focus on the derivative ∇R�x�, δ
δϕy de�ned in terms of the retarded

connection (??). We will prove here that it is equal to the Fedosov connection DR,W associated to the
assignment φ ÞÑ ωRφ . The construction of the Fedosov connection outlined in sec. ?? requires that the
assignment φ ÞÑ ωRφ , where ω

R
φ is the (pure Hadamard) retarded 2-point function de�ned by eq. (??), is

admissible in the sense of def. ??. As we will show, this is indeed true.
After we have settled this point, we can apply the construction outlined throughout sec. ??-?? to φ ÞÑ ωRφ .
In particular, we can de�ne the product 
R (??), the W -connection ∇R,W (??), and the Fedosov deriva-
tive DR,W (??) with respect to the product 
R and characterized by ∇R,W together with the auxiliary
data ΩR � 0, sR � 0. Then, we will verify that the Fedosov derivative DR,W corresponding to the family
of retarded 2-point functions coincides, as derivative on pC8

W pS,Wq, 
Rq, with the derivative ∇R�x�, δ
δϕy.

First of all, we note that the Fedosov operator δ (given by eq. (??)) when acting on on-shellW -smooth
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sections on W equals by de�nition the operator x�, δ
δϕy (given by eq. (??)). In fact, we have

pδtqφpv;u1, . . . , unq � pn� 1q

»
Mn�1

tφpy, x1, . . . , xnqvpyqu1px1q � � �unpxnqdydx1 . . . dxn

�

�
xv,

δ

δϕ
ytφ



pu1, . . . , unq,

for any t P C8
W pS,Wq with degs � n� 1, for any φ P S, and for any v, u1, . . . , un P TφS.

Next, we prove that the assignment φ ÞÑ ωRφ , where ω
R
φ is the (pure Hadamard) retarded 2-point

function de�ned by eq. (??), is admissible in the sense of def. ??. For this purpose, it is su�cient to show
that for any φ P C8pMq the 2-point function ωRφ can be written in the form (??), because, as already
proved in lemma ??, any 2-point function in the form (??) gives an admissible assignment.

Lemma 46. For any φ P C8pMq, the 2-point function ωRφ of the retarded state de�ned via (??) can be
written in the form (??).

Proof. The argument we are going to present exploits that the coupling λ has compact support. We
�x two Cauchy surfaces Σ� such that Σ� does not intersect the causal future of suppλ and Σ�   Σ�,
where the ordering   is understood in terms of the causal structure. We choose an arbitrary smooth
cut-o� function χ which equals 1 in the future of Σ� and 0 in the past of Σ�. As in sec. ??, we de�ne
φ� :� χφ. Then, we choose four further Cauchy surfaces Σ�� such that Σ�� does not intersect the
(causal) future of suppλ, and Σ��   Σ��   Σ�   Σ�   Σ��   Σ�� as in lemma ??. We consider two
smooth cut-o� functions c� such that c� � 0 in the future of Σ�� and c� � 1 in the past of Σ��. We
show that for these choices of Σ�� and c�, we have

ωRφ px1, x2q �
�
Eφ � σc� � Eφ� � σc� � ω0 � σc� � Eφ� � σc� � Eφ

�
px1, x2q, (4.1)

where ω0 is the 2-point function of the ground state with respect to the Klein-Gordon operator P0 �
� �m2, i.e. the distribution (??), and where the distributions σc� are de�ned by (??) in terms of the
cut-o� functions c�. Clearly, proving this claim veri�es the statement of the lemma.
As already mentioned in lemma ??, the right-hand side of eq. (??) is a pure Hadamard 2-point function
with respect to the Klein-Gordon operator Pφ � ��m2� λ

2φ
2. By construction, the supports of both the

distributions σc� are contained in J�psuppλqzsuppλ� J�psuppλqzsuppλ. Since in J�psuppλqzsuppλ
we have V pφ�q � 0, we can replace in the right-hand side of eq. (??) Eφ� with E0. Using eq. (??)
together with the fact that ω0 is a bi-solution for P0, we can rewrite the right-hand side of eq. (??) as�

Eφ � σc� � Eφ� � σc� � ω0 � σc� � Eφ� � σc� � Eφ
�
px1, x2q �

�
Eφ � σc� � ω0 � σc� � Eφ

�
px1, x2q.

Let f, h be two test function whose support does not intersect the causal future of suppλ. As a conse-
quence of lemma ?? and the support properties of σc� , it follows�

Eφ � σc� � ω0 � σc� � Eφ
�
pf, hq � ω0pf, hq.

The retarded state is uniquely determined by the requirement ωRφ � ω0 on MzJ�psuppλq. Thus, we
proved that the 2-point functions pEφ �σc� �Eφ� �σc� �ω0 �σc� �Eφ� �σc� �Eφq and ω

R
φ coincide in an

open region which contains a Cauchy surface. Because these two distributions obey the same hyperbolic
equation, we conclude that they must coincide on the whole space-time M as we wanted to prove.

As corollary of the previous lemma, the whole construction exposed in sec. ??-?? applies to φ ÞÑ ωRφ .
In particular, we can de�ne the product 
R (??), the Yano W -connection ∇R,W (??), and the corre-
sponding Fedosov derivative DR,W (??) associated to ∇R,W and the auxiliary data ΩR � 0, sR � 0.
We would like to show that on C8

W pS,Wq the Fedosov connectionDR,W equals the connection∇R�δ. For
this purpose, we �rst show that ∇R is a W -covariant derivative, i.e. that it is a map C8pS,bnWT

�
φ Sq Ñ

C8pS,bn�1
W T�φ Sq satisfying the conditions of def. ??. Using the Deg-�ltration on C8

W pS,Wq and the
fact that any section in C8

W pS,Wq homogeneous in Deg is a �nite sum of sections homogeneous in degs
and in deg~, we can extend1 ∇R to a derivative C8

W pS,Wq Ñ Ω1
W pS,Wq.

1We impose Cr~s-linearity.
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The retarded connection ∇R was de�ned by (??) in sec. ??. For any on-shell W -smooth covariant
section t of rank n, for any φ P S, and for any v P TφS, we have

p∇Rv tqφ �
d

dε
αRφpεq,φtφpεq

����
ε�0

,

where R Q ε ÞÑ φpεq P S is a smooth map such that φp0q � φ and dφpεq{dε|ε�0 � v.
It is not immediately clear that the map ∇R, de�ned �berwise by

p∇Rtqφpv, u1, . . . , unq :� p∇Rv tqφpu1, . . . , unq,

for any φ P S, for any v, u1, . . . , un P TφS, is a map C8
W pS,b

n
WT

�Sq Ñ C8
W pS,b

n�1
W T�Sq satisfying the

conditions to be a W -derivative given in def. ??. In the following lemma, we rewrite ∇R in an equivalent
form, which resolves this issue.

Lemma 47. Let c be a cut-o� as in (??) such that c vanishes in the future of a Cauchy surface Σ� such
that Σ� X J�psuppλq � H and c is identically 1 in the past of an arbitrary Cauchy surface Σ� in the
past of Σ� (clearly Σ� is also in the (strict) past of suppλ). Then, we have

∇R � B,

where B is de�ned as in prop. ?? for this speci�c cut-o� c.

Proof. Let φ P S and v, u1, . . . , un P TφS. Fist of all, we notice that for any t P C8
W pS,b

n
WT

�Sq we can
equivalently write

p∇Rtqφpv, u1, . . . , unq �

�
d

dε
αRφ�εv,φrt̃φ�εvs

����
ε�0



pu1, . . . , unq, (4.2)

where t̃ P pσc �EφqbnE 1W pMnq is an extension of t satisfying the requirements of def. ??, and where rt̃φs
denotes the equivalence class in E 1W pMnq{PφE 1W pMnq corresponding to t̃φ. Here, we do not require that
the cut-o� c as in eq. ?? satis�es also the stricter conditions of the hypothesis of the lemma. We used
the fact that any smooth map R Q ε ÞÑ φpεq P S such that φp0q � φ and dφpεq{dε|ε�0 � v necessarily
satis�es φpεq � φ� εv � opε2q.
By the de�nition of the isomorphism αR (see (??), (??) and (??)), the right-hand side of eq. (??) depends
neither on the choice of the extension t̃ nor on the choice of the cut-o� appearing implicitly in t̃ and in
αR throughout AR (see (??)). So we are free to use a cut-o� c which satis�es the requirements in the
hypothesis of this lemma, since it satis�es all the conditions required by eq. (??) and eq. (??).
For any φ P S and any v, u1, . . . , un P C

8pMq, we obtain

p∇Rtqφpv, u1, . . . , unq �

»
Mn

d

dε
P
px1q
φ . . . P

pxnq
φ

$&%
�
c �

»
Σ�

Eφ
ÐÑ
BnEφ�εv

�bn

t̃φ�εv

,.- px1, . . . , xnq�

� u1px1q . . . unpxnqdx
1
1 . . . dx

1
n

�

»
Mn

d

dε
P
px1q
φ � � �P

pxnq
φ

 
pc � Eφ � σc � Eφ�εvq

bnt̃φ�εv
(
px1, . . . , xnqupx1q . . . upxnqdx1 . . . dxn (4.3)

�

»
Mn�1

P
px1q
φ � � �P

pxnq
φ

�
pc � Eφq

bn δt̃φ
δφpyq



px1, . . . , xnqvpyqu1px1q . . . unpxnqdydx1 . . . dxn (4.4)

�

»
Mn�1

δt̃φ
δφpyq

px1, . . . , xnqvpyqu1px1q . . . unpxnqdydx1 . . . dxn. (4.5)

To get to line (??), we used the following consequence of eq. (??):

pEφ � σc � Eφ1qpx, yq �

»
Σ�

Eφpx, zq
ÐÑ
BnEφ1pz, yqdΣpzq �

»
B

Eφpx, zqcpzqP
pzq
φ Eφ1pz, yqdz, (4.6)

where φ, φ1 are arbitrary smooth functions, and where B � J�pΣ�q X J�pΣ�q is the closed space-time
region bounded by Σ� and Σ�. The second term in eq. (??) vanishes because Pφ � Pφ1 on the support
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of c (in fact, λ � 0 on supp c) and Eφ1 is a bi-solution with respect to Pφ1 . Line (??) was obtained by
recalling the de�nition of Gateaux derivative and by noticing that pσc � Eφqt̃φ � t̃φ for any φ P C8pMq
because t̃φ P pσc � EφqbnE 1W pMnq by construction and pσc � Eφq2 � pσc � Eφq by (??). Then, to get to
line (??) we used the following equation»

M

Eφpx1, zqP
pzq
φ pcpzqEφpz, x2qq dz �

»
Σ�

Eφpx1, zq
ÐÑ
BnEφpz, x2qdΣpzq � Eφpx1, x2q,

which can easily be veri�ed using Stokes theorem and eq. (??).
Now, line (??) is precisely pBtqφpv, u1, . . . , unq as one can see by comparing directly with the de�nition
of Bt (see (??)). This concludes the proof.

Note that B depends on the choice of the cut-o�, and so the equivalence ∇R � B holds only for the
speci�c c we choose. Nevertheless, lemma ?? implies that p∇Rtqφ is in bnWT

�
φ pS

n�1q, because this is

true for pBtqφ. Furthermore, we conclude that S Q φ ÞÑ p∇Rtqφ is on-shellW -smooth because �pBtq de�ned
by (??) for a cut-o� c satisfying the hypothesis of lemma ?? provides an o�-shell extension for p∇Rtq,
and satis�es conditions ??, ?? in def. ?? (as already proved in prop. ??). It also follows that ∇R satis�es
the conditions to be a W -covariant derivative listed in def. ??.
The equivalence ∇R � B for a cut-o� c as in lemma ?? also implies the next result:

Theorem 48. The connection ∇R � δ coincides with DR,W as derivative on pC8
W pS,Wq, 
Rq.

Proof. By de�nition, the Fedosov derivative DR,W � ∇R,W �δ� i
~ ad
pr

Rq, where ∇R,W is the YanoW -
connection associated to φ ÞÑ ωRφ . Therefore, to prove the theorem, we need to check that ∇R coincides
with ∇R,W � i

~ ad
pr
Rq.

Remember that an on-shell W -smooth W-valued 1-form is a sequence (in n) of Crr~ss-valued on-shell
W -smooth covariant sections of rank n � 1 which are symmetric in the last n variables. The claim is
equivalent to the statement �

∇Rt
�
φ
�

�
∇R,W t� i

~
p ad
Rpr

Rqt



φ

, (4.7)

for any φ P S and any t P C8
W pS,Wq. We proceed by showing that eq. (??) holds order by order in degs

and deg~. For �xed degrees degs and
deg~ (set degs � n), both side of eq. (??) are equivalence classes in E 1W pMnq{PφE 1W pMnq (up to the
adequate power of ~).
We proved in prop. ?? and in thm. ?? that ∇R,W t and i

~ p ad
Rpr
Rqtq do not depend on the choice of the

cut-o� function c as in (??) which implicitly appear in the de�nitions of these two on-shell W -smooth
1-forms with values in W. The same holds for p∇Rtq as a consequence of lemma ??. Because of the
independence of the cut-o�, it is su�cient to show that eq. (??) holds when both side are computed in
terms of a speci�c cut-o� c, i.e.

�p∇Rtqφpy, x1, . . . , xnq � �p∇R,W tqφpy, x1, . . . , xnq �
i

~

�
ad
Rφ p

�rRφqt̃φ	 py, x1, . . . , xnq, (4.8)

where � means �equal up to a distribution in PφE 1W pMn�1q symmetric in the last n variables� for each

degree degs � n, and where �rRφ is aW -smooth o�-shell extension (in the sense of def. ??) of the on-shell
W -smoothW-valued 1-form rR. Note that the individual terms in (??) depend on a cut-o� c for general
φ P C8pMq.
To prove (??), we can thus use, in particular, the cut-o� function c we used before in lemma ??: we
demand that c P C8pMq vanishes in the future of a Cauchy surface Σ� such that Σ�XJ

�psuppλq � H
and c is identically 1 in the past of an arbitrary Cauchy surface Σ� in the past of Σ� (clearly Σ� is also
in the past of suppλ). We note that for a cut-o� c of this type, the distribution σc de�ned in eq. (??)
is supported in K �K, where K is a compact set contained in J�psuppλqzsuppλ. It follows from the
de�nition of the retarded 2-point function ωRφ that

σc � ω
R
φ � σc � σc � ω0 � σc. (4.9)

Noticing that the right-hand side of eq. (??) does not depend on φ, it follows trivially that all its Gateaux
derivatives vanish. This motivates our choice of c.
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We next present the extensions �p∇R,W tqφ and ad
Rφ p
�rRφqt̃φ in terms such cut-o� c. Looking at the

de�nition (??), we see that in the present situation it holds

�p∇R,W tqφ � �pBtqφ. (4.10)

This follows because �p∇R,W tqφ di�ers from �pBtqφ by a �nite sum of terms involving the distribution ΓRφ
given by eq. (??) in terms of the retarded 2-point function ωRφ . By de�nition, ΓRφ is a �nite sum of
distributions involving δpσc � ωRφ � σcq{δφ which vanishes for the speci�c choice of c used here. Thus,
eq. (??) holds for our c.
The fact that ΓRφ identically vanishes for this choice of c, has another consequence. The on-shell W -

smooth W-valued forms T̂R and R̂R corresponding to the retarded 2-point function ωRφ are de�ned via

the distributions (??) and, respectively, (??), specialized to ωRφ . Since we proved in lemma ?? that T̂R

and R̂R does not depend on the choice of the cut-o� appearing in the distributions (??) and (??), we
can choose the same cut-o� c we de�ned before. For both eq. (??) and eq. (??), the right-hand side
depends on ΓRφ . Thus, it follows straightforwardly that T̂R and R̂R vanish. By the Fedosov's theorem
(thm. ??), the on-shell W -smooth W-valued 1-form rR is the unique section in Ω1

W pS,Wq which solves
∇R,W rR�δrR� i

~r
R
RrR�R̂R�T̂R � 0 subjected to the requirements rR � prRq:, prRqp0q � 0 � prRqp1q

and δ�1rR � 0. Since T̂R � 0 and R̂R � 0, it follows that rR � 0 is a solution, and, therefore, the
unique solution. Thus, we have that the part of ad
Rφ p

�rRφqt̃φ with degs � n is simply the 0 distribution

(up to a distribution in PφE 1W pMn�1q symmetric in the last n variables).
On the other hand, we already proved in lemma ?? that ∇R � B for the speci�c cut-o� c. Therefore, we
have �∇Rtφ � �pBtqφ � �∇R,W tφ, (4.11)

where � means �equal up to a distribution in PφE 1W pMn�1q�, and where our speci�c cut-o� c is chosen.
This concludes the proof.

In �nite dimensions, we proved the existence of a gauge equivalence between two Fedosov connections
corresponding to two di�erent almost-Kähler structures (see thm. ??). We now investigate how this result
translates in our in�nite-dimensional framework. Let φ ÞÑ ωφ and φ ÞÑ ω1φ be two admissible assignments
in the sense of def. ?? of two pure Hadamard 2-point functions for any φ P C8pMq. We will prove that
the corresponding Fedosov derivatives DW and D1W are gauge equivalent. Combining this result with
thm. ??, it follows that the covariant derivative ∇R � δ is gauge equivalent to the Fedosov connection
corresponding to any admissible assignment φ ÞÑ ωφ of a pure Hadamard 2-point function ωφ for any
φ P C8pMq. We follow the pedestrian approach we already used throughout this paper: we provide
the appropriate in�nite-dimensional counterpart of any object appearing in the argument presented in
sec. ?? for �nite dimensions.
We proceed de�ning �rst the in�nite-dimensional analogue of the isomorphism α between formal Wick
algebras introduced in lemma ??. In the following, we denote by Wφ and W 1

φ respectively the formal
Wick algebra with respect to the product 
φ induced by ωφ and the formal Wick algebra with respect
to the product 
1φ induced by ω1φ. Consistently we denote C8

W pS,Wq, C8
W pS,W 1q, and more generally

ΩW pS,Wq, ΩW pS,Wq, the algebras of the on-shell W -smooth sections on the corresponding bundles.
Let t be a element in Wφ homogeneous in degs, with degs t � n, and in deg~, i.e. t P Cr~s b _nWT

�
φ S.

We de�ne αφptq PW 1
φ as the sequence pαφptq0, αφptq1, . . . q, where each αφptqj is given by

αφptq
n�2`px1, . . . , xn�2`q :�

� P�
~`n!

pn� 2`q!p2`q!

»
M2`

tpz1, . . . , z2`, x1, . . . , xn�2`q
¹̀
i�1

pωφ � ω1φqpz2i�1, z2iqdz1 . . . dz2i.
(4.12)

for 0 ¤ ` ¤ rn{2s, while αφptqj � 0 otherwise. Note that, by abuse of notation, we identify a class in Cr~sb
b

WT

�
φ S by one of its (Cr~s-valued) distributional representative in Cr~sbP�E 1W pM
q. The distribution

on the right-hand side of eq. (??) is well de�ned: by de�nition, t is a distribution in P�E 1W pMnq (up
to a factor ~deg~ t), and, by construction, the di�erence of the two Hadamard 2-point functions ωφ � ω1φ
is a smooth function. We can apply thm. ?? to conclude that the composition in the right-hand side
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is well-de�ned and de�nes a distribution in E 1W pMn�2`q (up to a factor ~degt �k). Furthermore, the
equivalence class in Cr~s b b

n�2`
W T�φ S corresponding to αptqn�2`

φ does not depend on the choice of the
distributional representative of t because both ωφ and ω1φ are bi-solution with respect to Pφ.
Using the �ltration ofWφ with respect to the total degree Deg and, then, exploiting the fact each element
of Wφ homogeneous in Deg is a �nite collection of elements homogeneous in degs and deg~, the map
αφ : t ÞÑ αφptq de�ned via (??) uniquely extends to a map Wφ Ñ W 1

φ. Furthermore, as in the �nite-
dimensional case, it can be easily checked that αφ is an isomorphism Wφ ÑW 1

φ for any φ P S.
Following the �nite-dimensional construction, we would next like to de�ne an isomorphism between
C8
W pS,Wq and C8

W pS,W 1q using the maps αφ de�ned on each �ber Wφ:

Proposition 49. Let t be a section in C8
W pS,Wq. For any φ P S, we de�ne

αptqφ :� αφptφq. (4.13)

The map α is an isomorphism C8
W pS,Wq Ñ C8

W pS,W 1q, i.e. αpt 
 sq � αptq 
1 αpsq for any t, s P
C8pS,Wq, and it preserves the conjugation operation :, i.e. αptq: � αpt:q.

Proof. The subtle point is proving that the proposed de�nition (??) preserves the on-shellW -smoothness.
Once this has been established, α is necessarily an isomorphism because αφ is an isomorphism which
preserve the :-operation in the �bers and both the algebraic structure and the :-operation for the on-shell
W -smooth sections on W and W 1 are de�ned �berwise.
To prove that α respects the on-shell W -smoothness, we need to provide for any on-shell W -smooth
section t an extension of αptqφ in the sense of def. ??, i.e. such that the conditions ??, ?? hold. Actually,
exploiting the �ltration of the algebra C8

W pS,Wq with respect to the total degree Deg and the fact that
each section homogeneous in Deg is a �nite collection of sections homogeneous in degs and deg~, it is
su�cient to prove the claim for an on-shell W -smooth section t homogeneous in degs and deg~. We
assume degs t � n.
Let c be an arbitrary but �xed cut-o� function as in eq. (??) and let C8pMq Q φ ÞÑ t̃φ P pσc �
Eφq

bnE 1W pMnq be an extension of t (up to a factor ~deg~ t) in the sense of def. ??. For any φ P C8pMq,

we de�ne �αptqjφ P pσc � EφqbjE 1W pM jq by

�αptqn�2`
φ px1, . . . , xn�2`q :�

�
n!

pn� 2`q!p2`q!

»
M2`

t̃φpz1, . . . , z2`, x1, . . . , xn�2`q
¹̀
i�1

pωφ � ω1φqpz2i�1, z2iqdz1 . . . dz2`.
(4.14)

for ` such that 0 ¤ ` ¤ rn{2s, while �αptqjφ � 0 otherwise. It is straightforward to verify that the sequence

of �αptqjφ (up to a suitable factor of ~) is indeed an extension of αptq.

To conclude the proof, we need to show that �αptqjφ satis�es the conditions ??, ?? of def. ??. We restrict to

j � n�2` because otherwise �αptqjφ � 0 and the conditions are trivially satis�ed. In order to verify ??, ??,

we �rst rewrite �αptqn�2`
φ in an equivalent form. Since both ωφ and ω1φ are bi-solutions with respect to

Pφ, it follows from eq. (??) that

ωφ � ω1φ � Eφ � σc� � pωφ � ω1φq � σc� � Eφ, (4.15)

where c� is a smooth cut-o� function as in eq. (??) such that c� � 1 in J�pΣ�q and c� � 0 in J�pΣ�q
for two Cauchy surfaces Σ� such that Σ�   Σ�   suppλ, where the ordering   is understood in terms of
the causal structure. We denoted by B the compact region comprised between the two Cauchy surfaces
Σ� and Σ�, i.e. B � J�pΣ�q X J�pΣ�q. Note that B X suppλ � H. It follows

�αptqn�2`
φ px1, . . . , xn�2`q �

�
n!

pn� 2`q!p2`q!

»
M4`

2¹̀
j�1

pσc� � Eφqpzj , z
1
jqt̃φpz

1
1, . . . , z

1
2`, x1, . . . , xn�2`q

¹̀
i�1

pωφ � ω1φqpz2i�1, z2iq�

�
¹
j

dzjdz
1
j .

(4.16)
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In other words, the distribution �αptqn�2`
φ is (up to a numerical factor) the composition of the compactly

supported distribution

Θφpz1, . . . , z2`, x1, . . . , xn�2`q :�

�

»
M2`

2¹̀
j�1

pσc� � Eφqpzj , z
1
jqt̃φpz

1
1, . . . , z

1
2`, x1, . . . , xn�2`qdz1 . . . dz2`

(4.17)

with the distributions pωφ � ω1φqpz2i�1, z2iq.
The distribution Θφ satis�es conditions ??, ?? of def. ??. This claim follows from lemma ?? and thm. ??
recalling the properties of Eφ (prop. ??), the wave-front set σc� (given by (??)) and the fact that
t̃φ satis�es conditions ??, ?? of def. ?? by hypothesis. Furthermore, the support of the distribution
Θφpz1, . . . , z2`, x1, . . . , xn�2`q and its Gateaux derivatives δνΘφpz1, . . . , z2`, x1, . . . , xn�2`q{δφ

ν contains
only elements with z1, . . . , z2` P B.
We proceed establishing the following estimates for the variational derivatives of the di�erence ωφ � ω1φ
exploiting eq. (??).

Lemma 50. For any ν P N, it holds

WF

�
δνpωφ � ω1φqpx1, x2q

δφpy1q . . . δφpyνq



x1,x2

� H. (4.18)

Furthermore, for x1, x2 P B it holds

px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P WF
�
δνpωφ�ω

1
φqpx1,x2q

δφpy1q...δφpyνq

	
py1, . . . , yν ; p1, . . . , pνq P C

�
ν

+
ñ k1, k2 P V

	, (4.19)

where C�
ν are the set de�ned by (??).

Proof. By hypothesis, φ ÞÑ ωφ and φ ÞÑ ω1φ are two admissible assignments in the sense of def. ??.
Therefore, they satisfy the estimate (??) of condition ??, i.e.

WF

�
δνωφ
δφν



,WF

�
δνω1φ
δφν



� Z2�ν .

Since δνpωφ � ω1φq{δφ
ν is just the di�erence of δνωφ{δφν and δνω1φ{δφ

ν , the following estimate follows
straightforwardly

WF

�
δνpωφ � ω1φq

δφν



� Z2�ν .

By construction, pωφ � ω1φqpx1, x2q is symmetric, and, therefore, δνpωφ � ω1φqpx1, x2q{δφ
ν is symmetric

in x1, x2. Thus, we have

WF

�
δνpωφ � ω1φq

δφν



� P�Z2�ν , (4.20)

where

P�Z2�ν :� tpx1, x2, y1, . . . , yn; k1, k2, p1, . . . , pνq P Z2�ν :

px2, x1, y1, . . . , yn; k2, k1, p1, . . . , pνq P Z2�νu

� 9T�M2�νzpC2;�
2�ν Y C2;�

2�ν Y C1;�
2�ν Y C1;�

2�νq.

(4.21)

To get the last line, we used the de�nition of Z2�ν (??) in terms of the sets Ci;�2�ν (??). It follows that if

px1, x2, y1, . . . , yn; k1, k2, 0, . . . , 0q is in WFpδνpω��ω
1
�q{δφ

νq, then it must have k1, k2 P V
�
XV

�
� t0u.

However, by de�nition the wave-front set does not contain elements with vanishing covectors, and,
therefore, condition (??) indeed holds.
Next, we notice that the estimate (??) is not enough to prove condition (??). One can easily see from (??)
that if px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq belongs to WFpδνpω��ω

1
�q{δφ

νq with py1, . . . , yν ; p1, . . . , pνq P

C�
ν and x1, x2 P B, then it follows from (??) that pk1, k2q R V

�
� V

�
.
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To strengthen this bound, we use eq. (??). We can compute the ν-th Gateaux derivative of ωφ � ω1φ by
distributing the variational derivatives on the factors appearing in the right-hand side of eq. (??). By
doing so, we have that δνpω� � ω1�q{δφ

ν is a �nite sum of terms in the form�
δ|N1|Eφ

δφ|N1|ptyrurPN1
q
� σc� �

δ|N2|pωφ � ω1φq

δφ|N2|ptyrurPN2
q
� σc� �

δ|N3|Eφ
δφ|N4|ptyrurPN3

q

�
px1, x2q, (4.22)

where N1, N2, N3 form a partition of t1, . . . , νu.
Because σc� is compactly supported, and because of the estimates of the wave-front set of σc� (given
by (??)), δ|Ni|Eφ{δφ|Ni| (given by (??)) and δ|N2|pωφ � ω1φq{δφ

|N2| (given by (??)), it follows from
thm. (??) that each term (??) is well-de�ned.
Next, we show that if px1, x2, pyrPNiq, . . . , yν ; k1, k2, pprPNiqq belongs to WFpδ|Ni|Eφ{δφ

|Ni|q with x1, x2 P
B, then k1, k2 must be both null covectors. For |Ni| � 0, this claim is a consequence of the fact
that the wave-front set of the causal propagator (??) contains only null covectors. For |Ni| ¡ 0,
we have yr P suppλ for any r P Ni as follows from prop. ??. Now, the estimate (??) implies that
px1, x2, pyrPNiq, . . . , yν ; k1, k2, pprPNiqq is contained in the set X2�|Ni|, and so, by the de�nition of X2�|Ni|

(see (??)), there must be py1, p1q, py2, p2q P T�M for certain points y1, y2 among tyrPNiu such that

px1, k1q � py1,�p1q, x1 � y1, k1 � �p1, k1, p
1 � 0

py2, p2q � px2, k2q, y2 � x2, p
2 � �k2, p2, k2 � 0

Since, by hypothesis, x1, x2 belongs to B and B is disjoint to suppλ, it follows that k1, k2 must be null
covectors as we wanted to prove.
This result implies that any element px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq with x1, x2 P B which is in
the wave-front set of each distribution (??) must be such that k1, k2 are null covectors, as can be
seen by applying the wave-front set calculus thm. ??. Thus, a similar result holds for any element
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq of the wave-front set of δνpω� � ω1�q{δφ

ν with x1, x2 P B.
Finally, combining this with the constraints imposed by estimate (??) we derived before, namely that each
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq in WFpδνpω��ω

1
�q{δφ

νq with x1, x2 P B and py1, . . . , yν ; p1, . . . , pνq P

C�
ν must have pk1, k2q R V

�
�V

�
. Thus, it follows that condition (??) holds, as we wanted to show.

To prove that �αptqn�2`
φ satis�es conditions ??, ?? of def. ??, we compute its ν-th Gateaux derivative

distributing the variational derivatives onto each factors of the right-hand side of eq. (??). If follows that

δν �αptqn�2`
φ {δφν is a �nite sum of terms in the form»

K2`

δ|Nt|Θφpz1, . . . , z2`, x1, . . . , xn�2`q

δφ|Nt|ptyrPNtuq

δ|Ni|pω� � ω1�qpz2i�1, z2iq

δφ|Ni|ptyνiPNiuq
dz1 . . . dz2`, (4.23)

where Nt, N1, . . . , N` is a partition of t1, . . . , νu.
First of all, we notice that each of the terms (??) is a well-de�ned distribution. In fact, both the
multiplication condition (??) and the integration condition (??) of thm. ?? are satis�ed: the �rst holds
because of (??) we proved in lemma ??, while the second holds because δ|Nt|Θφ{δφ

|Nt| is a compactly
supported distribution. Thus, by applying thm. ??, it follows that the distribution (??) is well-de�ned.

To show that �αptqn�2`
φ satis�es condition ??, it is su�cient to prove that the wave-front set of each

term (??) is contained in Wn�2`�ν . In other words, it is su�cient to show that there is no element
px1, . . . , xn�2`, y1, . . . , yν ; k1, . . . , kn�2`, p1, . . . , pνq of the wave-front set of (??) such that the all covectors

k1, . . . , kn�2`, p1, . . . , pν belong to V
�

except at most one which is space-like. By the wave front set
calculus (thm. ??), if px1, . . . , xn�2`, y1, . . . , yν ; k1, . . . , kn�2`, p1, . . . , pνq is an element of the wave-front
set of (??), then there must exist

pz1, . . . , z2`; q1, . . . , q2`q P T
�M2`,

such that z1, . . . , z2` are in B and it holds$''&''%
pz1, . . . , z2`, x1, . . . , xn�2`, pyrPNtq;�q1, . . . ,�q2`, k1, . . . , kn�2`, pprPNtqq PWn�|Nt|

or q1, . . . , q2`, k1, . . . , kn�2`, prPNt � 0

pz2i�1, z2i, pyrPNiq; q2i�1, q2i, pprPNiqq P WFpδ|Ni|pω� � ω1�q{δφ
|Ni|q for i � 1, . . . , `

or q2i�1, q2i, prPNi � 0

(4.24)
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We used the fact that Θφ satis�es ??, and so WFpδ|Nt|Θφ{δφ
|Nt|q is contained in Wn�|Nt|.

Now, we prove the claim by reductio ad absurdum: if all covectors k1, . . . , kn�2`, p1, . . . , pν belong to V
�

except at most one which is space-like, then lemma ?? implies that the covectors q1, . . . , q2` are in V 	.
However, these con�gurations are incompatible with the conditions (??), and so we get a contradiction

as we wanted to show. This concludes the proof that �αptqn�2`
φ satis�es condition ??.

To prove ??, let R Q ε ÞÑ φpεq P C8pMq be smooth. The distribution δν �αptqn�2`
φpεq {δφ

ν can be expressed
as a �nite sum of terms in the form (??) with φ replaced by φpεq everywhere. Arguing similarly as
done for the proof of ??, but now using the fact that Θφ satis�es ??, it follows that the wave-front
set of each term (??) in φpεq, viewed as distributions in the variables ε, x1, . . . , xn�2`, y1, . . . , yν P R �
Mn�2`�ν , is contained in R � t0u �Wn�2`�ν which is precisely the requirement of ??. Consequently,

also δν �αptqn�2`
φpεq {δφ

ν satis�es the condition ??. This concludes the proof.

To proceed, we need to the extend the isomorphism α to forms with values in W. In �nite dimen-
sions such extension is straightforward. In the framework of on-shell W -smooth sections, the desired
extension is provided by the following canonical construction. We consider �rst t P ΩkW pS,Wq such that
t is a section homogeneous in degs and deg~ with degs t � n, we de�ne αptq P ΩkW pS,Wq as the se-
quence pαptqk,0, αptqk,1, . . . q where αptqk,jφ P Cr~s b^_k�jW T�φ S is de�ned by the following distributional
representative:

αptqk,n�2`
φ py1, . . . yk;x1, . . . , xn�2`q :�

�
~`n!

pn� 2`q!p2`q!
P�P�

»
M2`

tφpy1, . . . , yk, z1, . . . , z2`, x1, . . . , xn�2`q
k¹
i�1

pωφ � ω1φqpz2i�1, z2iqdz1 . . . dz2`,

(4.25)

for 0 ¤ ` ¤ rn{2s, and αptqk,jφ � 0 otherwise. Arguing similarly as before for (??), it can be seen that
the right-hand side of (??) is well-de�ned.
Using the �ltrations with respect to dega and Deg of the algebra ΩW pS,Wq, it follows that (??) gives
a map acting on the whole algebra. By construction, it also preserves the total degree Deg. Finally,
using a similar argument as the one presented for the proof of prop. ??, we can verify that α de�nes an
isomorphism ΩW pS,Wq Ñ ΩW pS,W 1q. In other words, we proved the following proposition, which is
the in�nite-dimensional analogue of lemma ??:

Proposition 51. The map α de�ned by (??) is an isomorphism ΩW pS,Wq Ñ ΩW pS,W 1q, i.e. αpt
sq �
αptq 
1 αpsq for any t, s P ΩpS,Wq, and it preserves the conjugation operation :, i.e. αptq: � αpt:q.

Continuing our pedestrian approach, we next provide the in�nite-dimensional analogue of lemma ??.

Proposition 52. Dα,W :� αD1Wα�1 is a Fedosov W -connection. More precisely, Dα,W coincides
with the derivative obtained from Fedosov's �rst theorem (thm. ??) with respect to the product 
 and is
uniquely characterized by the following input data: the connection ∇W and the auxiliary data Ωα � 0,
sα where sα is a certain on-shell W -smooth section on W with Degsα ¥ 3.

