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Abstract

Iterative processing has been shown to be very effective in multiuser space-time

block coding (STBC) systems. The complexity and efficiency of an iterative receiver

depend heavily on how the log-likelihood ratios (LLRs) of the coded bits are com-

puted and exchanged at the receiver among its three major components, namely the

multiuser detector, the maximum a posterior probability (MAP) demodulators and

the MAP channel decoders. This thesis first presents a method to quantitatively mea-

sure the system complexities with floating-point operations (FLOPS) and a technique

to evaluate the iterative receiver’s convergence property based on mutual information

and extrinsic information transfer (EXIT) charts.

Then, an integrated iterative receiver is developed by applying the sigma mappings

for M-ary quadrature amplitude modulation (M-QAM) constellations. Due to the

linear relationship between the coded bits and the transmitted channel symbol, the

multiuser detector can work on the bit-level and hence improves the convergence

property of the iterative receiver. It is shown that the integrated iterative receiver

is an attractive candidate to replace the conventional receiver when a few receive

antennas and a high-order M-QAM constellation are employed.

Finally, a more general two-loop iterative receiver is proposed by introducing

an inner iteration loop between the MAP demodulators and the MAP convolutional

decoders besides the outer iteration loop that involves the multiuser detection (MUD)

as in the conventional iterative receiver. The proposed two-loop iterative receiver

greatly improves the iteration efficiency. It is demonstrated that the proposed two-

loop iterative receiver can achieve the same asymptotic performance as that of the

conventional iterative receiver, but with much less outer-loop iterations.
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1. Introduction

Wireless communications first appeared in 1897 with Marconi’s successful demon-

strations of wireless telegraphy. In the hundred years after that, wireless communica-

tions has experienced remarkable evolution with a rapid progress in technology. At the

time of this writing, the cellular phone systems, one of the major wireless applications

in our lives, are being upgraded to their third generations (CDMA2000, WCDMA)

from their second generations (GSM, CDMA95). This upgrade is currently being

deployed worldwide to accommodate the rapid growth in both voice traffic and data

service. With more and more applications or services provided with diverse wireless

facilities, nowadays, we are surrounded by all kinds of wireless devices and networks:

cellular phone, hand-held PDA, wireless internet, walkie-talkie, etc. The ultimate

goal of wireless communications is to communicate with anybody from anywhere at

anytime [1].

While the demand for wireless services is growing at a rapid pace, the available

radio bandwidth for wireless applications is extremely limited. It restricts to a great

extent the capabilities to increase system capacity, especially for power and complex-

ity limited systems. Bandwidth efficiency is therefore one of the primary concerns in

the design of future wireless communications systems.

Multilevel modulation schemes, such as M-ary quadrature amplitude modulation

(M-QAM), can increase the spectral efficiency by sending multiple bits per sym-

bol [2]. Unfortunately, the signal transmitted over the wireless channel is subject to

severe distortion due mainly to multipath fading. In general, fading refers to the de-

structive combination of randomly delayed, reflected, scattered, and diffracted signal
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components at the receiver [3]. This happens because the transmitted signals travel

in different paths from the transmitter to the receiver. Multipath fading leads to

serious BER performance degradation for a given modulation technique and makes

the achievable capacity of a wireless channel very low. In an additive white Gaus-

sian noise (AWGN) channel, the probability of mistaking a transmitted signal with

another one can be made to decrease exponentially with the signal-to-noise ratio

(SNR). In contrast, due to the fading effect, the average error probability for a single-

antenna wireless system only decreases linearly with the SNR [1]. Therefore, fading

compensation is typically required to improve the performance for wireless systems

by mitigating the fading effect.

The key feature of any fading compensation technique is to ensure that the receiver

be provided with multiple independent received signals that carry the same informa-

tion [4]. Although some transmitted information may traverse a difficult physical

path with deep fading, redundant copies of the information increase the chance that

some of the received signals are still good enough to allow reliable detection. This

technique is generally called diversity, which exists in different forms, including time

diversity, frequency diversity, and space diversity [5].

Time diversity: Here multiple versions of the same signal are received over different

time slots. It can be obtained via coding and interleaving. Information is

coded and the coded symbols are dispersed over time in different periods so

that different parts of the codewords experience independent fades. It therefore

provides redundancy in the time domain.

Frequency diversity: In this form of diversity, multiple versions of the same sig-

nal are received over different carrier frequencies. Frequency diversity provides

redundancy in the frequency domain if the channel is frequency selective.

Antenna diversity: This diversity technique provides redundancy in the spatial

domain. It can be achieved when multiple transmit or receive antennas are used

and spaced sufficiently far apart. Here, multiple copies of the same information
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can be received over different transmit/receive antenna pairs.

After receiving multiple versions of the same transmitted signal, a combining tech-

nique is applied to combine all the signal copies in an optimal way to extract as

much of the useful information of the transmitted signal as possible before further

signal processing takes place [2]. Since diversity is such an important resource, differ-

ent types of diversities are usually combined to further improve the wireless system

performance.

To make a more efficient use of the limited bandwidth, intensive research activi-

ties in wireless communications have been carried out and have achieved remarkable

progress. Theoretical studies have shown that a much higher average spectral effi-

ciency of wireless transmissions can be reached by employing multiple transmit and/or

receive antennas in conjunction with space-time codes (STC) [6] [7] [8]. In fact, this

is achieved by taking advantage of the time varying nature of the wireless channel,

which was typically considered as a disadvantage in single-antenna systems. This

is one of the most significant technical breakthroughs in modern communications.

Space-time codes may be split into two main types. One type includes space-time

trellis codes (STTCs) [7], which distribute a trellis code over multiple antennas and

multiple time-slots and provide both coding gain and diversity gain. The other type

includes space-time block codes (STBCs) [8], which act on a block of data at once.

STBCs provide only diversity gain, but are much less complex in terms of implemen-

tation than STTCs. This thesis only focuses on space-time block codes due to their

lower decoding complexity at the receiver.

Recently, multiuser space-time block coding systems have been proposed for wire-

less systems, which use multiple antennas at the transmitter and the receiver [9].

Space-time block coding is employed together with convolutional coding for data

transmission. The key benefit of the scheme with multiple antennas is its ability to

turn multiple-path propagation from a disadvantage factor into an advantage fac-

tor in wireless communications. With this new scheme, time diversity and antenna

3



diversity are achieved. Time diversity is achieved by using the convolutional code

and a random interleaver. Antenna diversity is achieved by transmitting the signals

with multiple transmit antennas and receiving them with multiple receive antennas.

Both of these diversity techniques help to combat the fading when the signals are

transmitted over the wireless channel.

However the problem is that sharing the limited radio spectrum by employing a

multiple access technique makes the system performance degrade to a great extent

due to the multiple access interference (MAI). MAI arises because all users simulta-

neously share the same transmission bandwidth and signals from different users are

superimposed over the air. For the multiuser STBC systems considered in [9], no

spreading is required (i.e., no bandwidth expansion), and the transmitted signal from

one antenna of a user is highly correlated to the signals from other antennas/users.

The system performance therefore greatly depends on how well one can differentiate

each user’s signal and correctly demodulate the information bits for each user based

on the received signal and other constraints. In other words, the system performance

is determined by how well the multiuser detector, the demodulator and the decoder

work and interact. Besides the requirement of good performance, to implement a new

technique in practical applications, it is also desired that the technique has a low-

complexity, which means that it should be able to detect and decode the information

bits with simple processing algorithms.

A significant amount of research work has been carried out in the areas of multiuser

detection (MUD) and MAI cancellation. The optimal multiuser detection is the best

candidate in terms of the system performance, however its exponential computational

complexity with respect to the number of users makes it impractical [10]. Therefore

the study of suboptimal multiuser detectors has been very active and quite a few

low-complexity multiuser detectors have been proposed.

In particular, an important contribution was presented in [11] to address the

MAI problem in coded CDMA systems, where each user employs channel coding

(such as convolutional codes). The receiver proposed in [11] combines efficiently the
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soft-output MUD and the individual users’ soft-input soft-output (SISO) channel

decoders in an iterative manner. More recently, this technique was further applied to

a multiuser STBC wireless communication system with an M-ary phase-shift keying

(M-PSK) constellation [9] and shown to achieve attractive results. The complexity of

the iterative receiver is still a main concern to bring the multiuser STBC systems into

the practical arena of wireless communications. This challenge is the motivation for

our investigation and development of more efficient joint demodulation and decoding

techniques for this bandwidth-efficient multiuser system.

1.1 Thesis Contributions

In the first part of the thesis, multiuser STBC systems are introduced and the con-

ventional iterative decoding scheme is described. The algorithm for the conventional

receiver [9], which is only given for M-PSK is also extended to a more general case

with M-QAM constellation in which the symbols of the constellation have different

energies.

In the second part of the thesis, two basic parameters, namely complexity and

efficiency, of the investigated multiuser STBC systems are examined. In order to

determine the system complexity and compare different detection and demodulation

schemes, the complexity is measured in terms of floating point operation (FLOP)

following the strategy proposed in [12]. As for the efficiency of the iterative receiver

employed by multiuser STBC systems, the extrinsic information transfer character-

istic chart (EXIT chart) technique is used to investigate the convergence behavior of

the iterative processing. To this end, the concept of mutual information is described

first. We then show how to construct the EXIT charts to describe the flow of the

extrinsic information among the three modules, namely, the soft-output MUD, the

MAP demodulator and the MAP channel decoder. The visualization of the decoding

trajectory makes it much easier to compare different iterative receivers, especially

when they have the same asymptotic performance and when the error-bound tech-

nique cannot work well. Also proposed in this part is a convenient method to calculate
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the mutual information between the coded bits and their extrinsic log likelihood ratios

(LLR). The proposed method greatly simplifies the calculation by using the estimated

histograms of the random variables.

The third part of the thesis is concerned with different iterative receivers for mul-

tiuser STBC systems by employing different multiuser detection, demodualtion, and

decoding schemes. Three iterative receivers are proposed and discussed to improve

the convergence property of the conventional receiver. The first two receivers are

related to sigma mapping. One of them is named as the integrated iterative receiver.

It exploits the linear relationship of sigma mapping in such a way that the minimum

mean-square error (MMSE) demodulator and the MMSE-MUD can be combined into

a single module. This allows bit-level multiuser interference cancellation and helps to

improve the convergence property of the iterative processing. The third iterative re-

ceiver is called the two-loop iterative receiver. By introducing the inner loop into the

existing outer loop, it also greatly improves the convergence property of the whole

receiver. Thus the iteration times can be reduced in order to approach the same

asymptotic error performance. In other words, the system complexity can be greatly

reduced compared to the conventional receiver.

1.2 Thesis Organization

The remainder of the thesis is organized as follows.

Chapter 2 introduces the basic multiuser STBC systems including the space-time

block codes, the transmitter and receiver’s structures and the channel model. An

MMSE-MUD is developed for systems with M-QAM constellation. In addition, the

MAP demodulator and the MAP decoder for convolutional codes are also presented

in this chapter.

Chapter 3 includes two main parts. The first part examines the complexity of

three major components (soft-output MUD, MAP demodulator and the MAP channel

decoder) employed by the iterative receiver. The second part discusses the efficiency
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of the receiver. In this part, the concept of mutual information is first introduced.

Then a convenient method to compute the mutual information between the coded bits

and their corresponding extrinsic information is presented. Finally, the use of EXIT

charts to investigate the efficiency of iterative receivers is described. This chapter

provides a good foundation for the following two chapters.

Chapter 4 first presents the sigma mapping and its property. Two different it-

erative receivers are proposed to exploit the linear relationship between the coded

bits and the transmitted channel symbol. The complexity and the corresponding effi-

ciency in terms of convergence behavior of both iterative receivers are examined and

compared to the conventional one based on the techniques described in Chapter 3.

Chapter 5 presents another approach to improve the efficiency of the conventional

receiver by introducing the two-loop iterative receiver for multiuser STBC systems.

The advantage of the two-loop iterative receiver is illustrated by comparing the error

performance and the extrinsic information transfer characteristic with those of the

conventional receiver.

Finally, Chapter 6 draws the conclusions and gives suggestions for further studies.
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2. Multi-User Space-Time Block Coding (STBC)

Systems

2.1 System Model

Fig. 2.1 provides an overview of a multiuser STBC system. There are K users in

the system, where each user employs NT transmit antennas. The receiver is equipped

with MR antennas. All users share the same bandwidth. For an efficient use of

the limited bandwidth, each user employs an M-QAM constellation and requires

no spreading. The details of each user’s transmitter are shown in Fig. 2.2. Here

{bk(i)}, {dk(j)} and {ck(l)} denote the information bit stream, the convolutionally

coded bit stream and the modulated symbol stream of the kth user, respectively. The

information bits {bk(i)} are first encoded by a convolutional encoder. Then the coded

bits {dk(j)} are reordered by a random interleaver. The interleaver is used to eliminate

the temporal constraint among the coded bits, which helps to combat burst errors.

The interleaved bits are then mapped and modulated to complex symbols {ck(l)}
of a general M-QAM constellation. Here ck(l) ∈ ΩC , {C1, C2, . . . , CM}, where

ΩC denotes a general 2-dimensional M-QAM constellation and Ck (k = 1, · · · , K)

denotes one of the signal points of the constellation. The symbol stream {ck(l)} is

then partitioned into blocks of symbols and fed to the space-time block encoder to

transmit over the channel. Each block contains N symbols. The number of symbols

N in one block equals the number of transmit antenna NT . Therefore, in the rest of

this thesis, N is also used to denote the number of transmit antennas.

Space-time blocking coding is a very promising technique, which was developed

recently to combat signal fading in wireless channels. The basic idea of space-time
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Figure 2.2 Transmitter structure for a multiuser STBC system.

coding is to transmit a vector of code symbols simultaneously from multiple antennas

in such a way that independent transmission paths are effectively created. The details

of space-time coding will be described in Sections 2.1.2.
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2.1.1 Channel Model

As in [9], a quasi-static flat Rayleigh fading channel is assumed for every path from

one transmit antenna to one receive antenna. Rayleigh fading channels are a typical

model, which apply to wireless radio channels without a line-of-sight path between the

transmitter and receiver antennas. Specifically, let αm,n denote the complex fading

gain from the nth transmitter antenna to the mth receive antenna, which is modeled

as a zero-mean circularly symmetric complex Gaussian random variable with unit

variance, i.e.,

αm,n , CN (0, 1), n = 1, 2, · · · , N ; m = 1, 2, · · · , MR (2.1)

The quasi-static property means that the channel gain remains constant over one

signal block and it varies independently from block to block. Due to the existence of

the random interleaver, the symbols in one block can be assumed to be independent

and symbol streams of all the users can also be assumed to be mutually independent.

Besides the damaging effect of channel fading, the received signal is also corrupted

by noise at the receiver, which can also be modelled as a circularly symmetric complex

Gaussian random variable with variance N0. For one transmitted symbol, the discrete-

time baseband received signal can be represented as:

y(i) = α(i) · x(i) + n(i) (2.2)

where x(i) is the transmitted signal at time slot i, α(i) is the sample of the channel

fading gain, n(i) is the sample of the noise at the receiver, and y(i) is the correspond-

ing received signal. Note that when α(i) = 1 for all i, the fading channel simplifies

to an additive white Gaussian noise (AWGN) channel. For convenience in the fol-

lowing discussion, we also define SNR as the ratio between the average energy of the

transmitted symbol x(i) and the noise variance N0.

2.1.2 Space-Time Block Codes

As mentioned before, space-time block coding is an effective technique used in

wireless communications to combat signal degradation caused by channel fading. In
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space-time coding, multiple copies of the information data are transmitted across a

number of antennas during one period (i.e., at the same time). After passing different

paths, all copies of the signal arrive at the receive antenna, and they experience

different degrees of degradation. By exploiting the multiple received versions of the

transmitted data at the receiver, the transmitted information can be detected with

a higher reliability, compared to the case that only one pair of transmit and receive

antennas is used in the system. In fact, space-time coding techniques try to combine

all the copies of the received signal in an optimal way to extract as much information

about the transmitted signal as possible [6].

A space-time block code is defined by a code matrix G. Specifically, to transmit

a symbol vector c , [c(1), c(2), · · · , c(N)]T , the encoder uses the following matrix:

G =











g(1, 1) g(1, 2) · · · g(1, N)

g(1, 1) g(1, 2) · · · g(1, N)

. . . . . . · · · . . .

g(P, 1) g(P, 2) · · · g(P, N)











P×N

(2.3)

where P denotes the number of time slots used to transmit one symbol vector c, N

denotes the number of transmit antennas as mentioned before. Each row of matrix

G is a permutation and/or conjugation of the transmitted code vector c. For trans-

mission, the lth row of G is transmitted over N antennas during the lth time slot.

Note that the code rate of the STBC is N/P symbol per slot.

To clearly illustrate the principle of space-time block coding, consider a simple

STBC system with only one user (i.e., K=1). Furthermore, consider P = N = 2 and

the following famous 2 × 2 Alamouti code [6]

G =




c(1) c(2)

−c∗(2) c∗(1)



 (2.4)

where (·)∗ denotes the complex conjugate operation. The two channel symbols c(1)

and c(2) compose a code vector, defined as c = [c(1) c(2)]T . During the first time

slot, the two symbols [c(1) c(2)] in the first row of G are transmitted simultane-

ously over the two transmit antennas. During the second time slot, the two symbols
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[−c∗(2) c∗(1)] of the second row of G are then transmitted. The transmission process

of this 2 × 2 Alamouti scheme is illustrated in Fig. 2.3.
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Figure 2.3 Illustration of 2 × 2 Alamouti STBC scheme.

The received signal at the mth receive antenna over two time slots can be written

as 


rm(1)

rm(2)



 =




c(1) c(2)

−c∗(2) c∗(1)








αm,1

αm,2



+




nm(1)

nm(2)



 (2.5)

where nm(i), i = 1, 2, is circularly symmetric complex Gaussian noise in the ith time

slot and at the mth receive antenna, αm,i is the fading gain from the ith transmit

antenna to the mth receive antenna. With the quasi-static fading assumption of the

wireless channels, αm,1 and αm,2 are constant over two time slots.

