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Abstract

The inverse problem of modeling biochemical processes mathematically from mea-

sured time course data falls into the category of system identification and parameter

estimation. Analyzing the time course data would provide valuable insights into

the model structure and dynamics of the biochemical system. Based on the types

of biochemical reactions, such as metabolic networks and genetic networks, several

modeling frameworks have been proposed, developed and proved effective, including

the Michaelis-Menten equation, the Biochemical System Theory (BST), etc. One

bottleneck in analyzing the obtained data is the estimation of parameter values

within the system model.

As most models for molecular biological systems are nonlinear with respect to

both parameters and system state variables, estimation of parameters in these models

from experimental measurement data is thus a nonlinear estimation problem. In

principle, all algorithms for nonlinear optimization can be used to deal with this

problem, for example, the Gauss-Newton iteration method and its variants. However,

these methods do not take the special structures of biological system models into

account. When the number of parameters to be determined increases, it will be

challenging and computationally expensive to apply these conventional methods.

In this research, several methods are proposed for estimating parameters in two

classes of widely used biological system models: the S-system model and the linear

fractional model (LFM), by utilizing their structure specialties. For the S-system,

two estimation methods are designed. 1) Based on the two-term structure (produc-

tion and degradation) of the model, an alternating iterative least squares method is

proposed. 2) A separation nonlinear least squares method is proposed to deal with

the partially linear structure of the model. For the LFM, two estimation methods

are provided. 1) The separation nonlinear least squares method can also be adopted

to treat the partially linear structure of the LFM, and moreover a modified itera-

tive version is included. 2) A special strategy using the separation principle and

the weighted least squares method is implemented to turn the cost function into a
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quadratic form and thus the estimates for parameters can be analytically solved.

Simulation results have demonstrated the effectiveness of the proposed methods,

which have shown better performance in terms of estimation accuracy and compu-

tation time, compared with those conventional nonlinear estimation methods.

Keywords: parameter estimation, nonlinear biological system, S-system, linear

fractional model (LFM), time course data, least squares, optimization, separation

method
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Chapter 1

Introduction

1.1 Background

Over the past decade, advances in high-throughput experiment tools and methods

have helped generate huge amount of biological data and information at the mi-

croscopic levels, such as molecular and cellular levels. One example of such achieve-

ments is that the sequencing processes of genomes have been accomplished for several

species or organisms [2]. Nowadays, researchers face a new challenge regarding how

these available biological data and information can be integrated and utilized in order

to quantitatively understand the dynamic behaviors of biochemical reactions at the

system level. Such ideas give rise to a new emerging research area, named ‘systems

biology’ [3], and it exerts power in modeling and quantitatively analyzing the details

and principles of biological systems.

Conventionally the biological methods and efforts have focused primarily upon

separated fundamental parts, such as genes, proteins and cells, to dig deep into those

individual functions and mechanisms. However, as these components usually work

together and have complex interactions, limited understanding of the system’s opera-

tion has been provided by the traditional research approach. Systems biology tries to

seek the patterns and reasons of these interactions, in order to better understand the

entire processes that happen in a biological system [4]. Many ideas and techniques

from mathematical and engineering disciplines, such as the dynamical systems the-

ory and the system engineering approach, are incorporated in this research field. The

ultimate goal of systems biology research is to design and manipulate cell functions

after analyzing and understanding the characteristics and mechanisms of complex
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biological systems.

One objective of systems biology is to construct a model to represent the dy-

namics and interactions within a system. It has to be decided what kind of model

is appropriate for the research target and the type of experimental data. Several

approaches have been proposed in order to quantitatively model the dynamics of bi-

ological system networks, including continuous deterministic methods such as differ-

ential equation models, or discrete probabilistic models based on stochastic dynamics

[20]. In most situations, researchers are mainly interested in average responses of

the model rather than extreme or rare cases, and a deterministic model would be

sufficient for the modeling process, if the stochastic aspect can be ignored.

1.2 Problem Statement

The first three phases for the construction of a biological system model include: 1)

collecting observation data from experiments; 2) identifying the structure of the re-

action model; and 3) estimating values of parameters within the model. At present,

modern high-throughput experimental techniques, e.g., microarray, mass spectrom-

etry (MS) and nuclear magnetic resonance (NMR), are used to collect diverse quan-

titative measurements [3, 44, 23]. For example, time series data of the metabolic

concentrations involved in a certain biochemical reaction pathway are especially use-

ful for the construction of a metabolic model. In vivo NMR measurements are able

to produce this kind of data, which contain information about both the material

flows and the regulations within the reaction network [26]. The final constructed

model, whose predictions are consistent with the experimental data, will be consid-

ered capable of quantitatively describing the underlying biological systems.

The subsequent phase of modeling is to determine the network structure of bio-

chemical reactions and select a modeling framework. From available measurement

data and related biological knowledge, the modeler will consider which components,

interactions and regulations are relevant and should be incorporated in the model.

Then a network map is formulated to visualize the process of reactions (see Fig.
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2.1 as an illustration). Now by selecting a proper modeling framework, the network

map can be translated into corresponding equations (see Eq. (2.8) as an example),

which are usually in the form of ordinary differential equations (ODE). Such a set of

ODEs represent the velocities or fluxes of reactions within the system model. As the

modeling equations have been set up in symbolic forms, now we face the problem

of determining suitable values for parameters within these equations. The way is to

make the model-based predictions comply with those experimental measurements.

Parameter estimation, which is the third phase, is chosen as the subject for this

research.

Parameter estimation is a key issue in the construction of a biological model.

Once the reaction network structure is known, the corresponding equations are rel-

atively easy to list using the selected modeling framework, such as the Michaelis-

Menten rate law and the Biochemical System Theory (BST) [32, 43]. Within these

equations, there are a group of unknown parameters, which determine the system’s

characteristics. In most cases it is very difficult or even impossible to measure the

parameters experimentally. However, we usually have the chance to measure some

of the variables involved in the model, such as the concentrations of reaction com-

ponents [23]. The development of experimental tools of biology helps us in accumu-

lating such desired biological information. Some modern high-throughput tools are

able to collect time series data of reactants, under different experimental conditions.

Our task would be to seek the optimal parameter values from these experimental

measurement data.

Models in the form of nonlinear equations are more ubiquitous and the estima-

tion problem becomes more complex with nonlinear factors involved. Thus, such

nonlinear models are chosen to be considered in this research. Here we select the

S-system model [43], one of the ‘testbed’ models in this research, to exemplify one

form of modeling framework, which shows nonlinearity with respect to parameters:

ẋi = αi

d∏
k=1

xgik

k − βi
d∏

k=1

xhik
k , (i = 1, · · · , d). (1.1)

Here, xi are called state variables, which represent concentrations of reaction com-
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ponents. In the right-hand side (RHS), αi, βi, gik and hik are system parameters. Of

all the parameters, αi and βi are known as rate constants, whereas gij and hij are

referred to as kinetic orders.

The parameter estimation problem, i.e., the topic of this research, can be dealt

with through finding the optimal values of parameters that make the model-based

predictions mostly consistent with the experimental data. The agreement/consistency

between the model-based prediction and the experimental data can be measured in

different ways [36]. The following two functions, JA and JB, are objective functions

usually adopted in the estimation process (taking the S-system as an example):

JA =
d∑
i=1

n∑
j=1

w2
ij[ẋij − (αi

d∏
k=1

xgik

kj − βi
d∏

k=1

xhik
kj )]2,

JB =
d∑
i=1

n∑
j=1

w2
ij(xij − x?ij)2.

(1.2)

The subscript i distinguishes different state variables, and the subscript j indexes

time points of measurements. Therefore xij denotes the j-th measurement of the

variable i. wij is the weighting factor and x?ij is the value of state variable calculated

by integrating ODEs numerically.

As it costs considerable computational resources to perform numerical integra-

tions (as high as 95% of the total computation time during the optimization process

[44]), adoption of JB is not appropriate for fast parameter estimation. In this re-

search, JA is chosen as the objective function.

1.3 Research Objectives and Basic Ideas

A general comparison of parameter estimation algorithms for biological systems has

been reported by Moles et al. in [25]. All the examined algorithms can be categorized

into two classes. One class is deterministic methods, usually gradient-based, such

as the Gauss-Newton algorithm (GNA) and the Levenberg-Marquardt algorithm

(LMA). The advantage of these gradient-based methods is their ease of implemen-

tation and fast computation to deal with small-scale or middle-scale problems. The
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weakness lies in that the gradient-based method may get trapped in the local opti-

mum depending on the initial starting point. Such a problem can be partly resolved

by running the algorithm several times with different initial guess values. The other

class is stochastic methods, including adaptive stochastic search methods, evolution-

ary computation (EC) methods, and so on. These algorithms are applied with the

purpose of searching for a global optimal solution.

In several studies, stochastic optimization procedures like evolutionary algorithms

(EA) have been applied successfully to biochemical systems under reasonable model

forms [34]. As most of the time there is no standard in the settings for the optimiza-

tion procedures, the choices of values for these settings greatly affect the performance

of the optimization process. Moreover, it usually requires a long computation time

(lasting several hours) for running such stochastic search algorithms. In many cases,

a lack of time prevents researchers from systematically benchmarking these settings.

For scientists and experimentalists from biology-related domains, the complexity of

the above-mentioned procedures and the long computation time hinder the applica-

tion of these algorithms. Therefore, a fast and efficient parameter estimation strategy

is needed for the improvement of model quality.

This research focuses on some specially structured nonlinear models, specifically

the S-system model (detailed in Chapter 2) and the linear fractional model (LFM)

(detailed in Chapter 3), and develops parameter estimation strategies based on their

structure specialties. Once these parameters are identified, we can further validate

the mathematical model, by comparing the predicted system dynamics in simulation

with some new experimental observations under different conditions. If the model

accuracy is satisfactory (consistent with the measurement data), then the estimation

process is finished. Otherwise the estimation results can be considered as a pre-step

for providing possible initial values before more complex algorithms are applied.

As shall be seen from the detailed structure of the S-system model, the RHS

of each ODE is composed of two terms. By utilizing the property that power-law

functions can be considered linear under the logarithmic coordinates, the parameters

could be estimated by linear regression iteratively. Another perspective is that the
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parameter set can be divided into two parts: the linear set and the nonlinear set. The

model shows up to have the character of partial linearity. Rate constants appear in

linear form and kinetic orders fall into the nonlinear set. In this research, estimation

strategies will be implemented by utilizing this type of separable property of the

parameters in the system model.

Such a separation approach can also be applied to the LFM, as the model can

be regarded as linear with respect to parameters in the numerator. Therefore, by

using the above-mentioned separation method, the optimization problem is reduced

by dimension, i.e., only with respect to parameters in the denominator.

The general difficulty residing in nonlinear optimization problems is that there is

no analytical solution for minimizing the objective function. Thus, various numerical

strategies, such as the gradient-based methods, are applied in order to find the

minimum. For the parameter estimation problem in the LFM, it is interesting to note

that, by using the separation strategy and the weighted least squares method with

a properly chosen weight matrix (in specific form), the objective function becomes

quadratic with respect to parameters in the denominator. Therefore, estimates for

all parameters can be analytically expressed. The estimation process will be greatly

simplified.

In a nutshell, the objectives of this research reside on two aspects. One is to

adopt strategies to reduce the complexity of the estimation problem. The other is

to develop easy-to-use and fast methods for estimating parameters in two classes of

nonlinear biological systems, i.e., the S-system and the LFM.

1.4 Thesis Organization and Notations

This thesis is organized as five parts. Chapter 1 is composed of background and in-

troduction of the research, and an outline of the whole work. Chapter 2 explains pa-

rameter estimation methods for the S-system, based on the alternating least squares

method and the separation principle. The effectiveness of these methods is demon-

strated through two numerical examples, with the methods applied on S-system
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models. Chapter 3 introduces parameter estimation methods for the LFM. The sep-

aration approach is also applied here and moreover a specially designed algorithm for

estimating parameters in the LFM is presented. The estimates can be analytically

expressed using a weighted least squares approach. In Chapter 4, a framework is

proposed for a more complex estimation problem with state and reaction rate esti-

mation. Such a method will simplify the experimental design for biological reaction

systems, and provide estimates for variables which are unnecessary to measure or

cannot be measured directly. An example is provided out to illustrate the proposed

method. In Chapter 5, the research work is summarized and additional comments are

made. Also, some future work that could be considered concludes this last section.

