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Abstract

An overview of synchrotrons and synchrotron radiation is presented, along with

the theory and practical considerations behind several types of X-ray spectroscopy.

The theory and practical considerations of density functional theory are also given,

with direct reference to some specific software packages.

Some synchrotron-excited X-ray spectroscopy measurements and density func-

tional theory calculations of selenium and arsenic-doped selenium films are then

outlined. The physical structure of crystalline and amorphous selenium and the

electronic structure of amorphous selenium are discussed and comparison is made to

the experimental results.

A weak feature in the conduction band is identified as a “fingerprint” of the de-

gree of crystallization in amorphous selenium from X-ray absorption measurements.

Similarly, a weak feature corresponding to lone-pairs in the valence band is identified

as a “fingerprint” of the arsenic concentration from X-ray emission measurements.

Finally a detailed model of the structure of amorphous selenium is explained,

and compared to experiment. This model is tested both by direct calculations and

by a reverse Monte Carlo approach. The implications of this model with respect to

the structure of amorphous and arsenic-doped amorphous selenium are discussed.

Calculations suggest that simply randomizing the arrangement of “perfect” trigonal

selenium is unable to reproduce the measurements of amorphous selenium; a mod-

erate variation in the bond angle of “perfect” trigonal selenium is also necessary.
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Chapter 1

Introduction

Amorphous selenium (aSe) is a well known photoconductive chalcogenide, and

the inherent ability of aSe to generate charge carriers under exposure to X-rays

has been known for quite some time [1–3]. Research into the electronic and opto-

electronic properties of aSe has been the subject of continuous interest for many

years [4–9]. Indeed, the first commercial application of aSe was for xerography

(photocopying), which occurred in the early 1950s [10, 11]. However it was only

recently that aSe found commercial application in direct conversion X-ray image

detectors (DCXIDs) for medical use [12]. One of the sponsors of my research, the

Montreal-based Anrad Corporation, is a world leader in flat-panel X-ray detectors

and currently manufactures five different models for mammography and real-time

imaging (fluoroscopy) [13, 14]. Compared to conventional X-ray imaging equipment

which typically use phosphor films, aSe DCXIDs have greater portability, offer real-

time X-ray imaging, and have higher resolution [15]. In aSe, as with any direct

conversion photoconductor, ultrahigh resolution is possible since the photoelectrons

created by the X-rays travel directly to a pixel read-out [15]. In a phosphor or column

channel detector the heterogeneous nature of the material causes significant lateral

dispersion of the photoelectrons before they are read by the pixel array [16, 17]. In

aSe the resolution is limited mainly by quality control of the bulk aSe material [18].

Current commercial detectors made by Anrad have resolutions of 85 µm [19], but in

principal resolutions as good as 2 µm could be obtained [16]. Figure 1.1 shows the

Anrad SMAM, a 17 cm × 24 cm flat panel DCXID for digital mammography.

Besides the amorphous phase, selenium at ambient temperatures has two crys-

talline (cSe) phases: trigonal (tSe) and monoclinic (mSe). The former phase is often

1



Figure 1.1: Anrad SMAM DCXID for digital mammography (Figure from
www.anrad.com).

referred to as “grey” or “metallic” selenium [20] due to its appearance. tSe is not

actually metallic, however; it has a bandgap of ∼1.5 to 2 eV [5,21]. The latter phase

is often referred to as as “red” selenium [20]. tSe is formed of a helical arrangement

of Se∞ chains [22], and mSe is formed of Se8 rings. Technically there are (at least)

three crystalline arrangements of mSe, termed the α-, β-, and γ-phases [23]. These

three phases are essentially the same [24], the only difference being subtle changes

in the Se8 ring packing arrangement [20]. Since this research only uses mSe as a

reference standard, for simplicity only the α-phase is used. mSe is known to sponta-

neously change phase to tSe [25]. A third crystal structure of rhombohedral phase

Se6 rings has been found, but it is quite unstable at ambient conditions [26,27]. The

structures of tSe and (α-phase) mSe are shown in Figure 1.2 and the crystallographic

details (obtained from Reference [28]) are summarized in Tables 1.1 and 1.2.

One outstanding problem with aSe DCXID technology is that aSe spontaneously

crystallizes into tSe [22]. Crystalline materials are not suitable for direct X-ray

conversion, and the gradual crystallization of aSe manifests as “dead” pixels in the

DCXID image [29]. The process of crystallization is irreversible, and eventually the

aSe DXCID must be discarded. To improve the life-span of a DXCID “stabilized” aSe

is used. Stabilized aSe is normal aSe alloyed with 0.2% to 0.5% As and doped with

Cl to concentrations of a few parts per million [30]. Adding arsenic to aSe greatly

2



Figure 1.2: The crystal structure of tSe (on the left) and mSe (on the right).
The unit cells and crystal axes are also indicated.

Table 1.1: The crystal structure of tSe and mSe. The space group is indicated
using the Hermann-Mauguin notation. The tSe structure has one inequivalent
site, the mSe structure has eight inequivalent sites.

Crystal Spacegroup a [Å] b [Å] c [Å] α [rad] β [rad] γ [rad]

tSe P3221 4.36 4.36 4.95 90 90 120

mSe P21/n 9.05 9.07 11.61 90 90.767 90

Table 1.2: The coordinates of the inequivalent atoms in tSe and mSe. tSe has
only one inequivalent site, mSe has eight. Coordinates are given in fractions of
unit cell lengths.

Atom Site x y z Atom Site x y z

tSe(1) 0.217 0 0.16667 mSe(5) -0.081 0.686 0.521

mSe(1) 0.321 0.486 0.237 mSe(6) -0.156 0.733 0.328

mSe(2) 0.427 0.664 0.357 mSe(7) -0.084 0.520 0.229

mSe(3) 0.317 0.637 0.535 mSe(8) 0.131 0.597 0.134

mSe(4) 0.134 0.820 0.556
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retards the rate of crystallization, but introduces charge traps which reduce the

photoconductivity of aSe [4, 16]. Doping with Cl helps restore the photoconducting

ability of the arsenic-doped selenium alloy (aSe:x%As) [31, 32]. Since charge traps

are very detrimental to image resolution [16], a detailed understanding of the role of

arsenic in retarding the rate of crystallization is necessary to identify strategies to

prolong the life-time of aSe DCXIDs without creating charge traps.

In this research I used synchrotron sources of X-rays to characterize the physical

and electronic structure of aSe, and the local structure of the arsenic dopants. While

the structure of pure a-Se has been studied repeatedly [5, 6, 8, 33–35], the exact

structure is still somewhat contested [36]. It is accepted that the structure of aSe

involves helical chains and/or Se8 rings, but the exact breakdown between the two

was somewhat controversial [6, 37]. Currently the prevailing theory is that aSe is

mainly composed of tangled and distorted helical chains, similar to the trigonal

phase [38, 39], and that the structure has very few Se8 rings [36, 40]. Finally, to

my knowledge there has been no study of the structure of aSe:x%As thus far. The

ultimate goal of this research was:

1. to determine the local structure near arsenic dopants,

2. to identify the mechanism behind the retardation of crystallization, and

3. to find or establish methods to suppress crystallization.

This thesis is organized as follows: Chapter 2 outlines the basic operating prin-

ciples of synchrotrons and the creation of synchrotron radiation. A brief synopsis

of the capabilities and performance of the beamlines used in this research is also

presented. Chapter 3 outlines the theory behind X-ray interactions with matter,

and explains each spectroscopic technique used in this research. Chapter 4 is de-

voted to an in-depth look at the theory and practice of Extended X-ray Absorption

Fine Structure spectroscopy, the main spectroscopic technique used herein. Chapter

5 outlines the basic principles behind Density Functional Theory calculations and

elaborates on the capabilities of some of the software packages used in this research.

Chapter 6 outlines the sample preparation method and provides a basic overview
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of the X-ray spectroscopy measurements that were performed. Chapter 7 provides

a detailed analysis and summary of all the hard X-ray spectroscopy measurements

performed, and relates these measurements to theoretical models of the structure of

amorphous selenium. Chapter 8 discusses the electronic structure of amorphous se-

lenium, summarizes the soft X-ray spectroscopy measurements, and relates them to

the theoretical density of states of amorphous selenium. Chapter 9 discusses struc-

tural models of amorphous selenium and tunes these models to match measured

spectra. Finally, Chapter 10 outlines the principles and approaches to reverse Monte

Carlo modeling, and discusses the preliminary results obtained from this technique.
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Chapter 2

Synchrotron Radiation

Synchrotrons, sources of intense and monochromatic X-rays, are an ideal tool for

studying the electronic and physical structure of materials. In a synchrotron elec-

trons moving at relativistic speeds are accelerated around a large polyhedron. At

each turn the electrons produce a broad energy range of intense electromagnetic ra-

diation. Additional apparatus in the straight sections, called “insertion devices” can

produce even more intense radiation. The radiation is piped tangentially from bend-

ing magnets and insertion devices in a “beamline”, terminating in the experimental

apparatus, or “endstation”. The following sections briefly describe the key compo-

nents of a synchrotron and the beamlines at the Canadian Light Source (CLS) at the

University of Saskatchewan and the Advanced Light Source (ALS) at the Lawrence

Berkeley National Lab used to take measurements for this research.

2.1 Linear Accelerator

To generate free electrons for use in the synchrotron, a linear accelerator (linac) is

often used. These typically start with an electrode gun where a metal cathode is

pulsed with high frequency oscillating current. This causes electrons to be ejected

from the surface of the cathode. A series of RF cavities are used to further accelerate

the electrons. Additional cavities may also provide some rudimentary shaping to

the electron beam. At the ALS, for example, the linac has a 124.914 MHz cavity, a

499.654 MHz cavity, and a 3 GHz cavity which are used to shape the pulsed electrons

into from their initial 2.5 ns bunch width to bunches 20 ps wide [41]. The end result

of the CLS and ALS linacs are 250 MeV and 50 MeV electrons, respectively.
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2.2 Booster Ring

The booster ring is a compact ring used to accelerate the electrons to operating

energies. In both the ALS and the CLS (and in many other synchrotrons) the

booster ring is positioned inside circumference of the larger storage ring. It is from

the operation of the booster ring that the synchrotron gets its name. The electrons

are “boosted” in speed by radiowave pulses which are synchronized with the electron

orbit.

At the CLS the 200 to 250 MeV electrons are boosted to the 2.9 GeV operating

energy. There are 28 quadrupole and 20 dipole magnets in an oval ring with a major

radii of 18.8 m and a minor radii of 12.7 [42]. The electrons are accelerated to the

operating energy in about 0.2 s, during which the dipole fields increase from 0.115

T to 1.333 T [42]. The RF cavity which drives the electrons runs at 500 MHz and

1.5 MV [42].

At the ALS the 50 MeV electrons are boosted to the 1.9 GeV operating energy.

There are 20 sextupole, 32 quadrupole, and 24 dipole magnets [43] in a roughly

circular ring of 4 curved sections and 4 straight sections, with a circumference of 75

m [44]. The electrons are accelerated to the operating energy using a 499.654 MHz

RF cavity [44].

The operation of the linear accelerator and the booster ring also causes the beam

of electrons to change from a continuous stream to a sequence of discrete bunches.

This is due to the fact that the energy boost supplied by the RF cavities is based

on the electron velocity; faster electrons gain more energy, pushing them ahead, and

slower electrons gain less, causing them to lag behind.

2.3 Storage Ring

The storage ring is the main part of the synchrotron. Here electrons are maintained

at the operating energy by RF cavity klystrons. The CLS storage ring is 170.88 m in

circumference, with twelve 5.2 m straight sections and twelve curved sections. Each
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Figure 2.1: The floor plan for the CLS. The linac, booster ring, storage ring,
and beamlines are colour coded. (Figure from www.lightsource.ca)

curved section has 2 dipole bend magnets, 6 quadrupole magnets, and 3 sextupole

magnets. One straight section contains a superconducting RF cavity and one straight

section is used to connect the storage ring to the booster ring [45]. The layout of

the CLS storage ring is shown schematically in Figure 2.1.

The ALS storage ring is is 196.8 m in circumference, and composed of twelve

5 m straight sections and twelve curved sections. Nine of the curved sections have

3 dipole bend magnets, 6 quadrupole magnets, and 4 sextupole magnets. The re-

maining three curved sections have a dipole superbend magnet (a dipole made from

superconducting magnets) replacing one of the normal bend magnets, and 2 addi-

tional quadrupole magnets. One of the straight sections contains 2 RF cavities and

one straight section is used to connect the storage ring to the booster ring. The

other 10 sections are available for beamlines [46].

At the operating energy the electrons are accelerated to speeds extremely close
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to that of the speed of light. While the acceleration of low-speed electrons causes

radiation to be emitted in a toroidal profile, the radiation emitted by relativistic

electrons is highly collimated into forward and backward facing cones. The angular

spread of these cones of radiation is about 1
γ
. At the CLS, with an operating energy

of 2.9 GeV, the beam width is only about 2.5 mm at a 20 m distance.

2.4 Bending Magnet

A large dipole magnet is used to bend the electron beam around the corner at each

vertex of the polyhedral storage ring or booster ring. When the electrons are bent,

they emit full spectrum electromagnetic radiation in a horizontal fan shape. The

vertical divergence of this radiation is again about 1
γ
.

The radiation from a bending magnet covers a broad range in energy. The most

important parameter characterizing this radiation is the critical energy, Ec. This is

the threshold where half the radiation power lies below the critical energy, and half

lies above. The Ec for a bending magnet is given by Equation 2.1, where ρ is the

bend radius, B0 is the peak magnetic field (in T), and E is the electron energy (in

GeV). The condensed form of Equation 2.1 gives Ec in keV. It is usually possible to

get sufficient levels of photon intensity for absorption experiments using energies up

to 4Ec.

Ec =
3~cγ3

ρ
= 0.665B0E

2 (2.1)

In plane with the ring, bend magnets produce horizontally polarized light. The

light that diverges above and below the plane is elliptically polarized, and becomes

circularly polarized at 1
γ

above the plane.

2.5 Undulator

To gain even more intensity at a particular energy insertion devices are used. An

undulator is an array of alternating permanent magnets built into a straight section
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Figure 2.2: A simple representation of an undulator. The X-ray radiation
produced from each pair of magnets adds coherently to form an intense X-ray
beam. (Figure from www-xfel.spring8.or.jp)

of the storage ring. This array causes the electron beam to oscillate sinusoidally in the

plane of the ring, as shown in Figure 2.2. The figure of merit K, given by Equation

2.2 is used to describe an undulator; typically K ∼ 1. Here B0 is the undulator

magnetic field, λp is the length of the periodicity in the undulator magnets, and of

course e and me are the charge and mass of an electron.

K =
eB0λp

2πmec
(2.2)

The magnet spacing and the magnetic field of an undulator are tuned to provide

coherent interference for a particular bandwidth of radiation. In practice the magnet

spacing is fixed once the undulator is constructed, so only the magnetic field is varied.

This is often achieved by simply changing the gap spacing between the top and

bottom magnets. The coherent interference in the radiation emitted at each set of

dipole magnets means that the spectrum from an undulator is quasi-monochromatic;

only a narrow bandwidth and subsequent harmonics are produced.

λn =
λp

2nγ2

(
1 +

K2

2
+ γ2θobs

)
(2.3)

The wavelength (and harmonics) produced by an undulator are given by Equation
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2.3. Here λn is the wavelength of the nth harmonic, λp is the periodicity in the

undulator magnets, θobs is the observation angle in the horizontal plane, and K is

from Equation 2.2. Because of the summation of coherent light from each period

in the undulator, in principle an undulator of N periods can supply N2 times the

photon flux at a given energy as a bending magnet. The basic design of an undulator

provides horizontally polarized light. Two additional magnetic arrays can provide

elliptical polarization. Undulators are often used for soft X-ray beamlines which

require a relatively limited range in energy and demand a large amount of photon

flux.

2.6 Wiggler

A wiggler is an insertion device following essentially the same design as an undulator,

but in a wiggler a smaller array of more powerful electromagnets or superconducting

electromagnets is used. Unlike an undulator, a wiggler is not designed for coherent

interference from the radiation from each set of magnetic poles. A wiggler is charac-

terized by the same figure of merit, K, as an undulator (refer again to Equation 2.2),

but for a wiggler K À 1. This causes overlap between the harmonics, especially at

high energies, and therefore in the X-ray region a wiggler has essentially the same

spectral output as a bending magnet - but a wiggler with N magnetic poles will

produce 2N times the photon flux as a bending magnet.

Wigglers are often used as sources for hard X-ray beamlines, especially EXAFS

beamlines, where a broad range of X-rays is required. The photon flux intensities

from several undulators and a superconducting wiggler from CLS are shown in Figure

2.3.

2.7 Monochromators

For use in an experiment, the bandwidth of the X-ray beam from a bend magnet or

an insertion device must be further reduced. To achieve this, a grating or crystal
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Figure 2.3: The brightness of several CLS insertion devices as a function of
energy. Note that while undulators all have higher flux intensities, wigglers
operate over a much larger energy range. (Figure from www.lightsource.ca)
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monochromator is used. The basic design involves two offset gratings or crystals

rotated in a manner that fulfills the Bragg diffraction condition for the desired energy,

producing a monochromatic beam.

A grating is often used for soft X-ray beamlines, while cleaved crystal faces are

used for hard X-ray beamlines. Monochromators do not reject harmonics of the

desired energy, and often additional optics, such as harmonic rejection mirrors, are

used. On hard X-ray beamlines harmonic rejection is also sometimes achieved by

detuning the monochromator - moving the second crystal slightly out of alignment

with the first. While this reduces the intensity of the primary harmonic, it provides

a much larger reduction in the higher harmonics.

2.8 Hard X-ray Microprobe Analysis Beamline

The Hard X-ray Microprobe Analysis (HXMA) beamline at the CLS was the primary

tool used to investigate the structure of amorphous selenium. As the name suggests,

the HXMA beamline uses “hard” X-rays, in the energy range of 5 to 40 keV. The

source for the X-rays is a 63 pole, 2 T wiggler with K ' 5.91 [47]. The appropriate

energy is selected using a crystal monochromator. At the time of this research Si(111)

and Si(220) crystals were available. The beamline also uses a collimating mirror with

an Rh or Pt stripe. At 10 keV, with an Si(111) crystal and Rh mirror, the beamline

delivers 1.2×1013 photons per second per mm2 to the sample with a resolving power

E/∆E of 5 × 103 [47]. The layout of the beamline optics for HXMA is shown in

Figure 2.4.

HXMA allows measurements in either transmission or fluorescence mode. The

experimental setup for transmission measurements is very simple, using only three

ion chambers. An ion chamber is a cavity filled with a mixture of H, N2, and

Ar between two metal plates, which is placed in the X-ray beam. Transparent Be

windows allow the beam to pass through the chamber. A large voltage is created

between the two plates. The passage of X-rays through the chamber ionizes some

of the gas, which creates a current between the metal plates. The magnitude of this
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Figure 2.4: The layout of the X-ray optics, slits, and other devices for the
HXMA beamline. (Figure from www.lightsource.ca)

current is proportional to the intensity of the beam. In a transmission measurement,

one ion chamber measures the beam intensity before the sample and one chamber

measures the beam intensity after passing through the sample. Typically a reference

foil is positioned after the second ion chamber, and a third ion chamber is placed after

that. Because measurements at HXMA often take place over a very long energy range

it is important to have a reference standard for calibration measured simultaneously

with the experimental data.

The setup for a fluorescence measurement is similar to that of a transmission

measurement, save for the addition of a fluorescence detector usually placed near

the sample perpendicular to the X-ray beam. HXMA has three types of fluorescent

detectors available: a Lytle detector, a Saturn-Vortex detector, and 32-element Ge

detector. The Lytle detector is based on an ion chamber, but is usually filled with a

denser gas (Ar or even Xe). This detector is not very sensitive, and is best used for

concentrated samples. The Saturn-Vortex detector is a single channel semiconductor

drift detector. An incident X-ray can create a high energy conduction electron, which

in turn can cascade creating several lower energy conduction electrons. This current

is read by the detector. Extremely high count rates can saturate these kinds of

detectors, and so they are best used for dilute samples. The 32-element Ge detector

is like a Saturn-Vortex detector, save that it has 32 channels. Since fluorescent
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measurements often have a low signal-to-noise ratio multiple measurement are needed

to get good data. The 32-element Ge detector can effectively repeat a spectrum 32

times in one measurement, which greatly helps in reducing the noise. Like the

Saturn-Vortex, the 32-element Ge detector is prone to saturating when exposed to

concentrated samples. The 32-element Ge detector must also be cooled with liquid

nitrogen while in use.

Because hard X-rays have no trouble penetrating the atmosphere, HXMA mea-

surements are often performed at ambient conditions. All the experimental apparatus

is housed in a steel hutch, which must be sealed prior to measuring to protect the

users from the X-ray radiation. HXMA also has a liquid helium or liquid nitrogen

cooling system for low temperature measurements. This is a chamber which sits in

the path of the beam, with the sample inside.

2.9 Spherical Grating Monochromator Beamline

The Spherical Grating Monochromator (SGM) beamline at the CLS was used for a

completeness study of the X-ray absorption edges of selenium. The SGM uses “soft”

X-rays in the energy range of 250 to 2000 eV. The source for the X-rays is a permanent

magnet undulator with a 45 mm period [48]. The appropriate energy is selected by

a spherical grating monochromator, as suggested by the beamline name. There

are three different interchangeable gratings corresponding to low, medium, and high

energy ranges with rulings of 600, 1100, and 1700 lines/mm, respectively [48]. On the

low energy grating at 400 eV with the entrance and exit slits of the monochromator

set to 5 µm and 25 µm, respectively, the beamline delivers 1011 photons/s of flux. At

energies below 800 eV the SGM has a resolving power E/∆E better than 104 [49].