For notational convenience, (2.5) can be written in an alternative form as follows:



rm(1)

r∗m(2)





︸ ︷︷ ︸

rm

=




αm,1 αm,2

α∗
m,2 −α∗

m,1





︸ ︷︷ ︸

Hm




c(1)

c(2)





︸ ︷︷ ︸

c

+




nm(1)

n∗
m(2)





︸ ︷︷ ︸

nm

(2.6)

In the above expression, Hm is the equivalent channel response matrix corresponding

to the transmission of c from N = 2 transmit antennas to the mth receive antenna

over one block duration (i.e., P time slots). Observe that the elements of Hm depend

not only on the channel fading coefficients of the transmit-receive antenna pairs, but

also on the code constraint described by matrix G.
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Furthermore, to illustrate conveniently the advantage of the Alamouti scheme over

the conventional system with only one transmit-receive antenna pair, assume that only

one receive antenna, (i.e., MR = 1) is employed for the simplest system with only

one user. Compared to the conventional system, two symbols are now transmitted

over two symbol times instead of one symbol over one symbol time. Although the

Alamouti scheme offers the same data rate as that of the conventional scheme, it

performs better in terms of BER.

Multiplying both sides of (2.6) by HH
m, where (·)H denotes the Hermitian transpose

operation, an equivalent form of the received signals corresponding to the transmitted

symbols c(1) and c(2) is obtained as:




ym(1)

ym(2)



 =




‖αm,1‖2 + ‖αm,2‖2 0

0 ‖αm,1‖2 + ‖αm,2‖2








c(1)

c(2)



+




wm(1)

wm(2)





(2.7)

where 


ym(1)

ym(2)



 =




α∗

m,1 αm,2

α∗
m,2 −αm,1








rm(1)

r∗m(2)



 (2.8)

and 


wm(1)

wm(2)



 =




α∗

m,1 αm,2

α∗
m,2 −αm,1








nm(1)

n∗
m(2)



 (2.9)

It is important to point out here that the noise wm(1) and wm(2) are still inde-

pendent circularly symmetric Gaussian random variables because the matrix Hm is

unitary. This fact implies that the detection problem for c(1) and c(2) in (2.7) can be

decomposed into two separate, scalar problems. Then, for one symbol, for example,

c(1), the received symbol can be written as:

ym(1) = (‖αm,1‖2 + ‖αm,2‖2)c(1) + wm(1) (2.10)

It follows from (2.9) and the fact that nm(i) ∼ CN (0, N0), the distribution of wm(1)

is

wm(1) ∼ CN (0, (‖αm,1‖2 + ‖αm,2‖2)N0) (2.11)
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For a given signal-to-noise ratio (SNR), how well the symbols c(1) and c(2) can be

detected correctly depends on the size of the coefficient ‖αm,1‖2 + ‖αm,2‖2, which is

a summation of two independent channels’ fading gain. For a fair comparison, first,

SNR is defined as the value of the signal-to-noise ratio when the signal is transmitted

over an AWGN channel. Second, assume that the total transmit power is the same

for the conventional system and the system with Alamouti scheme.

Given the vector of channel fading gains, for the conventional system over fading

channel, the actual signal-to-noise ratio at the receiver would be ‖αm,1‖2SNR since

there is only one channel. For the systems with Alamouti scheme, the actual signal

to noise ratio at the receiver would be
(‖αm,1‖2+‖αm,2‖2)

2
SNR. The factor 1

2
for the

Alamouti scheme comes from the fact that for the Alamouti scheme two symbols

are transmitted simultaneously over each time period, so each symbol should be

transmitted with half the power in the conventional system.

For a Rayleigh fading channel with the channel gain αm,i ∼ CN (0, 1), ‖αm,i‖2

is Chi-square distributed with 2 degrees of freedom. Therefore ‖αm,1‖2 + ‖αm,2‖2 is

Chi-square distributed with 4 degrees of freedom. The higher order of the Chi-square

distribution means that the tail of the distribution near zero becomes smaller. This

translates to a lower probability of the events where the average fading gain becomes

very small, thus leading to a higher chance to correctly detect the transmitted symbol.

To understand this better, one can examine the probability of the deep fade event

in which the overall channel gain is small. For Alamouti scheme, this typical error

event at high SNR happens with the following probability [5]:

P1 = P

{
(‖αm,1‖2 + ‖αm,2‖2)

2
< 1/SNR

}

≈ 2

SNR2 (2.12)

On the other hand, for a conventional system, this probability is

P2 = P
{
‖αm,1‖2 < 1/SNR

}
≈ 1

SNR
(2.13)

At high SNR, P1 is much less than P2. This clearly shows that with Alamouti scheme,

the system can achieve a better detection performance. The order of the SNR at the

14



denominator in (2.12) and (2.13) is called the diversity gain of the system and it is

denoted by L. As seen from above analysis, for Alamouti scheme L = 2, and for the

conventional case L = 1. The higher order of the diversity gain L means that the

probability of overall gain being small is lower, promising a better BER performance.

Now, return to the multiuser STBC system described in Fig. 2.1. Since all users

in the system transmit over the wireless channel at the same time, their transmitted

signals are superimposed at each receive antenna. However, with the well-designed

structure of the orthogonal space-time block code, symbols belong to the same user

do not interfere. Only the symbols belonging to different users interfere, creating the

so-called inter-user interference. In particular, the combined received signal at the

mth antenna is given as:

rm =

K∑

k=1

rmk + nm

=
[

Hm1 Hm2 · · · Hmk · · · HmK

]

·
[

cT
1 cT

2 · · · cT
k · · · cT

K

]T

+ nm (2.14)

where ck , [ck(1), ck(2), · · · , ck(P )]T consists of the the kth user’s transmitted sym-

bols from time slots 1 to P . The vector nm , [nm(1), nm(2), . . . , nm(P )]T contains

the additive Gaussian noise samples from time slots 1 to P at the mth receive an-

tenna. Hmk is the kth user’s equivalent channel response matrix corresponding to

the transmission of ck from its N transmit antennas to the mth receive antenna over

one block duration (i.e., P time slots). Each element of Hmk is determined by the

channel gain (modeled as a circularly symmetric complex Gaussian random variable

of unit variance) and the space-time code used by the kth user.

Furthermore, from (2.14), it is not difficult to write out the mathematical model

for the system equipped with MR receive antennas. Specifically, the discrete-time

15



baseband received signal can be expressed as:













r1

...

rm

...

rMR














︸ ︷︷ ︸

rMRP×1

=














H11 · · ·H1k · · ·H1K

...
...

...

Hm1 · · ·Hmk · · ·HmK

...
...

...

HMR1 · · ·HMRk · · ·HMRK














︸ ︷︷ ︸

HMRP×NK














c1

...

ck

...

cK














︸ ︷︷ ︸

cNK×1

+














n1

...

nm

...

nMR














︸ ︷︷ ︸

nMRP×1

(2.15)

where rm , [rm(1), rm(2), · · · , rm(P )]T , consists of the received signals from time

slots 1 to P at the mth receive antenna.

Based on the sufficient statistics in (2.15), the optimum receiver could be im-

plemented. However, with the use of the maximal likelihood (ML) scheme in the

front-end for STBC decoding and MUD, coupled with the decoding of the convo-

lutional code for each user, the overall complexity of this method is prohibitive in

a multiuser STBC system. In [9], a practical suboptimal scheme is presented by

employing the iterative processing technique for joint detection and decoding. This

implementation is referred to as the conventional iterative receiver in this thesis. The

detailed implementation of this receiver is discussed in the following section.

2.2 Conventional Iterative Receiver

Fig. 2.4 illustrates the conventional iterative receiver for a multiuser STBC sys-

tem. It consists of a soft-output multiuser detector, followed by K parallel demodula-

tors and channel decoders. The demodulator and the decoder in one branch are sep-

arated by the interleaver and deinterleaver. The MUD takes as its input the received

signals from the MR receive antennas and the interleaved extrinsic log-likelihood ratios

(LLR’s) of the coded bits of all users {λπ
2 [dk(l, j)]}, which are fed back from K users’

MAP channel decoders. The definition of LLR was made in (2.42). The MUD com-

putes the soft estimate ĉk(l) of the kth user’s lth channel symbol ck(l), and then feeds

them into K single-user MAP demodulators. The demodulator takes as its input both

the MMSE estimate ĉk(l) of symbol ck(l) from the MUD, and again the interleaved
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extrinsic LLR’s {λπ
2 [dk(l, j)]} of the corresponding coded bits from the MAP channel

decoder. Then the demodulator computes the a posteriori LLR’s {Λ1[dk(l, j)]} of

the coded bits with the MAP algorithm [11]. The MAP channel decoder of each

user takes the interleaved extrinsic LLR’s of the coded bits {λπ
1 [dk(l, j)]} from the

corresponding demodulator and computes the a posterior LLR’s {λ2[dk(l, j)]} of the

coded bits and the LLR’s {Λ2[bk(i)]} of the information bits based on the structure

of the convolutional code.

In [9], an iterative receiver algorithm is given for the case when M-PSK constel-

lation is adopted in the system, where each channel symbol is transmitted with the

same energy. Here the algorithm is extended to a more general case with M-QAM

constellation in which the symbols of the constellation have different energies. In

the following subsections, emphasis is placed on the soft-output MUD and the MAP

demodulator. For the MAP channel decoder, only the most significant features are

highlighted and discussed to help with the complexity analysis. More details of the

MAP channel decoder can be found in [11].
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Figure 2.4 Conventional iterative receiver for a multiuser STBC system.
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2.2.1 Soft-Output MUD with Interference Cancellation

The basic idea of the soft-output MUD with interference cancellation is to subtract

the soft estimates of the interference symbols from the received signal and then apply

the instantaneous linear MMSE filter to the residue signal to obtain a better estimate

of the transmitted symbol.

First the soft estimate c̃k(l) of the kth user’s lth code symbol ck(l) and the esti-

mated E{‖ck(l)‖2} of its energy are defined as follows:

c̃k(l) , E[ck(l)] =
∑

Ci∈ΩC

Ci P [ck(l) = Ci] (2.16)

E{‖ck(l)‖2} ,
∑

Ci∈ΩC

‖Ci‖2 P [ck(l) = Ci] (2.17)

where ΩC denotes the symbol constellation. The adjective ‘soft’ comes from the fact

that the probability P [ck(l) = Ci] is calculated based on the extrinsic LLR’s of the

coded bits carried by symbol ck(l).

At the first iteration, no a priori information about the code symbols is avaliable,

thus the code symbols are assumed to be equiprobable, i.e., P [ck(l) = Ci] = 1/|ΩC |.
In the subsequent iterations, the probability P [ck(l) = Ci] can be computed from the

feedback extrinsic information delivered by the channel decoder, as will be explained

in the next section.

For the K-user STBC system described in (2.15), define an (NK)-dimensional soft

vector corresponding to the true transmitted symbol vector c = [cT
1 , cT

2 , · · · , cT
K ]T as:

c̃ , [c̃T
1 , c̃T

2 , · · · , c̃T
K ]T

= [c̃1(1), · · · , c̃1(N), · · · , c̃K(1), · · · , c̃K(N)]T (2.18)

In order to apply the techniques proposed in [11], one can treat every element in c̃ as

belonging to a virtual user. Therefore the system in (2.15) with K actual users can

be treated as a system with NK virtual users. Define

c̃k(l) , c̃ − c̃k(l)ẽk(l) (2.19)
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In (2.19) and the following, the combination of (k, l) is used to index a virtual user, and

ẽk(l) is an (NK)-vector of all zeros, except for the “1” element in the corresponding

entry of the (k, l)th virtual user. That is, c̃k(l) is obtained from c̃ by setting the

(k, l)th element to zero.

Subtracting the soft estimates of the interfering signals of other virtual users from

the received signal r in (2.15), gives

r̃k(l) , r − Hc̃k(l) = H[c − c̃k(l)] + n (2.20)

In order to further suppress the multiuser interference in r̃k(l), the instantaneous

linear MMSE filter is applied to estimate the transmitted symbol. The linear MMSE

weight vector wk(l) is chosen to minimize the mean square error (MSE) between the

transmitted symbol ck(l) and the filter output, which is expressed as

ĉk(l) , wH
k (l)r̃k(l) (2.21)

where (·)H denotes Hermitian transpose operation. Thus wk(l) is found as

wk(l) = arg min
︸︷︷︸

w∈CMP

E
[
||ck(l) −wH r̃k(l)||2

]

= E{r̃k(l)r̃
H
k (l)}−1E{c∗k(l)r̃k(l)} (2.22)

Below shows how to compute E{c∗k(l)r̃k(l)} and E{r̃k(l)r̃
H
k (l)} in (2.22). First, the

term E{c∗k(l)r̃k(l)} is computed as follows,

E{c∗k(l)r̃k(l)} = HE{c∗k(l) [c− c̃k(l)]}

= HE







c∗k(l) ·




















c1(1) − c̃1(1)
...

ck(l − 1) − c̃k(l − 1)

ck(l)

ck(l + 1) − c̃k(l + 1)
...

cK(N) − c̃K(N)


























(2.23)
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Using the fact that all the transmitted symbols are independent, and the definition

in (2.16), one obtains:

E{[ck(l) − c̃k(l)]} = E{ck(l)} − c̃k(l) = c̃k(l) − c̃k(l) = 0 (2.24)

Now substituting (2.24) into (2.23) yields:

E{c∗k(l)r̃k(l)} = H




















E{c∗k(l) · [c1(1) − c̃1(1)]}
...

E{c∗k(l) · [ck(l − 1) − c̃k(l − 1)]}
E{c∗k(l) · ck(l)}

E{c∗k(l) · [ck(l + 1) − c̃k(l + 1)]}
...

E{c∗k(l) · [cK(N) − c̃K(N)]}




















= H




















E{c∗k(l)} · 0
...

E{c∗k(l)} · 0
E{c∗k(l) · ck(l)}

E{c∗k(l)} · 0
...

E{c∗k(l)} · 0}




















= H · ẽk(l) · E
{
||ck(l)||2

}
(2.25)

Next, the term E{r̃k(l)r̃
H
k (l)} in (2.22) is computed as follows,

E{r̃k(l)r̃
H
k (l)} = E

{
[H(c − c̃k(l)) + n][H(c− c̃k(l)) + n]H

}

= E
{
[H(c − c̃k(l))][H(c − c̃k(l))]

H
}

+ E
{
nnH

}

= HE
{
(c − c̃k(l))(c − c̃k(l))

H
}
HH + E

{
nnH

}

= Hcov[c − c̃k(l)]H
H + N0I (2.26)

where N0 denotes the one-sided power spectrum density of the white Gaussian noise;

I is the identity matrix; and cov(·) denotes the covariance operator. Define

Vk(l) , cov[c − c̃k(l)] = diag{E{‖c1(1)‖2} − ‖c̃1(1)‖2, · · · ,

E{‖c1(N)‖2} − ‖c̃1(N)‖2, · · · , E{‖ck(l − 1)‖2} − ‖c̃k(l − 1)‖2, E{‖ck(l)‖2},

E{‖ck(l + 1)‖2} − ‖c̃k(l + 1)‖2, · · · , E{‖cK(N)‖2} − ‖c̃K(N)‖2} (2.27)

where diag(·) means a diagonal matrix whose diagonal elements are inside the paren-

theses and E{‖ck(l)‖2} is calculated as in (2.17). Then (2.26) can be rewritten as

E{r̃k(l)r̃
H
k (l)} = HVk(l)H

H + N0I (2.28)
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In particular, for M-PSK, all the transmitted symbols have the same energy, i.e.,

E{‖ck(l)‖2} = Es. Therefore, Vk(l) can be further simplified to

Vk(l) = diag{Es − ‖c̃1(1)‖2, · · · , Es − ‖c̃1(N)‖2, · · · ,

Es − ‖c̃k(l − 1)‖2, Es, Es − ‖c̃k(l + 1)‖2, · · · , Es − ‖c̃K(N)‖2} (2.29)

Now, substituting (2.25), (2.28) and (2.22) into (2.21), the final expressions of

wk(l) and ĉk(l) for a general M-QAM constellation are obtained as:

wk(l) = [HVk(l)H
H + N0I]

−1[H · ẽk(l) · E
{
||ck(l)||2

}
] (2.30)

and

ĉk(l) , wH
k (l)r̃k(l)

= {[HVk(l)H
H + N0I]

−1[H · ẽk(l) · E
{
||ck(l)||2

}
]}H · r̃k(l)

= ẽH
k (l) · HH · [HVk(l)H

H + N0I]
−1 · r̃k(l) · E

{
||ck(l)||2

}
(2.31)

2.2.2 Gaussian Approximation for the Output of the MMSE

Filter

The instantaneous output of the MMSE filter can be modeled as the output of an

equivalent AWGN channel having ck(l) as its input symbol [9]. The simulation results

in the following chapters will also show that such an assumption is reasonable and

quite accurate. This assumption greatly simplifies the computation of the a posterior

probability of the estimated symbol. With this assumption, the output of the MMSE

filter can be represented as

ĉk(l) = µk(l)ck(l) + νk(l) (2.32)

where the parameters µk(l) and E{ν2
k(l)} can be determined as follows.

