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ABSTRACT 

 
 
 

Genes encode proteins, some of which in turn regulate other genes. Such interactions 

make up gene regulatory relationships or (dynamic) gene regulatory networks. With 

advances in the measurement technology for gene expression and in genome 

sequencing, it has become possible to measure the expression level of thousands of 

genes simultaneously in a cell at a series of time points over a specific biological 

process. Such time-course gene expression data may provide a snapshot of most (if not 

all) of the interesting genes and may lead to a better understanding gene regulatory 

relationships and networks. However, inferring either gene regulatory relationships or 

networks puts a high demand on powerful computational methods that are capable of 

sufficiently mining the large quantities of time-course gene expression data, while 

reducing the complexity of the data to make them comprehensible. This dissertation 

presents several computational methods for inferring gene regulatory relationships and 

gene regulatory networks from time-course gene expression. These methods are the 

result of the author’s doctoral study. 

 

Cluster analysis plays an important role for inferring gene regulatory relationships, for 

example, uncovering new regulons (sets of co-regulated genes) and their putative cis-

regulatory elements. Two dynamic model-based clustering methods, namely the Markov 
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chain model (MCM)-based clustering and the autoregressive model (ARM)-based 

clustering, are developed for time-course gene expression data. However, gene 

regulatory relationships based on cluster analysis are static and thus do not describe the 

dynamic evolution of gene expression over an observation period. The gene regulatory 

network is believed to be a time-varying system. Consequently, a state-space model for 

dynamic gene regulatory networks from time-course gene expression data is developed. 

To account for the complex time-delayed relationships in gene regulatory networks, the 

state space model is extended to be the one with time delays. Finally, a method based on 

genetic algorithms is developed to infer the time-delayed relationships in gene 

regulatory networks. Validations of all these developed methods are based on the 

experimental data available from well-cited public databases. 

 

 

Key words:  DNA microarray, gene expression, data normalization, gene regulatory 

relationship, MCM-based clustering, ARM-based clustering, gene regulatory network, 

state-space model, time delay, genetic algorithm. 
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Chapter 1 

 

INTRODUCTION 

 

1.1 Background 

 

Advances in genome sequencing and throughput measurement technology (Pease et al., 

1994; Schena et al., 1995; Lockhart et al., 1996) for gene expression have enabled 

investigators to simultaneously measure the expression levels of thousands of genes at a 

series of time points or under different conditions. Such large-scale data promise 

informative insights into the regulatory mechanisms of genomes and help enhance the 

fundamental understanding of life at the molecular level, from gene regulations, to gene 

functions, or to cellular mechanisms. Such data also have proven useful in genomic 

disease diagnosis, treatment, and drug design.  To realize these promises, analysis of 

these data requires advanced mathematical tools that are capable of mining large-scale 

datasets, in particular, capable of inferring gene regulatory relationships and gene 

regulatory networks. 

       

Gene expression data can typically be divided into two classes: non-time-course and 

time-course data. In non-time course expression experiments, a snapshot of gene 

expression levels is taken for cells under varying conditions, for cells from different 
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categories, or for cells from different tissues; for example, expression levels of tumour 

cells from different cancer types (Golub et al., 1999). In time-course expression 

experiments, a temporal cellular process is measured; for example, the response of 

human fibroblasts to serum (Iyer et al., 1999), response to environmental conditions 

(Gasch et al., 2000), or the cell division cycle processes (Spellman et al., 1998; 

Whitfield et al., 2000; Laub et al., 2000). In this dissertation, the term gene expression 

data refers to time-course gene expression data unless otherwise stated. 

 

Time-course gene expression data can be useful for inferring gene regulatory 

relationships such as putative functional correlations and gene co-regulated 

relationships. Cluster analysis has widely been employed and proven useful for this 

purpose (Eisen et al., 1998). Cluster analysis techniques assign genes with similar 

expression profiles to the same group (cluster). The intuition behind this is that genes in 

the same cluster may be co-regulated or functionally similar. The definition of similarity 

plays an important role in cluster analysis of gene expression. Most cluster analysis 

techniques employ Euclidean distance or Pearson correlation to measure the similarity 

among genes and are called distance/correlation-based clustering methods. They include 

hierarchical clustering (Eisen et al., 1998), k-means clustering (Tavazoie et al., 1999), 

and self-organizing maps (Toronen et al., 1999). Recently, some static model-based 

clustering methods (for example, Yeung et al., 2001; Ghosh and Chinnaiyan, 2002; 

McLachlan et al., 2002) have also been proposed for gene expression data. These 

methods define genes to be similar if their expression profiles are generated from the 

same probability distribution. Since arbitrarily permuting time points does not change 
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the result of the clustering with these distance/correlation- or static model-based 

clustering methods, the important information about dynamics in time-course gene 

expression data may be missed, and thus the quality of clustering may not be optimal. 

Accounting for dynamics of time-course gene expression should improve the quality of 

clustering for time-course gene expression data. 

 

Time-course gene expression data can also be useful for inferring gene regulatory 

networks which reflect how genes are regulated in a cell. Inferring gene networks from 

their expression data is the ultimate goal of time-course gene expression measurements 

at the large scale. Many models have been proposed for this purpose. For example, 

Somogyi and Sniegoski (1996) proposed a Boolean network model in which the 

expression state of a gene is determined by a Boolean function of the states of other 

genes. Since the Boolean network model views a gene’s expression (state) as either 

completely “on”  or “off”  (represented by the binary values 1 and 0, respectively), it is a 

discrete model. Chen et al. (1999) and D'haeseleer et al. (1999) proposed the continuous 

differential and difference equation models for gene regulatory networks, respectively. 

In these models, the expression state of a gene is determined by a differential/difference 

equation. To describe a gene regulatory network with n  genes, these aforementioned 

models need n  coupling Boolean equations, or coupling differential equations or 

coupling difference equations, respectively. Because the number of genes is typically 

much larger than the number of time points in current gene expression datasets, these 

models are underdetermined if no further constraints or assumptions are imposed. To 

make these models identifiable, some assumptions are thus enforced on the structure of 
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models; for example, the connectivity degree of genes is small (typically 2 or 3). 

However, not only is the assumption debatable, but the computational complexity of 

model identification is still expensive. Therefore, it is worthwhile to develop new 

models to overcome these disadvantages. 

 

1.2 Overview 

 

The dissertation presents research on computational methods for inferring gene 

regulatory relationships (cluster analysis) and inferring gene regulatory networks from 

time-course gene expression data. Large portions of this dissertation have been 

published previously (Wu, 2003; Wu et al., 2004a, b, c, d, e, f). The dissertation consists 

of five chapters. 

 

Chapter 2 provides background information for this work. Section 2.1 gives a brief 

overview of the main technologies employed for measuring gene expression levels on 

the genomic scale. Several real and synthetic time-course gene expression datasets 

employed in this dissertation are described in Section 2.2.  Section 2.3 introduces 

widely-used pre-processing strategies for analysis of gene expression data, some of 

which will be employed in the following chapters.  

 

Cluster analysis is a powerful tool for inferring gene regulatory relationships from time- 

course gene expression data. Many different clustering methods have been proposed to 

analyze gene expression data, and numerous applications of these methods have been 
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reported. However, no single one has been accepted as the optimal by the gene 

expression analysis community. Typical clustering methods ignore information about 

the dynamics of time-course gene expression, and thus the quality of clustering may be 

degraded. Section 3.1 reviews this related work, mainly focusing on 

distance/correlation-based hierarchical clustering, partitional clustering, and static 

model-based clustering methods. Some internal and external indices for validating 

cluster analysis are reviewed in Section 3.2. A bootstrapping method and an average 

adjusted Rand index (AARI) are also proposed to measure the quality of clustering in 

Section 3.2. In the two subsequent sections, two dynamic model-based clustering 

methods for time-course gene expression data are presented. Section 3.3 describes a 

Markov chain model (MCM)-based clustering method in which the Markov chain is 

employed to account for dynamics of gene expression. To evaluate the proposed 

method, computational experiments are performed on two gene expression datasets and 

the results presented. Section 3.4 describes an autoregressive model (ARM)-based 

clustering method in which an autoregressive equation is used to account for dynamics 

of gene expression. To investigate the ARM-based clustering method, computational 

experiments are again performed on several gene expression datasets and the results 

presented.  Section 3.5 concludes the chapter. 

 

Though the study of systems biology has a long history (Bertalanffy, 1968; Wiener, 

1948), rooted as much as anywhere in classical physiology (Buchman, 2002), systems 

biology at the molecular level (e.g., gene regulatory networks) has only recently become 

feasible with genome sequencing and microarray technology. Many results have been 
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reported in the literature about gene regulatory networks, but we are far away from a 

complete understanding of them. Section 4.1 reviews some of these previous reports, 

mainly focusing on Boolean network models and differential/ difference equation 

models for gene regulatory networks. Due to limitations in the understanding of real 

cellular systems, it is difficult to evaluate the models for gene regulatory networks 

completely by biological experiments. Section 4.2 introduces some indices from the 

perspective of bioinformatics to evaluate such models. Section 4.3 introduces the state-

space model for gene regulatory networks. In this model, genes are viewed as 

observation variables, whose expression values depend on the current internal state 

variables and other external inputs, if they exist. The idea behind this view is that genes 

are regulated by other elements in a cell (Baldi and Hatfield, 2002). Information theory 

and control system theory are employed to build the state-space model. Some 

computational experiments on two datasets are performed to evaluate the proposed 

models. Since the real microarray data example reveals a considerable number of time-

delayed interactions (Alter et al., 2000, 2002; Rosenfeld and Alon, 2003; Yildirim and 

Mackey, 2003) suggesting that time delays are common in gene regulation, a state-space 

model with time delays for gene regulatory networks is further proposed in Section 4.4. 

Computational experiments are also performed to evaluate models proposed in this 

section. In the state-space model with time delay, the identification of time-delayed 

regulatory relationships are very important. Section 4.5 presents a genetic algorithm 

(GA) to infer the time-delayed relationships in a gene regulatory network from gene 

expression data. The results of computational experiments on one dataset are presented.  

Section 4.6 concludes the chapter. 
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Chapter 5 summarizes the dissertation and discusses several possible directions for 

future work. 

 

1.3 Contr ibutions 

 

This dissertation focuses on developing computational methods for inferring gene 

regulatory relationships and inferring gene regulatory networks from time-course gene 

expression data. The main contributions are: 

 

• A Markov chain model (MCM)-based clustering method is developed for time- 

course gene expression data, in which the Markov chain model is employed to 

account for the dynamics of time-course gene expression. Computational 

experiments on gene expression datasets are performed to validate the method. 

The results show that the quality of clustering from the method is improved as 

compared to the k-means clustering method.  

 

• An autoregressive model (ARM)-based clustering method is developed for 

time-course gene expression data, in which an autoregressive equation is 

employed to model the dynamics of time-course gene expression. 

Computational experiments on gene expression datasets are performed to 

validate the method. The results show that the quality of clustering from the 
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method is improved as compared to both the k-means clustering method  and 

the MCM-based clustering method. 

 

• A state-space model is proposed for gene regulatory networks. Unlike Boolean 

network and differential/difference equation models, the state-space model 

views genes as the observation variables whose expression values depend on the 

current internal state variables and other external inputs, if they exist. Maximum 

likelihood factor analysis (MLFA) and the Bayesian information criterion (BIC) 

are employed to estimate the number of internal variables and their expression 

profiles from time-course gene expression data. Computational experiments are 

performed on two gene expression datasets. The results show that not only may 

model parameters be unambiguously identified from current time-course gene 

expression datasets with a modest computational cost, but also the inferred gene 

regulatory networks have some features of real gene regulatory networks. 

 

• A state-space model with time delays is developed for gene regulatory networks 

which is an extension of the state-space model. Probabilistic principal 

component analysis (PPCA) and the BIC are employed to estimate the number 

of internal variables and their expression profiles from time-course gene 

expression data. Computational experiments are performed on two gene 

expression datasets. The results show that the inferred gene regulatory networks 

have better predication accuracy and demonstrate more features of real gene 
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regulatory networks as compared to networks using the model without time 

delays. 

 

• A genetic algorithm is proposed for inferring time delays in gene regulatory 

networks. Computational experiments on two gene expression datasets are 

performed to investigate the proposed algorithm. The results show that the 

algorithm may effectively infer time-delayed relationships among the internal 

variables in gene regulatory networks. 
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Chapter 2 

 

GENE EXPRESSION DATA 

 

2.1 Measurement Techniques        

 

It is well known that deoxyribonucleic acids (DNAs) in a living cell encode all genetic 

information of a living organism. According to the central dogma of genetics (Figure 

2.1), by the transcriptional process DNAs are synthesised into a class of cellular 

ribonucleic acids (RNAs) called messenger ribonucleic acids (mRNAs) and pass on the 

genetic information to mRNAs. Further, mRNAs carry genetic information from the 

nucleus to the cytoplasmic protein synthesis machinery (ribosomes), where they arè  

translated into proteins. It has long been recognized that mRNA plays a pivotal role in 

determining the type and quantity of proteins produced by cells. Indeed, the differences 

in protein content of different types in cells are a reflection of differences in the mRNA 

species expressed and of their levels of expression (abundance) during cellular 

development and maintenance. Once such differences in mRNA populations among 

types of tissues/cells are appreciated, it becomes important to quantify these differences. 

Therefore methods for accurate quantification of specific mRNA species in biological 

samples need to be developed.  
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Figure 2.1 Central Dogma (Clark and Russell, 2001, Alberts et al, 1998) 

 

Original hybridization-based assays (e.g., Northern blot) were facilitated by the unique 

selectivity of nucleic acid base pairing. Applications of such gene-by-gene analysis 

methods established that some transcripts are abundant in certain tissues whilst absent in 

others, and that some genes are expressed at relatively consistent levels in many/all 

tissues. Other techniques for mRNA quantification have since been developed to 

complement Northern blot such as quantitative reverse transcription polymerase chain 

reaction (RT-PCR) (Wen et al., 1998). However, these techniques are also limited to 

relatively few genes per assay.  

 

It should provide an opportunity to gain insights into the total program of genomic 

activity underlying a biological change (as may be part of growth, a response to 

stimulus, etc) that several hundreds and thousands of genes as assayed in parallel rather 

DNA RNA Protein Replication 

Transcription 

Reverse 
Transcription 

Translation 

Regulation 
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than one at a time. Technological advances based around polymerase chain reaction 

(PCR), large-scale cDNA library sequencing, and de novo nucleic acid synthesis have 

contributed to the development of a wide range of techniques for mRNA quantification 

on a (near) genomic scale. These techniques include differential display PCR (DP-PCR), 

serial analysis of gene expression (SAGE) and DNA array hybridization. They all have 

significant benefits over the Northern blot in terms of sensitivity and genes assayed per 

amount of RNA. This section introduces these techniques and compares them.  

 

2.1.1 Oligonucleotide and cDNA Microarrays 

 

The most commonly used methods for assessing mRNA levels are based on 

hybridization of a labelled population of nucleic acids (representing an mRNA sample) 

to an array of individual cDNA sequences or oligonucleotides, printed as spots onto a 

solid support. After hybridization the intensity of the label associated with each spot 

represents the expression level for that particular sequence. This intensity is compared to 

the intensity of the equivalent spot on an identical gridded array hybridized with the 

material prepared using mRNA isolated from a different source. This provides a 

measure of differential mRNA expression specific for that spot’s DNA sequence (gene). 

By comparing all equivalent spot intensities between two grids, the changes in 

expression of many thousands of genes can be monitored simultaneously. The use of 

distinguishable labels for the two mRNA populations under study permits 

cohybridization onto one gridded array; a measure of differential hybridization is then 

obtained by comparing intensities of the two labels at each spot (Figure 2.2). The range 
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of sequences present on an array limits these methods. Thus if a particular gene 

sequence is not represented on the array, then obviously it cannot be assayed. For 

example, higher organisms contain about 100,000 different genes, but only 15% of these 

genes (i.e. ~15,000) are expressed at one time in any individual cell (Liang and Pardee, 

1992). Therefore, the selection of which DNA elements are present on an array is of 

crucial importance for any study.  

 

 

 

Figure 2.2 A schematic diagram for obtaining gene expression data 

 from the dual labelling array-based technology (Duggan et al., 1999) 

 

Using DNA arrays to measure mRNA abundance is directly analogous to performing 

multiple reverse Northern blots simultaneously. Instead of RNA being immobilized on a 
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solid support and being hybridized with gene-specific labelled DNA (Northern blot), the 

gene-specific DNA elements are attached to a solid support and hybridized to labelled 

material derived from RNA. The power of array technology is derived from the fact that 

many thousands of DNA elements (genes), printed as spots, can be assayed in parallel. 

Typically, thousands of DNA elements are robotically printed onto a nylon membrane 

or glass slide at high density. Currently, higher spotting densities are achievable on 

glass, the benefit of which is an increase in the number of genes assayed per amount of 

input RNA without any compromise in terms of assay sensitivity. DNA arrays can be 

classified into two types depending on the chemical nature of DNA elements which are 

used to construct the array: either denatured PCR products (derived from a cDNA 

library) or oligonucleotides. Therefore, array construction requires access to either 

cDNA clones or sequence information (for design of representative oligonucleotides). 

Thus, array design is restricted by our knowledge regarding the genes which make up an 

organism’s genome (hybridizations are performed in a species-specific manner).  

 

When comparing mRNA samples using only one label (single labelling approach), the 

procedure for identification of differentially expressed genes is relatively simple; 

labelled RNA (from two or more samples) is applied to identical DNA arrays, and the 

intensities of spots are compared between the resulting images (after normalization to 

allow for specific activity differences). Another common technique, the dual labelling 

approach, uses two distinguishable labels (e.g. Cy3 and Cy5 (Eisen and Brown, 1999)) 

for two different samples and applying the two differently labelled samples to one glass 

slide array. The two fluorescent labels, having distinct characteristic emission 
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wavelengths, can be discriminated from each other, permitting detection of differential 

hybridization using a single array. The ratio of fluorescent intensities at each spot 

coordinate gives the result of a sequence-specific competitive hybridization. The 

principal advantage of using a single array technique over the dual labelling approach is 

the elimination of artifacts resulting from subtle quality differences between individual 

gridded arrays. However, a disadvantage of using single-array dual-hybridization is that 

the resulting ratios are only valid within a particular dataset. For example, for a time 

course the time-point samples would be labelled with Cy5, and each is hybridized to a 

separate array alongside the same Cy3-labelled zero-hour mRNA reference samples. As 

different studies will use different reference samples, the ability to relate results from 

different studies is compromised, although not impossible (Blakemore et al, 2001). 

However, this problem can be addressed in principle by proper data processing methods 

(see Section 2.3). 

 

cDNA arrays: They consist of PCR products, derived from cDNA libraries, robotically 

spotted onto a solid support. cDNA arrays can be constructed from undefined cDNA 

libraries (in which the knowledge of cDNA sequences is unknown) or from defined 

libraries (in which DNA sequences are previously characterized). There are two major 

advantages of using defined cDNA libraries: (1) the ability to check of the presence of 

genes of interest for a particular study (i.e., positive/negative controls); and (2) the 

ability to expedite gene expression data by the mapping of them to gene annotations. 

The alternative of using undefined cDNA sources requires identification of differentially 

expressed genes by DNA sequencing of their corresponding clones. This method is 



 16 

time-consuming and can be inefficient as the same gene may be repeatedly identified 

(especially when using a standard redundant cDNA library as array source material). 

Establishment of a facility for cDNA array production, hybridization, and for gene 

expression data analysis requires considerable bioinformatics support. Accurate and 

reliable computer-based systems are essential at all stages of the process. This includes 

choice of cDNA sequences for an array, sample tracking to ensure the correct cDNA is 

located to the correct array spot coordinate, measurement of hybridization signal 

intensities of all spot coordinate, retention of hybridization results in a database (linking 

the hybridization data to gene annotations), and subsequent data-mining. 

 

cDNA arrays can be used to perform transcript profiling in any species (provided that an 

appropriate cDNA library is accessible), enabling the simultaneous monitoring of tens 

of thousands of gene sequences, facilitating thorough data analysis and databasing of 

results. The utility of cDNA arrays for generating novel biological information has been 

demonstrated by the increasing number of publications in this field; examples include 

cancer gene expression profile studies (DeRisi et al., 1996; Golub et al., 1999; Moch  et 

al., 1999; Perou et al., 1999), identification of a key insulin-resistance gene (Aitman et 

al., 1999), detection of neural gene expression changes during the circadian cycle 

(Patten e al, 1998), comprehensive identification of cell cycle-regulated genes of the 

Yeast Saccharomyces cerevisiae (Spellman et al., 1998), the identification of altered 

lymphocytic gene expression in asthma (Syed et al., 1999), and identification of genes 

periodically expressed in the human cell cycle and their expression in tumors (Whitfield, 

et al., 2002). A demonstration of the novel biological insight with this technology is the 
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study on the response of quiescent cultured human fibroblasts to serum (a well 

characterized model of cell cycle control) using an 8613 gene array (Iyer et al., 1999). 

