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Abstract
We propose to exploit Decision Networks (DN) for the
analysis of attack/defense scenarios. We show that DN
extend both the modeling and the analysis capabilities
of formalisms based on Attack Trees, which are the
main reference model in such a context. Uncertainty
can be addressed at every system level and a decision-
theoretic analysis of the risk and of the selection of the
best countermeasures can be implemented, by exploit-
ing standard inference algorithms on DN.

Introduction
Security risk assessment and mitigation are important activi-
ties that must be performed “intelligently” and under uncer-
tainty, to safely maintain critical infrastructures like com-
puter systems and networks. The classical approach is to
predefine a set of attack scenarios based on the knowledge
of the systems and networks. Such scenarios are very often
described and modeled through Attack Trees (AT) (Schneier
2000) where attacks can be represented in a tree structure,
with the goal as the root node, and different ways of achiev-
ing that goal as multi-level hierarchical structures based on
Boolean operators. Leaves represent basic attacks; these are
specific operations an attacker can put in place, in order to
pursue the ultimate goal, the latter represented by the top
node. AT do not include defense mechanisms, so exten-
sions have been proposed. In Attack Countermeasure Trees
(ACT) (Roy, Kim, and Trivedi 2012) each countermeasure is
the logical AND of two other constructs, called “detection”
and “mitigation” events: a countermeasure is active when
the attack has been both detected and mitigated. A scenario
modeled through ACT is essentially based on the Boolean
semantics; even if it is possible to introduce probabilistic
parameters and to compute probabilistic indices, a sound
decision-theoretic analysis is not directly supported, as well
as the modeling of uncertainty at every arbitrary level.

These possibilities can be easily accounted for, by using
Decision Networks (DN) (Jensen and Nielsen 2007) which
extend modeling situations and patterns as defined by AT.
This results in either well-known interactions mechanisms
like noisy-AND/OR or in more general probabilistic de-
pendencies (Langseth and Portinale 2007; Codetta-Raiteri,
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Montani, and Portinale 2010) DN allow the analyst to adopt
a rational decision making approach, concerning the assess-
ment of specific countermeasures in terms of expected utility
or costs. Standard inference on DN can be used to compute
posterior probability, given a set of observed evidence, for
any variable of interest in the scenario. We can compute sev-
eral indices, such as the Birnbaum Importance (BI) (Meng
2000) of attacks, and the Return on Investment (ROI) (Roy,
Kim, and Trivedi 2012) of countermeasures. Finally, the de-
termination of the suitable set of defense mechanisms can be
naturally formulated as a decision problem, solved through
DN inference. We consider a case study concerning the Bor-
der Gateway Protocol (BGP): we show how to derive a DN
from an AT and how to perform quantitative and decision-
theoretic analyses exploiting DN.

The case study
We consider an attack/defense scenario concerning a BGP
session (Roy, Kim, and Trivedi 2012). BGP is used to ex-
change routing information across the Internet. An attacker
prevents two peers from exchanging routing information by
repeatedly causing a BGP session in “Established” state to
reset. The BGP session can be reset by injecting a spoofed
TCP (Transmission Control Protocol) or BGP message into
the router message stream. Such spoofed packets can of-
ten be detected by methods such as the Inter-domain packet
filter (IDPF) and mitigated by adding an MD5 (Message-
Digest algorithm) based authentication for packets from
the source host of the spoofed packet. Building a valid
TCP/BGP packet requires a valid TCP sequence number
(obtained by TCP sequence number prediction). During the
initial stages of a TCP sequence number attack, a spoofed
packet from an attacker is usually followed by the original
packet from the authentic source. Detecting such duplicate
packets can be a giveaway for on-going TCP sequence num-
ber attacks. Dropping compromised connections and initi-
ating a new connection to destination with a different route
will mitigate such attacks. Spoofed TCP message with RST
flag set will cause a connection to reset. Spoofed BGP mes-
sages (Open, Notification or Keepalive messages) received
by the BGP speaker in the “Connect” or “Active” states will
cause the router to reset resulting in a denial of service. The
BGP speaker can also be compromised by gaining physi-
cal or logical (hijacking a router management session) ac-
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Figure 1: ACT for BGP attack/defense scenario (Roy, Kim, and Trivedi 2012)

cess to the router. Usually router hijacking is characterized
by anomalous packet forwarding which can be detected by
traffic monitoring at the router and mitigated by securing or
replacing the router.