The notations used in this thesis are explained as follows. Rn denotes the set

of all n-dimensional column (or row) vectors; Rn×m denotes the set of all n × m

matrices. The superscript T denotes the matrix transpose. The Euclidean norm

of an n-dimensional vector a = [a1, a2, . . . , an] ∈ Rn is defined by ‖a‖ =
√∑n

i=1 a
2
i .

diag[a1, a2, . . . , an] is a diagonal matrix whose diagonal elements are ai (i = 1, 2, . . . , n).

In ODE ẏ = f(t, y), y, ẏ and t are usually vector-valued.
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Chapter 2

Parameter Estimation Methods for S-system

2.1 Introduction

2.1.1 Explanation of S-system

For time course data analysis, the Biochemical Systems Theory (BST) [30, 31, 32, 43,

38] is an appropriate framework for modeling reaction networks, such as metabolic

networks. BST is based on the approximation of Taylor’s series expansion. Under

this framework, the products of power-law functions are used to approximate reaction

rates or fluxes. The most commonly encountered nonlinear models within the BST

are the S-system model and the Generalized Mass Action (GMA) model [43]. In this

chapter, the S-system model is focused on as a testbed for the proposed estimation

methods.

The general form of an S-system is shown in the following:

ẋi = αi

d∏
k=1

xgik

k − βi
d∏

k=1

xhik
k , (i = 1, · · · , d), (2.1)

where x represents the state variable (e.g., the concentration of metabolite), and d

denotes the total number of variables within the system. The non-negative parame-

ters αi and βi are called rate constants, and the real-valued parameters gik and hik

are kinetic orders.

In the S-system model, the structure of the RHS of each ODE is composed of two

terms, in the form of product of power-law functions. The positive term contributes

to the production of reactant, and the term with negative sign ahead corresponds to

the degradation of reactant [43]. The difference between these two terms represents
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the change of state variables over time. For the kinetic order parameter g or h,

a positive value means an activating effect, while a negative value represents an

inhibitory effect, either to the production or the degradation process. A zero-valued

kinetic order indicates that the corresponding variable xk has no effect on the change

of variable xi.

The primary reason to adopt such an S-system model within the BST framework

is that the form with power-law functions has the capability to capture various

nonlinearity appearing in system dynamics. Another benefit is that such an S-

system model provides a simple mapping relationship between the network structure

and the symbolic equations. Once the structure features of the reaction system are

obtained (from biological knowledge and information about the underlying system),

the model equations are relatively easy to write down in a simplified form, with

some kinetic order values set to zero and some deemed to be negative or positive.

Moreover, the power-law structure of the model is amenable to numerical analysis

and simulation. To sum up, the S-system model is a representative dynamic model

suitable for several kinds of biological systems, such as metabolic networks, genetic

regulation networks, and signaling pathways. It finds a good compromise which can

capture the dynamics while keeping the mathematical form simple and unified.

2.1.2 Related Work

The development of efficient algorithms or methods is required for determining the

optimal values of parameters, after the time series measurement of state variables

is obtained. The parameter estimation task can be formulated as an optimization

problem, to minimize the cost/objective function measuring the difference between

the model-based prediction and the experimental data. The Euclidean distance and

the least squared error criterion are usually adopted for optimizing the cost function.

There are two ways typically adopted to construct the cost function: one is based

on concentration error and the other is formulated as slope error, see Eq. (1.2).

The concentration error based cost function is a straightforward representation to

measure the prediction consistency, and therefore was widely adopted in the past.
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Many estimation algorithms have been developed to minimize such a form of cost

function. For example, Kikuchi et al. proposed a genetic algorithm (GA) method

to infer the dynamics of a small genetic network with five variables in an S-system

model [21]. One weakness for such concentration error based cost functions is that

the numerical integration is required to solve the ODE on each step during the

optimization process. The numerical integration process will cost large amounts of

computation time, as high as 95% of the total time for optimization [44].

The slope error based cost function is an alternative way to formulate the cost

function. Such a formulation requires the slope information from measurement data,

and the consistency is evaluated on basis of slope values. As this approach cir-

cumvents the time-consuming numerical integration process, it shows superiority in

speed for optimization. Recently, several methods have been proposed to estimate

parameters in the S-system model and the like, adopting such a cost function. Voit

and Almeida developed an ANN-based method to decouple the dynamic systems

to identify the structure of the S-system model and estimate parameters within the

model [44]. Tucker et al. used the interval analysis technique to estimate param-

eters for the generalized mass action (GMA) models [39]. Ho et al. and Wang et

al. respectively proposed an intelligent two-stage evolutionary algorithm [18] and a

so-called unified approach [45] to estimate parameters in the S-system models.

Generally speaking, these proposed methods usually require large amounts of

computation resources and time, and are difficult to implement. One aspect of con-

cern is that these methods do not sufficiently take the special structures of biological

system models into consideration. Previous research has shown that consideration of

the model specialties may simplify the parameter estimation problem, e.g., reducing

a nonlinear problem to a linear one [47].

2.1.3 New Ideas

The first idea is to utilize the two-term structure of an S-system model. By taking a

logarithmic transformation and applying the linear least squares method iteratively,

the final estimates for parameters can be obtained until the stop criterion is met.
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This idea is quite intuitive and straight-forward.

Another idea is that parameters in the S-system model can be separated into two

groups: one group of parameters shows linearity in the model while another group

of parameters is nonlinear. From this viewpoint, we employ a separation parameter

estimation strategy to estimate parameters in the S-system models. Some early

studies on the separation estimation methods were based on matrix factorization

[14, 19, 8]. Our strategy consists of three steps. In the first step, parameters linear

in a model are estimated by optimizing the objective function using linear least

squares method [5], assuming all parameters nonlinear in the model are known.

In the second step, substituting the estimated parameters in the first step into the

objective function yields a new objective function, which is only related to parameters

nonlinear in the model. Then parameters nonlinear in the model are estimated by

proper nonlinear estimation methods. In the last step, the estimates of parameters

linear in the model are calculated using the estimates of parameters in the second

step. The foreseeable advantages of this type of separation method include: 1)

requiring less initial guesses as linear parameters have been eliminated; 2) reducing

the dimension of parameter space to search; 3) reducing the computational effort to

calculate the refinement term, when using nonlinear parameter estimation methods

such as the Gauss-Newton method and its variants.

2.1.4 Contents of Chapter

Briefly, this chapter is organized as follows. Section 2.2 states some pre-processing

steps, including the decoupling of the system model, the smoothing of measurement

data and the slope approximation. In Section 2.3, we first give an intuitive method

called the alternating least squares (ALS) method, and an illustrative example fol-

lows. In Section 2.4, a separation parameter estimation approach is introduced and

derived. The separation parameter estimation approach is applied to estimating

parameters in an S-system example. In this section, performance of the separa-

tion parameter estimation method is compared with that of conventional methods,

the Gauss-Newton algorithm and the Levenberg-Marquardt algorithm. Finally in
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Section 2.5, we summarize these two proposed methods for the S-system.

2.2 Pre-processing Steps

2.2.1 Decoupling

Among the challenges for parameter estimation problems, the development of effi-

cient optimization methods is crucial but also very tough. As we know, numerical

integration tools are needed to solve ODEs in the optimization process, and the

fact is inevitable that the numerical integration is quite time-consuming and can fail

sometimes. It is observed that the numerical integration requires even more than

95% of the total time in the optimization process [44].

To resolve such a problem, Voit and Almeida presented a decoupling method,

splitting the ODEs into sets of separate algebraic equations and approximating the

derivatives by calculated slopes from measurement data [44]. This method does not

require the numerical integration of ODEs and thus the subsequent optimization

process can be much faster. Here is an example. If one has an S-system model with

d components, and with the measurement of each component at n time points, the

decoupling of original S-system can be made as:

si(tk) = αi

d∏
j=1

x
gij

j (tk)− βi
d∏
j=1

x
hij

j (tk), (2.2)

(i = 1, · · · , d and k = 1, · · · , n),

where si(tk) is the calculated slope of the concentration of component xi at the time

point tk. The model framework of parameter estimation problem is thus reformulated

from a set of d ODEs to d × n algebraic equations. After such reformulation, the

analysis of algebraic equations becomes an easy problem, and the computation time

for parameter estimation will be greatly reduced.
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2.2.2 Smoothing and Slope Approximation

Before the procedures of parameter estimation start, the input/measurement data

need to be pre-processed. The two goals ahead include: 1) to use a filter/smoother for

the measurement which will extract the original signal from the noise-contaminated

data; 2) to calculate/approximate the slopes si with great precision. It is notewor-

thy that the accuracy of slope calculation, and furthermore of parameter estimation,

are greatly dependent upon the efficiency of smoothing algorithm, because the cal-

culation of slopes would amplify the effect of errors from input data. Therefore,

smoothing algorithms should be used for pre-processing.

Vilela et al. proposed a smoothing algorithm, named ‘autosmooth’ (AS), to

deal with the noise in measurement and calculate the slopes from smoothed data

[42]. Advantages of this algorithm include the capability of handling varying/uneven

noise structures and that the authors provided a closed-form solution for computing

derivatives of the smoothed signal.

This AS algorithm is based on the Whittaker filter and the Eilers’ extension [9].

The basic ideas of the Whittaker filter include two aspects. On one hand, the newly

smoothed time series are required to give a close fit to the original/raw noisy data

points. On the other hand, the connection curve of the smoothed output could not be

too rough. That means the values of neighborhood points for any smoothed output

are relatively similar to each other. This filter undergoes an optimization process,

relying on two control parameters: one determining the width of neighborhood and

the other weighting the two aspects (closeness and smoothness). These two control

parameters are optimized by the Eilers’ approach using cross-validation. Vilela et

al. improved this process by minimizing an entropy function [42].

In this research we adopt the AS algorithm package [1, 42] developed by Vilela

et al. and implement it in the Matlab environment. This package will be used for

the smoothing of the input data and also the estimation of the slopes in Section 2.3.

Another slope approximation strategy we adopt is the 5-point central difference
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(5CD) method [52], as shown in Eq. (2.3):

ẋi(t) =
xi(t− 2∆t)− 8xi(t−∆t) + 8xi(t+ ∆t)− xi(t+ 2∆t)

12∆t
. (2.3)

Here, ∆t represents the sampling interval. This method will be applied to the

smoothed or noise-free data.

2.3 Alternating Least Squares Method

2.3.1 Algorithm Description

Consider the ith ODE in the general form of the S-system model (the derivative ẋi

replaced with the slope si):

si = αi

d∏
j=1

x
gij

j − βi
d∏
j=1

x
hij

j . (2.4)

The parameters within the equation can be intuitively divided into two groups –

those in the first term of the right-hand side (RHS) and the ones in the second term.

By using some transformation (taking the logorithm in this case), the estimation

problem can be solved by simple linear regression. The detailed procedures are

stated below.

Step 1. Given the initial values of parameters in the second term of the RHS in

Eq. (2.4), i.e., βi and hij, we can move this second term to the left-hand side (LHS),

placed together with the calculated slope si, and then take the logarithm on both

sides of the equation to have

log(si + βi

d∏
j=1

x
hij

j ) = logαi +
d∑
j=1

gij log(xj). (2.5)

Therefore, the RHS in Eq. (2.5) can be regarded as linear with respect to parameters

logαi and gij. By the standard least squares method, these parameters can be

estimated.

Step 2. Given the estimated values of parameters in the first term of the RHS in

Eq. (2.4), which is accomplished in Step 1, the first term can be moved to the LHS,
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together with si. Take the logarithm on both sides to have

log(αi

d∏
j=1

x
gij

j − si) = log βi +
d∑
j=1

hij log(xj). (2.6)

Similarly as in Step 1, parameters in the second term of the RHS in the general form

can be estimated.

Then Step 1 will be repeated with the newly acquired estimates for βi and hij.

By performing Step 1 and Step 2 in an alternating way iteratively, until any stop

criterion is met, the estimated values of parameters can be obtained. The termination

criteria we adopt here include two factors: the first is the sum of squared errors (SSE)

representing the conformity result of linear regression, and the second is the number

of iterations regulated by a specific value. The SSE is defined as follows:

SSE =
n∑
k=1

[yd(k)− Lp(k) · bp]2 +
n∑
k=1

[yp(k)− Ld(k) · bd]2 (2.7)

where ‘d’ represents degradation and ‘p’ means production for the subscripts, and

the time points of the measurement are indexed by k. In Eq. (2.7), yd = log(si +

βi
∏d

j=1 x
hij

j ), Lp = [1 log x1 · · · log xd], bp = [logαi gi1 · · · gid]T, and similarly

yp = log(αi
∏d

j=1 x
gij

j − si), Ld = [1 log x1 · · · log xd], bd = [log βi hi1 · · · hid]T.