However, cDNA arrays can only provide truly genome wide assays for those species 

whose whole genome sequences are known. The costs of production of arrays and 

establishment of bioinformatics tend to be prohibitive for the majority of laboratories, 

resulting in limited access to the technology. 

 

Oligonucleotide arrays: In terms of utility and general performance, oligonucleotide 

arrays are similar to cDNA arrays. Both consist of DNA elements arrayed at high 

density on a solid matrix (e.g., a glass slide), which are used for hybridization-based 

gene expression profiling. Instead of arraying PCR products from cDNA clones, 

oligonucleotide arrays are made up of synthetic gene-specific oligo-deoxynucleotides. 

 

The basic principal of “oligo”  arrays is that short oligodeoxynucleotides (usually 20-25-

mers) can contain sufficient sequence complexity to selectively hybridize a single 

transcript. In practice, for one gene several different component oligonucleotide 

sequences are usually placed on an array. Obviously, the construction of an oligo array 

requires prior knowledge of the expressed sequences, limiting their usefulness to those 

species whose expressed genomes have been extensively characterized. However, the 

use of oligos means that there is no need to retain and to carefully take care of physical 

collections of cDNA clones and PCR products, which simplifies the logistics of accurate 

array assembly. Indeed, the use of “on-chip”  oligo synthesis (Baldi and Hatfield, 2002) 

can minimize the risk of array error. Methods are available that facilitate oligo design in 
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order to provide unique sequence-specificity to a single transcript (Wodicka et al., 

1997). These methods offer the optimal choice of sequences based on available genome 

sequence information to reduce the possibility of artifactual results caused by cross-

hybridization. Effects of cross-hybridization cannot easily be ruled out when using 

cDNA arrays. 

 

Once oligonucleotide sequences have been chosen to represent a required set of genes 

there are two basic methods for array production: robotic spotting of pre-synthesized 

oligos similar to that for cDNA arrays; or direct photolithographic DNA synthesis on 

the surface of the array as developed by a US biotechnology company, Affymetrix 

(http://www.affymetyrix.com; Lockhart et al., 1996). The Affymetrix method can 

produce arrays of higher spot density (106 elements/cm2; Mcgall et al., 1996) than 

robotic spotting of oligonucleotides (3*105 elements/cm2; Yershov et al., 1996). 

Currently, designing and constructing arrays by the direct photolithographic DNA 

synthesis method is considerably more expensive, limiting its availability to potential 

users, and involves generating a preset array-specific masks for the photolithography 

process, causing the technology to be relatively inflexible. However, Singh-Gasson et al. 

(1999) describes a method that may reduce the cost of on-slide oligonucleotide synthesis 

as it does not require production of array specific masks.  

 

One feature of oligonucleotide arrays which differentiates them from cDNA arrays is 

that it is possible to include imperfectly matched oligos for the represented gene set, as 

well as perfectly matched ones. This practice is employed on Affymetrix arrays, which 
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include imperfect oligos different a single mismatch nucleotide from perfect ones. In 

this way hybridization specificity of each oligo is reported and accommodated, 

providing an increased level of quantitative accuracy and possibility of noise estimation 

for each gene assayed. It should also be noted that oligonucleotides are single-stranded 

templates ready for hybridization, whereas arrayed PCR products must first be 

denatured to supply single-stranded hybridization templates. It is important that the 

denaturation procedure is consistent to optimize reproducibility between cDNA arrays 

— this is not a consideration for oligonucleotide arrays. For converting mRNA or total 

RNA into labeled material oligonucleotide arrays use the same methods as cDNA 

arrays, among which the most common one is fluorescent labeling engaging some form 

of linear amplification to supply sufficient material of high specific activity. Data 

analysis and databasing issues are similar to those for cDNA arrays. 

 

Oligo arrays offer a technology which has similar attributes to cDNA arrays but which 

can achieve higher gene-specific hybridization accuracy than cDNA arrays, albeit at a 

higher cost. The requirement of prior gene sequence knowledge to design oligo arrays 

will become a lesser consideration as genome sequencing projects mature. Examples of 

oligo array application include simultaneous monitoring of expression of all yeast genes 

(Wodicka et al., 1997; Holstege et al., 1998; Cho et al., 1998), identification of 

redundancy in mouse receptor tyrosine kinase-activated signaling pathways 

(Famborough et al., 1999), and analysis of effect of calorific restriction on mouse 

skeletal; muscle aging (Lee et al., 1999). 
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2.1.2 Other Techniques 

 

 
 

 Figure 2.3 A schematic diagram of SAGE (Velculescu et al., 1995) 
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In addition to DNA array-based methods, there are several other methods for mRNA 

quantitation (Pennington and Dunn, 2001). This section gives a brief introduction to two 

of these methods: serial analysis of gene expression (SAGE) and differential display 

PCR (DD-PCR). 

 

Serial analysis of gene expression – SAGE: Serial analysis of gene expression (SAGE) 

is a DNA sequence-based technology for quantifying mRNA abundance first published 

in 1995 from the laboratory of Bert Vogelstein (Velculescu et al., 1995). SAGE 

sequences cDNA inserts of cloned cDNA libraries—the necessity to sequence tens of 

thousands of cloned cDNA inserts to provide quantitative accuracy and may overcome 

some shortcomings of gene expression analysis (e.g., cross-hybridization). The 

fundamentals of SAGE involve isolation of short, unique sequence tags (9-14 bases) 

representing a defined region of each individual transcript, followed by their 

concatenation, cloning of the tag concatenates, sequencing of the cloned concatenates, 

and then quantitating of the tags (Figure 2.3). The frequency of representation of a 

particular sequence tag within the total number of tags is then a measure of the 

frequency of its mRNA in the original population. Theoretically, a tag length of 9-14 

bases provides sufficient sequence information to unequivocally identify specific 

mRNA transcripts (Velculesu et al., 1995). For example, if one assumes a random 

distribution then all possible permutations of 10 bases (410) yield 1,048,576 possible 

combinations, which is about thirty times greater than the estimated number of genes 

constituting the human genome (Lander et al., 2001) ). Therefore, by reducing the DNA 

sequence to a minimum informative length there is a gain in efficiency over the cDNA 
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library sequencing method: for each “sequence tag concatenate”  clone sequenced, 30-50 

fold more gene information is acquired (Bertelsen and Veculescu, 1998). 

 

Just as for sequencing cDNA library clones, SAGE data is digital and its range is 

theoretically limitless. Methods have been developed for assessing the significance of 

differences in sequence tag abundance derived from two biological samples based on 

simulations (Zhang et al., 1997) and on statistical methods (Audic and Claverie, 1997). 

Using independent methods, it has been demonstrated (Madden et al., 1997; Velcuescu 

et al., 1995, 1997) that SAGE sequence tag frequencies are an accurate measure of 

transcript abundance for mRNAs. For example, expression levels ranging from 0.3 to 

over 200 transcripts per cell (containing totally 60,633 transcripts) can comfortably be 

analyzed by SAGE (Velcuescu et al., 1997). SAGE applications have included the 

identification of p53-induced genes prior to apoptosis in a human colorectal cancer cell 

line (Polyak et al., 1997), the analysis of gene expression profiles of normal versus 

cancer cells (Zhang et al., 1997), and annotation of the human genome (Saha et al., 

2002). Further examples of SAGE applications can be found at SAGE (http://www. 

sagenet.org/findings/index.html) and NCBI (http://www.ncbi.nlm.nih.gov/SAGE/). 

 

There are two major drawbacks to SAGE technology. Firstly, as a short sequence tag 

distinguishes each transcript, high-quality sequence data is essential for its accurate 

identification. Secondly, the ability to successfully identify the originating transcript for 

a tag is directly related to the number of sequences (in particular, 3’  end sequences) 

deposited in databases for each species. In conclusion, SAGE is broadly applicable to 
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any biology system and, in conjunction with automated DNA sequencing and sufficient 

bioinformatics supports, it is an efficient and accurate method for quantifying mRNA 

abundance. 

 

Differential display PCR (DD-PCR): Differential display PCR is a method for 

identifying cDNA fragments that are differentially expressed between two biological 

samples (Liang and Pardee, 1992). It is based on generating cDNA fragments from 

mRNA using two oligonucleotide primers, one being complementary to the polyA tail 

of transcripts (e.g., oligo-d(T)11VN), and the other a short random nucleotide sequence 

(e.g., 10-mer). DD-PCR has the potential to identify all transcripts present in a 

biological sample when sufficient primer combinations are applied. After cDNA 

synthesis, the fragments are labeled (radiolabel or fluorescent) during PCR 

amplification. The products are then separated by electrophoresis on a sequencing gel, 

and the pattern of amplified cDNA fragments is visualized. The intensity of a labeled 

band reflects the relative abundance of its mRNA transcript within the original mRNA 

population. Major differences in the cDNA band patterns generated from two biological 

samples, when using the same set of primers, indicate the presence of differentially 

expressed transcripts. Cloning and sequencing of the eluted cDNA bands enables the 

identity of the genes from which these cDNAs originate to be defined.  

 

DD-PCR has been applied in many diverse areas: for example, identifying novel drug 

targets (Shiue, 1997; Wang and Feuerstein, 1997), uncovering differentially regulated 

genes in rheumatoid arthritis (White and Petkovich, 1998), and assessing effects of 
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environmental stimuli on bacterial gene expression (Fislage, 1998). Indeed, DD-PCR is 

currently the most widely published technique for the identification of differentially 

expressed genes. However, this probably reflects the fact that DD-PCR does not require 

either expensive specialized equipment or sophisticated bioinformatics analysis tools, 

facilitating its introduction into many laboratories (rather than any intrinsic superiority 

over other differential expression techniques). A significant advantage of DD-PCR is 

the relatively small quantity of input RNA required. Originally, the order of several 

hundred nanograms of RNA was required (Liang and Pardee, 1992). Recently an 

adaptation of the technique has claimed to need only the RNA derived from a single cell 

(Renner et al., 1998). Therefore, RNAs from a biological sample should not preclude 

application of DD-PCR. However, DD-PCR also has disadvantages. As mentioned 

earlier by Liang et al. (1994), the technique does suffer from false positives. Also, a 

band identified as differentially expressed may not always be a single molecular species, 

as more than one mRNA transcript could generate fragments of similar size 

commigrating on the electrophoresis gel. This can result in difficulties identifying the 

“gene” which give rise to the observed “band”. Nevertheless, more improvements were 

addressed such difficulties later (Prasher and Weissman, 1996) 

 

In summary, DD-PCR can be successfully used to identify differentially expressed 

genes in any tissue from any species from which high-quality RNA can be isolated (e.g., 

Shiue, 1997; White and Petkovich, 1998; Renner et al., 1998). The simplicity of this 

technique and its relative low cost has led to its widespread use. However, results are 
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often more qualitative rather than quantitative and tend to be more error prone than data 

generated from other techniques such as array-based data and SAGE-based data. 

 

It should be noted that all current techniques for mRNA quantification provide relative 

rather than absolute mRNA steady-state level information; however, this is sufficient for 

detection of changes in levels of mRNA. All methods require significant experimental 

input and subsequent work to validate findings. For this reason there are currently no 

published examples where results from two techniques, for example cDNA array and 

SAGE, have been comprehensively compared. Therefore, it is difficult to provide 

absolute comparisons of utility of each technique. However, without doubt the utility of 

array-based hybridization, SAGE, and DD-PCR for mRNA quantitation has been 

demonstrated by confirmation of findings by independent methods (RT-PCT or 

Northern blot).  

 

2.2 Gene Expression Datasets 

 

In order to investigate the methods for either clustering gene expression data or 

modelling gene regulatory networks presented in the dissertation, several gene 

expression datasets are employed. There are five real-life datasets and one synthetic 

dataset. This section gives a brief description of all these datasets. Numerical gene 

expression data is usually collected in a data matrix, where each row is the expression 

values for a single gene on all microarrays (conditions, time points), and each column is 

the expression values for all genes on a single microarray (Table 2.1). 
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Table 2.1 An example of gene expression datasets from the bacterial gene expression 

experiments (Laub et al., 2000), where each row except for the first one is the 

expression values for a single gene at 11 time points over 150 minutes, and each column 

except for the first one is the expression values for all genes on a single microarray at 

one time points. The first row shows that one mRNA sample is taken each 15 minutes 

during bacterial development while the first column lists a part of the transcript (mRNA) 

names expressed by ORF number in the original dataset.  

 

ORF 0m 15m 30m 45m 60m 75m 90m 105m 120m 135m 150m 
ORF06244 0.37 0.97 1.93 1.2 1.38 1.22 0.66 0.45 0.5 0.98 1.39 
ORF03152 0.19 0.13 0.09 0.07 0.07 0.41 0.93 1.45 1.17 0.99 0.46 
ORF03156 0.22 0.12 0.08 0.07 0.07 0.38 0.92 1.27 1.34 0.85 0.5 
ORF03161 0.25 0.18 0.15 0.06 0.1 0.42 0.97 1.57 1.43 1.14 0.67 
ORF00509 0.35 0.18 0.16 0.16 0.21 0.99 2.3 1.58 1.65 1.12 0.62 
ORF02752 0.14 0.14 0.24 0.14 0.25 0.85 1.81 1.7 1.2 0.68 0.4 
ORF00082 0.83 0.81 1.2 0.82 1.05 0.99 0.56 1.2 1.01 0.6 1.2 
ORF00076 0.27 0.12 0.09 0.09 0.14 0.89 1.46 1.92 1.45 1.08 0.66 
ORF00072 0.76 0.61 0.88 0.76 0.93 1.22 1.04 0.99 0.79 1.11 0.83 
ORF02312 3.01 1.15 0.84 0.66 0.54 0.65 0.77 0.69 0.78 0.84 1.01 
ORF02316 1.18 1 0.81 0.97 0.72 0.94 0.95 0.87 1.03 1.33 1.13 
ORF02318 0.81 1.08 0.97 0.88 0.8 0.95 0.89 0.73 0.89 0.93 1.11 
ORF04267 0.86 0.63 0.55 0.42 0.41 0.67 0.42 0.36 0.58 0.52 0.55 
ORF04260 1.23 0.87 0.9 1.1 0.79 1.19 1.21 0.98 0.86 1.17 0.96 
ORF01334 0.91 0.75 0.57 0.57 0.63 0.85 0.66 0.6 0.64 0.85 0.79 
ORF00097 1.04 0.98 0.72 0.9 0.58 0.82 0.76 0.7 0.68 0.71 0.73 
ORF02592 0.63 0.51 0.67 0.63 0.81 0.75 0.5 0.46 0.54 0.46 0.52 
ORF01741 1.23 2.52 2.44 2.27 1.15 1.13 0.63 0.45 0.58 0.98 1.32 
ORF01745 0.67 0.8 0.85 0.62 1.25 1.29 1.29 0.85 0.62 0.94 0.98 
ORF01751 1.25 1.27 1.25 1.26 1.26 1.44 1.42 0.88 1.05 1.3 1.12 
ORF01754 2.46 1.41 1.31 1.53 1.31 1.61 1.68 0.88 1.04 1.32 1.14 
ORF03868 1.62 1.6 1.34 1.62 0.95 1.62 1.62 1.08 1.27 1.38 1.62 
ORF05200 1.91 1.79 1.77 1.36 1.12 1.6 1.29 1.04 1.03 1.44 1.28 
ORF05206 7.37 36.3 21.7 36.3 21.2 36.3 18.2 7 3.42 11.9 36.3 
ORF05213 0.95 1.16 1.14 1.24 0.73 0.88 1.11 1.13 1.33 1.33 1.12 
ORF01317 2.18 1.27 1.6 1.64 1.94 1.74 1.12 0.99 0.97 1.87 1.3 
ORF01315 1.56 1.76 1.41 0.63 0.99 1.09 0.84 0.63 0.84 1.03 0.99 
ORF01312 1.06 2.13 1.67 1.71 1.31 1.84 1.57 1.02 0.85 1.52 1.41 
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Dataset CDC15: The dataset CDC15 is from the CDC15-synchronized experiment for 

yeast gene expression (Spellman et al., 1998) and consists of the expression data of 799 

cell-cycle regulated genes for the first 12 equally-spaced time points representing the 

first two cycles. The dataset is available at http://cellcycle-www.stanford.edu, and 

missing data were imputed by the mean of gene expression values on the same 

microarray.  This dataset is used to investigate the state-space model for gene regulatory 

networks in Section 4.3. 

 

Dataset ALP: The dataset ALP is from the alpha-factor synchronized experiment for 

yeast gene expression (Spellman et al., 1998) and consists of expression levels of 701 

cell-cycle regulated genes at 18 equally-spaced time points with no missing data. The 

dataset is available at http://cellcycle-www.stanford.edu. This dataset is used to 

investigate the MCM- based clustering methods in Section 3.3 and to investigate the 

state-space model with time delays for gene regulatory networks in Section 4.4. 

 

Dataset ELU: The dataset ELU comes from the elutriation-synchronized experiment for 

yeast gene expression (Spellman et al., 1998) and consists of expression levels of 789 

cell-cycle regulated genes at 14 equally-spaced time points with no missing data. The 

dataset is available from the website http://cellcycle-www.stanford.edu. This dataset is 

used to investigate the ARM-based clustering methods in Section 3.4 and to investigate 

the state-space model with time delays for gene regulatory networks in Section 4.4. 
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 Dataset BAC: The dataset BAC comes from the experiment for bacterium gene 

expression (Laub et al., 2000) and consists of expression levels of 1590 cell-cycle 

regulated genes at 11 equally-spaced time points with no missing data. The dataset is 

available from the website http://caulobacter.stanford.edu/CellCycle. This dataset is 

used to investigate both the MCM- and the ARM-based clustering methods in Sections 

3.3 and 3.4, respectively, and also to investigate the state-space model for gene 

regulatory networks in Section 4.4 and the genetic algorithm for inferring time delays in 

gene regulatory networks in Section 4.5, respectively. 

 

Dataset CDC28: The dataset CDC28 is a subdataset from yeast gene expression 

experiment (Cho et al., 1998) and consists of expression levels of 237 genes at 17 

equally-spaced time points selected by Yeung et al. (2001). The dataset is available from 

the website http://faculty.washington.edu/kayee/model/. This dataset is used to 

investigate the genetic algorithm for interring time delays in gene regulatory networks in 

Section 4.5. 

 

Of these five real-life datasets above, CDC15, ELU, ALP and BAC are obtained from 

dual labelling approaches, while CDC28 is from single labelling approaches. In this 

chapter, gene expression data from dual labelling approaches are called to be intensity-

ratio-type while those from single labelling approaches are intensity-type. However, in 

our study the types of data in these datasets have no essential difference after proper 

data pre-processing methods are taken (see Section 2.3).   
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SYN dataset: this is a synthetic dataset generated by the sine function modeling cyclic 

behaviour of genes employed by Yeung et al. (2001). Let ijx  be the synthesized 

expression level of gene i  and time point j  in the dataset and be modeled by 

jijx δ= )),((* jiiij φβαλ ++ , where =),( jiφ  )(82sin( ikwj −π )ε+ . iα  represents the 

average expression level of gene i , which is chosen according to the standard normal 

distribution. iβ  is the amplitude control for gene i , which is chosen according to the 

normal distribution with mean 3 and standard deviation 5.0 . jλ  is the amplitude control 

at time j , which is chosen according to the normal distribution with mean 3 and 

standard deviation 5.0 . jδ  represents the additive experimental error at time point j , 

which is chosen according to the normal distribution with mean 0  and  standard 

deviation 2 . ),( jiφ  models the cyclic behaviour of genes. Each cycle is assumed to 

span eight time points. There are a total of five clusters, and k  is the cluster label. The 

sizes of different clusters are chosen according to the uniform distribution on the 

interval ]300 ,100[ . Different clusters are represented by different phase shifts, and )(ikw  

represents a phase shift for gene i  in cluster k , which is chosen according to the 

uniform distribution on the interval ]2 ,0[ π . The random variable ε  represents the noise 

of gene synchronization, which is chosen according to the standard normal distribution. 