The SGM allows for measurements in either fluorescence yield or electron yield

mode. The experimental setup is the same for both techniques: the sample is affixed

(usually with carbon tape) to a copper backplate and is placed in an ultra-high

vacuum (UHV) chamber. Soft X-rays are easily absorbed by atmosphere, so UHV

is essential. The vacuum in the SGM endstation is typically better than 10−7 torr.
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The fluorescence yield is measured with a graphite channeltron, which operates in

essentially the same manner as the drift detectors discussed in the previous section.

The electron yield is measured by monitoring the current flowing into the sample

to replace the electrons ejected by X-ray absorption. The incident X-ray intensity

is measured with a highly transparent gold mesh upstream of the endstation. The

X-ray induced electric current in the mesh is proportional to the incident X-ray

intensity.

2.10 Variable Line Spacing - Plane Grating

Monochromator Beamline

The Variable Line Spacing - Plane Grating Monochromator (VLS-PGM) beamline

at the CLS was used to help characterize the electronic structure of selenium. The

VLS-PGM uses X-rays in the energy range of 5 to 250 eV, even “softer” than the

X-rays from the SGM. The source for the X-rays is a permanent magnet undulator

with a 185 mm period [50]. The appropriate energy is selected by a planar grating

monochromator with variable line spacing as suggested by the beamline name. There

are three different interchangeable gratings corresponding to low, medium, and high

energy ranges with central line densities of 500, 1000, and 600 lines/mm, respectively

[51]. The VLS-PGM delivers on the order of 9×1011 photon/s of flux per 100 mA of

ring current on all three gratings with 50 µm slits, and the resolving power E/∆E

is better than 104 [50].

Like the SGM, the VLS-PGM allows for measurements in either fluorescence yield

or electron yield mode. The samples are prepared in a manner similar to that used

for the SGM, and the measurements are conducted in UHV. Since the VLS-PGM

operates at quite low X-ray energies UHV is essential, and there is often quite a

bit of background noise to the measurements. The incident X-ray intensity at the

VLS-PGM is measured by a highly transparent nickel mesh.
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2.11 Beamline 8.0.1

The soft X-ray fluorescence (SXF) endstation of beamline 8.0.1 (BL8) at the ALS

was also used in this research. BL8 has an energy range of 70 to 1200 eV. The

source for the X-rays is a permanent magnet undulator with a 50 mm period [52].

The appropriate energy is selected by a spherical grating monochromator. There

are three different interchangeable gratings corresponding to low, medium, and high

energy ranges with rulings of 150, 380, and 925 lines/mm, respectively [52]. At

maximum flux, BL8 delivers on the order of 1015 photons per second per mm2 with

a resolving power E/∆E of roughly 104 [52].

Like the previous two beamlines, BL8 allows for measurements in either fluores-

cence yield or electron yield mode. Unlike the other beamlines BL8 has a spherical

grating spectrometer to perform high resolution analysis of the X-ray fluorescence.

The spectrometer is a grazing incidence detector with Rowland circle geometry [52].

There are 4 spherical gratings corresponding to different energy ranges; the low and

mid-low energy gratings have a 5 m radius and have 600 and 1500 lines/mm, respec-

tively. The mid-high and high energy gratings have a 10 m radius and have 600 and

1500 lines/mm, respectively [52]. Again, the measurements are performed in UHV.

Like the SGM, the incident X-ray intensity is measured with a highly transparent

gold mesh.
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Chapter 3

Experimental Techniques

The interactions between X-rays and matter are the primary mechanism used to

study the material properties of a-Se:x%As in this research. X-rays have a wavelength

comparable to the size of an atom, and have energies in the range of most binding

energies for core electrons. Because of these properties X-rays are an ideal tool for in

situ probing of material properties in a non-destructive and element specific manner.

There are three main measurement techniques that are used: X-ray Absorption Near

Edge Structure (XANES), Extended X-ray Absorption Fine Structure (EXAFS), and

X-ray Emission Spectroscopy (XES). The following sections describe how X-rays

interact with matter, and how each of the three aforementioned techniques provides

structural and/or electronic information about the material.

3.1 X-ray Interactions with Matter

When an X-ray penetrates matter there are three possible outcomes: the X-ray

may be transmitted, without any change to its energy or momentum, and without

any effect to the substance, the X-ray may undergo a change in momentum (elastic

scattering) and possibly a reduction in energy (inelastic scattering), or the X-ray

may be absorbed by the substance. Obviously the first situation is of little interest

for X-ray spectroscopy. Of the latter two, X-ray absorption is the technique most

relevant for the research carried out in this thesis.

The phenomenon of X-ray absorption follows Fermi’s Golden Rule, where the

interaction Hamiltonian is the appropriate operator for an electromagnetic wave.

The X-ray absorption, µ, is given by Equation 3.1 where ~e is the electromagnetic field
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of the incident X-ray, ~p is the electron momentum vector, ~k is the X-ray wavevector,

~r is the position vector in the appropriate coordinate system for the material (usually

taken as ~z), and the subscripts i, f denote the initial and final states, respectively.

The summation is carried out over all possible initial and final states.

µ ∝
∑

i,f

∣∣∣〈ψi| (~e · ~p) exp
(
i~k · ~r

)
|ψf〉

∣∣∣
2

(3.1)

When working with Equation 3.1, the usual convention of expanding the expo-

nential into a power series is usually followed. Although X-rays have very small

wavelengths, the spatial distribution of a core electron is often much smaller: suf-

ficiently small to make a first order approximation of the exponential adequate to

describe most experimental spectra. In this case, Equation 3.1 reduces to the dipole

approximation:

µ ∝
∑

i,f

|〈ψi| (~e · ~p) |ψf〉|2 (3.2)

This approximation suggests that all X-ray induced electron transitions |ψi〉 →
|ψf〉 are induced by the oscillating electric field of the X-ray. Due to the small

effective radius of the core electrons, the electric field of the X-ray is effectively

constant across the entire orbital. Angular momentum is a “good” quantum number

for both the core and bound final states and therefore the total angular momentum

must be preserved. Since a photon has a spin of ±1, dipole transitions are therefore

limited to a final state angular momentum of `±1 where ` is the angular momentum

of the initial state.

In terms of bound state quantum numbers, the change in primary quantum num-

ber ∆n is not constrained in a radiative process. The change in angular momen-

tum ∆` is ±1, as previously mentioned. The change in total angular momentum,

∆j = 0,±1 where j = `± s for spin s = 1
2
. However a transition between two states

both with j = 0 is not allowed [53]. For historical reasons the labels denoting X-ray

transitions to or from a core state are often in a different set of symbols than are

typically used to describe atomic orbitals. These are summarized in Table 3.1.
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Table 3.1: Summary of notation used for identifying specific atomic orbitals,
X-ray transitions to or from those orbitals, and the corresponding quantum
numbers.

n ` j Atomic Orbital X-ray Transition

1 0 1
2

1s K

2 0 1
2

2s L1

2 1 1
2

2p1/2 L2

2 1 3
2

2p3/2 L3

3 0 1
2

3s M1

3 1 1
2

3p1/2 M2

3 1 3
2

3p3/2 M3

3 2 3
2

3d3/2 M4

3 2 5
2

3p5/2 M5

4 1 1
2

4s N1

· · ·

20



By convention the symbol for the lowest energy level in an X-ray transition is used

to denote the process. Usually a Greek letter is subscripted to the symbol to denote

a specific transition, these letters proceed alphabetically from the most intense to the

least intense transition. For example a 2p → 1s transition is denoted by the symbol

Kα, a 3p → 1s transition is denoted by the symbol Kβ, and so on [53]. Sometimes

the effect of the second order term in the power series expansion of Equation 3.1 is

visible as low energy and low intensity features in an X-ray absorption measurement.

These features are due to quadrupole transitions, and incorporating them requires

adding an additional term to Equation 3.2:

µ ∝
∑

i,f

∣∣∣〈ψi| (~e · ~p)
(
1 + ~k · ~r

)
|ψf〉

∣∣∣
2

(3.3)

A quadrupole transition allows the final state to have angular momentum `± 2.

Quadrupole transitions occur mostly in transition metals when the 1s electrons are

excited. Since many transition metals have a large number of partially occupied

d states near the Fermi level, quadrupole features are sometimes visible. Neither

selenium nor arsenic have any unoccupied 3d states, and the 4d states are too high in

energy. Any excitation to a 4d state is masked by the much more intense transitions

to unoccupied 4p states. Because of this no quadrupole features are present in neither

the spectra of selenium nor arsenic.

3.2 X-ray Absorption Near Edge Spectroscopy

X-ray Absorption Near Edge Spectroscopy (XANES) is conducted by monitoring

the absorption of X-rays at energies close to the binding energy of a particular core

electron. The incident energy is gradually increased and the effect on the sample is

monitored. When the core electron absorbs an incident photon that electron can get

excited to a vacant state in the conduction band (according to the aforementioned

dipole selection rules). At any given incident X-ray energy, E, the amount of photons

absorbed - and consequently the amount of excited core electrons - is proportional to

the partial unoccupied density of states at an energy E relative to the core electron.
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Figure 3.1: A small, pre-edge quadrupole transition in the Co K XANES of
Co-doped sapphire. Note the intensity of the quadrupole transition relative to
the much more prominent dipole transitions.

The absorption of X-rays with energies near the binding energy of a particular core

electron is therefore a probe of the partial (or projected) unoccupied density of states

(DOS).

The final state of an electronic transition determines the shape of the spectrum

(the “final state rule”). Because of this a XANES measurement is rarely a probe of

the normal conduction band. In an absorption measurement the final state is one

with an electron in a normally unoccupied level, and a hole in a core level. This core-

hole can severely distort the normal unoccupied density of states, and accordingly

a XANES measurement might not be a useful probe of the ground-state electronic

structure. The core-hole decreases the screening of the nuclear charge, and in some

cases can be modeled by increasing the atomic number by one. In general, however,

detailed calculations are needed to accurately account for the effects of the core-hole.

The actual practice of measuring the absorption of the X-ray beam may be ac-

complished by several different techniques. The best technique is a transmission

measurement, where the intensity of the incident X-ray beam is measured before

entering and after passing through the sample. The X-ray beam attenuates expo-
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nentially inside the sample, and the X-ray absorption coefficient µ is simply the

logarithm of the two intensities, as shown in Equation 3.4, where t is the sample

thickness, I0 is the incident X-ray intensity, and It is the transmitted X-ray inten-

sity. A transmission measurement avoids many of the problems associated with other

absorption techniques, and a good measurement gives an actual measure of the X-ray

absorption with the proper intensity. However creating a homogeneous sample with

the proper thickness is often a challenge.

µ(E) =
1

t
ln

(
I0(E)

It(E)

)
(3.4)

Both X-ray fluorescence yield and X-ray electron yield are easier measurements

to perform than X-ray transmission measurements. The core-hole created by ab-

sorbing an incident X-ray is extremely short-lived, and very quickly another electron

decays to fill the core state. This process releases energy, which can be in the form of

an X-ray or exciting another electron or electrons to an unbound state. The former

technique is fluorescence yield, detected with a high voltage channelplate, a germa-

nium detector, or possibly a grating spectrometer (refer back to Chapter 2 for more

detail). The latter technique is electron yield, detected simply by measuring the

current that flows into the sample to replace the charge that was ejected from the

surface. This ease of measurement comes with draw-backs. For both techniques the

X-ray absorption coefficient µ can, at best, only be determined within a constant of

proportionality by dividing the intensity of the fluorescence yield If or electron yield

Ie with the incident intensity I0, as shown in Equation 3.5. Without additional in-

formation comparing absolute intensities between different samples or even different

measurements is impossible.

µ(E) ≈ Ix
I0

; x = f, e (3.5)

Finally, fluorescence yield measurements can suffer from self-absorption; the ma-

terial attenuates the fluorescent signal. As pointed out in the previous discussion on

transmission measurements the attenuation is dependent on µ, and in the case of

fluorescence, the source X-rays (i.e. the X-rays from fluorescence) are proportional
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to µ. The basic effect of self-absorption is given in Equation 3.6, where µi is the ab-

sorption coefficient of the absorbing element, µtot is the total absorption coefficient

of the sample, E is the energy of the incident X-ray beam, Ef is the energy of the

fluorescence transition, and t is the thickness of the sample. Since neither µi nor

µtot is known self-absorption is impossible to correct without rather large approxi-

mations. The end result of self-absorption is a spectrum where the normally sharp

and prominent features are smoothed out and reduced in intensity. The only definite

way to check for self-absorption is to continually reduce the thickness and/or dilute

the sample until the spectra become consistent, or to compare the fluorescent yield

spectra with transmission or electron yield spectra.

If
I0
∝ µi(E)

µtot(E) + µtot(Ef )
(1− exp (−t (µtot(E) + µtot(Ef )))) (3.6)

Electron yield measurements are free from self-absorption effects but are very

sensitive to the surface of the sample. Only electrons from a few angstroms deep

can escape from the sample. Sometimes this is desired: in the case of thin films,

for example, a surface sensitive probe can be advantageous. Insulating samples are

additionally sensitive to charging: the electrons cannot be replaced as fast as they

are ejected and the sample starts to build up a large positive charge. This makes it

increasingly difficult to eject electrons. Charging causes the quality of the spectra

to steadily degrade as the measurement progresses.

For hard X-ray measurements a crystal monochromator is typically used. Un-

like grating monochromators, crystal monochromators produce “glitches” at energies

specific to the crystal cut. A glitch occurs when the wavelength of the incident X-ray

matches multiple crystal planes, allowing diffraction in multiple directions. A glitch

manifests in the incident X-ray intensity I0 as a sudden, sharp discontinuity. While

normalizing the spectra by I0 in the appropriate manner will remove most of the

effects of the discontinuity, the real problem with a monochromator glitch is that

it affects higher order components in a non-linear manner. Since the I0 intensity

measures the entire incident X-ray beam (i.e. all harmonic energies selected by the

monochromator), but the absorption µ is only affected by a particular order of energy
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Figure 3.2: Glitches near the As and Se K edges from a Si(111) and Si(220)
crystal

(usually first order), the non-linear effects of the glitch can manifest as discontinu-

ities even in the normalized µ. Monochromator glitches always show up in regions

specific to the crystal cut, and are easily recognizable. If possible, a monochromator

crystal with minimal or no crystal glitches in the energy range of interest should be

chosen. If glitches are unavoidable, the data points corresponding to a glitch should

be excluded from the spectra. Both crystals available at the HXMA beamline have

some glitches near the As and Se K XANES region, but neither have glitches right

at the actual absorption edge, as shown in Figure 3.2.

3.3 Extended X-ray Absorption Fine Structure Spec-

troscopy

For energies above (or higher than) the XANES region the photo-excited electrons

are essentially free electrons moving in a wave-like manner through the crystal lattice.

The energy of these electrons is given by the difference between the energy of the

incident X-rays and the binding energy of the core electron. An Extended X-ray
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Figure 3.3: An L3 EXAFS spectrum from a gold reference foil. The pre-edge,
XANES, and EXAFS regions are labelled.

Absorption Fine Structure (EXAFS) measurement is made by continuing to increase

the incident X-ray energies above the XANES region, as shown by Figure 3.3. The

free electrons created by photon absorption can scatter off of neighbouring atoms,

and the amount of scatter is based on the electron momentum and the distance to

the neighbouring atom. This scatter introduces fluctuations in the EXAFS spectra,

which can be used to deduce local structure information.

Returning to Fermi’s Golden Rule (refer back to Equation 3.1), for EXAFS we

can approximate the final state as: |ψf〉 = |0〉 + |ψs〉, where |0〉 is the free electron

state, and |ψs〉 is the scattered state. To a first order approximation we have the

result given by Equation 3.7, where µ0 is the background absorption from an isolated

atom and the “EXAFS oscillation”, χ, is the effect of scattering.

µ ∝ |〈ψi| (~e · ~p) |ψf〉|2

∝ 〈ψi| (~e · ~p) |0〉+ 〈ψi| (~e · ~p) |0〉〈ψi| (~e · ~p) |ψs〉
∝ µ0 + µ0χ (3.7)

EXAFS measurements are very sensitive, and a high signal-to-noise ratio is im-
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portant. Therefore the best measurements are usually transmission measurements

(assuming a suitable sample can be prepared). Fluorescence yield is also possible, but

electron yield is usually not suitable for EXAFS. A fluorescence yield measurement

typically makes use of a filter to screen out background radiation. The filter is typi-

cally a screen a few microns thick, made of material one atomic number below that

of the material being measured. The filter must be chosen such that the elastically

scattered beam is strongly absorbed but the sample fluorescence is mostly trans-

mitted. With fluorescence measurements self-absorption can also effect the EXAFS

oscillations, reducing the intensity in the same manner as with XANES.

To obtain good statistics with a transmission measurement, the sample thickness

should be chosen such that the maximum absorbance A = µt is roughly 2 [54]. This

edge jump is usually estimated from calculated background absorption cross-section

tables such as those by Henke [55]. The X-ray cross-section, σ, times the density of

the material ρ is the absorption coefficient µ = σρ. For heterogeneous materials the

X-ray cross-section for each phase should be weighted by the mass fraction of that

phase, the sum of each weighted cross-section is then used as the total cross-section

for the material. The ideal sample thickness is then t = 2
σρ

for the cross-section just

above the absorption edge. For 3d metals and heavier elements the transmission

thickness for the K absorption edge is often thick enough to cause self-absorption

effects if measured in fluorescence mode.

For transmission measurements small pin-holes or cracks in the sample cause

problems for EXAFS measurements. In principle this issue is also a problem with

XANES measurements as well. If the sample is not homogeneous across the incident

beam, then the spatial variation in sample thickness cannot be decoupled from the

absorption coefficient µ. Pin-holes increase the transmission of X-rays and cause a

corresponding decrease in the absorption intensity of intense features in the EXAFS

(or XANES) spectra. A pin-hole therefore causes the observed transmission intensity

It to be a sum of the “real” transmission intensity Ir scaled by some factor β and

the incident intensity scaled by (1 − β). The observed absorption µobs is therefore

related to the true absorption µ as shown in Equation 3.8, where t is the assumed
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sample thickness, and α is the effect of the pin-hole. Actually determining α from

a single measurement in order to estimate the true absorption is not possible, and

attempting to “fit” α to get a good spectrum is a dubious practice. A sample full of

pin-holes is essentially unsuitable for a transmission measurement.

It = βIr + (1− β) I0

I0
It

=
I0

βIr + (1− β) I0

µobst = ln

(
1

β exp (−µt) + (1− β)

)

α =
1− β

β

µobs =
1

t
ln

(
1 + α

exp(−µt) + α

)
(3.8)

The energy scales of X-ray spectra are calibrated through comparison with known

standards measured at the same time on the same beamline with the same settings.

Usually the measured energy scale of these standards is simply linearly shifted to

agree with tabulated values. However since EXAFS measurements cover such a

large energy range, a more precise method of calibrating is necessary. Instead of

determining a linear energy shift by comparing the location of a feature of a measured

reference standard with a tabulated value, the angular correction is calculated. The

monochromator angle for the measured and tabulated energies are calculated using

Bragg’s law, given by Equation 3.9. Here E is the X-ray energy in eV, d is the

spacing of the crystal planes or lines on the grating in angstroms, and θ is the angle

of the monochromator.

E =
(12398.4 eV Å)

2d sin θ
(3.9)

The difference in angle between the energies of the tabulated and measured fea-

ture is calculated, and this correction is added to the angles of all the measured data

points. The angles are then converted back to energies using Equation 3.9. This

technique of energy calibration is in fact more correct than simply linearly shifting
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the energies even for XANES measurements, however since XANES measurements

cover a much smaller energy range than EXAFS measurements the difference be-

tween a linear correction and an angular correction to the energy scale is smaller

than the uncertainty in the monochromator energy, and therefore not worth the

additional effort.

3.4 X-ray Emission Spectroscopy

If a grating spectrometer is used to measure the fluorescent yield, the high resolu-

tion of the equipment can give useful information about the occupied partial DOS.

An X-ray emission spectroscopy (XES) measurement uses a grating spectrometer to

observe the decay of valence electrons to the core level. In principle an absorption

measurement produces an emission spectrum for each absorption energy, but in prac-

tice the low fluorescent yield of most materials coupled with the optical inefficiencies

of the grating spectrometer mean that collecting a complete emission spectrum for

each point in the absorption spectrum is not practical. A typical (non-resonant)

emission spectrum involves exciting a core electron to just outside the XANES re-

gion, and observing the decay from the valence region. Here the energy dispersive

detector collects the energies of the fluorescent X-rays produced by the decay tran-

sitions; the incident energy is fixed and a wide range of fluorescence energies are

examined.

In an emission measurement the end result is a filled core state and a hole in the

valence band. Because of the aforementioned “final state rule”, there is no core-hole

effect to distort the valence DOS, and thus an XES measurement is an accurate

probe for the occupied states. The hole in the valence band has a negligible effect

on the material. The process of XANES and XES are visualized by Figure 3.4.

XES measurements suffer from much greater lifetime broadening than absorption

measurements. In an absorption measurement the excited electron can last for a

relatively long time in the conduction band, improving the resolution of the energy

of the transition (recall that energy and time scale are bound by an uncertainty
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Figure 3.4: A simple representation of O K XANES and XES transitions for
MgO. Note the slight change in the DOS due to the O 1s core hole. In heavier
elements this change is far more pronounced.

30



relationship similar to that of momentum and position). In an emission measurement

the core-hole state is filled extremely quickly, making the natural line width due to

life-time broadening of the transition much larger than the line widths in a XAS

spectrum. Therefore XES spectra suffer from very broad features, regardless of the

resolution of the equipment.
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Chapter 4

Extended X-ray Absorption Fine Struc-

ture

Since EXAFS is an integral part of this research, a more in depth look a the

theory behind it is in order. While the structural sensitivity of EXAFS, originally

known as “Kronig structure” has been recognized since the 1930s, it was only in the

early 1970s that Dale Sayers, Farrel Lytle, and Ed Stern recognized how to relate the

spectrum to structural information [56]. A detailed look at the theory, experimental

practice, and physical meaning of EXAFS, as understood by Sayers, Lytle and Stern

is given in References [57–59]. The key to interpreting EXAFS lies in modelling

the electron scattering from neighbouring atoms and in doing so, reproducing the

experimental spectrum. This process is relatively straight forward and can be done

with minimal computer resources.