Proof. Repeating the argument given in �nite dimensions, it holds that Dα,W is a �at dega-graded
derivation of ΩW pS,Wq. In fact, we notice that D1W preserves the on-shell W -smoothness because D1W ,
α and α�1 do so. Moreover, the algebraic relations needed in the �nite-dimensional proof persist in
in�nite dimensions. All that is required is that α is an isomorphism ΩW pS,Wq Ñ ΩW pS,W 1q and D1W

is a �at dega-graded derivation of ΩW pS,W 1q.
What remains to be done is to establish the in�nite-dimensional analogue of the elements rα and sα

de�ned by (??) and by (??). Looking at the recursive formula (??), we see that rα is determined to all
orders once is given C as in (??). To make this iterative machine work in in�nite dimensions, we must
show that the in�nite-dimensional analogue of C is on-shell W -smooth.
The W-valued 1-form C is actually homogeneous in degs and deg~ with degs C � 2 and
deg~C � 0. We provide a suitable extension for C and check that this satis�es ??, ?? of def. ??.
For any φ P C8pMq and for an arbitrary cut-o� c as in eq.(??), we de�ne the extension by:

rCφpy, x1, x2q :�
1

2
P�

»
M4

pσc � Eφqpy, y
1qpσc � Eφqpx1, x

1
1qpσc � Eφqpx2, x

1
2q�

� σpx11, zqpΓφ � Γ1φqpz, y
1, x12qdzdy

1dx11dx
1
2,

(4.26)
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where Γφ, Γ1φ are de�ned by (??) for ωφ, ω1φ respectively.
It is a consequence of lemma ??, lemma ??, the de�nition of the distributions Γφ,Γ

1
φ, and the esti-

mates (??), (??), (??) and (??) that rCφ is a well-de�ned distribution in pσc �Eφqb3 �E 1W pM3q symmetric
in the last two variables which satis�es the requirements ??, ?? of def. ??. In other words, we have that
C is a well-de�ned on-shell W -smooth W-valued 1-form.
Furthermore, the following the identities hold

α∇1Wα�1 � ∇W �
i

~
ad
pCq, δC � T̂ � T̂ 1, ∇WC �

i

~
C 
 C � αR̂1 � R̂. (4.27)

These are obtained by the same algebraic manipulations as in the �nite-dimensional case (cf. (??), (??)).
As in the �nite-dimensional case, it then follows

Dα,W � �δ � α∇1Wα�1 �
i

~
ad
pαr

1q � �δ �∇W �
i

~
ad
pr

αq,

where rα � αr1�C is a section in Ω1
W pS,Wq with total degree Deg ¥ 2 (cf. (??)). Since the on-shell W -

smoothness is preserved, and since the algebraic relations needed in the �nite-dimensional proof persist
in in�nite dimensions, we can repeat the same argument already given in sec. ?? (cf. (??)) to show

δrα � ∇W rα � R̂� T̂ �
i

~
rα 
 rα, δ�1rα � sα :� δ�1αr1 � δ�1C. (4.28)

Fedosov's �rst theorem (thm. ??) ensures that rα is the unique solution of the system (??). Thus, DαW

coincides with the Fedosov derivative with respect to the product 
, uniquely characterized by the input
data ∇W , Ωα � 0, sα � δ�1αr1 � δ�1C.

Finally, we can prove the existence of the gauge equivalence between the two Fedosov W -connections
DW and D1W , i.e. the in�nite-dimensional analogue of theorem ??.

Theorem 53. Let φ ÞÑ ωφ and φ ÞÑ ω1φ be two admissible assignment in the sense of def. ??. There

exists an on-shell W -smooth section H P C8
W pS,Wq such that DegH ¥ 3, τH � 0, H: � H and

DW � exp

�
�
i

~
ad
pHq



αD1Wα�1 exp

�
i

~
ad
pHq



. (4.29)

In particular, a solution H for eq. (??) is uniquely determined by a closed on-shell W -smooth 1-form
θ P ΩW pSqrr~ss.

Proof. The iterative construction ofH for θ � 0 given by (??), (??) is valid also in the in�nite-dimensional
case, with the obvious substitutions, because the input is on-shell W -smooth and all iteration steps only
involve the operations 
, ∇W and δ which preserves this properties.

We conclude this section deriving two straightforward corollaries of thm. ?? and thm. ??. Let φ ÞÑ ωRφ
the admissible assignment given by the retarded 2-point function for any φ (we proved in lemma ?? that
this assignment is indeed admissible in the sense of def. ??), and let φ ÞÑ ω1φ be any other admissible
assignment. We have shown in thm. ?? that DW,R � ∇R � δ. Now, if F is a local functional and if
S Q φ ÞÑ F̂φ is the corresponding quantum observable (viewed as a section in the bundle W) de�ned by
the Haag's series (??), then we have seen in thm. ?? that DW,RF̂ � 0. Combining with eq. (??), we get
the following result:

Proposition 54. Let F be a local functional and let S Q φ ÞÑ F̂φ PWφ be the on-shell W -smooth section
given by the Haag's formula (??), where the formal Wick algebra Wφ is de�ned for any φ P S in terms
of the retarded 2-point function ωRφ . Let φ ÞÑ ω1φ be any admissible assignment in the sense of def. ?? of

a pure Hadamard 2-point function ω1φ for any φ P C8pMq with corresponding Fedosov connection DW .

Let F̂ 1
φ be the element in W 1

φ given by

F̂ 1
φ :� α�1

φ exp

�
i

~
ad
RpHq



φ

F̂φ.

Then, the map F̂ 1 : S Q φ ÞÑ F̂ 1
φ PW 1

φ is an on-shell W -smooth section and

D1W F̂ 1 � 0.
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What we still have to prove is that S Q φ ÞÑ F̂φ PWφ is an on-shell W -smooth section. Once we have
established that, the map F̂ 1 : S Q φ ÞÑ F̂ 1

φ PW 1
φ must be on-shell W -smooth because α�1 (as proved in

prop. ??), the product 
R, and expp i~ ad
RpHqq (as a consequence of the on-shell W -smoothness of H
given by thm. ??) preserve on-shell W -smoothness.
Proving that S Q φ ÞÑ F̂φ PWφ is on-shell W -smooth is rather lengthy. Therefore, we devote the entire
following section sec. ?? to it. However, before we do that, we point out the following corollary of
prop. ??, which shows how space-times locality (Einstein causality) can be implemented:

Proposition 55. Let F1, F2 be two local functionals and let φ ÞÑ ω1φ an admissible assignment in the
sense of def. ??). Let C8

W pS,W 1q be the algebra of on-shell W -smooth sections in the local Wick algebra
corresponding to the product 
1 de�ned as in prop. ?? in terms of the assignment φ ÞÑ ω1φ. We have that

F̂ 1
1 


1 F̂ 1
2 � F̂ 1

2 

1 F̂ 1

1 if the support of F1 and F2 are space-like separated, i.e. suppF1 X JpsuppF2q � H.

Proof. Let φ ÞÑ ωRφ be the admissible assignment corresponding to the retarded 2-point function and
let C8

W pS,WRq be the algebra of on-shell W -smooth sections corresponding to the product 
R which
is de�ned as in prop. ?? in terms of φ ÞÑ ωRφ . By construction, α is an isomorphism C8

W pS,WRq Ñ

C8
W pS,W 1q, while expp i~ ad
RpHqq is an endomorphism of C8

W pS,WRq. It follows

F̂ 1
1 


1 F̂ 1
2 �

�
α�1
φ exp

�
i

~
ad
RpHq



F̂1




1
�
α�1
φ exp

�
i

~
ad
RpHq



F̂2



� α�1

φ exp

�
i

~
ad
RpHq


�
F̂1 


R F̂2

	
.

(4.30)

The sections F̂1, F̂2 are given by the Haag's formula (??), and, therefore, can be expressed as formal series
of retarded products. Because of the GLZ formula ?? (see sec. ??), it follows that F̂1


RF̂2 � F̂2

RF̂1 if the

support of F1 and F2 are space-like separated, see e.g. [? ]. The claim then follows straightforwardly.

4.2 On-shell W -smoothness of S Q φ ÞÑ F̂φ PWφ

In chapter ??, when we discussed the perturbative approach to the quantization of interacting massive
scalar theory around a classical background (sec. ??) we provided an axiomatic characterization of
prescriptions for retarded products tRn,φ : FlocbFbnloc ÑWφunPN for each φ P S. The Haag formula (??)
for F̂φ expresses this quantity in terms of retarded products for each φ P S. Thus, if we can show that
each retarded product S Q φ ÞÑ Rn,φ is on-shell W -smooth, S Q φ ÞÑ F̂ PWφ is also on-shell W -smooth.
We will indeed show:

Theorem 56. For any local fuctionals F,H1, . . . ,Hn, there exists a prescription for retarded products
such that the assignment S Q φ ÞÑ Rn,φpF pφ� ϕq,bnj�1Hjpφ� ϕqq PWφ is on-shell W -smooth.

On-shell W -smoothness requires that there are extensions of these maps to C8pMq, which we have
a su�cient microlocal control on their variational derivatives, more precisely the conditions ??, ?? in
def. ??. It is far from obvious that such requirements are satis�ed a priori.

We begin the proof of thm. ?? by noticing that it is su�cient to prove that there exists a prescription
for time-ordered products tTn,φ : Fbnloc ÑWφunPN satisfying the axioms (T1)-(T10), and (T11c) de�ned
in [? ] ( and the axiom (T11a) necessary in the proof of the consistency of (T11c) with the other
axioms, see appendix ??), and such that the assignment S Q φ ÞÑ Tn,φrb

n
i�1Fipφ � ϕqs P Wφ is an

on-shell W -smooth section for any local functionals F1, . . . , Fn. Indeed, once such prescription for the
time-ordered products is provided, it is well-known that a prescription for retarded products satisfying
the axioms ??-?? and ?? (see sec. ??) can be de�ned by

Rn,φ

�
F,

nâ
k�1

Hk

�
:�

¸
I�t1,...,nu

p�1q|I|T |I|,φ

�â
iPI

Hi

�

φ T|Ic|�1,φ

�
F b

â
jPIc

Hj

�

�
¸
I

¸
I1\���\I`�I

p�1q`T|I1|,φ

�â
i1PI1

Hi1

�

φ � � � 
φ T|I`|,φ

�â
i`PI`

Hi`

�

φ T|Ic|�1,φ

�
F b

â
jPIc

Hj

�
,

(4.31)
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where T denotes the anti-time-ordered product, see e.g. [? , (T7)]. The on-shell W -smoothness is clearly
preserved because the product 
φ preserves this notion of smoothness as we have already proved in
prop. ??.

The strategy of our proof consists in the followings steps:

1. In sec. ??, we present some preliminary technical results we will need later on in the proof. We
�rst consider the case of a generic space-time pM, gq (not necessarily ultra-static nor with compact
Cauchy surfaces), and let m,φ, λ P C8pMq. In this general setting, we investigate a particular
distribution, the Hadamard parametrix Hφ de�ned by (??) with respect to the linear operator
Pφ � � � m2 � λ

2φ
2. More precisely, we are interested in the variational derivatives of Hφ,

especially their microlocal behaviour and their scaling properties under a rescaling of g,m, φ, λ.
This will be done in lemma ??.
Then, we restrict to the more speci�c situation of an ultra-static space-time pM, gq with compact
Cauchy surfaces, a constantm and a compactly supported λ, i.e. the setting we consider throughout
sec. ??-?? and in sec. ??. In this situation, we discuss the properties of the di�erence dφ :� ωRφ �Hφ

between the retarded 2-point function ωRφ given by eq. (??) and the Hadamard parametrix Hφ. In
particular, lemma ?? and lemma ?? provide a microlocal control on the variational derivatives of
dφ su�cient for our purposes in the following steps.

2. With these technical results at our disposal, we begin the proof of the existence of a prescription
for time-ordered products which has the desired on-shell W -smoothness and satis�es the axioms
(T1)-(T10) and (T11c). Actually, we consider �rst local functionals which do not involve covariant
derivatives and we consequently demand that only axioms (T1)-(T9) are ful�lled. The �rst step,
presented in sec. ??, is to provide a prescription for time-ordered products of one functional F .
Following [? ? ], this is done considering the Wick powers de�ned in terms of the Hadamard
parametrix Hφ. We then use lemma ?? to prove that S Q φ ÞÑ T1,φrF pφ � ϕqs P Wφ is on-shell
W -smooth for any local functional F which does not contain covariant derivatives.

3. In sec. ??, we discuss time-ordered products of more factors F1, . . . , Fn (not involving covariant
derivatives). We formulate su�cient conditions, collected in lemma ??, to ensure the on-shell
W -smoothness of any map S Q φ ÞÑ Tn,φrb

n
i�1Fipφ � ϕqs P Wφ. We formulate these su�cient

conditions in terms of the Wick expansion with respect to the retarded 2-point function ωRφ .

4. In sec. ??, we review the procedure outlined in [? ] to de�ne the time-ordered products inductively
starting from the Wick powers. The construction, which needs to be given for generic space-time
pM, gq and arbitrary smooth functions m,φ, λ, relies on three fundamental concepts: the local
Wick expansion (see eq. (??)), i.e. the Wick expansion in terms of the normal ordering with
respect to the Hadamard parametrix Hφ, the scaling expansion (see eq. (??)) for the distributional
coe�cients of the Wick expansion outside the total-diagonal, and the control of the extensions of
such distributions provided by their scaling properties.

5. In sec. ??, we prove additional properties, listed in prop. ??, for the variational derivative of the
distributional coe�cients appearing in the local Wick expansion. The proof of these conditions
relies on the fundamental properties of the Hadamard parametrix Hφ we prove in lemma ??.

6. The purpose of sec. ?? is to prove that any prescription of time-ordered products constructed
following the procedure of [? ] satisfying the su�cient conditions of lemma ??. This is done in
prop. ??.

7. The last part, sec. ??, is devoted to two issues. First, we discuss the extension to local functionals
which involve covariant derivatives and we prove the existence of an on-shell W -smooth time-
ordered products prescription satisfying the Leibniz rule axiom (T10) (see [? ]) in addition to
axiom (T1)-(T9). Then, we prove the existence of a W -smooth prescription for time-ordered
products that satis�es also the principle of perturbative agreement, i.e. we require axiom (T11c)
(and axiom (T11a)) in addition to axiom (T1)-(T10).
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4.2.1 Properties of the Hadamard parametrix and the di�erence of the Hadamard
parametrix and the retarded 2-point function

Let pM, gq be a generic space-time and let m,φ, λ be generic functions in C8pMq. We consider the
Klein-Gordon operator Pφ � � �m2 � 1

2λφ
2. Let U � M be a convex normal neighbourhood, i.e. for

any two points in U there is a unique geodesic connecting the two points. The Hadamard parametrix is
a distribution on U � U which is a bi-solution for Pφ up to a smooth function and which is in the form

Hφpx1, x2q :�
u0px1, x2q

σεpx1, x2q
� vpx1, x2q lnpσεpx1, x2qq, (4.32)

where u0 and v smooth functions de�ned in terms of the so called Hadamard coe�cients described in
a moment, where σεpx1, x2q :� σpx1, x2q � iεpT px1q � T px2qq, where T is a global time coordinate, and
where σpx1, x2q denotes the (signed) square of the geodesic distance from x1 to x2, i.e.

σpx1, x2q � �

�» 1

0

����gµνpγx1,x2ptqq
dγµx1,x2

ptq

dt

dγνx1,x2
ptq

dt

����1{2 dt
�2

. (4.33)

The curve γx1,x2
: r0, 1s Ñ M is a parametrization of the unique geodesic connecting x1, x2 such that

γx1,x2
p0q � x1 and γx1,x2

p1q � x2. The sign in the de�nition of σpx1, x2q is ��� or ��� if γx1,x2
is

time-like or space-like, respectively. The de�nition eq.(??) is given by an �ε-prescription�: for any f test
function in U � U , Hφpfq is de�ned by �rst computing it for ε ¡ 0, and then taking the limit εÑ 0.
The �rst Hadamard coe�cient u0 is the �Van Vleck-Morette determinant�

u0px1, x2q :�

�� det
�
B
px1q
µ B

px2q
ν σpx1, x2q

	
a

detpgµνpxqq detpgµνpyqq

�

1
2

, (4.34)

which is a strictly positive smooth function and depends on the metric g in a local and covariant way.
For k ¡ 0 the coe�cient uφ,k � ukrg,m, φ, λs (the dependence on the metric g, the mass m, the
background φ and the coupling λ is emphasized) are given by the following recursive formula:

uφ,k�1px1, x2q � �

»
M

» 1

0

tk
u0px1, x2q

u0pz, x2q
δpz, γx1,x2

ptqqP
pzq
φ uφ,kpz, x2qdzdt. (4.35)

Since u0rgs depends locally and covariantly on the metric g, each uφ,k depends in a local and covariant
way on g,m, φ, λ.
Concerning the scaling behaviour, note that u0rΛ

�2gs � u0rgs and ukrΛ�2g,Λm,Λφ, λs � Λ2kukrg,m, φ, λs
for any Λ ¡ 0.
On a real analytic space-time and for real analytic data m,φ, λ, we can de�ne vφ :�

°
k¡0 uφ,k�1σ

k.
This series converges as shown e.g. in [? ]. In principle, we would like to de�ne vφ similarly also for
space-times and data m,φ, λ which are only smooth. However, the series need not converge in this case.
Following [? ] (see also [? ? ]), we overcome this problem de�ning instead

vφpx1, x2q :�
¸
k¥0

ψpσpx1, x2q{αkquφ,k�1px1, x2qσ
kpx1, x2q, (4.36)

where ψ : R Ñ R is a compactly supported smooth function and tαkukPN is a sequence of real number
which are introduced to ensure the convergence of the series. More precisely, ψ is chosen such that
ψpxq � 1 for |x|   1{2 and ψpxq � 0 for |x| ¡ 1 and αk tends to zero su�ciently fast.
Let us collect some properties of the Hadamard parametrix:

• The distribution Hφ � Hrg,m, φ, λs is local and covariant in the following sense: let ι : M 1 ÑM be
causality-preserving isometric embedding between the space-times pM 1, g1q and pM, gq, i.e. g1 � ι�g,
and let f be a test function supported in U 1 � U 1 where ιU 1 � U , then it follows

pι�Hrg,m, φ, λsq pfq � Hrι�g, ι�m, ι�φ, ι�λspfq. (4.37)
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• As proved in [? ], the wave-front set of Hφ can be estimated by

WF pHφq � C�rgs|U�U , (4.38)

where C� is the set de�ned by (??). Furthermore, every Hadamard 2-point function di�ers from
Hφ by a smooth function, as shown also in [? ].
If tgpsq, pm2qpsq, φpsq, λpsqu are smooth 1-parameter families, then Hrgpsq,mpsq, φpsq, λpsqs can be
interpreted as a distribution in R� U � U and it holds that

WFpHrgpsq,mpsq, φpsq, λpsqspx1, x2qq �
!
ps, x1, x2; ρ, k1, k2q P 9T�pR� U � Uq :

px1, x2; k1, k2q P C�rgpsqs
)
.

(4.39)

Less trivially, when the Hadamard parametrix is restricted to the total diagonal ∆2 in U � U ,
which can be done as a consequence of the estimate (??) and thm. ??, it holds in addition that

WF
�
Hrgpsq,mpsq, φpsq, λpsqspx1, x2q

	���
R�∆2

K T pR�∆2q. (4.40)

If we vary smoothly only the background φ, it i.e. for �xed g,m, λ and for a smooth 1-parameter
family tφpsqu, then the following estimate, stronger than (??), holds

WF
�
H
psq
φ px1, x2q

	
� R� t0u � C�rgs|U�U . (4.41)

• As we mentioned before, on real analytic space-times and for real analytic data m,φ, λ, the cut-o�
ψ appearing in the series expansions of vφ, formula (??), can be omitted because the series without
the cut-o� already converges. Consequently, Hrg,m, φ, λs scales homogeneously up to logarithmic
terms under the rescaling of pg,m, φ, λq as before:

Λ�2HrΛ�2g,Λm,Λφ, λs � Hrg,m, φ, λs � ln Λ2

�¸
`¥1

u`�1rg,m, φ, λsσ
`

�
.

• Finally, for any choice of analytic 1-parameter families tgpsq,mpsq, φpsq, λpsqu, estimates (??), (??)
and (??) can strengthened replacing the smooth wave-front set with the analytic wave-front set
(see appendix ??).

In order to prove theW -smoothness of the time-ordered product, the results just outlined are not enough.
We need a microlocal control also for the variational derivatives of the Hadamard parametrix. Using
eq. (??) and eq. (??), we can express δνHφ{δφ

ν for any ν ¡ 0 by

δνHrg,m2, φ, λspx1, x2q

δφpy1q . . . δφpyνq
�

�
¸
k¥0

ψpσpx1, x2q{αkq
δνuk�1rg,m

2, φ, λspx1, x2q

δφpy1q . . . δφpyνq
σkpx1, x2q lnpσεpx1, x2qq.

(4.42)

where x1, x2 belongs to the same convex normal set U .
Due to the presence of δνuk{δφν in the formula above, we are interested in providing estimates for the
variational derivatives of the Hadamard coe�cients. We present some useful properties of δνuk{δφν in
the following lemma:

Lemma 57. The distribution δνuφ,k{δφ
ν vanishes whenever ν ¡ 2k. Furthermore, if px1, x2, y1, . . . , yνq

is in the support of δνuφ,kpx1, x2q{δφpy1q . . . δφpyνq, then the points y1, . . . , yν must belong to the unique
geodesic connecting x1, x2.
The distribution δνuk{δφ

νrg,m, φ, λs is a locally covariant distribution which scales homogeneously with
degree 2k � 3ν under the rescaling pg,m, φ, λq ÞÑ pΛ�2g,Λ2m2,Λφ, λq.
We have

WF

�
δνuφ,kpx1, x2q

δφpy1q . . . δφpyνq



� Cu2�νrg, λs, (4.43)
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where

Cu2�νrg, λs :�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�U2�ν : y` P suppλ@`

D a partition tLmu of t1, . . . , νu with Lm proper, |Lm| ¤ 2

for each Lm, DTm P r0, 1s, Tm�1 ¥ Tm

y` � γx1,x2
pTmq @` P Lm,

�k1 �
¸
m

p1� Tmq
¸
`PLm

Πy`,x1p`, �k2 �
¸
m

Tm
¸
`PLm

Πy`,x2p`

+
,

(4.44)

and where Πx,y denotes the parallel transport along the unique geodesic connecting x, y.
For any smooth 1-parameter families tgpsq,mpsq, φpsq, λpsqu, it holds that

δνukpx1, x2q

δφpy1q . . . φpyνq
rgpsq,mpsq, φpsq, λpsqs (4.45)

is a distribution jointly in s and in x1, x2, y1, . . . , yν . Thus, we trivially have

WF

�
δνukrg

psq,mpsq, φpsq, λpsqspx1, x2q

δφpy1q . . . δφpyνq



�

�
!
ps, x1, x2, y1, . . . , yν ; ρ, k1, k2, p1, . . . , pνq P 9T�pR� U2�νq :

px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P Cu2�νrgpsq, λpsqs
)
.

Furthermore, for any smooth R Q s ÞÑ φpsq P C8pMq it holds that

WF

�
δνuφpsq,kpx1, x2q

δφpy1q . . . δφpyνq



� R� t0u � Cu2�νrg, λs. (4.46)

Proof. The proof of these properties is given by induction in k exploiting the iterative de�nition for the
Hadamard coe�cients given by eq. (??) and the initial condition for u0.
By de�nition the Van Vleck-Morette determinant does not depend on φ, therefore the hypotheses are
trivially satis�ed for k � 0.
Now, assume the results of the lemma ?? hold for all orders ¤ k. We can compute δνuk�1,φ{δφ

ν

distributing the variational derivatives on the right-hand side of eq. (??). Since Pφ is at most quadratic
in φ, all derivatives δνPφ{δφν with ν ¡ 2 vanish, so it holds

δνuφ,k�1px1, x2q

δφpy1q . . . δφpyνq
� �

»
U

» 1

0

tk
u0px1, x2q

u0pz, x2q
δpz, γx1,x2ptqq�

�

#
P
pzq
φ

δνuφ,kpz, x2q

δφpy1q . . . δφpyνq
�
¸
i

δP
pzq
φ

δφpyiq

δν�1uφ,kpz, x2q

δφν�1ptyr�iuq
�

�
¸
i,j

δ2P
pzq
φ

δφpyiqδφpyjq

δν�2uφ,kpz, x2q

δφν�2ptyr�i,juq

+
dzdt.

(4.47)

It follows from this expression and the inductive hypothesis that δνuφ,k�1{δφ
ν vanishes if ν ¡ 2k � 2 or

if the points y1, . . . , yν do not belong to the unique geodesic connecting x1 and x2, as we wanted to prove.

The locally covariance property and the homogeneous scaling of δνuφ,k{δφν are also consequence of
this expression and the inductive hypothesis.

We come to the proof of estimate (??). The distribution in the right-hand side of eq. (??) is the
composition in z of two distribution, namely the distributions in z, x1, x2 given by

u0px1, x2q

u0pz, x2q

» 1

0

tkδpz, γx1,x2
ptqqdt, (4.48)
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and the distribution in z, x1, x2, y1, . . . , yν given by

P
pzq
φ

δνuφ,kpz, x2q

δφpy1q . . . δφpyνq
�

¸
I�tiu,ti,ju

δ|I|P
pzq
φ

δ|I|ptyr�Iuq

δν�|I|uφ,kpz, x2q

δφν�|I|ptyrRIuq
, (4.49)

where the sum is over the subsets I of t1, . . . , νu containing 1 element or 2 distinct elements.
To obtain the estimate (??) for the wave-front set of δνuφ,k�1{δφ

ν , we proceed providing estimates for
the wave-front set of these two distributions and then use the wave-front set calculus (thm. ??).
Let us focus �rst on the distribution (??). Consider the distribution δpz, γx1,x2

ptqq in R � U3. Using
thm. ?? for the wave-front set of the pull-back of a distribution, it follows

WFpδpz, γx1,x2
ptqqq �

!
pt, z, x1, x2; τ, q, k1, k2q P 9T�pO � U3q : z � γx1,x2

ptq,

�k1 � p1� tqΠz,x1q,�k2 � tΠz,x2q, τ � �qp 9γx1,x2ptqqu .

We used the fact that the unique geodesic γx1,x2 : r0, 1s Ñ U connecting x1, x2 can be extended uniquely
to a su�ciently small open interval O � R containing r0, 1s. By de�nition, u0 is a strictly positive smooth
function. Thus, u0px1, x2q{u0pz, x2q is a smooth function and so does not contribute to the computation
of the wave-front set. The distribution (??) can be equivalently written as

u0px1, x2q

u0pz, x2q

» 1

0

tkδpz, γx1,x2
ptqqdt �

u0px1, x2q

u0pz, x2q

»
R
tkθptqθp1� tqδpz, γx1,x2

ptqqdt. (4.50)

The right-hand side of eq. (??) is the composition in the variable t of the distribution tkθptqθp1� tq with
δpz, γx1,x2ptqq. Since WFpδpz, γx1,x2ptqqqt � H (we mean the projection onto the t-component of the
wave-front set), it follows from the wave-front set calculus (thm. ??) that the composition is well-de�ned
and, furthermore, it holds

WF

�
u0px1, x2q

u0pz, x2q

» 1

0

dt tkδpz, γx1,x2ptqq



�

�
!
pz, x1, x2; q, k1, k2q P 9T�pU3q :

Dt P r0, 1s, z � γx1,x2ptq,�k1 � p1� tqΠz,x1q,�k2 � tΠz,x2q, 0 � �qp 9γx1,x2ptqq

or z � x1, k2 � 0, k1 � q, or z � x2, k1 � 0, k2 � qu .

Let us next discuss the distribution (??). By the inductive hypothesis, for any ν the wave-front set of

δνuφ,k{δφ
ν is contained in Cu2�νrg, λs. Since P

pzq
φ is a di�erential operator, its action on a distribution does

not enlarge the wave-front set (see thm. ?? in appendix ??). On the other hand, the terms δP pzq
φ {δφpyiq

and δ2P
pzq
φ {δφpyiqδφpyjq are given by the distributions �λpzqφpzqδpz, yiq and �λpzqδpz, yi, yjq respec-

tively.
Then, using the wave-front set calculus (thm. ??) we can estimate the wave-front set of the distribu-
tion (??). By the de�nition of Cu2�νrg, λs, see (??), it can be checked easily that pz, x2, y1, . . . , yν ; τ, q, k2, p1, . . . , pνq
is an element of the wave-front set of distribution (??) if there exists a subset I � t1, . . . , νu among
H, tiu, ti, ju, there exists a collection tLmu of proper subsets of t1, . . . , νuzI where each Lm containing
at most two elements, and there exists a non-decreasing collection tTmu of real numbers Tm P r0, 1s such
that

yr P suppλ@r, yiPI � z, y`PLm � γz,x2
pTmq,

and

� q �
¸
iPI

pi �
¸
m

p1� Tmq
¸
`PLm

Πy`,zp`,

� k2 �
¸
m

Tm
¸
`PLm

Πy`,x2
p`.

Now, we focus on the distribution given by the right-hand side of eq. (??). Using the wave-front
set calculus (thm. ??) and the results just presented, we obtain the following necessary condition for
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px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq to be in the wave-front set of the right-hand side of eq. (??): there
exists a subset I � t1, . . . , νu among H, tiu, ti, ju, there exists a collection tLmu of proper subset of
t1, . . . , νuzI where each Lm containing at most two elements, there exists a non-decreasing collection
tTmu of real numbers Tm P r0, 1s, and there exists t P r0, 1s such that

yr P suppλ@r, yiPI � γx1,x2
ptq, y`PLm � γγx1,x2 ptq,x2

pTmq,

and

� k1 � p1� tq
¸
iPI

Πyi,x1
pi �

¸
m

p1� tqp1� Tmq
¸
`PLm

Πy`,x1
p`,

� k2 � t
¸
iPI

Πyi,x2
pi �

¸
m

pTm � tp1� Tmqq
¸
`PLm

Πy`,x2
p`.

We proceed de�ning a new collection of subsets tL1mu and a corresponding collection of geodesic param-
eters tT 1mu given respectively by

L11 �

"
L1 I � H
I otherwise

L1m¡1 �

"
Lm I � H
Lm�1 otherwise

and

T 11 �

"
T1p1� tq � t I � H
t otherwise

T 1m �

"
Tmp1� tq � t I � H
Tm�1p1� tq � t otherwise

It follows

y`PL1m � γx1,x2pT
1
mq, �k1 �

¸
m

p1� T 1mq
¸
`PL1m

Πy`,x1p`, �k2 �
¸
m

T 1m
¸
`PL1m

Πy`,x2p`,

and consequently the right-hand side of eq. (??) de�nes a distribution in x1, x2, y1, . . . , yν which has a
wave-front set contained in Cu2�ν�1 as we wanted to prove.

A similar argument can be presented to prove the estimates (??) and (??). Now, in the inductive
formula (??), g,m, φ, λ depend smoothly on a parameter s. Note that the geodesic γ depends on s.
Nevertheless, one �nds that the proof still goes through without non-trivial modi�cations. This conclude
the proof.

The following results for the variational derivatives of the Hadamard parametrix follows from for-
mula (??) and lemma ?? for the variational derivatives of the Hadamard coe�cients.

Lemma 58. Let Hφ be the Hadamard parametrix given by (??) in the convex normal subset U � M .
For any ν, δνHφpx1, x2q{δφpy1q . . . δφpyνq is a locally covariant distribution2 supported in U2�ν , which
vanishes unless y1, . . . , yν P suppλ.
We have

WF

�
δνHrg,m, φ, λspx1, x2q

δφpy1q � � � δφpyνq



� Z2�νrgs|U2�ν (4.51)

where the set Z2�ν is de�ned by (??). On the total diagonal, a stronger bound holds:

WF

�
δνHrg,m, φ, λspx1, x2q

δφpy1q . . . δφpyνq


����
∆2�ν

K T∆2�ν . (4.52)

Moreover, for any choice of smooth 1-parameter families tgpsq,mpsq, φpsq, λpsqu, it holds

WF

�
δνHrgpsq,mpsq, φpsq, λpsqspx1, x2q

δφpy1q . . . δφpyνq



�

�
!
ps, x1, x2, y1, . . . , yν ; ρ, k1, k2, p1, . . . , pνq P 9T�pR� U2�νq :

px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P Z2�νrg
psqs

)
,

(4.53)

2In principle, the distribution δνHφ{δφ
ν is de�ned in U2 �Mν .
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and in addition

WF

�
δνHrgpsq,mpsq, φpsq, λpsqspx1, x2q

δφpy1q . . . δφpyνq


����
∆2�ν

K T pR�∆2�νq. (4.54)

In the case of variations of only the background φ, the following stronger bound is satis�ed:

WF

�
δνHrg,m, φpsq, λspx1, x2q

δφpy1q . . . δφpyνq



� R� t0u � Z2�νrgs|U2�ν . (4.55)

Finally, in any real analytic space-time and for real analytic data m,φ, λ, δνH{δφνrg,m, φ, λs scales
almost homogeneously with degree 2� 3ν under the rescaling pg,m2, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq.

Proof. We �rst note that the each term on the right-hand side of eq. (??) is a product of distributions,
and, therefore, it is not a priori well-de�ned. Using the estimate (??), for any k we have

WF

�
δνuφ,kpx1, x2q

δφpy1q . . . δφpyνq



x1,x2

� H.

Thus, as a consequence of the wave-front set calculus (thm. ??) each term on the right-hand side of
eq. (??) is well-de�ned.
The fact that δνHφ{δφ

ν is locally covariant is a consequence of formula (??), the fact that δνuφ,k{δφν is
locally covariant for any ν as proved in lemma ??, and the fact that lnpσεq, ψpσ{αkq and σk are clearly
locally covariant. Furthermore, the support properties of δνuφ,k{δφν follow from the support properties
of δνuφ,k{δφν , see lemma ??.
We now prove estimate (??). Let px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq be an element of the wave-front
set of one of the terms in the right-hand side of eq. (??). As proved in [? ], the wave-front set of lnpσεq
is C�rgs|U2 , i.e. the restriction to U2 of the set de�ned in (??). Furthermore, the estimate (??) holds
for δνuφ,k{δφν as proved in lemma ??. The wave-front set calculus (thm. ??) implies that there exist
decompositions k1 � k11 � k21 and k2 � k12 � k22 such that it holds"

px1, x2, y1, . . . , yν ; k11, k
1
2, p1, . . . , pνq P Cu2�ν or k11, k

1
2, p

1
r � 0,

px1, x2; k21 , k
2
2q P C� or k21 , k

2
2 � 0,

(4.56)

where Cu2�ν is the set (??). As straightforward consequences of the de�nitions of Cu2�ν and C�, it follows
that if pr is in V

�
for all r, then we have k2 P V

�
, while if ps is space-like and pr is in V

�
for all r � s, then

we have k2 � 0 or k2 R V
�
. This implies precisely px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq R C

2;�
2�ν , where

C2;�
2�ν is de�ned by (??). With a similar argument, we obtain px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq R C

1;�
2�ν ,

where C1;�
2�ν is de�ned by (??). By the de�nition of the set Z2�ν (??), it thus follows that estimate (??)

holds, as we wanted to prove.

We can prove estimates (??) and (??) with similar arguments based on estimates (??) and, respec-
tively, (??), instead of (??).

To prove that the requirement (??) is satis�ed, we consider an element px, x, x, . . . , x; k1, k2, p1, . . . , pνq
of the wave-front set of the right-hand side of eq. (??). Similarly as before, the wave-front calculus
(thm. ??) implies that there exist decompositions k1 � k11 � k21 � k1 and k2 � k12 � k22"

px, x, x, . . . , x; k11, k
1
2, p1, . . . , pνq P Cu2�ν or k11, k

1
2, p

1
r � 0,

px, x; k21 , k
2
2q P C� or k21 , k

2
2 � 0.

(4.57)

Since all the points coincide, it follows from the de�nitions of Cu2�ν (??) and C� (??) that �k11�k
1
2 �

°
r pr

and k21 � k22 � 0. This clearly implies that (??) holds.

We can verify the requirement (??) adapting, in a fairly obvious way, the argument just presented to
the case of smooth families gpsq,mpsq, φpsq, λpsq.