Here in Lp, only those xj that are known to have effect on the production term are

included in the expression. Ld is defined in the same way, incorporating those xj

with a non-zero kinetic order shown in the degradation term.

As the S-system has been decoupled, the estimates for parameters in one ODE

can be obtained at one time. After applying the ALS method for all d equations in

an S-system, we will have all parameter values within the whole S-system model.

2.3.2 Numerical Example

Here we adopt a small-scale biochemical network as a test example, and use it to

generate the synthetic time series data. This network has been discussed by other re-

searchers for parameter identification and estimation [44, 40]. There are four metabo-

lites within this example network and therefore the S-system model has four ODEs,
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as shown in Eq. (2.8). It is important to note that such an example has similar and

relevant features to a more complex network, and as a result it is appropriate as a

testbed to show the performance of parameter estimation methods.

ẋ1 = α1x
g13
3 − β1x

h11
1 ,

ẋ2 = α2x
g21
1 − β2x

h22
2 ,

ẋ3 = α3x
g32
2 − β3x

h33
3 xh34

4 ,

ẋ4 = α4x
g41
1 − β4x

h44
4 .

(2.8)

The corresponding network map is shown in Fig. 2.1. Straight arrows with

solid lines represent material flows in the network, while regulatory influences are

displayed as curved arrows with dashed lines. The network map clearly shows that

the production of component X1 is affected by the inhibition exerted by component

X3, which is generated from X1 via the intermediate reactant X2. Component X1

also influences the production of X4, and this product promotes the degradation of

X3. In addition, each component promotes its own degradation.

X1

X4

X2 X3 +
-

Figure 2.1: A metabolic pathway with four components and two regulatory
signals (redrawn from [44])

The synthetic time-course data are obtained by simulating the model system with

ode45() function in Matlab, which solves ODEs numerically. The initial values of x1

to x4 are set as appeared in reference [44], specifically 1.4, 2.7, 1.2 and 0.4. The true

values of parameters in Eq. (2.8) are listed as in Table 2.1. The time-course profiles

of metabolic concentrations are generated upon 51 time points, equally sampled

over the time interval 0 ∼ 5 min. Fig. 2.2 shows the time series of metabolic

concentrations to represent measurement data.
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Table 2.1: True values of parameters in Eq. (2.8)

Parameter Value Parameter Value Parameter Value Parameter Value

α1 12 β1 10 g13 −0.8 h11 0.5

α2 8 β2 3 g21 0.5 h22 0.75

α3 3 β3 5 g32 0.75 h33 & h34 0.5 & 0.2

α4 2 β4 6 g41 0.5 h41 0.8
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Figure 2.2: Time courses of model (2.8)
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First let us make a trial on the noise-free time series data. Here we adopt two

methods to calculate the first-order derivatives of state variables. One approach is

that the slopes are calculated using the above-mentioned AS package. The other

way is to use the 5-point central differences (5CD) [52]. Figure 2.3 shows the ap-

proximated slopes over time using these two methods. The slopes represented in the

form of lines are the results using the AS package, while those shown in the form

of symbols are given by the 5CD method. As we can see, for noise-free time series,

these two methods give almost the same results of slope calculation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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dX1/dt
dX2/dt
dX3/dt
dX4/dt

Figure 2.3: Calculated slopes of model (2.8)

Then the alternating least squares method is applied on the input data, including

the time series and the approximated slopes. The termination criteria for parameter

estimation are set as two conditions here: the lower threshold for ln(SSE) is −15 and

the maximum number of iterations is 105. The initial values of rate constants β are
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set as 17 1; the initial guesses for kinetic orders hk are chosen to be 1.

Using the estimated slopes from the AS package, simulation results of the al-

ternating least squares method are shown in Table 2.2. In the table the relative

estimation error (REE) is defined as follows:

REE =
‖γest − γtrue‖
‖γtrue‖

, (2.9)

where γ represents the target parameter, γest is the estimated value while γtrue is the

true value.

Table 2.2: Estimation results using the ALS on the S-system (slopes calcu-
lated via AS)

True Value Estimate REE True Value Estimate REE

12.00 10.9233 8.97% 10.00 8.6525 13.48%

8.00 8.2264 2.83% 3.00 3.2365 7.88%

3.00 2.9275 2.42% 5.00 4.8463 3.07%

2.00 2.0092 0.46% 6.00 6.0609 1.02%

−0.80 −0.9947 24.34% 0.50 0.6149 22.98%

0.50 0.4783 4.34% 0.75 0.7095 5.40%

0.75 0.7587 1.16% 0.50 0.5222 4.44%

0.20 0.2029 1.45%

0.50 0.5104 2.08% 0.80 0.8078 0.97%

We can see that the estimates conform to the nominal values satisfactorily in

general for most parameters, with REE less than 5%. Only the estimates for those

parameters in the first ODE somewhat deviate from the true values. With the

estimated parameter values, the state profiles over time can be generated by ode45()

function. As shown in Fig. 2.4, they (in the form of lines) conform well to the original

time series (in the form of symbols).

1Initial numbers were firstly chosen as 15 or 20, but incured the problem of taking the logarithm
on negative data.
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Figure 2.4: Comparisons of the estimated state profiles (slopes calculated via
AS) with the original time courses of model (2.8)
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The most obvious advantage of this alternating least squares method is that it

performs much faster than those algorithms estimating whole parameters simulta-

neously. One shortcoming of this ALS method comes from that the logarithm may

be applied on negative data during the iteration process, especially when the ini-

tial guess is not chosen properly. This problem sometimes can be partly resolved

by setting a relatively large initial value for rate constants β. Another idea is to

eliminate those time points whenever the logarithm of negative data would occur,

and only apply the ALS method upon those appropriate time points step by step.

Unfortunately, such an intuitive idea has been tested but cannot always give good

performance.

Using the estimated slopes from the 5-point central differences method, simula-

tion results of the alternating least squares method are shown in Table 2.3.

Table 2.3: Estimation results using the ALS on the S-system (slopes calcu-
lated via 5CD)

True Value Estimate REE True Value Estimate REE

12.00 12.0188 0.16% 10.00 10.0202 0.20%

8.00 24.6456 208.07% 3.00 19.4116 547.05%

3.00 3.4822 16.07% 5.00 5.2450 4.90%

2.00 16.8248 741.24% 6.00 18.6121 210.20%

−0.80 −0.7983 0.21% 0.50 0.4990 0.20%

0.50 0.1212 75.76% 0.75 0.1826 75.65%

0.75 0.6659 11.21% 0.50 0.4185 16.30%

0.20 0.1446 27.70%

0.50 0.0385 92.30% 0.80 0.0698 91.28%

The results of estimated parameters in the second and the fourth ODE are far

away from the nominal values. This indicates that the performance of ALS is not

steady, and will change with different slope approximation methods 2. With these

2This does not mean the AS package is superior to the 5CD method for noise-free time series.
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estimated parameter values, the state profiles over time can be generated by ode45()

function in Matlab. As shown in Fig. 2.5, they (in the form of lines) basically

conform to the original time series (in the form of symbols), but not as well as the

previous result in Fig. 2.4. We consider this group of estimation results in Table 2.3

not meaningful on the whole, because under other experimental conditions (different

initial concentrations of reaction components), the model-based prediction might not

be in agreement with the time series measurement.
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Figure 2.5: Comparisons of the estimated state profiles (slopes calculated via
5CD) with the original time courses of model (2.8)

Besides, it is quite informative to notice that simulating the system with these two

groups of different estimated values will produce time profiles almost indistinguish-

able from the original synthetic time courses. This discovery gives rise to the insight

that, for the S-systems, more than one group of parameter values may cause the iden-

tical system behavior to happen [16, 15, 29]. One possible explanation for this case
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is that there are much more parameters than reaction variables within the network,

and a proper combination of parameters could give similar dynamics. Therefore, to

gain more accurate estimates, it is better to know the range for some parameters

beforehand, or enforce constraints from prior knowledge of the system model. For

example, the values of kinetic orders g and h should be within a reasonable range

from −2 to 3, from the biological meaning in [43].

2.4 Separation Estimation Method

2.4.1 Algorithm Description

Consider the problem of estimating parameters α ∈ Rp and β ∈ Rq in a general

model η(t, α, β) from observations

yi = η(ti, α, β) + εi, (2.10)

obtained at a sequence of distinct time points t1, . . . , tn, where εi(i = 1, 2, . . . , n) is

random measurement noise. Let γ = [α; β] ∈ R(p+q) be a vector consisting of all

parameters.

The least squares method transfers the problem of estimating parameters in

model η(t, α, β) into finding the optimal parameters γ̂ ∈ R(p+q) that minimize the

objective function

J(γ) =
n∑
i=1

[yi − η(ti, γ)]2 = [Y − η(γ)]T[Y − η(γ)], (2.11)

where Y = [y1, . . . , yn]T and η(γ) = [η(t1, γ), . . . , η(tn, γ)]T.

Starting with an initial guess γ̂0, the optimization of objective function (2.11)

can be solved by iteratively computing:

γ̂i+1 = γ̂i + ∆γ̂i, (2.12)

where the increment ∆γ̂i is a correction/refinement term, until a convergence condi-

tion is met, such as that ‖γ̂i+1−γ̂i‖ or ‖γ̂i+1−γ̂i‖/(‖γ̂i‖+δ) is less than a preset small
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value, where δ is a small positive number to avoid division by zero. For different

algorithms, ∆γ̂i is calculated in various ways.

The Gauss-Newton algorithm (GNA) [6] is a common method to solve nonlinear

least squares problems. This algorithm is derived from Newton’s method for solving

nonlinear equations. The increment term ∆γ̂i in Eq. (2.12) for GNA is calculated

by

∆γ̂i = [Pi(γ̂i)]
−1f(γ̂i), (2.13)

where Pi(γ̂i) = X(γ̂i)
TX(γ̂i), f(γ̂i) = X(γ̂i)

T[Y − η(γ̂i)], and X(γ) = [∂η(γ)T

∂γ
]T.

The Levenberg-Marquardt algorithm (LMA) [6] is also a popular numerical so-

lution to optimization problems. It is an improved version of the GNA and the

increment term ∆γ̂i in Eq. (2.12) for the LMA is calculated by

∆γ̂i = [Pi(γ̂i) + λD]−1f(γ̂i), (2.14)

where D is a positive diagonal matrix, and the adjustment parameter λ is changed

at each step. The LMA is more robust than the GNA, but a little bit slower. More

detailed procedures of the LMA can be found in [6].

In the GNA and the LMA methods mentioned above, at each step the value of ∆γ̂i

has to be evaluated. In implementation of these algorithms, the inverse of matrices

like Pi is not directly computed, but the elimination or decomposition approaches are

adopted. When the dimension of parameter space is higher, namely, with a bigger

sized (p + q) × (p + q) matrix Pi, it will consume more time in calculation. In this

study, we focus on a class of models which have the property of partial linearity

with respect to some parameters , i.e., η(t, α, β) = b(t, β)α. Therefore, model (2.10)

becomes

y(t) = b(t, β)α + ε. (2.15)

To be multiplication-compatible, in model (2.15) b(t, β) is assumed to be a p-dimensional

row vector.

Many biological systems can be described in structure as in the parameter-

separable model (2.15), especially models derived from the BST and the Michaelis-

Menten rate law [22, 43]. To estimate parameters in such models, we need to find
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the optimal values of parameters α̂ ∈ Rp and β̂ ∈ Rq that minimize the following

objective function

J(α, β) =
n∑
i=1

[yi − b(ti, β)α]2. (2.16)

Let Y = [y1, . . . , yn]T and B(β) = [b(t1, β)T, . . . , b(tn, β)T]T , and then Eq. (2.16)

can be rewritten as

J(α, β) = [Y −B(β)α]T[Y −B(β)α]. (2.17)

By considering the parameter-separable structure, this study presents a three-

step estimation method for parameters in model (2.15). In the first step, for a given

value of β = β̄ , using the linear least squares method, we obtain the estimates of α

as follows

α̂ = [B(β̄)TB(β̄)]−1B(β̄)TY. (2.18)

Substitute Eq. (2.18) into Eq. (2.17) to get

J(α̂, β̄) = J̃(β̄) = Y T{I −B(β̄)[B(β̄)TB(β̄)]−1B(β̄)T}Y. (2.19)

In the second step, find the optimal parameters β̂ that minimize the objective

function (2.19). In principle, the optimization of objective function (2.19) can be

solved by any nonlinear optimization method such as the Gauss-Newton method

and its variants. Note that the objective function (2.19) has only q parameters and

thus the size of the corresponding matrix Pi is q × q in the process of applying the

Gauss-Newton method. Once the optimal parameters β̂ are obtained, the optimal

parameters α can be computed from Eq. (2.18) by letting β̄ = β̂ in the last step.