Using the model above, a synthetic dataset is generated consisting of expression levels 

of 900 genes at 24 equally-spaced time points. These 900 genes belong to five clusters, 

which contain 127, 200, 194, 152, 227 genes, respectively. This dataset is used to 

investigate both the MCM- and ARM-based clustering methods in Sections 3.3 and 3.4, 

respectively. 
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2.3 Data Pre-processing 

 

After numerical gene expression data (either intensity-type or intensity-ratio-type) have 

been obtained and before any further analysis is done, proper data pre-processing 

methods must be applied to the raw gene expression data. There are a series of 

operations that transform the data into a format that is suitable for specific analysis 

methods and reduce the possibility of statistical artefacts. These operations mainly 

include (Eisen et al., 1998): 

 

• Log transformation: replace each value in the data matrix X  by )(log2 X . The 

operation is often applied to intensity-ratio-type gene expression data (from dual 

labelling approaches, Eisen et al., 1998) where induction and repression are 

values of different magnitude although they have an equal weight in nature. For 

example, a twofold induction will have more weight in any comparison than a 

one half repression.  To treat them as values of identical magnitude, ratios are 

log transformed (the base 2 is a common choice). In this case, after a log2 

transformation, a twofold induction would have a numerical value 1, and a one 

half repression a value -1. Now, both cases will present an equal weight in any 

comparison operation. This operation can also be applied to intensity-type gene 

expression data (from single labelling approaches, Yeung et al., 2001).  
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• Adjustment of mean centers for genes and/or arrays: subtract the row-wise 

and/or the column-wise mean from the values in each row and/or column of the 

data matrix such that mean value of each row and/or column is 0.  The operation 

corrects the difference in overall gene and/or array expression values. For 

example, differences in the efficiency of probe labelling may be responsible for a 

non-homogeneity in the overall signal intensity between the different genes and 

/or arrays. In order to correct this effect data needs to be adjusted in respect to a 

quantity that is considered as a constant across the genes and /or arrays. 

 

• Adjustment of median center for genes and/or arrays: subtract the row-wise 

and/or column-wise median from the values in each row and/or column of the 

data matrix such that median value of each row and/or column is 0. The purpose 

of this operation is exactly the same as that of immediately previous operation 

while their statistical meanings and robustness are different. Eisen et al. (1998) 

recommended the use of median rather than mean to adjust for genes and/or 

arrays because the former is more robust to noise than the latter. It is also noticed 

that the use of median for genes does not reduce the independent dimensions of 

gene expression profile.  

 

• Adjustment of deviation for genes and/or arrays: Multiply all values in each row 

and/or column by a row-wise and/or a column-wise scale factor such that the 

standard deviation (from the mean or the median) of each row and/or column is 

1.0. The operation makes distance measure such as the Euclidean distance more 
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sensible, yet does not affect correlation coefficient measures where similar genes 

are identified on the basis of their expression waveforms rather than on the basis 

of the geometry of their profiles. This is the case in most methods for cluster 

analysis techniques of gene expression data. This operation compresses or 

expands the profiles to the same scale although the shapes of the profiles are 

maintained.  

 

The operations introduced above are not associative, so the order in which they are 

applied is very important and should be considered carefully in advance. For the 

intensity-ratio-type expression data from glass-based cDNA microarrays, Eisen et al. 

(1998) recommended that after log2 transformation is performed, median/mean centers 

for genes and arrays be adjusted alternatively for five to ten times, followed by five to 

ten applications of deviation adjustments for genes and arrays. However, Eisen’s 

recommendation is debatable. In our study, the data pre-processing operations employed 

will be described in the context of the use of the data. 

 

It should be noted that distinction between the intensity-ratio-type data and the intensity-

type data of gene expression can be eliminated by proper application of the operations 

above. For example, assume there are two data matrices of gene expression from the 

same biological process, one in which the elements are intensity-ratio-type data (from a 

dual labelling approach) and one where they are intensity-type data (from a single 

labelling approach). Corresponding elements of the two matrices stand for expression 

values of the same gene at the same time point. After log transformation, the intensity- 
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ratio-type data becomes the difference of the log-intensity values between the treatment 

samples and the reference sample while the intensity-type data becomes the log-

intensity values of the treatment samples. If the reference samples are the same one in 

gene expression experiments for the dual labelling approach, two corresponding rows in 

these two data matrices differ only by a constant (i.e. the log-intensity expression value 

of the corresponding gene as the reference sample). Therefore, after adjustment of mean 

(median) center of rows (the operations above) is taken, there will be no difference in 

principle between these two matrices (i.e., between the intensity-type data and intensity-

ratio-type data of gene expression). 
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Chapter 3 

 

DYNAMIC MODEL-BASED CLUSTERING 

 

3.1 Related Work 

 

Clustering could be defined as a process of classifying a set of objects into a set of 

disjoined groups (clusters) of objects. Its goal is to reduce the amount of data by 

categorizing or grouping similar data items together and therefore help discover new 

knowledge in the underlying data (for example, gene regulatory relationships in gene 

expression data). There have been many clustering methods proposed for analyzing time 

course gene expression data to infer gene relationships and annotate gene functions. 

They can be divided into two groups: distance/correlation-based clustering and static 

model-based clustering. In this section, a brief review of these clustering methods is 

given. 

 

3.1.1 Correlation/Distance-Based Clustering 

 

The correlation/distance-based clustering algorithms may be further divided into two 

groups: hierarchical clustering and partitional clustering methods. They all need a 
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similarity measure to quantify the (dis)similarity in features between any two objects. In 

the case of clustering time-course gene expression, the objects are the genes while their 

features are a time-series of gene expression values (gene expression profiles). In these 

methods, gene expression profiles with m  expression values are viewed as m -

dimensional vectors. Thus, a gene corresponds to a point in the m -dimensional vector 

space. Clustering of genes simply becomes clustering of these points based on a 

similarity measure of the m -dimensional vectors. The choice of similarity measures 

may be as important as the choice of clustering algorithms 

 

Similarity measures: Given two genes with their corresponding expression profiles 

),,( 112111 mgggg L=  and ),,( 222212 mgggg L= , where m  is the number of time points 

(conditions) at which gene expression levels are collected, and ijg  represents the 

expression value of gene i  at  time point (condition) j .  Two types of similarity 

measures are extensively used in clustering of gene expression profiles: the correlation 

coefficient and the squared Euclidean distance. 

 

The correlation coefficient is defined by 
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where ioffsetg )2,1( =i  are two constants. It is obvious that 1)( 21 ≤,ggr  and ""=  holds if 

and only if there exists a real number λ  such that )()( 2211 offsetoffset gggg −=− λ  or 
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)(
. 1)( 21 =,ggr  means that genes 1g  and 

2g  have identical expression profiles subject to an affine transformation and therefore 

may represent a co-regulated response to a biological process or a series of stimuli in the 

same direction. On the other hand, 1)( 21 −=,ggr  means that genes 1g  and 2g  have 

opposite expression profiles subject to an affine transformation and therefore may 

represent a co-regulated response to a biological process or a series of stimuli but in the 

opposite direction. In practice )( 21,ggr  will not be exactly one owing to the presence 

of noise in gene expression data. A value close to one is taken as indicating the co-

regulated relationships among genes. 

 

When ioffsetg )2,1( =i  are set to the means of gene expression profiles 1g  and 2g , 

respectively, )( 21,ggr  is exactly the Pearson correlation coefficient of genes 1g  and 2g . 

When ioffsetg )2,1( =i  are set to zeros, )( 21,ggr  is exactly the so-called “cosine”  

correlation coefficient of genes 1g  and 2g  (Kohonen, 1997). Besides these two cases, 

other settings of ioffsetg )2,1( =i  are possible. For example, ioffsetg )2,1( =i  may be set to 

the medians of gene expression profiles 1g  and 2g  to get a more robust measure than 

the Pearson correlation measure (Eisen et al., 1998).  

 

The squared Euclidean distance is defined:  



 37 

 

∑ =
−= m

j jj gg,ggd
1

2
2121 )()(                                                      (3.2) 

 

This distance measures the absolute distance between two genes in the −m dimensional 

gene expression space, which in this case is defined by all gene expression profiles. If 

used directly with non-transformed data one is considering similar gene expression 

profiles with similar magnitude of expression. Although this property may be significant 

in some cases, usually it is biologically more interesting to search for genes expressed at 

different levels but with the same overall profiles. That is, one identifies similar genes 

on the basis of their expression waveforms rather than their similarity in the geometry of 

the profiles. Therefore, some data pre-processing methods mentioned in Section 2.3 

should be applied to gene expression data. Actually, when the gene expression data is 

normalized to have for each gene the mean 0 and the variance 1, the squared Euclidean 

distance is equivalent to the Pearson correlation measure because of the identity 

))(1(2)( 2121 ,ggr,ggd −= . Therefore, )(1 21,ggr−  is considered as a kind of distance 

for the similarity measure (Eisen et al., 1998). 

 

Although the similarity measures, as described above, are popular in cluster analysis of 

the gene expression data, there are other similarity measures that have been reported, for 

example, the standard Euclidean distance (Wen et al., 1998), the squared Pearson 

correlation (D’haeseleer et al., 1998), the Spearman rank correlation (D’haeseleer et al., 

1998), and the mutual information measure (D’haeseleer et al., 1998; Michaels et al., 

1998; Laurie et al., 1999). 
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Hierarchical clustering: Hierarchical clustering proceeds successively either by merging 

smaller clusters into larger ones, or by splitting larger clusters into smaller clusters. The 

former is called agglomerative (bottom-up, clumping) while the latter is divisive (top-

down, splitting). The more details about the agglomerative hierarchical clustering will 

be reviewed in this section.  

 

 

Figure 3.1 A dendrogram for hierarchically clustering 7 objects. The numbers on the 

horizon axis represent the indices of objects, and the numbers on the vertical axis 

represent the distance between the two objects (clusters) being connected. 

 

The agglomerative hierarchical clustering begins with a similarity matrix of objects, 

whose ),( ji -th element is the similarity between objects i  and j . Based on the 
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similarity matrix, another matrix called cophenetic matrix is formed. The ),( ji -th 

element of the cophenetic matrix represents the emerging similarity level at which a pair 

of objects i  and j  appears together in the same cluster for the first time during the 

process of a hierarchical clustering. A derived hierarchical structure is fully described by 

its cophenetic matrix (Legendre et al., 1998) and often visualized by using a binary tree 

of clusters called a dendrogram (Figure 3.1). A dendrogram shows how the clusters are 

related to each other. By cutting the dendrogram at a desired level (threshold), a 

partition of objects in a dataset into disjoint groups is obtained. For example, if 0.7 is 

chosen as the desired distance level at which two objects are considered to be in 

different clusters in Figure 3.1, three clusters (2,5,6), (1,7) and (3,4) can be obtained. 

One of the advantages with hierarchical clustering is that it allows detection of higher 

order relationships between clusters (Duda et al., 2001). 

 

The hierarchical clustering methods differ in the rules used to decide which two clusters 

are merged. There are seven different hierarchical clustering methods which are defined 

in terms of the general agglomerative algorithm (Lance and Williams, 1967) by the 

following unified formulae:  

 

rtrstsrttrsstsr dddddd −+++= γβαα),(                                              (3.3) 

 

where rsd  denotes the distance between objects or clusters r  and s , ),( tsrd  is the 

distance between object or cluster r  and the combined cluster ),( ts , and sn  is the 
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number of objects in cluster s . Different combinations of coefficients ),,,( γβαα ts  in 

Equation (3.3) lead to the different hierarchical clustering methods (see Table 3.1). 

 

Table 3.1 Seven agglomerative hierarchical clustering methods specified by parameters 

to the general agglomerative formulae of Lance and Willams (1967), given in Equation 

(3.3) 

Methods\Parameters 
iα  β  γ  

Single link 21  0  21−  

Complete link 21  0  21  

Average link )/( tss nnn +  0  0  

Median 21  41−  0  

Weighted average 21  0  0  

Centroid )/( tss nnn +  2)/( tsts nnnn +−  0  

Ward )/()( rtsrs nnnnn +++  )/( rtsr nnnn ++−  0  

 

 

Although applications of divisive hierarchical clustering to gene expression data can be 

found (Alon et al., 1999), the agglomerative hierarchical clustering methods have 

become more popular in part due to the availability of implementations either in 

standard statistical packages or as specifically designed programs for gene expression 

data (Eisen et al., 1998). Currently much gene expression data from organisms, 
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including yeast (Chu et al., 1998; Spellman et al., 1998) and human cells (Wen et al., 

1998; Iyer et al., 1999; Whitfield et al., 2002) has been analyzed by means of 

agglomerative hierarchical clustering. A problem with this clustering technique is that it 

is the highly demanding of computing resource when the large number of genes is large. 

 

Partitional clustering: In general, any partitional clustering method requires that the 

number of clusters, k , is given a priori. For each object i , there is a corresponding 

set iD  which describe features of the object. iD  is also called the feature vector of object 

i . Hereafter, an object and its feature vector are not distinguishable. A k -partitional 

algorithm takes as input n  objects and an pre-specified integer k , and partition objects 

into a set of  disjoint subsets kPPP ,,, ,21 L . Each of the subsets is a cluster; objects in the 

same cluster are more similar to each other than they are to objects in other different 

clusters. One of the difficulties with the partitional clustering technique is how to define 

the concept of similarity, or more generally how to define quality of a particular 

partition. One way to address this difficulty is to define a cost function that measures the 

quality of any partition. Beginning with an initial partition, algorithms minimize the cost 

function by iterative reallocation of cluster members. Well-know partitional clustering 

methods includes k-means, fuzzy k-means, self-organizing maps, and so on. 

 

A common criticism of this type of algorithm is its requirement of a pre-defined number 

of clusters. One response to this criticism is the so-called leader algorithm (Hartigan, 

1975) that finds the number of different clusters from the data itself. However, this 

algorithm needs two pre-specified threshold parameters α  andβ . Parameter α  is the 
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minimum admissible similarity between the representatives of two clusters for the 

merging of these two clusters. That is, when the similarity between the representatives 

of two clusters is greater than or equal to α , the two clusters are merged into a new 

cluster. Parameter β  corresponds to the maximum admissible similarity between an 

object, say x , and the representatives of all existing clusters for determining whether to 

create a new cluster with object x  as its representative. That is, when similarity between 

object x  and the representatives of all existing clusters is less than β , a new cluster is 

created with object x  as its representative. Another way to address the issue is to 

estimate a statistically reasonable number of clusters in a dataset (Calinski and 

Harabasz, 1974; Hartigan, 1975, 1985; Krzanowski and Lai, 1985; Kaufman and 

Rousseeuw, 1990; Tibshirani et al., 2000; Duoit and Fridlyand, 2002). In addition, for 

some specific problems, expert knowledge may be helpful to estimate an appropriate 

number of clusters in a dataset. 

 

K-means algorithms have been used (Tavazoie et al., 1999) to discover distinct clusters 

of genes based on gene expression data and then identify cis-regulatory elements 

through which co-regulation of the genes within the cluster is achieved. Herwig et al. 

(1999) proposed the application of a progressive k-means procedure, which essentially 

is a variation of the leader algorithm (Hartigan, 1975) that finds the number of the 

different clusters from the data itself and is independent of an a priori specified number 

of clusters. Fuzzy k-means algorithms (Gasch et al., 2002; Dembele et al., 2003) and 

self-organizing maps (Tamayo et al., 1999; Toronen, 1999; Torkkola, 2001) have also 
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been used to analyze gene expression data. These partitional clustering techniques 

perform quite well for problems with a larger number of genes. 

 

In a conclusion, as applied to time-course gene expression data, the distance/correlation-

based clustering methods can not take the dynamics of time-course gene expression into 

consideration. Therefore, the quality of distance/correlation-based clustering may be 

degraded. 

 

3.1.2 Static Model-Based Clustering 

 

Clustering methods in the second group are model-based. Instead of defining a 

similarity measure in terms of the distance or the correlation, these methods assume that 

observed datasets are generated by an unknown number of probabilistic models. Each 

model represents a cluster. As such, the clustering process is driven by maximizing the 

likelihood that observed data are generated by the given models. Cluster membership in 

this case is decided by posterior probabilities that a gene expression profile is generated 

by a specific model. Model-based methods may further be divided into the static model-

based (time dependence of gene expression data is not considered) and the dynamic 

model-based (time dependence of gene expression data is taken into account). The static 

model-base clustering methods typically use multivariate normal distributions as models 

describing clusters (for example, Yeung et al., 2001; Ghosh and Chinnaiyan, 2002; 

McLachlan et al., 2002). Static model-based clustering methods have the same problems 
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as the distance/correlation based clustering methods. That is, they do not take the 

valuable time-dependence information of time-course gene expression into account. 

 

In contrast, the dynamic model-based models try to account for the dynamics of time-

course gene expression data. Ramoni et al. (2002a) recently presented a Bayesian 

method for model-based clustering of gene expression dynamics, where the dynamics 

were represented by the autoregressive models, and an agglomerative procedure was 

used to search for the most probable set of clusters. As the number of possible sets 

grows exponentially with the number of observed time-course gene expression profiles, 

a distance-based heuristic search procedure was devised to render the search feasible. 

Their method has several disadvantages. First, the use of an agglomerative procedure 

results in an expensive computational complexity, while the use of the distance-based 

heuristic search procedure means that their method has all inherent disadvantages with 

the distance-based hierarchical clustering. Second, both a set of autoregressive 

coefficients and p  initial values are needed to determine a curve (gene expression 

profile) described by the autoregressive model with order p  (see Section 3.4 for more 

details).  How the p  initial values are determined was not discussed in their method. 

 

Other model-based clustering methods for (state) sequences (Smyth 1999; Cadez et al., 

2000; Ramomi et al., 2002b) may be employed to cluster time-course gene expression 

data. The state sequences in these methods are modeled by hidden Markov models 

(HMMs) or Markov chain models (MCMs). In clustering genes based on gene 

expression dynamics, it is not necessary to model the state sequence by sophisticated 
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HMMs if one does not consider either missing data or time delay in a gene regulatory 

process. Ramoni et al. (2002b) discussed the advantages of modeling sequences as 

MCMs over HMMs. By modelling sequences as MCMs, they proposed a clustering 

method under the setting of a hierarchical clustering technique. Their method builds 

MCM for each sequence and computes the distances of the pair-wise MCMs as the 

distances of the corresponding sequences. As a result, the complexity of their algorithm 

is )( 24MNO . Therefore, it is considerably expensive to apply their algorithm to a large-

scale dataset such as gene expression datasets considered in this study.  

 

3.2 Cluster ing Validations 

 

The term clustering validation usually refers to the ability of a given method to recover 

true clusters in a dataset. There have been several attempts to evaluate a clustering 

method on theoretical grounds (Theodoridis and Koutroumbas, 1999). This section 

describes three kinds of methods for validating clustering: internal index methods, 

external index methods, and a bootstrapping method. 

 

3.2.1 Internal Indices 

 

Hierarchical clustering validation: Although many measures for validating hierarchical 

clusterings have been developed (Hartigan, 1967; Sokal, 1962), one common measure is 

the cophenetic correlation coefficient (Everitt and Dunn, 1992; Duda et al., 2001) of the 

similarity matrx S  (consisting of the similarity measures of all pair-wise objects) and its 
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cophenetic matrix C  (induced from a hierarchical clustering);  and it is defined as 

follows: 
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where ijc  and ijs  are the values of the ),( ji -th entry in matrices C  and S , respectively. 

c  and s  are the average values of all elements below the main diagonals of  matrices 

C  and S , respectively. The value ),( SCr  has range ]1  ,1[− . The closer the value of 

the cophenetic correlation coefficient is to 1, the better the clustering is. The cophenetic 

correlation coefficient is essentially the Pearson correlation coefficient of the similarity 

matrix and its induced cophenetic matrix. Accordingly, comparing the orders (ranks) of 

the elements in matrices C  and S  is more objective than directly comparing the 

elements in matrices C  and S  for validating the hierarchical clustering (Sokal and 

Rohlf, 1962; Baker, 1974; Cunningham and Ogilvie, 1972). Thus, to validate a 

hierarchical clustering, one can also compute a Spearman rank correlation coefficient 

(Hays, 1973) between the similarity matrix and its induced cophenetic matrix. However, 

from a statistical point of view a product moment correlation coefficient is not well 

suited to this case due to the ordinal data. 

 

 With ties existing in ranks of the similarity matrix and its induced cophenetic matrix, 

the gamma index of Goodman and Kruskal (1954) is well suited to this case (Baker, 

1974; Hays, 1973). The gamma index can be defined as the difference between two 
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conditional probabilities for two object pairs selected at random from all possible object 

pairs and untied on both ranking (Hays, 1973), i.e., 

 

    )pairs untied|orderingdifferent ()pairs untied|ordering same( pp −=γ        (3.5) 

 

where a same ordering for two object pairs means that both rankings give a higher rank 

to one of the two object pairs. The value of the Gamma index has range ]1  ,1[−  where 

the larger value indicates perfect agreement between the two rank orderings. Hays 

(1973) introduced a good method to calculate the gamma index. 

 

Partitional clustering validation: For the validation of partitional clustering, there are 

three aspects that require attention. The first is concerned with the quality of a 

clustering, given the number of clusters, k . One usual way to evaluate the quality of a 

partitional clustering is by use of silhouette index (Rosseeuw, 1987; Chen et al., 2001). 