First, multiply both sides of (2.32) with c∗k(l) and find the expectation of E{ĉk(l)c
∗
k(l)}
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as

E{ĉk(l)c
∗
k(l)} = E{[µk(l)ck(l) + νk(l)] · c∗k(l)}

= E{µk(l)ck(l)c
∗
k(l) + νk(l)c

∗
k(l)}

= µk(l) · E{ck(l)c
∗
k(l} + E{νk(l)c

∗
k(l)}

= µk(l)E{‖ck(l)‖2} (2.33)

Second, multiply both sides of (2.31) and compute E{ĉk(l)c
∗
k(l)} as

E{ĉk(l)c
∗
k(l)} = E

{
ẽH

k (l)HH [HVk(l)H
H + N0I]

−1r̃k(l)E
{
‖ck(l)‖2

}}
c∗k(l)

= E{‖ck(l)‖2}ẽH
k (l)HH [HVk(l)H

H + N0I]
−1E{r̃k(l)c

∗
k(l)}(2.34)

Substituting (2.25) into (2.34), E{ĉk(l)c
∗
k(l)} can be further transformed to

E{ĉk(l)c
∗
k(l)} = E{‖ck(l)‖2}ẽH

k (l)HH [HVk(l)H
H + N0I]

−1E{r̃k(l)c
∗
k(l)}

= E{‖ck(l)‖2}ẽH
k (l)HH [HVk(l)H

H + N0I]
−1Hẽk(l)E{‖ck(l)‖2} (2.35)

By comparison of (2.33) and (2.35), it is deduced that

µk(l) , {HH [HVk(l)H
H + σ2I]−1H}kk · E{‖ck(l)‖2} (2.36)

Now the expression of E{ν2
k(l)} is derived as:

E{ν2
k(l)} , var{ĉk(l)} = E{‖ĉk(l)‖2} − µ2

k(l)E{‖ck(l)‖2} (2.37)

From ĉk(l) , wH
k (l)r̃k(l), (2.28) and (2.30), E{‖ĉk(l)‖2} can be expressed as

E{‖ĉk(l)‖2} = E{wH
k (l)r̃k(l)[w

H
k (l)r̃k(l)]

H} = wH
k (l)E{r̃k(l)r̃k(l)

H}wk(l)

= wH
k (l){HVk(l)H

H + N0I}wk(l)

= E{‖ck(l)‖2}ẽH
k (l)HH [HVk(l)H

H + N0I]
−1Hẽk(l)E{‖ck(l)‖2}

= E{‖ck(l)‖2}{HH [HVk(l)H
H + σ2I]−1H}kk · E{‖ck(l)‖2}

= E{‖ck(l)‖2} · µk(l) (2.38)

It then follows that

E{ν2
k(l)} = [µk(l) − µ2

k(l)]E{‖ck(l)‖2} (2.39)
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Based on the Gaussian model of (2.32), (2.36), and (2.39), the a posterior proba-

bility of the estimated symbol can be computed as

P [ĉk(l)|ck(l) = Ci] =
1

πE{ν2
k(l)}

· exp

(

−‖ĉk(l) − µk(l)Ci‖2

E{ν2
k(l)}

)

(2.40)

where i = 1, 2, · · · , M and Ci ∈ ΩC .

2.2.3 MAP Demodulator

Suppose that every complex symbol ck(l) carries a J-dimensional vector as

ck(l),[dk(l, 1), · · · , dk(l, j), · · · , dk(l, J)]T (2.41)

where J = log2 M and dk(l, j) ∈ {+1,−1} denotes the jth labelling bit of the kth

user’s lth complex symbol. The LLR value of one coded bit λ[dk(l, j)] is defined as

λ[dk(l, j)] , log
P [dk(l, j) = +1]

P [dk(l, j) = −1]
(2.42)

The demodulator takes as its input both the MMSE estimate ĉk(l) of symbol

ck(l) and the interleaved extrinsic LLR’s {λπ
2 [dk(l, j)]} where the superscript π means

that it is the interleaved extrinsic LLR. It then computes the a posteriori LLR’s

{Λ1[dk(l, j)]} of the coded bits with the MAP algorithm as follows:

Λ1[dk(l, j)] , log
P [dk(l, j) = 1|ĉk(l)]

P [dk(l, j) = 0|ĉk(l)]

= log
P [ĉk(l)|dk(l, j) = 1]P [dk(l, j) = 1]

P [ĉk(l)|dk(l, j) = −1]P [dk(l, j) = −1]

= log

∑

Ci∈C+
j

P [ĉk(l)|ck(l) = Ci]P [Ci]
∑

Ci∈C−

j
P [ĉk(l)|ck(l) = Ci]P [Ci]

(2.43)

P [Ci] =

J∏

j=1

P [dk(l, j) = D(i, j)] (2.44)

where D(i, j) ∈ {+1,−1} is the jth labelling bit of Ci, C+
j and C−

j are the sets of the

complex symbols whose jth labelling bits are “1” and “−1”, respectively.

Subtracting the a priori information λπp

2 [dk(l, j)] of the coded bits from the MAP-

decoder, the extrinsic LLR’s of dk(l, j) at the output of the MAP demodulator can
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be obtained as

λ1[dk(l, j)] = Λ1[dk(l, j)] − λπp

2 [dk(l, j)] (2.45)

where the letter p in the superscript of λπp

2 [dk(l, j)] indicates that the information is

from the previous iteration. The quantity λπp

2 [dk(l, j)] is computed by subtracting the

LLR of the coded bit at the input of the MAP-decoder from the corresponding LLR

at the output. At the first iteration, no a priori information about the coded bits is

available, thus λπp

2 [dk(l, j)] = 0. Finally the extrinsic LLR’s calculated in (2.45) are

deinterleaved, and then fed to the MAP decoder.

According to the definition of the LLR in (2.42), it is not difficult to convert the

LLR value into the corresponding probabilities as follows:

P [dk(l, j) = +1] =
exp [λ[dk(l, j)]]

1 + exp [λ[dk(l, j)]]
(2.46)

P [dk(l, j) = −1] =
1

1 + exp [λ[dk(l, j)]]
(2.47)

2.2.4 Channel Decoder

The channel decoder for the convolutional code is implemented separately for

each user with the MAP decoding algorithm. The MAP channel decoder of the kth

user takes the interleaved extrinsic LLR’s of the coded bits {λπ
1 [dk(l, j)]} from the

corresponding demodulator and computes the a posterior LLR’s {λ2[dk(l, j)]} of the

coded bits and the LLR’s {Λ2[bk(i)]} of the information bits based on the structure

of the convolutional code [13].

The basic concepts of encoding and MAP decoding for convolutional codes are

presented in Appendix A. This section outlines a procedure for computing the LLR’s

of the information and coded bits for a rate- k0

n0
convolutional code of overall constraint

length k0ν. It will also help to analyze and demonstrate the algorithm complexity in

Chapter 3. More details of the algorithm can also be found in [11].

The input to the encoder at time t is the block dt = (d1
t , · · · , dk0

t ) and the cor-

responding output of the encoder is bt = (b1
t , · · · , bn0

t ). The state of the trellis at
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time t can be represented by a k0(ν − 1)-tuple, as St = (s1
t , · · · , s

k0(ν−1)
t ). Denote

the input information bits that cause the state transition from St−1 = s′ to St = s

by d(s′, s) and the corresponding output coded bits by b(s′, s). The encoder starts

in state S0 (S0 is always a all-zero state). An information bit stream {dt}T
t=1 is fed

into the encoder, followed by ν blocks of all zero bits, forcing the encoder to end in

all-zero state again at time τ = T + ν, i.e., Sτ = S0.

As in Appendix A, define

P [bt(s
′, s)] , P [bt = bt(s

′, s)] (2.48)

and the following forward and backward recursions as:

αt(s) =
∑

s′

αt−1(s
′)P [bt(s

′, s)], t = 1, 2, · · · , τ (2.49)

βt(s) =
∑

s′

βt+1(s
′)P [bt+1(s

′, s)], t = τ − 1, τ − 2, · · · , 0 (2.50)

with boundary conditions α(0) = 1, α(s 6= 0) = 0; and βτ (0) = 1, βτ (s 6= 0) = 0. In

(2.49) and (2.50) the summations are over all states s′ where the transition (s′, s) is

possible.

Let S+
j be the set of state pairs (s′, s) such that the jth bit of b(s′, s) is +1.

Similarly, define S−1
j as the set of state pairs (s′, s) such that the jth bit of b(s′, s)

is −1. The a posteriori LLR of the coded bit bj
t at the output of the MAP channel

decoder can be computed as:

Λ2[b
j
t ] , log

P [bj
t = +1|decoding]

P [bj
t = −1|decoding]

= log

∑

S+
j

αt−1(s
′) · βt(s) ·

∏

i6=j P [bi
t(s

′, s)]
∑

S−

j
αt−1(s′) · βt(s) ·

∏

i6=j P [bi
t(s

′, s)]
︸ ︷︷ ︸

λ2[b
j
t ]

+ log
P [bj

t = +1]

P [bj
t = −1]

︸ ︷︷ ︸

λp
1[bj

t ]

(2.51)

It is seen from (2.51) that the output of MAP channel decoder is the sum of the a priori

information λp
1[b

j
t ] provided by the multiuser detector and the extrinsic information

λ2[b
j
t ] based on the trellis structure of the code.
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However, a direct implementation of the recursions (2.49) and (2.50) is numerically

unstable, since α(s) and β(s) drop toward zero exponentially. In order to obtain

a numerically stable algorithm, these quantities must be scaled as the computation

proceeds [11]. Let α̃t(s) denote the scaled version of αt(s). Initially, α1(s) is computed

as (2.49). By setting α̂1(s) = α1(s) and α̃1 = c1α̂1(s) with c1 , 1/
∑

s α̂1(s), for each

t ≥ 2, α̃t(s) can be computed as:

α̂t(s) =
∑

s′

α̃t−1(s
′)P [bt(s

′, s)] (2.52)

α̃t(s) = ctα̂t(s), where ct = 1/
∑

s

α̂t(s) (2.53)

By a simple induction, one obtains α̃t−1(s) = (
∏t−1

i=1 ci)αt−1(s) , Ct−1αt−1(s). Thus

α̃t(s) can be rewritten as

α̃t(s) =

∑

s′ Ct−1αt−1(s
′)P [bt(s

′, s)]
∑

s

∑

s′ Ct−1αt−1(s′)P [bt(s
′, s)]

=
αt(s)

∑

s αt(s)
(2.54)

That is, each αt(s) is effectively scaled by the sum over all states of αt(s).

Similarly, let β̃t(s) denote the scaled version of βt(s). By setting β̂τ−1(s) = βτ−1(s),

for each t < τ − 1, β̃t(s) can be computed as:

β̂t(s) =
∑

s′

β̃t+1(s
′)P [bt+1(s, s

′)] (2.55)

β̃t(s) = ctβ̂t(s) (2.56)

where βτ−1(s) is computed according to (2.50). With simple induction, one obtains

that β̃t(s) is actually scaled by the product of (
∏τ

i=t ci) as

β̃t(s) =

(
τ∏

i=t

ci

)

βt(s) , Dtβt(s). (2.57)

With (2.54) and (2.57), (2.51) can be written as

Λ2[b
j
t ] = log

∑

S+
j

α̃t−1(s
′) · β̃t(s) ·

∏

i6=j P [bi
t(s

′, s)]
∑

S−

j
α̃t−1(s′) · β̃t(s) ·

∏

i6=j P [bi
t(s

′, s)]
︸ ︷︷ ︸

λ2[bj
t ]

+ log
P [bj

t = +1]

P [bj
t = −1]

︸ ︷︷ ︸

λp
1[bj

t ]

(2.58)
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which follows from the fact that Ct−1Dt =
∏t−1

i=1 ci ·
∏τ

i=t ci =
∏τ

i=1 ci is a constant

and it is independent of t.

The a posteriori LLR of the information bit can be computed in a similar way.

Let U+
j be the set of the state pairs (s′, s) such that the jth bit of d(s′, s) is +1.

Similarly, U−1
j is the set of the state pairs (s′, s) such that the jth bit of d(s′, s) is −1.

Then

Λ2[d
j
t ] = log

∑

U+
j

α̃t−1(s
′) · β̃t(s) ·

∏n0

i=1 P [bi
t(s

′, s)]
∑

U−

j
α̃t−1(s′) · β̃t(s) ·

∏n0

i=1 P [bi
t(s

′, s)]
(2.59)

Note that the computation of the LLR’s of the information bits is only needed at the

last iteration. The information bit dj
t is then decoded as d̂j

t = sgn(Λ2[d
j
t ]).

Finally, since the input to the MAP channel decoder is the LLRs of the coded

bits, the probability P [bi
t(s

′, s)] can be expressed in terms of the LLR λp
1[b

i
t] as [cf.

(2.46) and (2.47)]:

P [bi
t(s

′, s)] =
exp (bi(s′, s)λp

1[b
i])

1 + exp (bi(s′, s)λp
1[b

i])
(2.60)
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3. Complexity and Efficiency Analysis of the

Iterative Receiver

3.1 System Complexity Analysis

In order to determine the system complexity and facilitate the comparison of dif-

ferent detection and demodulation schemes presented in this thesis, it is necessary to

quantitatively measure the system complexity in terms of floating point operations

(FLOP) [12]. Considering the big difference in computation between Multiplica-

tion/Division and Addition/Subtraction, we only take into account the Multiplica-

tion/Division operations and ignore the Addition/Subtraction operations. Further-

more, for complex numbers, multiplication and/or division operations are counted

as four equivalent real-number Multiplication/Division operations. In addition, we

count separately the exponential and logarithm operations because they consume

much more resource than the simple multiplication or division operations in terms

of memory or CPU time. In the following, MUL is used to denote one Multiplica-

tion/Division operation.

The next sections discuss the complexity of the channel decoder, the demodulator

and the multiuser detector.

3.1.1 Complexity of the MAP Channel Decoder

First, the key parameters of the convolutional code are summarized as follows:

• The code rate is k0/n0

• The overall constraint length is k0ν
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• The total possible transition states are 2k0(ν−1)

Next, let’s determine how many operations that are needed to calculate the a posteri-

ori probabilities of n0 coded bits in one typical cycle. Here, a typical cycle means that

it is not the few initial nor final cycles in one transmission block of the information

bits. The following steps need to be carried out for the MAP channel decoder:

1. Equation (2.48):

P [bt(s
′, s)] , P [bt = bt(s

′, s)]

There are a total of 2n0 possible vectors of output coded bits during the state

transition. For each state transition (s′, s), it takes (n0 − 1) MULs to calculate

the probability P [bt(s
′, s)] based on the soft information of the n0 coded bits.

Therefore it takes (n0−1)·2n0 MULs to calculate the corresponding probabilities

of all the possible state transitions.

2. Equation (2.52):

α̂t(s) =
∑

s′

α̃t−1(s
′)P [bt(s

′, s)]

There are 2k0(ν−1) possible states. For each state s, it takes 2k0 MULs to calcu-

late the corresponding value of α̂t(s) because there are only 2k0 possible state

transitions (s′, s) for each specific state. Thus it takes 2k0 · 2k0(ν−1) MULs to

calculate all the values of α̂t(s) for the forward recursion.

3. Equation (2.53):

α̃t(s) = ctα̂t(s), with ct = 1/
∑

s

α̂t(s)

The normalization of α̂t(s) to produce α̃t(s) requires (2k0(ν−1) +1) MULs for all

the states.

4. Equation (2.55):

β̂t(s) =
∑

s′

β̃t+1(s
′)P [bt+1(s, s

′)]
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The calculation of β̂t(s) is similar to the calculation of α̂t(s). So it takes 2k0 ·
2k0(ν−1) MULs for the backward recursion.

5. Equation (2.56)

β̃t(s) = ctβ̂t(s)

The normalization of β̂t(s) to obtain β̃t(s) also needs 2k0(ν−1) MULs for all the

states.

6. Equation (2.58):

Λ2[b
j
t ] = log

∑

S+
j

αt−1(s
′) · βt(s) ·

∏n0

i=1 P [bi
t(s

′, s)]
∑

S−

j
αt−1(s′) · βt(s) ·

∏n0

i=1 P [bi
t(s

′, s)]

= log

∑

S+
j

αt−1(s
′) · βt(s) · P [bt(s

′, s)]
∑

S−

j
αt−1(s′) · βt(s) · P [bt(s

′, s)]
, j = 1, · · · , n0

(3.1)

Since αt−1(s
′), βt(s) and P [bt(s

′, s)] are already obtained from the previous

steps. S+
j and S−

j consist exactly of all 2k0(ν−1) · 2k0 state transition possi-

bilities. For each state transition (s′, s), two MULs are needed to compute

αt−1(s
′)βt(s)

∏n0

i=1 P [bi
t(s

′, s)]. So the total computation load for n0 coded bits

is n0 · (2k0(ν−1) · 2k0 · 2) MULs.

Combining all the above calculations, the total computation load for n0 coded bits

in one time cycle is:

LMAP−DEC
n0

= [(n0 − 1) · 2n0] + [2k0 · 2k0(ν−1)] + [2k0(ν−1) + 1] + [2k0 · 2k0(ν−1)]

+[2k0(ν−1)] + [2k0(ν−1) · 2k0 · 2 · n0]

= (n0 − 1)2n0 + (2n0 + 2 + 21−k0)2koν + 1 (3.2)

For convenience in evaluating and comparing the overall complexity of different

systems, the computation load in (3.2) is determined for each coded bit as

LMAP−DEC =
n0 − 1

n0
2n0 +

(2n0 + 2 + 21−k0)

no
2koν +

1

n0
(3.3)
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3.1.2 Complexity of the MAP Demodulator

Recall that every symbol ck(l) carries J coded bits [dk(l, 1), · · · , dk(l, j), · · · , dk(l, J)]T .

The core of MAP demodulator involves the following three equations:

1. Equation (2.44):

P [Ci] =
J∏

j=1

P [dk(l, j) = D(i, j)], i = 1, 2, · · · , 2J

For each candidate symbol Ci, it takes (J − 1) MULs to calculate its own

probability P [Ci]. So it takes 2J · (J − 1) MULs to calculate all candidate

symbols’ probabilities for J coded bits.

2. Equation (2.40):

P [ĉk(l)|ck(l) = Ci] =
1

πE{ν2
k(l)}

· exp

(

−‖ĉk(l) − µk(l)Ci‖2

E{ν2
k(l)}

)

,

i = 1, 2, · · · , M, Ci ∈ ΩC

Given one candidate symbol Ci, it takes 4 MULs, plus one exponential opera-

tion, denoted by EXP, to compute the a posterior probability of the estimated

symbol P [ĉk(l)|ck(l) = Ci]. So for all the possible symbol candidates in ΩC , it

requires 2J · (4 MULs + 1 EXP) to compute the a posterior probability of the

estimated symbol.

