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Abstract

It is now well established that strong electric fields can distort high-latitude ion veloc-

ity distributions to the point that this affects Incoherent Scatter Radar (ISR) observations,

and therefore the ion and electron temperatures inferred through those observations. Until

now, studies of this topic have focused on first order, semi-empirical ion velocity distribu-

tion descriptions. However, a precise description has been lacking, notably along directions

parallel or near-parallel to the magnetic field. To remedy these shortcomings and provide

the best possible tools to analyze ISR observations, this thesis uses a state-of-the-art Monte-

Carlo (MC) simulation to retrieve accurate ion velocity distributions for any electric field,

ion-neutral particle interaction, and direction relative to the magnetic field. Through these

improvements, a number of important points have been made, such as: 1) for the most

part simulated NO+ ISR observations can be modeled using Maxwellian velocity distribu-

tions having the same line-of-sight ion temperature as the simulated MC distribution, 2)

although simulated O+ ISR observations parallel to the magnetic field are similar to those

produced from Maxwellian velocity distributions they reflect an erroneous increase in elec-

tron temperature due to a wide O+ velocity distribution, and 3) signatures of toroidal ion

velocity distributions in IS spectra are possibly the easiest to identify near 20◦ with respect

to the magnetic field. Based on these results, accurate distorted ion velocity distributions

are currently being incorporated into IS spectral fitting routines.

In the logical next step, this thesis turns to radar observations to characterize the ion

temperature anisotropy, which is particularly important for Joule heating studies. Using ISR

observations from a particularly strong heating event reported by Clauer et al. (2016), it is

found that the O+-O collision cross-section from Knof et al. (1964) represents the anisotropy

of the ionosphere fairly accurately, but still suggests the ionosphere to be slightly more

anisotropic than expected. Knowing this allows for the preliminary determination of the

effective electric field (the electric field in the neutral frame of reference). To obtain the

electric field vector at a given latitude and longitude this thesis has explored a novel technique

that employs multi-altitude measurements. This method combined with a knowledge of

the effective electric field from the ion temperature studies opens up the possibility of a
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determination of the neutral wind in future work.

Finally, to study the impact electric field strength has on Swarm satellites observations

and on the upper ionosphere in general, a time-dependent gyro-kinetic O+ model of the mo-

tion of ions above a discontinuous boundary between fully collisional and collisionless plasmas

has been revisited. This upgraded model uses descriptions of the ion velocity distribution

provided by the MC simulation for the boundary velocity distribution as a function of electric

field. As well, it incorporates a variable boundary plasma density and can describe any tem-

poral variation of the ion velocity distribution at the boundary without complications. The

results agree with the observations of highly distorted ion velocity distributions at high alti-

tudes, as well as explain heretofore unpredictable anisotropic ion temperatures, attributing

them to changing boundary conditions propagating upwards along a given flux tube, away

from strongly-collisional regions.
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Chapter 1

INTRODUCTION

According to Nobel Laureate Hannes Alfvén, “more than 99 percent of the Universe

consists of plasma” (Alfvén, 1986). Plasma is so ubiquitous in the universe that Alfvén

coined the term “Plasma Universe” in 1986 to underline its importance in everyday physics.

Plasma is generated through a very wide variety of processes, and exists on many scale-sizes.

Arguably the largest known accumulation of plasma is the intergalactic medium, which is

a low density plasma medium that exists between galaxies. Meanwhile, plasma also exists

in much smaller quantities, such as the gas within fluorescent and neon lights. Somewhere

between these two scale-sizes is the plasma accumulation located in the Earth’s ionosphere.

Above 90 km altitude, the ionized gas in the Earth’s atmosphere is considered a plasma.

Although both ionized gases and plasmas are accumulations of ions and electrons, what

distinguishes a plasma from an ionized gas is Debye shielding, which obscures the electric

field of individual particles over distances exceeding the Debye length (discussed further in

Chapter 3). Nevertheless, plasmas are subject to electromagnetic fields, both those produced

from collective interactions within the plasma and the ambient fields that are imposed on

the plasma. Collective interactions and the organized motions within a given plasma create

large amplitude waves and turbulence, and are often associated with plasma instabilities that

develop when external fields force a plasma to depart from a state of equilibrium. However,

the main focus of this thesis is the impact of large-scale, ambient electromagnetic fields on

ionospheric plasmas, where the ambient magnetic field is taken to be the Earth’s geomagnetic

field and the electric field of interest is that imposed on the ionosphere through the interaction

of the solar wind with the magnetosphere (as opposed to the generally weaker dynamo electric

fields introduced by neutral winds).

Electric fields imposed by the solar wind have a wide variety of consequences on the
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ionosphere. For example, there is the mid-latitude trough, which is a late evening latitu-

dinally narrow region of reduced plasma density located at sub-auroral latitudes (typically

between 55◦ and 75◦ latitudes) (Muldrew , 1965; Sharp, 1966). Three proposed mechanisms

by which the midlatitude trough is formed are: 1) a reversal in plasma convection on the

Earth’s nightside leading to plasma stagnation and a decrease in photoionization (e.g., Collis

and Häggström (1988); Hedin et al. (2000); Knudsen (1974); Spiro et al. (1978)), 2) Sub-

Auroral Ion Drifts (SAIDs) causing plasma depletions through enhanced recombination rates

(Schunk et al., 1976), or 3) substorm onsets or Sub-Auroral Polarization Stream (SAPS)

events transporting plasma from the dusk sector during summer conditions (Goodwin et al.,

2014; Richards et al., 2014). A second example of how electric fields imposed by the solar

wind impact the ionosphere is Joule heating, which originates in frictional heating between

ions and neutrals. The results for the ions is a large increase in their temperature under

strong electric field conditions to the point that it becomes much larger than either the

electron or the neutral temperature (as discussed further in Chapter 2). By contrast, Joule

heating does not markedly increase the neutral temperature. Instead, it creates an upwelling

of the gas. This increases spacecraft drag in the Earth’s upper atmosphere, accelerating the

decay of satellite orbits over time (e.g. Lühr et al. (2004)).

This thesis studies the combined role strong electric fields and ion-neutral collisions have

on distorting ion velocity distributions from their thermal equilibrium configuration and the

impact this has on the high-latitude retrieval of ionospheric plasma parameters. This topic

is now introduced in more detail, after which an outline of this thesis is provided.

1.1 The Combined Effect of Strong Electric Fields and

Ion-Neutral Collisions

There is an abundance of literature detailing how, through ion-neutral collisions, strong

electric fields distort the ion velocity distributions of plasmas in weakly-ionized, magnetized

regions from isotropic Maxwellian shapes into anisotropic toroidal shapes (e.g. St.-Maurice

and Schunk (1977)). In this context, weakly-ionized regions are defined as regions in which

the ion-neutral momentum transfer collision frequency, νin, is much greater than the ion-ion

2



collision frequency, νii, and a magnetized region is one in which the ion collision frequency,

νi, is less than the ion gyrofrequency, Ωi. The consequences of this have been explored

on a semi-qualitative basis for instruments like Retarding Potential Analyzers (RPAs) (St-

Maurice et al., 1976) and for RAdio Detection And Ranging (radar) systems (Raman et al.,

1981). For moderate electric fields up to 25 mV/m these distortions appear not to be too

significant, but there is an increasing interest in characterizing the impact of strong localized

electric fields on the Joule heating budget given the finding that Joule heating plays a local

role in producing neutral density enhancements. However, studies into strong electric field

events are further complicated by the instrumentation itself. For example, current Incoherent

Scatter Radar (ISR) spectral analysis techniques rely heavily on the inference that ionospheric

ion velocity distributions have an isotropic Maxwellian shape, which potentially leads to

falsely characterizing plasma parameters (e.g. Raman et al., 1981; Suvanto, 1988). Therefore

this thesis pursues a more precise description of velocity distributions in weakly-ionized,

magnetized regions than has been characterized previously to allow for more accurate and

quantitative studies of large electric fields and Joule heating.

The electric field strength also plays a role in the evolution of plasma properties. For

example, through plasma transport, heated plasma from strongly collisional regions move

into collision-free regions and evolve strong departures from equilibrium in directions parallel

to the magnetic field (e.g. Loranc and St-Maurice (1994); Wilson (1994)). The impact of

this is far reaching, influencing high-altitude in-situ observations of ion velocity distributions

(such as those performed by the Swarm Electric Field Instruments (EFI) (Archer et al.,

2015)), as well as creating ion upflows and introducing temperature anisotropies that have

observable implications for radar spectra. Past work on this that has been based on kinetic

theory lacked realistic temporal and spatial variations (Loranc and St-Maurice, 1994; Wilson,

1994), while work that has been based on transport models relied heavily on predominately

Maxwellian velocity distributions (Heelis et al., 2009; Sydorenko and Rankin, 2013). There

is a need to re-examine and update the kinetic approach used in the past by incorporating

more powerful computing technology.
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1.2 Outline of Current Work

Chapter 2 first describes the formation of the ionosphere through chemical processes and

transport, and then discusses the creation of high-latitude electric fields and plasma con-

vection through the magnetospheric generator and the role these electric fields have on the

ion temperature and ion velocity distributions in weakly-ionized, magnetized regions. Next,

Chapter 3 discusses ISRs from both a theoretical and practical perspective.

After these preliminary chapters, Chapters 4, 5, and 6 all explore the combined role

electric field strength and ion-neutral collisions have on distorting ion velocity distributions,

and the impact this has on high-latitude ionospheric plasma parameters. First, from highly

accurate Monte-Carlo (MC) simulations of ion velocity distributions in weakly-ionized, mag-

netized regions, Chapter 4 describes in quantitative terms the impact of electric field strength

and ion-neutral collisions on ion velocity distributions, line-of-sight ion temperatures, and In-

coherent Scatter (IS) spectra. Chapter 5 uses ground-based ISR observations in a specific

arrangement to preliminarily characterize ion temperature anisotropy, determine the correct

O+-O collision cross-section, and resolve the electric field vector at a specific geomagnetic

latitude during a large electric field event. Chapter 6 discusses mapping the effect of ion-

neutral frictional heating in strongly-collisional regions into weakly-collisional regions, and

how this impacts high-altitude plasma parameters and the interpretation of Swarm space-

craft observations. Here, only temporal variations are addressed, leaving the gradual change

from collisional to collision-free for future work.

The final chapter gives a summary of this research, along with concluding remarks and

potential future studies.
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Chapter 2

BACKGROUND

In order to understand the impact that high-latitude electric fields have on the ionosphere,

it is important to first establish how the ionosphere is formed and modified, as well as how

electric fields in the ionosphere are generated and manipulate plasma. This chapter begins

by discussing plasma creation and depletion in the ionosphere, as well as the different regions

of the ionosphere and several processes that affect ionospheric plasma. It then describes

the magnetospheric generator and discusses how convection electric fields impact the ion

temperature and the ion velocity distribution in weakly-ionized, magnetized regions. Lastly,

this chapter discusses high-latitude currents in the Earth’s ionosphere, since these current

systems also play a significant role in modifying ionospheric plasma properties.

2.1 Origin of the Ionosphere and Different Altitude Re-

gions

Simply put, an ionosphere is a portion of a planet’s upper atmosphere that is ionized by solar

EUV and X-ray radiation to produce plasma that is further controlled through chemistry and

transport. For the Earth, the ionosphere normally has a plasma density greater than 109 m−3.

In this section, the creation of the Earth’s ionosphere is detailed, followed by an overview of

the different ionospheric altitude regions and their basic variability.

2.1.1 Photoionization of the High-Altitude Atmosphere

The Sun’s atmosphere extends beyond 10 solar radii and is divided into three regions (Schunk

and Nagy , 2009). Closest to the sun is the photosphere, which decreases from approximately
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6000 K to 4500 K near the photosphere-chromosphere boundary. The next closest layer is the

chromosphere, where the temperature increases rapidly from 4500 K to about 25000 K near

the base of the corona. Lastly there is the corona, which contains a very tenuous, roughly 106

K, ionized plasma. The corona is of particular importance to the ionosphere because it is the

only region of the sun that is able to produce and emit Extreme Ultra-Violet (EUV) radiation

into the solar system, therefore it is the only region of the sun that is capable of emitting in

abundance the energy needed to ionize the upper atmosphere. When EUV radiation enters

the high-altitude atmosphere it ionizes neutral particles and creates ions and free electrons,

mostly above 100 km. Through this process, plasma produced by solar EUV radiation and

x-rays establishes the ionosphere in the upper atmosphere.

Photoionization is dominated by atomic oxygen, O, between roughly 150 km and 250 km,

giving [Rees (1989), Chapter 2]:

O + hν → O+ + e−

where e− is a single electron, hν represents a photon, and O has an ionization threshold of

13.62 eV (91.03 nm). Between roughly 110 km and 150 km, photoionization is dominated by

molecular Nitrogen, N2, giving [Rees (1989), Chapter 2]:

N2 + hν → N+
2 + e−

where N2 has an ionization threshold of 15.58 eV (79.58 nm). Since molecular oxygen, O2

also has a relatively high density between 110 km and 150 km, there is also [Rees (1989),

Chapter 2]:

O2 + hν → O+
2 + e−

and:

O2 + hν → O+ + O+ + e−

where O2 has an ionization threshold of 12.06 eV (102.8 nm). During the photoionization

process, hot photoelectrons are created that raise the overall electron temperature of a given

plasma. These photoelectrons provide the main source of energy for thermal electrons, in-

creasing the electron temperature above the ion and neutral temperatures above 150 km in

regions visible to the Sun (Schunk and Nagy , 1978).
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As the neutral density increases with decreasing altitude, the ion and photoelectron pro-

duction rates increase as solar radiation becomes incident on more neutral particles. However,

eventually an altitude is reached at which there are enough neutral particles to absorb all

of the available photons, forcing the production rate to drop off abruptly. This creates the

nose-like altitude production rate profile seen in Figure 2.1, known as the “Chapman profile”.

The production function of the Chapman profile is described by [Schunk and Nagy (2009),

Chapter 9]:

q(z∗) = qmax exp
(
1− z∗ − e−z∗ sec θ

)
(2.1)

where q(z∗) is the production rate for a given reduced height, θ is the solar zenith angle, z∗

is the reduced altitude given as:

z∗ =
z − z(τ ∗ = 1)

H
=
z − z0
H

(2.2)

and where qmax is the maximum peak production, given by:

qmax = Iλ(∞)σnn(z∗ = 0)ηe−1 (2.3)

where

nn(z) = nn(z0) exp [−z∗] (2.4)

while Iλ is the photon flux, η is the efficiency factor, z is the altitude, z0 is the reference

altitude, H is the scale height (the distance over which the density depletes by a factor of

e, which in this case is the density of the neutrals being ionized), τ ∗ is the optical depth,

τ , when θ = 0◦ (where τ = σnnH sec θ), σ is the cross-section, and nn is the density of

the neutral species being ionized. Since Equation 2.1 depends strongly on the solar zenith

angle, there is a strong diurnal variation in the production rates of chemically controlled

regions (typically, below 250 km altitude). However, ionization also strongly depends on the

efficiency factor, which describes the probability of producing ions. Although the efficiency

factor includes photon interaction, note that it is dominated by secondary ionization through

photoelectrons. The wavelength-dependence of ionization rates in the ionosphere are shown

in Figure 2.2 as a function of altitude, where each slice in wavelength is essentially a Chapman

production curve, with the peak altitude determined by the total of the major species cross-

sections. This figure is somewhat similar for both quiet and active solar conditions.
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Figure 2.1: Chapman production curves, where each color represents a different solar zenith
angles.
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Figure 2.2: Deposition of solar EUV energy in the thermosphere as a function of wavelength
and altitude in log10(Wm4) for low solar activity (Solomon and Qian, 2005).

2.1.2 Regions of the Ionosphere

The photoionization reactions on Earth, as well as their resulting interaction reactions and

recombination reactions are seen in Figure 2.3. However, as Figure 2.4 shows, different neu-

tral compositions only exist in abunbance over limited altitude ranges. For this reason the

Earth’s ionosphere is categorized into three sub-regions: the D-, E-, and F -regions. Exist-

ing between 60 km and 100 km, the main sources of ions in the D-region are Lyman alpha

photoionization of O2 and NO. This region is quite complex, containing dissociative recom-

bination, ion recombination, ion-ion neutralization, three-body reactions, photo-detachment,

associative detachment, both positive and negative ions, and water cluster ions [Schunk and

Nagy (2009), Chapter 11]. Cluster ions (hydrated protons, mostly) dominate this region

below about 85 km, and are formed through hydration starting from the primary ions NO+

and O+
2 .

The E-region is between 100 and 150 km. Through the photoionization of O2 and N2 this

region contains a high density of O+
2 and NO+. As seen in Figure 2.3, through interaction

reactions NO+ replaces N+
2 as the dominant molecular ion species, particularly in the higher

E-region. The plasma density is roughly 1011 m−3 and the neutral density is greater than

1017 m−3. The E-region is weakly-ionized and the influence of Coulomb collisions is negli-
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Figure 2.3: Photoionization reactions, interaction reactions, and recombination reactions
above approximately 110 km (Solomon, 2007).
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gible [Schunk and Nagy (2009), Chapter 11]. In both the D- and E-regions, molecular ions

dominate and chemical processes are critical.

From 150 km to the edge of the ionosphere (roughly 1000 km) exists the F -region, which is

further divided into the F1 layer, between 150 km to 250 km, and the F2 layer, above 250 km

[Schunk and Nagy (2009), Chapter 11]. In the F -region, O dominates, and O+ is the dominant

ion through photoionization. This region is also typified by Resonant Charge Exchange

(RCE) collisions which frequently turn O into O+ and O+ into O. The peak F -region density

is approximately 1012 m−3 and the neutral density is roughly 1014 m−3 [Schunk and Nagy

(2009), Chapter 11]. This region is weakly-ionized below roughly 400 km, but becomes more

ionized with increasing altitude, meaning both ion-neutral collisions and Coulomb collisions

must be considered in the F -region, but in varying degrees depending on the altitude. An

important feature of this region is a density peak. Since O+ does not readily recombine with

electrons, O+ in the ionosphere must first become NO+ or O+
2 in order to recombine. However,

to do this O+ must first interact with N2 or O2. As a result, the O+ production rate decreases

with the decrease with altitude in O density while the conversion to molecular ions decreases

with the N2 or O2 densities. The O+ density therefore increases with increasing altitude even

though the peak O+ production region is near 150 km. Put another way, O+ production is

slow (on the scale of hours) and becomes slower with altitude given the decreasing O density.

The central point is that, by 250 km, particle diffusion, which is inversely proportional to the

atmospheric density, overcomes production and the plasma density starts to decrease with

altitude to achieve a diffusive equilibrium profile.

By approximately 700 km the decrease in plasma density with altitude becomes less

rapid, as lighter atomic ions, such as H+ and He+, begin to dominate. In this region, called

the protonosphere, H+ is produced from RCE with O+. This not only prevents H from

leaving the ionosphere (due to its large scale height), but also forces O+ and H+ to have

approximately the same density (but not quite, due to transport). In this region, the plasma

is strongly-ionized (where the ion-ion collision frequency, νii, is much greater than the ion-

neutral collision frequency, νin), even though the neutral density is still larger than the plasma

density (Schunk and Nagy , 2009).

The above reactions and accompanying transport processes result in the electron, ion,
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Figure 2.4: Combined measurements from daytime mass spectrometer measurements above
White Sands, New Mexico (32◦ N, 106◦ W) from the International Quiet Solar Year, Elektron
11 satellite results of Istomin (1966), and Explorer XVII results of Reber and Nicolet (1965).
The helium distribution is from a nighttime measurement. Taken from Kelley (2009) [Chapter
1] and modified in Johnson (1969).

and neutral density profiles shown in Figure 2.4. Meanwhile, Figure 2.5 shows the average

neutral temperatures in these regions. Up until 90 km, the neutral temperature decreases

with altitude due to a combination of adiabatic and radiative cooling. At higher altitudes,

EUV radiation decomposes infrared radiators while depositing substantial amounts of energy

per unit volume, therefore increasing the neutral temperature with altitude.

Lastly, it is important to note that below approximately 120 km (at high-latitudes) the

ionosphere is considered to be unmagnetized (νi/Ωi > 1), while regions above 120 km are

considered to be strongly magnetized (νi/Ωi < 1) (Sangalli et al., 2009). This means that

plasma in the E-region is strongly subject to the motion of neutral particles, while plasma

in the F -region is strongly subject to the combined drift of the electric and magnetic fields,

also called the “E×B drift” (Schunk and Nagy , 2009).

2.1.3 Density Variability

Recalling the Chapman curves in Figure 2.1 and Equation 2.1, it is clear that the solar zenith

angle plays an important role in ionospheric plasma creation. However, the solar zenith angle

also leads to daily changes in density, as well as seasonal and latitudinal variations, where

regions that have experienced less photoionization in general have lower densities. Therefore
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Figure 2.5: Neutral temperature as a function of altitude [Kelley (2009), Chapter 1].

the plasma density on the nightside of the Earth is typically lower than the density on

the dayside of the Earth. Likewise, winter months typically have lower plasma densities

than summer months, and latitudes experiencing little photoionzation have lower plasma

densities than other regions. However, photoionization and density variations becomes more

complicated when plasma motion and altitude variations are taken into consideration. As

is discussed below in Section 2.2.1, F -region plasma convects and moves with magnetic flux

tubes that map into the ionosphere. This means that the plasma density at a given region

and time can be controlled by the motion and history of a given flux tube. For example,

if a given flux tube remains on the nightside of the Earth longer than a neighboring flux

tube, it is possible that a decrease in plasma density will be seen (Richards et al., 2014; Spiro

et al., 1978). Conversely, this can also lead to high-density dayside plasma being pulled

into the nightside ionosphere, leading to plasma density structures, such as the Tongue of

Ionization (TOI) and polar cap patches. However, the effects of plasma convection are not

nearly as noticeable in the E-region. This is not only because it is a highly collisional region

whose motion is strongly controlled by the neutral winds, but is also because the E-region

density peak quickly disappears at night (on the order of minutes). This is due to the rapid

recombination rates of NO+ and O+
2 , the dominant ions in the E-region. Since the dominant

ion in the F -region is O+, and O+ must first turn into NO+ before it can recombine (which
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is challenging given the relatively low N2 density), the F -region peak density only decreases

very slowly at night.

Besides convection, plasma density variations can also be clearly affected by the electric

field strength. As the electric field increases, and subsequently increases the ion-neutral rel-

ative drift, recombination reaction rates of O+ with O2 and N2 increase, leading to plasma

density depletions (Pitout and Blelly , 2003; St-Maurice and Laneville, 1998; St-Maurice and

Torr , 1978). Interestingly, this process is relatively simple to identify in data, because in-

creases in the ion-neutral relative drift also lead to increases in the ion temperature (as

discussed in Section 2.2.2). As mentioned previously this process is also believed to be one

of the possible creation mechanisms behind the midlatitude trough (Schunk et al., 1976).

A final mechanism worth mentioning here that introduces plasma density variations is

particle impact ionization. Precipitation is made up of energetic particles that move into

the ionosphere from the magnetosphere (the region directly above the ionosphere). This

precipitation (typically involving kilo-electron volt, keV electrons) leads to particle impact

ionization, creating secondary ion-electron pairs. When these ionized species undergo de-

excitation, light is released and the aurora is formed (although similar, this process is not

to be confused with the de-excitation of solar photoionized species, which leads to airglow

(Schunk and Nagy , 2009)). This process results in the high-latitude oval-shaped region

known as the “auroral oval”, which is depicted in Figure 2.6 along with different types of

particle impact ionization. Typically, particle precipitation in the auroral oval is structured

and highly time-dependent, creating structured plasma densities in space and time in the

ionosphere (Schunk and Nagy , 2009).

Figures 2.7 and 2.8 show the altitude profiles of the ionization rates produced by precip-

itation as a function of energy at the top of the atmosphere for precipitating ions (protons

mostly) and electrons, respectively. In both figures the ionization rates increase with de-

creasing altitude until a density limit is reached, making this process maximized between

the E-region and the F1 layer (Schunk and Nagy , 2009). Hard precipitation (on the order

of keVs) produces ionization in the E-region that often and rapidly comes and goes, while

soft precipitation (on the order of a few hundred eV), produces ionization that remains in

the F -region for longer periods. This is, once again, because NO+ in the E-region is able to
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Figure 2.6: Schematic diagram showing the main particle precipitation regions and auroral
displays for a southward Interplanetary Magnetic Field [Akasofu (1976), modified in Schunk
and Nagy (2009), Chapter 12]
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recombine easily, unlike O+ in the F -region.

The highest precipitating ion energies occur at dusk, while the highest electron energies

occur at dawn and poleward of the ions at dusk. Near the equatorward side of the dusk

sector, the ion integral energy flux exceeds the electron integral energy flux, but in the rest of

the auroral oval the ion energy flux is comparable to, but smaller than, the electron energy

flux even though the average energy of the precipitating ions is far greater than that for

the precipitating electrons (Schunk and Nagy , 2009). During quiet magnetic conditions, the

maximum energy flux of precipitation is about 1 erg cm−2 s−1 and occurs typically in the

midnight-dawn sector of the auroral oval. As geomagnetic activity increases, the auroral oval

moves equatorward, the latitudinal width of the auroral oval increases, and the precipitation

intensifies, with the maximum energy flux typically being 8 ergs cm−2 s−1 (Fukunishi , 1975;

Jones et al., 1982; Montbriand , 1971; Schunk and Nagy , 2009). Precipitation and current

systems associated with precipitation are discussed further in Section 2.3.

2.2 High-Latitude Electric Fields

In the high-latitude F -region, plasma is subject to convecting magnetic field lines that es-

tablish a high-latitude electric field pattern, due to the merging of the solar wind with the

magnetosphere. This section discusses the plasma convection and electric fields that result

from this merging, along with how this impacts plasma energy and the ion velocity distribu-

tion.

2.2.1 Origin of High-Latitude Electric Fields

Electric fields in the ionosphere are produced by either charge separation or time-varying

magnetic fields. There are a number of mechanisms by which electric fields are generated

within the ionosphere, but arguably the most important two are: 1) dynamos, and 2) inter-

actions between the solar wind and the magnetosphere, also known as the magnetospheric

generator. Ionospheric dynamos are established by a variety of different process depending on

altitude and latitude, but simply put they are created when ionospheric winds move charges

at different rates (depending on their mass and charge) across magnetic field lines (Pudovkin,
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Figure 2.7: Profile plot of ionization rates produced by precipitating primary proton fluxes
with energy Ep at the top of the atmosphere. Note that this figure assumes isotropic flux and
an energy flux of 0.1 erg cm−2 s−1 [Rees (1989), Chapter 3].
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Figure 2.8: Profile plot of ionization rates produced by a flux of 108 electrons cm2 s−1

precipitating along the magnetic field lines into the Earth’s atmosphere. A variety of different
initial rates in keVs are shown [Rees (1989), Chapter 3].
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Figure 2.9: Cartoon of magnetospheric convection. Letters indicate the order of events, N1
and N2 indicate the location of the merging events, and C1 and C2 indicate the polar cusps
[Zarka (2011), Chapter 13].

1974). Meanwhile, electric fields are generated when the magnetic field lines of the solar wind

merge with those of the magnetosphere.

As the solar wind approaches the Earth from the Sun, the magnetic field of the solar

wind, also known as the Interplanetary Magnetic Field (IMF), merges with that of the

Earth, opening flux tubes in a process called dayside merging. These open magnetic flux

tubes continue moving from the dayside to the nightside of the Earth. On the nightside,

the antiparallel field lines from north and south of the magnetic equator reconnect, closing

the flux tubes in a process called nightside merging, or reconnection. These newly closed

stretched geomagnetic field lines then move earthward around the polar cap, and the process

repeats itself. This process is sketched in Figure 2.9 for a purely southward (-Bz direction)

IMF. Figure 2.9 also indicates the cusps, which are narrow dayside regions of recently opened

magnetic flux tubes that map into the high-latitude ionosphere just poleward of the next flux

tube to open.

The motion of the solar wind establishes a series of perpendicular electric fields that
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map into the ionosphere and push ionospheric plasma. Two regions in the ionosphere that

are defined in the context of merging magnetic field lines are the polar cap region and the

auroral region [Harra and Mason (2004), Chapter 9]. Assuming a purely southward IMF,

field lines that map into the ionosphere from the solar wind pull plasma antisunward by a

dawn-to-dusk electric field (Heelis , 1984). Meanwhile, in the auroral region, plasma convects

along the dawn and dusk sides of the Earth back to the dayside through a radial electric field

(Reiff , 1982). This convection establishes two large cells in the ionosphere, called the dawn

and dusk convection cells. At latitudes below the auroral region lies the co-rotation region,

where plasma moves with the Earth’s rotation [Harra and Mason (2004), Chapter 9]. The

polar cap, the auroral region, and the corotation region are labeled in Figure 2.10, but Figure

2.11 shows a more accurate illustration of basic polar cap and auroral region convection.

The high-latitude convection pattern deviates from the basic, average pattern shown in

Figure 2.11 when the IMF is not strictly southward. For example, if the southward IMF is

tilted towards dawn (+By direction) dayside merging will occur more on the dusk side of

the northern hemisphere (dawn side of the southern hemisphere), and if the IMF is tilted

towards the dusk side (-By direction) dayside merging will occur more on the dawn side of

the northern hemisphere (dusk side of the southern hemisphere). This then leads to anti-

symmetric convection cells, where one cell is somewhat circular and the other cell is shaped

like a banana, as is seen in Figure 2.12 (Reiff and Burch, 1985).

The north-south component of the IMF also plays an important role in the high-latitude

convection pattern. As discussed, when the IMF is southwards the average convection pat-

tern is like those in Figures 2.11 and 2.12. However, when the IMF is northwards the pattern

becomes disordered, and the two-cell convection pattern seen during southward IMF con-

ditions may become dramatically shifted and warped, as reflected in Figure 2.13 through

several example Super Dual Auroral Radar Network (SuperDARN) convection maps. In

spite of this, Figure 2.14 shows the average convection patterns that result from a variety of

IMF directions, including northward IMF conditions.

Both the total IMF and the pressure of the solar wind will increase when the sun becomes

more active and more solar energy is released into the solar wind. However, this increase in

solar activity and IMF does not necessarily change the shape of the convection pattern. For
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Figure 2.10: Cartoon of the convection pattern seen in the Earth’s northern ionosphere
when the IMF is purely southward [Harra and Mason (2004), Chapter 4].
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Figure 2.11: A more precise illustration of the convection pattern seen in the Earth’s
northern ionosphere when the IMF is purely southward. Values represent electric potential,
and arrows give convection direction (Heelis et al., 1982).
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Figure 2.12: A schematic representation of the flow geometries observed in the dayside
northern hemisphere for different magnitudes of By when Bz is negative and |Bx| is constant
(Heelis, 1984).
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Figure 2.13: Four example convection patterns inferred by SuperDARN in the Earth’s
northern ionosphere during a northward IMF (data for figure and figure available through
http://vt.superdarn.org).
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Figure 2.14: Electric potential from an empirical convection model when the magnitude of
the IMF is greater than 7.25 nT (Weimer , 1995).
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example, Figure 2.15 shows a SuperDARN convection map that uses observations of the 2015

St. Patrick’s day storm, which had a large, southward IMF. Even during this period of strong

activity, the high-latitude plasma convection pattern still roughly follows the southward IMF

pattern shown in Figures 2.11 and 2.12, even though the pattern is considerably larger than

normal. An increase in solar activity may also lead to the injection of particles into the

magnetosphere from the ionosphere, as well as increases in precipitation (as discussed in

Section 2.1.3).

2.2.2 Plasma Temperature and Energy

Electric fields not only play a role in plasma convection, but also change the energy in a

plasma. From St-Maurice and Hanson (1982), the general ion energy equation is given by:

3

2

(
D

Dt
pi + pi∇ · vi

)
+∇ · qi + Pi : ∇vi =

∑
n

nimiνin
mi +mn

[
3kb(Tn − Ti)ψin +mn(vi − vn)2φin

]
+ niνie3kb(Te − Ti) + niνieme (vi − ve)

2 (2.5)

where t is time, p is the pressure, D/Dt is the convective derivative (∂/∂t+ vi · ∇), vi is

ion velocity, vn is neutral velocity, ve is electron velocity, q is the heat flow, P is the stress

tensor, ni is the ion number density (which by assuming plasma quasineutrality is the same

as the electron number density, ne), mi is the ion mass, mn is the neutral mass, me is the

electron mass, νie is the ion-electron collision frequency (where νie ≈ 54.5neT
−3/2
e ), kb is the

Boltzmann constant, Ti is the (average) ion temperature, Te is the electron temperature,

Tn is the neutral temperature,
∑

n is the sum over different neutrals, and ψin and φin are

dimensionless functions of order 1. The left-hand side of Equation 2.5 contains the rate of

change of internal energy, adiabatic heating and cooling, ion heat flow and viscous heating,

while the right-hand side contains the heat exchange between neutrals and ions, frictional

heating through the relative drift between ions and neutrals, heat exchange between electrons

and ions, and frictional heating through the relative drift between ions and electrons.