4.1 Electron Scattering Theory

When an incident X-ray of energy hν is absorbed by a core electron with a binding

energy E0 (where E0 < hν, of course), the electron is excited to a free state with

a kinetic energy of Ef = hν − E0 [58]. These free electrons radiate outwards in a

wave-like manner and scatter off of neighbouring atoms. If this coherent interference

is constructive the EXAFS oscillations χ increase in amplitude and, conversely, if

the interference is destructive then χ decreases in amplitude. The nature of the

interference is dependent both on the wavenumber k of the free electron and the

distance between the core and scattering atoms. Although these oscillations are
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Figure 4.1: A simple representation of an X-ray excited free electron scatter-
ing off of neighbouring atoms.

extremely minute, with high intensity synchrotron X-ray radiation they are readily

detectible.

As discussed in Chapter 3, the EXAFS oscillations χ(k) can be decoupled from

the absorption coefficient µ(E) to first order by involving the atomic absorption

coefficient µ0(E). In slightly more detail, the probability of X-ray absorption by a 1s

photon in the dipole approximation is given in Equation 4.1, where |is〉 is the initial

1s state, |fp〉 is the final p-like state, ω is the angular frequency of the X-ray, and

ρ(Ef ) is the final density of states at the final electron energy Ef [57, 60].

W =
2π2e2

ωc2m2
|〈fp|~e · ~p|is〉|2 ρ(Ef ) (4.1)

In EXAFS analysis it is assumed that at energies sufficiently far above the near-

edge region, the density of states ρ(E) becomes that of a free electron of energy

~2k2

2m
= Ef − E0, since band effects are negligible [57]. Therefore the energy depen-

dent features in χ(k) are due to the matrix elements of the dipole transition. The

Hamiltonians of the initial and final state are written in terms of the external po-

tential from the surrounding atoms and the internal potential from the ground state
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and excited core atom. In the simple EXAFS formulation, both the internal and ex-

ternal potentials in the final state are treated as static; this is appropriate for cases

where the lifetime of the excited state is either long or short compared to the time

constant for the rearrangement of screening charge due to the core hole [57]. Indeed,

the EXAFS oscillations require coherence between outgoing and backscattered waves

and therefore it is likely that the external potential is fully relaxed, since transient

effects tend to greatly reduce coherence lengths [61].

In an isolated atom, an excited electron originating from the 1s ground state

must have a wavefunction with p symmetry. In a solid this wavefunction will have

additional symmetries mixed in, however only the p symmetric part will show the

interference effects characteristic for the EXAFS oscillations χ(k) [57]. Therefore

if we assume that the potential from the excited core atom is short ranged and

spherically symmetric (basically the “muffin-tin” approximation) the outgoing part

of the excited electron wavefunction is of the form ψz
k(r) = z

r
Uk(r) [57], where Uk(r)

is the regular radial solution of the Schrödinger equation for the excited atom [62].

The additional components along the x- and y-axes are found simply by replacing

z, if appropriate (i.e. the X-ray is not polarized or the material is amorphous or

polycrystalline). The p portion of the scattered wavefunction is given by Equation

4.2 where Tk(~r, ~r′) is the scattering matrix [62].

ψsc =
3mkz

8π2~2r
iUk(r)Iz(k) (4.2)

Iz(k) =

∫
Uk(r

′)
z′

r′
Tk (~r′, ~r′′)Uk(r

′′)
z′′

r′′
d3r′d3r′′

The dipole transition matrix is therefore given by Equation 4.3, where M0 is the

matrix element with no scattering (i.e. Tk = 0) which varies monotonically above

the absorption edge [57]. The total absorption is then given by Equation 4.4, where

W0 is the absorption of an isolated atom (i.e. Tk = 0, again), and the contributions

from p states with x and y components have been added.
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Mfs = 〈fp|~e · ~p|is〉

Mk
fs = M0

(
1 +

3mkz

8π2~2r
iIz(k)

)
(4.3)

Wk = W0

(
1− 3mk

4π2~2
=

{∑

r̂

|~e · r̂|2 Ir
(
~k
)}

+
9m2k2

32π4~4

∑

r̂

|~e · r̂|2 |Ir (k)|2
)

(4.4)

From Equation 4.4 it is obvious that the first term is not dependent on electron

momentum k, and therefore is not part of χ(k). Likewise the last term has smooth

variation in k (due to the |Ir (k)|2 component) and will not contribute to the EXAFS

oscillations [57]. From inspection, then, χ(k) is defined by the middle term.

χ(k) =
3mk

4π2~2
=

{∑

r̂

|~e · r̂|2 Ir
(
~k
)}

(4.5)

In actual practice Equation 4.5 is rarely used in the given form. In the high-

energy limit (where the energy of the electron is above about 50 eV) the crystal is

fairly transparent and the main effect of scattering will be to reduce the amplitude

of the outgoing wave in an incoherent manner [61]. Using this approximation, and

expanding Uk(r) in terms of spherical harmonics Equation 4.5 is reduced to the form

given by Equation 4.6, where P` is a Legendre polynomial, Ai is the attenuation

factor from the above high energy scattering approximation, Ni is the number of

atoms at distance Ri from the core, φ is the phase shift between the incoming and

outgoing waves, and δ` is the atomic phase shift [61].

f(θ) =
1

2ik

∞∑

`=0

(2`+ 1) (exp (2iδ`)− 1)P`(cos θ)

χ(k) = f(π)
∑

j

Aj(k)
Nj

R2
j

exp (2iφ) exp (2ikRj) (4.6)

The expression for χ(k) most often used is rather phenomenological in nature.

Since it was recognized that the EXAFS oscillations are essentially a summation of

sin(2kR) terms caused by backscatter from neighbouring atoms [56], χ(k) was first

expressed in the form given by Equation 4.7 [63].
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χ(k) = S2
0

∑
j

Njfj(k)

kR2
j

exp
(−2k2σ2

j

)
exp

(
−2Rj

λ

)
sin (2kRj + φj(k) + δ(k)) (4.7)

In Equation 4.7 S2
0 is the total amplitude reduction factor, fj(k) is the EXAFS

amplitude function, exp
(−2k2σ2

j

)
is the Debye-Waller factor where σj is the root-

mean-square thermal displacement of atom j, and exp
(
−2Rj

λ

)
is a damping function

where λ is the mean free path of the electron.

Equation 4.5 shows the exact expression for EXAFS oscillations within the one-

electron, single scattering, plane-wave, muffin-tin potential model. Shortly after

Sayers, Lytle, and Stern published their theory of EXAFS it was pointed out that

the mechanism of electron scattering was equivalent to the process of low-energy

electron diffraction (LEED), save that electron scattering occurs with full spatial

freedom while in experimental practice LEED is a surface effect [61]. In short, the

core atom behaves like the electron gun in a LEED experiment, and the surrounding

neighbour atoms provide a 3D diffraction lattice [64]. Indeed Lee and Pendry [64]

were able to essentially reproduce Equation 4.5 by modifying LEED theory.

Since it is known multiple scattering is required to accurately reproduce LEED

measurements [65, 66], it is important to include multiple scattering in crystalline

materials. To accomplish this Ashley and Doniach [61] developed a modification

to the Green’s function formulation of Equation 4.5, while Lee and Pendry [64]

simply used Equation 4.5 repeatedly for each “leg” in the scattering path. Multiple

scattering in EXAFS is less important than in LEED, however [67], and in amorphous

materials or crystals with low symmetry the single scattering model often suffices [61].

Early EXAFS theory focussed on comparing the Fourier transform of Equation

4.7 with known reference standards. Since the sinusoidal components of χ(k) include

a phase shift, a direct Fourier transform will not reproduce the desired positions of the

backscatterer atoms. The correct technique is a “phase-shifted” Fourier transform

given by Equation 4.8 [56].
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χ(r) = −
√

2

π

∫
χ(k)

kS2
0fα(k)

sin (2kr + φα(k) + δ(k))

=
1

2

∑
j

Nj

R2
jσj

exp

(
−2Rj

λ

)
exp

(
−2 (r −Rj)

2

σ2
j

)
+ ∆(r) (4.8)

When applied in the correct circumstances, the error term ∆(r) is negligible.

It is important to point out that Equation 4.8 will only produce the correct radial

distances for systems where the backscatterer atoms are all of the same species, i.e.

fj(k) = f(k) and φj(k) = φ(k). Otherwise this method will produce the correct

radial distances only for atom species α. It is also important to point out that this

method of analysis can not incorporate the multiple scattering effects.

4.2 Calculating EXAFS

Because of the aforementioned limitations on analysing χ(k), rather than using a

measured χ(k) to obtain a structural model in modern practice it is common to

assume some structural model and calculate the theoretical χ(k). Modern software

packages such as FEFF, developed by John Rehr at the University of Washing-

ton, can fully accommodate multiple atomic species, multiple scattering, relativistic

effects from the potentials of heavy atoms, and also conduct a full curved-wave treat-

ment of scattering (i.e. where the incident X-ray is not treated as a plane wave and

the core state is not treated as a delta function) [68,69]. In FEFF multiple scattering

is treated in technique used by Lee, discussed above [64,70].

FEFF calculates χ(k) for a specified absorber atom surrounded by a cluster of

neighbours. No crystal symmetry or periodic boundary conditions are taken into

account, and if there are multiple absorber sites then the results of multiple cal-

culations will have to be combined to reproduce the experimental spectra. FEFF

calculates individual scattering paths, each composed of two or more legs. Each

leg represents the motion of the electron from one atom to another; the entire path

represents the full motion of the electron as it leaves the core, backscatters off of one
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Figure 4.2: The theoretical EXAFS from gold fit to a measurement from a
gold reference foil.

or more neighbouring atoms, then reflects back to the core modifying the absorption

coefficient.

In practice FEFF is used to calculate the EXAFS amplitude function fj(k), the

electron mean free path λ(k), and the phase shifts φj(k) and δ(k). The assumed

crystal structure provides the number of nearest neighbours Nj and the distances

Rj. The root mean square component of the Debye-Waller factor σj (referred to

hereafter as simply “the Debye-Waller factor”, following the convention common in

EXAFS literature) and the overall amplitude reduction factor S2
0 are free parameters.

The latest editions of FEFF can calculate σj and S2
0 theoretically [71], but the work in

this thesis used the older FEFF6L and these parameters must be chosen beforehand.

An example of an EXAFS calculation and a measured EXAFS from a gold reference

foil is shown in Figure 4.2. (Note that the fitting in Figure 4.2 is not particularly good

by the standards of EXAFS, this is mostly because the reference foil was measured

concurrently with an aSe:x%As film as a calibration for the As K-edge. In particular

the energy range of the EXAFS scan was optimized for the As K-edge, not the Au

L3 edge, so the reference foil EXAFS is not of very high quality.)
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The calculated χcalc(k) is usually compared to the experimental χexp(k) through

least-squares fitting, minimizing ξ2 in Equation 4.9 [72]. In Equation 4.9 Nk is the

number of independent points in k-space, NI is the total number of independent

points (see Equation 4.11, below), and ε is the estimated average uncertainty in

the measurement. In this fitting approach S2
0 , σj are varied to obtain the best

fit. Additionally an energy correction term ∆E0 which modifies k, and a distance

correction term ∆Rj which modifies Rj are often included to modify the phase and

length of the calculated scattering path, respectively. Finally at high temperatures

the thermal disorder is not strictly Gaussian, as was assumed in Equation 4.7, and in

that case a third cumulant −4
3
k3C3 may be added to the sin() and a fourth cumulant

−2
3
k4C4 may be added to the Gaussian exponent [72].

ξ2 =
Nk

2Nε2

Nk∑
i = 1

[
(< (χexp(ki)− χfit(ki)))

2 + (= (χexp(ki)− χfit(ki)))
2] (4.9)

The actual fitting process is conducted with IFEFFIT, a command-line interface

written by Matt Newville [73], and the Horae suite of programs written by Bruce

Ravel [74] which provide a graphical interface to IFEFFIT. The quality of the fit may

be gauged by the R-factor given by Equation 4.10 (where kn indicates the k-weight

n), for which values below ∼ 0.02 indicate statistically good fits [75].

R =

∑Nk

i=1

[
(< (knχexp(ki)− knχfit(ki)))

2 + (= (knχexp(ki)− knχfit(ki)))
2]

∑Nk

i=1

[
(< (knχexp(ki)))

2 + (= (knχexp(ki)))
2] (4.10)

In principle the six fitting variables S2
0 , σj, ∆Rj, ∆E0, C3 and C4 may be floated

for each scattering path, however this should be avoided. Since χ(k) is effectively

oscillatory the Nyquist limit provides a boundary on the number of independent data

points in an EXAFS spectrum [76]. The number of independent data points N is

given by equation 4.11 where δk and δR are the useful ranges of the spectrum in

k-space and its transform in R-space, respectively.

N =
2

π
δkδR (4.11)
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Because of the information limit it is important that the number of fitted pa-

rameters not exceed the number of independent data points given by Equation 4.11.

This is often desirable: If each path is fitted independently the results do not give

much information about the actual material structure, and if it is necessary to float

each path independently to fit the data to the experiment then the original assumed

structure is probably incorrect. It is far better practice to link the paths together

with common fitting variables. For example it usually makes physical sense to keep

S2
0 and ∆E0 consistent for all fitting paths. Similarly the Debye-Waller factors σj

might be consistent for all atoms of the same species, and the changes in path length

∆Rj might be fixed as proportional to the original distance Rj. The relationship

between the variables in each path should be indicative of the expected distortions

in the crystal structure [72].

4.3 Background Subtraction and Data Preprocess-

ing

The EXAFS oscillations χ(E) are obtained from the measured absorption via Equa-

tion 3.7. The background absorption coefficient µ0 can be calculated as the absorp-

tion from an isolated atom. Ideally this atomic absorption follows the Victoreen

formula given by Equation 4.12 for X-ray wavelength λ [77, 78]. The coefficients C

and D can be obtained from standard tables or from fitting to the pre-edge absorp-

tion spectrum.

µ ∼ Cλ3 +Dλ4 (4.12)

In practice this method is rarely used. Instead the measured µ is normalized

by fitting a polynomial to the pre-edge portion and an n-point cubic spline to the

post-edge portion. This is done automatically using the AUTOBK program written

by M. Newville [79], which is part of IFEFFIT [73]. An example of an EXAFS

spectrum, the background, and the EXAFS oscillations are shown in Figure 4.3.
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Figure 4.3: An L3 EXAFS µ(E) spectrum of gold. The background was cal-
culated with IFEFFIT, and the extracted EXAFS oscillations χ(E) are shown.

The EXAFS χ(E) is easily extracted from the normalized µ(E) simply by sub-

tracting 1 and ignoring the low-energy XANES features. χ is usually expressed in

terms of electron momentum k =
√

2me

~2 (E − E0), where E0 is the energy of the

absorption threshold. The exact position of E0 is usually not clear from the spec-

tra: there can often be large pre-edge features which represent transitions to bound

states. Therefore it is common to take the energy of the peak of the first derivative at

the absorption threshold as E0. Since EXAFS fitting involves the floated parameter

∆E0 the exact position of E0 is not crucial and can be refined after fitting.

For display purposes the EXAFS oscillation χ(k) is often weighted by kn for

n = 1, 2, 3. This process visually enhances the oscillations at high k which are

usually extremely weak but are also fairly important for EXAFS analysis. Indeed

the calculated weighted knχ(k) is often fitted to the weighted experimental data;

this has the effect of enhancing the contribution of distant neighbours. A rigourous

EXAFS fit should be independent of the choice of k-weighting, so comparing fittings

with multiple k-weights can sometimes help in decoupling the fitting parameters.
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4.4 First Shell Fitting

One of the benefits of calculating the individual scattering paths (the technique that

FEFF uses) is that an EXAFS fit can be performed in either k- or R-space (an

expression analogous to Equation 4.9 for R-space is obtained by simply replacing k

with R). As long as the R-space fit is made with both the real and imaginary parts

the two fits are essentially equivalent.

One advantage in fitting inR-space is that it allows fitting a structure to a selected

distance range. One technique that is often used for preliminary characterization of

a data set is “First shell fitting”. Here the R-space fit is limited to the nearest

scattering atoms at low R. First the useful range in k-space is chosen such that the

low energy XANES features and high energy noise are excluded. The limited k range

is then transformed to R-space, and the data is fit to the R-space transforms of the

scattering paths. Since they are calculated, the R-space transforms of the scattering

paths are just as accurate as the calculated paths in k-space, and the information

loss encountered by transforming the measured spectra is minimal.

First shell fitting is a relatively easy way to estimate the type and number of

nearest neighbours without trying to obtain the longer ranged structure. Although

the limited R-range often significantly reduces the number of independent data points

given by equation 4.11, there are usually sufficient data points to accurately fit a

single scattering path. Since this thesis deals with amorphous materials with very

little long-range order, first shell fitting is a useful technique for easily characterizing

the differences between samples.
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Chapter 5

Density Functional Theory

Density functional theory (DFT) is a fairly efficient and flexible technique for

calculating the band structure and electronic properties of materials. While the bulk

of this research has focused on EXAFS, which is accurately calculated by a single

electron model with “muffin-tin” potentials, the XANES and XES data acquired

in this project was interpreted with the aid of DFT calculations performed using

the WIEN2k [80] and StoBe [81] software packages. The following sections briefly

describe the theoretical basis and practical approach to DFT calculations using the

aforementioned software packages.

5.1 A Self-Interacting Electron Gas

The many-body problem of finding the ground state energy of a system of many

electrons and atomic nuclei is obviously a very complex one. For Ni number of atoms

of species i with atomic number Zi and n species of atoms the problem involves

finding simultaneous solutions for
∑n

i Ni (1 + Zi) particles (under the assumption

that the nuclei can be treated as a single particle). Indeed, the full many-body

Hamiltonian for this system is given by Equation 5.1 [82].

H =− ~
2

2

∑
i

∇2
~Ri

Mi

− ~
2

2

∑
i

∇2
~ri

me

− 1

4πε0

∑
i,j

e2Zi∣∣∣~Ri − ~rj

∣∣∣

+
1

8πε0

∑

i6=j

e2

|~ri − ~rj| +
1

8πε0

∑

i 6=j

e2ZiZj∣∣∣~Ri − ~Rj

∣∣∣

(5.1)

In Equation 5.1, Ri and Mi are the position and mass of nucleus i, respectively,
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and ri and me are the position and mass of electron i, respectively (obviously the

mass is the same for all electrons). The last three terms in Equation 5.1 describe

the Coulomb interactions between the nuclei and the electrons, and the presence

of the double sum in each makes this Hamiltonian intractable. A reasonably accu-

rate solution to the Hamiltonian may be acquired, however, under some simplifying

approximations.

The first major step in solving this problem came from Hohenberg and Kohn

[83,84]. Following their procedure, we consider the case of a self-interacting electron

gas under some external potential V (~r)ext, described by Equation 5.2 [85]. Here T

and U are the electron kinetic energy and electron-electron interaction operators, re-

spectively, as described by the second and fourth terms in Equation 5.1, respectively.

H = T+ U+
∑

i

V (~ri) (5.2)

For a ground state wavefunction |ψ0〉, the ground state particle density is given by

n(~r) =
∑

i〈ψ0|δ(~r − ~ri)|ψ0〉 [84]. In terms of the ground state density, the dynamics

of the system are described by Equation 5.3.

E[n] = 〈ψ0|T+ U|ψ0〉+

∫
d~rn(~r)Vext(~r)

= F [n] +

∫
d~rn(~r)Vext(~r) (5.3)

An immediate result of Equation 5.3 is that contribution to the total energy

from the kinetic energy and mutual interaction of the electrons is contained in the

functional F [n], and this functional is independent of the external potential. In other

words, the functional F [n] is the same for any material, regardless of its crystal

structure. The most important theory of Hohenberg and Kohn, however, is that

the ground state density has a one-to-one correspondence to the external potential

[85]. The proof is as follows (see Reference [85] for more detail): consider two

different external potentials V1(~r) and V2(~r) (i.e. V1 and V2 differ by more than just

a constant), with associated Hamiltonians H1 and H2 and associated ground state
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wavefunctions |ψ1
0〉 and |ψ2

0〉. Assume for the moment that somehow the ground

state densities are the same for both systems. Since |ψ(1,2)
0 〉 are the the ground

state wavefunctions, they have the minimum energy for each system (E1 and E2,

respectively). Therefore the energy of Hamiltonian H1 operating on wavefunction

|ψ2
0〉 is greater than E1:

E1 = 〈ψ1
0|H1|ψ1

0〉
< 〈ψ2

0|H1|ψ2
0〉 (5.4)

Since H1 and H2 differ only by the external potentials, we can write:

E1 < 〈ψ2
0|H2 + V1 − V2|ψ2

0〉

< E2 +

∫
d~r (V1(~r)− V2(~r))n(~r) (5.5)

Following the same procedure with the alternative indices we obtain:

E2 < E1 −
∫
d~r (V1(~r)− V2(~r))n(~r) (5.6)

Adding Equations 5.5 and 5.6 suggests that E1+E2 < E1+E2, a clear contradiction.

Therefore a distinct external potential is sufficient to define a unique ground state

density, and conversely each ground state density is sufficient to define a unique

external potential. The ramifications of this theory are profound: if the inter-electron

dynamics (F [n]) are a functional of the ground state density, which is uniquely

defined by the external potential, then any observable of the system can be derived

from n(~r). Soon after Hohenberg and Kohn’s work was published Mermin generalized

their results to finite temperatures [86].

