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ABSTRACT 

In the last two decades many microfluidic devices have been developed in order to provide 

better and more reliable tools for biological assays and analysis. Microfluidic technology has 

proven its functionality and advantages over conventional cellomics methods such as flow 

cytometry (FC) and laser scanning cytometry (LSC) in particular for processes that require the 

analysis of single cells. Different microfluidic platforms capable of capturing, positioning, and 

sorting single cells have been developed; however, such devices are incapable of working with 

various sizes of cells. Therefore, once a device has been designed and fabricated it is not 

possible to modify its dimensions so a new device is required for each different cell size for 

analysis. In an effort to overcome the limitation of adaptability of microfluidic cell trapping 

devices, this thesis presents a new microfluidic single cell-trapping device capable of capturing 

cells of various diameters.  

This thesis conducts a review and analysis of several microfluidic cell trapping devices 

under the FCBPSS (function-context-behavior-principle-state-structure) framework to have a 

better understanding and classification of the most relevant microfluidic devices, followed by the 

design of a new device capable of trapping large batches of single cells and modifying its 

physical features in order to work with multiple sizes of cells. The design process of the new 

device is based on and guided by the Axiomatic Design Theory. From the thorough review of the 

literature, it was concluded that the most suitable structure to demonstrate the concept proposed 

on this thesis an array of single cell trappers, and the best tuning method would be a mechanical 

stretching to generate a uniform distributed strain on the device. 

After designing and modeling the new device, it was imperative for this research to 

fabricate a device which could be tested in accordance with the literature. The final device 

consists of two thin layers of polydimethylsiloxane (PDMS), one of which bears trapezoidal 

microstructures (traps) to physically capture cells. The size of the traps can be modified by 
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stretching the device via a uniform distributed force, which is applied using a stretching 

apparatus.  

Finally, the performance of the new device was assessed by conducting two main 

experiments. The first experiment consisted of characterizing the mechanical behavior of the 

device when different strains were applied. It has been found that all the traps of the device have 

a uniform deformation when a strain is applied, and the minimum size increment permitted by 

the stretching apparatus is of 2μm.The second experiment was done in order to characterize the 

hydrodynamical and trapping behavior of the device. By using water-in-oil microspheres of 

various sizes the trapping of particles was demonstrated; it was determined that the device can 

capture particles between 20μm and 30μm. To demonstrate cell viability, the device was tested 

using melanoma cells. No visible damage onto the cells was observed after the experiments 

using the device; therefore, it is suitable for biological applications where various sizes of cells 

are required for analysis.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background and Motivation. 

There are various assays or analyses which are required to be conducted on a single cell 

or group of cells, with multiple samples in order to be able to make a relevant inference. Cells 

separation, isolation, positioning, trapping, and sorting are various kinds of cell manipulation 

processes that are of great importance in basic biological research and clinical diagnostics (Zhu 

et al., 2013). However, conventional methods such as flow cytometry (FC) and laser scanning 

cytometry (LSC) for cell analysis do not permit effective and efficient cell trapping and cell 

positioning, which may be offered by the microfluidic technology (Lindström & Andersson-Svahn, 

2010). Different microfluidic technologies capable of capturing single cells have been developed 

in the past decades, for instance, microwells arrays, U-shaped weirs, and micro-trap arrays.  

Although cell trapping of different numbers and sizes of cells can be accomplished using 

micro-traps with different geometries and dimensions (Lawrenz, Nason, & Cooper-White, 2012; 

Di Carlo, Aghdam, & Lee, 2006), microfluidic devices lack flexibility in processing different cell 

diameters. Therefore, once a device has been designed and fabricated it is not possible to 

modify its dimensions and a new device is required for each different cell diameter (Zhu et al., 

2013; Di Carlo, Wu, & Lee, 2006). This becomes inconvenient since among different kinds of 

cells, sizes can range from 2 µm to 100 µm, for example, chlorella algae cells (average diameter 

of 2µm-5µm), MS cells (average diameter of 14µm), and MCF-7 cells (average diameter of 

20µm-24µm) (Lawrenz et al., 2012; Zhu et al., 2013).  

The approach of requiring a microfluidic device (tool) for each size of cell for analysis 

(operation) could be considered, from an engineering point of view, as an inefficient method, 

which motivated us to think of how to design a more “universal” device capable of working with 

multiple cell sizes. 
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1.2 Microfluidic Cell-trapping Devices 

Microarray technology has been implemented in various biological fields. Such technology 

allows the screening of biomolecules in array formats, which presents at a specific position and 

time a single library element of a known structure. For instance, using specific methods, small 

numbers of cells, or even single cells, can be observed as library elements (Seliger, 2007). With 

the birth of microarray technology new tools were required in order to fulfill the needs of such 

techniques. This is how micro-devices and microfabrication techniques, first seen in 

microelectronics, entered into biological sciences; in particular, microfluidic devices. Microfluidics 

is a technology for the manipulation of fluids through microchannels, with small dimensions in 

the order of hundred microns and flow speeds characterized by low Reynolds numbers, resulting 

in laminar flows. Moreover, regardless of the small dimensions of the channels the fluid behaves 

like a continuum, and the Navier-Stokes equations are still valid to describe the flow behaviour.  

In general, a microfluidic device is composed of two bonded thin sheets of either polymer 

or silicon to glass or polymer to polymer. The bottom layer usually bears the geometry features 

and channels while the top layer represents the lid to seal the device; as a result, the two 

bonded layers form an enclosure for the fluids. Many microfluidics cell-trapping devices that use 

hydrodynamic trapping principles have been reported. In this section only those using arrays of 

physical traps are considered for further explanation. Other cell-trapping devices are discussed 

in Chapter 2 to give a broader context. Microfluidics cell-trapping arrays have an arrangement of 

microstructures protruded on the surface of the bottom sheet to physically capture cells. Such 

microstructures work as traps for the traveling cells and they could have different geometrical 

shapes as evidenced by various array devices reported in literature. For example, Di Carlo et al. 

(2006) reported a microfluidic cell-trapping device in which high-density arrays of single cells 

were captured using a cup-shape microwells; another platform using rectangular-shape traps for 

the analysis of multicellular tumor spheroids (cancer) was developed by Wu et al. (2007). 

Huebner et al. (2008) presented a device capable of isolating microdroplets for drug applications 
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utilizing U opened-shape microstructures, while Xu et al. (2013) reported a more efficient device 

using triangular traps. More recently another microfluidic chip incorporating different sieve-like 

microstructures for studying the effects of novel drugs was divulged by Benavente-Babace et al. 

(2014). Figure 1.1 shows the microstructures utilized on the foregoing studies. 

 

Fig. 1.1 Different geometries and shapes of microstructures used as cell traps. (A) Cup-

shape microwells (Di Carlo et al., 2006, p. 1447). (B) Rectangular trap (Wu et al., 2007, p. 199). 

(C) U opened-shape trap (Huebner et al., 2008, p. 694). (D) Triangular trap (Xu et al., 2013, p. 

5). (E) Rectangular and cup shape traps with a rear opening (Benavente-Babace et al., 2014, p. 

300) 

         

Microfluidic cell-trapping array devices accomplish their goal of trapping cells by combining 

two working principles.  Note that trapping here means to corralling the cells at predetermined 

position in the array of traps. The first principle is based on the probability that cells suspended 

in a carrier fluid will collide against the traps and therefore they will remain in the trap, and the 

second principle is a hydrodynamic principle based on the difference of flow resistance of two 
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paths (Lawrenz et al., 2012; Di Carlo et al., 2006; Huebner et al., 2008; Xu et al., 2013; Zhu et 

al., 2013). 

On regards of the fabrication materials, it was mentioned before in this section that 

microfluidic devices can be fabricated from different materials such as glass or polymers; 

however, polydimethylsiloxane (PDMS) is the most popular material among polymers used in 

microfluidics technology. PDMS is a silicone-bases organic polymer, which is characterized by 

its optical transparency and inert properties. It is ideal for bioassays because it is compatible 

with optical methods for detection and does not react with biological agents such as living cells. 

Also, PDMS devices are easy and fast to fabricate (Sia & Whitesides, 2003; Wang, 2011). 

Moreover, PDMS behaves mechanically as an elastomer, it is very flexible and elastic, which 

makes it suitable for adaptable applications. In particular, its elastic properties are of high 

interest in this thesis as it will be discussed further later on Chapter 3. 

 

1.3 Tunable Devices 

As mentioned in section 1.1 although microfluidic cell-trapping devices are very efficient on 

capturing cells, they present some limitations when they are required to work with various sizes 

of cells. Microfluidic devices are designed and fabricated considering a fixed size of particle, so a 

single device is limited to only work with a specific particle size. Complications thus arise due to 

the considerable variation in sizes of cells, not only when considering different types of cells but 

also within the same type. For instance, the diameter of Mesenchymal Stem cells can vary from 

15 to 50 μm (Ge et al., 2014). Thus, cell trapping devices are required to have flexibility to 

accommodate various particle diameters. However, this represents a challenge to produce 

devices capable of changing or adapting its properties in order to work with particles of different 

sizes. Some efforts on addressing the lack of flexibility in microfluidics devices (not necessarily 

focused on cell trappers) have been made by some researchers. Although a more detailed 

review of the literature and classification of devices and tuning methods will be presented in 
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Chapter 2, three significant devices are summarized in this section. First, Huh et al. (2007) 

developed a nanofluidic device made of PDMS, which consists of a parallel array of 

nanochannels capable of modulating their size in response of an external compressive force. 

Such modulation is performed in order to reduce the cross-section of the channels and thus to 

limit the size of nanoparticles flowing through them. The second device is a tunable particle 

separator, which uses PDMS´s high-elasticity property to achieve a relative large displacement 

between its features when the entire device is stretched across its width. The device is based on 

a previous Deterministic Lateral Displacement (DLD) device which uses an array of micro-pillars 

as obstacles to sort particles. By increasing the gap between such micro-pillars, Beech and 

Tegenfeldt were able to use the same device to target particles of different sizes without 

reducing the separation accuracy (Beech & Tegenfeldt, 2007). The third device is a PDMS cell-

trapping array. Zhu et al. (2013) presented a device that can be mechanically modulated to tune 

the characteristics of cell trapping in order to capture a predetermined number of cells from 

single cells to multiple cells. The mechanical modulation is achieved by inducing an uniformly 

distributed strain through the application of an external force on the chip to modify its geometry. 

It is important to notice that the cells fed into the device are of a fixed size at all times. 

Among the three works above briefly discussed, there are two main similarities: the 

material selection and the tuning method, regardless their different applications. The three 

devices were all fabricated from Polydimethylsiloxane (PDMS) and they used a mechanical 

induced force to produce the desire modulation of the device. On regard of their adapting 

objectives, the first two devices aim for controlling the size of their channels in order to 

accommodate different sizes of particles, while the goal of the third one is to change the size of 

its microstructures in order to fit more particles (cells) of a fixed size in each trap. Thus, the 

following question arose: if it is possible to modify the shape and dimensions of geometrical 

features in microfluidic devices in order to target various sizes of particles, and such methods 

have been incorporated into microfluidics cell-trapper, as presented by Zhu et al., would it be 



6 
 

possible to produce a microfluidic single cell-trapping device capable of accommodating cells of 

various diameters while using a single device as Beech and Tegenfeldt did with their particle 

separator?  

 

1.4 Hypothesis of the Research 

Inspired by the studies above, the following idea came out. It is possible to design and 

produce an adaptable single cell-trapping device capable of modifying its geometric features to 

target cells of different sizes rather than working only with a fixed cell size.   

 

1.5 Objectives and Scope of Thesis 

The general objective of my research is to design a new microfluidic cell-trapping device 

capable of modifying its features in order to capture multiple single-cells of different sizes without 

compromising its capture efficiency. The general methodology is to apply a uniform distributed 

strain on the device via a mechanical stretching. Therefore, the key attributes of such a device 

include: (A) the deformation of the elastomeric polymer (PDMS) feasible to stretch, (B) 

compliance of the traps, and (C) uniformity of the deformation of the traps. Therefore; the 

specific objectives are as follows: 

Objective 1: Analysis of the existing principles of single cell trappers to lead to the 

classification of the principles with their pros and cons. 

Objective 2: Development of a simulation system for the device, as well as its deformation 

process, and to guide the design optimization. 

Objective 3: Design of the device to achieve a large deformation as possible (which is at 

least a size increment of 60% on the traps) and a uniform deformation of all the traps. 

Objective 4: Fabrication of the device in accordance with the design specifications 

resulting from the research in objective 2 to test the hypothesis of the research. 
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1.6 Thesis Organization 

Chapter 2 covers a comprehensive literature review focused on microfluidic devices based 

on hydrodynamic principles for the capturing and isolation of particles. The review is presented 

in a classification fashion, where several particle trappers pertinent to this research are 

discussed under the FCBPSS (Function-Context-Behaviour-Principle-Structure-State) 

framework. Devices with adaptive properties are also considered in the classification analysis. 

Chapter 3 presents the conceptual design of a new device. The design process is based 

on and guided by the Axiomatic Design Theory, and this theory is briefly introduced first. 

Chapter 4 presents a model of the device that was created in the commercial software 

ANSYS Release 14.5 (ANSYS Inc., PA.) to simulate the deformation of the traps when the 

device is stretched, and to determine the maximum strain possible before plastic deformation. 

The chapter also presents a second model created in Fluent to simulate the flow profile 

developed within the micro-channels, and to determine numerically the maximum stress induced 

in a particle (living cell) when captured by a trap. 

Chapter 5 provides a brief introduction to soft lithography and explains the replica molding 

technique used to fabricate the device. It is also presented a detailed description of the process 

followed to make the new trapping device designed in Chapter 3. 

Chapter 6 presents the experiments conducted to test the attributes of the device 

fabricated in Chapter 5, as well as the results obtained. Two main experiments were carried out. 

The first experiment is proposed to evaluate the deformation of the device, and the second to 

assess the capturing performance.  

Chapter 7 provides the conclusion and future work. 
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CHAPTER 2: LITERATURE REVIEW AND DEVICE CLASSIFICATION 

2.1 Introduction 

In the introductory chapter the main characteristics of the hydrodynamic cell-trappers 

based on microfluidics were briefly presented; as well as, some outstanding adaptable devices. 

In this chapter, a literature review focused on microfluidic devices dealing with particle 

processes, in particular capturing and isolation, is conducted. Note that the term “particle” is here 

used to refer to any kind of cells or microspheres. Various published reviews on microfluidic 

systems for particle trapping provide indeed a thorough overview of the methods available to 

manipulate particles, including but not limited to the followings: magnetic, optical, mechanical, 

and electrical (Andersson & van den Berg, 2003; Yi, Li, Ji & Yang, 2006; Nilsson, Evander, 

Hammarström & Laurell, 2009; and Lindström et al., 2010). In contrast to these works, the scope 

of this chapter of the thesis is limited to hydrodynamic trapping, a branch of mechanical 

manipulation. The following review is presented in a classification fashion, where several particle 

trappers pertinent to this research are discussed under the FCBPSS (Function-Context-

Behaviour-Principle-Structure-State) framework. Devices with adaptive properties are also 

considered in the classification analysis. 

 

2.2 FCBPSS Framework 

A thorough understanding of a system is essential to produce a proper classification. The 

goal is to unravel all the functions and relationships of all its components. In order to unravel the 

“nature” of a system different design theories could be useful such as the Axiomatic Design 

Theory (Suh, 1990), the Systematic Design Methodology (Pahl, Beitz, Feldhusen, & Grote, 

2007), and the FBS model (Umenda et al., 1990). However, since this analysis is not a design 

process, it should rather be called ontological process, which by definition is to show the 

relations between the concepts and categories in a subject or domain. Ontologies provide 

uniform frameworks to identify differences and similarities among systems; moreover, they can 
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be used to record the evolutionary steps of a technology (Gero et al., 2007). In particular, the 

FCBPSS framework proposed by Lin and Zhang (2004) is adopted in this thesis to produce an 

ontology of hydrodynamic cell-trapping devices.  

Under the FCBPSS framework an entity is defined as a system, and a process is defined 

as a set of operations of the system. A system can be decomposed or analysed upon its 

function (F), context (C), behavior (B), principle (P), structure (S), and state (S). The function of a 

system answers to the question “what is the system for?” and can be accomplished by the 

system´s structure through the provision of certain behaviors. In addition, the function or 

usefulness of a system is context-sensitive, which means that the same system can be used for 

fulfilling different tasks in different contexts without mayor changes on the system. The context is 

the precondition, post condition, and environment where the system performs its function. The 

behavior is about the response of the system when it receives stimuli, and it is represented by 

the relation between the input and output variables of the system. Unfortunately, the behaviour 

and function can be easily mixed up due to colloquial language. Therefore, behavior must be 

considered only as the observable effects on the structure of the system when a stimulus is 

induced. The principle is the fundamental law that governs the behavior of the system, so it 

defines the relationships and constraints among state variables. The principle is usually 

represented or modeled as a set of mathematical equations. The structure is a set of elements 

linked in a meaningful way. These elements are represented by their properties, which are called 

states. States thus can be represented as variables since they are quantities of either physical 

or chemical domains that can change in time (Lin et al., 2004; Zhang, Lin, & Sinha, 2005). 

 

2.3 Hydrodynamic Cell-trapping Devices 

Hydrodynamic trapping techniques are the most common in microfluidic devices for 

particle trapping functions (Nilsson et al., 2009). The main reason is that hydrodynamic 

techniques do not require the addition or use of a concurrent principle to achieve their goal. 
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Devices based on hydrodynamic principles use their geometrical features, such as channel 

dimensions, channel contractions or expansions, and physical barriers to define and control the 

characteristics of the induced flows. As a result of the small dimensions of the channel, the flows 

are predominantly laminar, which can precisely transport and manipulate cells throughout the 

channels (Kim, Lee, & Suh, 2008). In figure 2.1, a table presented by Nilsson et al. (2009) 

summarizes the characteristics of different trapping methods, which the advantages of 

hydrodynamic methods over others like optical, dielectrophoretic, and magnetic, can also be 

observed.   

 

Fig. 2.1 Classification of trapping techniques. D is the particle diameter, ρ is the density of 

the particle, β is the compressibility of the particle, ε is the dielectric constant, σ is the 

Conductivity of the medium, X is the permittivity of the particle, and n is the index of refraction of 

the particle (Nilsson et al., 2009, p.156). 

 

Being the most common method to trap particles, in the literature there are endless 

numbers of hydrodynamic particle trappers reported. Consequently, a classification of these 

many devices is proposed next to have a thorough understating of such technology. The domain 

for this classification has been already limited to hydrodynamic microfluidic devices. Whilst most 

of the devices that are here reviewed share the same function, context, behavior, and principle, 

they differ on their structure. Since a classification of the structure only makes sense when the 

function, behavior, context, and principle have been determined, these concepts of the FCBPSS 
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framework are first discussed as group for the many hydrodynamic trapping devices reviewed, 

followed by the classification of their structures. 

 

2.3.1 Function 

The function of particle-trappers is coincidently stated on their own name, so the function 

of any microfluidic particle-trapper is to capture particles in predetermined positions for different 

biological assays. Here one can observe how the function of a system is indeed context-

sensitive because the same system can be used for different purposes such as, measuring cell 

response to different stimuli (Chung, Rivet, Kemp, & Lu,2011), cell co-culture (Frimat et al., 

2011; Lee et al., 2014), screening methods (Tan & Takeuchi, 2006), drugs development (Wu, Di 

Carlo, & Lee, 2007; Wlodkowic, Faley, Zagnoni, Wikswo, & Cooper, 2009), and others. 

  

2.3.2 Context 

The microfluidic particle-trappers work with microparticles usually smaller than 100μm, and 

in order to feed the microparticles into the device they must be suspended on a fluid which is 

called carrier fluid. As a result, the working environment or context of the devices is mainly 

determined by the target particles; in other words, on the input to the trapper device. For 

instance, water-in-oil microspheres are suspended on an oil solution, while living cells are 

suspended on culture media. Also, living cells are very sensitive to changes of their 

environment, and depending on the cell type they might require special environment conditions, 

which the devices must provide. In addition, when using cells, it is important to observe the 

forces exerted on them to guarantee cell viability. The main concern on this regard is the wall-

shear stress induced on the membrane, which must be lower than 4.5 [Pa] (Dimmeler, 

Haendeler, Rippmann, Nehls, & Zeiher, 1996, p. 71). Among the literature reviewed, the devices 

encountered mainly work with either microspheres or living cells, so the devices can be 

classified regarding their context on these two: microsphere context or cell context. 
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2.3.3 Behavior 

The behavior and the function of these devices could be easily confused due to their 

similitude. Therefore, in order to clarify the behaviour of hydrodynamic particle-trappers a 

Systematic Design (SD) approach (Pahl et al., 2007) of decomposing the system function is 

used. It is important to mention that unfortunately SD uses the term function as the relationship 

between the input and output of a system; however, we know that for FCBPSS this is the 

definition of behavior. Nevertheless, the approach proposed by the SD methodology is still valid 

to determine the behavior of hydrodynamic particle-trapping platforms. Since an overall system 

can have many sub-elements (structures), it would be helpful to state the behavior of these in a 

diagram, which will allow one to clarify the overall behavior of the system. The SD theory 

proposes the following “universal” schematic representation of a function (behavior) (Fig. 2.2). 