It is expected that the introduced separation method can reduce the computational

time, as the matrix Pi for calculating the refinement term ∆γ̂i has a smaller size

than that using the conventional methods.

2.4.2 Numerical Example

In this study we use the same S-system example with the associated network as shown

in Fig. 2.1 [43, 44], which consists of 4 different reaction components. To highlight
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the separable strucuture of the system model, the set of ODEs are rewritten here

using α and β to represent parameters, as shown in Eq. (2.20).

ẋ1 = α11x
β13

3 − α12x
β11

1 ,

ẋ2 = α21x
β21

1 − α22x
β22

2 ,

ẋ3 = α31x
β32

2 − α32x
β33

3 xβ34

4 ,

ẋ4 = α41x
β41

1 − α42x
β44

4 .

(2.20)

In this model there are totally 17 parameters: 8 positive rate constants αij and 9

kinetic order parameters βij.

Table 2.4: Nominal values for parameters in model (2.20)

Parameter Value Parameter Value Parameter Value Parameter Value

α11 12 α12 10 β13 −0.8 β11 0.5

α21 8 α22 3 β21 0.5 β22 0.75

α31 3 α32 5 β32 0.75 β33 & β34 0.5 & 0.2

α41 2 α42 6 β41 0.5 β41 0.8

To investigate the performance of the separation estimation method, a group of

artificial/synthetic data is generated from model (2.20) with parameter values listed

in Table 2.4 and initial states as x1 = 1.4, x2 = 2.7, x3 = 1.2, x4 = 0.4. The

time courses are plotted in Fig. 2.2. The time variable t starts from 0, and ends at

5 min. The data are evenly sampled on 51 time points and the sampling interval

∆t = 0.1 min. In this study, synthetic data are adopted noise-free, in order to

evaluate the proposed estimation method. Actually noisy data challenge any good

method in parameter estimation problems. For noisy data, it is necessary to adopt

some procedures to smooth them before the estimation process [44].

This study adopts the 5-point central difference to approximate derivatives of

state variables, as in Eq. (2.3). The estimation error, the minimum value of objective

function, the number of iterations and the consumed CPU time are employed to
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evaluate the performance of estimation methods. Here the relative estimation error

(REE) is defined as in Eq. (2.9).

Comparisons between the conventional method and the separation method both

using the GNA and the LMA approaches have been conducted. In addition, to

investigate the robustness of the methods, namely the insensitivity to various initial

guesses, the initial values of α and β are chosen from the range with true values

plus a relative Gaussian distribution, i.e., [α0; β0] = [αtrue; βture] · (1 + σ · ε), where ε

follows the standard normal distribution and σ is a positive constant, taking various

values in this study. The coded Matlab script runs 100 times with 100 initial guesses

randomly selected for each value of σ. It is interesting to note that when converged,

the minimum values of the objective function have the same number (1.9296×10−4 in

this case), and the estimation errors have the same values as listed in Table 2.5 (the

REE for the whole parameter vector is 0.43%), for all tested methods and all runs.

This may indicate that the value 1.9296×10−4 is the global minimum of the objective

function and thus all methods reach the best estimates of parameters. We can see

that the REE for each estimate is much smaller than that using the ALS method. The

estimation error is supposed to stem mainly from the slope approximation formula

(2.3). It is expected that the estimation error will get smaller with a higher sampling

frequency.

Table 2.6 lists the average results of the iteration count and the CPU time over 100

runs for all tested methods. GNA C (LMA C) stands for the conventional method

with GNA (LMA), while GNA S (LMA S) stands for the separation method with

GNA (LMA). The software environment for this simulation is: Matlab Version 6.5

Release 13, Windows XP Professional SP2, 1.81GHz AMD Turion 64bit ×2 CPU,

960MB RAM.

From Table 2.6, the count of iterations and the consumed CPU time for the

GNA S are smaller than those for the GNA C. Moreover, the number of iterations

and the consumed CPU time for the LMA S are less than half of those for the

LMA C. In addition, when initial guesses are far away from the true values (i.e.,

the values of σ are large), the separation method more obviously outperforms the
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Table 2.5: Estimation results using the separation method on the S-system
(slopes calculated via 5CD)

True Value Estimate REE True Value Estimate REE

12.00 11.9945 0.0458% 10.00 9.9902 0.0980%

8.00 7.9952 0.0600% 3.00 2.9933 0.22%

3.00 3.0473 1.58% 5.00 5.0121 0.24%

2.00 2.0321 1.60% 6.00 5.9452 0.91%

−0.80 −0.8021 0.26% 0.50 0.5012 0.24%

0.50 0.5009 0.18% 0.75 0.7511 0.15%

0.75 0.7403 1.29% 0.50 0.4897 2.06%

0.20 0.1924 3.80%

0.50 0.4874 2.52% 0.80 0.7811 2.36%

Table 2.6: Comparisons of the conventional method and the separation
method applied on the S-system (results show the average of 100 runs with
various initial guesses).

GNA C GNA S

σ iterations CPU time (s) iterations CPU time (s)

0.1 ∼19 0.0676 ∼15 0.0519

0.3 ∼29 0.0933 ∼21 0.0653

0.5 ∼47 0.1341 ∼25 0.0773

LMA C LMA S

σ iterations CPU time (s) iterations CPU time (s)

0.1 ∼36 0.0800 ∼16 0.0454

0.3 ∼75 0.1479 ∼24 0.0596

0.5 ∼102 0.1944 ∼29 0.0670
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conventional method. This can be interpreted as follows: the separation method

does not need to calculate the refined values of linear parameters at each step during

the optimization process.

The most obvious advantage of this separation strategy is that the parameter

space is divided into two sub-spaces, thus transferring the original optimization prob-

lem to a lower-dimensional problem, and therefore reducing the computational effort.

For example, suppose there are p linear parameters and q items in the nonlinear set,

the conventional estimation process will deal with a (p + q) dimensional nonlinear

estimation. When using the separation procedure, as the optimal linear parameters

can be obtained by a simple linear regression if estimates of those nonlinear items are

provided, the original least squares estimation problem can be rewritten with respect

to q nonlinear parameters only. A common nonlinear estimation method, such as

the GNA or the LMA, can then be applied to this dimension-reduced problem.

2.5 Summary

Two parameter estimation methods are introduced in this chapter, specially designed

for the S-system. The first is called the alternating least squares (ALS) method. It is

primarily based on the two-term structure of the S-system model (production term

and degradation term). When parameters in either term are assumed known already,

the estimation problem can be easily solved by a logarithmic transformation and the

linear regression. Applying this process iteratively to the production term and the

degradation term will lead to estimates of all parameters within the S-system model.

The rest of this chapter mainly presents a separation method to estimate the

parameters in biological system models which can be characterized by partial linear-

ity with respect to some parameters, exemplified by the S-system. The simulation

results have shown that with use of the proposed separation method, the parameter

estimation process can be improved in the following aspects:

• There is no need to provide initial guess values for parameters of the linear

portion in the system model, and thus the proposed method will reduce the
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risk of estimation divergence when improper initial values are selected.

• The proposed method can reduce the dimension of the search space of param-

eters, resulting in reduction of the computation cost when using algorithms

such as the GNA and the LMA.

• As the partially linear structure appears in many biological system models

[22, 47], the proposed separation method can be applied to those cases.
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Chapter 3

Parameter Estimation Methods for LFM

3.1 Introduction

3.1.1 Explanation of LFM

The dynamics of molecular biological systems are commonly modeled in the form

of a set of ordinary differential equations that involve parameters corresponding to

kinetic constants. As some models are often derived on the basis of statistical ther-

modynamics [46, 10] or Michaelis-Menten kinetics [27, 35], nonlinear functions in the

resultant models are rational fractional functions whose numerator and denominator

are linear in parameters. Parameters in the linear fractional functions in a molecular

biological system are typically reaction constants of interest. Estimation of these

parameters is crucial to constructing the whole molecular biological system model

[12, 11].

In models of complex biological systems, one differential equation can contain

several rational fractional rates and one reaction rate can be contained in several dif-

ferential equations [10, 22, 43]. Such couplings among reaction rates and differential

equations make it very difficult to estimate parameters in reaction rates directly from

differential equations. Recently, we have proposed a methodology to independently

estimate the rational fractional reaction rates [50, 49]. As a result, estimating the

parameters in coupled models is reduced to estimating the parameters in indepen-

dent linear fractional reaction rates. In general, the form of a linear fractional model
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(LFM) is as follows:

η(X, β) =
N0(X) +

∑pN

i=1Ni(X)βNi

D0(X) +
∑pD

j=1Dj(X)βDj

, (3.1)

where the vector X consists of observation variables, and the p-dimensional vector

β consists of all parameters in the linear fractional function, which can naturally

be divided into two groups: those in the numerator βNi
(i = 1, . . . , pN) and those

in the denominator βDj
(j = 1, . . . , pD), where we have that pD + pN = p. The

coefficient functions Ni(X) (i = 0, 1, . . . , pN) and Dj(X) (j = 0, 1, . . . , pD) are the

known functions of the variables X and do not contain any unknown parameters.

Either N0(X) or D0(X) must be nonzero; otherwise from sensitivity analysis [6] the

parameters cannot be uniquely identified.

3.1.2 Related Work

From a literature search, there are seldom special estimation methods designed for

such linear fractional models, to utilize some structure properties of the model. Con-

ventional nonlinear estimation algorithms, such as the GNA and the LMA, were the

main deterministic approaches applied for seeking the values of parameters within

the LFM in the past. Matsubara et al. proposed two schemes for parameter esti-

mation in metabolic pathways (model equations in the form of LFM derived from

the Michaelis-Menten rate law) [24]. One scheme is using a genetic algorithm (GA),

and the other is using a designed artifical neural network (ANN). Some stochastic

optimization methods were also compared by Moles et al., using a model formulated

as Michaelis-Menten type equations [25].

3.1.3 New Ideas

As in the S-system, parameters in the LFM can also be separated into two groups:

parameters in the numerator and those in the denominator. The LFM can be consid-

ered linear with respect to the group of parameters in the numerator and nonlinear

with respect to those in the denominator. Therefore, the separation parameter es-

timation strategy can also be applied to the LFM. The procedure of implementing
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this separation approach is almost the same as that for the S-system. Also, we try to

modify the procedure a little bit and derive an iterative approach. Moreover, specif-

ically for the LFM, we try to make the optimization cost function quadratic with

respect to parameters to be sought, and therefore design a weighted least squares

method. Through this way, the separable structure of the LFM is utilized and the

estimation gets a closed-form analytical solution. The weighted least squares method

was studied and adopted in the system identification community [41, 13], and we will

try to apply it to parameter estimation problems.

3.1.4 Contents of Chapter

In this study, we make use of the special structure of the LFM as in Eq. (3.1):

the numerator and the denominator are linear with respect to parameters. Briefly,

the remainder of this chapter is organized as follows. In Section 3.2, the separation

approach proposed for the S-system is applied here to the LFM, and a modified

version with a numerical example is also included. Section 3.3 introduces a weighted

least squares algorithm for the estimation of parameters in the LFM, denoted by

LFM-WLS 1. By designing a special weight matrix for the weighted least squares,

parameters in the numerator and the denominator can be estimated by solving two

linear least squares problems. Illustrative examples are provided to show the effec-

tiveness of the proposed LFM-WLS algorithm. Finally we give summaries of the

chapter in Section 3.4.