5.2 Electrons in a Solid

In some respects the electrons in a solid can be treated as an inhomogeneous, self-

interacting electron gas which has an additional interaction with the atomic nuclei.
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Since the atomic nuclei are considerably more massive than the electrons, they are

often treated as static charges (the Born-Oppenheimer approximation) [83]. The nu-

clear kinetic energy term in Equation 5.1 is then zero, and the nuclear self-interaction

term is simply a constant. If the Born-Oppenheimer approximation is used then the

effect of the nuclei is simply an external potential, and the electron gas of Hohen-

berg and Kohn is recovered. Unfortunately while Hohenberg and Kohn illustrate

the importance of n(~r), they offer no prescription for finding it [82]. The end result

of Hohenberg and Kohn is Equation 5.7, where n1(~r, ~r
′) is the one-particle density

matrix, and C2(~r, ~r
′) is the two-particle correlation function [85]. This equation still

cannot be solved analytically.

E[n] =

∫
d~rVext(~r)n(~r) +

e2

8πε0

∫
d~rd~r′

n(~r)n(~r′)
|~r − ~r′| + T [n] + Exc[n] (5.7)

T [n] =
~2

2me

∫
d~rd~r′∇~r∇~r′n1(~r, ~r

′)|~r=~r′

Exc[n] =
~2

2me

∫
d~rd~r

C2(~r, ~r
′)

|~r − ~r′|

A method for solving Equation 5.7 was provided by Kohn and Sham [87] based

on two approximations summarized as follows [84]:

1. The ground state density is equivalent to the ground state of a collection of

non-interacting particles in an auxiliary system.

2. The Hamiltonian for the auxiliary system is constructed with the normal kinetic

energy operator, but the auxiliary potential is treated as an effective local

potential.

These approximations work best for n(~r)s which are smooth and slowly varying [87],

however they work quite well in a number of practical applications [84]. The new

Hamiltonian is given by Equation 5.8, where the electron-electron repulsion is given

by the Hartree-Fock potential.
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H = − ~2

2me

∑
i

∇2
~ri

+
e2

4πε0

∫
d~r′

n(~r′)
|~r − ~r′| + Vxc + Vext (5.8)

Vxc =
δExc[n]

δn

Exc[n] =

∫
d~rn(~r)εxc)

With the above Hamiltonian, a process for solving the system is available. The

basic theory obtained by Kohn and Sham theory suggests that the exact ground state

density of an N -electron system n(~r) can be assembled from a set of single-particle

wavefunctions φi(~r) which are the N lowest-energy solutions to the Hamiltonian in

Equation 5.8 [82]. Since the new Hamiltonian makes a set of linear Schrödinger

equations, we have an approach for an analytic solution. It is important to point

out that the single-particle wavefunctions φi(~r) are not the actual wavefunctions

of the electrons. The “single-particles” they represent are fictitious and only the

combination of all the fictitious “single-particle” wavefunctions produces a physically

relevant result [82].

In order to solve Equation 5.8, we need an expression for the exchange-correlation

potential, εxc. One of the simplest, and yet quite accurate, approximations for εxc

is the local density approximation (LDA). Here εxc is a function of n(~r) only. An

extension to LDA is the generalized gradient approximation (GGA), where εxc is

a function of both n(~r) and ∇~rn(~r). Using the actual gradient ∇~rn(~r) directly is

actually worse than LDA, because the approximated gradient tends to behave in an

unphysical manner at very small and very large values of ~r [88]. The “generalized”

gradient fixes these problems, and as a result usually produces better results than

LDA [84]. The exact process of “generalizing” a gradient is not unique, however,

and several different versions exist. See References [89–91] for example.

The actual method of solving Equation 5.8 is an iterative process. An initial

guess of n0(~r) is made, and the single-particle wavefunctions φi(~r) are decomposed

into a suitable basis set [82]. The equations are solved using the guessed n0(~r), and

the resulting φi(~r) are obtained. These can then be used to construct a n1(~r), which
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is then reinserted into the Hamiltonian in Equation 5.8 to solve for a new set of φi(~r)

wavefunctions. This process continues until the difference between successive ground

states ni(~r) and ni−1(~r) is within some pre-defined tolerance [84].

It is of interest to point out that while the work of Hohenberg and Kohn on the

dynamics of an inhomogeneous electron gas and the use of the Born-Oppenheimer

approximation by Kohn and Sham lead to the formulation of DFT; DFT itself is not

limited to those constraints. DFT has also been applied to proton-neutron “gases”

to construct models of atomic nuclei, and the Born-Oppenheimer approximation

can be dropped altogether to model lattice distortions or materials with very light

elements [82].

5.3 WIEN2k Software

The WIEN2k program, developed by Karlheinz Schwarz and Peter Blaha at the Tech-

nische Universität Wien, is an augmented plane wave (APW) and local orbital (LO)

approach to DFT calculations [80]. WIEN2k is designed for crystalline materials,

and takes full advantage of crystalline symmetry and periodic boundary conditions

to reduce the complexity of the problem.

In WIEN2k the basis functions are APWs [80]. These functions take the form

of spherical harmonics within a characteristic radius of the nuclei (referred to as the

“muffin-tin” radius, RMT ), and smoothly transition to Bloch-type plane waves in the

regions between nuclei (the interstitial region), given by Equation 5.9 [82].

φ
~k
~K
(~r, E) =





1√
V

exp
(
i
(
~k + ~K

)
· ~r

)
r /∈ Ri

MT

∑
`,mA

i,~k+ ~K
`,m µi

` (r, E)Y `
m (r̂) r ∈ Ri

MT

(5.9)

In the above equation V is the unit-cell volume, µi
` is the radial portion of the

spherical wave, Y `
m is the spherical harmonic, and Ri

MT is used as a short-hand for

denoting when ~r is within the “muffin-tin” radius of nuclei i or in the interstitial

region. Both Ai,~k+ ~K
`,m and energy E are parameters that are calculated during the

iterative cycles.
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The presence of the unknown energy E in the radial portion µi
` makes these

equations fairly difficult to solve, and in practice linearized augmented plane waves

(LAPWs) are almost always used instead. Here the term “linearized” refers to the

fact that a first order expansion of the radial component µα
` about a known energy

E0 is used, making the equation linear in energy E as shown in Equation 5.10 [82].

φ
~k
~K
(~r, E) =





1√
V

exp
(
i
(
~k + ~K

)
· ~r

)
r /∈ Ri

MT

∑
`,mA

i,~k+ ~K
`,m

(
µi

` (r, E0) + (E0 − E) ∂
∂E
µi

` (r, E)
∣∣
E=E0

)
Y `

m (r̂) r ∈ Ri
MT

(5.10)

In principle all electrons can be treated with a (L)APW basis, but it is usually

only used for valence states. The core electrons are very tightly bound to the nuclei,

are always within RMT , and are essentially the same as those in a free atom (although

they may have a slightly different binding energy than the free atom case). To save

time the free atom orbitals are often used for these states. To treat “semi-core”

states which are not valence level but still extend quite close to RMT (such as, for

example, Se 3d states) the LAPW (or APW) basis set can be further modified by

adding local orbitals (LOs) to it. These are like those in Equation 5.10 save there are

no plane waves (i.e. φ(~r) = 0 for ~r /∈ Ri
MT ) and an additional radial function with a

second energy E2 is added to the part inside Ri
MT . LOs usually represent semi-core

states very accurately, and are much quicker to compute than the large number of

regular LAPW functions it would take to describe such a state [82].

Setting up a WIEN2k calculation is fairly straightforward. The unit cell needs

to be described, and the Ri
MT values chosen. Usually these are selected in such a

way that the atomic spheres from neighbouring atoms are almost touching, as this

greatly reduces the number of plane-wave components required without significantly

affecting the accuracy of the calculation. As suggested by Equation 5.10, the actual

iterative cycles are conducting in reciprocal space (~k-space). A grid of ~k points must

be specified; the calculation will only be evaluated at these points and interpolated

in between. In the calculations I performed, about 1000 ~k points are typically used,

corresponding to a 10 × 10 × 10 grid for a cubic unit cell. Finally the maximum
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expansion of plane waves must be specified. The best figure-of-merit for plane wave

expansion is fixing the product of the maximum wave vector Kmax and the minimum

atomic sphere Rmin
MT to a specific value [82], usually ∼ 7 is sufficiently accurate [80].

WIEN2k is a very flexible program; it is scalar relativistic and can perform spin-

polarized LSDA or GGA calculations, fixed-spin calculations, and antiferromagnetic

calculations. It can also incorporate Hubbard-like potentials (the so-called LSDA+U

or GGA+U calculations), spin-orbit interactions, and hybrid exchange functionals

(usually Hartree-Fock like on-site exchange functionals) for correlated systems [80].

In the context of this research a simple GGA calculation using the form derived by

Perdew, Burke, and Ernzerhof (commonly called PBE96) [91] was sufficient.

5.4 StoBe Software

The StoBe-deMon program, developed primarily by Klaus Hermann of the Fritz-

Haber-Institut der Max-Planck-Gesellschaft and Lars Pettersson of Stockholm Uni-

versity, is a linear combination of atomic orbitals (LCAO) using a Gaussian type

orbitals (GTO) approach to DFT calculations [81]. StoBe is designed for clusters

and molecules, and takes advantage of the vacuum surrounding isolated geometries

to truncate basis function expansions.

The basis sets used by StoBe are basically the same as the spherical wave func-

tions used by WIEN2k, save the radial component involves a Gaussian (recall that

for a free atom the radial component involves a ∼ exp(−cr) term), as described by

Equation 5.11 [92].

φi
`,m(~r) =

∑

`,m

Ai
`,mr

` exp
(−αr2

)
Y `

m (r̂) (5.11)

While it takes a large number of GTOs to accurately describe electron behaviour

near the nuclei, since they quickly truncate at large ~r, they are particularly suitable

for isolated systems.

Like WIEN2k, StoBe is a very flexible program for calculating cluster, surface,
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and molecular systems. The exchange-correlation potential can be specified in three

parts; the overall type (local, non-local, or mixed), the type used for the exchange

potential, and the type used for the correlation potential (the latter two are typically

standard GGA forms like PBE96, as previously discussed). The basis sets for each

atom and angular symmetry must be specified for valence (using the “auxiliary” key-

word, basis sets for both charge density and exchange-correlation must be provided),

core (using the “orbital” keyword), and model core potentials (using the “potential”

keyword) states.

For the purposes of this research, StoBe was used to model the XAS from small

clusters of disordered ring-like or chain-like Se. The non-local Becke [89] potential

was used for the exchange potential, and the non-local Perdew [93] potential was

used for the correlation potential.

5.5 Core-hole Effect

The X-ray absorption or emission spectra can be calculated with WIEN2k by mul-

tiplying the dipole-allowed DOS with the transition probabilities [94]. The ground

state calculation works well for XES, but properly treating the core-hole effect in

XAS requires a bit more effort. The most straightforward, and probably the best,

method of including the effect of the core-hole is to generate a supercell (at least

2 × 2 × 2 normal cells) and remove the appropriate core electron from one of the

absorbing atoms. This electron can be placed in the conduction band for a near-edge

XAS calculation (for “pre-edge states), or added as a background charge for higher

energy XAS states (nearing the EXAFS region).

While X-ray spectra is merely a side-feature of WIEN2k, it is one of the main

aspects of a StoBe calculation. In this respect the core-hole effect is, perhaps, dealt

with more accurately in StoBe. For a proper XAS spectra three calculations are

performed; a ground state model, a transition model, and an excited state model.

Because of the choice of orbital functions and pseudopotentials in StoBe calculations

a fractional core-hole is often a better choice than removing an electron completely.
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Chapter 6

Sample Preparation and X-ray Measure-

ments

Over 300 X-ray spectra have thus far been obtained in this research. Amorphous,

polycrystalline, and crystalline selenium as well as arsenic-selenium alloys with 0.2%,

0.5%, 2%, 6%, 10%, 19%, and 39% were synthesized and studied. The following

sections outline the preparation and measurement of the samples.

6.1 Sample Preparation

The selenium films were prepared by members of Safa Kasap’s group, specifically

George Belev and Dan Tonchev, in the Department of Electrical Engineering at the

University of Saskatchewan. The samples were prepared by vapour deposition of

pure (99.999%) selenium and arsenic-selenium alloys on 0.5 mm polycarbonate or

aluminum foil substrates [95]. The different arsenic concentrations in the arsenic-

selenium alloys were 0.2%, 0.5%, 2%, 6%, 10%, 19%, and 39% (the last is arsenic

triselenide; As2Se3) by atomic composition. The process occurred as follows: a

crucible of selenium or arsenic-selenium alloy was heated to a boil in a low pressure

chamber. The resulting vapour rose to the top of the chamber where it cooled and

solidified on the underside of the substrates. This vapour deposition process formed

homogenous films and the process lasted until the films were between 24 µm and 35

µm thick. This range of thickness was chosen to give an absorption step of roughly

2 at the the selenium K-edge. The thickness of the films was checked afterwards

with a micrometer by averaging several thicknesses across the sample face. A metal
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mask was used to create specific geometries of film; the most common one used was

a circle of 5 mm diameter.

Most of the samples were deposited on room-temperature substrate, although

some were deposited on cold (held at ∼ 5◦ C) or hot (held at ∼ 50◦ C) substrate.

The substrate temperature has a significant impact on the hole lifetime and mo-

bility [4, 32]. A cold substrate decreases the transition time between the vapour

phase and the amorphous solid phase, and is therefore expected to make the sam-

ple “more amorphous” [96]. Conversely, a heated substrate increases the transition

time between the vapour phase and the solid phase, and is expected to increase the

homogeneity surrounding defect sites [95].

Pure crystalline tSe and mSe crystals were grown for use as reference standards.

The tSe crystals were grown from vapour produced from the sublimation of pure

selenium kept at a temperature of 200◦C in a closed glass vessel for 7-10 days. The

crystals grown by this method have needle-like shape that is typical for tSe [97].

mSe crystals were grown by a saturated solution of selenium in methylene iodide

(CH2I2) [98]. The tSe crystals were ground into a fine powder (less than 50 µm

grain size). The mSe crystals were essentially grown in powder form, and were

not further modified since mechanical stress is known to induce conversion to the

trigonal phase [99]. These powders were homogeneously mixed with boron nitride

to obtain sufficient volume to measure easily while keeping the optimal absorbance

(note boron nitride is essentially transparent to hard X-rays). The ratio of selenium

to boron nitride was chosen to produce a similar absorption step to that of the

arsenic-selenium alloy films. Unfortunately the finest grain size for the tSe powder

and the grain size of the mSe crystals were larger than the ideal thickness for selenium

K-edge EXAFS, and the irregularity in the grains caused significant pin-hole effect

problems in transmission measurements.

To examine the process of crystallization, some of the film samples were annealed

in a convection oven. The film samples with 6% or less arsenic were annealed at 100◦C

for 24 hours. The annealing temperature was substantially higher than the highest

glass transition temperature for these materials (about 80◦C for the Se:6%As alloy).
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The films with 10% and 19% arsenic were annealed for about 100 hours at 110◦C

(the maximum temperature of the furnace). This temperature was only slightly

higher than the highest glass transition temperature (about 106◦C for Se:19%As).

Finally, aSe and aSe:10%As films were measured as prepared, and then remeasured

immediately after annealing at 60◦C, 80◦C, and finally 100◦C for three hours each.

6.2 X-ray Spectroscopy Measurements

These materials were extensively measured at various times and at various beamlines

over a two year period. The basic outline of these measurements is given in Appendix

A. The EXAFS and XANES measurements from the HXMA beamline were the most

useful in this research. Of these, the room temperature transmission measurements

of the Se K-edge, starting at 12 658 eV [100], were of excellent quality, with very

low noise out to ∼1600 eV above the absorption edge (kmax ∼ 20). Low temperature

transmission measurements of the Se K-edge were also of good quality, but the added

mechanical noise from the cryostat added a significant amount of noise to the spectra

above k ∼ 16. In all cases the Se data were calibrated to a common Se reference

film measured jointly with the sample. Typically each measurement was repeated

2 or 3 times to check for consistency. To improve statistics the 2 or 3 scans were

then averaged together. For the room temperature measurements, the reference was

placed behind the sample and measured with a third ion chamber. In the case of

low temperature measurements the reference was placed before the I0 ion chamber

at a very shallow grazing incidence to the beam, with a photodiode directly behind

it. The absorption threshold E0 was set to 12 658 eV [100] using the peak of the

first derivative near the absorption edge.

The As K-edge starts at about 11 867 eV [100], which is unfortunately quite

close to the Se K-edge. These measurements could only extend as far as kmax ∼
14. The concentration of As was sufficient to obtain transmission measurements for

concentrations of 2% or more. These concentrations were still relatively low, and the

poor statistics increased the noise in the spectrum occasionally further reducing the
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useful k-range. Several scans with the 32-element germanium detector produced a

decent quality measurement for the 0.2% and 0.5% As samples. The Saturn-Vortex

measurements were all of rather poor quality. In all cases the As data were calibrated

to a common Au reference film (for obvious health reasons a pure As reference was

not available) set up in the same geometry as described for the Se reference film.

The absorption threshold of the Au L3 edge was set to 11 919 eV [100] using the

peak of the first derivative near the absorption edge.

The tSe and mSe crystalline standards did not give very good transmission or

fluorescence measurements. In the former case the grain sizes were too large for a

homogenous sample, in the latter the high concentration of selenium caused excessive

dead-time in the detector. The tSe data is of some use, while the detector dead-time

caused the intensities of the EXAFS features to be supressed, the features do occur

at the proper positions allowing some quantitative analysis. For mSe the noise in the

spectrum precludes any EXAFS analysis, and these measurements are of qualitative

value only.

Additional rather thin (∼ 10 µm) and rather thick (∼ 80µm) aSe films were

measured to test the accuracy of the tabulated X-ray absorption cross-sections from

the McMaster [101], Henke [55], Elam [100], Chantler [102], and Cromer-Liberman

[103] databases. The measured absorption step was essentially the same as the

predicted absorption step, as shown in Figure 6.21. This result is not surprising.

The slight discrepancy at the thin end is probably caused by pin-holes or fractures

in the fragile film, which would have the effect of creating a smaller average thickness

across the X-ray beam profile. The discrepancy at the thick end is probably caused

by the thick film buckling against the substrate (the thicker films did not adhere

well to the polycarbonate). When measured with a micrometer this would make

the film appear thicker. Any cavities between the film and the substrate would be

transparent to hard X-rays and have no effect on the absorption.

1Although obviously the Chantler database is significantly different than both the other four
databases and my measurements. The Chantler database was, however, focused on improving
accuracy for energies from 30 to 3000 eV, or above 30 keV [102], and the poor results at 13 keV
are probably due to a simplistic extrapolation between the two extremes.
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Figure 6.1: A comparison of the X-ray absorption step with respect to sample
thickness derived from measurement and several X-ray databases. Here the
absorption step was calculated as the difference µ(E2 = E0 + ∆E) − µ(E1 =
E0 − ∆E) where E0 is the 1s absorption threshold of Se (at 12658 eV) and
∆E = 30 eV.

For the sake of interest the Se L2,3-edge XANES was measured at the SGM beam-

line. The Se L3- and L2-edges occur at 1433.9 eV and 1474.3 eV [100], respectively.

The Se L2,3 spectra do not show any interesting features, nor do they show any

sensitive dependence on crystallinity or arsenic concentration. I was unable to get

a signal from the As L2,3-edge XANES at 1323.6 eV and 1359.1 eV [100], probably

due to the comparatively low concentrations of As (at the time As2Se3 samples were

unavailable). This lack of spectral information is not unexpected; the valence states

of Se and As are the 4p electrons, and by dipole selection rules the 2p absorption

measurement would only probe the relatively unimportant and completely empty 4d

states. The available literature on the Se L2,3-edge only reports interesting results

when the selenium is near a transition metal [104] or has hybridized states from a

surrounding molecular system [105]. These measurements were not accurately cal-

ibrated since at the time I did not have a good reference sample for that energy

range and the spectra were not used in any analysis. They are reported here only
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for completeness.

Finally the Se M4,5-edge XANES and XES were measured at the PGM beamline

and BL8, respectively. The Se M4,5-edge occurs at 54.6 and 55.5 eV [100], an unusual

energy range for soft X-ray beamlines. The M4,5-edge is of interest since it excites

3d electrons which will, by the dipole selection rules, probe the 4p valence states. To

that end the M4,5-edge spectra will give complementary information to the K-edge

spectra, but the M4,5-edge spectra will have a much higher energy resolution. The Se

K-, L3 -, and M4 ,5 -edge XANES are shown in Figure 6.2. The Se L2 -edge XANES

is essentially the same as the L3 -edge XANES and is not shown. Note the similarity

between the K- and M4 ,5 -edge XANES spectra.

The shape of the Se M4,5-edge XANES measurement agree with the only available

spectra in the literature [106]. The As M4,5 edge has a similar shape to that of Se, the

As M4,5 edge occurs at ∼ 42 eV. The Se M4,5 edge of tSe was calibrated to the values

in the Elam database [100] which are the same as those reported by Givens [106].
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The other spectra were then calibrated to tSe. Unfortunately the Se M4,5-edge XES

was not calibrated. Due to the limitations of the beamline, the grating spectrometer

was centred on the Se M4,5-edge but the monochromator could not go to that energy

range. Instead the monochromator was tuned to ∼ 170 eV to hit the Se M2,3-edge

(3p-states) which could excite 3d -states through their decay process. There was the

additional benefit that the small amount of third order light from the undulator

would be of the correct energy to excite the M4,5 edge. Since there is no known

spectrum of the Se M4,5-edge available in the literature, and the absorption and

emission spectra were measured at different beamlines, the XES data could not be

calibrated. Because of this the XES is only used to provide a qualitative comparison

to the calculated valence states.
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Chapter 7

Structural Analysis

Determining a consistent long range structure for aSe:x%As is not a trivial task.