 

Fig. 2.2 Symbols used to represent a function diagram (Pahl et al., 2007, p. 32). 
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Establish the input and output of the system. The input of the particle-trapping devices is a 

fluid with a determined number of particles. The output is the same fluid with a reduced number 

of cells in comparison to the input. Also, the docked particles are stored and retained for a 

certain time at their trapped position to be driven out the device later. Once the general behavior 

of the device has been stated, one can proceed to generalize it in order to recognize the natural 

relationship of the input-output without context. This process requires a high level of abstraction 

of the system, and the elimination of the context, so that the general behavior resulting from the 

process would be very general. With a general function (behavior) one would be able to look for 

other possible solutions, regardless of the context they are coming from. The SD approach holds 

that any general function (behavior) should fit on the next five categories showed in figure 2.3: 

 

Fig. 2.3 General functions (behaviors) of the systematic design theory (Pahl et al., 2007, p. 

35). 

 

It has been stated that the microfluidic cell-trapping device has behavior without the 

context of capturing particles and retaining them for a certain period of time at their trapped 

position, later the trapped particles are expelled from the device. Thus, following the notation 
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proposed by the SD approach, one can come up with the general function diagram depicted in 

figure 2.4. 

 

Fig. 2.4 Generalized systematic design diagram of the behavior of microfluidics particle-trapping 

devices based on hydrodynamic principles. 

 

2.3.4 Principle 

The principle is related to the behavior by the question “how and why?”. Therefore, to 

determine the principle of the particle-trapping devices one should answer the question: how 

does such devices capture particles and retain them for a certain period of time at their trapped 

position? The answer is: using hydrodynamic principles, in particular the “paths of the least flow 

resistance”. When a flow is induced into the device the flow will take the path with the least flow 

resistance. Thus, if one of the paths goes through the trap, the flow will go through it unless that 

path is blocked. In a case where the path is blocked by a cell, the flow resistance of that path will 

be higher than any alternative flow path thereby making the main flow to take another path with 

less resistance. Once the traps are occupied by particles, the flow of the carrier fluid is kept in 

the same direction in order to hold the trapped particles within the traps.  

Mathematically, the above principle can be modeled by determining the pressure drop in a 

microchannel using the Darcy-Weisbach equation and solving the Hagen-Poiseuille flow 

problem for continuity and momentum. If one assumes a fully established fluid inside the 
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trapping area, which in practice can be done by placing the trapping area far enough from the 

inlet (Xu et al., 2013) the pressure difference in a channel is given by, 

∆𝑃 =
𝑓𝐿𝜌𝑉2

2𝐷
 ,                                                                              (2.1) 

where:  

𝑓 𝑖𝑠 𝑡ℎ𝑒 𝐷𝑎𝑟𝑐𝑦 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛. 

𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 

𝜌 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. 

𝑉 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑. 

𝐷 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 

Considering a rectangular channel because it is the most common cross section in micro-

channels one has that, 

𝐷 =  
4𝐴

𝑃
 ,                                                                             (2.2)  

and 

 𝑉 =
𝑄

𝐴
 ,                                                                                (2.3) 

where: 

𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 

𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 

𝑄 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒. 

The Darcy friction factor 𝑓 is related to the aspect ratio of the channel and the Reynolds 

number 𝑅𝑒 as, 

𝑅𝑒 =  
𝜌𝑉𝐷

𝜇
 ,                                                                          (2.4) 

where:  

𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦. 

Substituting equations 2.2, 2.3, and 2.4 to 2.1, yields, 
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∆𝑃 =
𝑓𝑅𝑒𝜇𝐿𝑄𝑃2

32𝐴3  ,                                                                      (2.5) 

where, 𝑓 𝑡𝑖𝑚𝑒𝑠 𝑅𝑒 can be determine by the following function (Xu et al., 2013, p. 6), 

𝑓(𝛼) = 96(1 − 1.3553𝛼 + 1.9467𝛼2 − 1.7012𝛼3 + 0.9564𝛼4 − 0.2537𝛼5) ,       (2.6) 

Since the trapping principle is based on a flow in two paths (trapping path and bypass 

path), one should apply the obtained difference pressure ∆𝑃 on both paths. As these paths are 

connected, the pressure drop is the same for both. Therefore, one can equate both expressions 

and obtain, 

𝑄1

𝑄2
= (

𝑓2(𝛼2)

𝑓1 (𝛼1)
)(

𝐿2

𝐿1

) (
𝑃2

𝑃1

)
2

(
𝐴1

𝐴2

)
3

  ,                                                 (2.7)   

Finally, to guarantee the trapping of particles, the volumetric flow that goes through the 

trap (𝑄1) must to be greater than that of the bypass path around the trap (𝑄2) (Tan et al., 2006; 

Xu et al., 2013). 

2.3.5 Structure 

In a review of the literature several particle-trapping platforms based on hydrodynamic 

principles were found. Most of them fall into three categories considering their structure, which 

are comb arrays, bypass channels, and trap arrays. In addition, microwell arrays are also 

reviewed. As it is not the scope of this review to produce a compilation of devices, only the most 

relevant for this research are now considered. 

 

i.  Comb Arrays. 

A PDMS device which includes an array of rectangular microposts resembling a comb, as 

illustrated in figure 2.5, was presented by Sochol, Dueck, Li, Lee, and Lin (2012). The gaps 

between the microposts that connect the main flow channels serve as traps to immobilize single 

particles. The device is characterized by the dimensions of the two main channels designated as 

the trapping (top) and resetting (bottom) channels, respectively. In order to trap the particles 
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suspended in the carrier fluid, a flow from trapping channel towards the resetting channel is 

induced. When the suspended particles are immobilized in a trapping location, the channel 

between posts is blocked diverting the flow to the next empty gap. Once a comb segment is 

filled, the particles can freely flow to the next array connected in series and repeat the process.   

 

Fig. 2.5 Comb array of microposts to immobilize single particles. (a) When flowing along 

the channels, single particles are captured in the multiple gaps formed by the parallel 

microposts. (b) The ideal trapping process is done in sequence. (d) and (e) Show the release 

process when the flow is reversed (Sochol et al., 2012, p.5052). 

 

  Chung, Rivet, Kemp, and Lu (2011) presented a similar comb array trapping device to 

that of Sochol et al. (2012). However, they did not use two but only one main serpentine channel 

called cell-delivery channel. Each comb array has 24 single cell-traps and 8 dummy traps at both 

ends of the row. The traps used and illustrated by figure 2.6 are more complex structures than 

the simple parallel microposts used on the foregoing device. The device captures single cells of 

a fixed size by diverting the cells flowing into the delivery channel. Using the dummy traps 

located at the beginning of each comb a sort of suction force is produced to attract the cells 

closer to the traps. Once the cells are near to the traps, they experience two streams: the main 

delivery channel flow and a cross-flow which passes through the trap´s gap forcing the cells into 

the traps. Then, if a cell is docked in a trap, it will clog the flow across the gap and divert the 

coming cells to the next vacant trap. Thus, single cell-trapping is controlled by the delivery flow, 

and the size of the traps.  



18 
 

 

Fig. 2.6 Traps formed by to microposts joint by a small bridge at the bottom, which is 

shorter in deep than the posts creating a small opening to allow the flow of carrier fluid through 

the trap towards the delivery channel (Chung et al., 2011, p.7047). 

 

In contrast to the comb structure, for which few devices are reported, many more devices 

with a bypass structure were found in the literature.  

 

ii.  Bypass Channels. 

Another kind of single particle trapping devices that use serpentine channels can be found 

in the literature. Such devices, rather than to incorporate arrays of traps along the channels, only 

have one trap in each loop. Most of the devices reported are likely inspired from a device 

reported in 2006 by Tan and Takeuchi, which will be ilustrated in this section. 

A dynamic trap-and-release system capable of trapping single particles and later retrieving 

specific particles at will was reported by Tan and Takeuchi (2006). The device fabricated on 

PDMS consists of a main square-wave shaped channel connected to the vertical sections by a 
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straight channel with narrowed zones that function as traps. The device presented here has 

been designed to trap particles of a specific size and it poses 100 traps, yet the authors claim to 

have fabricated a high-density device with 1 𝑥 104 traps (Tan et al., 2006, p.1148). The device 

function and geometry is schematized in figure 2.7. Although the trapping approach employed 

by Tan and Takeuchi is similar to previous works, they were able to control and use in a more 

reliable manner the hydrodynamic forces produced in their device to achieve single particle 

trapping. Their channels are designed such that the straight channel bearing the traps always 

has a lower flow resistance than that of the square-wave loops. As a result, particles will flow 

directly to the traps as this stream presents the lowest flow resistance. The trapped particle acts 

as a plug to the straight channel increasing rapidly the channel flow resistance, and diverting the 

up coming particle to the next path; i.e., the bypass channel. Thus, once a trap is occupied the 

following particles will bypass the trap to fill up the next one along the straight channel. 

Furthermore, the device posses the unique function of retrieving a determined particle in any 

trap by using bubbles, which are produced by an optical method. To do so, aluminum plates are 

located near to the traps, on which a IR laser is focused to produce localized heat. Such heat 

results in the formation of a bubble that forces the particle out of the trap into the main flow 

which will carry the particle out of the device (Tan et al., 2006, p.1147). 

 

Fig. 2.7 (A) Trapping mode. If a trap is empty, the flow resistance of path 1 is lower than 

that of path 2. Otherwise, the particles will bypass the occupied trap taking the path 2. (B) 

Retrieving mode. Using laser focusing, the aluminum plates are heated to produce a bubble in 
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the trapping channel, which will push the bead out of the trap into the main flow (Tan et al., 

2006, p.1147). 

 

Tan and Takeuchi tested their device using polymer beds; afterwards, another group of 

Kobel, Valero, Latt, Renaud, and Lutolf (2010) came up with the idea of optimizing Tan and 

Takeuchi´s device in order to capture single cells. Consequently, they did some modification to 

the previous device mainly on the traps. Kobel et al. (2010) changed the narrowed regions in the 

straight channel for smaller gaps, resulting in larger loop channels to still complying with the 

bypass trapping principle. By reducing the dimensions of the channel across the traps, the flow 

resistance of this path increases, and remember that in order to direct the particles into the trap 

the trap´s cross flow resistance has to be lower than that of the loop or bypass channels. The 

resulting device shown in figure 2.8 has 64 parallel channels with 9 to 3 traps in series yielding a 

trap density, of more 700 to 175 𝑡𝑟𝑎𝑝𝑠/𝑐𝑚2. Finally, the group tested the device using non-

adherent T-cells, a lymphoma cell line, achieving a trapping efficiency of nearly 100%.  

 

Fig. 2.8 Kobel et al. device features. (A) Diagram of the traps and channels, as well as, the 

flows. (B) A micrograph of a section of the cell-trapping device (Kobel et al., 2010, p.859). 
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Unlike the ordinary trapping devices already presented, Frimat et al. (2011) introduced a 

new device, also inspired by Tan and Takeuchi´s system but incorporating a novel cellular 

valving principle for single cell co-culture. Using the same trapping principle and material, 

PDMS, as the previous devices discussed above, Frimat et al. (2011) adapted Tan and 

Takeuchi´s device by adding mirrored traps linked by the trap´s cross channel, as it can be 

observed in figure 2.9. With such design, they were capable of not only capturing single cells but 

also capturing pairs of cells separated only by the inter traps aperture; still, the communication 

and contact between captured cells is possible. The final device fabricated possess 8 parallel 

lines of analysis each containing 25 trap pairs (200 in total), and the dimensions of the channels 

were defined by the size of cells to be used (Frimat et al., 2011). The system has two loading 

sequences. The first sequence is done exactly as Tan and Takeuchi did, where the trapping 

process is achieved using the bypass method, which obeys the principle of a flow going through 

the path of less resistance. Being all the traps on the “right side” filled, a new stream carrying 

new cells is induced in opposite direction to fill the “left side” traps. In the experiments feeding 

cells into the device, Frimat et al. (2011) observed a trap occupancy of 99% for trap diameters 

between 15μm to 37μm. However, when using the larger traps single cell occupancy decreased 

to 68.6%. Although the reason for this reduction was unknown, the authors assumed that it was 

due to the greater freedom of the cell within the trap, which might allow the cell to fall back into 

the main stream (p.235). 
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Fig. 2.9 SEM (Scanning electron microscope) micrographs of the device showing the 

double trap feature. (A) Zoom focusing in a single pair of traps. (B) Six trap pair in series. (C) 

Entire trapping chip (Frimat et al., 2011, p.232). 

 

Lawrenz et al., (2013) did an investigation on the bypass platform, with the objectives of 

optimizing, testing different trap shapes, and producing a device with larger trap density. Again 

the main structure of the devices fabricated was based on the Tan and Takeuchi´s model. For 

the optimization part, numerical simulations were conducted in order to assess the 

hydrodynamic conditions, determine geometrical dimensions, and define the best velocity input 

flow. More importantly, they tested four different trap shapes (square, triangular, conical, and 

elliptical), all with the same dimensions in depth, across trap channel, and main channel. All the 

trap shapes were tested in order to determine the characteristics of channels flow and shear 

stress induced in the cell due to the geometric features of each trap. On this regard, the 

triangular shape turned out to be the most efficient on capturing single cells because of the flow 

entering the trap has a more focused stream line, while the others produce larger distortion of 

the flow passing through the trap (Lawrenz et al., 2013). In addition, it was also observed that 

bigger traps in relation to particle size, as well as larger trap exits (or across channel), increase 
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the probability of capturing multiple cells per trap in a 75% (Lawrenz et al., 2013). On the other 

hand, accordingly to Lawrenz et al. (2013) in order to induce the lowest shear stress on a 

captured cell, this has to be completely sheltered inside the trap. After three iterations as shown 

in figure 2.10, the group produced a high trap density and optimized device to trap single cells, 

of more 2 to 15μm. The final device composes a total of 1056 traps divided in 4 parallel 

microfluidic circuits, and its channel dimensions had to be scaled down to work with the smaller 

cells used, which demonstrates that a new device is required for each different size of cells.  

 

Fig. 2.10 Schematic of the main trapping device, and trap configurations (squared, 

triangular, conical, and elliptical) used in three device generations (Lawrenz et al., 2013, p.8). 

 

The results obtained on this investigation are very valuable, in particular those made on 

the trap shapes, because no other authors had tried another trap configuration. In fact, all of 

them had used the same cup shape for the traps developed by Tan and Takeuchi (2006). 

To further improve the single cell trapping efficiency a more recent bypass chip was 

presented by Jin et al. (2015). They designed a PDMS device concatenating T-shaped channels 

with bypassing stream and trapping regions to reduce the area comprised by long loop 

channels, the amount of cells required to fill all the traps, and the filling time (Jin et al., 2015). 

The device presented in figure 2.11 also adopted the least flow path resistance principle to 

trapping cells. However, it is evident at sight that the loop channels have been reduced to a 

minimum.  



24 
 

 

Fig. 2.11 T junction device (A) Schematic diagram of the trapping principle showing both 

paths, trapping and bypassing. (B) Drawing of PDMS device (Jin et al., 2015, p.4). 

 

Jin et al. (2015) also achieved an orderly trapping, where the queue of cells in the main 

channel were trapped consecutively without skipping a cell, thus saving cell samples. 

Nevertheless, when conducting experiments with 2 cell lines, they observed a reduction in 

trapping efficiency using HEK293T cells (average diameter of 13μm), which are smaller than 

HeLa cells (average diameter of 15μm). They concluded that the size variance of cells is the 

main factor which affects trapping efficiency because the channel dimensions are predetermined 

to house a specific cell size. As a result, large cells could clog the channels, and small cells 

might be captured in multiple form by the traps (Jin et al., 2015). 
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iii.  Microwell Arrays. 

Another technology widely used to capture single particles is the microwell arrays. Many 

examples of applications and fabrication methods can be found in the literature (Rettig & Folch, 

2005; Zheng et al., 2007; Charnley, Textor, Khademhosseini & Lutolf, 2009; Wood, Weingeist, 

Bhatia, & Engelward, 2010; Liu, Liu, Gao, Ding, & Lin, 2010; Lee, Rigante, Pisano, & Kuypers, 

2010; Kim, Lee, & Park, 2013). Such a technology uses a simple system´s structure and 

trapping principle. A microwell array is a chip composes of a substrate with an array of hundreds 

to thousands of micro cavities of a certain geometry. Thus, the main difference to hydrodynamic 

microfluidic devices is their lack of channels; in other words, microwell arrays are solely arrays of 

niches (traps) to hold cells using a gravity principle. In order to fill the wells, a high-density 

solution of cells is poured on top of the array, and the cells are randomly retained at the bottom 

of the wells by sedimentation (Fig.  2.12). After few minutes the excessive cell solution on top of 

the substrate is carefully rinsed off, leaving the cavities filled with single cells for further 

biological studies (Charnley et al., 2009). To optimally hold single cells, the microwells must be 

designed to only fit a single cell, and must be deep enough to protect the cell to be washed out 

in the rinse steps (Rettig et al., 2005; Wang et al., 2011). Therefore, microwell systems also are 

particle-size sensible; i.e., the microwells have to be designed and fabricated considering the 

size of the particles to be used in the experiments.  

 

Fig. 2.12 Suspended cells being trapped individually in microwells (Rettig et al., 2005, 

p.5629). 
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Regardless of their advantageous structure and principle simplicity, microwell array 

devices are limited to static analysis or screening. They are not suited platforms for active 

manipulation such as medium change, staining, and exposure of cells to certain substances for 

drugs studies because such processes would sweep the trapped cells out of the microwells. As 

a consequence, to address this issue, Wang et al. (2011) proposed a device capable of holding 

the cells within the microcavities by using the large deformability of PDMS. They fabricated a 

microwell device that can be mechanically stretched to increase the size of the niches. 

Therefore, when stretching the device, cells can fit widely in the microwells, and then by 

releasing the applied force, the cells remain secured inside the microwells due to the pressure 

produced by the recovered walls. As a result, further analysis as the ones previously mentioned 

involving rinsing methods are possible on this chip. In addition, more recently an enhanced 

microwell array device for cell-to-cell interaction was presented by Lee et al. (2015). Such a 

device presents an array of L-shape microwells on a PDMS substrate. In order to load a pair of 

cells, Lee et al. (2015) followed the stretching approach of Wang et al. (2011). First, they stretch 

the device in x-direction to increase one branch of the L-shape and to fit a single cell. Second, 

after loading the first cell the device is returned to its original form and stretched again but 

orthogonally (y-direction) to increase the size of the another L-branch; the process is depicted in 

figure 2.13. Once the cell loading is done, the cells can interact to each other with the advantage 

that all the possible interactions can be observed at specific and controlled locations (Lee et al., 

2015). These last two devices are very interesting in particular for this research because they 

prove that the microfluidic technology can be enhanced by incorporating external methods to 

make the static devices more flexible and perform more complex processes.    
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Fig. 2.13 Trapping process for a pair of cells. (i) Device at the slack position, none strain 

applied. (ii) Device stretched on the x direction to increase the size of the vertical L-branch and 

capture a single cell. (iii) Change the stretching direction to y-axis to increase the size of the 

horizontal L-branch and capture a second single cell. (iv) Stretching on both direction, x and y 

axes, to allow cell interaction between the two trapped cells. (Lee et al., 2015, p.2). 

 

iv. Trap Arrays. 

Almost parallel to the bypass device presented by Tan and Takeuchi (2006), another 

technology for large batches of single cells analysis was produced by Di Carlo, Aghdam, and 

Lee (2006). Although both technologies use hydrodynamic principles to capture single particles, 

their structure are very different. Trap array devices, like the one here presented by Di Carlo et 

al. (2006) composes a thin sheet of elastomer PDMS bonded to another thin sheet of glass, the 

PDMS layer has an array of microstructures protruded on the surface to physically capture cells, 

and each microstructure has a dam-like cup-shaped geometry with a 2 μm gap between the trap 

and the glass sheet. The device accomplishes its goal of trapping cells by combining two 



28 
 

principles, which are collisions of cells with physical barriers and “paths of least flow resistance”. 

The first principle is based on the probability that cells suspended in a fluid will crash against the 

traps and therefore they will remain in the traps while the main fluid flows across the rear 

aperture or dam opening of the trap (Lawrenz et al., 2012). The second principle is based on the 

different resistance of two flow paths, the same principle used by the bypass devices. When a 

flow is induced into the device the flow will take the path with the least flow resistance. Thus, if 

one of the paths goes through the trap, the flow will go through it unless that path is blocked. In 

a case where the path is blocked by a cell, the flow resistance of that path will be higher than 

any alternative flow path thereby making the main flow to take another path with less resistance 

(Di Carlo et al., 2006; Lawrenz et al., 2012; Zhu et al., 2013). Figure 2.14 represent visually 

these two trapping principles. 

 

Fig. 2.14 Trapping mechanisms of microfluidics trap array devices. (A) Diagram taken 

from Di Carlo et al. (2006) which shows how the cells are trapped in an empty microstructure 
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and diverted when the microstructure is already filled (p.4928). (B) Schematic flow retrieved from 

Huebner et al. (2009) which depicts the stream lines when cells approach the traps (p.694).  