3. Equation (2.43):

Λ1[dk(l, j)] , log
P [dk(l, j) = 1|ĉk(l)]

P [dk(l, j) = 0|ĉk(l)]

= log

∑

Ci∈C+
j

P [ĉk(l)|ck(l) = Ci]P [Ci]
∑

Ci∈C−

j
P [ĉk(l)|ck(l) = Ci]P [Ci]

, j = 1, 2, · · · , J

For each coded bit carried by ck(l), it takes (2J +1) MULs+1 LOG to compute

the a posterior probability Λ1[dk(l, j)]. So in total, J [(2J + 1) MULs + 1 LOG]

operations are needed to compute the a posterior probability of all J coded bits

carried by symbol ck(l).
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Then, the total computation load for the MAP demodulator per J coded bits (or

per symbol) is given as

LMAP−DEM
J = [2J · (J − 1)MULs] + [2J · (4MULs + 1EXP)] + [J((2J + 1)MULs + 1LOG)]

= [2J(2J + 3) + J ]MULs + 2JEXPs + JLOG (3.4)

Again, normalizing by the number of coded bits carried by one symbol is useful and

it gives

LMAP−DEM =

[
(2J + 3)

J
2J + 1

]

MULs +
1

J
2JEXPs + 1LOG (3.5)

3.1.3 Complexity of the MMSE Multiuser Detector

To aid the understanding in determining the computation load of the MMSE

detector, the algorithm is briefly reviewed here. The MMSE detector processes the

received signal block by block. Each block includes NK symbols, where N is the

number of transmit symbols for one user during one block period and K is the number

of the users. So, the computation load is first evaluated for NK symbols. It is then

converted to the computation load per each transmitted symbol, and eventually per

each coded bit.

1. Compute c̃k(l) and E{‖ck(l)‖2} for all NK symbols (k = 1, · · · , K; l = 1, · · · , N)

as

c̃k(l) , E[ck(l)] =
∑

Ci∈ΩC

Ci P [ck(l) = Ci] [This is Eqn. (2.16)]

E{‖ck(l)‖2} ,
∑

Ci∈ΩC

‖Ci‖2 P [ck(l) = Ci] [This is Eqn. (2.17)]

Note that P [ck(l) = Ci] is already obtained in the MAP demodulator, and there

is no need to calculate P [ck(l) = Ci] again in the MMSE detector. Since Ci is a

complex symbol, the computation load for Ci P [ck(l) = Ci] is thus 2 MULs; and

the computation load for ‖Ci‖2 P [ck(l) = Ci] is 1 MUL. Here it is not necessary

to count the computation load for ‖Ci‖2 because it was already calculated at

the very beginning before the iteration.
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So for all NK symbols (k = 1, · · · , K; l = 1, · · · , N) in one block, the total

computation load for c̃k(l) and E{‖ck(l)‖2} is

L1 = NK · 2J(2 + 1) = 3NK2J (MULs) (3.6)

2. Compute r̃k(l) for all NK symbols (k = 1, · · · , K; l = 1, · · · , N) as

r̃k(l) , r −Hc̃k(l) [This is Eqn. (2.20)]

= r −H[c̃ − c̃k(l)ẽk(l)]

= r −Hc̃
︸ ︷︷ ︸

Part 1

− c̃k(l)Hẽk(l)
︸ ︷︷ ︸

Part 2

Observe that Part 1 is common for all NK symbols and needs to be computed

for only one time per block. Calculation of this part needs MP ×NK complex

multiplications, i.e., 4MPNK (MULs). The computation of Part 2 is more

special and needs to be done separately for each symbol. For one symbol,

Part 2 needs MP complex multiplications, i.e., 4MP (MULs). Therefore for all

NK symbols in one block, the total computation load for r̃k(l) is

L2 = 4MPNK
︸ ︷︷ ︸

Part 1

+ NK × 4MP
︸ ︷︷ ︸

Part 2

= 8MPNK (MULs) (3.7)

3. Compute ĉk(l) for all NK symbols (k = 1, · · · , K; l = 1, · · · , N) as:

ĉk(l) = ẽH
k (l) · HH · [HVk(l)H

H + N0I]
−1 · r̃k(l) · E

{
||ck(l)||2

}

[This is Eqn. (2.31)]

The whole calculation can be decomposed into the following sub-steps:

(a) First we need to prepare Vk(l) according to (2.27). Because E{‖ck(l)‖2} is

already obtained in the first step, it only takes 2NK (MULs) to compute

‖c̃k(l)‖2, k = 1, · · · , K; l = 1, · · · , N .

(b) In order to achieve an efficient calculation of HVk(l)H
H , define

V , diag{E{‖c1(1)‖2} − ‖c̃1(1)‖2, · · · ,

E{‖cK(N)‖2} − ‖c̃K(N)‖2} (3.8)
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Then

HVk(l)H
H = H

[
V + diag{0, 0, · · · , ‖c̃k(l)‖2, 0, 0}

]
HH

= HVHH
︸ ︷︷ ︸

Part 1

+ [Hek(l)]‖c̃k(l)‖2[Hek(l)]
T

︸ ︷︷ ︸

Part 2

(3.9)

Part 1 is common for all NK symbols in one block, and it needs to be

determined once per block. Because V is a real diagonal matrix and H is

a complex matrix, 2·NK ·MP (MULs) are needed to compute VHH and 4·
NK ·(MP )2 (MULs) are needed to compute HVHH . So calculating Part 1

requires a total of 4NK(MP )2 + 2NKMP (MULs). Next Part 2 needs to

be computed separately for each individual symbol. For one symbol, 2MP

(MULs) are required to compute ‖c̃k(l)‖2[Hek(l)]
T and 4(MP )2 (MULs)

are needed to compute [Hek(l)]‖c̃k(l)‖2[Hek(l)]
T . Therefore, to calculate

Part 2 for all NK symbols in one block, a total of NK[4(MP )2 + 2MP ]

(MULs) computations are needed.

Combining the computations of Part 1 and Part 2, for all NK symbols in

one block, it takes 8NK(MP )2+4NKMP (MULs) to compute HVk(l)H
H .

Furthermore, given the symmetry property of the matrix, almost half of

the computation load can be saved, so the computation load is counted as

4NK(MP )2 + 2NKMP (MULs).

(c) Compute T1 , [HVk(l)H
H + N0I]

−1
MP×MP . This takes 4(MP )3/3 (MULs)

[14] for one estimate ĉk(l) to do the matrix inversion, so for all symbols in

one block, it requires 4
3
(MP )3NK (MULs).

(d) Compute T2 , ẽH
k (l) ·HH ·T1 = ẽH

k (l) ·HH · [HVk(l)H
H +N0I]

−1. Due to

the effect of ẽH
k (l), one only needs to compute one row of matrix {HH ·T1}

for one symbol. Therefore, it only takes (MP )2 (MULs) to compute T2.

So for all NK symbols, it requires NK(MP )2 (MULs).

(e) Compute T3 , T2 · r̃k(l) ·E {||ck(l)||2}. For one symbol, it takes 4MP +2

(MULs) to compute T3, which includes the inner product of two vectors

and one complex weighting operation. So for all NK symbols in one block,
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it requires NK(4MP + 2) (MULs).

In summary, in order to compute ĉk(l) in (2.31), the computation load is

L3 = 2NK
︸ ︷︷ ︸

(a)

+ 4NK(MP )2 + 2NKMP
︸ ︷︷ ︸

(b)

+
4

3
(MP )3NK
︸ ︷︷ ︸

(c)

+ NK(MP )2

︸ ︷︷ ︸

(d)

+ NK(4MP + 2)
︸ ︷︷ ︸

(e)

(MULs)

=
4

3
NK(MP )3 + 5NK(MP )2 + 6NKMP + 4NK (MULs) (3.10)

4. Compute µk(l) as follows:

µk(l) , {HH [HVk(l)H
H + σ2I]−1H}kk · E{‖ck(l)‖2} [This is Eqn. (2.36)]

= ẽH
k (l) ·HH [HVk(l)H

H + σ2I]−1H · ẽk(l) · E{‖ck(l)‖2}

= T2 · {H · ẽk(l)} · E{‖ck(l)‖2} (3.11)

Since T2 is already available from the previous calculation, it only takes 2MP

(MULs) to calculate the inner product of T2 ·{H · ẽk(l)} and 1 (MUL) to weight

the result by E{‖ck(l)‖2}. So the total computation load for all NK symbols

is:

L4 = NK(2MP + 1) (MULs) (3.12)

5. Compute E{ν2
k(l)} as:

E{ν2
k(l)} = [µk(l) − µ2

k(l)]E{‖ck(l)‖2} [This is Eqn. (2.39)]

For one symbol, it takes 2 (MULs) to compute E{ν2
k(l)}. Thus the total com-

putation load for all NK symbols is:

L5 = 2NK (MULs) (3.13)
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Combining all the computation loads as given in (3.6), (3.7) (3.10), (3.12), and

(3.13), the total complexity of the MMSE multiuser detector per NK symbols is:

LMMSE−MUD
total = 3NK2J

︸ ︷︷ ︸

L1

+ 8MPNK
︸ ︷︷ ︸

L2

+

4

3
NK(MP )3 + 5NK(MP )2 + 6NKMP + 4NK
︸ ︷︷ ︸

L3

+ NK(2MP + 1)
︸ ︷︷ ︸

L4

+ 2NK
︸ ︷︷ ︸

L5

=
4

3
NK(MP )3 + 5NK(MP )2 + 16NKMP + NK[3 × 2J + 6] (MULs)

Finally, the computation load per one coded bit is expressed as

LMMSE−MUD =
LMMSE−MUD

total

NK · J
=

4

3J
(MP )3 +

5

J
(MP )2 +

16

J
MP +

[3 · 2J + 6]

J
(MULs) (3.14)

3.2 Efficiency Analysis of the Iterative Receiver

Typically, the bit-error rate (BER) curves of an iterative receiver can be divided

into three regions [15]: 1) the region of low Eb/N0 with negligible iterative BER

reduction, 2) the turbo cliff region (also referred to as “waterfall”-region) with per-

sistent iterative BER reduction over many iterations, and 3) the BER floor region for

moderate to high Eb/N0 in which a rather low BER floor region can be reached after

a few number of iterations.

While analytical bounding techniques have been successfully applied to the asymp-

totic performance for moderate to high Eb/N0, they are not good enough to analyze

the efficiency of the iterative process (i.e., how fast the iterative receiver can approach

the asymptotic BER performance), especially for the turbo-cliff region. In [16], a

density evolution algorithm is proposed to investigate the convergence behavior of it-

erative decoding. The algorithm can calculate convergence thresholds for low-density

parity-check (LDPC) codes over an AWGN channel by investigating the probability

density functions (PDF) of the communicated information within the iterative decod-
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ing algorithm. In [17], the convergence of iterative decoders is studied based on SNR

measures. In [15], the author proposes extrinsic information transfer characteristics

based on mutual information to describe the flow of extrinsic information through the

soft-input/soft-output constituent decoders. The technique proves to be particularly

useful in the analysis of the region of low Eb/N0.

Specifically, the exchange of extrinsic information between the constituent de-

coders is visualized by a decoding trajectory in the extrinsic information transfer chart

(EXIT chart). By observing only single parameters of the PDFs and assuming those

PDFs are Gaussian, EXIT chart has also been applied successfully to various con-

catenated systems, including both parallel and serially concatenated codes [18] [19].

A comparative study observing six different parameters also revealed that mutual

information is one of the most accurate and robust parameters [20].

This thesis also chooses to use mutual information and EXIT chart to investigate

the convergence behavior of the iterative processing employed by the receiver in mul-

tiuser STBC systems. To this end, the following subsection reviews the process of

the conventional iterative decoding scheme. It then presents how to construct the

corresponding EXIT charts to analyze the efficiency of the iterative receiver.

3.2.1 Iterative Decoding of Multiuser STBC Systems

For convenience, Fig. 3.1 displays again the block diagram of the conventional

iterative receiver for a multiuser STBC system.

The coded bit dk(l, j) can be modeled as binary random variable Xk. At the

transmitter side, the bits dk(l, j) are assumed to be equally likely, i.e., P (dk(j) =

1) = P (dk(j) = 0) = 1/2. The LLRs {Λ1[d1(k, j)]}, {λ1[d1(k, j)]}, and {λπ
1 [d1(k, j)]}

can be modeled as random variables D1,k, E1,k, and A2,k, respectively; The LLRs

{Λ2[dk(l, j)]}, {λ2[dk(l, j)]}, and {λπ
2 [dk(l, j)]} are modeled as random variables D2,k,

E2,k, and A1,k, respectively. Since each user’s decoder works independently and in

the same way, the subscript k (the user index) is dropped in the following sections to

simplify the notations.
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2

1

Soft-
output

multiuser

detector

Demod.
( )lc1ˆ ( )[ ]jld ,11Λ

Decoder Π1−Π
( )[ ]jld ,12Λ( )[ ]jld ,11λ ( )[ ]jld ,12λ( )[ ]jld ,11

πλ ( )[ ]jld ,12
πλ

( )[ ]ib12Λ

− −
+ +

Demod.
( )lc2ˆ ( )[ ]jld ,21Λ

Decoder Π1−Π
( )[ ]jld ,22Λ( )[ ]jld ,21λ ( )[ ]jld ,22λ( )[ ]jld ,21

πλ ( )[ ]jld ,22
πλ

( )[ ]ib22Λ

− −
+ +

Demod.
( )lcKˆ ( )[ ]jldK ,1Λ

Decoder Π1−Π
( )[ ]jldK ,2Λ( )[ ]jldK ,1λ ( )[ ]jldK ,2λ( )[ ]jldK ,1

πλ ( )[ ]jldK ,2
πλ

( )[ ]ibK2Λ

− −
+ +

RM

Πdenotes a de-interleaver denotes an interleaver1−Π

Figure 3.1 Conventional iterative receiver for a multiuser STBC system (repro-

duced from Fig. 2.4).
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At the receiver the signal is iteratively decoded by exchanging the soft information

between the MUD/DEMO and the decoders as shown in Figure 3.2.

Soft-
output

multiuser

detector

Demod.1Ĉ 1,1D
Decoder Π1−Π 1,2D1,1E 1,2E1,2A 1,1A

1,iD

− −
+

Z

Demod.KĈ KD ,1 Decoder Π
KD ,2KE ,1 KE ,2KA ,2 KA ,1

KiD ,

− −
+

1−Π +

+

Figure 3.2 Extrinsic information flow of the receiver with iterative decoding.

The random variables (D1, A1, E1, D2, A2, E2) are described with the conditional

PDFs p(l|X = ±1), which changes with the iterations. Analyzing these PDFs allows

one to predict the behavior of the decoding algorithm, i.e., the efficiency of the itera-

tive scheme. The following two useful observations are obtained by simulation results

in [15]:

1. For large interleavers, the LLR values of all these random variables remain fairly

uncorrelated from the respective channel observation Z over many iterations.

2. The probability density functions of all the LLR values are almost Gaussian

distributed.

3.2.2 Mutual Information

In general, the mutual information between two random variables is a measure

of information provided by one variable about the other random variable [21]. As

mentioned earlier, mutual information between the coded bits and random variables

D1, A1, E1, D2, A2, and E2 (all are the LLR values of the coded bits) is an accurate
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and robust parameter to observe the behavior of the iterative receiver based on the

corresponding conditional PDFs.

Without loss of generality, take A1 as an example to show how the mutual infor-

mation is defined and used. Observations 1 and 2 in the previous section suggest that

the a priori input A1 to the MUD/DEMO can be modeled as an zero-mean indepen-

dent Gaussian random variable nA1 with variance σ2
A1

in conjunction with the coded

bits x ∈ {±1} [15]:

A1 = µA1 · x + nA1 (3.15)

Since A1 is supposed to be an LLR value based on the Gaussian distribution, it

can be shown that µA1 must fulfill µA1 = σ2
A1

/2 [22]. Thus the conditional PDF of

A1 is

pA1(ξ|X = x) =
e
−

0

@ξ−
σ2

A1
2 x

1

A

2

2σ2
A1√

2πσA1

(3.16)

To measure the information content of the a priori knowledge, the mutual in-

formation IA1 = I(X; A1) between the coded bit X and the LLR value A1 is used

and can be computed as follows (a more detailed explanation of mutual information

is provided in Appendix B):

IA1 =
1

2
·
∑

x=−1,1

∫ +∞

−∞

pA1(ξ|X = x)

× log2

2 · pA1(ξ|X = x)

pA1(ξ|X = −1) + pA1(ξ|X = 1)
dξ (3.17)

Note that 0 ≤ IA1 ≤ 1. In [23], IA1(σA1) is given as

IA1(σA1) = 1 −
∫ +∞

−∞

e
−

(ξ−
σ2

A1
2 )2

2σ2
A1√

2πσA1

· log2[1 + e−ξ]dξ (3.18)

The function IA1(σA1) cannot be expressed in a closed-form. It is monotonically

increasing and thus reversible with

lim
σA1

→0
IA1(σA1) = 0, lim

σA1
→∞

IA1(σA1) = 1, σA1 > 0 (3.19)
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The following shows in a different way how IA1(σA1) can be effectively computed

numerically. First define I
(1)
A1

and I
(−1)
A1

as

I
(1)
A1

=

∫ +∞

−∞

pA1(ξ|X = 1) × log2

2 · pA1(ξ|X = 1)

pA1(ξ|X = −1) + pA1(ξ|X = 1)
dξ (3.20)

I
(−1)
A1

=

∫ +∞

−∞

pA1(ξ|X = −1) × log2

2·A1 (ξ|X = −1)

pA1(ξ|X = −1) + pA1(ξ|X = 1)
dξ (3.21)

Obviously,

IA1 =
1

2

[

I
(1)
A1

+ I
(−1)
A1

]

(3.22)

From (3.16), one can obtain

pA1(ξ|X = 1)

pA1(ξ|X = −1)
= eξ or

pA1(ξ|X = −1)

pA1(ξ|X = 1)
= e−ξ (3.23)

Taking the logrithm of both sides of (3.23) gives

ξ = ln

{
pA1(ξ|X = 1)

pA1(ξ|X = −1)

}

(3.24)

The above expression shows that ξ is a valid value of an LLR variable. Substituting

(3.23) into (3.20) and (3.21) produces

I
(1)
A1

=

∫ +∞

−∞

pA1(ξ|X = 1) × log2

2

1 +
pA1

(ξ|X=−1)

pA1
(ξ|X=1)

dξ

= 1 −
∫ +∞

−∞

pA1(ξ|X = 1) × log2[1 + e−ξ]dξ

= EX=1{1 − log2[1 + e−ξ]} (3.25)

and

I
(−1)
A1

=

∫ +∞

−∞

pA1(ξ|X = −1) × log2

2

1 +
pA1

(ξ|X=1)

pA1
(ξ|X=−1)

dξ

= 1 −
∫ +∞

−∞

pA1(ξ|X = −1) × log2[1 + eξ]dξ

= EX=−1{1 − log2[1 + eξ]} (3.26)

It follows that

IA1 =
1

2

[

I
(1)
A1

+ I
(−1)
A1

]

=
1

2
EX=1{1 − log2[1 + e−ξ]} +

1

2
EX=−1{1 − log2[1 + eξ]} (3.27)
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These expectations over the PDFs pA1(ξ|X = 1) and pA1(ξ|X = −1) can be closely

approximated with an arbitrary accuracy by the time average [24]. That is,

IA1 =
1

2







1

L1

L1∑

1

[1 − log2(1 + e−λA1 )]

︸ ︷︷ ︸

X=1

+
1

L2

L2∑

1

[1 − log2(1 + eλA1 )]

︸ ︷︷ ︸

X=−1







(3.28)

where L (L = LX=1 + LX=−1) is the total number of bits in one simulation block.