Equation 2.5 is reduced considerably for the weakly-ionized F -region ionosphere. First,

assuming a large νin means ∂/∂t is negligible (zero after a few seconds at most), as well as

heat advection, conduction, and viscous heating, making vi · ∇pi, ∇ · qi and Pi : ∇vi all
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Figure 2.15: The convection pattern inferred by SuperDARN in the Earth’s northern iono-
sphere during the 2015 St. Patrick’s day storm (data for figure and figure available through
http://vt.superdarn.org).
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relatively small (Schunk , 1975; Schunk and Sojka, 1982). Then, for O+ and O dominant

environments ψin and φin are approximately 1 (St-Maurice and Hanson, 1982), and since

∂B/∂t is assumed to be small, where B is the magnetic field, ∇ · vi is negligible (Rishbeth

and Hanson, 1974). By lastly taking the mass of electrons to be negligible, to leading order

the F -region ion temperature is (Banks , 1980; Banks and Kockarts , 1973; Schunk , 1977;

St-Maurice and Hanson, 1982, 1984):

Ti ≈

mn

3kb
(vi − vn)2 + Tn +

mi +mn

mi

νie
νin

Te

1 +
mi +mn

mi

νie
νin

(2.6)

This shows that the leading factors affect the F -region ion temperature, are: the electron

temperature, the neutral temperature, the mean neutral mass, and the relative drift between

ions and neutrals. Additionally, since ion heating and cooling comes from elastic collisions,

the ions heat up at the same rate as they cool down, namely over a time scale of 1/νin,

which is seconds below 400 km (Schunk , 1975). In Equation 2.6, the relative drift between

ions and neutrals has the strongest impact on the F -region ion temperature whenever the

relative drift exceeds 200 m/s, and the term that depends on the relative drift is specifically

referred to as ion-neutral frictional heating. A key driver for frictional heating is electric

fields because when an electric field is introduced, charged particles will move with an E×B

drift relative to the neutral particles, which at times can be quite large (several km/s at

times). Since this process depends on the collision frequency between ions and neutrals, it

is most effective below roughly 400 km because at higher altitudes the collision frequency is

not large enough and other processes compete with the simple notion of local friction. In

fact, as this research and that of Loranc and St-Maurice (1994), and Wilson (1994) shows,

during periods of particularly strong frictional heating this heating can affect higher regions

through transport.

2.2.3 Ion Velocity Distributions

As discussed above, electric fields move plasma with the E×B drift and heat plasma through

frictional heating. However, electric fields also alter the ion velocity distribution of the

plasma. To understand the ion velocity distribution in the F -region, and by extension the
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influence of electric field strength on the velocity distribution of a weakly-ionized, magnetized

plasma, first consider the Lorentz force on an individual ion:

dvi
dt

= Ωi
E

B
+ vi × ~Ωi (2.7)

which is re-written as (St.-Maurice and Schunk , 1977):

d

dt

(
vi −

E×B

B2

)
=

(
vi −

E×B

B2

)
× ~Ωi (2.8)

where E is a uniform electric field, B is a uniform magnetic field, and ~Ωi is a vector along the

magnetic field that has a magnitude of Ωi. From this expression it is clear that in velocity-

space charged particles drift in a circular motion centered on E×B/B2, regardless of their

initial velocity. A two-dimensional cartoon of this is provided in Figure 2.16, where the

red rings indicate the motions of independent ions. However, through ion-neutral collisions

(particularly RCE collisions) the ions tend to acquire the Maxwellian neutral particle velocity

distribution represented by a blue disk in Figure 2.16 (note that E ×B/B2 is chosen to be

much greater than the neutral thermal speed). In the case of pure RCE collisions the ions

are injected randomly one by one into the blue disk, and then drift in a circular orbit.

This results in the ion velocity distribution described by the purple ring in Figure 2.16,

while Figure 4.3 in Chapter 4 gives a more precise example of an ion velocity distribution

subject to a 150 mV/m electric field. This motion gives the ions an overall toroidal velocity

distribution in a strong electric field and a Maxwellian distribution in a weak to negligible

electric field. Furthermore, not only does the distribution become more toroidal through

ion-neutral collisions as the electric field increases, but since the width of the distribution is

larger in the directions perpendicular to the magnetic field, the temperature perpendicular

to the magnetic field is greater than the temperature along the magnetic field. This is known

as temperature anisotropy, and is discussed in more detail in Chapter 4.

For a more mathematical approach, consider the Boltzmann equation in the E×B frame

of reference, for a steady-state with no gradients (St-Maurice and Schunk , 1979):(
v − E×B

B2

)
× ~Ωi · ∇vfi =

δfi
δt

(2.9)

where fi is the ion velocity distribution, and
δfi
δt

accounts for the rate of change of fi due to
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Figure 2.16: A cartoon of the ion velocity distribution subject to a strong electric field. The
red circle indicates the motion of independent ions in velocity space, the blue circle centred
on the origin indicates the neutral velocity distribution, and the purple ring is the ion velocity
distribution centred on E×B/B2 that results through collisions. The Vy direction is parallel
to the electric field, the Vx is perpendicular to both the electric and magnetic fields, and the
magnetic field is directed out of the page.
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ion-neutral collisions. By next defining c = v − E×B

B2
, it can be easily shown that:

c× ~Ωi · ∇cfi = Ωi
∂fi
∂θ

=
δfi
δt

(2.10)

where θ is the angle shown in Figure 2.16.

For binary elastic collisions between ions and neutrals, the Boltzmann’s collision integral

reads:

δfi
δt

=
∑
n

∫
dVndΩvinσin(vin,Θ)(f ′if

′
n − fifn) (2.11)

where Θ is the scattering angle in the center-of-mass system, dVn is the volume element in

velocity space, dΩ is an element of solid angle in the center-of-mass reference frame, vin is

the relative speed of the colliding particles i and n (a neutral species), σin is the differential

scattering cross section, fn is a Maxwellian distribution at the neutral temperature and drift,

and primed variables denote quantities evaluated after a collision. However, St.-Maurice and

Schunk (1977) showed that if:

σin = CRC
δ(Θ− π)

vin
(2.12)

where CRC is a constant, then

δf

δt
= −νin(fi − fn) (2.13)

where νin by virtue of Equation 2.12 describes a Maxwell molecule interaction where the ion-

neutral collision frequency is independent of velocity (St-Maurice and Schunk , 1979). This

model is referred to as the Relaxation Collision Model (RCM) or the Langevin model, and

is often confused with the Bhatnagar et al. (1954) model. The effect of the RCM is to push

the ion velocity distribution towards the Maxwellian neutral distribution at a rate controlled

by the relaxation time (1/νin). To find a solution:

∂fi
∂θ

= −νin
Ωi

(fi − fn) (2.14)

However, in the case of a magnetized plasma the ratio νin/Ωi is much less than 1, and the

distribution is expanded in powers of νin/Ωi, so that to leading order:

fi = f0 +
ν

Ω
f1 (2.15)
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where the subscript in is dropped from νin and the subscript i is dropped from Ωi from now

on. As a result:
∂f0
∂θ

= 0 (2.16)

which has an infinite number of possible solutions. But:

∂f1
∂θ

= f0 − fn(θ) (2.17)

However, through cyclic continuity f1(0) = f1(2π), and therefore:∫ 2π

0

∂f1
∂θ

dθ = 0 (2.18)

giving

f0 =
1

2π

∫ 2π

0

fn(θ)dθ (2.19)

where

fn(0) = exp
(
−v(θ)2

)
(2.20)

and v is normalized with respect to the neutral thermal speed. Using

v2 = v2|| + v2x + v2y (2.21)

where c = v −D and D =
E×B

B2
:

c|| = v|| (2.22)

cx = vx −D (2.23)

cy = vy (2.24)

Therefore:

vx = D + c⊥ cos θ (2.25)

vy = c⊥ sin θ (2.26)

giving:

v2 = c2|| +D2 + c2⊥ + 2c⊥D cos θ (2.27)

Since this final term is the only one with a θ:

f0 =
1

2π
exp

(
−c2|| − c2⊥ −D2

) ∫ 2π

0

exp (−2c⊥D cos θ) dθ (2.28)
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where the integral is a modified Bessel function of order zero, I0. Therefore, for the RCM,

f0 = exp
(
−c2|| − [c⊥ −D]2

)
exp [−2c⊥D] I0 [2c⊥D] (2.29)

This implies that f0 peaks when c|| = 0 and c⊥ = D. The RCM is useful because of

its simplicity, and how it is able to clarify ion velocity distributions. However, St-Maurice

et al. (1976) found from in-situ satellite observations of the ion velocity distribution in a

direction perpendicular to the magnetic field that the results of the RCM needed to at

least be scaled down. Nevertheless, the ion velocity distributions did retain a large enough

toroidal characteristics that the scaled RCM results were found to be useful in IS spectral

fitting routines, since the resulting spectra were indeed strongly affected by the scaled-down

toroidal character (e.g. Raman et al. (1981)).

Researchers returned to the Boltzmann collision operator to obtain better solutions using

more realistic collisional cross-sections. Ultimately the Boltzmann collision operator was inte-

grated through the use of Monte-Carlo simulations that required a large number of collisions

(e.g. Barakat et al. (1983); Winkler et al. (1992)). For elastic collisions, scattering from ion-

neutral collisions is adequately modeled using both long-range polarization interactions, and

short range repulsion interactions (Mason, 1970). Following Mason and Schamp Jr (1958),

the potential of interaction is then chosen to be given by (Winkler et al., 1992):

V (r) =
dpw
2

[
(1 + γs)

(rm
r

)12
− 4γs

(rm
r

)6
− 3(1− γs)

(rm
r

)4]
(2.30)

where r is the separation, rm is the value of r for which V (r) is a minimum, dpw is the depth

of the potential well, and γs is a measure of the relative strengths of the different attractive

forces. The fourth-power term represents the attraction between an ion and the dipole it

induces in the neutral molecule, the sixth-power term represents the combined contributions

from the charge-induced quadrupole and the London dispersion energy, and the 12-power

term is the repulsion potential (Mason, 1970). However, Winkler et al. (1992) allowed γs = 0

to simplify these calculations, while they incorporated RCE effects into their MC simulations

of O+ ion velocity distributions. Their results not only show the ion velocity distribution

evolving into a toroid as the electric field increases (as seen in Figure 2.17), but they can also

be used to characterize the anisotropy of O+ velocity distributions.
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Figure 2.17: Contours indicating the log of the ratio O+-O velocity distributions to the
peak value, where the y-axis is the parallel ion velocity to the perpendicular ion velocity, and
the x-axis is the perpendicular ion velocity to the ion thermal velocity. The top plot is for an
electric field of 100 mV/m, and the bottom plot if for 250 mV/m. Taken from Winkler et al.
(1992).
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The focus of Winkler et al. (1992) is on the impact ion-neutral collisions have on the ion

velocity distribution, which is accurate in weakly-ionized regions. However, as the altitude

increases and the neutral density decreases, the ion-neutral collision frequency decreases and

Coulomb collisions become more relevant. The influence of Coulomb collisions on the ion

velocity distribution is handled in Tereshchenko et al. (1991) through a simplified technique.

Their work showed that although in the presence of a strong electric field the ion velocity

distribution is still anisotropic when both ion-neutral and ion-ion collisions are incorporated,

ion-ion collisions will reduce the anisotropy of the ion velocity distribution. This is discussed

in more detail in Chapter 4.

2.3 High-Latitude Currents

Since the current systems of the high-latitude ionosphere are related to precipitation, electric

fields and, by extension, the magnetospheric generator, it is important to briefly discuss cur-

rent systems in the high-latitude ionosphere. As discussed previously, plasma flows between

the ionosphere and the magnetosphere along magnetic field lines that map into the auroral

oval. The electrons that precipitate into the ionosphere lead to upward Field-Aligned Cur-

rents (FACs), and the ionospheric electrons that flow up into the magnetosphere lead to a

downward FAC. Note that ions also precipitate into the ionosphere, but since the integral

number flux of the precipitating ions is usually much less than that of the electrons, the

current carried by the precipitating ions is relatively negligible (Schunk and Nagy , 2009).

The FACs system that emerges is sketched in Figure 2.18, which also distinguishes the

“Region 1” currents and “Region 2” currents. Region 1 currents are the FACs that flow

into the ionosphere in the morning sector, and away from the ionosphere in the evening

sector. Region 2 currents are equatorward of the Region 1 currents, and flow in the opposite

direction. As seen in Figure 2.18, the Region 1 and Region 2 currents are closed through

horizontal currents in the lower ionosphere. Figure 2.19 shows statistical patterns of FACs for

southward IMF during both quiet and active geomagnetic conditions (Iijima and Potemra,

1978; Iijima et al., 1984).

FAC systems, particle precipitation, and convection electric fields, all impact the conduc-
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Figure 2.18: A cartoon showing Region 1 and Region 2 FACs, as well as the Hall and
Pedersen currents. Taken from Le et al. (2010).
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Figure 2.19: Statistical distribution and flow directions of large-scale FACs. (a) The distri-
bution and flow directions during weakly disturbed geomagnetic conditions (taken from 439
passes of the Triad satellite) (b) The distribution and flow directions during active geomag-
netic conditions (taken from 366 Triad passes). Taken from Iijima and Potemra (1978).
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tivity of the ionosphere and current systems perpendicular to the magnetic field, namely the

Pedersen currents and Hall currents. Pedersen currents act perpendicular to the magnetic

field and along the convection electric fields. As seen in Figure 2.18, Pedersen currents con-

nect the Region 1 and Region 2 currents horizontally in the ionosphere. Meanwhile, Hall

currents, which are also shown in Figure 2.18, flow around the locations where the Region 1

currents map into the ionosphere. These currents flow perpendicular to both the magnetic

field and the convection electric fields, following the high-latitude plasma convection pattern

shown in Figure 2.10.

The total current density perpendicular to the magnetic field is given by [Schunk and

Nagy (2009), Chapter 5]:

J⊥ = σP (E⊥ + vn ×B) + σH b̂× (E⊥ + vn ×B) (2.31)

where σP is the Pedersen conductivity, given by:

σP =
∑
i

σi
(
∑

n νin)2

(
∑

n νin)2 + Ω2
i

+ σe
(
∑

n νen)2

(
∑

n νen)2 + Ω2
e

(2.32)

σH is the Hall conductivity, given by:

σH = −
∑
i

σi
(
∑

n νin) Ωi

(
∑

n νin)2 + Ω2
i

+ σe
(
∑

n νen) Ωe

(
∑

n νen)2 + Ω2
e

(2.33)

where e is the elementary charge, νen is the electron-neutral collision frequency, σi is the ion

conductivity (niq
2
i /(mi (

∑
n νin)), where qi is the ion charge), Ωe is the electron gyrofrequency,

and σe is the electron conductivity (nee
2/(me (

∑
n νen))). Knowing this, and that

∑
n νen is

usually much less than Ωe:

σP =
∑
i

σi
ν2i

(
∑

n νin)2 + Ω2
i

(2.34)

and:

σH = −
∑
i

σi
(
∑

n νin) Ωi

(
∑

n νin)2 + Ω2
i

+
(
∑

n νen)σe
Ωe

(2.35)

Meanwhile, parallel to the magnetic field, the current density is given by [Schunk and Nagy

(2009), Chapter 5]:

J|| = σe||

(
E|| +

kBTe
ene
∇||ne

)
+ ε′e∇||Te (2.36)
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where σe|| is the parallel electrical conductivity (nee
2/(meνe), νe is the sum of electron-ion and

electron-neutral collision frequencies), and ε′e is the current flow conductivity due to thermal

gradients (neekB/(meνe)). One important difference between the parallel electrical conduc-

tivity and the perpendicular electrical conductivity is that the parallel electrical conductivity

is dominated by electron mobility.
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Chapter 3

INCOHERENT SCATTER RADARS

Ionospheric electrodynamics are probed in a variety of ways with satellites, rockets, drift

measurements of chemical releases, Fabry-Perot interferometers, and/or radars (Park , 1976).

In addition, ISRs are particularly useful because temperatures from ground-based instru-

ments are generally difficult to obtain, and ISRs provide more detailed electron density

profiles than other instruments, like ionosondes. High-resolution measurements in both time

(down to second scales) and space (as low as kilometer scales) of ion temperature, line-of-sight

ion velocity, electron temperature, and plasma density are obtained from ISRs by sending

out radio waves that probe small wave amplitudes and receive backscatter echoes that have

bounced off high-altitude plasma. Therefore, although ISRs are expensive, power hungry,

and their data require complex fitting routines (when compared to most other ground-based

instruments that observe the ionosphere), they relay precious detailed plasma diagnostics,

give data for a wide variety of scale sizes, and the scatter is always present. Retrieved radar

parameters are used to infer changes in the F -region density, neutral atmosphere motion,

and electric fields for a finite region (Evans , 1972).

In this chapter ISR theory is first examined, after which the more technical challenges of

ISRs are discussed.

3.1 Theory

The bulk of ISR plasma theory was developed in the 1960s (Dougherty and Farley , 1960;

Fejer , 1960; Salpeter , 1960), and then refined further to include collisions (Dougherty and

Farley , 1963) and a magnetic field (Farley et al., 1961; Fejer , 1961; Hagfors , 1961; Rosenbluth

and Rostoker , 1962; Salpeter , 1961a). Using the parameters derived from ISR radio wave
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echoes, one can infer changes in the motion in the neutral atmosphere, and electric fields

(Evans , 1972). This section first highlights the differences between incoherent and coherent

scatter, and then discusses IS spectra. Lastly, IS spectral features are discussed in a general

sense.

3.1.1 Incoherent Scatter versus Coherent Scatter

When an electromagnetic wave interacts with a cloud of quasi-neutral plasma, the incident

electric field of the transmitted pulse wave accelerates the charged particles, which then

emit scattered radiation at a Doppler shifted frequency. Letting the position of the charged

particle be described by r(t′) and the velocity by v(t′) (note, r(t′) = r(0) + vt′), consider a

plane monochromatic wave incident on a charged particle, where the electric field incident

on the particle is described by:

Ei(r, t
′) = Ei0 cos (ki · r− ωit′) (3.1)

and the magnetic field is given by:

Bi(r, t
′) = î× Ei (3.2)

where Ei0 is amplitude of the electric field, ki is the incident wavevector, ωi is the incident

frequency, and î is the direction of the incident radiation. The electric field at a distance R

from the charge at a time t is related to the behavior of the charge at the previous time t′,

the retarded time, given by:

t′ ≈ t− R′

c
(3.3)

where c is the speed of light. Meanwhile, the radiation of a moving charge is given by:

E(R′, t) = q

[
(ŝ− [v/c])(1− [v/c]2)

(1− ŝ · [v/c])3R′2

]
ret

+
q

c

[
ŝ× {(ŝ− [v/c])× (1/c)(dv/dt′)}

(1− ŝ · [v/c])3R′

]
ret

(3.4)

where ŝ is from the observer to the charge (Jackson, 2007). The observing point is at a

large distance from the charge compared to the length over which the motion of the charge

is observed. Therefore the first term is negligible to the second term, R is approximately R′,

and:

t′ ≈ t− (|R− ŝ · r|/c) (3.5)
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For a low-velocity charge (v/c � 1) with no acceleration other than that due to Ei acting

on the charged particles, the scattered electric field by a single free charge is thus given by:

Es(R, t) =
q2

c2mR
[ŝ× (ŝ× Ei0)] cos [ksR− ωst− (ks − ki) · r(0)] (3.6)

where m is the mass of the charge, and the charge radiates a Doppler-shifted electromagnetic

wave whose frequency and wavevector are:

ωs = ωi
(c− î · v)

(c− ŝ · v)
(3.7)

and

ks =
ωs
c
ŝ (3.8)

Note that the shift in frequency and wave number is given by:

k = ks − ki (3.9)

and

ω = ωs − ωi = (ks − ki) · v (3.10)

From Equation 3.6 it is clear that the magnitude of the electric field scattered in the iono-

sphere by ions is negligible compared to the field scattered by electrons, due to the consid-

erably lighter mass of electrons. This scattered radiation, or “echo”, is then intercepted by

the ISR and analyzed to probe ionospheric parameters (described in more detail in Section

3.1.2 and 3.2.2).

In a conductor such as a plasma, electrons surround and shield a positive charged particle

from electric fields. The radius of this shield is called the Debye length and is derived by

finding the total potential that results from a point charge in a “swarm” of moving charges

that are being attracted and repelled by the point charge. Following Ichimaru (1973), we

can derive the Debye sphere using Poisson’s equation, where the point charge is expressed

as a delta function charge density and the charge density of the charges being attracted and

repelled is 〈ρ(r)〉:

∇2φE(r) = −q0
ε0
δ(r)− 1

ε0
〈ρ(r)〉 (3.11)

where φE is the potential, q0 is the charge of the point charge, and ε0 is the permittivity

of free space. The statistical distribution of charges around the point charge is based on a
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thermodynamical equilibrium exp (−U/kBTe) arrangement about the mean, meaning:

〈ρ(r)〉 = ene − ene exp

(
−U
kBTe

)
(3.12)

where U is the electrostatic potential energy. For electrons, U = −eφE. So :

〈ρ(r)〉 = −ene
[
exp

(
eφE
kBTe

)
− 1

]
(3.13)

For ordinary plasmas, the potential energy is much smaller than the kinetic energy. Therefore:

〈ρ(r)〉 = −ene
[
1 +

(
eφE
kBTe

)
− 1

]
(3.14)

So, from Equation 3.11:

∇2φE = −q0
ε0
δ(r) +

nee
2φE

ε0kBTe
(3.15)

This resulting equation has the screened Coulomb potential as a solution:

φE =
q0
r
e−ηr (3.16)

where:

η =

√
nee

2

ε0kBTe
=

1

λD
(3.17)

and λD is the Debye length for electrons:

λD =

√
ε0kBTe
nee2

(3.18)

This shielding is such that the total charge rapidly goes to zero for distances larger than the

Debye length, meaning that Coloumb interactions do not extend much beyond the Debye

length due to the screening of a central charge by surrounding charges.

When an ionospheric radar probes inside of the Debye sphere (i.e. the radar wavelength is

much less than a Debye length) there is no constructive interference or collective features. In

that case instead, the radiation scattered from the electrons is randomly phased. This is often

referred to as “incoherent scatter” (Sheffield , 1975) and it describes electrons traveling freely

and independently. William E. Gordon, who pioneered ISRs, originally assumed ISRs would

be subject to this form of scatter (Gordon, 1958). However, ISRs instead probe outside of the

Debye sphere (i.e. the radar wavelength is much larger than a Debye length). This means that
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ISRs probe electron clouds around ions, themselves subject to collective structures like ion-

acoustic waves. As a result the radiation scattered from the electrons depends on their phase

in large-scale waves. This is referred in the present context as “coherent scatter” meaning

electrons that are organized in structures. At low frequencies the electrons are orbiting

and shielding ions and reveal ion structures [Chen (2006), Chapter 1]. When a plane wave

transmitted by an ISR is incident on ionospheric plasma where the ions are structured by

plasma wave irregularities (e.g. sound waves), the electrons shielding those ions produce

coherent scatter [(Sheffield , 1975), Chapter 1]. Due to constructive interference, signals

backscattered from irregularities with a spacing of half the radar wavelength in the direction

towards the radar produce signals that are in phase and can be detected. In other words,

a radar of wavelength λ will effectively single out irregularities of wavelength λ/2 along the

radar beam from the scattering medium in backscattering experiments.

All ISR’s are extracting a spectrum from the stable waves present in the ionospheric

plasma. Near thermodynamical equilibrium low frequency ion-acoustic waves and high fre-

quency electron plasma waves can be probed. These waves dominate the plasma because

they decay more slowly than other waves and are constantly excited by thermal broadband

noise (these waves produce the ion and plasma lines, discussed further in Section 3.1.2).

Alternatively, unstable plasmas can produce large amplitude waves that are detectable by

low power radars. These unstable structures are usually field-aligned, meaning that they are

only visible perpendicular to the magnetic field.

It is worth clarifying that even though ISRs examine coherent scatter, there still exist

Coherent Scatter Radars (CSRs) which also examine coherent scatter (Häggström, 2012).

The biggest difference between CSRs and ISRs is that the latter probe the much smaller

wave amplitudes from stable plasmas in near thermal equilibrium. For this reason, ISRs use

much more power than CSRs (∼10 kW, while ISRs operate at roughly ∼1 MW) [Hagfors

(1995), Chapter 1]. CSRs also generally observe field aligned irregularities because all the

other waves decay more rapidly.
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3.1.2 Spectra

In general, ISRs probe all kinds of ionospheric waves that may or may not be affected by

the magnetic field or by collisions, but for most situations it is possible to ignore both the

magnetic field and collisional effects in spectral formulations. When the effect of collisions

is neglected (generally appropriate above 105 km altitude), the general expression for an

arbitrary backscatter spectrum, S(k, ω), from an unmagnetized, low-temperature, singly-

ionized plasma is given by [Sheffield (1975), Chapter 7]:

S(k, ω) =
2π

k

∣∣∣∣1 +Gi

ε

∣∣∣∣2 g0e (ωk )+
2π

k

∣∣∣∣Ge

ε

∣∣∣∣2 g0i (ωk ) , (3.19)

where g0i and g0e are the one-dimensional velocity distributions of ions and electrons, respec-

tively, evaluated at the velocity kω/k2, and Ge and Gi are the electron and ion dielectric

functions, respectively, and where ε is the longitudinal dielectric function given by:

ε(k, ω) = 1 +Ge(k, ω) +Gi(k, ω), (3.20)

The electron dielectric function is given by:

Ge(k, ω) =
4πe2ne0
mek2

∫ +∞

−∞
dv

k · ∂f0e
∂v

ω − k · v − iγ
(3.21)

and for the singly ionized species of interest here, the ion dielectric function is given by:

Gi (k, ω) =
4πe2ni0
mik2

∫ ∞
−∞

dv
k · ∂f0i

∂v
ω − k · v − iγ

, (3.22)

where γ is asymptotically small, real, and positive, and is used to describe analytically

continuous functions that give rise to Landau damping effects. In these expressions ni0 and

ne0 are the ion and electron number densities, respectively, and f0i and f0e are the normalized

ion and electron velocity distributions, respectively. Defining the x-direction to be along the

scattered wavevector, the above is rewritten as:

Gκ (k, ω) =
ω2
pκ

k2

∫ ∞
−∞

dvx

k
∂g0κ
∂vx

ω − kvx − iγ
. (3.23)
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where ωpκ is the plasma frequency of species κ, i.e., ω2
pκ = 4πnκ0e

2/mκ. The analytical

solution for a Maxwellian velocity distribution is given by (Sheffield , 1975):

GκM = α2 Te
Tκ

[
1− 2xκ exp

(
−x2κ

) ∫ xκ

0

exp(p2)dp− xκiπ1/2 exp(−x2κ)
]
. (3.24)

where α = 1/(kλD), xκ = ω/(kvthκ), and vthκ is the thermal speed. Note that this treatment

implies that the eigenfrequency must have an imaginary part that describes a decaying wave,

so that ε has complex roots and is not zero. Otherwise, if the root is real and it matches the

radar frequency, ε becomes zero and the amplitude in Equation 3.19 becomes infinite. This

highlights the fact that the analysis refers to damped waves only, and not even waves with a

zero growth rate. The spectrum becomes truly incoherent when α approaches 0 (for coherent

scattering α ≥ 1) and Equation 3.19 becomes:

S(k, ω)|α→0 →
2π

k
fe0

(ω
k

)
(3.25)

which simply states that the spectrum would reveal the electron velocity distribution along

the line-of-sight through the superposition of individual Doppler shifts.

In general for α 6= 0 and for a Maxwellian distribution function applicable to plasmas in

near thermal equilibrium, S(k, ω) becomes:

S(k, ω) =
2π1/2

ka

{
Ae
|ε|2

+
Ai
|ε|2

}
(3.26)

where a is the electron thermal speed, and Aκ are given by:

Ae = exp
(
−x2e

) [(
1 + α2Te

Ti
Rw(xi)

)2

+

(
α2Te
Ti

Iw(xi)

)2
]

(3.27)

and

Ai =

(
miTe
meTi

)1/2

exp
(
−x2i

) [(
α2Rw(xe)

)2
+
(
α2Iw(xe)

)2]
(3.28)

and:

|ε|2 =

[
1 + α2

(
Rw(xe) +

Te
Ti

Rw(xi)

)]2
+

[
α2Iw(xe) +

α2Te
Ti

Iw(xi)

]2
(3.29)

where Rw is the real component of the plasma dispersion relation (Fried and Conte, 1961):

Rw(x) = 1− 2x exp(−x2)
∫ x

0

exp(p2)dp (3.30)
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Figure 3.1: Real and imaginary components of the plasma dispersion function [(Sheffield ,
1975), Chapter 7].

and Iw is the imaginary component of the plasma dispersion relation:

Iw(x) = π1/2x exp(x2) (3.31)

Figure 3.1 shows both the real and imaginary components of the plasma dispersion function.

An example of backscatter spectrum from a Maxwellian velocity distribution is given in

Figure 3.2. At higher Doppler-shifted frequencies, xi approaches infinity, Ai/|ε|2 approaches

zero, and xe is small, leaving Equation 3.26 largely dependent on Ae/|ε|2. This produces

the “electron lines”, and under appropriate conditions it is possible to observe that they

consist of two sets of symmetric pairs of resonance lines at different offsets from the center

frequency, called the “plasma line” and the “gyro line” (see below). Meanwhile, at lower

frequencies Ai/|ε|2 is greater when the electron to ion temperature ratio is approximately

1 and Ae/|ε|2 is greater when the electron to ion temperature ratio is much greater than

1. This is the “ion line” (Sheffield (1975), Chapter 7). These spectral peaks are affiliated
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Figure 3.2: An example of a backscatter spectrum received by an ISR (Akbari et al., 2017a).

with the solutions to the electrostatic dispersion relation of cold magnetized plasmas: the

ion acoustic mode for the ion line, and upper hybrid/Langmuir mode for the plasma line

(Bernstein, 1958; Gross , 1951; Landau, 1946; Perkins et al., 1965; Salpeter , 1960, 1961a;

Sedgemore-Schulthess and St-Maurice, 2001). The height and width of these lines depends

on the intensity and the damping rate of the corresponding waves, and various scattering

processes. The displacements of the lines from the radar transmitting frequency depend on

the Doppler shift associated with the waves phase velocity, where positive shifts indicate the

wave is propagating towards the radar and negative shifts indicate the wave is propagating

away.

In most of the work done with ISRs the ion line is used. Since the ion line is produced by

Bragg scattering from ion-acoustic waves it is controlled by the ion thermal motion and from

collisionless Landau damping, a process in which a particle tends to synchronize their velocity

to the wave phase velocity. Landau damping broadens the frequencies of two independent

peaks, causing them to overlap and create a double-humped shape. The vertical distance from

the tip of the peak to the bottom of the trough in Figure 3.3 depends on the electron to ion

temperature ratio, which further relates to the inference of Landau damping. As the electron

temperature increases, larger peaks appear and the trough becomes deeper (Ichimaru, 1973).
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Figure 3.3: An example of the ion line in a backscatter spectrum received by an ISR
(Sedgemore-Schulthess and St-Maurice, 2001).

In some instances, the electron temperature is so much greater than the ion temperature that

two well-developed, almost separate, peaks occur (Wickwar et al., 1981). Conversely, when

the electron temperature is equal to the ion temperature, as expected at lower altitudes due

to strong collisional coupling, there is only one large hump instead of two peaks and a trough.

The ion acoustic speed is found through the ion line displacement, given by ω = ±Csk, where

Cs is the ion acoustic speed. The shift of the central frequency from the signal to the echo

reflects the Doppler shift, which infers the line-of-sight ion velocity. Lastly, the integrated

spectral power is approximately equal to ne/(1 +Te/Ti), which allows the electron density to

be extracted (given that the electron to ion temperature ratio is determined from the spectral

shape).

Below 110 km, where the effect of ion-neutral collisions is significant (Hagfors and Brock-

elman, 1971), it is also possible to derive the ion-neutral collision frequency from the width

of the ion line (e.g. Wand and Perkins (1968)). Through ion-neutral collisions the motion
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of the ion density fluctuations changes, making the power spectrum narrower (Dougherty

and Farley , 1963). However, to calculate the ion-neutral collision frequency it is generally

assumed that the ion and electron temperatures are equal, which is not always correct and

restricts these studies to relatively low electric field values.

There are two important complications that need to be addressed with the spectral cal-

culations presented so far. The first is that Equation 3.24, as well as the general spectral

treatment performed in Equations 3.26 to 3.31, require the ion velocity distribution to be

Maxwellian. However, during strong electric fields the velocity distribution evolves towards

a toroidal distribution. In these cases, the analysis presented in Equations 3.19 through 3.23

must be calculated based on a toroidal description of the ion distribution function. This

becomes particularly complicated for Equations 3.21, 3.22 and 3.23, given the integrations

needed and the lack of accurate, complete descriptions of distorted ion velocity distributions.