 

Similarly, to what happened with Tan and Takeuchi´s device, plus the promising 

capabilities of this trapping method for cell assays shown by Di Carlo et al., many systems 

clearly inspired from such devices were later reported. For instance, the same group of Wu, Di 

Carlo, and Lee (2007), made another device to capture multiple cancer cells on each trap 

allowing the formation of tumor spheroids for anticancer drug discovery. Therefore, they had to 

increase the size of the microstructures in order to fit about 10 MCF-7 cells per trap. The group 

also concluded that the dimensions of the traps are directly related to the size of the cells 

targeted, so for different cell types with different sizes, the optimum trap size should vary in 

relation of the cell size (Di Carlo et al., 2006).  

Huebner et al. (2009) reported a device for droplet trapping using the same approach 

reported by Di Carlo et al. (2006); however, instead of capturing single cells, they trapped single 

water-in-oil microspheres. In contrast to Di Carlo et al. (2006), they designed a different trap 

microstructure, as it can be seen in figure 2.15. Instead of having a one-piece structure they 

created a trap with two mirrored structures separated by a small gap, which serves as a cross 

flow channel to attract the microspheres into the trap. To retrieve the microspheres, Huebner et 

al. (2009) simply reversed the flow, and observed that a 110° angle on the rear of the trap allow 

a smother flow of the freed microspheres throughout the array. Their final device composes four 

arrays, each one with 96 traps, and it was designed to capture 50 μm microspheres.  
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 Fig. 2.15 Array of single water-in-oil microspheres (Huebner et al., 2009, p.694). 

 

Similar to the device presented by Wu et al. (2007) for the investigation of new drugs for 

cancer treatment, another study but focused on the response of single cells to anticancer drugs 

was reported by Wlodkowic et al., (2009). Aiming to address the limitations of conventional 

methods for cell analyses, such as flow cytometry or microplate imaging, they proposed a new 

platform with an array of traps to capture single cells. Again, based on the already discussed 

trapping principle and structure. Their device differs from the others only on the arrangement of 

the traps and the microstructures employed as traps. Such differences can be observed on the 

figure 2.16. 
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Fig. 2.16 Array of traps uniformly distributed on a triangular surface. Traps are shaped by 

four no-joined microstructures with a middle rear gap, which allow the pass of flow through the 

trap to direct cells into it (Wlodkowic et al., 2009, p.5518). 

 

It is important to mention that the trapping efficiencies (10% to 20%) reported for the above 

device (Wlodkowic et al., 2009, p.5519) are very low in comparison to those obtained by Di 

Carlo et al. (2006) of 50% to 70% (Di Carlo et al., 2006, p.1447). However, the authors did not 

provide any comment on the reason for such a drop on trapping efficiency.   

In order to provide robustness to the trap array technology, Xu et al. (2013) proposed a 

work to optimize microfluidic microspheres-trap arrays. The optimization is focused on the 

geometric parameters to improve packing density, trapping efficiency of single particles, particle 

retrieving and avoid channel clogging. In order to present an optimized device, the group 

proposed a function with several constraints such as, compliance with the trapping principle of 

the least path resistance, size of traps to fit no more than one microsphere and retain it from 

being swept by the main flow, inter-trap space large enough to avoid clogging, and fabrication 

feasibility. In order to solve the equation to optimize, Xu et al. (2013) used the interior-point 

optimization algorithm and considered a microsphere with a radius of 5μm (Xu et al., 2013, p.7). 

Therefore, the problem solved or the device optimized is a single device that can only work with 

particles of a fixed size of 5 μm. Regardless of this fact, their final results are very impressive 

achieving a considerable improvement in comparison to previous systems presented. Their final 

optimized device resulted in a trap density of 1438 𝑡𝑟𝑎𝑝𝑠/𝑚𝑚2, a single-particle trapping 

efficiency of 99%, while multiple trapping and clogged channels were 0.38% and 0% 

respectively. In addition, it is worth to mention that the trap shape used by Xu et al., depicted on 

figure 2.17, is not a U or cup shape used on previous trapping platforms, but a triangular shape 

as recommended by Lawrenz et al. (2012) in the previous section.  
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Fig. 2.17 (A) Triangular trap composed of two inverted trapezoids to capture single 

microspheres. (B) Picture of the optimized device during a trapping experiment to show the high 

density array of traps capturing single microspheres (Xu et al., 2013, p.5). 

 

Several particle-trapping platforms have been reviewed and classified under the FCBPSS 

framework. On the previous classification some remarks were observed. First, all the reviewed 

devices share the same function, which is to capture single particles. Second, they perform their 

function under two main contexts, microspheres and cells. It has also been observed that all the 

devices could work with either input source by changing some preconditions like the carrier fluid. 

Third, there are three main structures found among the literature: comb arrays, bypass 

channels, and trap arrays. In addition, microwell arrays were also reviewed. While all the devices 

behave in the same manner, not all of them employ the same trapping principle. For instance, 

the comp structure uses the “least flow path resistance” to divert the particles flowing on the 

main stream into the traps. Bypass channel devices solely relay on this principle (least flow path 

resistance) and must comply with it in order to capture particles. Trap array platforms combines 

two principles, the “least flow path resistance” and the probability of particles encountering a 

trap. In this last type of devices, the particles are not fed in a queue fashion as on the bypass 

channel devices, so the random interaction among particles play an important role besides the 

hydrodynamic principle to achieve their function. 

A 

B 



33 
 

Regarding the performance of the different structures analysed, at first sight it seems that 

the bypass devices have a higher trapping efficiency. However, Xu et al. (2013) achieved an 

equally comparable trapping efficiency of 99% with their optimized array of triangular traps 

device. Furthermore, trap arrays platforms have the advantage over other structures of allowing 

higher trap densities. Also, although many issues have been solved and optimizations have 

been attempt during the evolution of the hydrodynamic particle-trapping technology, a common 

issue to all the platforms is still not addressed. On all the devices reviewed it was noticed a 

restriction on the particle size than can be used, so all the devices are particle-size sensible. As 

a consequence, if different size particles want to be captured or analysed using such devices, a 

whole new device has to be designed and fabricated. In the next section, few attempts to 

address this lack of flexibility on targeting particles of a wide range of sizes are presented.    

 

2.4 Adaptable Devices 

On the contrary of the many investigations conducted and already reviewed in order to 

achieve an optimized and more efficient cell-trapping device, there are very few works focused 

on enhancing such devices by making them more flexible or universal. Which should be a very 

important line of research since regardless of the microfluidic chip´s application all of them lack 

of the ability of processing particle with multiple sizes. 

In the literature one can find that Huh et al. (2007) proposed a method using very small 

forces in order to actively control and modulate the cross-section of nanochannels to adjust the 

transport characteristics of their device. They observed the need of a device capable of 

dynamically adjusting its geometry according to the manipulation needs of different molecules 

and nanoparticles. In order to achieve such a device, they use PDMS for the fabrication of an 

array of nanochannels that can change their cross-section size by applying a compression force 

perpendicularly to the nanochannels. Thus, by adjusting the applied compressive force the 

nanochannels reduce their size allowing only the passage of the desired sizes of molecules.  
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Another example of a tunable device is the device achieved by Beech et al. (2008), a 

device for particle separation in Deterministic Lateral Displacement (DLD). The microfluidic chip 

composes an array of micropillars which allow the device to accomplish its objective of sorting 

particles. Moreover, by mounting the device onto a chuck, a mechanical and controlled lateral 

strain can be applied to it resulting on an increase of the distance between micropillars. The 

device is enough elastic to stand an extension of 50% its original size. Thus, by stretching the 

device it was provided with more versatility since more particles were able to be sorted using a 

single chip. The device just descripted is depicted on figure 2.18 below. 

 

Fig. 2.18 Tunable particle-sorting device (Beech, 2008). 

 

Unlike the ordinary cell trapping devices, Zhu et al. (2013) presented a tunable microfluidic 

device manufactured on PDMS that can be mechanically modulated to tune the characteristics 

of cell-trapping to capture a predetermined number of cells from single cells to multiple cells. The 

mechanical modulation is achieved by inducing a uniformly distributed strain through the 

application of an external force on the chip to modify its geometry. Zhu et al., (2013) tunable cell 

trapping microchip composes two thin sheets of elastomer PDMS, the bottom one has an array 
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of microstructures protruded on the surface to physically capture cells, and each microstructure 

has a dam-like, cup-shaped geometry with supporting pillars on both sides (Fig. 2.19).  

 

Fig. 2.19 The cell trapping principle. (A) Plan view and cross-sectional views along lines 

(B) a-a and (C) b-b of cell trapping approach. Dimensions are given in micrometers (Zhu et al., 

2013, p.2). 

 

The microstructures geometry can be tuned via the application of strain to the chip and this 

is achieved through stretching the device by mounting it onto a motherboard shown in figure 

2.20. The motherboard has different mounting pin locations which allow the variation of the 

strain applied on the device. As a result of this mechanical modulation the geometry of the 

microstructures is changed as well as the main flow channel. This process allows the device to 

vary its function from trapping one single cell per trap to capturing more than one cell per trap; 

however, the target cells for both cases are always of a determined size (Zhu et al., 2013).  It is 

important to notice that the capability of tuning is due to the mechanical properties of the 

manufacturing material. 
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Fig. 2.20 Schematic diagram of the tunable principle via modification of trap dimensions. 

(A) Original position (none strain applied) to capture single cells on each trap. (B) Strain is 

applied to capture multiple cells on each trap (Zhu et al., 2013, p.2). 

 

With this device Zhu et al. (2013) not only addressed effectively the lack of flexibility of 

microfluidic cell trapping devices on controlling the number of cells captured, but also they 

demonstrated the functionality of this mechanical tuning method, opening new possibilities to 

further adaptable microfluidic devices, in particular those based on hydrodynamic trapping 

principles.  

The mechanical tuning method above presented is a simple offline method that is 

passively and feedforward controlled. The method is considered offline because the tuning or 

modification of the channel features is done before or after the process but not while the device 

is performing its function; otherwise, it will be an online method. In addition, although to produce 

such deformation an external force is required, the system that controls the modification on the 

device is a material property, and in fact it is the elasticity property. Therefore, the control of the 

method is passive since there is no need of an external intervention or system other than the 

material property to control the deformation (strain) resulted from the applied force. Finally, the 

control is also feedforward because there is not a feedback in the device that can account for 
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discrepancies and correct the input force. The force is induced and held previous to the feeding 

of particles into the device. If the device is not working properly under the pre-set strain, then the 

force has to be readjusted and the whole process has to be restarted.    

Examples of other tunable techniques are (i) electrical-adaptive method (EAM) which 

utilize dielectric polymers in order to produce a deformation when applying an electric charge 

(Murray et al., 2013), (ii) Pneumatic actuation has been used in cell-trapping devices to control 

the size of microstructures (Liu et al., 2012), and (iii) piezoelectric actuation in which 

piezoelectric actuators are used to apply an external stimulus to modify a microfluidic device 

(Graf & Bowser, 2008). The mayor drawbacks of all the three techniques are more complicated 

fabrication methods, either electrical or pneumatic extra connections, need of additional 

equipment other than purely microfluidics means, and more difficult devices to operate. 

Therefore, a simple mechanical stretching approach as presented by Zhu et al. (2013) and 

Beech et al. (2008), seems to be more suitable for a new cell-trapping device capable of 

processing more than a single cell size. 

  

2.5 Concluding remarks 

The review of the literature has shown that there are several microfluidic devices 

dedicated to trap single particles. Upon a classification of hydrodynamic particle-trapping 

devices under the FCBPSS framework a thorough understanding of the function, behaviour, and 

principle of such technology was achieved. Also the literature has shown that in contrast to the 

many studies and efforts conducted to produce an optimal single cell-trapping device, very little 

has been published on adaptable devices to address the lack of flexibility of such devices. 

Moreover, no research (to my knowledge) has been conducted on designing and fabricating a 

hydrodynamic single cell-trapping device capable of handling a large number of different cell 

sizes. From the knowledge gained after the literature review, the following conclusion for a new 

device is forwarded. The geometry and dimensions of the traps play the main role on the 
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function and performance of a microfluidic cell trapping device. Since the traps catch cells from a 

carrying fluid, their dimensions determine not only the number, but also the size of cell captured. 

Therefore, if a flexible device capable of targeting a wide range of sizes of cells is intended, it 

must be able to modify somehow its trap dimensions without interfering with its trapping function. 

While there are various active methods to achieve such modification in the traps, a mechanical 

force is the most suitable for this application as it is simpler and more austere than using other 

more complex systems. Thus, details on the design, fabrication, and test results of a new 

tunable single cell-trapping device capable of capturing large batches of single-cells of various 

diameters (not a fixed size) after being tuned will be presented in Chapters 3, 4 and 5.   
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CHAPTER 3: CONCEPTUAL DESIGN 

 

3.1 Introduction 

To achieve the objectives of this research, the design, fabrication, and testing of a new 

microfluidic single cell-trapping device capable of tuning to target various cell sizes is conducted.  

In Chapter 2 after a thorough analysis of several platforms based on hydrodynamic 

principles to isolate single particles, it has been concluded that the most suitable structure to 

demonstrate the concept proposed in this thesis is the array of traps, and the best tuning 

method would be a mechanical stretching to generate a uniform distributed strain on the device. 

Thus, in this chapter the conceptual design of the new device is presented. The design process 

is based on and guided by the Axiomatic Design Theory, which is briefly introduced. The 

function requirements and the design parameters that could comply with such requirements are 

firstly defined, followed by the determination of the actual material and parameters that would 

characterize the new device. Finally, a new device is presented.  

 

3.2 Axiomatic design for a new cell-trapping chip 

A design process begins with the establishment of function requirements (FRs) that 

represent a number of needs. The second step is the conception of a physical entity which will 

be characterized in terms of design parameters (DPs) that satisfy the FRs independently. The 

axiomatic design theory (ADT) was proposed by Nam P. Suh in 1990´s; he states that in the 

design process there are two axioms that must be met for every good design. The two axioms 

are the independence axiom also called axiom one, and the information axiom also called axiom 

two (Suh, 1990). Axiom one states that the FRs must be independent of each other, so when a 

DP is modified this will affect only one FR. This axiom can be mathematically represented by: 

                                                   [𝐹𝑅] = [𝐴][𝐷𝑃]                                                              (3.1) 
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where [𝐹𝑅] is the function requirement vector, [𝐷𝑃] is the design parameters vector, and [𝐴] is 

the design matrix (Suh, 1990). This matrix representation allows one to evaluate the compliment 

of the axiom one in any design. One may face three different kinds of design on this context; 

they are uncoupled design, coupled design, and decoupled design. Uncoupled design refers to a 

design that has an independent relationship between FRs and DPs; that is its matrix 

representation will be a matrix with all its non-diagonal elements equal to zero: 

                                                [
𝐹𝑅1

𝐹𝑅2

𝐹𝑅3

] = [
𝐴11 0 0

0 𝐴22 0
0 0 𝐴33

] [
𝐷𝑃1

𝐷𝑃2

𝐷𝑃3

]                                     (3.2) 

Coupled design is the opposite of an uncoupled design. This means that if a DP is 

modified all the FRs will be affected. Then, this design will not comply with axiom one. Its matrix 

representation will be a design matrix with no element equal to zero: 

                                              [
𝐹𝑅1

𝐹𝑅2

𝐹𝑅3

] = [
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

][
𝐷𝑃1

𝐷𝑃2

𝐷𝑃3

]                                        (3.3) 

Finally, a decoupled design is a design where the FRs and DPs relationship is not 

completely independent. This means that there may be some DPs which are related to more 

than one FR. However, this design is still being considered as a good design when a proper 

order to set the value of DPs is achieved. The matrix representation of this design is a triangular 

design matrix (Suh, 1990, p. 55): 

                                              [
𝐹𝑅1

𝐹𝑅2

𝐹𝑅3

] = [
𝐴11 0 0
𝐴21 𝐴22 0
𝐴31 𝐴32 𝐴33

][
𝐷𝑃1

𝐷𝑃2

𝐷𝑃3

]                                        (3.4) 

 Therefore, in order to propose a new device that can comply with the objective of 

capturing large batches of single-cells and after being tuned perform the same trapping task but 

with cells of larger sizes, it is necessary, as the ADT states, to define the FRs of such a device. 

The FRs for the new device can be obtained from the systematic design analysis that has earlier 

been executed when determining the behaviour of cell-trappers (Section 2.3.3). Thus, the 

general function requirements (FRs) of the new device include: 
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 𝑭𝑹𝟏: The device must capture large batches of single-cells; 

 𝑭𝑹𝟐: Each device´s trapper must capture a single cell; and 

 𝑭𝑹𝟑: The trappers must be capable of adapting its size to capture cells of 

various diameters.  

In addition to the FRs, one must recognize if the design has any constraints. In ADT, 

constraints are “the bounds on an acceptable solution” (Suh, 1990), and they are divided into 

two kinds, input and system. Input constraints are found in the design specifications while the 

system constraints are imposed by environment within which the design solution must operate 

(Suh, 1990). In the case of this device, the model is not exempted of constraints. In particular, 

the model presents input constraints imposed mainly by the working material; which are the 

carrier fluids and the cells. Therefore, it is important to explore these constraints deeper by 

analyzing the characteristics of cells that may be influenced by the design. In general, cells vary 

on sizes and shapes. Therefore, the size of the cell will represent a constraint since many 

dimensions of the pursued device will depend directly on the cell´s diameter. Moreover, the cells  

are very delicate and sensitive to external stimuli, which may cause changes on their natural 

behaviour or even the death of the cell. Thus, as reported by Lawrenz et al. (2013) on in-vitro 

experiments, where cells are exposed to artificial flows such as those used in microfluidics, the 

mechanical forces applied to cells by fluids are an important aspect to consider. For instance, it 

has been determined that a shear stress up to 4.5 Pa interferes with the common cell death and 

may affect the endothelial cell integrity (Dimmeler et al., 1996). Also, Griffith and Swartz reported 

that vascular endothelial cells experience a physiological shear stress of ~ 1 Pa (as cited in Di 

Carlo et al, 2006, p. 1447). Thereby, these shear stress values could represent the maximum 

shear stress that can be exerted to the cells when captured into the new device. Hence, it can 

be said that another constraint is to ensure shear stress lower than 4.5 Pa applied to the cells. 

Finally, the last input constraint can be stated as the non-chemical alteration on the carrier fluid 

properties, which represents the cell´s environment within the chip. 
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Once the FRs and the constraints for the design have been determined, it is time to derive 

the design parameters (DPs) in the physical domain in order to satisfy the FRs and the 

constraints resulted from the previous discussion. At this point it would be important to recall that 

one is looking for DPs that can achieve the one-to-one correspondence between DPs and FRs 

in order to comply with the definition of an uncouple design stated by the axiomatic design 

theory. Thus, the respective DPs that can fulfill independently each FRs are as follows: 

 𝑫𝑷𝟏: Arrays comprised of a large number of single-cell trappers; 

 𝑫𝑷𝟐: Traps capable of corralling and isolating only one cell from a large 

group of cells suspended in a fluid; and 

 𝑫𝑷𝟑: Large and uniform deformability of the traps.  

Mapping the FRs to the DPs is as follows: 

                    𝑭𝑹𝟏 :𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑐𝑒𝑙𝑙𝑠                                      𝑫𝑷𝟏 : 𝐴𝑟𝑟𝑎𝑦 𝑜𝑓 𝑡𝑟𝑎𝑝𝑠 

                    𝑭𝑹𝟐 :𝑂𝑛𝑒 𝑐𝑒𝑙𝑙 𝑝𝑒𝑟 𝑡𝑟𝑎𝑝                                𝑫𝑷𝟐 :𝑇𝑟𝑎𝑝 𝑓𝑜𝑟 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑒𝑙𝑙 

                    𝑭𝑹𝟑 :𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑡𝑟𝑎𝑝´𝑠 𝑠𝑖𝑧𝑒                           𝑫𝑷𝟑 :𝐿𝑎𝑟𝑔𝑒 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

One can observe that DPs introduced satisfy independently each FR. This means that if  

𝐷𝑃1 is varied, this will solely affect 𝐹𝑅1, and it is the same for 𝐷𝑃2 - 𝐹𝑅2 and 𝐷𝑃3 - 𝐹𝑅3. For 

example, if the arrangement or the number of traps specified in the array (𝐷𝑃1) is modified it will 

only affect the number of total single-cells captured (𝐹𝑅1), but not the other FRs. Using a matrix 

representation of FRs and DPs one can observe that the design solution proposed complies with 

axiom one, and it is an uncoupled design: 

                                      [
𝐹𝑅1

𝐹𝑅2

𝐹𝑅3

] = [
𝐴11 0 0

0 𝐴22 0
0 0 𝐴33

][
𝐷𝑃1

𝐷𝑃2

𝐷𝑃3

]                                                (3.5) 
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3.3 Proposed conceptual design of the adaptable microfluidic single-cell trapping device. 