From ACT to DN
The ACT of Fig. 1 formalizes such a scenario and is com-
pleted by: the probability of occurrence of each atomic at-
tack (attack leaf node), the probability of a successful detec-
tion (detection nodes), the probability of a successful mit-
igation (mitigation nodes), the security investment cost of
countermeasures (both detections and mitigations), the im-
pact or cost of each atomic attack. The ACT and all its pa-
rameters are taken from (Roy, Kim, and Trivedi 2012).
DN generation. We define the following rules to construct
a DN from an ACT:
- for each atomic attack node Ai with probability pAi

, cre-
ate a binary chance node XAi

(graphically represented as
oval) with values true (occurrence of attack) and false; set
the Conditional Probability Table (CPT) of XAi such that
P [XAi = true] = pAi ;
- for each countermeasure (i.e. a pair CM = 〈D,M〉 with
D detection event and M mitigation event), create a binary
decision node XCM (rectangle) with values active (attack
detected and mitigated) and inactive;
- for each attack event A output of a gate G (represent-
ing the Boolean function g) with inputs A1, . . . Ak, create
a binary deterministic node XE (double-boarded oval), set
XA1

. . . XAk
as parent of XE and set the deterministic func-

tion of XE according to g;
- for each attack event A output of a gate G (Boolean func-
tion g) with input attack events A1, . . . Ak and input counter-
measure CM = 〈D,M〉 (with probability of detection pD
and probability of mitigation pM ), create a binary chance
node XE , set XA1 . . . XAk

, XCM as parent of XE and set
the CPT for XE = true in the following way: entries corre-
sponding to XCM = inactive are set according to the truth
value of g(XA1

, . . . XAk
) i.e. either 1 when true or 0 when

false; entries corresponding to XCM = active are set as
g(XA1

, . . . XAk
) (1− pD pM ).

DN model. The DN corresponding to the ACT is reported
in Fig. 2. We used GENIE (http://genie.sis.pitt.edu) to build
the model and to perform every computation that is re-
ported hereinafter; probabilities of attacks are annotated near
chance nodes representing basic attacks, while probabilities
of success of countermeasures are near decision nodes. De-
terministic variable nodes have the corresponding Boolean
function reported by the node itself.
Example. Tab. 1.a reports the CPT for node TSNAS given
the parents TSNA and DDRR. Given that countermeasure
DDRR is composed by the detection event Detect Dupli-
cate Packets and by the mitigation event TCP reset and
different route to destination (Fig. 1), with probability of
detection pD = 0.8 and probability of mitigation pM =
0.5 respectively, the probability of countermeasure suc-
cess is pDDRR = 0.8 · 0.5 = 0.4; thus, when the at-
tack occurs (TSNA=true), if the countermeasure is activated
(DDRR=active) there is a 60% chance of having the attack
unmitigated and successful (CPT in Tab. 1.a).
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Figure 2: DN for the BGP scenario

Table 1: a) Modeling countermeasure success b) Adding un-
certainty to GOAL in BGP scenario

a)
TSNA true false
DDRR inactive active inactive active
TSNAS=true 1 0.6 0 0
TSNAS=false 0 0.4 1 1

b)
RRS true false
CRS true false true false
GOAL=true 1 0.9802 1 0.01
GOAL=false 0 0.0198 0 0.99

Noisy gates. The structure created with this method repre-
sents a main skeleton over which more features can be added
or modified. For example, in case of “noisy gates” (which
are not representable in the ACT), we can adapt the corre-
sponding CPT to account for this additional uncertainty.
Example. Consider the case where there is a 2% probability
that a spoofed malicious message does not reach the router;
in addition, suppose we want to model additional uncer-
tainty, by introducing also a small chance (e.g. 1% probabil-
ity) of the router being reset for some unmodeled causes. In
such a case the type of node ResetBGP can be changed from
deterministic to a noisy-OR chance node with leak (Jensen
and Nielsen 2007); the noisy-OR parameters are then
p1=P[Goal=true—RRS=true, CRS=false]=0.98
p2=P[Goal=true—CRS=true, RRS=false]=1
pleak=P[Goal=true—RRS=false,CRS=false]=0.01
resulting in the CPT of Tab. 1.b.

Quantitative Analysis
Probability of attacker’s goal. This is the probability that
an attacker will actually pursue the goal, given some ini-
tial specification in terms of probability of basic attacks and
presence of countermeasures.
Example. We compute the probability of a successful at-
tack given that we implemented only the IDPF detec-
tion with MD5 authentication (i.e. evidence inserted as