The silhouette index assesses the ratio of inter-cluster separation and intra-cluster 

similarity. For each object i  in a dataset containing n  objects, its silhouette width )(is  

is defined as  

 

)}(),(max{
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−=                                                     (3.6) 

 

where )(ia  is the average distance of object i  to other objects in the same cluster. )(ib  

is the average distance of object i  to other objects in its nearest “neighbour”  cluster and 
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can be seen as the dissimilarity between object i  and the nearest neighbour cluster to 

which it does not belong. Objects with a large )(is  (almost 1) are very well clustered, a 

small )(is  (around 0) means that the object lies between two clusters, and objects with a 

negative )(is  are probably placed in the wrong cluster. The average )(is  across all 

objects for a clustering 
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is called the silhouette index of the clustering. The value of S  reflects the overall 

quality of the clustering and has range ]1  ,1[− . A larger value of S  indicates a better 

overall quality of the clustering. 

 

3.2.2 External Indices 

 

Since a clustering result can be considered as a partition of objects into a number of 

groups, one possible way to validate a clustering result is to compare the cluster labels 

from it with known cluster labels. The generic problem is thus to define a measure of the 

agreement between two partitions of the same dataset. In the clustering literature, 

measures of agreement between two partitions are referred to as external indices. 

Several such indices have been proposed (Theodoridis and Koutroumbas, 1999; Dudoit 

and Fridlyland, 2002). In the following, some of these indices are introduced.  
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Table 3.2 Contingency table for two partitions of n  objects 

 
1v  2v  

 
sv  

Total 

1u  11m  12m  
�  

sm1  .1m  

2u  21m  22m  
�  

sm2  .2m  

M  M  M  
 

M  M  

ru  1rm  2rm  
�  

rsm  .rm  

Total 
1.m  2.m  

�  
sm.  nm =..  

 

 

Consider two partitions of n  objects nxx ,,1 L : the r -partition },{ 1 ruuU L=  and the 

the s -partition },{ 1 svvV L= . One can define the matrix (or the contingency table)  

][ ijmM = , where entry ijm  is the number of objects that are both in clusters iu  and jv , 

ri ,,1L= , sj ,,1L= . Let ∑
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=
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Based on matrix ][ ijmM = , the following indices to measure the agreement between 

two partitions },{ 1 ruuU L=  and },{ 1 svvV L=  have been proposed : 
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• Rand  (Rand, 1971): 
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• FM (Fowlkes and Mallows, 1983) : 
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• Jaccard (Jain and Dubes, 1988): 
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An external index is often adjusted in such a way that its expected value is 0 when 

the two partitions are selected at random and 1 when they match perfectly. One of 

the commonly used indices is the adjusted Rand index defined as   

 

• Adjusted Rand Index (ARI) (Kreiger and Green,1999): 
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3.3.3 A Bootstrapping Method 

 

1. Repeat the following B times (where B is a preset integer number) 

(a) Randomly divide the original dataset into two non-overlapping sets, a learning set 

L  and a test set T . 

(b) Apply the target method to the learning set L  to obtain a partition ),( LP o . 

(c) Construct a predictor (classifier) ),( LC o  using the cluster labels from the partition 

     ),( LP o . 

(d) Apply the predictor ),( LC o  to the test set T  to get the predicted partition ),(
~

TP o . 

(e) Apply the target method to the test set T  to obtain a partition ),( TP o . 

(f) Calculate the ARI of partitions ),(
~

TP o  and ),( TP o . 

2. Calculate the average ARI (AARI) over the B times as the measure index of the 

     evaluated clustering method. 

3. For the various number of clusters, K , repeat the procedure described in steps (1) and 

     (2) above to get AARI( K ), and then plot AARI( K ) with respect to K . 

 

Figure 3.2 The procedure for validating clustering methods 

 

In many studies, the performance of clustering methods is evaluated upon datasets 

where true cluster labels are known (e.g., Yeung et al., 2001; Dougherty et al., 2002). 

However, for real-life gene expression datasets the true cluster labels are typically 

unknown.  Furthermore, since microarray technology is still in its infancy, data created 

with this technology may be noisy. There may also be information in real data which is 
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not known to biologists. Even though clustering algorithms may determine a cluster 

label for each profile in a dataset, many of these cluster labels may be false negatives or 

false positives. Therefore, it is worthwhile to have an alternative approach to evaluate 

the clustering methods without either resorting to seed clustering methods or requiring a 

priori known cluster labels. At this point, a procedure is proposed in this study as shown 

in Figure 3.2. This procedure is primarily based on a procedure proposed by 

Breckenridge (1989) under the name of replicating cluster analysis and was designed to 

evaluate the stability of a clustering. Recently Dudoit and Fridlyand (2002) employed 

this approach to estimate the number of clusters in a dataset. For the given number of 

clusters, K , the average ARI (AARI) reports the quality of the clustering result obtained 

from the clustering methods under consideration(Kreiger and Green, 1999). The ARI 

ranges from -1 to 1, and so does AARI. Accordingly, the larger AARI, the better the 

quality of the clustering, i.e., the better the performance of the clustering method 

(Kreiger and Green, 1999).  

 

Note that this procedure will be applied to validate dynamic model-based clustering 

methods to be discussed in the next two sections, especially for the real-life gene 

expression datasets. For the synthetic dataset ARI (Equation 3.11) will be applied. 

 

3.3 Markov Chain Model-Based Cluster ing   

 

A Markov chain model (MCM)-based clustering method for time-course gene 

expression data is proposed and described in this section (Wu et al., 2004b). After a 
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transformation of gene expression profiles into gene expression state sequences, the 

dynamics of gene expression is represented by MCMs. All gene expression state 

sequences are assumedly created by a mixture model of MCMs in which MCM 

corresponds to a different cluster. For the given number of clusters, the proposed 

method finds distinguished cluster MCMs using the EM algorithm and assigns each 

gene to one specific cluster if its posterior probability being in this cluster is the largest. 

 

Compared to the method proposed by Ramoni et al. (2002b), the method proposed in 

this study does not need either to build an MCM for all individual genes or to compute 

the distances between pair-wise genes. Instead the proposed method views a cluster as a 

MCM and computes the probability that an individual gene fits a MCM. This reduces 

the computational complexity of the proposed method to )(NMO  (see Section 3.3.2). 

Further, this study employs AARI to evaluate the quality of clustering. The superior 

performance of the proposed method is demonstrated by comparing to the k-means 

method on datasets SYN and BAC as described in Section 2.2.  

 

3.3.1 Gene Expression Dynamics Sequence  

 

The aim of clustering genes based on their expression profiles is to group the co-

regulated genes in an underlying biological process into the same cluster. Three types of 

regulatory states, induction (I), repression (R), and constant (C), are considered here. In 

order to convert log-transformed gene expression values into gene expression states, the 

following steps are taken:  
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(1) Normalize gene expression profiles to each have a median of zero and a 

standard deviation (from the median) of one;  

 

(2) Convert the normalized expression profiles into gene expression state 

sequences. The assignment of the normalized gene expression values to these 

states is based on two threshold parameters: a positive number 1d  and a negative 

number 2d . The expression values between these two parameters are classified 

as C. The expression values greater than the threshold parameter 1d  are 

classified as I, while the expression values less than the threshold parameter 2d  

are classified as R. 

 

Once the parameters 1d  and 2d  are given (see Section 3.3.3), using the procedure 

above, a set of time-course gene expression profiles can be converted into a set of gene 

expression state sequences over the alphabet S = { I, R, C} , in which each sequence 

corresponds to one gene. If one is hypothesizing that two genes are co-regulated, one 

would expect to see that these two expression state sequences are similar (i.e., have 

similar dynamics). To account for the time dependence of gene expression in cluster 

analysis, this study employs MCMs for modelling dynamics of gene expression state 

sequences. Genes in the same cluster were assumed to be generated by the same cluster 

model. Each cluster model is described by an initial state probability distribution 

represented by a 3-dimensional vector )(sπ  and a 33×  state transition probability 
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matrix T , whose ),( ji -th element is the probability of the transition from states js  to  

is , represented by )|( ji ssp , where s , is , and js  come from the alphabet S = { I, R, C} . 

 

3.3.2 MCM-Based Clustering Method and EM Algorithm 

 

Let K  be the number of the components in the mixture model and ),|( kkn TDp π  be 

the probability that the k -th MCM generates the expression state sequence of gene n , 

nD , where ( kk T,π ) ( Kk ≤≤1 ) are the parameters of the k -th MCM. With these 

notations, the likelihood that the set of gene expression state sequences 

},,{ 1 NDDD L=  is generated by a mixture model of K  MCMs can be written as: 

 

∏
=

Θ=Θ
N

n
nDpDp

1

)|()|( .                                            (3.12) 

 

where )|( ΘnDp  is the likelihood that state expression sequence nD  is generated by the 

mixture model and can further  be written as 

 

∑
=

=Θ
K

k
kkknn TDpDp

1

),|()|( απ                                       (3.13) 

 

where kα  ( Kk ≤≤1 ) is the probability that a gene belongs to the k -th cluster, the 

parameters Θ  consist of },,1   ),,,{ ( KkT kkk L=απ ,  and 10 ≤≤ kα  and 1
1

=∑
=

K

k
kα .  
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Initialize nkα  given the number of clusters K  

Repeat M-step: compute maximum-likelihood parameter estimates given nkα  
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             E-step: compute nkα  given the parameter estimates from the M-step 
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Until a convergence criterion is satisfied 

 

Figure 3.3 The EM algorithm for MCM-based clustering. The term nkα  represents the 

probability that object n  belongs to the k -th cluster and describes a partition of N  

objects. The term )(skπ  represents the probability that the MCM for the k -th cluster 

starts with state s . The term )|( jik ssT  represents the transition probability from is  to 

state js  in the MCM for the k -th cluster. The term )( jin ssr →  represents the number 

of transitions from state is  to state js  in expression dynamics of gene n , and the term 

),( 1iDsδ is equal to 1 when 1iDs =  and 0 otherwise. 
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Now, the task of MCM-based clustering is to estimate the parameters in model (3.12), 

and then to use the posterior probabilities to assign each gene to an appropriate cluster. 

In this study, the EM algorithm (Dempster et al., 1977) is employed to estimate the 

parameters in model (3.12). Given observation data (gene expression state sequences) 

NDD ,,1 L  of N  genes, the EM algorithm maximizes the log-likelihood: 

 

∑
=

Θ=Θ=Θ
N

n
nDpDpL

1

)|(log())|(log()(                                      (3.14) 

 

to obtain the maximum likelihood estimates of the parameters in model (3.12). Figure 

3.3 shows the EM algorithm for MCM-based clustering. 

 

The EM algorithm, as shown in Figure 3.3, iterates between an E-step in which the 

values of nkα  are computed from the data with the current model parameter estimates 

and an M-step in which the values of the maximum-likelihood model parameters are 

computed with the current values of nkα . At convergence, the maximum likelihood 

estimates Θ̂  of the parameters Θ  in model (3.12) are obtained. In this study, the hat “^”  

over a letter stands for the estimate of the corresponding parameter as the EM algorithm 

converges. With the estimates of model parameters Θ̂ , the posterior probabilities are 

calculated (see Section 3.3.3). The classification rule is that a gene is assigned to a 

cluster if its posterior probability of being in that cluster is the largest. Accordingly, 



 58 

such a classification rule has the least misclassification rate under the Bayesian meaning 

(Fraley and Raftery, 1998). 

 

There are two issues to address before the EM algorithm runs. The first issue is the 

initialization of nkα  for the given number of clusters, K . There are several ways to do 

this. The simplest way is to randomly assign objects to one of the K  clusters. Another 

way is to employ the partition from either the hierarchical clustering techniques or the 

partitional clustering techniques using the edit distance to measure the dissimilarity 

between two gene expression state sequences (Duda et al., 2001; Kohonen, 1997). In the 

context of clustering gene expression, one may also use a partition based on gene 

expression profiles to get the initialization of nkα . By these ways, the initialized value of 

nkα  is 1 if gene n  belongs to the k-cluster and 0 otherwise. The second issue is to 

choose a suitable convergence criterion. Unfortunately, there are no standard methods to 

do this. However, there are two heuristics which are often used to judge the convergence 

of the EM algorithm. One is to set a maximum number of iterations. Another is to set a 

cut-off value for (relative) differences between two consecutive iterations. In the 

following computational experiments, the initial partitions will be randomly selected 

and the algorithm considered to have convergence if the relative differences between 

two consecutive iterations is less than 610− . 

 

The computational complexity of the algorithm at a high level is the same as the EM 

algorithm for the standard multivariate normal mixtures (Fraley and Raftery, 1998), i.e., 

linear in the total number of objects, N , in the total number of samples, M , and in the 
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number of iterations of the EM algorithm. For the mixture of MCMs, the complexity of 

computing the E-step and the M-step is linear in the total number of discrete symbols, 

NM , and the overall complexity of the algorithm retains its linearity.  

 

3.3.3 Computational Experiments and Results  

 

Computational experiments in this section use the synthetic dataset (SYN) and the real-

life gene expression dataset (BAC) described in Section 2.2. These datasets are 

normalized to have a median of 0 and a standard deviation (from the median) of 1 for 

each gene and further normalized as so to have a mean of 0 and a standard deviation of 

1 for all genes at each time point (array). 

 

Table 3.3 The parameters in model (3.15) for dataset SYN  

k  (states) 
kβ̂  kµ̂  2ˆ kσ  

1 (I) 0.3071     1.1961     0.0668     

2 (C) 0.3255 0.1136    0.1906     

3 (R) 0.3674 -1.1007 0.0754 

    

 

To convert the normalized expression profiles into state sequences, all gene expression 

values are classified into three groups standing for three states I, C, and R, respectively. 

It is assumed that values in these three clusters come from three distinguished normal 
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distributions. That is, each expression value x  comes from a normal mixture 

distribution with the probability density function: 

  

),;();( 2
3

1
kk

k
k xNxf σµβ∑

=

=Φ                                                         (3.15)  

 

where ),;( 2
kkxN σµ  stands for the normal density function with mean  kµ  and variance 

2
kσ , kβ ’s stands for the mixing portions, and their sum is 1, and Φ  stands for all 

parameters in (3.15) consisting of }3,2,1   ),,,{ ( 2 =kkkk σµβ .  

 

Table 3.4 The parameters in model (3.15) for dataset BAC  

k  (states) 
kβ̂  kµ̂  2ˆ kσ  

1 (I) 0.2647     1.1703 0.4290     

2 (C) 0.4869  -0.0454    0.1989     

3 (R) 0.2485 -1.1578 0.3719 

 

 

Again by applying the EM algorithm (Dempster et al., 1977; Jain and Dubes, 1988), the 

parameters in (3.15) are estimated and listed in Tables 3.3 and 3.4 for datasets SYN and 

BAC, respectively. For both datasets, the means of the cluster standing for state C is 

close to zero, the means of the cluster standing for state I are close to 1, and the means 

of the cluster standing for sate R are close to -1. These results are in agreement with 

intuition.  
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Figure 3.4 Posterior probability of a gene expression value being  

in each cluster (state) for dataset SYN 

 

The posterior probabilities are calculated using the following equation: 
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and Figures 3.4 and 3.5 show the posterior probability for datasets SYN and BAC, 

respectively, where solid lines stand for the probability distribution of state I, dotted 

lines for the probability distribution of state C, and dashed lines for the probability 
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distribution of state R. A gene expression value is classified as a state if its posterior 

probability of being in this state is the largest.  

 

 

Figure 3.5 Posterior probability of a gene expression value being 

in each cluster (state) for dataset BAC 

 

From Figures 3.4 and 3.5, it can be seen that if an expression value has a large positive 

number, then it will be classified as state I, that if it has a large negative number, then it 

will be classified as state R, and otherwise it will be classified as state C. Specifically, 

from Figure 3.4, two threshold parameters 74.01 =d  and 58.02 −=d  are obtained for 

dataset SYN; and from figure 3.5 two threshold parameters 67.01 =d  and 74.02 −=d  

are obtained for dataset BAC. 
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Figure 3.6 Profile of AARI with respect to the number of clusters for dataset SYN  

 

Figure 3.6 shows the results (AARI) of the calculation for dataset SYN over a variety of 

the numbers of clusters, where for each number of clusters, AARI is calculated based on 

20 runs of the algorithms in Figure 3.3. To compare the proposed clustering methods 

with the k-means clustering methods, AARI (based on 20 runs of the k-means clustering 

method) is also calculated for the same dataset. Figure 3.6 shows that AARI’s with the 

proposed method are bigger than those with k-means foe all numbers of clusters except 

4. In particular, at 5=k  the AARI with the proposed MCM-based clustering is 0.67, 

and bigger than 0.62 (the AARI with k-means clustering). Recall that dataset SYN does 

contain 5 clusters. Therefore, the quality of clustering with the MCM-based clustering 

method is better than that with the k-means method. 
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Figure 3.7 Profile of AARI with respect to the number of clusters for dataset BAC 
 

 

Similarly, the EM algorithm for clustering with dynamics in Figure 3.3 and the 

procedure for clustering evaluation in Figure 3.2 with parameter 20=B  are run on 

dataset BAC. To compare the proposed clustering methods with the k-means clustering 

methods, the k-means clustering method and the procedure of clustering evaluation in 

Figure 3.2 with parameter 20=B  are also run on the same dataset. The results are 

depicted in Figure 3.7. The quality of clustering from MCM-based clustering is always 

better than that of clustering from k-means according to figure 3.7. This indicates that 

MCM-based clustering method outperforms the k-means method.  

 

Note that the k-means method is a kind of model-based clustering method (Yeung et al., 

2001), yet it employs a multivariate normal distribution for each component, and thus a 
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static model. The proposed method (i.e., MCM-based clustering) is a kind of dynamic 

model-based clustering since it accounts for the time dependence of gene expression. 

The above discussion, especially the two computational experiments, implies that 

accounting for the time-dependence of time-course gene expression data can improve 

the quality of clustering. 

 

3.4 Autoregressive Model-Based Cluster ing   

 

This study also proposes an autoregressive model (ARM)-based clustering method for 

time-course gene expression data, which regards a set of time-course gene expression 

profiles as a set of observed time series X , generated by a preset number of 

autoregressive models. In the ARM-based clustering methods (Wu et al., 2004c), each 

cluster is represented by an autoregressive model of order p  (Harvey, 1993), and p  

initial values are modelled by a p -variate normal distribution. Thus two genes are 

considered as similar if they are generated by the same autoregressive model.  

 

The task of the ARM-based clustering is to divide a given set of time-course gene 

expression profiles into the number of disjoint subsets (clusters) such that time-course 

profiles in the same cluster are generated by the same autoregressive model, and the 

likelihood that all profiles are generated by a mixture model with a number of 

autoregressive models is maximized. The cluster membership of a specific time-course 

gene expression profile is determined by the posterior probabilities that this gene 

expression profile is generated by the autoregressive models. 
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A bootstrapping method and an average adjusted Rand index (AARI) are used to 

measure the quality of clustering. Datasets SYN, ALP, ELU and BAC described in 

Section 2.2 are used to investigate the performance of the proposed method in this 

section. A comparison of the proposed method with the k-means methods is presented to 

highlight the performance of the proposed method. 

  

3.4.1 Autoregressive Model and Likelihood for a Single Time Series  

 

Let },,,,{ 1 Mm xxxx KK= be a time series of continuous values with M  equally time-

spaced observations. The time series follows an autoregressive model of order p , 

denoted by )( pAR . Assuming that the current observed value mx  ( pm > ) is a linear 

combination of the observed values at the previous p  steps plus a term representing the 

errors. More formally, an autoregressive model of order p  may be written as, 

 

mpmpmm xaxax ε+++= −− L11  , Mpm ,,1K+=                       (3.17) 

 

where ia ),,1( pi L=  are the autoregressive coefficients, and mε ( Mpm ,,1L+= ) 

represent the errors. It is assumed here that the errors are subject to a normal distribution 

independent of time with mean 0 and variance 2σ . Thus mx  ( Mpm ,,1L+= ), 

conditional on ( ),,1 pmm xx −− L ,  are subject to a normal distributuion with mean 

pmpm xaxa −− ++L11  and variance 2σ , i.e., 
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Further, the log-likelihood function that time series x  is generated by an autoregressive 

model of order p  with coefficients ia ),,1( pi L=  can be written as: 
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where T
paaa ],,[ 1 L= , and ),,( 1 pxxp L  is the joint probability distribution of the first 

p  observations of  time series x . 

 

The distribution of the first p  observations remains to be discussed. Note that Ramoni 

et al. (2002b) did not address the distribution of the first p  observations when they 

presented time-course gene expression profiles by autoregressive models. Time series 

(gene expression profiles) are fully determined only by both p  autoregressive 

coefficients ia ),,1( pi L= , and  p  initial observation values. Indeed, two time series 

that are generated by the same order p  autoregressive model but different initial p  
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observations may have very different behaviours (Harvey, 1993; Kedem and Fokianos, 

2002). This study assumes the first p  observations have a multivariate normal 

distribution with mean ),,( 1 pµµµ L=  and covariance matrix pI2
0σ=Σ  ( pI  represents 

the pp×  identity matrix), i.e., 
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This assumption is inspired by the k-means method which assumes that all the M  

observations have a multivariate normal distribution with mean ),,( 1 Mµµµ L=  and 

covariance matrix MI2
0σ=Σ  (McLachlan and Basford, 1988; Duda et al., 2001). 