Having determined the DPs for the new device, now it is possible to procced to the 

embodiment of a physical entity characterized by the above DPs. The conceptualization along 

with the decision making process that resulted in the final microfluidic chip is briefly discussed. 

First, a thorough exploration of the DPs is made in order to understand all the factors and 

possible constraints surrounding each of them. Next, a concrete object or method that complies 

with the DP in consideration is presented. Lastly, the geometry and dimensions of the object or 

method are shown. Note that although the DPs have been stated in a certain order in the 

previous discussion, in the following section this sequence will not be taken into account, and 

the DPs might change in order when explaining each one. This is done in order to understand 

better the conceptualization process. Also, remember that all the DPs are independent and they 

do not have any hierarchy relationship, so changing the order does not affect anything.  

  

3.3.1 Large and uniform deformability: DP3 

DP3 was proposed as “large and uniform deformability” of the traps. The deformability is 

determined by the material that will be used in the fabrication of such a device. However, a 

method is also required to produce such deformation. In particular, the method selected to tune 

the device or to increase the size of the traps is a mechanical stretching. Some researchers 

have reported a stretching approach to modify the function of a microfluidic device. For instance, 

Zhu et al. (2013) have shown that by modifying longitudinally the geometrical shape of the 

microstructures the number of cells captured per trap increases. In addition, Beech and 

Tegenfeldt (2008) have also used the elastomer´s high-elasticity property to create a tunable 

particle separation device, which is capable of increasing the gap between micro-pillars resulting 

in the sorting of different particle sizes. Other potential tunable techniques, which were 
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discussed earlier are: electrical-adaptive method (EAM), pneumatic actuation, and piezoelectric 

actuation. These later methods would result in a more complex device because they require a 

more complicated fabrication processes and additional components difficult to operate and 

control. Therefore, the application of a uniformly distributed strain on the device via a mechanical 

stretching seems to be a more suitable method to increase the trap size of the new pursued 

device. However, such a method is not exempted of issues to be concern about. For instance, 

all the traps within the device must experience the same strain in order to increase their size in 

the same proportion. Hence, the uniform distribution of the deformation along the device is a 

major concern in the design of the new device. 

On the other hand, the material to fabricate the device should have very specific properties 

to comply not only with the device constraints, but also with the mechanical tuning method. As it 

was introduced before, Polydimethylsiloxane (PDMS) is a silicone-based polymer which is 

biologically compatible, optically transparent, suitable for microfabrication processes and it is 

one of the most used materials for the microfluidics application. However, nothing has been said 

about its mechanical properties. Two mechanical properties of great interest for this design are, 

the Young´s modulus and the Poisson ratio. First, the Young´s modulus or elastic modulus 

provides information of the stiffness of a material. In engineering materials, the Young´s modulus 

(E) is represented by Hooke´s law as, 

                                     𝐸 =  
𝜎

𝜀
                                              (3.6) 

where, σ represent the stress and ε the strain. Stress (σ) is force per unit area and strain (ε) is 

length change per unit length, which is 𝜀 = (𝐿 − 𝐿0) 𝐿0⁄ .  Thus, the lower the value of the 

Young´s modulus, the more elastic the material is, or conversely the higher the value of the 

Young´s modulus, the stiffer the material is. For example, steel has a Young´s modulus of about 

210 GPa while the Young´s modulus of aluminum is of about 70 GPa, and PDMS has a Young´s 
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modulus of about 1.82 MPa. As a consequence, aluminum is easier to deform than steel and at 

the same time PDMS is much easier to deform than aluminum. Unfortunately, the value of the 

elastic modulus of PDMS depends on the mixing ratio of polymer base and curing agent, and 

the curing temperature. For instance, table 3.1 shows different values of PDMS Young´s 

modulus resulting from varying the mixing ratio, and table 3.2 presents more values of PDMS 

Young´s modulus, but in this case, they correspond to different curing temperatures. 

Table 3.1 Young´s Modulus of PDMS with different mixing ratios of base and curing agent 

(Khanafer, Duprey, Schlicht, & Berguer 2009, p. 506). 

Mixing ratio 
(base to curing agent) 

Young´s 
modulus (MPa) 

6:1 1.35 

7:1 1.9 

8:1 2.05 

9:1 2.2 

10:1 2.1 

  

 

Table 3.2 Young´s Modulus of PDMS determined when varying the curing temperature 

(Johnston, McCluskey, Tan, & Tracey, 2014, p. 5).  

Temperature (°C) Young´s 
modulus (MPa) 

25 1.32 ± 0.07 

100 2.05 ± 0.12 

125 2.46 ± 0.16 

150 2.59 ± 0.08 

200 2.97 ± 0.04 

 

In this design a large deformation on the chip is desired, so the PDMS must have a low 

Young´s modulus, and the desired deformation must be achieved within the elastic region. Thus, 

it must be ensured that the force induced on the device will not result in a stress greater than the 

yield strength limit. Second, the Poisson´s ratio gives information on the lateral deformation of a 



46 
 

material. The Poisson´s ratio (ν) is known as the negative coefficient of the lateral strain to the 

longitudinal strain. For example, the elongation of a sample under a tensile stress is usually 

accompanied by a contraction of its lateral dimensions, as exemplified in figure 3.1.  

 

Fig. 3.1 Schematic diagram of the lateral contraction effect of a material due to the 

application of a normal force, which is determined by the Poisson´s ratio. 

The Poisson ratio of PDMS is close to 0.5 meaning that the strain perpendicular to the 

direction of stress is half that in the parallel direction. For the new device, it is very important to 

consider such a lateral reduction predicted by the Poisson´s ratio because when the device is 

stretched to a certain strain the lateral dimensions of the channels will be reduced considerably.  

Besides the Young´s modulus and Poisson´s ratio of PDMS there are more parameters 

that have to be assumed in order to present an object that could be characterized by DP3. For 

instance, the actual deformation or strain that will result in the desired increased size of the traps 

has to be specified; in other words, a limit or maximum trap size increment must be defined. In 

this regard, to prove that the device is capable of adapting its trap´s size to capture cells of 

larger dimeters, a range of cell sizes, which goes from 20 microns to 30 microns, is proposed. 

Thus, the device must be able to capture cells of 20 microns without applying any strain to the 

chip, and cells of 30 microns when the maximum strain is exerted. Although the geometry of the 

traps has not been determined, it can be inferred that such traps will require a minimum opening 

size equal to the target cell´s diameter. Hence, if one assumes that the opening space to the 

trap should be of about 25 microns and 35 microns to fit a cell of 20 microns and 30 microns 

respectively. Then the original size of the trap must be increased in 10 microns, which 
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represents a strain of 0.4. However, considering the actual dimensions of the traps, which are 

later on this section presented, the final strain determined was of 0.5. As a safety consideration 

for the design a maximum strain of 0.6 is finally stablished.  

Figure 3.2 depicts the final design. In this isometric view of the microfluidic device, the 

height of the channels is shown. All the dimensions of the channels in particular the height of the 

device and the space between rows were carefully chosen considering the lateral reduction 

established by the Poisson´s ratio of PDMS. For instance, the original height of the channels is 

of 43 microns (zero strain applied), which represents a large margin to fit cells of 20 microns 

(minimum cell size) in the device; however, when the chip is stretched up to the maximum strain 

permitted of 0.5, the height of the channels is expected to be reduced down to 34.4 microns, as 

calculated with a Poisson´s ratio of 0.5. Even with such expected reduction in the dimensions of 

the channels, it will be possible for cells of 30 microns (maximum cell size) to freely flow through 

the device.   

 

 

 

Fig. 3.2 The final design of the microfluidic device (note that in Appendix A a complete 

drawing with the specific dimension of the design is provided).  
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In addition to DP3 (large and uniform deformability), an apparatus or equipment is required 

to apply a uniform stretching force on the PDMS device. Such stretching apparatus must be 

capable of (i) holding steadily and firmly the PDMS chip, (ii) standing the elastic force exerted by 

the PDMS device when stretched, (iii) producing a uniform displacement increment on the 

direction of the PDMS chip´s stretching axis, and (iv) being easy to operate. As a consequence, 

a simple device inspired on the motherboard proposed by Zhu et al. is proposed for this work. 

Such stretching apparatus (Fig. 3.3) consist of a 30cm long and 5mm thick acrylic board, bearing 

many holes spread along the board every 5mm. The gap between the holes determines the 

displacement increment and position of the two clamps that hold the PDMS chip in position. 

Each clamp has two acrylic pieces that are screwed together to hold the PDMS chip like a 

sandwich. Once the PDMS device is held in between the clamps from both ends, the further 

outside screws on the clamps are secured to the main board at the desire position. To stretch 

the PDMS device, one clamp can be easily detached from the motherboard and moved to the 

next holes.      

 

 

Fig. 3.3 3D drawing of the stretching apparatus. The apparatus comprises a long board 

(base) with holes spread out every 5mm and two clamps (on blue) to hold the microfluidic device 

(on dark gray).  Detail dimensions are specified on Appendix A. 
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3.3.2 Trapping arrays: DP1 

𝐷𝑃1 was defined as “an array comprised of a large number of single-cell trappers”. 

However, an array could have different amounts of traps and these could be distributed in a 

distinct manner at the same time. Also, regardless of the number and distribution of traps it is 

very important to consider the deformation that the chip will experience when a strain is induced. 

The distribution of the traps in this design has been inspired on previous microfluidic cell-

trapping devices like those reported by Di Carlo et al., Zhu et al., and Xu et al. In the array each 

row of traps if offset horizontally from the previous row; thereby, there is an alternation of trap 

and “open gap” every other row along the channel (Fig 3.4). Following this approach, the 

capturing probability increases because if a cell is not captured in the first row of traps it might 

be trapped on the next row. This array distribution also requires the open gaps between 

neighbor traps and vertical spaces between rows to be large enough not only to ensure the free 

flow of cells, but also to avoid any possible clogging of the channels.  

 

Fig. 3.4 3D drawing of the arrays of traps designed for the new single-cell trapping device.  
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In order to present a fully defined array it is necessary to define the number of traps to be 

used in the device. The number of traps was decided in a random manner, considering that the 

objective is just to demonstrate the functionality and the method proposed on this research. 

There are 210 traps distributed in two arrays, which are located in two separated channels. The 

channels are connected by a common inlet and a common outlet, as depicted in figure 3.4. 

Finally, figure 3.5 shows some of the main dimensions of the actual new device, which 

fully define the proposed array to meet FR1. It is important to notice that the space between rows 

is larger than the gap between adjacent traps. This was done considering the deformation to 

which the microfluidic chip will be submitted. In fact, when the device is stretched normal to the 

travelling direction of the carrier fluid, the chip will present a size reduction on all the vertical 

features, as predicted by the Poisson ratio.  A complete blue print where all the dimensions and 

geometries are specified for the new design is provided in Appendix A. 
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Fig. 3.5 Design and dimensions of the array of traps defined for the new device. The final design 

encompasses two identical arrays.  

 

3.3.3 Traps for a single cell: DP2 

In order to fulfill FR2 a trapper capable of capturing only single-cells has been proposed as 

DP2. In general, a cell trap under the context of this work is a microstructure protruded onto the 

surface of the bottom layer that will immobilize a cell at a predetermined location. To fill the traps 

a liquid or carrier fluid loaded with cells flows through the channels. Once a cell encounters a 

microstructure it should be retained in the microstructure until the feeding of new cells into the 

device is finished. As it was previously stated, the geometrical characteristics of the trap and its 

dimensions determine not only the number of cells, but also the size of cell captured. Thus, 
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when designing a trap, the geometric shape of the trap and its dimensions must be carefully 

considered.  

Many researchers have presented similar microfluidic cell-trapping devices, but with 

different trap shapes. For example, Di Carlo et al. (2006) reported a device with U-shaped 

PDMS structures as a trap for their device; while Xu et al. (2013) presented a microsphere-

trapping device in which they utilized two trapezoidal grooves forming a triangular trap. Also, Zhu 

et al. (2013) designed a cell-trapping device with dam-like traps very similar to those presented 

by Di Carlo et al. (2006). With different geometrical options the most efficient geometry on 

capturing single cells should be selected for the new design. Therefore, a reliability assessment 

is conducted next considering different traps in order to determine the trap shape to be used. 

Similarly, Lawrenz et al. (2012) have studied the performance of different devices using four 

different trap configurations, which are square, triangular, conical, and elliptical. As the scope of 

this research is not the assessment of different traps, the following evaluation is conducted using 

data reported by others. The data collected is presented in table 3.3, which displays loading 

time, trap shape, total number of traps in the device, and number of microstructures that corral 

zero, one, and multiple cells. Also, the devices are sorted by author. 

Table 3.3   Number of traps that captured a single cell, no cells, and multiple cells. 

Trap Shape # of Traps Single-cell No cells Multiple cells 

Lawrenz et al. (2012) 
Triangular 400 124 272 4 
Conical 400 44 344 12 
Square 400 22 312 66 
Elliptical 400 44 352 4 
Triangular 1056 910 127 19 
Conical 1056 474 540 42 
Square 1056 229 824 3 
Elliptical 1056 114 919 23 
Triangular 1056 951 11 94 

Xu et al. (2013) 
Triangular 1390 1380 5 5 
Triangular 762 446 0 316 

Di Carlo et al. (2006) 
Conical 199 107 44 48 
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Zhu et al. (2013) 
Conical 246 101 16 129 
     

 

From table 3.3, the probability of the three possible outcomes: capture one, zero, or 

multiple cells are calculated for each device, see table 3.4. 

Table 3.4 Probability of trapping a single, zero, and multiple cells for each device. 

Trap shape P (single) P(zero) P(multiple) 

Lawrenz et al. (2012) 

Triangular 0.31 0.68 0.01 

Conical 0.11 0.86 0.03 

Square 0.06 0.78 0.17 

Elliptical 0.11 0.88 0.01 

Triangular 0.86 0.12 0.02 

Conical 0.45 0.51 0.04 

Square 0.22 0.78 0.00 

Elliptical 0.11 0.87 0.02 

Triangular 0.90 0.01 0.09 

Xu et al. (2013) 

Triangular 0.99 0.00 0.00 

Triangular 0.59 0.00 0.41 

Di Carlo et al. (2006) 

Conical 0.54 0.22 0.24 

Zhu et al. (2013) 

Conical 0.41 0.07 0.52 

 

In order to perform the reliability evaluation of the trap geometries a specific criterion must 

be defined. It has been said that function requirement of the traps is to capture a single cell; 

therefore, the criterion that the trap must achieve is to capture one cell, which is translated into 

the reliability context of this thesis. The success output of a trap in this thesis is to capture one 

cell, while no capturing any cell or capturing more than one are failure outputs. As such, for a 

single microstructure or trap one has: 
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              𝑹(𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚) =  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑎𝑝𝑡𝑢𝑟𝑖𝑛𝑔 𝑜𝑛𝑒 𝑐𝑒𝑙𝑙(𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)                     (3.7) 

𝑸(𝟏−𝑹) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓𝑐𝑎𝑝𝑡𝑢𝑟𝑖𝑛𝑔 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑐𝑒𝑙𝑙𝑠 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑐𝑒𝑙𝑙𝑠(𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)           (3.8) 

To be able to compare the results, the reliability values are exposed in table 3.5, which 

displays the reliability (R) of each trap shape as well as the failure (Q). From this table one can 

observe that the reliability value coincides with the probability of capturing a single cell, which 

happens because capturing a single cell has been defined as the success output of the 

component. While Q is the sum of the two undesired outcomes. 

Table 3.5 Reliability (R) and failure (Q) for the different trap shapes. 

Trap shape R  Q 

Lawrenz et al. (2012) 

Triangular 0.31 0.69 

Conical 0.11 0.89 

Square 0.06 0.95 

Elliptical 0.11 0.89 

Triangular 0.86 0.14 

Conical 0.45 0.55 

Square 0.22 0.78 

Elliptical 0.11 0.89 

Triangular 0.90 0.10 

Xu et al. (2013) 

Triangular 0.99 0.01 

Triangular 0.59 0.41 

Di Carlo et al. (2006) 

Conical 0.54 0.46 

Zhu et al. (2013) 

Conical 0.41 0.59 

 

From the above analysis one can observe that the triangular shape is the most reliable 

one on capturing a single cell whilst the elliptical geometry presents the lowest reliability, as it is 

shown in table 3.5. It is important to highlight that the differences between the probabilities from 

devices with 400 traps and 1056 traps are not proportional because not only the trap number 

was increased, but also their dimension was modified. Regardless of these changes, the 
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triangular shape still presents the highest probability on capturing single cells. This fact proves, 

as it was assumed previously, that although judicious dimensioning of the traps can improve the 

trapping probability, the trap geometry is also very important. In addition, in table 3.5 the data of 

three more microfluidic cell trapping devices are also included to support the behaviour 

observed in Lawrenz et al. (2012) devices. For instance, while Di Carlo et al. (2006) and Zhu et 

al. (2013) used a conical trap configuration, Xu et al. used a triangular shape obtaining a higher 

percent of traps filled with only one cell. Consequently, for the new design a triangular geometry 

for the traps will be chosen.  

Figure 3.6 depicts the designed trap that fulfills FR2 and shows the corresponding 

dimensions to ensure the trapping of a single cell, in particular a cell of 20 microns. The trap 

consists of two trapezoidal microstructures separated by a small gap which are properly 

positioned to generate a triangular trap. The trap has an opening of 28μm which only allows the 

entrance of a single cell of 20 micros and avoids the possibility of two cells entering at the same 

time. The rear channel in the trap functions as the carrier fluid exits and its dimensions of 12μm 

prevents the captured cell to squish out of the trap. Lastly, in order to prevent the transient flow 

motion around the trap to sweep the cell out of the trap, the trapezoid has an angle of 35.5° 

which is much greater than the minimum angle of 5° recommended by Xu et al. (2013). Such 

angle is described by: 

                       𝛼 = 2 𝑡𝑎𝑛−1 (
0.5(𝑢−𝑏)

𝑙
) = 2 𝑡𝑎𝑛−1 (

0.5(28−12)

25
) = 35.48°                              (3.9) 

In addition, the trap has a depth of 25μm to completely fit a 20μm cell into the trap.  
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Fig. 3.6 Trap designed for the new cell-trapping device. (A) 3D drawing of a single trap. 

(B) Dimensions of the trap.    

As mentioned previously the device must be able to capture cells of 20 microns without 

applying any strain to the chip, and cells of 30 microns when the maximum strain is exerted. 

Although the dimensions presented above are those when the trap is not deformed due to the 

stretching force, the dimensions were defined taking into account the maximum possible strain, 

as follows. At the zero strain applied, the opening rear aperture of the trap measures 12μm. 

Once a strain is induced the opening must increase its size up to a maximum of 22μm, limited by 

the maximum strain permitted. Since the strain is applied uniformly along the device and 

perpendicular to the traps opening orientation, as shown in figure 3.7, all trap´s dimensions will 

increase in the same proportion. Note that while all the lateral dimensions (X-axis) increase 

proportionally to the exerted strain the vertical dimensions (Y and Z axis) will present a 

reduction. 
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Fig. 3.7 Direction of the strain applied to the device via a mechanical induced force to 

produce a size increment of the traps. (A) The diagram shows the whole device, and the blue 

arrows represent the direction of the tensile force to produce deformation. (B) Only depicts a 

single trap and the blue arrows represent the direction on which the deformation or size 

increment will be produced. Such size increment is experienced by all the traps in the arrays. 

 

3.4 Summary 

The conceptual design of the novel microfluidic single-cell trapping device was conducted 

following the Axiomatic Design Theory. The function requirements (FRs) of such a device were 

first defined. It was concluded based on a previous behaviour analysis (Section 2.3.3) that the 

function requirements were three, (i) 𝐹𝑅1: the device must capture large batches of single-cells; 

(ii) 𝐹𝑅2: each trap must capture a single cell; and (iii) 𝐹𝑅3: the traps must be capable of adapting 

its size to capture cells of various diameters. In addition, some constraints intrinsic to the design 

were revealed, such as the context on which the device must operate and the maximum shear 

stress that must not be exceeded to achieve cell viability.  



58 
 

In order to present a physical entity capable of meeting the function requirements, three 

design parameters (DPs) were proposed, (i) 𝐷𝑃1: array comprised of a large number of single-

cell trappers; (ii) 𝐷𝑃2: trap capable of corralling and isolating only one cell from a large group of 

cells suspended in a fluid; and (iii) 𝐷𝑃3: large and uniform deformability of the traps. After 

mapping the FRs and DPs one to one, it was found that the design complies with axiom one 

(independence axiom), since any modification of a DPs would only have effects on its related 

function requirement. 

Finally, the design was obtained considering the above DPs. As a result, PDMS was 

chosen as a final material due to its high elasticity property; two arrays of 210 triangular traps 

were proposed; and dimensions of the final microstructures and channels were defined. In 

contrast to the many devices previously discussed in the literature review (Chapter 2), the new 

device resulted from the design process has the capability of adaptation to various sizes of cells. 