Since aSe spontaneously crystallizes at room temperature, the amorphous structure

should not be too far removed from the trigonal crystalline structure. However it

is also clear that the structure of aSe should not have any long range order. The

following sections outline the preliminary analysis of the EXAFS spectra and the

implications the spectra have on the possible structure of aSe.

7.1 First Shell Analysis

The first shell, loosely defined as the region in R-space from 1 Å to 3 Å, was fit for

all EXAFS data sets. The fitting was performed in R-space (using the full real and

imaginary data sets) with a k-weight of 2. Only a single path was fit — the single

scattering path between the core atom and its nearest neighbour. Since the arsenic

concentrations in all samples except As2Se3 was quite low, the scattering from an Se

core atom was assumed to be off an Se neighbour. Obviously some of the scattering

paths in the As-doped materials will be from Se to As atoms, but since the scattering

factors of As and Se are almost identical [107] this simple model is sufficient for a

first shell analysis. Since the structure of As2Se3 consists of a “web” with the As

coordinated to 3 Se atoms and with the Se atoms coordinated to 2 As atoms [108],

for As2Se3 an Se to As scattering path was assumed.

For each data set four parameters were floated and determined by the fit. These

were NS2
0 , σ

2, ∆r, and ∆E0. Here the term NS2
0 is used because the multiplicity of

the scattering path, N (i.e. the number of nearest neighbours) cannot be decoupled
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from the amplitude reduction factor S2
0 (expected to be somewhere between ∼ 0.6

and ∼ 1.0). The variable σ2 represents the mean (Gaussian) displacement of the

scattering atoms. This is usually due mostly to thermal vibrations, but can also be

caused by minor structural disorder [69]. The variable ∆r represents the average

deviation from the ideal bond length, which was assumed to be 2.32 Å in the

calculated scattering paths [28]. Finally ∆E0 represents the shift from the absorption

threshold energy, assumed to be located at the peak of the first derivative at the

absorption edge. Although the ∆E0 parameter is of no physical interest, choosing

the E0 energy by inspecting the first derivative of the absorption is arbitrary, and

the true E0 is almost always at higher energies. However E0 cannot be accurately

determined by merely inspecting the spectrum, and therefore ∆E0 should be a floated

parameter. It should be pointed out that it might be reasonable to assume that the

S2
0 parameter should be the same for all Se K-edge (or As K-edge) measurements, or

perhaps for all Se K-edge (or As K-edge) measurements at a specific temperature.

Keeping S2
0 consistent across multiple datasets would allow it to be decoupled from

the number of nearest neighbours (represented by N). However even in an ideal case

EXAFS can only determine the number of nearest neighbours to within an error of

∼ ±25% [109], and since these measurements were taken at several different times

each with slightly different equipment set-up, it is probably best to keep the two

variables coupled together.

First shell fitting of the entire EXAFS data set is an important check on the

fidelity of the data. We expect similar samples to have similar bond lengths, struc-

tural and thermal disorder, and number of nearest neighbours. Since Se and As have

4 and 3 4p valence electrons, respectively, we expect Se and As to be bonded to 2

and 3 neighbours, respectively (on average, anyway). Numerically, the Debye-Waller

factor σ2 should be greater than ∼ 0.0006 Å2 [110] and ∆E0 should be positive.

If the results for a data set deviate from these values, or are far from the results

from similar materials, this is an indication that perhaps something was wrong with

the sample or the measurement and that data set should be discarded from further

analysis.

60



0 10 20 30 40 50

0

1

2

3

4

5

6

4

3

2

1

2.4 2.3 2.2 2.1

2 at 30K

 

Bond Length, r + r [Å]

2 at 300K

 

 

 Amorphous, 30K, Se edge
 Polycrystalline, 30K, Se edge
 Amorphous, 300K, Se edge
 Polycrystalline, 300K, Se edge

Arsenic Concentration [%]

D
eb

ye
-W

al
le

r,
 

2  [×
10

-3
 Å

2 ]
Anomalous data

 Amorphous, 30K, As edge
 Polycrystalline, 30K, As edge
 Amorphous, 300K, As edge
 Polycrystalline, 300K, As edge

 

E
X

A
FS

 A
m

pl
itu

de
, N
S 02

 

3-coordinate As with Se

2-coordinate Se with As

Anomalous data

2-coordinate Se with Se

tSe coordination

aSe coordination

 
 

Large variability
in As coordination

Figure 7.1: The fitting values for first shell fitting of all datasets. Each point
represents a complete EXAFS measurement. Important clusters of points are
labeled. Data points that have anomalously low σ2 or anomalously high NS2

0

values are also identified. In this figure, all samples that have been annealed
are labeled as “polycrystalline”.

61



The fitted structural parameters NS2
0 , σ

2, and r + ∆r and the arsenic concen-

tration for all datasets are shown in Figure 7.1. Here each datapoint represents a

complete measurement, and each measurement is shown in each of the 4 panels of

the graph. Plotting the results in this manner makes visual analysis of the results

easy. For example, since the Debye-Waller factor partially measures thermal disor-

der, we expect the σ2 values for low temperature (T ∼ 30 K) measurements to be

smaller than room temperature (T ∼ 300 K) measurements. Looking at the top half

of Figure 7.1 we see this is indeed the case for Se K-edge measurements.

In the top half of Figure 7.1, we see that there appears to be a slight differ-

ence in bond length between As-Se bonds probed by As K-edge EXAFS, and Se-Se

bonds probed by Se K-edge EXAFS. Note that the cluster of 5 points from room

temperature Se K-edge EXAFS that overlap with the As-Se bond length are from

amorphous As2Se3 (trace horizontally across the common σ2 axis to see that these

points contain 40% As), so indeed these are As-Se bonds. As previously mentioned,

this quadrant shows a clear grouping of room temperature and low temperature σ2,

as we expect. The σ2 disorder around As atoms, however, varies quite a bit and

shows no dependence on temperature.

In the bottom half of Figure 7.1 we see that there is a separation in the cou-

pled amplitude reduction and number of neighbours parameter (the NS2
0 variable)

based on polycrystallinity in the Se K-edge EXAFS. This is somewhat expected;

previous reports on the subject suggest that aSe has a higher coordination number

than tSe [8]. There is no real temperature dependence, which is good; lowering the

temperature should not increase the number of nearest neighbours. There is still a

significant spread in NS2
0 , especially for pure polycrystalline Se. This either suggests

a significant variability in the length of helical chains in the crystal structure or that

many of the samples have cracks or pin-holes. For the first case, since a Se atom at

the terminal end of a chain has only 1 bonded neighbour, many short chains would

therefore reduce the average number of neighbours for the material from the ideal

value of 2, and therefore would affect NS2
0 . For the second case, cracks and pinholes

transmit more light and therefore reduce the amplitude of EXAFS oscillations from
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their ideal value, again affecting NS2
0 . Just as we expected, As has a larger NS2

0

than Se suggesting that As is bonded to more neighbours than Se (since we expect

S2
0 to be roughly equivalent in each case). There is, however a large variation in NS2

0

for As K-edge EXAFS and this suggests that there is a wide variation in possible

bonding environments for As that are sensitive to the method of sample preparation.

There is no clear trend in NS2
0 for As based on As concentration. In one sense this

is reassuring, since the similarity in spread of NS2
0 for very small As concentrations

(0.02% and 0.05%) to larger concentrations (6% and 10%) indicate that the mea-

surements of low As concentrations are “good” (the signal-to-noise ratio obviously

increases for higher concentrations of As). On the other hand, this suggests that per-

haps sample inhomogeneity is a larger factor in the As bonding environment than

the overall concentration. The data from As2Se3 can be used as a fingerprint of what

As bonded to 3 Se, and Se bonded to 2 As looks like. Since the As K-edge NS2
0 for

the other materials is between that of the Se K-edge NS2
0 and the As K-edge NS2

0

for As2Se3, we can therefore conclude that the measurements show that As-dopants

have between 2 and 3 nearest neighbours — which is more or less what was expected.

Figure 7.2 shows the comparison of NS2
0 with σ2 and the comparison of the bond

length with the As concentration — the two possible comparisons not included in

Figure 7.1. The first plot, NS2
0 against σ2 merely reveals the well-known correla-

tion between σ2 and NS2
0 . This is another reason why accurately determining the

number of nearest neighbours with EXAFS is difficult [109]. The second plot, bond

length against arsenic concentration, suggests that the Se-Se or Se-As bond length

is independent of the As concentration — which again is more or less what was

expected.

The fit values are summarized in Table 7.1. The results for each data set were

averaged together according to measurement temperature, measurement edge, and

state (amorphous or polycrystalline). The “anomalous” datasets indicated in Figure

7.1 were not included. Apart from a single poor fit (the As K-edge of pSe:2%As,

measured at 30 K, with a R-factor of 0.2) all the fits are quite good. These results

suggest that the Se-Se bond length is slightly longer than the Se-As bondlength (the
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Table 7.1: Summary of fitting parameters. The “K-Edge” column denotes
the measurement edge (either Se or As K-edge) and includes the temperature
and state of the material. Here “a” indicates an amorphous material and “p”
indicates a polycrystalline (or annealed) material. The “sets” column indicates
the number of datasets available for the given type of measurement. The R-
factor indicates the quality of the fit, values below ∼2% indicate statistically
good fits. Note that both As2Se3 and tSe measurements were only taken at
room temperature.

K-Edge Sets ∆E0 r + ∆r NS2
0 σ2 R-factor

[eV] ± 0.01 [Å] [×10−3 Å2] [%]

Se (30 K, a) 5 6.4 ± 0.5 2.29 2.0 ± 0.2 2.5 ± 0.7 1.2 ± 0.8

Se (30 K, p) 8 7 ± 1 2.28 1.7 ± 0.3 2.4 ± 0.4 1.9 ± 0.7

Se (300 K, a) 10 5.7 ± 0.2 2.30 2.1 ± 0.1 3.9 ± 0.1 0.67 ± 0.05

Se (300 K, p) 14 6.0 ± 0.8 2.30 1.8 ± 0.3 3.8 ± 0.2 0.9 ± 0.3

As (30 K, a) 3 5 ± 1 2.24 3.5 ± 0.7 2.6 ± 0.3 2 ± 1

As (30 K, p) 2 6 ± 2 2.22 2.4 ± 0.1 2 ± 1 10 ± 10

As (300 K, a) 10 6 ± 1 2.23 2.8 ± 0.3 2.7 ± 0.9 1.5 ± 0.5

As (300 K, p) 3 6 ± 1 2.22 2.7 ± 0.2 2 ± 1 2.1 ± 0.8

Se (As2Se3) 5 4.7 ± 0.5 2.25 2.19 ± 0.07 4.7 ± 0.1 1.6 ± 0.3

As (As2Se3) 3 5.9 ± 0.7 2.23 3.5 ± 0.1 5.8 ± 0.3 0.9 ± 0.1

Se (tSe) 4 6.6 ± 0.6 2.27 1.5 ± 0.1 3.8 ± 0.4 2.1 ± 0.5
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Figure 7.2: The fitting values for first shell fitting of all datasets. This Figure
shows the two comparisons not included in Figure 7.1. This Figure follows the
same conventions as Figure 7.1.

total average Se-Se1 bond length is 2.29 ± 0.01 Å while the total average Se-As

bond length is 2.24 ± 0.01 Å).

Table 7.1 illustrates a potential problem with the measurements. If S2
0 is fairly

consistent for all measurements (a reasonable assumption), then there is much more

variability in coordination number (number of nearest neighbours, N) than previ-

ously reported. For example, it was previously reported that aSe had a coordination

number of about ∼2.1, or roughly 5% higher than tSe. If we take our pSe mea-

surements as the standard for 2 nearest neighbours, then aSe has about 17% more

neighbours than pSe. Based on the statistics from the available data this is quite a

1Thus far all scattering neighbours of Se are assumed to also be Se, save in the case of As2Se3.
Obviously with the inclusion of As dopants some of these bonds will be Se-As bonds. If indeed
Se-As bonds are shorter than Se-Se bonds we therefore expect the average bond length as seen from
the Se K-edge to be reduced as As concentration increases. This might be somewhat evident in
Figure 7.2, but there is too much variability between samples of the same type of material and too
few samples with distinct As concentrations (especially between 19% and 40% As) to make definite
conclusions on this matter.
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reasonable conclusion, since this conclusion is obtained from the independent fitting

of 37 different samples and holds true at both room and low temperatures. If we

take the tSe reference sample as the standard for 2 neighbours the situation is even

worse (although recall from Chapter 6 problems with the tSe measurements make

drawing quantitative conclusions from the spectra questionable). It is possible that

pin-hole or cracks in the samples could cause an anomalous spread in NS2
0 , but given

the breadth of these measurements it is questionable that all of them had the same

problem. It is possible that the coordination of aSe is simply a lot more variable and

sensitive to preparation method than previously thought.

The bond lengths reported here are a bit shorter than those found in literature

(see Table 7.2). One possible explanation could be that the energy scale used in

my spectra is incorrect. Since the radial distance is effectively the “frequency” of

the χ(k) EXAFS oscillations, if what is measured as a 1 eV step is actually, for

example, a 1.1 eV step, the apparent “frequency” of the χ(k) oscillations will be

reduced producing a corresponding reduction in bond length. It is also possible that

my results are more accurate than those reported in the literature, since the most

recent result is from 2001. Beamlines for EXAFS and XRD have greatly improved

since then, as have methods for fitting data. In any event, the discrepancy is less

than 0.1 Å.

As an aside, I did try fitting the number of nearest arsenic and selenium neigh-

bours. This was done by assuming that the Se in As2Se3 had exactly 2 As neighbours,

the As in As2S3 had exactly 3 Se neighbours, and the Se in pSe had exactly 2 Se

neighbours. From this assumption I calculated S2
0 for the cases of Se-Se, Se-As, and

As-Se scattering using the previously found values in Table 7.1. S2
0 was then held

constant for all datasets, as was the Se-Se and Se-As bondlengths (also found in

Table 7.1). For the Se K-edge EXAFS measurements the Debye-Waller factor σ2,

the energy shift ∆E0, and the number of Se and As neighbours NSe and NAs were

floated. For the As K-edge measurements the Debye-Waller factor σ2, the energy

shift ∆E0, and the number of Se neighbours N were floated2. These fits showed

2Since As2Se3 has no As-As bonds, and since all other samples have even lower concentrations
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Table 7.2: Summary of available bond lengths for various forms of pure Se.
Under “method” RMC refers to a reverse Monte Carlo study on thermal re-
laxation data, and MD refers to a molecular dynamics calculation. Note that
Takahashi conducted an X-ray photoemission spectroscopy (XPS) study and
while his paper reported bond lengths, there was no explanation of how they
were found or any reference to other works. Further note that Majid reported
bond lengths for three different temperatures.

Author tSe [Å] mSe [Å] aSe [Å] Method

this work 2.27 ± 0.01 — 2.30 ± 0.01 EXAFS

Wyckoff [28] 2.32 2.34 — XRD

Buchanan [20] 2.44 2.43 — EXAFS

Bruning [38] — — 2.354 ± 0.002 RMC

Cherin [22,111] 2.373 ± 0.005 2.336 ± 6 — XRD

Hohl [112] 2.37 ± 0.02 2.34 ± 2 2.32 - 2.36 MD

Kaplow [37] 2.32 2.34 2.34 XRD

Kolobov [8] 2.36 ± 0.10 — 2.32 ± 0.01 EXAFS

Kolobov [113] 2.370 — 2.339 - 2.358 EXAFS

Majid [114] (26 K) 2.371 — 2.341 EXAFS

(80 K) 2.370 — 2.340 EXAFS

(300 K) 2.365 — 2.341 EXAFS

Takahashi [27] 2.36 2.34 — XPS?

Zhao [115] 2.36 ± 0.01 — 2.32 ± 0.01 EXAFS
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absolutely no consistent trend, and the R-factors were generally worse than those of

the normal first shell fits given in Table 7.1. This is not unexpected; since As has

essentially the same X-ray scattering factors as Se and since the possible difference

in bond length is only on the order of ∼0.06 Å. For two possible and almost identical

models for the first scattering shell any combination of coordination numbers adding

to the appropriate total (i.e.
∑

iNi ∼ 2) provide the same quality of fit — and this

includes negative (and unphysical) coordination numbers.

7.2 Crystallization Effects: EXAFS

As previously mentioned, several amorphous films were annealed to induce crys-

tallinity after an initial measurement (see Appendix A for details). Even with fully

crystalline Se there is no observed long range order at room temperature in agree-

ment with previous studies [107, 114], but at low temperature the long range order

is clear.

The low temperature Se EXAFS for pure Se annealed at 60◦ C for 14 hours fits

the theoretical tSe crystal quite well. This is expected, since it is known that tSe is

the most stable phase of selenium [22, 34, 111, 116]. FEFF6L was used to generate

the single and multiple scattering paths for an ideal tSe crystal. Of all the possible

scattering paths, there were 9 which gave a statistically significant contribution to

χ(R) at distances below 5 Å. These paths are shown in Figure 7.3, note that all Se

sites in tSe are equivalent, so the same scattering paths can be constructed from

any Se atom in the crystal. All but two of the paths are single scattering; that is

they involve only the core atom and one scattering atom. Two paths are multiple

scattering; these involve two additional scattering atoms along with the core atom.

The shortest of these paths (path 4, marked in red in Figure 7.3) involves an electron

scattering from the nearest neighbour to the third atom in the chain and then back

to the core (or the reverse of this). The second multiple scattering path (path 7,

marked in yellow in Figure 7.3) involves scattering to the nearest neighbour, back to

of As, it is reasonable to assume that there is no As-As clustering
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Table 7.3: The variables used for each scattering path. Each path had the
same S2

0 and ∆E0 variable. Note that rb is the ideal bond length, and θb is the
ideal bond angle.

Degeneracy Debye-Waller Path Length

Path 1 2 σ2
1 ∆r1

Path 2 4 σ2
2 ∆r2

Path 3 2 σ2
1 2∆r1 sin

(
θb

2

)
+ rb cos

(
θb

2

)
∆θb

Path 4 4 2σ2
1 ∆r1 sin

(
θb

2

)
+ rb

2
cos

(
θb

2

)
∆θb + ∆r1

Path 5 6 σ2
2 ∆r3

Path 6 4 σ2
2 ∆r4

Path 7 2 2σ2
1 2∆r1

Path 8 4 σ2
2 ∆r5

Path 9 2 σ2
1 ∆r6

the core atom, to the nearest neighbour on the opposite side, and then back to the

core atom. The model for this structure used 11 variables, while the pSe data set

had 22 independent data points. The S2
0 and ∆E0 variables were kept consistent for

all paths, but the Debye-Waller factors and changes to the ideal path length were

dependent on the path geometry. The expressions for these variables are given in

Table 7.3 for each fitting path. Note that E0 was increased by 8 eV to 12 666 eV,

as suggested by the ∆E0 in Table 7.1, to make the fitted ∆E0 more precise.

The fitting model given in Table 7.3 is justified as follows. I assumed that there

were two disorder parameters, one intrachain (denoted by σ2
1), and one interchain

(denoted by σ2
2). Within a chain the atoms share strong covalent bonds with one

another, while between the chains there are only van der Waals bonds. Therefore

it is reasonable to guess that there is a different amount of disorder between the

arrangements of chains than there is between the positions of atoms inside a single

chain. Note also that scattering paths 4 and 7 experience roughly double the disorder

that the other intrachain paths do, since they involve scattering off an additional
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Table 7.4: Best fit parameters from fitting pSe data to the tSe structure.
Recall that E0 = 12 666 eV. The errors listed are estimated by IFEFFIT from
the statistics of the data.

i = 1, 2, 3, 4, 5, 6

S2
0 0.64 ± 0.09

E0 [eV] 0.6 ± 1.7

σ2
i [×10−3 Å2] 1.1 ± 0.8 5 ± 1

∆ri [×10−2 Å] 6.3 ± 0.7 -8 ± 2 1 ± 3 -4 ± 5 4 ± 3 -5 ± 3

∆θb [mrad] 6 ± 7

atom. In a similar manner, the adjustments to path lengths ∆ri are chosen in a

way to maximize the amount of structural information obtained. In particular ∆r1

indicates the change in bond length, and ∆r2 indicates change in the interchain

distance. Since paths 3 and 4 involve scattering across a vertex in the chain, an

expression involving adjustments to the bond angle θb as well as to the bond length

rb is used. The other paths (apart from path 7, which is simply double nearest-

neighbour scattering) involve independent ∆ri. While it is possible to express these

distances in terms of bond lengths, interchain distances, bond angles, dihedral angles

3, and other components, such expressions would be very complicated. Since the long-

range paths become increasingly less significant with distance an accurate expression

for the path is unlikely to improve the fit, or yield any additional physical insight.

The fitting was performed in R-space with a k-weight of 1 between the k range

of 4.820 Å−1 to 14.097 Å−1 and the R range of 1.2 Å to 5.0 Å. The pSe data and

the final fit are shown in Figure 7.4. The R-factor was 0.034, which is pretty good,

and certainly acceptable for our purposes of verifying that pSe does indeed have a

tSe-like structure. The best-fit parameters are listed in Table 7.4.

There are a few things to note from Table 7.4. First, including longer scattering

paths reduces the amplitude NS2
0 for the first shell (note that I fixed N = 2 so NS2

0 =

3The “dihedral” angle is the angle made between the planes of two adjacent bond angles.
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Figure 7.4: Comparison between pSe data and the best fit from tSe structure.
Fitting was performed in R-space with a k-weight of 1. A k range of 2 to 15
was used for the |χ(R)| transform.

1.28, while Table 7.1 suggests NS2
0 = 1.8 for this system). This is because the longer

scattering paths still contribute slightly to the amplitude at low R. It is possible

that the long range scattering in amorphous materials, while decoherent at longer

wavelengths, might somehow add coherently to the first shell amplitude, increasing

the apparent NS2
0 obtained from first shell fitting. However without additional

information this contribution is impossible to determine.