Finally, the almost homogeneous scaling of δνH{δφνrg,m, φ, λs under the rescaling of pg,m, φ, λq in
any real-analytic space-time and for real analytic data m,φ, λ is a direct consequence of the following
three facts: δνu{δφνrg,m, φ, λs scales homogeneously with degree 2k � 3ν, the factors ψpσ{αkq, which
spoil the scaling properties, are absent if the space-time is real-analytic, and σ scales with degree �2.
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So far, we have not made any assumptions on the space-time pM, gq and we required only that m,φ, λ
are smooth functions. In the remaining part of this subsection we consider pM, gq to be an ultra-static
space-time with compact Cauchy surfaces, m constant, and λ P C8

0 pMq. We consider the retarded
2-point function ωRφ de�ned by (??) with respect to Pφ � ��m2� λ

2φ
2. As shown in lemma ??, ωRφ can

be written in the form (??) and therefore φ ÞÑ ωRφ is an admissible assignment in the sense of def. ??,
as a consequence of lemma ??. We want to present some properties of the di�erence dφ � ωRφ � Hφ,
where Hφ Hadamard parametrix with respect to Pφ, in particular we want to control the wave-front set
of δνdφ{δφν and δνdφpεq{δφν for any smooth map R Q ε ÞÑ φpεq P C8pMq.
Since Hφ is de�ned only in U � U , where U is a convex normal set in M , also dφ is de�ned only in
U �U by construction. Because ωR is a Hadamard 2-point function, dφ is a smooth function in px1, x2q
(see [? ]), and it is symmetric in x1, x2. Furthermore, for any smooth map R Q ε ÞÑ φpεq, the map
pε, x1, x2q ÞÑ dφpεqpx1, x2q is jointly smooth. In fact, since dφpεqpx1, x2q is smooth in x1, x2 for any �xed

ε, it follows that WFpdφpεqpx1, x2qq � tps, x1, x2; ρ, 0, 0q P 9T�pR�M2qu. On the other hand, dφpεq is the
di�erence of ωRφpεq and Hφpεq which both have wave-front sets contained in R�t0u� C�. Thus, it follows
that WFpdφpεqpx1, x2qq � H, as we wanted to show.
Since φ ÞÑ ωRφ is an admissible assignment, ωRφ must satisfy the estimate (??) and estimate (??) for a
smooth family of backgrounds R Q ε ÞÑ φpεq P C8pMq. In principle, we could combine these estimates
for ωRφ with the estimates (??) and (??) for Hφ to get bounds for the wave-front sets of δνdφ{δφν and
δνdφpεq{δφ

ν . However, such bounds are not sharp enough for the applications we are going to need in
the next subsections. The following lemma gives better bounds:

Lemma 59. Let U be a convex normal set su�ciently small such that it holds U � U 1 for another convex
normal set U 1 and there exist three Cauchy surfaces Σ��,Σ�,Σ� which satis�es:

• Σ� X J�pUq � H and Σ�� X J�pUq � H.

• All the three Cauchy surfaces have non-trivial intersections with U 1. Furthermore, J�pΣ��XU
1qX

Σ� � Σ� X U 1 and U � J�pΣ�� X U 1q.

Consider dφ de�ned on U2. It holds

WF

�
δνdφpx1, x2q

δφpy1q . . . δφpyνq



� Cd2�ν , (4.58)

where

Cd2�ν :�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�pU2 �Mνq :

if pr P V
�
@r, then k1, k2 P V

	

if Dps space-like, pr P V
�
@r � s, then k1, k2 R V

�
and k1 � k2 R V

�
if x1 � x2

)
.

(4.59)

In addition, for any smooth map R Q ε ÞÑ φpεq P C8pMq, the following bound is satis�ed

WF

�
δνdφpεqpx1, x2q

δφpy1q . . . δφpyνq



� R� t0u � Cd2�ν . (4.60)

Proof. We �rst prove the estimate (??). We exclude two situations for which estimate (??) is trivially
veri�ed. Note that whenever U X J�psuppλq � H, we know that δνdφ{δφν vanishes, because outside
J�psuppλq the function dφ does not depend on φ as follows from the de�nitions of Hφ and ωRφ . From
now on we can assume that U XJ�psuppλq � H. By the support properties of δνωRφ {δφ

ν (see lemma ??
and lemma ??) and δνHφ{δφ

ν (see lemma ??), the distribution δνdφpx1, x2q{δφpy1q . . . δφpyνq, which is
de�ned on U2 �Mν , vanishes unless y1, . . . , yν P suppλ.
We now discuss the remaining non-trivial possibilities by distinguishing two cases: (a) �rst we as-
sume that at least one variable among y1, . . . , yν does not belongs to U , and then (b) we assume
px1, x2, y1, . . . , yνq P U

ν�2.
For case (a), since at least one of the variables y1, . . . , yν does not belong to U , the distribution
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δνHφpx1, x2q{δφpy1q . . . δφpyνq vanishes because the support of δνHφ{δφ
ν is contained in U2�ν as proved

in lemma ??. Thus, we can rewrite the variational derivatives of dφ as

δνdφpx1, x2q

δφpy1q . . . δφpyνq
�

δνωRφ px1, x2q

δφpy1q . . . δφpyνq
.

Because δνdφpx1, x2q{δφ
ν is symmetric in x1, x2, and because of the restriction on the wave-front set of

δνωRφ {δφ
ν given by estimate (??) (see lemma ?? and lemma ??), it follows

WF

�
δνdφpx1, x2q

δφpy1q . . . δφpyνq



� P�Z2�ν ,

where the set in the right-hand side is de�ned by (??). Similarly as done in lemma ??, we con-

clude that if pr is in V
�

for all r, then we have k1, k2 P V
	
, while if ps is space-like and pr is in

V
�

for any r � s, then we havek1, k2 R V
�
. This is precisely what we have to show to prove that

px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq, under the assumptions (a), belongs to Cd2�ν .
For the case (b), the proof is more involved. The argument we are presented is inspired by the one
presented in [? , lemma 6.2] (see also [? , Appendix A]). Since ωRφ is a bi-solution with respect to Pφ,
and since Hφ (de�ned in the convex neighbourhood U 1) is a bi-solution with respect to Pφ modulo a

smooth function, it follows that in U 1 � U 1 the functions Gp1,2q
φ pz1, z2q de�ned by

G
p1q
φ pz1, z2q � P

pz1q
φ pωRφ �Hφqpz1, z2q � �P

pz1q
φ Hφpz1, z2q,

G
p2q
φ pz1, z2q � P

pz2q
φ pωRφ �Hφqpz1, z2q � �P

pz2q
φ Hφpz1, z2q,

are smooth. We can write Gp1,2q
φ explicitly in terms of the Hadamard coe�cients similarly as done in [?

, lemma 2.4.3] for the formal fundamental solutions of the Klein-Gordon equation:

G
piq
φ pz1, z2q �

�
t1� ψpσ{αn0quP

piq
φ puφ,n0�1σ

n0 lnpσεq
	
pz1, z2q�

�
¸
k¡n0

�
tψpσ{αkq � ψpσ{αk�1qu pP

piq
φ uφ,k�1qσ

k lnpσεq
	
pz1, z2q�

� 2
¸
k¡n0

�
∇piqψpσ{αkq,∇piqpuφ,k�1σ

k lnpσεqq
	
g
pz1, z2q�

�
¸
k¡n0

��
�piqψpσ{αkq

	
uφ,k�1σ

k lnpσεq
	
pz1, z2q,

(4.61)

where n0 is an arbitrary �xed value. To get this, one uses the recursive de�nition of uk.
Each term of eq. (??) contains a cut-o� which is supported where lnpσεq is smooth. Due to the properties
of the Hadamard coe�ecients proved in lemma ??, in particular estimate (??), we obtain the following
estimate using the wave-front set calculus:

WF

�
δνG

p1,2q
φ pz1, z2q

δφpy1q . . . δφpyνq

�
� Cu2�ν , (4.62)

where Cu2�ν is the same set de�ned by (??). A similar estimate holds for the smooth function Gp3q
φ pz1, z2q

de�ned by

G
p3q
φ pz1, z2q :� P

pz2q
φ G

p1q
φ pz1, z2q � P

pz1q
φ G

p2q
φ pz1, z2q � �P

pz1q
φ P

pz2q
φ Hφpz1, z2q.

Next, we exploit the hypotheses on the convex normal sets U , U 1 and on the Cauchy surfaces Σ�,Σ��,
see �g. ?? for a sketch of the situation. We denote by N and by B the following sets:

N :� J�pU 1 X Σ��q X J�pΣ�q, B :� J�pΣ�q XN.

Let c be a smooth cut-o� function such that cpMq � r0, 1s, c � 1 in J�pΣ�q and c � 0 in J�pΣ�q. For
any f1, f2 P C

8
0 pMq such that supp f1, supp f2 � U we consider the following distribution in U 1 � U 1

βφ,µνpx1, x2q :� EAφ pf1qpx1q
ÐÑ
Bµdφpx1, x2q

ÐÑ
BνE

A
φ pf2qpx2q. (4.63)
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U 1

N

B

U

Σ��

Σ�

Σ�

Figure 4.1: The set-up of U , U 1.

It follows from the Stokes's theorem and the properties of the advanced propagator EAφ that it holds

»
Σ��Σ�

EAφ pf1qpx1q
ÐÑ
Bndφpx1, x2q

ÐÑ
BnE

A
φ pf2qpx2qdΣpx1qdΣpx2q �

»
N�N

BµBνβφ,µνpx1, x2qdx1dx2

� G
p1q
φ pχNE

A
φ pf1q, f2q �G

p2q
φ pf1, χNE

A
φ pf2qq � dφpf1, f2q �G

p3q
φ pχNE

A
φ pf1q, χNE

A
φ pf2qq,

where χN is the characteristic function of the domain N . Thus, the terms in the last line are integrals
over N �N .
Using repeatedly eq. (??) and the fact that supp c X supp f1,2 � H, we then obtain the following
decomposition:

dφpf1, f2q � D1,φpf1, f2q �D2,φpf1, f2q �D3,φpf1, f2q �D4,φpf1, f2q,

where D1,φ, D2,φ, D3,φ, D4,φ are de�ned respectively by

D1,φpf1, f2q :� pERφ � σc � dφ � σc � E
A
φ qpf1, f2q, (4.64)

D2,φpf1, f2q :� ppERφ � χN q �G
p1q
φ qpf1, f2q, (4.65)

D3,φpf1, f2q :� pG
p2q
φ � pχN � EAφ qqpf1, f2q, (4.66)

and

D4,φpf1, f2q :�

»
M�B

EAφ pf1qpx1qpσc �G
p1q
φ qpx1, x2qcpx2qE

A
φ pf2qpx2qdx1dx2�

�

»
B�M

EAφ pf1qpx1qcpx1qpG
p2q
φ � σcqpx1, x2qE

A
φ pf2qpx2qdx1dx2�

� ppERφ � χN q �G
p3q
φ � pχN � EAφ qqpf1, f2q.

(4.67)

We treat each D1,φ,D2,φ,D3,φ,D4,φ separately. We �rst compute their ν-th variational derivatives on
Uν�2. Then, we prove that any element px1, x2, y1, yν ; k1, k2, p1, . . . , pνq of the wave-front sets of these

variational derivatives must have k1, k2 P V
	
if pr P V

�
for any r, while it must have k1, k2 R V

�
and,

when x1 � x2, k1 � k2 Q V
�
if there exists a space-like ps and if pr is in V

�
for all r � s.

D1,φ) The distribution σc, de�ned by (??) for the speci�c c we chose, is such that suppσc � B �B. We
compute δνD1,φ{δφ

ν by distributing the variational derivatives on each factor in the right-hand
side of (??). By the support properties of the variational derivatives of the Hadamard parametrix
(see lemma ??), we have δνdφ{δφν � δνωRφ {δφ

ν on B2�Uν . Since the wave-front set of σc is given

by (??), and since the estimates (??) hold for the wave-front sets of δνEA{Rφ {δφν , the wave-front
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set calculus (thm. ??) implies the following bound:

WF

�
δνD1,φpx1, x2q

δφpy1q . . . δφpyνq


����
Uν�2

�

�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�M2�ν : x1, x2, y1, . . . , yν P U

DN1, N2, N3 partition of t1, . . . , νu and pz, qq, pz1, q1q P T�M such that z, z P B and

px1, z, pyrPN1
q; k1,�q, pprPN1

qq P X2�|N1|, or k1, q, prPN1
� 0,

pz, z1pyrPN2
q; q,�q1, pprPN2

qq P WFpδ|N2|ωRφ {δφ
|N2|q, or q, q1, prPN2

� 0,

pz1, x2, pyrPN3
q; q1, k2, pprPN3

qq P X2�|N3|, or q
1, k2, prPN3

� 0
(
.

Let px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq be an element in WFpδνD1,φ{δφ
ν |Uν�2q. Using estimate (??)

for the δνωRφ {δφ
ν and the de�nition of the set X2�ν given by (??), it follows that if pr is in V

�
for

any r, then we have k1, k2 P V
	
. While, if ps is space-like and if pr is in V

�
for any r � s, then

we have k1 P V
	
, k2 R V

�
or vice versa. These con�gurations satis�es the conditions we want to

verify.

D2,φ) We again compute the δνD2,φ{δφ
ν by distributing the variational derivatives on each factor in the

right-hand side of (??). Using the wave-front set calculus (thm. ??) together with the estimates (??)
and (??), we obtain

WF

�
δνD2,φpx1, x2q

δφpy1q . . . δφpyνq


����
Uν�2

�

�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�M2�ν : x1, x2, y1, . . . , yν P U

DN1, N2 partition of t1, . . . , νu and pz, qq P T�M such that z P N and

px1, z, pyrPN1
q; k1,�q, pprPN1

qq P X2�|N1| or k1, q, prPN1
� 0,

pz, x2, pyrPN2
q; q, k2, pprPN2

qq P Cu2�|N2|
or q, k2, prPN2

� 0
)
.

Let px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq be an element in WFpδνD2,φ{δφ
ν |Uν�2q. As can be directly

checked, it follows from the de�nitions of the sets X2�ν (given by (??)) and Cu2�ν (given by (??))

that if pr is in V
�
for any r, then we have k1, k2 P V

	
. While, if there exists a space-like covector

ps and if pr is in V
�
for any r � s, then we have k1, k2 R V

�
and, when x1 � x2, k1 � k2 R V

�
.

This is exactly what we wanted to show.

D3,φ) The same argument as before can be applied in this case. In particular, by distributing the
variational derivatives on each factor in the right-hand side of (??), we get

WF

�
δνD3,φpx1, x2q

δφpy1q . . . δφpyνq


����
Uν�2

�

�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�M2�ν : x1, x2, y1, . . . , yν P U

DN1, N2 partition of t1, . . . , νu and pz, qq P T�M such that z P N and

px1, z, pyrPN1q; k1,�q, pprPN1qq P Cu2�|N1|
or k1, q, prPN1 � 0,

pz, x2, pyrPN2
q; q, k2, pprPN2

qq P X2�|N2| or q, k2, prPN2
� 0

(
.

Let px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq be an element in WFpδνD3,φ{δφ
ν |Uν�2q. We obtain again

that if pr is in V
�
for any r, then we have k1, k2 P V

	
. While, if there exists a space-like ps and

if pr is in V
�
for any r � s, then we have k1, k2 R V

�
and, when x1 � x2, k1 � k2 R V

�
. This is

exactly what we wanted to prove.

D4,φ) Since c is by construction a smooth function, and since the wave-front set of δνGp3q
φ {δφν is contained

in Cu2�ν , the same arguments used for D1,D2,D3 allow us to conclude that the for the last term
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D4 we have

WF

�
δνD4,φpx1, x2q

δφpy1q . . . δφpyνq


����
Uν�2

�

�
!
px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq P 9T�M2�ν : x1, x2, y1, . . . , yν P U

DN1, N2, N3 partition of t1, . . . , νu and pz, qq, pz1, q1q P T�M such that z, z P N and

px1, z, pyrPN1
q; k1,�q, pprPN1

qq P X2�|N1|, or k1, q, prPN1
� 0,

pz, z1pyrPN2q; q,�q
1, pprPN2qq P Cu2�|N2|

, or q, q1, prPN2 � 0,

pz1, x2, pyrPN3q; q
1, k2, pprPN3qq P X2�|N3|, or q

1, k2, prPN3 � 0
(
.

Let px1, x2, y1, . . . , yν ; k1, k2, p1, . . . , pνq be an element WFpδνD4,φ{δφ
ν |Uν�2q. The estimate above

implies that if pr is in V
�
, then we have k1, k2 P V

	
. While, if there exists a space-like ps and if

pr is in V
�
for any r � s, then we have k1, k2 R V

�
and, when x1 � x2, k1 � k2 R V

�
. This is

precisely what we wanted to show.

This concludes the proof of estimate (??).

The estimate (??) concerning the smooth variation of the background ε ÞÑ φpεq is proved repeating
the same argument just shown, up to some minor modi�cations: there is an explicit dependence on ε in
all the distributions depending on φ and consequently we need to use estimates (??), (??) and (??) and
instead of estimates (??), (??) and (??). This concludes the proof of the lemma.

The last result we present in this subsection is the following corollary of lemma ??:

Lemma 60. δνdφpx, xq{δφpy1q . . . δφpyνq exists as distribution in x, y1, . . . , yν and

WF

�
δνdφpx, xq

δφpy1q . . . δφpyνq



� Cd,∆1�νrgs, (4.68)

where

Cd,∆1�νrgs :�
!
px, y1, . . . , yν ; k, p1, . . . , pνq P 9T�M1�ν : if pr P V

�
@r, then k P V

	

if Dps space-like, pr P V
�
@r � s, then k R V

�
)
.

For any smooth map R Q ε ÞÑ φpεq P C8pMq, it holds

WF

�
δνdφpεqpx, xq

δφpy1q . . . δφpyνq



� R� t0u � Cd,∆1�νrgs. (4.69)

Proof. Using the estimate (??) for the wave-front set of δνdφ{δφν , we obtain that

WF

�
δνdφpx1, x2q

δφpy1q . . . δφpyνq



x1,x2

�

� tpx1, x2; k1, k2q P 9T�pM2q : px1, x2, y1, . . . , yν ; k1, k2, 0, . . . , 0q P Cd2�νu � H.

Therefore, the wave-front set calculus (thm. ??) implies that δνdφpx1, x2q{δφpy1q . . . δφpyνq can be con-
tracted with the delta distribution δpx, x1, x2q and, furthermore, that the wave-front set of the contraction
is bounded by (??).

A similar argument, based on estimate (??) for the wave-front set of δνdφpεq{δφν , shows that the
distribution δνdφpεqpx, xq{δφpy1q . . . δφpyνq satis�es the bound (??). This concludes the proof.
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4.2.2 Proof of the on-shell W -smoothness of the Wick power corresponding
to ϕkpfq

Let pM, gq be an ultra-static space-time and let m be constant, λ P C8
0 pMq, while φ is a generic

function in C8pMq. We begin by de�ning the �Wick powers� of the linear �eld theory corresponding to
Pφ � � �m2 � λ

2φ
2 following the prescriptions given in [? ? ]. The Wick power corresponding to the

classical functional F pϕq � ϕkpfq, where f P C8
0 pMq, is also viewed as a time-ordered product with one

factor and so it is denoted by T1,φrF pϕqs. It is by de�nition the element in Wφ �Wrg,m, φ, λs given by

T1,φrϕ
kpfqs �

»
M

fpxq : ϕkpxq :Hφ dx

�

»
Mk

fpx1qδpx1, . . . , xkq : ϕpx1q � � �ϕpxkq :Hφ dx1 . . . dxk,

�
¸
j

p�1qj~j
�

2j
k

	 »
Mk�2j�1

fpxqδpx, x1, . . . , xk�2jqdφpx, xq
j�

� : ϕpx1q � � �ϕpxk�2jq :ωRφ dxdx1 . . . dxk�2j ,

(4.70)

where dφ � ωRφ � Hφ, and where the sum is taken over j ¤ rk{2s. Here : � � � :ωRφ denotes the normal

ordered Wick products with respect to the retarded 2-point function ωRφ (de�ned by eq.(??)) and : � � � :Hφ
denotes the normal ordered Wick products with respect to the Hadamard parametrix Hφ (de�ned by
eq. (??)). The product of Wφ is de�ned in terms of ωRφ . Then, for any t P P�E 1W pMnq, we identify,
similarly as done in [? ], the normal ordering of t respect to ωRφ with the equivalence class of t in Wφ,
i.e. we set »

Mn

tpx1, . . . , xnq : ϕpx1q � � �ϕpxnq :ωRφ dx1 . . . dxn � rts P P�E 1W pMnq{PφE 1W pMnq.

Let U be a convex normal set. In our context, for any t P P�E 1W pMnq with support in Un, the normal
ordering of t with respect to the Hadamard parametrix Hφ in U � U is de�ned by»

Mn

tpx1, . . . , xnq : ϕpx1q � � �ϕpxnq :Hφ dx1 . . . dxn :�

�
¸

j¤rn{2s

p�1qj~j
�

2j
n

� �
P�

»
M2j

tpz1, . . . , zj , x1, . . . , xn�2jq
j¹
i�1

dφpz2i�1, z2iqdz1 . . . dz2j

�
,

where the right-hand side is an element in Cr~s b ``¤nP�E 1W pM `q{PφP�E 1W pM `q.
Following the formalism we developed in sec. ??, each element inWφ can be identi�ed with a sequence of
distributions, where the `-th entry is an element in Crr~ssb pσc �Eφqb`E 1W pM `q, and where c is a cut-o�
function as in eq. (??). Going through the de�nitions, we �nd that the Wick power T1,φrϕ

kpfqs P Wφ

corresponds to the sequence pt̃`φq`PN given by

t̃`φ �

#
p�1qj~j

�
2j
k

	
pσc � Eφq

bk�2j
�
pf � δpk�2j�1qq � pdφ � δq

j
�

if ` � k � 2j

0 otherwise
(4.71)

where pdφ � δqpxq � dφpx, xq. Note that we have t̃0φ � p�1qk{2~k{2
³
M
fpxqdφpx, xq

k{2dx P Cr~s if k is
even, and t̃0φ � 0 otherwise.
The Wick power T1,φrϕ

kpfqs for φ P S (and �xed m constant and λ P C8
0 pMq) corresponds to the

sequence pt0φ, t
1
φ, . . . q, where t

`
φ is just t̃`φ evaluated for φ P S. In other words, we can consider the Wick

powers constructed for φ P C8pMq as extensions of the corresponding the Wick powers constructed with
respect to φ P S.

Proposition 61. The section S Q φ ÞÑ T1,φrϕ
kpfqs is on-shell W -smooth.

Proof. We need to prove that each t̃`φ satis�es conditions ??, ?? in def. ??. Making use of the wave-front
set calculus (thm. ?? and lemma ??), the properties of the causal propagator Eφ (prop. ??) and the
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de�nition of σc (eq. (??)), it follows that it is su�cient to prove that for any ` the following estimates
hold:

WF

�
δνd`φpx, xq

δφpy1q . . . δφpyνq

�
�W`�ν , (4.72)

and

WF

�
δνd`φpεqpx, xq

δφpy1q . . . δφpyνq

�
� R� t0u �W`�ν , (4.73)

for any R Q ε ÞÑ φpεq P C8pMq smooth.
To verify these estimates, we compute δνdφpx, xq`{δφpy1q . . . δφpyνq by distributing the Gateaux deriva-
tives on each factor dφpx, xq. It follows that δνdφpx, xq`{δφpy1q . . . δφpyνq is a �nite sum of terms in the
form

¹̀
`1�1

δ|N`1 |dφpx, xq

δφ|N`1 |ptyrPN`1 uq
, (4.74)

where N1, . . . , N` form a partition of t1, . . . , νu. The wave-front set of δ|N`1 |dφpx, xq{δφ|N`1 | is estimated
by (??) of lemma ?? and, thus, we obtain

WFpδ|N`1 |dφpx, xq{δφ
|N`1 |qx � H.

Therefore, the product of distributions (??) is well-de�ned as a consequence of the wave-front set calculus
(thm. ??).
We now focus on the proof of estimate (??). It follows from wave-front set calculus that whenever
px, y1, . . . , yν ; k, p1, . . . , pνq P 9T pMν�1q is in the wave-front set of (??), there exists a decomposition
k � kp1q � � � � � kp`q, and for any `1 � 1, . . . , ` it must hold

px, pyrqrPN`1 q; k
p`1q, pprqrPN`1 qq P WFpδ|N`1 |dφpx, xq{δφ

|N`1 q or kp`
1q, pr � 0.

We prove that px, y1, . . . , yν ; k, p1, . . . , pνq cannot belong to the set C
�
1�ν de�ned by (??). In order to do

that, we split the proof in the following two cases: (a) if all covectors p1, . . . , pν belongs to V
�
, then we

get k P V
�
, and (b) if there exists an s P N`2 for a certain `2 such that ps is space-like whereas pr is in

V
�
for any r � s, then we have k R V

�
.

(a) It follows from estimate (??) that if pr is in V
�
for any r, then we have kp1q, . . . , kp`q P V

�
. Thus,

k must be in V
�
, as we wanted to prove.

(b) Since pr is in V
�
for any r R s where s P N`2 , estimate (??) implies kp`

1q P V
�
with `1 � `2, and

kp`
2q R V

�
. Thus, putting together, we obtain k R V

�
as we needed to prove.

With a similar argument, based on estimate (??), we can show that px, y1, . . . , yν ; k, p1, . . . , pνq does
not belong to C�

1�ν either. Thus, by de�nition, we prove px, y1, . . . , yν ; k, p1, . . . , pνq P W1�ν , which is
precisely what is needed to verify estimate (??).

The proof of estimate (??) can be obtained with a similar argument as the one just presented, based
on estimate (??) instead of estimate (??). This concludes the proof.

The map φ ÞÑ T1,φrϕ
kpfqs is still on-shell W -smooth if we promote the test function f to be a W -

smooth map C8pMq Q φ ÞÑ fφ P C
8
0 pMq. For any F local functional functional not involving covariant

derivatives, F pφ � ϕq is a sum of local functionals in this generalized form. Thus, it is clear that the
argument just presented implies that S Q φ ÞÑ T1,φrF pϕ� φqs is on-shell W -smooth.

4.2.3 Su�cient condition for the on-shell W -smoothness of the time-ordered
product of biϕ

kipfiq

As before, let pM, gq be any ultra-static space-time and let m be constant, λ P C8
0 pMq, while φ is a

generic function in C8pMq. We would like to show that the n-fold time-ordered product de�nes an
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on-shell W -smooth section φ ÞÑ Tn,φrb
n
i�1ϕ

kipfiqs PWφ. For n � 1, we have already seen in sec. ?? that
this is true. We now consider the case n ¡ 1.
We make use of the Wick expansion in terms of normal ordering with respect to the retarded 2-point
function ωRφ , given in (??). As shown in [? ], we obtain the following expansion:

Tn,φ

�
nâ
i�1

ϕkipfiq

�
�

»
Mn

f1px1q � � � fN pxnqTn,φ

�
nâ
i�1

ϕkipxiq

�
dx1 . . . dxn

�
¸
j¤k

�
k
j

� »
Mn

f1px1q � � � fnpxnqτφ,jpx1, . . . , xnq :
n¹
i�1

ϕki�jipxiq :ωRφ

n¹
i�1

dxi

�
¸
j

�
k
j

� »
Mn�|k�j|

�¹
i

fipxiqδpxi, x
p1q
i , . . . , x

pki�jiq
i q

�
τφ,jpx1, . . . , xnq�

� :
¹
i

ϕpx
p1q
i q � � �ϕpx

pki�jiq
i q :ωRφ

¹
i

dxidx
p1q
i . . . dx

pki�jiq
i ,

(4.75)

where we used the multi-index notation k � pk1, . . . , kmq, and where the combinatorial factor appearing
is just pkj q :� pk1j1 q � � � p

km
jm
q.

Just as the Wick powers, the time-ordered product Tn,φrbϕkipfiqs PWφ can be identi�ed in the formalism
we developed in section ?? with a sequence of distributions pt̃`φq`PN for any φ P C8pMq. Each of these
distributions t̃`φ can be expressed as the �nite sum

t̃`φ �
¸

j¤k,|k�j|�`

�
k
j

�
pσc � Eφq

b` ppf1 � δ b � � � b fn � δq � τφ,jq , (4.76)

where c is a cut-o� function as in eq. (??), and φ P C8pMq.
The time-ordered product Tn,φrbiϕkipfiqs for φ P S corresponds to the sequence pt0φ, t

1
φ, . . . q where t

`
φ is

just t̃`φ evaluated for φ P S.
Similarly the proof of prop. ?? for the time-ordered products with one factor, we can formulate su�ciently
conditions on the distributional coe�cients of the Wick expansion to imply the on-shell W -smoothness
of the time-ordered products.

Lemma 62. To establish that the section S Q φ ÞÑ Tn,φrbiϕ
kipfiqs is on-shell W -smooth it is su�cient

to show that the distributional coe�cients tτφ,juj of the Wick expansion with respect to the state ωφ
satisfy

WF

�
δντφ,jpx1, . . . , xnq

δφpy1q . . . δφpyνq



�Wn�ν , (4.77)

and

WF

�
δντφpsq,jpx1, . . . , xnq

δφpy1q . . . δφpyνq



� R� t0u �Wn�ν , (4.78)

for any R Q s ÞÑ φpsq P C8pMq smooth.

Proof. Making use of the wave-front set calculus (thm. ?? and lemma ??), the properties of the causal
propagator Eφ (prop. ??), and the de�nition of σc (eq. (??)), it follows that the estimates (??) and (??)
imply that each t̃`φ as in eq. (??) satis�es the requirements ??, ?? of def. ??. This is precisely what is
needed to conclude that S Q φ ÞÑ Tn,φrbiϕ

kipfiqs is on-shell W -smooth.

Once estimates (??) and (??) are proved, φ ÞÑ Tn,φrbiϕ
kipfiqs will be on-shell W -smooth even if we

promote the test functions f1, . . . , fN to be W -smooth map C8pMq Q φ ÞÑ fj,φ P C
8
0 pMq. Thus, we

have established that the on-shell W -smoothness of S Q φ ÞÑ Tn,φrbiFipϕ � φqs for local functionals Fi
not containing covariant derivatives will follow from (??) and (??).
It is the purpose of the following subsections to prove that these su�cient conditions indeed hold.
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4.2.4 Review of the construction of the time-ordered products of n ¡ 1 local
functionals

In order to verify the su�cient conditions of lemma ??, we need to specify exactly how the distributions
τφ,j are constructed. We review the procedure presented in [? ] to de�ne them. To do so, we need
to consider a generic space-time pM, gq and generic smooth functions m,φ, λ P C8pMq. We consider a
product 
φ for Wrg,m, φ, λs de�ned in terms of an admissible assignment φ ÞÑ ωφ where ωφ is a pure
Hadamard 2-point function (such 2-point function always exists, as proved by the deformation argument
we presented in ??). Note that the retarded 2-point function cannot be de�ned for such general space-
times.
The construction proceeds by induction on the number of the factors n of the time-ordered products. At
the n-th induction order, we assume the a prescription for de�ning the time-ordered products has been
constructed satisfying (T1)-(T9) for   n factors. The inductive hypothesis is already know to hold for
n � 1 factor (Wick powers).
The induction step relies on the causal factorization axiom (T8). Due to this property, the time-ordered
product Tn,φrbiϕkipfiqs �

³
Mn f1px1q � � � fnpxnqTn,φrb

n
i�1ϕpxiqsdx1 . . . dxn can be expressed as a �nite

sum of 
φ-products of time-ordered products involving fewer factors whenever f1 b � � � b fn is supported
outside the total diagonal. Thus, the induction hypothesis fully determines Tn,φrbiϕkipxiqs outside the
total diagonal ∆n. The axioms (T1)-(T9) are satis�ed in this domain.
In [? ] is provided an extension to the whole Mn which is compatible (T1)-(T9). Actually, as explained
in [? , sec. 3.1], it is su�cient to require that the extension satis�es axioms (T1)-(T5) and (T9), because
then the axioms (T6)-(T7) can be imposed by simple rede�nitions and (T8) is automatically ensured by
construction.
To characterize the extension, we now assume that f1 b � � � b fn is supported in a set Un su�ciently
close to the total diagonal. In detail, let Un be a neighbourhood of the total diagonal in Mn such that
x1, . . . , xn belong to a convex normal neighbourhood U if px1, . . . , xnq P Un. We can de�ne the Hadamard
parametrix Hφ in U , see eq. (??). Then, we expand Tn,φrbiϕ

kipfiqs in terms of the normal ordering
with respect to the Hadamard parametrix, i.e.

Tn,φ

�
nâ
i�1

ϕkipfiq

�
�

¸
j¤k

�
k
j

� »
Mn

f1px1q � � � fnpxnqτ
H
φ,jpx1, . . . , xnq :

n¹
i�1

ϕki�jipxiq :Hφ

n¹
i�1

dxi

�
¸
j

�
k
j

� »
Mn�|k�j|

�¹
i

fipxiqδpxi, x
p1q
i , . . . , x

pki�jiq
i q

�
τHφ,jpx1, . . . , xnq�

� :
¹
i

ϕpx
p1q
i q � � �ϕpx

pki�jiq
i q :Hφ

¹
i

dxidx
p1q
i . . . dx

pki�jiq
i ,

(4.79)

where τHφ,j are certain distributional coe�cients. This expansion is called local Wick expansion.
By comparing with formula (??), we conclude that the distributions τHφ,j are all identically 1 for n � 1.
It is proved in [? , sec. 3.2] that any de�nition of time-ordered products satisfying axioms (T3) and (T9)
admits a local Wick expansion with coe�cients τHφ,j satisfying

WF
�
τHj rg,m, φ, λs

�
� CTn rgs, (4.80)

where CTn is de�ned in terms of decorated graphs similarly as done for CRn in formula (??), namely

CTn rgs :�
!
px1, . . . , xn; k1, . . . , knq P 9T�Mn�1 :

D decorated graph G with vertices x1, . . . , xn

kj �
¸

e:speq�xj

pepxjq �
¸

e:tpeq�xj

pepxjq

,.- ,

(4.81)

where, in this context, a decorated graph G is understood as an embedded graph in M with vertices
x1 . . . , xn and with edges connecting the vertices given by oriented null-geodesic curves. The valence of
a vertex xi in the graph is restricted to be less or equal to ji. For an edge e, we denote the endpoints by
xspeq (called source) and xtpeq (called target) if speq   tpeq. We consistently impose an orientation for the
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null-geodesic corresponding to e in such a way that the curve starts at speq. Each edge is equipped with
a future-directed covector �eld pe which is cotangent and coparallel to the geodesic curve associated to
the edge e. The �eld pe is future/past directed if xtpeq is in the future/past of xspeq.
Conversely, if a prescription for time-ordered products admits a local Wick expansion with distributional
coe�cients satisfying the wave-front set condition above, then it satis�es the axioms (T3) and (T9).
Because of the inductive hypothesis, the time-ordered product Tn,φrbiϕkipxiqs is known to satisfy all the
axioms (T1)-(T9) on Unz∆n, i.e. outside the total diagonal ∆n, but inside the neighbourhood Un. Thus,
it can be de�ned by a local Wick expansion with distributional coe�cients τH,0φ,k de�ned on Unz∆n.

As a consequence of the causal factorization axiom (T8), the distribution τH,0φ,k is fully determined by
terms tτHφ,iui corresponding to time-ordered products with less than n factors and appropriate powers of

the Hadamard parametrix. More precisely, τH,0φ,k can be expressed as a �nite sum of terms in the form

fIpx1, . . . , xnqτ
H
φ,ippxaqaPIqτ

H
φ,i1ppxbqbPIcq

¹
aPI,bPIc

Hφpxa, xbq
nab , (4.82)

where I is a proper subset of t1, . . . , nu, and where nab are natural numbers such that ka � ia�
°
bPIc nab

for a P I and kb � i1b�
°
aPI nab for b P I

c. In the formula above, tfIuI is a partition of unity subordinate
to the covering tCIuI of Unz∆n, where CI is the open set de�ned by

CI � tpx1, . . . , xnq P Un : xa R J
�pxbq @a P I, b P I

cu. (4.83)

As explained in [? , sec. 3.3], a time-ordered product Tn,φrbiϕkipxiqs which satis�es axioms (T1)-(T5)
and (T9) on the whole Un is de�ned by providing an extension τHφ,k on Um of the distribution τH,0φ,k such
that:

(t1) The distributions τHk rg,m, φ, λs are locally covariant: let pM, gq and pM 1, g1q be two space-times,
let ι : M 1 Ñ M be a causality-preserving isometric embedding, i.e. g1 � ι�g, and let f be a test
function supported in a su�ciently small neighbourhood of the total diagonal in pM 1qn. Then, it
holds �

ι�τHk rg,m, φ, λs
�
pfq � τHk rι

�g, ι�m, ι�φ, ι�λspfq. (4.84)

(t2) The distributions τHk rg,m, φ, λs scale almost homogeneously with degree |k| under the rescaling
pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq, i.e. it holds

Λ�dτHk rΛ
�2g,Λm,Λφ, λs � τHk rg,m, φ, λs �

ņ

`�1

ln` Λ

`!
β`rg,m

2, φ, λs,

for certain locally covariant distributions β`, and for a certain N P N.

(t3) It holds
WF

�
τHk rg,m, φ, λs

�
� CTn rgs.