This work is done in Chapter 4.

The second complication that must be addressed is that the spectral calculations pre-

sented so far are incorrect when the line-of-sight is perpendicular or near perpendicular to

the magnetic field. Within 3◦ of perpendicularity to the magnetic field, ISR spectra are

dramatically different than those found at any other angle, as is shown in Figure 3.4 (e.g.,

Sheffield , 1975; Woodman, 2004, and references therein). This is because parallel to the

magnetic field electrons are highly mobile and are able to form clouds around low frequency

ions which are not moving (relative to the much lighter electrons) and are attached to the

magnetic field. Perpendicular to the magnetic field, the electron velocity is roughly equal to,

or less, than that of the ions because the electrons gyrate tightly around the geomagnetic

field lines. This motion makes the electrons look heavier than the ions perpendicular to the

magnetic field, making the low frequency portion of the IS spectra in that direction narrower

than at any other angle (Woodman, 1967, 1971). These aspect angles also show the gyro

line, affiliated with electron magnetization and the lower hybrid/whistler mode solution to

the electrostatic dispersion relation of cold magnetized plasmas.

When the effect of the magnetic field on the motion of charged particles matter, the

spectral formulations seen previously (Equations 3.19 to 3.23) become instead (Bernstein,
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Figure 3.4: Incoherent scatter Doppler spectra from O+ plasma above the Jicamarca Radio
Observatory from (Kudeki et al., 1999). All the curves possess an ion and electron temperature
of 1000 K, and a radar carrier frequency of 50 MHz. Letting β be the angle between the radar
wavevector and perpendicularity to the magnetic field, the panel on the left shows spectra
from β = 30◦, β = 60◦, and β = 90◦ (they are superimposed and indistinguishable at the scale
of the plot). The panel on the right is the same as the panel on the left, but with β = 0.005◦,
β = 0.01◦, β = 0.015◦, and β = 0.02◦. The tallest curve corresponds to β = 0.005◦ and the
broadest curve to β = 0.02◦. Note the scale change between the left and right panels.

1958; Dougherty and Farley , 1963; Farley et al., 1961; Salpeter , 1961a,b):

S(k, ω) = 2 lim
γ→0

∣∣∣∣1 +Hi

εL

∣∣∣∣2 ∫ +∞

−∞

dv
∑

l J
2
l (k⊥ρe)f0e(v)

(ω − k||v|| − lΩe)2 + γ2
+

∣∣∣∣He

εL

∣∣∣∣2 ∫ +∞

−∞

dv
∑

m J
2
m(k⊥ρi)f0i(v)

(ω − k||v|| −mΩi)2 + γ2

(3.32)

The longitudinal dielectric function is now:

εL(k, ω) = 1 +He(k, ω) +Hi(k, ω) (3.33)

and the ion and electron dielectric functions are:

Hi(k, ω) =
4πe2ni0
mik2

∫ +∞

−∞
dv
∑
m

J2
m(k⊥ρi)k ·

∂f0i
∂v∗

ω − k||v|| −mΩi − iγ
(3.34)

and

He(k, ω) =
4πe2ne0
mek2

∫ +∞

−∞
dv
∑
l

J2
l (k⊥ρe)k ·

∂f0e
∂v∗

ω − k||v|| − lΩe − iγ
(3.35)

where J is a Bessel function, k⊥ is the perpendicular component of k, k|| is the parallel com-

ponent of k, v|| is the parallel component of v, ρe is the electron cyclotron radius, ρi is the ion

cyclotron radius, and k · ∂F0q

∂v∗
≡ k||

∂F0q

∂v||
+

1

ρq

∂F0q

∂v⊥
. It is important to note that these expres-

sions reduce to the expressions seen earlier when they are applied to any direction more than
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5◦ away from perpendicularity to the magnetic field. Additionally, it should be mentioned

that these spectral formulations are for a stable plasma near thermodynamic equilibrium,

and that large amplitude (i.e. linearly unstable) waves are often seen perpendicular to the

magnetic field, in which case there is no predictable spectral behavior.

At any rate, for the present work, the impact of magnetization is not taken into consider-

ation because it only applies to a small range of aspect angles that are not easily accessible at

high latitudes. Still, it should be remembered that when the spectral analysis in Chapter 4

is describing angles perpendicular to the magnetic field, it actually represents spectra closer

to 85◦.

3.2 Technical Aspects of ISRs

The previous section has discussed ISRs theoretically and from the perspective of plasma

physics. However, ISR observations and studies are also quite technically involved. This

section highlights several technical aspects of ISRs, including the antenna design and the

properties of ISR signals and echoes.

3.2.1 Antennas Designs: Dishes vs Phased Arrays

Since ISRs typically only receive about 200+ dB attentuation of the power transmitted,

it is incredibly important to have a large, well-designed antenna. There are two antenna

designs used by ISRs: 1) dish and 2) phased array. A dish antenna is simply a large single

parabolic dish that emits and receives radio signals. This design is used by such ISRs as the

Arecibo ISR, the Millstone Hill ISR, the European Incoherent SCATter scientific association

(EISCAT) ISRs, and the Sondrestrom ISR. Meanwhile, a phased array is made of a collection

of numerous smaller element antennas. An array design is used by the Jicamarca ISR, as well

as the three AMISR sites. A single dish antenna is able to point at many positions in the sky,

but has to integrate at each position before moving, since the power has to be concentrated

at one location. Meanwhile, a phased array antenna, such as one seen at an AMISR site, has

a field-of-view that is ±20◦ from a fixed direction, and performs a simultaneous integration

over multiple positions.
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Although there are many important differences between these two types of antennas,

arguably one of the biggest differences is how they “look” in different directions. A dish

antenna collects data from different directions by physically moving and/or turning. How-

ever, a phased array antenna collects data from any direction within their field-of-view by

varying the phasing of the different elements, therefore modifying the radiation pattern to be

maximized or minimized in certain directions (Chau et al., 2012). Since phased array designs

use pulse-to-pulse beam positioning and do not need to physically move, they are able to

look in multiple directions much more quickly than dish antennas. Additionally, inertia-less

steering requires less infrastructure, increases spatial sampling flexibility, reduces spatial and

temporal ambiguities in data, removes antenna dwell times and predetermined integration

periods, and also opens possibilities for in-beam imaging through interferometry (Chau et al.,

2012). These features also allow for remote operations, graceful degradation, and continual

operations. Phased arrays also possess distributed, solid-state transmitters as opposed to

single radio frequency sources, meaning the warm-up time is reduced, there is no need for a

complex feed system, and single-point failures are less frequent. These differences are likely

why ISRs developed more recently are generally phased array designs.

3.2.2 ISR Signal and Echo Properties

Since ISRs send signals that probe large groups of charged particles, the echoes detected by

these radars are different than those that observe a single hard target. An ISR echo contains

a range of shifted frequencies, instead of a single shifted frequency (as would be seen with

a single hard target), due to thermal fluctuations within the plasma. These fluctuations

contain (among other things) features associated with ion-acoustic waves driven by random

motions within the plasma. This motion, occurring in a group of charged particles moving

with a variety of line-of-sight velocities with respect to the radar wavevector, causes a wide

spectrum of waves (Sedgemore-Schulthess and St-Maurice, 2001). This means that when a

radar sends out a radio wave into the atmosphere, it receives more than one Doppler shifted

frequency because the waves move about the mean Doppler shift. The radar then recovers

the waves that decay the least, namely the ion acoustic waves at lower frequencies (Sheffield

et al., 2010).
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Knowing how the different plasma parameters relate to the different spectral shapes and

offsets, Equation 3.26 can be fit to the received spectrum using a chi squared function:

χ2 =
n∑
j=1

|y(xj)−model(xj; p)|2

σ2
j

(3.36)

where y is the data, p is the parameter vector, xj is the independent variable and σj is

the uncertainty. By minimizing χ, the model comes closest to the data. This process is

often simplified by assuming an ion composition, or by even using other instruments to

approximate parameters. However, this process becomes complicated when large coherent

echoes from large-scale irregularities contaminate ISR data and mask the desired spectrum.

Before transmitting a signal into the ionosphere, other instrumental factors affecting the

spectral shape also must be considered. When a radar sends signals into the ionosphere it

does not send a continuous stream of waves, but rather a “pulse” of waves, as shown in Figure

3.5. The size and frequency of the pulses (not the frequency of the waves) is determined by

parameters such as the power and the desired range in order to maximize the attainable

signal-to-noise when both the signal and the noise are applied to the input. The pulse phase

is used to determine the Doppler shift of the measurements, the pulse length determines the

range resolution of the measurements, and the amplitude, determined by the transmitted

power, relates to the received power.

An important factor in pulse coding is ambiguity, which is a distortion in the returned

pulse introduced by the receiver matched filter (Woodward , 2014). More precisely, it is the

absolute value of the output envelope of a matched filter when the input is a Doppler shifted

echo of the original signal (He et al., 2012):

|X(τd, f)| =
∣∣∣∣∫ ∞
−∞

u(t)u∗(t− τd) exp(j2πft)dt

∣∣∣∣ (3.37)

where u(t) is a complex envelope of the signal, τd is the additional time delay, and f is the

frequency shift. An example is shown in Figure 3.6, which displays the ambiguity related to

sensing a hard target with an uncoded pulse. In Figure 3.6, the Doppler domain is rather

narrow, and the range domain is more spread out. This means that when there is a Doppler-

shifted, point target return at 0 kHz there will be a central peak and little ambiguity in the

Doppler shift. However, the range will have a larger ambiguity if the Doppler shift is 50kHz

because there is no clear peak there.
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Figure 3.5: A single pulse sent out from a radar containing waves (Semeter , 2012).

Figure 3.6: Ambiguity as a function of frequency and range for a 52 µs uncoded pulse (figure
courtesy of Ashton Reimer).
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Received noise, an unwanted addition to the signal received, also needs to be considered

before a signal is transmitted. For example, the bandwidth of the ISR pulse affects the noise,

and as the bandwidth increases, so does the noise. This means that if the pulse width is

reduced to improve the range resolution, more noise appears (Semeter , 2012). However, the

use of a “matched filter” can be used to help distinguish the signal from the noise.

3.2.3 AMISR and its characteristics

This research focuses on data from the three AMISR facilities, which are: 1) Resolute Bay

Incoherent Scatter Radar-North (RISR-N) located near Resolute Bay, Nunavut, Canada,

2) Resolute Bay Incoherent Scatter Radar-Canada (RISR-C) located near Resolute Bay,

Nunavut, Canada, and 3) Poker Flat Incoherent Scatter Radar (PFISR) located near Poker

Flat, Alaska, United States, as seen in Figure 3.7. Figure 3.7 also shows that RISR-N and

RISR-C are placed back-to-back, with RISR-N pointing northward into the polar cap, and

RISR-C pointing southward over Canada. These ISRs are particularly valuable because they

are some of the few ISRs to make use of a phased array design. The research presented in

thesis is predominately from the RISR-N facility, therefore additional RISR-N specifications

are given in Table 3.1.

.

In their typical operating modes, RISR-N, as well as RISR-C and PFISR, provide the line-

of-sight ion temperature, Tiφ, the electron temperature, the electron density, and the mean

line-of-sight ion velocity, vφ, as a function of Universal Time (UT), MLT, altitude, range,

Magnetic LATitude (MLAT), corrected magnetic longitude, and aspect angle (the angle

between the radar wavevector and the magnetic field). Within these parameters, uncoded

(480 µs) and Alternating Code (AC) pulse measurements (Lehtinen, 1986) are generally

taken, which vary in terms of volume of integration and the resulting noise level. Higher

spatial resolution AC codes are necessary for altitudes like the E-region, where parameters

change on scales of the order of a few kilometers. Given the regions being examined in the

present work, the uncoded or “long” pulse measurements are typically used.
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Figure 3.7: Field-of-view of the three Advanced Modular ISRs: RISR-N, RISR-C, and
PFISR (Varney , 2016).
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Location 74◦ 43’ 46” N, 94◦ 54’ 16” W

Geomagnetic Dip angle 88◦ 47’

Invariant Latitude 83◦ 37’ N

Local Time UT - 6

Magnetic Local Time UT - 7:45

Peak Power 2 MW

Maximum Duty Cycle 10%

Pulse Length 1 µsec - 2 msec

Transmission Frequency 430-450 MHz

Antenna Gain Roughly 43 Decibels relative to an isotropic antenna

Antenna Aperture Roughly 715 m2

Beam Width Roughly 1.1◦

System Temperature Roughly 120 K

Steering Pulse to pulse over roughly ± 25◦

Max Power Consumption Roughly 700 KW

Plasma Parameters ne, Te, Tiφ, vφ, νin

Table 3.1: Additional specification for RISR-N (Varney , 2016).
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Chapter 4

INCOHERENT SCATTER SPECTRA BASED

ON MONTE-CARLO SIMULATIONS OF ION

VELOCITY DISTRIBUTIONS UNDER STRONG

ION FRICTIONAL HEATING

Under strong electric fields conditions, the ion velocity distributions of weakly ionized

high-latitude F -region plasma differ enough from a Maxwellian shape to introduce both ion

temperature anisotropies and toroidal ion velocity distributions. This substantially changes

ISR spectra and thus the analysis of those spectra, which rely on a Maxwellian description of

the ion velocity distribution. Knowing this, Akbari et al. (2017b) used an empirical descrip-

tion of the ion velocity distribution and compared the resulting spectra to those found from

a Maxwellian velocity distribution, as seen in Figure 4.1 (which also reflects a large change in

the retrieved electron temperature when different ion velocity spectral fits are used). Akbari

et al. (2017b) also used PFISR measurements along the magnetic field line from 3/3/2012

during a large electric field event, and found that at lower altitudes (approximately 130 km

to 250 km) the line-of-sight ion temperature values obtained at relatively small aspect an-

gles are consistent with the theoretical calculations of anisotropic NO+ and N2 ion velocity

distributions that emerge from polarization elastic scattering, as seen in Figure 4.2. Mean-

while at higher altitudes (greater than 300 km), the IS spectra obtained at large aspect

angles were qualitatively similar to those expected from toroidal ion velocity distributions,

while the line-of-sight ion temperatures measured at low aspect angles exceeded those ex-

pected from ion-neutral frictional heating and RCE collisions by about 1000 K, suggesting

Coulomb collisions could have been responsible for reducing the ion temperature anisotropy
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with altitude.

Figure 4.1: Measured and theoretical IS spectra that highlight the quality of fit using
Maxwellian ion velocity distributions (left), as opposed to distorted ion velocity distributions
of the kind discussed in Raman et al. (1981) (right). Data is taken from PFISR on 16/2/2015
at an aspect angle of 55◦. Taken from Akbari et al. (2017b).

However, Akbari et al. (2017b) utilized an empirical description of the ion velocity distri-

bution, which is strictly reliable only under limited conditions, like moderately strong electric

fields. In order to provide a quantitative and reliable description of IS spectra for a range of

electric fields and aspect angles, this study goes beyond the work of Akbari et al. (2017b) by

directly using for the first time an advanced MC calculation of the ion velocity distribution

to derive spectra. This study also fully characterizes the spectral shape, as well as the ion

temperature and its anisotropy, for two different models of the RCE between O+ and O,

and includes a determination of the stability of the plasma against magnetic field-aligned

electrostatic instabilities.

This chapter contains verbatim the work of “Incoherent scatter spectra based on Monte-

Carlo simulations of ion velocity distributions under strong ion frictional heating”, which has

recently been accepted by Radio Science. Following the reproduction of the Radio Science

publication is an additional section that utilizes the results of the research paper to fur-

ther examine spectral features from toroidal ion velocity distributions. The supplementary

material for “Incoherent scatter spectra based on Monte-Carlo simulations of ion velocity

distributions under strong ion frictional heating” is provided verbatim in Appendix A and
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Figure 4.2: The line-of-sight ion temperatures parallel to the magnetic field, where the left
panel is for measurements between approximately 130 km to 250 km and the right panel is
for measurements between approximately 300 km and 400 km. The dotted lines show modifi-
cations applied to the one-dimensional temperatures in each panel (specifically, the expected
difference between the line-of-sight ion temperatures at the aspect angle of 22.5◦ and the three-
dimensional temperatures according to the appropriate collision models). The left panel has
been modified based on the polarization scattering collision model, and the right panel by
the resonant charge exchange collision model (in order to represent the three-dimensional
ion temperatures). The solid black lines indicate theoretical curves of ion temperature with
neutral temperature versus the relative drift between ions and neutrals, where the left panel
shows O/N2 composition ratios of 1/2.6, 1/1.35, 1/0.8 while the right panel only assumes
100% O. Taken from Akbari et al. (2017b).
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refers to data files which are available online through Radio Science. Meanwhile, Appendix

B gives additional material required for calculating spectra, and refers to data files which are

available upon request. The authors and their respective institutions are:

• L. V. Goodwin (Institute of Space and Atmospheric Studies, Department of Physics and

Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada)

• J.-P. St.-Maurice (Institute of Space and Atmospheric Studies, University of Saskatchewan,

Saskatoon, Saskatchewan, Canada)

• H. Akbari (Laboratory for Atmospheric and Space Physics, Boulder, Colorado, USA)

• R. J. Spiteri (Department of Computer Science, University of Saskatchewan, Saskatoon,

Saskatchewan, Canada).

4.1 Abstract

Under strong electric field conditions often found at high latitudes, the ion velocity distri-

bution of the weakly ionized F region plasma can differ enough from a Maxwellian shape

to substantially change Incoherent Scatter (IS) spectra and thus the analysis of those spec-

tra. With the goal to provide a quantitative and reliable description of the IS spectra, this

study directly uses for the first time an advanced Monte-Carlo calculation of the ion velocity

distribution to derive IS spectra for a range of electric fields and aspect angles. For most

cases the spectra associated with NO+ maintains a shape that closely resembles that of a

spectrum derived from a Maxwellian distribution with the same line-of-sight ion temperature

as the equivalent Monte-Carlo simulated distribution. This study also fully characterizes the

spectral shape as well as the ion temperature and its anisotropy for two different models of

the resonant charge exchange between O+ and O. It confirms that the distortions from the

Maxwellian shape can be substantial for this particular interaction. The distortions are also

such that along the magnetic field direction, the extracted apparent electron temperature is

always greater than the real temperature. This work also includes a determination of the

stability of the plasma against magnetic field-aligned electrostatic instabilities. It is found

that the NO+ distribution is always stable, whereas the O+ distribution may or may not

62



be stable, depending on the model chosen for the resonant charge exchange cross-section in

collisions with the background atomic oxygen gas.

4.2 Introduction

Current Incoherent Scatter (IS) spectral analysis techniques rely heavily on the inference that

ionospheric ion velocity distributions have a Maxwellian shape. However, it is well established

that in the presence of strong electric fields the ion velocity distribution of the weakly ionized

plasma at high latitudes can differ enough from a Maxwellian shape to substantially affect

IS spectra (Lockwood et al., 1987; Raman et al., 1981; Suvanto, 1988; Winser et al., 1987).

This in turn is known to potentially seriously influence the analysis of those spectra and the

retrieval of parameters such as the ion and electron temperatures (e.g. Raman et al., 1981;

Suvanto, 1988). Until now, studies of this topic have focused on a description of the ion

velocity distribution based on a semi-empirical toroidal shape. These have proven to fit one-

dimensional ion velocity distributions in the velocity plane perpendicular to the geomagnetic

field but only for a limited range of conditions (St-Maurice et al., 1976).

Owing in particular to the dependence of IS spectra on the derivative of the velocity

distributions, a more precise description of the velocity distribution than has been charac-

terized thus far has to be considered for the determination of IS spectra for the broad range

of conditions pertaining to IS Radar (ISR) data. Most pointedly, aside from anisotropy con-

siderations, no deviation from a Maxwellian has ever been considered, to our knowledge, for

line-of-sight directions parallel or near-parallel to the magnetic field in spite of the frequent

use of this direction to diagnose the various plasma properties of interest. As a typical ex-

ample, in his analytical work on IS spectra based on non-Maxwellian signatures produced by

the processes discussed in the present work, Hubert (1984) stated that at 27◦ to the magnetic

field direction, the line-of-sight velocity distribution was ‘very nearly Maxwellian’. To remedy

these shortcomings and provide the best possible tools to analyze IS spectra, results from a

state-of-the-art Monte-Carlo (MC) simulation are used here to retrieve high-accuracy one-

dimensional ion velocity distributions for any electric field, ion-neutral particle interaction,

and direction relative to the magnetic field. From these simulated ion velocity distributions,
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an interpolation scheme is perfected to extract a precise characterization of the ion velocity

distribution for up to two ion thermal speeds.

There are two main aspects to ion velocity distributions that must be kept in mind when

strong frictional heating affects the ion velocity distribution through ion-neutral collisions.

The first concerns the extent to which the distribution function is toroidal and how to charac-

terize that toroidal shape. The second is the temperature anisotropy, which originates from

the fact that during frictional heating events the temperature perpendicular to the magnetic

field is greater than the temperature along the magnetic field. These are both discussed in

greater detail in this section.

4.2.1 Toroidal nature of the ion velocity distribution

The toroidal shape of the ion velocity distribution is obtained when the ion collision to

cyclotron frequency ratio is small, as is the case in the ionospheric F region. One example of a

distorted ion velocity distribution is provided for a 150 mV/m electric field in Figure 4.3 based

on the MC simulation that is used in the present work. Based on a simple Relaxation Collision

Model (RCM) description of the ion-neutral collisions, distributions that are qualitatively

similar to what are seen in Figure 4.3 have often been characterized in terms of a parameter

D∗ and an effective temperature T ∗ in an equation of the form (Raman et al., 1981; St-

Maurice et al., 1976):

f0i(vi) =
n

(2πkBT ∗/mi)3/2
I0

(
2D∗

[
|c⊥|2

2kBT ∗/mi

]1/2)
exp

(
−D∗2 − |vi|2

2kBT ∗/mi

)
, (4.1)

where n is the plasma density, kB is the Boltzmann constant, mi is the ion mass, vi is the ion

velocity, ci = c||+c⊥ is the ion velocity in the E×B frame of reference, and I0 is the modified

Bessel function of order zero. This expression can be modified to allow for separate parallel

and perpendicular ion temperatures and to show more clearly the toroidal character of the

ion velocity distribution. This means that it is useful to characterize the above empirical

description through the somewhat more general expression:

f0i(vi) = n

(
mi

2πkBT‖

)1/2
mi

2πkBT ∗⊥

[
e−2D

∗C⊥I0 (2D∗C⊥)
]

exp
(
−C2

‖ − [C⊥ −D∗]2
)
, (4.2)
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where C⊥ = c⊥/
√

2kBT ∗⊥/mi, C‖ = c‖/
√

2kBT‖/mi, and T‖ is the temperature along the

magnetic field (see below for more on this). Because the function e−xI0(x) is of order 1 over

a wide range of x values, the toroidal character stands out clearly from the fact that the rest

of the perpendicular part of the distribution function introduces a strong peak at C⊥ = D∗.

The parameter T ∗⊥ is such as to yield a perpendicular temperature T⊥ that properly fits

observations.

Figure 4.3: O+ velocity distribution for collisions with its O parent gas. The distribution was
obtained from the MC simulation of Winkler et al. (1992) for a 150 mV/m electric field. ‘Vperp

X’ and ‘Vperp Y’ are velocity components perpendicular to the magnetic field, and Vparallel is
parallel to the magnetic field. The distribution was derived by a MC simulation developed by
Winkler et al. (1992) rather than from Equation 4.2, but the results are qualitatively similar.
The origin of this toroidal shape is discussed in detail in St.-Maurice and Schunk (1977).

The RCM-based description of the toroidal distribution function in terms of the D∗ pa-

rameter has been used repeatedly in the past for ionospheric data studies. Historically, it was
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first used to fit and interpret satellite one-dimensional velocity distribution data in directions

perpendicular to the geomagnetic field (St-Maurice et al., 1976). Later, it was used to calcu-

late how IS spectra were affected by the distorted distributions (Raman et al., 1981) and also

served to analyze such spectra by finding the combination of parameters in Equation 4.2 that

would reproduce observed spectral shapes as closely as possible (e.g., Akbari et al., 2017b;

Suvanto et al., 1989). The stability of the distribution function against electrostatic waves,

particularly in magnetic field aligned directions, was also investigated based on the toroidal

RCM-based description given by Equation 4.2. Near the F region peak, these distributions

were found to be unstable for D∗ > 1.27 (Ott and Farley , 1975; St-Maurice et al., 1976;

Suvanto et al., 1989).

An advanced MC description was created by Winkler et al. (1992) well after the empirical

D∗ approach had been developed. Results from this MC code, which are used in the present

work, confirmed that the distribution was qualitatively similar to the description provided by

Equation 4.2. They were also used to show that when the electric field became large for any

angle with respect to the geomagnetic field, it was not possible to obtain good quality fits

to the one-dimensional ion velocity distributions described by D∗ in Equation 4.2. Double-

Maxwellians along the line-of-sight were also attempted but were not successful either. The

MC was not used further after that because when this work was carried out, the simulation

run-times were long. As a result the data analysis either stuck with the empirical D∗ method

or simply used a Maxwellian description of the ion velocity distribution along the line-of-

sight. It is also noteworthy that the MC distributions were not used to test the stability of

the distribution function against electrostatic waves. This is now done in the present paper.

4.2.2 Ion temperature anisotropy

Aside from the toroidal shape, an important property of the ion velocity distribution during

strong frictional heating events is that it has different temperatures T‖ and T⊥ parallel and

perpendicular to the geomagnetic field. In the context of distributions that depart consid-

erably from thermodynamic equilibrium, we recall that the temperature is defined as the

second velocity moment of the velocity distribution along a particular direction. This means
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that along, say, the x-direction, the temperature Tx is defined through:

Tx =
1

kBn

∫
dvmi(vx− < vx >)2f0i, (4.3)

where vx is the velocity in the x-direction, n is the density given by:

n =

∫
f0idv, (4.4)

and the average velocity < vx > is given by:

< vx >=
1

n

∫
dvvxf0i. (4.5)

The average ion temperature Ti is related to the two temperatures via the relation (St-Maurice

and Schunk , 1979):

Ti =
T‖ + 2T⊥

3
. (4.6)

The ion temperature Tiφ along a line-of-sight at an angle φ to the geomagnetic field (the

‘aspect angle’) becomes (Raman et al., 1981):

Tiφ = T‖ cos2 φ+ T⊥ sin2 φ. (4.7)

This relation holds as long as the distributions along the parallel and perpendicular are

separable functions of v‖ and v⊥. As is presented later in this paper, the MC simulations

show that this assumption, while not perfect, is reasonable. We note that from Equations

4.6 and 4.7 that the line-of-sight ion temperature is equal to the average ion temperature

when the aspect angle is 54.7◦ (Raman et al., 1981).

An additional feature of the ion temperature in the presence of ion-neutral collisions is

its relation to the relative ion-neutral drift. The temperatures parallel and perpendicular to

the magnetic field are given by (St-Maurice and Schunk , 1979; Winkler et al., 1992):

T‖ =
β||mn| < v >i − < v >n |2

2kB
+ Tn (4.8)

and

T⊥ =
β⊥mn| < v >i − < v >n |2

2kB
+ Tn, (4.9)
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where Tn is the temperature of the neutral gas, mn is the neutral mass, < v >n is the mean

velocity of the neutral gas, < v >i is the mean velocity of the ion gas, and β|| and β⊥ are

partition coefficients. It follows from Equation 4.6 and the above equations that:

β‖ + 2β⊥ = 2. (4.10)

It is also usually assumed that a good leading-order description of the ion energy balance

yields (Schunk and Nagy , 2009):

Ti − Tn =
mn

3kB
| < v >i − < v >n |2. (4.11)

Various corrections from this pure quadratic dependence on the magnitude of the relative

drift can be found in the literature. For example, an energy dependence associated with hard-

sphere collisions has been described in St-Maurice and Hanson (1982), Schunk (1977), and

Banks and Kockarts (1973). Independently from the quadratic dependence or lack thereof of

(Ti− Tn) on the relative drift, β‖ and β⊥ are functions of the mean relative velocity between

ions and neutrals (Gaimard et al., 1998; St.-Maurice and Schunk , 1977; Winkler et al., 1992),

though Equation 4.10 still holds. In addition, if ion-ion and ion-electron collisions contribute

enough to the ion energy budget, anisotropy calculations based on the sole inclusion of ion-

neutral collisions require corrections. These corrections are discussed further in Section 4.3.2.

4.2.3 Outline of present work

In the present paper, the MC simulation perfected by Winkler et al. (1992) is used to extract

the best possible information that could be retrieved about the shape of the ion velocity

distribution and its anisotropy in the presence of large electric fields under a predominance

of ion-neutral collisions. Various smoothing techniques are introduced and tested to filter the

noise that necessarily affects the MC calculations of velocity distributions. Numerous runs

are made to produce one-dimensional ion velocity distributions in terms of polynomial fits

as functions of electric field strength, ion and neutral composition, and aspect angle to make

the results accessible to a routine analysis of data. This work also studies the impact that

a more recently published cross-section for the Resonant Charge Exchange (RCE) collisions

between O and O+ has on the ion velocity distribution, as well as the impact of both the
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old and new collision frequency models on the stability of the velocity distribution against

electrostatic waves. Finally, we introduce a procedure to correct the velocity distribution for

the influence of ion-ion and ion-electron collisions.

Section 4.3 discusses the procedure in more detail. Section 4.4 highlights the results of

the smoothing technique in exploring ion temperature anisotropy and associated IS spec-

tra. Section 4.5 discusses new findings from the calculations and offers an overview of the

results. The various polynomial coefficients that were used to characterize one-dimensional

ion velocity distributions for various situations are included as an online supplement to this

paper.

4.3 Background and procedures

As stated in the introduction, the work presented here employs the MC simulation docu-

mented in Winkler et al. (1992) that uses an effective RCE cross-section given by:

Qex
T (E) = [A−B log10(E)]2, (4.12)

where E is the kinetic energy, in eV, of the relative motion between an ion and a neutral

with which it collides and A and B are coefficients that reflect the ion-neutral collision cross-

section. For O+-O collisions, Winkler et al. (1992) used 10.99 and 0.95 for the constants A

and B, respectively, as derived from the work of Knof et al. (1964). However, a newer study

presented in Pesnell et al. (1993) implies 13.72 and 2.126 instead for A and B. As a result,

we have considered the newer RCE cross-section introduced by Pesnell et al. (1993) (referred

to as the ‘POH cross-section’, after Pesnell, Omidvar, and Hoegy) and compared the results

with the cross-section from Knof et al. (1964) (referred to as the ‘KMV cross-section’, after

Knof, Mason, and Vanderslice) used in Winkler et al. (1992).

The work presented here also uses a number of collisions that is high enough to char-

acterize the ion velocity distribution up to two thermal speeds with good accuracy. The

resulting distributions have been smoothed to eliminate the effects of increased statistical

fluctuations in the tails of the distributions. From the resulting one-dimensional ion velocity

distributions, theoretical IS spectra have been constructed. In the process, we have also fully
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characterized the anisotropy of the ion temperature and its variations along any line of sight.

Furthermore, and as explained in Section 4.2.1, we have queried the stability of the attending

velocity distribution against field-aligned electrostatic waves expected to be of the ‘loss-cone’

(or ‘Post-Rosenbluth’) type (Ott and Farley , 1975; St-Maurice, 1978).

4.3.1 Computation of high quality IS spectra and related proper-

ties based on MC simulations

In order to obtain good statistics up to two ion thermal speeds, the number of collisions

has been increased from the two million seen in Winkler et al. (1992) to 40 million. In

addition, necessitated by the fact that spectra depend strongly on the derivative of the

velocity distribution (see subsection 4.3.1), extra smoothing and interpolation techniques

were used before the necessary calculations to characterize the IS spectra could be carried

out.

Polynomial smoothing techniques

As explained in Section 4.2.1, previous studies have used the D∗ parameter to describe the

distorted MC ion velocity distributions (Akbari et al., 2017b; Raman et al., 1981; Suvanto

et al., 1989; Winkler et al., 1992). However, the work of Winkler et al. (1992) shows that such

fits are not terribly accurate, particularly when the electric field is stronger than 35 mV/m.

To improve the quality of the functions that should be used in spectral calculations, we used

a special polynomial technique to describe a particular velocity distribution. As a first step

towards our goal, a 6-point bivariate interpolation scheme was applied to the MC output to

obtain the distribution function at specific velocities and to describe the distribution from

the MC more continuously than given by Winkler et al. (1992). After that, we performed a

multinomial least squares fit not on the smoothed distribution but, rather, on its logarithm

so as to avoid dealing with negative numbers for the reconstructed distribution anywhere. A

chi-squared optimization scheme was used to find the ideal degree of least squares fit. The

procedure was carried out until the distribution was smaller than the maximum by a factor

1.5×10−8, where the noise was typically becoming strong. After exponentiating the resulting
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polynomial, we had a highly accurate representation of the velocity distribution up to the

point where the distribution was 1.5 × 10−8 times smaller than the maximum, which was

typically beyond our nominal two ion thermal speeds.