 

At this point, the log-likelihood function that time series x  is generated by an 

autoregressive model of order p  with coefficients ia ),,1( pi L=  and initial p  

observations following the normal distribution (3.20) can be written:  
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Let 0x  be the vector T
mxx ],,[ 1 L , y  be the vector T

Mp xx ],,[ 1 L+ , and X  be the 

ppM ×− )(  regression matrix whose m -th row is ],,[ 1 pmm xx −− L  for Mpm ,,1L+= . 

Then equation (3.21) may be rewritten in a vector-matrix form as: 
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3.4.2 ARM-Based Clustering 

 

The mixture model: Let K  be the number of clusters in a given set of observed time 

series },,,,{ 1 Nn xxxX LL= , where nx ),,1( Nn L=  stand for time series. Let 

T
kpkk ],,[ 1 µµµ L= , 2

0kσ , T
kpkk aaa ],,[ 1 L= , and 2

kσ  be the mean vector and the 

variance of the first p  values, and the autoregressive coefficient vector and the variance 

of autoregressive model for the k -th cluster, respectively. With these notations, the task 

of dynamic model-based clustering is to compute a partition },,,,{ 1 Kk CCCC LL=  of 

the set X  and )( pAR  models ),,,( 22
0 kkkk a σσµ  ),,1( Kk L=  by maximizing the 

likelihood function 
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or the log-likelihood function 
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where the parameters Θ  of the mixture model (3.23) or (3.24) consist of 

},,1   ),,,,{ ( 22
0 Kka kkkk L=σσµ .   

 

Estimation of model parameters: Following the log-likelihood function for a single time 

series (3.22), the log-likelihood function for multiple time series in cluster kC , 

generated by the same )( pAR  model ),,,( 22
0 kkkk a σσµ , can be written as: 

 

∑∑

∑

∈∈

∈

−−−−−−

−
−

−=

=

kk

k

Cx
k

T
k

kCx
k

T
k

k

k
k

k
k

Cx
kkkkkkkkkk

XayXayxx

CpCpM

axpaCL

)()(
2

1
 )()(

2

1

 )2log(
2

)2log(
2

)(

),,,|(log),,,|(

2002
0

2
0

2

22
0

22
0

σ
µµ

σ

πσπσ

σσµσσµ

(3.25) 

 



 71 

where kC  represents the number of time series in cluster kC , NC
K

k
k =∑

=1

.  

Substituting (3.25) into (3.24) yields: 
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For a given partition },,,,{ 1 Kk CCCC LL=  of the set X , the maximum likelihood 

estimates of the parameters in the model (3.23) can be found by maximizing the log-

likelihood function (3.26).  This leads to: 
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for Kk ,,1L= . 

 

Algorithm: This study employs a relocation-iteration algorithm (e.g., k-means), as 

shown in Figure 3.8, to estimate the model parameters in (3.23) such that the log-

likelihood (3.24) is maximized. In 2(a) of Figure 3.8, tΘ  represents the parameters of 

Equations (3.24) or (3.25) at iteration t , while in 2(b), t
kkkk a ),,,( 22

0 σσµ  represents the 

parameters of model k  at iteration t . 

 

1. Select randomly an initial partition for the given number of clusters, K ; 

2. Iterate ( L,,t 21= ): 

(a) Estimate the parameter tΘ  based on the present partition by using Equation (3.27) 

and (3.28);  

(b) Generate a new partition by assigning each sequence x  to cluster k  for which the 

log-likelihood )),,,(|(log 22
0

t
kkkk axp σσµ  is maximal; 

3. Stop if the improvement of the log-likelihood function (3.24) is below a given 

     threshold, the cluster memberships of time series do not significantly change or a 

     given iteration number is reached. 

 

Figure 3.8 Algorithm for ARM-based clustering 
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Convergence: The following theorem establishes the convergence of the algorithm 

above. 

 

Theorem 3.1 The log-likelihood function (3.24) is non-decreasing as the number of 

iterations increases. 

 

Proof: For the log-likelihood function (3.24), denote the partition after iteration t  by tC  

and the corresponding parameters by },,1,),,,{ ( 22
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The last inequality above holds because Equations (3.27)-(3.30), which give the 

maximum likelihood estimates of the parameters in Equation (3.26) for a given partition 

1+tC .      QED. 

 

Note that the above algorithm may converge to a local maximum. A common approach 

to deal with local maxima is to run the algorithm a number of times and select the best 
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result among these runs.  Such an approach is often used with the k-means and the EM 

algorithms.  It is used for the proposed method here. 

 

3.4.3 Computational Experiments and Results 

 

Four datasets are employed, including SYN, ALP, ELU and BAC described in Section 

2.2, to investigate the proposed method. Before cluster analysis, data pre-processing 

strategies are applied to these four datasets. The expression profile of each gene is first 

normalized to have a median of 0 and a standard deviation (from the median) of 1. 

Further, the expression data of all genes at each time point is normalized as so to have a 

mean of 0 and a standard deviation of 1. Different order ARM-based clusterings may 

result in different qualities of clusterings. In the following experiments, ARM-based 

clusterings with different orders ( 3,2,1=p ) (in Figure 3.8) and k-means are applied.  

 

Dataset SYN: ARM-based clusterings with different orders ( 3,2,1=p ) and k-means are 

applied to dataset SYN over a variety of numbers of clusters. Since the cluster label of 

each gene in the dataset is known, the ARI between the known cluster labels and the 

computed cluster labels using both the ARM-based clustering methods and the k-means 

methods are calculated. AARI over 20 runs are employed to measure the quality of the 

clustering. The results (in Figure 3.9) show that the quality of clustering using the k-

means methods is lower than those using the ARM-based methods with the three 

different orders. In particular, for the intrinsic number of clusters, 5=k , the AARI’s of 

three ARM-based clusterings are 0.76, 0.68 and 0.70 for 3,2,1=p , respectively, and are 
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bigger than 0.62, the AARI using the k-means method. Further, comparing Figure 3.6 

(the results of MCM-based clustering for the same data set) to Figure 3.9 shows that the 

quality of ARM-based clustering with the first order and the second order is also better 

than that of MCM-based clustering, while the quality of ARM-based clustering with the 

third order is comparable with that of MCM-based clustering. 

 

 
 

Figure 3.9 Profile of AARI with respect to the number of clusters for dataset SYN 

 

Further comparisons of the ARM-based clustering methods with the k-means methods 

on datasets ALP, ELU and BAC are attempted. Again for the ARM-based clustering 

methods, three different orders ( 3,2,1=p ) are considered. The number of runs in Figure 

3.2 is set to be 20=B  in the following experiments. 
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Figure 3.10 Profile of AARI with respect to the number of clusters for dataset ALP 

 

Dataset ALP: Figure 3.10 shows that the AARI’s of ARM-based clustering with the first 

order autoregressive model are the highest among the four methods tested. The results 

from ARM-based clustering with the second and third order autoregressive models are 

comparable to those of k-means. This means that with respect to dataset ALP the quality 

of clustering using the ARM-based method with the first order autoregressive model is 

the best one, and in particular, better than that using k-means method. 

 

Dataset ELU:  Figure 3.11 shows that the AARI’s of ARM-based clusterings with the 

first and second order autoregressive models are always bigger than those using the k-

means methods.  The result for ARM-based clustering with 3=p  is comparable to 
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those using k-means method. This means that with respect to dataset ELU, the quality of 

clustering using the ARM-based clustering method with the first and second order 

autoregressive models is better than that using the k-means method.  

 

 
 

Figure 3.11 Profile of AARI with respect to the number of clusters for dataset ELU 

 

BAC Dataset:  Figure 3.12 shows that the AARI’s of ARM-based clustering with the 

three different orders are also higher that those using k-means method over all different 

numbers of clusters except for 4=k  (in the case of 3  and  2=p ). This means that with 

respect to dataset BAC, the quality of clustering from ARM-based clustering with the 

three different orders is better than that using k-means. In addition, comparing Figure 

3.7 (the results of MCM-based clustering for the same data set) to Figure 3.12, shows 



 78 

that the quality of ARM-based clustering with the three different orders is also better 

than that using the MCM-based clustering method. 

 

 
 

Figure 3.12 Profile of AARI with respect to the number of clusters for dataset BAC 

 

Two general observations are evident from Figure 3.9 through Figure 3.12. First, with 

increasing the order of autoregressive models, the quality of the ARM-based clustering 

methods tends to decrease. Thus the best quality with this method is provided by the 

first-order autoregressive model. One of the possible reasons for this result is that the 

amount of current gene expression data is insufficient to train higher-order models 

(Ramoni et al., 2002b). Second, it is always possible to choose an integer p  such that 

the ARM-based clustering methods with the p -th order autoregressive model gives 

better results than the k-means clustering method. The latter is not surprising given that 
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the ARM-based clustering method takes into consideration the time dependence of time 

course gene expression data while k-means methods (a static model-based clustering 

method) does not. 

 

3.5 Conclusions 

 

Cluster analysis is an important tool to infer gene regulatory relationships. The 

clustering of time-course gene expression data (where pattern features are time-

dependent) differs from the clustering of other kinds of data (where pattern features are 

independent) and thus is more difficult. The clustering methods in which dynamics of 

gene expression are not accounted for can not perform as well for time-course gene 

expression data.  

 

In this chapter, two dynamic model-based clustering methods for time-course gene 

expression data were proposed. The first one is the MCM-based clustering method in 

which MCM is employed to account for the dynamic of gene expression. To do that, the 

whole gene expression dataset is discretized and assigned to one of three gene 

regulatory states: induction (I), repression (R), and constant (C). Although the 

discretization may result in information loss, gene expression state sequences retain 

information about the dynamics of gene expression. The results of computational 

experiments on two datasets show that the MCM-based clustering outperforms k-means. 

The second method is the ARM-based clustering method in which ARM is employed to 

account for the dynamics of gene expression. The results of computational experiments 
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on four datasets show that the ARM-based clustering outperforms not only k-means but 

also MCM-based clustering. 

 

In conclusion, since the dynamics of gene expression are accounted for, the proposed 

dynamic model-based clustering methods for time-course gene expression data are able 

to improve the quality of the clustering. The most important feature of the proposed 

methods is that they take the inherent time dependence (dynamics) of time-course gene 

expression patterns into consideration. In addition, the proposed methods are flexible in 

the sense that they can incorporate a priori information into the models as they have a 

solid probabilistic foundation. 
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Chapter 4 

 

GENE REGULATORY NETWORK 

 

4.1 Related Work 

 

A gene regulatory network is a dynamic system to describe interactions among a large 

number of different substances (such as mRNA, proteins) in a living cell. The 

understanding and unravelling of such cellular systems has been proven useful in 

genomic disease diagnosis and genomic drug design. Recently the advent of microarray 

technology and other high throughput gene expression measurement technologies have 

provided the opportunity to model gene regulatory networks with large-scale gene 

expression data. Since then, a wide variety of different models have been proposed for 

genetic regulatory networks. 

 

This section gives a survey of computational models for large gene regulatory networks 

and discusses their advantages and disadvantages.  The survey is not meant to be on all 

models, and instead focusing on Boolean network models and differential/difference 

models. Several reviews on modelling gene regulatory networks have been published 

(De Jong, 2002; Wessels et al., 2001; D'haeseleer et al., 2000; and their references). 
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Besides the emphasis on large gene networks, this section reviews the existing models 

to focus on mathematical methods, computational cost, evaluating their relative 

advantages and disadvantages, and the biological concepts on which models based, 

rather on the biological results obtained through their applications. 

 

4.1.1 Boolean Network Models 

  

One of the earliest models for large gene regulatory networks is Boolean network 

model, where a gene can be in one of two states, either active or inactive, described as 

completely “on”  or “off” .  These two states are often represented by the binary values 1 

and 0, respectively. The binary state varies with respect to time and depends on the 

states of other genes in the network through a Boolean variable equation: 

 

      )](,),([)1( 1 txtxFtx nii L=+ ,    ni ,,1L=                                          (4.1) 

 

where )(txi ),,1( ni L=  stands for the state of the i -th element (genes or proteins) in 

the network, n  is the number of genes in the network, and the function iF  ),,1( ni L=  

is a Boolean function in the states of the network at time t  for updating the state of 

element i  at 1+t  . For example, if )(1 tx  is ‘on’  AND either )(2 tx  OR )(3 tx  is ‘off’  at 

time t , then )(4 tx  is ‘on’  at time 1+t . In this case, Equation (4.1) can be written as: 

))()(()()1( 3214 txtxtxtx ¬∨¬∧=+ , where ∧ , ∨ , and ¬  are standard logic operation 

symbols. Let T
n txtxt ])()([)( 1 L=x  denote the vector state and T

nFF ][ 1 L=F  



 83 

denote the vector-valued function of the system where the superscript “T”  stands for the 

transposition of a vector. Equations (4.1) can be rewritten in the concise form as 

follows:  

 

                                               ))(()1( tt xFx =+                                                    (4.2) 

 

The most important problem with the identification of Boolean networks is to determine 

the connectivity degree of genes in the networks. The term connectivity degree refers to 

the number of input variables which appear in the function iF  ),,1( ni L=  in the right 

side of Equation (4.1). If it is simply thought that one gene is regulated by all n  genes in 

the network, there are 
n22  Boolean functions that have to be checked to determine a 

regulatory relationship as in Equation (4.1) between this gene and other genes. This is 

infeasible in practice even if n  is moderate. For example, when 10=n , 

30010002 1022 ≈≈
n

. Indeed, some biological knowledge shows that one gene does not 

need to be regulated by all n  genes in the network. That is, the function iF  ),,1( ni L=  

in Equation (4.1) may depend on h  )( n<<  genes only (Baldi and Hatfield, 2002). 

 

Unfortunately, there has been no objective approach available to determine the 

connectivity degree of genes in a Boolean network. In the recent studies on Boolean 

network models for gene regulatory networks (Akutsu et al., 1999; Wuensche 1998; 

Liang et al., 1998; Akutsu et al., 2000), there tends to assume that the connectivity 

degrees of genes are smaller than a constant h  (typically less than 3). Under this 

assumption, Liang et al. (1998) described an algorithm for inferring gene network 
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architectures from the rule table of a Boolean network model. Their computational 

experiments and theoretical analysis have shown that a small number of state transition 

pairs are sufficient to infer the original observations. Furthermore, Akutsu et al. (1999) 

devised a much simpler algorithm for the same problem and proved that only )(log nO  

state transition pairs (from n2  pairs) are necessary and sufficient to identify the original 

Boolean network of n  nodes (genes) correctly with high probability. More exactly, this 

number is nhO
h

log)2(2( 2 α+  where α  is a positive constant (Wu, 2003). Their 

algorithms were claimed to have time complexity )( 1+hmnO  where m  is the number of 

examples (Akutsu et al., 1999 and 2000). More precisely, this number is 

)2( 12 mnhO hh

⋅⋅⋅ + .  Therefore when 2=h  or 3, the authors’  claims about algorithmic 

complexity or the number transition pairs are acceptable. However, when 10=h , for 

example, their claims do not make sense because the symbol “big O ”  hides a very large 

coefficient ( 3002 102
10

≈ ) in )( 1+hmnO .   

 

Somogyi and Sniegoski  (1996) showed that such Boolean networks have features 

similar to those in the biological systems, such as global complex behaviour, self-

organization, stability, redundancy, and periodicity. However, the Boolean network 

models have several disadvantages. For example, they treat gene expression as either 

completely “on”  or “off” , and thus ignore those genes that have a range of expression 

levels and can have regulatory effects at intermediate expression levels. Furthermore, 

they do not address those regulatory genes that influence the transcription of various 

genes to differing degrees. Finally, such networks are designed such that all genes have 
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a fixed maximum connectivity degree. In biology, some genes are known to have many 

regulatory inputs, while others are not known to have more than a few (Weaver et al., 

1999).  

 

4.1.2 Differential/difference Equation Models 

 

An alternative to the Boolean network models (discrete variable) is a continuous 

dynamic model, where the state variables theoretically have range [ ]∞∞− ,  rather than 

{ 0 ,1} . A continuous dynamic model may be described by a system of differential 

equations in the generic form as follows:  

 

)](),(,),([ 1 tItxtxF
dt

dx
ni

i
L= ,    ni ,,1L=                                          (4.3) 

 

or by a system of difference equations in the generic form as follows: 

    

)](),(,),([)( 1 tItxtxFttx nii L=∆+ ,    ni ,,1L=                                   (4.4) 

 

where )(txi ),,1( ni L=  stands for the state of the i -th element (genes or proteins) in 

the network, n  is the number of genes in the network, the vector )(tI  represents some 

external inputs to the system, and iF  ),,1( ni L=  is a multivariable nonlinear function. 

It is impossible to identity the nonlinear systems (4.3) and (4.4) because of the 

limitations of data obtained from microarray experiments and of identification 
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techniques for nonlinear systems. Therefore it often assumed that iF  ),,1( ni L=  is a 

multivariable linear function. Such an assumption has two advantages. Firstly, it is 

mathematically simple. Secondly, a linear system may be a satisfying approximation of 

a nonlinear system in a certain neighbour of a working state.  

 

Chen et al. (1999) proposed a theoretical model for gene regulatory networks described 

by the following linear differential equations:  

 

)()( tt
dt

d
x

�
x ⋅=                                                 (4.5) 

 

where �  is a constant matrix and represents the extent or degree of regulatory 

relationships among genes and/or proteins, the vector T
n txtxt ])()([)( 1 L=x  

contains the mRNA and/or protein concentrations as a function of time t  with 

)(txi ),,1( ni L=  standing for the state of the i -th element (genes or proteins), and n  is 

the number of genes and/or proteins in the model. 

 

D'haeseleer et al. (1999) proposed the following linear difference equation model for 

gene regulatory networks: 

 

)()( ttt xWx ⋅=∆+                                                               (4.6) 
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where the constant matrix 
nnijw ×= ][W  represents regulatory relationships and degrees 

among genes, )( ttxi ∆+  is the expression level of gene i  at time tt ∆+ , and ijw  

indicates how much the level of gene j  influences gene i  when time goes from t  to 

tt ∆+ . Furthermore, an extra term indicating the influence of kainate and two bias terms 

are added to Equation (4.6), and the final equation becomes    

 

TCtkainateKttt ++⋅+⋅=∆+ )()()( xWx                                    (4.7) 

 

where )(tkainate  is the kainate level at time t , and K , C , and T  are three n -

dimensional vectors, where the i -th components of  K , C , and T  are the influence of 

kainite on gene i , a constant bias factor for gene i , and the difference in bias between 

tissue types, respectively (D'haeseleer et al., 1999). 

 

Models (4.5) and (4.6) are equivalent. When t∆  tends to zero, model (4.6) may be 

transformed into model (4.5). On the other hand, to identify the parameters in model 

(4.5), one must discretize it into the formalism of model (4.6) (Chen et al., 1999). Since 

gene expression data from the DNA microarrays can only be obtained at a series of 

discrete time points with the current experimental technologies, the difference equations 

are more suitable to model gene expression data. Due to the lack of gene expression 

data, models (4.5) and (4.6) are usually underdetermined. Similar to Boolean network 

models (Akutsu et al., 1999; Wuensche 1998; Liang et al., 1998; Akutsu et al., 2000), 

the assumption that the connectivity degree of all genes in the network is smaller than a 

fixed constant h  is also used to make models (4.5 and (4.6) identifiable. Chen et al. 
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(1999) showed that model (4.5) can be constructed in )( 1+hnO  time. It is clear that the 

models constructed as such contradict the fact that some genes are known to have many 

regulatory inputs, while others are not known to have more than a few as the Boolean 

networks (Liang et al., 1998; Akutsu et al., 1999). 

 

Furthermore, the fixed maximum connectivity degree h  of Chen et al. (1999) is chosen 

in an ad hoc manner. De Hoon et al. (2003) considered Chen’s differential model and 

used Akaike’s Information Criterion (AIC) to determine the connectivity degree h  for 

each gene. In their method, not all genes must have a fixed connectivity. However, they 

do not present an efficient algorithm to identify the parameters of their differential 

equation model; the brute-force algorithm used in their paper (De Hoon et al., 2003) has 

a computational complexity of )2(
2nO , where n  is the number of genes in the model. 

The authors claimed that their method could be applied to find a regulatory network 

among individual genes. However, for biologically realistic regularity networks, the 

computational complexity is prohibitive. Actually, De Hoon et al. (2003) did not build 

any gene expression models among individual genes, and instead chose to group the 

genes into several clusters and only studied the interrelationships among the clusters. 