(t4) For any choice of smooth 1-parameter families tgpsq,mpsq, φpsq, λpsqu, τHk rg
psq,mpsq, φpsq, λpsqs is a

distribution on R� Un and consequently it trivially satis�es

WF
�
τHk rg

psq,mpsq, φpsq, λpsqs
	
�
!
ps, x1, . . . , xn; ρ, k1, . . . , knq P 9T�pR�Mnq :

px1, . . . , xn; k1, . . . , knq P CTn rgpsqs
)
.

Less trivially, we require

WF
�
τHk rg

psq,mpsq, φpsq, λpsqs
	���

R�∆n

K T pR�∆nq,

and, in case of a smooth variation of only the background φ, we also require

WF
�
τHk rg,m, φ

psq, λs
	
� R� t0u � CTn rgs.
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(t5) If we assume that tgpsq,mpsq, φpsq, λpsqu are analytic 1-parameter families, then the distribution
τHk rg

psq,mpsq, φpsq, λpsqs varies analytically, i.e. it satis�es analogous bounds as before in ??-??
with the smooth wave-front set replaced by the analytic wave-front set.

As the notation suggest the requirements ??-?? correspond to the axioms (T1)-(T5).

These claims can be proved using the argument presented in [? ]. Even though in the aforementioned
paper the authors only consider the case of massless scalar �eld (the only dependence of the distributional
coe�cients tτφ,juj is on the metric g), the method can be adapted to the case considered here (the
scalar �eld theory corresponding to the linear operator ��m2 � λ

2φ
2) with obvious modi�cations. The

cornerstone of the method is the microlocal control on the Hadamard parametrix, see ??, under smooth
and analytic variation of the parameters of the theory. In the setting we are considering here, such
microlocal control still holds, in the form (??) and (??) and their analytic counterparts.
For the purpose of proving prop. ??, we will need the following technical lemma.

Lemma 63. For any n ¥ 2, we have

CTn rgs � CT ;�
n rgs X CT ;�

n rgs,

where

CT ;�
n rgs :�

!
px1, . . . , xn; k1, . . . , knq P 9T�Mn : if k`�i,j P V

�
then

xi � xj , ki � kj P V
	
or xi � xj , ki P V

	
or kj P V

	
)
.

(4.85)

Proof. We prove CTn rgs � CT ;�
n rgs by induction on the number n of the variables. For n � 2 the assump-

tion can be veri�ed straightforwardly. We proceed assuming that the claim holds for any n1   n, and
then we prove that the statement holds also for n.
Let px1, . . . , xn; k1, . . . , knq be an element of CTn rgs, corresponding to a decorated graph G . If all
the points x1, . . . , xn coincide, then the covectors k1, . . . , kn must satisfy

°
i ki � 0 and so we have

px1, . . . , xn; k1, . . . , knq P CT ;�
n rgs.

Now, if not all the points coincide, there must exists a proper subset I � t1, . . . , nu such that (1) all the
xa with a P I coincide and it holds xb � xa for b P Ic, and (2) for any xb with b R I which is connected
in the graph G with a point xa with a P I, it holds xb P I�pxaq. By the de�nition of decorated graph,
the covector ka for a P I is given by

ka �
¸

bPIc,b¡a,abPG

pab|xa �
¸

b1PIc,b1 a,ab1PG

pb1a|xa �
¸

a1PI,a1¡a,aa1PG

paa1 |xa �
¸

a2PI,a2 a,a2aPG

pa2a|xa .

For any b P Ic, we de�ne the covector k1b by

k1b :� kb �
¸

aPI,a¡b,baPG

pba|xb �
¸

a1PI,a1 b,a1bPG

pa1b|xb . (4.86)

Note that k1b � kb P V
�
because by construction the null covector �eld pba is past directed and the null

covector pa1b is future directed. Furthermore, we have k1b � kb if in the graph G the vertex xb is not
connected to any vertex xa with a P I.
We claim that ppxbqbPIc ; pk1bqbPIcq is in CTn�|I|rgs. In fact, it corresponds to the decorated graph obtained
from G removing the vertices xa with a P I and the edges with one of these points as source or target.
This is clearly enough to prove the claim. By the inductive hypothesis, it follows that ppxbqbPIc ; pk1bqbPIcq
belongs to CT ;�

n�|I|rgs.

In order to prove that px1, . . . , xn; k1, . . . , knq belongs to CT ;�
n rgs, we now assume k` P V

�
for any ` � i, j

and we prove that if xi � xj , then either ki or kj is in V
�
, whereas we have ki� kj P V

�
if xi � xj . We

need to consider only the following two cases: (a) i, j R I, and (b) i P I, and j R I. In fact, if we assume

i, j P I and k` P V
�
for any ` � i, j, then all covectors k1b with b P Ic belong to V

�
. However, this

con�guration violates the inductive hypothesis since ppxbqbPIc ; pk1bqbPIcq belongs to CTn�|I|rgs � C
T ;�
n�|I|rgs.
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(a) The assumption k` P V
�
for any ` � i, j implies that it holds k1b P V

�
for any b P Ic with b � i, j

since k1b�kb P V
�
. By the inductive hypothesis, it must hold either k1i P V

�
or k1j P V

�
if xi � xj ,

otherwise k1i� k
1
j P V

�
if xi � xj . Because both k1i� ki and k

1
j � kj belong to V

�
, it follows either

ki P V
�
or kj P V

�
if xi � xj , whereas ki � kj P V

�
if xi � xj , as we needed to prove.

(b) By hypothesis, xi � xj , so we have to verify that the assumption k` P V
�
for any ` � i, j implies

either ki P V
�
or kj P V

�
. It follows from this assumption that for any b P Ic with b � j it

holds k1b P V
�
. Because ppxbqbPIc ; pk1bqbPIcq P C

T ;�
n�|I|rgs, it follows that k

1
j must be in V

�
. Because

k1j � kj P V
�
,we obtain kj P V

�
, which is enough to prove the claim.

Finally, we notice that CTn rgs � CT ;�
n rgs can be proved with a similar argument by time-reversal. In

more detail, if px1, . . . , xn; k1, . . . , knq is an element of CTn rgs with x1 � � � � � xn, then it can be proved
that px1, . . . , xn; k1, . . . , knq belongs to CT ;�

n rgs arguing exactly as before. If not all the points x1, . . . , xn
coincides, we consider a subset J � t1, . . . , nu such that: (1) all the points xa with a P J coincide and
it holds xb � xa for b P Jc, and (2) for any xb with b R J which is connected in the graph G with
a point xa with a P J , it holds xb P I�pxaq if b P Jc. Then, we remove from the decorated graph
corresponding to px1, . . . , xn; k1, . . . , knq the vertices xa P J . Proceeding similarly as before, we obtain
that px1, . . . , xn; k1, . . . , knq P CT ;�

n rgs as we needed to prove.

As an immediate corollary of ??, ?? and this lemma, we get that

WF
�
τHk rg,m, φ, λs

�
� CT ;�

n rgs X CT ;�
n rgs �Wnrgs, (4.87)

and for any smooth 1-parameter family tφpsqu

WF
�
τHk rg,m, φ

psq, λs
	
� R� t0u �

�
CT ;�
n rgs X CT ;�

n rgs
�
� R� t0u �Wnrgs. (4.88)

We used the fact CT ;�
n � C�

n which is a straightforward consequence of the de�nitions of the set in-
volved (??) and, respectively, (??), and the de�nition of the set Wn (??).

We continue the review of how Tn,φpbiϕ
kipfiqq is constructed. The fundamental step is to de�ne the

extension τHφ,k of τH,0φ,k to the diagonal, as also done in [? ].
Firstly, we �x a point x P M . For any su�ciently small convex normal neighbourhood U of x we can
consider τ0,H

φ,k as a distribution on the sub-manifold txu � Un�1{px, . . . , xq. A priori the restriction of

a distribution on a sub-manifold is not well-de�ned. However, WFpτ0,H
φ,k q does not contain elements

px1, . . . , xn; k, 0, . . . , 0q and these elements span the co-normal bundle of txu � Un�1{px, . . . , xq. Then,
using thm. ??, the restriction is well-de�ned.
Condition ??3 implies that τ0,H

φ,k can be rewritten as a Taylor expansion, the so called scaling expansion

of τ0,H
k , i.e.

τ0,H
k rg,m, φ, λspx, �q �

Ļ

`�0

1

`!
θ0
` rg,m, φ, λspx, �q � r0

Lrg,m, φ, λspx, �q, (4.89)

where

θ0
` rg,m, φ, λspx, �q :�

d`

ds`
τ0,H
k rgpsq,mpsq, φpsq, λpsqspx, �q

����
s�0

, (4.90)

r0
Lrg,m, φ, λspx, �q :�

1

L!

» 1

0

ds p1� sqL
dL�1

dsL�1
τ0,H
k rgpsq,mpsq, φpsq, λpsqspx, �q

����
s�0

, (4.91)

where the families tgpsq,mpsq, φpsq, λpsqu are de�ned by

gpsq � s�2ι�s g, mpsq � sm, φpsq � sι�sφ, λpsq � ι�sλ, (4.92)

3As a matter of fact the weaker estimate where CTn rgs is replaced by CT ;�
n rgs X CT ;�

n rgs is su�cient.
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and where ιs is the di�eomorphism in U which shrinks the Riemannian coordinates with respect to x by
the factor s4.

The extension is now performed using the decomposition (??). It is well-known (see e.g. [? , thm.
5.2]) that it is not necessary the case that the extension of a distribution to the diagonal exists nor that
the extension is unique. However, in our situation, the scaling expansion guarantees the existence of an
extension and, furthermore, allows a complete characterization of the non-uniqueness of such extension.
The point is that for a su�ciently large L we have su�cient control over the singular behaviour of θ0

`

with ` ¤ L and of r0
L near px, x, . . . , xq. More precisely, the relevant properties of θ0

` and r
0
L are:

i) Both θ0
` and r0

L are distributions on Un�1zpx, . . . , xq de�ned in terms of g,m, φ, λ in a local and
covariant way. Namely, eq. (??) holds for any di�eomorphis ι which preserves x.

ii) The distribution θ0
` can be expressed as

θ0
` rg,m, φ, λspx, �q �

¸
Cp`qrg,m, φ, λ, . . . spxq � ppαxrgsq

�up`q0qp�q, (4.93)

where αx : U Ñ R4 maps a point in U to its Riemannian normal coordinates with respect to x,
and where up`q0 are certain tensor valued distributions on R4pn�1qzt0u invariant under the Lorentz
transformations. Here, Cp`qpxq is a sum of monomials constructed with the metric g, the Riemann
tensor and its symmetrized covariant derivatives5, the �mass� m2�λpxqφ2pxq and its symmetrized

covariant derivatives. Cp`q
φ is required to scale homogeneously with degree ` under the rescaling of

pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq. We emphasize that θ0
`,φ depends on the background φ only via

the coe�cients Cp`q
φ .

iii) The distribution up`q0 scales almost homogeneously with degree |k| � ` under rescalings of the
coordinates.

iv) As distributions on Umz∆m, both θ0
` and r

0
L,φ scale almost homogeneously with degree d under the

rescaling pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq.

v) The remainder term r0
L has a scaling degree less than |k|�L�1 under rescalings of the coordinates.

These properties are just the properties proved in [? , thm. 4.1], adjusted in an obvious way to re�ect
the presence of non-trivial m,φ, λ in the theory we are discussing here.

As explained in [? , sec. 4.2], the extensions of θ0 and r0
L to the total diagonal are constructed

exploiting these properties.
First, we construct an extension for θ0

` . Making use of eq. (??), it will be su�cient to extend up`q0 to
a Lorentz invariant distribution up`q in R4pn�1q which scales almost homogeneously with degree |k| � `
under rescalings of the coordinates. Such extension up`q always exists, but it is non-unique as proved
in [? , lemma 4.1] making use of [? , thm. 5.2]. The ambiguity of the extension up`q corresponds the
renormalization freedom, which is characterized in the same reference. The extension θ` of θ0

` can be then
constructed replacing u0p`q with one of the possible extensions up`q in the right-hand side of eq. (??).
Next, we focus on the remainder term r0

L. If we choose L ¥ |k| � 4pn � 1q, then, for any x P M ,
the distribution r0

Lpx, �q has a scaling degree less than 4pn � 1q � 1 with respect to a rescaling of the
coordinates. As a consequence of [? , thm. 5.2], there exists a unique extension of r0

Lpx, �q with the same
scaling degree for any x PM . This unique extension is de�ned by the weak limit

rL,φpfq � lim
jÑ8

r0
L,φp%jfq, (4.94)

where f is a test function in Mm with the support su�ciently close to the total diagonal ∆n, and where
%j is a sequence of functions with support in Unz∆n such that %j is identically 1 outside a neighbourhood
Oj of ∆n with Oj shrinking to ∆n as j Ñ 8. Because of the scaling properties of r0

L,φ, the limit exists

4For y P U , described by its Riemannian coordinates ξx with respect to x, ιsy is the point corresponding to the
Riemannian coordinates s�1ξx with respect to x.

5We consider the covariant derivative with respect to the Levi-Civita connection of the metric g.
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and it does not depend on the choice of the cut-o� %j (see [? , thm. 5.2]). The desired distribution τHφ,k
extending τ0,H

φ,k is de�ned as

τHφ,k �
Ļ

`�0

1

`!
θ`,φ � rL,φ, (4.95)

for L ¥ |k| � 4pm � 1q. Such τHφ,k satis�es the conditions ??-??, and, therefore, also the weaker condi-
tions (??), (??), as can be proved following the argument given in [? , sec. 4.3].

4.2.5 Properties of the variational derivatives of the distributional coe�-
cients tτHφ,juj

In sec. ??, we presented two su�cient conditions for φ ÞÑ Tn,φrbiϕ
kipfiqs to be on-shellW -smooth. These

conditions require su�cient microlocal control on the variational derivatives of the distributions tτφ,juj,
i.e. the distributional coe�cient of the Wick expansion with respect to the retarded 2-point function, for
pM, gq ultra-static space-time with compact Cauchy surface, m constant, φ a general smooth function
and compactly supported coupling constant λ.
As explained in the introduction, we �rst consider a neighbourhood Un � Mn of the total diagonal as
in sec. ??, i.e. Un is small enough to ensure that for any px1, . . . , xnq P Un it holds x1, . . . , xn P U for a
convex normal set U �M . In Un, we prove that the Gateaux derivatives of the distributional coe�cients
tτHφ,juj of the local Wick expansion have the desired su�cient microlocal control. To do this, we enhance
the inductive construction of the distribution τHφ,j (governed by the conditions ??-??) to constrain the
variational derivatives δντHφ,j{δφ

ν . In detail, we demand the additional conditions for any ν:

(δt0) We require
supp

�
δντHφ,jpx1, . . . , xnq{δφpy1q . . . δφpyνq

���
px1,...,xnqP∆n

� ∆n�ν ,

and
supp

�
δντHφ,jpx1, . . . , xnq{δφpy1q . . . δφpyνq

���
px1,...,xnqPUn

� Un�ν ,

where U is a normal convex subset of M su�ciently small that we can apply lemma ??.

(δt1) We demand that δντHj {δφ
νrg,m, φ, λs is a locally covariant distribution. Let pM, gq and pM 1, g1q

be two ultra-static space-times with compact Cauchy surfaces and let ι : M 1 ÑM be a causality-
preserving isometric embedding, i.e. g1 � ι�g. Then, for any test function f supported in a
su�ciently small neighbourhood of the total diagonal in pM 1qn�ν it holds that�

ι�
δντHj
δφν

rg,m, φ, λs

�
pfq �

δντHj
δφν

rι�g, ι�m, ι�φ, ι�λspfq.

(δt2) The distribution δντHj {δφ
νrg,m, φ, λs scales almost homogeneously with degree |j| � 3ν � 4 under

the rescaling pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq.

(δt3) It holds
WF

�
δντHj {δφ

νrg,m, φ, λs
�
� Cδ;�n,ν rgs X Cδ;�n,ν rgs, (4.96)

where

Cδ;�n,ν rgs :�
!
px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq P 9T�Mn�ν :

if pr�s P V
�
yr , ps space-like, then pk1, . . . , knq R pV

�
qn

if pr P V
�
yr , then px1, . . . , xn; k1, . . . , knq P CT ;�

n rgs
)
,

with CT ;�
n rgs de�ned by eq. (??). Furthermore, we require

WF
�
δντHj {δφ

ν
���

∆n�ν
K T p∆n�νq.
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(δt4) For any smooth 1-parameter families tgpsq,mpsq, φpsq, λpsqu, the quantity δντHj {δφ
νrgpsq,mpsq, φpsq, λpsqs

is a distribution on R� Un�ν and consequently it trivially satis�es

WF
�
δντHj {δφ

νrgpsq,mpsq, φpsq, λpsqs
	
�

�
!
ps, x1, . . . , xm, y1, . . . , yν ; ρ, k1, . . . , km, p1, . . . , pνq P 9T�pR�Mn�νq :

px1, . . . , xm, y1, . . . , yν ; k1, . . . , km, p1, . . . , pνq P Cδ;�n,ν rgpsqs X Cδ;�n,ν rgpsqs
)
.

(4.97)

Less trivially, we require

WF
�
δντHj rg

psq,mpsq, φpsq, λpsqs{δφν
	���

R�∆n�ν

K T pR�∆n�νq,

and, in case of a smooth variation only of the background φ, we require

WF
�
δντHj {δφ

νrg,m, φpsq, λs
	
� R� t0u �

�
Cδ;�n,ν rgs X Cδ;�n,ν rgs

�
. (4.98)

As one can see, properties ?? and ?? give a microlocal control on the variational derivatives of τHφ,j. On
the other hand, at this stage it does not seem clear why we have to impose also the other properties. We
will see that these extra properties play an important role in the proof.

To prove these properties, we follow the inductive construction of τHφ,j. The induction counter is n,
the number n of the factors ϕj1pf1q, . . . , ϕ

jnpfnq in the time-ordered product. For n � 1, i.e. for the
Wick product, a direct inspection of eq. (??) reveals that τHφ,j � 1 and so the properties ??-?? hold
trivially.
We assume that the variational derivatives of τHφ,j1 for any j1 corresponding to time-ordered products
with less than n factors exist and satisfy properties ??-??. We prove that this is also the case for the
variational derivatives of τHφ,j for any j corresponding to time-ordered products with n factors.
As outlined in sec. ??, for a �xed j the distribution τHφ,j is an extension to the total diagonal of the

distributional coe�cients τH,0φ,j of the local Wick expansion of Tn,φrbiϕjipxiqs in Unz∆n. In particular,

after �xing a point x P M , the distribution τH,0φ,j px, �q can be expressed as in formula (??) for L ¥

|j| � 4pn � 1q in terms of the distributions θ0
`,φpx, �q, given by (??), and the remainder r0

φ,Lpx, �q given

by (??). Using eq. (??), we can express θ0
`,φpx, �q in terms of the distributions up`q0 and the tensor �elds

C
p`q
φ . The extension τHφ,j is constructed as in eq. (??) providing an extension for each up`q0, for which

there is not an unique choice, and for the remainder r0
φ,Lpx, �q, for which there is a unique choice since it

scales with degree less than 4pn� 1q under rescaling of the coordinates.
We note that the distributions up`q0 do not depend on the background φ P C8pMq, therefore the same

up`q0 appears in the factorizations of τ0,H
φ,j for di�erent background φ. We can choose the extension up`q

independently of the background φ P C8pMq. So, we have

δντHφ,jpx, x2, . . . , xnq

δφpy1q . . . δφpyνq
�

�
Ļ

`�0

1

`!

�¸ δνC
p`q
φ pxq

δφpy1q . . . δφpyνq
� ppαxq

�up`qqpx2, . . . , xnq

�
�
δνrφ,Lpx, x2, . . . , xnq

δφpy1q . . . δφpyνq
,

(4.99)

where L is chosen again to be greater than |j| � 4pn� 1q.
We aim to prove that the right-hand side of eq. (??) is a well-de�ned distribution in Un�ν which satis�es
the properties ??-??. To do so, we proceed by the following three steps:

1. First, we investigate the properties satis�ed by δντH,0φ,j {δφ
ν , where τH,0φ,j denotes τHφ,j outside the

diagonal ∆n.

2. Then, we prove that δντHφ,jpx, �q{δφ
νp�q is an extension to the total diagonal of δντH,0φ,j px, �q{δφ

νp�q
once a point x P U is �xed.

3. Finally, we show that the desired properties ??-?? hold for δντHφ,jpx, �q{δφ
νp�q exploiting the step 2.

The logic behind this argument is the same adopted in [? ], and reviewed in sec. ??, to prove that the
extension rL,φ of the remainder term r0

L,φ exists, is unique, and satis�es the properties ??-??.
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Step 1. We begin by proving the following result for τH,0φ,j :

Lemma 64. For any j and any ν, the distribution δντH,0φ,j {δφ
ν is well-de�ned in Un�νz∆n�ν and, in

this domain, satis�es conditions ??-??.

Proof. As discussed in sec. ??, τH,0φ,j , as a distribution on Unz∆n, can be expressed as a �nite sum
of products of τHφ,i corresponding to time-ordered products with less than n factors and powers of the

Hadamard parametrix, see (??). Then, we compute δντH,0φ {δφν by distributing the variational derivatives

on each factor of the terms (??). It follows that δντH,0φ,j px1, . . . , xnq{δφpy1q . . . δφpyνq is a �nite sum of
terms in the form

fIpx1, . . . , xnq
δ|N1|τHφ,ippxaqaPIq

δφ|N1|ppyrqrPN1q

δ|N2|τHφ,i1ppxbqblPIcq

δφ|N2|ppyrqrPN2q

¹
aPI,bPIc

nab¹
v�1

δ|Na,b,v |Hφpxa, xbq

δφ|Na,b,v |ppyrqrPNa,b,v q
. (4.100)

where I is a proper subset of t1, . . . , nu, where fI is as in (??), and whereN1, N2, tNa,b,vuaPI,bPIc,v¤nab are
a partition of t1, . . . , νu made of disjoint subsets. Now, since τHφ,ippxaqaPIq and τ

H
φ,i1ppxbqblPIcq correspond

to time-ordered products with less than n factors, the variational derivatives of these two distributions
satisfy the properties ??-?? by the inductive hypothesis.
We proceed proving that each terms in the form (??) satis�es the conditions ?? -??. This is clearly
su�cient to imply that also δντH,0φ {δφν does.

(δt0) Outside the diagonal, this condition requires that: (1) if px1, . . . , xn, y1, . . . , yνq is in the support
of the distribution (??) where px1, . . . , xnq belongs to Un, then px1, . . . , xn, y1, . . . , yνq belongs to
Un�νz∆n�ν , and (2) there is no element px1, . . . , xn, y1, . . . , yνq in the support of the distribu-
tion (??) such that px1, . . . , xnq belongs to ∆n.
The requirement (2) holds because the functions tfIuI for a partition of unity subordinate to the
covering tCIuI de�ned by (??), and so it holds supp fI X∆n � H by construction.
To prove that requirement (1) is satis�ed, we notice that δ|N1|τHφ,i{δφ

|N1| and δ|N2|τHφ,i1{δφ
|N2|

satis�es condition ?? by the inductive hypothesis. As proved in lemma ??, for x1, x2 P U ,
δνHφpx1, x2q{δφpy1q . . . δφpyνq identically vanishes if y1, . . . , yν do not belongs to the unique geodesic
segment connecting x1, x2. Since U is a normal convex set, y1, . . . , yν must belong to U . It follows
that each of the terms in the form (??) satis�es (1) and this concludes the proof of condition ??.

(δt1) Since δ|N1|τHi rg,m, φ, λs{δφ
|N1| and δ|N2|τHi1 rg,m, φ, λs{δφ

|N2| are locally covariant by hypothesis,
the claim follows from the fact that δνHrg,m, φ, λs{δφν is locally covariant as shown in lemma ??.

(δt3) The wave-front set calculus implies that an element px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq of
the wave-front set of (??) necessarily satis�es the following requirements:

kaPI � kIa �
¸
bPIc

¸
v¤nab

kLa,b,v, kbPIc � kI
c

b �
¸
aPI

¸
v¤nab

kRa,b,v, (4.101)

and $''''''&''''''%

pxa, xb, pyrqrPNa,b,v ; kLa,b,v, k
R
a,b,v, pprqrPNa,b,v q P WFpδ|Na,b,v |Hφ{δφ

|Na,b,v |q

or kLa,b,v, k
R
a,b,v, pr � 0,

ppxaqaPI , pyrqrPN1
; pkIaqaPI , pprqrPN1

q P WFpδ|N1|τHφ,i{δφ
|N1|q

or kIa, pr � 0,

ppxbqbPIc , pyrqrPN2
; pkI

c

b qbPIc , pprqrPN2
q P WFpδ|N2|τHφ,i1{δφ

|N2|q

or kI
c

b , pr � 0.

(4.102)

We prove now that px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq is contained in Cδ;�n,ν rgs. By de�ni-

tion, we need to show that the following two requirements are satis�ed: (a) if it holds k` P V
�
for

any ` � i, j and pr P V
�
for and any r, then it holds ki P V

�
or kj P V

�
whenever xi � xj , while

it holds ki � kj P V
�
in case xi � xj , and (b) if there exists s such that ps is space-like and pr is

V
�
for any r � s, then not all k1, . . . , kn are in V

�
.
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(a) Because of estimate (??) and because pr is in V
�
for any r by hypothesis, we have kRa,b,v P V

�

for any a, b, v. We distinguish three possibilities, namely i, j P I, i P I and j R I, and i, j R I.
In the �rst situation, it holds kb P V

�
for all b P Ic by hypothesis. As we already mentioned,

it holds kRa,b,v P V
�
for any a, b, v. Therefore, it follows from eq. (??) that kI

c

b must be in V
�

for all b P Ic. However, these con�gurations are incompatible with the fact that τHφ,i1 satis�es

the estimate (??) by hypothesis. So we cannot assume k`, pr P V
�
for any r and for any

` � i, j with i, j P I.
If i P I and j R I, then we have kb P V

�
for any b P Ic such that b � j by hypothesis.

Exploiting again eq. (??) and the fact that kRa,b,v is in V
�

for all possible a, b, v, we have

kI
c

b P V
�
for any b P Ic such that b � j. Since the estimate (??) holds for τHφ,i1 by hypothesis,

it follows that kI
c

j must belong to V
�
. Because kRa,j,v is in V

�
for all a and v, implies that

kj , de�ned via eq. (??), is in V
�
and this veri�es the requirements (a).

Finally, if i, j R I, then we have kb P V
�
for any b P Ic such that b � i, j by hypothesis.

Therefore, it must also hold kI
c

b P V
�
, de�ned via eq. (??), for any b P Ic such that b � i, j

because kRa,b,v is in V
�
for all possible a, b, v. In this case, the estimate (??) of τHφ,i1 implies that

whenever xi � xj it holds kI
c

i P V
�
or kI

c

j P V
�
, while in case xi � xj it holds kI

c

i �kI
c

j P V
�
.

Using again the fact that kRa,b,v P V
�
for all possible a, b, v and eq. (??), we obtain ki P V

�
or

kj P V
�
whenever xi � xj , and ki � kj P V

�
if xi � xj , which are precisely the requirements

we need to prove.

(b) Let us assume pr P V
�
for any r � s and ps space-like. We distinguish the following cases: the

index s of the unique space-like covector ps is either in N2 YN1 or there exists a1, b1, v1 such
that s P Na1,b1,v1 . In both cases, we prove by reductio ad absurdum that we cannot assume

k` P V
�
for all `.

Assume s P N1YN2. Because of estimate (??) and because pr is in V
�
for and any r � s, we

have kRa,b,v P V
�
for all possible a, b, v. If we assume k1, . . . , kn P V

�
, then eq. (??) implies

that kI
c

b must belong to V
�
for any b P Ic. However, these con�gurations are incompatible

with the fact that τHφ,i1 satis�es estimate (??), as we wanted to show.
Next, we assume that there exist a1, b1, v1 such that s P Na1,b1,v1 . Because of estimate (??)

and because we assume ps space-like whereas pr P V
�

for any r � s, then we must have
kRa,b,λ P V

�
for any pa, b, vq � pa1, b1, v1q and kRa1,b1,v1 R V

�
. If we assume k1, . . . , kn P V

�
,

then we get kI
c

b P V
�
for any b P Ic such that b � b1 and kI

c

b1 R V
�
, because kI

c

b1 satis�es the
following equation

kI
c

b1 � kb1 �
¸

pa,vq�pa1,v1q

kRa,b1,v � kRa1,b1,v1 .

However, these con�gurations are incompatible with fact that τHφ,i1 satis�es estimate (??), as
we wanted to show.

With a similar argument we can prove that any element px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq
of the wave-front set of distribution (??) is contained in Cδ;�n,ν rgs, i.e. that the following requirements

are satis�ed: (a) if k` P V
�
for all ` � i, j and pr P V

�
for all r, then it holds ki P V

�
or kj P V

�

whenever xi � xj , while it holds ki � kj P V
�
in case xi � xj , and (b) if there exists ps space-like

and pr is in V
�
for all r � s, then not all k1, . . . , kn are in V

�
. For this purpose, we use the

estimate (??) to derive constraints for kLa,b,v (whereas in the argument just presented we used the
same estimate for kRa,b,v), while eq. (??) and the conditions (??) are used to derives constraints on
kIa and ka for a P I (whereas in the argument just presented we focused on kI

c

b and kb for b P Ic).
Putting everything together, it follows that each term (??) satis�es condition ??.

(δt4) This condition can be veri�ed similarly as just done for condition ??. In fact, for any smooth
function R Q ε ÞÑ φpεq P C8pMq, the distribution δντH,0φpεqj{δφpy1q . . . δφpyνq is a �nite sum of
terms in the form (??) with the only di�erence that φ is replaced by φpεq everywhere. We can
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prove estimate (??) adapting the argument we just presented to prove ??: now we make use of
estimate (??) of lemma ?? for δνHφpεq{δφ

ν , and the fact that for any i and any ν the quantity
δντHφpεq,i{δφ

ν corresponding to a time-ordered product less than n factors satis�es estimates (??)
by the inductive hypothesis.

(δt2) We assume �rst that pM, gq is a real analytic space-time and m,φ, λ are analytic. We know from
lemma ?? that for any ν the distribution δνHφ{δφ

ν is a locally covariant distribution which scales
almost homogeneously with degree 2�3ν under the rescaling pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq. By
the inductive hypothesis, all the distributions δντHφ,i{δφ

ν corresponding to time-ordered products
with less than n factors are locally covariant distributions which scale almost homogeneously with
degree |i| � 3ν under the rescaling pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq. Thus, formula (??) implies
that δντH,0φ,j {δφ

ν must be a locally covariant distribution which scales almost homogeneously with
degree

°
` j` � 3ν under the rescaling pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq.

To extend the validity of the almost homogeneous scaling in the more general smooth case, we
notice that we can approximate any arbitrary smooth metric in the neighbourhood U � M of
x by a sequence tqp`qu`PN of real analytic metrics (see [? ][proof of thm. 4.1]), and similarly
we approximate the smooth functions m,φ, λ in U by sequences of real analytic functions. More
precisely, we mean that

sup
xPU

���∇α1
. . .∇α`gµνpxq �∇α1

. . .∇α`qp`qµν pxq
���
e
  2�n, @` ¤ n.

Similar bounds hold for m,φ, λ and their approximations via sequences of real analytic functions.
We consider a generic symmetric smooth function ψ : RÑ r0, 1s supported in r�1, 1s which satis�es
in addition 1 � ψpxq � ψp1 � xq for all x P r0, 1s. We de�ne a smooth family thpsqu of metrics by
setting hp0q :� g and hpsq :�

°
n ψp|1{s| � nqqpnq. We proceed similarly for m,φ, λ. The almost

homogeneous scaling holds for all s � 0 and, therefore, by the smoothness properties of δντH,0φ,k {δφ
ν ,

it continues to hold for s � 0.

This concludes the proof of lemma ??.

Step 2. Let us �x x P U . We can make use of the Taylor expansion (??) and the formula (??), to
write δντH,0φ,j px, �q{δφ

ν as

δντH,0φ,j px, x2, . . . , xnq

δφpy1q . . . δφpyνq
�

�
Ļ

`�0

1

`!

�¸ δνC
p`q
φ pxq

δφpy1q . . . δφpyνq
� ppαxq

�u0p`qqpx2, . . . , xnq

�
�
δνr0

φ,Lpx, x2, . . . , xnq

δφpy1q . . . δφpyνq
,

(4.103)

where Cp`q
φ pxq, u0p`q are as in eq. (??), and where r0

φ,Lpx, �q is as in eq. (??).

By construction, Cp`q
φ is a sum of monomials constructed from the metric gpxq, the Riemann tensor in x

and its symmetrized covariant derivatives, the functionsm,λ, φ in x and their covariant derivatives. Thus,
the distribution δνCp`q

φ pxq{δφν exists and it is given by derivatives of the delta distribution δpx, y1, . . . , yνq
multiplied by sums of monomials in the same form as before.
Since both the distributions δντH,0φ,j px, �q{δφ

νp�q and pCp`q
φ pxq{δφνp�qq � ppαxq

�u0p`qqp�q are well-de�ned in
Un�ν�1zpx, . . . , xq, it follows straightforwardly that this is true also for δνr0

φ,Lpx, �q{δφ
νp�q.

We consider the 1-parameter families tgpsq,mpsq, φpsq, λpsqu de�ned by (??). As a corollary of lemma ??,
in particular, because of property ??, we know that

δντH,0k rgpsq,mpsq, φpsq, λpsqs

δφνp�q
px, �q

can be interpreted as a family of distributions on Um�ν�1zpx, . . . , xq parametrized by ps, xq. When
smeared with a test function f , δντH,0k rgpsq,mpsq, φpsq, λpsqs{δφνpx, fq is smooth in ps, xq as a consequence
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of the wave-front set calculus (thm. ??) and the estimate (??) of property ??. The following equations
are consequences of this result:

¸ δνC
p`q
φ pxq

δφνp�q
� ppαxq

�u0p`qqp�q �
δνθ0

` px, �q

δφνp�q
�

d`

ds`
δντ0,H

j rgpsq,mpsq, φpsq, λpsqspx, �q

δφνp�q

�����
s�0

, (4.104)

and

δνr0
L,φpx, �q

δφνp�q
�

1

L!

» 1

0

ds p1� sqL
dL�1

dsL�1

δντ0,H
k rgpsq,mpsq, φpsq, λpsqspx, �q

δφνp�q

�����
s�0

. (4.105)

These two distributions δνθ0
` px, �q{δφ

νp�q and δνr0
L,φpx, �q{δφ

νp�q, de�ned in Un�ν�1zpx, . . . , xq, satisfy

properties ??-?? as can be easily seen. It follows straightforwardly from the properties of Cp`q
φ and

u0p`q that each distribution pC
p`q
φ pxq{δφνp�qq � ppαxq

�u0p`qqp�q satis�es ??-?? and so the distribution
δνθ0

` px, �q{δφ
νp�q also does. Furthermore, we conclude that also δνr0

φ,L{δφ
ν satis�es the properties ??-??,

as a simple consequence of eq. (??) and the fact that both δντ0
φ,j{δφ

ν and δνθ0
` {δφ

ν satisfy ??-??.
We want to show that the terms in the right-hand side of eq. (??) are extensions of the terms that
appear in the right-hand side of eq. (??). Because up`q is an extension of u0p`q to R4pn�1q, we have that

pδνC
p`q
φ pxq{δφνp�qq�ppαxq

�up`qqp�q is trivially an extension to Un�ν�1 of pδνCp`q
φ pxq{δφνp�qq�ppαxq

�u0p`qqp�q.
It remains to be shown that the distribution δνrL,φ{δφν is obtained by extending to the total diagonal
the distribution δνr0

L,φ{δφ
ν . As we have already experienced discussing the extension of τH,0φ,k in sec. ??,

it is not necessary that an extension of a distribution to the diagonal exists nor that such extension is
unique. Nevertheless, we will show that, for any �xed x, δνr0

L,φ{δφ
νpx, �q scales with degree less than

4pn� νq under the rescaling of the coordinates and, therefore, it must have a unique extension.
First, we prove that, for any x, δνr0

L,φpx, �q{δφ
νp�q has scaling degree less or equal than |j| � 3ν � L� 1

with respect to the rescaling of the coordinates. The idea is to adapt the argument presented in [? ,
thm. 4.1 (v)] to this situation. Since δντH,0φ,j {δφ

ν has an almost homogeneous scaling with degree |j|� 3ν

with respect to pg,m, λ, φq ÞÑ pΛ�2g,Λm,Λφ, λq, we have

χ�Λ
δνr0

L,φpx, �q

δφνp�q
�

ΛL�1

L!