However, there could be cases where a smooth description of the velocity distribution

would be needed beyond two thermal speeds, particularly if the electron temperature was

to be more than twice the ion temperature. For the purpose of introducing a smooth (but

admittedly more qualitative) description for the far tail of the distribution under such condi-

tions, the multinomial fit was merged smoothly with a v2 quadratic fit of the logarithm of the

distribution over the region representing greater than two thermal speeds. The qualitative

nature of this procedure should have little consequence in practice because it is usually the

case that, when ions are frictionally heated by strong electric fields, the electron temperature

is typically smaller, or at least not much larger, than the ion temperature. This means that

a Te > 2Tiφ situation should rarely be met — if ever — during strong frictional heating

situations, consistent with the notion that large electric fields are found mostly in regions of

smaller plasma densities, i.e., regions devoid of electron precipitation and attendant electron

heating.

Although the above method describes the ion velocity distribution well enough to obtain

accurate IS spectra, one disadvantage is that the MC simulation and the fitting procedure

must be repeated every time the electric field or the aspect angle is changed. Using a modern

computer, the MC simulates 40 million collisions in only 2.5 minutes, but to obtain a fit to a

spectrum observed by an ISR calls must be made to a program that calculates the spectrum

from the ion and electron velocity distributions for a number of ion and electron tempera-

tures. Therefore, MC simulations are too time-consuming and impractical even for modern

IS spectral analysis techniques. To greatly accelerate the process, ion velocity distributions

were simulated by steps of 10 mV/m between 20 mV/m and 200 mV/m and by steps of

10◦ aspect angles between 0 and 90◦. A continuous description of every resulting distribu-

tion was obtained using the procedure described above. After that, Legendre polynomials

were fitted to the smoothened continuous distribution found after taking the exponential of

a polynomial fit to the logarithm of the distribution. Each distribution is described by a sum

of Legendre polynomials going up to order 50 (but only the even-numbered coefficients are
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needed, given the symmetry of the situation). By using these 50 coefficients, our procedure

cuts the amount of time required to get a spectrum from toroidal velocity distributions by

two orders of magnitude. The resulting 50 orthogonal polynomial coefficients could then be

interpolated to compute the required coefficients for arbitrary electric fields and aspect angles

of interest for which MC simulations had not been performed.

Spectral calculations

For a stable plasma, the spectrum of scattered radar waves is given by the expression

(Sheffield , 1975):

S(k, ω) =
2π

k

∣∣∣∣1 +Gi

ε

∣∣∣∣2 g0e +
2π

k

∣∣∣∣Ge

ε

∣∣∣∣2 g0i, (4.13)

where ε is the longitudinal dielectric function given by

ε(k, ω) = 1 +Ge(k, ω) +Gi(k, ω), (4.14)

and k is the difference between the incident wavevector and the scattered wavevector, ω is the

Doppler shifted angular frequency (i.e., the difference between the incident radar frequency

and the scattered radar frequency), g0i and g0e are the one-dimensional velocity distributions

of ions and electrons, respectively, evaluated at the velocity kω/k2, and Ge and Gi are the

electron and ion dielectric functions, respectively.

As has been done in the past, we used the standard magnetized collision-free expressions

for the electron dielectric function, and we neglected ion gyro-resonances and the effects of

collisions in our calculations of the ion dielectric function (e.g., Raman et al., 1981). Note that

this procedure is not strictly valid if the radar line-of-sight is within 3◦ from perpendicularity

to the magnetic field (e.g., Sheffield , 1975; Woodman, 2004, and references therein).

For the singly ionized species of interest here, the ion dielectric function was computed

from the expression

Gi (k, ω) =
4πe2n0i

mik2

∫ ∞
−∞

dv
k · ∂f0i

∂v
ω − k · v − iγ

, (4.15)

where e is the elementary charge, we recall that f0i is the ion velocity distribution, and n0i is

the plasma density. Here, γ is asymptotically small, real, and positive and is used to describe

analytically continuous functions that give rise to Landau damping effects.
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Defining the x-direction to be along the scattered wavevector, the above can be rewritten

as:

Gi (k, ω) =
ω2
pi

k2

∫ ∞
−∞

dvx

k
∂g0i
∂vx

ω − kvx − iγ
, (4.16)

where ω2
pi =

4πn0ie
2

mi

is the square of the ion plasma frequency. This function is obtained

by integrating the velocity distributions over the two velocity components perpendicular to

a line-of-sight direction defined by k (in this case, the x-direction).

Finally, after defining the non-dimensional parameters xi =
ω

bk
and y =

vx
b

, where b is

the ion thermal speed, Gi is evaluated through the computation:

Gi (xi) =
ω2
pi

bk2

P ∫ ∞
−∞

dy

∂g0i
∂y

xi − y
+ iπ

∂g0i(y)

∂y

∣∣∣∣
y=xi

 , (4.17)

where P indicates the principal value integral and contains the derivative of the one-dimensional

distribution function. The imaginary part of this expression likewise requires the evaluation

of a derivative. Although working with the derivative appears at first sight easy to do nu-

merically, it does require a noise-free description of the velocity distribution. This is why

this work went to quite an extent to carefully smooth the MC output.

In addition to the noise-removal for the calculation of the derivative, there was the chal-

lenge of evaluating the real part of Gi, which contains a singularity at xi = y. Following a

technique introduced by Raman et al. (1981), we first introduced a change of variables to

move the singularity to the origin, letting c = y − xi so as to write:

GiR =
ω2
pi

bk2
P
∫ ∞
−∞

dc

−c
∂g0i
∂c

. (4.18)

The integration was then performed through an even-numbered Gaussian quadrature, namely,

an expression of the form: ∫ x2

x1

f(x)dx =
N∑
j=1

wjf(xj), (4.19)

where x1 and x2 are limits of integration, which were set to be at numbers considered to

have a large magnitude in the present context, namely, ±6. In this expression, we also have

f(x) as the function being integrated, N the number of quadrature points, and wj a weight
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attributed to the evaluation of f at the location xj. The advantage of using an even-numbered

Gaussian quadrature is that the function was never evaluated at the singularity c = 0. Still,

the numerical quadrature occasionally ended up with an isolated spike or two due to surviving

noise at some specific locations of xi. When this happened, the number of quadrature points

was simply increased by an additional two points to prevent the quadrature from sampling

the previous bad point or points. At a bad point, the result from the first quadrature was

then replaced by the value at that point that came from the new quadrature. This provided

a final filter by which to remove residual noise effects.

The numerical evaluation of the ion dielectric function was tested against the analytical

result based on MC runs for which the electric field was set to zero. In that case, the solution

was found to agree perfectly with the analytical solution GiM for Gi, namely, with the plasma

dispersion function (Sheffield , 1975):

GiM =
Te

Tik2λ2D

[
1− 2xi exp

(
−x2i

) ∫ xi

0

exp(p2)dp− xiiπ1/2 exp(−x2i )
]
. (4.20)

where λD is the Debye length.

4.3.2 Incorporating Ion-Ion and Ion-Electron Collisions

In general, it should not be assumed that ion-electron and ion-ion collisions in the F region

play a completely negligible role. For instance, in the absence of frictional heating, even

for ordinary situations, the ion temperature starts to depart from the neutral temperature

typically at 300 km or above because of heat exchange with hotter electrons (e.g., Schunk

and Nagy (2009)). Likewise, the ion-ion collision frequency starts to be comparable to the

ion-neutral collision frequency by a height of 300 km if the ion temperature is comparable to

the neutral temperature. The role of ion-ion collisions in the context of the present paper is

to rebuild an isotropic Maxwellian ion velocity distribution.

We used a simple empirical modification to incorporate the corrections due to ion-ion and

ion-electron collisions through the equation:

νTfT = νinfin + νief1i + νiif2i, (4.21)

where νT = νin + νie + νii and νin, νie, and νii are the ion-neutral, ion-electron, and ion-ion

momentum transfer collision frequencies, respectively. Here, fT is the ‘total’ (or final) ion
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velocity distribution, fin is the MC simulated distribution, f1i is an isotropic Maxwellian

velocity distribution with a temperature equal to the electron temperature, and f2i is an

isotropic Maxwellian velocity distribution with a temperature equal to the average ion tem-

perature. A similar procedure was followed by Tereshchenko et al. (1991) to describe the

effect of ion-ion collisions. However, these authors used D∗ (or RCM) distributions instead

of the far more accurate MC distributions. They also did not include the effect of ion-electron

collisions.

In Equation 4.21, the collision frequencies presented in Schunk and Nagy (2009) for νie,

νii, and νin were used. For the first two, we assumed that O+ ions dominated above 250 km

and that NO+ dominated below that altitude. For the POH RCE collision frequency in s−1

between O+ and O, we used

νin = 3.0× 10−11n(O)T 1/2
r (1− 0.135 log10(Tr/1000))2 (4.22)

where n(O) is the density of O in cm−3, and Tr = (Ti + Tn)/2. For the KMV RCE collision

frequency, we used (Schunk and Walker , 1973):

νin = 3.69× 10−11n(O)T 1/2
r (1− 0.065 log10 Tr)

2 (4.23)

4.3.3 Validation of Results

Details of the MC simulation are given in Winkler et al. (1992), along with its validation

techniques. As for the present work, additional software was needed to create IS spectra

from an MC output because IS spectral calculations involve not just the derivative of the

distribution function (which is noisy owing to statistical fluctuations), but also a principal

value integral of that derivative over a singularity, as seen through Equation 4.17. For

IS spectra, the derivative must be handled particularly well near the ion thermal speed

because ion-acoustic speeds often dominate the spectrum. This requires a smooth high-

accuracy description of the derivative of the distribution up to two ion thermal speeds, and

the Gaussian integration techniques used in this work further require the distribution to be

described continuously. To create this description, the number of collisions was increased

by a factor of eight over Winkler et al. (1992) to reduce the 10% statistical fluctuation
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level found for two million collisions at two thermal speeds to 3% (as per
√
N , where N

is the number of collisions). Smoothing techniques discussed in Section 4.3.1 were used to

remove remnant fluctuations in the tail of the distribution. These smoothing and numerical

integrations recover the expected theoretical spectra for a Maxwellian velocity distribution

when the electric field is 0 mV/m for artificial neutral temperatures ranging from 1000 K to

10000 K. The differences were barely visible, and were far less than any noise measurement.

4.4 Results

The use of MC simulations has allowed us to revisit: (1) the question of the plasma stability

against field-aligned electrostatic instabilities of the loss-cone (or Post-Rosenbluth) type,

(2) the dependence of the ion temperature and its anisotropy on the effective electric field

strength, and (3) the IS spectral shape as functions of electric field strength and aspect angle

for applications to the analysis of data during strong electric field episodes. We present the

key findings from the MC simulations in this section.

The simulations described in this report can be applied to regions for which the ion-

neutral collision frequency is smaller than 0.2 times the cyclotron frequency, i.e., regions

typically above 135 km. However, as the altitude changes, the collision model and the results

change. Above 300 km, ion-ion collisions start to become important if the plasma density is

elevated and the ion temperature is low. Above 400 km, vertical transport must be taken into

account, and the distributions undergo transient signatures of the kind described by Loranc

and St-Maurice (1994). In that case, there can be many different solutions, depending on how

long a magnetic field tube has been in a fast convecting region. Therefore, these simulations

are only valid between 130 km and 400 km. Above this, they are only valid if the magnetic

field line has been heated for a few minutes.

The following are results from two specific altitude regions of the ionosphere: 1) the

NO+ dominant region between approximately 150 and 200 km, and 2) the O+ dominant

region above 250 km. Between 150 to 200 km the neutral population is dominated by O and

N2; hence an O and N2 neutral background concentration is used for the NO+ calculations.

Meanwhile, O is dominant above 250 km; hence only an O background is used for O+
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calculations. At high latitudes, the Mass Spectrometer IS radar (MSIS) model gives a neutral

density of 2.0 × 1015 m−3 for the NO+ region and a neutral density of 1.8 × 1014 m−3 for

the O+ region (Hedin, 1991). Given the variability in plasma density, this work assumes a

1.0× 1011 m−3 plasma density for both NO+ and O+. For the spectral calculations, a radar

frequency of 440 × 106 Hz is assumed, consistent with the three Advanced Modular ISRs

located near Resolute Bay (Nunavut, Canada) and near Poker Flat (Alaska, Canada).

4.4.1 Plasma Stability

The question of plasma stability is of interest for two reasons. First, it is useful to know if the

plasma becomes unstable under strong electric field conditions in that it might create field-

aligned irregularities that could be observed by rockets or radars in the F region. Second,

if the plasma is unstable, there is a chance, as originally argued by Ott and Farley (1975),

that the perpendicular part of the velocity distribution could be rearranged by the ensuing

structures to maintain the plasma configuration in a near-marginally stable state. This

might impact the large aspect angle results of the present work, which assumes that the MC

results are fully applicable, once small corrections due to ion-ion and ion-electron collisions

are included. In that context, the wave-particle interactions in the presence of an instability

could be viewed as akin to having much stronger ion-ion interactions than anticipated.

One way to test the stability of the plasma against electrostatic waves is to develop a

Nyquist diagram in which the imaginary part of the plasma dispersion relation is plotted

against its real part in the complex plane. If the resulting diagram circles the origin, the

plasma is unstable (St-Maurice, 1978; Stix , 1992). Any contribution from Maxwellian elec-

trons moving at the same bulk velocity stabilizes the plasma. However, at zero aspect angles

(field-aligned structures), the electron contribution to the dispersion relation vanishes (St-

Maurice, 1978). If, for that case at least, the diagram circles the origin, the simulated plasma

is unstable. Therefore, the calculations of the imaginary and real parts of the ion dielectric

function Gi are used here to check the plasma stability.

It has been shown by St-Maurice (1978) and Suvanto et al. (1989) that the toroidal

distribution in terms of D∗ is actually unstable to field-aligned structures if D∗ > 1.27

when RCE collisions are dominant for O+ ions and a Relaxation Collision Model (RCM) is
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used. This stated, the RCM is an extreme model where there is never any ordinary elastic

scattering involving partial exchange of energy and momentum between the colliding partners

and where the collision frequency is independent of energy (St.-Maurice and Schunk , 1977).

Even after scaling the resulting velocity distributions to fit observations as well as possible,

the description given by an RCM remains extreme. It is therefore of interest to see if the MC

results also produce unstable plasmas. As illustrated in Figure 4.4, the stability of the plasma

depends on the choice of RCE cross-section. The POH cross-section, published in Pesnell

et al. (1993), is used for the green curve in Figure 4.4. For the blue curve, the older KMV

cross-section published by Knof et al. (1964) is used. This cross-section has been the basis for

much of the work on F region ion-neutral collisions until the mid-1990s. Both cases include

elastic scattering from polarization interactions and hard core repulsion. Interestingly, Figure

4.4 shows that the POH cross-section produces stable distributions, whereas the KMV cross-

section (like the RCM distributions with D∗ > 1.27) produces unstable distributions for the

100 mV/m case shown. Similar O+-O collision results were found for electric fields up to 200

mV/m.

4.4.2 Temperature Anisotropy

Figure 4.5 shows the line-of-sight ion temperature found for O+-O collisions using the POH

RCE cross-section for a variety of electric fields and aspect angles. As expected, the line-of-

sight ion temperature increases with electric field strength and aspect angle. These results

correspond closely to those based on Equation 4.7, implying that the distribution function is

indeed well described by the product of separate functions of v‖ and v⊥. There is nevertheless

an interesting small deviation from separability that comes across near 30◦ when the electric

field strength exceeds 100 mV/m. This is shown through Figure 4.6, which shows the ratio

of the results presented in Figure 4.5 to what is inferred from Equation 4.7. Differences of

up to 15% are seen but only if the electric field exceeds 150 mV/m. Nonetheless, it should

be noted that, at 15%, the actual difference between the calculated and actual line-of-sight

temperatures are as much as 1200 K. This stated, it is interesting to note that only aspect

angles of the order of 30◦ are affected by the lack of perfect separability. Furthermore, when

these calculations are performed for molecular ions, the deviations from Equation 4.7 are less
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Figure 4.4: Nyquist diagram of the ion dielectric function at 100 mV/m. Green curve not
circling the origin: POH cross-section result. Blue curve circling the origin: KMV cross-
section result.
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than the 2% temperature uncertainty.

Figure 4.5: Line-of-sight O+ temperature as a function of electric field and aspect angle,
based on the MC simulation of O+-O collisions using the POH RCE cross-section.

Figure 4.7 examines more precisely the behavior of the ion temperature by producing line

plots of the relative ion-neutral temperature difference as a function of the relative ion-neutral

drift for a chosen set of aspect angles. This figure is produced using O+-O collisions with the

POH RCE cross-section. It also reflects the effect of collisions with other charged particles

by producing the temperature results both with and without the influence of ion-ion and

ion-electron collisions. In addition, the figure clearly shows that the ion-neutral temperature

difference increases in parabolic-like fashion, and that, in agreement with Figure 4.5, for a

given relative drift, the ion-neutral temperature difference increases with increasing aspect

angle.

As discussed in Section 4.2.2 and confirmed by Figure 4.6, the ion temperature at an

aspect angle close to 55◦ is basically equal to the average ion temperature. This allows for a

comparison between the average ion temperature, inferred from the 55◦ angle, and Equation

4.11, which is based on the Maxwell molecule approximation, namely, on a collision frequency

that does not depend on energy. The latter is shown by the black curve in Figure 4.7. There is

clearly a noticeable difference between the Maxwell molecule approximation and the actual
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Figure 4.6: Ratio between the MC simulated results of Figure 4.5 and the predictions from
Equation 4.7.

energy-dependent result in the case of RCE collisions and the temperature from the MC

simulations is several thousand kelvin higher than the Maxwell molecule prediction when the

electric field is very strong.

The solid lines in Figure 4.7 give the results when only ion-neutral collisions are considered,

whereas the dashed lines illustrate the influence of ion-ion and ion-electron collisions, using

a 2000 K electron temperature, a 1.8×1014 m−3 neutral density, and a plasma density of

1011 m−3. The neutral density is based on the Mass Spectrometer Incoherent Scatter 90

(MSIS-90) model, and corresponds to quiet (F10.7 = 74), winter conditions at an altitude of

roughly 320 km (Hedin, 1991). This neutral density was chosen because it is roughly where

Coulomb collisions begin to have an appreciable impact (more than 500 K).

In Figure 4.8, the RCE calculations for O-O+ collisions are repeated, this time for the

KMV cross-section. Although the overall results are similar, at lower aspect angles the

POH cross-section produces larger relative temperature differences than the KMV cross-

section, whereas, consistent with Equation 4.10, at higher aspect angles the KMV cross-

section produces larger ion-neutral temperature differences. Additionally, the average ion
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temperature is greater for the KMV cross-section. This differences may be large enough

to be measurable and allow one, based on observations, to identify which cross-section is

closer to reality. Lastly, the impact of Coulomb collisions is slightly greater for the KMV

cross-section than the POH cross-section.

Figure 4.9 examines the ion temperature anisotropy for NO+ instead of O+ ions, with

a 50% O and 50% N2 neutral mixture (other background concentrations involving NO+ are

shown in the supplementary material). As with the O+ case, the temperature difference

increases in parabolic-like fashion with the magnitude of the relative drift. The temperature

differences in Figure 4.9 are larger than those in Figure 4.7, particularly at smaller aspect

angles. As the O concentration decreases and the N2 concentration increases, the ion-neutral

temperature difference also increases. This is a result of the influence of the neutral mass on

the heating rate (see Equations 4.8, 4.9, or 4.11). This stated, there is a very strong agreement

at 55◦ with the Maxwell molecule approximation for any neutral mixture (not shown). This

contrasts sharply with the strongly energy-dependent RCE process observed in the O+-O

temperature plots. Finally, Figure 4.9 shows the impact of ion-ion and ion-electron collisions

to be negligible when compared to Figure 4.7. This is because the ion-neutral collision

frequency is much larger at the lower altitudes for which molecular ions dominate the plasma

composition. The much larger ion-neutral collision frequency means a considerable reduction

of the influence of Coulomb collisions on the ion velocity distribution.

4.4.3 Spectra

As stated in Section 4.2, two signatures to the ion velocity distribution need to be considered:

its anisotropy, just discussed above, and the extent to which its shape is toroidal. In this

subsection, we study the extent to which the toroidal form can influence IS spectral shapes.

The IS spectra were derived from the MC simulations by following the methodology

described in Section 4.3.1. Figures 4.10 through 4.15 show a variety of those spectra as

a function of xi. All instances are compared with their ‘effective’ (same line-of-sight ion

temperature) Maxwellian counterparts and include ion-ion and ion-electron collisions for a

plasma density of 1011 m−3. The panels on the left-hand-side are for Te = 2000 K, while

those on the right-hand-side are for Te = 4000 K. Each figure describes results for aspect
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Figure 4.7: Difference between the line-of-sight ion temperature and the neutral temperature
as a function of relative drift for O+-O collisions at various aspect angles. Green lines: POH
RCE cross-section. Black line: Maxwell molecule average ion temperature given by Equation
4.11. Solid lines: pure ion-neutral particle interactions. Dashed lines: ion-ion and ion-electron
collisions included. Top panel: relative ion-neutral drift between 0 m/s and 4000 m/s. Bottom
panel: relative ion-neutral drift between 0 m/s and 2000 m/s.
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Figure 4.8: Same as Figure 4.7 but for the KMV RCE cross-section.
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Figure 4.9: Same as in Figure 4.7 but for NO+ collisions with 50% O and 50% N2.
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angles of 0◦, 22◦, 55◦, and 90◦. Only the results for electric fields of 50 mV/m or greater are

shown because the spectra are nearly identical to equivalent Maxwellian spectra when the

electric field is weak.

4.4.4 O+ spectra

Figures 4.10 through 4.12 show the spectra created for O+ ions colliding with O, based on the

POH RCE cross-section, for electric fields of 50 mV/m, 100 mV/m, and 170 mV/m, respec-

tively. The figures show that even for a ‘moderate’ electric field of 50 mV/m, the MC-derived

ion velocity distributions are capable of creating spectra that differ substantially from those

derived from Maxwellian ion velocity distributions at the same effective ion temperature. In

qualitative agreement with earlier work on the subject (e.g., Raman et al., 1981) for strong

electric fields and large aspect angles, the spectra become triple-humped. A new feature

from the present work, furthermore, is that in the magnetic field direction, the MC-derived

spectra are similar to Maxwellian spectra, but with electron to ion temperature ratios that

look larger than they actually are (as seen through the peak-to-trough ratio of a given spec-

trum). The origin of this new feature is rooted with the use of the second velocity moment

in the definition of temperature. For the particular situation at hand, along the magnetic

field direction, the bulk of the distribution is narrower than that of a Maxwellian with the

same line-of-sight ion temperature because there are more particles in the high velocity tail

of the velocity distribution. The figures also show the substantial influence of ion-ion and

ion-electron collisions on the O+ spectra. The results are similar if the KMV cross-section

for collisions is used instead of the POH cross-section.

4.4.5 NO+ spectra

Figures 4.13 through 4.15 show NO+ spectra for collisions in a 50% O and 50% N2 mixture

(other background concentrations are shown in the supplementary material). As expected

from the discussion in Section 4.4.2, these spectra are minimally influenced by ion-ion and

ion-electron collisions. Compared to the O+-O spectra, the MC simulated NO+ spectra are

actually quite similar to those obtained from an effective Maxwellian ion velocity distribution,
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Figure 4.10: IS spectra for O+-O collisions with a 50 mV/m electric field. First row from the
top: 0◦ aspect angle. Second row from the top: 22◦ aspect angle. Third row from the top: 55◦

aspect angle. Bottom row: 90◦ aspect angle. Left-hand-side: 2000 K electron temperature.
Right-hand-side: 4000 K electron temperature. Green curves: MC simulated spectra. Black
curves: Maxwellian spectra with the same line-of-sight ion temperature. Dashed lines: with
ion-ion and ion-electron collisions added in.
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Figure 4.11: Same as in Figure 4.10 but for a 100 mV/m electric field.
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Figure 4.12: Same as in Figure 4.10 but for a 170 mV/m electric field.
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particularly for the lower electron temperature at 2000 K. In addition, for a given electric

field, aspect angle, and electron temperature, there is little variation as a function of the

O to N2 concentration ratio. Interestingly, the molecular ion spectra undergo their largest

distortions at 100 mV/m in the figures shown here, whereas the spectra at 50 mV/m and 170

mV/m reveal hardly any detectable departure from their equivalent Maxwellian counterparts.

4.5 Summary and conclusion

The ion contribution to the plasma dielectric function has been calculated directly from

MC simulations for the first time, using an advanced smoothing and fitting technique. The

MC code developed by Winkler et al. (1992) has been the basis for these calculations, and

corrections from the effect of collisions with other charged particles have been added. Based

on these calculations, this study was able to (1) determine the response of the ion temperature

along various lines-of-sight and for a wide range of electric field strengths, (2) determine the

response for the shape of IS spectra, and (3) study the stability of the velocity distributions

against electrostatic field-aligned instabilities.

4.5.1 Ion temperature results

We need to consider two factors affecting the ion temperature in the presence of strong

electric fields, namely, its anisotropy and its departure from a pure parabolic dependence on

the magnitude of the relative drift between ions and neutrals. It is important to consider

these effects for a proper characterization of frictional heating in Joule heating studies.

Given the anisotropy in the ion temperatures, we have studied the dependence of the

MC calculated line-of-sight ion temperature Tiφ on the aspect angle. We have found that

when corrections due to Coulomb collisions can be neglected, Tiφ is for the most part well

described by its dependence on the parallel and perpendicular temperature through Equation

4.7, implying for one thing that the temperature at 55◦ aspect angle is the same as the

average ion temperature needed for Joule heating rate studies. As expected from previous

work on the subject, the temperature anisotropy was found to be much stronger for O+ ions

than for NO+ ions, owing to O+-O RCE collisions making the perpendicular temperature
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Figure 4.13: Same as in Figure 4.10 but for NO+ ions colliding with a mixture 50% O and
50% N2.

91



Figure 4.14: Same as in Figure 4.13 but for a 100 mV/m electric field.
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Figure 4.15: Same as in Figure 4.13 but for a 170 mV/m electric field.
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much larger than the parallel temperature. We also found that the anisotropy is larger

and significant enough to be measurable if we use the KMV RCE collision cross-section as

opposed the more recently published POH RCE cross-section. It should be noted, however,

that corrections due to Coulomb collisions have measurable effects on the O+ ions. Note that

as the altitude increases, the influence of Coulomb collisions also increases: as the neutral

density decreases, the corresponding ion-neutral collision frequency lowers, thereby increasing

the impact of Coulomb collisions in Equation 4.21. This explains the increase in line-of-sight

ion temperature with altitude seen in real ISR data, such as in Goodwin et al. (2014). This,

however, does not change the fact that Tiφ at 55◦ is equal to the average Ti. Also, unlike their

O+ counterparts, NO+ ions are unaffected by collisions with other charged particles because

of their low altitude. Finally, our calculations highlight that, under very strong electric field

conditions, the NO+ temperatures can be much greater than the O+ temperatures due to the

fact that the ion-neutral temperature difference is proportional to the mean neutral mass,

which is larger at the lower altitudes where NO+ is the dominant species.

A second element of the Tiφ determination comes from the speed dependence of the

temperature difference between ions and neutrals. Our calculations show that when collisions

with atomic oxygen dominate, the average O+ temperature undergoes significant departures

from the pure parabolic Maxwell molecule dependence on the magnitude of the relative

ion-neutral drift that is widely used in the literature. By contrast, there is essentially no

such deviation from a Maxwell molecule behavior for NO+ ions colliding with any neutral

atmospheric mix.

4.5.2 IS spectral calculations

As expected from previous work, we have found from the MC simulated velocity distributions

that spectral differences between non-Maxwellian plasmas and equivalent (same line-of-sight

ion temperature) Maxwellian plasmas are far greater for O+ ions above 250 km than for NO+

ions at lower altitudes. As far as NO+ ions are concerned, the spectral shapes are for the

most part so similar to those associated with a Maxwellian velocity distribution with the

same line-of-sight temperature that there is apparently little need to analyze NO+ spectra

with non-Maxwellian ion dielectric functions. One exception is electric field of the order
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of 100 mV/m. In that case, the NO+ spectral shape does have visible departures from its

Maxwellian counterpart. These differences are greater for larger electron temperatures and

for aspect angles of the order of 55◦ or greater.

The situation for the O+ spectral shape is very different and far more complex than has

been inferred in previous work based on fits to RCM solutions. For instance, for electric fields

of the order of 100 mV/m or greater, unless the line-of-sight is very close to the magnetic

field direction, the spectra from the MC simulations contain multi-peaked shapes that are

rather different from those expected from earlier work (e.g., Raman et al. (1981); Suvanto

et al. (1989)). Parallel or nearly parallel to the magnetic field direction, the spectra coming

from MC velocity distribution simulations are similar to those from effective Maxwellian

distributions but with the important caveat that they point to a larger Te/Tiφ ratio than is

actually present. This feature comes from an elongated high-energy tail in the ion velocity

distribution relative to a Maxwellian with the same temperature, meaning that the bulk of

the distribution has to be narrower than the equivalent Maxwellian.

4.5.3 Plasma stability

The ion velocity distributions coming from the MC simulations of the POH cross-section are

more stable than what has been inferred from RCM models in the past. This means that the

loss-cone (or Post-Rosenbluth) instability requires a larger electric field to be excited than

assumed in the past. Moreover, we found that the instability may not be triggered at all —

at least not for electric fields less than 200 mV/m — if we use the more recent POH RCE

cross-section, whereas the older KMV cross-section does give rise to the instability.

4.5.4 Access to the simulated ion velocity distributions

A central goal of the present work has been to make it practical to process ISR data with a

proper allowance for strong departures of the ion velocity distribution from the Maxwellian

shape. To make it feasible to analyze the data with a fast computation of the ion dielectric

function, we have produced a large number of ion velocity distribution simulations for various

aspect angles and effective electric field strengths. For each electric field and aspect angle
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computation, a set of 50 Legendre polynomial coefficients was computed to provide a smooth,

accurate, and continuous description of the distribution as a function of y (recall y = vx/b)

along the line-of-sight for effective electric fields in the range of 20 mV/m to 200 mV/m

by steps of 10 mV/m and for aspect angles between 0 and 90◦ by steps of 10◦. We have

found that various suitable interpolation schemes could be used on each of the 50 polynomial

coefficients to produce velocity distributions at non-tabulated values of the effective electric

field and aspect angles. Additional aspect angles and electric fields could also be handled

under request as well.

In supplementary material, we offer a listing of the 50 polynomial coefficients with an

explicit description of how to use them to recreate the ion velocity distribution for a posted

electric field and aspect angle. A user with a standard analysis program can substitute an

interpolated ion velocity distribution in place of a Maxwellian to construct spectra for any

electron temperature, plasma density, radar frequency, neutral density, electric field, and

aspect angle. Software used to reconstruct the ion dielectric function from these velocity

distributions is also available upon request, as well as the coefficients for different collision

types. Only one neutral temperature is used for these distributions, namely, 1000 K. A change

in that temperature by a few hundred K can be handled by adding that difference to the ion

temperatures. For example, if the desired neutral temperature is 1300 K, an ion temperature

of 2000 K translates to a 700 K difference between the line-of-sight ion temperature and the

neutral temperature, instead of 1000 K. For NO+ with a 50% O and 50% N2 neutral mixture,

this would mean that the velocity distribution would be associated with a relative ion-neutral

drift of 820 m/s instead of 1000 m/s (as per Figure 4.9), and the non-Maxwellian signature

would be accordingly somewhat smaller.

Finally, we note that our simulated velocity distribution determination at 90◦ should be

most useful in particularly strong electric field situations for Retarding Potential Analyzer

data studies of the type undertaken by St-Maurice et al. (1976).
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4.7 Additional Material

This section details additional work performed outside of the submitted “Incoherent scatter

radar spectra based on Monte-Carlo simulations of ion velocity distributions under strong ion

frictional heating”. However, Figure 4.16 has been submitted to Radio Science as a potential

cover image.

For a global look at the spectral signatures the evolution of IS spectra for a POH O+-O

cross-section is shown in Figure 4.16 as a function of electric field strength and aspect angle for

a 3000 K electron temperature. This figure highlights many of the features seen previously,

but in particular this figure shows the evolution of a central (low frequency) feature as a

function of the electric field strength and of the aspect angle. This central peak becomes

particularly noticeable at 100 mV/m and higher, but is most unique at approximately 20◦.