Even though the tuning method and the stretching apparatus were inspired from those proposed 

by Zhu et al. (2013), the new device here presented differs in two specific aspects. First, the 

adaptation is made with the objective of increasing the size of the traps, so the traps could 

capture bigger cells in size, while Zhu et al. (2013) device adapts its traps to capture a larger 

number of cell but with a fixed size. Second, not only the function and objective of both devices 

are different, but also the traps. Zhu et al. (2013) used a dam like U-cup geometry similar to the 

one proposed by Di Carlo et al. (2006), while we designed a new triangular trap with a cross 

channel (Fig. 3.7). 
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CHAPTER 4: MODELING AND OPTIMAL DESIGN 

 

4.1 Introduction 

Before proceeding to the fabrication, it is important, from the design point of view, to create 

a virtual model of the device in order to predict the mechanical and hydrodynamic performance 

of the device.  

This chapter presents the simulation of the deformation using ANSYS Release 14.5 

(ANSYS Inc., PA.) to show the deformation of the traps when the device is stretched, and to 

determine the maximum strain possible before plastic deformation. 

The chapter also presents a second model using Fluent to simulate the flow profile 

developed within the micro-channels, and to determine numerically the maximum stress induced 

in a particle (living cell) when captured by a trap. 

 

4.2 Mechanical Simulation 

It was mentioned previously in Chapter 3 that the PDMS does not have a specific Young 

Modulus, and its value depends upon various factors such as, curing temperature, mixing ratio, 

and concentration. As a consequence of these variations, a finite element analysis (FEA) was 

proposed to determine the maximum stress that the device could experience when stretched up 

to the maximum desired length. The model of the device was developed on ANSYS, but only the 

middle section and the bottom layer, where microfluidic channels are, was considered for the 

analysis, as shown in figure 4.1.  In the simulation, three conditions were considered, a fixed 

side, gravity, and applied force to produce the desired deformation. The fixed side represents 

the left side clamp of the stretching apparatus which is fixed in the motherboard. The applied 

force is exerted by displacing the right clamp of the stretching apparatus to any available hole. In 

the design section it was mentioned that a size increment of the trap´s exit of 60% would be 
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enough for the device function requirements, so the force required to produce such deformation 

was determined as follows considering a Young’s Modulus of 1.82 MPa, 

If the maximum strain desired is of 0.6, then from 𝜀 =
𝜎

𝐸
 one has that, 

                                   𝜎 = 𝜀𝐸 = (0.6)(1.82 [𝑀𝑃𝑎]) = 1.092 [𝑀𝑃𝑎]                                  (4.1) 

Then the needed force to produce a strain of 0.6 on the PDMS is, 

                                  𝐹 = 𝜎𝐴 = (1.92[𝑀𝑃𝑎])(7.4[𝑚𝑚2]) = 8.0808 [𝑁]                            (4.2) 

 

Fig. 4.1 ANSYS model. In the image it can be seen the input conditions of the system to 

be solved by the simulation.  

 

Table 4.1 Material properties used for simulation. 

  PDMS 

Density 0.97 
[kg/m³] 

Young's Modulus 1.82 
[MPa] 

Poisson's Ratio 0.48 

 

Table 4.1 shows the PDMS properties used for the simulation. The results of the FEA are 

shown in figure 4.2. The simulation depicts that the device experiences a large deformation, but 

its geometries such as inlet/outlet holes, microchannels, and microstructures still holding their 
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shapes; remember that the simulation only considers the worse scenery at the maximum 

deformation. Additionally, the simulation indicates that the maximum stress incurred with the 

applied force was of 1.5 [MPa] and the maximum strain was of 0.83. Note that the maximum 

strain obtained in the simulation is 20% higher than the one considered when calculating the 

force; nevertheless, the maximum stress is lower than the yield strength point which allows 

safely assume that the PDMS device will not present plastic deformation, if a strain of 0.6 is 

applied.  

 

(A) 
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(B) 

Fig. 4.2 FEA simulation results. (A) Horizontal deformation of the device and maximum 

strain. (B) von Mises equivalent stress distribution in the trapping device. 

 

4.3 Hydrodynamic Simulation 

An hydrodynamic simulation was conducted in order to observe and predict the flow profile 

developed in the micro-channels and to determine the maximum stress exerted in the cells when 

captured in the traps. The model was developed using Fluent, and only a small section of the 

device was modeled. Since the traps are the same and they are arranged in the same fashion 

throughout the device, a small section of the array should be sufficient to exemplify the flow 

profile on all the traps. Thus, figure 4.3 shows the model used; some constraints of the model 

were input flow velocity and output pressure, which were 4.047𝑒−7 [m/s] and 0 [Pa] respectively. 

The flow velocity corresponds to an input flowrate equal to 100 [μm/hr], which is much larger 

than the used in experiments, of 30 [μm/hr]. Also, water properties were used instead of the cell 

media´s physical characteristics. 
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Fig. 4.3 Fluent model. An enclosure has been added in order to define the fluid domain, 

and only a small section of 5 traps were modeled.  

The results of the simulation are shown in figure 4.4. The flow profile simulation reveals 

that there is liquid flowing through the traps, which is compulsory in order to direct cells into 

them. Also, the flow velocity is higher within the traps as expected due to the channel’s 

narrowing.  
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Fig. 4.4 Fluent simulation results. The picture depicts the flow profile predicted for the 

arrays of traps.  

 

The maximum flow velocity encountered in the simulation was, of 1.5𝑒−6 [m/s]. This value 

does not mean anything by itself; therefore, another simulation is needed in order to determine if 

such a flow velocity would produce damage onto the cells. 

 To determine the sheer stress induced onto a cell in the device, a model of a single cell 

was made using again Fluent. The inlet and outlet conditions were keep as before, and the cell 

was modeled as a perfect sphere. For the simulation, it is not important to define the material 

and properties of the cell because the stress calculated depends upon the flow velocity and the 

interaction of the flowing cells with the walls of the traps. The goal of the simulation is to obtain 

the maximum sheer stress induced in the cell and compare it to the maximum sheer stress 

permitted on a cell to not produce damage, which is of 4.5 [Pa] (Dimmeler et al., 1996).  

The results are presented in figure 4.5. From the results it can be seen that for a trapped 

cell, the maximum sheer stress produced on its wall is of 1.065𝑒−2 [Pa], which is much lower 

than 4.5 [Pa]. Therefore, the viability of cells should not be compromised by the device.  
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Fig. 4.5 Fluent simulation results of a single trap. (A) Shows the maximum sheer stress 

produced on a cell when it is docked in the trap. (B) Close-up of the cell in picture A, where it 

can be seen that the higher stress is on the wall side touching the trap´s walls. On (C) the flow 

velocity profile of a cell coming to the trap is depicted. The sheer stress induced by the flow itself 

is very low, of approximately 7.5𝑒−4 [Pa]. 

 

Considering both simulations conducted, the mechanical and the hydrodynamical, the 

device should work properly if it is fabricated and no change in the design is needed. Although, it 

might be possible to create a dynamic model where one could simulate the trapping behaviour 

of the device, it was decided to proceed with the fabrication in order to test all the rest of the 

properties via experiments. Thus, the following chapters 5 and 6 provide details on both, the 

fabrication process and the results obtained from the experiments conducted.  
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4.4 Conclusion 

The mechanical simulation of the new design was conducted using ANSYS to predict the 

deformation of the traps, and to determine numerically the maximum strain possible to applying 

before exceeding the elastic region. This point was very important and represents a keystone for 

the design because if the material (PDMS) results not to be adequate for the large deformability 

desired, the whole design or tuning method would have to be rethought. On the other hand, 

Fluent was employed simulate the flow profile in order to characterize the flow of the cells within 

the micro-channels, and to determine the wall shear stress exerted on the cells, which has to be 

lower than 4.5 [Pa] as determined by Dimmeler et al. (1996) to guarantee their viability. By the 

results obtained from the simulations it was concluded that both mechanically and 

hydrodynamically, the design proposed in Chapter 3 complies with all requirements originally 

established. Therefore, the device could be fabricated in order to conduct more tests to define its 

behaviour in a real situation. Chapter 5 and 6 will cover the fabrication process and the results 

obtained during the experiments, respectively.       
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CHAPTER 5: FRABRICATION 

 

5.1 Introduction 

In order to achieve all the objectives of this research, a physical device is required to 

conduct experiments and tests. In Chapter 3 a new microfluidic trapping device was proposed, 

and this chapter states the fabrication process of this device. A brief introduction to soft 

lithography is given first, in which its advantages and disadvantages in comparison to other 

microfabrication processes are discussed. The replica molding technique used to fabricate the 

device is presented and explained in detail, followed by the real procedure conducted to make 

the PDMS chip. Finally, the chapter ends with the description of the fabrication process to obtain 

the stretching apparatus.  

 

5.2 Soft Lithography 

There are many different micro-manufacturing methods that have their foundations on 

photolithography, a technique developed in microelectronics for the fabrication of microelectronic 

components. For instance, UV lithography, soft X-ray lithography, electron-beam writing, 

focused ion beam writing, and proximal-probe lithography are very effective and capable of 

generating very small features in nanometer scale, but they have the following disadvantages 

when used for micrometer scale features: they are very expensive; they cannot be easily 

adapted for patterning on non-planar surfaces; they are largely ineffective in generating 3D 

structures; they are restricted to a limited set of photoresist materials; and they do not integrate 

well with glass, plastics, ceramics or carbon (Xia & Whitesides, 1998). Thus, other techniques 

need to be developed to overcome these problems, and fulfill the requirements of other areas 

outside of microelectronics. Examples of non-photolithographic methods that have been 

proposed are injection molding, embossing, cast molding, laser ablation, soft lithography, and 

many others. Soft lithography is a set of microfabrication methods such as micro-contact 
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printing, replica molding, micro-transfer molding, and rapid prototyping that use elastomeric 

molds to transfer patterns (Xia et al., 1998). Soft lithographic techniques have characteristics 

that allow to overcome the problems present by the lithographic techniques: the processes are 

rapid; they do not require the use of expensive equipment; they do not require expensive 

cleanrooms; they can be used on non-planar surfaces, and they are suitable for polymers and 

organic materials. 

Soft lithography is a micro-manufacturing methodology that encompasses different 

techniques such as contact printing, replica molding, and rapid prototyping, and so on. These 

techniques are very useful to transfer patterns from a hard master or mold to a soft material such 

as silicone. In particular replica molding and rapid prototyping have been extensively used in the 

fabrication of microfluidics. Indeed, all the devices reviewed in Chapter 2 were manufactured by 

one of these two methods. One of the main reasons for this selection is that replica molding and 

rapid prototyping have become arguably standard procedures for the fabrication of PDMS 

devices. In addition, these methods are very fast (one could obtain a complete device in 24 

hours), procedurally simple, and inexpensive, which make them optimal processes for the 

fabrication of microfluidic devices (Wolfe & Whitesides, 2005; Xia et al., 1998; McDonald et al., 

2000). Thus, in this research the replica molding method was employed as the manufacturing 

technique to produce the new mechanically tunable microfluidic cell-trapping device resulted 

from the design presented in Chapter 3. 

 

5.3 Replica Molding 

Replica molding is a simple casting method, where the features of a mold are negatively 

replicated on a soft polymer (PDMS); so that, the extruded microstructures on the master mold 

result in microchannels on PDMS. This method allows the replication of highly complex features 

with nanometer resolutions, which mainly depends on van del Waals interactions, wetting, and 

kinetic factors such as filling of the mold (Xia et al., 1998). After molding, a PDMS device will 
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have three walls out of four needed to have enclosed channels. Therefore, a sealing or bonding 

process is required to add the lid of the microfluidic device. Different materials can be used to 

produce the fourth wall such as glass, PDMS, Si, SiO₂, quartz, silicon nitrate, polyethylene, 

polystyrene, and glass carbon; and the bonding can be irreversible or reversible. The main 

difference between a reversible and irreversible bonding is the pressure they can stand before 

breaking the seal. Reversible sealing is achieved thanks to the van der Waals interaction 

between the surfaces of the PDMS device with other materials, while irreversible sealing 

requires the exposure of both material surfaces to air plasma (McDonald et al., 2000). Molds can 

be made out of many different materials such as silicon, metal, and various hard polymers, and 

they can be fabricated using the most suitable procedure to achieve the desire features. For 

example, etching, photolithography, electroforming, x-ray lithography, 3D printing, and 

conventional machining could be used. Therefore, the selection of the method to create a mold 

will depend on the resolution require by the application and the resources available for its 

production.  

Most microfluidic devices among the literature have employed SU-8 molds. SU-8 is a 

negative photoresist epoxy that becomes very rigid (E= 4.02 GPa) after baking at 95°, so it is 

capable of producing high-aspect-ratio structures mechanically stables (Del Campo & Greiner, 

2007). SU-8 molds can be fabricated using photolithography. Photolithography, a micro-

manufacturing process taken form microelectronics, allows the generation of a pattern on a 

substrate through the use of an optical image and a photosensitive polymer. The substrate can 

be silicon or another material. In the fabrication process the photoresist (SU-8) was first coated 

on the surface of the substrate. The substrate with the photoresist material is then exposed to an 

irradiation source such as UV light, through a transparent mask with the desired 2D pattern. 

When the photoresist is exposed to the light radiation, those areas exposed (not covered by the 

mask) change their solubility so that they can be differentiated on the subsequent developing 

process. Hence, the retained photoresist material creates the imprinted patterns after the 
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development. A material is said to be a negative tone photoresist when the portions that were 

not exposed to light dissolve in solution development, and positive tone when the exposed areas 

remain intact after the developing step (Hsu, 2002; Del Campo et al., 2007). The 

photolithography process is illustrated in figure 5.1. 

 

Fig. 5.1 Photolithographic process diagram showing the developing process differences 

between positive and negative tone resists. In general, for the fabrication of molds for 

microfluidic devices, silicon (Si) substrates and negative tone resist SU-8 are used. 

 

The replica molding process carried out for the fabrication of the new single particle 

trapper consisted of the fabrication of a SU-8 mold using photolithography techniques to later 

procced with the casting of PDMS and bonding. The process begins with preparing a silicon 

wafer by cleaning and prebaking it. Vitriol, ethyl alcohol and acetone were used to wash the 

silicon chip in sequence, and an electric hot plate was used to bake the cleaned silicon chip for 

15 min. Before coating the Si wafer with SU-8 the surface was modified to produce a better 

adhesion with HMDS (Hexamethyldisilazane) in a volatile cylinder for 3 minutes. The photoresist 
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(SU-8-2050) was poured on the treated silicon chip and spin coated at 3000 rpms for 30 

seconds. Before exposing the coated wafer was soft baked at 65°C for 3 minutes. The 

photolithography process was performed exposing the coated wafer through the mask bearing 

the desired pattern to UV (350-400nm) radiation for 6 seconds. After exposure, the chip was 

post baked at 95°C for 6 minutes. In order to develop the SU-8, the wafer was immersed in the 

developing solution for 5 minutes under constant agitation. After a drying process with nitrogen 

the mold is finished and ready to be used. To produce the PDMS (RTV-615 PDMS) devices a 

mixing base-to-curing agent ratio of 10:1 was mixed and degasified to remove air bubbles using 

a vacuum drying oven. The PDMS was poured onto the mold and the thickness was controlled 

at 1mm. The PDMS was dried up using a drying oven at 85°C. Upon solidification, the PDMS 

chip was carefully stripped from the mold and 0.75mm inlet/outlet holes were punched. After an 

optical assessment of the microstructures and microchannels under microscope the device was 

exposed to air plasma and bonded to a 1mm layer of PDMS. Finally, the bonded PDMS device 

shown in figure 5.2 was cured overnight at constant temperature of 65°C. 

 

Fig.5.2 Picture of the final microfluidic single-cell trapping device fabricated on PDMS.  

 

For each of the devices fabricated for testing and experiments, the process flow is as 

depicted in figure 5.3. 
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Fig. 5.3 General flow diagram of the replica molding method followed to fabricate the 

microfluidic single-particle trapper device proposed in this thesis.  

 

5.4 Stretching Apparatus 

To produce the Acrylic stretching device a regular CNC machining procedure was 

conducted. First, as all parts comprising the device are 5mm thick a single acrylic layer was 

used for the fabrication of all the parts. After introducing the program code into the CNC 
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machine, the acrylic layer was set in position and the process was started. The process began 

drilling all the holes on the motherboard and clamps followed by cut of the parts. Figure 5.4 

shows the finished stretching apparatus and its components. 

 

Fig. 5.4 Stretching apparatus fabricated on Acrylic. On the picture all the components of 

the stretching apparatus used to apply a uniformly distributed force onto the trapping device can 

be observed, which include two clamps with screws and a motherboard.   

 

5.5 Cleaning of the Microfluidic Cell-trapping Device 

The fabricated device must be reusable; indeed, this is a consequence of its function 

requirements. Since the device was designed in order to work with different batches of cells, the 

device should have a method to be cleaned and reused with either the same batch of cells or 

another batch with another average cell size. Most microfluidic devices are reusable, so this is 

not a novelty of this new device. In the literature, PDMS devices are usually cleaned before used 

for experiments by injecting 70% ethanol into the microfluidic channels, followed by the injection 

of culture media for several minutes in order to remove the ethanol and to prepare the channels 

for the cells (Benavente-Babace et al., 2014; Wang et al., 2014; Liu et al., 2012; Wu et al., 

2007). The former cleaning-method is recommended for when the device is used constantly. If 

the device is left unused for several days or channels get clogged, a cleaning method proposed 
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by McKenna (2016) can be conducted. The method is based on ultrasonic bathing which is a 

technique commonly used in laboratories to clean small devices that cannot be mechanically 

brushed. Briefly, to clean the microfluidic device: place de PDMS device in a disposable plastic 

bag. Add a mild detergent solution or solvent (about 10 - 50 mL) to the bag. Hang the bag inside 

the ultrasonic bath machine and start the machine. Once the ultrasonic cleaning is over, remove 

the device from the bag and dry it either in an oven or with a nitrogen gun. Finally, analyze 

optically under the microscope if the channels are clean. It is also recommended to always carry 

out the first cleaning method with 70% ethanol before conducting any experiment in the device. 

 

5.6 Summary 

In this chapter, the steps followed to fabricate the new PDMS single-particle trapper device 

were described in detail. In general, the process requires the fabrication of a hard master or 

mold on which the PDMS is later casted to generate the 3D microstructures and channels 

followed by an irreversible bonding of the PMDS device to another PDMS sheet. The 

microfabrication method chosen for the single-particle trapping device, namely replica molding 

belongs to a set of microfabrication techniques called soft lithography which has become a 

standard method to produce microfluidic devices on PDMS. The fabrication process to make the 

stretching apparatus was described, and the cleaning method to be able to reuse the trapping 

device was described as well.  
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CHAPTER 6: MEASUREMENTS AND EXPERIMENTS  

 

6.1 Introduction. 

In the introductory chapter it was stated that the main attributes which a new adaptable 

single-cell trapping device should have are: (A) deformation of the elastomeric polymer (PDMS) 

feasible to stretch, (B) compliance of the traps, and (C) uniformity of the deformation of the traps. 

Therefore, in order to address, assess, and characterize these attributes on the new fabricated 

device, a set of experiments and tests are required. This chapter reports and presents the 

experiments conducted and the results obtained. The chapter initially introduces the 

methodology followed to conduct the experiments along with a brief explanation on how the 

foreseen outcomes would help to prove the fulfilment of the objectives proposed for the device. 

Also, the equipment, apparatuses, and devices used during the experiments are briefly 

described.  

Two main experiments, as well as the difficulties encountered during these and their 

respective results are presented in this chapter. The first experiment is related to the 

deformation of the device and the elasticity property of PDMS, so it is intended to assess 

attributes: (A) and (C). The second, which was divided in two parts, is related to the capturing 

performance of the device, and they are focused on evaluating attribute: (B). It should be noted 

that in this chapter, the emphasis is on verification and evaluation of the properties and 

performance of the new device. 

 

6.2 Experiment 1: Stretching and deformability. 

The new device must be capable of adapting or modifying its trap dimensions in order to 

capture different sizes of particles every time it is tuned. However, the deformation must be 

controllable, repeatable, and uniform along the entire device. Also, it has been stated in the 

design that the size increment of the traps must be enough to capture at maximum deformation 
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particles 10 μm in diameter larger than the particles captured at no-deformation (from 20 μm to 

30 μm). To assess and characterize the deformation behaviour of the device, several 

mechanical tests were carried out. These mechanical tests attempt to determine: (i) the strain at 

which the maximum deformation of the traps is achieved, (ii) the deformation of the traps at the 

maximum strain applied, (iii) the minimum trap-size increment possible with the stretching 

apparatus, and (iv) the distribution of deformations through all the traps, which should be 

uniform; i.e., the same for all of traps. In order to test the device in terms of these requirements 

the following procedure was followed. 

 

6.3 Experimental Procedure (Experiment 1) 

In order to measure the deformation of the traps, several micrographs of the PDMS single-

particle trapping device were taken using an optical microscope (Olympus IX70) with a 10X 

objective; an example of the micrographs obtained is depicted in figure 6.1 below. 