Here LX=1 is the number of bits 1 and LX=−1 is the number of bits −1. Because

the transmitted bits are assumed to equally likely, (3.28) can be further simplified by

setting LX=1 = LX=−1 = L/2 as:

IA1 =
1

2







1

L/2

L/2
∑

n=1

[1 − log2(1 + e−λA1 )]

︸ ︷︷ ︸

X=1

+
1

L/2

L/2
∑

n=1

[1 − log2(1 + eλA1 )]

︸ ︷︷ ︸

X=−1







=
1

L







L/2
∑

n=1

[1 − log2(1 + e−λA1 )]

︸ ︷︷ ︸

X=1

+

L/2
∑

n=1

[1 − log2(1 + eλA1 )]

︸ ︷︷ ︸

X=−1







= 1 − 1

L

L∑

n=1

log2(1 + e−xλA1 ) (3.29)

where λA1 is the LLR value of the coded bit that is fed back to the MUD/DEMO,

defined as

λA1 = ln
P (x = 1)

P (x = −1)
(3.30)

Similarly, one can efficiently compute IE1, IA2, and IE2 as

IE1 = 1 − 1

L

L∑

n=1

log2(1 + e−xλE1 ) (3.31)

IA2 = 1 − 1

L

L∑

n=1

log2(1 + e−xλA2 ) (3.32)

IE2 = 1 − 1

L

L∑

n=1

log2(1 + e−xλE2 ) (3.33)
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3.2.3 Transfer Characteristic of the MUD/DEMO

The MUD takes as its input the a priori knowledge A1,k (k = 1, · · · , K) of K

users’ coded bits and the channel observation Z. It outputs the estimates of the

transmitted symbols Ĉk. Based on the estimates Ĉk and the same a priori knowledge

A1,k, each user’s demodulator outputs its own extrinsic information E1,k indepen-

dently. To observe how the extrinsic information flows among three modules (MUD,

K modulators, and K decoders), we first treat the MUD and all the K demodulators

as one module to analyze its transfer characteristic. This is illustrated in Figure 3.3.
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Figure 3.3 Extrinsic information flow of the conventional receiver.

Viewing IE1,k
as a function of IA1,k

and Eb/N0, the extrinsic information transfer

characteristic is defined as

IE1 = T1(IA1, Eb/N0) (3.34)

where IE1 and IA1 are defined as the average values of IE1,k
and IA1,k

for all users,

respectively. To calculate the characteristic T1(IA1, Eb/N0) for a desired (IA1 , Eb/N0)

input combination, the independent Gaussian random variable of (3.15) is applied as

the a priori input to the MUD/DEMO of interest. Note that a certain value of IA1
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is obtained by approximately choosing the parameter σA1 with σA1 = I−1
A1

(σA1). For

this, the characteristics are most conveniently determined by means of Monte Carlo

simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A1

I E
1

E
b
/N

0
= 2 dB

E
b
/N

0
= 3 dB

E
b
/N

0
= 4 dB

E
b
/N

0
= 5 dB

E
b
/N

0
= 6 dB

E
b
/N

0
= 7 dB

Figure 3.4 Extrinsic information transfer characteristic of the MUD together with

demodulators for 8QAM-SSP mapping.

For illustration, various transfer characteristics obtained for 8QAM with Semi-Set

Partitioning (SSP) mapping (see Fig. 5.4) are plotted in Fig. 3.4. The a priori input

IA1 is on the abscissa, the extrinsic output IE1 is on the ordinate. The Eb/N0-values

serve as parameters of the curves. It should be pointed out that IA1(0) means that

the MUD/DEMO works with no a priori information about the coded bits. Similarly,

IA1(1) means that the MUD/DEMO works with perfect a priori information of the

coded bits.
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3.2.4 Transfer Characteristic of the Channel Decoder

The extrinsic transfer characteristic of the channel decoder is

IE2,k
= T2(IA2,k

), k = 1, · · · , K (3.35)

which describes the input/output relationship between the channel decoder’s input

IA2,k
and its extrinsic output IE2,k

. Because all users employ the same convolutional

code and decoder, we only need to investigate one of the channel decoders. Omitting

the subscripts k simplifies (3.35) to

IE2 = T2(IA2) (3.36)

Note that the characteristic T2(·) does not depend on the Eb/N0-value. By assuming

that A2 and E2 are Gaussian distributed, IA2 and IE2 can be computed according to

(3.32) and (3.33), respectively.
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Figure 3.5 Extrinsic information transfer characteristic of the channel decoder.

As an example, Fig. 3.5 shows the extrinsic transfer characteristic of the channel

decoder for a convolutional code with generator polynomial G = (5, 7). Note that
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the axes are swapped. The input IA2 is on the ordinate and the output IE2 is on the

abscissa.

3.2.5 EXIT Charts for Multiuser STBC Systems

Connected through interleavers and de-interleavers, the extrinsic output E1 of the

MUD/DEMO becomes the a priori input A2 to the decoder, and the extrinsic output

E2 of the decoder becomes the a priori input A1 to the MUD/DEMO. Interleaving

does not change the mutual information, so IA2 = IE1, IA1 = IE2 . This exchange of

extrinsic information is visualized in the extrinsic information transfer chart (EXIT

chart) by plotting the MUD/DEMO and the decoder characteristics on a single di-

agram. Here IA1 and IE2 are on the abscissa, IA2 and IE1 are on the ordinate. The

corresponding EXIT charts are shown in Figure 3.6 with Eb/N0 as a parameter. Note

that the characteristics of MUD/DEMO and decoders in EXIT charts are obtained

separately and not in conjunction with any particular system simulation. It can be

seen that as the Eb/N0 value increases, the characteristic of MUD/DEMO raises.

When Eb/N0 is higher than some threshold (4dB as in Figure 3.6), a narrow tunnel

is opened between the characteristic of the MUD/DEMO and that of the decoder,

which allows for convergence of iterative decoding toward low BER.

This observation agrees well with the BER curves shown in Fig. 3.7 with four

iterations. For Eb/N0 = 3dB, iterative decoding has little improvement on the

system performance. This is because in EXIT chart, two characteristic curves of

the MUD/DEMO and the decoder are stuck together in a very early stage. When

Eb/N0 = 4dB, iterative decoding starts to work and the system performance improves

along with the decoding iterations in a slow rate. This is in agreement with the in

EXIT chart, where the two characteristic curves of the MUD/DEMO and the decoder

open a narrow tunnel. When Eb/N0 = 6dB (which is significantly bigger than the

threshold 4dB), the system performance improves very quickly with decoding itera-

tions. This is also evidenced from the EXIT chart as the two characteristic curves

open a wide enough tunnel.
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Figure 3.6 EXIT charts of the iterative receiver with Eb/N0 as a parameter.
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Figure 3.7 BER performance of the conventional iterative receiver.

48



The above example shows that the true behavior of the iterative multiuser receiver

with iterative decoding can be described approximately by the individual transfer

characteristics of the MUD/DEMO and decoders, provided that the independence

and Gaussian assumptions of the extrinsic information (or a priori information) for

(3.15) hold over many iterations, which is to a great extent guaranteed by the large

interleaver. Besides the effect of the large interleaver, it also owns to the robustness

of the mutual information measure, which overcomes some distortion of the a priori

information distribution from the typical Gaussian distribution. For further demon-

stration and verification, the trajectory of iterative decoding is evaluated by means

of Monte Carlo simulation under different Eb/N0, and shown in Figs. 3.8, 3.9, and

3.10, respectively. The interleaver length used here is 12,000 bits/frame.
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Figure 3.8 EXIT charts with iterative decoding trajectory at Eb/N0 = 3.0dB.

The simulated trajectories match the individual characteristics of the MUD/DEMO

and the decoders very well. It confirms the observations from EXIT charts that the

iterative decoding is stuck very earlier for Eb/N0 = 3dB (Figure 3.8) and can pass
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Figure 3.9 EXIT charts with iterative decoding trajectory at Eb/N0 = 4.0dB.
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Figure 3.10 EXIT charts with iterative decoding trajectory at Eb/N0 = 6.0dB.
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through a narrow tunnel for Eb/N0 = 4dB with enough iterations (Figure 3.9). And

for Eb/N0 = 6dB iterative decoding works effectively and approach the asymptotic

performance with a few iterations (Figure 3.10). Figure 3.11 shows that the BER

curves match well with the corresponding iterative decoding trajectory. In partic-

ular, the figures shows that the BER improves slowly when the iterative decoding

trajectory tries to pass through the narrow tunnel. Then the BER curve shows a

water-fall region right after the iterative decoding trajectory passes the narrow tun-

nel.
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Figure 3.11 BER with iterations at Eb/N0 = 4.0dB.

Finally, it should be pointed out that the Gaussian and independence assumptions

on the a priori inputs A1,k (E2,k) and A2,k (E1,k) are only imposed to calculate the

individual characteristics of the MUD/DEMO and the decoders. The decoding trajec-

tory is a simulation result purely based on measurement of the extrinsic information

at the outputs of the MUD/DEMO and the decoders during system simulation.

Given the effectiveness and simplicity of the EXIT chart analysis in predicting the
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convergence behavior of the iterative, this technique will be used extensively in the

following chapters to compare and study different decoding schemes. This technique

helps to avoid time consuming implementation of the whole system by Monte Carlo

simulation.
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4. Sigma Mapping and its Application to STBC

Systems

As seen in Chapter 3, the complexity of iterative receiver in a STBC system is

mainly determined by the complexity of the soft-output MUD, the MAP demodulator

and the MAP convolutional decoder. The MAP decoder is a fairly standard block

and a low-complexity MUD for M-QAM is already discussed in Chapter 3. In this

chapter, more attention shall be placed on MAP demodulator employed by each user.

For single-user communications over a flat-fading channel, sigma mapping has

been shown to be extremely useful in bit-interleaved coded modulation with iterative

decoding (BICM-ID) to reduce the demodulator’complexity while maintaining the

excellent error performance of the system [25]. The basic idea behind sigma mapping

is to relate the vectors of binary coded bits to the transmitted symbols in a linear

manner, which then ease the demodulation process at the receiver. This type of

mapping scheme was originally proposed as a capacity-approaching mapping method

for a multilevel coding scheme [26]. In particular, a detailed investigation was carried

out for M-PAM constellations when antipodal signals are adopted for modulation

from coded bits to transmitted symbols [27].

Motivated by these results, it is natural and interesting to apply the sigma map-

ping for multiuser STBC systems. By exploiting the advantage of the linear relation-

ship between the coded bits and the transmitted symbol, a suboptimal soft-output

minimum mean-square error (MMSE) demodulator is developed. Furthermore the

linearity property of sigma mapping makes it possible to integrate an individual’s de-

modulators into the MUD. Then a low-complexity iterative receiver will be presented
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to improve the convergence of the iterative processing by working on the bit-level

interference cancellation.

4.1 Definition of Sigma Mapping

The basic idea of sigma mapping is to relate the vectors of coded bits to the

transmitted complex symbols in a linear pattern [25]. Precisely, sigma mapping can

be defined as

x = V · (2b − 1) (4.1)

where x is the modulated symbol to be transmitted over the channel, b is a vector

of J coded bits (0 or 1) and 1 is a all-one vector (of J elements). The vector V =

[v1, v2, · · · , vJ ] contains J complex numbers, which are named as basis vectors. The

basis vectors are chosen to satisfy

J∑

j=1

‖vi‖2 = Es (4.2)

where Es is the average symbol energy.

For a fixed set of basis vectors, there are M = 2J different channel symbols,

which create an M-ary sigma constellation, denoted by ΩP. Obviously the shape of

ΩP depends on the basis vectors {vj , 1 ≤ j ≤ J}. It can be shown that any M-QAM

(M = 2J) constellation can be considered as an ΩP constellation by selecting a proper

set of basis vectors [25]. As examples, Fig. 4.1 presents the sigma mappings for QPSK,

8-QAM, and 16-QAM constellations, where the corresponding basis vectors are also

indicated in the figures. Note that sigma mapping is exactly the Gray mapping for

QPSK constellation. The technique of sigma mapping can also be extended to non-

traditional constellations (i.e., with arbitrary shapes) with a more flexibility in the

design of the basis vectors {vj , 1 ≤ j ≤ J}.

Fig. 4.2 illustrates how the sigma mapping is embedded in a coded modulation

system. A binary information sequence u is encoded by a convolutional encoder. The

resulting coded sequence d is then fed into a random interleaver. The randomly-

interleaved version d̃ of d is converted by a serial-to-parallel converter (S/P) into J
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Notes:

(c) Sigma Mapping for 16-QAM.

(b) Sigma mapping for 8-QAM.
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parallel coded sequences. These coded sequences are then mapped to the complex

symbol sequence x by the sigma mapper. The random interleaver is necessary, which

makes it possible to implement a sub-optimal iterative decoding/demapping algorithm

based on the well-known turbo principle [28].

4.2 An Iterative Receiver with Separate MMSE-MUD and

MMSE Demodulators

The benefit of the linear property of sigma mapping and the approximate linear

relationship between the transmitted symbol and the estimated one at the output

of the MMSE-MUD for multiuser STBC systems is that the corresponding map-

ping/demapping algorithms can be implemented algorithmically instead of using table

lookup as for the MAP demodulation with large signal constellations (Section 2.2.3).

With the above observations an iterative MUD with separate MMSE demodulators

is proposed in the following.

Specifically, with sigma mapping the transmitted symbol ck(l) (the lth symbol of

the kth user) corresponding to the J coded bits dk(l) is generated as

ck(l) = V · dT
k (l) (4.3)

where dk(l) = [dk(l, 1), dk(l, 2), · · · , dk(l, J)] and dk(l, j) ∈ {±1}.

When the MMSE-MUD and Gaussian approximation are employed, the estimated

ĉk(l) can be modeled as the output of an equivalent AWGN channel having ck(l) as

its input symbol [9] as (see also Section 2.2.2)

ĉk(l) = µk(l)ck(l) + νk(l) (4.4)

Substituting (4.3) into (4.4) yields:

ĉk(l) = µk(l)V · dT
k (l) + νk(l) (4.5)

By treating the real and imaginary parts in (4.5) separately, one obtains:



Real(ĉk(l))

Imag(ĉk(l))



 =




Real(Hk(l))

Imag(Hk(l))



 dT
k (l) +




Real(νk(l))

Imag(νk(l))



 (4.6)

56



where Hk(l) = µk(l)V .

The system model in (4.6) can be viewed as an equivalent multiuser system with

J “virtual” users, where each “virtual user”employs antipodal signalling. It follows

that the MMSE principle can also be applied for this real system (4.6). Then a

low-complexity MMSE demodulator can be derived (as opposed to the complicated

MAP demodulator) for each user to estimate the LLR’s of the coded bits based on

the estimated symbols at the output of the MUD. The difference between the MMSE

demodulator and the MMSE-MUD is that the MMSE demodulator works on real

quantities, whereas the MMSE-MUD works with complex symbols. The detailed

derivations of the MMSE demodulator are given in Appendix C.

Replacing the MAP demodulators with the MMSE demodulators in the conven-

tional iterative receiver, a lower-complexity iterative receiver with separate MMSE-

MUD and MMSE demodulators is obtained, as shown in Fig. 4.3. For convenience,

this iterative structure is referred to as MMSE-MUD/MMSE-DEM.

In the next section, the convergence property and complexity of the proposed

iterative receiver are discussed.

4.3 Complexity Analysis and Convergence Property of the

Proposed Iterative MMSE-MUD/MMSE-DEM Receiver

The detailed complexity analysis for the MMSE estimations of the system in (4.6)

is given in Appendix C. The final average complexity of the MMSE demodulator per

coded bit with sigma mapping is given by:

ΓMMSE-DEM ≈ n3/3 + 3n2 + 6n + 4 (4.7)

With n = 2, one has ΓMMSE-DEM ≈ 30 (MULs). For the ease of comparison, recall

that the complexity of the MAP demodulator per coded bit is

ΓMAP-DEM =

[
(2J + 3)

J
2J + 1

]

MULs +
1

J
2JEXPs + 1LOG (3.5)
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Figure 4.3 A low-complexity iterative receiver with separate MMSE demodulators.
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Observe that the average complexity of the MMSE demodulator per coded bit does

not depend on the constellation size when sigma mapping is employed. It always takes

about 30 MULs to demodulate one coded bit, no matter how big the constellation

size is. In contrast, the complexity of the MAP demodulator increases exponentially

with J . For 16-QAM where J = 4, the complexity of the MAP demodulator is 50

(MULs) already. Here we treat EXP and/or LOG as one MUL, respectively for the

simplicity of comparison. This clearly shows that when J (or equivalently M) is large

the MMSE algorithm can significantly reduce the complexity of demodulator and,

hence the overall system complexity, by employing sigma mapping of M-QAM.