To both test the dependency of this feature on electron temperature, and further analyze

the dependency of this feature on aspect angle, Figures 4.17 through 4.19 show the evolution

of an IS spectra for a POH O+-O cross-section as a function of electric field strength and

electron temperature for aspect angles 10◦, 20◦, and 30◦. Here, 20◦ still shows a much more

pronounced central peak than either 10◦ or 30◦ (or even similar figures at aspect angles 0◦,

40◦, 50◦, 60◦, 70◦, 80◦, and 90◦), regardless of electron temperature. Not only is this feature

most distinct at 20◦, it is also the least likely to be confused with the spectral features seen

from Maxwellian ion velocity distributions, regardless of the electron-ion temperature ratio.
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This leads us to conclude that the spectra stemming from toroidal velocity distributions at

100 mV/m and higher are particularly identifiable at approximately 20◦ aspect angle, which

is not what was expected when this research was started.
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Figure 4.16: Evolution of theoretical IS spectra for a POH O+ ionosphere as a function of
electric field strength and aspect angle. Electron temperature taken to be 3000K. All spectra
normalized with respect to their total power.
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Figure 4.17: Evolution of theoretical IS spectra for a POH O+ ionosphere as a function
of electric field strength and electron temperature. The aspect angle is taken to be 10◦. All
spectra normalized with respect to their total power.
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Figure 4.18: Evolution of theoretical IS spectra for a POH O+ ionosphere as a function
of electric field strength and electron temperature. The aspect angle is taken to be 20◦. All
spectra normalized with respect to their total power.
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Figure 4.19: Evolution of theoretical IS spectra for a POH O+ ionosphere as a function
of electric field strength and electron temperature. The aspect angle is taken to be 30◦. All
spectra normalized with respect to their total power.
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Chapter 5

CHARACTERIZING ION TEMPERATURE

ANISOTROPY AND THE ELECTRIC FIELD

VECTOR USING RISR-N OBSERVATIONS

Chapter 4 uses simulations of ion-neutral collisions in a magnetized environment to char-

acterize the ion temperature anisotropy. Using instruments to do this requires multiple mea-

surements at different aspect angles of the same ion velocity distribution. This is relatively

simple to do with in situ instruments, such as with the EFI on the Swarm spacecraft (Archer

et al., 2015), but this is more challenging to do with a single ground-based ISR because each

beam probes a different region. This stated, it is still possible to characterize ion temperature

anisotropy using ISRs, but strong electric field events and specific beam arrangements are

required.

For similar reasons, it is also challenging to characterize the electric field vector in a

given location using an ISR. The Madrigal database (an online geospace database) provides

a calculation of the electric field vector as a function of latitude along a direct path towards the

geomagnetic north pole using a Bayesian approach (Heinselman and Nicolls , 2008). However,

even though these calculations are shown to agree with rocket observations, this technique

requires multiple measurements that are separated by several degrees of longitude. This

technique therefore misses smaller scale structures in the electric field and can be fraught

with difficulty at times.

This chapter continues the electric field and ion temperature anisotropy studies of Akbari

et al. (2017b) and Chapter 4 by using RISR-N plasma parameters to characterize both the

ion temperature anisotropy and the electric field vector. This chapter first discusses the
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special ISR beam arrangement used in this research, as well as a specific“experiment” (a

beam pattern) which had this beam arrangement during a strong electric field event. Next,

the results of characterizing the ion temperature anisotropy and the electric field vector from

this arrangement are discussed. Lastly, a summary of this research is given, along with a list

of the future goals of this work.

However, note that since Chapter 4 highlights the importance of using complete descrip-

tions of ion velocity distribution based on MC simulations in IS spectral fitting techniques,

meaning that the results of this chapter are only preliminary because this data is inferred

using Maxwellian spectral fitting techniques. Therefore, the work presented in this chapter

will ultimately be reprocessed to improve the quality of the results.

5.1 ISR Experiment Setup and Observations

In order to characterize the ion temperature anisotropy, multiple measurements of the same

ion velocity distribution are needed at different aspect angles. This can be arranged with

multiple, independent ISRs, but it is usually not possible to use more than one ISR, due to

the current space distribution of such radars. However, this can be done with simultaneous

measurements from multi-beam radars, like AMISR. Figure 5.1 shows a cartoon of RISR-N

making measurements with two beams, both pointing towards the geomagnetic north pole

at different elevation angles. Even though line-of-sight measurements of the drift are not

necessarily measurements of the E×B drift, multiple beam measurements can help infer the

E×B drift if there are no large changes with azimuth or altitude in the electric field. In Figure

5.1, the beams overlap within the same flux tube and are taking nearby measurements of the

weakly-ionized, magnetized O+ plasma between roughly 200 km and 400 km. In this figure,

beam 1 is measuring the line-of-sight velocity, vφ1, at one altitude and beam 2 is measuring

the line-of-sight velocity, vφ2 at a slightly different altitude. When the parallel electric field

is negligible the north-south E×B drift, v⊥los, is the dominant process determining both vφ

values, so that for either beam:

v⊥los =
vφ

sinφ
(5.1)
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Figure 5.1: A cartoon of RISR-N probing the ionosphere with two different beams. The red
and green lines show two different beams, the red and green arrows show the two respective
line-of-sight velocity measurements, the blue arrow is the magnetic field, the purple arrow
indicates the location of the geomagnetic north pole relative to the experiment, and the black
arrows represent the component of the E×B drift resolved from the line-of-sight ion velocity
measurements. φ1 and φ2 are the aspect angles of beam 1 and beam 2. As indicated, for this
geometry the electric field is into the page.

where φ is the aspect angle of a given beam. Therefore, if the two v⊥los measurements in

Figure 5.1 are close together and nearly identical, then both measurements are examining

similar ion velocity distributions from different aspect angles. Although there are several

experiments frequently running on RISR-N that contain beam arrangements conducive to

this study, the real challenge is having this beam arrangement run during a period of extreme

heating between 200 to 400 km.

In the WorldDay66m beam arrangement there are four beams pointing towards the ge-

omagnetic north pole at different elevation angles, as shown in Figure 5.2. Between 11

September 2014 and 15 September 2014 this beam arrangement ran on RISR-N and mea-

sured a strong heating event on 12 September 2014 between 18 and 20 UT. This heating

event is the focus of the work by Clauer et al. (2016), which uses these measurements to

examine ionospheric data near local noon within unusually strong reverse convection cells
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that developed during a period of very strong (28 nT) northward IMF.

The plasma parameters during this period, including v⊥los, are given in Figures 5.3 and 5.4

as a function of UT and altitude. These figures only focus on the 55◦ and 75◦ elevation angles

because: 1) their measurements are close in magnetic latitude and therefore these beams

measure similar (if not the same) flux tubes, 2) these two beams have the highest signal-to-

noise ratio between 200 km and 400 km, and 3) they are close to each other between 200 km

and 400 km, which reduces altitudinal variations in the ion velocity distribution. Figures 5.3

and 5.4 show a large line-of-sight ion temperature coincident with a strong negative north-

south component of the E × B drift, indicating a 3 km/s sunward drift. Figure 5.5 shows

that these strong drifts are coincident with large electric fields inferred by RISR-N using the

Heinselman and Nicolls (2008) approach. During this period there is also an elevated plasma

density. Meanwhile, the electron temperature is rather uneventful between 200 km and 400

km during this time, but Clauer et al. (2016) highlights electron temperature enhancements

in the E-region around 110 km, which is expected from strong electric fields (Foster and

Erickson, 2000). Figure 5.6 shows that parallel to the magnetic field the drifts are less than

200 m/s in magnitude. This not only implies that the electric field parallel to the magnetic

field is small, but also that the vertical drifts are negligible compared the electric fields

perpendicular to the magnetic field that drive the v⊥los values found from the 55◦ and 75◦

elevation angle beams.

To show that v⊥los is nearly identical for both the 55◦ and 75◦ beams, measurement

“pairs” between roughly 200 km and 400 km are designated. In each pair, measurements are

separated by less than 10 km in altitude, one measurement is taken from the 55◦ beam, and

one measurement is from the 75◦ beam. Figures 5.7 to 5.9 show line plots of viφ and v⊥los

for several pairs as a function of UT. Both measurements in a pair show similar viφ values,

but when Equation 5.1 is used the v⊥los values resolved from either measurement are almost

identical, and often even contain the same fine details. Figure 5.10 further emphasizes the

similarities in v⊥los by taking the values inferred from the 55◦ beam against those inferred

simultaneously from the 75◦ beam. In each figure an orthogonal least-squares fit is performed,

that is, a least-squares fit in which regression considers both dependent and independent

variables. The slope of the fit performed for each pair is close to one, implying that each
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Figure 5.2: The beam arrangement for the WorldDay66m experiment, which ran from 21.5
UT 11 September 2014 to 0.01 UT 15 September 2014. The blue range gates indicate beam
55748, which has an elevation angle of 20◦ and an aspect angle ranging between 111.66◦ and
117.98◦. The green range gates indicate beam 56954, which has an elevation angle of 35◦ and
an aspect angle ranging between 125.19◦ and 130.43◦. The orange range gates indicate beam
60617, which has an elevation angle of 55◦ and an aspect angle ranging between 144.23◦ and
147.50◦. The red range gates indicate beam 64280, which has an elevation angle of 75◦ and
an aspect angle ranging between 163.55◦ and 164.36◦. All beam depicted are at an azimuth
of 26◦, which is towards the geomagnetic north pole (other beams are available, but are not
the focus of this research).

.
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Figure 5.3: Plasma parameters captured by RISR-N on the 55◦ elevation beam during the
18 UT to 20 UT heating event on 12 September 2014. Equation 5.1 is used to calculate v⊥los.
Note that negative velocities are towards the radar, and positive are away.
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Figure 5.4: Plasma parameters captured by RISR-N on the 75◦ elevation beam during the
18 UT to 20 UT heating event on 12 September 2014. Equation 5.1 is used to calculate v⊥los.
Note that negative velocity values are towards the radar, and positive are away.
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Figure 5.5: Ionospheric horizontal electric field inferred from RISR-N at 84◦ geomagnetic
latitude on 12 September 2014. Figure taken from Clauer et al. (2016).

Figure 5.6: The line-of-sight ion velocity captured by RISR-N on a beam nearly parallel to
the magnetic field during the 18 UT to 20 UT heating event on 12 September 2014. Negative
velocities are towards the radar, and positive ones are away.
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measurement in a pair is examining a similar ion velocity distribution from a different aspect

angle.

5.2 Data Analysis

Knowing the temperature anisotropy present in the ionosphere, the effective electric field

(namely the relative ion-neutral drift) can be resolved through Equation 2.6. If the electric

field (the ion drift) is then known, it is possible to resolve the neutral wind at a given time

and space. Given the ideal beam arrangement and the strong electric field event present, this

section first compares this strong temperature event to the POH and KMV collision cross-

sections discussed in Chapter 4, in order to characterize the ion temperature anisotropy and

therefore the average temperature of the ionosphere. After this a new technique for resolving

the electric field vector at a given latitude is presented, which can be used at a later date to

constrain the F -region neutral wind.

In spite of the fact that this has not been analyzed with toroidal based spectra, this

preliminary study is based on the notion that the ion temperature is not too strongly affected

by toroidal distributions (Akbari et al., 2017b) so that the results should be considered as

correct to first order.

5.2.1 ISR Temperature Anisotropy Calculations

Figures 5.11 to 5.13 show the line-of-sight ion temperature as a function of UT for the des-

ignated pairs, and Figures 5.14 to 5.18 show the difference between the line-of-sight ion

temperature and the base-line neutral temperature (the approximate average temperature in

Figures 5.11 to 5.13 before heating occurred) from the 55◦ beam against those from the 75◦

beam. From these figures it is clear that the values from the 55◦ elevation angle are higher.

This is consistent with Chapter 4, which shows an increase in line-of-sight ion temperature

as the aspect angle increases. Figures 5.14 to 5.18 also reflect the anisotropy found from

the different collision cross-sections discussed in Chapter 4. In general the data agrees best

with the KMV O+-O collision cross-section, which confirms that this region is populated by

O+ and suggests that ionospheric temperature anisotropy follows the KMV O+-O collision
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Figure 5.7: Velocity values between 18 UT and 20 UT on 12 September 2014 for an assort-
ment of RISR-N measurement “pairs” between roughly 200 km and 400 km. Each pair has
one measurement from the 55◦ elevation beam, and one from the 75◦ elevation beam. The
measurements in a pair are less than 10 km apart from each other in altitude. The solid lines
are for viφ and the dashed lines are for v⊥los. The red lines reflect an elevation angle of 55◦,
and the black lines reflect an elevation angle of 75◦.
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Figure 5.8: Velocity values between 18 UT and 20 UT on 12 September 2014 for an assort-
ment of RISR-N measurement “pairs” between roughly 200 km and 400 km. Each pair has
one measurement from the 55◦ elevation beam, and one from the 75◦ elevation beam. The
measurements in a pair are less than 10 km apart from each other in altitude. The solid lines
are for viφ and the dashed lines are for v⊥los. The red lines reflect an elevation angle of 55◦,
and the black lines reflect an elevation angle of 75◦.
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Figure 5.9: Velocity values between 18 UT and 20 UT on 12 September 2014 for an assort-
ment of RISR-N measurement “pairs” between roughly 200 km and 400 km. Each pair has
one measurement from the 55◦ elevation beam, and one from the 75◦ elevation beam. The
measurements in a pair are less than 10 km apart from each other in altitude. The solid lines
are for viφ and the dashed lines are for v⊥los. The red lines reflect an elevation angle of 55◦,
and the black lines reflect an elevation angle of 75◦.
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Figure 5.10: v⊥los values at an elevation angle of 55◦ against simultaneous measurements
of v⊥los values at an elevation angle of 75◦ between 18 UT and 20 UT on 12 September 2014
for the same pairs shown in Figures 5.7 through 5.9. The purple line is an orthogonal least-
squares fit to the v⊥los values whose equation is given, and the black dashed line is the 45◦

line.
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cross-section. At lower altitudes the data tends more towards the POH curve, but it is im-

portant to emphasize that at lower altitudes the neutral mass is larger due to N2 populations,

which serve to both increase the line-of-sight ion temperature and decrease the anisotropy.

Additionally, the error bars show that altitudes above 320 km are noisy and therefore less

reliable, suggesting the KMV represents the data best between about 220 km and 320 km.

The KMV curve indicates a few of the corresponding effective electric field values used in the

MC simulation. Here, the effective electric field of the ISR data generally increases beyond

120 mV/m, reaching almost 140 mV/m for certain pairs. This is consistent with Figure 5.5,

which shows the electric field reaching 150 mV/m within the throat of the reverse convection

cells, as discussed in Clauer et al. (2016).

Knowing that the ISR observations lie the closest to the KMV collision cross-section

is arguably enough to characterize ion temperature anisotropy. However, an alternative

approach is to resolve β||/β⊥ from these results, and compare them to β||/β⊥ values from

Chapter 4. From Equation 4.7, for a given measurement:

Tφ1 = T|| cos2 φ1 + T⊥ sin2 φ1 (5.2)

which is rewritten as:

T|| =
Tφ1 − T⊥ sin2 φ1

cos2 φ1

(5.3)

Meanwhile, for the other measurement in a given pair:

Tφ2 = T|| cos2 φ2 + T⊥ sin2 φ2 (5.4)

Combining Equations 5.3 and 5.4 gives:

T⊥ =

Tφ2 −
Tφ1 cos2 φ2

cos2 φ1

sin2 φ2 − tan2 φ1 cos2 φ2

(5.5)

The perpendicular temperature is then used to find the parallel temperature. However,

assuming each measurement in a pair has the same mn and | 〈v〉i − 〈v〉n |2, Equations 4.8

and 4.9 yield:

T‖ − Tn =
β||mn| 〈v〉i − 〈v〉n |2

2kB
(5.6)

and:

T⊥ − Tn =
β⊥mn| 〈v〉i − 〈v〉n |2

2kB
(5.7)
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Figure 5.11: Line-of-sight ion temperatures between 18 UT and 20 UT on 12 September
2014 for the same RISR-N pairs shown in Figure 5.7. The red line is for an elevation angle
of 55◦, and the black line is for an elevation angle of 75◦. The dashed lines indicate the error
associated with a respective colour.
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Figure 5.12: Line-of-sight ion temperatures between 18 UT and 20 UT on 12 September
2014 for the same RISR-N pairs shown in Figure 5.8. The red line is for an elevation angle
of 55◦, and the black line is for an elevation angle of 75◦. The dashed lines indicate the error
associated with a respective colour.
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Figure 5.13: Line-of-sight ion temperatures between 18 UT and 20 UT on 12 September
2014 for the same RISR-N pairs shown in Figure 5.9. The red line is for an elevation angle
of 55◦, and the black line is for an elevation angle of 75◦. The dashed lines indicate the error
associated with a respective colour.
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Figure 5.14: Tiφ−Tn values between 18 UT and 20 UT on 12 September 2014 at an elevation
angle of 55◦ against simultaneous measurements of Tiφ values at an elevation angle of 75◦ for
two of the pairs shown in Figures 5.7 through 5.9. Tn is taken to be the base-line temperatures
seen in Figures 5.11 to 5.13. The green, blue, and red lines use Equation 4.7 and the T|| and
T⊥ values found in Chapter 4 along with a Tn of 1000 K (the temperature used in all the
MC simulations). The green line is found using the POH cross-section, the blue line is found
using the KMV cross-section, and the red line is found using NO+ with 50% O and 50% N2.
The green and blue dashed lines included Coulomb collisions, while the black dashed line is
the 45◦ line. The dots on the blue line indicate a given effective electric field used in the MC
simulation. Note that a seven-point running average in UT is performed for both beams.
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Figure 5.15: Tiφ−Tn values between 18 UT and 20 UT on 12 September 2014 at an elevation
angle of 55◦ against simultaneous measurements of Tiφ values at an elevation angle of 75◦ for
two of the pairs shown in Figures 5.7 through 5.9. Tn is taken to be the base-line temperatures
seen in Figures 5.11 to 5.13. The green, blue, and red lines use Equation 4.7 and the T|| and
T⊥ values found in Chapter 4 along with a Tn of 1000 K (the temperature used in all the
MC simulations). The green line is found using the POH cross-section, the blue line is found
using the KMV cross-section, and the red line is found using NO+ with 50% O and 50% N2.
The green and blue dashed lines included Coulomb collisions, while the black dashed line is
the 45◦ line. The dots on the blue line indicate a given effective electric field used in the MC
simulation. Note that a seven-point running average in UT is performed for both beams.
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Figure 5.16: Tiφ−Tn values between 18 UT and 20 UT on 12 September 2014 at an elevation
angle of 55◦ against simultaneous measurements of Tiφ values at an elevation angle of 75◦ for
two of the pairs shown in Figures 5.7 through 5.9. Tn is taken to be the base-line temperatures
seen in Figures 5.11 to 5.13. The green, blue, and red lines use Equation 4.7 and the T|| and
T⊥ values found in Chapter 4 along with a Tn of 1000 K (the temperature used in all the
MC simulations). The green line is found using the POH cross-section, the blue line is found
using the KMV cross-section, and the red line is found using NO+ with 50% O and 50% N2.
The green and blue dashed lines included Coulomb collisions, while the black dashed line is
the 45◦ line. The dots on the blue line indicate a given effective electric field used in the MC
simulation. Note that a seven-point running average in UT is performed for both beams.
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Figure 5.17: Tiφ−Tn values between 18 UT and 20 UT on 12 September 2014 at an elevation
angle of 55◦ against simultaneous measurements of Tiφ values at an elevation angle of 75◦ for
two of the pairs shown in Figures 5.7 through 5.9. Tn is taken to be the base-line temperatures
seen in Figures 5.11 to 5.13. The green, blue, and red lines use Equation 4.7 and the T|| and
T⊥ values found in Chapter 4 along with a Tn of 1000 K (the temperature used in all the
MC simulations). The green line is found using the POH cross-section, the blue line is found
using the KMV cross-section, and the red line is found using NO+ with 50% O and 50% N2.
The green and blue dashed lines included Coulomb collisions, while the black dashed line is
the 45◦ line. The dots on the blue line indicate a given effective electric field used in the MC
simulation. Note that a seven-point running average in UT is performed for both beams.
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Figure 5.18: Tiφ−Tn values between 18 UT and 20 UT on 12 September 2014 at an elevation
angle of 55◦ against simultaneous measurements of Tiφ values at an elevation angle of 75◦ for
one of the pairs shown in Figures 5.7 through 5.9. Tn is taken to be the base-line temperatures
seen in Figures 5.11 to 5.13. The green, blue, and red lines use Equation 4.7 and the T|| and
T⊥ values found in Chapter 4 along with a Tn of 1000 K (the temperature used in all the
MC simulations). The green line is found using the POH cross-section, the blue line is found
using the KMV cross-section, and the red line is found using NO+ with 50% O and 50% N2.
The green and blue dashed lines included Coulomb collisions, while the black dashed line is
the 45◦ line. The dots on the blue line indicate a given effective electric field used in the MC
simulation. Note that a seven-point running average in UT is performed for both beams.
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combining these gives:

T|| = (β||/β⊥)T⊥ + Tn
(
1− β||/β⊥

)
(5.8)

showing that β||/β⊥ is the slope in parallel versus perpendicular temperature plots. Figures

5.19 to 5.21 show the parallel temperature against the perpendicular temperature at the

same time for a given pair. At high energies, the perpendicular temperature is larger than

the parallel temperature. The slopes of the orthogonal least-squares fits in Figures 5.19

to 5.21 agree best with the KMV curve, particularly between 220 km and 320 km (where

measurements are not subject to N2 populations and the error measurements are reasonable).

This finding agrees well with Figures 5.14 to 5.18, in spite of the large error (which this method

amplifies). At lower altitudes β||/β⊥ is larger due to the increased N2 populations, while the

increase in β||/β⊥ with the 338.8 km - 331.3 km pair and the 359.0 km - 354.6 km pair is

likely the result of Coulomb collisions.

The β||/β⊥ values from Figures 5.19 to 5.21 are compared to those found using Equation

5.8 and the parallel and perpendicular temperatures resolved for the KMV and POH cross-

sections in Chapter 4. Figure 5.22 shows the resulting KMV and POH β||/β⊥ values as a

function of effective electric field. As the effective electric field increases β||/β⊥ for the POH

cross-section increases, but the β||/β⊥ for the KMV stays constant. Between 220 km and 320

km the β||/β⊥ values from Figures 5.19 to 5.21 agree the most with the KMV cross-section,

where the average β||/β⊥ for the KMV cross-section is 0.162 and the average β||/β⊥ for the

POH cross-section is 0.269. However, these results still show the KMV β||/β⊥ to be generally

higher than the approximate 0.1 value found from the heating event between 220 km and 320

km, suggesting the KMV cross-section underestimates the anisotropy. However, recall that

these results must be re-analyzed once distorted Maxwellian fits are incorporated in spectral

fitting techniques.

5.2.2 Electric Field Determination

As shown in Figures 5.7 through 5.9 and 5.10, the E×B drift is a dominant process in the

F -region, but it is also an important process in the E-region. From Schunk and Nagy (2009)
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Figure 5.19: T|| against T⊥ between 18 UT and 20 UT on 12 September 2014 for the pairs
shown in Figures 5.7. These values are resolved from Equations 5.3 and 5.5, and the averaged
Tiφ values used in Figures 5.14 to 5.18. The purple line is an orthogonal fit to the data (whose
equation is given), while the green, blue, and red lines use the T|| and T⊥ values found in
Chapter 4 along with a Tn of 1000 K (the temperature used in all the MC simulations). The
green line is found using the POH cross-section, the blue line is found using the KMV cross-
section, and the red line is found using NO+ with 50% O and 50% N2. The green and blue
dashed lines included Coulomb collisions, while the black dashed line is the 45◦ line. Note
that the error bars are divided by a factor of 5 for the sake of clarity.
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Figure 5.20: T|| against T⊥ between 18 UT and 20 UT on 12 September 2014 for the pairs
shown in Figures 5.8. These values are resolved from Equations 5.3 and 5.5, and the averaged
Tiφ values used in Figures 5.14 to 5.18. The purple line is an orthogonal fit to the data (whose
equation is given), while the green, blue, and red lines use the T|| and T⊥ values found in
Chapter 4 along with a Tn of 1000 K (the temperature used in all the MC simulations). The
green line is found using the POH cross-section, the blue line is found using the KMV cross-
section, and the red line is found using NO+ with 50% O and 50% N2. The green and blue
dashed lines included Coulomb collisions, while the black dashed line is the 45◦ line. Note
that the error bars are divided by a factor of 5 for the sake of clarity.
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Figure 5.21: T|| against T⊥ between 18 UT and 20 UT on 12 September 2014 for the pairs
shown in Figures 5.9. These values are resolved from Equations 5.3 and 5.5, and the averaged
Tiφ values used in Figures 5.14 to 5.18. The purple line is an orthogonal fit to the data (whose
equation is given), while the green, blue, and red lines use the T|| and T⊥ values found in
Chapter 4 along with a Tn of 1000 K (the temperature used in all the MC simulations). The
green line is found using the POH cross-section, the blue line is found using the KMV cross-
section, and the red line is found using NO+ with 50% O and 50% N2. The green and blue
dashed lines included Coulomb collisions, while the black dashed line is the 45◦ line. Note
that the error bars are divided by a factor of 5 for the sake of clarity.

128



Figure 5.22: β||/β⊥ as a function of the effective electric field for the POH collision cross-
section (green) and the KMV collision cross-section (blue).

the average ion velocity in the ionosphere is:

vi =
νin/Ωi

ν2in/Ω
2
i + 1

E′

B
+

1

1 + ν2in/Ω
2
i

E′ × b̂
B

+ vn (5.9)

where E′ is the effective electric field. For the F -region, to order νin/Ωi :

v⊥losF =
E

B
cos θ (5.10)

where θ is the angle between the E×B and line-of-sight. However, in the E-region νin/Ωi

is not negligible, giving:

v⊥losE =
νin/Ωi

ν2in/Ω
2
i + 1

E ′

B
sin θ +

1

1 + ν2in/Ω
2
i

E

B
cos θ + vn

ν2in/Ω
2
i

1 + Ω2
i /ν

2
in

(5.11)

By ignoring the negligible change in magnetic field strength from the E-region to the F -

region ionosphere, assuming the contribution from the E-region neutral wind to be small

compared to
E

B
, and by taking measurements of v⊥losF and v⊥losE at approximately the same

geomagnetic latitudes, Equations 5.10 and 5.11 give:

E

B
=

√
v2⊥losF +

(
v⊥losE

ν2in/Ω
2
i + 1

νin/Ωi

− v⊥losF
νin/Ωi

)2

(5.12)
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as well as:

tan θ =
(ν2in/Ω

2
i + 1)v⊥losE − v⊥losF
v⊥losFνin/Ωi

(5.13)

Using the MSIS-90 atmospheric model (Hedin, 1991) νin/Ωi values are found as a function of

altitude and time, allowing for preliminary calculations of the electric field vector during the

heating event discussed in Clauer et al. (2016). Figure 5.23 shows one such calculation for

a pair of measurements located at approximately 83.2◦ geomagnetic latitude. The F -region

measurement of v⊥los comes from the 75◦ beam at 284.8 km, and the E-region measurement

of v⊥los comes from the 55◦ beam at 119.0 km. For convenience, Figure 5.5 is superimposed

on the calculated electric field.

Figure 5.23 shows that between 18 and 20 UT v⊥losE is almost 2 km/s southward and

v⊥losF is almost 3 km/s southward. The strongest drifts occur during a period of particularly

strong heating. Within the same period the electric field grows to approximately 180 mV/m

between 19.2 UT and 19.7 UT, which is similar but larger than what is inferred through

the multi-beam ISR reconstruction. These electric field measurements are also greater than

what is inferred for the effective electric field in Figures 5.14 to 5.18, suggesting the presence

of a neutral wind that could be as large as 800 m/s. The angle between the E × B and

line-of-sight fluctuates but is near 180◦ during the period of extreme heating. Given that

RISR-N is in the polar cap and that this time period corresponds with approximately 10.25

MLT and 12.25 MLT (noon), this angle indicates a sunward E ×B drift and dusk-to-dawn

electric field, which is consistent with the reversed convection cell mentioned in Clauer et al.

(2016). The errors propagated for the electric field and the angle are large, but reasonable.

5.3 Summary and Discussion

By characterizing the ion temperature anisotropy in the ionosphere, as well as the electric

field, it is possible to resolve the neutral wind and better understand ionospheric Joule

heating. Here, overlapping northward pointing RISR-N beams were used to characterize

both the high-latitude ion temperature anisotropy and the electric field vector during a

strong heating event on 12 September 2014, in which the parallel drift is small and the E×B

drift dominates plasma motion.
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Figure 5.23: Early results from resolving the electric field vector at 83.2◦ geomagnetic
latitude using RISR-N data between 18 UT and 20 UT on 12 September 2014. a) The
perpendicular component of the line-of-sight ion velocities used in calculating E/B. The blue
line is the F -region reading (75◦ beam, altitude of 284.8 km) and the red line is the E-region
reading (55◦ beam, altitude of 119.0 km). Note that a seven point running average in time is
performed. b) The calculated E magnitude, assuming a B of 5× 10−5 T, in orange, and the
ionospheric horizontal electric field measured by RISR-N at 84◦ geomagnetic latitude (taken
from Clauer et al. (2016)). c) The calculated angle between the E×B and line-of-sight, where
0◦ is along the line-of-sight. The gray region indicates a period of particularly strong heating,
as inferred from Figures 5.11 to 5.13. Error calculations are performed assuming a 20% in
νin/Ωi.
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By plotting the line-of-sight ion temperature from one high elevation beam against the

line-of-sight ion temperature from another near-by (in terms of altitude and latitude) high

elevation beam, the ion temperature anisotropy was found to follow the KMV O+-O RCE

cross-section description discussed in Chapter 4 between 220 km and 320 km. Through the

KMV description the line-of-sight ion temperatures implied a 120 mV/m to 140 mV/m elec-

tric field to be present, somewhat less than inferred through a Bayesian approach in Clauer

et al. (2016) (Heinselman and Nicolls , 2008). An alternative method to characterize ion

temperature anisotropy was used, in which β||/β⊥ was found from calculated parallel and

perpendicular temperatures. At high-energies the perpendicular temperature was consis-

tently larger than the parallel temperature, as expected from Chapter 4. The β||/β⊥ values

found agreed most closely with the KMV cross-section between 220 km and 320 km, but still

appeared to be even more anisotropic.

Meanwhile, E-region readings and F -region readings were used in a preliminary study

of the electric field vector. The electric field was found to reach roughly 180 mV/m at

83.2◦ geomagnetic latitude, which is larger than that discussed in Clauer et al. (2016) at

84◦. Comparing the approximate 180 mV/m electric field measurement to the 140 mV/m

effective electric field measurement found using the KMV O+-O RCE cross-section results in

an approximate 40 mV/m difference that translates into a 800 m/s neutral wind, which is

large but has been seen for very large electric field conditions of the kind found in Killeen

et al. (1984). The angle of the E × B with respect to the line-of-sight was consistent with

the reverse convection cell analysis of Clauer et al. (2016).

To continue this research, the Special Study of E/B and Ion Temperature (SSEBIT)

experiment has been designed from this work and runs fairly frequently on both RISR-N and

RISR-C. Although the exact beam arrangement is still being refined, this experiment has

several overlapping northward beams on RISR-N and several overlapping southward beams

on RISR-C at similar aspect angles.

One flaw with the present results is that Chapter 4 showed the importance of using

spectral fitting routines based on toroidal velocity distributions for ISR data taken during

strong electric field events in the O+ dominated regions. The dataset that had to be used

was based on spectral fitting routines that relied on Maxwellian velocity distributions. This
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data will need to be reprocessed in accordance with Chapter 4 before firmer conclusions can

be realized. This new interpretation is currently underway but requires time to be inserted

into the current analysis scheme.
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Chapter 6

MODELING HIGH-ALTITUDE PLASMA TRANS-

PORT USING MONTE-CARLO SIMULATED

ION VELOCITY DISTRIBUTIONS

As mentioned in Chapter 5, anisotropic ion temperatures can be inferred with spacecraft

instruments and not just with ground-based instruments like ISRs. Figure 6.1 shows one

such case of anisotropic temperatures taken from Archer et al. (2015), which used the three

identical Swarm spacecraft (Friis-Christensen et al., 2008), orbiting at 500 km altitude. Each

satellite possesses two Thermal Ion Imagers (TIIs), which are oriented in the horizontal and

vertical directions. These instruments use microchannel-plate-intensified phosphor screens

imaged by a charge-coupled device to generate two-dimensional images of low-energy, high-

resolution (66 × 40 pixels) ion distribution functions at a rate of 16 Hz. These images are

down-sampled to 2 Hz measurements of the ion flow (where Langmuir probes are used to

correct for the spacecraft potential), the electric field, and the ion temperature (as discussed

in relation to Equation 4.3 in Chapter 4) (Knudsen et al., 2017).