 

Fig. 6.1 Example of a micrograph taken by the Olympus IX70 microscope at a 10X 

magnification.  
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 After obtaining all the micrographs with a RGB video camera (JVC TK-1270 U) plugged to 

the microscope, they were post-processed on a computer software, called Image J, in order to 

do the required measurements. Three linear dimensions on the traps were measured, the exit, 

the entrance, and the gap between traps (Fig. 6.2). It is important to mention that instead of 

examining all the 420 traps (which would be ideal), only an strategically representative sample of 

traps was considered, 80 in total. To do the selection of traps, the device was divided as its 

structure on two arrays of traps. Each array was then segmented in 5 zones A, B, C, D, and E, 

and from each zone 8 traps were selected as shown in figure 6.3. Only 8 traps were chosen on 

each region because they fit within the scope of the microscope when the device is stretched to 

the maximum strain. The selection of 5 zones was based on the assumption that all the traps 

would present the same deformation (notice that they are arranged symmetrically to the center 

of the device). 

 

 

 

Fig. 6.2 Micrograph showing the three liner dimensions (exit, entrance, and gap between 

traps) that were examined on 80 traps for experiment 1.  
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    Fig. 6.3 Schematic diagram showing the selection of traps. The device was divided on 

two arrays A1 and A2, later each array was divided in 5 regions denoted by the letters A to E. 

From each zone 8 different traps were selected to be examined on three linear dimensions, exit, 

entrance, and gap between traps.  

 

After defining the traps to be measured, the experiment procedure was as follows: 

1. The PDMS device was mounted on the clamps of the stretching apparatus. 

2. The “left” clamp was secured to the motherboard, while the “right” clamp was left 

loose in order to choose its desired position. The components used as well as the 

procedure for the mounting of the device is depicted in figures 6.4 and 6.5, 

respectively.  

3. First, the “right” clamp was secured at position zero (hole 0), which is equal to a 

zero strain applied. Then micrographs of each zone (A to E) focusing on the 8 

selected traps were taken on both arrays using a 10X objective. 

4. The “right” clamp was unscrewed and moved to the immediate next hole to the 

right (hole 1), resulting in a stretch of 5mm on the PDMS device. 
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5. After securing the clamp on the new position (hole 1), micrographs of the same 8 

traps were taken again at each zone of the arrays. This process was consecutively 

repeated for each new position (hole) until reaching the hole number 5. 

6. All the 60 micrographs obtained from the above process were later transferred to 

an image processing software called Image J, where the measurements where 

done manually.  

7. Exit, entrance, and gap of all the 8 traps on each micrograph were measured and 

recorded in a spread sheet following the same order.  

In order to display the results, the three linear dimensions of each trap were averaged 

separately. As a result, for zone A at hole zero, only one value for the exit, the entrance, and the 

gap is shown. The above was done for each zone and array. In addition, since all the traps are 

identical in theory, the dimensions of all the traps should be very similar. In order to corroborate 

this argument, the coefficients of variation (CV) are also calculated. The results obtained are 

presented in the next section. 
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Fig.6.4 Components required for the assembling of the new microfluidic single cell trapping 

device onto the stretching apparatus.  

 

Fig. 6.5 Procedure to mount the new cell trapping device onto the stretching apparatus. (A) Put 

the PDMS chip on top of the bottom sections of the clamps. (B) In a sandwich manner locate 

and align the top sections of the clamps on top of the PDMS chip, and secure the device on the 

clamps using the short screws. (C) Fix the left clamp to the main board by using two large 

screws, the position could be arbitrary. (D) Determine the strain or size increment you want to 

apply to the traps and fix the right clamp in the corresponding hole. Remember that the 
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stretching direction is to the right side and you can choose from 6 holes (6 positions); hole 0 

means no deformation and hole 5 means maximum deformation.   

 

6.4 Experimental Results (Experiment 1) 

This section will present some of the experimental results obtained from measuring the 

traps under different strains. Many results were taken for repeatability using not only a single 

device, but 4 devices. Since the devices were fabricated under the same condition and no 

considerable variations were observed on the features among devices, we only focus on one 

device to conduct experiments. Although only representative results are presented here, more 

results such as micrographs and measurements are provided as supplemental material. Also, on 

the measurements obtained there is no evidence of a considerable variation on the size of the 

traps that could indicate the need of measuring more or other traps than the previously selected. 

 

6.4.1 Measuring in ImageJ 

Image J, an image processing software very popular among the scientific community, was 

selected in order to conduct the measurements of the traps in the micrographs obtained from the 

microscope. Image J can measure distances and angles on pixels or if provided on a real scale 

such as millimeters. Thus, when opening the micrographs in Image J a complication arises 

because the original dimension units of the images are given in pixels, so a conversion back to 

micrometers is necessary. Such conversion is done using specific information from the 

characteristics of the microscope (Olympus IX70) and the recording camera (JVC TK-1270 U). 

Thus, the pixel size is given by 

                                   𝑃𝑖𝑥𝑒𝑙 𝑆𝑖𝑧𝑒 =
𝐶𝐶𝐷 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒

𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒
                                  (6.1) 

Where the CCD element size is determined by dividing the length of the camera´s CCD by 

the size of the image in pixels. The camera used has a ½” CCD which size is of 6.4mm by 
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4.8mm, and the output image is of 720 pixels by 480 pixels. Thus, dividing 4.8mm over 480 

pixels yields an element size of 10μm. Now considering the magnification of 10X used on the 

microscope and substituting values into equation (6.1), one has that the real pixel size is: 

                𝑃𝑖𝑥𝑒𝑙 𝑆𝑖𝑧𝑒 =
10𝜇𝑚

10
= 1𝜇𝑚 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.                             (6.2) 

Before making any measurement the pixel size value obtained was confirmed measuring 

known distances. 

When using an image processing program some confusions might arise; therefore, one 

must have very clear what the software is doing. In particular the resolution of the images and 

measurements are of high interest for this research work. Although the software allows the user 

to measure distances in images, the measurements are done manually; i.e., the user has to 

select a point A (start point) and a point B (end point) using the cursor. As a consequence of this 

manual selection, human error is a considerable factor on the variance of the measurements 

recorded. In order to reduce the unavoidable error of eyeballing the selection of points A and B, 

we use the zoom tool to increase the size of the original image. Zooming in an image does not 

increase its resolution, but it allows us to have a closer look in it, to be able to select the edges 

of the traps more accurately. Moreover, the step increment of the measuring tool in Image J is 

independent to the pixel size of the image; therefore, it can measure lengths smaller than the 

pixel size (Fig. 6.6). So, although the resolution of the images is given by the microscope 

resolution, which is of 1 micron, the length values obtained from Image J, present decimal 

values corresponding to nanometers. 
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Fig. 6.6 Example of measuring the traps using Image J. (A)  Shows an original size micrograph 

with a size of 720x480 pixels. (B) Shows the same image in (A), but enlarged 300%. The red 

arrow in (A) and (B) is pointing at a measuring line to exemplify that it is easier to select the 

edges of a trap by zooming in the image. (C) Depicts the real vertical length of a pixel in image 

(A), which is of 1 micron; the image has a zoom of 3200%. (D) Shows that Image J is capable of 

measuring lengths smaller than the pixel size of the image being analysed. The resolution of the 

measuring tool was empirically determined to be approximately of 1/30 pixels for the image size 

used.        

 

6.4.2 Maximum Deformation and Strain 

As discussed earlier, instead of displaying all the dimensions recorded for all the 80 traps 

examined (which are 240 measurements per hole), an average of the measurements taken of 
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the 8 traps in each zone is presented, as well as the coefficients of variation. All the data and 

results can be seen in the supplementary material. Hence, the following tables (Table 6.1 and 

Table 6.2) show the average dimension of the exit, the entrance, and the gap per zone at 

different strains; i.e., hole 0, 1, 2, 3, 4, and 5. While tables 6.3 and 6.4 present the corresponding 

coefficients of variation.  

Table 6.1 Average dimensions of the traps in the array one (A1). 

ARRAY OF TRAPS 1 

ZONE   HOLE 0 HOLE 1 HOLE 2 HOLE 3 HOLE 4 HOLE 5 

A EXIT  [μm] 12.17 14.39 16.20 18.37 20.47 22.12 

ENTRANCE  [μm] 28.43 30.17 32.36 34.32 36.32 38.37 

INTER-TRAPS GAP  [μm] 33.75 36.80 39.42 42.44 45.70 47.44 

B EXIT  [μm] 12.07 14.32 16.39 18.68 20.26 22.02 

ENTRANCE  [μm] 27.73 30.52 32.38 34.36 36.32 38.37 

INTER-TRAPS GAP  [μm] 33.84 36.89 39.33 42.56 44.65 47.21 

C EXIT  [μm] 11.51 13.34 15.39 17.24 19.21 21.33 

ENTRANCE  [μm] 27.73 29.74 31.88 33.64 35.84 37.67 

INTER-TRAPS GAP  [μm] 33.31 36.05 38.98 41.56 43.65 46.64 

D EXIT  [μm] 12.09 14.07 16.02 18.07 20.29 22.29 

ENTRANCE  [μm] 28.01 30.26 32.53 34.36 36.54 38.46 

INTER-TRAPS GAP  [μm] 33.58 36.98 39.33 43.02 45.82 47.79 

E EXIT  [μm] 12.24 14.15 16.12 18.05 20.12 22.16 

ENTRANCE  [μm] 28.52 30.35 32.27 34.54 36.45 38.28 

INTER-TRAPS GAP  [μm] 34.27 36.54 39.07 42.56 45.23 48.37 

 

Table 6.2 Average dimensions of the traps in the array two (A2). 

ARRAY OF TRAPS 2 

ZONE   HOLE 0 HOLE 1 HOLE 2 HOLE 3 HOLE 4 HOLE 5 

A EXIT  [μm] 11.90 13.97 16.05 18.07 20.38 22.08 

ENTRANCE  [μm] 27.82 30.35 32.15 34.23 36.32 38.46 

INTER-TRAPS GAP  [μm] 33.58 36.80 39.42 42.33 45.35 47.67 

B EXIT  [μm] 12.03 14.15 16.12 18.47 20.32 22.20 

ENTRANCE  [μm] 28.08 29.83 32.09 34.27 36.28 38.37 

INTER-TRAPS GAP  [μm] 33.75 36.89 39.59 42.56 45.47 47.91 

C EXIT  [μm] 11.91 13.98 15.92 18.17 20.10 22.07 

ENTRANCE  [μm] 28.00 30.17 32.05 34.19 36.28 38.37 

INTER-TRAPS GAP  [μm] 33.79 36.89 39.42 42.79 45.35 47.09 
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D EXIT  [μm] 12.19 14.41 16.20 18.38 20.44 22.02 

ENTRANCE  [μm] 28.34 30.35 32.62 34.19 36.28 38.35 

INTER-TRAPS GAP  [μm] 33.66 36.72 38.98 42.56 45.23 47.44 

E EXIT  [μm] 12.17 13.96 16.02 18.37 20.47 22.20 

ENTRANCE  [μm] 28.17 30.09 32.09 34.32 36.45 38.37 

INTER-TRAPS GAP  [μm] 33.93 36.63 39.33 42.91 45.58 48.02 

 

Note in tables 6.1 and 6.2 that among zones the size of traps, meaning the exit space, the 

entrance space, and gap are very similar and consistent. For instance, in table 6.1 at hole 0 the 

exit of the traps in all zones is about 12μm, being the zone C the smallest with 11.5μm and zone 

E the largest with 12.24μm; however, this difference is attributed to experimental measurement, 

and thereby they are negligible. Same exemplification can be made for the rest of the 

dimensions in the table and a similar variance will be found. 

Table 6.3 Coefficients of variance of the measured traps in array one (A1). 

ARRAY OF TRAPS 1 

ZONE   HOLE 0 HOLE 1 HOLE 2 HOLE 3 HOLE 4 HOLE 5 

A EXIT 0.02 0.02 0.02 0.02 0.02 0.01 

ENTRANCE 0.02 0.01 0.01 0.01 0.00 0.00 

INTER-TRAPS GAP 0.01 0.02 0.02 0.01 0.01 0.01 

B EXIT 0.04 0.03 0.03 0.02 0.01 0.01 

ENTRANCE 0.02 0.01 0.01 0.01 0.00 0.00 

INTER-TRAPS GAP 0.02 0.01 0.01 0.02 0.00 0.01 

C EXIT 0.04 0.04 0.03 0.03 0.02 0.02 

ENTRANCE 0.02 0.02 0.02 0.02 0.02 0.02 

INTER-TRAPS GAP 0.02 0.01 0.01 0.01 0.01 0.01 

D EXIT 0.02 0.02 0.00 0.00 0.02 0.01 

ENTRANCE 0.02 0.02 0.01 0.01 0.01 0.01 

INTER-TRAPS GAP 0.02 0.01 0.01 0.02 0.01 0.01 

E EXIT 0.03 0.02 0.01 0.00 0.01 0.01 

ENTRANCE 0.02 0.02 0.01 0.01 0.01 0.01 

INTER-TRAPS GAP 0.01 0.01 0.02 0.01 0.01 0.01 

 

Table 6.4 Coefficients of variance of the measured traps in array two (A2). 

ARRAY OF TRAPS 2 

ZONE   HOLE 0 HOLE 1 HOLE 2 HOLE 3 HOLE 4 HOLE 5 
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A EXIT 0.01 0.00 0.00 0.00 0.02 0.01 

ENTRANCE 0.02 0.01 0.00 0.01 0.00 0.01 

INTER-TRAPS GAP 0.02 0.01 0.02 0.02 0.00 0.01 

B EXIT 0.02 0.02 0.01 0.02 0.02 0.01 

ENTRANCE 0.02 0.02 0.01 0.01 0.00 0.00 

INTER-TRAPS GAP 0.01 0.01 0.01 0.00 0.01 0.01 

C EXIT 0.03 0.03 0.01 0.01 0.02 0.01 

ENTRANCE 0.01 0.02 0.01 0.00 0.00 0.00 

INTER-TRAPS GAP 0.01 0.02 0.02 0.01 0.01 0.01 

D EXIT 0.02 0.02 0.02 0.02 0.02 0.01 

ENTRANCE 0.01 0.02 0.01 0.00 0.00 0.01 

INTER-TRAPS GAP 0.02 0.02 0.02 0.01 0.01 0.00 

E EXIT 0.02 0.03 0.00 0.02 0.02 0.02 

ENTRANCE 0.02 0.01 0.00 0.01 0.01 0.00 

INTER-TRAPS GAP 0.01 0.01 0.01 0.01 0.01 0.01 

 

Note that tables 6.3 and 6.4 present very small values, lower than 0.04, which means that 

the traps are indeed almost identical, and the values obtained when measuring the exit, the 

entrance, and the gap between traps are all very close to its corresponding mean value. Such 

variations in sizes can be explained by considering the accuracy limitation of the fabrication 

process and the measuring error. In particular, the process used to fabricate the device has a 

tolerance of fabrication of ± 8%, and the measuring error comes from the manual selection of the 

characteristics of the traps in Image J. 

To determine the maximum deformation achieved in the traps after applying the maximum 

strain, the dimensions recorded at hole 0 (no strain) and the ones recorded at hole 5 (maximum 

strain) were subtracted yielding a maximum growth of the traps of about 10μm. An example of 

the calculations done is provided considering only zone A. 

𝑀𝑎𝑥. 𝑠𝑖𝑧𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑒𝑥𝑖𝑡 = 22.122 − 12.174 = 𝟗. 𝟗𝟒𝟖𝝁𝒎 

𝑀𝑎𝑥. 𝑠𝑖𝑧𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = 38.372 − 28.430 = 𝟗. 𝟗𝟒𝟐𝝁𝒎 

𝑀𝑎𝑥. 𝑠𝑖𝑧𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑔𝑎𝑝 = 47.442 − 33.750 = 𝟏𝟑. 𝟔𝟗𝟐𝝁𝒎 
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6.4.3 Uniform Deformation 

Using tables 6.1 and 6.2 in the previous section, a size increment tables were obtained 

(tables 6.5 and 6.6). In these tables, each column states the magnitude increment of the exit, 

entrance, and gap of the traps when the device is stretched. This is done aiming to showing that 

the increment is the same every time that the device is stretched 5mm. 

Table 6.5 Size increments of the traps on each zone of array A1. 

ARRAY OF TRAPS 1 

ZONE   Δ (0-1) [μm] Δ (1-2) [μm] Δ (2-3) [μm] Δ (3-4) [μm] Δ (4-5) [μm] 

A EXIT 2.211 1.819 2.163 2.099 1.657 

ENTRANCE 1.744 2.181 1.961 2.006 2.049 

INTER-TRAPS GAP 3.053 2.616 3.023 3.256 1.744 

B EXIT 2.249 2.073 2.291 1.579 1.762 

ENTRANCE 2.789 1.853 1.984 1.962 2.049 

INTER-TRAPS GAP 3.052 2.443 3.226 2.093 2.558 

C EXIT 1.833 2.048 1.858 1.962 2.128 

ENTRANCE 2.006 2.137 1.766 2.202 1.831 

INTER-TRAPS GAP 2.732 2.936 2.579 2.093 2.990 

D EXIT 1.983 1.954 2.047 2.221 2.000 

ENTRANCE 2.256 2.267 1.830 2.181 1.918 

INTER-TRAPS GAP 3.401 2.355 3.692 2.792 1.976 

E EXIT 1.907 1.966 1.936 2.064 2.044 

ENTRANCE 1.832 1.919 2.268 1.919 1.831 

INTER-TRAPS GAP 2.268 2.528 3.488 2.675 3.139 

Note: The notation Δ (0-1) means the size increment resulted when the device was 

stretched from position 0 (hole 0) to position 1 (hole 1); thus, Δ (1-2) means size increment 

resulted when the device was stretched from position 1 to position 2, and so on.   

Table 6.6 Size increments of the traps on each zone of array A2. 

ARRAY OF TRAPS 2 

ZONE   Δ (0-1) [μm] Δ (1-2) [μm] Δ (2-3) [μm] Δ (3-4) [μm] Δ (4-5) [μm] 

A EXIT 2.075 2.076 2.023 2.308 1.698 

ENTRANCE 2.529 1.799 2.082 2.093 2.137 

INTER-TRAPS GAP 3.227 2.616 2.907 3.023 2.326 

B EXIT 2.110 1.977 2.349 1.849 1.884 

ENTRANCE 1.745 2.267 2.180 2.006 2.093 

INTER-TRAPS GAP 3.140 2.703 2.966 2.906 2.442 
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C EXIT 2.064 1.948 2.250 1.921 1.974 

ENTRANCE 2.179 1.875 2.137 2.093 2.093 

INTER-TRAPS GAP 3.096 2.529 3.372 2.558 1.744 

D EXIT 2.215 1.791 2.186 2.052 1.587 

ENTRANCE 2.007 2.267 1.570 2.093 2.072 

INTER-TRAPS GAP 3.054 2.266 3.576 2.675 2.209 

E EXIT 1.791 2.053 2.349 2.099 1.738 

ENTRANCE 1.919 2.006 2.224 2.137 1.919 

INTER-TRAPS GAP 2.703 2.702 3.576 2.675 2.442 

Note: The notation Δ (0-1) means the size increment resulted when the device was 

stretched from position 0 (hole 0) to position 1 (hole 1); thus, Δ (1-2) means size increment 

resulted when the device was stretched from position 1 to position 2, and so on. 

   

In the above tables it is seen that all the size increments of the trap features examined, 

exit, entrance, and gap are approximately equal to 2 μm. In particular, this is the case for the exit 

and entrance, while the gap has a larger increment of more 2.8 μm. 

The data in tables 6.5 and 6.6 were plotted in ten separated scatter charts, five charts per 

array. Each of the following charts in figure 6.7 represents graphically the size increments 

obtained on each zone of the array, so that if a uniform deformation was achieved in all the 

traps, all the charts must be if not identical very similar. Here only the charts corresponding to 

the array A1 are shown; the plots for array A2 and larger images of the charts can be found in 

Appendix B.  
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Fig. 6.7 Charts in this figure displays the average magnitudes recorded for the exit (blue 

dots), the entrance (orange dots), and the gap between traps (grey dots) at all the stretching 

position tested (hole 0 to 5) for the traps in all the regions, such that the x-axis is the stretching 

position and the y-axis is the trap dimension expressed in microns. In addition to the scattered 

dots, a trend line has been included with its corresponding equation for each series in order to 
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show that the deformation of the traps follows a linear and constant tendency, which can be 

represented by a linear equation of first order. 

 

In addition, figure 6.8 shows how the traps keep their triangular shape and the 

microstructures did not experiment a visible deformation when the PDMS device was subject to 

various strains. The figure shows six micrographs of the zone B in array A1. 
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  Fig. 6.8 Micrographs taken at array one section B. (A) Image taken when the device was 

not stretched. (B) Micrograph obtained when the device was expanded to position hole 1. (C)-(F) 

Pictures taken when the device was stretched from hole 1 to hole 5 progressively. By looking at 

all the micrographs one can observe the increase on size of the traps as they go from A to F, but 

a small deformation of the microstructures.   

 

6.4.4 Minimum Deformation 

From figure 6.7 is also evident that the minimum deformation possible on the actual device 

is of 2μm which correspond to a stretching of 5mm or a strain of 0.06. Moreover, the minimum 

deformation of the single-cell trapping device is of particular interest because it also defines the 

capturing resolution of the device.  