3.2 Separation Estimation Method

3.2.1 Ordinary Approach

Suppose that at a series of time points we obtain a sequence of measurements (obser-

vations) of the variable yt (t = 1, 2, . . . , n), which can be represented by an LFM of

1This part of work has been published as in the journal paper [51].
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variables Xt and parameter vector β. In practice, any measurements can be contam-

inated by some random noise. For simplicity, we assume that measurement errors

are additive. Thus we have the relationships

yt = η(Xt, β) + εt = ηt(β) + εt, t = 1, 2, . . . , n, (3.2)

where εt (t = 1, 2, . . . , n) stand for the measurement errors at time point t, and

Xt (t = 1, 2, . . . , n) stand for the measured or known values of variables at time

point t.

Define the two parameter vectors βN and βD for parameters in the numerator

and in the denominator, respectively,

βN = [βN1 , βN2 , . . . , βNpN
]T ∈ RpN ,

βD = [βD1 , βD2 , . . . , βDpD
]T ∈ RpD .

Define the information vectors ϕN(Xt) and ϕD(Xt) as follows:

ϕN(Xt) = [N1(Xt), N2(Xt), . . . , NpN
(Xt)] ∈ RpN ,

ϕD(Xt) = [D1(Xt), D2(Xt), . . . , DpD
(Xt)] ∈ RpD ,

and

Y = [y(1), y(2), . . . , y(n)]T ∈ Rn,

η(β) = [η1(β), η2(β), . . . , ηn(β)]T ∈ Rn,

ΦN =


ϕN(X1)

ϕN(X2)
...

ϕN(Xn)

 ∈ Rn×pN , ΦN0 =


N0(X1)

N0(X2)
...

N0(Xn)

 ∈ Rn,

ΦD =


ϕD(X1)

ϕD(X2)
...

ϕD(Xn)

 ∈ Rn×pD , ΦD0 =


D0(X1)

D0(X2)
...

D0(Xn)

 ∈ Rn,
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Ψ(βD) = diag


D0(X1) + ϕD(X1)βD

D0(X2) + ϕD(X2)βD
...

D0(Xn) + ϕD(Xn)βD

 ∈ Rn×n.

From the above definitions, we get

yt =
N0(Xt) + ϕN(Xt)βN
D0(Xt) + ϕD(Xt)βD

+ εt. (3.3)

Construct the cost function as the sum of squared errors

J(β) = J(βN , βD) = [Y − η(β)]T[Y − η(β)]. (3.4)

Minimizing J(β) with respect to β can give the least squares estimation of parameters

βN and βD.

As the LFM η(β) shows nonlinearity with respect to the parameter vector β,

the Gauss-Newton iteration method and its variants [6] can typically be applied to

estimation of these parameters by minimizing the cost function (3.4). However, it

is well known that the Gauss-Newton method may fall into a local minimum and

thus cannot find the correct estimates of the parameters. Also, when the number

of parameters is large, it will take quite a long time to seek the estimates using

the Gauss-Newton method. We have observed from the model structure that the

parameters βN are linear in the model η(X, β). Let F (βD) = [Ψ(βD)]−1ΦN and

G(βD) = [Ψ(βD)]−1ΦN0 . The cost function (3.4) becomes

J(β) = J(βN , βD) = [Y −G(βD)− F (βD)βN ]T[Y −G(βD)− F (βD)βN ]. (3.5)

Now the cost function has the structure similar to that of Eq. (2.17), and therefore

we can apply the separation estimation method, which is stated in Section 2.4, to

the LFM here. The estimation procedure includes three steps. Firstly, for given

values of βD = β̄D, by the ordinary least squares method, the estimates of βN can

be computed as

β̂N = [F (β̄D)TF (β̄D)]−1F (β̄D)T[Y −G(β̄D)]. (3.6)
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Substitute Eq. (3.6) into Eq. (3.5) and we can get

J(β̄D) = [Y −G(β̄D)]T{I − F (β̄D)[F (β̄D)TF (β̄D)]−1F (β̄D)T}[Y −G(β̄D)]. (3.7)

Secondly, find the optimal values β̂D of the parameter set βD, using the Gauss-

Newton, the Levenberg-Marquardt or other methods. Finally, with the optimal β̂D

obtained, estimates for βN can be computed from Eq. (3.6).

3.2.2 Numerical Example

The expression of a gene is regulated by regulatory proteins and/or RNA polymerase

(RNAP) which are binding to the gene’s regulatory binding sites [46]. The regulatory

binding site is a short sequence of DNA close to associated genes. One gene can

have a number of binding sites. The binding sites for regulatory proteins are called

operators while those for RNAP are called promoters. A gene regulatory network

is composed of such a collection of genes, whose expression rates are regulated by

each other. A protein encoded by each gene acts in the role of a regulator, affecting

the rates during this biochemical process. To illustrate the proposed estimation

algorithm, this section will consider the parameter identification of a simple gene

regulatory network, with one gene, two operators and one promoter as shown in Fig.

3.1. Its corresponding mathematical model is described by an ODE as shown in Eq.

(3.8).

GenePrOp1Op2

RNAP

ProteinProtein

Figure 3.1: A gene regulatory network with one gene, two operators (Op1
and Op2) and one promoter (Pr) (redrawn from [46])

Based on the statistical thermodynamic theory and the biochemical kinetics, the
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model of this network can be expressed as follows

ẋ =
a0 + a1x+ a2x

2

1 + b1x+ b2x2
− λx, (3.8)

where x is the concentration of protein encoded by the gene, ai (i = 0, 1, 2) and

bi (i = 1, 2) are positive constants related to the biochemical kinetics and λ is a

positive constant representing the protein degradation rate. One can see that model

(3.8) is a linear fractional model with positive parameters λ, ai and bi. Note that

the expression of equation is slightly different from the one in reference [46]. In

order to uniquely identify parameters in the model, according to [6], we rescale the

parameters such that the constant term in the denominator is 1.

The nominal values of parameters are set as: a0 = 0.4, a1 = 2.8, a2 = 0.24, b1 =

0.5, b2 = 1.4, λ = 0.4. In this example, we use the nominal values to generate the

time-course of x(t) shown as in Fig. 3.2, with the sampling interval 0.1 min. The

time starts at t = 0. From Fig. 3.2, system (3.8) is stable at its steady state x? = 2.18

after t = 10 min. Therefore, we only use the synthetic data on the interval 0 ∼ 10

min.

In Eq. (3.8), the RHS is a linear fractional function minus a term linear in one

parameter, which is not in the same format as in Eq. (3.1). We can transform it

into the following form

ẋ =
a0 + (a1 − λ)x+ (a2 − b1λ)x2 − b2λx

3

1 + b1x+ b2x2
, (3.9)

although the numerator is no longer linear in the 6 original parameters in model (3.9).

Nonetheless, if we regard a single coefficient as a new parameter, the numerator in

model (3.9) is linear in the new parameters. In addition, there are 6 unknown

parameters in 6 new coefficients in model (3.9). Therefore, using our proposed

method, the 6 original parameters can be uniquely identified.

In this study, a group of artificial/synthetic data is generated from the model of

gene regulatory networks, with nominal parameter values and initial states provided.

There is no noise added on the artificial data in the simulation, so they can be consid-

ered as noise-free measurements. The 5-point central differences formula is adopted
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to approximate derivatives of state variables, as in Eq. (2.3). After obtaining deriva-

tives at different sampling points, we can apply the proposed method to estimating

parameters in the model. The relative estimation error (REE) is employed to gauge

the performance of estimation accuracy, defined the same as in Eq. (2.9).

Simulations are conducted using both the conventional LMA method and the

proposed separation method to make a comparison. Initial values are randomly

selected from the range with true values plus a relative Gaussian distribution, i.e.

true values · (1 + σ · ε), where ε follows the standard normal distribution and σ is

the standard deviation. Comparison results are shown as listed in Table 3.1. When

it reaches convergence, each run of 100 trials achieves the same optimal results: the

minimum of the cost function is 5.9027 × 10−6. The proposed separation method

shows a faster speed and a higher convergence percentage, especially when the initial

guess is selected from a wider range.

Table 3.1: Comparisons of the conventional method and the separation
method applied on the LFM (results show the average of 100 runs with various
initial guesses).

LMA C LMA S

σ iterations CPU time (s) not converge iterations CPU time (s) not converge

0.1 ∼6 0.0172 0% ∼2 0.0106 0%

0.3 ∼12 0.0267 2% ∼2 0.0112 0%

0.5 ∼17 0.0348 3% ∼3 0.0122 0%

1.0 ∼26 0.0476 22% ∼4 0.0261 1%

The relative estimation errors are listed in Table 3.2 (the REE for the whole

parameter vector is 0.0219). From this table, the estimation results are generally

very good, except the estimate for a2 somewhat deviates from the true value. One

possible explanation is that the estimate of a2 is calculated indirectly from the new

coefficient (a2 − b1λ), and the effect of estimation errors from b1 and λ magnifies in

the process.
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Figure 3.2: State profile of model (3.8)

Table 3.2: Estimation results using the separation method on the LFM

True Value Estimate REE True Value Estimate REE

0.40 0.4002 0.0467% 2.80 2.7989 0.0381%

0.24 0.1801 24.94% 0.50 0.5032 0.64%

1.40 1.3630 2.64% 0.40 0.3926 1.86%
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3.2.3 Modified Iterative Approach

We have obtained the expression of cost function as shown in Eq. (3.5). From

Theorem 2.1 in reference [28], if there exists an (n − k) × n matrix, say X1(βD),

having the rank of (n− k) and satisfying

X1(βD)F (βD) = 0, (3.10)

then

min
βN ,βD

J(βN , βD) = min
βD

K(βD), (3.11)

where the equivalent cost function K(βD), with

K(βD) = [X1(βD)(Y −G(βD))]T ·

[X1(βD)X1(βD)T]−1X1(βD)(Y −G(βD)), (3.12)

is independent of parameters in the numerator, i.e., βN . Let β̂D be the optimizer of

Eq. (3.12), and then β̂D and β̂N will minimize the cost function (3.5), where β̂N is

calculated as follows:

β̂N = [F (β̂D)TF (β̂D)]−1F (β̂D)T[Y −G(β̂D)]. (3.13)

Let Φ⊥N be an (n − k) × n matrix, with the rank of (n − k), and orthogonal to

the matrix ΦN . Then we can construct

X1(βD) = Φ⊥NΨ(βD). (3.14)

From the definition of Ψ(βD) we have

Ψ(βD)(Y −G(βD)) = diag[Y ]ΦD0 − ΦN0 + diag[Y ]ΦDβD

= b+ AβD, (3.15)

where the constant vector b = diag[Y ]ΦD0 − ΦN0 ∈ Rn, and the constant matrix

A = diag[Y ]ΦD ∈ Rn×pD , both of which are independent of the unknown parameters.

Substituting Eqs. (3.14) and (3.15) into Eq. (3.12) yields

K(βD) = [b+ AβD]TΦ⊥N
T
M(βD)−1Φ⊥N [b+ AβD], (3.16)
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where the matrix M(βD) = Φ⊥NΨ(βD)Ψ(βD)TΦ⊥N
T

. The necessary condition for

minimizing K(βD) with respect to βD is that ∂K(βD)/∂βD = 0, which gives

ATΦ⊥N
T
M(βD)−1Φ⊥Nb+ ATΦ⊥N

T
M(βD)−1Φ⊥NAβD

−U(βD)Tu0(βD)− U(βD)TU(βD)βD = 0, (3.17)

where the matrix U = [u1, . . . , upD
] and its i-th column vector is defined as

ui = diag[ΦDi
]Φ⊥N

T
M(βD)−1Φ⊥N [b+ AβD] ∈ Rn, for i = 0, 1, . . . , pD. (3.18)

From Eq. (3.17), we propose an iteration formula to solve the optimization

problem (3.11) as follows:

βk+1
D = [ATΦ⊥N

T
M(βkD)−1Φ⊥NA]−1 ·

[U(βkD)Tu0(βkD) + U(βkD)TU(βkD)βkD − ATΦ⊥N
T
M(βkD)−1Φ⊥Nb]. (3.19)

Select an initial starting point for the parameter vector βD, and the optimal

estimate could be obtained by using the iteration formula (3.19). After that, the

optimal estimate for βN will be easily accomplished via Eq. (3.13).

3.2.4 Numerical Example

Here we still adopt the simple one gene regulatory network as an example (the same

one of Section 3.2.2). The synthetic data are generated with nominal parameter

values and the sampling frequency is set as 100 min−1. In the following, we mainly

compare the proposed iterative method with a method directly minimizing the ob-

jective function (3.12), i.e., the Matlab embedded function fminsearch() which is

directly called in the optimization. These two methods only need the initial values

of parameters in the denominator of the LFM. The initial values of two parameters

in the denominator are initialized by true values · (1+σ ·ε) with σ = 1. The results 2

are listed in Table 3.3, showing the average over 20 runs. ‘CPU time’ is the average

running time, ‘REE’ stands for the minimum relative estimation error for the whole

parameter vector, and ‘Robustness’ is the percentage of runs converging with the

minimum REE.