In this case, the Swarm spacecraft observed large perpendicular to parallel temperature

ratios (as large as five) at 550 km during strong, localized electric fields. These ratios were at

the time thought to exceed the values predicted by collisional heating by a factor of two (which

Chapter 5 indicates may well be the case for very strong electric fields). This led Archer et al.

(2015) to conclude that the temperature anisotropy observed through the Swarm spacecraft

is not simply a function of the electric field strength, but also results through the motion of

hot plasma from strongly collisional regions to weakly-collisional regions.

In order to give more insights into the satellite results, this chapter revisits Loranc and
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Figure 6.1: Anisotropic ion temperature heating event, taken directly from Archer et al.
(2015). The blue lines indicate values inferred from Swarm B, and the red lines indicate
values inferred from Swarm A roughly 30 s later. Swarm B is traveling antisunward around
01:42 MLT on 13 December 2013 between 04:52:05 UT and 4:54:46 UT. Ion temperature,
horizontal flow, upward flow, and horizontal/vertical sensor images are measured by the TII,
while magnetic variations are determined using the Vector Field Magnetometer (VFM) and
electron temperature and electron density are measured by the Langmuir probe. The TII raw
images are taken coincident with dashed black lines.
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St-Maurice (1994), given that fluid theory is unable to reproduce the observed features of

ionospheric ion upflows along flux tubes on short transition time scales. Loranc and St-

Maurice (1994) formulated an analytical theory of the response of the high-latitude F -region

to frictional heating using a time-dependent gyro-kinetic O+ model across a discontinuous

boundary between fully collisional and collisionless plasmas. By assuming a constant and

uniform polarization electric field to reduce the calculation of the ion guiding center mo-

tion in the frame of a convecting flux tube to simply one-dimensional ballistic trajectories,

they obtained the ion velocity distribution function, ion density, parallel velocity, parallel

and perpendicular temperature, and parallel flux as a function of time and altitude. Their

work showed that the velocity distributions are often distorted and formed from multiple

populations in the initial steps of the evolution following the onset of a frictional heating

event. Loranc and St-Maurice (1994) also found initial perturbations to propagate rapidly

up the flux tube, observed periods in which the parallel temperature decreased to only a few

hundred Kelvins, and saw large parallel temperatures and large downward parallel velocities

develop as the flux tube returned to diffusive equilibrium. Wilson (1994) also modeled the

evolution of ionospheric O+ field-aligned upflows generated from high-latitude ion-neutral

frictional heating, using a numerical semikinetic, collisional model. He also found distorted

ion velocity distributions, but used discrete steps in electric field on the way to a steady

state, and required stepping in both time and space. His results did not differ too markedly

from the simpler formulation by Loranc and St-Maurice (1994), in spite of the far greater

complexity of their calculations.

In this upgraded model of the weakly collisional altitude region based on the Loranc

and St-Maurice (1994) approach, the effects of changing the electric field strength and the

ion velocity distribution at the collisional boundary are studied. That is to say: O+ ions

are taken to be described by MC results at the collisional boundary and are assumed to

be collisionless above it. The velocity distribution then evolves as a result of the vertical

transport along a flux tube of newly heated ions, with the fastest ions being the first to reach

a particular altitude. Unlike Loranc and St-Maurice (1994), this model: 1) includes the effect

of temporal electric field changes on a convecting magnetic field line by incorporating the

smooth descriptions of the ion velocity distributions developed in Chapter 4 using the POH

136



O+-O cross-section, 2) does not use step-wise increments in the parallel and perpendicular

temperatures to create boundary ion velocity distribution functions, and 3) includes the effect

of changing densities at the boundary. From this analysis, variable anisotropic temperature

ratios, changing plasma densities, ion heat flows, and ion upflows are obtained as a function

of time and altitude for a variety of trigger conditions and a variety of possible ion-neutral

cross-sections. This chapter first discusses the software behind the work in more detail, before

outlining the findings. A number of possible future improvements are listed at the end.

6.1 Modeling High Altitude Ion Distributions

Weakly collisional regions of the ionosphere are subject to the vertical transport of plasma

from highly collisional O+ regions, making the plasma at Swarm altitudes (550 km) strongly

dependent on the time history of a sampled flux tube. As ions move according to a given ve-

locity distribution and travel into weakly-collisional regions, they are subject to the combined

acceleration of the polarization electric field and gravity, which both act along the magnetic

field at high-latitudes. As time goes on, these particles travel upwards and then fall back

down into strongly-collisional regions. To determine the two-dimensional ion velocity distri-

bution at a specific altitude above the boundary layer and a specific time relative to changing

conditions at the boundary layer, this work first determines the number of particles traveling

at a given final velocity at a specific time and altitude relative to the boundary distribution

it originated from.

For a given final altitude relative to the boundary and a final parallel (to the magnetic

field) velocity, the initial parallel velocity for a group of moving particles is found from:

v||0 =
√
v2||f − 2agp∆z (6.1)

where v||f is a chosen velocity at some particular altitude above the boundary, agp is the

combined acceleration of gravity and the polarization electric field, and ∆z is the altitude

above the boundary. In this work the acceleration is simply taken to be 5 m/s2 to approximate

the combined effect of gravity and polarization electric fields due to electrons (see Section 6.3
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for more). The length of time this population has spent traveling to ∆z is then found using:

∆t = (v||f − v||0)a−1gp (6.2)

Knowing ∆t and the time-history of the boundary layer (which is chosen before the simulation

runs), the electric field and density from when the population left the boundary is recovered,

which in turn reveals the two-dimensional distribution the particle population originated

from. By then taking a slice through this distribution at v||0, the relative number of particles

traveling at the given v||f is found, as well as the perpendicular (to the magnetic field)

distribution. Repeating this process for a series of v||f values reveals the total two-dimensional

distribution present at a given ∆z and time. Since this motion follows a magnetic field line,

the variable electric field changes the ion velocity distribution at the collisional boundary,

before it moves upward.

The approach first described provides a noise-free determination of the ion velocity dis-

tribution at a given time and location, and it does not require marching in time and tracking

the motion of particles over a series of altitudes. As mentioned, a similar technique is used

by Loranc and St-Maurice (1994) to develop an O+ time-dependent gyro-kinetic model of

the high-latitude F -region. However, due to the analytical nature of their calculations Lo-

ranc and St-Maurice (1994) use a time-dependent ion velocity distribution function at the

boundary that is described by a simple bi-Maxwellian characterized by different parallel and

perpendicular ion temperatures, mainly:

f(v, z = 0, t) = n0

[
mi

2πkbT⊥(0, t)

]
e−miv

2
⊥/2kbT⊥(0,t) ×

[
mi

2πkbT||(0, t)

]1/2
e−miv

2
||/2kbT||(0,t) (6.3)

where n0 is the boundary plasma density. Loranc and St-Maurice (1994) then used step

changes to determine the ion velocity distribution above z = 0. In the work presented here

the shape of the boundary distribution is instead determined by the electric field, specifically

the MC results characterized in Chapter 4 using the POH O+-O RCE collision cross-section

(see Appendix B for more information). Specifically a six degree polynomial fit is used to

provide a smooth description of the coefficients as a function of electric field, allowing for the

boundary electric field to be any magnitude between 0 mV/m (a Maxwellian distribution)

and 200 mV/m (highly toroidal distribution). Meanwhile, the magnitude of the boundary
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distribution is determined by the plasma density, and as the plasma density at the bound-

ary increases/decreases the overall magnitude of the boundary ion velocity distribution also

increases/decreases.

6.2 Sample Runs

The output from two sample runs is shown to provide insights into the observations by

Archer et al. (2015). Sample run 1 focuses on the effect an elevated boundary electric

field has on the weakly-collisional region, while sample run 2 focuses on a boundary plasma

depletion. This second run is performed in order to: 1) examine the role of the boundary

plasma density in creating ion temperature anisotropies in the F -region, and 2) qualitatively

characterize the effects of an increased recombination rate that results from elevated ion-

neutral frictional heating in strongly-collisional regions during moderate to strong electric

fields. This recombination is through:

O+ + N2 → NO+ + N

due to its sensitivity to the ion and neutral particle energy (Banks et al., 1974). Enhanced

recombination rates of this nature are discussed extensively in Schunk et al. (1975), but are

not fully implemented in this work because knowledge of the ion and neutral density profiles

are required. Since it is challenging to determine from Swarm observations the degree of

recombination being observed (which likely changes on a case-by-case basis), it is not realistic

or practical to fully characterize the effects of enhanced recombination rates in this model.

Thus, only a simple study of boundary plasma depletion is performed.

Any altitude is easily examined with this model, but since the focus of this work is the

Swarm spacecraft, which is roughly 100 km to 150 km above the approximate boundary

between fully collisional and collisionless plasmas, this work will focus on the region 100 km

above the boundary.
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6.2.1 Sample Runs 1A and 1B: Changing Electric Field

To make a qualitative comparison with the kinds of observations made by Archer et al.

(2015), the boundary electric field is linearly increased by 1 mV/m per second from 0 mV/m

(equivalent to a Maxwellian ion velocity distribution) to 100 mV/m and then decreased at the

same rate back to 0 mV/m, while the boundary plasma density is kept constant at 1× 1012

m−3. Letting ts be the beginning of the electric field increase, Figure 6.2 shows the ion velocity

distribution as it evolves over time 100 km above the boundary layer. Here the recovered

velocity distribution is a superposition of various time histories. For example, at ts = 250s

a central plasma depletion is seen at approximately v||f = 400 m/s, which originates from a

toroidal boundary velocity distribution. Meanwhile, the surrounding features are from more

Maxwellian boundary distributions. As time goes on, the toroidal ion velocity distributions

from the boundary sweep through the 100 km two-dimensional ion velocity distribution from

high to low v||f values, leaving behind the original Maxwellian distribution.

Using these ion velocity distributions and Equations 4.3 through 4.5, Figure 6.3 shows how

the plasma density, parallel velocity, and both the parallel and perpendicular temperatures

all changed as functions of time at 100 km. At 40 s the plasma density starts to increase,

with a 19% increase by ts = 160 s. The density then decreases to about 3% above the original

density over 320 s, after which the plasma density continues to stay slightly elevated for over

1000 s, slowly and gently increasing and then decreasing back to the original plasma density

at ts = 0 s. The average parallel velocity also begins to increase at 40 s, and experiences a 270

s long upflow that reaches 230 m/s slightly before the plasma density reaches its maximum.

After this upflow, the parallel velocity becomes negative, gradually extending to -40 m/s at

ts = 700 s. This downflow then becomes less negative, and ultimately returns to zero.

Before 40 s, the parallel and perpendicular temperatures are approximately equal (to

within the 2% uncertainty mentioned in Chapter 4). The parallel temperature then begins

to increase from 1000 K to a maximum of 1600 K by ts = 140 s. After this, the parallel

temperature decreases back down to its original value by 230 s, decreases further, and then

gradually increases back to 1100 K, ultimately decreasing back to its original temperature

after 1000 s. However, the perpendicular ion temperature begins to increase at 210 s, reaching

140



Figure 6.2: The velocity distribution 100 km above the boundary layer as the boundary
electric field changes. Here, the boundary electric field is linearly increased by 1 mV/m per 1
second from 0 mV/m (equivalent to a Maxwellian ion velocity distribution) to 100 mV/m and
then decreased at the same rate back to 0 mV/m, while the boundary plasma density is kept
at a constant 1× 1012 m−3. ts = 0 s is when the boundary electric field began to increase.
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a maximum temperature of 5300 K at 300 s, then returns back to 1000 K by 390 s.

To explore the effects of changing the scale height (the distance over which the density

depletes by a factor of e), Figure 6.4 shows a figure similar to Figure 6.3, but 100 km higher

(200 km above the boundary). Around 130 s the plasma density increases and reaches a 30%

increase by ts = 240 s. At this point the density begins to decrease back to the original value,

decreasing more gradually with time. The average parallel velocity begins to increase at 120

s, remaining elevated for 260 s and reaching a maximum of 320 m/s, 60 s before the plasma

density maximum. The upflow then becomes a downflow, extending to -81 m/s at ts = 690s

before ultimately returning to zero. At 110 s the parallel temperature increases from 1000 K

to 1800 K by ts = 180s. The parallel temperature then decreases back to 1000 K by 280 s,

gradually decreases further to 880 K, then increases to 1190 K before ultimately returning to

its original value. The perpendicular ion temperature begins to increase at 290 s, reaching a

maximum temperature of 5050 K at 380 s. then returns back to 1000 K by 480 s.

Just like the 100 km altitude case, the ion temperature at 200 km becomes highly

anisotropic due to transport from strongly-collisional regions. Although the perpendicu-

lar temperature is smaller at higher altitudes, ion upwelling is 100 m/s larger at 200 km than

at 100 km. The higher altitude achieves a 5.7 perpendicular to parallel temperature ratio at

380 s, 180 s after the peak average parallel ion velocity, while the lower altitude reaches a 5.4

perpendicular to parallel temperature ratio at 300 s, 150 s after the peak average parallel ion

velocity. Meanwhile, the peak density at 200 km occurs 40 s after the peak upwelling, while

the peak density at 100 km occurs only 10 s after the peak upwelling.

6.2.2 Sample Run 2: Changing Boundary Density

For this run, the plasma density is exponentially decreasing at the boundary over 200 s (the

same amount of time the electric field is elevated in sample run 1) from 1 × 1012 m−3 to

0.5× 1012 m−3. Figure 6.5 shows the ion velocity distribution that results at 100 km due to

the boundary plasma density depletion. This ion velocity distribution is a superposition of

various time histories in which the plasma density becomes lower. As this depletion sweeps

through the distribution from high to low v||f values, the distribution returns to a Maxwellian

ion velocity distribution, but with a lower overall density.
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Figure 6.3: Velocity distribution moments calculated from the two-dimensional distribution
featured in Figure 6.2. The top panel is the plasma density, the second panel is the average
parallel ion velocity, and the bottom panel is the ion temperature, where the dashed line is the
temperature parallel to the magnetic field and the solid line is the temperature perpendicular
to the magnetic field.
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Figure 6.4: Velocity distribution moments 100 km above the two-dimensional distribution
featured in Figure 6.2. The top panel is the plasma density, the second panel is the average
parallel ion velocity, and the bottom panel is the ion temperature, where the dashed line is the
temperature parallel to the magnetic field and the solid line is the temperature perpendicular
to the magnetic field.
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Figure 6.5: The velocity distribution 100 km above the boundary layer as the boundary
density decreases exponentially from 1 × 1012 m−3 to 0.5 × 1012 m−3 over 200 s. ts = 0 is
when the boundary density begins to decrease.
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Figure 6.6 shows the plasma density, average parallel velocity, parallel temperature, and

perpendicular ion temperature at 100 km as a function of time. As expected, the plasma

density decreases over the course of approximately 1000 s by 50%. The average parallel

velocity experiences an overall down-flow, which agrees with the relative decrease in plasma

at 100 km. This downflow reaches -190 m/s at 350 s before gradually returning back to zero.

The parallel temperature experiences a decrease from approximately 1000 K to almost 900 K

before becoming enhanced to nearly 1200 K. Meanwhile, the perpendicular ion temperature

experiences no change from its original value, as expected.

6.3 Discussion

This work improves upon the techniques used in Loranc and St-Maurice (1994) by including

the effect of temporal electric field changes on a convecting magnetic field line, as well as

the effect of variable boundary densities and realistic temporal variations in the ion velocity

distribution at the boundary. The results of this work indicate that the observations seen at

Swarm altitudes depend heavily on the time history of a given flux tube and the transport of

plasma from strongly-collisional regions, making the parallel to perpendicular temperature

ratios unpredictable at times.

Here, two sample runs were emphasized, one in which the shape of the boundary velocity

distribution changes as a function of the electric field, and one in which the boundary density

depletes over time. Both of these sample runs agree qualitatively with the results of Loranc

and St-Maurice (1994) and Wilson (1994), who saw distorted ion velocity distributions at

high altitudes as a result of changing boundary conditions propagating upwards along a given

flux tube from strongly-collisional regions. In the first sample run a strong upflow is seen,

as well as anisotropic ion temperatures. However, at the same time the first sample run

shows enhanced plasma densities. Meanwhile, in the second sample run a plasma deple-

tion mechanism at the boundary leads to a depleted density at Swarm altitudes, suggesting

that the plasma depletion seen in Archer et al. (2015) is possibly related to the enhanced

recombination rates that result from strong frictional heating lower down.

This simulation shows that changes in the ion-neutral frictional heating in collisional
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Figure 6.6: Velocity distribution moments calculated from the two-dimensional distribution
featured in Figure 6.5. The top panel is the plasma density, the second panel is the average
parallel ion velocity, and the bottom panel is the ion temperature, where the dashed line is the
temperature parallel to the magnetic field and the solid line is the temperature perpendicular
to the magnetic field. Note the scale changes between this figure and Figure 6.3.
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regions easily accounts for the variability seen in the perpendicular to parallel ion temperature

ratios at higher altitudes. These results also show that the observations from Archer et al.

(2015) depend strongly on how long ago heating in a given flux tube began, and where Swarm

is relative to the heating region. This is because temperature changes introduce vertical

upward motion until, for a steady state solution, the parallel to perpendicular temperature

ratio is the expected ratio for the collisional region. If Swarm observations are nowhere near

that ratio, it has to mean the flux tube has not been heated for long. Additionally, this leads

to periods where the parallel temperature is greater than perpendicular temperature.

This work also compared the impact of changing the boundary electric field and changing

the boundary plasma density. Here, even when the density decreases by a factor of two in

a small amount of time, the temperature anisotropy resulting is relatively minimal. At any

rate, it is also interesting to point out in the second sample run that down-welling results

through diffusive equilibrium, but this doesn’t compare in magnitude with upwelling due to

friction.

Although the results presented here are already insightful, many more simulation runs

are required to fully understand the observations made by the Swarm spacecraft. For exam-

ple, even though the runs presented already show that this work is able to create varying

perpendicular to parallel temperature ratios and distorted ion velocity distributions, the up-

welling seen through frictional heating in sample run 1 is out of phase with the perpendicular

ion temperature, which is inconsistent with Archer et al. (2015) and Swarm observations.

However, future work will use Loranc and St-Maurice (1994) and Wilson (1994) as a guide

to make specific runs that replicate Swarm observations more closely.

An important advantage of the technique used in this work is that it is capable of finding

the ion velocity distribution at a given time and altitude without tracking the evolution of the

collisional-less region over time. However, this ultimately means that this technique is unable

to properly incorporate the polarization electric field as a function of time and altitude. When

the polarization electric field is considered properly, the ion equation of motion in this region

becomes (in the absence of magnetic mirror effects):

∂v||
∂t

= −g − e

mi

∂φE
∂z

(6.4)
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where g is gravity. Considering:

n = n0 exp

(
eφe
kBTe

)
(6.5)

this gives:
∂v||
∂t

= −g − kbTe
mi

∂

∂z
ln

(
n

n0

)
(6.6)

which is written as:

vf || =

√
v20|| − 2gz − 2kbTe

mi

ln

(
n

n0

)
(6.7)

This shows the dependency of the final velocity on the plasma density, which is a function

of altitude. As transport changes the density profile, the motion of the charges also changes.

Furthermore, the change in time is now given by:

∆t =

∫ z

0

dz

vf ||
(6.8)

To implement Equations 6.7 and 6.8 correctly into this work requires tracking the density

as a function of altitude and time, meaning the simulation must step in time and altitude.

Note that for a diffusive equilibrium situation:

vf || =

√
v20|| −

2gz

1 + Te/T||
(6.9)

In addition to correctly incorporating a polarization electric field, a more accurate tran-

sition between strongly-collisional and collisionless regions is required, particularly if the

desired altitude is within two scale heights from the collisional boundary. This means sim-

ulating multiple regions that become progressively less collisional with altitude. Chapter 4

also shows the importance of Coulomb collisions and the O+-O RCE cross-section on the

ion velocity distribution. For this reason it would be beneficial to extend the present work

to include Coulomb collisions as a function of altitude. As well, once the observations in

Chapter 5 are calibrated with spectral fitting routines that incorporate toroidal ion velocity

distributions, and the correct O+-O RCE cross-section is determined, the cross-section used

in this work may need to be altered if proven to be inaccurate.
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Chapter 7

SUMMARY AND FUTURE WORK

In this thesis the joint impact of electric field strength and ion-neutral collisions on the

high-latitude ionosphere has been explored. In researching this topic, several new discoveries

have been made, in parallel with the development of several new techniques by which to

improve future studies of ISR- and satellite-inferred plasma parameters, including the electric

fields themselves.

Chapter 4 focuses on a manuscript that has recently been accepted for publication in

Radio Science. This manuscript presents the first comprehensive calculation of IS spectra

from quantitative, MC based, distorted ion velocity distributions. The anisotropy of the ion

velocity distribution was fully characterized for all possible interactions between atomic and

molecular ions and neutrals throughout the F -region. It was found, to start with, that the

line-of-sight ion temperature is for the most part well described by its dependence on the

parallel and perpendicular temperature through Equation 4.7, implying that the line-of-sight

ion temperature at 55◦ (with respect to the magnetic field) is the same as the average ion

temperature. This finding is important for Joule heating studies, which rely on the average

ion temperature.

The second aspect of Chapter 4 is the calculated spectral shapes, where several new results

were obtained. First, as an important point for practical applications, it was found that NO+

spectral shapes are for the most part so similar to those associated with equivalent (same

line-of-sight ion temperature) Maxwellian velocity distributions, that there is no real need to

analyze NO+ spectra with non-Maxwellian ion dielectric functions, except near 100 mV/m

and for aspect angles of the order of 55◦ or greater. However, for O+ ions the spectral shape

is so distorted from the Maxwellian description for electric fields stronger than 40 mV/m

that its impact cannot be ignored, as the retrieval of the plasma parameters in standard
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analysis programs (particularly the electron temperature) will most assuredly be affected. It

was found in the present work that particularly for electric fields in excess of 100 mV/m, the

O+ spectral shapes are multi-peaked and rather different from those expected from earlier

work (e.g., Raman et al. (1981); Suvanto et al. (1989)), except for directions parallel or near-

parallel to the magnetic field. Parallel or near-parallel to the magnetic field, spectra from MC

simulated velocity distributions are similar to those from effective Maxwellian distributions,

but indicate a larger electron to line-of-sight ion temperature ratio than expected from actual

Maxwellians. In what turned out to be a bit of a surprise, this study also found strong

signatures of toroidal ion velocity distributions at 20◦ with respect to the magnetic field,

showing that the best viewing angle to identify toroidal distributions might be near 20◦.

This is particularly interesting for RISR-N and RISR-C, which offer optimal signal-to-noise

ratios at this angle compared to lower elevation angles looking closer to the perpendicular to

the magnetic field.

A third aspect of the Chapter 4 calculations dealt with the stability of the ion velocity

distribution against the generation of magnetic field-aligned instabilities. From the use of

simple Nyquist diagrams based on the calculated ion velocity distributions and their dielectric

functions, the stability was compared for two competing models of the RCE cross sections,

one by Pesnell et al. (1993) and the other by Knof et al. (1964). The distributions obtained

with the former cross-section were found to actually be stable, contrary to the cross-sections

associated with the latter.

A final aspect of Chapter 4 dealt with the handling of velocity distribution corrections due

to Coulomb collisions. The corrections have measurable effects on the O+ ions, and as the

altitude increases, the influence of Coulomb collisions also increases, explaining the increase

in line-of-sight ion temperature with altitude seen in ISR data that had been presented in

Goodwin et al. (2014). The corrections were applied not just to the temperature anisotropies

but also to the spectra shapes.

The first part of Chapter 5 used the insights gained from Chapter 4 to seek a method

by which to determine the ion temperature anisotropy from actual ISR observations. Using

observations from overlapping northward pointing RISR-N beams during a strong heating

event on 12 September 2014, in which the parallel drift was relatively small and the E ×B
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drift dominated the full plasma motion, two techniques were presented to characterize the

anisotropy above 220 km, where O+-O collisions dominated. They gave similar results and

indicated that the temperature anisotropy was close to following the Knof et al. (1964) O+-

O RCE cross-section description discussed in Chapter 4 between 220 km and 320 km. This

stated, however, the results also indicated that the ionospheric ion temperature may actually

be more anisotropic than the Knof et al. (1964) description, even though it is a closer fit than

the alternative Pesnell et al. (1993) fit. However, these results will have to be recalculated

after a full spectral analysis based on Chapter 4 is implemented in the data analysis scheme.

From the anisotropy the average ion temperature could also be determined, meaning that

the magnitude of the effective electric field (i.e., the electric field in the neutral atmospheric

frame of reference) could be inferred. The line-of-sight ion temperatures that were inferred

from the data implied the presence of a 120 mV/m to 140 mV/m effective electric field, which

is less than the electric field inferred from the Bayesian approach in discussed in Clauer et al.

(2016) (Heinselman and Nicolls , 2008). This led to a second section in Chapter 5 which

was concerned with a determination of the actual electric field vector using a novel approach

which compared E- and F - region drifts on magnetic field lines close to one another. This new

technique yielded even stronger electric fields than those inferred from the Bayesian approach,

with an electric field strength that reached roughly 180 mV/m at 83.2◦ geomagnetic latitude.

This implied a 800 m/s neutral wind when compared to the 140 mV/m effective electric field,

assuming the motion was along the ion drift (as is usually found). The direction of the E×B

was consistent with the reverse convection cell analysis of Clauer et al. (2016). It should be

noted that the observations were accompanied by large E-region electron temperatures of

the order of 3500 K, as reported by Clauer et al. (2016). This will provide a possible tool to

see which of the two electric field determinations is more trustworthy, at least for the event

studied in Chapter 5.

Chapter 6 revisited a time-dependent gyro-kinetic O+ model originally formulated by

Loranc and St-Maurice (1994). Here, the response to the high-latitude F -region frictional

heating in a strongly-collisional region is simulated by assuming a discontinuous boundary

between fully collisional and collisionless plasmas. Unlike the simulation presented in Loranc

and St-Maurice (1994), this updated model includes arbitrary temporal boundary electric
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field and plasma density changes, as well as realistic temporal variations of the ion velocity

distribution at the boundary. This provides fast simulations of velocity distributions and

their moments above the collisional regions without the need for oversimplified temporal

changes at the boundary. The earlier results of Loranc and St-Maurice (1994) and of Wilson

(1994) were reproduced, namely, highly distorted ion velocity distributions were found at

high altitudes, as well as unpredictable anisotropic ion temperatures, as a result of changing

boundary conditions propagating upwards along a given flux tube from strongly-collisional

regions.

This part of the study has provided an explanation for the variability seen in the per-

pendicular to parallel ion temperature ratios at higher altitudes and for their connections to

ion upflows, as seen through Swarm observations at 550 km (e.g. Archer et al. (2015)). The

present study shows that Swarm observations depend heavily on the time history of a given

flux tube and the transport of plasma from strongly-collisional regions, making the parallel

to perpendicular temperature ratios unpredictable at times. This thesis has also shown that

the effects of density changes at the boundary are typically smaller than those induced by

strong frictional heating.

From this research stems much more work that needs to be done to evaluate the role

electric field strength has in changing the high-latitude ionosphere. Arguably the most im-

portant result of Chapter 4 is the production of a complete description of the ion velocity

distribution for a variety of electric fields and aspect angles. Given this, it is critical to

incorporate these descriptions into ISR spectral fitting routines that currently assume ion

velocity distributions to be Maxwellian. The implementation of a new procedure based on

Chapter 4 is currently underway using the observations presented in Chapter 5 and Clauer

et al. (2016), but will ultimately be automated for other datasets. Our simulated velocity

distribution determination at 90◦ should be most useful in particularly strong electric field

situations for RPA data studies of the type undertaken by St-Maurice et al. (1976), as men-

tioned in Chapter 4. As shown in Chapter 5, the results of Chapter 4 can then also be used

to characterize the ion temperature anisotropy of the ionosphere and determine the correct

O+-O RCE collision cross-section. Once distorted ion velocity distributions are incorporated

into IS spectral fitting routines, experiments of the kind discussed in Chapter 5, such as the
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SSEBIT experiment (which runs frequently on both RISR-N and RISR-C), can be used to

determine convection uniformity in space in F -region observations.

Lastly, the results of Chapter 6 have so far been revealing, but many more simulations

runs are required to better understand the observations seen by the Swarm spacecraft, using

Loranc and St-Maurice (1994) and Wilson (1994) as a guide. Although the initial simulation

presented in this thesis is useful because it quickly provides the ion velocity distribution and

the distribution moments at a given time and altitude, it would ultimately require the inclu-

sion of a self-consistent polarization electric field, which unfortunately would require system-

atically stepping in time and space. Furthermore, a more gradual transition to collision-free

would improve the model results, particularly if the desired altitude is within two plasma

scale heights from the collisional boundary. The effect of Coulomb collisions should also be

considered, as per Chapter 4.
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Appendix A

SUPPLEMENTARY INFORMATION FOR “IN-

COHERENT SCATTER SPECTRA BASED ON

MONTE-CARLO SIMULATIONS OF ION VE-

LOCITY DISTRIBUTIONS UNDER STRONG

ION FRICTIONAL HEATING”

Contents of this file

Figures A.1 to A.8.

Table A.1.

Additional Supporting Information (located in zip file)

1. “1-E 20.DAT” is an ASCII file that contains the O+-O collision information for an
electric field of 20 mV/m using the cross-section inferred from Pesnell et al. (1993).
Rows 2 to 29 have ten columns, each for a different aspect angle in steps of 10◦ between
0◦ and 90◦. The rows are:

• Row 1: Parallel ion temperature in Kelvin using the Monte-Carlo simulation
output (purely ion-neutral collisions), then the perpendicular ion temperature in
Kelvin using the Monte-Carlo simulation output (purely ion-neutral collisions).

• Row 2: Aspect angle, the angle with respect to the magnetic field.

• Row 3: Ion thermal speed in m/s, based on the line-of-sight ion temperature given
by the Monte-Carlo simulation. This value is used to find ω from xi and/or vx
from y.

• Row 4 - 29: The even numbered polynomial coefficients from 0 to 50 (i.e. coef-
ficient 0, coefficient 2, coefficient 4, coefficient 6,..., coefficient 48, coefficient 50).
These polynomial coefficients describe the ion velocity distribution from -4 thermal
speeds to 4 thermal speeds.

2. “1-E 30.DAT”, is the same as “1-E 20.DAT” but for 30 mV/m.

3. “1-E 40.DAT”, is the same as “1-E 20.DAT” but for 40 mV/m.
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4. “1-E 50.DAT”, is the same as “1-E 20.DAT” but for 50 mV/m.

5. “1-E 60.DAT”, is the same as “1-E 20.DAT” but for 60 mV/m.

6. “1-E 70.DAT”, is the same as “1-E 20.DAT” but for 70 mV/m.

7. “1-E 80.DAT”, is the same as “1-E 20.DAT” but for 80 mV/m.

8. “1-E 90.DAT”, is the same as “1-E 20.DAT” but for 90 mV/m.

9. “1-E 100.DAT”, is the same as “1-E 20.DAT” but for 100 mV/m.

10. “1-E 110.DAT”, is the same as “1-E 20.DAT” but for 110 mV/m.

11. “1-E 120.DAT”, is the same as “1-E 20.DAT” but for 120 mV/m.

12. “1-E 130.DAT”, is the same as “1-E 20.DAT” but for 130 mV/m.

13. “1-E 140.DAT”, is the same as “1-E 20.DAT” but for 140 mV/m.

14. “1-E 150.DAT”, is the same as “1-E 20.DAT” but for 150 mV/m.

15. “1-E 160.DAT”, is the same as “1-E 20.DAT” but for 160 mV/m.

16. “1-E 170.DAT”, is the same as “1-E 20.DAT” but for 170 mV/m.

17. “1-E 180.DAT”, is the same as “1-E 20.DAT” but for 180 mV/m.

18. “1-E 190.DAT”, is the same as “1-E 20.DAT” but for 190 mV/m.

19. “1-E 200.DAT”, is the same as “1-E 20.DAT” but for 200 mV/m.

Introduction
In this document, we present the additional figures and files mentioned in the main body

of “Incoherent scatter spectra based on Monte-Carlo simulations of ion velocity distributions
under strong ion frictional heating”.

In the main article, it is mentioned that as the O concentration decreases and the N2

concentration increases, the ion-neutral temperature difference also increases as a result of
the influence of the neutral mass on the heating rate. This is reflected in Figures A.1 and
A.2, which examine the ion temperature anisotropy for NO+ with a background neutral
concentration of 33% O and 66% N2 and a concentration of 25% O and 75% N2, respectively.
The spectra for these different concentrations are also presented in Figures A.3 to A.8 for
various electric fields and aspect angles.