Secondly, fitting the entire crystal increases the bond length to ∼2.38 Å, which is

closer to those previously reported (see Table 7.2) than the bond length obtained by

first shell fitting (see Table 7.1). The fit suggests that the bond angle θb is essentially

the “ideal” value, and that all other distances are within 0.1 Å of their ideal values.

Finally, as we might expect, the interchain disorder indicated by σ2
2 is greater than

the intrachain disorder indicated by σ2
1. In short these results show that aSe does

indeed crystallize into a tSe-like form.

Long range order is present in the low temperature Se K-edge EXAFS of the

annealed samples with 0.2%, 0.5%, and 2% arsenic concentration as well, as shown

in Figure 7.5. Like pure Se, this order resembles the structure of trigonal Se. Even
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Figure 7.5: Low temperature Se and As K-edge |χ(R)| from k2-weighted
EXAFS. Note that crystalline order disappears for As concentrations greater
than 2%. The Se K-edge k -range was from 2 to 14, 15, and 18 for tSe, pSe, and
all others, respectively. The As K-edge k -range was from 2 to 10.8, 11.9, 12.6,
12.4, 13.1, and 11.0 for 0.2%, 0.5%, 2%, 6%, 10%, and 19% As, respectively.

after extensive annealing, no order is present in the Se K-edge EXAFS of samples

with greater than 2% arsenic concentration. This clearly shows the suppressive effects

arsenic has on the process of crystallization. Further, there is no long range order in

any As K-edge EXAFS for any sample. Therefore even in the “mostly crystalline”

Se:0.2%As sample the arsenic dopants do not have any preferred position in the

selenium matrix. Note that, as previously mentioned, the As K-edge data is over

a shorter range than the Se K-edge data. The low concentrations of As and the

distortion at high k caused by the proximity to the Se K-edge make the As K-

edge EXAFS data of much lower quality than the Se K-edge EXAFS, as shown in

Figure 7.6. Still, the lack of long range order in any spectra is indicative that the

environment local to As dopants is highly variable.
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Figure 7.6: Low temperature Se and AsK-edge k2χ(k) EXAFS for pSe:x%As.
Note the shorter range and greater noise in the As K-edge data. Note also
the significant noise and high k artifacts in the tSe data, caused by sample
inhomogeneity.

7.3 Crystallization Effects: XANES

Both the Se and As K-edge XANES are dominated by a characteristic white line4 at

the absorption edge near 12660 eV and 11868 eV, respectively. There is also a sec-

ondary feature above the Se and AsK-edge at∼ 12668 eV and 11876 eV, respectively.

For the Se K-edge, both these features are common to the amorphous, trigonal, and

monoclinic phase selenium [20]. As shown in Figure 7.7, there is a tertiary XANES

feature in the Se K-edge which develops concurrently with annealing to a crystalline

phase. This feature is present in annealed samples with long range order in the low-

temperature Se K-edge EXAFS (namely Se, Se:0.2%As, Se:0.5%As, and Se:2%As)

but the feature vanishes in samples without this long range order (namely the sam-

ples with greater than 2% arsenic concentrations). Unlike the EXAFS, however, the

XANES feature is present independent of measurement temperature.

4The term “white line” dates back to the early days of using phosphor film to record X-ray
spectra; intense features showed up as white lines on the film
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Figure 7.7: Low temperature Se and As K-edge µ(E) XANES for pSe:x%As.
Note the weak tertiary figure indicated by the dotted line which occurs in
samples with less than 6% As.

This tertiary feature in the SeK-edge XANES does not have an analogous feature

in the As K-edge XANES, which is again commensurate with the As K-edge EXAFS

showing no long-range structural order. Unlike long-range order in EXAFS, this

tertiary feature in the Se K-edge XANES is present at room temperature as well as

low temperature. To study this feature I measured the Se K-edge XANES of an aSe

sample at room temperature, then annealed the aSe sample at 60◦ C for 3 hours and

remeasured the Se K-edge. This procedure was repeated after annealing the same

sample at 80◦ C and then 100◦ C for 3 hours each. As shown in Figure 7.8, these

XANES measurements show the gradual development of this tertiary feature - which

presumably is indicative of the crystallinity of the sample.

This tertiary feature has previously been reported for tSe, but not aSe or mSe [20],

and the spectra I have measured agree with those in the literature. Note that while

the measured mSe K-edge XANES in Figure 7.8 suffer from severe pin-hole effects

which greatly suppress the intensities of the spectral features, they do not remove

them entirely so the mSe spectra is useful as a qualitative guide. Since both my

study of crystallization in aSe, and most of the literature suggest that the structure
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changes in spectral features with increasing annealing temperature.

of aSe is closer to that of tSe than mSe [36, 40, 117], the similarity between the

XANES spectra of mSe and aSe should be regarded as a coincidence rather than

an indication of structural similarity between aSe and mSe. This is the first time

a study of the gradual development of this feature has been performed, and this

is the first time evidence linking this feature to crystallinity, rather than allotrope

(tSe-like or mSe-like) has been found. To further probe the relevance of this feature

I calculated the Se K-edge XANES of tSe and mSe using WIEN2k. To probe the

possible connection to partial crystallinity, I used StoBe to calculate the Se K-edge

XANES of a lone Se8 ring and lone Sen helical chain, these spectra are also shown

in Figure 7.8. The spectra calculated with WIEN2k agree quite well with the mSe

and tSe measurements. Both StoBe calculations of partial crystal structures are

essentially identical and indeed fall in between the extremes represented by the fully

crystalline WIEN2k calculations. I therefore conclude that the magnitude of the

tertiary feature in the Se K-edge may be used as a “fingerprint” of the crystalline

order in aSe, even at room temperature.
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7.4 Possible Pin-Hole Effects

It was previously mentioned that the spread in the NS2
0 values obtained from first

shell fitting was quite a bit larger than that reported in the literature, and pin-

holes or cracks in the sample were a potential culprit. It has been established that

inhomogeneous sample thickness can reduce the observed coordination number [118].

A large inhomogeneity in the sample thickness causes a local discontinuity in the

absorbance of the incident beam. As described in Chapter 3, this causes the observed

transmission intensity to be a summation of the weighted “real” transmission inten-

sity with the incident X-ray intensity. Therefore the effect from pin-holes should be

visible throughout the spectrum, not just in the EXAFS range. In particular, the

intense white line in the Se K-edge XANES spectrum should be strongly effected by

pin-holes. The white line height and the fitted first shell NS2
0 parameter are shown

in Figure 7.9, plotted against arsenic concentration and by individual measurement.

There is no strong correlation between either the white line height or NS2
0 and ar-

senic concentration. Further, while there is some correlation between NS2
0 and white

line height the trend is not consistent. For example, the scaled coordination number

of room-temperature aSe is fairly constant, while the white line height shows consid-

erably greater variation. However for room-temperature pSe the scaled coordination

number shows greater variation than the white line height. These observations sug-

gest that while pin-holes may be causing some problems with a few measurements,

they are probably not responsible for all the NS2
0 discrepancies.

Recall the expression for the effect of pin-holes, given by Equation 3.8 in Chapter

3. The pin-hole effect is given by the parameter α, and there is no reason why

α cannot be a function of energy [119]. The EXAFS oscillations are different for

surface atoms than bulk atoms and therefore in a sample with many micro pores

and hairline cracks there might be a significant number of surface atoms making α

a strong function of energy.

If the “true” absorbance µ(E) is somehow known, then it is possible to use

equation 3.8 to calculate the pin-hole effect α. Of course it is very rare that the
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“true” absorbance is known, and therefore trying to correct for pin-holes is not good

experimental practice. That being said, in the context of this experiment there is

some value in attempting to calculate the pin-hole effect α simply to see what form

it potentially takes.

This approach is best conducted with a series of measurements performed on an

aSe film at room temperature, where the aSe film was gradually annealed at higher

and higher temperatures (as described in the previous section). The measurements

after annealing showed lower weighted coordination numbers NS2
0 than found in

the original amorphous film. It is possible that annealing is causing the creation of

micro pores in the selenium film, but recall that EXAFS fitting on low temperature

measurements of a separately annealed pSe film matched the theoretical standard

for tSe. It is unlikely that one annealed film develops a substantial number of micro

pores while another annealed film turns into a “good” crystal structure.

If the initial aSe film is taken as a measure of the “true” absorbance, the pin-hole

effect α can be extracted from the Se K-edge XANES and EXAFS measurements

of the same aSe film after progressive annealing. The pin-hole effect is shown in

Figure 7.10, it is clearly a function of energy. Note that two separate films were

annealed at 60◦ and 80◦ C, and the initial spectra from the amorphous films before

annealing were essentially identical. This similarity in initial results, the fact that at

room temperature even tSe shows no long-range EXAFS order, and the fact that we

expect the coordination number to change by only about ∼ 5% provide a reasonable

justification for using aSe as the “true” absorbance - if indeed the differences between

the spectra are due only to thickness inhomogeneities.

As shown in Figure 7.10, there is no trend in α(E) for different annealing temper-

atures, although the measurements with the same annealing temperature are fairly

consistent. Secondly, the deviations of α(E) from the pin-hole-free case are not con-

sistent with the spread in NS2
0 . Since the influence from a pin-hole should reduce the

white line height and the scaled coordination number in tandem [118], this is further

evidence that pin-holes alone cannot account for all the discrepancies between the

calculated NS2
0 and those present in the literature.
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Chapter 8

Electronic Structure of Selenium

While the electronic information obtained from XES and XANES spectra of

aSe, tSe, and mSe does not have any direct connection to the physical structure

of these materials, the electronic structure is the key factor in determining many

physical properties. Since I had ample opportunity to take high-resolution soft X-

ray spectroscopy measurements of these materials, it is worthwhile to examine the

basic electronic structure of these materials. The following sections briefly describe

the results of this study.

8.1 Historical Approaches

The electronic structure of aSe was initially studied to determine electron and hole

mobilities and the position of charge traps in the bandgap [2]. In the early 1970s

Kramer calculated the electronic structure of selenium with various degrees of disor-

der using an atomic pseudopotential method (not a self-consistent method however;

Kramer’s model was based on measured data from reference standards) [5]. Kramer’s

calculation suggested a triplet feature below the primary band in the valence level,

which was not observed in a ultra-violet photoemission (UPS) study by Nielsen [120]

(in an interesting twist Nielsen actually managed to publish before Kramer, although

his work is based on Kramer’s study). Immediately thereafter Shevchik et al. mea-

sured the valence band of aSe with UPS, and found better agreement with Kramer’s

model, and concluded that the discrepancies with theory were due to a poor choice of

structural model by Kramer [121]. Shevchick followed his experimental study with a

theory that aSe was formed of helical chains, but the disorder was due to a reduction
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in the average dihedral angle rather than an increase in interchain separation [122].

In contrast to Shevchik’s findings, Laude, Kramer and Maschke performed UPS stud-

ies of aSe and made the radical conclusion that aSe was six -fold coordinated with

a bondlength of 3.1 Å [6] — a conclusion that has since been totally refuted by

subsequent EXAFS studies (see Chapter 7).

In the early 1980s Takahashi performed several UPS and XPS studies of aSe

[27,39,123,124]. The first of these involved aSe deposited in vacuum on cold substrate

(77 K), and the spectra appeared to show greater disorder than the aforementioned

studies where aSe was deposited at room temperature [39]. In the subsequent papers

Takahashi noted valence structures related to what he identified as “lone pair” and

bonding 4p-states [123]. He further identified features in the bonding 4p-states ∼5

eV below the Fermi level and the 4s-states ∼12 eV below the Fermi that were unique

to the amorphous, trigonal, monoclinic phases [124], and rhombohedral [27] phases.

While technically all Se K-edge XANES studies are related to the conduction

band electronic structure (although distorted by the core-hole effect), the available

resolution at the K-edge is not sufficient to identify any detailed electronic structure.

However due to the rather odd binding energies of selenium (and arsenic, for that

matter) there was only one study on the M4,5-edge XANES [106]. This study merely

identified the M4,5 splitting, no other analysis of the spectrum was conducted. Fur-

ther the signal-to-noise ratio of the data was very poor. Finally, to my knowledge,

there is no literature available on the M4,5-edge XES.

8.2 The 4p-states of Selenium

The Se M4,5-edge XES was measured at BL8, and the Se M4,5-edge XANES was

measured at the PGM, as described in Chapter 6. The Se M4,5-edge XES do not

show very much fine detail, even in the case of tSe although the predicted partial DOS

does have some prominent fine structure [5]. This is not unexpected, however, since

the extremely short lifetime of the core-hole adds considerable broadening to the XES

measurements. The lifetime broadening is also the reason why the M4 and M5 edges
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Figure 8.1: The Se M4,5-edge XES for several samples. The primary and
secondary emission bands at 51.5 and 48.5 eV, respectively, have the same
separation as the “lone pair” and bonding 4p-states observed by Takahashi.
Note that the energy calibration was estimated from the elastic scattering of
3rd order light, but the calibration could still easily be off by as much as 1 eV.

are not resolved, they should be less than 1 eV apart [100]. As shown in Figure 8.1,

there does appear to be a small trend in the secondary emission band at 48.5 which

is commensurate with increasing arsenic concentration and/or increasing disorder.

The spacing between the secondary emission band and the primary emission band is

equivalent to the spacing between the “lone pair” and bonding 4p-states identified

by Takahashi [123]. (Note: the “lone pair” is the two 4p electrons which do not

participate in chemical bonding.) The increased width in the main emission band of

As2Se3 casts some doubt on whether the feature is really due to a lone pair. If it is,

then Se bonded to As has a significant effect on the lone pair.

Since the Se M4,5 edge was already at the extreme low end of BL8’s range the As

M4,5-edge XES could not be measured. The M4,5-edge XANES could be measured

for both edges, however, at the VLS-PGM beamline. Like the K-edge XANES, the

As and Se M4,5 edges are quite similar in shape, which is somewhat expected since

both measurements probe roughly the same 4p-states. The fact that the K- and
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Figure 8.2: The As and Se M4,5-edge XANES for several samples. Note the
significant Gaussian-like background in the spectra. The temperature of the
substrate is indicated.

M4,5-edge XANES are so similar suggests that the core-hole effect may not distort

the conduction band states very much, since a core-hole in the semi-valent 3d -states

should have less of an effect than a core-hole in the 1s-states. The M4,5-edge XANES

taken at the VLS-PGM for a variety of aSe:x%As alloys is shown in Figure 8.2. Note

that there is a significant non-linear background to the measurements. Like the M4,5-

edge XES, the M4,5-edge XANES of tSe does not show very much fine structure. The

tSe spectrum is consistent with those measured by Givens [106].

The tSe DOS calculated with WIEN2k [80] using the Perdew-Burke-Ernzerhoff

GGA functional [91] is fairly consistent with Kramer’s early calculations for both aSe

and tSe, although my calculations show a doublet rather than triplet feature in the

band from -3 to -6 eV [5]. From the WIEN2k calculations, the M5 XES and XANES

spectra were calculated by multiplying the matrix of the allowed dipole transitions,

a radial transition probability, and the 4p DOS [94] (for the XANES spectra an M5

core-hole was introduced and an extra valence electron was added). The calculated

spectra were broadened by a Gaussian function with a width of 0.33 eV, and a

Lorentzian function with a width of 0.25 eV for XANES (just core-level lifetime
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Figure 8.3: Calculated 4p DOS and calculated and measured M4,5-edge XES
and XANES for tSe. For the symmetry-dependent 4p states the z-axis is
along the helical chain. Recall there are six chains, at the vertices of a reg-
ular hexagon, surrounding a central chain. From this perspective the x-axis
is directed through the edge of the hexagon (i.e. between two chains), and
the y-axis is directed towards a vertex (i.e. at one of the chains). Recall that
the energy alignment of the measured M4,5-edge XES and XANES may not be
completely accurate, and therefore the M4,5-edge XANES has been shifted to
slightly lower energies to match the calculation.

broadening) or 0.55 eV for XES (an additional 0.30 eV valence lifetime broadening)

to roughly match the experimental resolution.

As shown in Figure 8.3, the calculated spectra agree qualitatively with the mea-

sured spectra. However, note that it is clear that the life-time broadening is at least

comparable to that applied to the calculations, and the calculated spectra show con-

siderably more fine structure than the measurements. For example if the calculation

is accurate then the primary emission band at 51.5 eV should at least show the dou-

ble feature evident in the calculated emission band. Further the calculated XANES

spectrum does not match the measured XANES spectrum very well, although this

could be due to choosing a fairly small supercell (only 2 × 2 × 2 unit cells). Note

that the unoccupied DOS in Figure 8.3 is the true unoccupied DOS without the

core-hole distortion (although the calculated XANES did include the effect of the

84



core-hole). One possible explanation for the discrepancies between measured and

calculated spectra could be due to poor local symmetry in actual tSe. Note that,

for example, in the valence band a particular symmetry of 4p states are the main

component of each sharp feature — the first two are from 4py-states, the third is

from 4pz-states, and the fourth is from 4px-states. Since even tSe is a “poor” crystal

— it has a considerable amount of internal degrees of freedom, and therefore lattice

periodicity can easily be destroyed — it is possible that individual Se sites have

enough local structural variation to break the symmetry enough to smear out all of

these distinct features in the ideal structure. It is worthwhile to note that low tem-

perature (∼30 K) M4,5-edge XES measurements were performed on tSe (and various

aSe:x%As alloys), and no additional fine structure was observed. This suggests that

DFT calculations on structures with periodic boundary conditions may not be the

best approach to study selenium-arsenic alloys.
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Chapter 9

Structural Distortions

The room temperature and low temperature EXAFS leave no doubt that there

is no consistent long range structure in aSe. Further, as previously mentioned, past

studies on aSe suggest that the structure of aSe is related to the structure of tSe, or

a combination of tSe and mSe. The following sections illustrate different attempts

at incorporating structural disorder into the form of tSe to reproduce the observed

aSe spectra.

9.1 Trigonal Crystal Structure

As previously mentioned, trigonal selenium is the most stable allotrope of selenium

at ambient conditions. The structure of tSe consists of a six-fold arrangement of

helical chains. In the ideal crystal structure each selenium atom is bonded to two

neighbours, the bond length is constant for all atoms, and the angle between the

two bonds is constant. Finally the dihedral angle - the angle between the planes

of two adjacent bond angles - is constant. The structure of a single helical chain

in tSe is shown in Figure 9.1. For the purposes of the following discussion I will

use the crystallographic values found by Wyckoff [28], where the bond length, b, is

2.32409 Å, the bond angle, θ, is 104.8263◦, and the dihedral angle, φ, is 101.756◦.

These values are excessively precise, and the accuracy might be off by as much as

5% (for example, refer back to Table 7.2 for a comparison of various bond lengths

found in literature). However since the crystal structure has the same symmetry for

any consistent choice of the above values, and since each value will be varied and/or

fitted, the starting point is somewhat arbitrary. Since Wyckoff provides the most
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Figure 9.1: Three short helical chains of tSe. The bond length b, bond angle
θ, and dihedral angle φ are indicated.

extensive study of the crystallography of tSe, I have chosen his values to start with.

Introducing disorder into the tSe structure can be achieved by changing the

orientation and alignment of the helical chains, or by changing the arrangement

of atoms within a chain.

9.2 Thermal Disorder

The EXAFS spectra of tSe do not have any long range order at room temperature,

although this order becomes apparent at low temperatures. This suggests that tSe

has significant thermal disorder. It is reasonable to expect that this thermal disorder

can manifest as a random variation in atomic position (a “microstate” disorder), or

as a random distortion in the arrangement of chains (a “macrostate” disorder). The

time scale of EXAFS is much faster than the actual thermal vibration of atoms [125],

so each EXAFS spectrum represents an average “snap shot” of the atomic positions.

In this context the “macrostate” disorder can be modeled by adjusting the long-

range structure. The “microstate” disorder can be modeled by either adding random

displacements to atomic positions, or by examining the fitted Debye-Waller factor

σ2 since the Debye-Waller factor represents the mean squared relative displacement

of the scattering atoms with respect to their ideal positions [56].

While the Debye-Waller factor σ2 is often simply a fitted value, it can be calcu-
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lated from a model of phonon modes in matter. In particular, FEFF6L is designed

to calculate Debye-Waller factors using either a correlated Einstein model, or a cor-

related Debye model [126]. In the former case, the Debye-Waller factor is estimated

using the expression in Equation 9.1, where ΘE is the “Einstein temperature”, m

is the atomic mass, and T is the temperature. In the latter case the Debye-Waller

factor is estimated using the expression in Equation 9.2, where ΘD is the “Debye

temperature” and ρ is the density of the material.

σ2
E =

~
mωE

coth

(
hωE

2kBT

)
(9.1)

ωE =
kB

~
ΘE
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~
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) 1
3

If the thermal disorder in room-temperature tSe is responsible for the lack of

long-range order in the EXAFS spectra, then the model used in Chapter 7 to fit the

structure of pSe should be applicable for room temperature pSe with an increased

σ2 parameter. With this in mind, I used the scattering paths defined for the fit in

Chapter 7 to fit the data for room temperature and low temperature pSe simultane-

ously. In this slightly revised fitting model the structural parameters (bond lengths,

bond angles, etc.) were forced to be consistent in both fits and the Debye-Waller

factor σ2 had a thermal component based on the measurement temperature (300 K

or 30 K, as appropriate) and a fitted Θx (where x = E for the Einstein model and

x = D for the Debye model, as appropriate). The energy correction E0 and EXAFS

amplitude S2
0 were freely floated for both datasets.