2Some of the material was presented in the conference paper [48].
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From Table 3.3, the proposed method shows the same estimation accuracy as

the direct method when both methods converge to the minimum of cost function.

However, the proposed method uses much less CPU time to converge and is more

robust (insensitive) to the initial values than the direct method.

3.3 Weighted Least Squares Method

3.3.1 Case A: with a Single Dependent Variable

Take the simple one gene regulatory network as the analysis target, which has only

one dependent variable in the model. We can form the cost function as the sum of

the weighted squared errors

J(β) = J(βN , βD) = [Y − η(β)]TW (βD)[Y − η(β)], (3.20)

where W (βD) is a weight matrix. Minimizing J(β) can give the least squares esti-

mation of parameters βN and βD.

We observe that the parameters βN are linear in the model η(X, β). Let F (βD) =

[Ψ(βD)]−1ΦN and G(βD) = [Ψ(βD)]−1ΦN0 , and the cost function (3.20) becomes

J(β) = J(βN , βD)

= [Y −G(βD)− F (βD)βN ]TW (βD)[Y −G(βD)− F (βD)βN ]. (3.21)

From optimization principles [7], we have

min
β
J(β) = min

βN ,βD

J(βN , βD) = min
βD

min
βN

J(βN , βD). (3.22)

Table 3.3: Comparisons of the proposed iterative method and the direct
method applied on the LFM (results show the average of 20 runs with various
initial guesses).

CPU time (s) REE Robustness

Proposed iterative method 3.3657 2.36% 90%

Direct method fminsearch() 26.3656 2.36% 80%
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Therefore, minimizing the cost function (3.21) with respect to β can be achieved

by solving two optimization problems: one with respect to βN and the other with

respect to βD. Furthermore, given that βD = β̄D, the estimation of parameter βN

becomes minimizing the following cost function

J(β) = J(βN , β̄D)

= [Y −G(β̄D)− F (β̄D)βN ]TW (β̄D)[Y −G(β̄D)− F (β̄D)βN ], (3.23)

which is quadratic in βN . Therefore, from the standard linear least squares method,

we obtain the estimates of βN as follows:

β̂N(β̄D) = [F (β̄D)TW (β̄D)F (β̄D)]−1F (β̄D)TW (β̄D)[Y −G(β̄D)]. (3.24)

Substituting Eq. (3.24) into Eq. (3.23) yields

J(β̄D) = J(β̂N , β̄D)

= [Y −G(β̄D)− F (β̄D)β̂N ]TW (β̄D)[Y −G(β̄D)− F (β̄D)β̂N ]

= [Y −G(β̄D)]T{W (β̄D)−W (β̄D)F (β̄D)[F (β̄D)TW (β̄D)F (β̄D)]−1 ·

F (β̄D)TW (β̄D)}[Y −G(β̄D)]. (3.25)

However, the cost function J(β̄D) in Eq. (3.25) is not quadratic in β̄D for an arbitrary

weight matrix W (βD), and thus minimizing it is a nonlinear optimization problem.

In this study, we design the weight matrix W (βD) = Ψ(βD)TΨ(βD). Using

F (βD) = [Ψ(βD)]−1ΦN and G(βD) = [Ψ(βD)]−1ΦN0 , the cost function (3.25) be-

comes

J(β̄D) = [Ψ(β̄D)Y − ΦN0 ]
T{I − ΦN [ΦT

NΦN ]−1ΦT
N}[Ψ(β̄D)Y − ΦN0 ], (3.26)

and the estimation of βN in Eq. (3.24) becomes

β̂N(β̄D) = [ΦT
NΦN ]−1ΦT

N [Ψ(β̄D)Y − ΦN0 ]. (3.27)

As Ψ(βD) is linear in βD from its definition, the cost function (3.26) is quadratic in

βD. Furthermore, from the definition of Ψ(βD) we have

Ψ(β̄D)Y = diag[Y ]ΦD0 + diag[Y ]ΦDβ̄D. (3.28)
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Substituting Eq. (3.28) into Eq. (3.26) yields

J(β̄D) = [Ψ(β̄D)Y − ΦN0 ]
T{I − ΦN [ΦT

NΦN ]−1ΦT
N}[Ψ(β̄D)Y − ΦN0 ]

= [b+ Aβ̄D]TU [b+ Aβ̄D], (3.29)

where b = diag[Y ]ΦD0 − ΦN0 ∈ Rn, A = diag[Y ]ΦD ∈ Rn×pD , and U = I −

ΦN [ΦT
NΦN ]−1ΦT

N ∈ Rn×n, which are constant vectors or matrices.

Minimizing the cost function (3.29) gets the estimation of β̄D as follows

β̂D = −[ATUA]−1ATUb. (3.30)

Substituting Eq. (3.30) into Eq. (3.27) yields

β̂N = [ΦT
NΦN ]−1ΦT

N [b+ Aβ̂D]. (3.31)

From the above derivation, by designing the weight matrixW (βD) = Ψ(βD)TΨ(βD),

minimizing the cost function (3.21) is reduced to solving two linear least squares

problems (3.23) and (3.29). Furthermore, the minimizers (i.e., the estimates of the

parameters) of the cost function (3.21) can be analytically expressed in Eqs. (3.30)

and (3.31).

3.3.2 Example A

Take the simple one gene regulatory network as a numerical test example, as shown in

Section 3.2.2. Simulations are conducted using both the proposed method LFM-WLS

and the conventional Gauss-Newton algorithm (GNA) to make a comparison. The

most obvious advantage of the proposed method is that there is no need to provide

initial guess values for parameters. For GNA, the initial values are selected from the

range with true values plus a relative Gaussian distribuation, i.e., true values ·(1+σ ·

ε), where ε follows the standard normal distribution and σ is the standard deviation.

We have tried to take the initial guess with a large value of the standard deviation.

However, even with σ = 0.5, the GNA sometimes could not converge. In this study,

the standard deviation is chosen as 0.3. The performance of the GNA shown in the

comparison table is the average of 100 runs with randomly selected initial values.
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Table 3.4 presents the comparison of performance between the proposed method

LFM-WLS and the GNA. The proposed method shows good estimation accuracy

compared to the GNA in terms of the relative estimation error. Considering that

multiple runs are needed when using the GNA to determine the optimal parameter

values, the proposed method LFM-WLS will cost less time in total than the GNA

method.

3.3.3 Case B: with Multiple Dependent Variables

Sometimes we may obtain a sequence of measurements (observations) of multiple

dependent variables: yk ∈ Rn (k = 1, 2, . . . ,m), which can be represented by the

LFM of variables Xt and parameters β, and all equations in the LFM have the same

denominator. In this case,

ykt = ηk(Xt, β) + εkt =
Nk0(Xt) + ϕkN(Xt)βkN
D0(Xt) + ϕD(Xt)βD

+ εkt,

k = 1, 2, . . . ,m, t = 1, 2, . . . , n. (3.32)

In these equations we assume that parameter vectors βkN (k = 1, . . . ,m) are inde-

pendent. The definitions of Nk0(Xt) and ϕkN(Xt) for the k-th equation are similar

to those in Case A and Section 3.2.1. The sum of weighted squared errors (the cost

function) for this case becomes

J(β) = J(β1N , . . . , βmN , βD)

=
m∑
k=1

[Yk − ηk(β)]TW (βD)[Yk − ηk(β)]. (3.33)

Table 3.4: Comparisons of the proposed method and the GNA in Example A

Parameter REE LFM-WLS REE GNA Parameter REE LFM-WLS REE GNA

a0 0.76% 0.0469% a1 1.38% 0.0384%

a2 3.78% 24.93% b1 4.91% 0.64%

b2 0.0732% 2.64% λ 0.0532% 1.86%
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Similar to the derivation in Case A, we will have

β̂kN(β̄D) = [ΦT
kNΦkN ]−1ΦT

kN [Ψ(β̄D)Yk − ΦkN0 ], (3.34)

and

J(β̄D) =
m∑
k=1

[bk + Akβ̄D]TUk[bk + Akβ̄D], (3.35)

where bk = diag[Yk]ΦD0 − ΦkN0 ∈ Rn, Ak = diag[Yk]ΦD ∈ Rn×pD , and Uk = I −

ΦkN [ΦT
kNΦkN ]−1ΦT

kN ∈ Rn×n are constant vectors or matrices. Minimizing the cost

function (3.35) gets the estimation of β̄D as follows

β̂D = −[
m∑
k=1

AT
kUkAk]

−1

m∑
k=1

AT
kUkbk. (3.36)

Substituting Eq. (3.36) into Eq. (3.34) yields

β̂kN = [ΦT
kNΦkN ]−1ΦT

kN [bk + Akβ̂D]. (3.37)

3.3.4 Example B

Here we take a gene regulatory network with two genes, one operator and two pro-

moters as a test example. This gene regulatory network is shown in Fig. 3.3, which

is a simplified version of the Lambda phage switch topology [33, 46]. In this network,

it is assumed that promoters (Pr1 and Pr2) can be occupied by RNAP and that the

operator (Op) can be in any of three states: either empty, occupied by protein x,

or occupied by protein y. There are also some additional assumptions: 1) proteins

x and y cannot bind to Op at the same time; 2) if protein x is bound to Op, then

RNAP cannot bind to Pr2; and similarly 3) in case that protein y is bound to Op,

RNAP cannot bind to Pr1.

Based on the statistical thermodynamic theory and the biochemical kinetics, the

model of this network can be expressed as a group of differential equations

ẋ =
a0 + a1x

1 + b1x+ b2y
− λ1x,

ẏ =
c0 + c1y

1 + b1x+ b2y
− λ2y,

(3.38)
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where x and y are the concentrations of proteins encoded by gene X and gene Y,

respectively, bi (i = 1, 2), ai and ci (i = 0, 1) are constants related to the biochemical

kinetics and λi (i = 1, 2) are constants representing the degradation rates of proteins.

For the same reason as in Example A, we rescale the parameters such that the

constant term in the denominator is 1. Again, two equations in model (3.38) are

also not in the same format as model (3.1). The model (3.38) can be rewritten in

the form of the linear factional model (LFM), to utilize our proposed method to

estimate parameters in the LFM.

The nominal values of parameters are selected as provided in reference [46]:

a0 = 0.4, a1 = 2.8, b1 = 0.5, b2 = 1, c0 = 0.4, c1 = 3.6, λ1 = 0.4, λ2 = 0.4. In

this example, nominal values are adopted to generate time profiles of x(t) and y(t)

with the sampling interval 0.1 min. The time-courses of concentrations of proteins x

and y are shown in Fig. 3.4. For parameter estimation we just use the data during

0 ∼ 50 min, as after that the system stays with its stable state: x? = 0.47, y? = 7.89.

Table 3.5 presents the comparison of performance between the proposed method

LFM-WLS and the GNA. The proposed method again gives a satisfactory estimation

accuracy compared to the GNA in terms of the relative estimation error.

3.4 Summary

In this chapter two estimation methods are proposed for the linear fractional model

(LFM). The first method is based on the partially linear structure of the LFM and

Gene XPr2OpPr1

RNAP

Protein X

Gene Y

Protein Y

RNAP

Figure 3.3: A gene regulatory network with two genes (X and Y), one operator
(Op) and two promoters (Pr1 and Pr2) (redrawn from [46])
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the separation principle. The idea and the procedure are almost the same as that

stated in Section 2.4, designed for the S-system. Furthermore, a novel iterative

approach is proposed and it gives good performance.

In the following part, we present a weighted least squares method for estimating

the parameters in gene regulatory networks with linear fractional reaction rates. The

presented method has made use of the special structure of the linear fractional mod-

els: both the denominator and the numerator are linear in parameters respectively.

By designing a weight matrix, estimating parameters in the linear fractional func-

tions, which are essentially nonlinear in parameters, is transformed into solving two

linear least squares problems. The highlight is the estimates of parameters can be

analytically expressed. Compared to the traditional Gauss-Newton method and its

variants, the presented method does not need any initial guess of parameters. There-

fore, with this method there is no worry about problems with the Gauss-Newton

method such as the sensitivity to initial guess values. In fact, two illustrated exam-

ples have also shown that the presented method gives a good performance compared

with the traditional Gauss-Newton method in terms of the relative estimation errors.