Next, we investigate the convergence behavior of the proposed iterative receiver

using the extrinsic information transfer characteristic (EXIT) charts. As done in

Section 3.2.3, we combine the MUD and all the K demodulators in a single module to

ease the observation of how the extrinsic information flows among the three modules

(MUD, K modulators, and K decoders), shown in Fig. 4.4.
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Figure 4.4 Extrinsic information flow inside the proposed receiver with separate

MUD and demodulators.

Fig. 4.5 and Fig. 4.6 plot the MMSE demodulator’s extrinsic information transfer

characteristics for 8-QAM and 16-QAM when sigma mapping is applied, respectively.

Fig. 4.7 gives the EXIT chart of the MUD with separated MMSE demodulators
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for 8-QAM when it interacts with the channel decoder at 5dB. Similarly, Fig. 4.8

shows the EXIT chart of the MUD with separated MMSE demodulators for 16-QAM

when interacting with the channel decoder at 8dB. Simulated trajectories of itera-

tive decoding are also shown to demonstrate the decoding process. For comparison,

the corresponding extrinsic information transfer characteristics of the conventional

iterative receiver with MAP demodulator are also plotted in these figures.
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Figure 4.5 Extrinsic information transfer characteristic with separate MUD and

MMSE-DEM when sigma mapping is used for 8QAM.

From Fig. 4.5 and Fig. 4.6, one can clearly see that when the a priori information

IA1 is high enough, the MUD with the low-complexity MMSE demodulator can output

the same amount of the a posteriori information IE1 as in the case of the MUD with

MAP demodulators. It means that the low-complexity MMSE-MUD/MMSE-DEM

receiver can approach the asymptomatic performance of MMSE-MUD/MAP-DEM

very well for different levels of signal to noise ratio (Eb/N0). This observation is

promising with respect to both BER performance and the system complexity.
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Figure 4.6 Extrinsic information transfer characteristic with separate MUD and

MMSE-DEM when sigma mapping is used for 16QAM.

The disadvantage of the proposed MMSE-MUD/MMSE-DEM is that it outputs

much less extrinsic information IE1 when IA1 is low (especially when IA1 < 0.5).

Although it does not impact the asymptomatic performance, it deteriorates the con-

vergence property of the iterative decoding process. It can also be observed from the

decoding trajectories shown in Fig. 4.7 and Fig. 4.8 that it takes more iterations for

an MMSE-MUD/MMSE-DEM receiver than an MMSE-MUD/MAP-DEM receiver

to achieve the same asymptomatic performance. In the next section, we will discuss

how to improve the convergence property of the iterative receiver by further taking

into account the advantage of sigma mapping.
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Figure 4.7 EXIT charts of iterative receivers with separate MMSE demodulators

and sigma mapping of 8QAM.

4.4 An Iterative Receiver with Combined MMSE MUD and

MMSE Demodulators

Let’s revisit the system model in (2.15) under sigma mapping. Assume that all

users employ the same basis set1. Substituting (4.3) into (2.15) gives:

r = H · [ c1(1), · · · , c1(N), c2(1), · · · , c2(N), · · · , cK(N) ]T + n

= H · [ V · dT
1 (1), · · · , V · dT

1 (N), V · dT
2 (1), · · · ,

V · dT
2 (N), · · · , V · dT

K(N) ]T + n (4.8)

Reorganize (4.8), one has:

r = H · diag(V , V , · · · , V )
︸ ︷︷ ︸

size NKJ×NKJ

· [dT
1 (1), · · · ,

dT
1 (N), dT

2 (1), · · · , dT
2 (N), · · · , dT

K(N)] + n (4.9)

1The framework developed here can be extended to the scenario that different users employ

different basis sets.
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Figure 4.8 EXIT charts of iterative receivers with separate MMSE demodulators

and sigma mapping of 16QAM.

Let

Hb = H · diag(V , V , · · · , V ) (4.10)

and

b = [ d1(1), · · · , d1(N), d2(1), · · · , d2(N), · · · , dK(N) ] (4.11)

Then

r = Hb · bT + n (4.12)

Separating the real and imaginary parts, one has



Real(r)

Imag(r)



 =




Real(Hb)

Imag(Hb)



 · bT +




Real(n)

Imag(n)



 (4.13)

Again, based on the linear system in (4.13), the soft-output MMSE algorithm can

be applied to compute the extrinsic information of the coded bits directly from the

received signals. Such a computation eliminates the need to obtain the intermediate
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soft estimates of the transmitted symbols as in the conventional iterative receiver (see

Fig. 4.3). In other words, the soft-output multiuser detector and the K demodulators

in Fig. 4.3 can be integrated into a single module. The proposed integrated iterative

receiver structure is shown in Fig. 4.9.

4.5 Complexity Analysis and Convergence Property of the

Proposed Integrated Iterative Receiver

First, we investigate the convergence property of the proposed integrated receiver

by examining the flow of the extrinsic information shown in Fig. 4.10. Fig. 4.11 and

Fig. 4.12 give the corresponding transfer characteristic charts, which are also com-

pared to those of the MMSE-MUD/MMSE-DEM receiver. It can be seen from the

results that the integrated receiver can approach the same asymptomatic performance

as that of the MMSE-MUD/MAP-DEM for all levels of Eb/N0. Furthermore, with the

same amount of a priori information IA1, the integrated receiver can produce more

useful extrinsic information IE1 when compared to the MMSE-MUD/MMSE-DEM

receiver. This means that the integrated receiver can improve the convergence speed

while maintaining the same asymptomatic BER performance. This improvement is

due to the fact that the integrated receiver works on bit-level interference cancella-

tion, rather than on symbol-level interference cancellation. However, compared with

MMSE-MUD/MAP-DEM, the integrated receiver is still less efficient as can be seen

from Fig. 4.13 and Fig. 4.14.
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Figure 4.9 The proposed integrated iterative receives for a multiuser STBC sys-
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Figure 4.11 Comparison of the transfer characteristics of the separated and inte-

grated iterative receivers: 8QAM and sigma mapping.

Next, consider the complexity of the proposed integrated receiver. According to
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Figure 4.12 Comparison of the transfer characteristics of the separated and inte-

grated iterative receivers: 16QAM and sigma mapping.

Appendix C, the complexity per coded bit of the integrated receiver based on (4.13)

can be directly given as

Γintegrated ≈ n3/3 + 3n2 + 6n + 4, n = 2MRP

=
4

3
(MRP )3 + 12(MRP )2 + MRP + 4 (MULs) (4.14)

The complexity of the receivers with separated MMSE demodulators and separated

MAP demodulators are given as (see. Section 3.1.2 and 3.1.3)

ΓMMSE−MUD/MMSE−DEM =
4

3J
(MRP )3 +

5

J
(MRP )2 +

16

J
MRP

+
[3 × 2J + 6]

J
+ 30 (4.15)

ΓMMSE−MUD/MAP−DEM =
4

3J
(MRP )3 +

5

J
(MRP )2 +

16

J
MRP +

[3 × 2J + 6]

J

+

[
(2J + 3)

J
2J + 1

]

MULs +
1

J
2JEXPs + 1LOG (4.16)
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Figure 4.13 Comparison of the transfer characteristics of three MUDs for 8QAM.
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Figure 4.14 Comparison of the transfer characteristics of three MUDs for 16QAM.
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Fig. 4.15 and 4.16 shows the relative complexity of the integrated and MMSE-

MUD/MMSE-DEM receivers over the complexity of the MMSE-MUD/MAP-DEM

(i.e., the complexity of the separated MMSE-MUD/MAP-DEM is always normalized

to be 1 for any values of MR and J). One can observe that when a small number of

receive antennas and large constellation are employed (for example MR = 1, J = 8 in

Fig. 4.15), the integrated receiver has the lowest complexity. When more antennas

are employed and the constellation size is not big (MR = 4, J = 6 in Fig. 4.16),

the receiver with separated MMSE MUD and MMSE demodulators has the lowest

complexity.

Therefore, considering both the complexity and convergence properties, the inte-

grated receiver is an attractive candidate to replace the MMSE-MUD/MMSE-DEM

receiver when only a few receive antennas and a high order constellation are employed,

which is the case of practical interest. In the next chapter, another approach is con-

sidered to improve the convergence property of the iterative receivers by investigating

different iteration strategies.
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Figure 4.15 Relative complexity of three iterative receivers: MR = 1
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5. Two-loop Iterative Receiver for Multiuser

STBC Systems

This chapter considers another way to improve the efficiency of the receivers with

iterative decoding by employing different iteration strategies. A good iterative re-

ceiver depends not only on the individual modules, namely the multiuser detector,

the demodulators and the decoders, but also on how effectively the information is

exchanged among all the modules. In this chapter, an iterative receiver with a two-

loop iteration structure for multiuser STBC systems is presented. It is shown that

the proposed receiver has a much better convergence property with the iterative pro-

cessing, when compared to the conventional iterative receiver, and with no increase

on the system complexity.

For illustration and comparison, the signal information flow of the conventional

iterative receiver is shown in Fig. 5.1 again.

Observe that the extrinsic information is exchanged in a serial manner among

different modules, namely the MUD, the demodulators and the decoders. It is not

clear if this serial exchange of information is optimal when multiple modules exist.

Thus, the question is how to effectively operate the iterative receivers with multiple

modules, i.e., how to choose the iteration strategy among the MUD, the demodulators

and the decoders.
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In [29], a heuristic schedule is used for operating several decoding iterations of each

user with only a single cancellation iteration in uplink DS-CDMA communication

systems. The cancellation module is equivalent to the MUD in a multiuser STBC

system. In [30], an iterative structure with two parallel loops is proposed to accelerate

the convergence of the multiple access iterative decoder.

For multiuser STBC systems, one can see from Fig. 5.1 that the MUD only

outputs the estimates of the transmitted symbols ĉk(l), but does not update the a

posterior probabilities of the coded bits λ[dk(l, j)]. Furthermore, the fact that no

interleaver exists between the MUD and the demodulators makes it difficult to form

an effective iteration loop for the MUD and the demodulators. However, this is

not the case for the decoders and the demodulators. One can treat an M-QAM

modulator as an inner encoder, whose code rate is 1. Each demodulator/decoder pair

in which a random interleaver exists can form an effective inner loop to exchange the

a posteriori information of the coded bits in addition to the outer loop which also

involves the MUD. It will be demonstrated in the next section that this inner loop

helps to approach the optimal decoding performance.

5.1 Iterative Receiver with Two-Loop Structure

Fig. 5.2 illustrates the iterative receiver with two-loop structure for multiuser

STBC systems. The receiver consists of a soft-output multiuser detector (MUD),

followed by K parallel soft-output demodulators and MAP convolutional decoders.

The demodulator and the channel decoder in one branch are separated by interleaver

and deinterleaver. Observe that there is an outer loop and an inner loop to perform

the exchange of the extrinsic information among the soft-output MUD, the soft-output

M-ary demodulators, and the SISO channel decoders.
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For the outer loop, the soft-output MUD takes as its input the received sig-

nal from MR receive antennas and the interleaved extrinsic LLRs of the coded bits

{λπ
2 [dk(l, j)]}, k = 1, · · · , K from the last iteration of each user’s inner loop, which

are provided from K users’ SISO decoders. The MUD provides as its output the soft

estimation of the channel symbols ĉk(l) for all users.

For the inner loop of the kth user, the soft-output M-ary demodulator takes as

its input the soft estimate of channel symbol ĉk(l) delivered by the soft-output MUD

and the a priori extrinsic log-likelihood ratios (LLRs) {λπ
2 [dk(l, j)]} of the coded bits

from the corresponding channel decoder. It produces as its output the a posteriori

extrinsic LLRs {λ1[dk(l, j)]} of the coded bits. Based on the interleaved extrinsic

LLRs {λπ
1 [dk(l, j)]} and the code constraint of the convolutional code, the channel

decoder outputs the updated extrinsic LLRs {λ2[dk(l, j)]}. The channel decoder also

provides the LLRs {Λ2[bk(i)]} of the information bits so that the information bits

can be decoded at each iteration if needed. At the very first iteration, no a priori

information is available, thus λπ
2 [dk(l, j)] = 0.

It can be seen that the conventional iterative receiver is just a special case of

the proposed receiver when only one inner loop iteration is implemented for every

outer loop iteration. The special case is by no means optimal. In order to achieve

a better convergence property of the iterative receiver, the inner loop for every user

should be executed more than once for each outer loop iteration. Note that executing

the inner loops more than one time only slightly increases the overall computational

complexity when the same number of outer loop iterations are executed. This is

because the inner loops do not involve the soft-output MUD, which is identified to

be the most complicated block in the receiver, especially when the number of users

and/or the number of transmit/receiver antennas are large. In addition, the inner

loops can be executed simultaneously (i.e., in parallel) for each outer loop, and hence

reducing the decoding delay.

75



5.2 Complexity Analysis and Convergence Property of the

Two-Loop Iterative Receiver

The complexity of the MMSE multiuser detector, the MAP channel decoder, the

MAP demodulator and the MMSE demodulator are approximately given as

ΓMMSE−MUD ≈ 4

3J
(MRP )3 +

5

J
(MRP )2 +

16

J
MRP (5.1)

ΓMAP−DEC ≈ 2n0 +
(2n0 + 2 + 21−k0)

no
2koν(MULs) (5.2)

ΓMAP−DEM ≈
[
(2J + 3)

J
2J + 1

]

MULs +
1

J
2JEXPs (5.3)

ΓMMSE−DEM ≈ 30(MULs) (5.4)

Consider a simple but typical 2×2 Alamouti STBC scheme (N = 2 and P = 2) [6].

Each space-time block codeword contains two complex symbols, which are transmitted

over the channel in two consecutive time slots. Assume that there are four users (K =

4) in the system and four antennas (MR = 4) are deployed at the receiver. For each

user, 16-QAM constellations and a 4-state, rate-1/2 convolutional code with generator

polynomial (5, 7) are employed. For this configuration (MR = 4, P = 2, J = 4, k0 =

1, n0 = 2, ν = 2), the complexity ΓMMSE−MUD is more than 283 (MULs). However for

inner-loop total complexity ΓMAP−DEC + ΓMAP−DEM is only about 68(MULs). When

sigma mapping is employed, the inner-loop complexity ΓMAP−DEC + ΓMAP−DEM is

even less, only about 48 (MULs) for any constellation size. So running an additional

iteration for the inner-loop does not significantly impact the computation burden of

the whole receiver because the overall computational complexity is dominated by the

soft-output MUD which involves only the outer loop iterations.

Next, we investigate the convergence property of the proposed two-loop itera-

tive receiver with extrinsic information transfer characteristics. Fig. 5.3 shows the

extrinsic information flow of the proposed receiver. Observe again that there is an

inner loop implemented in the MUD/DEMO block, which is not the case with the

conventional receiver shown in Fig. 3.3.

Fig. 5.4 shows the signal constellations for 16-QAM with SSP mapping and sigma
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Figure 5.3 Extrinsic information flow of the proposed two-loop iterative receiver.

mapping. Figs. 5.5, 5.6, and 5.7 plot the extrinsic information transfer characteris-

tics of MUD/DEMOs for the following cases: SSP mapping with MAP demodulators,

sigma mapping with MAP demodulators and sigma mapping with MMSE demodu-

lators, respectively. All the transfer characteristics are also compared to those of the

conventional receivers in the same figure.

From the results, one can clearly see that the transfer characteristic curve of the

MUD/DEMOs are lifted up at all Eb/N0 levels when comparing the proposed receiver

with the conventional receiver. This means that with the same amount of the a priori

information IA1 , running an addition inner-loop iteration as proposed can output

much more useful extrinsic information IE1 than that of the conventional receiver.

This observation implies a better iterative convergence behavior, meaning that the

asymptomatic performance can be approached with a smaller number of outer-loop

iterations for the proposed iterative receiver when compared with the conventional

receiver. This is confirmed by tracing the trajectories shown in Figs. 5.8, 5.9, and 5.10

for Eb/N0 = 8dB. Approaching the same error performance with a smaller number of
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Figure 5.5 Comparison of transfer characteristics for 16-QAM with SSP mapping

and MAP demodulation.

outer-loop iterations means that the receiver’s convergence property is improved.

Having shown that running an additional inner-loop iteration is advantageous,
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Figure 5.6 Comparison of transfer characteristics for 16-QAM with sigma mapping

and MAP demodulation.

the next question is how many inner-loop iterations should be executed for one outer

loop iteration when taking both convergence behavior and receiver complexity into

account? This can be answered by investigating how the extrinsic information transfer

characteristic evolves with each inner-loop iteration.

Systems with 16-QAM and different mapping and modulation schemes are chosen

again as examples to show how to determine the most suitable number of inner-

loop iterations. According to the extrinsic information flow of the proposed two-loop

iterative receiver shown in Fig. 5.3, we can investigate how the output IE1 can be

improved with the same amount of IA1 by introducing the inner-loop iterations. Figs.

5.11, 5.12, and 5.13 demonstrate the results for each scheme when Eb/N0 = 8dB.

From these figures, one can observe that the output extrinsic information IE1 is

increased significantly with inner-loop iterations when the same amount of input ex-

trinsic information IA1 is provided, especially when IA1 is not so high (IA1 < 0.85).
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Figure 5.7 Comparison of transfer characteristics for 16-QAM with sigma mapping

and MMSE demodulation.

More reliable extrinsic information IA1 allows the systems to approach the asymp-

tomatic performance in a faster way. One can also see that the iteration gain for IE1

decreases as the inner-loop iteration number increases. For the first few inner-loop

iterations, the convergence property is improved to a great extent while the complex-

ity is not increased significantly. This suggests the use of two or three inner-loop

iterations runs for every outer-loop iteration in the systems using 16-QAM and sigma

mapping. Following the same procedure, it should not be difficult to determine the

best scheme for other systems using different configurations.