The fit of room temperature and low temperature pSe to the Einstein and Debye

models of thermal disorder are shown in Figure 9.2. Neither of the two methods of

calculating thermal disorder produce a very good fit; the Einstein fit has an R-factor

of 0.15, and the Debye fit has an R-factor of 0.13. The fitted Einstein temperature
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Figure 9.2: Low temperature and room temperature pSe measurements si-
multaneously fitted to the structure of tSe using the Einstein and Debye models
for thermal disorder.

is ΘE = 303 ± 13 K, and the fitted Debye temperature is ΘD = 366 ± 14 K. Since

tSe is monoatomic and our measurements go down to fairly low temperatures, we

expect the Debye model to provide the best results [127], and judging by the R-

factors this is the case - albeit by a narrow margin. The Debye temperature for

tSe is estimated as ∼ 150 K from heat capacity and elastic constants [128], however

calculations from heat capacity measurements suggest that the Debye temperature

for intrachain phonon modes is ∼ 350 K, while the Debye temperature for interchain

phonon modes is ∼ 140 K [128]. In this regard my calculation is consistent with the

intrachain Debye temperature.

It is still apparent, however, that since neither the Debye nor Einstein models

provide a good fit to the experimental data, the disorder present in room temperature

tSe cannot be accounted for by a simple application of harmonic thermal disorder.

In a sense this is to be expected, the structure of tSe is not conducive to spherically

symmetric atomic distortions, and thermal variations in the relative positions of

neighbouring chains are probably much greater than thermal variations in the relative

position of neighbouring atoms.
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9.3 Regular Disorder

It seems reasonable to assume that at room temperature the chain-like structure of

tSe is still present. The helical chains in tSe are, after all, quasi-molecular with fairly

strong covalent bonds so it is doubtful that the transition from room temperature

to 30 K is sufficient to significantly modify the positions of atoms within a chain.

The arrangement of the chains, however, is probably subject to considerably greater

variation.

With the above argument in mind, I used FEFF6L to calculate the EXAFS from

a variety of distorted tSe clusters. I assumed that the chains were approximately

straight on a 12 Å scale. The central chain, with the absorbing atom, was fixed and

the position of the six surrounding chains was randomly varied. These variations

included rotations of up to 180◦ around the crystal c-axis, rotations of up to 5◦

around the crystal a- and b-axes (centered at the level of the absorbing atom), and

displacements of up to 50% of the unit cell length along the c-axis and 10% of the

unit cell length along the a- and b-axes. The EXAFS from 1000 of these random

structures were calculated and averaged together to approximate the environment

throughout the material.

The averaged calculated EXAFS suggests that the interchain order is very easily

washed out by random displacements. Indeed, Figure 9.3 suggests that any combi-

nation of two or more types of interchain distortion essentially removes all interchain

order. The only remaining order is within the central chain, indicated as the second,

third, and fourth nearest neighbours along the chain. Further, note that even though

the fitted Debye temperature matches that of the calculated intrachain vibrational

modes, the intrachain features at∼3.3 Å and∼4.8 Å in disordered EXAFS in Figure

9.3 are still present in the fitted thermal disorder EXAFS of Figure 9.2. This suggests

that either the intrachain distortion is anisotropic, the calculated Debye temperature

for intrachain modes is incorrect, or even in tSe the chains become twisted and bent

at room temperature - implying significant relaxations in atomic positions after cool-

ing to 30 K. Of these three possible causes the first case seems the most likely, and
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Figure 9.3: Average calculated EXAFS for 1000 random structural models
for different types of disorder. The label R[] denotes that neighbouring chains
were randomly rotationed around the specified axes and the label T[] denotes
that neighbouring chains were randomly translated along the specified axes.
The undistorted calculated tSe structure is indicated in black at the bottom.

additional calculations investigating this possibility will be performed in the future.

9.4 Irregular Disorder

The ideal bond lengths, bond angles, and dihedral angles in a selenium chain are

determined by the atomic properties of selenium. Obviously these quantities can de-

viate from their ideal 0 K equilibrium values due to finite temperatures and external

stresses, however these deviations should be minimal. Indeed, all the experimen-

tal data both in this research and in the literature support the conclusion that the

Se—Se bond length at room temperature is within 5% of the ideal bond length at

most, and the fit of pSe to the structure of tSe conducted in Chapter 7 suggests that

the bond angle is very close to the ideal value. There is one degree of freedom in

constructing a selenium chain, though; the sign of the dihedral angle. As shown in

Figure 9.1, it takes 4 atoms to define the dihedral angle. The fifth atom added to this

chain will define a second dihedral angle using the 3 most adjacent existing atoms.
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Figure 9.4: The difference between constant and alternating dihedral angles.
Each structure is formed from 10 Se atoms, the bond lengths, bond angles,
and magnitude of the dihedral angles are the same in each. The chain on the
left has a constant dihedral angle sign, the ring on the right has an alternating
dihedral angle sign after the first two dihedral angles (the initial atoms form
the “stem” at the bottom).

If adjacent dihedral angles have the same sign relative to each other the chain will

form the conventional helical shape found in tSe. If adjacent dihedral angles have

opposite signs relative to each other the chain will approximately form an 8-element

ring, similar to the structure found in mSe. These structures are shown in Figure

9.4.

Since past studies have suggested that aSe has something in common structurally

with tSe and mSe (see, for example, References [6,37]), and since the ring structure

of mSe can be approximated by an 8-element chain with alternating dihedral angles,

a common model for the structure of aSe is a collection of tangled chains where the

sign of the dihedral angle is random [29], as shown in Figure 9.5. A sufficient density

of these tangled chains would then hopefully reproduce the low temperature EXAFS

data for aSe.

To test this model for the structure of aSe I implemented the following model:

generate a random chain, and choose the 6th atom as the absorbing atom for EXAFS.

Continue to generate this chain until it extends 10 Å beyond the absorbing atom.

These numbers are somewhat arbitrary, since I only calculate the EXAFS to a radial

distance of 6 Å, I simply wanted to make sure that the starting and ending points
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Figure 9.5: A tangled chain created by randomly choosing the relative sign
of the dihedral angle. “Defect sites” can be formed in places where the chain
loops back on itself, in this case there is a 4-coordinate Se “defect” site roughly
in the centre of the chain. At this site only two of the bond angles are close to
the ideal value.

of the chains were outside the region of interest. Once the initial chain is created

then start generating chains from random points on a 20 × 20 × 20 Å cube with

the absorbing atom at the centre. These chains are “grown” inwards until they exit

the cube, or until they collide with an existing chain. A “collision” is defined as

trying to place an atom closer than 90% of the ideal bond length to another atom.

If an atom collides with an existing chain, the position with the alternate dihedral

angle sign is tested for placement. If that position also fails, the chain is terminated

at that point and a new chain is started. This process is ideally repeated until the

appropriate density is reached. See Appendices C for more detail. A sample cluster

is shown in Figure 9.6.

To model the spectra of aSe I averaged the calculated EXAFS from several hun-

dred of these random chain structures together. The average EXAFS from four

different runs are very consistent, suggesting that a few hundred iterations is suf-

ficient to average out the disorder in the clusters. The width of the of average

EXAFS features are quite similar to that of the measured aSe features, suggesting

the disorder in the calculated EXAFS is quite similar to the thermal distortions in

room-temperature aSe EXAFS. As shown in Figure 9.7, the calculated EXAFS still

reveals some long range structure similar to that found in the thermal disordered
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Figure 9.6: A sample cluster of Se atoms, modeling the aSe structure. The
scattering atom is shown in the centre, in red.

calculations in Figure 9.2 and the regular chain disorder in Figure 9.3. This long

range structure is again due to intrachain scattering. This is a bit surprising, since

otherwise these calculations compare very favourably with the measured data: the

height of the first EXAFS peak is very close to the measured data, suggesting that

the average coordination number and the bond length used are very close to the

actual values in aSe. Further, the position of the second EXAFS peak at ∼3.3 Å is

quite close (although of much greater amplitude) to the peak in the experimental

data, suggesting that the bond angle used in the calculation is very close to the

actual value. Finally, both secondary features have similar widths, suggesting that

there is not a large variation in the bond angles.

There are a few problems with this model for aSe. For one thing, the density

of these clusters is quite low. The average cluster density is ∼3.2 g/cm3, while the

actual density of aSe is ∼4.3 g/cm3 [29]. Since the packing fraction in the calculated

clusters is not high enough, it is quite possible that there are not enough interchain

neighbours to smooth out the regular presence of the third and fourth intrachain

neighbour, respectively. The second problem is that defect sites are not handled very

well. The only constraint on atom placement is proximity to atoms in other chains,

not on the bond angle that would be created after placing the atom within the bond

distance of that other chain. Since aSe is a relatively soft material, it is unlikely

that the extra bonds on 3- or 4-coordinate selenium would occur at an arbitrary
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Figure 9.7: The average EXAFS from several hundred cluster calculations
compared to experimental room-temperature aSe EXAFS.

angle. Further, calculations suggest that the lowest energy defective site is a pair

of single coordinated Se− and triple coordinated Se+ atoms in close proximity [29].

While both single and triple coordinated Se sites are possible in my model, there is

no mechanism to encourage them to occur close to one another. Finally, apart from

random chance there is no mechanism to discourage 4- or higher coordinate selenium

sites. Chemically a 4-coordinate selenium site would require a rather bizarre charge

distribution, and 5- or 6-coordinate sites are even worse. In my calculations 11.2%

of the sites were single-coordinate, 70.9% of the sites were 2-coordinate, 16.0% of

the sites were 3-coordinate, and 1.8% of the sites were 4-coordinate. Out of the 1700

structures there were a handful of 5-coordinate sites (∼ 0.13% of the sites), and a

single structure had a 6-coordinate site.

The first problem might be caused by the rectilinear nature of creating new chains.

When a new chain is created outside the boundary it can only growing along one of

the Cartesian axes. Although the chain will eventually bend away from this axis, it

may still be difficult to create the right chain to fill a void near the centre of the clus-

ter. A model where chains can start growing along arbitrary directions is currently
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Figure 9.8: The average EXAFS from 500 hundred cluster calculations where
the bond length, b, bond angle θ, and dihedral angle φ are randomly altered.
Experimental room-temperature aSe EXAFS data is included for comparison.

under development. The second problem is more difficult to solve; it might require

weighting the atomic placement by some sort of pseudopotential created by existing

atoms and approximate charge densities. To incorporate those considerations an

entirely different approach might be appropriate, and more study is needed.

The twisted chain model can also incorporate random variations in bond length,

bond angle, and dihedral angle as the chain is grown. Even though, as mentioned

above, there is little indication in the experimental data that the bond lengths, bond

angles, and dihedral angles in aSe vary significantly from the ideal values, adding a

bit of variation to these parameters is useful for comparison purposes. Figure 9.8

shows the average EXAFS from 500 structures with varied parameters. Each bond

length, bond angle, and dihedral angle in each of the 500 distinct structures was

within ±5% of the ideal value. It is immediately apparent that the bond length in

the actual aSe varies by less than 5% of the ideal value; since adding a 5% variation

to the structure increases the width and decreases the height of the first EXAFS peak

by a considerable amount. Secondly the ratio between the first and second EXAFS

peaks is still too high to match the measured data. Changing the dihedral angle
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only has an effect on the third EXAFS peak - so it is unclear whether or not aSe has

large changes in this parameter. Varying the bond angle gives the best results; the

secondary peak is considerably suppressed - albeit a bit wider than it appears in the

measured data - while the first peak is unaffected. It is unclear whether a moderate

variation in bond angle is actually present in aSe, but it does not seem unreasonable.
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Chapter 10

Reverse Monte Carlo Calculations

One of the ultimate tests of crystal structure is reverse Monte Carlo (RMC)

modeling. If a guided random process can recreate the same structure that was

deduced by a more explicit method, then it is fairly probable that not only is the

structure correct, it is also unique.

10.1 Reverse Monte Carlo EXAFS Modeling

RMC modeling can be done to reconstruct EXAFS measurements. In this approach

only the density and the chemical composition of the material need be specified, the

actual structure is generated by randomly distorting an arbitrary initial structure

[129]. With that in mind, RMC is an attractive, albeit inefficient, means of providing

verification of the twisted chain model described in Chapter 9.

The algorithm for RMC calculations is quite simple. The code under development

in this research uses the following algorithm, adapted from Reference [129].

1. Create an initial arrangement of N atoms in a volume V , where the atoms

consist of the appropriate stoichiometry for the material of interest, and N

and V reflect the correct density.

2. Displace a random atom by a random amount, subject to a few physical con-

straints.

3. Calculate the average EXAFS from all relevant sites in the material.

4. Compare the average EXAFS with the experimental data.
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5. If the calculated EXAFS is a better match to experiment than the calculated

EXAFS from the previous iteration, keep the atomic displacement.

6. If the calculated EXAFS is a worse match to experiment than the calculated

EXAFS from the previous iteration, keep the atomic displacement with a prob-

ability proportional to exp(ξn − ξn−1), where ξi represents the R-factor for

iteration i. Otherwise the atom is moved back to its previous position.

7. Loop back to step 2 until the R-factor is small enough to indicate that the

calculated EXAFS is a good fit to the experimental data.

For the purposes of this research, the physical constraints for displacing an atom is

listed only to keeping a minimum distance between atoms, although a general RMC

algorithm can incorporate preferences for specific geometries as well [130].

An RMC approach for determining the structure of aSe was tried as early as

1968 by Kaplow et al., although they modeled XRD rather than EXAFS data [37].

Recently Jóvári et al. studied the structure of aSe with RMC used to model the

structure factor obtained from neutron diffraction [36]. Kaplow’s study concluded

that aSe was primarily composed of Se8 rings [37], a result which later studies in-

dicated was incorrect [40, 117]. The fact that the RMC algorithm used by Kaplow

et al. only accepted “better” atomic displacements may have caused their code to

converge to local minima, rather than the global optimum [36]. This emphasizes

why the use of random chance in modifying the structure, in an manner which im-

proves the overall fit, is necessary to be confident that the best RMC solution is

the globally optimum one. In addition Kaplow et al. only used 100 atoms in their

simulation. Jóvári’s study used between 4000 and 16 000 atoms, and concluded

that aSe was likely formed of helical chains, but that diffraction data alone could

not accurately distinguish between a disordered ring-like or a disordered chain-like

structure. Therefore an RMC approach using EXAFS data is of interest not only

to help validate the twisted chain model used in Chapter 9, but also to compare to

diffraction based RMC studies.
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10.2 Implementation and Preliminary Results

An in-depth RMC model for EXAFS data would require that the average EXAFS

from an arrangement of several thousand atoms match the experimental data. Since

the “correct” arrangement of these atoms can only be determined by brute force,

several hundred thousand, if not million, iterations may be required to optimize

the structure. Obviously this is fairly computationally intensive. To obtain some

preliminary results, I attempted to use RMC to model the structure of aSe starting

with an 8× 8× 8 cubic lattice of Se, but after two weeks of calculation the structure

had not converged much at all, and the calculation was terminated so the computing

resources could be used for more fruitful ends.

The main problem with the RMC code is that it relies on FEFF6L to calculate

the EXAFS for every distinct lattice site. FEFF6L is quite fast; only taking about

half a second to run, but compared to the rest of the RMC program this is the

slowest step. Further, after displacing an atom the EXAFS must be recalculated

not only for the displaced atom but also for every atom within 6 Å of that atom.

Given the density of aSe, there are roughly 25 to 30 neighbours within a 6 Å radius

of a given atom, so recalculating the EXAFS from a single displacement can take

on the order of 15 seconds. Two weeks is therefore be sufficient for only a hundred

thousand iterations; probably not enough to accurately resolve the structure of aSe.

To write an efficient RMC code it might be necessary to use a custom, and probably

less accurate, EXAFS calculation to drive the structural displacements and only rely

on FEFF6L for occasional checks.

As an intermediate measure, I wrote an RMC program to model the structure

around a single absorbing atom. In a sense this is similar to the approach used

in the twisted chain model described in Chapter 9, although it is far less accurate.

Since an EXAFS measurement only samples a few atoms in the structure - the X-ray

intensity is only ∼ 1015 photons/cm2, while the areal density of a 30 µm aSe film is

∼ 1020 atoms/cm2 - as long as each atom has roughly the same local environment

we are justified in only selecting a few. In the twisted chain model this is the case;
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Figure 10.1: A sample cluster RMC calculation in an effort to reproduce
the structure of pSe. The left hand structure started from a simple cubic
arrangement, the right hand structure started from the ideal tSe arrangement.

consistent bond lengths, bond angles, and dihedral angles are required for each atom.

In the RMC approach this might not be the case; since only overlapping atoms are

avoided the final result may mean that neighbouring atoms may have very different

local structure than the chosen core atom.

Despite the above objections, using RMC to reproduce the EXAFS from a single

site is of interest in seeing how many different geometries might be possible. Further,

a robust and generic single-site RMC code is useful for modeling doping sites when

no other structural data is available1. With this in mind, I modeled the EXAFS from

low temperature pSe from two sets of initial conditions: a simple cubic lattice and

the normal tSe crystal structure. The first structure involved 125 atoms, the second

only involved 49 atoms. Each structure was cycled through 60 000 distortions; by

that point the R-factor was more or less stable but it was still not low enough to

reflect an optimum atomic arrangement.

The final structures for the simple cubic and tSe initial conditions are shown in

Figure 10.1. It is surprising how much the initial tSe structure was distorted by the

RMC calculation, very few bonding pairs remain. Of course one of the drawbacks of

1In the present case, although we have As dopants, since we still have Se EXAFS data the best
approach is to fill a box with the proper ratio of As and Se atoms and use RMC to solve for both
simultaneously. I am, however, participating in some other projects involving rare-earth doped
glasses where only EXAFS from the rare-earth is available.
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Figure 10.2: The calculated EXAFS from RMC modeling of pSe with tSe
and simple cubic initial conditions compared to the actual data.

a cluster RMC approach is that only the position of the outer atoms relative to the

core atom has any impact on the calculated EXAFS. The cluster calculated from

an initial simple cubic lattice is qualitatively the same as that from the tSe lattice.

This is a good check on the implementation of the RMC algorithm: the final result

of an RMC calculation should be independent of the initial conditions.

The calculated EXAFS from these structures is shown in Figure 10.2. It is obvious

that the fit leaves something to be desired. In a sense this simply demonstrates that

it is futile to try to represent a low-symmetry crystal like pSe with a single site;

however since the structure of tSe was fit quite successfully to the pSe data (refer

back to Chapter 7) I expected better results. This may suggest that the RMC

code needs to be tweaked, for example the average atomic displacement may be too

large (or too small) to converge. Certainly when starting from the tSe structure,

since the pSe fit in Chapter 7 suggested that the maximum deviation from the ideal

lattice position was about 0.5 Å, choosing a random displacement from a uniform

distribution of relative coordinates with a maximum of ± 0.5 Å might be too large,

and easily cause the calculation to overshoot the ideal position.
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In short, I expect RMC to be a useful tool in calculating the structure of aSe:x%As.

The cluster approach is useful for testing the effectiveness of the RMC code, and sug-

gests that my algorithm needs some adjustments. Once a single site can be efficiently

fit to the EXAFS data, a proper model that attempts to fit all sites can be imple-

mented.
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Chapter 11

Conclusions

11.1 Summary of Results

In the course of this research I have acquired X-ray spectroscopy measurements of

aSe, tSe, mSe, and aSe:x%As for x = 0.2%, 0.5%, 2%, 6%, 10%, 19%, and 39% (the

last is As2Se3) from all available selenium edges (K-, L2,3-, and M4,5-edges), and

several arsenic edges (K- and M4,5-edges). The XANES and XES measurements

have probed the valence and conduction band DOS, which is qualitatively consistent

with DFT electronic structure calculations. I have identified a valence band feature

which matches the bonding electrons and has a dependence on arsenic concentration.

I have also identified a weak conduction band feature which identifies the degree of

crystallization in aSe and aSe:x%As, even at room temperature.

The EXAFS data from the As and SeK-edges probes the physical structure of the

material, and from that I have found bond lengths and estimated the average number

of nearest neighbours. The selenium measurements are consistent with the reported

spectra for aSe and tSe. The arsenic measurements show considerable structural

deviations, in particular the local disorder and the number of nearest neighbours.

The arsenic — selenium bond length is a bit shorter (by about 0.8 Å) than a selenium

— selenium bond.

I have acquired a wide range of spectra in various measurement modes (trans-

mission and fluorescence), at various temperatures (room temperature and ∼ 30 K),

and at various stages of crystallization (fresh deposit, after short annealing, after

prolonged annealing). This set of spectra show a surprising range of variation in

the white line height and the number of nearest neighbours. This range of variation
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does not appear to be consistent with the effects of simple pin-holes or cracks in the

samples.

The long range structure of polycrystalline selenium films is visible at low tem-

peratures, but not at room temperatures. This structure was found to be consistent

with the structure of tSe, as expected. However the standard impact of thermal

effects on the low temperature structure is insufficient to remove all long range order

at room temperature. It is also not possible for regular distortion of the tSe structure

to remove the long range order. This suggests that the thermal disorder in selenium

is anharmonic, and probably also asymmetric.

Polycrystallinity was induced in samples with up to 2% arsenic. These materials

also appear to crystallize in the tSe form, but no long range order is seen from

As edge. The regular bond length and higher coordination number of arsenic (as

expected from basic chemistry) strongly suggests that arsenic is incorporated into

the Se chain-like structure, rather than located in interstitial sites. The lack of long

range order directly shows the retarding effect arsenic has on selenium crystallization.

Finally the structure of aSe appears to be consistent with the twisted chain model,

although it is possible that the bond angles have around 5% variation from the ideal

value throughout the structure. Reverse Monte Carlo modeling seems to also be

a viable method for determining the structure of aSe, although additional work is

needed to fine tune the algorithm.

11.2 Future Work

Obviously many parts of this thesis are still “work in progress”, and additional

fine-tuning of the distorted chain structural model and the RMC calculations are

necessary to produce useful results for aSe:x%As. Given the scope of this project,

and the likelihood of my future involvement in spectroscopic studies of glasses -

in particular rare-earth doped chalcogenide and ZBLAN glasses - I would like to

make these models as robust and generic as possible, so they may easily be extended

different materials.
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There are two immediate follow-up projects underway; one involving the XANES

“fingerprint” of crystallization, the other the XES “fingerprint” of arsenic concen-

tration. After conversations with Dr. Alex Kolobov the past summer, we are col-

laborating on investigating further the XANES feature which tracks the degree of

crystallization. Dr. Kolobov has recently (November, 2009) performed measure-

ments of gradually annealed aSe at SPring-8 and has reproduced my findings (refer

back to Chapter 7). He was able to heat the samples in situ, and therefore he has

even more measurements than I have and the gradual change from aSe to tSe is very

clear. We are planning on conducting additional measurements at SPring-8 (which

I hope to attend) this summer, where the crystallization of aSe:x%As and the effect

of different substrates will be examined.