 

D'haeseleer et al. (1999) applied the linear difference equation model (4.7) to mRNA 

expression data during CNS (Central Nervous System) development and injury. The 

dataset includes 18202865 =×  gene expression values for 65 genes and 28 expression 

values for each gene. However, there are 44206865 =×  parameters in model (4.7). To 

cope with the lack of gene expression data, D'haeseleer et al. (1999) used a nonlinear 
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interpolation scheme to guess the shapes of gene expression profiles between the 

measured time points. Such an interpolation scheme is ad hoc. Therefore, the soundness 

of the model built from such interpolated data is suspicious. In addition, while they built 

a linear model for 65 measured mRNA species, there exists a problem of dimensional 

disaster even when the number of genes in a model is moderate, for example, around 

1000 (typically, the number of genes in a gene regulatory network under considerations 

in this study). 

 

4.2 Evaluations 

 

Due to limitations of the understanding of real gene regulatory networks, it is difficult 

(if not impossible) to evaluate the models for gene regulatory networks completely by 

biological experiments. Wesseles et al. (2001) proposed six indices to evaluate the 

models for gene regulatory networks from the viewpoint of bioinformatics. Some of 

these indices are inapplicable to evaluation of gene regulatory network models on real-

life gene expression datasets because the real gene regulatory networks creating these 

data are unknown. In the following, five indices are introduced, including the 

computational cost, the prediction power, and the stability (Wesseles et al., 2001), the 

robustness, and the periodicity (Kauffman, 1993). 

 

The computational cost: The demand on computational resource is always a concern in 

the analysis of gene expression data given a large-scale dataset. The computational 

complexity to build gene regulatory networks is used for evaluating the models.  
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The stability: Due to limited energy and storage within a living cell, concentrations of 

gene expression products such as mRNA should remain bounded. All real gene 

regulatory networks are therefore stable. Therefore, inferred gene regulatory networks 

should also be (almost) stable in order to be realistic. The dynamics part of all proposed 

models in this study may be written in a unified equation:   

 

)()1(
max

0

τ
τ

τ
τ −⋅=+ ∑

=

tt zAz                                              (4.8) 

 

 where T
p tztzt ])()([)( 1 �=z  is the state vector, ppija ×= ][ ττA  ( max,0 ττ L= ) are the 

state translation matrices with time delay τ , and the integer parameter maxτ  denotes the 

maximum time delay accounted for. As such, the stability of inferred gene regulatory 

networks is equivalent to the stability of Equation (4.8).  It can be proven that Equation 

(4.8) is stable if and only if all eigenvalues of the following )1()1( maxmax +×+ ττ  block 

matrix 
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lie inside the unit circle in the complex plane, where pI  is a pp×  identity matrix and 

p0  is a pp×  zero matrix, and τA ( max,0 ττ L= ) are state transition matrices with time 

delay τ  in Equation (4.8). 
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The periodicity: Certain biological processes are periodic. The cell-cycle and circadian 

clock, for example, repeat at well-defined and reliable intervals. Studies have shown that 

gene regulatory networks associated with these periodic biological processes are 

themselves rhythmic (Kauffman, 1993; Baldi and Hatfield, 2002). Therefore, the 

inferred gene regulatory networks associated with these periodic biological processes 

should be periodic over their stable states. Accordingly, the periodicity of system (4.8) 

at its stable state is determined by its dominant eigenvalues (the eigenvalues of matrix 

T  in (4.9) whose modulus is the largest).  

 

The robustness: The robustness of a gene regulatory network is understood as its 

insensitivity to noises or disturbances. It is known that a real gene regulatory network 

has robustness (Kauffman, 1993). Therefore, the inferred gene regulatory network 

should be robust. In general, the stability of a linear system implies some of its 

robustness (Chen, 1999). Note that the stability, the robustness, and the periodicity of 

the system (4.8) are all related to the eigenvalues of matrix T in (4.9). 

 

The prediction power (error): Let X̂  be a matrix with the same size as the original data 

matrix X , which is computed from an initial state and the model derived from the data 

matrix X . The prediction error reflects how well X̂  approximates X . The prediction 

error ( EP ) may be defined as: 
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where :),(iX  is the i-th row vector of gene expression data matrix X  (i.e., the 

expression profile of the i-th gene. :),(iX   is the Euclidean norm of the vector :),(iX . 

Intuitively, the smaller the prediction error, the greater the prediction power. Wesseles et 

al. (2001) defined the prediction power as: 

 

)1/(1 MSEP EP +=                                                   (4.11) 

 

where ∑
=

−=
n

i
MSE ii

nm
E

1

2
:),(ˆ:),(

1
XX . Obviously, the scale of X ’s elements influences 

the value of MSEE  and further influences the value of PP . For example, one may always 

multiply by a small constant to decrease MSEE  and thus increase PP  while the model is 

actually not improved.  On the other hand,  EP  in Equation (4.10) is invariant to the 

scale of X . Therefore, it is more reasonable for evaluation of the models using EP  in 

Equation (4.10) than using PP  in Equation (4.11). 

 

4.3 State-Space Model   

 

The state-space model is one of the most powerful methods to describe a dynamic 

system and has been widely employed for engineering control systems (Chen, 1999). A 

state-space model consists of the internal variables, external (input) variables, and 
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observation (output) variables. Figure 4.1 shows a typical state-space model of gene 

regulatory networks. Typically the observation variables depend on the internal 

variables while the change of the internal variables is completely determined by the 

current internal variables plus any external inputs, if they exist. 

 

 
 
 

Figure 4.1 A state-space model for a gene regulatory network, where ix ),,1( ni L=  is 

an observation variable while iz ),,1( pi L= is an state variable. 

 

In fact, the Boolean network models and the differential/difference models (Equations 

4.1- 4.7) are variations of the state-space model. However, in these models, genes were 

viewed as the internal state variables as well as observation variables of a cellular 

system and their expression levels were the values of both the internal state variables 

and the observation values. This viewpoint has led to an underestimation of model 
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parameters, as pointed out previously. In addition, these models assume that regulatory 

relationships among genes are “direct” ; for example, gene j  directly regulates gene i  

with the weight ijw  in model (4.6). In fact, genes may not be regulated in such a direct 

way in a cell, and instead they may be regulated by some internal regulatory elements 

(Spellman et al., 1998; Zhang, 1999; Baldi and Hatfield, 2002).  

 

This section proposes a state-space model for gene regulatory networks, in which genes 

are viewed as the observation variables and their expression levels are observation 

values and gene expression dynamics are governed by the internal variables with their 

linear combinations. The number of internal variables and the expression profiles of 

internal variables will be determined by Bayesian information criterion (BIC) and factor 

analysis (FA) from the observation values of a cellular system, i.e., gene expression 

data.  

 

4.3.1 The Model  

 
 
The state-space model for gene regulatory network (Figure 4.1) may be mathematically 

described as follows (Wu et al., 2004a): 

 

                     � �
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�
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In terms of the linear system theory (Chen, 1999), Equation (4.12) are called the state-

space description of a system. The vector T
n txtxt ])()([)( 1 �=x  consists of the 

observation variables of the system (4.12), and )(txi ),,1( ni L=  represents the 

expression level of gene i  at time t , where n  is the number of genes in the model. The 

vector T
p tztzt ])()([)( 1

�=z  consists of the internal state variables of the system (4.12) 

and )(tz i ),,1( pi L=  represents the expression value of internal element i  at time t  

which directly regulates gene expression, where p  is the number of the internal state 

variables. ppija ×= ][A is a time translation matrix of the internal state variables, called 

the state transition matrix, which provides key information on the influences of the 

internal variables on each other. pnikc ×= ][C  is a transformation matrix between the 

observation variables and the internal state variables, which provide key information on 

the influences of the internal regulatory elements on the genes. Finally, the vectors 

)(1 tn  and )(2 tn  stand for the system noises and the observation noises, respectively. 

 

Comparing to previous models (4.5-4.7), the state-space model (4.12) has the following 

characteristics. First, genes are the observation variables rather than the internal state 

variables. Second, from a biological angle, the model (4.12) can capture the fact that 

genes may be regulated by other internal regulatory elements (Alberts et al., 1998; 

Zhang, 1999; Baldi and Hatfield, 2002). Finally, although it contains two equations (one 

is a group of difference equations, and the other is a group of algebraic equations), the 

parameters in model (4.12) are identifiable from the current volume of gene expression 

datasets without any objective assumptions on the connectivity degrees of genes (Liang 
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et al., 1998; Akutsu et al., 1999; Chen et al., 1999; Akutsu et al., 2000) and the 

computational complexity to identify them is simple (see the next section). 

 

4.3.2 Model Identification 

 

The task of parameter identification in model (4.12) is to estimate the elements of 

matrices ppija ×= ][A  and pnikc ×= ][C  such that both the system error and the 

observation error are minimized with certain senses. Let X  be the gene expression data 

matrix with n  rows and m  columns, where n  and m  are the numbers of the genes and 

the measuring time points, respectively. The building of model (4.12) from microarray 

gene expression data X  can be divided into two phases. Phase one identifies the internal 

state variables and their expression matrix Z  from the data matrix X  and computes the 

transformation matrix C  such that 

 

ZCX ⋅= .                                                         (4.13) 

 

Phase two builds the dynamic equations of the internal states; i.e., determine the state 

transition matrix A  from the expression matrix Z . Phase one minimizes the observation 

error (i.e., maximize the data likelihood) with BIC, while Phase two minimizes the 

system error. 

 

In the process of building model (4.12), Phase one, i.e., establishing Equation (4.13), is 

key. There are many methods that may be used to get decomposition (4.13) of gene 
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expression data X . For example, one may employ the singular value decomposition 

(Alter et al., 2000; Holter et al., 2001), where some of the so-called characteristic modes 

or eigengenes may be viewed as the internal variables. However, the number of such 

internal variables is chosen ad hoc in those studies since the matrix C  and the 

expression data matrix of the internal variables Z  are decided by subjectivity rather than 

by the data themselves. Note that the matrices C  and Z  are dependent. After Z  is 

identified, C  may be calculated by formulae +⋅= ZXC , where +Z  is a unique Moore-

Penrose generalized inverse of the matrix Z . 

 

This study employs maximum likelihood factor analysis (MLFA) (Lawley and 

Maxwell, 1971; Bubin and Thayer, 1982; Everitt and Dunn, 1992) to identify the 

internal state variables and employs Bayesian Information Criterion (BIC) (Schwarz, 

1978) to determine the number of the internal state variables, where X  is the mn×  

observed data matrix, C  is  the pn×  unobserved factor-score matrix, and Z  is the 

mp ×  loaded matrix. In fact, both the generalized likelihood ratio test (GLRT) and the 

Akaike's Information Criterion (AIC) methods (Burnham and Anderson,1998)  also may 

be used to determine the number of the internal variables, but they have a similar 

drawback; as the sample size increases there is an increasing tendency to accept the 

more complex model (Raftery, 1986). The BIC takes the sample size into account, and 

thus avoids the over-fitting of a model to data. Although the BIC method was developed 

from a Bayesian standpoint, the result is insensitive to the prior distribution for the 

adequate sample size. Thus a prior distribution does not need to be specified (Schwarz, 
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1978; Raftery, 1986), which simplifies the method. For each model, the BIC is defined 

as: 

 

 



⋅+


 −

⋅−=
model in the parameters

estimated  theofnumber 
)log(

model estimation

 theof likelihoodlog
2 nBIC            (4.14)                        

 

where n  is the sample size (the number of genes in this case). Accordingly, the model is 

chosen with the smallest BIC based on the above definition of BIC.  

 

After obtaining the expression data matrix of the internal variables Z  and the 

transformation matrix C  in Phase one, the dynamic equations describing the state 

transition in model (4.12) can be developed; i.e., 

 

 )()( ttt zAz ⋅=∆+                                                       (4.15) 

 

from the data matrix Z  in Phase two. The matrix A  contains 2p  unknown elements 

while the matrix Z  contains pm ×  known expression data points. If mp > , Equation 

(4.15) will be underdetermined. Fortunately, using BIC the number of chosen internal 

variables p  generally is less than the number of time points m . Therefore, all elements 

of matrix A can be unambiguously identifiable. 

 

To determine the elements of matrix A , the time step t∆  is chosen to be the highest 

common factor among all of the experimentally measured time intervals such that the 
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time of the j th measurement is tnt jj ∆⋅= , where  jn  is an integer. For equally spaced 

measurements, jn j = .  Define a time-variant vector )(tv  with the same dimensions as 

the internal state vector )(tz  and with the initial value )()( 00 tt zv = . For all subsequent 

time points, )(tv  is determined from )()( ttt vAv ⋅=∆+ . For any integer k , there is 

 

)()( 00 ttkt k vAv ⋅=∆⋅+                                           (4.16) 

 

The 2p  unknown elements of the matrix A  are chosen to minimize the cost function 

(the sum of squared relative errors) 

 

2

1

2

1
)(/)()( ∑∑ ==

−= m

j j

m

j jj tttCF zvz                                  (4.17) 

 

where •  stands for the Euclidean norm of a vector. For equally-spaced measurements, 

the problem is a linear regression one, and the solution to minimizing the cost function 

(4.17) can be a least square one. Compared to Equation (4.10), Equation (4.17) is a 

variation of the prediction power defined in Equation (4.10) for the internal variables. 

For unequally-spaced measurements, the problem becomes nonlinear, and it is necessary 

to employ an optimization technique such as those described in Chapter 10 of the book 

(Press et al., 1992) to determine matrix A . 

 

The analysis of computational complexity: In Phase one, MLFA and BIC were 

employed to establish the observation equations and to estimate the internal variables. 
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The computational complexity is linear in the numbers of genes, n , time points,m , and 

iterations of MLFA, R . In Phase two, a multiple regression method was employed to 

establish the state transition Equation (4.15). The computational complexity is linear in 

the number of time points, and at most cubic in the number of internal variables. 

Overall, the complexity of the state-space model identification is linear in the numbers 

of genes and iterations (i.e., )*( RnO ) as the numbers of both time points and internal 

variables are much smaller than the number of genes and can be viewed as constants. 

 

4.3.3 Computational Experiments and Results 

 

 
 

Figure 4.2 Profiles of BIC with respect of the number of the internal variables 

 for dataset CDC15 
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Two datasets, CDC15 and BAC as described in Section 2.2, are used for investigating 

the proposed model in this section. The expression profile of each gene is normalized to 

have a length of one and then for expression values on each microarray as so to have a 

mean of zero and a length of one. Such normalizations make MLFA simple (Lawley and 

Maxwell, 1971). 

 

 
 

Figure 4.3 Profiles of BIC with respect of the number of the internal variables 

 for dataset BAC 

 

The EM algorithm for MLFA (Bubin and Thayer, 1982) was employed for the two 

datasets, respectively. Note that each gene expression profile corresponds to one 

observation. The total number of parameters to be identified is mp ⋅  (elements of the 
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matrix Z ) plus m (the variances of residue errors) (Bubin and Thayer, 1982). Figures 

4.2 and 4.3 depict the profiles of BIC with respect to the number of internal variables for 

datasets CDC15 and BAC, respectively. Clearly, from Figures 4.2 and 4.3, the best 

choice is 5 as the number of internal variables for both datasets according to the BIC.  

 

Table 4.1 The internal variable expression matrices for datasets CDC15 and BAC 

 

 

 

 

CDC15 

 

0.1465-    0.2599     0.2677     0.5261    0.0216 

0.2431-   0.1983-   0.1504-   0.0429     0.7490 

0.3433-   0.0957-   0.1469-   0.4646-   0.5592 

0.0618-   0.1332-   0.0893    0.6247-   0.3371-

0.0820    0.4060-   0.0028-   0.2534-   0.7042-

0.0130-   0.4557-   0.3770-   0.4091    0.4139-

0.1430    0.0460-   0.3365-   0.4116    0.6692 

0.1283    0.0038-   0.2828-   0.3190-   0.7960 

0.1159    0.0950    0.0898-   0.7875-   0.2695 

0.0389-   0.1406    0.2144-   0.6201-   0.5397-

0.0418-   0.1591    0.4848-   0.0812    0.7472-

0.0886-   0.2401    0.5766-   0.2914    0.2065-

 

 

 

 

 

BAC 

 

0.1007    0.1666    0.1943-   0.0906-   0.7777-

0.3170    0.1761    0.2584-   0.2597-   0.7409-

0.0947    0.2821-   0.1484-   0.4091-   0.5635-

0.1583-   0.2583-   0.0442    0.5639-   0.6371-

0.0864-   0.0618    0.1512    0.4120-   0.7410-

0.1303-   0.2602    0.2671    0.0381-   0.8141-

0.0021    0.0289    0.2685    0.2158    0.7850-

0.0252     0.0162    0.1674    0.2241    0.7904-

0.0739    0.2612-   0.0408    0.4048    0.8355-

0.2020-   0.0018    0.4481-   0.2965    0.6954-

0.1839-   0.0938    0.5429-   0.0733    0.4478-
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The expression matrices for the five internal variables are, respectively, listed in Table 

4.1, where for each expression matrix each column describes one internal variable. In 

order to determine the state transition matrices in the models from the internal 

expression matrices, two optimization problems in Equation (4.17) for the two datasets 

need to be worked out, respectively. As both datasets are equally-spaced measurements, 

the least square method was used to obtain the two state transition matrices A  in the 

models, as shown in Table 4.2.  

 

Table 4.2 The state transition matrix of internal variables for datasets CDC15 and BAC 

 

 

CDC15 

 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

6662013580070000316001610  

5190061630178600103006990

5279030920679401734007020

1356015110247505244066490 

1189018510500900077143780  

.    .    .   -.    . 

.   -.    .    .   -. -

.   -.   -.    .   . -

.   -.    .    .    . 

.   -.    .    .   -.

A  

 

 

BAC 
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�

=

0.3996     0.4443-   0.1146-   0.0953-    0.0013  

0.7819     0.1472     0.0700    0.1434     0.0202- 

0.0173-   0.0228     0.6329    0.3790     0.0577- 

0.1636     0.2412-  0.5702-   0.8128     0.0742   

0.0039-   0.0384     0.3359    0.0455-   0.0211   

A  

 

 

To evaluate the predication power of the inferred gene regulatory networks, Figures 4.4 

and 4.5 give comparisons of the internal variable expression profiles in Table 4.1 and 

their calculated profiles from Equation (4.15) for datasets CDC15 and BAC, 

respectively, where the solid lines stand for the profiles in Table 4.1 and the dash lines 
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for the calculated profiles from Equation (4.15). The values of the cost functions in 

Equation (4.17) are 0.2321 and 0.0761 for the CDC15 dataset and the BAC dataset, 

respectively. Therefore, two state transition matrices in Table 4.2 are plausible. 

 

 
 

Figure 4.4 A comparison of the internal variable expression profiles in Table 4.1 and 

their calculated profiles from Equation (4.15) for dataset CDC15  

 

To inspect the stability, the robustness, and the periodicity of inferred gene regulatory 

networks, the eigenvalues of matrix T  in Equation (4.9) need to be solved. For the 

state-space model without time delay (the current case), matrix T  in Equation (4.9) is 

equal to matrix A  in Equation (4.12) or (4.15).  
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Figure 4.5 A comparison of the internal variable expression profiles in Table 4.1 and 

their calculated profiles from Equation (4.15) for dataset BAC  

 

For dataset CDC15, five eigenvalues of the state transition matrix A  described in Table 

4.2 are i.. 8488042620 ± , 5509.0 , and 0.2950i  0.7605± ,  all of which lie inside the unit 

circle (Figure 4.6). This means the inferred regulatory network for genes in dataset 

CDC15 is stable, and thus is robust to system noises, for example, the squared 

summable noises. Furthermore, the dominant eigenvalues of the network are a pair of 

conjugate complex numbers. Accordingly, this implies that at the stable states, the 

network behaves periodically. This result is not surprising because the genes in dataset 

CDC15 are cell-cycle regulated. In conclusion, the inferred gene regulatory network for 

dataset CDC15 has the properties of the real gene regulatory network. 
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Figure 4.6 The distribution of eigenvalues of gene regulatory system for dataset CDC15  

 

For dataset BAC, five eigenvalues of the state transition matrix A  described in Table 

4.2 are 02821. , i.. 4997068350 ± , and i.. 5769030920 ± . All of these except for the first 

one lie inside the unit circle (Figure 4.7). There are two possible reasons for the situation 

of the first eigenvalue. Firstly, there are noises in the gene expression dataset which 

cause the inaccuracy of parameters in the model. Secondly, there may be some structure 

feature of the real gene regulatory networks that is not captured by the current model. In 

this connection, the subsequent sections will present methods to improve the current 

model. Nonetheless, the first eigenvalue is very close to 1. This means that the inferred 

regulatory network is almost stable and robust. Furthermore, the behaviour of the 

inferred network appears approximately constant as the dominant eigenvalue (the first 
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one) is very close to the unit circle while other conjugate complex eigenvalues are far 

away from the unit circle. 

 

 
 

Figure 4.7 The distribution of eigenvalues of gene regulatory system for dataset BAC 

 

In summary, this section has proposed a state-space model for inferring gene regulatory 

networks from time-course gene expression data, and the methods for model 

identification. The model is the state-space description of linear systems. The gene 

expression datasets, BAC and CDC15 were taken to illustrate how the methods work. 