5.3 Effect of Using Phase Offsets for Different Users on Sys-

tem Performance

The effect of using phase offsets for different users on multiuser STBC system

performance is analyzed by investigating the extrinsic transfer characteristic. Here all

four users employ 16-QAM with sigma mapping. The first user’s signal constellation
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Figure 5.8 Iterative decoding trajectories for 16-QAM with SSP mapping and

MAP demodulation.

is the same as the one shown in Fig. 5.4-(a). Other users’ constellations are obtained

by clockwise rotating the first user’s constellation with fixed amount of phase offsets.

Without loss of generality, phase offsets are chosen as 0, π/8, π/4 and π/2. Fig.

5.14 demonstrates the corresponding extrinsic information transfer characteristics.

The proposed two-loop iterative receiver is adopted for iterative decoding, where two

inner-loop iterations are executed for one outer-loop iteration.

One can observe that the transfer characteristics for different phase offsets are

almost the same. This means that for multiuser coded STBC systems, BER per-

formances are not affected by the phase offsets among users’ signal constellations.

Note that a similar phenomenon was observed for coded multiple access systems with

QPSK modulation and iterative decoding under an AWGN channel in [31].

For multiuser STBC systems operating over a Rayleigh fading channel, this ob-

servation can be explained as follows: the original constellation at transmitters are
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Figure 5.9 Iterative decoding trajectories for 16-QAM with sigma mapping and

MAP demodulation.

randomly shaped by the channel fading gain, which distributes as the circular ad-

ditive white Gaussian noise, so at the receiver the received signal for all users are

distributed across the whole two-dimensional complex plain without difference and

do not depend on the initial phase offset at the transmitter. Therefore, all users can

employ the same constellation set for simplicity without loss of BER performance.

5.4 Simulation Results and Discussions

This section shows how BER performances can be improved by the proposed two-

loop iterative receiver. Without loss of generality and for an affordable simulation

time, a simple but typical 2 × 2 Alamouti STBC scheme (N = 2 and P = 2) [6]

is applied for a four-user STBC system as in previous sections. Assume that four

antennas (MR = 4) are deployed at the receiver. For each user, 16-QAM constella-

tion and a 4-state, rate-1/2 convolutional code with generator polynomial (5, 7) are

employed. Each user has a unique random bit-interleaver of length L = 12, 000 coded
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Figure 5.10 Iterative decoding trajectories for 16-QAM with sigma mapping and

MMSE demodulation.

bits. This long interleaver is to make sure the independent assumption of the extrinsic

information of the coded bits during iterative decoding.

Regarding the definition of the signal-to-noise ratio when multiple antennas exist,

Eb/N0 here is defined as the ratio of the total signal energy collected from all receive

antennas per information bit to the noise power spectral density at the receiver [32].

First, we show the performance improvement achieved by the proposed receiver by

running two iterations of the inner loop for every one iteration of the outer loop. The

BER performances are illustrated in Fig. 5.15 for 16-QAM with sigma mapping and

in Fig. 5.16 for 16-QAM with SSP mapping, respectively. Both cases employ MAP

demodulators. Here, up to 6 iterations are performed for the conventional receiver,

while a maximum number of 3 iterations of the outer loop are run for the proposed

receiver.

It can be clearly observed from Fig. 5.15 and Fig. 5.16 that the proposed re-
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Figure 5.11 Effects of inner-loop iterations on the extrinsic information transfer

characteristic: SSP mapping with MAP demodulation.

ceiver can outperform the conventional receiver at any number of outer iterations

for both mapping schemes. Running two inner-loop iterations therefore significantly

improve the convergence of the iterative decoding in approaching the asymptomatic

performance.

Next, the sigma mapping of 16-QAM is considered. The following iterative re-

ceivers are investigated and compared: (i) The conventional iterative receiver but

with MMSE demodulators instead of the complicated MAP demodulators as in [9];

(ii) The proposed iterative receiver where two inner-loop iterations are executed for

every one outer-loop iteration; and (iii) The integrated iterative receiver discussed in

Chapter 4 where multiuser detector and user demodulators are combined into a single

module.

Fig. 5.17 plots the BER curves for the first two iterative receivers. It can be seen

again here that the proposed iterative receiver outperforms the conventional one at

84



1 2 3 4 5 6 7 8 9 10 11
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

I
A1

= 0.000

Inner−loop iterations (E
b
/N

0
= 8 dB)

I E
1

I
A1

= 0.486

I
A1

= 0.851

I
A1

= 0.999

Figure 5.12 Effects of inner-loop iterations on the extrinsic information transfer

characteristic: sigma mapping with MAP demodulation.

any number of outer loop iterations. The BER performance after 4 iterations of the

proposed receiver already approaches the BER performance of the conventional one

after 7 iterations. These results show that the convergence of the iterative processing

is significantly improved with the proposed receiver.

Next, Fig. 5.18 compares the performances of the proposed receiver with that

of the integrated one. Also shown in this figure is the BER performance after 8

iterations of the conventional receiver1 to serve as the lower bound. Clearly, with the

same number of outer loop iterations, the iterative receiver proposed in this chapter

also outperforms the integrated iterative receiver.

The outstanding performance improvement of the proposed receiver comes at

the expense of a reasonable increase in computational complexity of one outer-loop

iteration by running an additional inner-loop iteration. However the reduced iterative

1This corresponds to the highest computational complexity.
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Figure 5.13 Effects of inner-loop iterations on the extrinsic information transfer

characteristic: sigma mapping with MMSE demodulation.

times from outer-loop greatly decrease the whole system complexity in turn. It is very

attractive when taking into account the error performance, receiver complexity and

decoding delay.
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Figure 5.15 BER performance with SSP mapping and MAP demodulator.
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Figure 5.16 BER performance with sigma mapping and MAP demodulator.
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tive receivers: Sigma mapping and MMSE demodulator.
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6. Conclusions and Suggestions for Further

Research

6.1 Conclusions

This thesis proposed different iterative receivers for multiuser STBC systems,

taking into account two basic properties: (i) The convergence behavior in approaching

the asymptotic BER performance and (ii) The overall receiver complexity.

First, the algorithm of the conventional iterative receiver was extended to a more

general case with M-QAM constellation in which the symbols of the constellation

have different energies. Methods were introduced to quantitatively measure the sys-

tem complexities with FLOPS and to evaluate the iterative receivers’ efficiency with

EXIT charts, respectively. These methods provide a foundation to investigate and

evaluate different iterative receivers proposed in this thesis. Convenient expressions

were developed to simplify the computation of the mutual information between the

coded bits and the continuous values of their extrinsic LLR. The EXIT chart tech-

nique typically used to investigate two modules’ interaction was also extended to the

systems with three modules. The resulting visualization of the decoding trajectory

makes it much easier to compare different receivers, which have the same asymptotic

performance, but different convergence properties.

To overcome the disadvantages of the conventional receiver, namely high com-

plexity and low efficiency, two types of iterative receivers were proposed next. The

first receiver is named as INT-MUD-DEM scheme, which is the integrated iterative

receiver. It was designed to explore the linearity of sigma mapping. By exploiting
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the linear relationship of coded bits and the transmitted channel symbol, the MMSE

demodulators and the MMSE-MUD can be combined into one single module. This

allows the interference cancellation for multiuser systems to be carried out at the

bit-level and therefore, helps to improve the convergence property of the iterative

processing. It has been shown that when considering both complexity and conver-

gence property, INT-MUD-DEM scheme is an appropriate candidate to replace the

conventional receivers when a few receive antennas and a high-order constellation are

employed.

The second iterative receiver is named the two-loop iterative receiver. By in-

troducing an inner iteration loop for the demodulators and the MAP convolutional

decoders, besides the outer iteration loop that involves the MUD, the convergence

property of the conventional receiver is greatly improved. It was demonstrated that

the same asymptotic performance can be approached with fewer iterations (i.e., with

a lower computation load).

Furthermore, the question that how many inner loop iterations should be executed

per one outer iteration loop was answered with one typical example (systems with 16-

QAM and sigma mapping). By investigating the evolution of the extrinsic information

transfer characteristic when the number of inner loop iteration increases, it shows

that two or three inner-loop iterations per one outer-loop iteration is good enough for

systems with 16-QAM and sigma mapping. It is straightforward to apply the proposed

principle to determine the best scheme for systems of different configurations.

Finally the effects of phase offsets among the users on multiuser STBC system

performance were investigated and discussed. It was demonstrated that, for multiuser

coded STBC systems over a Raleigh fading channel, BER performance is not affected

by the phase offsets among the users. So all users may employ the same constellation

set for simplicity without any loss in BER performance.
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6.2 Further Research Topics

This thesis considers the performance of multiuser STBC systems which employ

simple two-dimensional constellations. Employing other mapping schemes, such as

multi-dimensional constellations/mappings to achieve even better error performance

improvement is an attractive subject of further research.

In this thesis, the BER performance comparison of different receiver is carried out

with EXIT charts and numerical simulations. However, it is still an interesting topic

to develop a more advanced analytical framework for the study of error performance

of multiuser STBC systems that use multiple transmit and multiple receive antennas.

Finally, in this thesis, the multiuser STBC systems are only investigated for a

frequency non-selective fading channel. It is also of interest to study the applications

of multiuser STBC systems over a frequency selective fading channel.
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A. A Review of Convolutional Codes

A.1 Encoding of Convolutional Codes

Convolutional codes are popular channel codes since their encoding can be simply

implemented with shift registers while their decoding can also be efficiently imple-

mented based on the trellis diagram. The encoder for a convolutional code accepts

k-bit blocks of the information u and produces a coded sequence v of n-bit blocks.

Each encoded block depends not only on the corresponding k-bit message block at

the same time unit but also on m previous message blocks. Hence, the encoder has

a memory order of m. The ratio R = k/n is called the code rate. When k < n, or

R < 1, redundant bits for combating the channel noise are added to the information

sequence. Furthermore, more redundancy can be added by increasing the memory

order m of the code. How to design the encoder of a convolutional code to achieve

reliable transmission over a noisy channel can be found in [13].

Here, an example of a convolutional encoder with k = 1, n = 2, and m = 2 is

shown in A.1. Each rectangle in Fig. A.1 represents a shift register. The generator

polynomial for the convolutional is given in octal number with the most significant

bit denoting the very left (input) connection to the shift register. Therefore, the

generator polynomial for this convolutional code can be represented as G = (5, 7)

with a code rate R = 1/2.

The information sequence u enters the encoder one bit at a time and two bits

v{0} and v{1} are produced, which make up the coded bits of the output sequence.

Because the convolutional encoder is a linear sequential circuit, its operation can be

described by a state diagram. The state of an encoder at one time is defined as its
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Figure A.1 A rate R = 1/2 binary convolutional encoder with G = (5, 7).

shift register contents at that time. For the above code with G = (5, 7), there are four

states, denoted as S0, S1, S2, and S3, respectively. The corresponding contents in the

two shift registers are (00), (10), (01), and (11). Note that S0 always denotes the

state with all zeros in the shift registers. The output coded bits at any time instant

can be determined according to the input information and the state of the encoder

at that time. The determination is usually illustrated with a state diagram, as shown

in Fig. A.2.

1/11
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0/11

0/00

1/01

1/00
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0/101/10

Figure A.2 The state diagram for the encoder with G = (5, 7).

Assuming that the encoder is initially in state S0, the sequence of the coded bits

corresponding to any given information sequence can then be obtained by following
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the path through the state diagram determined by the information sequence and

noting the corresponding outputs on the branch labels. Note that by adding zero bits

to the end of each information block, the encoder can return to state S0 again. This

facilitates the decoding of the information bits at the decoder.

A.2 Decoding of Convolutional Codes

To understand the MAP decoding algorithm, it is helpful to introduce the trellis

diagram for the encoder first. The trellis diagram is a result of expanding the state

diagram of the encoder in time, that is, representing each time unit with a separate

state diagram. Figure A.3 shows the trellis diagram for the encoder with G = (5, 7)

and an information sequence of length h = 5. The trellis diagram contains 8 time

units or levels, and these are labeled from 0 to 7. For a terminated code, assume that

the encoder always starts in state S0 and returns to state S0. The first m = 2 time

units correspond to the encoder’s departure from state S0 and the last m = 2 time

units correspond to the encoder’s return to state S0. It follows that not all states

can be reached in the first m or the last m time units for the encoder. However, in

the center portion of the trellis, all states are possible, and each time unit contains

a replica of the state diagram. There are 2k = 2 branches leaving and entering

each state. The upper branch leaving each state at time unit i represents the input

bit ui = 1, and the lower branch represents ui = 0. Each branch is labeled with

the n = 2 corresponding outputs v(i). Each path through the trellis represents a

unique codeword or information sequence of length h = 5. For example, the codeword

corresponding to the information sequence u = (11101) is shown highlighted in Figure

A.3.

With the trellis diagram, the MAP decoding algorithm can now be introduced.

In the following, a rate- 1
n

convolutional encoder of overall constraint length ν is con-

sidered. The more general case is considered and discussed in [13].
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Figure A.3 Trellis diagram for the encoder with G = (5, 7).
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First, represent the input block to the encoder at time t by dt = (d1
t ) and the

corresponding output of the encoder by bt = (b1
t , · · · , bn

t ). Also represent the state of

the trellis at time t by a (ν − 1)-tuple, as St = (s1
t , · · · , s(ν−1)). Finally, represent the

input information bits that cause the state transition from St−1 = s′ to St = s by

d(s′, s) and the corresponding output coded bits by b(s′, s).

Then, define the probability of transition from current time state s′ to the next

time state s as

P [bt(s
′, s)] , P [bt = bt(s

′, s)] (A.1)

With boundary conditions α(0) = 1, α(s 6= 0) = 0 at the very first time unit (t = 0)

and the boundary condotions βτ (0) = 1, βτ (s 6= 0) = 0 at the very last time unit

(t = τ), two recursions, known as forward and backward recursions, can be defined

as follows:

αt(s) =
∑

s′

αt−1(s
′)P [bt(s

′, s)], t = 1, 2, · · · , τ (A.2)

βt(s) =
∑

s′

βt+1(s
′)P [bt+1(s

′, s)], t = τ − 1, τ − 2, · · · , 0 (A.3)

where τ is the length of the terminated information sequence. In (A.2) and (A.3) the

summations are over all states s′ where the transition (s′, s) is possible. Probabilities

αt(s) and βt(s) associated with each state at time t reflect the chance that state s

is the true state of the encoder at that time unit according to the received signal

and the constraints of the code from the forward recursion and backward recursion,

respectively.

Let S+
j be the set of state pairs (s′, s) such that the jth bit of b(s′, s) is +1.

Similarly, define S−1
j as the set of state pairs (s′, s) such that the jth bit of b(s′, s) is

−1. The a posteriori LLR of the coded bit bj
t at the output of the MAP decoder can
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be computed as:

Λ2[b
j
t ] , log

P [bj
t = +1|decoding]

P [bj
t = −1|decoding]

= log

∑

S+
j

αt−1(s
′) · βt(s) ·

∏n0

i=1 P [bi
t(s

′, s)]
∑

S−

j
αt−1(s′) · βt(s) ·

∏n0

i=1 P [bi
t(s

′, s)]

= log

∑

S+
j

αt−1(s
′) · βt(s) ·

∏

i6=j P [bi
t(s

′, s)]
∑

S−

j
αt−1(s′) · βt(s) ·

∏

i6=j P [bi
t(s

′, s)]
︸ ︷︷ ︸

λ2[b
j
t ]

+ log
P [bj

t = +1]

P [bj
t = −1]

︸ ︷︷ ︸

λp
1[bj

t ]

(A.4)

It is seen from (A.4) that the output of MAP decoder is the sum of the a priori

information λp
1[b

j
t ] and the extrinsic information λ2[b

j
t ]. The extrinsic information is

the information about the coded bit bj
t gleaned from the a priori information about

the other coded bits based on the trellis structure of the code.

The a posteriori LLR of the information bit can be computed in a similar way. Let

U+
j be the set of the state pairs (s′, s) such that the jth bit of d(s′s) is +1. Similarly,

U−1
j is the set of the state pairs (s′, s) such that the jth bit of d(s′s) is −1. Then,

Λ2[d
j
t ] = log

∑

U+
j

αt−1(s
′) · βt(s) ·

∏n0

i=1 P [bi
t(s

′, s)]
∑

U−

j
αt−1(s′) · βt(s) ·

∏n0

i=1 P [bi
t(s

′, s)]
(A.5)

The information bit dj
t is then decoded as d̂j

t = sgn(Λ2[d
j
t ]).
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B. A Review of Mutual Information

B.1 Definition of the Mutual Information and its Properties.

Mutual information is a basic concept in information theory. It is a measure of

the amount of information that one random variable contains about another random

variable. It measures the reduction in the uncertainty of one random variable due to

the knowledge of the other. Specifically, given two random variables X and Y , the

mutual information I(X; Y ) is defined as follows:

I(X; Y ) = H(X) − H(X|Y ) (B.1)

where H(·) is the entropy of a random variable which measures the uncertainty asso-

ciated with it. For a continuous random variable X, H(X) is defined as

H(X) = −
∫

p(x) log2 p(x)dx (B.2)

If X is a discrete random variable, H(X) is defined as follows:

H(X) = −
∑

p(x) log2 p(x)dx (B.3)

In both cases p(X) represents the marginal probability distribution of random variable

X. Based on the above equations, it is apparent why the entropy is often considered

a measure of uncertainty. As an example, let X represent the output information bits

from one specific source. If there is no uncertainty about the output bits, i.e., they are

always 1 (p(X = 1) = 1, p(X = 0) = 0) or always be 0 (p(X = 1) = 0, p(X = 0) = 1),

then the entropy H(X) equals zero. If however, there is a high uncertainty about the

output bits, which can be 1 or 0 equally likely (p(X = 1) = 0.5, p(X = 0) = 0.5),

then the entropy H(X) equals 1.
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Figure B.1 Relationship between entropy and mutual information.