The ASCII files accompanying this document allow for the reconstruction of one dimen-
sional velocity distributions, g0i, for a number of electric fields and for 10 different aspect
angles for each electric field. Specifically, high-quality Legendre polynomial fits to the one-
dimensional velocity distributions have been acquired through the formula:

g0i(y) =
D∑
j=0

njP
0
j , (A.1)
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where D is the desired degree chosen to perform the fit around its drift point and P 0
j are

the Legendre polynomials. We used D = 50; however, it should be noted that only even-
numbered polynomials contributions need to be considered because of the symmetry of the
velocity distributions about their drift point. We therefore have listed 26 values for nj
associated with the Legendre polynomials of degree 0, 2, 4, etc., all the way to degree 50.

Each ASCII .DAT file is for a different electric field, but all are for O+ with O collisions
with the cross-section inferred from Pesnell et al. (1993). From these values, the ion velocity
distribution is found at a specific y value (recall that y is vx/b, where vx is the line-of-sight
speed and b is the ion thermal speed). A sample Fortran 77 code is provided below (note
that the function “plgndr.for” from Press et al. (1992) is required and provided).
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! RECONSTRUCTION.FOR

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! IN THIS CODE, LEGENDRE POLYNOMIALS ARE USED TO RECONSTRUCT THE

! ION VELOCITY DISTRIBUTION FOR A GIVEN ASPECT ANGLE AND ELECTRIC FIELD

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

REAL TPARA,TPERP,LIM,PHI,Y,FIT,B

REAL BARR(0:9),COEFF(0:50),COEFFALL(0:50,0:9)

INTEGER I,J,DEG,ELEN

CHARACTER E*3

! LIM = THE +/- INTERVAL OVER WHICH THE ION VELOCITY DISTRIBUTION

! IS DESCRIBED BY POLYNOMIAL COEFFICIENTS, GIVEN AS A

! NUMBER OF THERMAL SPEEDS. THIS IS 4.

! E=DESIRED ELECTRIC FIELD IN mV/m IN QUOTES (OPTIONS:’20’,’30’,’40’,’50’,’60’,

!’70’,’80’,’90’,’100’,’110’,’120’,130’,’140’,150,’160’,’170’,’180’,’190’,OR’200’)

! PHI = DESIRED ASPECT ANGLE WITH RESPECT TO THE MAGNETIC FIELD

! (OPTIONS: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90)

! Y = A DESIRED Vx/(ION THERMAL SPEED)

! DEG = DEGREE OF ORTHOGONAL FIT TO THE DISTRIBUTION (BETWEEN 0 AND 50)

! COEFFALL = LEGENDRE POLYNOMIAL COEFFICIENTS FOR A GIVEN ELECTRIC FIELD

! COEFF = LEGENDRE POLYNOMIAL COEFFICIENTS FOR A GIVEN ELECTRIC FIELD AND PHI.

! TPARA = PARALLEL ION TEMPERATURE.

! TPERP = PERPENDICULAR ION TEMPERATURE.

! BARR = ARRAY HOLDING THE ION THERMAL SPEEDS.

! B = ION THERMAL SPEED FOR A DESIRED PHI.

! FIT = THE DISTRIBUTION AT Y, I.E. g(Y)

LIM = 4.

! FIRST, THE USER CREATES AN INPUT FILE THAT LISTS ’E’, ’PHI’, ’Y’, AND ’DEG’

OPEN(UNIT=15,FILE=’input.dat’,STATUS=’OLD’)

READ(15,*) E

READ(15,*) PHI

READ(15,*) Y

READ(15,*) DEG

CLOSE(15)

! THIS READS IN THE CORRECT DATA FOR A GIVEN ELECTRIC FIELD

ELEN = 0

DO 11 I = 1, LEN(E)

IF ( E(I:I) .NE. ’ ’ ) THEN

ELEN = ELEN + 1

END IF

11 CONTINUE

OPEN(UNIT=15,FILE=’1-E_’//E(1:ELEN)//’.DAT’,STATUS=’OLD’)

READ(15,*) TPARA, TPERP

READ(15,*)

READ(15,*) BARR(0),BARR(1),BARR(2),BARR(3),BARR(4),BARR(5),
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> BARR(6),BARR(7),BARR(8),BARR(9)

DO 12 I = 0, DEG

IF (mod(I,2).eq.0) THEN

READ(15,*) COEFFALL(I,0),COEFFALL(I,1),COEFFALL(I,2),

> COEFFALL(I,3),COEFFALL(I,4),COEFFALL(I,5),COEFFALL(I,6),

> COEFFALL(I,7),COEFFALL(I,8),COEFFALL(I,9)

ENDIF

12 CONTINUE

CLOSE(15)

B = BARR(INT(PHI)/10)

! THE COEFFICIENTS FOR A GIVEN PHI ARE SELECTED

DO 20 I = 0, DEG

COEFF(I) = COEFFALL(I,INT(PHI)/10)

20 CONTINUE

FIT = 0.

! THE VELOCITY DISTRIBUTION IS FOUND

DO 10 J = 0, DEG

! ONLY THE EVEN NUMBERED COEFFICIENTS ARE NEEDED BECAUSE THE VELOCITY

! DISTRIBUTION IS SYMMETRIC

IF (mod(J,2).eq.0) THEN

FIT=COEFF(J)*DBLE(plgndr(J,0,Y/LIM))+FIT

ENDIF

10 continue

! THE VELOCITY DISTRIBUTION IS WRITTEN TO AN OUTPUT FILE

OPEN(UNIT=15,FILE=’output.dat’)

WRITE(15,*) Y, FIT

CLOSE(15)

END
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!////////////////////////////////////////////////////////////

FUNCTION plgndr(l,m,x)

INTEGER l,m

REAL plgndr,x

cComputes the associated Legendre polynomial P m l (x). Here m and l are integers

c satisfying 0 = m = l, while x lies in the range -1 = x = 1.

INTEGER i,ll

REAL fact,pll,pmm,pmmp1,somx2

c if(m.lt.0.or.m.gt.l.or.abs(x).gt.1.) write(15,*) ’bad’

pmm=1.

cCompute P mm .

if(m.gt.0) then

somx2=sqrt((1.-x)*(1.+x))

fact=1.

do 11 i=1,m

pmm=-pmm*fact*somx2

fact=fact+2.

11 CONTINUE

endif

if(l.eq.m) then

plgndr=pmm

else

pmmp1=x*(2*m+1)*pmm

cCompute P m

c m+1.

if(l.eq.m+1) then

plgndr=pmmp1

else

cCompute P m

c l , l>m + 1.

do 12 ll=m+2,l

pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)

pmm=pmmp1

pmmp1=pll

12 CONTINUE

plgndr=pll

endif

endif

return

END
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As mentioned in the main text, the NO+ spectra can be reproduced using Maxwellian ion
velocity distributions. For this reason, Table A.1 supplies the ion temperatures parallel and
perpendicular to the magnetic field for Monte-Carlo simulations of NO+ with a background
of 50% O and 50% N2. The ion temperatures for a variety of aspect angles can be found
using Equation 4.7 from the main text.

Lastly, it should be noted that the neutral temperature used in every Monte-Carlo run
presented in this work is 1000 K. For electric fields less than 20 mV/m the velocity dis-
tributions of both O+ and NO+ can be approximated well with a bi-Maxwellian velocity
distribution having ion temperatures that are well described by Model A in St.-Maurice and
Schunk (1977).
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Figure A.1: Same as in Figure 4.9 but for NO+ collisions with 33% O and 66% N2
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Figure A.2: Same as in Figure 4.9 but for NO+ collisions with 25% O and 75% N2

Electric Field (mV/m) Parallel Temperature (K) Perpendicular Temperature (K)
20 1.10e3 1.16e3
30 1.25e3 1.38e3
40 1.48e3 1.68e3
50 1.75e3 2.09e3
60 2.11e3 2.58e3
70 2.52e3 3.16e3
80 3.01e3 3.85e3
90 3.57e3 4.58e3
100 4.16e3 5.39e3
110 4.83e3 6.32e3
120 5.55e3 7.31e3
130 6.34e3 8.40e3
140 7.19e3 9.50e3
150 8.08e3 1.08e4
160 9.12e3 1.21e4
170 1.01e4 1.35e4
180 1.12e4 1.50e4
190 1.23e4 1.66e4
200 1.36e4 1.83e4

Table A.1: Ion temperatures needed to produce Maxwellian NO+ velocity distributions,
where the neutral background is 50% O and 50% N2.
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Figure A.3: Same as in Figure 4.13 but for NO+ in a mixture 33% O and 66% N2
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Figure A.4: Same as in Figure A.3 but for a 100 mV/m electric field
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Figure A.5: Same as in Figure A.3 but for a 170 mV/m electric field
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Figure A.6: Same as in Figure 4.13 but for NO+ in a mixture 25% O and 75% N2
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Figure A.7: Same as in Figure A.6 but for a 100 mV/m electric field
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Figure A.8: Same as in Figure A.6 but for a 170 mV/m electric field
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Appendix B

SPECTRA SIMULATION SOFTWARE

This appendix lists the F77 software needed to construct the one dimensional ion velocity
distributions, the ion dielectric functions, and the spectra for a number of electric fields (every
10 mV/m from 0 mV/m to 200 mV/m) and aspect angles (every 10◦ from 0◦ to 90◦) for the
POH O+-O collision cross-section and the NO+ with a 50% O and 50% N2 background.
Section B.1 contains the input file referred to by the software, which is the only file the
requires user input. Sections B.2 to B.10 contain the software itself, with the main program
(“SPECFNMAIN.FOR”) being in Section B.10. The last section of this appendix discusses
the data files needed, which are different from the data files associated with Chapter 4 or
Appendix A.

Lastly, please note that Section B.4 has been passed on to me from Jean-Pierre St-Maurice
who received it as part of a package, while Sections B.6 and B.9 are from Press et al. (1992).
All other files listed in this appendix were generated specifically for this research.

B.1 input.dat

’TEST’ FILENAME, TAG ASSOCIATED WITH THE OUTPUT FILES

4000. TE, ELECTRON TEMPERATURE (K)

1.e11 ANOMN, PLASMA DENSITY (m-3)

220.E6 FREQ, RADAR FREQUENCY (Hz)

1.8E14 NN, NEUTRAL DENSITY (m-3)

’100’ ELEC, ELECTRIC FIELD IN QUOTES (mV/m), OPTIONS: ’0’,’10’,...,’190’,’200’

0 PHI, ASPECT ANGLE, OPTIONS: 0, 10, 20, 30, 40, 50, 60, 70, 80, OR 90

1 COLLISION, OPTIONS: 1=PESNELL O+O, 2=NO+ W/ 50% O AND 50% N2
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B.2 ANAELECT.FOR

C ANAELECT.FOR

C******************************************************************************C

SUBROUTINE ANAELECT(XI,TI,TE,ALPHA,K,AMASSI,HER,HEI,AME)

C******************************************************************************C

C ANALYTICAL CALCULATION OF THE ELECTRON FUNCTIONS AND SPECTRUM FOR A MAXWELLIAN

C VELOCITY DISTRIBUTION AT XE [SHEFFIELD 1975, 6.3.7]

C

C LINDSAY GOODWIN 14/08/2017

C

DOUBLE PRECISION MI,ME,K,TE,B,A,XI,XE,RWXE,IWXE,DRE,

@ALPHA,DIE,AMASSI,TI,HEI,AME,HER,BOLT,AMU,PI

DATA BOLT,ME,AMU,PI/1.380E-23,9.109E-31,1.661E-27,3.1415927/

! XE = OMEGA/(K*A), WHERE OMEGA IS THE ANGULAR FREQUENCY FOR ELECTRONS

! MI = ION MASS (kg)

! TI = ION TEMPERATURE (K)

! ME = ELECTRON MASS (kg)

! AMU = ONE ATOMIC MASS UNIT

! A = ELECTRON THERMAL SPEED

MI = AMASSI*AMU

A = SQRT(2.*BOLT*TE/ME)

B = SQRT(2.*BOLT*TI/MI)

C THE XE FOR THE GIVEN XI IS FOUND

XE = XI*B/A

C DRE AND DIE ARE USED BY DISP TO FIND RWXE AND IWXE FROM SHEFFIELD (1975), 6.3.7

call DISP(XE,DRE,DIE)

RWXE = DRE+1.

IWXE = -DIE

HEI = -(ALPHA**2)*IWXE

HER = (ALPHA**2)*RWXE

AME = EXP(-XE**2)/(A*SQRT(PI))

RETURN

END
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B.3 ANAION.FOR

C ANAION.FOR

C******************************************************************************C

SUBROUTINE ANAION(XI,TI,TE,ALPHA,K,AMASSI,HIR,HII,AMI)

C*************************************************************************c****C

C ANALYTICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A MAXWELLIAN

C VELOCITY DISTRIBUTION AT XI [SHEFFIELD 1975, 6.3.8]

C

C LINDSAY GOODWIN 14/08/2017

C

DOUBLE PRECISION MI,TI,TE,B,RWXI,IWXI,DRI,DII,K,ALPHA,AMASSI,

@HII,AMI,HIR,XI,BOLT,AMU,PI

DATA BOLT,AMU,PI/1.381E-23,1.661E-27,3.1415927/

! MI = ION MASS (kg)

! TI = ION TEMPERATURE (K)

! AMU = ONE ATOMIC MASS UNIT

MI = AMASSI*AMU

B = SQRT(2.*BOLT*TI/MI)

! DRI AND DII ARE USED BY DISP TO FIND RWXE AND IWXE FROM SHEFFIELD (1975), 6.3.8

call DISP(XI,DRI,DII)

RWXI = DRI+1.

IWXI = -DII

HII = -(ALPHA**2)*(TE/TI)*IWXI

HIR = (ALPHA**2)*(TE/TI)*RWXI

AMI = EXP(-XI**2)/(B*SQRT(PI))

RETURN

END
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B.4 DISP.FOR

C DISP.FOR

C******************************************************************************C

SUBROUTINE DISP(Y,DR,DI)

C******************************************************************************C

C THIS SUBROUTINE EVALUATES Y TIMES THE FRIED AND CONTE PLASMA

C DISPERSION FUNCTION OF Y. THE SUBROUTINE IS VALID ONLY FOR REAL

C VALUES OF THE ARGUMENT

C Y=ARGUMENT

C DI=IMAGINARY PART

C DR=REAL PART

C THE EVALUATION OF DR INVOLVES THE DETERMINATION OF THE ERROR

C FUNCTION FOR A PURE IMAGINARY ARGUMENT, THIS IS DONE BY USING AN

C INFINITE SERIES. THE NUMBER OF TERMS IS GIVEN BY NMAX=4*ABS(Y)+4,

C BUT IF ABS(Y) IS LESS THAN 1.0 NMAX=10

C REF. ABRAMOWITZ AND STEGUN

C

DOUBLE PRECISION Y,DR,DI

NMAX=4*ABS(Y)+4

C

C ON NOV 28,87 I CHANGED LIMIT FOR TEST TO 4 INSTEAD OF 5 TO

C AVOID OVERFLOW ARGS ON EXP ON PC

C

IF (ABS(Y) .GT. 4.0) GO TO 20

IF (ABS(Y) .LE. 1.0) NMAX=10

B=Y/2.0

DO 10 N=1,NMAX

B=B+SINH(N*Y)*EXP(-(N**2)/4.0)/N

10 CONTINUE

C

C I MULTIPLIED FOLL LINES BY y ON 11/27/87....JPSTM

C

DR=Y*(-2/1.772454)*EXP(-Y*Y)*B

DI=-Y*1.772454*EXP(-Y*Y)

GO TO 90

20 Y2=Y**2

IF (Y2 .GT. 175.0) GO TO 80

B=0.0

DO 70 N=1,NMAX

E=N*Y-N**2/4.0-Y2

IF (-E .GT. 175.0) GO TO 30

E1=EXP(E)

GO TO 40

30 E1=0.0
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40 F=-N*Y-N**2/4.0-Y2

IF (-F .GT. 175.0) GO TO 50

F1=EXP(F)

GO TO 60

50 F1=0.0

60 B=B+(E1-F1)/(2*N)

70 CONTINUE

DR=(-2/1.772454)*Y*(B+EXP(-Y2)*Y/2.0)

DI=1.772454*Y*EXP(-Y2)

GO TO 90

80 YY=1/(2*Y*Y)

DR=-(((15*YY+3)*YY+1)*YY+1)

DI=0.0

90 RETURN

END
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B.5 DISTORTED.FOR

C DISTORTED.FOR

C******************************************************************************C

SUBROUTINE DISTORTED(XI,K,deltax,AMASSI,HIR,HII,AMI,ANOMN,

> COEFF,LIM,DEG,SETR,normin,normi,norme,B,TPERP,TPARA,TE,num)

C**********************************************************************c****C

C NUMERICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A DISTORTED

C VELOCITY DISTRIBUTION AT XI

C

C LINDSAY GOODWIN 14/08/2017

C

INTEGER Ngauleg,num,DEG

DOUBLE PRECISION B,PI,C,K,MI,XI,XPOS,DGDP,G,G1,G2,

@AMASSI,HIR,HII,AMI,deltax,ANOMN,ELCH,fit,SETR,normin,

@normi,norme,TPERP,TPARA,TE,AMU,PERM,OMEGAPSQ

DOUBLE PRECISION COEFF(0:DEG)

REAL gaulegx(1:52),gaulegw(1:52),LIM

DATA ELCH,AMU,PI,PERM/1.602E-19,1.661E-27,

@3.1415927,8.854E-12/

! DGDP = THE DERIVATIVE OF THE VELOCITY DISTRIBUTION AT A GIVEN LOCATION

! G/G1/G2 = THE VELOCITY DISTRIBUTION AT A GIVEN LOCATION DIRECTLY FROM

! THE ORTHOGONAL POLYNOMIALS

! AMU = ONE ATOMIC MASS UNIT

! MI = ION MASS (kg)

MI = AMASSI*AMU

OMEGAPSQ = (4.*PI*ANOMN*ELCH**2)/MI

! GAUSSIAN QUADRATURE WEIGHTS ARE FOUND:

Call gauleg(-LIM,LIM,gaulegx,gaulegw,num)

! HIR IS CALCULATED

HIR = 0.

DO 30 Ngauleg=1,num

! CHANGE IN VARIABLES FROM XI TO C

C = DBLE(gaulegx(Ngauleg))

XPOS = C + XI

DGDP = 0.

G1 = fit((XPOS+deltax),COEFF,LIM,DEG,

> SETR,SETR,normin,normi,norme,B,TPERP,TPARA,TE,AMASSI)

G2 = fit((XPOS-deltax),COEFF,LIM,DEG,

> SETR,SETR,normin,normi,norme,B,TPERP,TPARA,TE,AMASSI)

if (G1 .eq. 0. .or. G2 .eq. 0.) GO TO 87

DGDP = (G1-G2)/(2.*deltax)

87 HIR= HIR-DBLE(gaulegw(Ngauleg))*DGDP/C

30 CONTINUE

HIR=(2.*OMEGAPSQ/(4.*PI*PERM*(B*K)**2))*HIR/3.545
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! DGDP AT A GIVEN XI IS FOUND FOR THE HII CALCULATION

DGDP = 0.

G1 = fit((XI+deltax),COEFF,LIM,DEG,SETR,SETR,

> normin,normi,norme,B,TPERP,TPARA,TE,AMASSI)

G2 = fit((XI-deltax),COEFF,LIM,DEG,SETR,SETR,

> normin,normi,norme,B,TPERP,TPARA,TE,AMASSI)

if (G1 .eq. 0. .or. G2 .eq. 0.) GO TO 88

DGDP = (G1-G2)/(2.*deltax)

! HII IS CALCULATED/NORMALIZED

88 HII=(2.*OMEGAPSQ/(4.*PI*PERM*(B*K)**2))*PI*dgdp/3.545

! AMI IS CALCULATED/NORMALIZED

AMI=0.

G = fit(XI,COEFF,LIM,DEG,SETR,SETR,normin,

> normi,norme,B,TPERP,TPARA,TE,AMASSI)

! AMI INCLUDES SQRT(PI)/(K*B) IN ORDER TO MATCH THE DEFINITION GIVEN BY

! NUMMAXWELL AND ANAION

AMI = G/(B*SQRT(PI))

89 end
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B.6 gauleg.FOR

C gauleg.FOR

C******************************************************************************C

SUBROUTINE gauleg(x1,x2,x,w,n)

C******************************************************************************C

C THIS IS TAKEN STRAIGHT FROM THE FORTRAN 77 NUMERICAL RECIPES

C [PRESS ET AL., 1992]

INTEGER n

REAL x1,x2,x(n),w(n)

DOUBLE PRECISION EPS

PARAMETER (EPS=3.d-14)

C EPS is the relative precision.

C Given the lower and upper limits of integration x1 and x2, and given n,

C this routine returns arrays x(1:n) and w(1:n) of length n, containing the

C abscissas and weights of the GaussLegendre n-point quadrature formula.

INTEGER i,j,m

DOUBLE PRECISION p1,p2,p3,pp,xl,xm,z,z1

C High precision is a good idea for this routine.

m=(n+1)/2

C The roots are symmetric in the interval, so we only have to find

C half of them.

xm=0.5d0*(x2+x1)

xl=0.5d0*(x2-x1)

do 12 i=1,m

C Loop over the desired roots.

z=cos(3.141592654d0*(i-.25d0)/(n+.5d0))

C Starting with the above approximation to the ith root, we enter the

C main loop of refinement by Newtons method.

1 continue

p1=1.d0

p2=0.d0

do 11 j=1,n

C Loop up the recurrence relation to get the Legendre polynomial

C evaluated at z.

p3=p2

p2=p1

p1=((2.d0*j-1.d0)*z*p2-(j-1.d0)*p3)/j

11 continue

C p1 is now the desired Legendre polynomial. We next compute pp, its

C derivative, by a standard relation involving also p2, the polynomial

C of one lower order.

pp=n*(z*p1-p2)/(z*z-1.d0)

z1=z

z=z1-p1/pp
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C Newtons method.

if(abs(z-z1).gt.EPS)goto 1

x(i)=xm-xl*z

C Scale the root to the desired interval,

x(n+1-i)=xm+xl*z

C and put in its symmetric counterpart.

w(i)=2.d0*xl/((1.d0-z*z)*pp*pp)

C Compute the weight

w(n+1-i)=w(i)

C and its symmetric counterpart.

12 continue

return

END
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B.7 MOMENTS.FOR

C MOMENTS.FOR

C******************************************************************************C

SUBROUTINE MOMENTS(COEFF,MOMVAVE,MOMTEMP,AMASSI,NORM,LIM,B,

> DEG,SETM,NORMIN,NORMI,NORME,TPERP,TPARA,TE)

C*************************************************************************c****C

c THIS CALCULATES THE VELOCITY MOMENTS OF A GIVEN DISTRIBUTION

C

C LINDSAY GOODWIN 14/08/2017

C

DOUBLE PRECISION BOLT,MOMDEN,MOMVAVE,MOMTEMP,AMU,SETM,VPHI,AMASSI,

@MI,NORM,fit,B,NORMIN,NORMI,NORME,SET0,SET1,TPERP,TPARA,G,TE

REAL gaulegx(1:40),gaulegw(1:40),LIM

INTEGER NGAULEG,NUM,DEG

DOUBLE PRECISION COEFF(0:DEG)

DATA BOLT,AMU/1.381E-23,1.661E-27/

! G = THE VELOCITY DISTRIBUTION AT A GIVEN LOCATION DIRECTLY FROM THE

! ORTHOGONAL POLYNOMIALS

! VPHI = VELOCITY IN A GIVEN DIRECTION

! SET0 = VARIABLE SET TO 0

! SET1 = VARIABLE SET TO 1

! AMU = ONE ATOMIC MASS UNIT

! MI = ION MASS (kg)

! NORMIN = NORMALIZATION CONSTANT FOR THE ION-NEUTRAL COLLISION DISTRIBUTION

! NORMI = NORMALIZATION CONSTANT FOR THE ION-ION COLLISION DISTRIBUTION

! NORME = NORMALIZATION CONSTANT FOR THE ION-ELECTRON COLLISION DISTRIBUTION

MI = AMASSI*AMU

! A 40 POINT GAUSSIAN QUADRATURE IS USED TO FIND THE AREA UNDER AN ASSORTMENT

! OF CURVES

NUM = 40

C GAUSSIAN QUADRATURE WEIGHTS ARE FOUND

Call gauleg(-LIM,LIM,gaulegx,gaulegw,NUM)

SET0=0.

SET1=1.

IF (SETM.ne.-1.) THEN

! A NORMALIZATION CONSTANT FOR ION-NEUTRAL COLLISION DISTRIBUTION IS FOUND

MOMDEN = 0.

do 150 NGAULEG =1,NUM

VPHI = DBLE(gaulegx(NGAULEG))

G = fit(VPHI,COEFF,LIM,DEG,SET0,SET0,SET1,SET0,

> SET0,B,TPERP,TPARA,TE,AMASSI)

MOMDEN = MOMDEN + DBLE(gaulegw(NGAULEG))*G

150 CONTINUE

if (MOMDEN.eq.0.) stop
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NORMIN = 1./MOMDEN

! A NORMALIZATION CONSTANT FOR ION-ION COLLISION DISTRIBUTION IS FOUND

MOMDEN = 0.

do 151 NGAULEG =1,NUM

VPHI = DBLE(gaulegx(NGAULEG))

G = fit(VPHI,COEFF,LIM,DEG,SET1,SET0,SET0,SET1,

> SET0,B,TPERP,TPARA,TE,AMASSI)

MOMDEN = MOMDEN + DBLE(gaulegw(NGAULEG))*G

151 CONTINUE

if (MOMDEN.eq.0.) stop

NORMI = 1./MOMDEN

! A NORMALIZATION CONSTANT FOR ION-ELECTRON COLLISION DISTRIBUTION IS FOUND

MOMDEN = 0.

do 152 NGAULEG =1,NUM

VPHI = DBLE(gaulegx(NGAULEG))

G = fit(VPHI,COEFF,LIM,DEG,SET0,SET1,SET0,SET0,

> SET1,B,TPERP,TPARA,TE,AMASSI)

MOMDEN = MOMDEN + DBLE(gaulegw(NGAULEG))*G

152 CONTINUE

if (MOMDEN.eq.0.) stop

NORME = 1./MOMDEN

ENDIF

! THE VELOCITY MOMENTS ARE CALCULATED. FIRST, THE DENSITY IS FOUND.

MOMDEN = 0.

do 250 NGAULEG =1,NUM

VPHI = DBLE(gaulegx(NGAULEG))

G = fit(VPHI,COEFF,LIM,DEG,SETM,SETM,NORMIN,

> NORMI,NORME,B,TPERP,TPARA,TE,AMASSI)

MOMDEN = MOMDEN + DBLE(gaulegw(NGAULEG))*G

250 CONTINUE

if (MOMDEN.eq.0.) stop

NORM = 1./MOMDEN

! THE AVERAGE VELOCITY IS FOUND

MOMVAVE = 0.

do 350 NGAULEG =1, NUM

VPHI = DBLE(gaulegx(NGAULEG))

G = fit(VPHI,COEFF,LIM,DEG,SETM,SETM,NORMIN,

> NORMI,NORME,B,TPERP,TPARA,TE,AMASSI)

MOMVAVE = MOMVAVE + DBLE(gaulegw(NGAULEG))*G*NORM*VPHI*B

350 CONTINUE

! THE ION TEMPERATURE IS FOUND

MOMTEMP = 0.

do 450 NGAULEG =1, NUM

VPHI = DBLE(gaulegx(NGAULEG))

G = fit(VPHI,COEFF,LIM,DEG,SETM,SETM,NORMIN,
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> NORMI,NORME,B,TPERP,TPARA,TE,AMASSI)

MOMTEMP = MOMTEMP+

> (DBLE(gaulegw(NGAULEG))*G*NORM*(VPHI*B-MOMVAVE)**2)

450 CONTINUE

MOMTEMP = MI*MOMTEMP/BOLT

! This corrects the normalization factor

Call gauleg(-6.00,6.00,gaulegx,gaulegw,NUM)

MOMDEN = 0.

do 455 NGAULEG =1,NUM

VPHI = DBLE(gaulegx(NGAULEG))

G = exp(-(VPHI)**2)

MOMDEN = MOMDEN + DBLE(gaulegw(NGAULEG))*G

455 CONTINUE

NORM = MOMDEN*NORM

end
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B.8 NUMMAXWELL.FOR

C NUMMAXWELL.FOR

C******************************************************************************C

SUBROUTINE NUMMAXWELL(XI,TI,K,deltax,AMASSI,HIR,HII,AMI,ANOMN)

C******************************************************************************C

C NUMERICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A MAXWELLIAN

C VELOCITY DISTRIBUTION AT XI [SHEFFIELD 1975, 6.2.18]

C

C LINDSAY GOODWIN 14/08/2017

C

INTEGER Ngauleg

DOUBLE PRECISION B,PI,C,K,MI,TI,XI,XPOS,DGDP,deltax,AMASSI,HIR,

@HII,AMI,ANOMN,ELCH,BOLT,AMU,PERM,OMEGAPSQ

REAL gaulegx(1:20),gaulegw(1:20)

DATA ELCH,BOLT,AMU,PI,PERM/1.602E-19,1.381E-23,1.661E-27,

@3.1415927,8.854E-12/

! DGDP = THE DERIVATIVE OF THE VELOCITY DISTRIBUTION AT A GIVEN LOCATION

! MI = ION MASS (kg)

! TI = ION TEMPERATURE (K)

! AMU = ONE ATOMIC MASS UNIT

MI = AMASSI*AMU

OMEGAPSQ = (4.*PI*ANOMN*ELCH**2)/MI

B = SQRT(2.*BOLT*TI/MI)

! GAUSSIAN QUADRATURE WEIGHTS ARE FOUND

Call gauleg(-6.00,6.00,gaulegx,gaulegw,20)

! HIR IS CALCULATED

HIR = 0.

DO 10 Ngauleg=1,20

! CHANGE IN VARIABLES FROM XI TO C

C = DBLE(gaulegx(Ngauleg))

XPOS = C + XI

DGDP = (exp(-(XPOS+deltax)**2)

> - exp(-(XPOS-deltax)**2))/(2.*deltax)

HIR= HIR-DBLE(gaulegw(Ngauleg))*DGDP/C

10 CONTINUE

! DGDP AT A GIVEN XI IS FOUND FOR THE HII CALCULATION

DGDP = (exp(-(XI+deltax)**2)

> - exp(-(XI-deltax)**2))/(2.*deltax)

! THE ION FUNCTIONS ARE FOUND/NORMALIZED

! HIR = OMEGAPSQ*HIR/(B*K)**2

! HII = OMEGAPSQ*DGDP*PI/(B*K)**2

HIR = (2.*OMEGAPSQ/(4.*PI*PERM*(B*K)**2))*HIR/3.545

HII = (2.*OMEGAPSQ/(4.*PI*PERM*(B*K)**2))*(PI*DGDP)/3.545

! A MAXWELLIAN VELOCITY DISTRIBUTION
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AMI = EXP(-XI**2)/(B*SQRT(PI))

end

192



B.9 plgndr.FOR

C THIS IS TAKEN STRAIGHT FROM THE FORTRAN 77 NUMERICAL RECIPES

C [PRESS ET AL., 1992]

FUNCTION plgndr(l,m,x)

INTEGER l,m

REAL plgndr,x

cComputes the associated Legendre polynomial P m l (x). Here m and l are

cintegers satisfying 0 = m = l, while x lies in the range -1 = x = 1.

INTEGER i,ll

REAL fact,pll,pmm,pmmp1,somx2

c if(m.lt.0.or.m.gt.l.or.abs(x).gt.1.) write(15,*) ’bad’

pmm=1.

cCompute P mm .

if(m.gt.0) then

somx2=sqrt((1.-x)*(1.+x))

fact=1.

do 11 i=1,m

pmm=-pmm*fact*somx2

fact=fact+2.