The results demonstrate that for both datasets the inferred gene regulatory networks 

have some of features of the real gene regulatory networks, including the stability and 

the robustness. However, the inferred gene regulatory network for dataset BAC has no 
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periodicity at the stable states. Although this could be some uncontrollable noise in the 

dataset, a further attempt for improving the state-space model will be presented in the 

next section.  

 

4.4 State-Space Model With Time Delays   

 

The model proposed in the preceding section has not taken into account time delay in a 

cellular system. The real microarray data example reveals a considerable number of time 

delayed interactions, suggesting that time delay is ubiquitous in gene regulation (Dasika 

et al., 2004; Rosenfeld and Alon, 2003; Alter et al., 2000, 2001). Form a biological 

viewpoint, time delay in gene regulation arises from the delays characterizing the 

various underlying processes, such as transcription, translation, and transportation. For 

example, time delays in regulation may stem from the time taken for the transportation 

of a regulatory protein to its site of action. Dasika et al. (2004) proposed a mixed integer 

linear programming framework for inferring time delays in gene regulatory networks. 

The high computational complexity of their algorithm hinders its application in the gene 

regulatory networks with a moderate number of genes as considered in this thesis. A 

straightforward attempt is therefore to extend the state-space model with consideration 

of time delays. 

 

4.4.1 The Model 

 

From Figure 4.1, the state-space model with time delays can mathematically be 

described by (Wu et al., 2004d, 2004e) 
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where the vector T
n txtxt ])()([)( 1 �=x  consists of the observation variables of the 

system, and )(txi ),,1( ni L=  represents the expression level of gene i  at time t , where 

n  is the number of genes in the genetic regulatory network under consideration. The 

vector T
p tztzt ])()([)( 1 �=z  consists of the internal state variables of the system and 

)(tz i ),,1( pi L=  represents the expression value of internal element i  at time t  which 

directly regulates gene expression, where p  is the number of the internal state variables. 

The matrices ppija ×= ][ ττA  ( max,0 ττ L= ) are the time translation matrices of the 

internal state variables or the state transition matrices with time delay τ , while the 

integer parameter maxτ  denotes the maximum time delay accounted for. The matrices 

ppija ×= ][ ττA  ( max,0 ττ L= ) provide key information on the influences of the internal 

variables on each other. The matrix pnikc ×= ][C  is the transformation matrix between 

the observation variables and the internal state variables. The entries of this matrix 

encode information on the influences of the internal regulatory elements on the genes. 

Finally, the vectors )(1 tn  and )(2 tn  represent system errors and observation errors, 

respectively.  
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4.4.2. Model Identification 

 

The task of parameter identification in model (4.18) is to estimate the elements in 

matrices ppija ×= ][ ττA  ( max,0 ττ L= ) and pnikc ×= ][C  such that both the system error 

and the observation error are minimized with some certain senses. Let X  be the gene 

expression data matrix with n  rows and m  columns, where n  and m  are the numbers 

of genes and time points in the dataset, respectively. The building of model (4.18) from 

microarray gene expression data X  can also be divided into two phases. Phase one 

extracts the internal state variables and their expression matrix Z  with p  rows and m  

columns from the data matrix X , and computes the transformation matrix C  such that 

Equation (4.13) holds. Phase two builds the dynamics equations of the internal states; 

i.e., determine the state transition matrices ppija ×= ][ ττA  ( max,0 ττ L= ), from the 

expression matrix Z . Phase one minimizes the observation error (i.e., maximize the data 

likelihood) with BIC, while Phase two minimizes the system error. 

 

4.4.2.1 Extraction of the internal variables 

 

In Section 4.3, the maximum likelihood factor analysis and EM algorithm (Lawley and 

Maxwell, 1971; Bubin and Thayer, 1982) were employed to extract the internal state 

variables and compute the transformation matrix from the gene expression data, i.e., to 

build Equation (4.13). The EM algorithm for the maximum likelihood estimate may fall 

into a local maximum (Dempster, 1977). Tipping and Bishop (1999) developed a 

probabilistic principal component analysis (PPCA) and, specifically, proposed two 
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methods for PPCA: maximum–likelihood algorithm and EM algorithm.  Further, they 

proved that the maximum–likelihood algorithm for PPCA can find the global maximum.  

 

In this section, the maximum-likelihood algorithm for PPCA (Tipping and 

Bishop,1999) is employed to extract the internal variables from time-course gene 

expression data, where X  is the mn×  observation data matrix, each row of which is an 

observation sample; C  is the pn ×  transformation matrix, each row of which is a 

realization of latent variables; and Z  is the mp ×  loaded matrix, each row of which 

represents the expression profile of an internal state. Assume that the sample mean is 

shifted to zero. The log-likelihood for PPCA model is expressed by 
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n

L −++−= π  

 

where IZZD T 2σ+=  and n/X'*XS = . For the given number of internal variables, p , 

the log-likelihood for the PPCA model finds its global maximum (Tipping and 

Bishop,1999) 
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when  
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where jλ  ( pj ,,1L= ) are the first p  largest eigenvalues of the sample variance matrix 

S,  the matrix pQ  is a  pp ×  diagonal matrix, whose diagonal elements are these jλ  

( pj ,,1L= ) , pU  is a pm ×  matrix, each column of which is a corresponding 

eigenvector of S,  kI  is a pp ×  identity matrix, R  is an arbitrary pp ×  orthogonal 

matrix, and )(
1

2 pm
m

kj
j −= ∑

+=

λσ .  

 

Note that if { C ,Z }  is an optimum solution of Equation (4.13), { 1−CS ,SZ }  is its 

optimum solution, where S is any pp ×  non-singular matrix. However, it can be 

proved that the state-space models from { C ,Z }  and { 1−CS ,SZ }  are algebraically 

equivalent (Chen, 1999). Therefore, one can always normalize the expression profiles of 

the internal state variables. For the optimum number of internal state variables, p , since 

212 )( pp IQR σ−  is a pp ×  non-singular matrix, there is  

 

T
pUZ =                                                              (4.21) 

 

as the expression profiles of the internal state variables. Further, the corresponding 

transformation matrix C  can be calculated by formulae +⋅= ZXC . 

 

From Equation (4.19), the values of the maximum log-likelihood for the PPCA model 

increase with the increased numbers of internal state variables, p . The redundant 
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internal state variables may result in a complicated model. Since the PPCA has a solid 

probabilistic foundation, BIC is employed to determine the number of internal state 

variables, as in Section 4.3. For each model, the BIC is defined as: 

 

 pp vnLpBIC ⋅−⋅= )log(2)(                                        (4.22)                        

 

where n  is the sample size (the number of genes), and pv (= 1+mp ) is the number of 

parameters in the PPCA model. Note that the definition of BIC in Equation (4.22) is 

different from that in Equation (4.14) to avoid the negative BIC (Burnham and 

Anderson, 1998). Since the term 2/)1)2(log( +πnm  in Equation (4.19) is a constant for 

a given dataset, the calculation of BIC can be simplified as 
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By this definition, the model with the largest BIC is chosen. Note that this definition od 

BIC is different from the Equation (4.14) on Page 98. 

 

4.4.2.2 Identification of the internal state equation       

 

After obtaining the expression matrix of the internal variables Z  and the transformation 

matrix C  in Phase one, the internal state transition equation  
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in model  (4.18) can be established from the expression matrix Z  in Phase two. Each of 

state transition matrices τA ( max,0 ττ L= ) contains 2p  unknown elements while the 

matrix Z  contains pm ⋅  known expression data points. If mp >+ )1( maxτ , Equation 

(4.24) will be underdetermined. To find the suitable state transition matrices, some 

additional conditions are necessary (Chen, 1999; Dasika, et al., 2004). Using BIC the 

number of chosen internal variables p  is generally less than the number of time points 

m . Therefore these matrices can be identifiable if there are just a few time delays (e.g., 

1max ≤τ )  accounted for. 

 

For equally-spaced measurements of gene expression, the multivariable linear 

regression method (Aoki, 1990; Harvey, 1993) may be used to identify state transition 

matrices τA  ( max,0 ττ L= ). For unequally-spaced measurements, the problem becomes 

nonlinear, and it is necessary to determine these matrices by using an optimization 

technique such as those in Chapter 10 of Press's text (Press, et al., 1992). 

 

The computational complexity: The computational cost in Phased one is bounded by the 

maximum likelihood algorithm for the PPCA and is )( 3mmnO + (Tipping and Bishop, 

1999). In Phase two, the computational cost is )( 3pmpO + . Since both m  and p  are 

much smaller than n , the overall computational cost of the state-space model 

identification is )(nO , i.e., linear in the number of genes in model. Such a 
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computational cost is much cheaper than that of the existing models such as the Boolean 

network models and differential/difference models (see Section 4.1). 

 

4.4.3. Computational Experiments and Results  

     

 

 

Figure 4.8 Profiles of BIC with respect to the number of internal variables 

 for dataset ALP 

 

To evaluate and illustrate the state-space model with time delays, gene expression 

datasets, ALP and ELU described in Section 2.2, are taken. The computational results 

are compared with the results from the state-space model without time delays proposed 
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in Section 4.3. Before applying PPCA, the expression profile for each gene was 

normalized to have a median of 0 and a standard deviation (from the median) of 1. 

Further the expression values of all genes on each microarray are normalized as so to 

have a mean of 0 and a standard deviation of 1. Thus in PPCA, the estimation of the 

mean is not needed (Tipping and Bishop, 1999). 

 

 

Figure 4.9 Plot for BIC with respect to the number of internal variables 

 for dataset ELU 

 

The maximum likelihood algorithm for PPCA (Tipping and Bishop, 1999) is employed 

to analyze the two datasets. For a variety of number p  of internal state variables, 

)( pBIC  is calculated by Equation (4.23). Figures 4.8 and 4.9 depict the profiles of BIC 
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with respect to the number of internal variables for datasets ALP and ELU, respectively. 

With the BIC, one may conclude that the regulatory network for genes in dataset ALP 

has 6 internal variables from Figure 4.8 while the regulatory network for genes in 

dataset ELU has 4 internal variables from Figure 4.9. 

 

 

Figure 4.10 A comparison of 6 internal state expression profiles estimated by PPCA 

and predicted by dynamic equation model (4.24) for dataset ALP.  

 

After the numbers of the internal variables are determined, both matrices  Z  and C  can 

be represented in the form of Equation (4.13). Since the two datasets under 
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consideration are collected at equally-spaced time points, the multivariate regression 

method (Aoki, 1990; Harvey, 1993) is employed to determine the state transition 

matrices τA ( max,0 ττ L= ) in the models from the expression matrices of internal 

variables, Z ’s. In this work, 1max =τ  for both two datasets is taken. 

 

 

Figure 4.11 A comparison of 4 internal state expression profiles estimated by PPCA 

and predicted by dynamic equation model (4.24) for dataset ELU.  

 

Figures 4.10 and 4.11 depict comparisons of the internal state profiles estimated by 

PPCA and predicted by the dynamic equation (4.24) for two datasets, respectively. In 

these figures, the solid lines stand for the estimated profiles; and the dash lines for the 

predicted profiles. These figures show that two kinds of profiles match very well for 
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both datasets. Furthermore, to quantitatively evaluate the state-space models with time 

delays, the prediction errors EP  (defined by Equation (4.10)) for both the model with 

time delays and the model without time delays are calculated and compared (Table 4.3). 

 

Table 4.3 Comparisons of prediction error between the state-space models with time 

delays and without time delays for datasets ALP and ELU.  

 Without time delays With time delays Improvement (%) 

ALP 0.0844 0.0258 69.43 

ELU 0.1286 0.0519 59.64 

 

 

In Table 4.3, the improvement is defined as  
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From Table 4.3, the prediction error of the space-state model without time delays 

presented in Section 4.3 is 0.0844 while the prediction error of the model with time 

delays proposed in this section is 0.0258 for dataset ALP. Comparing the state-space 

model without time delay, the state-space model with time delay improve in terms of  

the prediction error by about 70% for dataset ALP. Similarly, for dataset ELU the state-

space model with time delay improve in terms of the prediction error by about 60%, as 

compared to the state-space model without time delay. These results demonstrate that 
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the state-space model with time delays outperforms the model without time delays for 

gene regulatory networks. 

 

 

Figure 4.12 The distribution of eigenvalues of model with time delays for dataset ALP 

 

To inspect the stability, the robustness, and the periodicity of the inferred gene 

regulatory networks based on the state-space model with time delays, the eigenvalues of 

the matrix T  in (4.9) are calculated for the models from both datasets, respectively.  For 

dataset ALP with 1max =τ , the matrix T  in (4.9) has twelve eigenvalues: two real 

numbers, 0073.1  and 4074.0− ; and five pairs of conjugate complex numbers, 

6244.0 i7757± , i6498.07282.0 ± , i0588.08580.0 ±− , 1448.0 i8083.0± , 6498.0  
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i4086.0± . All of these eigenvalues except for the first real eigenvalue lie inside the unit 

circle in the complex plane. However, the first real eigenvalue is very close to the 

boundary of the unit circle (Figure 4.12). This means that the inferred regulatory 

network for genes in dataset ALP is almost stable and robust. Furthermore, the dominant 

eigenvalues of the network are two pairs of conjugate complex numbers and a real 

number which are very close to the unit circle. Accordingly, this implies that at the 

stable states, the network behaves periodically. This result is not surprising because the 

genes in dataset ALP are cell-cycle regulated. 

 

 

Figure 4.13 The distribution of eigenvalues of model with time delays for dataset ELU 
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For dataset ELU with 1max =τ , the matrix T  in (9) has eight eigenvalues: two real 

numbers, 5344.0  and 2357.0− ; and three pairs of conjugate complex numbers: 

i6862.08079.0 ±− , i49408268.0 ± , and ±0480.0 i8810.0 . All of these eigeinvalues 

except for i6862.08079.0 ±−  lie inside the unit, but their modulus is 1.0600 and is very 

close to the unit circle in the complex plane (Figure 4.13). This means the inferred 

regulatory network for genes in dataset ELU is almost stable and robust. Furthermore, 

the dominant eigenvalues of the network are two pairs of conjugate complex numbers 

which are very close to the unit circle. Accordingly, this implies that at the stable states, 

the network behaves periodically. Again this result is not surprising because the genes in 

dataset ELU are cell-cycle regulated as well. 

 

In summary, this section proposed a state-space model with time delays for gene 

regulatory networks and the methods for model identification. Applications of this 

model to two gene expression datasets  ELU and ALP have showed that the model with 

time delays has more prediction power than the model without time delays in Section 

4.3, and has some features of the real gene regulatory network, for example, the 

stability, the robustness, and the periodicity.  

 
 
4.5 Genetic Algor ithm for  Inferr ing Time Delays 
 
 

In order to uniquely determine the state transition matrices, )1( max
2 +τp  equations are 

needed from Equation (4.24), where p  is the number of internal variables and maxτ  is 

the maximum number of the discrete time delays accounted for. As there are mp  
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expression values of internal variables, only mp  equations are available. This implies 

that the system parameters can be estimated only if )1( max +> τpm , where m  is the 

number of time points in gene expression dataset. This case is considered as 1max =τ  in 

Section 4.4. In reality, for many gene expression data, the inequality )1( max +> τpm  

does not come true even for the case 1max =τ , and implying the system is 

underestimated.  Although Dasika et al. (2004) assumed that each regulatory interaction 

has only one single time delay to uniquely identify the parameters of the system, the 

solution space is still too large to search for the optimal time-delayed regulatory 

relationship using an exhaustive search method.  

 

This section employs Boolean variables to capture the existence of the discrete time 

delays of the regulatory relationships among the internal variables, and proposes a 

genetic algorithm (GA) to determine the optimal Boolean variables (corresponding to  

the optimal time-delayed regulatory relationships), and to further infer gene regulatory 

networks with time delays (Wu et al., 2004f). Computational experiments will be 

performed on two datasets BAC and CDC28 described in Section 2.2 to evaluate the 

performance of the proposed method.   

 

4.5.1 The Model 

 

To emphasize the time-delayed relationships, the state-space model with time delays can 

be described as: 
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where the symbol “ o ”  denotes the Hadamard (element-wise) multiplication of two 

matrices (Schott, 1999). The matrices ppijb ×= ][ ττB ( max,0 ττ L= ) are Boolean 

matrices, which capture the time-delayed regulatory relationships, 1=τijb  if internal 

variable j  regulates internal variable i with time delay τ , and 0=τijb  otherwise, and 

 

              1
max

0

=∑
=

τ

τ
τijb     ( pji ,,1, L= ).                                               (4.27) 

 

The meanings of other symbols in (4.26) are the same as those in Equation (4.18). Note 

that Equation (4.27) mathematically describes the assumption that each regulatory 

interaction has only one single time delay.  

 

The task of parameter identification in model (4.26) is to estimate the elements in 

matrices ppija ×= ][ ττA  ( ,0=τ max,τL ) and pnikc ×= ][C  such that both the system error 

and the observation error are minimized with some senses. As done in Section 4.4, 

model (4.26) is constructed in two phases. Phase one employs PCCA and BIC to 

estimate the number of internal variables and their expressions from gene expression 

data, and to establish the observation equations (the lower one in (4.26)), by minimizing 
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the observation error with BIC. We can use PPCA (Tipping and Bishop, 1999) and BIC 

to estimate the number of internal variables, p , and their expression matrix Z  as did in 

Section 4.4.2. Phase two employs the GA to find optimal Boolean matrices τB  (i.e. to 

determine the optimal time-delayed relationships) and the multiple regression method to 

determine ppija ×= ][ ττA  ( ,0=τ max,τL ) by minimizing the prediction error. 

 

4.5.2 Genetic Algorithm 

 

The solution space for τB ( max,0 ττ L= ) consists of all Boolean matrix sets 

}{
max0 τB,,B K satisfying (4.27), denote by SB , and is too large to use an exhaustive 

algorithm for searching for the optimum solution. Therefore, a genetic algorithm (GA) 

is proposed to find the optimum }{
max0 τB,,B K as shown in Figure 4.14. In Figure 4.14, 

GEN  is the number of generations of the GA, and is set by the users. In the following 

the computational fitness (CF) operator, the encoding, the selection operator, the 

crossover operator and the mutation operator will be discussed. 

 

Encoding:  Define a matrix set BB  consisting of all pp ×  matrices on set },0{ maxτL . 

Further define a mapping from SB  to BB :  

                      SB∈}{
max0 τB,,B K a BBbij ∈= ][B                           (4.28) 

 and τ=ijb  if 1=τijb  ( max,0 ττ L= ). It is obvious that this mapping is one-to-one. 

Thus it is sufficient to encode the set BB . The VEC operator (Schott, 1997) is employed 

to transfer BBb ppij ∈= ×][B  into an integer string with length 2p  over the set 
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},0{ maxτL . It is natural to use such an integer string to encode matrix 

BBb ppij ∈= ×][B . Note that such a string completely describes a set of time-delayed 

relationships in gene regulatory network (4.26) and is called an individual in terms of 

the GA, denoted by s . A population is composed of N  individuals, denoted by Σ , 

where N  is an odd positive integer. One may set some additional conditions to refine 

the search space. For example, if some time-delayed relationships are known, one may 

set some fixed values for the elements expressing these relationships on the string.  

 

1. Randomly select N  integer string with length 2p  over the set },0{ maxτL  to make up 

a population Σ , 1=g  

2. ),(],,,[ 2 NCFF Σ=Σσµ , denote 1* ss = , )1()( Fgf =  

3. While ( GENg ≤ ) 

4.       g=g+1 

5.        ),(
~

NSelection Σ=Σ ; 

6.        ),
~

( NCrossover Σ=Σ ; 

7.        ),,( NPmMutation Σ=Σ ; 

8.        ),(],,,[ 2 NCFF Σ=Σσµ ; 

9.  If  )()1( gfF < , then 1* ss = , and set )1()( Fgf =   else )1()( −= gfgf ; 

10.  End while 

11.  Return )(GENf  and *s . 

 

Figure 4.14 Genetic Algorithm for inferring time-delayed relationships 
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CF operator--- ),(],,,[ 2 NCFF Σ=Σσµ :  The CF operator does the following things: 

(1) to calculate the fitness values )( isF  ( Ni ,,1L= ) for all individuals in population Σ  

by using Equation (4.10),  (2) to order individuals such that the first individual is the 

optimal one, and (3) to estimate µ  and 2σ  of normal distribution ),( 2σµN using the 

maximum likelihood estimate methods (Vardeman, 1994) from fitness values )( isF  

( Ni ,,1L= ) of all individuals in population Σ . Note that  )( 1sF  is not smaller than the 

fitness value of any other individual in population Σ . 

 

Selection operator--- ),(
~

NSelection Σ=Σ : The selection operation creates a mediate 

population Σ~ . For convenience of the manipulation, the GA always assigns the best 

individual found over time in the population to individual 1 and copies it to the next 

population. Operator ),(
~

NSelection Σ=Σ  selects 2/)1( −N  individuals from the 

previous population according to the normal distribution ),( 2σµN . The GA employs 

the prediction error as the fitness value )( isF  of an individual is  calculated by Equation 

(4.10) in Section 4.2. Note that there are only  12/)1( +−N  individuals in the mediate 

population Σ~ . 