Using the Bayes’ rule on conditional probabilities, (B.1) can be rewritten as

I(X; Y ) = H(Y ) − H(Y |X) = H(X) + H(Y ) − H(X, Y ) (B.4)

The relationship among H(X), H(Y ), H(X, Y ), H(X|Y ),H(Y |X) and I(X; Y )

is illustrated with a Venn diagram in Fig. B.1 [21].

Observe that the mutual information I(X; Y ) corresponds to the intersection of

the information in X with the information in Y . Intuitively, if X and Y are in-

dependent, two circles in Fig. B.1 are completely separated. Then X contains no

information about Y and knowing X does not give any information about Y , so their

mutual information is zero (I(X; Y ) = 0). On the other hand, if X and Y are identi-

cal, two circles in Fig. B.1 are exactly overlapped. Therefore the mutual information

is the same as the entropy of Y or X (I(X; Y ) = H(X) = H(Y )), and knowing X

provides all the necessary information about Y and vice versa.

B.2 Computation of the Mutual Information

With a simple derivation, the mutual information of two discrete random variables

X and Y can be represented as [21]:

I(X; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log2

p(x, y)

p(x)p(y)
(B.5)
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where p(x, y) is the joint probability distribution function of X and Y , and p(x) and

p(y) are the marginal probability distribution functions of X and Y respectively.

In the continuous case, the summation is replaced by a definite integral, hence

I(X; Y ) =

∫

y

∫

x

p(x, y) log2

p(x, y)

p(x)p(y)
dxdy (B.6)

where p(x, y) is the joint probability density function of X and Y , and p(x) and p(y)

are the marginal probability density functions of X and Y respectively.

Accordingly, for the channel with discrete inputs X = {xk}, 1 ≤ k ≤ M and

continuous outputs R = {r}, the mutual information between X and R is

I(X; R) =

M∑

k=1

∫ ∞

−∞

p(r, xk) log2

p(r, xk)

p(r)p(xk)
dr (B.7)

where p(r, xk), p(r) and p(xk) are defined similarly as above. Using the Bayes’ rule

on conditional probabilities, (B.7) can be rewritten as

I(X; R) =
M∑

k=1

p(xk)

∫ ∞

−∞

p(r|xk) log2

p(r|xk)

p(r)
dr (B.8)

For the special case of binary symmetric channel (BSC) with M = 2, and when the

input bits are equally likely (p(X = 0) = p(X = 1) = 0.5), the mutual information

I(X; R) can be computed as

I(X; R) =
1

2

∑

x=1,−1

∫ ∞

−∞

p(r|X = x) log2

2p(r|X = x)

p(r|X = 1) + p(r|X = −1)
dr (B.9)
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C. MMSE Demodulator and its Complexity

C.1 Soft Instantaneous MMSE Interference Cancellation

A general discrete-time system is given here to demonstrate how the Wang-Poor

algorithm can be effectively used for demodulation when sigma mapping is employed.

The system’s input/output equation can be defined as

y(i) = Hb(i) + n(i) (C.1)

where y(i) is the received vector at time i, which consists of n real signal components,

H is the equivalent channel response matrix, b(i) , [b1(i), b2(i), · · · , bK(i)]T is the K-

vector of the transmitted coded bits at time i, and n(i) is the vector of i.i.d. Gaussian

noise samples with covariance matrix σ2R at time i.

The matrix H is not always a square matrix, and for a higher constellation, n is

always less than K. One way to convert the model in (C.1) to an appropriate form

is by multiplying HT on both sides to obtain

HT y(i) = HT Hb(i) + HT n(i) (C.2)

Then the Wang-Poor algorithm can be applied directly to solve C.2. However this

is not the optimal way in terms of the computation complexity. In order to have a

lower complexity, we derive the MMSE demodulator directly based on the system in

(C.1), rather than using the equivalent form in (C.2).

Assume that the a priori probability of the coded bits P [bk(i)] is available from

the previous stage (i.e., the SISO channel decoder). The soft estimates of the coded
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bits can be formed as

b̃k(i) , E{bk(i)} =
∑

bj∈{+1,−1}

bjP [bk(i) = bj ] (C.3)

Define

b̃(i) = [̃b1(i), · · · , b̃K(i)] (C.4)

b̃k(i) , b̃(i) − b̃k(i)ek

= [̃b1(i), · · · , b̃k−1(i), 0, b̃k+1(i), · · · , b̃K(i)]T (C.5)

where ek denotes a K-vector of all zeros, except for the kth element, which is 1.

Therefore b̃k(i) is obtained from b̃(i) by setting the kth element to zero. For each

coded bit, a soft interference cancellation is performed on the received signal y(i) in

(C.1), to obtain

ỹ
k
(i) , y(i) − H · b̃k(i), k = 1, · · · , K (C.6)

Next, in order to further suppress the residual interference in ỹ
k
(i), an instanta-

neous linear MMSE filter [11] wk(i) is applied to ỹ
k
(i) to obtain

b̂k(i) = wT
k (i) · ỹ

k
(i) (C.7)

where the filter wk(i) ∈ R
K is chosen to minimize the mean-square error between the

coded bits bk(i) and the filter output b̂k(i), i.e.,

wk(i) = arg min
w∈RK

E{[bk(i) − wT y
k
(i)]2} (C.8)

With a simple derivation, one can obtain

wk(i) = E{ỹ
k
(i)ỹT

k
(i)}−1 · E{bk(i)ỹk

(i)} (C.9)

The derivations of E{ỹ
k
(i)ỹT

k
(i)} and E{bk(i)ỹk

(i)} are given next. First, due

to the effect of random interleaver, all the transmitted bits can be assumed to be
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independent. Thus

E{bk(i)[b(i) − b̃k(i)]} = E







bk(i) ·




















b1(i) − b̃1(i)
...

bk−1(i) − b̃k−1(i)

bk(i)

bk+1(i) − b̃k+1(i)
...

bK(i) − b̃K(i)


























=




















E{bk(i)} · E{[b1(i) − b̃1(i)]}
...

E{bk(i)} · E{[bk−1(i) − b̃k−1(i)]}
E{bk(i) · bk(i)}

E{bk(i)} · E{[bk+1(i) − b̃k+1(i)]}
...

E{bk(i)} · E{[bK(i) − b̃K(i)]}




















=




















0
...

0

1

0
...

0




















= ek (C.10)

From (C.1) and (C.6), one has

ỹ
k
(i) = y(i) − H · b̃k(i) = H [b(i) − b̃k(i)] + n (C.11)

It follows from (C.10) and (C.11) that

E{ỹ
k
(i)ỹT

k
(i)} = Hcov{b(i) − b̃k(i)}HT + σ2R

= HVk(i)H
T + σ2R (C.12)

where

Vk(i) , cov{b(i) − b̃k(i)} = diag [var{b1(i)}, · · · , var{bk−1(i)}, 1,

var{bk+1(i)}, · · · , var{bK(i)}]

= diag [1 − b̃2
1(i), · · · , 1 − b̃2

k−1(i), 1, 1 − b̃2
k+1(i), · · · , 1 − b̃2

K(i)] (C.13)

and

E{bk(i)ỹk
(i)} = HE{bk(i)(b(i) − b̃k(i))} + E{n}

︸ ︷︷ ︸

=0

E{bk(i)} = Hek (C.14)
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Substituting (C.12) and (C.14) into (C.9) and (C.7), wk(i) and the soft estimates of

coded bit bk(i) can be obtained, respectively, as

wk(i) = [HVk(i)H
T + σ2R]−1Hek (C.15)

b̂k(i) = eT
k HT [HVk(i)H

T + σ2R]−1ỹ
k
(i) (C.16)

The instantaneous MMSE filtering used here provides an efficient and accurate

way to compute the extrinsic information, which is vital to the iterative multiuser

receiver.

C.2 Gaussian Approximation of the Soft MMSE Filter’s Out-

put

It is shown that the distribution of the residual interference-plus-noise at the

output of a linear MMSE multiuser detector is well approximated by a Gaussian

distribution [33]. So it can be assumed that the output of the soft instantaneous

MMSE filter b̂k(i) can be represented as the output of an equivalent additive white

Gaussian noise channel having bk(i) as its input [11]:

b̂k(i) = µk(i)bk(i) + ηk(i) (C.17)

where µk(i) is the equivalent amplitude of the kth coded bit, and ηk(i) ∼ N (0, ν2
k(i))

is a Gaussian noise sample. The parameters µk(i) and ν2
k(i) can be computed as

follows, where the expectation is taken with respect to the interfering coded bits

{bj(i)}j 6=k and the channel noise n(i):

µk(i) = E{b̂k(i)bk(i)} (C.18)

ν2
k(i) = var{b̂k(i)} = E{b̂2

k(i)} − µ2
k(i) (C.19)

The derivations of µk(i) and ν2
k(i) are given next. First, multiply both sides of

(C.17) by bk(i) and compute its expectation as:

E{b̂k(i)bk(i)} = E{(µk(i)bk(i) + ηk(i)) · bk(i)}

= µk(i) E{bk(i)
2}

︸ ︷︷ ︸

=1

+ E{ηk(i)}
︸ ︷︷ ︸

=0

E{bk(i)} = µk(i) (C.20)
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Next, multiply (C.16) by bk(i), and substitute in (C.14) to compute

E{b̂k(i)bk(i)} = E{eT
k HT [HVk(i)H

T + σ2R]−1ỹ
k
(i) · bk(i)}

= eT
k HT [HVk(i)H

T + σ2R]−1E{ỹ
k
(i) · bk(i)}

= eT
k HT [HVk(i)H

T + σ2R]−1Hek (C.21)

Comparing (C.21) and (C.20), one obtains

µk(i) = eT
k HT [HVk(i)H

T + σ2R]−1Hek

= {HT [HVk(i)H
T + σ2R]−1H}kk (C.22)

Now substitute (C.7), (C.12) and (C.15) into (C.19), ν2
k(i) can be obtained as

ν2
k(i) = E{b̂2

k(i)} − µ2
k(i) = E{[wT

k (i) · ỹ
k
(i)]2} − µ2

k(i) [with (C.7)]

= E{[wT
k (i) · ỹ

k
(i)][ỹT

k
(i)wT

k (i)]} − µ2
k(i) = wT

k (i)E{ỹ
k
(i)ỹT

k
(i)}wT

k (i) − µ2
k(i)

= {[HVk(i)H
T + σ2R]−1Hek}T · {HVk(i)H

T + σ2R}

·{[HVk(i)H
T + σ2R]−1Hek} − µ2

k(i) [with (C.12) and (C.15)]

= eT
k HT [HVk(i)H

T + σ2R]−1Hek − µ2
k(i)

= µk(i) − µ2
k(i) [with (C.22)] (C.23)

From (C.17), (C.22) and (C.23), the a posteriori probability of the coded bits

delivered by the soft instantaneous MMSE filter is

p[̂bk(i)|bk(i) = ±1] =

√

1

2πE{ν2
k(i)}

· exp

(

−‖b̂k(i) ∓ µk(i)‖2

2E{ν2
k(i)}

)

(C.24)

The extrinsic information can be obtained accordingly as

λ1[bk(i)] , log
p[̂bk(i)|bk(i) = +1]

p[̂bk(i)|bk(i) = −1]
=

2b̂k(i)

1 − µk(i)
(C.25)

which then can be fed back to the SISO channel decoder for further iteration.

C.3 Complexity of the MMSE Demodulator

The MMSE demodulator estimates the coded bits carried by each transmitted

symbol based on the information passed from the MMSE detector (symbol estimates)
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and from the channel decoder (the a priori probabilities of the coded bits). The

complexity of the MMSE demodulator is first evaluated based on one symbol and

then converted against each coded bit. The steps to determine the complexity are

summarized as follows:

1. Compute b̃k(i) for all K coded bits (k = 1, · · · , K) as:

b̃k(i) , E{bk(i)} =
∑

bj∈{+1,−1}

bjP [bk(i) = bj ] [This is Eqn. (C.3)]

Note that the a priori probability P [bk(i) = bj ] is provided by MAP channel

decoder. Since bj is ±1, the computation in (C.3) actually only involves addi-

tion/substraction and no multiplication/division. So the computation load for

b̃k(i) can be ignored, i.e.,

L1 = 0 (MUL) (C.26)

2. Compute ỹ
k
(i) for all K coded bits as:

ỹ
k
(i) , y(i) − H · b̃k(i) = y(i) − H [̃b(i) − b̃k(i)ek]

= y(i) − Hb̃(i)
︸ ︷︷ ︸

Part 1

+ Hb̃k(i)ek
︸ ︷︷ ︸

Part 2

(C.27)

Observe that Part 1 is common for all K coded bits and needs to be computed

only once. The calculation of this part needs nK (MULs); The computation of

Part 2 is more special and needs to be done separately for each coded bit with

n (MULs). Therefore for all K coded bits, the total computation load for ỹ
k
(i)

is

L2 = nK
︸︷︷︸

Part 1

+ n × K
︸ ︷︷ ︸

Part 2

= 2nK(MULs) (C.28)

3. Compute b̂k(i) for all K coded bits (k = 1, · · · , K) as:

b̂k(i) = eT
k HT [HVk(i)H

T + σ2R]−1ỹ
k
(i) [This is Eqn. (C.16)]

The computation of b̂k(i) could be divided into the following five sub-steps:

(a) First, it takes K(MULs) to compute ‖b̃k(i)‖2, k = 1, · · · , K.
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(b) In order to have an efficient calculation of HVk(i)H
H , define

V = diag [1 − b̃2
1(i), · · · , 1 − b̃2

k−1(i), 1 − b̃2
k(i),

1 − b̃2
k+1(i), · · · , 1 − b̃2

K(i)] (C.29)

Then

HVk(i)H
H = H

[

V + diag{0, · · · , 0, ‖b̃k(i)‖2, 0, · · · , 0}
]

HH

= HVHH
︸ ︷︷ ︸

Part 1

+ [Hek(i)]‖b̃k(i)‖2[Hek(i)]
T

︸ ︷︷ ︸

Part 2

(C.30)

As before, Part 1 is common for all K coded bits and it needs to be deter-

mined once per block. Because V is a real diagonal matrix and H is a real

matrix, it takes K ·n (MULs) to compute VHH ; And it takes K ·n2 (MULs)

to compute HVHH . Therefore calculating Part 1 requires a total of Kn+

Kn2 (MULs). Next, Part 2 needs to be computed separately for each coded

bit. For one bit, n (MULs) are required to compute ‖b̃k(i)‖2[Hek(i)]
T and

n2 (MULs) are required to compute [Hek(i)]‖b̃k(i)‖2[Hek(i)]
T . Therefore,

to calculate Part 2 a total of K[n2 + n] (MULs) are needed.

Combining the computations of Part 1 and Part 2, it takes 2K(n + n2)

(MULs) to compute HVk(i)H
H . Furthermore, given the symmetry prop-

erty of the matrix, almost half of the computation load could be saved.

The computation load is counted as K(n2 + n) (MULs).

(c) Compute T1 , [HVk(i)H
H + σ2R]−1. This takes n3/3 (MULs) [14] for

one coded bit b̂k(i) to do the matrix inversion. Therefore for all K coded

bits, it requires K
3
n3 (MULs).

(d) Compute T2 , ẽH
k (i) ·HH ·T1 = ẽH

k (i) ·HH · [HVk(i)H
H +σ2R]−1. Due to

the effect of ẽH
k (i), one only needs to compute one row of matrix HH ·T1,

which takes n2 (MULs). So for all K coded bits, it requires Kn2 (MULs)

to compute T2.

(e) Compute T3 , T2 · ỹ
k
(i). For one coded bits, it requires n (MULs) to

compute T3. So for all K coded bits it requires nK (MULs).
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In summary, in order to compute b̂k(i) in (C.16), the computation load is

L3 = K
︸︷︷︸

(a)

+ 2K(n2 + n)
︸ ︷︷ ︸

(b)

+ Kn3/3
︸ ︷︷ ︸

(c)

+ Kn2
︸︷︷︸

(d)

+ Kn
︸︷︷︸

(e)

(MULs)

=
K

3
n3 + 3Kn2 + 3Kn + K (MULs) (C.31)

4. Compute µk(i) as follows:

µk(l) , {HH [HVk(i)H
H + σ2R]−1H}kk [This is Eqn. (C.22)]

= ẽH
k (i) · HH [HVk(i)H

H + σ2R]−1H · ẽk(i)

= T2 · {H · ẽk(i)} (C.32)

Since T2 is already available from the previous calculation, it takes n (MULs)

to calculate the inner product of T2 · {H · ẽk(i)}. So the total computation load

to compute µk(i) for all K coded bits is:

L4 = Kn (MULs) (C.33)

5. Compute E{ν2
k(i)} as:

E{ν2
k(l)} = µk(l) − µ2

k(l) [This is Eqn. (C.23)]

It can be easily seen that for K coded bits, the total computation load is:

L5 = K (MULs) (C.34)

6. Compute λ1[bk(i)] as:

λ1[bk(i)] =
2b̂k(i)

1 − µk(i)
[This is Eqn. (C.25)]

One multiplication (1 MUL) and one division (1 MUL) are involved in the

calculation of λ1[bk(i)]. Thus, the total computation load to compute λ1[bk(i)]

for K coded bits is:

L6 = 2K (MULs) (C.35)
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Combining all the computation loads given in (C.26), (C.28), (C.31), (C.33), (C.34)

and (C.35), the total complexity of the MMSE demodulator per K coded bits is:

LMMSE−DEMO
total = 0

︸︷︷︸

L1

+ 2Kn
︸︷︷︸

L2

+ Kn3/3 + 3Kn2 + 3Kn + K
︸ ︷︷ ︸

L3

+ Kn
︸︷︷︸

L4

+ K
︸︷︷︸

L5

2K
︸︷︷︸

L6

= Kn3/3 + 3Kn2 + 6Kn + 4K (MULs)

Finally, the computation load per one coded bit for the MMSE demodulator is ex-

pressed as

LMMSE−DEMO =
LMMSE−DEMO

total

K
= n3/3 + 3n2 + 6n + 4 (MULs) (C.36)
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