11 CONTINUE

endif

if(l.eq.m) then

plgndr=pmm

else

pmmp1=x*(2*m+1)*pmm

cCompute P m

c m+1.

if(l.eq.m+1) then

plgndr=pmmp1

else

cCompute P m

c l , l>m + 1.

do 12 ll=m+2,l

pll=(x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m)

pmm=pmmp1

pmmp1=pll

12 CONTINUE

plgndr=pll

endif

endif

return

END
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B.10 SPECFNMAIN.FOR

C SPECFNMAIN.FOR

C******************************************************************************C

C FINDING HII, HIR, HEI, HER, AND S C

C******************************************************************************C

C THIS CODE FINDS:

C 1) ANALYTICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A MAXWELLIAN

C VELOCITY DISTRIBUTION AT XI [SHEFFIELD 1975, 6.3.8]

C 2) NUMERICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A MAXWELLIAN

C VELOCITY DISTRIBUTION AT XI (ONLY ION-NEUTRAL COLLISIONS ARE CONSIDERED)

C [SHEFFIELD 1975, 6.2.18]

C 3) NUMERICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A MAXWELLIAN

C VELOCITY DISTRIBUTION AT XI WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE

C INCLUDED

C 4) NUMERICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A DISTORTED

C VELOCITY DISTRIBUTION AT XI (ONLY ION-NEUTRAL COLLISIONS ARE CONSIDERED)

C 5) NUMERICAL CALCULATION OF THE ION FUNCTIONS AND SPECTRUM FOR A DISTORTED

C VELOCITY DISTRIBUTION AT XI WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE

C INCLUDED

C

C THE ION FUNCTIONS INCLUDE:

C HIR - THE REAL COMPONENT OF THE ION FUNCTION

C HII - THE IMAGINARY COMPONENT OF THE ION FUNCTION

C AMI - THE VELOCITY DISTRIBUTION

C

C FOR OUR PURPOSES WE WILL BE ASSUMING A MAXWELLIAN ELECTRON VELOCITY

C DISTRIBUTION, WHICH HAS A DEFINED ANALYTICAL SOLUTION [SHEFFIELD 1975, 6.3.7]

C LINDSAY GOODWIN 14/08/2017

C

DOUBLE PRECISION TE,K,ALPHA,deltax,XI,EPSSQ,SA,SN,AMASSI,PHI,

@HIRANA,HIIANA,AMIANA,HIRNUM,HIINUM,AMINUM,HERANA,HEIANA,AMEANA,

@ELCH,VLGT,PERM,BOLT,ANOMN,MOMVAVE,MOMTEMP,NORMI,NORME,

@FREQ,DELNEW1,DELNEW2,HIRRED1,HIRRED2,HIRRED,HIIRED,TPERP,SETM,

@TPARA,HIRREDnew,HIRREDa,HIRREDb,AMIRED,NORM,B,NORMIN,NUII,SR,SRI,

@NN,POWER,POWERI,HIRI1,HIRI2,HIRI,HIII,HIRINEW,HIRIA,HIRIB,AMII,

@NUIE,NUIN,SETR,POWERM,MOMVAVEI,MOMTEMPI,NORMIE,HIRNUMi,

@HIINUMI,AMINUMI,SNI,POWERMI,TR,PREVHIII,PREVHIIRED,OPERC,PI,

@DBLH,NORMINNU,NORMINU,NORMENU,TN,TIN

DOUBLE PRECISION COEFF(0:200),BARR(0:9),COEFFALL(0:200,0:9)

INTEGER size,I,DEG,COLLISION,NUM,ELEN,J

real LIM

CHARACTER FILENAME*10,ELEC*3

DATA ELCH,BOLT,PERM,PI,VLGT/1.602E-19,1.381E-23,8.854E-12,

@3.1415927,2.998E8/
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! ELCH = ELEMENTARY CHARGE (C)

! BOLT = BOLTZMANN CONSTANT (m2 kg s-2 K-1)

! PERM = PERMITTIVITY OF FREE SPACE (Fm1)

! PI = PI

! VLGT = SPEED OF LIGHT (m s-1)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! USER DEFINED PARAMETERS ARE READ IN:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! FILENAME = TAG ASSOCIATED WITH ALL THE OUTPUT FILES

! TE = ELECTRON TEMPERATURE (K)

! ANOMN = DESIRED PLASMA DENSITY (m-3)

! FREQ = RADAR FREQUENCY (Hz)

! NN = NEUTRAL DENSITY (m-3)

! ELEC = ELECTRIC FIELD

! PHI = ASPECT ANGLE

! COLLISION = DESIRED COLLISION TYPE (1=PESNELL O+O, 2=NO+ WITH O AND N2)

! OPERC = PERCENTAGE OF ATOMIC OXYGEN IN THE NEUTRAL POPULATION

! TPARA = TEMPERATURE PARALLEL TO THE MAGNETIC FIELD

! TPERP = TEMPERATURE PERPENDICULAR TO THE MAGNETIC FIELD

! AMASSI = ION MASS, AMU

! DEG = DEGREE OF ORTHOGONAL FIT TO THE DISTRIBUTION

! lim = NUMBER OF THERMAL SPEEDS BEING EXAMINED

! B = ION THERMAL SPEED

! COEFF = COEFFICIENTS DEVELOPED FROM CALCULATING AN ORTHOGONAL FIT TO THE

! ONE-DIMENSION

! DISTRIBUTION

OPEN(UNIT=15,FILE=’input.dat’,STATUS=’OLD’)

READ(15,*) FILENAME

READ(15,*) TE

READ(15,*) ANOMN

READ(15,*) FREQ

READ(15,*) NN

READ(15,*) ELEC

READ(15,*) PHI

READ(15,*) COLLISION

CLOSE(15)

ELEN = 0

DO 11 I = 1, LEN(ELEC)

IF ( ELEC(I:I) .NE. ’ ’ ) THEN

ELEN = ELEN + 1

END IF

11 CONTINUE

LIM = 4.00

! THIS READS IN THE CORRECT DATA FILE FOR A GIVEN ELECTRIC FIELD AND COLLISION TYPE

IF (COLLISION.eq.1)
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> OPEN(UNIT=15,FILE=’1-E=’//ELEC(1:ELEN)//’.DAT’,STATUS=’OLD’)

IF (COLLISION.eq.2)

> OPEN(UNIT=15,FILE=’2-E=’//ELEC(1:ELEN)//’.DAT’,STATUS=’OLD’)

IF (COLLISION.eq.3)

> OPEN(UNIT=15,FILE=’3-E=’//ELEC(1:ELEN)//’.DAT’,STATUS=’OLD’)

! INFORMATION IS READ

READ(15,*)

READ(15,*) OPERC, TPARA,TPERP,AMASSI,DEG

READ(15,*)

READ(15,*) BARR(0),BARR(1),BARR(2),BARR(3),BARR(4),BARR(5),

> BARR(6),BARR(7),BARR(8),BARR(9)

DO 12 I = 0, DEG/2

READ(15,*) COEFFALL(I,0),COEFFALL(I,1),COEFFALL(I,2),

> COEFFALL(I,3),COEFFALL(I,4),COEFFALL(I,5),COEFFALL(I,6),

> COEFFALL(I,7),COEFFALL(I,8),COEFFALL(I,9)

12 CONTINUE

CLOSE(15)

B = BARR(INT(PHI)/10)

DO 20 I = 0, DEG/2

J = I*2

COEFF(J) = COEFFALL(I,INT(PHI)/10)

COEFF(J+1) = 0.

20 CONTINUE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! DAT FILES ARE OPENED FOR OUTPUT

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! INPUT PARAMETERS OF INTEREST ARE WRITTEN TO FILENAME//’-INFO.DAT’

OPEN (UNIT=20,FILE=FILENAME//’-INFO.DAT’)

! ANALYTICAL SPECTRA CALCULATIONS OF THE MAXWELLIAN ELECTRON VELOCITY DISTRIBUTION

! ARE WRITTEN TO FILENAME//’MAXWELLIAN-ELECTRON.DAT’

! OPEN (UNIT=40,FILE=FILENAME//’MAXWELLIAN-ELECTRON.DAT’)

! WRITE(40,*) ’XI HERANA HEIANA AMEANA’

! ANALYTICAL SPECTRA CALCULATION OF THE MAXWELLIAN ION VELOCITY DISTRIBUTION

! ARE WRITTEN TO FILENAME//’MAXWELLIAN-ANALYTICAL.DAT’

! OPEN (UNIT=55,FILE=FILENAME//’MAXWELLIAN-ANALYTICAL.DAT’)

! WRITE(55,*) ’XI HIRANA HIIANA AMIANA SA’

! NUMERICAL SPECTRA CALCULATIONS

OPEN (UNIT=110,FILE=FILENAME//’-OUTPUT.DAT’)

OPEN (UNIT=112,FILE=FILENAME//’-COULOMB-OUTPUT.DAT’)

WRITE(110,*) ’XI, MAXWELLIAN AMI(N), MAXWELLIAN HIR(N),

> MAXWELLIAN HII(N), MAXWELLIAN SPECTRUM, TOROIDAL AMI,

> TOROIDAL HIR, TOROIDAL HII, TOROIDAL SPECTRUM’

WRITE(112,*) ’XI, MAXWELLIAN AMI(N), MAXWELLIAN HIR(N),

> MAXWELLIAN HII(N), MAXWELLIAN SPECTRUM, TOROIDAL AMI,

> TOROIDAL HIR, TOROIDAL HII, TOROIDAL SPECTRUM’
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! VELOCITY DISTRIBUTION MOMENTS ARE CALCULATED

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! SETM = A PARAMETER USED TO CALCULATE MOMENTS (SETM = 0. IS FOR ION-NEUTRAL

! COLLISIONS, SETM = -1. IS FOR ION-NEUTRAL, ION-ION, AND ION-ELECTRON

! COLLISIONS)

! MOMVAVE = SECOND MOMENT, AVERAGE VELOCITY

! MOMTEMP = THIRD MOMENT, ION TEMPERATURE

! MOMVAVEI = SECOND MOMENT, AVERAGE VELOCITY WHEN ION-ION AND ION-ELECTRONS

! ARE INCLUDED

! MOMTEMPI = THIRD MOMENT, ION TEMPERATURE WHEN ION-ION AND ION-ELECTRONS

! ARE INCLUDED

! NORMIN = NORMALIZATION CONSTANT FOR THE ION-NEUTRAL COLLISION DISTRIBUTION

! NORMI = NORMALIZATION CONSTANT FOR THE ION-ION COLLISION DISTRIBUTION

! NORME = NORMALIZATION CONSTANT FOR THE ION-ELECTRON COLLISION DISTRIBUTION

! NORMINNU = NORMALIZATION CONSTANT FOR THE ION-NEUTRAL COLLISION DISTRIBUTION*NUIN

! NORMINU = NORMALIZATION CONSTANT FOR THE ION-ION COLLISION DISTRIBUTION*NUII

! NORMENU = NORMALIZATION CONSTANT FOR THE ION-ELECTRON COLLISION DISTRIBUTION*NUIE

! NUIN = ION-NEUTRAL COLLISION FREQUENCY (Hz)

! NUII = ION-ION COLLISION FREQUENCY (Hz)

! NUIE = ION-ELECTRON COLLISION FREQUENCY (Hz)

! NORM = NORMALIZATION CONSTANT FOR HIR, HII, AND AMI

! NORMIE = NORMALIZATION CONSTANT FOR HIR, HII, AND AMI WHEN ION-ION AND

! ION-ELECTRON

! COLLISIONS ARE INCLUDED

! TN = NEUTRAL TEMPERATURE (K)

SETM = 0.

! THE MOMENTS ARE CALCULATED AND WRITTEN TO AN OUTPUT FILE

CALL MOMENTS(COEFF,MOMVAVE,MOMTEMP,AMASSI,norm,

> LIM,B,DEG,SETM,NORMIN,NORMI,NORME,TPERP,TPARA,TE)

TN = 1000.

TIN = (TN + ((TPARA+2.*TPERP)/3.))/2.

! THE COLLISION FREQUENCIES ARE CALCULATED BASED ON THE TYPE OF "COLLISION":

! FOR PESNELL O+ O COLLISIONS...

IF (COLLISION.EQ.1)THEN

NUIN = (3.0e-11)*(NN/(100.)**3)*(TIN**0.5)*

> (1.-0.135*DLOG10(TIN/1000.))**2

NUII = 0.22*(ANOMN/(100.)**3)/(((TPARA+2.*TPERP)/3.)**1.5)

ENDIF

! FOR NO+ WITH O AND N2...

IF (COLLISION.EQ.2)THEN

NUIN = (NN/(100.)**3)*

> (16.*OPERC*2.44e-10 + 14.*(1.-OPERC)*4.34e-10)/30.

NUII = 0.16*(ANOMN/(100.)**3)/(((TPARA+2.*TPERP)/3.)**1.5)

ENDIF
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! FOR KNOF O+ O COLLISIONS...

IF (COLLISION.EQ.3)THEN

NUIN = (3.69e-11)*(NN/(100.)**3)*(TIN**0.5)*

> (1.-0.065*DLOG10(TIN))**2

NUII = 0.22*(ANOMN/(100.)**3)/(((TPARA+2.*TPERP)/3.)**1.5)

ENDIF

NUIE =(5.4858e-4/AMASSI)*54.5*(ANOMN/(100.)**3)/(1.41*TE**1.5)

SETM = -1.

NORMINNU = NORMIN*NUIN

NORMINU = NORMI*NUII

NORMENU = NORME*NUIE

CALL MOMENTS(COEFF,MOMVAVEI,MOMTEMPI,AMASSI,NORMIE,LIM,B,

> DEG,SETM,NORMINNU,NORMINU,NORMENU,TPERP,TPARA,TE)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! FURTHER CALCUATIONS ARE MADE, THEN ION FUNCTION AND SPECTRA VALUES ARE FOUND

! AS A FUNCTION OF XI VALUES

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! TR = TPARA*COS2(PHI)+TPERP*SIN2(PHI)

! K = WAVENUMBER (1/m)

! DBLH = DEBYE LENGTH (m)

! ALPHA = ALPHA (UNITLESS)

! POWER = AREA UNDER THE SPECTRUM RESULTING FROM THE DISTORTED VELOCITY

! DISTRIBUTION

! POWERM = AREA UNDER THE SPECTRUM RESULTING FROM THE MAXWELLIAN VELOCITY

! DISTRIBUTION

! POWERI = AREA UNDER THE SPECTRUM RESULTING FROM THE DISTORTED VELOCITY

! DISTRIBUTION WHEN

! ION-ION AND ION-ELECTRON COLLISIONS ARE INCLUDED

! POWERMI = AREA UNDER THE SPECTRUM RESULTING FROM THE MAXWELLIAN VELOCITY

! DISTRIBUTION

! WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE INCLUDED

! DELTAX = A SMALL VALUE USED TO CALCULATE THE DERIVATIVE OF THE DISTRIBUTION

! SIZE = THE NUMBER OF POINTS CALCULATED FOR THE SPECTRA AND ION FUNCTIONS

! XI = OMEGA/(K*B), WHERE OMEGA IS THE ANGULAR FREQUENCY FOR IONS

! HIRANA/HIRNUM/HIRI1/HIRI2/HIRI/HIRInew/HIRIa/HIRIb/HIRNUMi/HIRRED1/HIRRED2/

! HIRRED/HIRREDnew/HIRREDa/HIRREDb = HIR, THE REAL COMPONENT OF THE ION

! FUNCTION IN A VARIETY OF

! CASES AT A GIVEN XI

! HIIANA/HIINUM/HIIRED/HIII/HIINUMi/prevHIII/prevHIIRED = HII, THE IMAGINARY

! COMPONENT OF THE

! ION FUNCTION IN A VARIETY OF CASES AT A GIVEN XI

! AMIANA/AMINUM/AMIRED/AMII/AMINUMi = AMI, THE ION VELOCITY DISTRIBUTION AT A

! GIVEN XI

! HERANA = HER, THE REAL COMPONENT OF THE ELECTRON FUNCTION IN A VARIETY OF

! CASES AT A GIVEN XI
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! HEIANA = HEI, THE IMAGINARY COMPONENT OF THE ELECTRON FUNCTION IN A VARIETY OF

! CASES AT A GIVEN XI

! AMEANA = AME, THE ELECTRON VELOCITY DISTRIBUTION AT A GIVEN XI

! SETR = A PARAMETER USED TO CALCULATE MOMENTS (SETR = 0. IS FOR ION-NEUTRAL

! COLLISIONS,

! SETR = -1. IS FOR ION-NEUTRAL, ION-ION, AND ION-ELECTRON COLLISIONS)

! NUM = NUMBER OF GAUSSIAN QUADRATURE POINTS

! DELNEW1/DELNEW2 = PARAMETERS USED TO FILTER THE REAL COMPONENT OF THE ION FUNCTION

! EPSSQ = SQUARE OF THE LATITUDINAL DIELECTRIC FUNCTION

! SA = ANALYTICAL SPECTRUM CALCULATION FOR A MAXWELLIAN VELOCITY DISTRIBUTION AT XI

! SN = NUMERICAL SPECTRUM CALCULATION FOR A MAXWELLIAN VELOCITY DISTRIBUTION AT XI

! SNI = NUMERICAL SPECTRUM CALCULATION FOR A MAXWELLIAN VELOCITY DISTRIBUTION AT XI

! WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE INCLUDED

! SR = NUMERICAL SPECTRUM CALCULATION FOR A DISTORTED VELOCITY DISTRIBUTION AT XI

! SRI = NUMERICAL SPECTRUM CALCULATION FOR A DISTORTED VELOCITY DISTRIBUTION AT XI

! WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE INCLUDED

TR = (TPARA*DCOS(PHI*PI/180.)**2)+(TPERP*DSIN(PHI*PI/180.)**2)

DBLH=SQRT(PERM*BOLT*TE/(ANOMN*ELCH**2))

K=4.*PI*FREQ/VLGT

ALPHA=1./(K*DBLH)

POWER=0.

POWERM=0.

POWERI=0.

POWERMI=0.

DELTAX = 0.0001

SIZE = 100*6

! A VARIETY OF XI VALUES ARE EXAMINED....

DO 40 I = -SIZE, SIZE

XI = I/100.

! THE ANALYTICALLY CALCULATED ELECTRON FUNCTIONS FOR A MAXWELLIAN ELECTRON

! VELOCITY DISTRIBUTION ARE FOUND

CALL ANAELECT(XI,MOMTEMP,TE,ALPHA,K,AMASSI,HERANA,HEIANA,AMEANA)

! THE ANALYTICALLY CALCULATED ION FUNCTIONS FOR A MAXWELLIAN ION VELOCITY

! DISTRIBUTION ARE FOUND

CALL ANAION(XI,MOMTEMP,TE,ALPHA,K,AMASSI,HIRANA,HIIANA,AMIANA)

EPSSQ = (1.+HERANA+HIRANA)**2+(HEIANA+HIIANA)**2

SA = (2.*PI/K)*((((HERANA**2+HEIANA**2)/EPSSQ)*AMIANA) +

> ((((1.+HIRANA)**2+HIIANA**2)/EPSSQ)*AMEANA))

! THE NUMERICALLY CALCULATED ION FUNCTIONS FOR A MAXWELLIAN ION VELOCITY

! DISTRIBUTION ARE FOUND

CALL NUMMAXWELL(XI,MOMTEMP,K,DELTAX,AMASSI,HIRNUM,HIINUM,AMINUM,

> ANOMN)

EPSSQ = (1.+HERANA+HIRNUM)**2+(HEIANA+HIINUM)**2

SN = (2.*PI/K)*((((HERANA**2+HEIANA**2)/EPSSQ)*AMINUM)+

> ((((1.+HIRNUM)**2+HIINUM**2)/EPSSQ)*AMEANA))

199



! THE NUMERICALLY CALCULATED ION FUNCTIONS FOR A MAXWELLIAN ION VELOCITY

! DISTRIBUTION ARE FOUND WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE INCLUDED

CALL NUMMAXWELL(XI,MOMTEMPI,K,DELTAX,AMASSI,HIRNUMi,HIINUMi,

> AMINUMi,ANOMN)

EPSSQ = (1.+HERANA+HIRNUMi)**2+(HEIANA+HIINUMi)**2

SNi = (2.*PI/K)*((((HERANA**2+HEIANA**2)/EPSSQ)*AMINUMi)+

> ((((1.+HIRNUMi)**2+HIINUMi**2)/EPSSQ)*AMEANA))

! THE NUMERICALLY CALCULATED ION FUNCTIONS FOR A DISTORTED ION VELOCITY

! DISTRIBUTION ARE FOUND

if (I.gt.-SIZE+1) HIRREDa = HIRREDb

if (I.gt.-SIZE) HIRREDb = HIRREDnew

SETR = 0.

! HIR IS CALCULATED FOR A 50 POINT GAUSSIAN QUADRATURE

NUM = 50

CALL DISTORTED(XI,K,DELTAX,AMASSI,HIRRED1,HIIRED,AMIRED,ANOMN,

> COEFF,LIM,DEG,SETR,NORMIN,NORMI,NORME,B,TPERP,TPARA,TE,NUM)

HIRREDnew=HIRRED1

! HIR IS CALCULATED FOR A 52 POINT GAUSSIAN QUADRATURE

NUM = 52

CALL DISTORTED(XI,K,DELTAX,AMASSI,HIRRED2,HIIRED,AMIRED,ANOMN,

> COEFF,LIM,DEG,SETR,NORMIN,NORMI,NORME,B,TPERP,TPARA,TE,NUM)

! THE HIR VALUES FROM THE 50 POINT AND 52 POINT GAUSSIAN QUADRATURES ARE COMPARED,

! AND THE POINT MOST CONSISTANT WITH THE PREVIOUS HIR CALCULATION IS USED AS HIR

! (THIS PROCESS REMOVES MOST SUDDEN HIR "SPIKES")

if (I.gt.-SIZE+1) then

DELNEW1 = (HIRREDb-HIRREDa)-(HIRRED1-HIRREDb)

DELNEW2 = (HIRREDb-HIRREDa)-(HIRRED2-HIRREDb)

if (abs(DELNEW1).lt.abs(DELNEW2)) HIRREDnew=HIRRED1

if (abs(DELNEW2).lt.abs(DELNEW1)) HIRREDnew=HIRRED2

endif

! THE ION FUNCTIONS ARE NORMALIZED

HIRRED = HIRREDnew*norm

HIIRED = HIIRED*norm

AMIRED = AMIRED*norm

if (abs(XI).eq.nint(LIM*100.)/100.) HIIRED = prevHIIRED

EPSSQ = (1.+HERANA+HIRRED)**2+(HEIANA+HIIRED)**2

! THE SPECTRUM AT XI IS CALCULATED

SR = (2.*PI/K)*((((HERANA**2+HEIANA**2)/EPSSQ)*AMIRED) +

> ((((1.+HIRRED)**2+HIIRED**2)/EPSSQ)*AMEANA))

PREVHIIRED = HIIRED

! THE NUMERICALLY CALCULATED ION FUNCTIONS FOR A DISTORTED ION VELOCITY

! DISTRIBUTION ARE FOUND WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE INCLUDED

if (I.gt.-SIZE+1) HIRIA = HIRIB

if (I.gt.-SIZE) HIRIB = HIRINEW

SETR = -1.
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! HIR IS CALCULATED FOR A 50 POINT GAUSSIAN QUADRATURE

NUM = 50

CALL DISTORTED(XI,K,DELTAX,AMASSI,HIRI1,HIII,AMII,ANOMN,COEFF,

> LIM,DEG,SETR,NORMINNU,NORMINU,NORMENU,B,TPERP,TPARA,TE,NUM)

HIRInew=HIRI1

! HIR IS CALCULATED FOR A 52 POINT GAUSSIAN QUADRATURE

NUM = 52

CALL DISTORTED(XI,K,DELTAX,AMASSI,HIRI2,HIII,AMII,ANOMN,COEFF,

> LIM,DEG,SETR,NORMINNU,NORMINU,NORMENU,B,TPERP,TPARA,TE,NUM)

! THE HIR VALUES FROM THE 50 POINT AND 52 POINT GAUSSIAN QUADRATURES ARE COMPARED,

! AND THE POINT MOST CONSISTANT WITH THE PREVIOUS HIR CALCULATION IS USED AS HIR

! (THIS PROCESS REMOVES MOST SUDDEN HIR "SPIKES")

if (i.gt.-SIZE+1) then

DELNEW1 = (HIRIb-HIRIa)-(HIRI1-HIRIb)

DELNEW2 = (HIRIb-HIRIa)-(HIRI2-HIRIb)

if (abs(DELNEW1).lt.abs(DELNEW2)) HIRInew=HIRI1

if (abs(DELNEW2).lt.abs(DELNEW1)) HIRInew=HIRI2

endif

! THE ION FUNCTIONS ARE NORMALIZED

HIRI = HIRInew*NORMIE

HIII = HIII*NORMIE

AMII = AMII*NORMIE

if (abs(XI).eq.nint(LIM*100.)/100.) HIII = prevHIII

EPSSQ = (1.+HERANA+HIRI)**2+(HEIANA+HIII)**2

! THE SPECTRUM AT XI IS CALCULATED WHEN ION-ION AND ION-ELECTRON COLLISIONS ARE

! INCLUDED

SRI = (2.*PI/K)*((((HERANA**2+HEIANA**2)/EPSSQ)*AMII) +

> ((((1.+HIRI)**2+HIII**2)/EPSSQ)*AMEANA))

! THE ANALYTICALLY CALCULATED ELECTRON FUNCTIONS FOR A MAXWELLIAN ELECTRON VELOCITY

! DISTRIBUTION ARE WRITTEN TO FILENAME//’MAXWELLIAN-ELECTRON.DAT’

! WRITE(40,*) XI,HERANA,HEIANA,AMEANA

! THE ANALYTICALLY CALCULATED ION FUNCTIONS FOR A MAXWELLIAN ION VELOCITY

! DISTRIBUTION ARE WRITTEN TO FILENAME//’MAXWELLIAN-ANALYTICAL.DAT’

! WRITE(55,*) XI,HIRANA,HIIANA,AMIANA,SA

! THE ION FUNCTIONS AND SPECTRA VALUES ARE WRITTEN TO FILENAME//’-OUTPUT.DAT’

WRITE(110,*) XI,AMINUM,HIRNUM,HIINUM,SN,AMIRED,HIRRED,HIIRED,

> SR

WRITE(112,*) XI,AMINUMi,HIRNUMi,HIINUMi,SNi,AMII,HIRI,HIII,SRI

prevHIII = HIII

! POWER IS CALCULATED FROM THE FOUR SPECTRA

POWER=POWER+SR*1.e-2

POWERM=POWERM+SN*1.e-2

POWERI=POWERI+SRI*1.e-2

POWERMI=POWERMI+SNI*1.e-2

40 CONTINUE
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! ADDITIONAL INFORMATION IS WRITTEN TO FILENAME//’-INFO.DAT’

WRITE(20,*)’INPUT PARAMETERS:’

WRITE(20,*)’COLLISION (1=PESNELL O+O, 2=NO+, O, N2) = ’

>, COLLISION

WRITE(20,*)’ELECTRIC FIELD (mV/m) = ’, ELEC

WRITE(20,120)’ASPECT ANGLE (DEG) = ’, PHI

120 format (A,F15.0)

WRITE(20,120)’ION MASS (AMU) = ’, AMASSI

WRITE(20,125)’DESIRED PLASMA DENSITY (m-3) = ’, ANOMN

125 format (A,E10.3E2)

WRITE(20,125)’RADAR FREQUENCY (Hz) = ’, FREQ

WRITE(20,130)’ELECTRON TEMPERATURE (K) = ’,TE

130 format (A,F6.0)

WRITE(20,125)’NEUTRAL DENSITY (m^-3) = ’,NN

WRITE(20,130)’PERPENDICULAR ION TEMPERATURE (K) = ’,TPERP

WRITE(20,130)’PARALLEL ION TEMPERATURE (K) = ’,TPARA

WRITE(20,130)’THERMAL SPEED (M/S) = ’, B

WRITE(20,*)

WRITE(20,*)’CALCULATED MOMENTS:’

WRITE(20,130) ’ION TEMPERATURE = ’, MOMTEMP

WRITE(20,130) ’ION TEMPERATURE WITH COULOMB COLLISIONS = ’

>, MOMTEMPI

WRITE(20,*)

WRITE(20,*)’OTHER CALCULATED VALUES:’

WRITE(20,125) ’ALPHA = ’, ALPHA

WRITE(20,130) ’TPERP*SIN**2(PHI)+TPARA*COS**2(PHI) = ’, TR

WRITE(20,125) ’ION-NEUTRAL COLLISION FREQUENCY (Hz) = ’,NUIN

WRITE(20,125) ’ION-ION COLLISION FREQUENCY (Hz) = ’,NUII

WRITE(20,125) ’ION-ELECTRON COLLISION FREQUENCY (Hz) = ’,NUIE

WRITE(20,125) ’POWER OF TOROIDAL DISTRIBUTION = ’, POWER

WRITE(20,125) ’POWER OF EQUIVALANT MAXWELLIAN DISTRIB. = ’, POWERM

WRITE(20,125)

>’POWER OF TOROIDAL DISTRIBUTION WITH COULOMB COLLISIONS = ’

>, POWERI

WRITE(20,125)

>’POWER OF EQUIVALANT MAXWELLIAN WITH COULOMB COLLISIONS = ’

>, POWERMI

CLOSE(20)

! CLOSE(40)

! CLOSE(55)

CLOSE(110)

END

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! ORTHOGONAL POLYNOMIALS ARE USED TO RECONSTRUCT THE ION VELOCITY

! DISTRIBUTION FOR A GIVEN ASPECT ANGLE AND ELECTRIC FIELD
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DOUBLE PRECISION FUNCTION fit(X,coeff,lim,DEG,SETI,SETE,

> NORMIN,NORMI,norme,B,TPERP,TPARA,TE,AMASSI)

REAL lim

INTEGER J,DEG

DOUBLE PRECISION X,coeff(0:DEG),SETI,NORMIN,XP,VT,B,NORMI,

> SETE,TPERP,TPARA,norme,TE,A,AMASSI,BOLT,ME

DATA BOLT,ME/1.380E-23,9.109E-31/

! XP = XI FOR THE AVERAGE ION TEMPERATURE, (TPARA+2.*TPERP)/3.

! VT = THERMAL SPEED FOR THE AVERAGE ION TEMPERATURE, (TPARA+2.*TPERP)/3.

! A = ELECTRON THERMAL SPEED

! ME = ELECTRON MASS (kg)

! BOLT = BOLTZMANN CONSTANT (m2 kg s-2 K-1)

! THE VELOCITY DISTRIBUTION AT A GIVEN X IS FOUND

fit = 0.

if (abs(X).lt.lim) then

DO 10 J = 0, DEG

! ONLY THE EVEN NUMBERED COEFFICIENTS ARE NEEDED BECAUSE THE VELOCITY

! DISTRIBUTION IS ALWAYS SYMMETRIC

if (mod(j,2).eq.0) then

fit=coeff(J)*DBLE(plgndr(J,0,real(X)/lim))+fit

endif

10 continue

endif

VT=SQRT(2.*1.381E-23*((TPARA+2.*TPERP)/3.)/(AMASSI*1.661E-27))

XP=X*B/VT

A = SQRT(2.*BOLT*TE/ME)

Xe=X*B/A

! IF ION-ION AND ION-ELECTRON COLLISIONS ARE BEING INCLUDED...

if (SETI.eq.(-1.).and.SETE.eq.(-1.)) then

fit=(fit*normin+normi*exp(-XP**2)+norme*exp(-Xe**2))/

> (normin+normi+norme)

else

! IF ONLY ONE TERM IS BEING CONSIDERED...

fit=(1.-SETI-SETE)*fit*normin+SETI*normi*exp(-XP**2)+

> SETE*norme*exp(-Xe**2)

endif

END
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B.11 Data Files for Calculating Spectra

Each data file contains high-quality Legendre polynomial fits to the one-dimensional velocity
distributions that have been acquired through the formula:

g0i(y) =
D∑
j=0

njP
0
j , (B.1)

where D is the desired degree chosen to perform the fit around its drift point and Pj are
the Legendre polynomials. This work uses D = 50; however, it should be noted that only
even-numbered polynomials contributions need to be considered because of the symmetry of
the velocity distributions about their drift point. Therefore these files list 26 values for nj
associated with the Legendre polynomials of degree 0, 2, 4, etc., all the way to degree 50.
From these values, the ion velocity distribution is found at a specific y value (recall that y is
vx/b, where vx is the line-of-sight speed and b is the ion thermal speed).

Each ASCII .DAT file is for a different electric field and collision type. Note that although
there are ASCII .DAT files to produce NO+ spectra, the NO+ with a background of 50% O
and 50% N2 spectra can also be reproduced using Maxwellian ion velocity distributions and
the temperatures provided in Table A.1 (see Appendix A for more details).

Each ASCII .DAT file contains 30 rows:

• Row 1: Collisions type (this is 1 for O+-O and 2 for NO+ with a background of 50% O
and 50% N2).

• Row 2: a) Abundance of background atomic oxygen, b) parallel ion temperature in
Kelvin using the Monte-Carlo simulation output (purely ion-neutral collisions), c)
the perpendicular ion temperature in Kelvin using the Monte-Carlo simulation out-
put (purely ion-neutral collisions), d) ion mass in atomic mass units, and e) desired
degree orthogonal fit.

• Row 3: Aspect angle.

• Row 4: Ion thermal speed in m/s, based on the line-of-sight ion temperature given by
the Monte-Carlo simulation. This value is used to find ω from xi and/or vx from y.

• Row 5 - 30: The even numbered polynomial coefficients from 0 to 50 (i.e. coefficient
0, coefficient 2, coefficient 4, coefficient 6,..., coefficient 48, coefficient 50). These poly-
nomial coefficients describe the ion velocity distribution from -4 thermal speeds to 4
thermal speeds.

Note that each column in row 3 and onward is for a different aspect angle in steps of 10◦

aspect angles from 0◦ to 90◦.
Only one file is given here.“1-E=100.DAT”, which contains the POH O+-O collision

information for an electric field of 100 mV/m. This file is listed below, and other files are
available upon request:
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