» 1

0

dµ p1� µqL

�
BL�1
s

δντ0,H
j

δφνp�q
rΛ2gpsq,Λ�1mpsq,Λ�1φpsq, λpsqspx, �q

�����
s�Λµ

� ΛL�1�p|j|�3νq
ņ

`�0

pln` Λqψ0
`,L,φpΛ, x, �q,

(4.106)

where ψ0
`,L,φ is the distribution in R� U � Un�1zpx, . . . , xq de�ned by

ψ0
`,L,φpΛ, x, �q :�

�
1

`!L!

» 1

0

dµ p1� µqL

�
BL�1
s pεBε � |j| � 3νq`

δντH,0j

δφν
rε2gpsq, ε�1mpsq, ε�1φpsq, λpsqspx, �q

�����
s�Λµ,ε�1

.

Let f be a test function in Un�1�ν such that its support does not contain the point px, . . . , xq. It
follows from the properties ?? and ?? of δντ0,H

φ,j {δφ
ν that ψ0

`,L,φpΛ, x, fq is smooth in Λ in a su�ciently
small neighbourhood of zero. Once we have established these results, it follows from eq. (??) that
δνr0

L,φpx, �q{δφ
νp�q has scaling degree less or equal than |j| � 3ν � L� 1, as we wanted to prove.

Since we choose L ¥ |j| � 4pn � 1q, this implies that δνr0
L,φpx, �q{δφ

νp�q scales with degree less that
4pn�1q�3ν�1 for any x, and so δνr0

L,φpx, �q{δφ
νp�q has a unique extension to the total diagonal. Outside

∆n�ν , the distribution δνrL,φpx, �q{δφνp�q exists and coincides with δνr0
L,φpx, �q{δφ

νp�q. Furthermore, it
must have a scaling degree less then 4pn � 1q � 3ν � 1 for any x. Because any non-trivial distribution
supported on ∆n�ν�1 must be a linear combination of delta distributions and its derivative, which have
scaling degree not greater than 4pn� ν � 1q, we conclude that δνrL,φ{δφν coincides with the extension
of δνr0

L,φpx, �q{δφ
νp�q, i.e.

δνrL,φ
δφν

pfq � lim
jÑ8

δνr0
L,φ

δφν
pϑjfq, (4.107)
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where f is a test function in Mn�ν with support su�ciently close to the total diagonal ∆n�ν , and
where ϑj is sequence of functions with support in Un�νz∆n�ν such that ϑj is identically 1 outside a
neighbourhood Oj of ∆n�ν with Oj shrinking to ∆n�ν as j Ñ8. The right-hand side of (??) does not
depend on the choice of the functions ϑj because of the scaling properties of δνr0

L,φ{δ
ν (see [? , thm.

5.2]).

Step 3. As we mentioned in the overview of the argument at the beginning of this subsection, to prove
that τHφ,j satis�es properties ??-??, we make use of the fact that the right-hand side of eq. (??) is an
extension to the total diagonal of the right-hand side of eq. (??) (which satis�es properties ??-?? outside
the total diagonal).

We �st focus on the terms δνCp`q
φ pxq{δφνp�q � ppαxq

�up`qqp�q and we prove the following result:

Lemma 65. Each distribution
δνC

p`q
φ pxq

δφνp�q
� ppαxq

�up`qqp�q, (4.108)

where C
p`q
φ is as in eq. (??), and up`q is a Lorentz invariant extension of u0p`q which scales almost

homogeneously with degree |j| � ` under rescaling of the coordinates, satis�es the conditions ??-??.

Proof. The distribution (??) is an extensions to the total diagonal of the distribution pδνCp`q
φ pxq{δφνp�qq �

ppαxq
�u0p`qqp�q de�ned in Un�ν�1zpx, . . . , xq. Before, in Step 2, we proved that each pδνCp`q

φ pxq{δφνp�qq �

ppαxq
�u0p`qqp�q satis�es the properties ??-?? outside the total diagonal. We can adapt the argument

presented in [? , sec. 4.3] to prove that (??) satis�es the conditions ??-?? on Un�ν�1:

(δt0) Since δνCp`q
φ pxq{δφpy1q . . . δφpyνq is proportional to δpx, y1, . . . , yνq, it vanishes unless all the points

x, y1, . . . , yν coincide. Thus, δνCp`q
φ pxq{δφνp�q � ppαxq

�up`qqp�q satis�es condition ??.

(δt1) The Lorenz-invariance of up`q implies the locally covariance of α�xu
p`q. The term δνC

p`q
φ pxq{δφν

is also locally covariant because it is given by derivatives of the delta distribution δpx, y1, . . . , yνq
multiplied by a sum of monomials constructed from the metric gpxq, the Riemann tensor in x and
its symmetrized covariant derivatives, the functions m,λ, φ in x and their covariant derivatives.
Combining these two results we obtain that δνCp`q

φ pxq{δφνp�q � ppαxq
�up`qqp�q satis�es property ??.

(δt2) Exactly as in [? ], we can conclude that α�xu
p`q has an almost homogeneous scaling with degree

|j| � ` with respect to a rescaling of the metric (other rescalings do not a�ect α�xu). Since C
p`q
φ pxq

and δpx, y1, . . . , yνq scale homogeneously respect to a rescaling pg,m, φ, λq ÞÑ pΛ�2g,Λm,Λφ, λq

respectively with degree ` and 4pν � 1q, it follows that δνCp`q
φ pxq{δφν scales homogeneously with

degree |j| � 3ν � 4. Combining everything together we get precisely condition ??.

(δt3) Outside the diagonal, we already know that pδνCp`q
φ pxq{δφνp�qq � ppαxq

�up`qqp�q satis�es the condi-
tion ??. We show that condition ?? holds also on the total diagonal. Similarly as done in [? ],
making use of the wave-front set calculus, we obtain the following estimate

WF

�
δνC

p`q
φ

δφν
� pα�uq

�
�

!
px, x2, . . . , xn, y1, . . . , yν ; k, k2, . . . , kn, p1, . . . , pνq P 9T�Mn�ν

x � y1 � � � � � yν , x2, . . . , xn P U,

k � �
¸
`

p` �
¸
i

�
Bαxpxiq

Bx

�t
ξi, ki �

�
Bαxpxiq

Bxi

�t
ξi,

pαxpx2q, . . . , αxpxnq; ξ2, . . . , ξnq P WFpuqu .

(4.109)

In eq. (??), Bαxpxiq{Bx denotes the matrix of partial derivatives of αxpxiq with respect x at a �xed
xi, while Bαxpxiq{Bxi denotes the matrix of partial derivatives of αxpxiq with respect to xi at a
�xed x. When x and xi coincide, such matrices satisfy Bαxpxiq{Bx � �Bαxpxiq{Bxi.Consequently, it

holds k�
°
` p`�

°
i ki � 0 on the total diagonal ∆n�ν . In other words, we proved WFpδνC

p`q
φ {δφν �
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α�uq|∆n�ν
K T∆n�ν , and, thus, the wave-front set condition ?? holds for δνCp`q

φ pxq{δφνp�q �

ppαxq
�up`qqp�q on the total diagonal.

(δt4) Outside the diagonal, we already know that δνCp`q
φ pxq{δφνp�q � ppαxq

�up`qqp�q satis�es the condi-
tions ??. To prove that the conditions still hold on the total diagonal, we can follow a similar
argument as the one given for ??. That is indeed possible because αx is the inverse of the expo-
nential map and, therefore, it depends only on the metric in the appropriate smooth sense, u is
independent of g,m, λ, φ, and δνC

p`q
φ {δφν is given by derivatives of the delta distribution multi-

plied by sum of monomials constructed from the metric g, the Riemann tensor and its symmetrized
covariant derivatives, the functions m,λ, φ and their covariant derivatives.

This concludes the proof of lemma ??

Now, we focus on the term δνrL,φ{δφ
ν , i.e. the ν-th variational derivatives of the remainder term.

As we will see, proving the conditions ?? and ?? for the wave-front set of the extension of the remainder
term is much more complicated than proving the same conditions for the extensions of the factors in the
Taylor series as just done in lemma ??. The reason is that we lack an explicit form of δνrL,φ{δφν . We
proceed adapting to our situation the argument used in [? , prop. 4.1]: we show that the properties of
δνr0

L,φ{δφ
ν provide suitable bounds for the wave-front set of the extension δνrL,φ{δφν .

Lemma 66. The distribution δνrL,φ{δφ
ν satis�es the properties ??-??.

Proof. Since δνrL,φ{δφν is the unique extension to the total diagonal of the distribution δνr0
L,φpx, �q{δφ

νp�q
which satis�es the properties ??-??, we need to verify that the properties holds also on the total diagonal.

(δt0) We argue by reductio ad absurdum: we assume that there exists an element px1, . . . , xn, y1, . . . , yνq
in the support of δνrL,φ{δφν such that px1, . . . , xnq P ∆n, but px1, . . . , xn, y1, . . . , yνq R ∆n�ν .
Since px1, . . . , xn, y1, . . . , yνq is not an element of the total diagonal, it must belong to the sup-
port of δνr0

L,φ{δφ
ν . However, this is incompatible with the fact that δνr0

L,φ{δφ
ν satis�es ?? out-

side ∆n�ν , which precisely implies that the support δνr0
L,φ{δφ

ν does not contain any element
px1, . . . , xn, y1, . . . , yνq R ∆n�ν with px1, . . . , xnq P ∆n. This concludes the proof of property ??.

(δt1) The locally covariance of the unextended distribution δνr0
L,φpx, �q{δφ

νp�q implies that the distri-
butions δνrL,φpx, �q{δφνp�qrι�pg,m, φ, λqs and ι�δνrL,φpx, �q{δφ

νp�qrg,m, φ, λs coincide outside the
total diagonal. The di�erence between these two distributions must be supported on the total
diagonal and must have a scaling degree less than 4pn � 1q � 3ν � 1 since each of the distribu-
tions has a scaling less than 4pn � 1q � 3ν � 1. However, a distribution supported on the total
diagonal must be a sum of the delta distribution and its covariant derivatives, which are distribu-
tions with a scaling degree not less than 4pn� 1� νq. Thus, δνrL,φpx, �q{δφνp�qrι�pg,m, φ, λqs and
ι�δνrL,φpx, �q{δφ

νp�qrg,m, φ, λs coincide also on the diagonal, which precisely means that δνrL,φ{δφν

is locally covariant.

(δt2) Using a similar argument as the one presented for the proof of ??, we can prove that δνrL,φ{δφν

scales almost homogeneously under rescaling of g,m, φ, λ.

Proving that δνrL,φ{δφν satis�es the properties ?? and ?? on the diagonal is more involved. We follow
the argument of [? , prop. 4.1], adapted to our context:

Lemma 67. It holds

WF

�
δνrL,φpx1, . . . , xnq

δφpy1q . . . φpyνq


����
∆n�ν

K T∆n�ν . (4.110)

Furthermore, for any smooth 1-parameter families tgpsq,mpsq, φpsq, λpsqu we have

WF

�
δνrL,φrg

psq,mpsq, φpsq, λpsqspx1 . . . , xnq

δφpy1q . . . δφpyνq


����
R�∆n�ν

K T pR�∆n�νq. (4.111)
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Proof. As in [? , prop. 4.1], we proceed by induction on the number of variables n, i.e we assume that
estimate (??) holds for all δνrL,φpx1, . . . , xn1q{δφpy1q . . . δpyνq with n1   n.
First, we need to show a constraint on closure in T�pR� Unq of the wave-front set of δντH,0φpsq,j{δφ

ν . As
a consequence of lemma ??, it holds

WF

�¸ δνC
p`q
φ

δφν
ps, x1, y1, . . . , yνq � ppαx1

rgpsqsq�up`qqpx2, . . . , xn1q

������
R�∆n1�ν

K T pR�∆n1�νq, (4.112)

for any n1 ¤ n. Here and in the following we use the notation fps, x, . . . q � f rgpsq,mpsq, φpsq, λpsqspx, . . . q.
Using the estimate (??) and the inductive hypothesis on the variational derivatives of the remainder term,
we obtain

WF

�
δντHφ,i
δφν

ps, x1, . . . , xn1 , y1, . . . , yνq

������
R�∆n1�ν

K T pR�∆n1�νq.

Since δντH,0φ,j {δφ
ν can be expressed as a �nite sum of terms in the form (??), and since the estimate (??)

holds for any variational derivatives of the Hadamard parametrix, arguing similarly as done for formulas
(86),(87) of [? ], we conclude that it holds

WF

�
δντH,0φ,j

δφν
ps, x1, . . . , xn, y1, . . . , yνq

�������
R�∆n�ν

K T pR�∆n�νq, (4.113)

where the overbar denote the closure in T�pR� Unq.
Now, we identify x � x1 P U with its coordinate in a smooth chart, while ξ � px2, . . . , xn, y1, . . . , yνq
with the Riemannian normal coordinates relative to x1. In this notation, the total diagonal corresponds
to ξ � 0. We identify distributions in px1, . . . , xn, y1, . . . , yνq PM

n�ν with distribution in px, ξq P X�Ξ,
where X is an open set in R4, and where Ξ is an open neighbourhood of the origin in R4pn�ν�1q.
We chose an arbitrary x0 inX and a smooth function in the form χpx, ξq � χ1pxqχ2pξq, where χ1 P C8

0 pXq
is identically 1 in a neighbourhood of x0, where χ2 vanishes in a neighbourhood of 0 and it is identically
1 outside a larger neighbourhood. Su�ciently close to px0, 0q, we can choose as the cut-o� ϑj in the
de�nition of the extension δνrL,φ{δφν (see eq. (??)) to be ϑj � pχq2j , where p�q2j denotes the pull-back
by the map px, ξq ÞÑ px, 2jξq.
In order to prove formula (??), we need to show that px0, ξ0 � 0; k0, η0q P 9T�pX � Ξq is not contained
in WFpδνrL,φ{δφ

νq if k0 � 0. By the de�nition of wave-front set (see def. ??) and the speci�c choice of
the cut-o� ϑj , it is su�cient to show that there exists a conic neighbourhood F of pk0, η0q such that for
any pk, ηq P F and any N, j P N it holds that��F �

phq2j � r
0
L,φ

�
pk, ηq

�� ¤ pconstqN2�j{2p1� |k| � |η|q�N , (4.114)

where Fp�q denotes the Fourier transform, and where h is the compaclty supported function de�ned by
hpx, ξq :� χpx, ξq � χpx, 2ξq. The Fourier transform on the left-hand side of (??) can be rewritten as

F
�
phq2j � δ

νr0
L,φ{δφ

ν
�
pk, ηq � 2�4jpn�ν�1qF

�
h � pδνr0

L,φ{δφ
νq2�j

�
pk, 2�jηq. (4.115)

Using the de�nition of pδνψq0`,L,φpΛ, x, ξq given by eq. (??), it follows that the right-hand side of eq. (??)
can be expressed as

2�4jpm�ν�1qF
�
h � pδνr0

L,φ{δφ
νq2�j

�
pk, 2�jηq � 2�j

¸
`

pj ln 2q`F 1
�
h � pδνψq0`,L,φ

�
p2�j , k, 2�jηq, (4.116)

where F 1 denote the Fourier transform with respect to the variable x and ξ.
We proceed proving that for any closed conic set F 1 in R � R4 � R4pn�ν�1q which does not contain
elements in the form p0, 0, ηq there is a neighbourhood K0 � R�X �Ξ of p0, x0, 0q such that for all ` it
holds

WFppδνψq0`,L,φq X pK0 � F 1q � H.

We consider as parameter s :� pε, µ, xq P P1 � P2 � P3 �: P where P1 is a small neighbourhood of 1 in
R, where P2 is a small neighbourhood of 0 in R, and where P3 is a convex normal neighbourhood of x
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with respect to g, which is then identi�ed with a subset of R4 using the same coordinate chart used to
identify x with a vector in R4. Let ιx,µ be the di�eomorphism which shrinks the Riemannian normal
coordinates with respect to x of a point in P3 by a factor µ. In terms of this family of di�eomorphisms,
we construct the following smooth families, parametrized by s P P

gpsq � pεµq�2ι�x,µg, mpsq :� εµm, φpsq :� pεµqι�x,µφ, λpsq :� ι�x,µλ.

The estimate (??), derived for a parameter s P R, can be generalized to

WF

�
δντ0,H

φ,j

δφν
ps, x1, . . . , xn, y1, . . . , yνq

�������
P�∆m�ν

K T pP �∆n�νq. (4.117)

We can rewrite the action of pδνψq0`,L,φ on f P C8
0 pR� pUn�νz∆n�νqq as

pδνψq0`,L,φpfq �

�

�
π�
δντ0,H

k

δφν
rgpsq,mpsq, φpsq, λpsqs

���
tDp`q

ε δp� � 1q
	
b
��

tRpLqµ b 1x1,...,yν

	
f
		

,
(4.118)

where π : pε, µ, x1, . . . , yνq ÞÑ ps � pε, µ, x � x1q, x1, . . . , yνq P P � Un�ν , where tDp`q is the transpose of
the operator Dp`q de�ned by

Dp`q :�
1

`!
pεBε � d� νq`,

and where tRpLq is the transpose of the map RpLq : C8
0 pRq Ñ C8pRq de�ned by

pRpLqfqpΛq :�
1

L!

» 1

0

dµ p1� µqLpBL�1fqpΛµq.

The wave-front set of RpLq, seen as a distribution on R2 via the Schwartz kernel theorem, does not
contain any element in the form pΛ1,Λ2; 0, ρq P 9T pR2q as shown in the proof of [? , prop. 4.1]. Using
the wave-front set calculus and the estimate (??), we obtain from eq. (??) the following constraint

WFppδνψq0`,L,φq
���
R�∆n�ν

K T pR�∆n�νq.

Once R� pUn�νz∆n�νq is identi�ed with a subset of R�X � pY z0q, the previous result reads

WFppδνψq0`,L,φq
���
R�X�t0u

K T pR�X � t0uq.

We conclude that the open set T�pR�X �ΞqzWFppδνψq0`,L,φq contains a set of the form K0�F
1 where

F 1 can be any closed cone which do not contain elements in the form p0, 0, ηq and K0 is a su�ciently
small neighbourhood of p0, x0, 0q.
With a suitable rede�nition of the cut-o�, we can consider h P C8

0 pK0q and, then, for all pρ, k, ηq P F 1 it
holds ��F �

h � pδνψq0`,L,φ
�
pρ, k, ηq

�� ¤ pconstqN p1� |ρ| � |k| � |η|q�N .

We match the choice of the cones F and F 1 such that pρ, k, 2�jηq P F 1 for all pk, ηq P F , for all j, and
for all ρ � 0. In particular, there must exist C ¡ 0 such that for any pk, ηq P F it holds |k| ¡ C|η| and
C � 0. In fact, if these requirements did not hold, then F 1 would contain elements in the form p0, 0, ηq
contradicting the hypotheses on F 1.
Finally, we can rewrite eq. (??) as

F
�
h2j � δ

νr0
L,φ{δφ

ν
�
pk, ηq � p2πq�1{22�j

¸
`

pj ln 2q`
»
dρ e�i2

�jρF
�
h � pδνψq0`,L,φ

�
pρ, k, 2�jηq,

and then it holds��F �
h2j � δ

νr0
L,φ{δφ

ν
�
pk, ηq

�� ¤ pconstqN2�j{2p1� |k|q�N ¤ pconstq1N2�j{2p1� |k| � |η|q�N ,
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for all pk, ηq P F , and for all natural numbers N and j. This concludes the proof of estimate (??)

The argument just presented can be generalized to the case of smooth variations of g,m, φ, λ, and so
it follows that also estimate (??) also holds. This concludes the proof of the lemma ??.

The results of lemma ?? are precisely what we need to show to conclude that the wave-front condi-
tions ??, ?? hold for δνrL,φ{δφν , because we have already proved in Step 2 that δνrL,φ{δφν satis�es the
conditions ??, ?? outside the total diagonal.

Summing up the results of lemma ?? and lemma ??, we have:

Proposition 68. Let Um be a neighbourhood of the total diagonal ∆n such that for any px1, . . . , xnq P Un
the point x1, . . . , xn are contained in a normal convex subset U �M su�ciently small that we can apply
lemma ??. For any j, the distributional coe�cient τHφ,j of the local Wick expansion of Tn,φrbiϕ

kipxiqs in

Un is such that for any ν P N its Gateaux derivative δντHφ,jpx1, . . . , xnq{δφpy1q � � � δφpyνq is a well-de�ned
distribution and satis�es the properties ??-??.

4.2.6 The distribution coe�cients τφ,j satisfy the su�cient conditions for the
on-shell W -smoothness of φ ÞÑ Tn,φrbiϕ

kipfiqs

In this subsection, we prove that the su�cient conditions for an on-shell W -smooth φ ÞÑ Tn,φrbiϕ
kipfiqs

we introduced in sec. ?? are satis�ed:

Proposition 69. Let pM, gq be an ultra-static space-time with compact Cauchy surfaces, let m be a
constant, let φ be a general smooth function, and let λ be a compactly supported coupling constant. We
have

WF

�
δντφ,jpx1, . . . , xnq

δφpy1q . . . δφpyνq



�Wn�ν . (4.119)

Furthermore, for any R Q ε ÞÑ φpεq P C8pMq smooth, we have

WF

�
δντφpεq,jpx1, . . . , xnq

δφpy1q . . . δφpyνq



� R� t0u �Wn�ν . (4.120)

Proof. We �rst prove the estimates (??) and (??) in a neighbourhood Un of the total diagonal su�ciently
small that the hypotheses of prop. ?? are satis�ed, then we prove that these estimates hold also outside
Un.
Let us consider Tn,φrbiϕkipxiqs inside Un. In this space-time domain, we can de�ne its Wick expansion
with respect to the retarded 2-point function ωRφ , given by (??) in terms of the distributions tτφ,juj¤k,
and its local Wick expansion with respect to the Hadamard parametrix Hφ, given by eq. (??) in terms
of the distributions tτHφ,juj¤k. Since both these two expansions must give Tn,φrbiϕkipxiqs, there is a
relation between the collections of distributions tτφ,juj¤k and tτHφ,juj¤k. More precisely, this relation is
given by the following formula:

τφ,jpx1, . . . , xnq �
¸
j1¤j

¸
tnabu

Cnab,j,j1~
°
a nabτHφ,j1px1, . . . , xnq

¹
a¤b

dnabφ pxa, xbq, (4.121)

where dφ � ωRφ �Hφ, where the sum
°
tnabu

is taken over all possible family of natural numbers tnabua¤b
such that ja � j1a �

°
cpnac � ncaq, and where C are certain combinatorial factors.

The right-hand side of eq. (??) is well-de�ned because dφ is a smooth function.
For any smooth map R Q ε ÞÑ φpεq P C8pMq a similar decomposition holds, namely we just need to
replace φ by φpεq everywhere in eq. (??). Because dφpεqpx1, x2q is jointly smooth in ε, x1, x2 as proved
in sec. ??, the decomposition is again well-de�ned. Using formula (??) and its analogue for smooth
variations of the background φ, we can prove the following lemma:

Lemma 70. The distributions tτφ,juj satisfy estimates (??) and (??) in Un.
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Proof. As seen in sec. ??, the distributions tτHφ,juj satisfy condition ?? and ??. Using lemma ?? we can
conclude that for any j we have

WFpτHφ,jq � CT ;�
n X CT ;�

n �Wn, WFpτHφpεq,jq � R� t0u � CT ;�
n X CT ;�

n � R� t0u �Wn,

for any smooth map R Q ε ÞÑ φpεq P C8pMq. Since dφ P C8pM2q and dφpεq P C8pR �M2q, using the
wave-front set calculus (thm. ??), we conclude that estimates (??) and (??) hold for ν � 0.
To prove the estimate (??) for ν ¡ 0, we need to compute δντφ,j{δφ

ν by distributing the varia-
tional derivatives on each factor in the right-hand side of eq. (??). It follows that the distribution
δντφ,jpx1, . . . , xnq{δφpy1q . . . δφpyνq is a �nite sum of terms in the form (up to a constant factor)

δ|N |τHφ,j1px1, . . . , xnq

δφ|N |ptyrurPN q

¹
a¤b

nab¹
v�1

δ|Na,b,v |dφpxa, xbq

δφ|Na,b,v |ptyrurPNa,b,v q
. (4.122)

where N , tNa,b,vua¤b,v¤nab gives a disjoint partition of t1, . . . , νu. To prove estimate (??), it is su�cient
to show that each distribution (??) has a wave-front set contained in Wn�ν .
Let px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq be an element of the wave-front set of the distribu-
tion (??). By the wave-front set calculus (thm. ??), it must hold

ki � k1i �
¸
b¡i

¸
v¤nib

kLi,b,v �
¸
a i

¸
v¤nai

kRa,i,v �
nii̧

v�1

ki,i,v, (4.123)

where kLa,b�a,v, k
R
a,b�a,v and ka,a,v satisfy$''''''&''''''%

pxa, xb, pyrqrPNa,b,v ; kLa,b,v, k
R
a,b,v, pprqrPNa,b,v q P WFpδ|Na,b,v |dφ{δφ

|Na,b,v |q

or kRa,b,v, k
L
a,b,v, pr � 0

pxa, pyrqrPNa,a,v ; ka,a,v, pprqrPNa,a,v q P WFpδ|Na,a,v |dφpxa, xaq{δφ
|Na,a,v |q

or ka,a,v, pr � 0

px1, . . . , xn, pyrqrPN ; k11 . . . , k
1
n, pprqrPN q P WFpδ|N |τHφ,j1{δφ

|N |q

or k11, . . . , k
1
n, pr � 0.

We prove that px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq cannot belong to the set C
�
n�ν de�ned by (??).

By de�nition of C�
n�ν , we need to consider just the following two cases: (a) all the covectors k1, . . . , kn, p1, . . . , pν

are causal future-directed except at most one among k1, . . . , kn, prPN which can be space-like, and (b)
there exist a1 P I, b1 P Ic, v1 ¤ na1b1 such that one and only one covector ps with s P Na1,b1,v1 is space-like
whereas the other covectors are all causal future-directed. We prove that neither of these two cases can
be realized:

(a) Since, we assume pr P V
�
for any r P Na,b,v and for any a, b, v, the estimates (??) and (??) for the

wave-front set of δνdφpx1, x2q{δφ
ν and δνdφpx, xq{δφν (see lemma ?? and in lemma ??) imply that

kLa,b,v, k
R
a,b,v and ka,a,v belong to V

�
for any a, b, v. Because we also assume k1, . . . , km, p1, . . . , pν P

V
�
except at most one covector among tk1, . . . , kmu or tprurPN which can be space-like, eq. (??)

implies that all k11, . . . , k
1
m must be in V

�
except for at most one k1` which can be space-like.

Actually, k1` can be space-like only if k` is space-like. However, these con�gurations are incompatible
with condition ?? for the variational derivatives of τHφ,j. This concludes the proof that the case (a)
cannot be realized.

(b) We �rst assume that there exist a1, b1, v1 with b1 � a1 such that the unique space-like covector ps
among p1, . . . pν has s P Na1,b1�a1,v1 . Since we assume pr P V

�
for all r � s, using estimates (??)

and (??) (see lemma ?? and in lemma ??), we obtain kLa1,b1,v1 , k
R
a1,b1,v1 R V

�
and kLa,b,v, k

R
a,b,v,

ka,a,v P V
�
for any pa, b, vq � pa1, b1, v1q. Since, by hypothesis, k` is in V

�
for all `, eq. (??) implies

k1a1 � kLa1,b1,v1 P V
�
, k1b1 � kRa1,b1,v1 P V

�
, k1i�a1,b1 P V

�
. (4.124)

If xa1 � xb1 , condition ?? requires that either k1a1 or k
1
b1 is in V

�
. Thus, we conclude that the

requirement (??) cannot be realized. On the other hand, if xa1 � xb1 , then estimate (??) implies

127



kLa1,b1,v1 � kRa1,b1,v1 R V
�
, whereas condition ?? for δντHφ,j{δφ

ν requires k1a � k1b1 P V
�
. It follows that

the requirements (??) cannot be ful�lled also in this case.
Now, we assume that there exist a1, v1 such that the unique space-like covector ps has s P Na1,a1,v1 .

By hypothesis, k`, pr are in V
�
for any ` and any r � s. Thus, we obtain ka1,a1,v1 R V

�
using

the estimates (??), (??) (see lemma ?? and in lemma ??) and the hypotheses on k`, pr. Similarly
as just done for the case b1 � a1, it follows from the assumptions chosen that all kLa,b,v, k

R
a,b,v and

all ka,v with pa, vq � pa1, v1q are in V
�
. Then, eq. (??) implies the following conditions which

replace (??) in this case:

k1a1 � ka1,a1,v1 P V
�
, k1i�a1 P V

�
. (4.125)

These conditions (??) are incompatible with property ?? for the variational derivatives of τHφ,j. This
concludes the proof that the case (b) cannot be realize.

With a similar argument we can prove that px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq cannot belong
to the set C�

n�ν de�ned by (??). By the de�nition of the set Wn�ν as the complement of C�
n�ν YC�

n�ν ,
see eq. (??), we have proven that each distribution (??) has wave-front set contained in Wn�ν . Thus,
we proved estimate (??) in Um.

To prove estimate (??) for ν ¡ 0, let be R Q ε ÞÑ φpεq P C8pMq smooth. The distribution
τφpεq,j is de�ned as in eq. (??) with φ replaced by φpεq everywhere, i.e. τφpεq,j is a �nite sum of
products of τHφpεq,j1¤j and dnφpεq with appropriate coe�cients. For any ν, the variational derivatives
δντφpεq,jpx1, . . . , xnq{δφpy1q . . . δφpyνq is a �nite sum of terms in the form (??) with the only di�erence
that φ is replaced by φpεq everywhere. We can show that estimate (??) holds, adapting the argument
we used to prove estimate (??): instead of using estimates (??), (??) and condition ??, we use esti-
mates (??), (??) and estimate (??) of condition ??. This conclude the proof of lemma ??.

To conclude the proof of prop. ??, we still need to prove the claims outside the neighbourhood Um
of the total diagonal:

Lemma 71. The distributions tτφ,juj satisfy estimates (??) and (??) outside Un.

Proof. We proceed by induction on the number n of the factors involved in the time-ordered prod-
uct Tn,φrbni�1ϕ

kipxiqs corresponding to the distributions tτφ,juj¤k. For n � 1, a direct inspection of
formula (??) de�ning the Wick product shows that

τφ,jpxq �

"
dφpx, xq

j1 if j � 2j1

0 otherwise.
(4.126)

In the proof of prop. ??, we have already proved that dφpx, xqj
1

satis�es estimates (??) and (??), which
are precisely estimates (??) and (??) for n � 1.
We now assume that τφ,j corresponding to time-ordered products with less than n factor satis�es both
estimates (??) and (??). Since px1, . . . , xnq does not belong to the neighbourhood Un of the total
diagonal, we use the causal factorization axiom (T8) to express τφ,jpx1, . . . , xnq as �nite sum of terms in
the form

fIpx1, . . . , xnqτφ,ippxaqaPIqτφ,i1ppxbqbPIcq
¹

aPI,bPIc

ωRφ pxa, xbq
nab (4.127)

where I � t1, . . . , nu proper, where tfIuI is a partition of unity subordinate to the covering tCIuI of
Mnz∆n de�ned by (??), where i, i1 and tnabu satisfy ja � ia �

°
cpnac � ncaq for a P I and jb �

i1b �
°
cpnbc � ncbq for b P Ic. We compute δντφ,j{δφν by distributing the Gateaux derivatives among

the factors of (??). In detail, δντφ,jpx1, . . . , xnq{δφpy1q . . . δφpyνq is given by a �nite sum of terms in the
form

fIpx1, . . . , xnq
δ|N1|τφ,iptxaPIuq

δφ|N1|ptyrPN1
uq

δ|N2|τφ,i1ptxbPIcuq

δ|N2|ptyrPN2
uq

¹
aPI,bPIc

¹
v¤nab

δ|Na,b,v |ωRφ pxa, xbq

δφ|Na,b,v |ptyrPNa,b,vuq
, (4.128)

where N1, N2, tNa,b,vu form a disjoint partition of t1, . . . , νu.
We now prove the estimate (??) by verifying it on each term in the form (??). Let px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq
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be an element in the wave-front set of the distribution (??). The wave-front set calculus (thm. ??) implies
that there exist the following decompositions

ka � k1a �
¸

bPIc,v¤nab

kLa,b,v, kb � k2b �
¸

aPI,v¤nab

kRa,b,v, (4.129)

and it holds $''''''&''''''%

pxa, xb, pyrqrPNa,b,v ; kLa,b,v, k
R
a,b,v, pprqrPNa,b,v q P WFpδ|Na,b,v |ωRφ {δφ

|Na,b,v |q

or kLa,b,v, k
R
a,b,v, pr � 0

ppxaqaPI , pyrqrPN1
; pk1aqaPI , pprqrPN1

q P WFpδ|N1|τHφ,i{δφ
|N1|q

or k1a, pr � 0

ppxbqbPIc , pyrqrPN2q; pk
2
b qbPIc , pprqrPN2q P WFpδ|N2|τHφ,i1{δφ

|N2|q

or k2b , pr � 0

Remember that the estimate (??) holds for ωRφ because φ ÞÑ ωRφ is an admissible assignment as follows
lemma ?? and lemma ??.
We prove by reductio ad absurdum that px1, . . . , xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq cannot belong to
the set C�

m�ν de�ned by (??). We consider the following two cases separately: (a) all the covectors
k1, . . . , kn, p1, . . . , pν are causal future-directed except at most one among k1, . . . , kn, prPN1YN2

which
can be space-like, and (b) there exist a1 P I, b1 P Ic, v1 ¤ na1b1 such that one covector ps with s P Na1,b1,v1
is space-like whereas the other covectors are all causal future-directed. We show that both of the two
cases contradict the inductive hypothesis.

(a) Since we assume pr P V
�
for any r P Na,b,v and any a, b, v, the estimate (??) implies kRa,b,v P V

�

for all a, b, v. Furthermore, using eq. (??), we obtain

k2b � kb �
¸

aPI,v¤nab

kRa,b,v, (4.130)

By hypothesis, the covectors kb, pr with b P Ic and r P N2 belong to V
�
except at most one which is

space-like. It follows that all the covectors k2b , pr with b P I
c and r P N2 must belong to V

�
except

at most one which is space-like. However, these con�gurations are incompatible with the inductive
hypothesis on τHφ,i1 , more precisely they violate the requirement WFpδ|N2|τHφ,i1{δφ

|N2|q �W|Ic|�|N1|.
This is precisely what we wanted to show.

(b) By hypothesis, the unique space-like covector is ps for a certain s P Na1,b1,v1 . Since we assume pr P

V
�
for any r � s and ps space-like, estimate (??) implies kRa,b,v P V

�
for all pa, b, vq � pa1, b1, v1q,

whereas kRa1,b1,v1 R V
�
. Combining these results with the assumption k1, . . . , kn P V

�
and using

eq. (??), we obtain k2b P V
�
for any b � b1 and k2b1 R V

�
. By hypothesis, pr is in V

�
for any

r P N2. Therefore, we obtain again that all the covectors k2b , pr with b P I
c and r P N2 must belong

to V
�
except at most one which is space-like. Thus, the assumptions (b) contradicts the inductive

hypothesis on τHφ,i1 as we wanted to show.

With a similar argument we can prove that px1, . . . xn, y1, . . . , yν ; k1, . . . , kn, p1, . . . , pνq does not belong
to C�

n�ν , de�ned by (??). Thus, by de�nition of the sets Wν , see (??), the wave-front set of each term
in (??) is contained in Wn�ν , which is precisely what is needed to prove estimate (??).
The proof of estimate (??) can be obtained with a similar argument as the one just presented, based on
estimates (??) and (??) (the latter is a consequence of the fact that φ ÞÑ ωRφ is an admissible assignment
as proved in lemma ?? and lemma ??) instead of estimates (??) and (??).

This concludes the proof of prop. ??.