IDMD5 = active and the other countermeasures set to
inactive), by performing the query P [Goal|IDMD5 =
active,DDRR = inactive, FSR = inactive] = 0.418,
resulting in more than 40% probability of being vulnera-
ble to the attack. We notice that, given that countermea-
sure are not 100% effective, the attacker can reach the goal
(with about 27% of probability) even in presence of all
countermeasures: P [Goal|IDMD5 = active,DDRR =
active, FSR = active] = 0.274
Importance. Such quantities can be defined in different
ways and are usually identified with the aim of prioritizing
defense mechanisms (i.e. countermeasures) to counteract at-
tack events. An importance measure that can be adapted
from reliability theory is the Birnbaum Importance (BI)
(Meng 2000) which measures the change in the probability
of the attacker’s goal caused by a change in the probability
of the attack of interest: BI(Ai) = P [Goal = true|Ai =
true]− P [Goal = true|Ai = false].
Example. Fig. 3.a shows BI under different sets of counter-
measures. BI points out that compromising the router (attack
CR) is the most important attack. This is due to the fact that
unmitigating the attack will definitely cause the occurrence
of the goal; moreover, BI puts in evidence that such an attack
is more important in case it is not defended by the suitable
countermeasure.
Risk. This corresponds to compute the expected impact of a
particular attack/defense scenario. Since the impact IGoal is
measured as the amount of damage provided by the success
of the attacker’s goal, the risk is defined as R = pGoalIGoal

being pGoal the probability of success of the goal (Roy, Kim,
and Trivedi 2012). R is computed relatively to a particular
context, usually a specific set of active countermeasures. In
the DN framework, R can be computed by adding a value
node (Impact in Fig. 2) to the goal node and setting the active
and inactive countermeasures as evidence to decision nodes.
The value function on the Impact node can be determined ei-
ther by a direct estimation of the damage of a successful at-
tack (occurrence of the goal) or by exploiting some heuristic
approach synthesizing the impact on the goal, starting from
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Figure 3: a) BI measure of basic attacks b) Risk evaluation
w.r.t. probability of CR attack

Table 2: Best set of countermeasures
Obs. Att. IDMD5 DDRR FSR Tot. Exp. Cost
None � � � 68515
CR=false � � 4658
CR=true � � � 164225
TSNA=true � � � 99072
TSNA=false � 65050
TCSR=true � � � 72890
TCSR=false � � � 68135

local impact estimation of each basic attack’s impact (Roy,
Kim, and Trivedi 2012). Since the goal’s impact represents
a damage (i.e. a cost), a negative utility can be used in the
corresponding value node.
Example. Assuming IGoal = 250000, Fig. 3.b reports the
risk value (expected impact) with respect to different sets of
active countermeasures, by varying the probability of CR at-
tack (the most important one as noticed before). We confirm
also from risk evaluation that activating countermeasures not
related to a router hijacking attack is not useful at reducing
the global risk, while the presence of an active firewall and
an alternative routing strategy can provide a risk reduction.
Investment. When measuring the impact deriving from a set
of countermeasures, the investment cost in setting up such
defense mechanisms should be taken into account as well.
To this aim, value nodes IC1, IC2, IC3 (with negative utility
values) are added in the DN to decision nodes. The total ex-
pected cost can be computed by considering a cost function
which is the sum of the cost nodes and the impact node. This
can be useful to evaluate the best set of countermeasures to
activate given a set of observed attacks.

Example. Considering a cost of 40, 30 and 50 for activat-
ing countermeasures IDMD5, DDRR and FSR respectively,
Tab. 2 reports the results of the computation of the best set
of countermeasures to activate, depending on observations
concerning nodes CR, TSNA and TCSR. We notice that hav-
ing countermeasure FSR inactive is a good option (the best
one), only when we are sure that CR attack has not occurred.
ROI. An interesting aspect related to the selection of the
best countermeasures concerns the so called Return on In-
vestment (ROI) index (Roy, Kim, and Trivedi 2012). It rep-
resents the percentage of investment gain w.r.t. the invest-
ment cost. It is defined by comparing a status-quo situation
(a set of countermeasures CMi−1) and a target one (an-
other set CMi), differing from the status-quo in terms of
a set of investments. By denoting with Ri the risk associated
with CMi and by Ci the cost of implementing CMi from
CMi−1, then the ROI index is defined as:
ROI(i) = Ri−1−Ri−Ci

Ci

Example. Consider the situation CM0 (no active coun-
termeasure) corresponding to a risk (expected impact) of
106554; in case we do not have any evidence about attacks,
solving the DN suggests that the best (in terms of risk) de-
cision is CM1 (all the countermeasures are activated) cor-
responding to a risk of 68395. Since implementing CM1

has an investment cost C1 = 120 we compute the ROI as
R0−R1−C1

C1
= 106554−68395−120

120 = 316.99, meaning that
for each unit of investment, we get back about 317 units.

Conclusions
We have proposed DN as a reference model for the analysis
of attack/defense scenarios. The advantages can be consid-
ered from both the modeling and the analysis point of view:
uncertainty at every level of the scenario can be captured,
probabilistic indices can be computed through standard in-
ference, and a decision theoretic approach can be exploited
to select the best set of countermeasures to activate. This has
been shown through a case study concerning BGP.
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