In models (3.8) and (3.38), the RHS of the equation is one linear fractional

function minus one linear term. If there is more than one linear term or more

than one linear fractional function with different denominators, problems become

more complicated. As a consequence, the parameters in such a model may not be

directly identified using the presented method. One direction of future work is to

develop a method to identify the parameters in the models with the above-mentioned

structures. Although illustrated on simple gene regulatory networks in this study,

the presented methods can be applied to many other biological systems which are

on the basis of biochemical kinetics such as metabolic networks and complex gene

regulatory networks. Another direction of future work is to apply the presented

method to some more complex biological networks.
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Figure 3.4: State profiles of model (3.38)

Table 3.5: Comparisons of the proposed method and the GNA in Example B

Parameter REE LFM-WLS REE GNA Parameter REE LFM-WLS REE GNA

a0 0.21% 0.11% a1 0.78% 0.22%

b1 2.47% 0.50% b2 0.66% 0.22%

c0 0.60% 0.21% c1 0.75% 0.21%

λ1 0.0793% 0.0538% λ2 0.18% 0.0949%
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Chapter 4

More Complex Case: with State and Re-

action Rate Estimation

4.1 Introduction

To estimate the parameters in the reaction rate functions, it requires the measure-

ment of the reaction rates and all components (states) at a series of time points.

Generally, it is difficult (or costly) to measure all states in a biological network at all

time points in an experiment. Furthermore the reaction rates in a biological system

are usually unmeasurable. Therefore, it is very important to design experiments such

that unmeasured states and all reaction rates can be uniquely estimated and thus as

many as possible parameters in the reaction rates can be estimated.

Recently, Gadkar et al. proposed a method to select the optimal measurement

set of states using the Fisher Information Matrix (FIM) along with the Cramer-Rao

theorem, and to estimate all unmeasured states and reaction rates using a state

regulator problem (SRP) formulation [12]. In their method, to calculate the FIM,

one must know the nominal values of all parameters, which may not be available in

practice. In addition, the reaction rates in the model are not linearly independent and

thus cannot be estimated uniquely. Therefore, the estimates may not be as accurate

as they appeared, and the number of identifiable parameters may be greater than

that in their work.

In this chapter, we propose a new methodology for estimating states and reaction

rates in the caspase-activated apoptosis system. The core of this chapter is to present

the methodology of estimating unmeasured states and reaction rates. Only after this
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procedure we can conduct the estimation of parameters within the reaction model.

The remainder of Chapter 4 is organized as follows: In Section 4.2 we present the

framework of our methodology which consists of five modules. In Sections 4.3, each

module is explained in detail. In Section 4.4, we use the synthetic data to illustrate

the proposed methodology. Some conclusions and summaries are given in Section

4.5.

4.2 Framework of Methodology

The framework of the proposed methodology is shown in Fig. 4.1: 1) describing

the caspase-activated apoptosis system and its model which is a group of nonlinear

differential equations; 2) presenting a method to analyze the complexity of the system

using linear algebra; 3) proposing the optimal experiment design aimed at measuring

as few as possible system states and identifying as many as possible parameters; 4)

estimating the unmeasured states and reaction rates; 5) presenting a separation

method to estimate the parameters in the system model.

Mathematical model

Model complexity analysis

Optimal experiment design

Estimation of unmeasured states and reaction rates

Parameter estimation

Figure 4.1: Proposed framework for model development using less experi-
mental data

The proposed methodology does not need the nominal values of the parameters.
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Furthermore, by combining some reaction rates together through the complexity

analysis, we obtain a group of combined reaction rates, which are linearly indepen-

dent and can be uniquely estimated. In addition, we introduce a separation method

to estimate parameters in the fractional reaction rates, which makes use of the special

structure of fractional functions: parameters show linearity in the numerator and the

denominator respectively, although they show nonlinearity in the whole fractional

functions.

4.3 Example and Implementation of Methodology

4.3.1 Caspase Model

Apoptosis, which means programmed cell death, is a biological process carried out in

living organisms. The process is in the form of cell suicide, to prevent malfunctions

caused by cell stress, damage or conflicting division signals [10]. A balance is sought

and maintained between cell perishing and growing, which is quite important for the

organisms to function properly. On one hand, failure to respond to apoptotic signals

is partly the reason why some cancers are so hard to eliminate. While on the other

hand, excessive apoptotic activities would cause some neuron degenerative disorder

diseases [37, 17]. A family of 19 proteases, named caspases (cysteine containing

aspartate-specific proteases), is most important to the mechanism of apoptotic cell

death, as shown in Fig. 4.2 [11].

In the apoptosis system, caspases are thought to be an important player in the

execution process of apoptosis, and are present as inactive proteins under normal cir-

cumstances. Once activated, these caspases will cleave key protein targets, resulting

in their activation, and consequently a caspase cascade. Therefore, understanding

the caspase activation cascade process is helpful not only in learning the mechanism

of cancers and other autoimmune diseases, but also in promoting the development

of anti-cancer drug research. Based on the caspase-dependent apoptosis mechanism

as shown in Fig. 4.2, a state-space model was proposed for this process [10, 11, 12],
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procaspase-8

ligand FAS/FASL

FADD

caspase-8

executioner
procaspase

executioner
caspasecaspase-9procaspase-9

Apaf1
Bcl-x1,
ARC

apoptosis

p53

Bcl-2 Bcl-x1 Bax, Bik, Bad

cytochrome-c
mitochondrialcytochrome-c

stress

IAP

Figure 4.2: Caspase-dependent apoptosis mechanism described in [10]. The
model includes two triggers for the activation of cell suicide mechanism, extra-
cellular death ligand and stress-related factor. The cell will die when execu-
tioner caspase is activated by caspase-8 (ligand effector) or caspase-9 (stress-
related effector). (redrawn from [11])
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in the matrix-vector form as follows:

ẋ = Ax+Br + C,

r = f(x, p),
(4.1)

where the vector x represents 19 states (the concentrations of proteins), and their

representing proteins are listed in Table 4.1. The vector r represents 11 reaction

rates and has the expression as follows:

r1 =
kl(x1 − x2)L

K−1
S + L

,

r2 =
kax3x2

1 +KAx3 +KAKBx2
3

− x4

KAKBx3

,

r3 =
khx5x6

1 +KHx3 +KI
x19

1+KJx17

− x7

KH

,

r4 =
k8za1x

2
8x4

K−1
C K−1

D +K−1
D x8 + x2

8 +KFK
−1
C k−1

D x15 +KGK
−1
D x8x15

,

r5 =
k9za1x

2
9x7

K−1
K K−1

L +K−1
L x9 + x2

9 +KNK
−1
K K−1

L x16 +KOK
−1
L x9x16

,

r6 = k8za2x
2
8,

r7 = k9za2x
2
9,

r8 =
k83ax10x11

K−1
P +KRK

−1
P x14 + x10

,

r9 =
k93ax10x12

K−1
P +KRK

−1
P x14 + x10

,

r10 = αCE[v(x13, x18) + v(X, x18)],

r11 = kux13
[IAPs]

1 +KU [IAPs]
,

(4.2)

where

L is the free ligand concentration,
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v(x13, x18) =

1, ∀x13/x18 > 0.25

0, ∀x13/x18 ≤ 0.25

,

v(X, x18) =

1, ∀X/x18 > 0.025

0, ∀X/x18 ≤ 0.025

,

X = chemical/nutrition factor (stress),

[IAPs]

1 +KU [IAPs]
= 0.1765.

The vector p represents 27 parameters (11 reaction rate constants and 16 saturation

constants) in this model, and the corresponding notations are listed in Table 4.2.

Table 4.1: List of states in model (4.1)

No. Name of Protein No. Name of Protein

1 total receptor ligands 11 caspase-8

2 FAS/FASL 12 caspase-9

3 FADD 13 executioner caspase

4 FAS/FASL-FADD 14 decoy protein

5 cytochrome c 15 decoy protein

6 Apaf1 16 decoy protein

7 Apaf1- cytochrome c 17 activator protein

8 procaspase-8 18 Bcl-2

9 procaspase-9 19 Bcl-x1

10 executioner procaspase

The diagonal matrixA and the vector C describe degradation and auto-generation

respectively, whereas the matrix B represents the stoichiometric matrix of the bio-
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logical network and has the value as follows:

B =



0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 −2 0 −2 0 0 0 0 0

0 0 0 0 −2 0 −2 0 0 0 0

0 0 0 0 0 0 0 −1 −1 0 0

0 0 0 2 0 2 0 0 0 0 0

0 0 0 0 2 0 2 0 0 0 0

0 0 0 0 0 0 0 1 1 0 −1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0



.

The key challenge is to identify the parameters in the nonlinear reaction rate

functions. In this research, the model (4.1) for the caspase system with the ‘true’

parameter values is considered as the ‘actual’ system. As measurements are taken

at a series of discrete time points, we will consider a discrete version of the model,

which can be derived by using the zero-order hold technique. The resulting discrete

model is represented as:

x(k + 1) = Âx(k) + B̂r(k) + Ĉ,

r(k) = f(x(k), p),
(4.3)

where Â = eA∆t, B̂ = (eA∆t − I)A−1B, Ĉ = (eA∆t − I)A−1C. The scalar ∆t is the

sampling interval and therefore 1/∆t is the sampling frequency.
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4.3.2 Model Complexity Analysis

In model (4.1) or (4.3), the parameters of interest are in the nonlinear reaction rate

functions. Unfortunately, none of these rates can be directly measured. If we have

the measurements of all states and know the values of matrix A and vector C, we

could estimate the values of reaction rates from the top equation in model (4.3).

However, practically it is almost impossible (or too costly) to measure all states in

a biological network at all time points in an experiment. In addition, one reaction

rate (and thus parameters involved) may be contained in several equations. It is too

complicated to estimate the parameters directly from the state-space model (4.1)

or (4.3). The purpose of model complexity analysis is to provide some insights for

designing optimal experiments such that unmeasured states and all reaction rates

can be estimated uniquely and as many as possible parameters in rate functions can

be estimated accurately.

By using the sensitivity analysis, Gadkar et al. selected the optimal measurement

set of states, {x2, x3, x5, x7, x10, x11, x12} [11, 12]. With measurements of the states

in the optimal set at a series of time points and measurements of all other states

at the initial time point, they estimate all 11 reaction rates and all 12 states other

than those in the optimal set, at all time points by using the state regulator method.

However, our study shows that the rank of matrix B is 8, which is less than 11

(the number of reaction rates). This indicates that all 11 reaction rates can not be

uniquely estimated. In addition, we have observed that the reaction rate r11 is only

in the equation of state x13 and that state x13 is not in the optimal set selected by

Gadkar et al. in [11, 12]. This implies that the reaction rate r11 cannot be correctly

estimated.

In our previous study [50], we analyzed the stoichiometric matrix B or B̂ using

linear algebra and concluded that reaction rates in each of the three pairs (r4, r6),

(r5, r7), and (r8, r9) were dependent, while other five rates were independent. Com-

bining each dependent pair as a new reaction rate, we can rewrite the model (4.3)
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as follows:

x(k + 1) = Āx(k) + B̄r̄(k) + C̄,

r̄(k) = f(x(k), p),
(4.4)

where Ā = Â, C̄ = Ĉ, and the matrix B̄ is a 19× 8 matrix which has the following

expression:

B̄ =



0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −2 0 0 0 0

0 0 0 0 −2 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



× β, when A = α× I1.

The new reaction rates r̄ = [r1, r2, r3, r4 + r6, r5 + r7, r8 + r9, r10, r11]T are defined

1α and β are constant numbers.

58



as follows:

r̄1 =
kl(x1 − x2)L

K−1
S + L

,

r̄2 =
kax3x2

1 +KAx3 +KAKBx2
3

− x4

KAKBx3

,

r̄3 =
khx5x6

1 +KHx3 +KI
x19

1+KJx17

− x7

KH

,

r̄4 =
k8za1x

2
8x4

K−1
C K−1

D +K−1
D x8 + x2

8 +KFK
−1
C k−1

D x15 +KGK
−1
D x8x15

+ k8za2x
2
8,

r̄5 =
k9za1x

2
9x7

K−1
K K−1

L +K−1
L x9 + x2

9 +KNK
−1
K K−1

L x16 +KOK
−1
L x9x16

+ k9za2x
2
9,

r̄6 =
k83ax10x11 + k93ax10x12

K−1
P +KRK

−1
P x14 + x10

,

r̄7 = αCE[v(x13, x18) + v(X, x18)],

r̄8 = kux13
[IAPs]

1 +KU [IAPs]
.