4.2.7 Local functionals involving covariant derivatives and ful�lment of ax-
ioms (T10) and (T11c)

In this subsection, we �rst extend the previous construction to the case of local functional containing
covariant derivatives. In particular, we verify that there is a prescription which in addition satis�es the

129



Leibniz-rule axiom (T10) and which still satis�es the W -smoothness requirement. In this context, we
consider more general local functionals in the form

F pϕq �

»
fpxq � Cpxq � p∇qr1ϕpxq � � � p∇qrkϕpxq �

»
fpxq � Cpxq �

¹
j

�
p∇qjϕpxq

�κij (4.131)

where p∇qr is a short-hand notation for the symmetrized r-th covariant derivative (namely, the Levi-
Civita connection of g), where κ � pκ0, κ1, . . . q is a multi-index, where C is an arbitrary curvature tensor,
where f is a smooth compactly supported tensor �eld, and where ��� means �contractions of space-time
indices� (note that there are no free space-time indices in F pϕq). Any possible local functional can be
written as a �nite sum of terms in form (??). To simplify the notation in the following, we denote±
jpp∇qjϕqκij by ∇κϕ and C �∇κϕ by Φ.

As proved in [? , prop. 3.1], there exists a prescription for time-ordered products satisfying also the
Leibniz-rule axiom (T10). The construction is given inductively on the number of factors involved in the
time-ordered product similarly as the case discussed in sec. ??.
First of all, we note that the Leibniz-rule axiom (T10) can be imposed consistently with the axiom
(T1)-(T9) on time-ordered products involving only one factor. This is done by de�ning the Wick mono-
mial T1,φrf � Φs as in eq. (??), but the distribution fpxqδpx, x1, . . . , xk�2nq is now replaced by a more
general distribution in the form fpxq �Cpxq � p∇x1

qr1 � � � p∇xk�2n
qrk�2nδpx, x1, . . . , xk�2nq, and dφpx1, x2q

is replaced by an appropriate product of its symmetrized covariant derivatives p∇x1q
rp∇x2q

r1dφpx1, x2q.
This de�nition is the same presented in [? , eq. (60)-(61)]. The modi�cation just outlined does not
a�ect the proof of the on-shell W -smoothness because the operator ∇px`q commutes with the variational
derivative δ{δφpyq and di�erential operators do not enlarge the wave-front set (see thm. ??).
Next, we consider time-ordered products Tn,φrbni�1fi�Φis with n ¡ 1. As already mentioned the construc-
tion is given by induction on the number of factors involved. Assuming that the time-ordered products
satisfying the axioms (T1)-(T10) and involving less than n factors are already given, one constructs
the time-ordered products involving n factors by proceeding similarly as done in sec. ??: exploiting the
causal factorization axiom (T8), the inductive hypothesis �xes the time-ordered products for local func-
tionals bni�1fi � Φi supported outside the total diagonal. Then, in a su�ciently small neighbourhood of
the total diagonal one performs the local Wick expansion. By the causal factorization axioms (T8) and
the inductive hypothesis, the distributional coe�cients of the local Wick expansion are known outside
the total diagonal. The time-ordered products with n factors are obtained by constructing extensions of
these distributional coe�cients on the total diagonal which implement axiom (T1)-(T5) and (T10). As
already pointed out in sec. ??, it is proved in [? ][sec. 3.1] that axioms (T6)-(T7) can be enforced by
simple rede�nitions and axiom (T8) holds by construction.
We need to show what is the constraint imposed by axiom (T10) on the distributional coe�cients of the
local Wick expansion. In this context, the local Wick expansion of Tn,φrbni�1fi � Φis, for f1 b � � � b fn
supported in a su�ciently small neighbourhood of the total diagonal, is given by (cf. (??))

Tn,φ

�
nâ
i�1

fi � Φi

�
� Tn,φ

�
nâ
i�1

fiCi �∇κiϕ

�

�
¸

Cα1...αn

»
Mn

¹
i

fipxiq � τ
H
φ rbiCi �∇αiϕspx1, . . . , xnq :

n¹
i�1

∇κi�αiϕpxiq :Hφ dx1 . . . dxn

�
¸

Cα1...αn

»
Mn�

°
i `i

¹
i

fipxiq � p∇xp1qi qri,1 � � � p∇
x
p`iq

i

qri,`i δpxi, x
p1q
i , . . . , x

p`iq
i qq�

� τHφ rbiCi �∇αiϕspx1, . . . , xnq :
m¹
i�1

ϕpx
p1q
i q � � �ϕpx

p`iq
i q :Hφ

¹
i

dxidx
p1q
i . . . dx

p`iq
i ,

(4.132)

where the sum is over the multi-indices such that αi ¤ κi, where Cα1...αn � 1
α1!���αn! , where α! �

α1! . . . αn!, and where `i � |κi � αi|. In this setting, the distributional coe�cients are the distributions
τHφ rbiCi �∇αiϕs � C1b� � �bCm �τ

H
φ rbi∇αiϕs. Note that this is consistent with the situation discussed in

sec. ??. In fact, τHφ rbiCi � p∇qαiϕs with αi � pji, 0, . . . q and Ci � 1, i.e. τHφ rbiϕ
jis, is the distributional

coe�cient τHφ,j of the local Wick expansion de�ned by (??) for a time-ordered product of local functionals
not involving covariant derivatives.
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As proved in [? , prop. 3.1], the Leibniz-rule axiom (T10) imposes the following additional constraint
for the distributional coe�cient of the local Wick expansion

∇xjτHφ rbiΦispx1, . . . , xnq � τHφ rΦ1 b � � � b∇xjΦj b � � �Φnspx1, . . . , xmq. (4.133)

As explained in the proof of [? , prop. 3.1], the suitable extensions are obtained by induction on the
number of covariant derivatives acting on ϕ. Ultimately, the extension is provided combining the proce-
dure based on the scaling expansion, as in sec. ??, and using (??) to de�ne the right-hand side for the
so-called �Leibniz depended� part (for more details see [? , prop. 3.1]).
Because the operator ∇xj commutes with the variational derivative δ{δφpyq, and because di�erential
operators do not enlarge the wave-front set (see thm. ??), it follows that we can adapt the argument
given in sec. ?? and we have that the variational derivatives δντHφ rbiΦis{δφ

ν satisfy the conditions ??-??
we de�ned in sec. ??.
Using the analogue of eq. (??) in this context, in a su�ciently small neighbourhood of the diagonal, we
express the distributional coe�cients τφrbiCi �∇αiϕs of the Wick expansion with respect to the retarded
2-point function in terms of p∇xaqrap∇xbqrbdφpx1, xbq, for appropriate ra, rb, and τHφ rbiCi �∇α1

iϕs, with
α1
i ¤ αi. We can extend the argument used in lemma ?? to the more general case of local functionals

containing covariant derivatives proving that the distributional coe�cient of the Wick expansion with
respect to the retarded 2-point function satis�es estimates (??) and (??) in a su�ciently small neighbour-
hood of the total diagonal. The causal factorization axiom (T8) implies that this result must hold also
outside this neighbourhood, as can be checked similarly as we did in lemma ??. Thus, there exists a pre-
scription for time-ordered product satisfying axioms (T1)-(T10) and the desired on-shell W -smoothness,
in the sense of thm. ??.

To conclude the proof of thm. ??, we need to show that if we start with a time-ordered prescription
satisfying axioms (T1)-(T10) and the W -smooth condition, then the changes of prescription required
to impose the axiom (T11c) (see app. ??) preserve the W -smooth condition. Actually, in the proof of
the consistency of axiom (T11c) with (T1)-(T10), we need axiom (T11a), which is enforced also using a
change of prescription for time-ordered products, see [? ].
Let tTn,φunPN and tT 1n,φunPN be two prescription for time-ordered products satisfying axioms (T1)-(T10)
for a �xed background φ P C8pMq. These two prescriptions must be related by a hierarchy of maps
tDn,φunPN in the following way:

T 1n,φ

�
nâ
i�1

Fi

�
� Tn,φ

�
nâ
i�1

Fi

�
�

¸
I0\���\Ik�t1,...,nu

T|I0|�1,φ

�
kâ
`�1

D|I`|,φ

�â
jPI`

Fj

�
b

â
iPI0

Fi

�
, (4.134)

where the linear maps Dn,φ : bnFloc Ñ Floc satisfy the properties listed in thm. ??. In particular, Dn,φ

can be written as

Dn,φ

�
nâ
i�1

fi � Φi

�
pxq � Dn,φ

�
nâ
i�1

fiCi �∇κiϕ

�

�
¸

Cα1...αn

»
f1px1q � � � fnpxnq � cφrbiCi �∇αiϕspx1, . . . , xnq

n¹
i�1

∇κi�αiϕpxiqdx1 . . . dxn,

where the sum is over the multi-indices such that αi ¤ κi, and where Cα1...αn is the same factor
that appears in (??). Each distribution cφrbiCi � ∇αiϕs � C1 � � �Cn � cφrbi∇αiϕs can be expressed
as a sum of terms which are products of derivatives of the delta distribution and polynomials in the
Riemann tensor, m, λ, φ and their covariant derivatives. Because of this polynomial behaviour in φ and
in its covariant derivatives, a rede�nition of the time-ordered prescription cannot spoil the on-shell W -
smoothness. Therefore, we can conclude that any time-ordered prescription satisfying axioms (T1)-(T10),
(T11a) and (T11c) (under the assumption that for any φ P C8pMq the product 
φ inWφ is given in terms
of the retarded 2-point function ωRφ )

6 gives on-shell W -smooth maps S Q φ ÞÑ Tn,φrb
n
i�1Fipφ�ϕqs PWφ

for any local functional Fi.

6As a matter of fact, it su�ces that the algebra structure is given in terms of an admissible assignment φ ÞÑ ωφ in the
sense of def. ??.
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Conclusions and outlook

We conclude by presenting an overview of the results obtained in this work and indicate some open issues
and possible directions for future investigations. Our main result is that we succeeded in constructing a
deformation quantization for a class functionals on the smooth solutions to the non-linear Klein-Gordon
equation on the space-time M which parallels a construction of Fedosov (devised originally for �nite-
dimensional phase spaces). We then compared this approach to the causal approach to perturbative
quantum �eld theory.

We started by constructing a geometrical framework for the set S of these solutions. The cornerstones
of our set-up are the de�nition of the formal Wick algebra bundle W � \φPSWφ over S, and the notion
�on-shell W -smoothness� for functions on S, sections in W, or, more generally, forms with values in W.
The elements of the formal Wick algebra Wφ are ultimately identi�ed (up to formal power series in the
formal parameter ~) with sequences of distributions on Mn which satisfy a certain restriction of the
wave-front set given by the collection tWnu of sets Wn P T

�Mn. The product 
φ inWφ is constructed in
terms of a pure Hadamard 2-point function ωφ. We imposed a further constraint considering only a par-
ticular class of assignments φ ÞÑ ωφ, named �admissible assignments�, which have a speci�c dependence
on φ. Using the methods of microlocal analysis, we were able to show that the �berwise product endows
the space of on-shell W -smooth sections inW and, more generally, on-shell W -smooth forms with values
in W with a well-de�ned algebra structure, the product 
.
Then, we proved that the recursion procedure to de�ne the �at Fedosov connection in �nite dimensions
can be performed also in our in�nite-dimensional set-up . The resulting connection DW is �at, preserves
the on-shell W -smoothness, and is determined by the choice of the assignment φ ÞÑ ωφ (and some aux-
iliary data). We obtained a deformation quantization of the set of on-shell W -smooth functions on S
using the product 
 and inverting the map τ that projects a �at on-shell W -smooth section in W into
its S Ñ Crr~ss part, similarly as done in �nite dimensions.

We showed that di�erent choices of (admissible) assignments φ ÞÑ ωφ and φ ÞÑ ω1φ give �gauge
equivalent� Fedosov connections DW , D1W . This re�ects in our set-up the equivalence of the Fedosov
connections in �nite dimensions corresponding to two di�erent almost-Kähler structures which are both
compatible with the same symplectic form. The gauge transformation is determined by the same recur-
sion procedure as in the �nite-dimensional case. The new result is that this recursion process remains
well-de�ned in the in�nite-dimensional setting.
We then investigated the relation of Fedosov's approach to quantum �eld theory with the method of
�causal perturbation theory�. In the latter method, for each classical local polynomial function F on S,
one constructs using Haag's formula its corresponding quantum observable F̂φ P Wφ for each classical
background φ P S. We proved that the map φ ÞÑ F̂φ is on-shell W -smooth and it is �gauge equivalent� to
a section F̂ 1 in W which is �at with respect to the Fedosov connection D1W corresponding to a generic
admissible assignment φ ÞÑ ω1φ. The �at sections of the form F̂ 1 generate an algebra, with respect to the
product 
, and we proved that Einstein causality holds in this algebra.

Our results leave plenty of room for further investigations. First of all, we point out that we have
constructed the in�nite-dimensional set-up only for scalar �eld theories on ultra-static space-times with
compact Cauchy surface with interactions given by a potential in the form V pφq �

³
λpxqφ4pxq, where λ

is a smooth compactly supported �coupling constant�. Considering more general space-times and poten-
tials could a�ect the in�nite-dimensional manifold structure we have assigned to S. In our construction,
in fact, the manifold structure of S is related to the initial value problem of the non-linear equation of
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motion, which, in general, is not a priori globally well-de�ned for smooth (compactly supported) Cauchy
data in arbitrary M .

Another prospect is investigating further the relations between the sections τ 1�1F and F̂ 1 for a lo-
cal functional F . Both of them are �at sections with respect to the same Fedosov connection D1W

corresponding to an admissible assignment φ ÞÑ ω1φ. A priori these two sections di�er since their com-

ponents proportional to the section 1 are not equal. This fact is not surprising because to de�ne F̂ 1

we have implicitly chosen one of the many admissible (due to renormalization freedom) prescriptions
for the retarded products, while that is not the case for τ 1�1F , which is essentially unique. Never-
theless, there is a remaining freedom in de�ning the on-shell W -smooth section H that appears in
F̂ 1 � α�1 expp i~ ad
RpHqqF̂ . This freedom is characterized by the choice of a closed 1-form θ with values
in Crr~ss. It would be interesting to see if it is possible to choose θ such that F̂ 1 and τ 1�1F would coincide.

It would also be interesting to analyse the problem of convergence in ~ of the star product. In our
set-up, the star product for the algebra of functionals on the solutions S is constructed in terms of the
Wick product 
 for the algebra (�at) sections on formal Wick algebra bundle W. Roughly speaking, for
a �xed φ P S, the formal Wick algebra Wφ can be interpreted as the algebra of formal polynomials on
TφS, i.e. it is not just a formal series in the parameter ~, but also in the degree of the polynomials. For
increasing order in ~, also the polynomial order required for our constructions increases. Therefore, to
even start talking about convergence, one has to replace �polynomials� by some class of more general
�functions�. The aim would then be to �nd a suitable topology to get hopefully convergence of the various
series in ~. It is not obvious, however, how this could be done in practice, even in the �nite-dimensional
case. One approach in this direction has been suggested in [? ]. It would be interesting to see if it is
possible to adapt this construction to our set-up. This must be left for a future work.

Another open direction is to extend our construction to quantum �eld theories with fermionic �elds
and/or gauge �elds. For fermionic �elds, two rather di�erent approaches come to mind. On the one
hand, one could consider �classical� fermions, i.e. solutions to a Dirac-type equation, possibly non-linear.
Whenever the Cauchy problem is well-posed (which it is clearly a non-trivial question), one can provide
an in�nite-dimensional manifold structure for the set S of solutions to the non-linear equation. The
tangent space TφS at a �xed solution φ of the non-linear equation would be again identi�ed with the so-
lutions of the linearised equation around φ. Similarly as for the scalar case we discussed here, the causal
approach to the quantization of fermionic �eld theories (see [? ? ? ? ]) might be expected to provide
guidelines how to de�ne T�φ S, b

n
WT

�
φ S and Wφ in the in�nite-dimensional setting for the fermionic case.

For the linear Dirac equation, one still has the notion of the causal propagator and Hadamard 2-point
functions (see [? ]). The main di�erences with the scalar �eld seem to be the following: (1) the algebra
of classical observable has a graded structure, which should be also incorporated in Fedosov's method,
and (2) the fundamental notions in our in�nite-dimensional set-up, in particular the notion of on-shell
W -smoothness, need to be extended to vector-valued distributions.
There is, on the other hand, also a di�erent possible approach. One could avoid introducing �classical�
fermions �which seems, after all, physically questionable� and introduce them only at the quantum level.
This idea could be realized as follows: one considers for instance a supersymmetric theory containing
both bosonic and fermionic degrees of freedom. Instead of considering all the possible solutions to the
equations of motions, one de�nes the classical solutions S as those with vanishing fermionic components.
Nevertheless, the fermionic degrees of freedom will appear at the linearised level, i.e. in the tangent
space TφS at a classical (bosonic) solution φ, and, therefore, also in the formal Wick algebra. It is not
clear to us if and how Fedosov's method can be implemented in this situation.

For gauge �elds, the equations of motion are not hyperbolic, so one cannot directly proceed construct-
ing perturbatively the quantum �eld. It is, however, well understood how to circumvent this problem by
adding further �elds (the ghost, anti-ghost, and auxiliary �elds) to the theory in order to make the equa-
tions of motion hyperbolic. At the classical level, the unphysical �elds can be removed by a symmetry,
called �BRST-symmetry�, which restores the gauge invariance: the gauge invariant classical observables
are obtained as the cohomology (with respect to the BRST-operator) of the auxiliary algebra containing
also the unphysical �elds. This can be viewed as a symplectic-reduction of the unphysical phase space.
To quantize this theory, one proceeds by de�ning the deformation quantization of the auxiliary algebra

134



and a suitable deformed extension of the BRST-operator. This sophisticated and complex procedure is
described in [? ? ] in the framework of the algebraic approach to quantum �eld theory. It is not obvious
to us how our approach can be adapted to this case. There are some results in the literature, e.g. [? ],
for the �nite-dimensional case, and maybe this could be used as a guideline for the case of �eld theory.
We must leave this, too, to a future investigation.
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Appendix A

Introduction to wave-front set

The notion of wave-front set is a useful characterization of the singularities of a given distribution. It is
well-known that the decay properties of the Fourier transform of a (compactly supported) distribution
are related with its smoothness. More precisely, a distribution u P D1pXq, where X is an open set of Rn,
fails to be smooth at the point x P X if and only if the Fourier transform of χu is not rapidly decreasing
for any test function χ with a support su�ciently close to x. The idea behind the wave-front set is to
re�ne this characterization of the singularities of a distribution by providing also the directions along
which the Fourier transform fails to be rapidly decreasing. This perspective, usually referred as �microlo-
cal analysis�, has a local character and can be extended to the case where X is a smooth manifold. This
concretely means that the wave-front set of u, which is denoted by WFpuq, is a subset of the cotangent
bundle 9T�X with the zero section removed.
We present in this appendix only the necessary results in microlocal analysis we need for the context
of our work. We essentially follow [? ? ] (see also [? ]), which we refer to for proofs. For our pur-
poses, the main advantage of the wave-front set is that it can be used to extend several operations on
smooth functions to distributions. A priori, operations like restricting distributions to submanifolds and
multiplying distributions are not well-de�ned. However, we can formulate su�cient conditions in terms
of the wave-front set such that these operations on distributions are well-de�ned. For restrictions of
distributions to submanifolds, this will be done in thm. ??, while, for multiplications of distributions,
this will be done in thm. ??. The argument deeply relies on the notion of convergence for distributions
with the wave-front set bounded in a closed cone, the so-called Hörmander pseudo-topology (def. ??).
Furthermore, the notion of wave-front set is particularly useful to characterize the solutions to linear
partial di�erential equations. This perspective is adopted e.g. in [? ] and in [? ], to quote some
fundamental works for quantum �eld theory which we extensively used in this thesis. In this appendix
we present just two basic results (thm. ?? and thm. ??) which provide bounds for the wave-front sets of
solutions of linear partial di�erential equations.
We then present another important notion of microlocal analysis: we de�ne the pseudo-di�erential op-
erators. Using pseudo-di�erential operators, it is possible to formulate an equivalent de�nition of the
wave-front set and also an equivalent de�nition of the Hörmander pseudo-topology (prop. ??).
Finally, we conclude this appendix by providing the de�nition of analytic wave-front set, which charac-
terizes the points (and the directions) in which a distribution fails to be analytic.

We begin by de�ning the wave-front set of a distribution u P D1pXq, where X is an open set in Rn.
For this purpose, we �rst de�ne the set Σpvq for any compactly supported distribution v P E 1pXq as the
cone of all η P Rnz0 having no conic neighbourhood V such that, for any ξ P V and for any N P N, it
holds

|Fvpξq| ¤ CN p1� |ξ|q�N ,

where F denotes the Fourier transform. It follows that v is smooth if and only if Σpvq � H. We can
proceed now with the de�nition of the wave-front set.

De�nition 72. Let u be a distribution in D1pXq. The wave-front set of u is the closed cone in X�pRnz0q
de�ned by

WFpuq :� tpx, ξq P X � pRnz0q : ξ P Σxpuqu ,

137



where, for a given x P X, Σxpuq is the set de�ned by

Σx :�
£
χ

Σpχuq, (A.1)

where Xχ is taken over all possible functions χ P C8
0 pXq such that χpxq � 0.

It follows straightforwardly that u P C8pMq if and only if WFpuq � H.

To illustrate def. ??, we proceed by presenting explicitly the wave-front set of two rather common
distributions on X: the delta distribution δ and the Heaviside step function θ. Their wave-front set can
be easily computed and it holds

WFpδq � WFpθq � tpx, ξq P X � pRnz0q : x � 0u .

The presence of singularities is the main obstruction to de�ne directly operations as multiplying
distributions, composing distributions, restricting distributions to submanifolds, and, more generally,
acting on distributions via the pull-back of smooth maps. As explained in [? ], this problem can be
circumvent by continuously extending the de�nitions given for the smooth case if the wave-front sets of
the distributions involved satisfy certain conditions. In this way, we also obtain bounds for the wave-front
sets of the resulting distributions, i.e. we provide the so-called wave-front set calculus. For this purpose,
we need to a notion of convergence1 for distributions in D1pXq with the wave-front set bounded by a
closed cone Γ in X � pRnz0q. This space of distributions is denoted by D1ΓpXq. The suitable notion of
convergence, called Hörmander pseudo-topology, is de�ned as the following:

De�nition 73. Let X be an open set in Rn, and let Γ be a closed cone in X � pRnz0q. A sequence of
distributions pujqjPN � D1ΓpXq converges to a distribution u P D1ΓpXq if and only if

uj Ñ u weakly, and sup
ξPV

|ξ|N |Fpφuqpξq � Fpφujqpξq| Ñ 0 @N P N,

where φ P C8
0 pMq, and where V is a closed cone such that psupp pφq � V q X Γ � H.

We �rst review the de�nition of the pull-back of a smooth map on a distribution. Let X � Rn and
Y � Rm be two open sets, and let f : X Ñ Y be smooth. If u P C8pY q, then the pull-back f�u P C8pXq
is de�ned by f�upxq � upfpxqq for any x P X. The extension of the pull-back on distributions is given
by the following theorem:

Theorem 74 (Thm. 8.2.4 in [? ]). Let X � Rn and Y � Rm be two open sets, and let f : X Ñ Y be
smooth. If u P D1pY q is a distribution such that

WFpuq XNf � H, (A.2)

where Nf is the set of normals to f de�ned by

Nf :�
 
pfpxq, ηq P Y � pRmz0q : tf 1pxqη � 0

(
,

then the pull-back f�u is uniquely de�ned as distribution in D1pXq. Furthermore, for any u satisfy-
ing (??), it holds

WFpf�uq � f�WFpuq �
 
px, tf 1pxqq P X � pRnz0q : pfpxq, ηq P WFpuq

(
.

One of the most important consequence of this theorem is that it allows to extend the notion of wave-
front set for distributions on a smooth manifold X. In particular, thm. ?? implies that we can de�ne the
wave-front set of a distribution u P D1pXq by simply patching the wave-front set de�ned in the coordinate
charts of an atlas of the manifold. We obtain that WFpuq � �T�X. Furthermore, thm. ?? is also valid
(with some obvious changes2) if X and Y are smooth manifolds.
If X is a (embedded) submanifold (e.g. an hypersurface) in the smooth manifolds Y and f is the inclusion

1This a weaker notion than a topology, since many di�erent topologies can give the same notion of convergence.
2E.g. X � pRnz0q and Y � pRmz0q must be replaced by the bundle 9T�X and 9T�Y .
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map, then thm. ?? provides a su�cient condition to uniquely de�ned the restriction of a distribution
u P D1pY q to X. Namely, it is required that there is no overlap between WFpuq and NX , where NX is
the normal bundle of X

NX :�
!
px, ξq P 9T�X : xξ, TxXy � 0

)
,

and where x�, �y is the natural pairing between the cotangent space T�xX and the tangent space TxX.

Let us consider tensor products of distributions. This operation is always well-de�ned and we can
estimate the wave-front set of the tensor product of two distributions by the wave-front sets of the
distributions involved.

Theorem 75 (Thm. 8.2.9 in [? ]). Let X,Y be two smooth manifolds. Consider the distributions
u P D1pXq and u1 P D1pY q. The tensor product u b u1 is a well-de�ned distribution in D1pX � Y q such
that

WFpub u1q � pWFpuq �WFpu1qq Y ppsupp puq � t0uq �WFpu1qq Y pWFpu1q � psupp pu1q � t0uqq.

We next discuss the case of point-wise multiplications of distributions and compositions of distribu-
tions. Products of distributions are generally not automatically well-de�ned. However, if the wave-front
sets of the factors satisfy a certain relative condition, called multiplication condition, then the product
makes sense in a canonical way due to [? , thm. 8.2.10]. A similar result, [? , thm. 8.2.14], ensures
that the compositions of distributions are well-de�ned if the distributions involved satisfy an additional
condition, called integration condition.

Theorem 76 (Thm. 8.2.10 and thm. 8.2.14 in [? ]). Let X,Y, Z be smooth manifolds. Consider
the distributions u P D1pX � Zq and u1 P D1pZ � Y q. We adopt the following notation WF1puq :�
tpx, z; k,�qq P WFpuqu and WFpupx, zqqz :� tpz, qq P T�Z : px, z; 0, qq P WFpuqu. If u, u1 satisfy the
multiplication condition

WFpupx, zqqz XWF1pu1pz, yqqz � H, (A.3)

then the product upx, zqu1pz, yq (or simply u � u1) can be de�ned as a distribution D1pX � Z � Y q and

WFpu � u1q �
!
px, z, y; k, q1 � q2, pq P 9T�pX � Y � Zq : px, z; k, q1q PWF puq or k, q1 � 0,

and pz, y; q2, pq PWF pu1q or q2, p � 0
(
.

Moreover, if u, u1 satisfy also the integration condition

supp pu � u1q Q px, z, yq ÞÑ px, yq P X � Y is a proper map3, (A.4)

then the composition
³
Z
upx, zqu1pz, yqdz (or simply u � u1) can be de�ned as distribution in D1pX � Y q

and

WFpu � u1q �
!
px, y; k, pq P 9T�pX � Y q : Dpz, qq P T�Z, such that px, z; k,�qq P WFpuq or k, q � 0,

and pz, y; q, pq P WFpu1q or p, q � 0
(
.

As mentioned at the beginning of this chapter, techniques based on wave-front set and microlocal
analysis are useful to characterize solutions to linear partial di�erential equations. Far from being
exhaustive, we present here just some basic, but still important, results. First, we show the interplay
between wave-front set and di�erential operators. The following theorem just collects formula [? , 8.1.11]
and its weak converse [? , thm. 8.3.1].

Theorem 77 (8.1.11 and thm. 8.3.1 in [? ]). Let X be a smooth n-dimensional manifold and let P be
a smooth di�erential operator of order m in X4. For any u P D1pXq it holds

WFpPuq � WFpuq,

3The inverse image of any compact set is compact.
4In local coordinate, it holds P pxq �

°
|α|¤m aαpxqBαx , where aα are smooth functions, and where Bαx �

pBx1 q
α1 � � � pBxn qαn .
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and
WFpuq � WFpPuq X CharpP q,

where CharpP q is the characteristic set of the di�erential operator P which is de�ned by

CharpP q �
!
px, ξq P 9T�pXq : Pmpx, ξq � 0

)
,

and where Pmpx, ξq is the principal symbol of P 5

Another important result, we will use in appendix ??, is the so-called propagation of singularities.

Theorem 78 (Thm. 8.3.3' in [? ] and thm. 6.1.1 in [? ]). Let X be a smooth manifold and let P be a
smooth di�erential operator whose principal symbol is real-valued. If the distributions u, f P D1pXq are
such that Pu � f , then WFpuqzWFpfq is invariant under the action of the Hamiltonian vector �eld h
associated to the principal symbol of P , which is de�ned in local coordinates by

hpx, ξq :�
¸
j

�
BPmpx, ξq

Bxj
B

Bξj
�
BPmpx, ξq

Bξj

B

Bξj



.

It is worth mentioning that there is an equivalent de�nition for the wave-front set in terms of another
fundamental notion in microlocal analysis: the pseudo-di�erential operators (see [? ? ]).

De�nition 79. Let X be an open set in Rn, and let m be a real number. A function a P C8pX � Rnq
is a symbol of order m if for any compact set K � X and any α, β there exist a constant CK,α,β such
that ��Bαξ Bβx apx, ξq�� ¤ CK,α,βp1� |ξ|qm�|α|, (A.5)

for any x P K and any ξ P Rn. The set of the symbol of order m is denoted by SmpX,Rnq.
Let a be a symbol in SmpX,Rnq. The corresponding pseudo-di�erential operator A of order m is the
continuous linear map C8

0 pXq Ñ C8pXq de�ned by

Apuqpxq �
1

p2πq
n
2

»
Rn
apx, ξqpFuqpξqdnξ, (A.6)

for any u P C8
0 pXq. The set of pseudo-di�erential operators is denoted by OPSmpX,Rnq.

Let reviews some of the properties of pseudo-di�erential operators. A pseudo-di�erential operator A in
OPSmpX,Rnq extends to an operator E 1pXq Ñ D1pXq (see [? ]). Since any pseudo-di�erential operator A
in OPSmpX,Rnq is continuous, by the Schwartz kernel theorem, it follows that there exists a distribution
KA P D1pX �Xq such that xApuq, vy � xKA, ub vy for any test functions u, v. Exploiting the last fact,
we say that a pseudo-di�erential operator A is properly supported if the maps suppKA Q px, yq ÞÑ x P X
and suppKA Q px, yq ÞÑ y P X are proper.

We can extended the de�nition of pseudo-di�erential operators to the case of a smooth n-dimensional
manifold X by simply patching pseudo-di�erential operators de�ned in the coordinate charts of an
atlas of the manifold. More explicitly, a continuous linear map A : C8

0 pXq Ñ C8pXq is a pseudo-
di�erential operator of order m on X if for every coordinate chart pU,ϕq of a given atlas of X it holds
that u Ñ pϕ�1q�Aϕ�puq is a pseudo-di�erential operator in OPSmpϕpUq,Rnq. We denote by ΨmpXq
the space of pseudo-di�erential operators of order m on the smooth manifold X.
Similarly, the de�nitions of symbols in SmpX,Rnq extends to the manifold case. In detail, a symbol
SmpT�Xq is a smooth function a P C8pT�Xq such that in any coordinate chart pU,ϕq of a given atlas
of X, the pull-back of a to T�ϕpUq � ϕpUq � Rn is in SmpT�Xq.
We want to extend the notion of principal symbol of a di�erential operator to pseudo-di�erential op-
erators. We �rst notice that the restriction of a pseudo-di�erential operator A to a coordinate chart
pU, φq determines a symbol aU in SmpϕpUq,Rnq up to terms in S�8pϕpUq,Rnq. By patching together
the symbols aU corresponding to the coordinate charts of an atlas of X, we obtain that A determine a
symbol a in SmpT�Xq up to terms in Sm�1pT�Xq. The equivalence class ras P SmpT�Xq{Sm�1pT�Xq
is known as principal symbol of the pseudo-di�erential operator A.
As already mentioned, we can equivalently de�ne the wave-front set of a distribution on X using pseudo-
di�erential operators. As proven in [? , thm. 18.1.27], it holds

5In local coordinate, it holds Pmpx, ξq � im
°
|α|�m aαpxqξα.
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Proposition 80. Let X be a smooth manifold and let u be a distribution in D1pXq. We have

WFpuq �
£
A

CharpAq, (A.7)

where
�
A is taken over all the properly supported pseudo-di�erential operators on X of order m, where

CharpAq is the characteristic set of A, namely the set

CharpAq � 9TXz
!
px0, ξ0q P 9TX : DΓ conic set containing px0, ξ0q such that

|apx, ξq| ¤ C p1� |ξ|qm for px, ξq P V with |ξ| ¡ C u ,

and where a is the principal symbol6 of A.

We can also rewrite the Hörmander pseudo-topology using pseudo-di�erential operators.

Proposition 81. The sequence pujqjPN � D1ΓpXq converges to u P D1ΓpXq in the Hörmander pseudo-
topology if and only if

uj Ñ u weakly, and Auj Ñ Au in C8pXq,

for any properly supported pseudodi�erential operator A with ΓXWFpAq � H, where the set WFpAq is
de�ned as

WFpAq :�
!
px, ξq P 9T�X : px, x; ξ, ξq P WFpKAq

)
.

We conclude this section discussing the notion of analytic wave-front set. Roughly speaking, the
notion of wave-front set of a distribution characterized the points in which a distribution fails to be
smooth. The analytic wave-front set is instead related to the failure of a distribution to be analytic. Let
X be an open set in Rn and let be x0 a �xed point in x. As proved in [? , prop. 8.4.2], a distribution
u P cD1pXq is analytic in a neighbourhood U of x0 if and only if there exists a bounded sequence of
compactly supported distributions uj P E 1pUq such that all the uj coincide with u in U and it holds

|Funpξq| ¤ C 1�j

�
1� j

|ξ|


j
(A.8)

for any j and for �xed constant C . The de�nition of analytic wave-front set is given in terms of this
characterization of the analyticity.

De�nition 82. Let X be an open set in Rn, and let u be a distribution in D1pXq. The analytic wave-
front set of u, denoted by WFApuq, is the complement in X�pRnz0q of the set of px0, ξ0q such that there
exist an open neighbourhood U of x0, a conic neighbourhood Γ of ξ0, and a sequence pujqjPN � E 1pXq
such that all the uj coincide with u in U and for every ξ P Γ the inequality (??) holds.

It is proved in [? , sec. 8.5] that there is a counterpart for the analytic wave-front set of the wave-front
set calculus we discussed above (with some modi�cations imposed by the stronger analytic requirements).
In particular, there is a counterpart of thm. ?? (under the hypothesis that f is now a real-analytic func-
tion) for the analytic wave-front set, and this result allows to extend the notion of wave-front set for
distributions on a real analytic manifold X.

6More precisely, a is any representative in the equivalence class de�ning the principal symbol of A.
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Appendix B

Proof of theorem ??

In this appendix, we present the proof for the consistency of axioms ??-??, thm. ??. As already men-
tioned, it is well-known that there exists a prescription for retarded products satisfying axioms ??-??.
The assertion follows e.g. from [? ]. Here, the authors proved the existence of a prescription for time-
ordered products satisfying the corresponding axioms (T1)-(T10) (and also axiom (T11a), which will be
required later) of [? ]. The retarded products are obtained from the time-ordered products by

Rn,m,φ

�
nâ
i�1

Fi;
mâ
j�1

Hj

�
:�

¸
I�t1,...,mu

p�1q|I|T |I|,φ

�â
`PI

H`

�

φ T|Ic|�n,φ

�â
i

Fi b
â
jPIc

Hj

�
, (B.1)

where T denotes the anti-time-ordered product, see e.g. [? , (T7)]. Note that in sec. ?? we used the
alternative notation Rm,φ � R1,m,φ.
We claim that it indeed follows from (T1)-(T10) that ??-?? hold: the proof is not complicated and
one can see that one by one the axioms (T1)-(T10) imply their counterparts ??-??. The requirement
R0,φpϕpfqq � ϕpfq, which is the second �initial condition� in axiom ??, is a consequence of the implicit
assumption T1,φpϕpfqq � ϕpfq. The GLZ formula ?? and the requirement Rn,φpA,biHiq � Aδn,01,
which is the �rst �initial condition� in axiom ??, are consequence of the de�nition (??).