 

6.5 Discussion (Experiment 1) 

From the data in tables 6.5 and 6.6 it was determined that the trap´s exit and entrance 

grow 10 μm when the trapping device is stretched up to the hole 5, which represent the 

maximum strain of 0.48. This growth is exactly the increment proposed in the design stage to be 

able to capture particles of 30 μm in diameter and avoid plastic deformation when the device is 

stretched. Thus, the device should be capable of capturing particles from 20 μm to 30 μm as it 

was originally designed.  

Besides the maximum trap size achieved by the device, more important for its correct 

functioning is to be able of producing a uniform deformation through all of its features. Thus, if a 

uniform deformation is achieved, then all the traps in the device must present the same or 

similar size increment and deformation. In addition, the microstructures that form the traps must 

present a very little deformation in order to keep the shape of the traps. Reviewing the charts of 

figure 6.4, one can clearly recognize that the discrete points representing the size increment of 

the traps follow with a negligible difference the trend line; consequently, it can be said that 
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indeed the traps on each zone have a linear and uniform deformation when a strain below the 

maximum limit is applied. Further, if the charts are analyzed altogether it is noticeable at sight 

that all of them are very similar.  Even more, looking at the slopes compiled in the next table 

below (Table 6.7), one can tell that their values are very close to each other and they are around 

m = 2 for the exit and entrance and m = 2.8 for the gap, regardless of the zone in the array 

considered. The largest elongation produced on the gaps between traps is attributed to the 

larger space between the neighboring microstructures. If one thinks on the microstructures as 

pillars that hold together the top and bottom layer of the device, when the device is stretched the 

microstructures oppose the deformation trying to hold the layers in the same position. However, 

as the length of the gap between traps is larger than that of the entrance and exit; the 

microstructures (pillars) cannot oppose with the same force to the deformation. Thereby, the 

larger the length of the gap, the lower the resistance to deform, which also explains the fastest 

deformation rate, shown on the plots. Nevertheless, the requirement of having the same 

deformation in all the traps has been met as shown by the experimental evidence.  

 

Table 6.7 Size increments of the traps on each zone of array A2. 

    TREND LINE SLOPE 

ZONE   Array A1 Array A2 

A EXIT 2.004 2.061 

ENTRANCE 2.003 2.091 

INTER-TRAPS 
GAP 

2.804 2.829 

B EXIT 1.996 2.049 

ENTRANCE 2.073 2.085 

INTER-TRAPS 
GAP 

2.667 2.842 

C EXIT 1.96 2.039 

ENTRANCE 1.993 2.066 

INTER-TRAPS 
GAP 

2.63 2.721 

D EXIT 2.049 1.983 

ENTRANCE 2.083 1.982 
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INTER-TRAPS 
GAP 

2.893 2.8 

E EXIT 1.983 2.057 

ENTRANCE 1.983 2.066 

INTER-TRAPS 
GAP 

2.858 2.883 

 

The resolution of 2μm shown in the results is directly related to the displacement 

increment permitted by the stretching apparatus. Therefore, if a smaller step increment was 

possible by the stretching apparatus, the size increment of the traps would be smaller, and 

consequently the resolution of the trapping device would be higher. Thus, the smaller the 

displacement of the stretching device, the larger the resolution of the PDMS device. Here, the 

resolution is understood as the minimum variation in the diameter of particles that can be 

differentiated by the traps. In other words, how small the increment of the particle size is that the 

traps are capable of reflecting in their deformation to capture specific sizes. In this line, a higher 

resolution would imply that cells with smaller differences to 2 μm, could be identified by the 

device. For instance, with the actual resolution of the device, particles (either cells or 

microspheres) from 20μm to 30μm can be captured with the device; however, the traps cannot 

differentiate between cells of 20μm and 22μm. As a consequence, the particles which the device 

would work properly with, must have average diameters of 20μm, 22μm, 24μm, 26μm, 28μm, 

and 30μm. 

 

6.6 Experiment 2: Trapping of Particles 

Experiment two was conducted to demonstrate the compliance of the traps (attribute B) of 

the new single-cell trapping device. Such attribute involves two main aspects that the traps must 

cover. The first is that the device must be capable of capturing single particles of a 

predetermined size at different strains and the second is to produce no damage onto the 

captured cells. These two aspects were assessed separately in two parts. In part one, 6 different 
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particle-size batches of water-in-oil microsphere were used to test the trapping performance of 

the traps, whilst in part two, melanoma cells were captured to demonstrate their viability within 

the device. 

   

6.7 Experiment 2: Part I 

In experiment one it was shown that the device works well and behaves as designed in the 

mechanical domain. Now in this part of experiment two, the device is tested in the microfluidics 

domain to assess its function (capture single particles). It is important to mention that although 

the device was introduced as a cell trapper, to facilitate the experiments, microspheres instead 

of cells were used in this experiment. The main reason is because water-in-oil microspheres of 

specific sizes can be relatively easy to produce in large quantities, very fast, and at low costs in 

our lab. In the literature review it was shown that the exchange of cells by microspheres is a 

common practice when testing microfluidic trapping devices. Therefore, for this research it has 

been assumed that the nature of the particles used should not affect the objective of proving the 

concept of adaptability of the device to trap a wide range of particle sizes.  Nevertheless, in the 

second part of this experiment it is shown that the device is suitable to working with cells too. 

The experiment on part one consisted of a series of tests to exhibit: (i) the device ability of 

trapping single particles; (ii) that the deformation of the traps does not have negative effects on 

the trapping function; (iii) that the device is able to capture particles of different sizes when 

modulated; and (iv) the behaviour of the device when larger and smaller particles than the ideal 

size are used. In order to achieve the above goals, the following procedure was followed. 

 

6.8 Experimental Procedure (Experiment 2: Part I) 

Batches of water-in-oil microsphere of different sizes were produced in a modified T-

junction device (Lei, 2016) to later be fed into the PDMS single-cell trapping device. The 

average size of the microspheres of each batch was controlled at 20μm, 22μm, 24μm, 26μm, 
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28μm, and 30μm, respectively. The trapping device was tested with a single batch at a time. The 

whole trapping process was observed at all times under an optical microscope (Olympus IX70), 

and micrographs were taken as evidence of the process, in particular when the traps were filled. 

Later, the micrographs were transferred to Image J in order to measure the size of the particles 

captured. The detail procedure carried out for the experiments is outlined below. 

1. Prior to experimentation, the microfluidic channel walls of both PDMS devices (the 

trapping device and the microsphere producer) were rendered hydrophobic by 

inducing a constant flow of RainX® in the channels for 30min at 50μl/hr. Two 

syringe pumps (Multi-Phaser™ NE-1600 and Genie™ Plus) were used in order to 

feed fluids into the devices plus 3cc syringes and Teflon tubbing.  

2. Water-in-oil microsphere of more 20μm of diameter were produced using a 

modified T-junction device. In order to produce the microspheres, two phases are 

required. The continuous phase was paraffin oil (Sigma-Aldrich 18512) containing 

2% (w/w) Span 80 (Sigma-Aldrich S6760), while the disperse phase was distilled 

water. The continuous phase was used as the focusing flow and the crossflow, and 

the disperse phase was used as the middle flow in the modified T-junction device. 

The interaction of these three flows at specific flowrates in the device, results in 

water-in-oil microsphere formation of different sizes which depend upon the 

flowrate selection of the flows. For instance, to produce microspheres between 

20μm and 30μm, in this experiment the focusing flow was keep constant at 60μl/hr, 

while the middle flow was changed between 5μl/hr and 12μl/hr where a flowrate of 

5μl/hr would result in microspheres of about 20μm and a flowrate of 12μl/hr on 

microspheres of about 30μm. The cross flow was modified along with the middle 

flow.  
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3. At the same time of microsphere generation, a constant flow at 30μl/hr of paraffin 

oil was induced into the single-cell trapping device in order to remove the air and 

permeate the walls of the microchannels before the loading of microspheres.  

4. The outlet of the microsphere generator device was connected by a Teflon tube to 

the inlet of the single-particle trapping chip, so that the recent formed microspheres 

would flow directly to the trapping device. The modulation of the traps was pre-set 

in relation to the size of microsphere to capture. For instance, in the mechanical 

tests it was found that the device has to be set on position zero (hole 0) to capture 

particles of 20μm, at position 1 (hole 1) to capture particles of 22μm, at position 2 

(hole 2) to capture particles of 24μm, and so on until reaching position 5. 

5. After the introduction of microspheres into the trapping device, the trapping 

performance was observed through the microscope focusing in different areas of 

the trap arrays. It was observed that less than a minute is enough time for the 

device to fill all its traps; therefore, after couple minutes of loading cells the feeding 

of microspheres is stopped and replace it by a constant flow of paraffin oil at 

30μl/hr, so that the captured microspheres keep their trapping positions. 

6. Several micrographs of various zones of the trap arrays were taken to show and 

prove the trapping properties of the device, followed by an analysis of the obtained 

images in Image J.  

7. Once several images were taken, the flow of oil was reversed in the trapping 

device in order to extract all the trapped microspheres. The inversed flow was 

increased up to 100 μl/hr in order to speed up the extraction of the trapped 

microspheres. 

8. Having all the particles extracted from the device, the microfluidic channels have to 

be cleaned. To clean the channels, the device is flushed with 70% ethanol at a rate 
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of 100 μl/hr for about 5 min. Later the channels are optically examined under the 

microscope to determine whether the channels are cleared. If the channels are 

cleaned, then we proceed to the next test.  

The above process was carried out six times in total (more trials were conducted, but only the 

most relevant results are here presented), one time per trap size increment. In total six batches 

with a different average size of microspheres were tested: 20μm, 22μm, 24μm, 26μm, 28μm, 

and 30μm. The equipment and setup used for this experiment is depicted and described below 

in figure 6.9. 
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    Fig. 6.9 Picture of the equipment used to conduct Part I of experiment 2. In the picture 

(A), one of the two syringe pumps used is showed loaded with three plastic syringes (BD) of 3ml 

which are connected to the modified T-junction device for the microsphere production by Teflon 

tubing (two syringes were actually used during the experiments, this setup is just proposed as an 

example). The microsphere generator device and the trapping devices are located at all times 

under the optical microscope for visualization. A computer which is connected to the output of 

the video camera displays the image obtained by the microscope. Picture (B) shows in a close 

up, the modified T-junction device and the trapping chip, as well as, how these two are 

connected by a Teflon tubing to allow the direct flow of microspheres. 

 

6.9 Experimental Results (Experiment 2: Part I) 

The following results are mainly the micrographs taken when microspheres were 

introduced into the microfluidic single-cell trapping device.  

 

6.9.1 Trapping of single microspheres 

In this section some micrographs obtained when microspheres of about 20μm were 

introduced into the trapping device, are presented to simply demonstrate that the device is 

indeed capable of capturing large batches of single particles. As it was already said in the 

procedure, the input of the microspheres was conducted at 60μl/hr for couple minutes. In 

addition to the trapping images, some pictures taken during the extraction of the captured 

microspheres are also provided. The loading images can be seen in figure 6.10, and the 

releasing images on figure 6.11.   
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Fig. 6.10 Micrographs showing the trapping of single 20μm particles at various zones of 

the trap arrays. In (A) most of the traps are filled with a single microsphere, while in (C) several 

traps captured multiple particles. (E) and (C) shows that undesired particles larger than 20μm 

were captured. However, among all the images single trapped microspheres predominate. 
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From figure 6.10 some important discoveries emerge. First, it is confirmed that the device, 

at least without deformation, is capable of capturing single particles within the traps. Second, 

during the loading process it was observed that the device complies with the hydrodynamic 

trapping principle of “least path resistance”; however, the interaction among particles also plays 

a big role in the trapping performance. Third, unfortunately several sizes of microspheres were 

introduced into the device which might result in undesired effects on the trapping function, such 

as trapping of multiple particles and clogging of the channels. Next, very few traps remained 

empty at the end of the loading process; it was observed that the empty traps where mainly 

those on the lateral ends of both arrays. Also it was noticed that at the entrance of the trap 

arrays the flow of microspheres is quite chaotic, but the flow recovers its laminar behaviour as 

the microspheres move on through the device. 

When inverting the flow to release the captured microspheres, the following results were 

obtained (Fig. 6.11).  

 

Fig. 6.11 Micrographs showing the release of previously trapped microspheres at various 

zones of the trap arrays. In all the micrograph here presented it can be seen than all the traps 
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are empty due to the reversed flow; however, many microspheres are retained at the rear of the 

traps.   

 

In figure 6.11 it can be seen that the device has a low release efficiency since many of the 

particles remain within the arrays. Although all the microspheres are removed from the traps, 

many of them are recaptured by the rear opening (exit) of adjacent traps. Therefore, in order to 

extract all the particles several iterations of the releasing process have to be done. 

 

6.9.2 Trapping of single microspheres of different sizes. 

 Having corroborated that the device is capable of capturing single particles, it was 

necessary to test whether the device is capable of working with different batches that vary on 

their particle average size when the size of the traps is tuned. To test the trapping behaviour at 

different strains, the device was stretched gradually from hole 0 to hole 5, and on each position, 

microspheres corresponding to the trap size were introduced. The following results depicted in 

figure 6.12 to figure 6.17 are organized according to the size of particle fed, and by the 

extension applied on the device, starting from none deformation of the traps up to the maximum 

deformation achieved when the clamp holding the trapping device is placed at hole 5 of the 

stretching apparatus. 

1. Trapping device position: 0 / average microsphere-size input: 20μm. 
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Fig. 6.12 Micrographs showing the capturing of single particles at different zones of the 

trap arrays. The red circles highlight particles with a diameter of 20μm or close. 

  

2.   Trapping device position: 1 / average microsphere-size input: 22μm. 
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Fig. 6.13 Micrographs showing the capturing of single particles at different zones of the 

trap arrays. The red circles highlight particles with a diameter of 22μm or close. Among the three 

images showed it can be seen that some traps have two microspheres; however, they are 

highlighted because one of the microspheres has the ideal size.  

  

3.   Trapping device position: 2 / average microsphere-size input: 24μm. 
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Fig. 6.14 Micrographs showing the capturing of single particles at different zones of the 

trap arrays. The red circles highlight particles with a diameter of 24μm or close.  

 

In image (A) of figure 6.14 a big clog of microspheres is observed. This picture exemplifies 

the issue observed due to the small distance between the inlet channel and the trap zones. Also 

notice that the size of the particles is more regular in comparison to previous images, which 

shows that when producing the microspheres, it was very difficult to obtain and control the size 

of small microspheres such as the ones with a diameter of 20μm. 

 

4.   Trapping device position: 3 / average microsphere-size input: 26μm. 
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Fig. 6.15 Micrographs showing the capturing of single particles at different zones of the 

trap arrays. The red circles highlight particles with a diameter of 26μm or close. 

  

5.   Trapping device position: 4 / average microsphere-size input: 28μm. 
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Fig. 6.16 Micrographs showing the capturing of single particles at different zones of the 

trap arrays. The red circles highlight particles with a diameter of 28μm or close.  

 

6. Trapping device position: 5 / average microsphere-size input: 30μm. 
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Fig. 6.17 Micrographs showing the capturing of single particles at different zones of the 

trap arrays. The red circles highlight the particles with a diameter of 30μm or close.  

 

It was already mentioned that unfortunately the size of microspheres produced was difficult 

to control, in particular the smaller sizes like 20μm. For this reason, a variation of sizes is 

observed in all the micrographs presented above. However, this issue should not diminish or 

refuse the fact that the device can capture particles of various sizes when the traps are 

modulated. In addition, every time that the device was stretched to produce a large size of trap 

the trapping behaviour of the device remains the same; i.e., along the experiment no notable 

differences were observed on the trapping performance, except for some issue related to the 

size of particles used. For example, when particles of 20μm or less were introduced into the 

device it was detected that a considerable number of traps corralled multiple particles, and when 

larger particles of 30μm were used several channels were clogged. Nonetheless, this behaviour 



108 
 

was expected since these situations occur at the limit size operation of the device, where the 

particle to trap size ratio is critical. In the lower limit the device has big traps with a height that 

can fit two particles of 20μm, and at the upper limit the bypass channels or gaps between traps 

and rows of traps are reduced in size, so bigger particles than 30μm will more likely get stock, as 

depicted in figure 6.17 (C).     

Among all the micrographs displayed above, it can be seen that the traps captured 

microspheres of various sizes without the need of any adaptation or modification. Therefore, the 

following question is forwarded. Is it really necessary to adapt the size of traps in order to trap 

various sizes of particles? The answer is yes for two main reasons. First, with smaller particles 

the traps will more likely capture multiple particles per trap or the particles could escape the trap. 

Second, if particles larger than the optimal size are used, they would get stuck in the channels 

clogging them. These undesired situations, depicted in fugue 6.18, are overcome by using an 

adaptable trapping device such as the one presented in this thesis.  
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Fig. 6.18 Traps filled with multiple particles, particles escaping traps, and clogged 

channels are common issues that occur when an improper size of particle is used. Image (A) 

shows several traps filled with two or more microspheres. In (B) it can be seen how some small 

microspheres are flowing out the traps thru the trap´s exit. (C) depicts some channels blocked by 

large microspheres trying to go thru the same channel. Although the big particles are captured 

within the trap, half of its body protrudes out of the trap narrowing the microfluidic channel. 

      

6.10 Discussion (Experiment 2: Part I) 

Although the trapping device performs its main function of capturing large batches of 

single particles of different sizes when its trap dimensions are modulated, reasonably well as 

evidenced by the results, some issues during the process were encountered. The trapping 

function was supposed to be mainly governed in theory by the hydrodynamic working principle 

of “the least path resistance”; however, during the experiments the random interaction among 
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the particles flowing at the same time through the arrays did played an important role on the 

trapping performance. Therefore, it was empirically speculated that the device, as it is right now, 

works better and fills more traps when large concentrations of particles are used. On the other 

hand, large amounts of particles flowing through the micro-channels at the same time could clog 

the smaller channels. To avoid this, the loading process has to be supervised all the time, so the 

feeding could be stopped when most of the traps are filled.  

An important drawback of the device that has to be improved in the future is the small 

distance between the inlet-channel exit and the first row of traps in the arrays. Such a small 

distance does not allow the flow to recover its laminar behaviour after the channel expansion, so 

the microspheres arrive to the array at high speeds and disorderly, which results in huge 

agglomerations of microspheres at the first row of the array that clog the channels and the traps. 

This is depicted in figure 6.19. 
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Fig. 6.19 Micrographs showing massive clogs of microspheres at the first row of the 

arrays. Image (A) was taken at array A2 when microspheres of 24μm were introduced into the 

device. The clog depicted on (B) was developed when microspheres of 26μm were used; here it 

can be seen that larger microspheres help on building up such huge obstructions. 

 

Regardless of the issues just discussed and the difficulties faced to produce microspheres 

with low size variations, it has to be recognized that the main objectives of the experiments of 

demonstrating that the new trapping device can capture single particles and that the deformation 

of the traps actually works in order to capture larger particles with the same trapping 

performance, were met. 

 

6.11 Experiment 2: Part II 

In part I of this experiment, the trapping performance of the new cell-trapping device was 

evaluated using water-in-oil microspheres. Now in part II, as previously mentioned, the second 

aspect related to the compliance of the traps is assessed. It was mentioned earlier that the traps 

must not only capture single cells, but also capture them on a safely manner. In other words, the 

trapped cells within the traps must remain alive. Thus, the single objective of this second part of 

experiment two is to demonstrate that the new device in particular its traps do not produce any 

damage onto living human cells when introduced into the microfluidic device.  

 

6.12 Experimental Procedure (Experiment 2: Part II) 

In order to achieve the above objective, melanoma human cells obtained from the College 

of Pharmacy and Nutrition of the University of Saskatchewan, were fed into the device as a cell 

solution, and their viability within the traps was determined using a dye exclusion method. The 

dye used was Trypan-blue, which is a vital stain used to selectively colour death cells blue. In 

addition, all the steps and procedures of this experiment were conducted in a Level 2 safety lab 
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in the department of Pharmacology. Briefly, melanoma cells were cultured in culture flasks with 

fetal bovine serum (FBS) for 7 days to obtain a large population of healthy cells. Prior to the 

trapping experiments, the cells were detached from the flask by removing the FBS, and adding 

trypsin to deactivate the FBS. Then the trypsin was replaced with fresh trypsin and let it repose 

for 2 to 3 minutes. To neutralize the trypsin, same amount of FBS (10ml) was input in the flask 

followed by the collection of the detached cells. The cell solution obtained from the flask was 

centrifuged for 5 minutes at 5°C. Finally, the cells were collected and re-suspended in fresh 

culture media (FBS) at a cell concentration of approximately 2 000 000 cells/ml. In order to 

conduct the trapping experiments, the procedure outlined below was followed. 

1. In the biosafety cabinet (BSC) the microfluidic cell-trapping device was incubated 

with fresh culture media (FBS) for about 20 min. The culture media was input into 

the device at room temperature, of approximately 25°C at a flowrate of 60μl/hr.  

2. A sterile syringe of 3cc was fully loaded with the cell solution and mounted on the 

syringe pump. Since the cells in the syringe tend to sediment on the bottom, the 

pump was tilted to 60°, so that the cells would concentrate on the outlet of the 

syringe.  