 

Crossover operator--- ),
~

( NCrossover Σ=Σ : The intention of the crossover operation is 

to create new (and hopefully better) individuals from two selected parent individuals. In 

the GA, of two parent individuals, one is always the first individual that is the optimal 

individual found over time, and the other is the one selected from the 2/)1( −N  

individuals out of the parent population other than the first individual in the mediate 
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population Σ~ . Here, the crossover operator adopts the single-point crossover method for 

simplicity. Note that after the crossover operation, population Σ  has N  individuals.    

 

Mutation operator--- ),,( NPmMutation Σ=Σ : Each position in a coding string is 

randomly selected with a mutation probability mP , and the number in the selected 

position is uniformly randomly replaced by another integer from the set },0{ maxτL .      

 

4.5.3. Computational Experiments and Results  

 

 

 
Figure 4.15 Profiles of BIC with respect to the number of internal variables  

for dataset BAC 
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To evaluate the proposed method, it is applied to two datasets BAC and CDC28 

described in Section2.2. The expression profile for each gene is normalized to have a 

median of 0 and a standard deviation (from the median) of 1. Further, the expression 

values of all genes on each microarray are normalized as so to have a mean of 0 and a 

standard deviation of 1. Thus in PPCA, there is no need to estimate the mean in the 

PPCA model (Tipping and Bishop, 1999). 

 

 
 

Figure 4.16 Profiles of BIC with respect of the number of the internal variables 

For dataset CDC28 

 

Using PPCA and BIC (defined by Equation (4.23)), the profiles of BIC with respect to 

the number of internal variables are shown in Figures 4.15 and 4.16 for datasets BAC 
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and CDC28, respectively. The BICs reach their maximum values at five for both 

datasets. This means that gene regulatory networks for both dataset BAC and dataset 

CDC28 should have five internal variables. 

 

The elements of matrices ppija ×= ][ ττA  ( ,0=τ max,τL ) are estimated using the 

proposed GA described in Figure 4.14.  The case 1max =τ  is considered for the sake of 

simplicity. Let the size of the population 30=N , the number of maximum generations  

and the mutation probability 02.0=mP . 

 

Figure 4.17 Plot of prediction error with respect to the number of generations 

 for dataset BAC 
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Figure 4.17 depicts the profile of the prediction error with respect to the number of 

generations of GA for dataset BAC. The GA converges in 15 generations from Figure 

4.17. At the convergence of GA, it follows that  
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From the optimal τB ( )1,0=τ  above, it follows that 14 (of 25) regulatory relationships 

are time-delayed. Further, the elements of matrices τAB � o ( )1,0=τ  are estimated as 

follows: 
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Using model (4.26) with the estimated matrices τB  and τA ( )1,0=τ , the predicted 

behaviour of the internal variables can be calculated (as show in Figure 4.18). It shows 

that the prediction performance of model (4.26) for the interval variables is pretty good. 

To evaluate the prediction performance of model (4.26), Equation (4.10) is employed to 

calculate the predication errors of the inferred networks model (4.26) and model (4.12). 

The degree of improvement is calculated by Equation (4.25). These results are listed 

Table 4.4 and show that the gene regulatory network with time delays may improve in 

terms of the prediction error by 64% for dataset BAC. 

 .  

 
 

Figure 4.18 A comparison of 5 internal state expression profiles estimated by PPCA 

and predicted by dynamic equation model with time delays for dataset BAC.  

The solid line: estimated profiles; and the dash lines: predicted profiles. 
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To inspect the stability, the robustness, and the periodicity of the inferred gene network 

from dataset BAC, the eigenvalues of matrix T  are calculated by substituting matrices 

in (4.30a) as 0A  and in (4.30b) as 1A  into the generalized matrix T  in Equation (4.9).  

 
 

Figure 4.19 The distribution of eigenvalues of the inferred gene regulatory network 

with time delays for dataset BAC 

 

The 10 eigenvalues of the inferred gene regulatory network are 0.7061± 0.7673i, 

0.8332± 0.2225i, -0.5284± 0.5904i, -0.2564±  0.1324i, 0.2862± 0.0514i, all of which 

except for the first pair are inside the unit circle. The modulus of the first pair of 

eigenvalues is 1.0427 which is very close to the unit circle as shown Figure 4.19. From 
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the difference equation theory, the inferred regulatory network from dataset BAC is 

almost stable and robust. Furthermore, as the dominant eigenvalues are a pair of 

conjugate complex numbers, the behaviour of the systems is periodic at the stable states. 

These are the expected properties of a real gene regulatory network. Recall that the 

inferred network without time delays from the same dataset discussed in Section 4.3 is 

not periodic. 

 

Table 4.4 Comparison of prediction power between the state-space models with time 

delays and without time delays for dataset BAC and CDC28 

 Without time delays With time delays Improvement (%) 

BAC 0.0430 0.0157 64.39 

CDC28 0.2284 0.1530 33.01 

 

 

Figure 4.20 depicts the profile of the prediction error with respect to the number of 

generations of GA for dataset CDC28. The GA converges in 15 generations from Figure 

4.20. At the convergence of GA, it follows that  

 

















=

00110

01101

11101

01110

10000

0B   and 

















=

11001

10010

00010

10001

01111

1B                     (4.31) 

 



 135 

 
 

Figure 4.20 Plot of prediction error with respect to the number of generations for 

dataset CDC28 

 

From the optimal τB ( )1,0=τ  above, it follows that 12 (of 25) regulatory relationships 

are time-delayed. Further, the elements of matrices τAB � o ( )1,0=τ  are estimated as 

follows: 
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and  



 136 

 

















−

−−

=

4207.00432.0001170.0

8007.0002686.00

0008347.00

3450.00001498.1

01251.03679.03649.08714.0

11 AB o               (4.32b) 

   

 

Figure 4.21 A comparison of 5 internal state expression profiles estimated by PPCA 

and predicted by dynamic equation model with time delays for dataset CDC28.  

The solid line: estimated profiles; and the dash lines: prediction profiles. 

 

Using model (4.26) with the estimated matrices τB ( )1,0=τ  and τA ( )1,0=τ , the 

predicted behaviour of the internal variables can be calculated, as shown in Figure 4.21. 

It shows that the prediction performance of model (4.26) for the interval variables is 
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pretty good. To evaluate the prediction performance of model (4.26) for dataset CDC28, 

Equation (4.10) is employed to calculate the predication errors of the inferred networks 

model (4.26) and model (4.12). The degree of improvement is calculated by Formulae 

(5.25). These results are listed Table 4.4 and show that the gene regulatory network with 

time delays may improve the prediction accuracy by 33% for dataset CDC28. 

 

 

Figure 4.22 The distribution of eigenvalues of gene regulatory network with time delays 

for dataset CDC28 

 
To investigate the stability, the robustness, and the periodicity of the inferred gene 

network from dataset CDC28, The eigenvalues of matrix T  are calculated by 

substituting matrices in (4.32a) as 0A  and in (4.32b) as 1A  into the generalized matrix 

T  in Formulae (4.9). The 10 eigenvalues of the inferred gene regulatory network are -
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1.0605, 0.7036 ± 0.6467i, 0.8347, 0.6208, -0.0703 ±  0.6051i, -0.2292 ±  0.1946i, 

0.0709, all of which except for the first real one are inside the unit circle. However, the 

first eigenvalue (-1.0605) is very close to the unit circle, as shown in Figure 4.22. From 

the difference equation theory, the inferred regulatory network from dataset CDC28 is 

almost stable and robust. Furthermore, as the dominant eigenvalues are the real number 

eigenvalues (-1.0605) and a pair of conjugate complex numbers (0.7036 ± 0.6467i, 

whose modulus is 0.9557), the behaviour of the systems is periodic at the stable states. 

These are the expected properties of the inferred gene regulatory network as genes in 

this dataset are associated with cell division process of the yeast (Cho et al., 1998). 

 

In summary, this section has proposed a GA approach to infer the time-delayed 

relationships in gene regulatory networks. Applications of this approach to two gene 

expression datasets BAC and CDC28 has shown that the GA approach can effectively 

infer the time-delayed relationships in gene regulatory networks, and with optimal time-

delayed relationships, the model with time delays has not only more prediction power 

than the model proposed in Section 4.3, but also some features of the real gene 

regulatory network, for example, the stability, the robustness, and the periodicity.  

 

4.6 Conclusions 

 

This chapter firstly proposed a state-space model for gene regulatory networks and the 

use of MLFA, BIC, and multiple regression method for model identification. The 

analysis shows that the computational complexity to identify the proposed model is 
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much lower than that to identify the Boolean network models and differential/difference 

equation models. The computational experiments on two gene expression datasets have 

shown that the inferred gene regulatory networks for the two dataset have some features 

of the real gene regulatory networks, such as the stability and robustness. 

 

Furthermore, a state-space model with time delays for inferring gene regulatory 

networks is proposed, which is an extension of the state-space model to account for the 

time-delayed relationships in the real gene regulatory networks. The PPCA, the BIC, 

and the multiple regression method are employed to identify the proposed model. The 

results of computational experiments have show that not only does the model with time 

delays improve the predication power as compared to the model without time delays, 

but also have more features of the real gene regulatory networks than the model without 

time delays, for example, the periodicity besides the stability and the robustness. 

 

Finally, a genetic algorithm is proposed for inferring time delays in gene regulatory 

networks. Computational experiments on two gene expression datasets are performed to 

evaluate the proposed algorithm. The results show that the proposed algorithm can 

effectively infer time-delayed relationships in gene regulatory networks, and that with 

optimal time-delayed relationships the model with time delays has not only more 

prediction power than the model without time delay, but also some features of the real 

gene regulatory network, for example, the stability, the robustness, and the periodicity. 
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Chapter 5 

 

SUMMARY AND FUTURE WORK  

 

5.1 Summary  

 

Time-course gene expression data contain much information that may lead to new 

insights into the understanding of biological processes. Yet, the analysis of such data is 

more difficult because of their complexities (e.g., time dependencies) and their 

limitations (e.g., the number of time points is much smaller than the number of genes in 

a typical dataset).  Existing methods for analysis of gene expression data are generally 

not well suited to time-course gene expression data. This dissertation has proposed 

several analysis methods for both inferring gene regulatory relationships and networks 

from time-course gene expression data. 

 

For inferring gene regulatory relationships from time-course gene expression data, two 

dynamic model-based clustering methods are presented: MCM-based clustering and 

ARM-model based clustering. These two methods explore the time dependency feature 

within time-course gene expression profiles. Specifically, a Markov chain model is 

employed in MCM-based clustering and an autoregressive equation is employed in 
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ARM-based clustering in order to account for the dynamics of time-course gene 

expression data.  

 

Computational experiments are performed on two datasets to validate the MCM-based 

clustering method. AARI is used as a measure of the quality of a clustering. Results 

show that the MCM-based clustering method outperforms the static model-based 

clustering methods. Likewise, the computational experiments are performed on four 

datasets to validate the ARM-based clustering methods. Two of these four datasets are 

those used for the MCM-based clustering method for the purpose of comparison 

between the MCM-based and ARM-based clustering methods. The results show that the 

ARM-based clustering methods outperform not only the static model-based clustering 

methods, but also the MCM-based clustering methods. The superior performance of the 

ARM-based clustering methods over the MCM-based clustering methods is perhaps due 

to the fact that useful information may be lost with the MCM-based clustering methods 

when the gene expression data are mapped onto three states (I, R, C). Our results 

support the conclusion that consideration of the dynamics of gene expression can 

improve the quality of clustering.  

 

For inferring gene regulatory networks from time-course gene expression data, a state-

space model without time delays is proposed. In this model, genes are viewed as 

observation variables, whose expression values depend on the current internal state 

variables and other external inputs, if they exist. The idea behind this view is that genes 

may be regulated by other elements in a cell. The BIC, the MLFA, and the multiple 
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regression method are employed to infer gene regulatory networks in terms of the 

proposed model from time-course gene expression data. The computational complexity 

of the algorithm to identify the model is much lower than that to identify competing 

models, such as Boolean network models and differential/difference equation models. 

Computational experiments are performed on two datasets. The results show that not 

only may gene regulatory networks be unambiguously inferred from current time-course 

gene expression datasets in terms of the state-space model without time delays, but the 

inferred networks have some features of real gene regulatory networks, such as stability 

and robustness.  

 

As an improvement, a state-space model with time delays for inferring gene regulatory 

networks is proposed to account for the time-delayed relationships in real gene regulat-

ory networks. The PPCA, the BIC, and the multiple regression method are proposed to 

identify the parameters of the proposed model. Computational experiments are 

performed on two datasets, where it is assumed that each regulatory interaction has two 

time delays (0 and 1) and time points in the datasets are enough to infer all time-delayed 

regulatory relationships. The results show that the inferred gene regulatory networks 

with time delays have improved prediction error and capture more features of real gene 

regulatory networks than the inferred gene regulatory networks without time delays. 

 

In the state-space model with time delay, it is often assumed that each regulatory 

interaction has only one single time delay as there are not enough time points available 

in the datasets under consideration. The identification of time-delayed regulatory 
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relationships thus becomes very important. A genetic algorithm is proposed to infer the 

time-delayed relationships in the gene regulatory network from time-course gene 

expression datasets. Applications of the proposed GA to two gene expression datasets 

show that the GA can effectively infer the time-delayed relationships in gene regulatory 

networks. Furthermore, with optimal time-delayed relationships from the GA, the 

inferred gene regulatory networks with time delays have improved the prediction power 

and capture more features of real gene regulatory networks than the inferred networks 

without time delays,  for example, stability, robustness, and periodicity. 

 

5.2 Future Work 

 

5.2.1 Improvement of Dynamic Model-Based Clustering  

 

Some further improvements could still be made to both proposed dynamic model-based 

clustering methods. For example, the current MCM-based clustering method does not 

address the problems arising from missing data (which often occurs in gene expression 

experiments) and time delay in gene regulatory processes. It would be desirable to 

improve the proposed method using more sophisticated dynamic models for describing 

gene expression dynamics. One way to do this, for example, is using hidden Markov 

models (HMMs) (Rabiner, 1989).      

 

For the ARM-based clustering method, gene expression dynamics are accounted for by 

the p  order autoregressive equations. The time span between two consecutive 



 144 

measurements of a time series may influence the complexity of parameter estimation of 

the equations. For gene expression datasets with equally-spaced measurements, the 

computational complexity of parameter estimation for autoregressive equations is linear 

as shown in this dissertation. However, for those gene expression datasets with 

unequally-spaced measurements, the problem becomes nonlinear. It is noted that a study 

by Ramoni et al. (2002) ignored the effects of the unequally-spaced measurements 

without giving any explanation. It is hypothesized that unequally-spaced time points 

should have some significant effect on modelling in general; the problem is similar, in 

nature, to the problem of time gaps in time-course gene expression datasets. 

Furthermore, at this point the selection criterion for the optimal order of autoregressive 

equations in ARM-based clustering has not been given, which calls for a further study. 

Some biological knowledge about datasets under consideration may help to choose an 

appropriate order for autoregressive models.   

 

Since both proposed dynamic model-based methods have a probabilistic foundation, any 

prior information about genes may be incorporated into models (3.13) and (3.23) using 

Bayesian inference. Such a priori information may include gene sequence information, 

the cluster labels of a subset of genes, and so on. Incorporation of such information may 

be desirable to improve the quality of clustering further.   

 

5.2.2 Improvement of the Inference of Gene Regulatory Network 
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Gene regulatory networks play a central role in systems biology. Many computational 

methods and models have been proposed for inferring gene regulatory networks from 

gene expression data. However, at present the inferred gene regulatory networks with 

these models can not completely explain complex organismal or suborganismal 

behaviours. On the other hand, any subjective assumptions-enforced models may result 

in misinterpreting organismal or suborganismal behaviours. Therefore, further studies 

are needed to improve the models and methods for inferring gene regulatory networks, 

specifically on the following points. 

 

First, many models proposed previously for inferring gene regulatory networks, 

including those developed in this dissertation, are linear, but real gene regulatory 

networks may be nonlinear (Baldi and Hatfield, 2002; Gardner et al., 2003; Di Bernardo 

et al., 2004; Goutsias and Kim, 2004). With the current volume of gene expression 

datasets, many linear models are underestimated. The identification of the more 

complicated nonlinear models is even worse. However, in the framework of the state-

space model, it is more possible to construct nonlinear dynamic equations for describing 

nonlinear regulatory relationships among the internal variables because the number of 

internal variables is smaller. 

 

Second, one of the important tasks which challenge any effort on building models for 

cellular systems is the identification of biological implications of variables and / or 

clusters of variables. This is because one ultimate goal of systems biology is to develop 

methods to manipulate living cells to change and control their behaviours and states. As 



 146 

shown by De Jong (2003), various computational models for gene regulatory networks 

have been proposed. These works encounter a general problem, the biological 

implications of the proposed models, to varying degrees. In order to give biological 

implications for the models proposed in this thesis, the following questions should be 

answered: Question 1 ── what is the biological meaning of the internal variables? 

Question 2 ── what are the internal variables from the perspectives of biology? 

Although seeking answers to these questions is beyond the scope of this thesis, the 

following are some general thoughts and approaches that may be followed to pursue the 

answers. 

 

It has already been known from biology that regulatory interactions among genes are 

mediated by regulatory proteins encoded by genes (see Figure 2.1). Further, not all gene 

products (proteins) directly regulate gene expression in a gene regulatory network; only 

some of genes are translated into regulatory proteins, while others are translated into 

structural proteins (Albters et al., 1998; Liebler, 2002; Baldi and Hatfield, 2002). 

Therefore, the internal variables are likely to correspond to some regulatory proteins. 

Following this thought, there are two possible situations: (1) one protein corresponding 

to one internal variable, and (2) a cluster of proteins corresponding to one internal 

variable.  

 

Hartemink et al.’s (2001) study may provide a support for the conjecture above. They 

proposed a Bayesian network model for gene regulatory networks. Their model 

introduced so-called latent variables to capture unobserved factors, and they used the 
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BIC method to select the latent variables. They considered the latent variables in their 

model to be known regulatory proteins with know regulatory relationships with genes.  

 

As opposed to the situation considered in Hartemink et al.’s paper (2001), our models 

do not consider that the proteins corresponding to internal variables or their 

relationships with genes are known a priori. To investigate the relationships between the 

internal variables and the regulatory proteins, both gene expression data and 

corresponding protein expression data should simultaneously be collected in a biological 

process under consideration. This is possible as a number of techniques for measuring 

gene expression are available; see discussions in Section 2.1, and proteomics 

technologies such as mass spectrometry and two-dimensional polyacrylamide gel 

electrophoresis (2D-PAGE) (Pennington and Dunn, 2001; Liebler, 2002) have also been 

employed to measure protein expression. As described in Chapter 4, from gene 

expression data, the expression profiles of internal variables can be estimated using BIC 

and either MLFA or PPCA. The correlations between each expression profile of the 

internal variables and each protein expression profile are calculated. If the correlation 

coefficient between one internal variable (say, IV) expression profile and one protein 

(say, P) expression profile is large enough, it can be conjectured that the internal 

variable IV corresponds to the protein P.  

 

To identify a possible correspondence between the internal variable and the cluster of 

proteins, some supervised clustering techniques (Hartigan, 1975) can be employed. In 

this case, the internal variable expression profiles are viewed as the reference patterns 
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(supervisors). The correlation coefficient (see Section 3.1) can be employed to measure 

the similarity among the internal variable expression profiles and the protein expression 

profiles. The proteins whose expression profiles are similar to one specific internal 

variable expression profile are classified in the same group. As such, a group of proteins 

is established to correspond to an internal variable. It should be noted that time delay 

must be taken into account when calculating the similarity between an internal variable 

expression profile and a protein expression profile.    

  

Finally, once an inferred gene regulatory network is built up with the proposed model 

and method, its accuracy needs to be verified. The quality of the inferred networks may 

be evaluated in two ways. One way is to develop more criteria from the perspective of 

bioinformatics to evaluate models for inferring large gene regulatory networks; e.g., 

validations involving mathematical, statistical, and simulation approaches. These 

approaches can give support to a prospective network model. However, only with wet-

lab experiments can we actually say definitively if the model is wrong or is consistent 

with real life (i.e. correct). For example, some stimulus is applied to a real network, and 

gene expression values are then measured at a given series of time points. One feasible 

stimulus is to suddenly increase the amount of some transcripts, i.e., increase 

corresponding gene expression values (Gardner et al., 2003). On the other hand, gene 

expression values at the given series of time points are computed according to the 

inferred network with the values at the first time point of the experiment as the initial 

values. Then the computed gene expression values are compared to the corresponding 

experimental values. The smaller their differences are, the better the inferred network is. 
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