We want to construct a prescription for the retarded products which satis�es also ??. This will follow
if the time-ordered products satis�es the following condition:

B

Bs
αRφs,φTn,φs

�
nâ
i�1

Fi,φs

�
�
i

~
Rn,1,φ

�â
i

Fi,φ;
BI

p2q
φs

Bs

�
�

ņ

`�1

Tn,φ

�â
i�`

Fi,φ b
BF`,φs
Bs

�
, (B.2)

where φs is a smooth 1-parameter family of backgrounds such that φ0 � φ. As already stated in
sec. ??, the derivative B{Bs is always evaluated in s � 0. This additional condition on the time-ordered
product corresponds in [? ] to the formulation of the principle of perturbative agreement for an external
potential variation (T11c), i.e. for a variation in the ϕ2-term of the Lagrangian. However, it was not
demonstrated in [? ] that condition (T11c) can actually be imposed. We now �ll this gap following an
analogous argument as given in [? ] for the proof of condition (T11b).
Consider local fuctionals in the form

Fi,φ �

»
M

fipxq � Φi,φpxqdx �

»
M

fipxq � Ci,φpxq � p∇qκi1ϕpxq � � � p∇qκijϕpxqdx,

where fi is a generic compactly supported tensor �eld, and where Cφ is a generic tensor depending
polynomially on the metric, the curvature tensors, m2, φ and their derivatives. Then, we de�ne

Dn,φphφ; f1, . . . , fnq :�
B

Bs
αRφs,φTn,φs

�â
i

Fi,φs

�
�
i

~
Rn,1,φ

�â
i

Fi,φ;ϕ2phφq

�
�

�
¸
`

Tn,φ

�â
i�`

Fi,φ b
BF`,φs
Bs

�
,

(B.3)
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where hφ is the compactly supported smooth function de�ned by

hφpxq :�
Bvφspxq

Bs
, (B.4)

which implies

ϕ2phφq �
BI

p2q
φs

Bs
. (B.5)

Thus, eq. (??) holds if Dn,φ � 0.
In order to simplify the notation, in the following we do not explicitly write the dependence on φ and
we just denote by the subscript s the dependence on φs in local functionals, time-ordered products or
retarded products.
We �rst note that trivially D0 � 0. Arguing as in [? ], we proceed by induction in the number N of
factors of ϕ and its derivatives that appear in the collection F1, . . . , Fn, and prove that a prescription
tTnunPN for the time-ordered products, which gives Dnp  Nq � 0, can be adjusted to a new prescription
tT 1nunPN such that D1

np¤ Nq � 0. More precisely, the new prescription is de�ned by subtracting DnpNq
from the corresponding time-ordered products. We must show that the replacement we just described
is admissible, i.e. consistent with the renormalization freedom characterizing the non-uniqueness of the
time-ordered products prescription given originally in [? ? ] or, more concisely, in [? , thm. 2]. To show
this, we must prove the following conditions (see [? ? ]):

(d1) Dn is a functional of h, f1, . . . , fn supported on the total diagonal ∆n�1.

(d2) Dn is a c-number, i.e. Dn � c1 PW.

(d3) Dn is local and covariant and scales almost homogeneously with scaling degree equal to the sum
of the engineering dimensions of the classical functionals F1, . . . , Fn.

(d4) Dn vanishes if one of the entries is in the form ϕpfq �
³
M
fpxqϕpxq.

(d5) Dn is a distribution with smooth dependence upon the metric and the background φ.

(d6) Dn has the appropriate symmetry.

As we have already mentioned, the new prescription tT 1nunPN is de�ned by

T 1n�1

�
ϕ2phq b

nâ
i�1

Fi

�
:� Tn�1

�
ϕ2phq b

nâ
i�1

Fi

�
� 2iDnph; f1, . . . , fnq,

if one of the factor in the time-ordered product is ϕ2phq for a function h as in (??), and simply by
T 1n rb

n
i�1Fis � Tn rb

n
i�1Fis otherwise. This new prescription tT 1nunPN satis�es D1

nph; f1, . . . , fnq � 0. We
now prove the conditions ??-??.

Proof of ??. For a given h as in (??), choose f1, . . . , fn such that the support of hb f1b � � �b fn does
not intersect the total diagonal ∆n�1. We must be in one of the following cases:

(a) There is a Cauchy surface Σ such that supph � J�pΣq and supp fi � J�pΣq for all i.

(b) The same as (a), but with ��� and ��� interchanged.

(c) There is a Cauchy surface Σ and a proper subset I � t1, . . . nu such that supph � J�pΣq, supp fi �
J�pΣq for i P I, and supp fj � J�pΣq for j R I.

(d) The same as (c), but with ��� and ��� interchanged.

In case (a), the in�nitesimal variation ϕ2phq of the quadratic term Ip2q of the action occurs in the future
of the support of all the functionals Fi and, therefore,

B

Bs
αRφs,φTn,s

�â
i

Fi,s

�
�
¸
`

Tn,φ

�â
i�`

Fi,φ b
BF`,φs
Bs

�
� 0, (B.6)
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by the de�nition of the isomorphism αR (see (??)). The remaining term in (??) also vanish because of
the support properties of the retarded product. Thus, necessarily Dn � 0.
In case (b), because of the separation of the support of the in�nitesimal variation h and the supports
of the functionals F1 . . . Fn, the third term in (??) must vanish and the �time-reversed� version of (??)
holds, i.e.

B

Bs
αAφs,φTn,s

�â
i

Fi,s

�
�
¸
`

Tn,φ

�â
i�`

Fi,φ b
BF`,φs
Bs

�
� 0,

where αAφ,φ1 is the isomorphism of Wφ Ñ Wφ1 constructed similarly as done for αRφ,φ1 identifying those
algebras in a neighbourhood of a Cauchy surface not intersecting the past of the support of the interaction
V , i.e. via the so-called �advanced state� (or �out-state�). Using the explicit formula (??) for αR (and
its analogue for αA), we get that for any t PWφ it holds

B

Bs
αRφs,φ � pα

A
φs,φq

�1t �
i

~

�
BI

p2q
s

Bs
, t

�



.

Under the hypothesis of (b), it follows

B

Bs
αRφs,φTn,s

�â
i

Fi,s

�
�
¸
`

Tn,φ

�â
i�`

Fi,φ b
BF`,φs
Bs

�
�

�
B

Bs
αRφs,φ � pα

A
φs,φq

�1 � αAφs,φTn

�â
i

Fi

�
�
¸
`

Tn,φ

�â
i�`

Fi,φ b
BF`,φs
Bs

�

�
i

~

�
BI

p2q
s

Bs
, Tn

�â
i

Fi

��



� 0

�
i

~
Rn,1

�â
i

Fi;
BI

p2q
s

Bs

�
,

where we also used the causal factorization property (T8) for the time-ordered products and formula (??).
Therefore, we have Dn � 0.
Finally, it is similarly seen in cases (c) and (d) that Dn � 0 holds as consequence of the causal factor-
ization properties for the time-ordered products, the inductive hypothesis, and the fact that αR{A are
�-isomorphisms. The details are similar as in [? , sec. 6.2.2], so we omit.
We have proved that Dnph, f1, � � � , fnq � 0 if the support of hb f1b� � �b fn does not intersect the total
diagonal ∆n�1. This clearly implies that the functional Dn must be supported on the total diagonal as
we wanted to prove.

Proof of ??. We proceed �rst by giving an equivalent characterization of c-numbers in Wφ, which
corresponds to [? , prop. 2.1] in our framework.

Lemma 83. Let t be an element of Wφ such that rt, ϕpfqs
φ � 0 for any f P C8
0 pMq, where ϕpfq is the

equivalence class in C8
0 pMq{p��m2 � vφqC

8
0 pMq corresponding to f . It holds t � c1 with c P Crr~ss.

Proof. Due to the Deg-�ltration, any element t PWφ is identi�ed with the series1
°
k

°k
n�0 t

pkq,n, where
each tpkq,n is homogeneous in the total degree Deg and in the symmetric degree degs, i.e. tpkq,n is a
symmetric distribution in E 1W pMnq (modulo elements of the ideal de�ned by p��m2 � vφqE 1W pMnq) up
to a factor which is a power of ~. Since r�, ϕpfqs
φ , seen as a map on Wφ, preserves the Deg-grading and
reduces by 1 the degs-grading, rt, ϕpfqs
φ vanishes if and only if rtpkq,n, ϕpfqs
φ vanishes for all k, n ¡ 0.
By de�nition of the product 
φ, it is equivalent to require»

M

Eφpx1, z
1qtpkq,npz1, x2, . . . , xnqdz

1 � 0.

1We used an informal notation here. The series should be interpreted as a sequence of distributions in E 1W .
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By the de�nition of the causal propagator, this implies»
M

EAφ px1, z
1qtpkq,npz1, x2, . . . , xnqdz

1 �

»
M

ERφ px1, z
1qtpkq,npz1, x2, . . . , xnqdz

1.

Therefore, the distribution s de�ned by

spx1, . . . , xnq :�

»
M

EAφ px1, z
1qtpkq,npz1, x2, . . . , xnqdz

1

is compactly supported by the support properties of EA{Rφ , and by the hypotheses on tpkq,n. Moreover,

applying lemma ??, we have that s is a distribution in E 1W pMnq because WFpE
A{R
φ q � CA{R �W2, and

because tpkq,n P E 1W pMnq by hypothesis. It follows

tpkq,npx1, . . . , xnq � P�p��m2 � vφqx1spx1, . . . , xnq,

which means that tpkq,n belongs to the ideal de�ned by ��m2 � vφ, i.e. tpkq,n must be the zero element
in the quotient space Wφ. So we conclude that the non-trivial elements t PWφ such that rt, ϕpfqs
φ � 0
for any f P C8

0 pMq must have degs t � 0, i.e. t � c1 for a c P Crr~ss, which is precisely what we wanted
to show.

In the light of the previous lemma, we need to prove that for any f P C8
0 pMq, the quantity Dn commutes

with ϕpfq. The fact that αRφs,φ is an algebra homomorphism implies that�
B

Bs
αRφs,φTn,s

�â
i

Fi,s

�
, ϕpfq

�



�
B

Bs
αRφs,φ

�
Tn,s

�â
i

Fi,s

�
, ϕspfq

�

s

�

�
B

Bs

�
Tn

�â
i

Fi

�
, αRφs,φpϕspfqq

�



.

(B.7)

Because of the explicit de�nition of αR given by (??), it holds

αRφs,φpϕφspfqq � p��m2 � vφqE
A
φspfq, (B.8)

up to a compactly supported smooth function in p��m2 � vφqC
8
0 pMq. We can pull the derivative B{Bs

inside the commutator in the second term of the right-hand side of eq. (??) above. Using the formula (??)
for the variations the advanced propagator EAφ with respect to the background φ, we then rewrite such
term as

B

Bs

�
Tn

�â
i

Fi

�
, αRφs,φpϕspfqq

�



�

�
Tn

�â
i

Fi

�
, hEApfq

�



.

The commutator property (T9) of the time-ordered products allows us to rewrite eq. (??) as�
B

Bs
αRφs,φTn,s

�â
i

Fi,s

�
, ϕpfq

�



� i~
ņ

`�1

B

Bs
αRφs,φTn,s

�
xEspfq,

δ

δϕ
yF`,s b

â
i�`

Fi,s

�
�

� i~
ņ

`�1

Tn

�
xEphEApfqq,

δ

δϕ
yF` b

â
i�`

Fi

�
.

(B.9)

The �rst term in the right-hand side of eq. (??) contains less than N factors of the �eld ϕ. Therefore,
by inductive hypothesis, it follows�

B

Bs
αRφs,φTn,s

�â
i

Fi,s

�
, ϕpfq

�



� �
¸
`

Rn,1

�
xEpfq,

δ

δϕ
yF` b

â
i�`

Fi;
BI

p2q
s

Bs

�
�

� i~
¸
`,`1�`

Tn

�
xEpfq,

δ

δϕ
yF` b

â
i�`,`1

Fi b
BF`1,s
Bs

�
�

� i~
¸
`

Tn

�â
i�`

Fi b
B

Bs
xEspfq,

δ

δϕ
yF`,s

�
� i~

ņ

`�1

Tn

�
xEphEApfqq,

δ

δϕ
yF` b

â
i�`

Fi

�
.

(B.10)
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Using the commutator property (T9) and the explicit expression for BEs{Bs given by (??), it follows that
the second, the third, and the last terms in the right-hand side of eq. (??) can be rewritten as

¸
`

�
Tn

�â
i�`

Fi b
BF`,s
Bs

�
, ϕpfq

�



� i~
¸
`

Tn

�â
i�`

Fi b xERphEpfqq,
δ

δϕ
yF`

�
.

Using the commutator property (T9) and the formula (??) which give Rn,m in terms of the time-ordered
products, we have�

Rn,m

�
nâ
i�1

Fi;
mâ
j�1

Hj

�
, ϕpfq

�



� i~
ņ

`�1

Rn,m

�
xEpfq,

δ

δϕ
yF` b

â
i�`

Fi;
â
j

Hj

�
�

� i~
m̧

r�1

Rn,m

�â
i

Fi; xEpfq,
δ

δϕ
yHr b

â
j�r

Hj

�
,

for any local functionals Fi, Hj . Applying this result, we can rewrite the �rst term of the right-hand side
of eq. (??) as

�
¸
`

Rn,1

�
xEpfq,

δ

δϕ
yF` b

â
i�`

Fi;
BI

p2q
s

Bs

�
�

�
i

~
Rn,1

�â
i

Fi;
BI

p2q
s

Bs

�
, ϕpfq

�



�Rn,1

�â
i

Fi; xEpfq,
δ

δϕ
y
BI

p2q
s

Bs

�
.

Since xEpfq, δ{δϕyBIp2qs {Bs � ϕp2hEpfqq and since hEpfq P C8
0 pMq, axiom (T11a) implies

Rn,1

�â
i

Fi; xEpfq,
δ

δϕ
y
BI

p2q
s

Bs

�
� i~

¸
`

Tn

�â
i�`

Fi b xERphEpfqq,
δ

δϕ
yF`

�
.

Putting together, we have obtained�
B

Bs
αRφs,φTn,s

�â
i

Fi,s

�
, ϕpfq

�



�
i

~

�
Rn,1

�â
i

Fi;
BI

p2q
s

Bs

�
, ϕpfq

�



�

�
¸
`

�
Tn

�â
i�`

Fi b
BF`,s
Bs

�
, ϕpfq

�



,

i.e. that rDn, ϕpfqs
 � 0 for any f P C8
0 pMq. Therefore, by lemma ??, Dn is a c-number as we needed

to prove.

Proof of ??. The proof is based on the locality/covariance property (T1), the scaling property (T2) for
the time-ordered products, and the fact that the map αR is well-behaving under isometric embeddings
and rescalings. The details of the proof are the same as in [? , sec. 6.2.3], so we omit.

Proof of ??. Let Fn be the functional ϕpfq where f P C8
0 pMq and let F1, . . . , Fn�1 be arbitrary local

functionals. Under this hypothesis, eq. (??) reads

Dnph; f1, . . . , fn�1, fq �
B

Bs
αRφs,φTn,s

�
n�1â
j�1

Fj,s b ϕpfq

�
�
i

~
Rn,1

�
n�1â
j�1

Fj b ϕpfq;ϕ2phq

�
�

�
¸
`

Tn

� â
j�`,n

Fj b
BF`,s
Bs

b ϕpfq

�
,

(B.11)

Note that ϕpfq, as functional C8pMq Q φ ÞÑ
³
M
fpxqφpxqdx, does not depend on φ, i.e. Bϕpfq{Bs � 0.

Using axiom (T11a), we rewrite each term appearing in the right-hand side of eq. (??). For the last
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term, we obtain

n�1̧

`�1

Tn

� â
j�`,n

Fj b
BF`,s
Bs

b ϕpfq

�
�

�
n�1̧

`�1

Rn�1,1

� â
j�`,n

Fj b
BF`,s
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;ϕpfq

�
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`�1

ϕpfq 
 Tn�1
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BF`,s
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�
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¸
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Tn�1

�
xERpfq,

δ

δϕ
yFr b

â
j�`,r,n

Fi b
BF`,s
Bs

�
�
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`�1

Tn�1

� â
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Fj b xERpfq,
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δϕ
y
BF`,s
Bs

�
�
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`�1

ϕpfq 
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Fj b
BF`,s
Bs

�
.

We rewrite the second term in the right-hand side of eq. (??) as

�
i

~
Rn,1

�
n�1â
j�1

Fj b ϕpfq;
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p2q
s

Bs
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�
xERphERpfqq,
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yFr b

â
j�r,n

Fj

�
�
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~
ϕpfq 
Rn�1,1

�â
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BI
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s
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� ϕphEApfqq 
 Tn�1

�â
j�n

Fj

�
.

We used the de�nition of hφ and the de�nition of Rn,1 in terms of time-ordered products.
Finally, the �rst term in the right-hand side of (??) reads

B
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αRφs,φTn,s
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n�1â
j�1

Fi,s b ϕpfq

�
� i~

n�1̧

r�1
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Bs
αRφs,φTn�1,s

�
xERs pfq,

δ

δϕ
yFr,s b

â
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� ϕpfq 
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αRφs,φTn�1,s

�â
j�n

Fj,s

�
� ϕphEApfqq 
 Tn�1

�â
j�n

Fj

�
,

where we used formula (??) and the fact that the map αRφs,φ is an isomorphism of algebras.
Putting together, we have that the quantity Dn corresponding to the functionals F1, . . . , Fn�1, ϕpfq can
be written in terms of Dn�1, which vanishes by the inductive hypothesis, in detail

DnpF1, . . . , Fn�1, ϕpfqq � i~
n�1̧

r�1

Dn�1

�
F1, . . . , xE

Rpfq,
δ

δϕ
yFr, . . . , Fn�1



� ϕpfq 
Dn�1pF1, . . . , Fn�1q

� 0.

Here we used the notation DnpF1, . . . , Fnq for the element in W given by the right-hand side of eq. (??).
This is precisely condition ??.

Proof of ??. We need to show that Dn is a distribution on Mn�1 and it satis�es the following condi-
tions:

• It holds
WFpDn,φq|∆n�1

K T∆n�1. (B.12)

• Let R Q ε ÞÑ φε be smooth (respectively analytic). It holds

WFpDn,φεq|R�∆n�1
K T pR�∆n�1q, (B.13)

(where the smooth wave-front set is replaced with the analytic wave-front set in the analytic case).
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SinceDn,φ is a c-number, it is equal to its expectation value in any state ofWφ. To simplify, we consider a
quasi-free state ωφ such that its 2-point function coincides inMzJ�psupp vq with a �xed pure Hadamard
2-point function ω0 with respect to P0 � � �m2. We can still conclude, following the same argument
as in lemma ??, that it must hold ωφ � Eφ � σc� � ω0 � σc� � Eφ. We write Dn,φ as

Dn,φphφ; f1, . . . , fnq � rn,φphφ, f1, . . . , fnq �
1

~
ωφ

�
Rn,1,φ

�â
i

Fi,φ;ϕ2phφq

��
, (B.14)

where rn,φphφ, f1, . . . , fnq is de�ned by

rn,φphφ, f1, . . . , fnq :� ωφ

�
B

Bs
αRφs,φTn,φs

�â
i

Fi,φs

��
�
¸
`

ωφ

�
Tn,φ

�â
i�`

Fi,φ b
BF`,φs
Bs

��
, (B.15)

To prove the properties (??) and (??), we show that each term in the right-hand side of eq. (??) satis�es
the desired properties.
As a straightforward consequence of the microlocal spectrum condition ??, the last term in eq. (??)
is a well-de�ned distribution which satis�es the wave-front set condition (??). The condition (??) can
be treated similarly: if we consider a background φε depending smoothly (respectively analytically) on
ε and a corresponding family of quasi-free states tωpεqu depending smoothly (respectively analytically)
on ε in the sense of ?? (respectively ??), then the smoothness property ?? (respectively the analyticity
property ??) imply that the last term in Dn,φε , given by eq. (??) with the obvious changes due to the
dependence upon ε, satisfy condition (??) (respectively its analytic counterpart).
To prove that Dn satis�es the conditions (??) and (??), we then need to show that rn,φphφ, f1, . . . , fnq
does. We notice �rst that whenever hφ b f1 b � � � b fn are supported outside the diagonal, then
Dnphφ; f1, . . . , fnq vanishes. Therefore, rnphφ, f1, � � � fnq equals minus the second and the third terms
in (??). Consequently, it must be a well-de�ned distribution since both the second and the third terms
are already known to be well-de�ned distributions. So we need to investigate rn near the total diagonal
∆n�1.
For this purpose, we assume that hφ b f1 b � � � b fn is supported in neighbourhood of the total diagonal
∆n�1 su�ciently small that supp phφ b f1 b � � � b fnq � Un�1, where U is a convex normal subset of
M . Actually, we require that U is su�ciently small to satisfy the hypotheses of lemma ??. Under this
assumption we can express the time-ordered product using the local Wick expansion (see (??)):

Tn,φ

�â
i

Fi,φ

�
�

�
¸

Cα1...αn

»
Mn

n¹
i�1

fipziqτ
H
φ rbiCi,φ �∇αiϕspz1, . . . , znq :

n¹
i�1

∇κi�αiϕpziq :Hφ dz1 . . . dzn

�
¸
`

»
Mn�`

n¹
i�1

Ci,φpziqfipziqw
`
φpz1, . . . , zn, x1, . . . , x`q :

¹̀
j�1

ϕpxjq :Hφ dz1 . . . dzndx1 . . . dx`,

(B.16)

where Hφ is the Hadamard parametrix (??), where : � � � :Hφ is the ordering with respect to the Hadamard
parametrix, and where w`φ are suitable distributions locally and covariantly constructed from the metric,
depending on φ via vφ. Note, in particular, that each w`φ is a �nite sum of appropriate products of
distributions τHφ and derivatives of the delta distribution. Note that the dependence of Fi,φ on φ is
encoded in the dependence of Ci,φ on φ, so it does not a�ect w`φ.
Inserting eq. (??) into the de�nition of rn (??), we �nd

rn,φphφ, f1, . . . , fnq � R1,φ �R2,φ

�
¸
`

»
Mn�`

n¹
i�1

Ci,φpziqfipziqw
`
φpz1, . . . , zn, x1, . . . , x`qωφ

�
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Bs
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ϕpxjq :Hφs

�¹
i
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¹
j

dxj�

�
¸
`

»
Mn�`

n¹
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Ci,φpziqfipziq
B

Bs
w`φspz1, . . . , zn, x1, . . . , x`qωφ

�
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ϕpxjq :Hφ

�¹
i

dzi
¹
j

dxj .
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We analyse the two terms R1,φ,R2,φ separately and we prove that each of them satis�es the require-
ments (??) and (??).
To prove the claim for R1,φ, we �rst need to rewrite it. Let ωφs be the unique quasi-free Hadamard
state with respect to Pφs such that ωφs coincides with ωφ on MzJ�pKq, where K denotes the region in
which vφs and vφ di�er (at most the whole support of the interaction, which is compact by hypothesis).
Necessarily, it holds ωφs � Eφs � σc� � ω0 � σc� � Eφs . Inside the convex normal set U , we de�ne the
di�erence dφspx1, yq � ωφspx, yq �Hφspx, yq. Then, R1,φ reads

R1,φ �
¸
`

¸
tabu

»
Mn�`

n¹
i�1

Ci,φpziqfpziqw
`
φpz1, . . . , zn, x1, . . . , x`q

B

Bs

¹
ab

dφspxa, xbq
¹
i

dzi
¹
j

dxj . (B.17)

We what to express R1,φ as a distributional kernel in Un�1 evaluated on hφ b f1 b � � � b fn. To do so,
we need to prove

B

Bs
dφspx1, x2q �

»
M

δdφpx1, x2q

δvφpyq
hφpyqdy, (B.18)

for a well-de�ned distribution δdφ{δvφ for which we have su�cient microlocal control.
Making use of the results of appendix ??, in particular eq. (??), one can see that the advanced/retarded
propagators satis�es

B

Bs
E
A{R
φs

px1, x2q �

»
M

E
A{R
φ px1, yq

Bvφspyq

Bs
E
A{R
φ py, x2qdy �

»
M

δE
A{R
φ px1, x2q

δvφpyq
hφpyqdy,

and, then, we have

WF

�
δE

A{R
φ

δvφ

�
� X2�1,

where the set X2�1 is given by (??). Since we chose ωφ � Eφ � σc � ω0 � σc � Eφ, where ω0 is a pure
Hadamard 2-point function with respect to P0 � ��m2, it follows

B

Bs
ωφspx1, x2q �

»
M

δωφpx1, x2q

δvφpyq
hφpyqdy,

and, similarly as in lemma ??, we also have

WF

�
δωφ
δvφ



� Z2�1,

where the set Z2�1 is de�ned by (??).
Furthermore, we can modify the argument of lemma ?? to obtain

B

Bs
uφs,kpx1, x2q �

»
M

δuφ,kpx1, x2q

δvφpyq
hφpyqdy,

where δuφ,k{δvφ is a well-de�ned distribution which satis�es

WF

�
δuφ,k
δvφ



� Cu2�1,

where the set Cu2�1 is given by (??). Then, following the argument of lemma ??, we have

B

Bs
Hφspx1, x2q �

»
M

δHφpx1, x2q

δvφpyq
hφpyqdy,

where δHφ{δvφ is a well-de�ned distribution which satis�es

WF

�
δHφ,k

δvφ



� Z2�1, WF

�
δHφ,k

δvφ


����
∆3

K T∆3.
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By the results just proved for δωφ{δvφ and δHφ{δvφ, we conclude that δdφ{δvφ is a well-de�ned dis-
tribution. We can adapt the argument used in lemma ?? to obtain the following upper bound for its
wave-front set:

WF

�
δdφ
δvφ


����
∆3

� tpy, x1, x2; p, k1, k2q : y � x1 � x2, p� k1 � k2 � 0u. (B.19)

This microlocal condition corresponds to [? , lemma 3.6] in our framework.
Next, we note that by construction w`φ is a �nite sum of products of the distributional coe�cients τHφ
and derivatives of the delta distribution. The wave-front sets of the distributional coe�cients τHφ of the
local Wick expansion are estimated by the set CT de�ned in (??) (see (??) in sec. ?? based on [? ? ]).
Therefore, using the wave-front set calculus (thm. ??), we have

WFpw`φq �
!
pz1, . . . , zn, x1, . . . , x`; q1, . . . , qn, k1, . . . , k`q P 9T�pMn�`q :

D partition I1 \ � � � \ In � t1, . . . , `u such that xi � zj @i P Ij and

pz1, . . . , zn; q11, . . . , q
1
nq P CTn where q1j � qj �

¸
iPIj

ki

,.-
We then estimate the wave-front set of the distributional kernel R1,φpy; z1, . . . , znq corresponding to (??)
by using the wave-front set calculus (thm. ??). It follows from the estimates we provided for WFpw`φq
and for WFpδdφ{δvφq, that WFpR1q|∆n�1

K T∆n�1, i.e. that condition (??) holds. By considering
the background φ depending smoothly (or analytically) on a further parameter, we can show that also
condition (??) holds.

To prove the claim for R2,φ, we notice that, inside Un, R2,φ reads

R2,φ �
¸
`

¸
tabu

»
M`�n

n¹
i�1

Ci,φpziqfpziq
B

Bs
w`φspz1, . . . , zn, x1, . . . , x`q

¹
ab

dφpxa, xbq
¹
i

dzi
¹
j

dxj . (B.20)

Since the distributional coe�cients of the local Wick expansion τHφ depend on φ only via vφ, it follows
that each w`φ, which is a �nite sum of products of τHφ and derivatives of the delta distribution, satis�es

B

Bs
w`φspz1, . . . , zn, x1, . . . , x`q �

»
M

δw`φpz1, . . . , zn, x1, . . . , x`q

δvφpyq
hφpyqdy.

Following the argument presented in sec. ?? (for time-ordered products of functionals which do not involve
covariant derivatives) and the generalization discussed in sec. ??, we have the following restrictions on
wave-front set of δτHφ {δvφ:

WF
�
δw`φ{δvφ

�
� Cδ;�n,1 X C

δ;�
n,1 , WF

�
δw`φ{δvφ

���
∆3

K T∆3,

where the sets Cδ;�n,1 are de�ned in (??). Using the wave-front set calculus (thm. ??) and the fact that dφ
is a smooth function, we conclude that the distributional kernel R2,φpy, z1, . . . , znq corresponding to (??)
is such that WFpR2,φq|∆n�1 K T∆n�1, as we wanted to prove.
By considering the background φ depending smoothly (or analytically) on a further parameter, we can
show that also condition (??) holds for R2,φ. This concludes the proof of ??.

Proof of ??. It follows form the de�nition of Dn,φ together with the symmetry properties of the time-
ordered products (T6) thatDn,φphφ; f1, . . . , fnq is symmetric in f1, . . . , fn. Because hφ appears on a com-
pletely di�erent footing than fi, the non-trivial question is about the behaviour of Dn,φphφ; f1, . . . , fnq

when hφ is exchanged with f1. More precisely, consider two smooth families tφp1qs u and tφp2qs u such that

φ
p1q
s�0 � φ

p2q
s�0 � φ, h

piq
φ :�

Bvpφ
piq
s q

Bs
.
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We want to prove
∆D1ph

p1q, hp2qq :� D1ph
p1q;hp2qq �D1ph

p2q;hp1qq � 0, (B.21)

and, for n ¥ 2, also

∆Dnph
p1q, hp2q; f2, . . . , fnq :� Dnph

p1q;hp2q, f2, . . . , fnq �Dnph
p2q;hp1q, f2, . . . fnq � 0, (B.22)

where Dnph
p1q;hp2q, f2, . . . , fnq is understood as the c-number given by eq. (??) for the local functional

F1 � ϕ2php2qq.
Following the same argument presented in [? , eq. (248)] or [? , prop. 3.7], once it is proved eq. (??),
then eq. (??) would be a consequence of the �atness of ∇R. Therefore, we focus on the case n � 1. More
explicitly, ∆D1ph

p1q, hp2qq is given by

∆D1ph
p1q, hp2qq �

B

Bs
αR
φ
p1q
s ,φ

T
1,φ

p1q
s

�
ϕ2ph

p2q

φ
p1q
s

q
�
�

B

Bs
αR
φ
p2q
s ,φ

T
1,φ

p2q
s

�
ϕ2ph

p1q

φ
p2q
s

q
�
�

�
i

~
R1,1

�
ϕ2php2qq;ϕ2php1qq

	
�
i

~
R1,1

�
ϕ2php1qq;ϕ2php2qq

	
�

� T1

�
B

Bs
ϕ2ph

p2q

φ
p1q
s

q

�
� T1

�
B

Bs
ϕ2ph

p1q

φ
p2q
s

q

�
.

It follows from the properties ?? and ?? of D1 that ∆D1 is a c-number distribution supported on the
total diagonal in M �M which satis�es the wave-front set constraints (??) and (??). Moreover, the
properties ?? and ?? of D1 imply that ∆D1 is covariantly constructed out of g, m2 and vφ, and scales
almost homogeneously with degree 4 under the rescaling of g,m, φ, λ. Therefore, ∆D1 is necessarily in
the form

∆D1ph
p1q, hp2qq �

nf¸
r¥1

»
M

hp1qpxq
�
∇pµ1...µrqh

p2q
	
pxqCµ1...µr pxq � p1 Ø 2q,

where nf is a �nite number, where Cµ1...µr are polynomials of scaling dimension 4 constructed from the
metric, the Riemann tensor, m2, vφ and their derivatives. However, there are no tensors C with the
correct dimension that give a non-vanishing ∆D1. This concludes the proof of condition ?? and the
consistency of the principle of perturbative agreement for variations of the background φ.
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Appendix C

Continuity properties of the non-linear

and the linearized Cauchy problems

In the �rst part of this appendix, we discuss some aspects of the initial value problem for the non-linear
equation of motion (??) corresponding to the λφ4-theory for the ultra-static space-time

M � R� Σ, g � �dt2 � hijdx
idxj ,

where Σ is a 3-dimensional compact Riemannian manifold. We will prove that the initial value problem
for smooth (global in time) solutions with smooth Cauchy data on Σ is well-posed. Then, we will show
that the map which takes smooth Cauchy data q, p and gives their corresponding unique smooth solution
φ is continuous.
In the second part of this appendix, we �x a solution φ for the non-linear equation, and we consider the
linearized equation (??). For this linear equation, it is known that the initial value problem for smooth
(global in time) solutions with smooth Cauchy data is well-posed. We will show that the unique smooth
solution uφpq, pq of the linearised equation in φ corresponding to a �xed pair of smooth Cauchy data q, p,
depends continuously on φ.

C.1 Continuity properties of the non-linear Cauchy problem

We �rst prove by well-known methods the existence and the uniqueness of a global smooth solution
φ P C8pR� Σq to the initial value problem$&% φttpt, xq � p∆phqφqpt, xq �m2φpt, xq � � 1

3!λpt, xqφ
3pt, xq,

φ|t�0 � q,
φt|t�0 � p,

(C.1)

where q, p P C8pΣq, where ∆phq denotes the Laplace operator for pΣ, hq, and where p�qt denotes the
partial derivative with respect to the coordinate t. We assume m ¡ 0 and that λ is a positive constant
or a non-negative cuto� function in C8

0 pR� Σq such that

sup
pt,xqPR�Σ

����λtpt, xqλpt, xq

����   8.

It is easy to see that this class of cut-o� functions is not empty.
Then, we prove that the map that associates a pair of smooth Cauchy data to the corresponding solution
is continuous with respect to the natural Fréchet topology on E � C8pΣq`C8pΣq and the compact-open
topology on C8pR� Σq.

Global well-posedness of the non-linear Cauchy problem. The second order partial di�erential
equation in (??) is hyperbolic and quasi-linear, therefore it is well-known that the initial value problem
is well-posed locally [? , prop. 3.1 in chapter 16]. More precisely, it is known that there exists a closed
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interval I � R around 0 such that the system (??) for q P Hs�1pΣq and p P HspΣq with s ¡ 3{2 � 1
admits a unique local solution

φ P CpI,Hs�1pΣqq X C1pI,HspΣqq, (C.2)

where HspΣq refers to the L2-Sobolev spaces [? , sec. 1 and 6 in chapter 13], [? ] for the compact
Riemannian manifold pΣ, hq, i.e. HspΣq it is the completion of C8pΣq with respect to the norm

}f}s :�
ķ

j�0

�»
Σ

|pBphqqjf |2hdvolh

 1

2

,

where Bphq denotes the Levi-Civita covariant derivative on pΣ, hq, and where | � |h is the natural norm for
tensor �elds on Σ de�ned via the Riemannian metric h1. Here and in the following, we always consider
integer Sobolev orders s.
We remind the reader about the following well-known properties (see e.g. [? , chapter 4], [? , chapter 13
and 16], and [? ]) of the Sobolev spaces on a compact manifold:

• The Sobolev norm } � }Hs is equivalent to the norm given by }As � }L2 , where A is the square root
of the unique self-adjoint extension of the operator m2 �∆phq on Σ.

• We have
}fh}Hs ¤ C }f}L8}h}Hs � C 1}h}L8}f}Hs

where } � }L8 is the usual supremum norm, and where C , C 1 are constants depending on s.

• It holds Hs�1pΣq � HspΣq, i.e. for any f P HspΣq it holds }f}Hs   C }f}Hs�1 , for a constant C
depending on s.

• For s ¡ 3
2 , we have HspΣq � L8pΣq, i.e. for any f P HspΣq, it holds }f}L8   Cs}f}Hs , for a

constant C depending on s.

• For any k, it holds HspΣq � CkpΣq if s ¡ 3{2� k.

• For any s ¡ 3{2, the space HspΣq is an algebra if equipped with the pointwise product.

The size of the time interval in which the local solution exists is controlled by the Sobolov norms, see [?
, prop. 8.5 in ch. 13 and thm. 3.5 in ch. 16]. Namely, there must exist a maximal T� P p0,�8s such
that any other local existence interval I is contained in p�T�, T�q and

lim
tÑ�T�

p}φpt, �q}Hs�1 � }φtpt, �q}Hsq � 8. (C.3)

Indeed, whenever the limit is �nite, the local initial value problem can be posed again for the initial
data φpT�, �q, φtpT�, �q and so T� is not maximal. We now show that the initial value problem we are
considering is well-posed:

Proposition 84. There exists a global, unique, smooth solution φ P C8pR� Σq of the system (??) for
smooth Cauchy data q, p P C8pΣq.