(4.5)

It can be verified that rank(B̄) = 8, which indicates that the newly defined 8

reaction rates are linearly independent, and thus can be estimated uniquely.

4.3.3 Optimal Measurement Set

To estimate the parameters in the reaction rate functions, we may first estimate the

reaction rates from the measurements of state variables. In model (4.4), the rank

of matrix B̄ is 8, which means eight reaction rates can be uniquely identified from

the measurements of at least 8 states. In the caspase system, 11 of the 19 states

are correlated with 8 reaction rates. From a further analysis of model (4.4), we get

Table 4.3 to show the relationship between the measured states and the estimated

reaction rates.

From Table 4.3, one can select a number of equivalent optimal measurement sets.

One of the optimal measurement sets could be {x2, x3, x5, x7, x10, x11, x12, x13}, which

has one more state than that obtained by Gadkar et al. in [11, 12]. Collecting the

dynamic equations of all states in the optimal measurement set, we have

x̃(k + 1) = Ãx̃(k) + B̃r̄(k) + C̃, (4.6)

59



Table 4.2: List of parameters in model (4.1)

No. Parameter No. Parameter No. Parameter

1 kl 10 αCE 19 KD

2 ka 11 ku 20 KF

3 kh 12 KS 21 KG

4 k8za1 13 KA 22 KK

5 k9za1 14 KB 23 KL

6 k8za2 15 KH 24 KN

7 k9za2 16 KI 25 KO

8 k83a 17 KJ 26 KP

9 k93a 18 KC 27 KR

Table 4.3: Relationship between the measured states and the estimated reac-
tion rates

Measured states Estimated reaction rates

x2 r̄1

x3 or x4 r̄2

x7 r̄3

x8 or x11 r̄4

x9 or x12 r̄5

x10 r̄6

x5 r̄7

x13 r̄8
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where the vector x̃ = [x2, x3, x5, x7, x10, x11, x12, x13]T consists of the optimal set of

states.

Accordingly, the matrix Ã is a sub-matrix of Ā, the vector C̃ is a sub-vector of

C̄, and the matrix B̃ is a sub-matrix of B̄, which has the following expression:

B̃ =



1 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0

0 0 −1 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 2 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 1 0 −1



× β.

4.3.4 Estimation of Unmeasured States and Reaction Rates

As the matrix B̃ in Eq. (4.6) is nonsingular, one can solve eight reaction rates in r̄

from Eq. (4.6) to get

r̄(k) = B̃−1[x̃(k + 1)− Ãx̃(k)− C̃]. (4.7)

This means that as long as we get the measurements of states in the optimal set at

time point (k + 1), we can estimate all reaction rates at time point k.

In addition, to estimate the parameters in the reaction rates, we also need values

of all states (not only the states in the optimal measurement set). To estimate the

unmeasured states (not in the optimal measurement set), we need the initial values

of these states. With these initial values, we can submit Eq. (4.7) into model (4.4)

to get the estimates of the unmeasured states step after step.

4.3.5 Parameter Estimation

From the reaction rate expression (4.5), although there are two parameters KS and

kl in r̄1 given the free death ligand concentration value L, these two parameters
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cannot be independently estimated. In this study, we consider klL/(K
−1
S +L) as one

parameter denoted by K1. Therefore, each of the three reaction rates (r̄1, r̄7, and r̄8)

contains only one linear parameter, and can be easily estimated by the least squares

method. The other five reaction rates r̄2 ∼ r̄6 are or can be transferred into the

linear fractional models (LFM). If we consider the coefficients of each state function

as one combined parameter (e.g., KNK
−1
K K−1

L and KOK
−1
L ), these five reaction rates

are also in the form of the LFM, i.e., its numerator and denominator are linear with

respect to the combined parameters respectively.

These parameters can be estimated using the proposed separation method for

the LFM, which is detailed in Section 3.2.1.

4.4 Numerical Example and Simulation Results

To illustrate the proposed methodology, we use the same parameter values and ini-

tial conditions as those in [11, 12] to produce the measurements from the ‘real’

system, with the sampling frequency of 100 min−1. That is, the degradation ma-

trix is set as A = −0.5 × I, the auto-generation vector is set as C = 0.1 ×

[1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0.3, 1, 1, 0.1, 1, 0.35]T, and the parameter vector

composed in the order as in Table 4.2 is set as k = [1.05, 2, 0.3, 1.25, 1.25, 0.00001,

0.00001, 0.5, 0.5, 0.1, 0.5, 10, 0.1, 100, 10, 100, 5, 100, 100, 2000, 2000, 100, 100,

2000, 2000, 1.5, 5]T. Then we estimate the reaction rates and those unmeasured

states by the proposed framework, using only the values of states in the optimal

measurement set. The average error (calculated via formula (20) in [11]) for all

states is 8.1× 10−13, while the average error for all reaction rates is 3.8× 10−5.

Figure 4.3 shows a comparison of the actual and the estimated states while Fig.

4.4 shows a comparison of the actual and the estimated reaction rates. From these

two figures we can hardly tell the difference between the actual and the estimated

states (or reaction rates) when the sampling frequency is 100 min−1. However,

when the sampling frequency is 1 min−1, the difference between the actual and the

estimated states (or reaction rates) is somewhat large [50], yet is much smaller than
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Figure 4.3: Comparisons of the actual and the estimated states: solid
lines(black) from the actual system, dotted lines(red) from the estimates.
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lines(black) from the actual system, dotted lines(red) from the estimates.
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the result from [11, 12]. This indicates that our proposed methodology for estimating

the unmeasured states and reaction rates is better than that proposed by Gadkar et

al. in [11, 12]. The more accurate the estimated states and reaction rates are, the

more accurate the parameter estimation will be.

With the estimated reaction rates and states, we can estimate the parameters

in the reaction rate functions by the method mentioned in Section 4.3.5. Using the

methods proposed in [11, 12], most parameters in reaction rates r̄4 (i.e., r4 + r6) and

r̄5 (i.e., r5 + r7) cannot be identified. To illustrate our proposed method, this study

only estimates the parameters in r̄4, r̄5, and r̄6. The results are listed in Table 4.4.

The average of relative estimation errors (AREE) are calculated over 20 different

initial guess values of parameters which are drawn from the normal distributions

with the mean of the true parameter values and the standard deviation of 0.5.

Table 4.4: Estimation results showing the average of relative estimation errors
(AREE)

No. Parameter True Value AREE No. Parameter True Value AREE

4 k8za1 1.25 0.13% 20 KF 2000 34.26%

5 k9za1 1.25 0.01% 21 KG 2000 0.00%

6 k8za2 10−5 360.7% 22 KK 100 32.53%

7 k9za2 10−5 2.72% 23 KL 100 0.00%

8 k83a 0.5 0.93% 24 KN 2000 32.53%

9 k93a 0.5 0.83% 25 KO 2000 0.00%

18 KC 100 34.26% 26 KP 1.5 2.92%

19 KD 100 0.00% 27 KR 5 5.22%

From Table 4.4, almost all of these parameters can be identified. In particular,

four parameters KD, KG, KL, and KO can be exactly estimated, other four param-

eters k8za1, k9za1, k83a, and k93a are estimated with the AREE less than 1%, three

parameters k9za2, KP , and KR are estimated with the AREE of 2∼5%, four param-

eters KC , KF , KK , and KN are estimated with the AREE of about 30%. Due to
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its unreasonably large AREE, the parameter k8za2 can be considered unidentified.

In summary, most of these parameters can be identified with the AREE values less

than those in [11, 12].

4.5 Summary

This chapter describes the development of a new methodology for estimating states

and reaction rates in the model of the caspase-activated apoptosis system. As the

reaction rates are unmeasurable, it is crucial to estimate these rates for the subse-

quent identification of the parameters within them. Because of limitations of the

experimental condition and cost, not all states are measured in practice. Thus, it

is essential to estimate also the unmeasured states. This chapter focuses on giving

estimations for unmeasurable variables of the biological model using less experimen-

tal measurement. The proposed methodology could be generalized for a wide range

of complex biological processes, especially in cases where only limited experimental

data are available. A numerical example, i.e., estimating parameters in the caspase

model, is given to show the effectiveness of the whole framework.

66



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, several parameter estimation methods have been developed for two

classes of nonlinear biological systems, specifically the S-system and the linear frac-

tional model (LFM). These methods are primarily based upon the separation ap-

proach, proposed to utilize the special structures of target models. The simulation

results show that these methods, applied on small-scale or middle-scale model ex-

amples, give better performances in estimation accuracy and computation time than

conventional nonlinear estimation methods.

In Chapter 2, we develop two methods for estimating parameters within the S-

system. These methods fully make use of the structure specialty of the S-system.

The alternating least squares (ALS) method treats the positive term or the negative

term separately in the model. By taking the logarithm, the estimation problem

is transformed into a linear least squares problem, which has greatly reduced the

computational complexity. However, as the distribution property of measurement

errors could be destroyed when taking the logarithm, this method can only be applied

on noise-free or small noise cases. The second method proposed for the S-system is

called the separation estimation method. This method concentrates on the model’s

partially linear structure. Using this method, a subset of the parameters will be

eliminated in the optimization process and thus the computation cost is reduced.

This separation method can be ported to other models which possess the partial

linearity property.

In Chapter 3, two estimation methods are designed for the LFM. Firstly, as the
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structure of the LFM is also linear with respect to some of the parameters, specifically

parameters in the numerator, the separation estimation method can be applied in

this case. Furthermore, a modified version of the separation method is developed

to make the estimation in an iterative approach. Secondly, using the weighted least

squares method and the separation principle, the estimates can be achieved in an

analytical closed-form expression, by introducing a specific weight matrix.

In Chapter 4, the separation estimation method is applied to a more complex case

– caspase model with incomplete measurements. The model complexity is analyzed

and an optimal measurement set is designed. With these partial measurements

of states, the reaction rates and the unmeasured states could be estimated under

the proposed framework of methodology. After this, parameters within the caspase

model are estimated using the separation method for the LFM.

In a nutshell, these proposed parameter estimation methods give better perfor-

mances in terms of estimation accuracy and computation cost, compared to the

conventional nonlinear optimization approaches. Simulations have been performed

and show the effectiveness of the proposed methods. After determining the values

of parameters within the model, further understanding of the system characteristics

can be achieved upon verifying hypotheses from the derived model.

5.2 Future Work

There are still some problems awaiting to be tackled for the parameter estimation

problem. First, we need to consider the low sampling problem. As limitations exist

for the experimental measurement frequency, the measured data may be sampled

at relatively large time spans. In this case, we can use a curve-fit or interpolation

technique to connect the measurement points by a smooth curve. Therefore the

intermediate values can be restored and used.

Second, the measurement noise is a problem to deal with as it will undermine

the efficiency of parameter estimation methods. For such a problem, smoothing or

filtering techniques could be adopted to remove the noise signal. The conducted
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simulations shown in the thesis are mainly based on noise-free data sets. So the

performances of the proposed methods can be evaluated, without the effect of noise-

induced errors. In this research, we do make trials of the proposed methods on

noise-contaminated data, and make use of different smoothing or filtering strategies.

As there is no panacea for denoising, the performances of the proposed methods

fluctuate a lot when facing different noise data and need to be analyzed case by case.

In general, the noise data will not affect the speed benefit of the proposed methods,

although the estimation accuracy cannot be guaranteed.

Lastly, if the initial range or boundary of parameters can be obtained, the non-

convergence problem due to unreasonable initial guess values could be greatly re-

duced.

There are also some suggestions for future work. 1) Some stochastic methods,

e.g., Bayesian approaches, Monte Carlo simulations and simulated annealing, can

be developed to deal with some large-scale models. As these methods usually re-

quire a huge amount of computation resources, some estimation algorithms need to

be developed and ported to a high performance computer or a parallel computing

cluster. 2) As there are different sources of experimental data for the same biological

model or biochemical reaction, such a question arises and needs to be considered:

how to incorporate multiple sources of data in the estimation process? 3) Currently

this estimation work is performed under the assumption that the exact structure of

model is already known. One direction for extended study is to combine the struc-

ture identification and the parameter estimation together. All these questions still

need to be considered in further research.
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