Finally, Prof. Kasap is interested in measuring the sensitivity of the bonding-pair

4p electrons probed by the Se M4,5-edge XES to substrate temperature. In particular

he would like me to acquire measurements of As2Se3 deposited on substrates far

above and far below the glass transition temperature. This research will probably

be conducted this April at the ALS.

106



References

[1] D. M. Pai and R. C. Enck. Onsager mechanism of photogeneration in amor-
phous selenium. Physical Review B, 11(12):5163, 1975.

[2] J. L. Hartke. Drift mobilities of electrons and holes and space-charge-limited
currents in amorphous selenium films. Physical Review, 125(4):1177, 1962.

[3] M. D. Tabak and P. J. Warter. Field-controlled photogeneration and free-
carrier transport in amorphous selenium films. Physical Review, 137(3):899,
1968.

[4] H. P. Grunwald and R. M. Blakney. Electron and hole drift mobilities in
vitreous selenium. Physical Review, 165(3):1006, 1968.

[5] B. Kramer, K. Maschke, and L. D. Laude. Electronic spectra of trigonal and
disordered phases of tellurium and selenium, I. Theory. Physical Review B,
8(12):5781, 1973.

[6] L. D. Laude, B. Kramer, and K. Maschke. Electronic spectra of trigonal and
disordered phases of tellurium and selenium, II. Experiment. Physical Review
B, 8(12):5794, 1973.

[7] Y. Katayama, M. Yao, Y. Ajiro, M. Inui, and H. Endo. Photo-induced phe-
nomena in isolated selenium chains. Journal of the Physical Society of Japan,
58(5):1811, 1989.

[8] A. V. Kolobov, H. Oyanagi, K. Tanaka, and Ke. Tanaka. Structural study
of amorphous selenium by in situ EXAFS: Observation of photoinduced bond
alternation. Physical Review B, 55:726, 1997.

[9] I. M. Blevis, D. C. Hunt, and J. A. Rowlands. Measurement of X-ray photo-
generation in amorphous selenium. Journal of Applied Physics, 85(11):7958,
1999.

[10] W. D. Oliphant. Xeroradiography I. Apparatus and method of use. British
Journal of Radiology, 28:543, 1955.

[11] P. B. Sewell. Electron-image recording by xerography. Nature, 179:773, 1957.

[12] J. A. Rowlands and S. O. Kasap. Amorphous semiconductors usher in digital
X-ray imaging. Physics Today, 50:24, 1997.

107



[13] D. C. Hunt, O. Tousignant, Y. Demers, L. Laperriere, and J. A. Rowlands.
Imaging performace of an amorphous selenium flat-panel detector for digital
fluoroscopy. In M. J. Yaffe and L. E. Antonuk, editors, Medical Imaging 2003
Proceedings of SPIE, volume 5030, page 226. SPIE, 2003.

[14] O. Tousignant, Y. Demers, and L. Laperriere. a-Se flat panel detectors for
medical applications. In Sensors Applications Symposium, San Diego, CA,
2007. Instrumentation and Measurement Society, IEEE.

[15] S. O. Kasap, M. Zahangir Kabir, and J. A. Rowlands. Recent advances in
X-ray photoconductors for direct conversion X-ray image detectors. Current
Applied Physics, 6:288, 2006.

[16] S. O. Kasap and J. A. Rowlands. Direct-conversion flat-panel X-ray image
sensors for digital radiography. Proceedings of the IEEE, 90(4):591, 2002.

[17] W. Que and J. A. Rowlands. X-ray imaging using amorphous selenium: in-
herent spatial resolution. Medical Physics, 22(4):365, 1995.

[18] V. Loustauneau, M. Bissonnette, S. Cadieux, M. Hansroul, E. Masson,
S. Savard, B. Polischuk, and M. Lehtimäki. Imaging performance of a clin-
ical selenium flat-panel detector for advanced applications in full-field digital
mammography. In M. J. Yaffe and L. E. Antonuk, editors, Medical Imaging
2003 Proceedings of SPIE, volume 5030, page 1010. SPIE, 2003.

[19] ANRAD Corporation. The smam digital detector product information.
http://www.anrad.com, Saint-Laurent, QC, 2004. Technical datasheet.

[20] B. B. Buchanan, J. J. Bucher, D. E. Carlson, N. M. Edelstein, E. A. Hudson,
N. Kaltsoyannis, T. Leighton, W. Lukens, D. K. Shuh, H. Nitsche, T. Reich,
K. Roberts, P. Torretto, J. Woicik, W.-S. Yang, A. Yee, and B. C. Yee. A
XANES and EXAFS investigation of the speciation of selenite following bac-
terial metabolization. Inorganic Chemistry, 34:1617, 1995.
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Appendix A

Summary of X-ray Spectra

The following is a summary of the X-ray measurements performed in the context
of this thesis. The beamline, beamline settings, measurement technique, and samples
measured are all briefly described.

1. October 2007: Room temperature measurements taken at BL8. Low energy
monochromator and low energy spectrometer gratings were used. The ALS
ring was at 1.9 GeV with peak operating current of 400 mA. Se M4,5-edge
XES measurements of aSe, aSe:0.2%As, and Se:0.5%As were taken. Some of
the aSe:0.5%As had 10, 11, and 40 ppm Cl added. These spectra are not very
useful, there is significant low-energy noise. Most of the emission was excited at
168 eV, one measurement was excited at 100 eV. The only difference between
the spectra taken at the two excitation energies is the counting statistics, results
were generally a bit better at 168 eV excitation.

2. November 2007: Room temperature measurements taken at the HXMA
beamline with an Si(111) monochromator crystal and an Rh-plated mirror.
The wiggler was at 1.9 T, and the primary slit at 1.0 × 5.0 mm. The CLS ring
was at 2.9 GeV with peak operating current of 250 mA. Transmission mode
XANES and EXAFS measurements were taken of the Se K-edge for aSe and
aSe:0.5%As, and Se and Se:0.5%As annealed at 60◦ C for 14 hours. Fluores-
cent mode XANES and EXAFS measurements with the 32-element germanium
spectrometer were taken of the As K-edge for aSe:0.5%As and Se:0.5%As an-
nealed at 60◦ C for 14 hours.

3. December 2007: Room temperature measurements taken at the HXMA
beamline with an Si(220) monochromator crystal and an Rh-plated mirror.
The wiggler was at 1.9 T, and the primary slit at 1.5 × 1.5 mm. The CLS
ring was at 2.9 GeV with peak operating current of 250 mA. Transmission
mode XANES and EXAFS measurements were taken of the Se K-edge for
aSe:0.2%As, aSe:10%As, and Se:0.2%As annealed at 80◦ C for 16 hours. Fluo-
rescent mode XANES and EXAFS measurements with the Saturn-Vortex spec-
trometer were taken of the As K-edge for aSe:0.2%As, aSe:0.5%As, aSe:2%As,
aSe:6%As, aSe:10%As, and Se:0.2%As annealed at 80◦ C for 16 hours.

4. January 2008: Room temperature measurements taken at the SGM beam-
line. The high energy grating and the third undulator harmonic were used,
the slits were set to 250 µm/20 µm. Se L2,3-edge XANES measurements of
aSe, aSe:0.2%As, aSe:0.5%As, aSe:2%As, aSe:6%As, aSe:10%As, SeO2, and
tSe were taken. Data are not very interesting.
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5. February 2008: Room temperature measurements taken at the HXMA beam-
line with an Si(220) monochromator crystal and an Rh-plated mirror. The
wiggler was at 1.9 T, and the primary slit at 1.5 × 1.5 mm. The CLS ring
was at 2.9 GeV with peak operating current of 250 mA. Transmission mode
XANES and EXAFS measurements were taken of the Se K-edge for aSe, aSe
progressively annealed at 60◦ C, 80◦ C, and finally 100◦ C for 3 hours each,
aSe:0.2%as, aSe:10%As progressively annealed at 60◦ C, 80◦ C, and finally 100◦

C for 3 hours each, SeO2, tSe, and As2Se3. Transmission mode XANES and
EXAFS measurements were taken of the As K-edge for As2Se3.

6. April 2008: Room temperature and low temperature (∼30 K) measurements
taken at BL8. The ALS ring was at 1.9 GeV with peak operating current of
400 mA. Low energy monochromator and low energy spectrometer gratings
were used. A liquid helium cryostat was used to bring the sample down to
∼30 K while in UHV. Se M4,5-edge XES measurements of aSe, aSe:0.2%As,
aSe:10%As, SeO2, tSe, and As2Se3 were taken. A strange high-energy low
temperature feature is inconsistently present in some measurements.

7. September 2008: Room temperature measurements taken at the PGM beam-
line. Medium energy grating, 50 µm entrance and exit slit, and 1s dwell time.
The CLS ring was at 2.9 GeV with peak operating current of 250 mA. Se
M4,5-edge XANES in TEY and TFY mode measurements of aSe, aSe:0.2%As,
aSe:2%As, aSe:6%As, aSe10%As, tSe, SeO2, and As2Se3 were taken. As M4,5-
edge XANES in TEY and TFY mode measurements of As2Se3 were taken.
Some of the aSe measurements appear to show progressive radiation damage
in the ratios of the M4, M5 peaks. This was measured repeatedly by opening
the slits to 250 µm for a brief period, then measuring the sample with 5 µm
slits.

8. October 2008: Room temperature and low temperature (∼30 K) measure-
ments taken at BL8. The ALS ring was at 1.9 GeV with peak operating current
of 500 mA. Low energy monochromator and low energy spectrometer gratings
were used. A liquid helium cryostat was used to bring the sample down to
∼30 K while in UHV. Se M4,5-edge XES measurements of aSe, aSe:0.2%As,
aSe:0.5%As, aSe:2%As, aSe:6%As, aSe:10%As, and As2Se3 were taken. The
previously noted low temperature feature is no longer visible.

9. November 2008: Low temperature measurements taken at the HXMA beam-
line with an Si(220) monochromator crystal and an Rh-plated mirror. The wig-
gler was at 1.9 T, and the primary slit at 1.5 × 1.5 mm. The CLS ring was at
2.9 GeV with peak operating current of 250 mA. A liquid helium cryostat with
beryllium windows was used to cool the samples to ∼30 K. Se K-edge trans-
mission XANES and EXAFS were taken of aSe, pSe, tSe, mSe, aSe:0.2%As,
pSe:0.2%As, and aSe:10%As. As K-edge transmission XANES and EXAFS
were taken of aSe:0.2%As and aSe:10%As.
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10. January 2009: Low temperature measurements taken at the HXMA beam-
line with an Si(220) monochromator crystal and an Rh-plated mirror. The
wiggler was at 1.9 T, and the primary slit at 1.5 × 1.5 mm. The CLS ring was
at 2.9 GeV with peak operating current of 250 mA. A liquid helium cryo-
stat with beryllium windows was used to cool the samples to ∼30 K. Se
K-edge transmission XANES and EXAFS measurements were taken of aSe,
pSe, aSe:0.5%As, pSe:0.5%As, aSe:2%As, pSe:2%As, aSe:6%As, pSe:6%As,
aSe10%As, pSe:10%As, aSe:19%As, and pSe:19%As. As K-edge transmis-
sion XANES and EXAFS measurements were taken of pSe:2%As, pSe:6%As,
aSe:10%As, pSe:10%As, aSe:19%As, and pSe:19%As. Fluorescence XANES
and EXAFs measurements of pSe:0.5%As were taken with the 32-element Ge
detector, and of aSe:0.2%As and pSe:0.2%As with the Saturn-Vortex detector.
The pSe:x%As were annealed at 100◦ C for 24 hours for x ≤ 6, and at 110◦ C
for 100 hours for x < 6. Although listed as “polycrystalline”, for x > 2% no
long range order was present.
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Appendix B

EXAFS Data Processing Procedure

The EXAFS data files were calibrated and treated according to the following
steps.

1. If applicable, the relevant channels from the 32-element Ge detectors are summed.

2. The data points in regions where there is a monochromator glitch are removed.

3. The energy is calibrated using Bragg’s law.

4. The deglitched and calibrated data is imported into Athena.

5. Athena is used to align the derivatives of the repeated spectra (this is a cor-
rection only on the order of ∼ 0.1 eV), and the repeated spectra are summed
together.

6. Athena is used to remove the background (using AUTOBK [79]), and extract
the EXAFS oscillations χ(k).

Often some channels on the 32-element Ge detector were burnt out (frequently
channel 13 had problems) and these channels were discarded.

Monochromator glitches were identified from the I0 current of several different
scans. Data points falling in this energy range were removed entirely. These glitch
regions are listed in Table B.1.

The calibration energies were chosen somewhat arbitrarily. The reference spectra
were calibrated to literature values at the peak in the first derivative on the absorp-
tion edge (the “absorption threshold”). The calibrated energy scale was calculated
by comparing the measured absorption threshold Emeas with a theoretical standard
Ecal. For this research, Ecal = 12658.0 eV for the Se K-edge, and Ecal = 11919.0

Table B.1: Monochromator glitches for an Si(111) and Si(220) crystal in the
As to Se K-edge energy range.

Si(111) Crystal [eV] Si(220) Crystal [eV]
12045.0 — 12055.0 12298.0 — 12323.0
12122.0 — 12129.0 1250.0 — 12560.0
12254.0 — 12303.0 12930.0 — 12940.0
12490.0 — 12500.0 13250.0 — 13270.0
14053.0 — 14076.0 13650.0 — 13670.0
14112.0 — 14135.0 14165.0 — 14185.0
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for the Au L3-edge (used as the reference standard for the As K-edge measure-
ments) [100]. The correction factor to the monochromator angle was calculated as
follows:

∆φ = sin−1

(
hc

2Emeasd

)
− sin−1

(
hc

2Ecald

)
(B.1)

Where d is the distance between crystal planes in the monochromator, h is Planck’s
constant, and c is the speed of light. For an Si(111) crystal, d = 3.1356 Å and for
an Si(220) crystal, d = 1.9102 Å. The monochromator angle correction is then used
to calculate the calibrated energy scale E ′:

E ′ =
hc

2d sin
(
sin−1

(
hc
Ed

)−∆φ
) (B.2)

Although deglitching will leave “holes” in the energy scale, Athena automatically
interpolates χ(k) onto a regular grid. Since even with missing data points χ(k)
oscillates very slowly compared to the measured energy steps this interpolation is
quite accurate.

121



Appendix C

Construction of Selenium Chain

Calculating the possible positions of atoms in a Se chain with a specified bond
length b, bond angle θ, and dihedral angle φ is fairly straightforward. However since
the equations are rather long, I will explicitly derive the result.

The position of a single Se atom is obviously completely arbitrary. To construct a
chain, the second atom placed has a single constraint: it must be a specific distance
(the bond length) from the first atom. The second atom can therefore be located
anywhere on the surface of a sphere of radius b with the first atom at the centre.

The third atom then has two constraints: it must have the correct bond length
from with the second atom and the second atom must be the vertex of the correct
bond angle. The second atom can therefore be located anywhere on the perimeter
of a circle of radius b sin(θ) that is −b cos(θ) above the second angle in the plane
formed by the normal vector pointing from the first atom to the second atom.

While the placement of the first three atoms all involve a fair amount of freedom,
the actual relative arrangement of these atoms are not unique. Any set of valid
positions for the above three atoms can be mapped into another set of valid positions
through translations and 3D rotations. The fourth atom, however, with the dihedral
angle added as a constraint, breaks the degeneracy of the three atom arrangement.
For a given dihedral angle there are at most two positions for the fourth atom (if the
dihedral angle is 0 or π there is only one position, obviously).

For the following derivation I will assume that the position of the first three
atoms, denoted by ~R1, ~R2, and ~R3, are known, and the position of the fourth atom
~R4 is unknown (see Figure C.1). To make the notation more convenient, the following
relative vectors will be used:

~r1 = ~R1 − ~R0

= x1î+ y1ĵ + z1k̂

~r2 = ~R1 − ~R0

= x2î+ y2ĵ + z2k̂

~r3 = ~R3 − ~R2

= x3î+ y3ĵ + z3k̂

I am therefore solving for ~r3. To make this derivation more general, I assume that
the bond lengths and bond angles are not necessarily constant. We therefore have:

|~r1| = b1

|~r2| = b2

~r1 · ~r2 = −b1b2 cos θ1
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Figure C.1: A pictorial representation of the variables used in the following
derivation. We assume that the locations (~R1, ~R2, ~R3) of the three green
atoms are known. The fourth atom, shown in red, is at an unknown position
~R4, however we do know the bond lengths bi, bond angles θi, and the dihedral
angle φ.

The final bond length b3, bond angle θ2, and dihedral angle φ are known values. The
possible values for ~r3 are therefore solutions to the following equations:

|~r3| = b3 (C.1)

~r2 · ~r3 = −b2b3 cos θ2 (C.2)

(~r1 × ~r2) · (~r3 × ~r2) = −b1b22b3 sin θ1 sin θ2 cosφ (C.3)

Expanding Equation C.3 in terms of Cartesian coordinates yields:

~r1 × ~r2 = (y1z2 − z1y2) î+ (z1x2 − x1z2) ĵ + (x1y2 − y1x2) k̂

~r3 × ~r2 = (z2y3 − y2z3) î+ (x2z3 − z2x3) ĵ + (y2x3 − x2y3) k̂

(~r1 × ~r2) · (~r3 × ~r2) =y1z
2
2y3 − y1y2z2z3 − z1z2y2y3 + z1y

2
2z3

+ z1x
2
2z3 − z1z2x2x3 − x1x2z2z3 + x1z

2
2x3

+ x1y
2
2x3 − x1x2y2y3 − y1y2x2x3 + y1x

2
2y3

=
(
x1

(
y2

2 + z2
2

)− x2 (y1y2 + z1z2)
)
x3

+
(
y1

(
x2

2 + z2
2

)− y2 (x1x2 + z1z2)
)
y3

+
(
z1

(
x2

2 + y2
2

)− z2 (x1x2 + y1y2)
)
z3

=
(
x1

(
b22 − x2

2

)
+ x2 (b1b2 cos θ1 + x1x2)

)
x3

+
(
y1

(
b22 − y2

2

)
+ y2 (b1b2 cos θ1 + y1y2)

)
y3

+
(
z1

(
b22 − z2

2

)
+ z2 (b1b2 cos θ1 + z1z2)

)
z3

=
(
b22x1 + b1b2 cos θ1x2

)
x3 +

(
b22y1 + b1b2 cos θ1y2

)
y3

+
(
b22z1 + b1b2 cos θ1z2

)
z3
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Using Equation C.2 we define x3 as the following:

x3 = −b1b2
x3

cos θ2 − y2

x2

y3 − z2

x2

z3 (C.4)

We therefore have:

−b1b22b3 sin θ1 sin θ2 cosφ =− (
b22x1 + b1b2 cos θ1x2

) (
b1b2
x3

cos θ2 +
y2

x2

y3 +
z2

x2

z3

)

+
(
b22y1 + b1b2 cos θ1y2

)
y3

+
(
b22z1 + b1b2 cos θ1z2

)
z3

−b1b22b3 sin θ1 sin θ2 cosφx2 =− b32b2 cos θ2x1 − b22x1y2y3 − b22x1z2z3

− b1b
2
2b3 cos θ1 cos θ2x2 − b1b2 cos θ1x2y2y3

− b1b2 cos θ1x2z2z3 + b22y1x2y3

+ b1b2 cos θ1x2y2y3 + b22z1x2z3 + b1b2 cos θ1x2z2z3

(y1x2 − x1y2) y3 + (z1x2 − x1z2) z3 = (b1b3 (cos θ1 cos θ2 − sin θ1 sin θ2 cosφ) x2 + b2b3 cos θ2x1)

We then define y3 as the following;

y3 =

(
b1b3 (cos θ1 cos θ2 − sin θ1 sin θ2 cosφ)x2 + b2b3 cos θ2x1

y1x2 − x1y2

)
+

(
x1z2 − z1x2

y1x2 − x1y2

)
z3

(C.5)

=c3 + c4z3 ,

and use Equations C.4 and C.5 to define x3 as the following:

x3 =

(
b1b3 (sin θ1 sin θ2 cosφ− cos θ1 cos θ2) y2 − b2b3 cos θ2y1

y1x2 − x1y2

)
+

(
z1y2 − y1z2

y1x2 − x1y2

)
z3

(C.6)

=c1 + c2z3

Substituting Equations C.5 and C.6 into Equation C.1, we have:

b23 = (c1 + c2z3)
2 + (c3 + c4z3)

2 + z2
3

z3 = −
(
c1c2 + c3c4
c22 + c24 + 1

)
±

√(
c1c2 + c3c4
c22 + c24 + 1

)2

− c21 + c23 − b23
c22 + c24 + 1

(C.7)

In Equation C.7 the choice of plus or minus in the expression for z3 determines the
“sign” of the dihedral angle. If the sign is chosen consistently as plus (or minus)
a helical chain-like structure will be generated, if the sign is alternated than an
approximation of a ring structure will be generated (if the bond lengths, bond angles,
and dihedral angles of tSe are used the ninth atom in the ring will almost completely,
but not perfectly, overlap the position of the first atom).

Note that the definition used in Equation C.4 requires x2 6= 0. Since the equations
are symmetric under exchange of x, y, z, if x2 = 0 the above expressions can still be
used simply by swapping the variables as appropriate. Obviously for a non-zero bond
length at least one of the components of ~r2 will be greater than zero, so the above
method is not exclusive to a particular geometry.
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