3. In order to determine the cells viability after the capturing process a control 

sample was taken from the cells in the syringe and observed under the 

microscope to determine whether the cells in the syringe and about to be 

introduced in the device were alive (Fig. 6.20) After optical evaluation, the sample 

was taken to a cell counter machine which determined that 98% of the cells in the 

solution were alive.    

4. During the incubation of the microfluidic channels with FBS it was observed the 

formation of air bubbles. Therefore, the process had to be supervised at all times 

to avoid this phenomenon. 
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5. After the channel´s incubation period with FBS, the input of the device was 

replaced it with the cell solution. The cells were introduced at 30μl/hr. for couple 

min. It has to be mentioned that the loading time sometimes increased due to the 

formation of air bubbles within the device, which retarder the process. However, 

when air bubbles were avoided the loading process was very fast.  

6. Once the cells were loaded into the trapping device, the device was taken out of 

the BSC to be examined under an optical microscope and observe whether or 

not cell were corralled in the traps. 

7. If a considerable number of cells were docked in the traps, the next step was 

carried out; otherwise, the loading process was continued until reaching a 

considerable number of trapped cells. 

8. The input of the device was replaced by the syringe containing the vital dye. 

Previously a 3ml syringe was loaded with trypan-blue dye. The trypan-blue was 

introduced at a flowrate of 20μl/hr for 1 min.  

9. Once it was observed that the trypan blue had filled all the channels, the trapping 

device was taken now to another optical microscope equipped with a camera to 

take micrographs of the trapped cells. The trypan blue syringe was taken along 

with the device without plugging it out to avoid the reverse of the flow.  

10. Finally, the viability of the trapped cells was determined thanks to the dye. If the 

cells were alive the dye should not have penetrated their membrane, remaining 

transparent. 
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Fig. 6.20 Micrograph of a sample of melanoma cells. The cells were placed on a 

microscope slide flowed by the addition of a drop of trypan blue. The black circles highlight two 

cells stained on blue which are actually death.   

 

6.13 Experimental Results (Experiment 2: Part II). 

Before proceeding to the results, it is important to notice that the size of the melanoma 

cells is smaller than the ideal particle size for which the device was designed; therefore, it is 

expected to have a very low number of cells captured or have traps with multiple cells. The 

average size measured for the used cells was about 13μm being the smallest, of approximately 

10μm and the larger of 18μm. Regardless of this known disadvantage, the experiment was still 

carried out to demonstrate that the device is capable of working with living cells, and it is 

assumed than the device should work the same if it is just rescaled down to work with smaller 

particles of dimeters between 7μm to 17μm. 
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Although the result of this part of the experiments only consist of a couple of micrographs 

of the trapped cells after being stained with trypan blue, the real output obtained from them is of 

great value for this investigation.  

The micrographs depicted in figure 6.21 show some cells within the device, few of them 

were trapped and many other were not, as expected. Moreover, after introducing trypan blue to 

assess their viability, as it can be seen, it was found that the cells were alive and therefore viable 

for further analyses within or out of the device. 

 

Fig. 6.21 In pictures A and B very few single cells were captured by the traps. (B) shows 

couple traps with multiple cells and only one trap with a large cell properly captured (black 

circles). Only couple cells were found death and they are highlighted by the red circles. 
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From figure 6.21 above two very important inferences can be made. First, the new cell-

trapping device is capable of capturing cells as it did with the microspheres, even when the 

device was not designed to work with such a small cell sizes. Second, the device features and 

operation does not damage living cells, making it an option for actual experimentation with living 

cells.  

 

6.14 Discussion (Experiment 2: Part II)   

The experiments to determine the viability of the cells, were restricted and limited by the 

equipment and setup used. In particular, it was difficult to control the trapping device without 

supervising the loading processes through a microscope as before. Unfortunately, it was not 

possible to have a microscope inside the biosafety cabinet due to its architecture and design. 

This limitation resulted in not obtaining the best micrographs because the capturing process was 

done “blind”. Also, the device had to be constantly moved from the BSC to a microscope 

outside, which might have resulted arguably in disturbances on the cells already captured.   

In addition, it was observed during the incubation of the microfluidic channels with culture 

media (FBS) that air bubbles tend to form within the device, which never happened when using 

paraffin oil in the previous experiments. This was surprising also because such phenomenon 

was not reported on any of the previous research works reviewed on the literature review. In 

order to overcome this air bubble issue, the culture media was warmed up to the room 

temperature. Although the problem was slightly reduced, it was not eliminated. Thus, this issue 

becomes another point to solve for a new optimized and improved cell trapping device.  

 

6.15 Conclusion 

The results were divided in three sections which correspond to the three main attributes 

that a new adaptable single cell-trapping device must meet in order to comply with its desired 

function. Therefore, several experiments were conducted in order to prove that the new cell-
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trapping device is characterized by: (A) deformation of the elastomeric polymer (PDMS) feasible 

to stretch, (B) compliance of the traps, and (C) uniformity of the deformation of the traps. 

On regards of attribute A, it was found that the trapping device is capable of being 

stretched 25mm without presenting plastic deformation. Such stretch represents a strain of 0.48 

which results in a deformation of the traps, of approximately 80%, which is equal into an 

increment of 10μm in their size. 

Considering attribute C, it was found that the minimum trap-size increment possible with 

the stretching apparatus, is of 2μm, and the deformation of the traps is uniform through all the 

traps. 

On the other hand, for attribute B, the trapping results demonstrated that every time that 

the size of the traps is modulated by stretching mechanically the device, it is capable of 

capturing single particles (water-in-oil microspheres) of various sizes which goes from 20 to 

30μm. The compliance of the traps was also evaluated using melanoma cells, and the 

experiments showed that the device does not produce visible damage to living cells.  

During the experiments some unexpected behaviours of the device operation were found. 

For instance, it was determined that the device performs better when high-concentration of 

particles are used as inputs because the trapping function is characterized by the hydrodynamic 

trapping principle and the random interaction among particles. It was also found that air bubbles 

tend to form when culture media (FBS) and cells are introduced into the microchannels, which 

have negative impacts on the device performance. Nevertheless, the results demonstrate that 

the device meets all the proposed attributes and it is an option to be used on biological analysis. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

 

6.9 Overview                         

Microfluidic technology has gained ground last two decades in biological and medical 

research, where several analysis and assays require separation, isolation, positioning, trapping, 

and sorting of various types of cells. In particular, microfluidic cell-trapping devices based on 

hydrodynamic principles, which are capable of capturing, isolation, and positioning have been 

widely reported in the literature. However, it has been found and reiterated their lack of flexibility 

to adapting to different types of cell sizes, which limits their operation to a fixed size of particle. 

This results in a waste of time and resources, because new devices have to be designed and 

fabricated for each different size of cell that wants to be studied or analyzed. Thus, the idea of 

investigating the possibility of developing a microfluidic device capable of adapting its 

geometrical features to deal with more than a fixed particle size, arose. 

This thesis has then proposed the design and development of a new adaptable 

microfluidic single-cell trapping device capable of capturing large batches of single particles 

within a wide range of sizes. Since in the beginning some limitations were foreseen; for example, 

it was mentioned that the range of sizes would be limited, and that the experimental tests would 

be conducted using microspheres. However, it was also clearly established that these decisions 

should not interfere with the verification of the device functionality. These considerations, also, 

obey to the intrinsic limits of this research such as resources and time.   

The new and unique device proposed in this thesis, as a general objective, was designed, 

fabricated, and tested in accordance to the methods found in the literature.  

This chapter will consider the objectives of the research and will compare them to the 

results obtained to demonstrate how they were met and present conclusions that arise from 

each. In addition, contributions of the work will be summarized and a discussion on future work 

will be also provided. 
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7.2 Outcome 

The general objective of this research was as follows (Section 1.5): to design a new 

microfluidic cell-trapping device capable of modifying its features in order to capture multiple 

single-cells of different sizes without compromising its capture efficiency. The general 

methodology is to apply a uniform distributed strain on the device via a mechanical stretching. 

Therefore, the key attributes of such a device include: (A) the deformation of the elastomeric 

polymer (PDMS) feasible to stretch, (B) compliance of the traps, and (C) uniformity of the 

deformation of the traps. This general objective was attempt considering the following specific 

objectives and conclusions. 

Objective 1: Analysis of the existing principles of single cell trappers to lead to the 

classification of the principles with their pros and cons; 

This was achieved in Chapter 2 through a literature review, in which the most relevant 

devices reported were analysed and classified under the FCBPSS framework. It was concluded 

that, the best and more suitable structure and trapping principle for a new device is the array of 

traps and the hydrodynamic trapping principle of “less path resistance” respectively due to their 

simplicity and efficiency on capturing single cells. In addition, the literature review has shown 

that very little has been published on adaptable trapping devices, such as the one presented in 

this thesis. 

Objective 2: Development of a simulation system for the device, as well as its deformation 

process, to guide the design optimization; 

The mechanical simulation of the new design was conducted using ANSYS to predict the 

deformation of the traps and the microstructures, and to determine numerically the maximum 

strain possible to applying before exceeding the elastic region. This point was very important 

and represented a keystone for the design because if the material (PDMS) results not to be 

adequate for the large deformability desired, the whole design or tuning method would have to 

be rethought. On the other hand, Fluent was employed to create a simulation model of the flow 
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profile in order to characterize the flow of the cells within the microchannels, and to determine 

the wall shear stress exerted on the cells, which has to be lower than 4.5 Pa as determined by 

Dimmeler et al. (1996) to guarantee their viability. By the results obtained from the models it was 

concluded that both mechanically and hydrodynamically the design proposed in Chapter 3 

complies with all requirements originally established.        

Objective 3: Design of the device to achieve a large deformation as possible (which is at 

least a size increment of 60% on the traps) and a uniform deformation of each trap; 

This part of the study is directly related to the experimental section (Chapter 6) where not 

only Objective 3, but also the three attributes A, B, and C proposed in the general objective were 

addressed. In order to demonstrate and confirm the deformation of the traps (attributes A and 

C), the cell trapping device was induced to various strains and the resulting increment size in the 

traps was measured at different locations of the arrays. The results obtained confirmed that the 

traps experienced a maximum relative size-increment of 80%, and the deformation of the traps 

is the same and uniform throughout the entire device. Finally, the compliance of the traps, which 

is related to attribute B, was addressed on two parts. First, the trapping behaviour of the device 

was tested using water-in-oil microspheres between 20μm and 30μm of diameter. Second, 

melanoma cells were used to determine their viability after being fed and captured by the cell 

trapping device. It was concluded that the device in particular its novel property of trap 

modulation could be used in biological applications and medical researches where within the cell 

type to study, various cell sizes are encountered.     

Objective 4: Development of the fabrication approach to the device in accordance with the 

design specifications resulting from the research in objective 2; 

After designing and defining the characteristics of the device, it was determined that soft 

lithography in particular a replica molding process would be a suitable microfabrication process 

to fabricate the PDMS device. On the other hand, the stretching apparatus and all its 

components were fabricated by a traditional CNC machining process. The conclusion was that a 
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novel microfabrication process was not necessary to fabricate the device, which is an advantage 

because it reduces the time and cost of fabrication making the device suitable and affordable for 

research applications. 

 

7.3 Discussion on the Limitations of Using Microspheres instead of Cells 

As mentioned several times throughout this document, due to several considerations, the 

device was designed to test its trapping function using water-in-oil microspheres. Whether this 

affected or interfered with the validation of the device trapping function, might remain unclear. 

However, supported by other studies presented in the literature review (Chapter 2), biological 

cells can be replaced for microspheres. Indeed, some devices were before tested with 

microspheres, such as the ones presented by Tan and Takeuchi (2006) and Lawrenz et al. 

(2013). Moreover, to reduce this skepticism regarding the trapping of cells, experiments with real 

cells were conducted. And it was concluded that the device is in fact suitable to work with cells, 

and there is not clear evidence found to not saying that it should behave similarly as it did when 

using microspheres. Still, the device has to be rescaled to work with smaller cells, and be tested 

in a biological assay, which is a point proposed as a recommendation for future work. 

  

7.4 Conclusions 

Based on the outcomes of this research, it was concluded that microfluidic devices that 

relay solely on hydrodynamic principles are simple but efficient on capturing single particles. 

Also, it was determined that within the different types of cell trappers the ones using arrays of 

traps are the best when large batches of single particles are considered. As a result, the new 

adaptable trapping device presented in this thesis bears two arrays of traps. 

The experimental results obtained showed that the silicone PDMS is capable of large 

elastic deformation, even molded in different shapes and therefore it was ideal for the 

application proposed in this thesis. In addition, it was concluded that the traps were able to 
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increase their size uniformly in all the regions of the arrays when mechanically stretching the 

device. 

After conducting experiments with microspheres, it was surprising to find out and conclude 

that the trapping behaviour of the device depends in great measure on the multiple physical 

interactions of the particles flowing at the same time through the channels; rather than on the 

hydrodynamic principle of least path resistance. This opens the opportunity for optimization of 

the trapping function in the future. It was also concluded that the trapping performance of the 

device was not affected when the size modulation of the traps was conducted, and the traps 

actually were capable of capturing batches of single particles each time the batch particle-size 

was increased. This is the most important conclusion because the main objective of this 

research was to demonstrate that it is possible to have a trapping device capable of modulation 

to work with various sizes of cells, and not with a fixed size as all the previous cell-trapping 

devices published. Currently, in order to capture large batches of single cells or particles that 

vary on size one has to change the trapping device; however, with the device resulting from this 

research it is possible to work with different particle-sizes by simply tuning the size of the traps 

using the stretching apparatus. For the device here presented the average particle-size of the 

batches has to be within a range between 20 and 30 microns, and the particles have to be 

sorted considering their size previous to be feed into the device.   

A possible sorting application of the device was observed. Although the function of the 

microfluidic device designed is to trap large batches of single cells, due to its adaptive quality 

and its traps, it was found that the device might be able to work also as particle-size sorter. The 

device could work as a particle-size sorter thanks to the geometry of the traps. Since the traps 

have an exit channel, particles with a smaller diameter than the channel cross section can flow 

through the traps without being captured. Moreover, the device is capable of increase the size of 

the traps by stretching it, so it could sort larger particles. For instance, suppose that one is 

interested in obtaining or separating only the particles with an average diameter larger than 15 
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μm. Then if a batch with mixed particle diameters is fed, only the particles larger than 15 μm will 

be captured by the traps, while the rest will flow through the traps. Once all the traps are filled, 

one can remove the trapped particles in the device by simply reversing the input flow, and 

maybe repeat the process. Due to the adaptability feature of the new device, also larger 

particles could be sorted. For example, consider now the case where only particles larger than 

20 μm are desired. Then, simply one has to tune the size of the traps in order to capture 

particles of 26 μm, which will result on an exit channel of 18 μm. Therefore, when particles of 

various sizes are fed at the same time, only particles larger than 20 microns will remain in the 

traps. Again one can repeat the process to sort more particles. Thus, the device could work as a 

particle-size sorter by discriminating of particles smaller than the size of the exit channel of the 

traps.   

Finally, experiments with melanoma cells were conducted in order to assess whether living 

cells would experience any negative effect or damage due to the trapping process within the 

device. It was concluded that the device does not represent any observable threat to the cells 

when they are captured within the traps, which makes the device to be a suitable platform for 

biological or medical applications.   

 

7.5 Future Research Recommendations 

The following recommendations for future work on this new trapping platform or on the 

seek of better cell trapping devices, were drawn from the experiences obtained and the 

behaviors observed during the tests the device. 

 

7.5.1 Design Modifications 

Increasing the space between the exit of the inlet channel and the first row of traps in the 

arrays will help the incoming flow recover its laminar behaviour and thus solve the problem of 

massive concentrations of particles at the first row of traps (Section 6.7.3). Also, changing the 
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rear side of the traps should improve the extraction of the cells from the device. It is 

recommended to change only the vertical rear wall to an angle of 110° as proposed by Huebner 

et al. (2008).  

Since it is desired to have different kinds of inputs into the device, it could be helpful to 

have various parallel inlet holes and channels. This might also help in reducing the air bubbles 

formation in the channels, which might be a result of the constant plug and unplug of inputs.   

 

7.5.2 Rescale and Optimization 

The device presented in this work was designed in order to capture particles between 

20μm and 30μm and tested with water-in-oil microspheres. Therefore, to test a new platform with 

different sizes of cells, its dimensions have to be rescaled down. For example, it should be 

rescaled and tested with cells between 10μm and 20μm. In addition, the device should be 

optimized in order to maximize the packing density and the trapping efficiency. The optimization 

process could be done by following the approach proposed by Xu et al. (2013).  

 

7.5.3 Air bubbles and Filters  

It is important to understand the reasons of the air bubbles formation when culture media 

(FBS) is introduced into the microfluidic channel and find a method to avoid them. This will 

considerably improve the device function and facilitate its use. Although it was not mentioned 

before, during the trapping experiments it was observed the apparition of undesired particles 

(pollutants) in the microchannels, which might come from the fluids used or the debris of the 

device itself. Therefore, it is recommended to filter the fluids that will be used before 

experiments.  
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7.5.4 Assess the device on a biological assay 

Although in this works some experiments with living cells were conducted in order to 

determine the cell´s viability, the device must be used on a biological assay. At the end, the 

main goal of the trapping device presented on this research is to be a tool that could help on 

investigations conducted on cancer research, drugs development, medical analyses, etc. Thus, 

it is proposed as a recommendation to use the device as a tool in experiments and works on 

which the focus is not the device by itself. Nevertheless, as it was previously mentioned, the 

device might not be ready for such experiments because it has to go through some 

improvements and optimization.  

 

7.5.5 Single-cell retrieving system 

As discussed on Chapter 2 (section 2.3.5), Tan and Takeuchi did not develop a simple 

microfluidic single-cell trapping device, but incorporated a unique retrieving system for individual 

cells. By using an optical method with IR laser and aluminum plates, they achieved to producing 

air bubbles within the microfluidic device at will. As a result, they were able to retrieve 

determined single cells rather than the approach of taking all the trapped cells by reverting the 

flow. Therefore, it would be very interesting to assess whether it is possible to add such a 

retrieving system on the novel device presented on this thesis.  
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APPENDIX A: CAD DRAWINGS OF THE NEW MICROFLUIDIC SINGLE CELL TRAPPING 

DEVICE 

This section includes the drawings with specific dimensions used in the fabrication of the 

new device for experiments; the drawings of the stretching apparatus are also included. 
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APPENDIX B: CHARTS OF THE SIZE INCRMENT OF THE TRAPS 

 This section presents the charts which show graphically the size increment resulted on 

the traps after the application of different strains. In section 6.4.2, where the uniform deformation 

of the traps was discussed, charts corresponding to the array A1 were presented. Here the 

same charts are present in a larger size for the reader to have a better appreciation of the data, 

and the charts of the array A2 are included. Therefore, this section concludes with the 

discussion of the uniform deformation of the traps showing that the deformation produced in the 

microfluidic device is in fact uniform through all the traps in both arrays.  

The following figures correspond to the deformation observed and measured on the array 

A1: 

 

Fig. B.1 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region A of the array A1, 

when the device is stretched progressively from hole 0 to hole 5. In the chart the x-axis is the 

stretching position (hole) and the y-axis is the trap dimension expressed in microns. In addition 

to the scattered dots, a trend line has been included with its corresponding equation for each 
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series in order to show that the deformation of the traps follows a linear and constant tendency, 

which can be represented by a linear equation of first order. 

 

Fig. B.2 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region B of the array A1, 

when the device is stretched progressively from hole 0 to hole 5.  
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Fig. B.3 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region C of the array A1, 

when the device is stretched progressively from hole 0 to hole 5.  

 

Fig. B.4 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region D of the array A1, 

when the device is stretched progressively from hole 0 to hole 5.  
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Fig. B.5 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region E of the array A1, 

when the device is stretched progressively from hole 0 to hole 5.  

 

The following figures correspond to the deformation observed and measured on the array 

A1: 

 

Fig. B.6 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region A of the array A2, 

when the device is stretched progressively from hole 0 to hole 5.  
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Fig. B.7 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region B of the array A2, 

when the device is stretched progressively from hole 0 to hole 5.  

 

Fig. B.8 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region C of the array A2, 

when the device is stretched progressively from hole 0 to hole 5.  
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Fig. B.9 Average magnitudes recorded for the exit (blue dots), the entrance (orange dots), 

and the gap between traps (grey dots) for the traps measured in the region D of the array A2, 

when the device is stretched progressively from hole 0 to hole 5.  

 

Fig. B.10 Average magnitudes recorded for the exit (blue dots), the entrance (orange 

dots), and the gap between traps (grey dots) for the traps measured in the region E of the array 

A2, when the device is stretched progressively from hole 0 to hole 5.  
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As stated on section 6.4.2, if a uniform deformation was achieved in all the traps, all the 

above charts must be if not identical very similar. Looking at the figures we concluded that the 

deformation of the traps is indeed uniform among all the traps of the device, and such 

deformation can be characterized as a linear deformation as shown by the linear equations 

obtained for each feature of the traps measured (entrance, exit, and inter-traps gap).  

 

 

 

 

 