Proof. The proof is based on standard results, we give the argument for completeness. Let φ be a local
solution of (??). We choose t in the interval of local existence. Because A does not depend on t by
de�nition, it follows that

d

dt

�
}As�1φpt, �q}2L2 � }Asφtpt, �q}

2
L2

�
� �

1

3

�
Aspλpt, �qφ3pt, �qq, Asφtpt, �q

�
L2 . (C.4)

1 More explicitly, | � |h is de�ned for k-rank covariant tensor �eld t by

|t|2hpxq :� hµ1ν1 pxq � � �µkνk pxqtµ1���µk pxqtν1���νk pxq.
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Using the Cauchy-Schwartz inequality for the L2-norm and the properties of the Sobolev spaces on
compactly supported manifolds, for s ¡ 1

2 we obtain���� ddt �}φpt, �q}2Hs�1 � }φtpt, �q}
2
Hs

����� ¤
¤ pconstq}Aspλpt, �qφ3pt, �qq}L2}Asφtpt, �q}L2

¤ pconstq}λpt, �qφ3pt, �q}Hs�1}φtpt, �q}Hs

¤ pconstq psupp tPR}λpt, �q}Hs�1q }φ3pt, �q}Hs�1}φtpt, �q}Hs

¤ pconstq}φ3pt, �q}Hs�1}φtpt, �q}Hs

¤ pconstq }φpt, �q}2L8}φpt, �q}Hs�1}φtpt, �q}Hs

¤ CG }φpt, �q}2L8
�
}φpt, �q}2Hs�1 � }φtpt, �q}

2
Hs

�
,

where pconstq and CG are appropriate constants depending on s and, eventually, on λ via supp tPR}λpt, �q}Hs�1 ,
which is necessarily �nite because λ P C8

0 pR� Σq. The Bellman-Gronwall inequality (see e.g. [? ] or [?
, thm.3 in ch. XII]) implies that

}φpt, �q}2Hs�1 � }φtpt, �q}
2
Hs ¤

�
}q}2Hs�1 � }p}2Hs

�
exp

�
C

» t
0

}φpτ, �q}2L8dτ



. (C.5)

We emphasize that the constant C is independent of t. If we can show that for any time t in the domain
of local existence the L8-norm is �nite, then the global existence of a solution with Sobolev regularity as
in (??) for the initial value problem follows as a consequence of (??) and the condition on the maximal
time T� of local existence given by (??).
The �rst step is to get a bound on a suitably de�ned energy. It follows from (??) for s � 0 that

d

dt

�
}φpt, �q}2H1 � }φtpt, �q}

2
L2 �

1

3

�
λpt, �q, φ4pt, �q

�
L2



�

1

3

�
λtpt, �q, φ

4pt, �q
�
L2 .

We de�ne the energy as:

epφ, tq :� }φpt, �q}2H1 � }φtpt, �q}
2
L2 �

1

3

�
λpt, �q, φ4pt, �q

�
L2

We can therefore bound the growth of epφ, tq by���� ddtepφ, tq
���� � 1

3

�����λtpt, �qλpt, �q
λpt, �q, φ4pt, �q



L2

���� ¤ 1

3
sup

pt,xqPR�Σ

����λtpt, xqλpt, xq

���� �λpt, �q, φ4pt, �q
�
L2

¤ C s�0epφ, tq,

where the constant C s�0 is independent of t and is proportional to suppt,xqPR�Σ |λt{λ| which is �nite by
hypothesis. We can apply again the Bellman-Gronwall inequality to obtain

epφ, tq � epφ, 0q exp
�
C s�0t

�
,

where epφ, 0q is the �energy� of the initial data, namely

epφ, 0q � }q}2H1 � }p}2L2 �
1

3

�
λp0, �q, q4p�q

�
L2 .

Starting form (??) with s � 1 and exploiting the properties of the Sobolev norms, we obtain���� ddt �}A2φpt, �q}2L2 � }Aφtpt, �q}
2
L2

����� � 1

3

���Apλpt, �qφ3pt, �qq, Aφtpt, �q
�
L2

�� ¤
¤ pconstq}λpt, �qφ3pt, �q}H1}φtpt, �q}H1

¤ pconstq sup
tPR

� ¸
j�0,1

sup
xPΣ

|pBphqqjλpt, xq|h

�
}φ3pt, �q}H1}φtpt, �q}H1

¤ pconstq
�
}Aφ3pt, �q}2L2 � }φtpt, �q}

2
H1

�
¤ pconstq

�
}|Bphqφ3|hpt, �q}

2
L2 �m2}φ3pt, �q}2L2 � }φtpt, �q}

2
H1

	
¤ pconstq

�
}φpt, �q}4L6}|Bphqφ|hpt, �q}

2
L6 � }φpt, �q}6L6 � }φtpt, �q}

2
H1

	
,
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where pconstq are appropriate constants which does not depend on t (remember that λ P C8
0 pR�Σq). In

the last step we used the Hölder inequality2. As a consequence of the Sobolev embedding H1pΣq � L6pΣq
and the Kato inequality3 we get���� ddt �}φpt, �q}2H2 � }φtpt, �q}

2
H1

����� ¤ C s�1}φpt, �q}4H1

�
}φpt, �q}2H2 � }φtpt, �q}

2
H1

�
(C.8)

¤ C s�1epφ, 0q2 exp
�
C s�0t

� �
}φpt, �q}2H2 � }φtpt, �q}

2
H1

�
, (C.9)

where C s�0 and C s�1 are appropriate constants independent of t. Applying again the Bellmann-
Gronwall's inequality, we obtain

}φpt, �q}2H2 � }φtpt, �q}
2
H1 ¤

�
}q}2H2 � }p}2H1

�
exp

�
C s�1epφ, 0q2

�
exppC s�0tq � 1

��
.

It follows from the result just proved that the L8-norm of φpt, �q is �nite for any �nite time t. In fact,
using the Sobolev embedding theorem H2pΣq � L8pΣq we obtain

}φpt, �q}2L8 ¤ C }φpt, �q}2H2 ¤ C
�
}q}2H2 � }p}2H1

�
exp

�
C s�1epφ, 0q2

�
exppC s�0tq � 1

��
. (C.10)

Since the right-hand side of the inequality (??) is �nite for any �nite value of t, we conclude that for any
s ¡ 0 there exists a global solution u P C0pR, Hs�1pΣqq X C1pR, HspΣqq for initial value problem$&% φtt �∆φ�m2φ � � 1

3!λφ
3

φ|t�0 � q P Hs�1pΣq XH2pΣq
φt|t�0 � p P HspΣq XH1pΣq

(C.11)

Note that Hs�1pΣq XH2pΣq � Hs�1pΣq and HspΣq XH1pΣq � HspΣq for any s ¡ 1.

We are interested in the initial value problem (??) corresponding to smooth data q, p, and, for such
data, we now establish that the solution is globally de�ned and smooth. Since Σ is compact, it follows
that the smooth data q, p must satisfy q P Hs�1pΣq and p P HspΣq for any s ¡ 0. It follows that there
exists a unique solution φ for the initial value problem (??) in C0pR, Hs�1pΣqq X C1pR, HspΣqq for any
s ¡ 1. For any s ¡ 3{2 the space HspΣq equipped with the point-wise product forms an algebra, it holds

φtt � ∆φ�m2φ�
1

3!
λφ3 P C0pR, Hs�1pΣqq.

Taking an increasing number of derivatives of our partial di�erential equation and arguing in a similar
way, we get

φ P
£
s¡ 3

2

£
` s�1

C`pR, Hs�1�`pΣqq.

If we rearrange the intersections de�ning the set above choosing s � 2k � 1 and ` � k for any k P N,
then we get

φ P
£
s¡ 3

2

£
` s�1

C`pR, Hs�1�`pΣqq �
£
k

CkpR, Hk�2pΣqq (C.12)

�
£
k

CkpR, CmpΣqq �
£
k

CkpR� Σq � C8pR� Σq, (C.13)

where we used HspΣq � CkpΣq if s ¡ 3{2� k. This concludes the proof.
2In detail, for p, q ¡ 0 are such that 1{p� 1{q � 1 it holds

}|Bphqφ3|hpt, �q}
2
L2 �

»
Σ

�
Bphqφ3 � Bphqφ3

	
pt, xqdΣpxq � 9

»
Σ
φ4pt, xq

�
Bphqφ � Bphqφ

	
pt, xqdΣpxq (C.6)

¤ 9

�»
Σ
φ4ppt, xqdΣpxq


 1
p
�»

Σ
|Bphqφ|2qh pt, xqdΣpxq


 1
q

. (C.7)

The claimed result is obtained choosing p � 3{2 and q � 3.
3In detail, let E Ñ Σ be a vector bundle and assume it is equipped with a Riemannian metric e. Then, for any section

ξ on E, the Kato's Inequality reads
|d|ξ|e|

2
h ¤ |Bpeqξ|2

h�be
.

Specializing it for ξ � Bphqφ, which is a section on the cotangent bundle T�Σ Ñ Σ, we get

}|Bphqφ|h}
2
H1 ¤ 2

»
Σ

�
|Bphqφ|2h � |Bphq|Bphqφ|h|

2
h

	
dΣ ¤ 2

»
Σ

�
|Bphqφ|2h � |pBphqq2φ|2h

	
dΣ ¤ 2}φ}2

H2 .
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Continuous dependence of solutions on initial data: Having established that the initial value
problem (??) is well-posed, we now want to prove the continuity of the map

E � C8pΣq ` C8pΣq Q pq, pq ÞÑ Upq, pq P S � C8pMq,

i.e. the map that assigns to each pair of Cauchy data the corresponding unique smooth global solution.
We recall the construction of the topologies involved. First consider C8pXq with X a �nite-dimensional
manifold. The compact-open topology on C8pXq is the topology of uniform convergence of functions
and all their derivatives on any compact set K � X. More precisely, this topology is induced by the
supremum seminorms de�ned as

p
pC8pXqq
8,n,K pfq :� sup

xPK

�
ņ

j�0

|pBpeqqjf |2epxq

�1{2

,

where e is some Rimannian metric on X, where pBpeqqj denotes the j-th covariant derivative de�ned in
terms of the Levi-Civita connection of e, and where | � |e is the natural norm for tensors de�ned via
the metric e (see footnote ??). By the Sobolev embedding theorem, the compact-open topology can be
generated by another family of seminorms, the local Sobolev seminorms de�ned as

p
pC8pXqq
H,n,K pfq :�

�
ņ

j�0

»
K

|pBpeqqjf |2edvolpeq

�1{2

, (C.14)

where dvolpeq is the volume form with respect to the Riemannian metric e. Both the supremum seminorms
and the Sobolev seminorms are separating, i.e. if f � 0, then there exist n,K such that p8{H,n,Kpfq � 0.
If the manifold X is locally compact, then there exists a countable family of compact sets tKnunPN, such
that Kn is contained in the interior of Kn�1 and YnKn � X. Evidently both Σ and M � R�Σ satisfy
this condition. We can extract from each of the families of seminorms de�ned before a countable family,
i.e. ppC

8pXqq
8{H,n :� p

pC8pXqq
8{H,Kn,n

. The compact-open topology does not depend on the choice of e and tKnunPN,
and, furthermore, gives on C8pXq the structure of a Fréchet space.

Since Σ is compact, ppC
8pΣqq

H,n p�q is equivalent to } � }Hn . Therefore, the Fréchet topology on E � C8pΣq`
C8pΣq is given by the family of seminorms

ppE qn pq, pq :� }q}Hn�1 � }p}Hn .

On C8pMq, one is free to choose e � dt2 � hijdx
idxj and Kn � In � Σ, where In is the interval

p�pT � nq, T � nq for a �xed T . The compact-open topology on C8pMq is de�ned in terms of the
seminorns

ppC
8pMqq

n pφq :� p
pC8pMqq
H,n pφq �

�
ņ

j�0

»
In�Σ

|pBpeqqjφ|2edvolpeq

�1{2

�

� ¸
k,j¤n

�
k
j

� »
In�Σ

|pBphqqj�kpBtq
kφ|2edvolpeq

�1{2

.

(C.15)

We evidently have

ppC
8pMqq

n pφq ¤ pconstq sup
tPIn

� ¸
k,j¤n

}ppBtq
kφqpt, �q}2Hj�k

�1{2

¤ pconstq sup
tPIn

� ¸
k,s¤n

}ppBtq
kφqpt, �q}2Hs

�1{2

,

where pconstq is a constant which depend on n but not on t.
The compact-open topology on C8pMq induces a topology on the set S � C8pMq of the smooth solutions
of the initial value problem (??).

It follows immediately that if ppC
8pMqq

n pφq Ñ 0 for any n, then necessarily }φpt, �q}Hs Ñ 0 for any s and
any �xed t. In other words, the restriction to the surface ttu�Σ is a continuous map C8pMq Ñ C8pΣq.
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Proposition 85. The map U : E Ñ S � C8pMq is continuous with respect to the topologies we
introduced before.

Proof. We need to verify the following implication

p
pE q
k ppq, pq � pq1, p1qq Ñ 0 @k ñ p

pC8pMqq
` pφ� φ1q Ñ 0 @`,

where φ and φ1 are the unique solutions corresponding respectively to initial data pq, pq and pq1, p1q. Since
φ, φ1 are solutions to the same non-linear equation, it follows that d :� pφ� φ1q is a smooth solution for
the following initial value problem$&% dtt � pm2 �∆phqqd � � 1

2λφφ
1d� 1

3!λd
3

d|t�0 � q � q1 P C8pΣq
dt|t�0 � p� p1 P C8pΣq

(C.16)

We can adapt the same argument based on the Gronwall-Bellmann inequality we used in (??) to obtain

}dpt, �q}2Hs�1 � }dtpt, �q}
2
Hs ¤

¤
�
}q � q1}2Hs�1 � }p� p1}2Hs

�
exp

�
C

» t
0

p1� }φpτ, �q}4Hs�1 � }φ1pτ, �q}4Hs�1qdτ



,

for any s ¡ 1{2, and for a positive constant C independent of t (depending, however, on s and on λ). We
extensively used the properties of the Sobolev norms. Since φ and φ1 are smooth solutions, both φpt, �q
and φ1pt, �q are Hs�1-bounded for any �nite time t. It follows that we have the following bound:

}dpt, �q}2Hs�1 � }dtpt, �q}
2
Hs ¤ D2

sFsptq,

where Ds simply denotes ppE qs pq � q1, p� p1q, while Fs denotes the continuous and positive function

Fsptq :� exp

�
C

» t
0

p1� }φpτ, �q}4Hs�1 � }φ1pτ, �q}4Hs�1qdτ



.

Thus, we have proved that for s ¡ 3{2 the following bounds hold

}dpt, �q}2Hs ¤ D2
s�1Fs�1ptq,

}dtpt, �q}
2
Hs ¤ D2

sFsptq.
(C.17)

Using the fact that d is a solution for (??) and the properties of the Sobolev norms, we obtain the
following bound for s ¡ 3{2:

}dttpt, �q}
2
Hs ¤

¤ pconstq
�
}pm2 �∆phqqdpt, �q}Hs � }λpt, �qd3pt, �q}Hs � }λpt, �qpφφ1dqpt, �q}Hs

	2

¤ pconstq
�
1� }φpt, �q}4Hs � }φ1pt, �q}Hsq

4
�
}dpt, �q}2Hs�2 ,

(C.18)

where pconstq are constants depending on s and on λ. Since φ and φ1 are smooth solutions with smooth
Cauchy data, 1 � }φpt, �q}4Hs � }φ1pt, �q}4Hs is a continuous function in t. Furthermore, using the esti-
mates (??), we can rewrite the inequality (??), as

}d1ttpt, �q}
2
Hs ¤ D2

s�1F2,sptq, (C.19)

where the function F2,s is given by

F2,sptq :� C 2
�
1� }φpt, �q}4Hs � }φ1pt, �q}4Hs

�
Fs�1ptq,

To obtain bounds of the form (??) for higher order time-derivatives of d, one takes further derivatives
in t of the partial di�erential equation dtt � �pm2 � ∆phqqd � λφφ1d � λ

3!d
3. Repeating these kinds of

arguments, one can show inductively that for any order k (and for any Sobolev order s ¡ 3{2) there is
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a continuous function Fk,sptq which depends continuously on }pBtqnφpt, �q}Hs and }pBtqnφ1pt, �q}Hs with
n ¤ k � 2, such that it holds

}pBtq
kdpt, �q}2Hs ¤ D2

s�k�1Fk,sptq.

This last result implies the following bound:

p
pC8pMqq
` pdq ¤ C sup

tPI`

� ¸
k,s¤`

D2
s�k�1Fk,sptq

�1{2

,

where C is an appropriate constant independent of t. Now, if Dk Ñ 0 for any k, then necessarily
p
pC8pMqq
` pdq Ñ 0, as we wanted to prove.

C.2 Continuity in φ of the Cauchy problem for the linearized

equation around φ

Let now φ P S, i.e. φ is a smooth solution of the initial value problem (??). It is well-know that the
Cauchy problem for the linearized equation, i.e.$&% uttpt, xq � p∆phquqpt, xq � pm2 � 1

2λpt, xqφ
2pt, xqqupt, xq � 0,

u|t�0 � q,
ut|t�0 � p,

(C.20)

is globally well-posed for u P C8pR � Σq and q, p P C8pΣq. We denote by uφpq, pq the unique solution
of (??) and we investigate its dependence on φ P S:

Proposition 86. For any p, q P C8pΣq, the map

S Q φ ÞÑ uφpq, pq P TφS

is continuous in the topologies for S and TφS induced by the compact-open topology of C8pMq.

Proof. We consider the more general case of a background φ P C8pMq not necessarily a solution of the
initial value problem (??). In particular, let φ and φ1 be in C8pMq, and let q, p P C8pΣq. We de�ne the
smooth function d :� uφpq, pq � uφ1pq, pq. We need to prove the following implication:

p
pC8pMqq
k pφ� φ1q Ñ 0 @k ñ p

pC8pMqq
` pdq Ñ 0 @`.

Since uφpq, pq and uφ1pq, pq are the unique solutions of the initial value problem (??) with data q, p
respectively for φ and φ1, we deduce that d is a global smooth solution for the following initial value
problem$&% dttpt, xq � pm2 �∆phqqdpt, xq � �λpt, xqφ2pt, xqdpt, xq � λpt, xqpφpt, xq � φ1pt, xqqjφ,φ1pt, xq

d|t�0 � 0
dt|t�0 � 0

(C.21)

where jφ,φ1 :� pφ�φ1quφ1pq, pq. Exploiting the properties of the Sobolev norms, we obtain from (??) the
following inequality for s ¡ 3{2:���� ddt �}dpt, �q}2Hs�1 � }dtpt, �q}

2
Hs

����� ¤ Aptq
�
}dpt, �q}2Hs�1 � }dtpt, �q}

2
Hs

�
�Bptq, (C.22)

where Aptq, Bptq are de�ned by
Aptq ¤ CA

�
1� }φpt, �q}2Hs

�
,

and
Bptq ¤ CB}pφ� φ1qpt, �q}Hs}jφ,φ1pt, �q}Hs ,
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where CA,CB are appropriate constants. Since φ, φ1 and jφ,φ1 are smooth functions, it follows that Aptq
and Bptq are �nite for all t. Now we �x a time t. As a consequence of inequality (??), for any τ P r0, t�1s
we obtain

}d1pτ, �q}2Hs�1 � }dtpτ, �q}
2
Hs ¤MBτ �MA

» τ
0

�
}dpτ 1, �q}2Hs�1 � }dtpτ

1, �q}2Hs
�
dτ 1,

with MA and MB respectively the maximum of A and B in r0, t� 2s. We apply a slight generalization
of the Gronwall-Bellman inequality (see [? , thm. 3 ch. XII]) and we get

}dpt, �q}2Hs�1 � }dtpt, �q}
2
Hs ¤MB

�
t�MA

» t
0

τ 1 exppMApt� τ 1qq



dτ 1.

The fact that ppC
8pMqq

k pφ�φ1q Ñ 0 for any k implies that }pφ�φ1qpt, �q}Hk Ñ 0 for any �nite t, and then
Bptq Ñ 0. This means that both }dpt, �q}2Hs and }dtpt, �q}

2
Hs (for a su�ciently large order s) must vanish

in the limit. Arguing as in prop. ??, we can prove similar results for }pBtqkdpt, �q}2Hs for higher order k.
Finally, making use of formula (??), we can conclude that p`pdq is bounded by a quantity which vanishes

if ppC
8pMqq

k pφ� φ1q Ñ 0 for any k.
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Appendix D

Background dependence of the

propagators E
A{R
φ

In this appendix, we investigate the behaviour of EA{Rφ , the advanced/retarded propagators with respect
to the operator Pφ � � � m2 � V 2pφq, under variations of the background φ P C8pMq. We assume
that V is a local functional, e.g. V pφq �

³
M

1
4!λpxqφ

4pxqdx with λ P C8
0 pMq. First of all we recall the

de�ning relations of EA{Rφ :

P
px1q
φ E

A{R
φ px1, x2q � δpx1, x2q � P

px2q
φ E

A{R
φ px1, x2q supp pE

A{R
φ pfqq � J	psupp fq @f P C8

0 pMq.

Let φ be a �xed smooth function. Consider a smooth map R Q s ÞÑ φpsq P C8pMq such that φp0q � φ.

We regard EA{Rφpsq px1, x2q as distributions in D1pR�M2q, i.e. in the variables s, x1, x2. From the wave-front
set of the advanced/retarded propagators, see (??), it follows

WFpE
A{R
φp�q q �

!
ps, x1, x2; ρ, k1, k2q P 9T�pR�M2q|px1, x2; k1, k2q P CA{RpMq

)
, (D.1)

where the set CA{RpMq is de�ned by eq. (??).
The estimate (??) does not put any restriction on the s-part of the wave-front set, i.e. it does not impose
any control on the dependence under variations of the background. We prove a stronger bound:

Proposition 87. It holds

WFpE
A{R
φpsq px1, x2qq � R� t0u � CA{R. (D.2)

Proof. We present explicitly the proof of the claim for the advanced propagator EAφ . The proof relies on
the propagation of singularities for hyperbolic partial di�erential equations and the Hadamard expansion
for the advanced propagator. Except for some obvious adjustments, the argument we are presenting holds
also for the retarded propagator ERφ .
First of all, we prove that it would be su�cient to prove the claim for x1, x2 both contained in the same
convex normal set U . Let ps, x1, x2; ρ, k1, k2q be an element of WFpE

A{R
φp�q q. Assume that x1, x2 do not

belong to the same convex normal neighbourhood U . By the estimate (??), we have px1, k1q � px2,�k2q.
By de�nition, EAφpsqpx1, x2q satis�es the following equation

P
px1q
φpsqE

A
φpsqpx1, x2q � δpx1, x2q � P

px2q
φpsqE

A
φpsqpx1, x2q.

The propagation of singularities (see thm. ?? in appendix ??) implies that WFpE
A{R
φp�q qzpR�t0u�WFpδqq

is invariant under the action of the Hamiltonian vector �eld h associated to the principal symbol of the
di�erential operator P px2q

φpsq , namely

hps, x1, x2; ρ, k1, k2q :�
Bgλνx2

Bxµ2
pk2qλpk2qν

B

Bpk2qµ
� 2gµνx2

pk2qν
B

Bxµ2
.
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Since h depends only on x2, k2, it follows that if ps, x1, x2; ρ, k1, k2q is contained in WFpE
A{R
φp�q q, then there

is ps, x1, x
1
2; ρ, k1, k

1
2q in WFpE

A{R
φp�q q such that px12, k

1
2q � px2, k2q. For any convex normal neighbourhood

U of x1, we are free to choose x12 P U .
Next, we prove the estimate (??) for x1, x2 in the same convex normal set U . In U2, we can construct
the advanced Hadamard parametrix, i.e. a bi-distribution HA

φ px, yq on U � U such that:

• It is a fundamental Pφ-solution modulo smooth functions, i.e.

P
px1q
φ HA

φ px1, x2q � δpx1, x2q �G
Ap1q
φ px1, x2q, P

px2q
φ HA

φ px1, x2q � δpx1, x2q �G
Ap2q
φ px1, x2q,

for some GAp1,2qφ P C8pU2q.

• Its support satis�es
supp pHA

φ pfqq � J�psupp fq X U

for any test function f supported in U .

Inside U � U , we can trivially decompose EAφ in HA
φ � dAφ , where d

A
φ :� EAφ � HA

φ . The advantage of
this decomposition is that dAφ px1, x2q is smooth in px1, x2q (it is shown in [? , proof of prop. 2.5.1] that
dA must be Ck for any k), and HA

φ is locally and covariantly constructed in terms of the metric and
m2 � V 2pφq. We proceed by showing that both HA

φpsqpx1, x2q and dAφpsqpx1, x2q separately satisfy the
estimate (??).
Following [? ? ], the advanced Hadamard parametrix is

HA
φ px1, x2q :� u0px1, x2qδpσpx1, x2qqθp�px

0
1 � x0

2qq�

�
¸
k¥0

ψ

�
σpx1, x2q

αk



uφ,k�1px1, x2qσpx1, x2q

kθp�σpx1, x2qqθp�px
0
1 � x0

2qq,

where σ is the signed squared geodesic distance (??), and where uk,φ are the Hadamard coe�cients
de�ned recursively by formula (??) starting from u0 de�ned by (??). Here, ψ : R Ñ R is a compactly
supported smooth function and tαkukPN is a sequence of real number which are introduced to ensure the
convergence of the series in case pM, gq is not a real analytic space-time. More precisely, ψ is chosen such
that ψpxq � 1 for |x|   1{2 and ψpxq � 0 for |x| ¡ 1 and, for increasing k, αk tends to zero su�ciently
fast such that the series converges in the sense of [? , lemma 2.4.2].
For any k, the function uk,φpsqpx1, x2q is jointly smooth in s, x1, x2 as can be proved by induction on k
using the recursive de�nition (??). The wave-front sets of the distributions δpσpx1, x2qq, θp�px0

1 � x0
2qq

and θp�σpx1, x2qq can be explicitly computed, and, using the wave-front set calculus (thm. ??), it follows
that HA

φpsqpx1, x2q satis�es the following wave-front set condition:

WFpHA
φpsqpx1, x2qq � R� t0u � CA|U2 .

To conclude the proof, it is su�cient to prove that dφpsqpx1, x2q is jointly smooth in s, x1, x2. First, we
note that by construction

P
px1q
φpsq d

A
φpsqpx1, x2q � G

Ap1q
φpsq px1, x2q, P

px2q
φpsq d

A
φpsqpx1, x2q � G

Ap2q
φpsq px1, x2q.

The remainders GAp1,2qφ can be calculated explicitly (see [? , lemma 2.4.3]) and, furthermore, one can

show that the GAp1,2qφpsq px, yq are jointly smooth in s, x, y.
We are free to choose U su�ciently small such that U � U 1 for another normal convex set U 1 and such
that there must be two Cauchy surfaces Σ� and Σ� which satisfy Σ�XU

1 � H and Σ�XJ
	pUq � H. We

consider a cut-o� function χ P C8
0 pMq such that χpMq � r0, 1s, χ � 1 in U , and Σ�X J

	psuppχq � H.
In this set-up, consider the advanced propagator EAχφp�q, the advanced Hadamard parametrix HA

χφp�q, the

remainder terms GAp1,2qχφp�q and the di�erence dAχφp�q de�ned in R � U 1 � U 1 with respect to the operator

Pχφ � ��m2 � V 2pχφq. These distributions ful�l similar properties of their counterparts EAφp�q, H
A
φp�q,

G
Ap1,2q
φp�q and dAφp�q (de�ned in R � U � U) corresponding to Pφ. Since χ is identically 1 in U , we claim
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that in R� U � U the distributions EAχφp�q and H
A
χφp�q coincide with their counterparts EAφp�q and H

A
φp�q.

For EAχφp�q, the claim follows from the uniqueness of the advanced propagator in U � U and the fact

that Pφ � Pχφ in U . For HA
χφp�q, the claim is a consequence of the fact that the Hadamard coe�cients

uk,φpx1, x2q depend on φ only along the geodesic connecting x1 and x2, which is contained in U if
x1, x2 P U because U is a convex normal set. It clearly follows that dAχφp�q and dAφp�q must coincide in
R� U � U .
Next, we proceed arguing similarly as in [? , lemma 6.2]. For any test functions f1, f2 supported in U ,
we have

dAφpsqpf1, f2q � dAχφpsqpf1, f2q

� �

»
Σ��Σ�

pEAχφpsqf1qpz1q
ÐÑ
Bnd

A
χφpsqpz1, z2q

ÐÑ
Bn pE

A
χφpsqf2qpz2qdΣpz1qdΣpz2q�

�G
Ap2q
χφpsqpE

A
χφpsqf1, f2q �G

Ap1q
χφpsqpf1, E

A
χφpsqf2q�

�
1

2
G
Ap2q
χφpsqpPχφpsqf1, f2q �

1

2
G
Ap1q
χφpsqpf1, Pχφpsqf2q.

(D.3)

By construction, there must be a neighbourhood of Σ� su�ciently small such that χ � 0 in this
neighbourhood. Therefore, for x1, x2 su�ciently close to Σ� the function dAχφpsqpx1, x2q coincides with

dA0 px1, x2q, and so it does not depend on s. As we already discussed GAp1,2qχφpsq px1, x2q are jointly smooth

in s, x1, x2. We use the estimate (??) for the wave-front set of EAχφpsqpx1, x2q. In particular, we note that
it cannot contain elements ps, x1, x2; ρ, k1, k2q with k1 � 0 or k2 � 0. Then, using the wave-front set
calculus (thm. ??) and eq. (??), we �nd that dAφpsqpx1, x2q is jointly smooth in s, x1, x2, for x1, x2 P U .

Putting together the results we derived for HA
φp�q and d

A
φp�q, it follows that WFpEAφp�qq � R� t0u � CA|U2

as we wanted to prove.
A similar argument holds for the retarded product.

We next want to compute the directional derivative of EAφ in φ P C8pMq along the direction h P
C8pMq, i.e.

d

dε
EAφ�εhpf1, f2q

����
ε�0

for any f1, f2 P C
8
0 pMq. Because ε ÞÑ φ� εh is clearly a smooth function, the estimate. (??) of prop. ??

holds and, thus, we can apply the Leibniz rule for the directional derivative to obtain

0 �
d

dε
EAφ�εhpf1, Pφ�εhf2q

����
ε�0

� EAφ

�
f1,

d

dε
Pφ�εhf2

����
ε�0



�

d

dε
EAφ�εhpf1, Pφf2q

����
ε�0

.

Then, it follows

d

dε
EAφ�εhpf1, Pφf2q

����
ε�0

� �EAφ

�
f1,

d

dε
Pφ�εhf2

����
ε�0



� EAφ pf1, hV

3pφqf2q.

We would like to replace f2 by EAφ pf2q in the formula above. However, this cannot be done since the
smooth function EAφ pf2q is not compactly supported. To circumvent this issue we choose a partition of
unity tψnu for M . In detail, we get

d

dε
EAφ�εhpf1, f2q

����
ε�0

�
d

dε
EAφ�εhpf1, PφE

A
φ pf2qq

����
0

�
d

dε
EAφ�εhpf1, Pφ

¸
nPN

ψnE
A
φ pf2qq

�����
0

�
¸
n

d

dε
EAφ�εhpf1, PφψnE

A
φ pf2qq

����
0

�
¸
n

EAφ pf1, hV
3pφqψnE

A
φ pf2qq

� EAφ pf1, hV
3pφqEAφ pf2qq.

We used the fact that the sum in the equation above contains only a �nite number of non-vanishing terms
because EAφ�εhpf1, PφψnE

A
φ pf2qq vanishes if suppψn does not intersect the compact set J�psupp f2q X
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J�psupp f1q. Summing up we have proved that

d

dε
EAφ�εhpf1, f2q

����
ε�0

�

»
M3

hpyq
δEAφ px1, x2q

δφpyq
f1px1qf2px2qdydx1dx2,

where
δEAφ px1, x2q

δφpyq
:� EAφ px1, yqV

3pφqpyqEAφ py, x2q (D.4)

which is a well-de�ned distribution in D1pM3q. Since V is a compactly supported functional, it follows
that the distribution δEApx1, x2q{δφpyq is compactly supported in y. An analogous result (with AØ R)
holds for the retarded propagator.
From the estimate (??) and the wave-front set calculus (thm. ??), it follows that

WF

�
δE

A{R
φ px1, x2q

δφpyq

�
� X2�1, WF

��δE
A{R
φpεq px1, x2q

δφpyq

�
� R� t0u �X2�1,

where the set X2�1 is de�ned by (??), where R Q ε ÞÑ φpεq P C8pMq is a smooth map, and where

δE
A{R
φpεq px1, x2q{δφpyq is viewed as a distribution in the variables ε, x1, x2, y.

We can compute Gateaux derivatives of higher orders by simply distributing the variational derivatives
onto each factor appearing on the right-hand side of eq. (??). Again from the support properties of the
interaction V and the wave-front set calculus (thm. ??) we obtain the following results:

Proposition 88. For any φ P C8pMq, and for any ν P N, the ν-th Gateaux derivative

δνE
A{R
φ px1, x2q

δφpy1q . . . δφpyνq

is a well-de�ned distribution which satis�es the following properties:

1. The distribution δνE
A{R
φ px1, x2q{δφpy1q . . . δφpyνq is compactly supported in y1, . . . , yν

1.

2. It holds

WF

�
δνE

A{R
φ px1, x2q

δφpy1q � � � δφpyνq

�
� X2�ν , (D.5)

where X2�ν is de�ned by (??).

3. Let R Q ε ÞÑ φpεq P C8pMq be smooth and view δνE
A{R
φpεq px1, x2q{δφpy1q � � � δφpyνq as a distribution

in R�M2�ν . It holds

WF

�� δνE
A{R
φpεq px1, x2q

δφpy1q � � � δφpyνq

�
� R� t0u �X2�ν . (D.6)

1If V pφq �
³
M

1
4!
λpxqφ4pxqdx for λ P C80 pMq, it holds that y1, . . . , yν must belong to suppλ.
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List of symbols

S Smooth solutions to the non-linear Klein-Gordon equation. Page 39

TφS Tangent space of S at φ P S, i.e. the space smooth solutions to the linearised equation around φ.
Page 41

Pφ Klein-Gordon type operator for the linearised equation around φ. Page 42

bnWT
�
φ S The (completion of the) n-fold tensor product of the cotangent space T�φ S at the solution φ P S.
Page 42

E 1W pMnq Compactly supported distributions on Mn with wave-front sets contained in the set Wn. Page
24

Wφ The formal Wick algebra at the solution φ P S. Page 56

Wn Set related to wave-front set estimates. Page 24

X2�ν Set related to wave-front set estimates. Page 46

Z2�ν Set related to wave-front set estimate. Page 61

C8
W pSq On-shell W -smooth functionals. Page 41

C8
W pS,b

n
WT

�Sq On-shell W -smooth covariant sections of rank n. Page 46

ΩkW pSq On-shell W -smooth k-forms. Page 46

C8
W pS,Wq On-shell W -smooth sections in the formal Wick algebra bundle W. Page 56

ΩW pS,Wq On-shell W -smooth form with values in the formal Wick algebra W. Page 56

ωφ Pure Hadamard 2-point function associated to the Klein-Gordon type operator Pφ. Page 28

ωRφ Retarded 2-point function. Page 34

Eφ Causal propagator associated to the Klein-Gordon type operator Pφ. Page 43

σc Distributional kernel for the standard symplectic form associated to linear Klein-Gordon-type equa-
tions. Page 43

ω5φ On-shell W -smooth Kähler structure on S corresponding to an admissible assignment φ ÞÑ ωφ of
2-point function. Page 58

σφ On-shell W -smooth symplectic structure on S. Page 57

Gφ Symmetric part of the pure Hadamard 2-point function ωφ. Page 58

Hφ Hadamard parametrix with respect to the Klein-Gorndon type operator Pφ. Page 97

B Derivative operator acting on on-shell W -smooth covariant sections. Page 50

pt 
 sqφ Wick product on sections in C8
W pS,Wq. Page 66
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∇̊W W -covariant derivative (in the sense of def. ??) corresponding to the Levi-Civita connection. Page
71

∇W W -covariant derivative (in the sense of def. ??) corresponding to the Yano connection. Page 80

δ Fedosov operator on on-shell W -smooth forms. Page 81

δ�1 �Inverse� Fedosov operator on on-shell W -smooth forms. Page 81

DW Fedosov connection on on-shell W -smooth forms. Page 83

∇R Retarded derivative. Page 37

F̂ Quantum observable corresponding to F de�ned via Haag's formula. Page 36

α Isomorphism C8
W pS,W 1q Ñ C8

W pS,Wq. Page 89

P� Symmetrization/Antisymmetrization operator. Pages 24, 50
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